Form 3160-3 (June 2015)		FORM APPROVED OMB No. 1004-0137 Expires: January 31, 2018		
U DEPARTM BUREAU O	5. Lease Serial No.			
APPLICATION FOR	PERMIT TO DRILL OR REENT	ER 6. If Indian, Allotee or Tribe Name		
1a. Type of work: DRILL	REENTER	7. If Unit or CA Agreement, Name and No.		
1b. Type of Well: Oil Well	Gas Well Other			
1c. Type of Completion: Hydraulic Fra	sturing Single Zone Multipl	8. Lease Name and Well No.		
2. Name of Operator		9. API Well No. 30-045-38365		
3a. Address	3b. Phone No. (include	e area code) 10, Field and Pool, or Exploratory		
4. Location of Well (Report location clearly	and in accordance with any State requireme	nts.*) 11. Sec., T. R. M. or Blk. and Survey or Area		
At surface				
At proposed prod. zone				
14. Distance in miles and direction from near	est town or post office*	12. County or Parish 13. State		
 15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any) 	location to nearest property or lease line, ft.			
 Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 	19. Proposed Depth	20. BLM/BIA Bond No. in file		
21. Elevations (Show whether DF, KDB, RT,	.GL, etc.) 22. Approximate date	work will start* 23. Estimated duration		
	24. Attachments			
The following, completed in accordance with (as applicable)	the requirements of Onshore Oil and Gas O	order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3		
1. Well plat certified by a registered surveyor 2. A Drilling Plan.		to cover the operations unless covered by an existing bond on file (see 10 above).		
3. A Surface Use Plan (if the location is on N SUPO must be filed with the appropriate F		tor certification. other site specific information and/or plans as may be requested by the		
25. Signature	Name (Printed/1	<i>Typed)</i> Date		
Title		I		
Approved by (Signature)	Name (Printed/1	(yped) Date		
Title Office				
Application approval does not warrant or cer applicant to conduct operations thereon. Conditions of approval, if any, are attached.	tify that the applicant holds legal or equitable	e title to those rights in the subject lease which would entitle the		
Title 18 U.S.C. Section 1001 and Title 43 U.S. of the United States any false, fictitious or fra		erson knowingly and willfully to make to any department or agency any matter within its jurisdiction.		

*(Instructions on page 2)

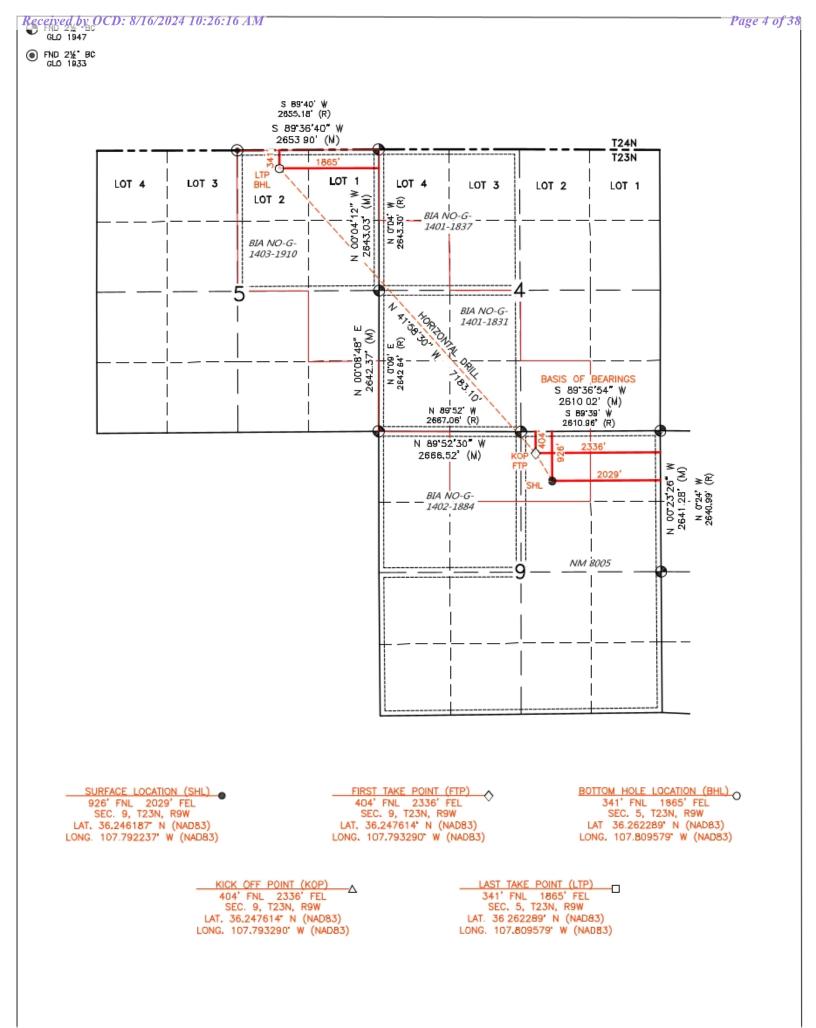
.

(Continued on page 2)

Additional Operator Remarks

Location of Well

0. SHL: NWNE / 926 FNL / 2029 FEL / TWSP: 23N / RANGE: 9W / SECTION: 9 / LAT: 36.246187 / LONG: -107.792237 (TVD: 0 feet, MD: 0 feet) PPP: NWNE / 404 FNL / 2336 FEL / TWSP: 23N / RANGE: 9W / SECTION: 9 / LAT: 36.247614 / LONG: -107.79329 (TVD: 4380 feet, MD: 4648 feet) PPP: NENW / 95 FNL / 2666 FEL / TWSP: 23N / RANGE: 9W / SECTION: 9 / LAT: 36.24846 / LONG: -107.794228 (TVD: 4421 feet, MD: 11876 feet) PPP: SESW / 1 FSL / 2581 FWL / TWSP: 23N / RANGE: 9W / SECTION: 4 / LAT: 36.248721 / LONG: -107.794518 (TVD: 4421 feet, MD: 11876 feet) PPP: SENE / 2429 FNL / 1 FEL / TWSP: 23N / RANGE: 9W / SECTION: 5 / LAT: 36.256585 / LONG: -107.803247 (TVD: 4421 feet, MD: 11876 feet) PPP: SWNW / 2643 FNL / 192 FWL / TWSP: 23N / RANGE: 9W / SECTION: 4 / LAT: 36.255998 / LONG: -107.802595 (TVD: 4421 feet, MD: 11876 feet) BHL: LOT 2 / 341 FNL / 1865 FEL / TWSP: 23N / RANGE: 9W / SECTION: 5 / LAT: 36.262289 / LONG: -107.809579 (TVD: 4421 feet, MD: 11876 feet)


BLM Point of Contact

Name: JEFFREY J TAFOYA Title: Assistant Field Manager Phone: (505) 564-7672 Email: JTAFOYA@BLM.GOV Re

38

eived by	, OCD:	8/16/2024	10:26:16	AM								Page 3
C-102State of NetSubmit ElectronicallyEnergy, Minerals & NaturalVia OCD PermittingOIL CONSERVATI				Resources	Department	Submittal Type:	⊠ In □ A	nitial Submittal mended Report				
						Logim		NIEGO	(1000)	Type,		s Drilled
					VELL	LOCAT	ION	INFORM	MATION			
API Numi	30-0)45-383	65	Pool		98080		Pool Name	NAGEEZI UN	T; MANCOS		umber
Property		325268			rty Nam			NAGEEZI	UNIT		wen N	702H
OGRID No	D ,	371838		Operat	or Nam	e	D	JR OPERATI	NG, LLC		Ground	d Level Elevation 6707'
Surface	e Owner	:: 🗆 Sta	te 🗆 Fe	e 🗆	Tribal	🛛 Federa	.1	Mineral	Owner: 🗆 Sta	ate 🗆 Fee	X Tr	ibal 🛛 Federa
								ation (S	· ·			
UL B	Section 9	Township 23N	Range 9W	Lot	Ft fro 926'	m the N/S NORTH	Ft fro 2029	om the E/W	Latitude 36.246187* N	Longitude 107.79223	7• W	County SAN JUAN
	5	2011				ottom He			(BHL)			0/11/00/11
UL	Section	Township	Range	Lot		m the N/S		om the E/W	Latitude	Longitude		County
в	5	23N	9W	2	341'	NORTH	1865	5' EAST	36.262289' N	107.80957	9⁺ W	SAN JUAN
SW/SE, S	WW/NE & SW/4, SV	PENETRATED NE/NW (80 I/NW (240 1.85 AC.) =	AC.): SEC	4: 5:	Infi	ll or Defining	Well	Defining Well A	PI Overlapping Sp. Unit (Y/N) N		ation Coo	de
Order	Number	rs:			I		Well	Setbacks a	re under Com	non Owners	hip:	🗆 Yes 🗆 No
						Kick 0	off P	oint (KO	P)			
UL	Section	Township	Range	Lot	Ft fro	m the N/S	Ft fro	om the E/W	Latitude	Longitude		County
В	9	23N	9W		404'	NORTH	2336	6' EAST	36.247614 N	107.79329	0* W	SAN JUAN
								Point (F1		1		
UL B	Section 9	Township 23N	Range 9W	Lot	Ft fro 404'	m the N/S NORTH	Ft fro	om the E/W 5' EAST	Latitude 36.247614°N	Longitude 107.79329	0" W	County SAN JUAN
					1	Last Ta	ake	Point (L'	ГР)	-		1
	Section	Township	Range	Lot		m the N/S		om the E/W	Latitude	Longitude		County
В	5	23N	9W	2	341'	NORTH	1865	5' EAST	36.262289° N	107.80957	9° W	SAN JUAN
Unitize	ed Area	or Area NAGEE		rm Int	erest	Spacing U	Init T	ype 🛛 Hori	zontal 🗌 Vertı	cal Ground	Floor	Elevation
OPERA	TOR CE	RTIFICAT	IONS					SURVEYOR	CERTIFICATION	13		
I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief, and, if the well is a vertical or directional well, that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with an owner of a working interest or unleased mineral interest, or to a voluntary pooling agreement or a compulsory pooling order herelofore entered by the division.					ting sed ised	from field r	tify that the well l votes of actual surv : same is true and	eys made by n	ve or un	der my supervision		
If this well is a horizontal well, I further certify that this organization has received the consent of at least one lessee or owner of a working interest or unleased mineral interest in each tract (in the target pool or formation) in which any part of the well's completed interval will be located or obtained a compulsory pooling order from the division ShawMaria Ford 8/16/2024 Suprature Date				9 lov7 s		Real Control of the c	DADHURS 57:00-00 393 312024	$\tilde{)}$				
	<u>w-Mari</u> ^{d Name}	e Ford					_		Simplum and St		·	

Certificate Number Date of Survey sford@enduringresources.com E-mail Address 11393 MAY 6, 2022 Note: No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division. Released to Imaging: 9/6/2024 3:25:22 PM

	State of New MexicoSubmit ElectronicallyEnergy, Minerals and Natural Resources DepartmentVia E-permitting							
	Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505							
		NAT	URAL G	AS MANA	GEME	ENT PLAN	I	
This Natural Gas Managem	ient Plan	must b	e submitted w	ith each Applic	ation for P	ermit to Drill (A	APD) for a new c	or recompleted well.
				<u>1 – Plan I</u> ffective May 2		<u>tion</u>		
I. Operator:DJR Operation	ating, LL	C		OGRID: 37	838]	Date: _08_/_15_/	/_2024_
II. Type: 🛛 Original 🗆 A	Amendme	ent due	to 🗆 19.15.27	.9.D(6)(a) NM	AC 🗆 19.1	5.27.9.D(6)(b)	NMAC 🗆 Other	
If Other, please describe: _								
III. Well(s): Provide the for be recompleted from a sing						or set of wells _l	proposed to be dr	illed or proposed to
Well Name	API	-	ULSTR	Footag	es	Anticipated Oil BBL/D	Anticipated Gas MCF/D	Anticipated Produced Water BBL/D
NAGEEZI UNIT 702H	TBD	B-09-	23N-09W	926 FNL x 202	9 FEL	228	59	57
NAGEEZI UNIT 703H	TBD	B-09-	23N-09W	941 FNL x 2042 DEL		162	42	41
IV. Central Delivery Poin V. Anticipated Schedule: I proposed to be recompleted	Provide t	he follo	owing informa					7.9(D)(1) NMAC] osed to be drilled or
Well Name		API	Spud Date	TD Reached Date		ompletion encement Date	Initial Flow Back Date	First Production Date
NAGEEZI UNIT 702H		TBD	12/6/2024	12/16/2024		2/3/2025	2/18/2025	2/20/2025
NAGEEZI UNIT 703H		TBD	12/0/2024	12/24/2024		2/3/2025	2/23/2025	2/25/2025
 VI. Separation Equipment: ⊠ Attach a complete description of how Operator will size separation equipment to optimize gas capture. VII. Operational Practices: ⊠ Attach a complete description of the actions Operator will take to comply with the requirements of 								
Subsection A through F of	19.15.27	.8 NM/	AC.					

