ecerved by UCD: 3/31/2024 10:48:09 AM U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		Sundry Print Report 07/31/2024
Well Name: CHINCOTEAGUE 8-32 FED STATE COM	Well Location: T25S / R32E / SEC 8 / SWNE / 32.1453458 / -103.6962004	County or Parish/State: LEA / NM
Well Number: 623H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM061873B	Unit or CA Name:	Unit or CA Number:
US Well Number:	Operator: DEVON ENERGY PRODUCTION COMPANY LP	

Notice of Intent

Sundry ID: 2800571

Type of Submission: Notice of Intent

Date Sundry Submitted: 07/23/2024

Date proposed operation will begin: 07/13/2024

Type of Action: APD Change Time Sundry Submitted: 01:16

Procedure Description: Devon Energy Production Co., L.P. (Devon) respectfully requests to change the BHL, spacing, pool code and depth on the subject well. Devon is also updating surface casing/hole size and connections and requesting variances for break testing and offline cementing. Devon Energy Production Company, L.P. will circulate class C cement to surface behind the 10-3/4" casing. Please see attached updated C102, Drill plan, directional plan, spec sheets, break test and offline cementing variance. API: 30-025-52971 Permitted BHL: NWNE, 20 FNL, 1870 FEL, 32-24S-32E Proposed BHL: NWNE, 20 FNL, 2200 FEL, 32-24S-32E Permitted TVD/MD: 12018/24880 Proposed TVD/MD: 11015/23831

NOI Attachments

Procedure Description

WA018437866_CHINCOTEAGUE_8_32_FED_STATE_COM_623H_WL_R1_SIGNED_20240723131501.pdf

CHINCOTEAGUE_8_32_FED_STATE_COM_623H_Directional_Plan_07_18_24_20240723131500.pdf

CHINCOTEAGUE_8_32_FED_STATE_COM_623H_20240723131500.pdf

Offline_Cementing___Variance_Request_20240713135712.pdf

break_test_variance_BOP_1_15_24_20240713135709.pdf

5.5_20_P110HP_CDC_HTQ_20240713135707.pdf

10.750_45.5lb_J55_BTC_20240713135707.pdf

8.625_32lb_P110_MOFXL_20240713135708.pdf

Received by OCD: 7/31/2024 10:48:09 AM Well Name: CHINCOTEAGUE 8-32 FED STATE COM	Well Location: T25S / R32E / SEC 8 / SWNE / 32.1453458 / -103.6962004	County or Parish/State: LER 2 of 5 NM
Well Number: 623H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM061873B	Unit or CA Name:	Unit or CA Number:
US Well Number:3002552971	Operator: DEVON ENERGY PRODUCTION COMPANY LP	
)

Conditions of Approval

Specialist Review

ChincoTeague_8_32_Fed_State_Com_623H_Sundry_ID_2800571_20240730121841.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: CHELSEY GREEN Name: DEVON ENERGY PRODUCTION COMPANY LP

Title: Regulatory Compliance Professional

Street Address: 333 WEST SHERIDAN AVENUE

City: OKLAHOMA CITY State: OK

Phone: (405) 228-8595

Email address: CHELSEY.GREEN@DVN.COM

State:

Field

Representative Name: Street Address: City: Phone: Email address:

BLM Point of Contact

BLM POC Name: LONG VO BLM POC Phone: 5759885402 Disposition: Approved Signature: Long Vo Signed on: JUL 13, 2024 09:24 AM

BLM POC Title: Petroleum Engineer BLM POC Email Address: LVO@BLM.GOV Disposition Date: 07/30/2024

Zip:

Received by OCD: 7/31/2024 10:48:09 AM

eceived by OCD. 7/51/202	4 10.40.07 AM			I uge 5 of
Form 3160-5 (June 2019)	UNITED STAT DEPARTMENT OF THE BUREAU OF LAND MAN	INTERIOR	C	ORM APPROVED MB No. 1004-0137 ires: October 31, 2021
Do not use t		ORTS ON WELLS to drill or to re-enter an APD) for such proposals.	6. If Indian, Allottee o	r Tribe Name
SUBMI	T IN TRIPLICATE - Other inst	ructions on page 2	7. If Unit of CA/Agree	ement, Name and/or No.
1. Type of Well	Gas Well Other		8. Well Name and No.	
2. Name of Operator			9. API Well No.	
3a. Address		3b. Phone No. <i>(include area code)</i>	10. Field and Pool or	Exploratory Area
4. Location of Well (Footage, Sec	., T.,R.,M., or Survey Description))	11. Country or Parish,	State
12.	CHECK THE APPROPRIATE I	BOX(ES) TO INDICATE NATURE	OF NOTICE, REPORT OR OTH	IER DATA
TYPE OF SUBMISSION		ТҮР	E OF ACTION	
Notice of Intent	Acidize	Deepen Hydraulic Fracturing	Production (Start/Resume) Reclamation	Water Shut-Off Well Integrity
Subsequent Report	Casing Repair Change Plans	New Construction Plug and Abandon	Recomplete Temporarily Abandon	Other
Final Abandonment Notice		_	Water Disposal	
the proposal is to deepen dire the Bond under which the wo completion of the involved op	ctionally or recomplete horizonta rk will be perfonned or provide the perations. If the operation results	lly, give subsurface locations and more he Bond No. on file with BLM/BIA. in a multiple completion or recompletion.	easured and true vertical depths of Required subsequent reports mu etion in a new interval, a Form 3	rk and approximate duration thereof. If of all pertinent markers and zones. Attach st be filed within 30 days following 160-4 must be filed once testing has been he operator has detennined that the site

14. I hereby certify that the foregoing is true and correct. Name (<i>Printed/Typed</i>)			
т	ĩtle		
Signatura	Date		
Signature			
THE SPACE FOR FEDER	RAL OR STATE OF	ICE USE	
Approved by			
	Title	Date	
Conditions of approval, if any, are attached. Approval of this notice does not warrant o certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon.			
Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any any false, fictitious or fraudulent statements or representations as to any matter within		fully to make to any department or agency of the United	1 States

(Instructions on page 2)

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

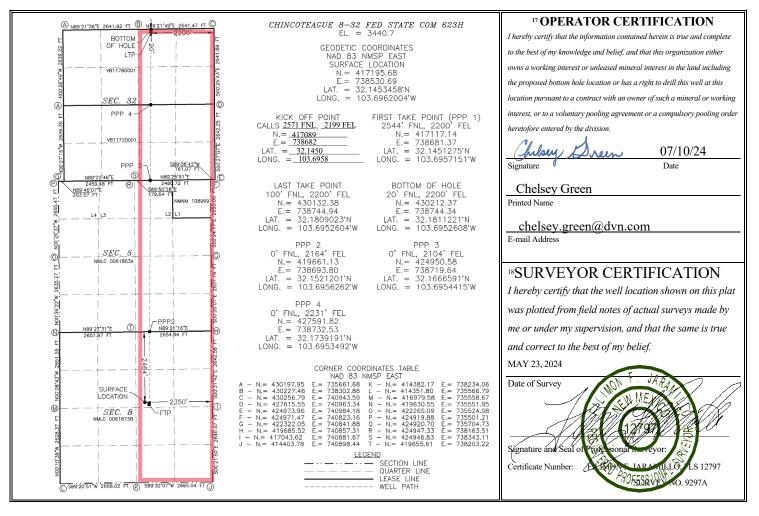
The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

Additional Information


Location of Well

0. SHL: SWNE / 2464 FNL / 2350 FEL / TWSP: 25S / RANGE: 32E / SECTION: 8 / LAT: 32.1453458 / LONG: -103.6962004 (TVD: 0 feet, MD: 0 feet) PPP: SWNE / 2544 FNL / 1870 FEL / TWSP: 25S / RANGE: 32E / SECTION: 8 / LAT: 32.145133 / LONG: -103.6946491 (TVD: 11754 feet, MD: 11840 feet) PPP: SWSE / 174 FSL / 1832 FEL / TWSP: 25S / RANGE: 32E / SECTION: 5 / LAT: 32.1525929 / LONG: -103.6945417 (TVD: 11939 feet, MD: 14500 feet) BHL: NWNE / 20 FNL / 1870 FEL / TWSP: 24S / RANGE: 32E / SECTION: 32 / LAT: 32.1811271 / LONG: -103.6941947 (TVD: 12018 feet, MD: 24880 feet) State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

¹ A	PI Number	r		² Pool Cod	e ³ Pool Name						
30-025	5-52971	97899 WC-025 G-06 S253206M;BONE SPRING									
⁴ Property C	ode	⁵ Property Name ⁶ Well Num									
326213			CHINCOTEAGUE 8-32 FED STATE COM 623H								
⁷ OGRID N	lo.		⁸ Operator Name ⁹ Elevation								
6137			DEVON ENERGY PRODUCTION COMPANY, L.P. 3440.7								
					[™] Surfac	e Location					
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County		
G	8	25 S	32 E		2464	NORTH	2350	EAST	LEA		
			пI	Bottom H	Iole Location	If Different Fr	om Surface		·		
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County		
В	32	24 S	32 E		20	NORTH	2200	EAST	LEA		
12 Dedicated Acres	¹³ Joint	or Infill ¹⁴	Consolidatio	n Code			¹⁵ Order No.				
800.83											

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Received by OCD: 7/31/2024 10:48:09 AM

Х

API #

30-025-52971			
Operator Name:		Property Name:	Well Number
DEVON ENERGY P	RODUCTION	CHINCOTEAGUE 8-32 FED STATE	623H
COMPANY, L.P.		СОМ	

Kick Off Point (KOP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
G	8	25S	32E		2571	NORTH	2199	EAST	LEA
Latitu	ıde				Longitude				NAD
	32.14	50			10)3.6958			83

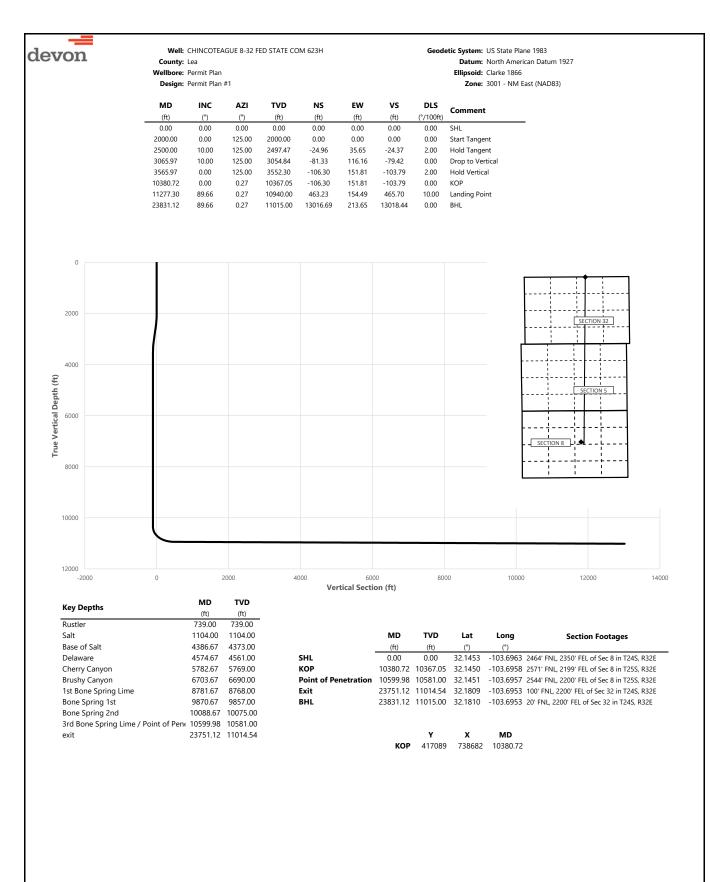
First Take Point (FTP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
G	8	25S	32E		2544	NORTH	2200	EAST	LEA
				Longitude 103.6957	7151			NAD 83	

Last Take Point (LTP)

B 32 24S 32E 10	100 NORTH 2200	EAST LEA
	Longitude 103.6952604	NAD 83

Is this well the defining well for the Horizontal Spacing Unit?


Is this well an infill well?

Y	

If infill is yes please provide API if available, Operator Name and well number for Defining well for Horizontal Spacing Unit.

API #		
30-025-53001		
Operator Name:	Property Name:	Well Number
DEVON ENERGY PRODUCTION COMPANY, L.P.	CHINCOTEAGUE 8-32 FED STATE COM	627H

KZ 06/29/2018

1		County: Wellbore:			ED STATE CO	M 623H			Datum: Ellipsoid:	US State Plane 1983 North American Datum 1927 Clarke 1866 3001 - NM East (NAD83)
	MD	INC	AZI	TVD	NS	EW	vs	DLS	Comment	
-	(ft) 0.00	(°) 0.00	(°) 0.00	(ft) 0.00	(ft) 0.00	(ft) 0.00	(ft) 0.00	(°/100ft) 0.00	SHL	
	100.00	0.00	125.00	100.00	0.00	0.00	0.00	0.00	SHL	
	200.00	0.00	125.00	200.00	0.00	0.00	0.00	0.00		
	300.00	0.00	125.00	300.00	0.00	0.00	0.00	0.00		
	400.00	0.00	125.00	400.00	0.00	0.00	0.00	0.00		
	500.00	0.00	125.00	500.00	0.00	0.00	0.00	0.00		
	600.00	0.00	125.00	600.00	0.00	0.00	0.00	0.00		
	700.00	0.00	125.00	700.00	0.00	0.00	0.00	0.00		
	739.00	0.00	125.00	739.00	0.00	0.00	0.00	0.00	Rustler	
	800.00	0.00	125.00	800.00	0.00	0.00	0.00	0.00		
	900.00	0.00	125.00	900.00	0.00	0.00	0.00	0.00		
	1000.00	0.00	125.00	1000.00	0.00	0.00	0.00	0.00		
	1100.00	0.00	125.00	1100.00	0.00	0.00	0.00	0.00		
	1104.00	0.00	125.00	1104.00	0.00	0.00	0.00	0.00	Salt	
	1200.00	0.00	125.00	1200.00	0.00	0.00	0.00	0.00		
	1300.00	0.00	125.00	1300.00	0.00	0.00	0.00	0.00		
	1400.00	0.00	125.00	1400.00	0.00	0.00	0.00	0.00		
	1500.00	0.00	125.00	1500.00	0.00	0.00	0.00	0.00		
	1600.00	0.00	125.00	1600.00	0.00	0.00	0.00	0.00		
	1700.00	0.00	125.00	1700.00	0.00	0.00	0.00	0.00		
	1800.00	0.00	125.00	1800.00	0.00	0.00	0.00	0.00		
	1900.00	0.00	125.00	1900.00	0.00	0.00	0.00	0.00		
	2000.00	0.00	125.00	2000.00	0.00	0.00	0.00	0.00	Start Tangent	
	2100.00	2.00	125.00	2099.98	-1.00	1.43	-0.98	2.00		
	2200.00	4.00	125.00	2199.84	-4.00	5.72	-3.91	2.00		
	2300.00	6.00	125.00	2299.45	-9.00	12.86	-8.79	2.00		
	2400.00	8.00	125.00	2398.70	-15.99	22.84	-15.61	2.00		
	2500.00	10.00	125.00	2497.47	-24.96	35.65	-24.37	2.00	Hold Tangent	
	2600.00	10.00	125.00	2595.95	-34.92	49.88	-34.10	0.00		
	2700.00	10.00	125.00	2694.43	-44.88	64.10	-43.83	0.00		
	2800.00	10.00	125.00	2792.91	-54.84	78.32	-53.55	0.00		
	2900.00	10.00	125.00	2891.39	-64.80	92.55	-63.28	0.00		
	3000.00	10.00	125.00	2989.87	-74.76	106.77	-73.00	0.00		
	3065.97	10.00	125.00	3054.84	-81.33	116.16	-79.42	0.00	Drop to Vertical	
	3100.00	9.32	125.00	3088.38	-84.61	120.84	-82.61	2.00		
	3200.00	7.32	125.00	3187.33	-92.91	132.69	-90.72	2.00		
	3300.00	5.32	125.00	3286.71	-99.22	141.70	-96.88	2.00		
	3400.00 3500.00	3.32 1.32	125.00 125.00	3386.43 3486.34	-103.54 -105.86	147.87 151 19	-101.10 -103.37	2.00 2.00		
	3500.00 3565.97	0.00	125.00	3486.34 3552.30	-105.86	151.19 151.81	-103.37	2.00	Hold Vertical	
	3565.97 3600.00	0.00	0.27	3552.30 3586.33	-106.30 -106.30	151.81	-103.79	2.00	noid ventical	
	3700.00	0.00	0.27	3566.33	-106.30	151.81	-103.79	0.00		
	3800.00	0.00	0.27	3786.33	-106.30	151.81	-103.79	0.00		
	3900.00	0.00	0.27	3886.33	-106.30	151.81	-103.79	0.00		
	4000.00	0.00	0.27	3986.33	-106.30	151.81	-103.79	0.00		
	4100.00	0.00	0.27	4086.33	-106.30	151.81	-103.79	0.00		
	4200.00	0.00	0.27	4186.33	-106.30	151.81	-103.79	0.00		
	4300.00	0.00	0.27	4286.33	-106.30	151.81	-103.79	0.00		
	4386.67	0.00	0.27	4373.00	-106.30	151.81	-103.79	0.00	Base of Salt	
	4400.00	0.00	0.27	4386.33	-106.30	151.81	-103.79	0.00		
	4500.00	0.00	0.27	4486.33	-106.30	151.81	-103.79	0.00		
	4574.67	0.00	0.27	4561.00	-106.30	151.81	-103.79	0.00	Delaware	
	4600.00	0.00	0.27	4586.33	-106.30	151.81	-103.79	0.00		
	4700.00	0.00	0.27	4686.33	-106.30	151.81	-103.79	0.00		
	4800.00	0.00	0.27	4786.33	-106.30	151.81	-103.79	0.00		
	4900.00	0.00	0.27	4886.33	-106.30	151.81	-103.79	0.00		
	5000.00	0.00	0.27	4986.33	-106.30	151.81	-103.79	0.00		
	5100.00	0.00	0.27	5086.33	-106.30	151.81	-103.79	0.00		
	5200.00	0.00	0.27	5186.33	-106.30	151.81	-103.79	0.00		
	5300.00	0.00	0.27	5286.33	-106.30	151.81	-103.79	0.00		
	5400.00	0.00	0.27	5386.33	-106.30	151.81	-103.79	0.00		
	5500.00	0.00	0.27	5486.33	-106.30	151.81	-103.79	0.00		
	5600.00	0.00	0.27	5586.33	-106.30	151.81	-103.79	0.00		
	5700.00	0.00	0.27	5686.33	-106.30	151.81	-103.79	0.00		
	5782.67	0.00	0.27	5769.00	-106.30	151.81	-103.79	0.00	Cherry Canyon	
	5800.00	0.00	0.27	5786.33	-106.30	151.81	-103.79	0.00		
	5900.00	0.00	0.27	5886.33	-106.30	151.81	-103.79	0.00		
	6000.00	0.00	0.27	5986.33	-106.30	151.81	-103.79	0.00		
		0.00	0.07	6006 22	-106.30	151.81	-103.79	0.00		
	6100.00	0.00	0.27	6086.33	-100.30	131.01	-103.79	0.00		

