Received by OCD: 3/6/2024 2:02:59 PM U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		Sundry Print Report 08/06/2024
Well Name: LEA UNIT	Well Location: T20S / R34E / SEC 11 / NENE / 32.5944947 / -103.5262743	County or Parish/State: LEA / NM
Well Number: 710H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM0006531	Unit or CA Name:	Unit or CA Number:
US Well Number:	Operator: AVANT OPERATING LLC	

Notice of Intent

Sundry ID: 2801765

Type of Submission: Notice of Intent

Date Sundry Submitted: 07/18/2024

Date proposed operation will begin: 07/31/2024

Type of Action: APD Change Time Sundry Submitted: 12:03

Procedure Description: Avant Operating, LLC would like to request that the following changes be made to the Lea Unit 710H APD (API# 30-025-53272, APD ID #10400082677) - Name change from the Lea Unit 710H to the Lea Unit 701H - SHL change from 140' FNL & 1215' FEL to 140' FNL & 1045' FEL - Updated surface and intermediate set points and updated cement program - TVD change to 11,000' - Offline cementing Please see the attached updated documents for this request. Thank you!

NOI Attachments

Procedure Description

Lea_Unit_701H_Plan_0.1_Report_20240718120212.pdf

Avant___Offline_Cementing_Procedure_20240718120153.pdf

Lea_Unit_701H_WBS_Prelim_20240718120143.pdf

Avant_Natural_Resources_Lea_Unit_701H_No_Pricing_20240718120133.pdf

5.500in_20.0_P_110_HC_INTREPID_SP_20240718120125.pdf

Lea_Unit_701H_C_102_20240718120111.pdf

I	Received by OCD: 8/6/2024 2:02:59 PM Well Name: LEA UNIT	Well Location: T20S / R34E / SEC 11 / NENE / 32.5944947 / -103.5262743	County or Parish/State: LEA 2 of 4.
	Well Number: 710H	Type of Well: OIL WELL	Allottee or Tribe Name:
	Lease Number: NMNM0006531	Unit or CA Name:	Unit or CA Number:
	US Well Number:	Operator: AVANT OPERATING LLC	

Conditions of Approval

Additional

11_20_34_A_Sundry_ID_2801765_Lea_Unit_701H_Lea_NMNM06531_AVANT_OPERATING_LLC_13_22g_2_27_202 4_LV_20240724092508.pdf

Lea_Unit_701H_Dr_COA_20240724092508.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: MEGHAN TWELE

Name: AVANT OPERATING LLC

Title: Contract Regulatory Analyst

Street Address: 1515 WYNKOOP ST SUITE 700

City: DENVER

State: CO

State:

Phone: (720) 339-6880

Email address: MTWELE@OUTLOOK.COM

Field

Representative Name:

Street Address:

City:

Phone:

Email address:

BLM Point of Contact

BLM POC Name: CHRISTOPHER WALLS BLM POC Phone: 5752342234 Disposition: Approved Signature: Chris Walls Signed on: AUG 06, 2024 11:55 AM

Zip:

BLM POC Title: Petroleum Engineer

BLM POC Email Address: cwalls@blm.gov

Disposition Date: 08/06/2024

Received by OCD: 8/6/2024 2:02:59 PM

eceived by OCD. 0/0/20.	67 4.04.37 1 111			1 uge 5 0j	
Form 3160-5 (June 2019)	UNITED STA DEPARTMENT OF TH BUREAU OF LAND MA	ATES IE INTERIOR ANAGEMENT	FO ON Expir 5. Lease Serial No.	RM APPROVED 1B No. 1004-0137 es: October 31, 2021	
SUN Do not use abandoned	DRY NOTICES AND RE this form for proposa well. Use Form 3160-3	6. If Indian, Allottee or 7	Tribe Name		
SUB	MIT IN TRIPLICATE - Other ir	nstructions on page 2	7. If Unit of CA/Agreen	nent, Name and/or No.	
1. Type of Well Oil Well	Gas Well Other		8. Well Name and No.		
2. Name of Operator		9. API Well No.	9. API Well No.		
3a. Address		3b. Phone No. (include area code)	10. Field and Pool or Ex	10. Field and Pool or Exploratory Area	
4. Location of Well (Footage, S	Sec., T.,R.,M., or Survey Descript	ion)	11. Country or Parish, S	tate	
]	2. CHECK THE APPROPRIAT	E BOX(ES) TO INDICATE NATURE OF 1	NOTICE, REPORT OR OTHE	ER DATA	
TYPE OF SUBMISSIO	Ň	TYPE O	F ACTION		
Notice of Intent	Acidize	Deepen Hydraulic Fracturing	Production (Start/Resume) Reclamation	Water Shut-Off Well Integrity	
Subsequent Report Casing Repair		New Construction	Recomplete Temporarily Abandon	Other	
Final Abandonment Not	ice Convert to Injec	tion Plug Back	Water Disposal		
 Describe Proposed or Com the proposal is to deepen d the Bond under which the completion of the involved completed. Final Abandom is ready for final inspection 	pleted Operation: Clearly state al rectionally or recomplete horizo vork will be perfonned or provid operations. If the operation resu nent Notices must be filed only a .)	Il pertinent details, including estimated start ntally, give subsurface locations and measu e the Bond No. on file with BLM/BIA. Req lts in a multiple completion or recompletion after all requirements, including reclamation	ting date of any proposed work red and true vertical depths of uired subsequent reports must n in a new interval, a Form 316 n, have been completed and the	and approximate duration thereof. If all pertinent markers and zones. Attach be filed within 30 days following 50-4 must be filed once testing has been e operator has detennined that the site	

14. I hereby certify that the foregoing is true and correct. Name (<i>Printed/Typed</i>)					
	litle				
Signature	Date				
THE SPACE FOR FEDE	RAL OR STATE OF	ICE USE			
Approved by					
	Title	Dat	te		
Conditions of approval, if any, are attached. Approval of this notice does not warrant of certify that the applicant holds legal or equitable title to those rights in the subject least which would entitle the applicant to conduct operations thereon.	e Office				
Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any any false, fictitious or fraudulent statements or representations as to any matter within	person knowingly and will its jurisdiction.	fully to make to any depa	rtment or agency of the United States		

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

Additional Information

Location of Well

0. SHL: NENE / 140 FNL / 1215 FEL / TWSP: 20S / RANGE: 34E / SECTION: 11 / LAT: 32.5944947 / LONG: -103.5262743 (TVD: 0 feet, MD: 0 feet) PPP: NENE / 330 FNL / 1000 FEL / TWSP: 20S / RANGE: 34E / SECTION: 11 / LAT: 32.5939702 / LONG: -103.525576 (TVD: 10992 feet, MD: 11575 feet) PPP: SENE / 1320 FNL / 1000 FEL / TWSP: 20S / RANGE: 34E / SECTION: 11 / LAT: 32.591273 / LONG: -103.52564 (TVD: 11000 feet, MD: 12300 feet) PPP: NENE / 0 FNL / 1037 FEL / TWSP: 20S / RANGE: 34E / SECTION: 14 / LAT: 32.580373 / LONG: -103.525638 (TVD: 11000 feet, MD: 16300 feet) PPP: SENE / 1320 FNL / 1011 FEL / TWSP: 20S / RANGE: 34E / SECTION: 14 / LAT: 32.57675 / LONG: -103.525637 (TVD: 11000 feet, MD: 17600 feet) BHL: SENE / 2536 FNL / 1000 FEL / TWSP: 20S / RANGE: 34E / SECTION: 14 / LAT: 32.5740166 / LONG: -103.5256361 (TVD: 11000 feet, MD: 18474 feet)

Lea Unit 701H

				Lea Un	it /01H							
13 3/8	surf	ace csg in a	17 1/2 i	nch hole.		Desian	Factors			Surface		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Lenath	B@s	a-B	a-C	Weigh
"A"	54.50		j 55	btc	8.77	1.42	0.9	1,785	4	1.52	2.79	97,283
"B"				btc				0				0
	w/8.4#/g	g mud, 30min Sfc Csg Tes	t psig: 1,132	Tail Cmt	does not	circ to sfc.	Totals:	1,785				97,283
Comparison o	f Proposed to Mir	nimum Required Cem	ent Volumes									
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cpl
17 1/2	0.6946	830	1443	1240	16	8.60	1793	2M				1.56
Burst Frac Grad	lient(s) for Segmen	t(s) A, B = , b All > 0	.70, OK.									
									4			
9 5/8	casin	g inside the	13 3/8			Design	Factors			Int 1		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	40.00		j 55	btc	2.77	1.2	0.74	4,000	1	1.36	2.04	160,000
"B"	40.00		I 80	btc	13.55	1.01	1.08	1,690	2	1.99	1.72	67,600
	w/8.4#/§	g mud, 30min Sfc Csg Tes	t psig: 1,020				Totals:	5,690				227,60
	_	The cement	volume(s) are intend	ed to achieve a top of	0	ft from su	irface or a	1785				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cpl
12 1/4	0.3132	1220	2140	1870	14	10.30	2894	3M				0.81
D V Tool(s):							sum of sx	<u>Σ CuFt</u>				Σ%exces
by stage % :		#VALUE!	#VALUE!				1220	2140				14
Burst Frac Grad	lient(s) for Segmen	t(s): A, B, C, D = 0.99,	b, c, d All > 0.70, Ok	κ.								
5 1/2	casin	g inside the	9 5/8			Design Fa	ctors		4	Prod 1		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	20.00		p 110	gbcd	2.91	2.09	2.38	18,567	2	4.37	3.84	371,340
"B"								0				0
"C"								0				0
"D"								0				0
	w/8.4#/§	g mud, 30min Sfc Csg Tes	t psig: 2,420				Totals:	18,567				371,340
		The cement	volume(s) are intend	ed to achieve a top of	5133	ft from su	Irface or a	557				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cpl
8 3/4	0.2526	2900	5408	3398	59	9.30						1.23
Class 'C' tail cm	t yld > 1.35											
#N/A									4			
0		<u> </u>	5 1/2	• "		Design	Factors		<0	hoose Cas	sing>	
Segment	#/ft	Grade		Coupling	#N/A	Collapse	Burst	Length	B@s	a-B	a-C	Weigh
"A"				0.00				0				0
"B"				0.00				0				0
	w/8.4#/§	g mud, 30min Sfc Csg Tes	t psig:				Totals:	0				U
11-1	• • • • • • • •	Cmt vol c	aic below includes th	his csg, TUC intended	#N/A	tt trom su	Irrace or a	#N/A				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BODE				Hole-Cpl

Size

0

#N/A

CuFt Cmt

#N/A

Capitan Reef est top XXXX.