VIII. Best Management Practices: 🖂 Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \Box Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \Box will \Box will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \Box does \Box does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

□ Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: \Box Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

<u>Section 3 - Certifications</u> <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 \boxtimes Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \Box Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In. \Box Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. \Box Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Shaw-Maris Ford
Printed Name: Shaw-Marie Ford
Title: Regulatory Specialist
E-mail Address: sford@enduringresources.com
Date: 8/15/2024
Phone: 505-716-3297
OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

.

SEPARATION EQUIPMENT

DJR Operating, LLC (DJR) has pulled representative pressurized samples from wells in the same producing formation. DJR has utilized these samples in process simulations to determine the amount of gas anticipated in each stage of the process and utilized this information with a safety factor to size the equipment listed below:

Separation equipment will be set as follows:

- Individual 3-phase separator will be set for the individual well.
- The separator will be sized based on the anticipated volume of the well and the pressure of the lines utilized for oil, gas, and water takeaway.
- The 3-phase production separator will be equipped with a 0.75 MMBtu/hr indirect fired heater.

Heater treaters will be set as follows:

- Individual heater treaters will be set for the individual well.
- The heater treaters are sized based on the anticipated combined volume of oil and produced water predicted to come from the initial 3-phase separator.
- Oil will be separated from the produced water and the oil/produced water will be sent to its respective tanks.
- The combined oil and natural gas stream is routed to the Vapor Recovery Tower.

Vapor Recovery Equipment will be set as follows:

- The Vapor Recovery Tower has been sized, based on the anticipated volume of gas from the heater treater and oil and water tanks.
- The Vapor Recovery Unit has been sized, based on the anticipated volume of gas from the heater treater and oil and water tanks. The Vapor Recovery Unit is utilized to push the recovered gas into the sales pipeline.

Production storage tanks will be set as follows:

- The oil and produced water tanks utilize a closed vent capture system to ensure all breathing, working, and flashing losses are routed to the Vapor Recovery Tower and Vapor Recovery Unit.
- Each of the production storage tanks will be equipped with a 0.5 MMBtu/hr indirect heater.

VENTING and FLARING

DJR Operating, LLC (DJR) has a natural gas system available prior to startup of completion operations. DJR utilizes a Vapor Recovery Unit System and sells all natural gas except during periods of startup, shutdown, maintenance, or malfunction for the gas capturing equipment, including the vapor recovery tower, vapor recovery unit, storage tanks, and pipelines.

Currently, DJR utilizes the following from list A-I of Section 3 for its operations to minimize flaring:

- a) DJR utilizes natural gas-powered generators to power its leases where grid power isn't available.
- b) When electrical grid power is unavailable, natural gas generators will be used for major equipment onsite.
- c) DJR's in service compression will be natural gas powered.
- d) Should liquids removal, such as dehydration be required, units will be powered by natural gas.

DJR will only flare gas during the following times:

- Scheduled maintenance for gas capturing equipment including:
 - Vapor Recovery Tower
 - o Vapor Recovery Unit
 - Storage tanks
 - Pipelines
 - Emergency flaring

OPERATIONAL PRACTICES

19.15.27.8 A. Venting and Flaring of Natural Gas

DJR Operating, LLC (DJR) understands the requirements of NMAC 19.15.27.8 which states that the venting and flaring of natural gas during drilling, completion or production that constitutes waste as defined in 19.15.2 are prohibited.

19.15.27.8 B. Venting and flaring during drilling operations

- DJR shall capture or combust natural gas if technically feasible during drilling operations using best industry practices.
- A flare stack with a 100% capacity for expected volumes will be set on location of the facility at least 100 feet from the nearest surface hole location, well heads, and storage tanks.
- In the event of an emergency, DJR will vent natural gas in order to avoid substantial impact. DJR shall report the vented or flared gas to the NMOCD.

19.15.27.8 E. Venting and flaring during completion or recompletion operations

During Completion Operations, DJR utilizes the following:

- DJR facilities are built and ready from day 1 of Flowback.
- Individual well test separators will be set to properly separate gas and liquids. Temporary test separator will be utilized initially to process volumes. In addition, separators will be tied into flowback tanks which will be tied into the gas processing equipment for sales down a pipeline. See Separation Equipment for details.
- Should the facility not yet be capable of processing gas, or the gas does not meet quality standards, then storage tanks will be set that are tied into gas busters or temporary flare to manage natural gas. This flare would meet the following requirements:
 - 1) An appropriately sized flare stack with an automatic igniter.
 - 2) DJR analyzes the natural gas samples twice per week.
 - 3) DJR routes the natural gas into a gathering pipeline as soon as the pipeline specifications are met.
 - 4) DJR provides the NMOCD with pipeline specifications and natural gas data.

19.15.27.8 D. Venting and flaring during production operations

During Production Operations DJR will not vent or flare natural gas except under the following circumstances:

- 1. During an emergency or malfunction
- 2. To unload or clean-up liquid holdup in a well to atmospheric pressure, provided:
 - a. DJR does not vent after the well achieves a stabilized rate and pressure.
 - b. DJR will remain present on-site during liquids unloading by manual purging and tall all reasonable actions to achieve a stabilized rate and pressure at the earliest practical time.
 - c. DJR will optimize the system to minimize natural gas venting on any well equipped with a plunger lift or auto control system.
 - d. Best Management Practices will be used during downhole well maintenance.
- 3. During the first year of production from an exploratory well provided:
 - a. DJR receives approval from the NMOCD.
 - b. DJR remains in compliance with the NM gas capture requirements.
 - c. DJR submits an updated C-129 form to the NMOCD.
- 4. During the following activities unless prohibited:
 - a. Gauging or sampling a storage tank or low-pressure production vessel.
 - b. Loading out liquids from a storage tank.
 - c. Repair and maintenance.
 - d. Normal operation of gas activated pneumatic controller or pump.
 - e. Normal operation of a storage tank but not including venting from a thief hatch.
 - f. Normal operation of dehydration units.
 - g. Normal operations of compressors, compressor engines, turbines, valves, flanges, and connectors.
 - h. During a bradenhead, packer leakage test, or production test lasting less than 24-hours.
 - i. When natural gas does not meet the gathering pipeline specifications.
 - j. Commissioning of pipelines, equipment, or facilities only for as long as necessary to purge introduced impurities.

19.15.27.8 E. Performance standards

- 1. DJR has utilized process simulations with a safety factor to design all separation and storage equipment. The equipment is routed to a Vapor Recovery System and utilizes a flare as back up for periods of startup, shutdown, maintenance, or malfunction of the VRU System.
- 2. DJR will install a flare that designed to handle the full volume of vapors from the facility in case of the VRU failure and it its designed with an auto ignition system.
- 3. Flare stacks will appropriately sized and designed to ensure proper combustion efficiency.
 - a. Flare stacks installed or replaced will be equipped with an automatic ignitor or continuous pilot.

- b. Previously installed flare stacks will be retrofitted with an automatic ignitor, continuous pilot, or technology that alerts DJR of flare malfunction within 18 months after May 25, 2021.
- c. Flare stacks replaced after May 25, 2021, will be equipped with an automatic ignitor or continuous pilot if located at a well or facility with average daily production of 60,000 cubic feet of natural gas or less.
- d. Flare stacks will be located at least 100 feet from the well and storage tanks and securely anchored.
- 4. DJR will conduct an AVO inspection on all components for leaks and defects on a weekly basis.
- 5. DJR will make and keep records of AVO inspections which will be available to the NMOCD for at least 5 years.
- 6. DJR may use a remote or automated monitoring technology to detect leaks and releases in lieu of AVO inspections with prior NMOCD approval.
- 7. Facilities will be designed to minimize waste.
- 8. DJR will resolve emergencies as promptly as possible.

19.15.27.8 F. Measurement or estimation of vented and flared natural gas

- 1. DJR will have meters on both the low- and high-pressure sides of the flares and the volumes will be recorded in DJR's SCADA system.
- 2. DJR will install equipment to measure the volume of flared natural gas that has an average daily production of 60,000 cubic feet or greater of natural gas.
- 3. DJR's measuring equipment will conform to the industry standards.
- 4. The measurement system is designed such that it cannot be bypassed except for inspections and servicing meters.
- 5. DJR will estimate the volume of vented or flared natural gas using a methodology that can be independently verified if metering is not practicable due to low flow rate or pressure.
- 6. DJR will estimate the volume of flared and vented natural gas based on the results of an annual GOR test for wells that do not require measuring equipment reported on Form C-116.
- 7. DJR will install measuring equipment whenever the NMOCD determines that metering is necessary.

BEST MANAGEMENT PRACTICES

DJR Operating, LLC (DJR) utilizes the following Best Management Practices to minimize venting during active and planned maintenance.

DJR has a closed vent capture system to route emissions from the heater treater, tanks, and vapor recovery to the vapor recovery unit with an enclosed combustion device (ECD) for backup. The system is designed such that if the vapor recovery unit is taken out of service for any reason, the vapors will be routed to the ECD for combustion.

DJR will isolate and attempt to route all vapors to the vapor recovery unit or ECD prior to opening any lines for maintenance to minimize venting from the equipment.

DJR shall notify the NMOCD of venting or flaring that exceeds 50 MCF but less than 500 MCF in volume that either resulted from an emergency or malfunction, or an event lasting over eight hours or more cumulatively within any 24-hour period from a single event by filing a form C-129 no later than 15 days following the discovery or commencement of venting or flaring.

DJR shall notify the NMOCD verbally or by e-mail within 24-hours following discovery or commencement of venting or flaring that exceeds 500 MCF in volume or otherwise qualifies as a major release as defined in 19.15.29.7 NMAC from a single event and provide the information required in form C-129 to the NMOCD no later than 15 days that verifies, updates, or corrects the verbal or e-mail notification.

DJR will install measuring equipment to conform to industry standards such as American Petroleum Institute (API) Manual of Petroleum Measurement Standards (MPMS) Chapter 14.10 Measurement of Flow to Flares.

DJRs measuring equipment shall not be designed or equipped with a manifold that allows the diversion of natural gas around the metering element except for the sole purpose of inspecting and servicing the measurement equipment.

DJR shall report the volume of vented and flared natural gas for each well or facility at which venting or flaring occurred on a monthly basis.

200 Energy Court Farmington, NM 87401 Phone (505) 636-9720

Rev 0

JDJR Operating

DRILLING PLAN Nageezi Unit 702H San Juan County, New Mexico

Surface Location

2029-ft FEL & 926-ft FNL Sec 9 T23N R9W Graded Elevation 6707' MSL RKB Elevation 6721' (14' KB)

Kick Off Point for Horizontal Build Curve 3847-ft MD 3845-ft TVD

Heel Location (Pay zone entry) 2336-ft FEL & 404-ft FNL Sec 9 T23N R9W

Bottom Hole Location (TD)

1865-ft FEL & 341-ft FNL Sec 5 T23N R9W SHL Geographical Coordinates (NAD-83) Latitude 36.2461870° N Longitude 107.7922370° W

Local Coordinates (from SHL) 105-ft North 40-ft East

Heel Geographical Coordinates (NAD-83)Latitude36.24761434° NLongitude107.79329023° W

BHL Geographical Coordinates (NAD-83) Latitude 36.2622886° N Longitude 107.8095786° W

Well objectives

This well is planned as a 7180-ft lateral in the Mancos Silt sand.

Bottom Hole temperature and pressure

The temperature in the Mancos Silt horizontal objective is 130°F. Bottom hole pressure in the Mancos Silt is forecast to be 1985 psi.