•

. —		•الم	CHINCOT	AGUE 8-32 FE		M 623H			Geodetic System: US State Plane 1983
devon		County:		AGUE 6-52 FE	DSTATE CO	IVI 025H			Datum: North American Datum 1927
		Wellbore:		n					Ellipsoid: Clarke 1866
		Design:	Permit Pla	n #1					Zone: 3001 - NM East (NAD83)
	MD	INC	AZI	TVD	NS	EW	vs	DLS	Comment
-	(ft) 6300.00	(°) 0.00	(°) 0.27	(ft) 6286.33	(ft) -106.30	(ft)	(ft) -103.79	(°/100ft) 0.00	
	6400.00	0.00	0.27	6386.33	-106.30	151.81 151.81	-103.79	0.00	
	6500.00	0.00	0.27	6486.33	-106.30	151.81	-103.79	0.00	
	6600.00	0.00	0.27	6586.33	-106.30	151.81	-103.79	0.00	
	6700.00	0.00	0.27	6686.33	-106.30	151.81	-103.79	0.00	
	6703.67 6800.00	0.00 0.00	0.27 0.27	6690.00 6786.33	-106.30 -106.30	151.81 151.81	-103.79 -103.79	0.00 0.00	Brushy Canyon
	6900.00	0.00	0.27	6886.33	-106.30	151.81	-103.79	0.00	
	7000.00	0.00	0.27	6986.33	-106.30	151.81	-103.79	0.00	
	7100.00	0.00	0.27	7086.33	-106.30	151.81	-103.79	0.00	
	7200.00	0.00	0.27	7186.33	-106.30	151.81	-103.79	0.00	
	7300.00 7400.00	0.00 0.00	0.27 0.27	7286.33 7386.33	-106.30 -106.30	151.81 151.81	-103.79 -103.79	0.00 0.00	
	7400.00	0.00	0.27	7486.33	-106.30	151.81	-103.79	0.00	
	7600.00	0.00	0.27	7586.33	-106.30	151.81	-103.79	0.00	
	7700.00	0.00	0.27	7686.33	-106.30	151.81	-103.79	0.00	
	7800.00	0.00	0.27	7786.33	-106.30	151.81	-103.79	0.00	
	7900.00 8000.00	0.00	0.27 0.27	7886.33 7986.33	-106.30	151.81 151.81	-103.79 -103.79	0.00 0.00	
	8000.00 8100.00	0.00 0.00	0.27	7986.33 8086.33	-106.30 -106.30	151.81 151.81	-103.79 -103.79	0.00	
	8200.00	0.00	0.27	8186.33	-106.30	151.81	-103.79	0.00	
	8300.00	0.00	0.27	8286.33	-106.30	151.81	-103.79	0.00	
	8400.00	0.00	0.27	8386.33	-106.30	151.81	-103.79	0.00	
	8500.00 8600.00	0.00 0.00	0.27 0.27	8486.33 8586.33	-106.30 -106.30	151.81 151.81	-103.79 -103.79	0.00 0.00	
	8700.00	0.00	0.27	8686.33	-106.30	151.81	-103.79	0.00	
	8781.67	0.00	0.27	8768.00	-106.30	151.81	-103.79	0.00	1st Bone Spring Lime
	8800.00	0.00	0.27	8786.33	-106.30	151.81	-103.79	0.00	
	8900.00	0.00	0.27	8886.33	-106.30	151.81	-103.79	0.00	
	9000.00 9100.00	0.00 0.00	0.27 0.27	8986.33 9086.33	-106.30 -106.30	151.81 151.81	-103.79 -103.79	0.00 0.00	
	9200.00	0.00	0.27	9186.33	-106.30	151.81	-103.79	0.00	
	9300.00	0.00	0.27	9286.33	-106.30	151.81	-103.79	0.00	
	9400.00	0.00	0.27	9386.33	-106.30	151.81	-103.79	0.00	
	9500.00	0.00	0.27	9486.33	-106.30	151.81	-103.79	0.00	
	9600.00 9700.00	0.00 0.00	0.27 0.27	9586.33 9686.33	-106.30 -106.30	151.81 151.81	-103.79 -103.79	0.00 0.00	
	9800.00	0.00	0.27	9786.33	-106.30	151.81	-103.79	0.00	
	9870.67	0.00	0.27	9857.00	-106.30	151.81	-103.79	0.00	Bone Spring 1st
	9900.00	0.00	0.27	9886.33	-106.30	151.81	-103.79	0.00	
	10000.00	0.00	0.27	9986.33	-106.30	151.81	-103.79	0.00	Base Carine 2nd
	10088.67 10100.00	0.00 0.00	0.27 0.27	10075.00 10086.33	-106.30 -106.30	151.81 151.81	-103.79 -103.79	0.00 0.00	Bone Spring 2nd
	10200.00	0.00	0.27	10186.33	-106.30	151.81	-103.79	0.00	
	10300.00	0.00	0.27	10286.33	-106.30	151.81	-103.79	0.00	
	10380.72	0.00	0.27	10367.05	-106.30	151.81	-103.79	0.00	КОР
	10400.00 10500.00	1.93 11.93	0.27 0.27	10386.33 10485.47	-105.97 -93.93	151.81 151.87	-103.47 -91.42	10.00 10.00	
	10500.00	21.93	0.27	10485.47	-64.85	152.00	-62.35	10.00	3rd Bone Spring Lime / Point of Penetration,
	10700.00	31.93	0.27	10670.06	-19.62	152.22	-17.12	10.00	
	10800.00	41.93	0.27	10749.90	40.39	152.50	42.88	10.00	
	10900.00	51.93	0.27	10818.11	113.34	152.84	115.84	10.00	
	11000.00 11100.00	61.93 71.93	0.27 0.27	10872.61 10911.75	197.03 288.92	153.24 153.67	199.52 291.40	10.00 10.00	
	11200.00	81.93	0.27	10934.33	386.20	154.13	388.68	10.00	
	11277.30	89.66	0.27	10940.00	463.23	154.49	465.70	10.00	Landing Point
	11300.00	89.66	0.27	10940.14	485.93	154.60	488.41	0.00	
	11400.00	89.66 89.66	0.27	10940.73	585.93	155.07 155.54	588.40	0.00	
	11500.00 11600.00	89.66 89.66	0.27 0.27	10941.33 10941.93	685.93 785.92	155.54 156.01	688.39 788.38	0.00 0.00	
	11700.00	89.66	0.27	10941.93	885.92	156.48	888.37	0.00	
	11800.00	89.66	0.27	10943.12	985.92	156.96	988.36	0.00	
	11900.00	89.66	0.27	10943.72	1085.92	157.43	1088.35	0.00	
	12000.00	89.66	0.27	10944.32	1185.91	157.90	1188.34	0.00	
	12100.00 12200.00	89.66 89.66	0.27 0.27	10944.92 10945.51	1285.91 1385.91	158.37 158.84	1288.34 1388.33	0.00 0.00	
	12200.00	89.66 89.66	0.27	10945.51	1385.91 1485.90	158.84 159.31	1388.33	0.00	
	12400.00	89.66	0.27	10946.71	1585.90	159.78	1588.31	0.00	
	12500.00	89.66	0.27	10947.31	1685.90	160.25	1688.30	0.00	
	12600.00	89.66	0.27	10947.90	1785.90	160.73	1788.29	0.00	
1									

•

Jorres		Well:	CHINCOTI	EAGUE 8-32 FE	D STATE CO	M 623H			Geodetic System:	US State Plane 1983
levon		County:							•	North American Datum 1927
		Wellbore:							•	Clarke 1866
		Design:	Permit Pla	n #1					Zone:	3001 - NM East (NAD83)
	MD	INC	AZI	TVD	NS	EW	vs	DLS	Comment	
	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	comment	
	12700.00	89.66	0.27	10948.50	1885.89	161.20	1888.28	0.00		
	12800.00 12900.00	89.66 89.66	0.27 0.27	10949.10 10949.70	1985.89 2085.89	161.67 162.14	1988.28 2088.27	0.00 0.00		
	13000.00	89.66	0.27	10950.29	2185.88	162.61	2188.26	0.00		
	13100.00	89.66	0.27	10950.89	2285.88	163.08	2288.25	0.00		
	13200.00	89.66	0.27	10951.49	2385.88	163.55	2388.24	0.00		
	13300.00	89.66	0.27	10952.09	2485.88	164.02	2488.23	0.00		
	13400.00 13500.00	89.66 89.66	0.27 0.27	10952.68 10953.28	2585.87 2685.87	164.50 164.97	2588.22 2688.22	0.00 0.00		
	13600.00	89.66	0.27	10953.28	2785.87	165.44	2788.21	0.00		
	13700.00	89.66	0.27	10954.48	2885.86	165.91	2888.20	0.00		
	13800.00	89.66	0.27	10955.07	2985.86	166.38	2988.19	0.00		
	13900.00	89.66	0.27	10955.67	3085.86	166.85	3088.18	0.00		
	14000.00	89.66	0.27	10956.27	3185.86	167.32	3188.17	0.00		
	14100.00 14200.00	89.66 89.66	0.27 0.27	10956.87 10957.46	3285.85 3385.85	167.79 168.27	3288.16 3388.16	0.00 0.00		
	14200.00	89.66 89.66	0.27	10957.46	3485.85	168.74	3488.15	0.00		
	14400.00	89.66	0.27	10958.66	3585.84	169.21	3588.14	0.00		
	14500.00	89.66	0.27	10959.26	3685.84	169.68	3688.13	0.00		
	14600.00	89.66	0.27	10959.86	3785.84	170.15	3788.12	0.00		
	14700.00 14800.00	89.66 89.66	0.27	10960.45 10961.05	3885.83	170.62	3888.11	0.00		
	14800.00	89.66 89.66	0.27 0.27	10961.05	3985.83 4085.83	171.09 171.56	3988.10 4088.09	0.00 0.00		
	15000.00	89.66	0.27	10962.25	4185.83	172.04	4188.09	0.00		
	15100.00	89.66	0.27	10962.84	4285.82	172.51	4288.08	0.00		
	15200.00	89.66	0.27	10963.44	4385.82	172.98	4388.07	0.00		
	15300.00	89.66	0.27	10964.04	4485.82	173.45	4488.06	0.00		
	15400.00 15500.00	89.66 89.66	0.27 0.27	10964.64 10965.23	4585.81 4685.81	173.92 174.39	4588.05 4688.04	0.00 0.00		
	15600.00	89.66	0.27	10965.83	4785.81	174.39	4088.04	0.00		
	15700.00	89.66	0.27	10966.43	4885.81	175.33	4888.03	0.00		
	15800.00	89.66	0.27	10967.03	4985.80	175.81	4988.02	0.00		
	15900.00	89.66	0.27	10967.62	5085.80	176.28	5088.01	0.00		
	16000.00	89.66	0.27	10968.22	5185.80	176.75	5188.00	0.00		
	16100.00 16200.00	89.66 89.66	0.27 0.27	10968.82 10969.42	5285.79 5385.79	177.22 177.69	5287.99 5387.98	0.00 0.00		
	16300.00	89.66	0.27	10970.01	5485.79	178.16	5487.97	0.00		
	16400.00	89.66	0.27	10970.61	5585.79	178.63	5587.97	0.00		
	16500.00	89.66	0.27	10971.21	5685.78	179.10	5687.96	0.00		
	16600.00	89.66	0.27	10971.81	5785.78	179.58	5787.95	0.00		
	16700.00	89.66	0.27	10972.40	5885.78	180.05	5887.94	0.00		
	16800.00 16900.00	89.66 89.66	0.27 0.27	10973.00 10973.60	5985.77 6085.77	180.52 180.99	5987.93 6087.92	0.00 0.00		
	17000.00	89.66	0.27	10974.20	6185.77	181.46	6187.91	0.00		
	17100.00	89.66	0.27	10974.79	6285.77	181.93	6287.90	0.00		
	17200.00	89.66	0.27	10975.39	6385.76	182.40	6387.90	0.00		
	17300.00	89.66	0.27	10975.99	6485.76	182.87	6487.89	0.00		
	17400.00 17500.00	89.66 89.66	0.27 0.27	10976.59 10977.18	6585.76 6685.75	183.34 183.82	6587.88 6687.87	0.00 0.00		
	17600.00	89.66 89.66	0.27	10977.18	6785.75	183.82	6787.86	0.00		
	17700.00	89.66	0.27	10978.38	6885.75	184.76	6887.85	0.00		
	17800.00	89.66	0.27	10978.98	6985.75	185.23	6987.84	0.00		
	17900.00	89.66	0.27	10979.57	7085.74	185.70	7087.84	0.00		
	18000.00	89.66	0.27	10980.17	7185.74	186.17	7187.83	0.00		
	18100.00 18200.00	89.66 89.66	0.27 0.27	10980.77 10981.37	7285.74 7385.73	186.64 187.11	7287.82 7387.81	0.00 0.00		
	18200.00	89.66 89.66	0.27	10981.97	7385.73	187.11	7487.80	0.00		
	18400.00	89.66	0.27	10982.56	7585.73	188.06	7587.79	0.00		
	18500.00	89.66	0.27	10983.16	7685.72	188.53	7687.78	0.00		
	18600.00	89.66	0.27	10983.76	7785.72	189.00	7787.78	0.00		
	18700.00	89.66	0.27	10984.36	7885.72	189.47	7887.77	0.00		
	18800.00 18900.00	89.66 89.66	0.27 0.27	10984.95 10985.55	7985.72 8085.71	189.94 190.41	7987.76 8087.75	0.00		
	18900.00	89.66 89.66	0.27	10985.55	8085.71 8185.71	190.41 190.88	8087.75 8187.74	0.00 0.00		
	19000.00	89.66 89.66	0.27	10986.15	8285.71	190.88	8287.73	0.00		
	19200.00	89.66	0.27	10987.34	8385.70	191.83	8387.72	0.00		
	19300.00	89.66	0.27	10987.94	8485.70	192.30	8487.71	0.00		
	19400.00	89.66	0.27	10988.54	8585.70	192.77	8587.71	0.00		
	19500.00	89.66	0.27	10989.14	8685.70	193.24	8687.70	0.00		
	19600.00	89.66	0.27	10989.73	8785.69	193.71	8787.69	0.00		