#N/A

Cu Ft

0

% Excess

#N/A

Mud Wt

.

Hole-Cplg

.

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: LEASE NO.:	Avant Operating LLC NMNM06531
LOCATION:	Section 11, T.20 S., R.34 E., NMPM
COUNTY:	Lea County, New Mexico 💌

WELL NAME & NO.:	Lea Unit 701H
BOTTOM HOLE FOOTAGE	2536'/N & 1000'/E
ATS/API ID:	ATS-22-607
APD ID:	10400082677
Sundry ID:	2801765
Date APD Submitted:	N/a

•

COA

H2S	Yes 🔽		
Potash	None 🔽	None	
Cave/Karst Potential	Low		
Cave/Karst Potential	Critical		
Variance	C None	E Flex Hose	C Other
Wellhead	Conventional and Multibov	vl 🔽	
Other	□4 String	Capitan Reef	□WIPP
		Int 1 🗾	
Other	Pilot Hole	🗖 Open Annulus	
	None 🝷		
Cementing	Contingency Squeeze	Echo-Meter	Primary Cement
	None 🔫	None 🔫	Squeeze
			None 🚽
Special	□ Water	COM	✓ Unit
Requirements	Disposal/Injection		
Special	Batch Sundry	Waste Prevention	
Requirements		None 🝷	
Special	Break Testing	✓ Offline	Casing
Requirements	_	Cementing	Clearance
Variance			

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Yates-Severn Rivers and Wolfcamp** formation. As a result, the Hydrogen Sulfide area must meet **43 CFR part 3170 Subpart 3176** requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

- The 13-3/8 inch surface casing shall be set at approximately 1785 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt when present, and below usable fresh water) and cemented to the surface. The surface hole shall be 17 1/2 inch in diameter.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of $\underline{\mathbf{8}}$ <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 2. The minimum required fill of cement behind the **9-5/8** inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, potash or capitan reef. Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

- Special Capitan Reef requirements. If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following:
 - Switch to fresh water mud to protect the Capitan Reef and use fresh water mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.
 - Daily drilling reports from the Base of the Salt to the setting of the intermediate casing are to be submitted to the BLM CFO engineering staff via e-mail by 0800 hours each morning. Any lost circulation encountered is to be recorded on these drilling reports. The daily drilling report should show mud volume per shift/tour. Failure to submit these reports will result in an Incidence of Non-Compliance being issued for failure to comply with the Conditions of Approval. If not already planned, the operator shall run a caliper survey for the intermediate well bore and submit to the appropriate BLM office.
- In <u>Capitan Reef Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 50 feet on top of Capitan Reef top or 200 into the previous casing, whichever is greater. Operator shall provide method of verification.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, potash or capitan reef.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **3000 (3M)** psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the **9-5/8** inch intermediate casing shoe shall be **5000 (5M)** psi.

Option 2:

Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the **13-3/8** inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.

D. SPECIAL REQUIREMENT (S)

<u>Unit Wells</u>

The well sign for a unit well shall include the unit number in addition to the surface and bottom hole lease numbers. This also applies to participating area numbers. If a participating area has not been established, the operator can use the general unit designation, but will replace the unit number with the participating area number when the sign is replaced.

Commercial Well Determination

A commercial well determination shall be submitted after production has been established for at least six months.

Offline Cementing

Operator has been (**Approved**) to pump the proposed cement program offline in the **Intermediate(s) interval**.

Offline cementing should commence within 24 hours of landing the casing for the interval.

Notify the BLM 4hrs prior to cementing offline at Lea County: 575-689-5981.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL
- All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke

manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be

initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)

- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170
 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and

.

disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Long Vo (LVO) 7/24/2024

Avant Operating, LLC

Lea Co., NM (NAD 83) Lea Unit 14 11 Lea Unit 701H

ОН

Plan: Plan 0.1

Standard Planning Report

16 July, 2024

Database: Company: Project: Site: Well: Wellbore: Design:	EDM 5 Avant Lea Co Lea Ur Lea Ur OH Plan 0	0000.16 Singl Operating, Ll o., NM (NAD hit 14 11 hit 701H .1	e User Db _C 83)		Local Co- TVD Refer MD Refer North Ref Survey Ca	ordinate Refer rence: ence: erence: slculation Meth	rence: hod:	Well Lea Unit 7 WELL @ 3692. WELL @ 3692. Grid Minimum Curva	01H 7usft (3692.7) 7usft (3692.7) ature	
Project	Lea Co	, NM (NAD 8	3)							
Map System: Geo Datum: Map Zone:	US State North Am New Mex	Plane 1983 lerican Datur lico Eastern 2	n 1983 Zone		System Dat	tum:	Μ	ean Sea Level		
Site	Lea Uni	it 14 11								
Site Position: From: Position Uncertainty:	Lat/I	∟ong 0.0	Northi Eastin usft Slot R	ng: g: adius:	573,0 789,1 1	022.18 usft 828.61 usft 3-3/16 "	Latitude: Longitude:			32.572704 -103.526675
Well	Lea Uni	t 701H								
Well Position	+N/-S		0.0 usft No	orthing:		580,951.70	usft Lat	itude:		32.594497
	+E/-W		0.0 usft Ea	sting:		789,891.99	usft Lo	ngitude:		-103.526274
Position Uncertainty			0.0 usft We	ellhead Elevat	ion:		usft Gr	ound Level:		3,666.2 usft
Grid Convergence:		C	0.43 °							
Wellbore	OH									
Magnetics	Мо	del Name	Sample	e Date	Declina	tion	Dip	Angle	Field Stre	ength
					(°)		(°)	(nT)	
		IGRF200	0 1	2/31/2004		8.57		60.80	49,652	.55867303
Design	Plan 0.1	1								
Audit Notes:										
Version:			Phase	e: F	PROTOTYPE	Tie	On Depth:		0.0	
Vertical Section:			Depth From (T)	(D)	+N/-S	+E		Di	rection	
			(usft)	-,	(usft)	(u	sft)		(°)	
			0.0		0.0	0	.0	1	77.95	
Plan Survey Tool Pro Depth From	ogram Depth	Date 1 To	7/16/2024							
(ustt)	(usi	t) Surve	y (Wellbore)		Tool Name		Remarks			
1 0.0	18,5	66.9 Plan ().1 (OH)		B001Mb_MWI	D+HRGM				
					OWSG MWD	+ HRGM				
Plan Sections										
Measured Depth Inclin (usft) (nation (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
5,300.0	0.00	0.00	5,300.0	0.0	0.0	0.00	0.00	0.00	0.00	
5,460.9	3.22	67.08	5,460.8	1.8	4.2	2.00	2.00	0.00	67.08	
9,445.5	3.22	67.08	9,439.2	88.9 00 e	210.2	0.00	0.00	0.00	0.00 180.00 KC	
9,000.5	0.00	0.00	9,000.0 10.522 5	90.0 90.6	214.3 214.3	2.00 0.00	-2.00 0.00	0.00	0.00 KC	
11,279.0	90.00	179.56	11,000.0	-386.8	218.0	12.00	12.00	0.00	179.56	
18,566.9	90.00	179.56	11,000.0	-7,674.5	274.6	0.00	0.00	0.00	0.00 LTI	P/BHL - Lea Unit 7(

7/16/2024 9:46:59AM

.