Formation Tops (Sd = Sand; Sh = Shale; Siltstone = Slt, Coal = C; W = water; O = oil; G = gas; NP = no penetration)

Name	MD (ft)	TVD (ft)	Lithology	Pore fluid	Expected Pore Pressure (ppg)	Planned Mud Weight (ppg)
Ojo Alamo	404	404	Sd	W	8.3	8.4 – 8.8
Kirtland	536	536	Sh	-	8.3	8.4 - 8.8
Fruitland	846	846	С	G	8.3	9.0 - 9.5
Pictured Cliffs	1112	1112	Sd	W	8.3	9.0 - 9.5
Lewis	1215	1215	Sh	-		9.0 - 9.5
Chacra	1803	1802	Sd	-	8.3	9.0 - 9.5
Menefee	2546	2545	Sd, C	G	8.3	9.0 - 9.5
Point Lookout	3522	3520	Sd	-	8.3	9.0 - 9.5
Mancos	3671	3669	Sh	-		9.0 - 9.5
Mancos Silt	3995	3991	Slt	O/G	6.6	9.0 - 9.5
Gallup A	NP	NP	Slt	O/G	6.6	9.0 - 9.5
Gallup B	NP	NP	Sd	O/G	6.6	8.8 -9.0
Gallup C	NP	NP	Sd	O/G	6.6	8.8 -9.0
Target	4693	4382	Sd	O/G	6.6	8.8 -9.0

Casing Program

Casing	Hole	Weight			MD	MD	TVD	TVD	Top of Cement
OD	Size	(#/ft)	Grade	Coupling	Тор	Bottom	Тор	Bottom	
9-5/8"	12-1/4"	36	K-55	STC	surf	380	surf	380	surface
7"	8-3/4"	26	K-55	LTC	surf	4648	surf	4380	surface
4-1/2"	6-1/8"	11.6	P-110	BTC	4410	11876	4309	4421	4410

Note: all casing will be new

Rev 0

Casing Design Load Cases

			Casing String	
				4-1/2"
		9-5/8"	7"	Production
	Description	Surface	Intermediate	Liner
Collapse	Full internal evacuation ¹	✓	\checkmark	\checkmark
	Cementing	✓	✓	 ✓
Burst	Pressure test	✓2	✓2	~
	Gas kick		✓3	
	Fracture at shoe, 1/3 BHP at surface		✓4	
	Injection down casing			✓5
Axial	Dynamic load on casing coupling ⁶	✓	✓	~
Axial	Overpull ⁷	✓	\checkmark	\checkmark

Note

1 Fluid level at shoe, air column to surface, pore pressure outside

2 3 Tested to 80% of minimum internal yield with freshwater inside, pore pressure outside

50 bbl kick at TD, 0.50 ppg intensity, 4" drill pipe, 9.0 ppg mud, fracture gradient at shoe 2060 psi BHP, 687 psi surface pressure, 12.5 ppg EMW shoe integrity

4 5 Surface stimulation pressure of 8000 psi on 8.3 ppg fluid column. Stimulation will be down frac string, so load does not apply to 7" intermediate casing.

6 Shock load from abrupt pipe deceleration, evaluated against coupling rating

7 Overpull values as follows: Surface casing 20,000 lbs, Intermediate & Production 100,000 lbs

Casing Design Factors

		Design Factors					
Casing string	Casing OD	Burst	Collapse	Axial	Triaxial		
Surface	9-5/8"	1.25	13.38	8.16	1.56		
Intermediate	7"	1.25	1.50	1.68	1.34		
Production liner	4-1/2"	1.37	3.68	1.88	1.69		

Cement Design

9-5/8" Surface Casing	Lead
Name	Redi-Mix
Туре	-
Planned top	Surface
Density (ppg)	14.50
Yield (cf/sx)	1.61
Mix water (gal/sx)	7.41
Volume (sx)	114
Volume (bbls)	33
Volume (cu. ft.)	185
Excess %	50

7" Intermediate Casing	Lead	Tail
	American	American
Туре	1/11	Poz/G
Planned top	Surface	3671-ft
Density (ppg)	12.30	13.50
Yield (cf/sx)	2.32	1.51
Mix water (gal/sx)	13.22	7.13
Volume (sx)	407	103
Volume (bbls)	168	28
Volume (cu.ft.)	944	156
Excess %	78	0

Rev 0

4-1/2" Production Liner

	American
Туре	Poz/G
Planned top	4410-ft
Density (ppg)	13.3
Yield (cf/sx)	1.52
Mix water (gal/sx)	7.52
Volume (sx)	646
Volume (bbls)	175
Volume (cu.ft)	982
Excess %	40
Yield (cf/sx) Mix water (gal/sx) Volume (sx) Volume (bbls) Volume (cu.ft)	1.52 7.52 646 175 982

Wellhead & Pressure Control

The well head will be an 11" 5M multi-bowl system. A 3M BOPE conforming to Onshore Order #2 will be installed on the surface casing. The BOP and accumulator will meet API 16D and 16E respectively.

A PVT mud monitoring system and a trip tank will be rigged up and operational for all hole intervals. An electronic geolograph will be employed to monitor and record drilling data (ROP, WOB, SPM, Pressure, RPM and torque).

Mud Program

Surface hole will be drilled with a fresh water, native mud system. In intermediate hole, a low weight 7% KCI LSND drilling fluid will be used, with KCI providing chemical stability for the young shales and clays present in the interval. In production hole a LSND system with polymer and lubricant additives is programmed. Sufficient drill water and mud additives will be on hand to maintain adequate pit volumes and maintain well control.

Hole Section	Fluid type	Interval (MD)	Density (ppg)	Funnel Viscosity	Yield Point	Fluid Loss (cc/30 min)
Surface	Fresh water spud mud	0 – 380	8.4 – 8.8	32 – 44	2 – 12	NC
Intermediate	7% KCI Low solids, non- dispersed	380 – 4648	9.0 – 9.5	38 – 45	8 – 14	<20
Production	Low solids, non-dispersed	4648 – 11876	8.8 – 9.2	34 – 38	6 – 8	6 – 8

Cores, tests and logs

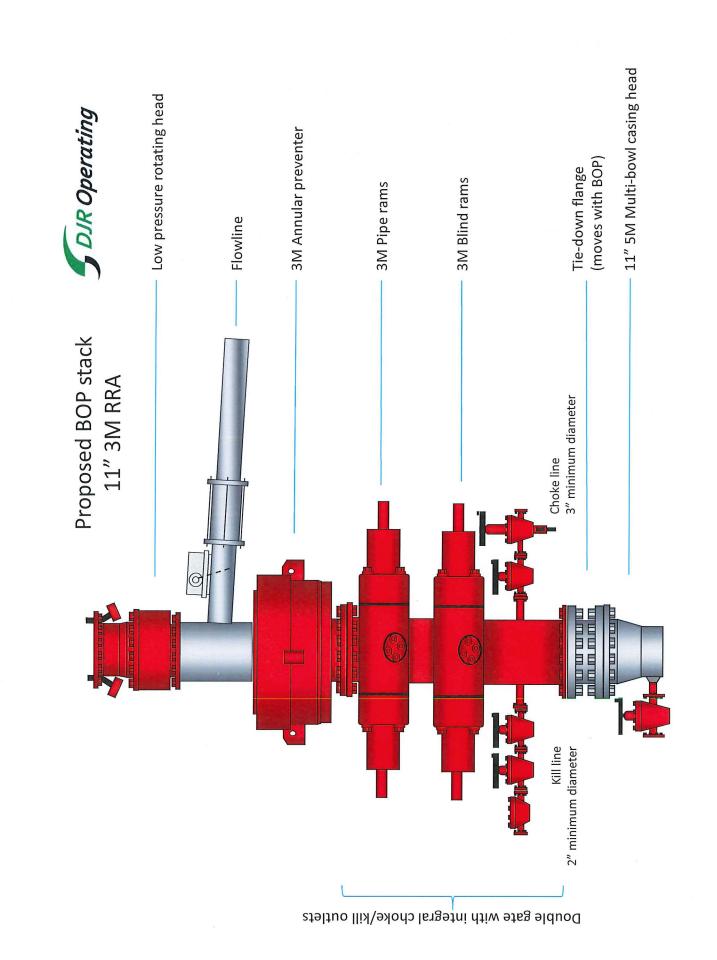
Wellbore surveying: Drift (inclination only) surveys will be obtained in surface hole. MWD directional surveys will be taken in intermediate and production hole.

Logging while drilling: None in surface hole. MWD GR in intermediate and production hole.

Mud logging: a two-person mud logging unit with C1 – C4 gas analysis will be operational in intermediate and production hole.

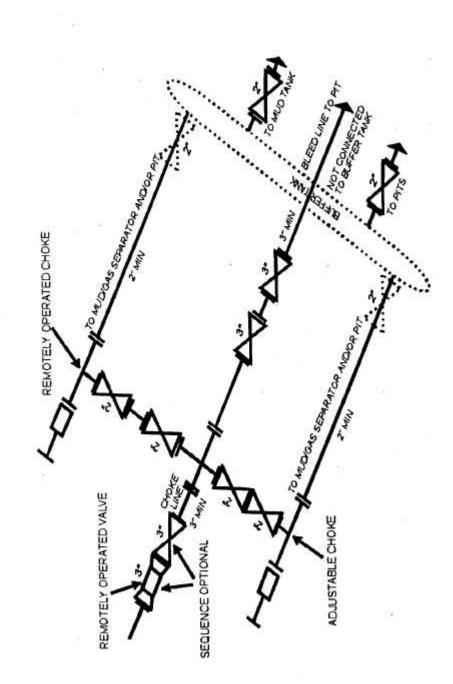
Electric logging: No open hole electric logs are programmed. A cased hole GR/CCL will be run during completions for perforating depth control.

Cuttings and drilling fluids management

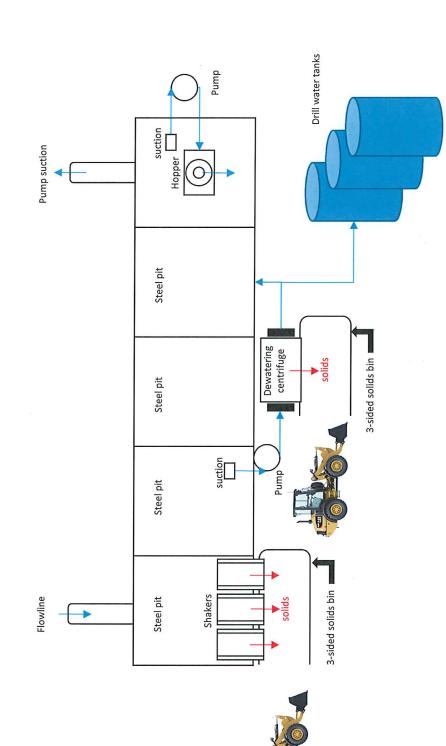

A closed loop, steel tank-based circulating system will be used. In addition to the rig solids control equipment, a dewatering centrifuge and chemical flocculation system will be operational to strip solids from the whole mud. All solids will be collected in 3-sided bins and will then be put into transports with a bucket loader. Drying agents will be used if necessary. The solids will be taken to a licensed commercial disposal facility. Whole mud will be dewatered back to drill water and used as make up for subsequent wells or hauled off for disposal. A diagram of the closed loop system is included.

Completion

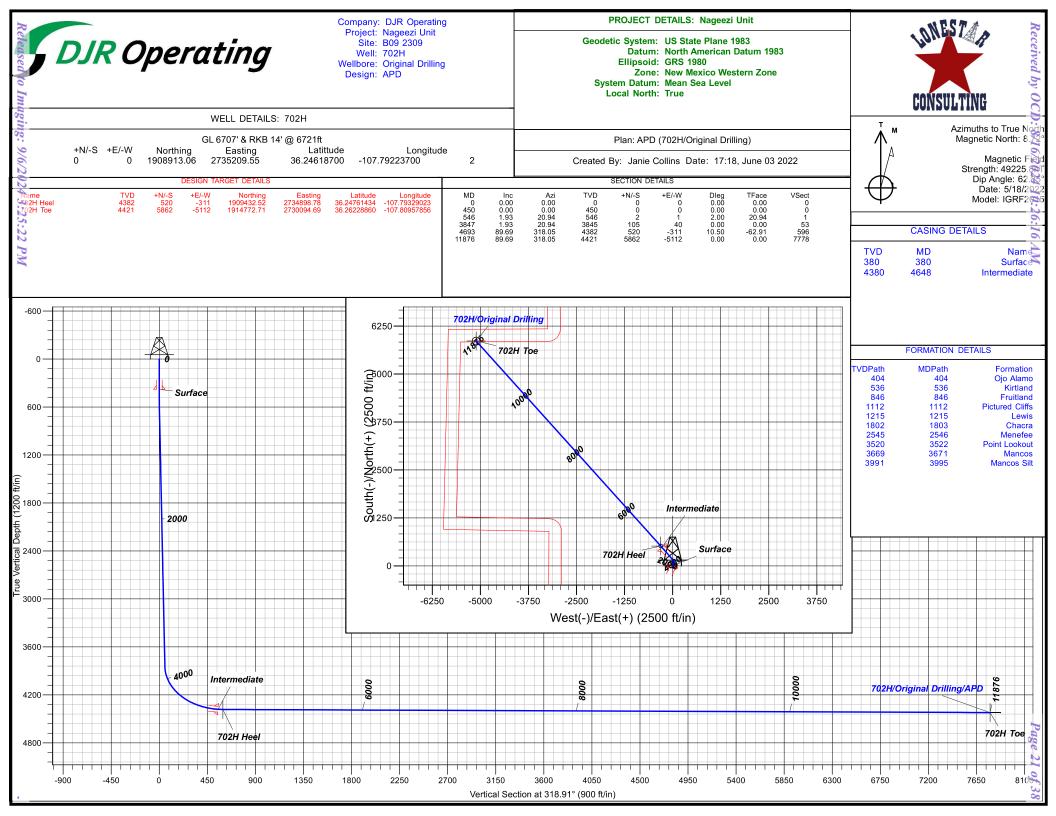
It is envisioned that this well will be completed with a multi-stage sand frac, using the plug and perf technique. After drilling out the plugs, the current plan is to install a 2-7/8" plunger-assisted gas lift tubing string. The stimulation and completion plan will be sundried at a later date.