.

on		County: Wellbore:	Lea		D STATE COI	м 623Н			Geodetic System: US State Plane 1983 Datum: North American Datum 1927 Ellipsoid: Clarke 1866 Zone: 3001 - NM East (NAD83)
	MD	INC	AZI	TVD	NS	EW	vs	DLS	Comment
	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	
	19700.00	89.66	0.27	10990.33	8885.69	194.18	8887.68	0.00	
	19800.00	89.66	0.27	10990.93	8985.69	194.65	8987.67	0.00	
	19900.00	89.66	0.27	10991.53	9085.68	195.13	9087.66	0.00	
	20000.00	89.66	0.27	10992.12	9185.68	195.60	9187.65	0.00	
	20100.00	89.66	0.27	10992.72	9285.68	196.07	9287.65	0.00	
	20200.00	89.66	0.27	10993.32	9385.68	196.54	9387.64	0.00	
	20300.00	89.66	0.27	10993.92	9485.67	197.01	9487.63	0.00	
	20400.00	89.66	0.27	10994.51	9585.67	197.48	9587.62	0.00	
	20500.00	89.66	0.27	10995.11	9685.67	197.95	9687.61	0.00	
	20600.00	89.66	0.27	10995.71	9785.66	198.42	9787.60	0.00	
	20700.00	89.66	0.27	10996.31	9885.66	198.90	9887.59	0.00	
	20800.00	89.66	0.27	10996.90	9985.66	199.37	9987.59	0.00	
	20900.00	89.66	0.27	10997.50	10085.66	199.84	10087.58	0.00	
	21000.00	89.66	0.27	10998.10	10185.65	200.31	10187.57	0.00	
	21100.00	89.66	0.27	10998.70	10285.65	200.78	10287.56	0.00	
	21200.00	89.66	0.27	10999.29	10385.65	201.25	10387.55	0.00	
	21300.00	89.66	0.27	10999.89	10485.64	201.72	10487.54	0.00	
	21400.00	89.66	0.27	11000.49	10585.64	202.19	10587.53	0.00	
	21500.00	89.66	0.27	11001.09	10685.64	202.67	10687.53	0.00	
	21600.00	89.66	0.27	11001.68	10785.64	203.14	10787.52	0.00	
	21700.00	89.66	0.27	11002.28	10885.63	203.61	10887.51	0.00	
	21800.00	89.66	0.27	11002.88	10985.63	204.08	10987.50	0.00	
	21900.00	89.66	0.27	11003.48	11085.63	204.55	11087.49	0.00	
	22000.00	89.66	0.27	11004.07	11185.62	205.02	11187.48	0.00	
	22100.00	89.66	0.27	11004.67	11285.62	205.49	11287.47	0.00	
	22200.00	89.66	0.27	11005.27	11385.62	205.96	11387.46	0.00	
	22300.00	89.66	0.27	11005.87	11485.61	206.44	11487.46	0.00	
	22400.00	89.66	0.27	11006.46	11585.61	206.91	11587.45	0.00	
	22500.00	89.66	0.27	11007.06	11685.61	207.38	11687.44	0.00	
	22600.00	89.66	0.27	11007.66	11785.61	207.85	11787.43	0.00	
	22700.00	89.66	0.27	11008.26	11885.60	208.32	11887.42	0.00	
	22800.00	89.66	0.27	11008.86	11985.60	208.79	11987.41	0.00	
	22900.00	89.66	0.27	11009.45	12085.60	209.26	12087.40	0.00	
	23000.00	89.66	0.27	11010.05	12185.59	209.73	12187.40	0.00	
	23100.00	89.66	0.27	11010.65	12285.59	210.20	12287.39	0.00	
	23200.00	89.66	0.27	11011.25	12385.59	210.68	12387.38	0.00	
	23300.00	89.66	0.27	11011.84	12485.59	211.15	12487.37	0.00	
	23400.00	89.66	0.27	11012.44	12585.58	211.62	12587.36	0.00	
	23500.00	89.66	0.27	11013.04	12685.58	212.09	12687.35	0.00	
	23600.00	89.66	0.27		12785.58	212.56	12787.34	0.00	
	23700.00	89.66	0.27	11014.23	12885.57	213.03	12887.34	0.00	
	23751.12	89.66	0.27	11014.54	12936.69	213.27	12938.45	0.00	exit
	23800.00	89.66	0.27	11014.83	12985.57	213.50	12987.33	0.00	
	23831.12	89.66	0.27		13016.69	213.65	13018.44	0.00	BHL

•

1. Geologic Formations

TVD of target	11015	Pilot hole depth	N/A
MD at TD:	23831	Deepest expected fresh water	

Basin

	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	739		
Salt	1104		
Base of Salt	4373		
Delaware	4561		
Cherry Canyon	5769		
Brushy Canyon	6690		
1st Bone Spring Lime	8768		
Bone Spring 1st	9857		
Bone Spring 2nd	10075		
3rd Bone Spring Lime	10581		

*H2S, water flows, loss of circulation, abnormal pressures, etc.

CHINCOTEAGUE 8-32 FED STATE COM 623H

		Wt			Casing	Interval	Casing	Interval
Hole Size	Csg. Size	(PPF)	Grade	Conn	From (MD)	To (MD)	From (TVD)	To (TVD)
14 3/4	10 3/4	45 1/2	J-55	BTC	0	764	0	764
9 7/8	8 5/8	32	P110HSCY	MOFXL	0	10281	0	10281
7 7/8	5 1/2	20	P110HP	CDC-HTQ	0	23831	0	11015

2. Casing Program (Primary Design)

•All casing strings will be tested in accordance with 43 CFR 3172. Must have table for contingency casing.

3. Cementing Program (Primary Design)

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures.

Casing	# Sks	тос	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	469	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	488	Surf	13.0	2.3	2nd State: Bradenhead Squeeze - Lead: Class C Cement + additives
Int I	417	6703	13.2	1.44	Tail: Class H / C + additives
Production	117	8381	9	3.27	Lead: Class H /C + additives
Production	1780	10381	13.2	1.44	Tail: Class H / C + additives

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Prod	10%

CHINCOTEAGUE 8-32 FED STATE COM 623H

.

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	T	Туре		Tested to:	
		5M	Anı	Annular		50% of rated working pressure	
Int 1	13-5/8"			d Ram	Х		
Int I	15-5/0		Pipe	e Ram		5M	
			Doub	le Ram	Х	514	
			Other*				
		5M	Annular (5M)		X	50% of rated working pressure	
Production	13-5/8"		Blind Ram		Х		
Fioduction			Pipe Ram			- 5M	
			Double Ram		Х		
			Other*				
			Annul	ar (5M)			
			Blind Ram Pipe Ram				
			Doub	le Ram			
			Other*				
N A variance is requested for	the use of a	a diverter or	the surface	casing. See a	attached for	schematic.	
Y A variance is requested to a							

4. Pressure Control Equipment (Three String Design)

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring
---	-----------------------------

6. Logging and Testing Procedures

Logging, Coring and Testing				
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the			
Х	Completion Rpeort and sbumitted to the BLM.			
	No logs are planned based on well control or offset log information.			
	Drill stem test? If yes, explain.			
	Coring? If yes, explain.			

Additional logs planned		Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
Х	CBL	Production casing
Х	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?		
BH pressure at deepest TVD	6014		
Abnormal temperature	No		

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren S	Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations			
greater than	greater than 100 ppm, the operator will comply with the provisions of 43 CFR 3176. If Hydrogen Sulfide is encountered			
measured values and formations will be provided to the BLM.				
Ν	H2S is present			

Y H2S plan attached.

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (43 CFR 3172, all COAs and NMOCD regulations).

 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.

- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments

X Directional Plan Other, describe

Offline Cementing

Variance Request

Devon Energy requests to offline cement on intermediate strings that are set in formations shallower than the Wolfcamp. Prior to commencing offline cementing operations, the well will be monitored for any abnormal pressures and confirmed to be static. A dual manifold system (equipped with chokes) for the returns will also be utilized as a redundancy. All equipment used for offline cementing will have a minimum 5M rating to match intermediate sections' 5M BOPE requirements.

Section 2 - Blowout Preventer Testing Procedure

Variance Request

Devon Energy requests to only test BOP connection breaks after drilling out of surface casing and while skidding between wells which conforms to API Standard 53 and industry standards. This test will include the Top Pipe Rams, HCR, Kill Line Check Valve, QDC (quick disconnect to wellhead) and Shell of the 10M BOPE to 5M for 10 minutes. If a break to the flex hose that runs to the choke manifold is required due to repositioning from a skid, the HCR will remain open during the shell test to include that additional break. The variance only pertains to intermediate hole-sections and no deeper than the Bone Springs Formation where 5M BOP tests are required. The initial BOP test will follow 43 CFR 3172, and subsequent tests following a skid will only test connections that are broken. The annular preventer will be tested to 100% working pressure. This variance will meet or exceed 43 CFR 3172 per the following: Devon Energy will perform a full BOP test per 43 CFR 3172 before drilling out of the intermediate casing string(s) and starting the production hole, before starting any hole section that requires a 10M test, before the expiration of the allotted 14-days for 5M intermediate batch drilling or when the drilling rig is fully mobilized to a new well pad, whichever is sooner. We will utilize a 200' TVD tolerance between intermediate shoes as the cutoff for a full BOP test. The BLM will be contacted 4hrs prior to a BOPE test. The BLM will be notified if and when a well control event is encountered. Break test will be a 14 day interval and not a 30 day full BOPE test interval. If in the event break testing is not utilized, then a full BOPE test would be conducted.

1. Well Control Response:

1. Primary barrier remains fluid

2. In the event of an influx due to being underbalanced and after a realized gain or flow, the order of closing BOPE is as follows:

- a) Annular first
- b) If annular were to not hold, Upper pipe rams second (which were tested on the skid BOP test)
- c) If the Upper Pipe Rams were to not hold, Lower Pipe Rams would be third

Page 21 of 59

U. S. Steel Tubular Products 5.500" 20.00lb/ft (0.361" Wall) P110 HP USS-CDC HTQ[®]

MECHANICAL PROPERTIES	Pipe	USS-CDC HTQ [®]		
Minimum Yield Strength	125,000		psi	
Maximum Yield Strength	140,000		psi	
Minimum Tensile Strength	130,000		psi	
DIMENSIONS	Pipe	USS-CDC HTQ [®]		
Outside Diameter	5.500	6.300	in.	
Wall Thickness	0.361		in.	
Inside Diameter	4.778	4.778	in.	
Standard Drift	4.653	4.653	in.	
Alternate Drift			in.	
Nominal Linear Weight, T&C	20.00		lb/ft	
Plain End Weight	19.83		lb/ft	
SECTION AREA	Pipe	USS-CDC HTQ [®]		
Critical Area	5.828	5.828	sq. in.	
Joint Efficiency		97.0	%	
PERFORMANCE	Pipe	USS-CDC HTQ [®]		
Minimum Collapse Pressure	13,150	13,150	psi	
External Pressure Leak Resistance		10,520	psi	
Minimum Internal Yield Pressure	14,360	14,360	psi	
Minimum Pipe Body Yield Strength	729,000		lb	
Joint Strength		707,000	lb	
Compression Rating		424,000	lb	
Reference Length		23,567	ft	
Maximum Uniaxial Bend Rating		60.6	deg/100 ft	
MAKE-UP DATA	Pipe	USS-CDC $HTQ^{\mathbb{R}}$		
Make-Up Loss		4.63	in.	
Minimum Make-Up Torque		14,500	ft-lb	
Maximum Make-Up Torque		20,500	ft-lb	
Connection Yield Torque		25,300	ft-lb	

Notes

1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness and Specified Minimum Yield Strength (SMYS).

2. Uniaxial bending rating shown is structural only, and equal to compression efficiency.

3. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).

4. Reference length is calculated by joint strength divided by nominal threaded and coupled weight with 1.5 safety factor.

5. Connection external pressure leak resistance has been verified to 80% API pipe body collapse pressure following the guidelines of API 5C5 Cal II.

Legal Notice

USS - CDC HTQ[®] (High Torque Casing Drilling Connection) is a trademark of U. S. Steel Corporation. This product is a modified API Buttress threaded and coupled connection designed for drilling with casing applications. All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380 1-877-893-9461 connections@uss.com www.usstubular.com

<u>10-3/4"</u>	<u>45.50#</u>	<u>0.400"</u>	<u>J-55</u>	
Dimensions	(Nominal)			
Outside Diameter Wall Inside Diameter Drift Weight, T&C Weight, PE			10.750 0.400 9.950 9.875 45.500 44.260	in. in. in. Ibs/ft Ibs/ft
Performance	e Properties			
Collapse			2090	psi
Internal Yield Pres	sure at Minimum Yield			
	PE		3580	psi
	STC		3580	psi
	втс		3580	psi
Yield Strength, Pip	e Body		715	1000 lbs
Joint Strength				
	STC		493	1000 lbs
	BTC		796	1000 lbs
	BTC Special Clearance (11.25" OD Cplg)	506	1000 lbs