Database:	EDM 5000.16 Single User Db	Local Co-ordinate Reference:	Well Lea Unit 701H
Company:	Avant Operating, LLC	TVD Reference:	WELL @ 3692.7usft (3692.7)
Project:	Lea Co., NM (NAD 83)	MD Reference:	WELL @ 3692.7usft (3692.7)
Site:	Lea Unit 14 11	North Reference:	Grid
Well:	Lea Unit 701H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OH		
Design:	Plan 0.1		

Planned Survey

Measured Depth (usft)	Inclination	Azimuth	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
(001)	()	()	(,	(usit)	(0311)	(4010)	(((/ 1000010)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1.000.0	0.00	0.00	1.000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1 500 0	0.00	0.00	1 500 0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
RUSTI FR	0.00	0.00	1,02010	0.0	0.0	0.0	0.00	0.00	0.00
1 700 0	0.00	0.00	1 700 0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1.800.0	0.0	0.0	0.0	0.00	0.00	0.00
4,000,0			4,000,0						0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
2,200.0	0.00	0.00	2,200.0	0.0	0.0	0.0	0.00	0.00	0.00
2,300.0	0.00	0.00	2,300.0	0.0	0.0	0.0	0.00	0.00	0.00
2,400.0	0.00	0.00	2,400.0	0.0	0.0	0.0	0.00	0.00	0.00
2,500.0	0.00	0.00	2,500.0	0.0	0.0	0.0	0.00	0.00	0.00
2,600.0	0.00	0.00	2,600.0	0.0	0.0	0.0	0.00	0.00	0.00
2,700.0	0.00	0.00	2,700.0	0.0	0.0	0.0	0.00	0.00	0.00
2,800.0	0.00	0.00	2,800.0	0.0	0.0	0.0	0.00	0.00	0.00
2.900.0	0.00	0.00	2,900.0	0.0	0.0	0.0	0.00	0.00	0.00
3.000.0	0.00	0.00	3.000.0	0.0	0.0	0.0	0.00	0.00	0.00
3.100.0	0.00	0.00	3.100.0	0.0	0.0	0.0	0.00	0.00	0.00
3,200.0	0.00	0.00	3.200.0	0.0	0.0	0.0	0.00	0.00	0.00
3,300.0	0.00	0.00	3,300.0	0.0	0.0	0.0	0.00	0.00	0.00
3 400 0	0.00	0.00	3 400 0	0.0	0.0	0.0	0.00	0.00	0.00
3,415.0	0.00	0.00	3 415 0	0.0	0.0	0.0	0.00	0.00	0.00
VATES	0.00	0.00	0,110.0	0.0	0.0	0.0	0.00	0.00	0.00
3,500,0	0.00	0.00	3 500 0	0.0	0.0	0.0	0.00	0.00	0.00
3 600 0	0.00	0.00	3 600 0	0.0	0.0	0.0	0.00	0.00	0.00
3,700.0	0.00	0.00	3,700.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000,0	0.00	0.00	2,000,0	0.0	0.0	0.0	0.00	0.00	0.00
3,800.0	0.00	0.00	3,800.0	0.0	0.0	0.0	0.00	0.00	0.00
3,900.0	0.00	0.00	3,900.0	0.0	0.0	0.0	0.00	0.00	0.00
4,000.0	0.00	0.00	4,000.0	0.0	0.0	0.0	0.00	0.00	0.00
4,100.0	0.00	0.00	4,100.0	0.0	0.0	0.0	0.00	0.00	0.00
4,200.0	0.00	0.00	7,200.0	0.0	0.0	0.0	0.00	0.00	0.00
4,300.0	0.00	0.00	4,300.0	0.0	0.0	0.0	0.00	0.00	0.00
4,400.0	0.00	0.00	4,400.0	0.0	0.0	0.0	0.00	0.00	0.00
4,500.0	0.00	0.00	4,500.0	0.0	0.0	0.0	0.00	0.00	0.00
4,600.0	0.00	0.00	4,600.0	0.0	0.0	0.0	0.00	0.00	0.00
4,700.0	0.00	0.00	4,700.0	0.0	0.0	0.0	0.00	0.00	0.00
4,800.0	0.00	0.00	4,800.0	0.0	0.0	0.0	0.00	0.00	0.00

.

Database: Company: Project:	EDM 5000.16 Single User Db Avant Operating, LLC Lea Co., NM (NAD 83)	Local Co-ordinate Reference: TVD Reference: MD Reference:	Well Lea Unit 701H WELL @ 3692.7usft (3692.7) WELL @ 3692.7usft (3692.7)
Site:	Lea Unit 14 11	North Reference:	Grid
Well:	Lea Unit 701H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan 0.1		

Planned Survey

	Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
	4 900 0	0.00	0.00	4 900 0	0.0	0.0	0.0	0.00	0.00	0.00
	5 000 0	0.00	0.00	5 000 0	0.0	0.0	0.0	0.00	0.00	0.00
	5,100.0	0.00	0.00	5,100.0	0.0	0.0	0.0	0.00	0.00	0.00
	5,183.0	0.00	0.00	5.183.0	0.0	0.0	0.0	0.00	0.00	0.00
	CAPITAN_R	EEF		-,						
	5 200 0	0.00	0.00	5 200 0	0.0	0.0	0.0	0.00	0.00	0.00
	5,200.0	0.00	0.00	5,200.0	0.0	0.0	0.0	0.00	0.00	0.00
	KOP Start I	Build 2 00	0.00	0,000.0	0.0	0.0	0.0	0.00	0.00	0.00
	5 400 0	2 00	67.08	5 400 0	0.7	16	0.6	2.00	2.00	0.00
1	5,400.0	2.00	67.08	5,400.0	1.8	1.0	-0.0	2.00	2.00	0.00
	5,400.5	bald at E4C0.0 M	07.00	3,400.0	1.0	7.2	-1.0	2.00	2.00	0.00
	5tart 3964.6	1010 at 5460.9 M	67.09	E 400 0	2.6	6.0	2.4	0.00	0.00	0.00
I	5,500.0	3.22	07.00	5,499.9	2.0	0.2	-2.4	0.00	0.00	0.00
1	5,590.3	3.22	67.08	5,590.0	4.6	10.9	-4.2	0.00	0.00	0.00
	CHERRY_C	NYN								
	5,600.0	3.22	67.08	5,599.7	4.8	11.4	-4.4	0.00	0.00	0.00
	5,700.0	3.22	67.08	5,699.5	7.0	16.5	-6.4	0.00	0.00	0.00
	5,800.0	3.22	67.08	5,799.4	9.2	21.7	-8.4	0.00	0.00	0.00
	5,900.0	3.22	67.08	5,899.2	11.4	26.9	-10.4	0.00	0.00	0.00
	6 000 0	2.00	67.00	5 000 4	10 E	20.0	10.4	0.00	0.00	0.00
	6,000.0	3.22	67.08	5,999.1	13.5	32.0	-12.4	0.00	0.00	0.00
	6,100.0	3.22	67.00	6,096.9	15.7	37.2	-14.4	0.00	0.00	0.00
	6,200.0	3.22	67.00	6,190.7	17.9	42.4	-10.4	0.00	0.00	0.00
	6,300.0	3.22	67.00	0,290.0	20.1	47.5	-10.4	0.00	0.00	0.00
	0,400.0	5.22	07.00	0,390.4	22.5	52.7	-20.4	0.00	0.00	0.00
	6,476.7	3.22	67.08	6,475.0	24.0	56.7	-21.9	0.00	0.00	0.00
	BRUSHY_CA	ANYON								
	6,500.0	3.22	67.08	6,498.3	24.5	57.9	-22.4	0.00	0.00	0.00
	6,600.0	3.22	67.08	6,598.1	26.7	63.1	-24.4	0.00	0.00	0.00
	6,700.0	3.22	67.08	6,698.0	28.9	68.2	-26.4	0.00	0.00	0.00
	6,800.0	3.22	67.08	6,797.8	31.0	73.4	-28.4	0.00	0.00	0.00
	6,900.0	3.22	67.08	6,897.6	33.2	78.6	-30.4	0.00	0.00	0.00
	7,000.0	3.22	67.08	6,997.5	35.4	83.7	-32.4	0.00	0.00	0.00
	7,100.0	3.22	67.08	7,097.3	37.6	88.9	-34.4	0.00	0.00	0.00
	7,200.0	3.22	67.08	7,197.2	39.8	94.1	-36.4	0.00	0.00	0.00
	7,300.0	3.22	67.08	7,297.0	42.0	99.2	-38.4	0.00	0.00	0.00
	7 400 0	3 22	67.08	7 396 9	44.2	104 4	-40.4	0.00	0.00	0.00
	7,500.0	3 22	67.08	7 496 7	46.3	109.6	-42.4	0.00	0.00	0.00
	7 600 0	3 22	67.08	7 596 5	48.5	114.8	-44 4	0.00	0.00	0.00
	7 700 0	3 22	67.08	7 696 4	50.7	119.9	-46.4	0.00	0.00	0.00
	7.800.0	3.22	67.08	7.796.2	52.9	125.1	-48.4	0.00	0.00	0.00
	7,000,0	0.00	07.00	7 000 4	FF 4	400.0	50.4	0.00	0.00	0.00
	7,900.0	3.22	67.08	7,896.1	55.1	130.3	-50.4	0.00	0.00	0.00
	8,000.0	3.22	67.08	7,995.9	57.3	135.4	-52.4	0.00	0.00	0.00
	8,100.0	3.22	07.UX	0,095.0 0 101 0	59.5	140.6	-54.4	0.00	0.00	0.00
	0,195.4	3.22	07.08	0,191.0	01.5	145.5	-50.3	0.00	0.00	0.00
	BSPG_LIME	2.00	C7 00	9 405 0	04.0		F0 4	0.00	0.00	0.00
	δ,200.0	3.22	80.10	8,195.6	61.6	145.8	-56.4	0.00	0.00	0.00
	8,289.5	3.22	67.08	8,285.0	63.6	150.4	-58.2	0.00	0.00	0.00
	AVLN_A									
	8,300.0	3.22	67.08	8,295.4	63.8	151.0	-58.4	0.00	0.00	0.00
	8,400.0	3.22	67.08	8,395.3	66.0	156.1	-60.4	0.00	0.00	0.00
	8,500.0	3.22	67.08	8,495.1	68.2	161.3	-62.4	0.00	0.00	0.00
	8,600.0	3.22	67.08	8,595.0	70.4	166.5	-64.4	0.00	0.00	0.00
	8 700 0	2 22	67 00	8 604 9	70 6	171 6	66 /	0.00	0.00	0.00
	0,700.0 9 706 2	3.22	01.UO 67.00	0,094.0 9 701 0	12.0	1/1.0	-00.4	0.00	0.00	0.00
L	0,700.3	3.22	01.00	0,/01.0	/4.3	1/0.1	-00.1	0.00	0.00	0.00