1

Received by OCD: 8/16/2024 10:26:16 AM



Choke Manifold Actual system to conform with Onshore Order 2



Closed Loop Mud System

Page 20 of 38

DJR Operating

Nageezi Unit B09 2309 702H - Slot 2

Original Drilling

Plan: APD

Standard Planning Report

03 June, 2022

Planning Report

Database:	Grand	Junction				ordinate Refer	ionco:	Well 702H - Slot	2		
Company:)perating			TVD Refer			GL 6707' & RKB			
									0		
Project:	-	ezi Unit		MD Reference:				GL 6707' & RKB 14' @ 6721ft			
lite:	B09 23	309		North Reference:				True			
Vell:	702H				Survey Ca	Iculation Meth	hod:	Minimum Curvat	ure		
Vellbore:	Origina	al Drilling									
Design:	APD										
Project	Nageez	ːi Unit									
Map System:	US State	e Plane 1983			System Dat	um:	Me	ean Sea Level			
Geo Datum:	North Am	nerican Datum	1983		-						
Map Zone:	New Mex	kico Western Zo	one								
Site	B09 230	09									
Site Position:			Northin	a.	1 908 8	397.77 usft	Latitude:			36.246145	
From:	Lat/I	Long	Easting	-		196.88 usft	Longitude:			-107.792280	
Position Uncertain		0 f	-		2,755,	13.20 in	Longitude.			-107.792200	
Well	702H - S	Slot 2					-				
Well Position	+N/-S			thing:		1,908,913.07		tude:		36.246187	
	+E/-W			ting:		2,735,209.55		gitude:		-107.792237	
Position Uncertain	ıty			Ihead Elevati	on:		ft Gro	und Level:		6707 f	
Grid Convergence	:	0.0)2 °								
Wellbore	Origina	al Drilling									
Magnetics	Мо	del Name	Sample	Date	Declina	tion	Dip A	ngle	Field St	rength	
-					(°)		. (°		(n ⁻	Г)	
		IGRF2015	ξ	/18/2022		8.72		62.85	49,22	5.76995447	
Design	APD										
-											
Audit Notes:											
Version:			Phase	PI	LAN	Tie	On Depth:		0		
Vertical Section:		C	epth From (TV))	+N/-S	+E	/-W	Dire	ection		
		2	(ft)	-1	(ft)		ft)		(°)		
			0		0	-	0		8.91		
Plan Survey Tool	Program	Date	6/3/2022								
Depth From	Depth	h To			Teel Name		Domorko				
-	-	h To	6/3/2022 (Wellbore)		Tool Name		Remarks				
Depth From (ft)	Depth (ft)	h To	(Wellbore)		Tool Name MWD+HDGM		Remarks				
Depth From (ft)	Depth (ft)	h To) Survey	(Wellbore)		MWD+HDGM	+ HDGM	Remarks				
Depth From (ft)	Depth (ft)	h To) Survey	(Wellbore)			+ HDGM	Remarks				
Depth From (ft) 1	Depth (ft)	h To) Survey	(Wellbore)		MWD+HDGM	+ HDGM	Remarks				
Depth From (ft) 1 Plan Sections	Depth (ft)	h To) Survey	(Wellbore) riginal Drilling)		MWD+HDGM			Turn			
Depth From (ft) 1 Plan Sections Measured	Depth (ft)	h To) Survey	(Wellbore) riginal Drilling) Vertical		MWD+HDGM	+ HDGM Dogleg Rate	Remarks Build Rate	Turn Rate	TFO		
Depth From (ft) 1 Plan Sections Measured	Depth (ft)	h To Survey 1,876 APD (O	(Wellbore) riginal Drilling)		MWD+HDGM OWSG MWD	Dogleg	Build		TFO (°)	Target	
Depth From (ft) 1 Plan Sections Measured Depth In (ft)	Depth (ft) 0 11	h To Survey 1,876 APD (O Azimuth (°)	(Wellbore) riginal Drilling) Vertical Depth (ft)	+N/-S (ft)	MWD+HDGM OWSG MWD +E/-W (ft)	Dogleg Rate	Build Rate (°/100usft)	Rate (°/100usft)	(°)	Target	
Depth From (ft) 1 Plan Sections Measured Depth In (ft) 0	Depth (ft) 0 11 clination (°) 0.00	h To) Survey 1,876 APD (O Azimuth (°) 0.00	(Wellbore) riginal Drilling) Vertical Depth (ft) 0	+N/-S (ft) 0	MWD+HDGM OWSG MWD +E/-W (ft) 0	Dogleg Rate (°/100usft) 0.00	Build Rate (°/100usft) 0.00	Rate (°/100usft) 0.00	(°) 0.00	Target	
Depth From (ft) 1 Plan Sections Measured Depth In (ft) 0 450	Depth (ft) 0 11 clination (°) 0.00 0.00	h To Survey 1,876 APD (O Azimuth (°) 0.00 0.00	(Wellbore) riginal Drilling) Vertical Depth (ft) 0 450	+N/-S (ft) 0 0	MWD+HDGM OWSG MWD +E/-W (ft) 0 0	Dogleg Rate (°/100usft) 0.00 0.00	Build Rate (°/100usft) 0.00 0.00	Rate (°/100usft) 0.00 0.00	(°) 0.00 0.00	Target	
Depth From (ft) 1 Plan Sections Measured Depth In (ft) 0 450 546	Clination (°) 0.00 0.00 1.93	h To Survey 1,876 APD (O Azimuth (°) 0.00 0.00 20.94	(Wellbore) riginal Drilling) Vertical Depth (ft) 0 450 546	+N/-S (ft) 0 0 2	MWD+HDGM OWSG MWD +E/-W (ft) 0 0 1	Dogleg Rate (°/100usft) 0.00 0.00 2.00	Build Rate (°/100usft) 0.00 0.00 2.00	Rate (°/100usft) 0.00 0.00	(°) 0.00 0.00 20.94	Target	
Depth From (ft) 1 Plan Sections Measured Depth In (ft) 0 450 546 3847	Depth (ft) 0 11 clination (°) 0.00 0.00 1.93 1.93	h To Survey 1,876 APD (O Azimuth (°) 0.00 0.00 20.94 20.94	(Wellbore) riginal Drilling) Vertical Depth (ft) 0 450 546 3845	+N/-S (ft) 0 0 2 105	MWD+HDGM OWSG MWD +E/-W (ft) 0 0 1 40	Dogleg Rate (°/100usft) 0.00 0.00 2.00 0.00	Build Rate (°/100usft) 0.00 0.00 2.00 0.00	Rate (*/100usft) 0.00 0.00 0.00 0.00	(°) 0.00 0.00 20.94 0.00		
Depth From (ft) 1 Plan Sections Measured Depth In (ft) 0 450 546	Clination (°) 0.00 0.00 1.93	h To Survey 1,876 APD (O Azimuth (°) 0.00 0.00 20.94	(Wellbore) riginal Drilling) Vertical Depth (ft) 0 450 546	+N/-S (ft) 0 0 2	MWD+HDGM OWSG MWD +E/-W (ft) 0 0 1	Dogleg Rate (°/100usft) 0.00 0.00 2.00	Build Rate (°/100usft) 0.00 0.00 2.00	Rate (°/100usft) 0.00 0.00	(°) 0.00 20.94 0.00 -62.91 7	Target 02H Heel 02H Toe	

6/3/2022 5:15:13PM

Planning Report

Database:	Grand Junction	Local Co-ordinate Reference:	Well 702H - Slot 2
Company:	DJR Operating	TVD Reference:	GL 6707' & RKB 14' @ 6721ft
Project:	Nageezi Unit	MD Reference:	GL 6707' & RKB 14' @ 6721ft
Site:	B09 2309	North Reference:	True
Well:	702H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Original Drilling		
Design:	APD		

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0	0.00	0.00	0	0	0	0	0.00	0.00	0.00
100	0.00	0.00	100	0	0	0	0.00	0.00	0.00
200	0.00	0.00	200	0	0	0	0.00	0.00	0.00
300	0.00	0.00	300	0	0	0	0.00	0.00	0.00
400	0.00	0.00	400	0 0	0	0	0.00	0.00	0.00
450	0.00	0.00	450	0	0	0	0.00	0.00	0.00
430 500	1.00	20.94	430 500	0	0	0	2.00	2.00	
									0.00
546	1.93	20.94	546	2	1	1	2.00	2.00	0.00
600	1.93	20.94	600	3	1	2	0.00	0.00	0.00
700	1.93	20.94	700	6	2	3	0.00	0.00	0.00
800	1.93	20.94	800	9	4	5	0.00	0.00	0.00
900	1.93	20.94	900	13	5	6	0.00	0.00	0.00
1000	1.93	20.94	1000	16	6	8	0.00	0.00	0.00
1100	1.93	20.94	1100	19	7	10	0.00	0.00	0.00
1200	1.93	20.94	1200	22	8	11	0.00	0.00	0.00
1300	1.93	20.94	1300	25	10	13	0.00	0.00	0.00
1400	1.93	20.94	1399	28	11	14	0.00	0.00	0.00
1500	1.93	20.94	1499	31	12	16	0.00	0.00	0.00
1600	1.93	20.94	1599	35	13	17	0.00	0.00	0.00
1700	1.93	20.94	1699	38	14	19	0.00	0.00	0.00
1800	1.93	20.94	1799	41	16	21	0.00	0.00	0.00
1900	1.93	20.94	1899	44	17	22	0.00	0.00	0.00
2000	1.93	20.94	1999	47	18	24	0.00	0.00	0.00
2100	1.93	20.94	2099	50	19	25	0.00	0.00	0.00
2200	1.93	20.94	2199	54	20	27	0.00	0.00	0.00
2300	1.93	20.94	2299	57	22	28	0.00	0.00	0.00
2400	1.93	20.94	2399	60	23	30	0.00	0.00	0.00
2500	1.93	20.94	2499	63	24	32	0.00	0.00	0.00
2600	1.93	20.94	2599	66	25	33	0.00	0.00	0.00
2700	1.93	20.94	2699	69	26	35	0.00	0.00	0.00
2800	1.93	20.94	2799	72	28	36	0.00	0.00	0.00
2900	1.93	20.94	2899	76	29	38	0.00	0.00	0.00
3000	1.93	20.94	2999	79	30	39	0.00	0.00	0.00
3100	1.93	20.94	3099	82	31	41	0.00	0.00	0.00
3200	1.93	20.94	3198	85	33	43	0.00	0.00	0.00
3300	1.93	20.94	3298	88	34	44	0.00	0.00	0.00
3400	1.93	20.94	3398	91	35	46	0.00	0.00	0.00
3500	1.93	20.94	3498	94	36	47	0.00	0.00	0.00
3600	1.93	20.94	3598	98	37	49	0.00	0.00	0.00
3700	1.93	20.94	3698	101	39	51	0.00	0.00	0.00
3800	1.93	20.94	3798	104	40	52	0.00	0.00	0.00
3847	1.93	20.94	3845	105	40	53	0.00	0.00	0.00
3900	6.68	332.88	3898	109	39	56	10.50	8.94	-90.52
4000	17.04	323.66	3996	126	28	77	10.50	10.36	-9.23
4100	27.50	321.34	4088	156	5	114	10.50	10.47	-2.31
4200	37.99	320.24	4172	198	-30	168	10.50	10.48	-1.10
4300	48.48	319.56	4245	250	-74	237	10.50	10.49	-0.68
4300	58.97	319.07	4304	311	-126	317	10.50	10.49	-0.49
4400	69.46	318.68	4347	379	-120	407	10.50	10.49	-0.39
4600	79.96	318.34	4347	451	-185	503	10.50	10.49	-0.39
4693	89.69	318.05	4382	520	-311	596	10.50	10.50	-0.32
4700	89.69	318.05	4382	525	-315	603	0.00	0.00	0.00
4800	89.69	318.05	4383	599	-382	703	0.00	0.00	0.00
4900	89.69	318.05	4383	674	-449	803	0.00	0.00	0.00

6/3/2022 5:15:13PM

COMPASS 5000.16 Build 100

.