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

_egal Notice The use of this information is at the reader/user's risk and no warranty is implied or expressed by M affiliates (herein collectively referred to as "Metal One") with respect to the use of information contai		MO-FXL 8	MO-FXL 8-5/8 32.0		
MO-FXL MO-FXL	CDS#	P110F	ISCY		
MO-FXL MO-FXL Geometry Pipe Body Grade *1 Pipe Body Grade *1 Pipe Body Grade *1 Pipe D (D) 8 5/8 Weight 32.00 Actual weight 31.10 Wall Thickness (1) 0.352 Pipe D (d) 7.921 Pipe body cross section 9.149 Special Drff Dia.*1 7.875 Connection Box OD (W) 8.625 PiN ID 7.921 Make up Loss 3.847 Box Critical Area 5.853 Joint Load efficiency 69 Thread Taper Number of Threads Performance Performance Performance Performance Performance Performance Performance Performance Performance SM.Y.S.*1 1,144 M.Y.P.*1 8,930 Collapse Strength *1 4,300 Note S.M.Y.S.*5 Specified Minimum M.Y.P. Minic Compression Yield 789 Min. C	si CDS#	MinYS	125ksi		
MO-FXL MO-FXL		SD7.	.875		
NO-FXL Pipe Body Grade *1 P10H5G Pipe OD (D) 8 5/8 8 5/8 Weight NO-FXL	Date	27-No	ov-23		
MO-FXL Grade *1 P110HSC MO-FXL Weight 32.00 Actual weight 31.10 Weight 32.00 Actual weight 31.10 Wall Thickness (t) 0.352 Pipe ID (d) 7.921 Pipe body cross section 9.149 Special Drift Dia. *1 7.875 - - Make up Loss 3.847 Box Critical Area 5.853 Joint load efficiency 69 Thread Taper Number of Threads Number of Threads Performance Performance Properties for Pipe Be S.M.Y.S. *1 Mi.Y.P. *1 8,930 Collapse Strength *1 4,300 Note S.M.Y.S. *Specified Minimur MI.Y.P. *1 8,930 Collapse Strength *1 4,300 Note S.M.Y.S. *Specified Minimur MI.Y.P. *1 8,930 Collapse Strength *1 4,300 Note S.M.Y.S. *Specified Minimur MI.Y.P. *1 8,930 Collapse Strength *1 4,300 Note S.M.Y.S. *Decified Minimur MI.Y.P. *1 8,930 Diffied Minimur MI.S.Compression Yield	erial	<u>S.I.</u>			
MO-FXL Grade *1 P110HSC MO-FXL Weight 32.00 Actual weight 31.10 Weight 32.00 Actual weight 31.10 Wall Thickness (t) 0.352 Pipe ID (d) 7.921 Pipe body cross section 9.149 Special Drift Dia. *1 7.875 - - Make up Loss 3.847 Box Critical Area 5.853 Joint load efficiency 69 Thread Taper Number of Threads Number of Threads Performance Performance Properties for Pipe Be S.M.Y.S. *1 Mi.Y.P. *1 8,930 Collapse Strength *1 4,300 Note S.M.Y.S. *Specified Minimur MI.Y.P. *1 8,930 Collapse Strength *1 4,300 Note S.M.Y.S. *Specified Minimur MI.Y.P. *1 8,930 Collapse Strength *1 4,300 Note S.M.Y.S. *Specified Minimur MI.Y.P. *1 8,930 Collapse Strength *1 4,300 Note S.M.Y.S. *Decified Minimur MI.Y.P. *1 8,930 Diffied Minimur MI.S.Compression Yield					
MO-FXL MO-FXL	Y	P110HSCY			
MO-FXL MO-FXL Pipe OD (D) 8 5/8 Weight 32.00 Actual weight 31.10 Wall Thickness (t) 0.352 Pipe ID (d) 7.921 Pipe body cross section 9.149 Special Drift Dia. *1 7.875 - - - - Connection Box OD (W) 8.625 PIN ID 7.921 Make up Loss 3.847 Box Critical Area 5.853 Joint load efficiency 69 Thread Taper Number of Threads Performance Performance Performance Performance Performance Properties for Pipe Bot S.M.Y.S. *1 1.144 M.I.Y.P. *1 8.930 Collapse Strength *1 4.300 Collapse Strength *1 4.300 Collapse Strength *1 4.300 Collapse Strength *1 4.300 Collapse Strength *1 8.950 Collapse Strength *1 4.300 Collapse Strength *1 4.300 Coll	ksi	125	ksi		
MO-FXL Weight 32.00 Actual weight 31.10 Wall Thickness (t) 0.352 Pipe ID (d) 7.921 Pipe body cross section 9.149 Special Drift Dia.*1 7.875 Connection Box OD (W) 8.625 PIN ID 7.921 Make up Loss 3.847 Box Critical Area 5.853 Joint load efficiency 69 Thread Taper Number of Threads Performance Performance Properties for Pipe Bot S.M.Y.S.*1 1,144 M.I.Y.P.*1 8,930 Collapse Strength *1 4,300 Note S.M.Y.S.= Specified Minimur M.I.Y.P. = Minimum Internal V *1: BMP P110HSCY: MinYS125ksi, SD7.8 Performance Properties for Conneer Tensile Yield load 789 k Min. Compression Yield 789 k Internal Pressure Max. DLS (deg. /100ft) Recommended Torque Max. 16,200 Operational Max. 28,400 Note : Operational Max. creque can be a	in	219.08	mm		
Actual weight 31.10 Wall Thickness (t) 0.352 Pipe ID (d) 7.921 Pipe body cross section 9.149 Special Drift Dia. *1 7.875 - - - - Connection - Box critical area 5.853 Joint Ioad efficiency 69 Thread Taper Number of Threads Number of Threads - Number of Threads - Note S.M.Y.S.*1 1,144 M.I.Y.P. *1 8,930 Collapse Strength *1 4,300 Note S.M.Y.S.= Specified Minimum M.I.Y.P. *1 Min. Compression Yield 789 k Min. Compress	lb/ft	47.68	kg/m		
Wall Thickness (t) 0.352 Pipe ID (d) 7.921 Pipe body cross section 9.149 Special Drift Dia. *1 7.875 - - - - Connection Box OD (W) Box Critical area 5.853 Joint Ioad efficiency 69 Thread Taper Number of Threads Number of Threads Number of Threads Number of Threads Number of Threads Note S.M.Y.S. *1 1,144 M.I.Y.P. *1 8,930 Collapse Strength *1 4,300 Note S.M.Y.S.= Specified Minimum M.I.Y.P. *1 Min. Compression Yield 789 k Min. Compression Yield 78	1.5714	46.34	kg/m		
Pipe ID (d) 7.921 Pipe body cross section 9.149 Special Drift Dia. *1 7.875 - - - - Connection Box OD (W) Box critical area 3.847 Box Critical Area 5.853 Joint load efficiency 69 Thread Taper Number of Threads Number of Threads - Performance Properties for Pipe Bot Sin.Y.S.*1 M.Y.S.*1 1,144 M.Y.P. *1 8,930 Collapse Strength *1 4,300 Note S.M.Y.S.* Specified Minimum Internal Note *1: BMP P110HSCY: MinYS125ksi, SD7.6 Performance Properties for Connect Tensile Yield load 789 k Min. Compression Yield 789 k Max. DLS (deg./100ft) - Max. DLS (deg./100ft) - Max. 16,200 Opti. 14,900 Max. 16,200 Opti. 14,900 Max. 16,200 Opti. 14,900 Max. 16,200 <td>in</td> <td>8.94</td> <td>mm</td>	in	8.94	mm		
Pipe body cross section 9.149 Special Drift Dia. *1 7.875 - - Omnection 8.625 Pin ID 7.921 Make up Loss 3.847 Box Critical area 5.853 Joint load efficiency 69 Thread Taper Number of Threads Performance Performance Note S.M.Y.S. *1 1,144 M.Y.P. *1 8,930 Collapse Strength *1 4,300 Note S.M.Y.S. = Specified Minimur MI.Y.P. *1 8,930 Note S.M.Y.S. = Specified Minimur MI.Y.P. = Minimum Internal V*1: BMP P110HSCY: MinYS125ksi, SD7.4 Performance Properties for Connect Tensile Yield load 789 k Min. Compression Yield 789 k Max. DLS (deg./100ft) Max. <t< td=""><td>in</td><td>201.19</td><td>mm</td></t<>	in	201.19	mm		
Special Drift Dia. *1 7.875 Connection Box OD (W) 8.625 PIN ID 7.921 Make up Loss 3.847 Box Critical area 5.853 Joint load efficiency 69 Thread Taper Number of Threads Performance Properties for Pipe Bot S.M.Y.S.*1 Min. Y.P. *1 8,930 Collapse Strength *1 4,300 Note S.M.Y.S.= Specified Minimum MLY.P. = Minimum Internal *1: BMP P110HSCY: MinYS125ksi, SD7.4 Performance Properties for Conneer Tensile Yield load 789 k Min. Compression Yield 789 k Min. Compression Yield 789 k Max. DLS (deg. /100ft) Max. DLS (deg. /100ft) Max. DLS (deg. /100ft) Max. Max. DLS (deg. /100ft) Note : Operational Max. deguo Note : Operational Max. 28,400 Note : Operational Max. torque can be a	in ²		mm ²		
Image: Solution of the sector of the sect		5,902			
Box OD (W) 8.625 PIN ID 7.921 Make up Loss 3.847 Box Critical Area 5.853 Joint Ioad efficiency 69 Thread Taper Number of Threads Performance Performance Performance Properties for Pipe Bot S.M.Y.S. *1 S.M.Y.S. *1 Note S.M.Y.S.= Specified Minimurr MI.Y.P. *1 Min. Compression Yield 789 k Max. DLS (deg. /100ft) Max. Note Min. 13,600 Opti. 14,900 Max. 16,200 Operational Max. 28,400 Note Wax. 28,400 Note use of this information is at the reader/user's risk and no warranty is implied or expressed by M	in	200.03	mm		
Box OD (W) 8.625 PIN ID 7.921 Make up Loss 3.847 Box Critical Area 5.853 Joint Ioad efficiency 69 Thread Taper Number of Threads Performance Performance Performance Properties for Pipe Bot S.M.Y.S. *1 S.M.Y.S. *1 Note S.M.Y.S.= Specified Minimurr MI.Y.P. *1 Min. Compression Yield 789 k Max. DLS (deg. /100ft) Max. Note Min. 13,600 Opti. 14,900 Max. 16,200 Operational Max. 28,400 Note Wax. 28,400 Note use of this information is at the reader/user's risk and no warranty is implied or expressed by M	-	-	-		
Box DC (W) 8.625 PIN ID 7.921 Make up Loss 3.847 Box Critical Area 5.853 Joint Ioad efficiency 69 Thread Taper Number of Threads Performance Performance Performance Properties for Pipe Bot S.M.Y.S. *1 I.1.Y.P. *1 8,930 Collapse Strength *1 4,300 Note S.M.Y.S.= Specified Minimurr MI.Y.P. = Minimum Internal Note *1: BMP P110HSCY: MinYS125ksi, SD7.5 Performance Properties for Connect Tensile Yield load Tensile Yield load 789 k Min. Compression Yield 789 k Min. Compression Yield 789 k Max. DLS (deg. /100ft) Max. Recommended Torque Min. Min. 13,600 Opti. 14,900 Max. 16,200 Operational Max. 28,400 Note : Operational Max. 28,400 Note : Operational Max. 28,400					
Pin ID 7.921 Make up Loss 3.847 Box Critical Area 5.853 Joint load efficiency 69 Thread Taper Number of Threads Number of Threads Performance Performance Properties for Pipe Box S.M.Y.S.*1 Number of Threads 1,144 MI.Y.P.*1 8,930 Collapse Strength *1 4,300 Note S.M.Y.S.= Specified Minimum M.I.Y.P. *1 8,930 Collapse Strength *1 4,300 Note S.M.Y.S.= Specified Minimum M.I.Y.P. *1 8,930 Collapse Strength *1 4,300 Note S.M.Y.S.= Specified Minimum MI.Y.P. *1 8,930 Collapse Strength *1 4,300 Note S.M.Y.S.= Specified Minimum MI.Y.P. Min Compression Yield 789 k Internal Pressure 6,250 External Pressure Max. DLS (deg./100ft) Max. 16,200 Operational Max. 28,400 Note Wax. 16,200 Operational Max. 28,	in	219.08	mm		
Box critical area Make up Loss 3.847 Box Critical Area Box Critical Area 5.853 Joint load efficiency 69 Thread Taper Number of Threads Performance Performance Performance Properties for Pipe Bot S.M.Y.S. *1 Aike Number of Threads Performance Properties for Pipe Bot S.M.Y.S. *1 Note S.M.Y.S. *1 NU.Y.P. *1 8,930 Collapse Strength *1 4,300 Note S.M.Y.S.= Specified Minimum M.I.Y.P. = Minimum Internal N*1: BMP P110HSCY: MinYS125ksi, SD7.4 Performance Properties for Connect Tensile Yield load Tensile Yield load 789 k Min. Compression Yield 789 k Min. Compression Yield 789 k Max. DLS (deg./100ft) Max. DLS (deg./100ft) Recommended Torque Min. Min. 13,600 Opti. 14,900 Max. 16,200 Operational Max. 28,400 Note: Operational Max. 28,400 Note: Soperational Max. 28,400	in	201.19	mm		
Box critical area Box Critical Area 5.853 Joint load efficiency 69 Thread Taper Number of Threads Number of Threads Performance Performance Properties for Pipe Bot S.M.Y.S. *1 Internal Pressure 4,300 Note S.M.Y.S. *1 Internal Pressure 6,250 External Pressure 5,260 Max. DLS (deg. /100ft) 0 Max. 16,200 Operational Max. 28,400 Note : Operational Max. 28,400 Note : Operational Max. 28,400	in	97.71	mm		
Joint load efficiency 69 Thread Taper Number of Threads Aake Performance pos Performance Properties for Pipe Bot S.M.Y.S. *1 1,144 M.I.Y.P. *1 8,930 Collapse Strength *1 4,300 Note S.M.Y.S. = Specified Minimum M.I.Y.P. *1 8,930 Collapse Strength *1 4,300 Note S.M.Y.S. = Specified Minimum M.I.Y.P. = Minimum Internal *1: BMP P110HSCY: MinYS125ksi, SD7.8 Performance Properties for Connect Tensile Yield load Tensile Yield load 789 k Min. Compression Yield 789 k Internal Pressure 6,250 External Pressure Max. DLS (deg. /100ft) Max. 16,200 Opti. 14,900 Max. 16,200 Operational Max. 28,400 Note : Operational Max. 28,400 Note : Operational Max. 28,400	in ²	3686	mm ²		
Image: Number of Threads Make Image: Number of Threads Performance Performance Properties for Pipe Bot S.M.Y.S. *1 Image: Number of Threads Performance Properties for Pipe Bot S.M.Y.S. *1 Image: Network Strength Number of Threads Pin critical area Note S.M.Y.S. = Specified Minimum M.I.Y.P. *1 A,300 Note S.M.Y.S. = Specified Minimum M.I.Y.P. = Minimum Internal Network Strength *1 *1: BMP P110HSCY: MinYS125ksi, SD7.8 Performance Properties for Connect Tensile Yield load 789 k Min. Compression Yield 789 k Min. Compression Yield 789 k Min. Compression Yield 789 k Max. DLS (deg. /100ft) 14,900 Max. 16,200 Operational Max. 28,400 Notice use of this information is at the reader/user's risk and no warranty is implied or expressed by M use of this information is at the reader/user's risk and no warranty is implied or expressed by M					
Number of Threads Nake P Performance Performance Properties for Pipe Bot S.M.Y.S. *1 1,144 M.I.Y.P. *1 8,930 Collapse Strength *1 4,300 Note S.M.Y.S. = Specified Minimum M.I.Y.P. *1 8,930 Collapse Strength *1 4,300 Note S.M.Y.S. = Specified Minimum M.I.Y.P. = Minimum Internal Note *1: BMP P110HSCY: MinYS125ksi, SD7.8 Performance Properties for Connect Tensile Yield load 789 k Min. Compression Yield 789 k Internal Pressure 6,250 External Pressure Max. DLS (deg./100ft) Max. 14,900 Max. 16,200 Operational Max. 28,400 Note Operational Max. torque can be a INotice use of this information is at the reader/user's risk and no warranty is implied or expressed by M tates (herein collectively referred to as "Metal One") with respect	%	<u>69</u>	%		
Aake Performance Pin Pin critical area Pin Collapse Strength *1 A.300 Collapse Strength *1 A.300 Note S.M.Y.S. = Specified Minimum M.I.Y.P. *1 BMP P110HSCY: MinYS125ksi, SD7.8 Performance Properties for Connect Tensile Yield load Tensile Yield load Tensile Yield load Tensile Yield load Min. Compression Yield Max. DLS (deg./100ft) Recommended Torque Min. Max. Derational Max. 28,400 Note : Operational Max. torque can be a		.2" per ft)			
Pin critical area M.I.Y.P. *1 8,930 Collapse Strength *1 4,300 Note S.M.Y.S.= Specified Minimum M.I.Y.P. = Minimum Internal W *1: BMP P110HSCY: MinYS125ksi, SD7.6 Performance Properties for Connect Tensile Yield load 789 k Min. Compression Yield 789 k Min. Compression Yield 789 k Internal Pressure 6,250 External Pressure 6,250 External Pressure Max. DLS (deg. /100ft) Max. DLS (deg. /100ft) Max. Max. 16,200 Operational Max. 28,400 Note : Operational Max. torque can be a al Notice use of this information is at the reader/user's risk and no warranty is implied or expressed by M ates (herein collectively referred to as "Metal One") with respect to the use of information contained on the subscience of the use of information contained on the subscience of the use of information contained on the subscience of the use of information contained on the subscience of the use of information contained on the subscience of the use of information contained on the subscience of the use of information contained on the subscience of the use of information contained on the subscience of the use of information contained on the subscience of the use of information contained on the subscience of the use of information contained on the subscience of the use of information contained			-		
Pin critical area Collapse Strength *1 4,300 Note S.M.Y.S.= Specified Minimum M.I.Y.P. = Minimum Internal N *1: BMP P110HSCY: MinYS125ksi, SD7.6 Performance Properties for Connect Tensile Yield load 789 k Min. Compression Yield 789 k Internal Pressure 6,250 External Pressure 6,250 External Pressure Max. DLS (deg. /100ft) Max. 16,200 Opti. 14,900 Max. 16,200 Operational Max. 28,400 Note : Operational Max. torque can be a al Notice use of this information is at the reader/user's risk and no warranty is implied or expressed by M ates (herein collectively referred to as "Metal One") with respect to the use of information contain	kips	5,087	kN		
Collapse Strength *1 4,300 Note S.M.Y.S.= Note S.M.Y.S.= Specified Minimum M.I.Y.P. = Min. Min.Y.P. = Performance Properties for Conneer Tensile Yield load 789 k Min. Compression Yield 789 k Internal Pressure 6,250 External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. 13,600 Opti. 14,900 Max. 16,200 Operational Max. 28,400 Note : Operational Max. torque can be a al Notice use of this information is at the reader/user's risk and no warranty is implied or expressed by M ates (herein collectively referred to as "Metal One") with respect to the use of information contained c	psi	61.59	MPa		
M.I.Y.P. = Minimum Internal N *1: BMP P110HSCY: MinYS125ksi, SD7.8 Performance Properties for Connect Tensile Yield load 789 k Min. Compression Yield 789 k Internal Pressure 6,250 External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Min. 13,600 Opti. 14,900 Max. 16,200 Operational Max. 28,400 Note : Operational Max. torque can be a al Notice use of this information is at the reader/user's risk and no warranty is implied or expressed by M at (herein collectively referred to as "Metal One") with respect to the use of information contain	psi	29.66	MPa		
Min. Compression Yield 789 k Internal Pressure 6,250 External Pressure Max. DLS (deg. /100ft) Max. DLS (deg. /100ft) 00fti Min. 13,600 Opti. 14,900 Max. 16,200 Operational Max. 28,400 Note : Operational Max. torque can be a use of this information is at the reader/user's risk and no warranty is implied or expressed by M ates (herein collectively referred to as "Metal One") with respect to the use of information contait	ield Pressι <mark>75, Collaps</mark>	ure of Pipe body	,		
Internal Pressure 6,250 External Pressure Max. DLS (deg. /100ft) Max. DLS (deg. /100ft) 00fti Min. 13,600 Opti. 14,900 Max. 16,200 Operational Max. 28,400 Note : Operational Max. torque can be a Isoft this information is at the reader/user's risk and no warranty is implied or expressed by M ates (herein collectively referred to as "Metal One") with respect to the use of information contail	ips (69%	of S.M.Y.S.))		
External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. 13,600 Opti. 14,900 Max. 16,200 Operational Max. 28,400 Note : Operational Max. torque can be a al Notice use of this information is at the reader/user's risk and no warranty is implied or expressed by M ates (herein collectively referred to as "Metal One") with respect to the use of information contait	ips (69%	of S.M.Y.S.)		
Max. DLS (deg. /100ft) Recommended Torque Min. 13,600 Opti. 14,900 Max. 16,200 Operational Max. 28,400 Note : Operational Max. torque can be a al Notice use of this information is at the reader/user's risk and no warranty is implied or expressed by M ates (herein collectively referred to as "Metal One") with respect to the use of information contail	osi (70%	of M.I.Y.P.)			
Recommended Torque Min. 13,600 Opti. 14,900 Max. 16,200 Operational Max. 28,400 Note : Operational Max. 28,400 Note : Operational Max. compressed by M al Notice use of this information is at the reader/user's risk and no warranty is implied or expressed by M ates (herein collectively referred to as "Metal One") with respect to the use of information contained on the set of the use of information contained on the set of the use of information contained on the use of informationed on the use of information contained on the use of informatione	100%	of Collapse S	trength		
Min. 13,600 Opti. 14,900 Max. 16,200 Operational Max. 28,400 Note : Operational Max. torque can be a al Notice use of this information is at the reader/user's risk and no warranty is implied or expressed by M ates (herein collectively referred to as "Metal One") with respect to the use of information contain	2	29			
Opti. 14,900 Max. 16,200 Operational Max. 28,400 Note : Operational Max. torque can be a al Notice use of this information is at the reader/user's risk and no warranty is implied or expressed by M ates (herein collectively referred to as "Metal One") with respect to the use of information contain					
Max. 16,200 Operational Max. 28,400 Note : Operational Max. torque can be a al Notice use of this information is at the reader/user's risk and no warranty is implied or expressed by M ates (herein collectively referred to as "Metal One") with respect to the use of information contai	ft-lb	18,400	N-m		
Operational Max. 28,400 Note : Operational Max. torque can be a al Notice use of this information is at the reader/user's risk and no warranty is implied or expressed by M ates (herein collectively referred to as "Metal One") with respect to the use of information contai	ft-lb	20,200	N-m		
Note : Operational Max. torque can be a al Notice use of this information is at the reader/user's risk and no warranty is implied or expressed by M ates (herein collectively referred to as "Metal One") with respect to the use of information contai	ft-lb	21,900	N-m		
al Notice use of this information is at the reader/user's risk and no warranty is implied or expressed by M ates (herein collectively referred to as "Metal One") with respect to the use of information contai	Operational Max. 28,400 ft-lb 38,500 N-m				
use of this information is at the reader/user's risk and no warranty is implied or expressed by M iates (herein collectively referred to as "Metal One") with respect to the use of information contait	Note : Operational Max. torque can be applied for high torque application				
a Sheet is for informational purposes only, and was prepared by reference to engineering inform and to safety-related factors, all of which are the sole responsibility of the operators and users of ponsibility for any errors with respect to this information.	ned herein. The ation that is spe	information provided of cific to the subject proo	on this Conne ducts, without		