7/16/2024 9:46:59AM

COMPASS 5000.16 Build 96

Database:	EDM 5000.16 Single User Db	Local Co-ordinate Reference:	Well Lea Unit 701H
Company:	Avant Operating, LLC	TVD Reference:	WELL @ 3692.7usft (3692.7)
Project:	Lea Co., NM (NAD 83)	MD Reference:	WELL @ 3692.7usft (3692.7)
Site:	Lea Unit 14 11	North Reference:	Grid
Well:	Lea Unit 701H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan 0.1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
AVALON B									
8,800.0 8,900.0	3.22 3.22 3.22	67.08 67.08 67.08	8,794.6 8,894.5 8 994 3	74.8 77.0 79.1	176.8 182.0 187.1	-68.4 -70.4 -72.4	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
9,100.0	3.22	67.08	9,094.2	81.3	192.3	-74.4	0.00	0.00	0.00
9,200.0 9,300.0 9,400.0	3.22 3.22 3.22	67.08 67.08 67.08	9,194.0 9,293.9 9 393 7	83.5 85.7 87 9	197.5 202.7 207.8	-76.4 -78.4 -80.4	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
9,445.5	3.22	67.08	9,439.2	88.9	210.2	-81.3	0.00	0.00	0.00
Start Drop -2		07.00	0 400 0		040 5		0.00	0.00	0.00
9,500.0 9,515.4	2.13 1.82	67.08 67.08	9,493.6 9,509.0	89.9 90.1	212.5 213.0	-82.2 -82.4	2.00 2.00	-2.00 -2.00	0.00 0.00
FBSGSD * 9,606.5	0.00	0.00	9,600.0	90.6	214.3	-82.9	2.00	-2.00	0.00
Start 922.5 h	old at 9606.5 MI	D - KOP - Lea U	nit 701H	00.0	014.0	00.0	0.00	0.00	0.00
9,041.5 FBSG SD A	0.00	0.00	9,035.0	90.6	214.3	-82.9	0.00	0.00	0.00
9,700.0	0.00	0.00	9,693.5	90.6	214.3	-82.9	0.00	0.00	0.00
9,800.0 9,803.5	0.00 0.00	0.00 0.00	9,793.5 9,797.0	90.6 90.6	214.3 214.3	-82.9 -82.9	0.00 0.00	0.00 0.00	0.00 0.00
SBSG_CARE	3								
9,900.0 10,000.0	0.00 0.00	0.00 0.00	9,893.5 9,993.5	90.6 90.6	214.3 214.3	-82.9 -82.9	0.00 0.00	0.00 0.00	0.00 0.00
10,045.5	0.00	0.00	10,039.0	90.6	214.3	-82.9	0.00	0.00	0.00
3630_30	0.00	0.00	10 000 5	00.0			0.00		0.00
10,100.0 10,200.0	0.00	0.00	10,093.5 10,193.5	90.6 90.6	214.3 214.3	-82.9 -82.9	0.00	0.00	0.00
10,300.0	0.00	0.00	10,293.5	90.6	214.3	-82.9	0.00	0.00	0.00
10,400.0	0.00	0.00	10,393.5	90.6 90.6	214.3	-82.9 -82.9	0.00	0.00	0.00
10,529.0	0.00	0.00	10,522.5	90.6	214.3	-82.9	0.00	0.00	0.00
KOP #2 - Sta	rt Build 12.00	470.50	10 5 10 5	00.0		00 F	10.00	10.00	0.00
10,550.0 10,560.5	2.52 3.78	179.56 179.56	10,543.5 10,554.0	90.2 89.6	214.3 214.3	-82.5 -81.9	12.00 12.00	12.00 12.00	0.00
TBSG_CARE	5 5 2	170 56	10 EC9 E	00.4	014.4	90.7	12.00	12.00	0.00
10,600.0	8.52 8.52	179.56	10,593.3	85.4	214.4	-77.6	12.00	12.00	0.00
10,625.0 10,650.0	11.52 14.52	179.56 179.56	10,617.9 10 642 3	81.0 75.4	214.4 214.5	-73.3 -67.7	12.00 12.00	12.00 12.00	0.00
10,675.0	17.52	179.56	10,666.3	68.5	214.5	-60.8	12.00	12.00	0.00
10,700.0	20.52	179.56	10,689.9	60.3	214.6 214.6	-52.6	12.00	12.00	0.00
TBSG SD *	21.00	179.50	10,090.0	57.2	214.0	-49.5	12.00	12.00	0.00
10 725 0	23.52	179.56	10 713 1	51.0	214.6	-43.3	12 00	12 00	0.00
10,750.0	26.52	179.56	10,735.7	40.4	214.7	-32.7	12.00	12.00	0.00
10,775.0	29.52	179.56	10,757.8	28.7	214.8	-21.0	12.00	12.00	0.00
10,800.0 10.825.0	32.52 35.52	179.56 179.56	10,779.2 10,799.9	15.8 1.8	214.9 215.0	-8.1 5.9	12.00 12.00	12.00 12.00	0.00 0.00
10,850.0	38.52	179.56	10,819.9	-13.3	215.1	21.0	12.00	12.00	0.00
10,875.0	41.52	179.56	10,839.0	-29.3	215.3	37.0	12.00	12.00	0.00
10,900.0	44.52	179.56	10,857.3	-46.4	215.4	54.1	12.00	12.00	0.00
10,906.6	45.31	179.56	10,862.0	-51.1	215.4	58.7	12.00	12.00	0.00
 1830_KH3									

7/16/2024 9:46:59AM

COMPASS 5000.16 Build 96

Database:	EDM 5000.16 Single User Db	Local Co-ordinate Reference:	Well Lea Unit 701H
Company:	Avant Operating, LLC	TVD Reference:	WELL @ 3692.7usft (3692.7)
Project:	Lea Co., NM (NAD 83)	MD Reference:	WELL @ 3692.7usft (3692.7)
Site:	Lea Unit 14 11	North Reference:	Grid
Well:	Lea Unit 701H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan 0.1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,925.0	47.52	179.56	10,874.7	-64.4	215.5	72.0	12.00	12.00	0.00
10,927.9	47.87	179.56	10,876.6	-66.5	215.6	74.2	12.00	12.00	0.00
FTP - Lea Ur 10,950.0 10,975.0 11,000.0 11,025.0	iit 701H 50.52 53.52 56.52 59.52	179.56 179.56 179.56 179.56 179.56	10,891.1 10,906.5 10,920.8 10,934.0	-83.3 -103.0 -123.4 -144.6	215.7 215.8 216.0 216.2	90.9 110.6 131.1 152.3	12.00 12.00 12.00 12.00	12.00 12.00 12.00 12.00	0.00 0.00 0.00 0.00
11,039.1	61.21	179.56	10,941.0	-156.9	216.3	164.5	12.00	12.00	0.00
WFMP *									
11,050.0 11,051.9	62.52 62.75	179.56 179.56	10,946.1 10,947.0	-166.5 -168.2	216.3 216.3	174.1 175.8	12.00 12.00	12.00 12.00	0.00 0.00
WFMP_CL_>	(*								
11,075.0 11,100.0	65.52 68.52	179.56 179.56	10,957.1 10,966.8	-189.0 -212.0	216.5 216.7	196.6 219.6	12.00 12.00	12.00 12.00	0.00 0.00
11,123.8	71.38	179.56	10,975.0	-234.3	216.9	241.9	12.00	12.00	0.00
WFMP_CL_>	(_BASE *								
11,125.0 11,150.0 11 151 2	71.52 74.52 74 66	179.56 179.56 179.56	10,975.4 10,982.7 10,983.0	-235.5 -259.4 -260.5	216.9 217.1 217 1	243.1 267.0 268 1	12.00 12.00 12.00	12.00 12.00 12.00	0.00 0.00 0.00
WFMP CL Y	*		.0,00010	20010		200.1	12100	12100	0.00
11,175.0	77.52	179.56	10,988.7	-283.6	217.2	291.2	12.00	12.00	0.00
11,200.0 11,225.0 11,250.0 11 275 0	80.52 83.52 86.52	179.56 179.56 179.56 179.56	10,993.5 10,997.0 10,999.1 11,000.0	-308.2 -332.9 -357.8 382.8	217.4 217.6 217.8 218.0	315.8 340.5 365.4 390.4	12.00 12.00 12.00	12.00 12.00 12.00	0.00 0.00 0.00
11,279.0	90.00	179.56	11.000.0	-386.8	218.0	394.4	12.00	12.00	0.00
LP - Start 72	87.9 hold at 112	79.0 MD	,						
11,300.0 11,400.0 11,500.0 11,600.0	90.00 90.00 90.00 90.00	179.56 179.56 179.56 179.56 179.56	11,000.0 11,000.0 11,000.0 11,000.0	-407.8 -507.8 -607.8 -707.8 807.8	218.2 219.0 219.8 220.5 221.3	415.4 515.3 615.3 715.2 815.2	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
11,800.0 11,900.0 12,000.0 12,100.0 12,200.0	90.00 90.00 90.00 90.00 90.00 90.00	179.56 179.56 179.56 179.56 179.56 179.56	11,000.0 11,000.0 11,000.0 11,000.0 11,000.0 11,000.0	-907.8 -1,007.8 -1,107.8 -1,207.8 -1,307.8	222.1 222.9 223.6 224.4 225.2	915.2 1,015.1 1,115.1 1,215.1 1,315.0	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
12,300.0 12,400.0 12,500.0 12,600.0 12,700.0	90.00 90.00 90.00 90.00 90.00	179.56 179.56 179.56 179.56 179.56	11,000.0 11,000.0 11,000.0 11,000.0 11,000.0	-1,407.8 -1,507.8 -1,607.8 -1,707.8 -1,807.8	226.0 226.7 227.5 228.3 229.1	1,415.0 1,514.9 1,614.9 1,714.9 1,814.8	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
12,800.0 12,900.0 13,000.0 13,100.0 13,200.0	90.00 90.00 90.00 90.00 90.00	179.56 179.56 179.56 179.56 179.56	11,000.0 11,000.0 11,000.0 11,000.0 11,000.0	-1,907.8 -2,007.8 -2,107.8 -2,207.8 -2,307.8	229.9 230.6 231.4 232.2 233.0	1,914.8 2,014.7 2,114.7 2,214.7 2,314.6	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
13,300.0 13,400.0 13,500.0 13,600.0 13,700.0 13.800.0	90.00 90.00 90.00 90.00 90.00 90.00	179.56 179.56 179.56 179.56 179.56 179.56	11,000.0 11,000.0 11,000.0 11,000.0 11,000.0 11,000.0	-2,407.8 -2,507.8 -2,607.8 -2,707.8 -2,807.7 -2,907.7	233.7 234.5 235.3 236.1 236.8 237.6	2,414.6 2,514.5 2,614.5 2,714.5 2,814.4 2,914.4	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
. 2,000.0	00.00		,	_,	20.10	_,# 1	0.00	0.00	