Planning Report

Database:	Grand Junction	Local Co-ordinate Reference:	Well 702H - Slot 2
Company:	DJR Operating	TVD Reference:	GL 6707' & RKB 14' @ 6721ft
Project:	Nageezi Unit	MD Reference:	GL 6707' & RKB 14' @ 6721ft
Site:	B09 2309	North Reference:	True
Well:	702H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Original Drilling		
Design:	APD		

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5000	89.69	318.05	4384	748	-516	903	0.00	0.00	0.00
5100	89.69	318.05	4384	822	-583	1003	0.00	0.00	0.00
5200	89.69	318.05	4385	897	-5650	1103	0.00	0.00	0.00
5300	89.69	318.05	4385	971			0.00	0.00	0.00
					-717	1203			
5400	89.69	318.05	4386	1046	-783	1303	0.00	0.00	0.00
5500	89.69	318.05	4386	1120	-850	1403	0.00	0.00	0.00
5600	89.69	318.05	4387	1194	-917	1503	0.00	0.00	0.00
5700	89.69	318.05	4388	1269	-984	1603	0.00	0.00	0.00
5800	89.69	318.05	4388	1343	-1051	1703	0.00	0.00	0.00
5900	89.69	318.05	4389	1417	-1118	1803	0.00	0.00	0.00
6000	89.69	318.05	4389	1492	-1184	1903	0.00	0.00	0.00
6100	89.69	318.05	4390	1566	-1251	2003	0.00	0.00	0.00
6200	89.69	318.05	4390	1641	-1318	2103	0.00	0.00	0.00
6300	89.69	318.05	4391	1715	-1385	2203	0.00	0.00	0.00
6400	89.69	318.05	4391	1789	-1452	2303	0.00	0.00	0.00
6500	89.69	318.05	4392	1864	-1519	2403	0.00	0.00	0.00
6600	89.69	318.05	4392	1938	-1586	2503	0.00	0.00	0.00
6700	89.69	318.05	4393	2012	-1652	2603	0.00	0.00	0.00
6800	89.69	318.05	4393	2087	-1719	2703	0.00	0.00	0.00
6900	89.69	318.05	4394	2161	-1786	2803	0.00	0.00	0.00
7000	89.69	318.05	4395	2236	-1853	2903	0.00	0.00	0.00
7100	89.69	318.05	4395	2310	-1920	3003	0.00	0.00	0.00
7200	89.69	318.05	4396	2384	-1987	3103	0.00	0.00	0.00
7300	89.69	318.05	4396	2459	-2053	3203	0.00	0.00	0.00
7400	89.69	318.05	4397	2533	-2120	3303	0.00	0.00	0.00
7500	89.69	318.05	4397	2607	-2187	3403	0.00	0.00	0.00
7600	89.69	318.05	4398	2682	-2254	3503	0.00	0.00	0.00
7700	89.69	318.05	4398	2756	-2321	3603	0.00	0.00	0.00
7800	89.69	318.05	4399	2830	-2388	3703	0.00	0.00	0.00
7900	89.69	318.05	4399	2905	-2300	3803	0.00	0.00	0.00
8000	89.69	318.05	4400	2979	-2521	3903	0.00	0.00	0.00
	09.09				-2.52 1	3903			
8100	89.69	318.05	4401	3054	-2588	4003	0.00	0.00	0.00
8200	89.69	318.05	4401	3128	-2655	4103	0.00	0.00	0.00
8300	89.69	318.05	4402	3202	-2722	4203	0.00	0.00	0.00
8400	89.69	318.05	4402	3277	-2789	4303	0.00	0.00	0.00
8500	89.69	318.05	4403	3351	-2856	4402	0.00	0.00	0.00
8600	89.69	318.05	4403	3425	-2922	4502	0.00	0.00	0.00
8700	89.69	318.05	4403	3500	-2922 -2989	4502	0.00	0.00	0.00
8800	89.69	318.05	4404 4404	3500 3574	-2969 -3056	4602	0.00	0.00	0.00
8900	89.69	318.05	4404	3649	-3050	4702	0.00	0.00	0.00
9000	89.69	318.05	4405	3723	-3123	4802	0.00	0.00	0.00
9100	89.69	318.05	4406	3797	-3257	5002	0.00	0.00	0.00
9200	89.69	318.05	4406	3872	-3324	5102	0.00	0.00	0.00
9300	89.69	318.05	4407	3946	-3390	5202	0.00	0.00	0.00
9400	89.69	318.05	4408	4020	-3457	5302	0.00	0.00	0.00
9500	89.69	318.05	4408	4095	-3524	5402	0.00	0.00	0.00
9600	89.69	318.05	4409	4169	-3591	5502	0.00	0.00	0.00
9700	89.69	318.05	4409	4244	-3658	5602	0.00	0.00	0.00
9800	89.69	318.05	4410	4318	-3725	5702	0.00	0.00	0.00
9900	89.69	318.05	4410	4392	-3792	5802	0.00	0.00	0.00
10,000	89.69	318.05	4411	4467	-3858	5902	0.00	0.00	0.00
10,100	89.69	318.05	4411	4541	-3925	6002	0.00	0.00	0.00
10,200	89.69	318.05	4412	4615	-3992	6102	0.00	0.00	0.00
10,300	89.69	318.05	4412	4690	-4059	6202	0.00	0.00	0.00

6/3/2022 5:15:13PM

Page 4

COMPASS 5000.16 Build 100

.

Planning Report

Database:	Grand Junction	Local Co-ordinate Reference:	Well 702H - Slot 2
Company:	DJR Operating	TVD Reference:	GL 6707' & RKB 14' @ 6721ft
Project:	Nageezi Unit	MD Reference:	GL 6707' & RKB 14' @ 6721ft
Site:	B09 2309	North Reference:	True
Well:	702H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Original Drilling		
Design:	APD		

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,400	89.69	318.05	4413	4764	-4126	6302	0.00	0.00	0.00
10,500	89.69	318.05	4414	4839	-4193	6402	0.00	0.00	0.00
10,600	89.69	318.05	4414	4913	-4259	6502	0.00	0.00	0.00
10,700	89.69	318.05	4415	4987	-4326	6602	0.00	0.00	0.00
10,800	89.69	318.05	4415	5062	-4393	6702	0.00	0.00	0.00
10,900	89.69	318.05	4416	5136	-4460	6802	0.00	0.00	0.00
11,000	89.69	318.05	4416	5210	-4527	6902	0.00	0.00	0.00
11,100	89.69	318.05	4417	5285	-4594	7002	0.00	0.00	0.00
11,200	89.69	318.05	4417	5359	-4661	7102	0.00	0.00	0.00
11,300	89.69	318.05	4418	5433	-4727	7202	0.00	0.00	0.00
11,400	89.69	318.05	4418	5508	-4794	7302	0.00	0.00	0.00
11,500	89.69	318.05	4419	5582	-4861	7402	0.00	0.00	0.00
11,600	89.69	318.05	4419	5657	-4928	7502	0.00	0.00	0.00
11,700	89.69	318.05	4420	5731	-4995	7602	0.00	0.00	0.00
11,800	89.69	318.05	4421	5805	-5062	7702	0.00	0.00	0.00
11,876	89.69	318.05	4421	5862	-5112	7778	0.00	0.00	0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (ft)	+N/-S (ft)	+E/-W (ft)	Northing (usft)	Easting (usft)	Latitude	Longitude
702H Heel - plan hits target cente - Circle (radius 50)	0.00 er	0.00	4382	520	-311	1,909,432.52	2,734,898.78	36.24761434	-107.79329022
702H Toe - plan hits target cente - Circle (radius 100)	0.00 er	0.00	4421	5862	-5112	1,914,772.71	2,730,094.69	36.26228860	-107.80957856

Casing Points	Measured Depth (ft)	Vertical Depth (ft)		Casing Diameter (in)	Hole Diameter (in)
	380		Name Surface	9.63	12.25
	4648	4380	Intermediate	7.00	8.75

Planning Report

Database:	Grand Junction	Local Co-ordinate Reference:	Well 702H - Slot 2
Company:	DJR Operating	TVD Reference:	GL 6707' & RKB 14' @ 6721ft
Project:	Nageezi Unit	MD Reference:	GL 6707' & RKB 14' @ 6721ft
Site:	B09 2309	North Reference:	True
Well:	702H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Original Drilling		
Design:	APD		

Formations

Measured Depth (ft)	Vertical Depth (ft)	Name	Lithology	Dip (°)	Dip Direction (°)	
404	404	Ojo Alamo		0.00	0.00	
536	536	Kirtland		0.00	0.00	
846	846	Fruitland		0.00	0.00	
1112	1112	Pictured Cliffs		0.00	0.00	
1215	1215	Lewis		0.00	0.00	
1803	1802	Chacra		0.00	0.00	
2546	2545	Menefee		0.00	0.00	
3522	3520	Point Lookout		0.00	0.00	
3671	3669	Mancos		0.00	0.00	
3995	3991	Mancos Silt		0.00	0.00	

DJR Operating

Nageezi Unit B09 2309 702H

Original Drilling APD

Anticollision Report

03 June, 2022

Anticollision Report

Company:	DJR Operating	Local Co-ordinate Reference:	Well 702H - Slot 2
Project:	Nageezi Unit	TVD Reference:	GL 6707' & RKB 14' @ 6721ft
Reference Site:	B09 2309	MD Reference:	GL 6707' & RKB 14' @ 6721ft
Site Error:	0 ft	North Reference:	True
Reference Well:	702H	Survey Calculation Method:	Minimum Curvature
Well Error:	0 ft	Output errors are at	2.00 sigma
Reference Wellbore	Original Drilling	Database:	Grand Junction
Reference Design:	APD	Offset TVD Reference:	Offset Datum
Reference	APD		

Filter type: NO GLOBAL FILTER: Using user defined selection & filtering criteria							
Interpolation Method:	Stations	Error Model:	ISCWSA				
Depth Range:	Unlimited	Scan Method:	Closest Approach 3D				
Results Limited by:	Maximum centre distance of 2500ft	Error Surface:	Pedal Curve				
Warning Levels Evaluate	d at: 2.00 Sigma	Casing Method:	Not applied				

Survey Tool Program		Date 6/3/2022		
From (ft)	To (ft)	Survey (Wellbore)	Tool Name	Description
0	11,87	6 APD (Original Drilling)	MWD+HDGM	OWSG MWD + HDGM

Summary						
	Reference	Offset	Distance			
Site Name Offset Well - Wellbore - Design	Measured Depth (ft)	Measured Depth (ft)	Between Centres (ft)	Between Ellipses (ft)	Separation Factor	Warning
B09 2309						
703H - Original Drilling - APD	450	450	20	17	6.354 CC	
703H - Original Drilling - APD 703H - Original Drilling - APD	800 1600	801 1600	21 33	15 22	3.709 ES 2.944 SF	