Statements regarding the suitability of products for certain types of applications are based on Metal One's knowledge of typical requirements that are often placed on Metal One products in standard well configurations. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application

The products described in this Connection Data Sheet are not recommended for use in deep water offshore applications. For more information, please refer to <u>http://www.mtlo.co.jp/mo-con/_images/top/WebsiteTerms_Active_20333287_1.pdf</u> the contents of which are incorporated by reference into this Connection Data Sheet.

Received by WCD: 331/2024 10:48:09 AM U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		Sundry Print Report 07/30/2024
Well Name: CHINCOTEAGUE 8-32 FED STATE COM	Well Location: T25S / R32E / SEC 8 / SWNE / 32.1453458 / -103.6962004	County or Parish/State: LEA / NM
Well Number: 623H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM061873B	Unit or CA Name:	Unit or CA Number:
US Well Number:	Operator: DEVON ENERGY PRODUCTION COMPANY LP	

Notice of Intent

Sundry ID: 2800571

Type of Submission: Notice of Intent

Date Sundry Submitted: 07/23/2024

Date proposed operation will begin: 07/13/2024

Type of Action: APD Change Time Sundry Submitted: 01:16

Procedure Description: Devon Energy Production Co., L.P. (Devon) respectfully requests to change the BHL, spacing, pool code and depth on the subject well. Devon is also updating surface casing/hole size and connections and requesting variances for break testing and offline cementing. Devon Energy Production Company, L.P. will circulate class C cement to surface behind the 10-3/4" casing. Please see attached updated C102, Drill plan, directional plan, spec sheets, break test and offline cementing variance. API: 30-025-52971 Permitted BHL: NWNE, 20 FNL, 1870 FEL, 32-24S-32E Proposed BHL: NWNE, 20 FNL, 2200 FEL, 32-24S-32E Permitted TVD/MD: 12018/24880 Proposed TVD/MD: 11015/23831

NOI Attachments

Procedure Description

WA018437866_CHINCOTEAGUE_8_32_FED_STATE_COM_623H_WL_R1_SIGNED_20240723131501.pdf

CHINCOTEAGUE_8_32_FED_STATE_COM_623H_Directional_Plan_07_18_24_20240723131500.pdf

CHINCOTEAGUE_8_32_FED_STATE_COM_623H_20240723131500.pdf

Offline_Cementing___Variance_Request_20240713135712.pdf

break_test_variance_BOP_1_15_24_20240713135709.pdf

5.5_20__P110HP_CDC_HTQ_20240713135707.pdf

10.750_45.5lb_J55_BTC_20240713135707.pdf

8.625_32lb_P110_MOFXL_20240713135708.pdf

Received by OCD: 7/31/2024 10:48:09 AM Well Name: CHINCOTEAGUE 8-32 FED STATE COM	Well Location: T25S / R32E / SEC 8 / SWNE / 32.1453458 / -103.6962004	County or Parish/State: LEA 25 of NM
Well Number: 623H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM061873B	Unit or CA Name:	Unit or CA Number:
US Well Number:	Operator: DEVON ENERGY PRODUCTION COMPANY LP	
1		

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: CHELSEY GREEN Name: DEVON ENERGY PRODUCTION COMPANY LP Title: Regulatory Compliance Professional Street Address: 333 WEST SHERIDAN AVENUE City: OKLAHOMA CITY State: OK Phone: (405) 228-8595

Email address: CHELSEY.GREEN@DVN.COM

Field

Representative Name: Street Address: City: State: Phone: Email address: Signed on: JUL 13, 2024 09:24 AM

Zip:

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

	Devon Energy Production Company LP NMLC061873B
LOCATION:	Section 8, T.25 S., R.32 E., NMPM
COUNTY:	Lea County, New Mexico 🔽

WELL NAME & NO.:	Chincoteague 8-32 Fed State Com 623H
BOTTOM HOLE FOOTAGE	20'/N & 2200'/E
ATS/API ID:	30-025-52971
APD ID:	10400084224
Sundry ID:	N/a
Date APD Submitted:	N/a

•

COA

LIDC			
H2S	No <u> </u>		
Potash	None 🔽	None	
Cave/Karst Potential	Low		
Cave/Karst Potential	Critical		
Variance	None 🖸	🖸 Flex Hose	C Other
Wellhead	Conventional and Multibov	vl 💌	
Other	□ 4 String	Capitan Reef	WIPP
		None 🔻	
Other	Pilot Hole None	C Open Annulus	
Cementing	Contingency Squeeze	Echo-Meter	Primary Cement Squeeze None
Special Requirements	□ Water Disposal/Injection	COM	Unit Unit
Special Requirements	Batch Sundry	Waste Prevention None	
Special Requirements Variance	✓ Break Testing	✓ Offline Cementing	Casing Clearance

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet **43 CFR part 3170 Subpart 3176**, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- The 10-3/4 inch surface casing shall be set at approximately 815 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt when present, and below usable fresh water) and cemented to the surface. The surface hole shall be 14 3/4 inch in diameter.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

2. The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above.

Option 2:

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

- a. First stage: Operator will cement with intent to reach the top of the Brushy Canyon at 6690' (417 sxs Class H/C+ additives).
- b. Second stage:
 - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified. (Squeeze 488 sxs Class C)

Operator has proposed to pump down **10-3/4**" X **8-5/8**" annulus after primary cementing stage. <u>Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus Or operator shall run a CBL from TD of the **8-5/8**" casing to surface after the second stage <u>BH to verify TOC.</u></u>

Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out. Operator must run one CBL per Well Pad. Operator may conduct a negative and positive pressure test during completion to remediate sustained casing pressure.

If cement does not reach surface, the next casing string must come to surface.

Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification. Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2.

Option 1:

a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi. Annular which shall be tested to 3500 (70% Working Pressure) psi.

b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the **8-5/8** inch intermediate casing shoe shall be **5000 (5M)** psi.

Option 2:

Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the **10-3/4** inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR part 3170 Subpart 3171
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

BOPE Break Testing Variance (Approved)

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-689-5981 Lea County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at **21**-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR part 3170 Subpart 3172.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Offline Cementing

Operator has been (**Approved**) to pump the proposed cement program offline in the **Intermediate(s) interval**.

Offline cementing should commence within 24 hours of landing the casing for the interval.

Notify the BLM 4hrs prior to cementing offline at Lea County: 575-689-5981.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL
- All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke

manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be

initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)

- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170
 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and

.

disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Long Vo (LVO) 7/30/2024

Received by OCD: 7/31/2024 10:48:09 AM

Page	37	of 59	
------	----	-------	--

•						0 0	
Form 3160-5 (June 2019)	DEF	UNITED STAT	ON	DRM APPROVED MB No. 1004-0137 res: October 31, 2021			
	BUR	EAU OF LAND MAN	5. Lease Serial No.				
	not use this i	NOTICES AND REP form for proposals Use Form 3160-3 (A	6. If Indian, Allottee or Tribe Name				
	SUBMIT IN	TRIPLICATE - Other instr	7. If Unit of CA/Agreen	ment, Name and/or No.			
1. Type of Well	ell 🗌 Gas V	Vell Other			8. Well Name and No.		
2. Name of Operator					9. API Well No.		
3a. Address			3b. Phone No. <i>(include area code)</i>		10. Field and Pool or E	xploratory Area	
4. Location of Well (Footage, Sec., T.,I	R.,M., or Survey Description)		11. Country or Parish, State		
	12. CHE	CK THE APPROPRIATE B	BOX(ES) TO INDICATE NATURE	OF NOT	ICE, REPORT OR OTHI	ER DATA	
TYPE OF SUI	BMISSION		TYP	E OF AC	CTION		
Notice of Inter	nt	Acidize	Deepen Hydraulic Fracturing	=	duction (Start/Resume)	Water Shut-Off Well Integrity	
Subsequent Re	eport	Casing Repair Change Plans	New Construction Plug and Abandon		complete	Other	
Final Abandor	ment Notice	Convert to Injection	=	_	ter Disposal		
the proposal is to the Bond under w completion of the	deepen directiona which the work will involved operation Abandonment No	ally or recomplete horizontal ll be perfonned or provide th ons. If the operation results i	lly, give subsurface locations and me ne Bond No. on file with BLM/BIA. n a multiple completion or recompleted and the substitution of the substit	easured a Require etion in a	and true vertical depths of d subsequent reports must a new interval, a Form 31	k and approximate duration thereof. If f all pertinent markers and zones. Attach t be filed within 30 days following 60-4 must be filed once testing has been e operator has detennined that the site	

14. I hereby certify that the foregoing is true and correct. Name (Printed/Typed)			
	Title		
Signature	Date		
THE SPACE FOR FEDE	RAL OR STATE	OFICE USE	
Approved by			
	Title	Date	
Conditions of approval, if any, are attached. Approval of this notice does not warrant certify that the applicant holds legal or equitable title to those rights in the subject lead which would entitle the applicant to conduct operations thereon.			
Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any any false, fictitious or fraudulent statements or representations as to any matter within		d willfully to make to any department or agency of the United	States

(Instructions on page 2)

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

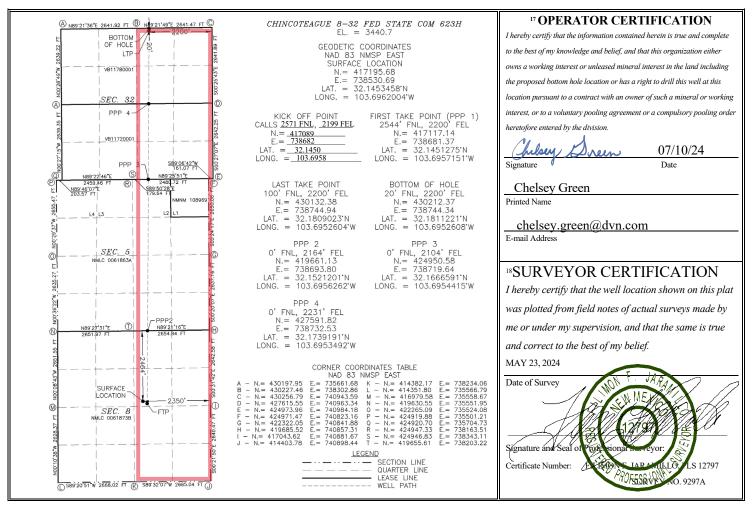
Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

Additional Information

Location of Well


0. SHL: SWNE / 2464 FNL / 2350 FEL / TWSP: 25S / RANGE: 32E / SECTION: 8 / LAT: 32.1453458 / LONG: -103.6962004 (TVD: 0 feet, MD: 0 feet) PPP: SWNE / 2544 FNL / 1870 FEL / TWSP: 25S / RANGE: 32E / SECTION: 8 / LAT: 32.145133 / LONG: -103.6946491 (TVD: 11754 feet, MD: 11840 feet) PPP: SWSE / 174 FSL / 1832 FEL / TWSP: 25S / RANGE: 32E / SECTION: 5 / LAT: 32.1525929 / LONG: -103.6945417 (TVD: 11939 feet, MD: 14500 feet) BHL: NWNE / 20 FNL / 1870 FEL / TWSP: 24S / RANGE: 32E / SECTION: 32 / LAT: 32.1811271 / LONG: -103.6941947 (TVD: 12018 feet, MD: 24880 feet) State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

AMENDED REPORT

Page 40 of 59

¹ A	PI Number	r		² Pool Coc	le	³ Pool Name												
30-025	-52971	97899 WC-025 G-06 S253206M;BONE SF							7899 WC-025 G-06 S253206M;BONE SPRING									
⁴ Property C	ode		⁵ Property Name ⁶ Well Number															
326213				CHINCO	DTEAGUE 8-32	2 FED STATE C	ОМ		623H									
⁷ OGRID N	0.				⁸ Operator	Name			⁹ Elevation									
6137		DEVON ENERGY PRODUCTION COMPANY, L.P. 3440.7																
	·				[™] Surfac	e Location		·										
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County									
G	8	25 S 32 E		2 E 24		NORTH	2350	EAST	LEA									
			11 I	Bottom I	Hole Location	If Different Fr	om Surface		•									
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County									
В	32	24 S	32 E		20	NORTH	2200	EAST	LEA									
12 Dedicated Acres	¹³ Joint	or Infill	¹⁴ Consolidatio	n Code		•	¹⁵ Order No.		•									
800.83																		