Database:	EDM 5000.16 Single User Db	Local Co-ordinate Reference:	Well Lea Unit 701H
Company:	Avant Operating, LLC	TVD Reference:	WELL @ 3692.7usft (3692.7)
Project:	Lea Co., NM (NAD 83)	MD Reference:	WELL @ 3692.7usft (3692.7)
Site:	Lea Unit 14 11	North Reference:	Grid
Well:	Lea Unit 701H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan 0.1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
13.900.0	90.00	179.56	11.000.0	-3.007.7	238.4	3.014.3	0.00	0.00	0.00
14 000 0	90.00	179.56	11 000 0	-3 107 7	239.2	3 114 3	0.00	0.00	0.00
14 100 0	90.00	170.00	11,000.0	-3 207 7	230.0	3 21/ 3	0.00	0.00	0.00
14,100.0	00.00	179.50	11,000.0	2 207 7	200.0	2 214 2	0.00	0.00	0.00
14,200.0	90.00	179.50	11,000.0	-3,307.7	240.7	3,314.2	0.00	0.00	0.00
14,300.0	90.00	179.56	11,000.0	-3,407.7	241.5	3,414.2	0.00	0.00	0.00
14,400.0	90.00	179.56	11,000.0	-3,507.7	242.3	3,514.1	0.00	0.00	0.00
14,500.0	90.00	179.56	11,000.0	-3,607.7	243.0	3,614.1	0.00	0.00	0.00
14,600.0	90.00	179.56	11,000.0	-3,707.7	243.8	3,714.1	0.00	0.00	0.00
14,700.0	90.00	179.56	11,000.0	-3,807.7	244.6	3,814.0	0.00	0.00	0.00
14 800 0	90.00	179 56	11 000 0	-3 907 7	245 4	3 914 0	0.00	0.00	0.00
14,000.0	90.00	179.56	11,000.0	-4 007 7	246.4	4 014 0	0.00	0.00	0.00
14,900.0	90.00	179.50	11,000.0	-4,007.7	240.1	4,014.0	0.00	0.00	0.00
15,000.0	90.00	179.50	11,000.0	-4,107.7	240.9	4,113.9	0.00	0.00	0.00
15,100.0	90.00	179.56	11,000.0	-4,207.7	247.7	4,213.9	0.00	0.00	0.00
15,200.0	90.00	179.56	11,000.0	-4,307.7	248.5	4,313.8	0.00	0.00	0.00
15,300.0	90.00	179.56	11,000.0	-4,407.7	249.3	4,413.8	0.00	0.00	0.00
15,400.0	90.00	179.56	11,000.0	-4,507.7	250.0	4,513.8	0.00	0.00	0.00
15,500.0	90.00	179.56	11,000.0	-4,607.7	250.8	4,613.7	0.00	0.00	0.00
15,600.0	90.00	179.56	11,000.0	-4,707.7	251.6	4,713.7	0.00	0.00	0.00
15,700.0	90.00	179.56	11,000.0	-4,807.7	252.4	4,813.6	0.00	0.00	0.00
15.800.0	90.00	179.56	11.000.0	-4.907.7	253.1	4.913.6	0.00	0.00	0.00
15,900,0	90.00	179 56	11 000 0	-5 007 7	253.9	5 013 6	0.00	0.00	0.00
16,000,0	90.00	179 56	11,000,0	-5 107 7	254.7	5 113 5	0.00	0.00	0.00
16,000.0	90.00	179.56	11,000.0	-5 207 7	255 5	5 213 5	0.00	0.00	0.00
16,200.0	90.00	179.56	11,000.0	-5.307.7	256.2	5.313.4	0.00	0.00	0.00
10,200.0	00.00	170.00	11,000.0	5,007.7	200.2	5,010.1	0.00	0.00	0.00
16,300.0	90.00	179.56	11,000.0	-5,407.7	257.0	5,413.4	0.00	0.00	0.00
16,400.0	90.00	179.56	11,000.0	-5,507.7	257.8	5,513.4	0.00	0.00	0.00
16,500.0	90.00	179.56	11,000.0	-5,607.7	258.6	5,613.3	0.00	0.00	0.00
16,600.0	90.00	179.56	11,000.0	-5,707.7	259.3	5,713.3	0.00	0.00	0.00
16,700.0	90.00	179.56	11,000.0	-5,807.7	260.1	5,813.2	0.00	0.00	0.00
16,800.0	90.00	179.56	11,000.0	-5,907.7	260.9	5,913.2	0.00	0.00	0.00
16,900.0	90.00	179.56	11,000.0	-6,007.7	261.7	6,013.2	0.00	0.00	0.00
17,000.0	90.00	179.56	11,000.0	-6,107.7	262.4	6,113.1	0.00	0.00	0.00
17,100.0	90.00	179.56	11,000.0	-6,207.6	263.2	6,213.1	0.00	0.00	0.00
17,200.0	90.00	179.56	11,000.0	-6,307.6	264.0	6,313.1	0.00	0.00	0.00
17.300.0	90.00	179.56	11.000.0	-6.407.6	264.8	6.413.0	0.00	0.00	0.00
17,400.0	90.00	179.56	11,000.0	-6,507.6	265.6	6,513.0	0.00	0.00	0.00
17 500 0	90.00	179 56	11,000 0	-6.607 6	266.3	6,612.9	0.00	0.00	0.00
17 600 0	90.00	179.56	11 000 0	-6 707 6	267.1	6 712 9	0.00	0.00	0.00
17,700.0	90.00	179.56	11,000.0	-6,807.6	267.9	6,812.9	0.00	0.00	0.00
47 000 0	00.00	170 50	11 000 0	6 007 0	000 7	6.040.0	0.00	0.00	0.00
17,800.0	90.00	179.50	11,000.0	-0,907.0	200.7	0,912.8	0.00	0.00	0.00
17,900.0	90.00	179.50	11,000.0	-1,007.0	209.4	7,012.8	0.00	0.00	0.00
18,000.0	90.00	179.50	11,000.0	-7,107.6	270.2	7,112.7	0.00	0.00	0.00
18,100.0	90.00	179.56	11,000.0	-7,207.6	2/1.0	7,212.7	0.00	0.00	0.00
18,200.0	90.00	179.56	11,000.0	-7,307.6	271.8	7,312.7	0.00	0.00	0.00
18,300.0	90.00	179.56	11,000.0	-7,407.6	272.5	7,412.6	0.00	0.00	0.00
18,400.0	90.00	179.56	11,000.0	-7,507.6	273.3	7,512.6	0.00	0.00	0.00
18,500.0	90.00	179.56	11,000.0	-7,607.6	274.1	7,612.5	0.00	0.00	0.00
18,566.9	90.00	179.56	11,000.0	-7,674.5	274.6	7,679.4	0.00	0.00	0.00
TD at 18566	.9 - LTP/BHL - Le	ea Unit 701H							