													Offset Site Error:	0 f
urvey Progr Refe		MWD+HDGM Offs	sot	Semi N	laior Axis		Offset Wellbo	re Centre	Die	Rule Assi tance	gned:		Offset Well Error:	0 f
Measured	Vertical	Measured	Vertical	Reference	Offset	Highside			Between	Between	Minimum	Separation	Warning	
Depth (ft)	Depth (ft)	Depth (ft)	Depth (ft)	(ft)	(ft)	Toolface (°)	+N/-S (ft)	+E/-W (ft)	Centres (ft)	Ellipses (ft)	Separation (ft)	Factor		
0	0	(11)	0	0	0	-140.33	-15	-13	20	(11)	(11)			
100	100	100	100	0	0	-140.33	-15	-13	20	19	0.62	32.214		
200	200	200	200	1	1	-140.33	-15	-13	20	19	1.33	14.895		
300	300	300	300	1	1	-140.33	-15	-13	20	18	2.05	9.687		
400	400	400	400	1	1	-140.33	-15	-13	20	17	2.77	7.177		
450	450	450	450	2	2	-140.33	-15	-13	20	17	3.13	6.354 CC		
500	500	500	500	2	2	-162.19	-15	-12	20	16	3.48	5.707		
546	546	547	547	2	2	-164.69	-15	-11	20	16	3.81	5.231		
600	600	601	601	2	2	-168.68	-14	-9	20	16	4.19	4.763		
700	700	701	700	2	2	-176.06	-12	-6	20	15	4.90	4.127		
800	800	801	800	3	3	176.87	-10	-3	21	15	5.62	3.709 ES		
900	900	901	900	3	3	170.29	-9	1	22	15	6.34	3.432		
1000	1000	1001	1000	4	4	164.30	-7	4	23	16	7.05	3.247		
1100	1100	1100	1100	4	4	158.95	-5	7	24	17	7.77	3.125		
1200	1200	1200	1200	4	4	154.20	-4	11	26	17	8.49	3.046		
1300	1300	1300	1300	5	5	150.03	-2	14	28	18	9.21	2.996		
1400	1399	1400	1400	5	5	146.36	0	17	29	20	9.93	2.966		
1500	1499	1500	1500	5	5	143.15	1	21	31	21	10.65	2.950		
1600	1599	1600	1600	6	6	140.31	3	24	33	22	11.37	2.944 SF		
1700	1699	1700	1699	6	6	137.81	5	27	36	24	12.09	2.945		
1800	1799	1800	1799	6	6	135.60	6	31	38	25	12.81	2.950		
1900	1899	1900	1899	7	7	133.63	8	34	40	26	13.53	2.958		
2000	1999	2000	1999	7	7	131.87	10	37	42	28	14.25	2.968		
2100	2099	2100	2099	7	7	130.29	11	41	45	30	14.97	2.980		

Anticollision Report

Company:	DJR Operating	Local Co-ordinate Reference:	Well 702H - Slot 2
Project:	Nageezi Unit	TVD Reference:	GL 6707' & RKB 14' @ 6721ft
Reference Site:	B09 2309	MD Reference:	GL 6707' & RKB 14' @ 6721ft
Site Error:	0 ft	North Reference:	True
Reference Well:	702H	Survey Calculation Method:	Minimum Curvature
Well Error:	0 ft	Output errors are at	2.00 sigma
Reference Wellbore	Original Drilling	Database:	Grand Junction
Reference Design:	APD	Offset TVD Reference:	Offset Datum
	Company: Project: Reference Site: Site Error: Reference Well: Well Error: Reference Wellbore Reference Design:	Project: Nageezi Unit Reference Site: B09 2309 Site Error: 0 ft Reference Well: 702H Well Error: 0 ft Reference Wellbore Original Drilling	Project:Nageezi UnitTVD Reference:Reference Site:B09 2309MD Reference:Site Error:0 ftNorth Reference:Reference Well:702HSurvey Calculation Method:Well Error:0 ftOutput errors are atReference WellboreOriginal DrillingDatabase:

Offset Design: B09 2309 - 703H - Original Drilling - APD

Depth Depth Depth m Totalizes PMC3 Calines Elevise Beacher 2200 2109 2100	Error: 0 ft
Interactive Vertical Meterence Office Profile Profile Depth Dept	Error: 0 ft
Depth Depth Peth Totallice PH/S 1 Centres Elization Peter 200 2100 2100 2100 2100 2100 2100 2000 10 12247 21 61 59 40 1229 3000 2000 2000 2000 2008 10 11 11 1211 25 67 64 42 214 3001 3000 2000 3000 3000 3000	arning
2200 2109 2100 2109 2100 <th< th=""><th>-</th></th<>	-
2 2 2 0 1 1 5 1 5 1 7.13 3.019 2500 2.000 <th< td=""><td></td></th<>	
2 2 2000<	
2 2000 20	
2700 2889 2700 2888 10 10 12.49 21 61 59 40 12.9 3.064 2800 2789 2000 2788 10 10 12.267 23 64 61 44 43 2001 3.071 3000 2688 11 11 12.151 25 67 64 43 3.064 3100 3000 2688 11 11 12.056 28 74 69 47 22.17 3.107 3200 3386 3000 3386 12 12 118.83 35 84 70 64 25.67 3.100 3000 3966 3000 3967 13 13 117.47 30 64 64 67 2.44.93 3.160 3000 3968 3044 3444 14 14.478 40 90 88 60 2.7.6 3.101 3010 3986	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
2 200 2080 2000 2088 10 12121 25 67 64 43 2073 3.084 3000 3068 310 3068 11 11 10221 28 71 64 44 22.88 3.109 3000 3088 10 11 11 10.85 28 71 48 42.88 3.119 3000 3388 3000 3388 12 12 118.87 38 84 76 52 2.43 3.140 3000 3588 3600 3687 13 13 117.07 38 94 64 457 2.640 3.169 3000 3588 3680 3797 14 14 117.05 40 98 86 59 2.74 3.169 3800 3588 3845 144 14 162.48 40 99 88 60 2.756 3.199 3800	
S000 2999 3000 2998 11 11 12121 26 71 68 45 21.45 30.06 3100 3098 3000 3098 11 11 110.65 30 78 71 48 22.89 3.119 3200 3398 3300 3398 12 12 119.39 31 81 71 48 22.85 3.119 3400 3398 3500 3398 12 12 118.84 33 64 76 22.43 3.149 3600 3598 3600 3597 13 13 117.47 38 64 64 57 27.64 3.169 3600 3798 3845 3845 3845 344 14 14 17.08 40 68 60 27.16 3.161 3801 3882 3883 3884 3845 14 14 17.10 3.9 107 110 27.6	
3100 3098 3101 110 11 110 120.64 28 74 99 47 22.17 3.107 3200 3398 3200 3398 12 12 119.39 31 31 74 40 22.89 3.107 3300 3388 3200 3388 12 12 118.86 33 84 76 52 24.33 3.140 3600 3888 3800 3777 14 14 117.06 40 88 66 59 27.21 3.179 3800 3788 3800 3777 14 14 116.88 40 69 88 60 27.54 3.177 3860 3887 3843 14 14 12.470 39 102 67 2.775 3.413 3860 3887 3880 3881 14 14 12.470 39 102 495 67 2.775 3.413	
3200 3188 3200 3188 11 11 11 19.95 30 78 71 48 22.89 3.19 3300 3288 3300 3288 1300 3386 1300 3386 1300 3386 13 118.37 35 88 79 54 22.65 3.160 3600 3586 3600 3697 13 13 117.37 38 84 78 52 24.33 3.160 3700 3686 3600 3777 14 14 117.06 40 68 69 27.21 3.179 3847 3845 3845 144 14 124.78 40 99 88 60 27.55 3.161 3900 3964 3863 344 14 17.480 31 114 122 104 27.55 3.131 3900 3967 3983 14 14 17.480 31 114 <td< td=""><td></td></td<>	
3300 3288 3400 3388 12 12 119.39 31 74 50 23.81 3.129 3400 3388 3400 3388 12 12 118.86 33 84 76 52 24.33 3.140 3600 3688 3600 3697 13 13 117.90 36 91 81 65 25.77 3.160 3700 3688 3800 3707 13 117.90 36 91 81 66 9 27.21 3.179 3847 3845 3843 14 14 116.88 40 99 88 60 27.64 3.167 3860 3897 3983 14 14 171.12 36 107 110 82 27.81 3.941 3900 3965 3897 3983 14 14 171.12 36 107 110 82 27.81 3.941 4000<	
3400 3388 3400 3388 12 12 118.86 33 84 76 52 24.33 3140 3500 3489 3600 3497 13 13 117.00 36 91 81 56 25.77 3160 3700 3688 3700 3897 13 13 117.47 38 94 84 57 26.49 3169 3800 3798 3800 3797 14 14 117.66 40 98 86 59 27.1 3187 3800 3848 3444 3445 14 14 124.70 39 102 95 67 27.6 3.413 3800 3847 3830 3847 3440 21 11 14 127.0 36 107 110 82 27.8 3.413 3800 3847 3830 3847 1330 232 27.6 1.700 13 14	
Second 3488 3500 3488 13 11 11 11 35 88 70 54 25.06 3150 3700 3589 3700 3697 13 13 117.06 40 98 84 57 26.49 3.169 3700 3796 3445 3445 3445 3445 3445 3445 344 17 38 102 98 67 2.7.15 3.413 3800 3896 3967 3983 14 14 17.10 38 112 161 134 2.7.68 3.602 4100 4088 4022 15 14 17.4.90 2.5 120 161 134	
9000 3598 3600 3597 13 13 117.47 36 91 81 66 25.77 3.160 3700 3698 3700 3897 13 13 117.47 38 94 84 57 26.49 3.169 3800 3788 3805 3845 3843 14 14 117.66 40 99 88 60 27.56 3.179 3840 3848 3848 3845 14 14 167.70 39 102 95 67 27.78 3.413 3860 3896 3896 3896 14 14 17.12 36 107 110 82 27.81 3.413 3960 39967 3963 14 14 17.56 19 127 116 13 420 27.69 5.822 4100 4088 4026 4026 15 15 176.46 12 113 40.29	
3700 3898 3700 3897 13 113 117.47 38 94 84 57 2.8.49 3.189 3800 3798 3860 3797 14 14 110.68 40 98 86 69 27.54 3.167 3847 3846 3844 3845 14 14 112.478 40 99 88 60 27.54 3.167 3950 3944 3846 3845 14 14 117.478 40 99 88 60 27.58 3.190 3960 3947 3393 14 14 177.80 31 114 132 104 27.78 3.842 4000 3995 15 14 176.80 19 127 196 186 2.747 7.130 4100 4084 4020 15 15 176.46 5 142 324 297 2.716 113.791 4200	
9847 9845 3845 3843 14 14 116.88 40 99 88 60 27.54 3.187 3800 3848 38048 38040 38848 14 14 124.70 39 102 95 67 27.75 3.413 3800 3896 3807 3963 14 14 171.12 36 107 110 82 27.81 3.844 4000 3996 3967 3963 14 14 171.12 36 107 110 82 27.81 3.844 4000 3996 3967 3963 14 14 171.12 36 107 110 82 27.81 3.844 4000 4038 4020 15 15 176.48 19 127 196 168 27.47 7.30 4100 4028 4076 16 15 176.49 2 149 230 227 27.19	
3847 3845 3846 3843 14 14 116.88 40 99 88 60 27.54 3.187 3850 3848 3848 3848 14 14 124.70 39 102 95 67 27.75 3.413 3950 3947 3830 3827 14 14 171.12 36 107 110 82 27.81 3.844 4000 3996 3967 3963 14 14 171.12 36 107 110 82 27.81 3.844 4000 3996 3967 3963 14 14 171.12 36 107 110 82 27.81 3.844 4000 4034 4000 3966 15 15 176.48 19 127 196 168 27.47 7.30 4120 4079 4068 4076 16 15 176.40 2 149 20 39	
3800 3848 3845 14 14 14 1278 40 99 88 60 27.56 3.100 3900 3888 3880 3880 3883 14 14 17112 39 102 95 67 27.76 3.413 4000 3996 3967 3963 14 14 177.12 36 107 110 82 27.81 3.944 4000 4043 4000 3995 15 14 177.66 19 120 161 134 27.65 8.822 4100 4034 4000 3995 15 14 177.66 19 127 196 168 27.47 7.130 4130 4131 4050 4042 15 15 176.66 5 142 324 297 27.02 11979 4300 4276 4100 4067 16 15 176.40 -2 149 470 <td< td=""><td></td></td<>	
3900 3888 3930 3888 14 14 164.70 39 102 95 67 27.75 3.413 3950 3947 3930 3927 14 14 171.12 36 107 110 82 27.81 3.944 4000 3966 3967 3983 14 14 173.80 31 114 132 104 27.76 4.760 4000 4083 4020 15 14 174.90 25 120 161 134 27.99 5.822 4100 4088 4026 4026 15 15 176.65 2 145 371 344 26.92 13.791 4300 4276 4004 4087 16 15 176.65 2 149 470 433 26.94 17.448 4400 4304 4100 4087 16 15 177.46 -2 149 50 433 26.94	
3850 3947 3930 3927 14 14 171.12 36 107 110 82 27.81 3.944 4000 3996 3967 3963 14 14 173.60 31 114 132 104 27.76 4.760 4100 4088 4002 3995 15 14 177.68 19 127 196 168 27.47 7.130 4150 4131 4056 4066 15 15 176.49 8 138 278 251 27.15 10.241 4250 4210 4079 4068 15 15 176.66 5 142 324 297 27.02 11.979 4300 4276 4100 4087 16 15 176.46 -2 149 470 433 26.94 17.448 4450 4328 4100 4087 17 15 -0.30 -2 149 570 543	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
4050 4043 4000 3995 15 14 174.90 25 120 161 134 27.69 5.822 4100 4088 4026 4020 15 14 175.68 19 127 196 168 27.47 7.130 4150 4050 4042 15 15 176.18 13 133 235 208 27.38 8.589 4200 4172 4066 4056 15 15 176.65 2 145 371 344 29.92 13.791 4300 4245 4088 4076 16 15 176.65 2 149 470 443 26.94 17.448 4400 4304 4100 4087 16 15 174.46 -2 149 470 443 26.94 17.448 4450 4328 4100 4087 17 15 -0.30 -2 149 570 543 27.03 21.080 4550 4334 4007 4067 19 15	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
4200 4172 4066 4056 15 15 176.49 8 138 278 251 27.15 10.241 4250 4210 4079 4068 15 15 176.66 5 142 324 297 27.02 11.979 4300 4276 4088 4076 16 15 176.65 2 145 37.1 344 26.92 13.791 4300 4276 4100 4087 16 15 176.40 -2 149 420 393 27.05 15.537 4400 4304 4100 4087 16 15 176.40 -2 149 470 443 26.94 17.448 4450 4328 4100 4087 17 15 -0.30 -2 149 570 543 27.03 21.080 4550 4383 4100 4087 18 15 -0.33 -2 149 619 552 27.19 22.774 28.261 4650 4384 4007 4067	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
4450 4328 4100 4087 17 15 4.24 -2 149 520 493 26.94 19.301 4500 4347 4100 4087 17 15 -0.30 -2 149 570 543 27.03 21.080 4550 4363 4100 4087 18 15 -0.93 -2 149 619 592 27.19 22.774 4600 4374 4085 4074 19 15 -1.24 3 144 667 640 27.09 24.641 4663 4380 4071 4061 20 15 -1.42 7 140 754 727 27.33 27.589 4693 4382 4071 4061 20 15 -1.42 7 140 754 727 27.33 27.589 4800 4383 4050 4042 23 15 -1.46 13 133 945 917 28.03 33.704 4900 4384 4026 4020 25 14<	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
4550 4363 4100 4087 18 15 -0.93 -2 149 619 592 27.19 22.774 4600 4374 4085 4074 19 15 -1.24 3 144 667 640 27.09 24.641 4650 4380 4078 4067 19 15 -1.35 5 142 715 688 27.21 26.267 4693 4382 4071 4061 20 15 -1.42 7 140 754 727 27.33 27.589 4700 4382 4070 4060 20 15 -1.43 7 139 761 733 27.55 27.812 4800 4383 4050 4042 22 15 -1.46 13 133 852 825 27.58 30.894 4900 4384 4000 3995 27 14 -1.53 25 120 1133 1104 28.08 40.329 5200 4385 4000 3995 32 1	
4600 4374 4085 4074 19 15 -1.24 3 144 667 640 27.09 24.641 4650 4380 4078 4067 19 15 -1.35 5 142 715 688 27.21 26.267 4693 4382 4071 4061 20 15 -1.42 7 140 754 727 27.33 27.589 4700 4382 4070 4060 20 15 -1.43 7 139 761 733 27.35 27.812 4800 4383 4050 4042 22 15 -1.46 13 133 852 825 27.58 30.894 4900 4383 4050 4042 23 15 -1.46 13 133 945 917 28.03 33.704 5000 4384 4026 4020 25 14 -1.53 25 120 1133 1104 28.08 40.329 5200 4385 4000 3995 32 1	
4650 4380 4078 4067 19 15 -1.35 5 142 715 688 27.21 26.267 4693 4382 4071 4061 20 15 -1.42 7 140 754 727 27.33 27.589 4700 4382 4070 4060 20 15 -1.43 7 139 761 733 27.35 27.812 4800 4383 4050 4042 22 15 -1.46 13 133 852 825 27.58 30.894 4900 4383 4050 4042 23 15 -1.46 13 133 945 917 28.03 33.704 5000 4384 4026 4020 25 14 -1.53 25 120 1133 1104 28.08 36.966 5100 4385 4000 3995 29 14 -1.53 25 120 127 1199 28.35 43.279 5300 4385 4000 3995 32 <td< td=""><td></td></td<>	
4693 4382 4071 4061 20 15 -1.42 7 140 754 727 27.33 27.589 4700 4382 4070 4060 20 15 -1.43 7 139 761 733 27.35 27.812 4800 4383 4050 4042 22 15 -1.46 13 133 852 825 27.58 30.894 4900 4383 4050 4042 23 15 -1.46 13 133 945 917 28.03 33.704 5000 4384 4026 4020 25 14 -1.50 19 127 1038 1010 28.08 36.966 5100 4384 4000 3995 27 14 -1.53 25 120 1133 1104 28.08 40.329 5200 4385 4000 3995 29 14 -1.53 25 120 1322 1294 28.57 46.281 5300 4386 4000 3995 32	
4700 4382 4070 4060 20 15 -1.43 7 139 761 733 27.35 27.812 4800 4383 4050 4042 22 15 -1.46 13 133 852 825 27.58 30.894 4900 4383 4050 4042 23 15 -1.46 13 133 945 917 28.08 33.704 5000 4384 4026 4020 25 14 -1.50 19 127 1038 1010 28.08 36.966 5100 4384 4000 3995 27 14 -1.53 25 120 1133 1104 28.08 40.329 5200 4385 4000 3995 29 14 -1.53 25 120 1227 1199 28.35 43.279 5300 4385 4000 3995 32 14 -1.53 25 120 1322 1294 28.57 46.281 5400 4386 3981 3976 36	
4800 4383 4050 4042 22 15 -1.46 13 133 852 825 27.58 30.894 4900 4383 4050 4042 23 15 -1.46 13 133 945 917 28.03 33.704 5000 4384 4026 4020 25 14 -1.50 19 127 1038 1010 28.08 36.966 5100 4384 4000 3995 27 14 -1.53 25 120 1133 1104 28.08 40.329 5200 4385 4000 3995 29 14 -1.53 25 120 1227 1199 28.35 43.279 5300 4385 4000 3995 32 14 -1.53 25 120 1322 1294 28.57 46.281 5400 4386 4000 3995 34 14 -1.53 25 120 1418 1390 28.76 49.324 5500 4386 3981 3976 36	
4900 4383 4050 4042 23 15 -1.46 13 133 945 917 28.03 33.704 5000 4384 4026 4020 25 14 -1.50 19 127 1038 1010 28.08 36.966 5100 4384 4000 3995 27 14 -1.53 25 120 1133 1104 28.08 40.329 5200 4385 4000 3995 29 14 -1.53 25 120 1227 1199 28.35 43.279 5300 4385 4000 3995 32 14 -1.53 25 120 1322 1294 28.57 46.281 5400 4386 4000 3995 32 14 -1.53 25 120 1418 1390 28.76 49.324 5500 4386 3981 3976 36 14 -1.56 28 116 1515 1486 28.76 52.667 5600 4387 3974 3970 38 <td></td>	
5000 4384 4026 4020 25 14 -1.50 19 127 1038 1010 28.08 36.966 5100 4384 4000 3995 27 14 -1.53 25 120 1133 1104 28.08 40.329 5200 4385 4000 3995 29 14 -1.53 25 120 1227 1199 28.35 43.279 5300 4385 4000 3995 32 14 -1.53 25 120 1322 1294 28.57 46.281 5400 4386 4000 3995 34 14 -1.53 25 120 1418 1390 28.76 49.324 5500 4386 3981 3976 36 14 -1.56 28 116 1515 1486 28.76 52.667 5600 4387 3974 3970 38 14 -1.57 30 115 1611 1582 28.85 55.845 5700 4388 3950 3947 41<	
5100 4384 4000 3995 27 14 -1.53 25 120 1133 1104 28.08 40.329 5200 4385 4000 3995 29 14 -1.53 25 120 1227 1199 28.35 43.279 5300 4385 4000 3995 32 14 -1.53 25 120 1322 1294 28.57 46.281 5400 4386 4000 3995 34 14 -1.53 25 120 1418 1390 28.76 49.324 5500 4386 3981 3976 36 14 -1.56 28 116 1515 1486 28.76 52.667 5600 4387 3974 3970 38 14 -1.57 30 115 1611 1582 28.85 55.845 5700 4388 3950 3947 41 14 -1.59 33 110 1708 1680 28.81 59.305 5800 4388 3950 3947 43<	
5300 4385 4000 3995 32 14 -1.53 25 120 1322 1294 28.57 46.281 5400 4386 4000 3995 34 14 -1.53 25 120 1418 1390 28.76 49.324 5500 4386 3981 3976 36 14 -1.56 28 116 1515 1486 28.76 52.667 5600 4387 3974 3970 38 14 -1.57 30 115 1611 1582 28.85 55.845 5700 4388 3950 3947 41 14 -1.59 33 110 1708 1680 28.81 59.305 5800 4388 3950 3947 43 14 -1.59 33 110 1805 1776 28.93 62.403	
5300 4385 4000 3995 32 14 -1.53 25 120 1322 1294 28.57 46.281 5400 4386 4000 3995 34 14 -1.53 25 120 1418 1390 28.76 49.324 5500 4386 3981 3976 36 14 -1.56 28 116 1515 1486 28.76 52.667 5600 4387 3974 3970 38 14 -1.57 30 115 1611 1582 28.85 55.845 5700 4388 3950 3947 41 14 -1.59 33 110 1708 1680 28.81 59.305 5800 4388 3950 3947 43 14 -1.59 33 110 1805 1776 28.93 62.403	
5400 4386 4000 3995 34 14 -1.53 25 120 1418 1390 28.76 49.324 5500 4386 3981 3976 36 14 -1.56 28 116 1515 1486 28.76 52.667 5600 4387 3974 3970 38 14 -1.57 30 115 1611 1582 28.85 55.845 5700 4388 3950 3947 41 14 -1.59 33 110 1708 1680 28.81 59.305 5800 4388 3950 3947 43 14 -1.59 33 110 1805 1776 28.93 62.403	
5500 4386 3981 3976 36 14 -1.56 28 116 1515 1486 28.76 52.667 5600 4387 3974 3970 38 14 -1.57 30 115 1611 1582 28.85 55.845 5700 4388 3950 3947 41 14 -1.59 33 110 1708 1680 28.81 59.305 5800 4388 3950 3947 43 14 -1.59 33 110 1805 1776 28.93 62.403	
5600 4387 3974 3970 38 14 -1.57 30 115 1611 1582 28.85 55.845 5700 4388 3950 3947 41 14 -1.59 33 110 1708 1680 28.81 59.305 5800 4388 3950 3947 43 14 -1.59 33 110 1805 1776 28.93 62.403	
5800 4388 3950 3947 43 14 -1.59 33 110 1805 1776 28.93 62.403	
5800 4388 3950 3947 43 14 -1.59 33 110 1805 1776 28.93 62.403	
5900 4389 3950 3947 45 14 -1.59 33 110 1902 1873 29.04 65.517	
6000 4389 3950 3947 48 14 -1.59 33 110 2000 1971 29.14 68.642	
6100 4390 3950 3947 50 14 -1.59 33 110 2098 2069 29.23 71.776	
6200 4390 3950 3947 52 14 -1.59 33 110 2196 2166 29.31 74.917	

Anticollision Report

Company:	DJR Operating	Local Co-ordinate Reference:	Well 702H - Slot 2
Project:	Nageezi Unit	TVD Reference:	GL 6707' & RKB 14' @ 6721ft
Reference Site:	B09 2309	MD Reference:	GL 6707' & RKB 14' @ 6721ft
Site Error:	0 ft	North Reference:	True
Reference Well:	702H	Survey Calculation Method:	Minimum Curvature
Well Error:	0 ft	Output errors are at	2.00 sigma
Reference Wellbore	Original Drilling	Database:	Grand Junction
Reference Design:	APD	Offset TVD Reference:	Offset Datum

Offset Des	sign: BC	9 2309 - 7	03H - Orig	inal Drilling	- APD									
	-												Offset Site Error:	0 ft
Survey Progr Refer		-MWD+HDGM	set	Somi	laior Axis		Offset Wellb	ara Cantra	Die	Rule Assig	gned:		Offset Well Error:	0 ft
Measured	Vertical	Measured	Vertical	Reference	Offset	Highside	Offset wellb	ore Centre	Between	Between	Minimum	Separation	Warning	
Depth	Depth	Depth	Depth			Toolface	+N/-S	+E/-W	Centres	Ellipses	Separation	Factor		
(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(°)	(ft)	(ft)	(ft)	(ft)	(ft)			
6300	4391	3950	3947	55	14	-1.59	33	110	2294	2264	29.39	78.061		
6400	4391	3950	3947	57	14	-1.59	33	110	2392	2363	29.46	81.208		
6400 6500	4391 4392	3950 3950	3947 3947	57 60	14 14	-1.59 -1.59	33 33	110 110	2392 2491	2363 2461	29.46 29.52	81.208 84.355		