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Released to Imaging: 9/10/2024 2:55:12 PM

Received by OCD: 7/31/2024 10:48:09 AM

Х

Intent	
--------	--

API #

rty Name: Well Number
COTEAGUE 8-32 FED STATE 623H

Kick Off Point (KOP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
G	8	25S	32E		2571	NORTH	2199	EAST	LEA
Latitu	Latitude				Longitude	•	NAD		
	32.1450				10)3.6958		83	

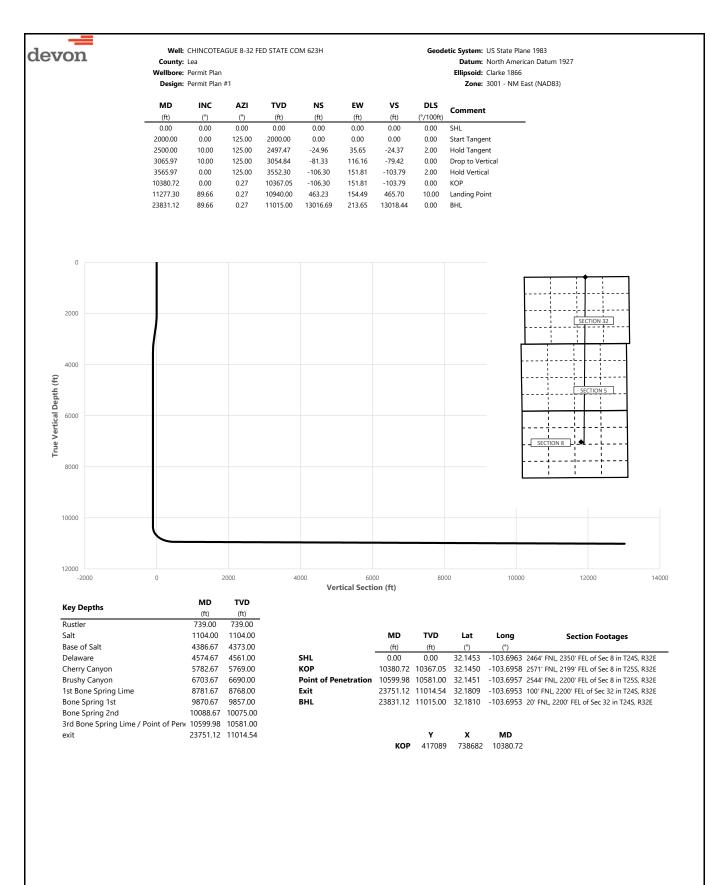
First Take Point (FTP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
G	8	25S	32E		2544	NORTH	2200	EAST	LEA
Latitu 32.1	^{de} 45127	5			Longitude 103.6957	7151			NAD 83

Last Take Point (LTP)

B 32 24S 32E 10	100 NORTH 2200	EAST LEA
	Longitude 103.6952604	NAD 83

Is this well the defining well for the Horizontal Spacing Unit?


Is this well an infill well?

Υ

If infill is yes please provide API if available, Operator Name and well number for Defining well for Horizontal Spacing Unit.

API #		
30-025-53001		
Operator Name:	Property Name:	Well Number
DEVON ENERGY PRODUCTION COMPANY, L.P.	CHINCOTEAGUE 8-32 FED STATE COM	627H

KZ 06/29/2018

. —		141-11	CUNCOT			M 622U			Condutio Surtamy LIS State Plane 1003
devon		Well: County:		NGUE 8-32 H	ED STATE CO	IVI 023H			Geodetic System: US State Plane 1983 Datum: North American Datum 1927
		-	Permit Plan						Ellipsoid: Clarke 1866
			Permit Plan						Zone: 3001 - NM East (NAD83)
				71 /F					
	MD (ft)	INC (°)	AZI (°)	TVD (ft)	NS (ft)	EW (ft)	VS (ft)	DLS (°/100ft)	Comment
-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	SHL
	100.00	0.00	125.00	100.00	0.00	0.00	0.00	0.00	
	200.00	0.00	125.00	200.00	0.00	0.00	0.00	0.00	
	300.00	0.00	125.00	300.00	0.00	0.00	0.00	0.00	
	400.00 500.00	0.00 0.00	125.00 125.00	400.00 500.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	
	600.00	0.00	125.00	600.00	0.00	0.00	0.00	0.00	
	700.00	0.00	125.00	700.00	0.00	0.00	0.00	0.00	
	739.00	0.00	125.00	739.00	0.00	0.00	0.00	0.00	Rustler
	800.00	0.00	125.00	800.00	0.00	0.00	0.00	0.00	
	900.00 1000.00	0.00 0.00	125.00 125.00	900.00 1000.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	
	1100.00	0.00	125.00	1100.00	0.00	0.00	0.00	0.00	
	1104.00	0.00	125.00	1104.00	0.00	0.00	0.00	0.00	Salt
	1200.00	0.00	125.00	1200.00	0.00	0.00	0.00	0.00	
	1300.00	0.00	125.00	1300.00	0.00	0.00	0.00	0.00	
	1400.00 1500.00	0.00 0.00	125.00 125.00	1400.00 1500.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	
	1600.00	0.00	125.00	1600.00	0.00	0.00	0.00	0.00	
	1700.00	0.00	125.00	1700.00	0.00	0.00	0.00	0.00	
	1800.00	0.00	125.00	1800.00	0.00	0.00	0.00	0.00	
	1900.00	0.00	125.00	1900.00	0.00	0.00	0.00	0.00	
	2000.00	0.00	125.00	2000.00	0.00	0.00	0.00	0.00	Start Tangent
	2100.00 2200.00	2.00 4.00	125.00 125.00	2099.98 2199.84	-1.00 -4.00	1.43 5.72	-0.98 -3.91	2.00 2.00	
	2200.00	4.00 6.00	125.00	2199.64	-4.00	12.86	-8.79	2.00	
	2400.00	8.00	125.00	2398.70	-15.99	22.84	-15.61	2.00	
	2500.00	10.00	125.00	2497.47	-24.96	35.65	-24.37	2.00	Hold Tangent
	2600.00	10.00	125.00	2595.95	-34.92	49.88	-34.10	0.00	
	2700.00 2800.00	10.00 10.00	125.00 125.00	2694.43 2792.91	-44.88 -54.84	64.10 78.32	-43.83 -53.55	0.00 0.00	
	2900.00	10.00	125.00	2891.39	-54.84 -64.80	92.55	-63.28	0.00	
	3000.00	10.00	125.00	2989.87	-74.76	106.77	-73.00	0.00	
	3065.97	10.00	125.00	3054.84	-81.33	116.16	-79.42	0.00	Drop to Vertical
	3100.00	9.32	125.00	3088.38	-84.61	120.84	-82.61	2.00	
	3200.00 3300.00	7.32 5.32	125.00 125.00	3187.33 3286.71	-92.91 -99.22	132.69 141.70	-90.72 -96.88	2.00 2.00	
	3300.00 3400.00	5.32 3.32	125.00	3286.71 3386.43	-99.22 -103.54	141.70 147.87	-96.88 -101.10	2.00	
	3500.00	1.32	125.00	3486.34	-105.86	151.19	-103.37	2.00	
	3565.97	0.00	125.00	3552.30	-106.30	151.81	-103.79	2.00	Hold Vertical
	3600.00	0.00	0.27	3586.33	-106.30	151.81	-103.79	0.00	
	3700.00	0.00	0.27	3686.33	-106.30	151.81	-103.79	0.00	
	3800.00 3900.00	0.00 0.00	0.27 0.27	3786.33 3886.33	-106.30 -106.30	151.81 151.81	-103.79 -103.79	0.00 0.00	
	4000.00	0.00	0.27	3986.33	-106.30	151.81	-103.79	0.00	
	4100.00	0.00	0.27	4086.33	-106.30	151.81	-103.79	0.00	
	4200.00	0.00	0.27	4186.33	-106.30	151.81	-103.79	0.00	
	4300.00	0.00	0.27	4286.33	-106.30	151.81	-103.79	0.00	Provide Colle
	4386.67 4400.00	0.00 0.00	0.27 0.27	4373.00 4386.33	-106.30 -106.30	151.81 151.81	-103.79 -103.79	0.00 0.00	Base of Salt
	4400.00 4500.00	0.00	0.27	4386.33 4486.33	-106.30	151.81 151.81	-103.79 -103.79	0.00	
	4574.67	0.00	0.27	4561.00	-106.30	151.81	-103.79	0.00	Delaware
	4600.00	0.00	0.27	4586.33	-106.30	151.81	-103.79	0.00	
	4700.00	0.00	0.27	4686.33	-106.30	151.81	-103.79	0.00	
	4800.00	0.00	0.27	4786.33	-106.30	151.81	-103.79	0.00	
	4900.00 5000.00	0.00 0.00	0.27 0.27	4886.33 4986.33	-106.30 -106.30	151.81 151.81	-103.79 -103.79	0.00 0.00	
	5100.00	0.00	0.27	4986.33 5086.33	-106.30	151.81	-103.79	0.00	
	5200.00	0.00	0.27	5186.33	-106.30	151.81	-103.79	0.00	
	5300.00	0.00	0.27	5286.33	-106.30	151.81	-103.79	0.00	
	5400.00	0.00	0.27	5386.33	-106.30	151.81	-103.79	0.00	
	5500.00 5600.00	0.00 0.00	0.27 0.27	5486.33 5586.33	-106.30 -106.30	151.81 151.81	-103.79 -103.79	0.00 0.00	
	5600.00 5700.00	0.00	0.27	5586.33 5686.33	-106.30	151.81	-103.79 -103.79	0.00	
	5782.67	0.00	0.27	5769.00	-106.30	151.81	-103.79	0.00	Cherry Canyon
	5800.00	0.00	0.27	5786.33	-106.30	151.81	-103.79	0.00	
	5900.00	0.00	0.27	5886.33	-106.30	151.81	-103.79	0.00	
	6000.00	0.00	0.27	5986.33	-106.30	151.81	-103.79	0.00	
	6100.00 6200.00	0.00 0.00	0.27 0.27	6086.33 6186.33	-106.30 -106.30	151.81 151.81	-103.79 -103.79	0.00 0.00	

•

damere		Well:	CHINCOTE	AGUE 8-32 FE	D STATE CO	M 623H			Geodetic System: US State Plane 1983
devon		County:							Datum: North American Datum 1927
		Wellbore:							Ellipsoid: Clarke 1866
		Design:	Permit Pla	า #1					Zone: 3001 - NM East (NAD83)
	MD	INC	AZI	TVD	NS	EW	vs	DLS	Comment
-	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
	6300.00 6400.00	0.00 0.00	0.27 0.27	6286.33 6386.33	-106.30 -106.30	151.81 151.81	-103.79 -103.79	0.00 0.00	
	6500.00	0.00	0.27	6486.33	-106.30	151.81	-103.79	0.00	
	6600.00	0.00	0.27	6586.33	-106.30	151.81	-103.79	0.00	
	6700.00	0.00	0.27	6686.33	-106.30	151.81	-103.79	0.00	
	6703.67 6800.00	0.00 0.00	0.27 0.27	6690.00 6786.33	-106.30 -106.30	151.81 151.81	-103.79 -103.79	0.00 0.00	Brushy Canyon
	6900.00	0.00	0.27	6886.33	-106.30	151.81	-103.79	0.00	
	7000.00	0.00	0.27	6986.33	-106.30	151.81	-103.79	0.00	
	7100.00	0.00	0.27	7086.33	-106.30	151.81	-103.79	0.00	
	7200.00	0.00	0.27	7186.33	-106.30	151.81	-103.79	0.00	
	7300.00 7400.00	0.00 0.00	0.27 0.27	7286.33 7386.33	-106.30 -106.30	151.81 151.81	-103.79 -103.79	0.00 0.00	
	7500.00	0.00	0.27	7486.33	-106.30	151.81	-103.79	0.00	
	7600.00	0.00	0.27	7586.33	-106.30	151.81	-103.79	0.00	
	7700.00	0.00	0.27	7686.33	-106.30	151.81	-103.79	0.00	
	7800.00	0.00	0.27	7786.33	-106.30	151.81	-103.79	0.00	
	7900.00 8000.00	0.00 0.00	0.27 0.27	7886.33 7986.33	-106.30 -106.30	151.81 151.81	-103.79 -103.79	0.00 0.00	
	8100.00	0.00	0.27	8086.33	-106.30	151.81	-103.79	0.00	
	8200.00	0.00	0.27	8186.33	-106.30	151.81	-103.79	0.00	
	8300.00	0.00	0.27	8286.33	-106.30	151.81	-103.79	0.00	
	8400.00	0.00	0.27	8386.33	-106.30	151.81	-103.79	0.00	
	8500.00 8600.00	0.00 0.00	0.27 0.27	8486.33 8586.33	-106.30 -106.30	151.81 151.81	-103.79 -103.79	0.00 0.00	
	8700.00	0.00	0.27	8686.33	-106.30	151.81	-103.79	0.00	
	8781.67	0.00	0.27	8768.00	-106.30	151.81	-103.79	0.00	1st Bone Spring Lime
	8800.00	0.00	0.27	8786.33	-106.30	151.81	-103.79	0.00	
	8900.00 9000.00	0.00 0.00	0.27 0.27	8886.33 8986.33	-106.30 -106.30	151.81 151.81	-103.79 -103.79	0.00 0.00	
	9100.00	0.00	0.27	9086.33	-106.30	151.81	-103.79	0.00	
	9200.00	0.00	0.27	9186.33	-106.30	151.81	-103.79	0.00	
	9300.00	0.00	0.27	9286.33	-106.30	151.81	-103.79	0.00	
	9400.00	0.00	0.27	9386.33	-106.30	151.81	-103.79	0.00	
	9500.00 9600.00	0.00 0.00	0.27 0.27	9486.33 9586.33	-106.30 -106.30	151.81 151.81	-103.79 -103.79	0.00 0.00	
	9700.00	0.00	0.27	9686.33	-106.30	151.81	-103.79	0.00	
	9800.00	0.00	0.27	9786.33	-106.30	151.81	-103.79	0.00	
	9870.67	0.00	0.27	9857.00	-106.30	151.81	-103.79	0.00	Bone Spring 1st
	9900.00 10000.00	0.00 0.00	0.27 0.27	9886.33 9986.33	-106.30 -106.30	151.81 151.81	-103.79 -103.79	0.00 0.00	
	10088.67	0.00	0.27	10075.00	-106.30	151.81	-103.79	0.00	Bone Spring 2nd
	10100.00	0.00	0.27	10086.33	-106.30	151.81	-103.79	0.00	
	10200.00	0.00	0.27	10186.33	-106.30	151.81	-103.79	0.00	
	10300.00 10380.72	0.00 0.00	0.27 0.27	10286.33 10367.05	-106.30	151.81 151.81	-103.79 -103.79	0.00 0.00	КОР
	10380.72	1.93	0.27	10386.33	-106.30 -105.97	151.81	-103.79	10.00	
	10500.00	11.93	0.27	10485.47	-93.93	151.87	-91.42	10.00	
	10599.98	21.93	0.27	10581.00	-64.85	152.00	-62.35	10.00	3rd Bone Spring Lime / Point of Penetration,
	10700.00 10800.00	31.93 41.93	0.27 0.27	10670.06 10749.90	-19.62 40.39	152.22 152.50	-17.12 42.88	10.00 10.00	
	10800.00	41.93 51.93	0.27	10749.90	40.39 113.34	152.50	42.88 115.84	10.00	
	11000.00	61.93	0.27	10872.61	197.03	153.24	199.52	10.00	
	11100.00	71.93	0.27	10911.75	288.92	153.67	291.40	10.00	
	11200.00	81.93	0.27	10934.33	386.20	154.13	388.68	10.00	Landian Daiat
	11277.30 11300.00	89.66 89.66	0.27 0.27	10940.00 10940.14	463.23 485.93	154.49 154.60	465.70 488.41	10.00 0.00	Landing Point
	11400.00	89.66	0.27	10940.73	585.93	155.07	588.40	0.00	
	11500.00	89.66	0.27	10941.33	685.93	155.54	688.39	0.00	
	11600.00	89.66	0.27	10941.93	785.92	156.01	788.38	0.00	
	11700.00	89.66 89.66	0.27	10942.53	885.92	156.48 156.96	888.37	0.00 0.00	
	11800.00 11900.00	89.66 89.66	0.27 0.27	10943.12 10943.72	985.92 1085.92	156.96	988.36 1088.35	0.00	
	12000.00	89.66	0.27	10944.32	1185.91	157.90	1188.34	0.00	
	12100.00	89.66	0.27	10944.92	1285.91	158.37	1288.34	0.00	
	12200.00	89.66	0.27	10945.51	1385.91	158.84	1388.33	0.00	
	12300.00 12400.00	89.66 89.66	0.27 0.27	10946.11 10946.71	1485.90 1585.90	159.31 159.78	1488.32 1588.31	0.00 0.00	
	12400.00	89.66 89.66	0.27	10946.71	1685.90	160.25	1688.30	0.00	
	12600.00	89.66	0.27	10947.90	1785.90	160.73	1788.29	0.00	