Database: Company: Project: Site: Well: Wellbore:	EDN Avai Lea Lea OH	/I 5000.16 nt Operati Co., NM (Unit 14 11 Unit 701H	Single Us ng, LLC NAD 83) I	ser Db		Local Co-o TVD Referen MD Referen North Refe Survey Cal	rdinate Reference: ence: nce: rence: culation Method:	Well Lea W WELL @ WELL @ Grid Minimum	Unit 7011 3692.7us 3692.7us Curvatur	H sft (3692.7) sft (3692.7) re	
Design:	Plan	n 0.1									
Design Targets											
Target Name											
- hit/miss tar	aet Dii	o Angle	Dip Dir.	TVD	+N/-S	+E/-W	Northing	Easting			
- Shape		(°)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	Lat	itude	Longitude
KOP - Lea Unit - plan hits ta - Point	701H arget center	0.00	0.00	0 9,600.0	90.6	214.3	581,042.34	790,106.33		32.594742	-103.525576
FTP - Lea Unit 7 - plan misse - Point	701H es target cent	0.00 er by 163	0.00 4usft at 1	0 11,000.0 0927.9usft MD	40.6 (10876.6 TVE	214.7 0, -66.5 N, 21	580,992.34 5.6 E)	790,106.71		32.594604	-103.525576
LTP/BHL - Lea U - plan hits ta - Point	Jnit 7011 arget center	0.00	0.0	1 11,000.0	-7,674.5	274.6	573,277.23	790,166.60		32.573398	-103.525572
Casing Points											
	Measure	ed	Vertical					Ca	sing	Hole	
	(usft)		(usft)			Name		Diai (")	Diameter (")	
	18,5	66.9	11,000.	.0 20" Casing]				20		24
Formations											
	Measured	Ve	rtical							Dip	
	Depth (usft)	D	epth usft)						Dip	Direction	
	(usit)	(L	1511)		Name		Litholog	IY	(°)	()	
	1,620.0	0	1,620.0	RUSILER							
	3,415.0	0	3,415.0	TALES							
	5,183.	2	5,183.0	CHERRY CH							
	5,590.	3 7	5,590.0 6 475 0	CHERRY_CN							
	0,470.	і Л	0,475.0	BRUSHT_CA							
	0,190.4	+ c	0,191.0								
	0,209.3 8 786 ⁴	3	0,200.0 8 781 0	AVLIN_A							
	0,700.	Л	0,701.0	EBSC SD *							
	9,515.	5	9 635 0	FRSG SD A	BASE						
	0 803	5	9,000.0 9 797 0	SBSG CARB							
	9,003. 10 045 /	5 1	0.039.0	SBSG SD							
	10,560	5 1	10 554 0	TBSG CARB							
	10,000.	7 1	10 698 0	TBSG_SD *							
	10,700.	6 ¹	10 862 0	TBSG_RHS *							
	11 039	- 1 1	10.941 0	WFMP *							
	11,051	9 1	10.947 0	WFMP CI X	*						
	11.123	8 1	10.975.0	WFMP CL X	BASE *						
	11,151.2	2 1	10,983.0	WFMP CL Y	*						

.

Database:	EDM 5000.16 Single User Db	Local Co-ordinate Reference:	Well Lea Unit 701H							
Company:	Avant Operating, LLC	TVD Reference:	WELL @ 3692.7usft (3692.7)							
Project:	Lea Co., NM (NAD 83)	MD Reference:	WELL @ 3692.7usft (3692.7)							
Site:	Lea Unit 14 11	North Reference:	Grid							
Well:	Lea Unit 701H	Survey Calculation Method:	Minimum Curvature							
Wellbore:	ОН									
Design:	Plan 0.1									
Plan Annotations										
	New york with the second operation to a second operation toperation to a second operation to a second operatio									

Measured	Vertical	Local Coordinates			
Depth (usft)	Depth (usft)	+N/-S	+E/-W	Comment	
(4011)	(001)	(usit)	(usit)	Comment	
5,300.0	5,300.0	0.0	0.0	KOP - Start Build 2.00	
5,460.9	5,460.8	1.8	4.2	Start 3984.6 hold at 5460.9 MD	
9,445.5	9,439.2	88.9	210.2	Start Drop -2.00	
9,606.5	9,600.0	90.6	214.3	Start 922.5 hold at 9606.5 MD	
10,529.0	10,522.5	90.6	214.3	KOP #2 - Start Build 12.00	
11,279.0	11,000.0	-386.8	218.0	LP - Start 7287.9 hold at 11279.0 MD	
18,566.9	11,000.0	-7,674.5	274.6	TD at 18566.9	

.

Offline Cementing Summary – Intermediate Casing

No changes to the cement program will take place for offline cementing.

Note: Offline cementing will only be preformed within the Bone Springs and shallower with a MASP less than 5000 psi.

- 1. Run casing as per normal operations. While running casing, conduct negative pressure test and test back pressure valves.
 - a. Float equipment is equipped with two back pressure valves rated to a minimum of 5,000 psi.
- 2. Land production casing on mandrel hanger through BOP.
 - **a.** If casing is unable to be landed with a mandrel hanger, then the casing will be cemented online.
 - b. Shoe assembly shown in Figure 1.
- 3. Break circulation and confirm no restrictions.
 - **a.** Ensure no blockage of float equipment and appropriate annular returns.
 - **b.** Perform flow check to confirm well is static.
- 4. Set pack-off
 - **a.** If utilizing a fluted/ported mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid, remove landing joint, and set annular packoff through BOP. Pressure test to 5,000 psi for 10 min.
 - **b.** If utilizing a solid mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid. Pressure test seals to 5,000 psi for 10 min. Remove landing joint through BOP.
- 5. After confirmation of both annular barriers and the two casing barriers, install TA plug and pressure test to 5,000 psi for 10 min. Notify the BLM with intent to proceed with nipple down and offline cementing.
 - a. Minimum 4 hrs notice.
- 6. With the well secured and BLM notified, nipple down BOP and secure with 10k cement tool and cement head.
 - a. Note: If any of the mechanical barriers fail to pressure test or well does not remain static, the BOP stack will not be nippled down until after the cement job has concluded and both lead and tail slurry have reached 500 psi.
- 7. Skid/Walk rig off current well.
- 8. Rig up return lines to take returns from wellhead to pits and rig choke.
 - a. Test all connections and lines from wellhead to choke manifold to 5,000 psi high for 10 min.
 - b. If either test fails, perform corrections and retest before proceeding.
- 9. Rig up cementing lines.
 - a. Pressure test cement lines against cement head to 80% of casing burst for 10 min.
- 10. Break circulation on well to confirm no restrictions.
 - **a.** If gas is present on circulation, well will be shut in and returns rerouted through gas buster.
 - **b.** Max anticipated time before circulating with cement truck is 6 hrs.
- 11. Pump cement job as per plan.
 - a. At plug bump, test casing to 0.22 psi/ft or 1500 psi, whichever is greater.
 - **b.** If plug does not bump on calculated, shut down and wait 8 hrs or 500 psi compressive strength, whichever is greater before testing casing.
 - c. If an influx is taken while cementing, Well Control Procedure from Appendix III will be followed.
- 12. Confirm well is static and floats are holding after cement job.
 - **a.** With floats holding and backside static:
 - i. Remove cement head.
 - **b.** If floats are leaking:
 - i. Shut-in well and WOC (Wait on Cement) until tail slurry reaches 500 psi compressive strength and the casing is static prior to removing cement head.
 - **c.** If there is flow on the backside:
 - i. Shut in well and WOC until tail slurry reaches 500 psi compressive strength. Ensure that the casing is static prior to removing cement head.
 - d. If bradenhead cement remediation is required, Well Control Procedure from Appendix IV will be followed.
- 13. Remove offline cement tool.
- 14. Install night cap with pressure gauge for monitoring.
- 15. Test night cap to 5,000 psi for 10 min.

CEMENT HEAD

Appendix

I. Offline cementing equipment ratings – 5M requirement

Component RWP

- 1. Pack-off 10M
- 2. Cement head 10M
- 3. Casing Wellhead Valves 10M
- 4. Annular Wellhead Valves 5M
- 5. TA Plug 10M
- 6. Float Valves 5M
- 7. 2" 1502 Lo-Torque Valves 15M

*** All Lines 10M rated working pressure

•

- III. Well Control Procedure (Influx occurs while cementing)
 - 8. Alert location and shut down pumps.
 - 9. Shut-in the well and record pressures and pit levels
 - 10. Open choke and resume pumping to take returns through choke manifold to mud/gas separator.
 - 11. Bump plug, close choke and cement head.
 - 12. Record time, SICP, annulus pressure, pit gain.
 - 13. Shut in annulus valves on wellhead and bleed of return line through the choke.
- IV. Well Control Procedure (Remediation Bradenhead squeeze)
 - a. If well is static:
 - 1. Rig up cement pump to annulus wellhead valve
 - 2. Close choke and cement head
 - 3. Pump planned cement volume down annulus
 - 4. Shut-in the well and record pressures and pit levels
 - 5. Record time, SICP, annulus pressure.
 - 6. Shut in annulus valves on wellhead and bleed of return line through the choke.
 - b. If well is not static:
 - 1. Rig up mud pump to annulus wellhead valve as shown in Figure 2.
 - 2. Close choke and cement head
 - 3. Bullhead kill fluid down annulus while monitoring casing pressure.
 - 4. Shut-in the well and record pressures and pit levels.
 - 5. Once well kill is confirmed, continue with cement remediation.