Received by OCD: 8/16/2024 10:26:16 AM

Lonestar Consulting, LLC

Anticollision Report

npany: ject: erence Site: • Error: • erence Well: I Error: erence Wellbore erence Design:	DJR Operating Nageezi Unit B09 2309 0 ft 702H 0 ft Original Drilling APD		TVD R MD Re North Surve Outpu Datab	Co-ordinate R eference: ference: Reference: y Calculation I t errors are at ase: TVD Reference	Method:		KB 14' @ 6721ft KB 14' @ 6721ft vature on	
	relative to GL 6707' & tive to Offset Datum /7.83333333	RKB 14' @ 6721ft	Coordi	nate System is	ve to: 702H - S US State Plan Surface is: 0.02	e 1983, New Me	xico Western Zone	9
			Ladde	er Plot				
2400-								
-0081 Jauration								
Centre to Centre Separation								
- Centre Contre								
0								

LEGEND

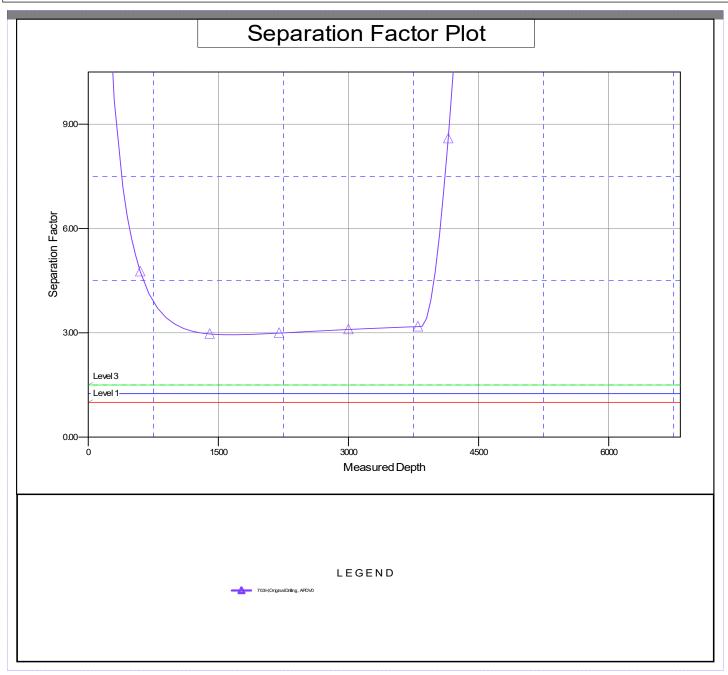
703H,Original Drilling, APD V0

Measured Depth

Released to Imaging: 9/6/2024 3:25:22 PM

Received by OCD: 8/16/2024 10:26:16 AM

Lonestar Consulting, LLC


Anticollision Report

Company:	DJR Operating	Local Co-ordinate Reference:	Well 702H - Slot 2
Project:	Nageezi Unit	TVD Reference:	GL 6707' & RKB 14' @ 6721ft
Reference Site:	B09 2309	MD Reference:	GL 6707' & RKB 14' @ 6721ft
Site Error:	0 ft	North Reference:	True
Reference Well:	702H	Survey Calculation Method:	Minimum Curvature
Well Error:	0 ft	Output errors are at	2.00 sigma
Reference Wellbore	Original Drilling	Database:	Grand Junction
Reference Design:	APD	Offset TVD Reference:	Offset Datum

Reference Depths are relative to GL 6707' & RKB 14' @ 6721ft Offset Depths are relative to Offset Datum Central Meridian is -107.83333333

Coordinates are relative to: 702H - Slot 2 Coordinate System is US State Plane 1983, New Mexico Western Zone Grid Convergence at Surface is: 0.02°

United States Department of the Interior

BUREAU OF LAND MANAGEMENT Farmington District Office 6251 College Blvd, Suite A Farmington, New Mexico 87402

In Reply Refer To: 3162.3-1(NMF0110)

* ENDURING RESOURCES LLC

#702H NAGEEZI UNIT

Lease: NMNM8005 Agreement: NMNM132981A SH: NWNE Section 9, T. 23 N., R. 9 W. San Juan County, New Mexico BH: Section 5, T. 23 N., R. 9 W. San Juan County, New Mexico *Above Data Required on Well Sign

GENERAL REQUIREMENTS FOR OIL AND GAS OPERATIONS ON FEDERAL AND INDIAN LEASES

The following special requirements apply and are effective when checked:

A. \boxtimes Note all surface/drilling conditions of approval attached.

B. The required wait on cement (WOC) time will be a minimum of 500 psi compressive strength at 60 degrees. Blowout preventor (BOP) nipple-up operations may then be initiated

C. Test the surface casing to a minimum of _____ psi for 30 minutes.

- D. Test all casing strings below the surface casing to .22 psi/ft. of casing string length or 1500 psi, whichever is greater, but not to exceed 70% of the minimum internal yield burst) for a minimum of 30 minutes.
- E. Communitization Agreement covering the acreage dedicated to this well must be filed for approval with the Bureau of Land Management, New Mexico State Office, Reservoir Management Group, 301 Dinosaur Trail, Santa Fe, New Mexico 87508. The effective date of the agreement must be **prior** to any sales.
- F. The use of co-flex hose is authorized contingent upon the following:
 1. From the BOP to the choke manifold: the co-flex hose must be hobbled on both ends and saddle to prevent whip.
 2. From the choke manifold to the discharge tank: the co-flex hoses must be as straight as

2. From the choke manifold to the discharge tank: the co-flex hoses must be as straight as practical, hobbled on both ends and anchored to prevent whip.

3. The co-flex hose pressure rating must be at least commensurate with approved BOPE.

INTERIOR REGION 7 • UPPER COLORADO BASIN

COLORADO, NEW MEXICO, UTAH, WYOMING

I. <u>GENERAL</u>

- A. Full compliance with all applicable laws and regulations with the approved Permit to drill, and with the approved Surface Use and Operations Plan is required. Lessees and/or operators are fully accountable for the actions of their contractors and subcontractors. Failure to comply with these requirements and the filing of required reports will result in strict enforcement pursuant to 43 CFR 3163.1 or 3163.2.
- B. Each well shall have a well sign in legible condition from spud date to final abandonment. The sign should show the operator's name, lease serial number, or unit name, well number, location of the well, and whether lease is Tribal or Allotted, (See 43 CFR 3162.6(b)).
- C. A complete copy of the approved Application for Permit to Drill, along with any conditions of approval, shall be available to authorized personnel at the drill site whenever active drilling operations are under way.
- D. For Wildcat wells only, a drilling operations progress report is to be submitted, to the BLM-Field Office, weekly from the spud date until the well is completed and the Well Completion Report (Form 3160-4) is filed. The report should be on 8-1/2 x 11 inch paper, and each page should identify the well by; operator's name, well number, location and lease number.
- E. As soon as practical, notice is required of all blowouts, fires and accidents involving life-threatening injuries or loss of life. (See NTL-3A).
- F. Prior approval by the BLM-Authorized Office (Drilling and Production Section) is required for variance from the approved drilling program and before commencing plugging operations, plug back work casing repair work, corrective cementing operations, or suspending drilling operations indefinitely. Emergency approval may be obtained orally, but such approval is contingent upon filing of a notice of intent (on a Sundry Notice, Form 3160-5) within three business days (original and three copies of Federal leases and an original and four copies on Indian leases). Any changes to the approved plan or any questions regarding drilling operations should be directed to BLM during regular business hours at 505-564-7600. Emergency program changes after hours should be directed to at Virgil Lucero at 505-793-1836.
- G. The Inspection and Enforcement Section (I&E), phone number (505-564-7750) is to be notified at least 24 hours in advance of BOP test, spudding, cementing, or plugging operations so that a BLM representative may witness the operations.
- H. From the time drilling operations are initialed and until drilling operations are completed, a member of the drilling crew or the tool pusher shall maintain rig surveillance at all time, unless the well is secured with blowout preventer or cement plugs.
- I. If for any reason, drilling operations are suspended for more than 90 days, a written notice must be provided to this office outlining your plans for this well.

II. <u>REPORTING REQUIREMENTS</u>

A. For reporting purposes, all well Sundry notices, well completion and other well actions shall be referenced by the appropriate lease, communitization agreement and/or unit agreement numbers.

- B. The following reports shall be filed with the BLM-Authorized Officer within 30 days after the work is completed.
 - 1 .Original and three copies on Federal and an Original and five copies on Indian leases of Sundry Notice (Form 3150-5), giving complete information concerning.
 - a. Setting of each string of casing. Show size and depth of hole, grade and weight of casing, depth set, depth of any and all cementing tools that are used, amount (in cubic feet) and types of cement used, whether cement circulated to surface and all cement tops in the casing annulus, casing test method and results, and the date work was done. Show spud date on first report submitted.
 - b. Intervals tested, perforated (include; size, number and location of perforations), acidized, or fractured; and results obtained. Provide date work was done on well completion report and completion sundry notice.
 - c. Subsequent Report of Abandonment, show the manner in which the well was plugged, including depths where casing was cut and pulled, intervals (by depths) where cement plugs were replaced, and dates of the operations.
 - 2. Well Completion Report (Form 3160-4) will be submitted with 30 days after well has been completed.
 - a. Initial Bottom Hole Pressure (BHP) for the producing formations. Show the BHP on the completion report. The pressure may be: 1) measured with a bottom hole bomb, or; 2) calculated based on shut in surface pressures (minimum seven day buildup) and fluid level shot.
 - 3. Submit a cement evaluation log, if cement is not circulated to surface.

III. DRILLER'S LOG

The following shall be entered in the daily driller's log: 1) Blowout preventer pressures tests, including test pressures and results. 2) Blowout preventer tests for proper functioning, 3) Blowout prevention drills conducted, 4) Casing run, including size, grade, weight, and depth set, 5) How pipe was cemented, including amount of cement, type, whether cement circulated to surface, location of cementing tools, etc., 6) Waiting on cement time for each casing string, 7) Casing pressure tests after cementing, including test pressure and results and 8) Estimated amounts of oil and gas recovered and/or produced during drill stem test.

IV. GAS FLARING

Gas produced from this well may not be vented or flared beyond an initial, authorized test period of * Days or 50 MMCF following its (completion)(recompletion), whichever first occurs, without the prior, written approval of the authorized officer. Should gas be vented or flared without approval beyond the test period authorized above, you may be directed to shut-in the well until the gas can be captured or approval to continue venting or flaring as uneconomic is granted. You shall be required to compensate the lessor for the portion of the gas vented or flared without approval which is determined to have been avoidably lost.

*30 days, unless a longer test period is specifically approved by the authorized officer. The 30-day period will commence upon the first gas to surface.

V. <u>SAFETY</u>

- A. All rig heating stoves are to be of the explosion-proof type.
- B. Rig safety lines are to be installed.
- C. Hard hats and other Personal Protective Equipment (PPE) must be utilized.

VI. <u>CHANGE OF PLANS OR ABANDONMENT</u>

- A. Any changes of plans required in order to mitigate unanticipated conditions encountered during drilling operations, will require approval as set forth in Section 1.F.
- B. If the well is dry, it is to be plugged in accordance with 43 CFR 3162.3-4, approval of the proposed plugging program is required as set forth in Section 1.F. The report should show the total depth reached, the reason for plugging, and the proposed intervals, by depths, where cement plugs are to be placed, type of plugging mud, etc. A Subsequent Report of Abandonment is required as set forth in Section II.B.1c.
- C. Unless a well has been properly cased and cemented, or properly plugged, the drilling rig must not be moved from the drill site without prior approval from the BLM-Authorized Officer.

VII. PHONE NUMBERS

A. For BOPE tests, cementing, and plugging operations the phone number is 505-564-7750 and must be called 24 hours in advance in order that a BLM representative may witness the operations.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
DJR OPERATING, LLC	371838
200 Energy Court	Action Number:
Farmington, NM 87401	374654
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

CONDITIONS		
Created By	Condition	Condition Date
ward.rikala	Notify OCD 24 hours prior to casing & cement	9/6/2024
ward.rikala	Will require a File As Drilled C-102 and a Directional Survey with the C-104	9/6/2024
ward.rikala	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string	9/6/2024
ward.rikala	Cement is required to circulate on both surface and intermediate1 strings of casing	9/6/2024
ward.rikala	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system	9/6/2024

Action 374654