•

-		Well:	СНІМСОТІ	AGUE 8-32 FE	D STATE CO	M 623H			Geodetic System:	US State Plane 1983
n		County:								North American Datum 192
		Wellbore:								Clarke 1866
		Design:	Permit Pla	n #1					Zone:	3001 - NM East (NAD83)
	MD	INC	AZI	TVD	NS	EW	vs	DLS	Comment	
-	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	comment	
	12700.00	89.66	0.27	10948.50	1885.89	161.20	1888.28	0.00		
	12800.00	89.66	0.27	10949.10	1985.89	161.67	1988.28	0.00		
	12900.00 13000.00	89.66 89.66	0.27 0.27	10949.70 10950.29	2085.89 2185.88	162.14 162.61	2088.27 2188.26	0.00 0.00		
	13100.00	89.66	0.27	10950.29	2285.88	163.08	2288.25	0.00		
	13200.00	89.66	0.27	10951.49	2385.88	163.55	2388.24	0.00		
	13300.00	89.66	0.27	10952.09	2485.88	164.02	2488.23	0.00		
	13400.00	89.66	0.27	10952.68	2585.87	164.50	2588.22	0.00		
	13500.00	89.66	0.27	10953.28	2685.87	164.97	2688.22	0.00		
	13600.00	89.66	0.27	10953.88	2785.87	165.44	2788.21	0.00		
	13700.00	89.66	0.27	10954.48	2885.86	165.91	2888.20	0.00		
	13800.00	89.66	0.27	10955.07	2985.86	166.38	2988.19	0.00		
	13900.00 14000.00	89.66 89.66	0.27 0.27	10955.67 10956.27	3085.86 3185.86	166.85 167.32	3088.18 3188.17	0.00 0.00		
	14000.00	89.66 89.66	0.27	10956.27	3285.85	167.32	3188.17	0.00		
	14200.00	89.66	0.27	10950.87	3385.85	168.27	3388.16	0.00		
	14300.00	89.66	0.27	10958.06	3485.85	168.74	3488.15	0.00		
	14400.00	89.66	0.27	10958.66	3585.84	169.21	3588.14	0.00		
	14500.00	89.66	0.27	10959.26	3685.84	169.68	3688.13	0.00		
	14600.00	89.66	0.27	10959.86	3785.84	170.15	3788.12	0.00		
	14700.00	89.66	0.27	10960.45	3885.83	170.62	3888.11	0.00		
	14800.00	89.66	0.27	10961.05	3985.83	171.09	3988.10	0.00		
	14900.00	89.66	0.27	10961.65	4085.83	171.56	4088.09	0.00		
	15000.00 15100.00	89.66 89.66	0.27 0.27	10962.25 10962.84	4185.83 4285.82	172.04 172.51	4188.09 4288.08	0.00 0.00		
	15200.00	89.66 89.66	0.27	10962.84	4265.82	172.91	4288.08	0.00		
	15300.00	89.66	0.27	10964.04	4485.82	173.45	4488.06	0.00		
	15400.00	89.66	0.27	10964.64	4585.81	173.92	4588.05	0.00		
	15500.00	89.66	0.27	10965.23	4685.81	174.39	4688.04	0.00		
	15600.00	89.66	0.27	10965.83	4785.81	174.86	4788.03	0.00		
	15700.00	89.66	0.27	10966.43	4885.81	175.33	4888.03	0.00		
	15800.00	89.66	0.27	10967.03	4985.80	175.81	4988.02	0.00		
	15900.00	89.66	0.27	10967.62	5085.80	176.28	5088.01	0.00		
	16000.00	89.66	0.27	10968.22	5185.80	176.75	5188.00	0.00		
	16100.00	89.66 89.66	0.27 0.27	10968.82	5285.79	177.22	5287.99	0.00 0.00		
	16200.00 16300.00	89.66 89.66	0.27	10969.42 10970.01	5385.79 5485.79	177.69 178.16	5387.98 5487.97	0.00		
	16400.00	89.66 89.66	0.27	10970.01	5465.79 5585.79	178.63	5587.97	0.00		
	16500.00	89.66	0.27	10971.21	5685.78	179.10	5687.96	0.00		
	16600.00	89.66	0.27	10971.81	5785.78	179.58	5787.95	0.00		
	16700.00	89.66	0.27	10972.40	5885.78	180.05	5887.94	0.00		
	16800.00	89.66	0.27	10973.00	5985.77	180.52	5987.93	0.00		
	16900.00	89.66	0.27	10973.60	6085.77	180.99	6087.92	0.00		
	17000.00	89.66	0.27	10974.20	6185.77	181.46	6187.91	0.00		
	17100.00	89.66	0.27	10974.79	6285.77	181.93	6287.90	0.00		
	17200.00 17300.00	89.66 89.66	0.27	10975.39	6385.76 6485.76	182.40 182.87	6387.90 6487.89	0.00		
	17300.00	89.66 89.66	0.27 0.27	10975.99 10976.59	6485.76 6585.76	182.87 183.34	6487.89 6587.88	0.00 0.00		
	17400.00	89.66 89.66	0.27	10976.59	6685.75	183.82	6687.87	0.00		
	17600.00	89.66	0.27	10977.78	6785.75	184.29	6787.86	0.00		
	17700.00	89.66	0.27	10978.38	6885.75	184.76	6887.85	0.00		
	17800.00	89.66	0.27	10978.98	6985.75	185.23	6987.84	0.00		
	17900.00	89.66	0.27	10979.57	7085.74	185.70	7087.84	0.00		
	18000.00	89.66	0.27	10980.17	7185.74	186.17	7187.83	0.00		
	18100.00	89.66	0.27	10980.77	7285.74	186.64	7287.82	0.00		
	18200.00	89.66	0.27	10981.37	7385.73	187.11	7387.81	0.00		
	18300.00 18400.00	89.66 89.66	0.27	10981.96 10982.56	7485.73	187.59 188.06	7487.80 7587.79	0.00		
	18400.00	89.66 89.66	0.27 0.27	10982.56	7585.73 7685.72	188.06	7687.79	0.00 0.00		
	18600.00	89.66	0.27	10983.16	7785.72	188.55	7787.78	0.00		
	18700.00	89.66	0.27	10983.76	7885.72	189.00	7887.77	0.00		
	18800.00	89.66	0.27	10984.95	7985.72	189.94	7987.76	0.00		
	18900.00	89.66	0.27	10985.55	8085.71	190.41	8087.75	0.00		
	19000.00	89.66	0.27	10986.15	8185.71	190.88	8187.74	0.00		
	19100.00	89.66	0.27	10986.75	8285.71	191.36	8287.73	0.00		
	19200.00	89.66	0.27	10987.34	8385.70	191.83	8387.72	0.00		
	19300.00	89.66	0.27	10987.94	8485.70	192.30	8487.71	0.00		
	19400.00 19500.00	89.66 89.66	0.27 0.27	10988.54	8585.70 8685 70	192.77 193.24	8587.71 8687.70	0.00 0.00		
	19500.00	89.66 89.66	0.27	10989.14 10989.73	8685.70 8785.69	193.24 193.71	8687.70	0.00		
	1.5000.00	05.00	0.21	10303.13	0103.03	1.55.71	0101.09	0.00		

.

n		County:	Lea	EAGUE 8-32 FE	D STATE COI	M 623H			Geodetic System: U Datum: N	IS State Plane 1983 Iorth American Datum 1927
		Wellbore:							Ellipsoid: C	
		Design:	Permit Pla	n #1					Zone: 3	001 - NM East (NAD83)
	MD	INC	AZI	TVD	NS	EW	vs	DLS	Comment	
_	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	comment	
	19700.00	89.66	0.27	10990.33	8885.69	194.18	8887.68	0.00		
	19800.00	89.66	0.27	10990.93	8985.69	194.65	8987.67	0.00		
	19900.00	89.66	0.27	10991.53	9085.68	195.13	9087.66	0.00		
	20000.00	89.66	0.27	10992.12	9185.68	195.60	9187.65	0.00		
	20100.00	89.66	0.27	10992.72	9285.68	196.07	9287.65	0.00		
	20200.00	89.66	0.27	10993.32	9385.68	196.54	9387.64	0.00		
	20300.00	89.66	0.27	10993.92	9485.67	197.01	9487.63	0.00		
	20400.00	89.66	0.27	10994.51	9585.67	197.48	9587.62	0.00		
	20500.00	89.66	0.27	10995.11	9685.67	197.95	9687.61	0.00		
	20600.00	89.66	0.27	10995.71	9785.66	198.42	9787.60	0.00		
	20700.00	89.66	0.27	10996.31	9885.66	198.90	9887.59	0.00		
	20800.00	89.66	0.27	10996.90	9985.66	199.37	9987.59	0.00		
	20900.00	89.66	0.27	10997.50	10085.66	199.84	10087.58	0.00		
	21000.00	89.66	0.27	10998.10	10185.65	200.31	10187.57	0.00		
	21100.00	89.66	0.27	10998.70	10285.65	200.78	10287.56	0.00		
	21200.00	89.66	0.27	10999.29	10385.65	201.25	10387.55	0.00		
	21300.00	89.66	0.27	10999.89	10485.64	201.72	10487.54	0.00		
	21400.00	89.66	0.27	11000.49	10585.64	202.19	10587.53	0.00		
	21500.00	89.66	0.27	11001.09	10685.64	202.67	10687.53	0.00		
	21600.00	89.66	0.27	11001.68	10785.64	203.14	10787.52	0.00		
	21700.00	89.66	0.27	11002.28	10885.63	203.61	10887.51	0.00		
	21800.00	89.66	0.27	11002.88	10985.63	204.08	10987.50	0.00		
	21900.00	89.66	0.27	11003.48	11085.63	204.55	11087.49	0.00		
	22000.00	89.66	0.27		11185.62	205.02	11187.48	0.00		
	22100.00	89.66	0.27	11004.67	11285.62	205.49	11287.47	0.00		
	22200.00	89.66	0.27	11005.27	11385.62	205.96	11387.46	0.00		
	22300.00	89.66	0.27	11005.87	11485.61	206.44	11487.46	0.00		
	22400.00	89.66	0.27	11006.46	11585.61	206.91	11587.45	0.00		
	22500.00	89.66	0.27	11007.06	11685.61	207.38	11687.44	0.00		
	22600.00	89.66	0.27	11007.66	11785.61	207.85	11787.43	0.00		
	22700.00	89.66	0.27	11008.26	11885.60	208.32	11887.42	0.00		
	22800.00	89.66	0.27	11008.86	11985.60	208.79	11987.41	0.00		
	22900.00	89.66	0.27	11009.45	12085.60	209.26	12087.40	0.00		
	23000.00	89.66	0.27	11010.05	12185.59	209.73	12187.40	0.00		
	23100.00	89.66	0.27	11010.65	12285.59	210.20	12287.39	0.00		
	23200.00	89.66	0.27	11011.25	12385.59	210.68	12387.38	0.00		
	23300.00	89.66	0.27	11011.84	12485.59	211.15	12487.37	0.00		
	23400.00	89.66	0.27	11012.44	12585.58	211.62	12587.36	0.00		
	23500.00	89.66	0.27	11013.04	12685.58	212.09	12687.35	0.00		
	23600.00	89.66	0.27	11013.64	12785.58	212.56	12787.34	0.00		
	23700.00	89.66	0.27	11014.23	12885.57	213.03	12887.34	0.00		
	23751.12	89.66	0.27	11014.54	12936.69	213.27	12938.45	0.00	exit	
	23800.00	89.66	0.27	11014.83	12985.57	213.50	12987.33	0.00		
	23831.12	89.66	0.27	11015.00	13016.69	213.65	13018.44	0.00	BHL	

•

1. Geologic Formations

TVD of target	11015	Pilot hole depth	N/A
MD at TD:	23831	Deepest expected fresh water	

Basin

Formation	Depth (TVD)	Water/Mineral Bearing/Target	Hazards*
Rustler	from KB 739	Zone?	
Salt	1104		
Base of Salt	4373		
Delaware	4561		
Cherry Canyon	5769		
Brushy Canyon	6690		
1st Bone Spring Lime	8768		
Bone Spring 1st	9857		
Bone Spring 2nd	10075		
3rd Bone Spring Lime	10581		

*H2S, water flows, loss of circulation, abnormal pressures, etc.

CHINCOTEAGUE 8-32 FED STATE COM 623H

		Wt			Casing	Interval	Casing	Interval
Hole Size	Csg. Size	(PPF)	Grade	Conn	From (MD)	To (MD)	From (TVD)	To (TVD)
14 3/4	10 3/4	45 1/2	J-55	BTC	0	764	0	764
9 7/8	8 5/8	32	P110HSCY	MOFXL	0	10281	0	10281
7 7/8	5 1/2	20	P110HP	CDC-HTQ	0	23831	0	11015

2. Casing Program (Primary Design)

•All casing strings will be tested in accordance with 43 CFR 3172. Must have table for contingency casing.

3. Cementing Program (Primary Design)

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures.

Casing	# Sks	тос	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	Surface 469 Surf 13.2 1.44		Lead: Class C Cement + additives		
Int 1	488	Surf	13.0	2.3	2nd State: Bradenhead Squeeze - Lead: Class C Cement + additives
Int I	417	6703	13.2	1.44	Tail: Class H / C + additives
Production	117	8381	9	3.27	Lead: Class H /C + additives
Production	1780	10381	13.2	1.44	Tail: Class H / C + additives

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Prod	10%

CHINCOTEAGUE 8-32 FED STATE COM 623H

.

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	T	уре	~	Tested to:	
			Anı	nular	X	50% of rated working pressure	
Int 1	13-5/8"	5M	Blind	d Ram	Х		
Int I	15-5/0	5101	Pipe	e Ram		5M	
			Doub	le Ram	Х	5101	
			Other*				
	13-5/8"		Annular (5M)		Х	50% of rated working pressure	
Production		5M	Blind Ram		Х		
Fioduction		JIVI	Pipe Ram Double Ram			5M	
					Х	5101	
			Other*				
			Annul	ar (5M)			
			Blind	d Ram			
	Pipe Ram						
			Doub	le Ram			
			Other*				
N A variance is requested for	the use of a	a diverter or	the surface	casing. See a	attached for	schematic.	
Y A variance is requested to a	A variance is requested to run a 5 M annular on a 10M system						

4. Pressure Control Equipment (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring
---	-----------------------------

6. Logging and Testing Procedures

Logging,	Logging, Coring and Testing						
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the						
Х	Completion Rpeort and sbumitted to the BLM.						
	No logs are planned based on well control or offset log information.						
	Drill stem test? If yes, explain.						
	Coring? If yes, explain.						

Additiona	al logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
Х	CBL	Production casing
Х	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

6014
No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren S	Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations
greater than	100 ppm, the operator will comply with the provisions of 43 CFR 3176. If Hydrogen Sulfide is encountered
measured va	alues and formations will be provided to the BLM.
N	H2S is present

Y H2S plan attached.

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (43 CFR 3172, all COAs and NMOCD regulations).

 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.

- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments

X Directional Plan Other, describe

Offline Cementing

Variance Request

Devon Energy requests to offline cement on intermediate strings that are set in formations shallower than the Wolfcamp. Prior to commencing offline cementing operations, the well will be monitored for any abnormal pressures and confirmed to be static. A dual manifold system (equipped with chokes) for the returns will also be utilized as a redundancy. All equipment used for offline cementing will have a minimum 5M rating to match intermediate sections' 5M BOPE requirements.