FIGURE 2: Well Control

*** All Lines 10M rated working pressure

Figure 1: Shoe Assembly - Intermediate

432-813-3595 Released to Imaging: 8/6/2024 3:19:05 PM AFE:

API:

REGULATORY: NMOCD

PERMIT #

Page 30 of 41

Lea Unit #701H

Wolfcamp

Lea County, NM

RIG: H&P 255 CAMERON WELLHEAD Sec. 11, T-20S, R-34E; 140 FNL, 1045 FEL KB: 3691.5 (25.5') 9-5/8" x 7"11" SHL: 3666' Lat: 32.5944947, Long: -103.5257222 (NAD83) GL: 5K SSD-II HOLE MD FORMATION TVD MUD CASING CEMENT SPECIAL INSTRUCTIONS SIZE 120 20" Conductor 120 SPUE 13 3/8 " Circ cement to surface is a LEAD: 12.8 PPG MW **NMOCD** requirement Top of Lead: 0 54.5# J-55 BTC 8.4 ppg 20% Excess = Casing must be set 25' into the 17 1/2 +/-13 Bowsprings Fresh Rustler 1,620 Rustler 1,620 20' pup jt TAIL: 14.8 PPG 1 Top of Tail: 1316' 1 joint shoe track MUD: Fresh water only 8.6 ppg 1,645 SURF CSG PT 1,645 20% Excess SPLIT STRING DRLOUT Circ cement to surface is a 3,415 Yates 3,415 MW 95/8 " **NMOCD** requirement 9.8 ppg 5,183 Capitan Reef 5,183 LEAD: 12.8 PPG 40# J-55 BTC Top of Lead: 0' = 12 1/4 0' - 4000' 20% excess Brine 1 20' pup jt TAIL: 14.8 PPG Top of Tail: 4552' 40# L-80 HC BTC 20% Excess 4000' - 5690' 9 Bowsprings +/-TD MW 5,590 Cherry Canyon 5,590 1 joint shoe track 10.3 ppg 5,690 **INTRM CSG PT** 5,690 DRLOUT MW 8.8 83/4 " VERTICAL 6,477 Brushy Canyon 6,475 **Cut Brine** 8,195 Bone Spring 8,191 КОР 9,515 1st BS Sand 9,509 MW 9.3 10,046 2nd BS Sand 10,039 EOC MW ОВМ Lat MW TD MW CURVE 9.3 OBM кор 10,529 10.523 9.3 9.3 18,567 ' MD 10,709 3rd BS Sand 10,698 120/1300, = 7,679 ' VS WET SHOE 83/4 11,039 Wolfcamp 10,941 EOC 11,279 11,000 11,000 ' TVD EOC VS = 394' Lat. Azi = VS Azi. = 179.56° Est BHST = 175°F, Est BHCT = 158°F BHL: 2535 FNL, 1000 FEL DIRECTIONAL PLAN LEAD: 11 PPG LATERAL 5 1/2 " MD INC INC ANNOTATION TVD Top of Lead: 0 20% Excess 20# P-110 HC GBCD = 8 3/4 TAIL: 14.8 PPG Top of Tail: 0 20' pup jt 20% Excess 1 2 20' Marker Jts +/-39 Bowsprings All aqueous fluids (spacer +/-27 Doublebows Solid Bodies and disp) left inside or +/-173 outside of pipe must have biocide & corrision inhibitor DIRECTIONS TO LOCAITON:

PROPOSAL#: 240717130958-A

CEMENT PROCEDURE & PROPOSAL

PREPARED FOR:

Mr. Braden Harris EMAIL: braden@avantnr.com PHONE NUMBER: 406-600-3310

Avant Natural Resources

Lea Unit #701H

Lea County, NM Rig: H&P 255

Service Point

Odessa 1400 S JBS Parkway Odessa, TX 79766 432-701-8955

Technical Writer

Jonathan Smith jonathan@wtcementers.com 432-701-3719

WTC Representative

Jon Reynolds jon@wtcementers.com 432-257-1234

.Disclaimer Notice:

The ability of West Texas Cementers to complete this work is subject to the availability of the raw materials required to complete the job.

This information is presented in good faith, but no warranty is given by and West Texas Cementers LLC assumes no liability for advice or recommendations made concerning results to be obtained from the use of any product or service. The results given are estimates based on calculations produced by a computer model including various assumptions on the well, reservoir and treatment. The results depend on input data provided by the Operator and estimates as to unknown data and can be no more accurate than the model, the assumptions and such input data. The information presented is WTC LLC best estimate of the actual results that may be achieved and should be used for comparison purposes rather than absolute values. The quality of input data, and hence results, may be improved through the use of certain tests and procedures which West Texas Cementers LLC can assist in selecting. The Operator has superior knowledge of the well, the reservoir, the field and conditions affecting them. If the Operator is aware of any conditions whereby a neighboring well or wells might be affected by the tertament proposed herein it is the Operator's responsibility to notify the owner or owners of the well or wells accordingly. Prices quoted are estimates only and are good for 30 days from the date of issue. Actual charges may vary depending upon time, equipment, and material ultimately required to perform these services. Freedom from infringement of patents of West Texas

PRINTED 7/17/2024 15:09

VERSION: v0.29b

•

Avant Nat Lea Unit # Lea Cou Rig: H&P 2	ural Resources 701H nty, NM 255		Surfac	Ce			AND CEMEAPART AND CEMEAPART AN
			\A/E11			PRO	DPOSAL#: 240717130958-A
MUD			8 4# Fresh	Water			
			20" 94# CSG 1	to 120			
PREVIOUS	\$ PIPE						
OPEN HOI	LE		17.5'' OH to 1	.645			
CASING/II	NJECTION		13.375'' 54.5‡	# J-55/BTC to 16	45		
MD			1645				
EST BHST/	/внст		94-F / 86-F	(0.8-F/100-F	Т)		
NOTES	Standby charges start a	fter WTC has bee	n on location fo	or more than 4-hrs	5.		
				VOLUMES			
	FLUID NAME	LENGTH	OD	ID (1)	XS	FACTOR	VOLUME
	1	(ft)	(in.)	(in.)	(%)	(bbl/ft)	(bbl)
	Lead	120	19.124	13.375	200/	0.1815	21.8
	Lead	1196	17.5	13.375	20%	0.1485	1/7.6
		329	17.5	13.375	20%	0.1485	48.8
	SHUE JUINT	40	13.375	12.615		0.1546	6.2
				SDACER			
				SPACEN			
				Fresh Water			
VOLUME			20-bbl				
-				Lead			
	35%	B_Poz+65% Class	C+6% Gel+5%	SALT+0.25PPS Pol	-E-Flake+0.005G	iPS NoFoam V1A	
VOLUME			595-SX			Slurry	Volume: 201.3-bbls
DENSITY			12.8-ppg			Mix Water R	equired: 145-bbls
YIELD			1.9-cf/sx				
MIX WATI	ER		10.17-gps				
TOP OF C	EMENT		Surface				
EXCESS			20%				

Avant Natural Resources Lea Unit #701H Lea County, NM Rig: H&P 255	Surface	PROPOSAL #: 240717130958-A
	Tail	
	100% Class C+1% CaCl2+0.005GPS NoFoar	m V1A
VOLUME	235-SX	Slurry Volume: 55.7-bbls
DENSITY	14.8-ppg	Mix Water Required: 36-bbls
YIELD	1.33-cf/sx	
MIX WATER	6.34-gps	
TOP OF CEMENT	1316-ft	
EXCESS	20%	
	DISPLACEMENT	
	Displacement	
VOLUME	248.1-bbl	

.

Avant Natu Lea Unit #7 Lea Coun Rig: H&P 2	Avant Natural Resources Lea Unit #701H Lea County, NM Rig: H&P 255			ALLS CEMEN/Peres WTCC			
			WELL	INFORMATI	ON	PR	OPOSAL#: 240717130958-A
MUD			10.3# Brine				
PREVIOUS	PIPE		13.375'' 54.5#	CSG to 1645			
OPEN HOLI	E		12.25" OH to !	5690			
CASING/IN	JECTION		9.625'' 40# J-5	5/L-80 HC/BTC	c to 5690		
MD			5690				
TVD			5690				
EST BHST/E	знст		126-F / 110	-F (0.8-F/10	0-FT)		
NOTES	Standby charges start a	after WTC has bee	en on location fo	r more than 4-hr	S.		
				VOLUMES			
	FLUID NAME	LENGTH	OD	ID	XS	FACTOR	VOLUME
		(ft)	(in.)	(in.)	(%)	(bbl/ft)	(bbl)
	Lead	1645	12.615	9.625		0.0646	106.3
	Lead	2907	12.25	9.625	20%	0.0669	194.6
	Tail	1138	12.25	9.625	20%	0.0669	76.2
	SHOE JOINT	40	9.625	8.835		0.0758	3.0
				FLUIDS			
				SPACER			
				Fresh Water			
VOLUME			25-bbl				
	35% B_Poz-	+65% Class C+6%	Gel+5% SALT+0	Lead .5% R-1300+0.25	PPS Pol-E-Flake+	D.005GPS NoFoam V1A	A
VOLUME 890-SX			Slurry	Volume: 301.2-bbls			
DENSITY	NSITY 12.8-ppg		Mix Water R	Required: 216-bbls			
YIELD			1.9-cf/sx				
MIX WATE	R		10.18-gps				
TOP OF CE	MENT		Surface				
EXCESS			20%				

Avant Natural Resources Lea Unit #701H Lea County, NM Rig: H&P 255	Intermediate	CEMEN/Page State Offersa, TEST
	Tail	PROPOSAL#: 240717130958-A
	100% Class C+5% SALT+0.005GPS NoFoam V1A	
VOLUME	330-SX	Slurry Volume: 79.9-bbls
DENSITY	14.8-ppg	Mix Water Required: 52-bbls
YIELD	1.36-cf/sx	
MIX WATER	6.51-gps	
TOP OF CEMENT	4552-ft	
EXCESS	20%	
	DISPLACEMENT	
	Displacement	
VOLUME	428.4-bbl	

•

Avant Natu Lea Unit # Lea Cour Rig: H&P 2	ural Resources 701H Ity, NM 55		Produ	iction		PRI	OPOSAL#: 240717130958-A
			WELL	INFORMATI	ON		
MUD			9.3# OBM	С +о Г 600			
PREVIOUS	PIPE		9.625 40# C	SG to 5690			
OPEN HOL	E		8.75'' OH to 1	8567			
CASING/IN	IJECTION		5.5" 20# P-11	.0 HC/GBCD to 1	18567		
MD			18567				
TVD			11000				
EST BHST/	ВНСТ		175-F / 175	5-F (0.86-F/10	00-FT)		
КОР			10529				
NOTES	Standby charges start a	ifter WTC has bee	n on location fo	or more than 8-hr	S.		
				VOLUMES			
	FLUID NAME	LENGTH	OD	ID	XS	FACTOR	VOLUME
		(ft)	(in.)	(in.)	(%)	(bbl/ft)	(bbl)
	Lead	5690	8.835	5.5		0.0464	264.2
	Lead	4839	8.75	5.5	20%	0.0540	261.2
	Tail	8038	8.75	5.5	20%	0.0540	433.9
	SHOE JOINT	80	5.5	4.778		0.0222	1.8
				FLUIDS			
				SPACER			
	Wt. Spacer 3	7.85GPB Water+8	PPB PolyScrub	4320+78.84PPB B	arite+1GPB Hole	Scrub 4311+1PPB R-130	00
VOLUME			40-bbl				
DENSITY			9.8-ppg				
				Lead			
	100% ProLite+5	PPS Plexcrete STE	+2% SMS+0.65	i% R-1300+0.2% F	L-24+3PPS Gilsor	nite+0.005GPS NoFoam	V1A
VOLUME			875-SX			Slurry	Volume: 526.7-bbls
DENSITY			10.7-ppg			Mix Water R	equired: 439-bbls
YIELD			3.38-cf/sx				
MIX WATE	R		21.06-gps				
TOP OF CE	MENT		Surface				
EXCESS			20%				

Avant Natural Resources Lea Unit #701H Lea County, NM Rig: H&P 255	Production	ALLANS CEMENTRY COMENTRY COMENTR
	Tail	PROPOSAL#: 240717130958-A
50% B_POZ+50%	% Class H+5% SALT+0.05% RCKCAS-100+0.75% FR-5+0.5%	FL-24+0.005GPS NOF0am VIA
VOLUME	2025-SX	Slurry Volume: 436.4-bbls
DENSITY	14.5-ppg	Mix Water Required: 255-bbls
YIELD	1.21-cf/sx	
MIX WATER	5.28-gps	
TOP OF CEMENT	10529-ft	
EXCESS	20%	
	DISPLACEMENT	
	Fresh Water+ 0.25GPT Plexcide 24L+1GPT Cor	plex
VOLUME	410-bbl	
DENSITY	8.34-ppg	

.

CHEMICAL DESCRIPTIONS					
CHEMICAL NAME	CODE	DESCRIPTION			
B_Poz	WTC228	Poz - Fly Ash, Extender			
Class H	WTC101	API Cement			
Class C	WTC100	API Cement			
M_Poz	WTC280	Poz - Fly Ash, Extender			
ProLite		Blended Based Cement			
Plexcrete SFA	WTC129	Cement Strength Enhancer			
Gel	WTC102	Extender			
Micro Crystal	WTC212	Cement Strength Enhancer			
Micro Shell	WTC209	Cement Strength Enhancer			
WTC1	WTC250	Extender			
GB-52	WTC008	Microspheres, Extender			
Plexcrete STE	WTC127	Cement Strength Enhancer			
CSE-NP	WTC236	Cement Strength Enhancer			
Gypsum	WTC111	Free Water Control, Extender			
CaCl2	WTC112	Accelerator			
SMS	WTC115	Free Water Control, Extender			
RCKCAS-100	WTC276	Free Water Control, Anti-Settling Agent			
R-1300	WTC201	Low Temperature Retarder			
CRT-201	WTC278	Lignosulfonate Retarder			
FR-5	WTC258	Lignosulfonate Retarder			
C-37	WTC224	Dispersant, Friction Reducer			
CFL-312	WTC265	Fluid Loss and Gas Migration Control			
FL-24	WTC277	Fluid Loss (polymers/copolymers - 300-F max)			
FL-17	WTC130	Fluid Loss and Gas Migration Control (400-F max)			
MagBond	WTC271	Expanding Agent			
Gilsonite	WTC003	Premium Lost Circulation Material, Free Water Control			
Pol-E-Flake	WTC106	Lost Circulation Material			
Web Seal	WTC133	Premium Fiber Lost Circulation Material			
Zone Seal	WTC207	Premium Lost Circulation Material			
NoFoam V1A	WTC105	Liquid Defoamer			
Water		Fresh Water			
PolyScrub 4320	WTC232	Spacer Gelling Agent			
Barite	WTC116	Weighting Agent			
HoleScrub 4311	WTC281	Surfactant			
HoleScrub 4305	WTC213	Surfactant			
HoleScrub 4308	WTC215	Surfactant			
Soda Ash	WTC164	pH Control			
R-1300	WTC201	Low Temperature Retarder			
RCKCAS-100	WTC276	Free Water Control, Anti-Settling Agent			
Sugar	WTC119	Retarder			
R-33	WTC243	Lignosulfonate Retarder			
Plexcide 24L	WTC166	Biocide			
Corplex	WTC134	Corrosion Inhibitor			
Clay Max	WTC096	KCL Substitute			
Zone Seal	WTC207	Premium Lost Circulation Material			

Performance Data Sheet

Issued on: 01.09.2023

OD Label	LM Label	Grade	Connection
5 1/2	20.00	P110HC	INTREPID-SP [®]

PIPE BODY PROPERTIES

Nominal ID	Nominal WT	Nominal LM	
4.778 inch	0.361 inch	20.00 ppf	
121,36 mm	9,17 mm	29,76 kg/m	
	1		
Minimal YS	Maximal YS	Minimal UTS	
110 ksi	140 ksi	125 ksi	
758 MPa	965 MPa	862 MPa	
	Nominal ID 4.778 inch 121,36 mm Minimal YS 110 ksi 758 MPa	Nominal IDNominal WT4.778 inch0.361 inch121,36 mm9,17 mmMinimal YSMaximal YS110 ksi140 ksi758 MPa965 MPa	

CONNECTION PROPERTIES & PERFORMANCES

	Name	Туре	Coupling OD	Connection ID	
CO.C.	INTREPID-SP®	Semi-Premium T&C	6.300 inch 160,02 mm	4.778 inch 121,36 mm	
-	Coupling length	Tension efficiency	Compression Efficiency	Make-up loss	
3	9.449 inch	641 klb	641 klb	4.126 inch	
3	240,00 mm	2 850 kN	2 850 kN	104,80 mm	
8		100 % PB	100 % PB		
	Burst	Collapse	Max. Bending	Max. Load on Coupling Face	
	12 640 Psi	12 200 Psi	46°/100 ft	583 klb	
	87,1 MPa	84,1 MPa	46°/30 m	2 591 kN	
	100 % PB	100 % PB			

FIELD TORQE VALUES

	[ft-lb]	[N·m]		[ft-lb]	[N·m]
Min. Make-Up Torque	12 400	16 80 0	Operational Torque	21 500	29 150
Opt. Make-Up Torque	13 800	<u>18 70</u> 0			
Max. Make-Up Torque	15 200	20 600	Yield Torque	23 900	32 400

The Performance Data Sheet contains general information that is correct at the time of issue. In the interests of continuous development, the Interpipe company reserves the right to change the format and contents of the Data Sheet at any time without warning and without incurring any obligations. For any questions regarding mentioned data, please mail to Yuriy.Kuratsapov@m.interpipe.biz

Released to Imaging: 8/6/2024 3:19:05 PM

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
Avant Operating, LLC	330396
1515 Wynkoop Street	Action Number:
Denver, CO 80202	370962
	Action Type:
	[C-103] NOI Change of Plans (C-103A)
CONDITIONS	

Created Condition Condition By Date 8/6/2024 pkautz None

CONDITIONS

Page 41 of 41

Action 370962