Section 2 - Blowout Preventer Testing Procedure

Variance Request

Devon Energy requests to only test BOP connection breaks after drilling out of surface casing and while skidding between wells which conforms to API Standard 53 and industry standards. This test will include the Top Pipe Rams, HCR, Kill Line Check Valve, QDC (quick disconnect to wellhead) and Shell of the 10M BOPE to 5M for 10 minutes. If a break to the flex hose that runs to the choke manifold is required due to repositioning from a skid, the HCR will remain open during the shell test to include that additional break. The variance only pertains to intermediate hole-sections and no deeper than the Bone Springs Formation where 5M BOP tests are required. The initial BOP test will follow 43 CFR 3172, and subsequent tests following a skid will only test connections that are broken. The annular preventer will be tested to 100% working pressure. This variance will meet or exceed 43 CFR 3172 per the following: Devon Energy will perform a full BOP test per 43 CFR 3172 before drilling out of the intermediate casing string(s) and starting the production hole, before starting any hole section that requires a 10M test, before the expiration of the allotted 14-days for 5M intermediate batch drilling or when the drilling rig is fully mobilized to a new well pad, whichever is sooner. We will utilize a 200' TVD tolerance between intermediate shoes as the cutoff for a full BOP test. The BLM will be contacted 4hrs prior to a BOPE test. The BLM will be notified if and when a well control event is encountered. Break test will be a 14 day interval and not a 30 day full BOPE test interval. If in the event break testing is not utilized, then a full BOPE test would be conducted.

1. Well Control Response:

1. Primary barrier remains fluid

2. In the event of an influx due to being underbalanced and after a realized gain or flow, the order of closing BOPE is as follows:

- a) Annular first
- b) If annular were to not hold, Upper pipe rams second (which were tested on the skid BOP test)
- c) If the Upper Pipe Rams were to not hold, Lower Pipe Rams would be third

Page 55 of 59

U. S. Steel Tubular Products 5.500" 20.00lb/ft (0.361" Wall) P110 HP USS-CDC HTQ[®]

MECHANICAL PROPERTIES	Pipe	USS-CDC HTQ [®]					
Minimum Yield Strength	125,000		psi				
Maximum Yield Strength	140,000		psi				
Minimum Tensile Strength	130,000		psi				
DIMENSIONS	Pipe	USS-CDC HTQ [®]					
Outside Diameter	5.500	6.300	in.				
Wall Thickness	0.361		in.				
Inside Diameter	4.778	4.778	in.				
Standard Drift	4.653	4.653	in.				
Alternate Drift			in.				
Nominal Linear Weight, T&C	20.00		lb/ft				
Plain End Weight	19.83		lb/ft				
SECTION AREA	Pipe	USS-CDC HTQ [®]					
Critical Area	5.828	5.828	sq. in.				
Joint Efficiency		97.0	%				
PERFORMANCE	Pipe	USS-CDC HTQ [®]					
Minimum Collapse Pressure	13,150	13,150	psi				
External Pressure Leak Resistance		10,520	psi				
Minimum Internal Yield Pressure	14,360	14,360	psi				
Minimum Pipe Body Yield Strength	729,000		lb				
Joint Strength		707,000	lb				
Compression Rating		424,000	lb				
Reference Length		23,567	ft				
Maximum Uniaxial Bend Rating		60.6	deg/100 ft				
MAKE-UP DATA	Pipe	USS-CDC HTQ [®]					
Make-Up Loss		4.63	in.				
Minimum Make-Up Torque		14,500	ft-lb				
Maximum Make-Up Torque		20,500	ft-lb				
Connection Yield Torque		25,300	ft-lb				

1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness and Specified Minimum Yield Strength (SMYS).

2. Uniaxial bending rating shown is structural only, and equal to compression efficiency.

3. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).

4. Reference length is calculated by joint strength divided by nominal threaded and coupled weight with 1.5 safety factor.

5. Connection external pressure leak resistance has been verified to 80% API pipe body collapse pressure following the guidelines of API 5C5 Cal II.

Legal Notice

USS - CDC HTQ[®] (High Torque Casing Drilling Connection) is a trademark of U. S. Steel Corporation. This product is a modified API Buttress threaded and coupled connection designed for drilling with casing applications. All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380 1-877-893-9461 connections@uss.com www.usstubular.com

<u>10-3/4"</u>	<u>45.50#</u>	<u>0.400"</u>	<u>J-55</u>	
Dimensions	(Nominal)			
Outside Diameter Wall Inside Diameter Drift Weight, T&C Weight, PE			10.750 0.400 9.950 9.875 45.500 44.260	in. in. in. in. Ibs/ft Ibs/ft
Performance Collapse	e Properties		2090	psi
Internal Yield Pres	sure at Minimum Yield PE STC BTC		3580 3580 3580	psi psi psi
Yield Strength, Pip	e Body		715	1000 lbs
Joint Strength	STC BTC BTC Special Clearance (11.25" OD Cplg)	493 796 506	1000 lbs 1000 lbs 1000 lbs

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

letal One Corp.	MO-FXL			MO-FXL 8-						
	WO-FAL	CDS#	P110H	SCY						
Metal One	*1 Pipe Body: BMP P110HS	603#	MinYS125ksi							
	Special Drift 7.8	375"		SD7.875 27-Nov-23						
	Connection Date	a Sheet	Date							
	Geometry	Imperia	<u>al</u>	<u>S.I.</u>						
	Pipe Body									
	Grade *1	P110HSCY		P110HSCY						
	MinYS *1	125	ksi	125	ksi					
	Pipe OD (D)	8 5/8	in	219.08	mm					
MO-FXL	Weight	32.00	lb/ft	47.68	kg/m					
	Actual weight	31.10		46.34	kg/m					
	Wall Thickness (t)	0.352	in	8.94	mm					
	Pipe ID (d)	7.921	in	201.19	mm					
	Pipe body cross section	9.149	in ²	5,902	mm ²					
	Special Drift Dia. *1	7.875	in	200.03	mm					
	-	-	-	-	-					
					1					
	Connection	0.005		0.40.00						
$\uparrow \leftrightarrow$	Box OD (W)	8.625	in	219.08	mm					
	PIN ID	7.921	in	201.19	mm					
Box	Make up Loss	3.847	in	97.71	mm					
critical	Box Critical Area	5.853	in ²	3686	mm ²					
area	Joint load efficiency	69	%	69	%					
5	Thread Taper	1	/ 10 (1.	2" per ft)						
	Number of Threads		5	TPI						
up loss C D				E 007						
ζ	<mark>S.M.Y.S. *1</mark> M.I.Y.P. *1	1,144	kips nai	<u>5,087</u> 61.59	kN MPa					
۲. Pin	Collapse Strength *1	8,930	psi	29.66	MPa					
critical		4,300 ified Minimum YIE	psi							
area		num Internal Yield		•	цу					
	*1: BMP P110HSCY: MinYS			• •	Onei					
\leftarrow	Performance Properties			e Strength 4,500	opsi					
	Tensile Yield load	789 kips		of S.M.Y.S.)						
	Min. Compression Yield	789 kips		of S.M.Y.S.)						
	Internal Pressure	6,250 psi		of M.I.Y.P.)						
	External Pressure	0,200 pt		of Collapse St	renath					
	Max. DLS (deg. /100ft)		2		. engar					
		_ !		•						
	Recommended Torque	40.000	6 4 11	40.400	NL					
	Min.	13,600	ft-lb	18,400	N-m					
	Opti.	14,900	ft-lb	20,200	N-m					
	Maria	16,200	ft-lb	21,900	N-m					
	Max.		Operational Max. 28,400 ft-lb 38,500 N-m							
	Operational Max.	28,400								
		28,400								
al Notice	Operational Max.	28,400								
	Operational Max. Note : Operational Max. 1 reader/user's risk and no warranty is implied	28,400 torque can be applie d or expressed by Metal (ed for high	tion or its parents, sub	on sidiaries or					
use of this information is at the ates (herein collectively referred	Operational Max. Note : Operational Max. t reader/user's risk and no warranty is implied t o as "Metal One") with respect to the use of	28,400 torque can be applie d or expressed by Metal (of information contained h	ed for high One Corpora Derein. The i	torque application tion or its parents, sub	on sidiaries or n this Conne					
use of this information is at the ates (herein collectively referred a Sheet is for informational purp	Operational Max. Note : Operational Max. 1 reader/user's risk and no warranty is implied	28,400 torque can be applie d or expressed by Metal (of information contained h o engineering information	ed for high Dne Corpora nerein. The i	tion or its parents, sub information provided o ific to the subject prod	sidiaries or n this Conne ucts, without					
use of this information is at the ates (herein collectively referred a Sheet is for informational purp	Operational Max. Note : Operational Max. 1 reader/user's risk and no warranty is implied to as "Metal One") with respect to the use of oses only, and was prepared by reference to of which are the sole responsibility of the ope	28,400 torque can be applie d or expressed by Metal (of information contained h o engineering information	ed for high Dne Corpora nerein. The i	tion or its parents, sub information provided o ific to the subject prod	sidiaries or n this Conne ucts, without					

Statements regarding the suitability of products for certain types of applications are based on Metal One's knowledge of typical requirements that are often placed on Metal One products in standard well configurations. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application

The products described in this Connection Data Sheet are not recommended for use in deep water offshore applications. For more information, please refer to <u>http://www.mtlo.co.jp/mo-con/_images/top/WebsiteTerms_Active_20333287_1.pdf</u> the contents of which are incorporated by reference into this Connection Data Sheet.

Chincoteague 8-32 Fed State Com 623H

10 3/4	SL	urface csg in a	14 3/4	inch hole.		Design	Factors			Surface	2	
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	45.50		j 55	btc	19.29	5.49	0.64	815	10	1.07	10.36	37,083
"B"			,	btc				0	- i -			0
	w/8.4	1#/g mud, 30min Sfc Csg Test p	osig: 1.500	Tail Cmt	does not	circ to sfc.	Totals:	815				37,083
omparison o		Minimum Required Ceme										- ,
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cp
14 3/4	0.5563	469	675	453	49	9.00	3346	5M				1.50
urst Frac Grad	dient(s) for Seg	ment(s) A, B = , b All > 0	.70, OK.									
				· _ · _ · _ · _ · _ · _ · _ · _ · _ · _								··· ···
8 5/8		sing inside the	10 3/4	• ··· -		<u>Design</u>				Int 1		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weigh
"A"	32.00		p 110	mo-fxl	2.40	0.77	1.04	10,281	1	1.74	1.29	328,99
"B"								0				0
	w/8.4	1#/g mud, 30min Sfc Csg Test p					Totals:	10,281		_		328,99
				nded to achieve a top of		ft from su		815				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cp
9 7/8	0.1261	417	600	1303	-54	10.50	3585	5M				0.63
			6690				sum of sx	<u>Σ</u> CuFt				Σ%exces
by stage % :	nt yld > 1.35	33	32				905	1723				32
by stage % : Class 'C' tail cm			32			Design Fa		1723		Prod 1		32
by stage % : class 'C' tail cm Tail cmt 5 1/2	cas	sing inside the		Coupling		Design Fa	ctors		B@s	Prod 1		
by stage % : Class 'C' tail cm Tail cmt 5 1/2 Segment	ca: #/ft		32 8 5/8	Coupling	Joint 2 91	Collapse	<u>ctors</u> Burst	Length	B@s	a-B	a-C	Weigh
by stage % : Class 'C' tail cm Tail cmt 5 1/2 Segment "A"	cas	sing inside the	32	Coupling cdc-htq	Joint 2.91		ctors	Length 23,831	B@s 2			Weigh 476,62
by stage % : Class 'C' tail cm Tail cmt 5 1/2 Segment	cas #/ft 20.00	sing inside the Grade	32 8 5/8 p 110			Collapse	<u>ctors</u> Burst 2.1	Length 23,831 0	-	a-B	a-C	Weigh 476,62 0
by stage % : Class 'C' tail cm Tail cmt 5 1/2 Segment "A"	cas #/ft 20.00	sing inside the Grade 1#/g mud, 30min Sfc Csg Test p	32 8 5/8 p 110 osig: 2,423	cdc-htq	2.91	Collapse 2.03	ctors Burst 2.1 Totals:	Length 23,831 0 23,831	-	a-B	a-C	Weigh 476,62 0 476,62
by stage % : class 'C' tail cm Tail cmt 51/2 Segment "A" "B"	cas #/ft 20.00 w/8.4	sing inside the Grade 1#/g mud, 30min Sfc Csg Test p The cement v	32 8 5/8 p 110 volume(s) are inter	cdc-htq	2.91 10081	Collapse 2.03 ft from su	ctors Burst 2.1 Totals: Irface or a	Length 23,831 0 23,831 200	-	a-B	a-C	Weigh 476,62 0 476,62 overlap.
by stage % : class 'C' tail cm Tail cmt 5 1/2 Segment "A" "B" Hole	ca: #/ft 20.00 w/8.4 Annular	sing inside the Grade I#/g mud, 30min Sfc Csg Test p The cement v 1 Stage	32 8 5/8 p 110 sosig: 2,423 rolume(s) are inter 1 Stage	cdc-htq nded to achieve a top of Min	2.91 10081 1 Stage	Collapse 2.03 ft from su Drilling	ctors Burst 2.1 Totals: Inface or a Calc	Length 23,831 0 23,831 200 Req'd	-	a-B	a-C	Weigh 476,62 0 476,62 overlap. Min Dis
by stage % : class 'C' tail cm Tail cmt 5 1/2 Segment "A" "B" Hole Size	cas #/ft 20.00 w/8.4 Annular Volume	sing inside the Grade 1#/g mud, 30min Sfc Csg Test p The cement v 1 Stage Cmt Sx	32 8 5/8 p 110 sig: 2,423 rolume(s) are inter 1 Stage CuFt Cmt	cdc-htq nded to achieve a top of Min Cu Ft	2.91 10081 1 Stage % Excess	Collapse 2.03 ft from su Drilling Mud Wt	ctors Burst 2.1 Totals: Irface or a	Length 23,831 0 23,831 200	-	a-B	a-C	Weigh 476,62 0 476,62 overlap. Min Dis Hole-Cp
by stage % : Class 'C' tail cm 5 1/2 Segment "A" "B" Hole Size 7 7/8	cas #/ft 20.00 w/8.4 Annular Volume 0.1733	sing inside the Grade I#/g mud, 30min Sfc Csg Test p The cement v 1 Stage	32 8 5/8 p 110 sosig: 2,423 rolume(s) are inter 1 Stage	cdc-htq nded to achieve a top of Min	2.91 10081 1 Stage	Collapse 2.03 ft from su Drilling	ctors Burst 2.1 Totals: Inface or a Calc	Length 23,831 0 23,831 200 Req'd	-	a-B	a-C	Weigh 476,62 0 476,62
by stage % : class 'C' tail cm 5 1/2 Segment "A" "B" Hole Size 7 7/8 class 'C' tail cm	cas #/ft 20.00 w/8.4 Annular Volume 0.1733	sing inside the Grade 1#/g mud, 30min Sfc Csg Test p The cement v 1 Stage Cmt Sx	32 8 5/8 p 110 sig: 2,423 rolume(s) are inter 1 Stage CuFt Cmt	cdc-htq nded to achieve a top of Min Cu Ft	2.91 10081 1 Stage % Excess	Collapse 2.03 ft from su Drilling Mud Wt	ctors Burst 2.1 Totals: Inface or a Calc	Length 23,831 0 23,831 200 Req'd	-	a-B	a-C	Weigh 476,62 0 476,62 overlap. Min Dis Hole-Cp
by stage % : class 'C' tail cm 5 1/2 Segment "A" "B" Hole Size 7 7/8 class 'C' tail cm #N/A	cas #/ft 20.00 w/8.4 Annular Volume 0.1733	sing inside the Grade 1#/g mud, 30min Sfc Csg Test p The cement v 1 Stage Cmt Sx	32 8 5/8 p 110 sig: 2,423 rolume(s) are inter 1 Stage CuFt Cmt 2946	cdc-htq nded to achieve a top of Min Cu Ft	2.91 10081 1 Stage % Excess	Collapse 2.03 ft from su Drilling Mud Wt 10.50	ctors Burst 2.1 Totals: Irface or a Calc MASP	Length 23,831 0 23,831 200 Req'd	2	a-B 3.53	a-C 3.40	Weigh 476,62 0 476,62 overlap. Min Dis Hole-Cp
5 1/2 Segment "A" "B" Hole Size 7 7/8 Class 'C' tail cm #N/A 0	ca: #/ft 20.00 w/8.4 Annular Volume 0.1733 itt yld > 1.35	sing inside the Grade I#/g mud, 30min Sfc Csg Test p The cement v 1 Stage Cmt Sx 1897	32 8 5/8 p 110 sig: 2,423 rolume(s) are inter 1 Stage CuFt Cmt	cdc-htq nded to achieve a top of Min Cu Ft 2383	2.91 10081 1 Stage % Excess 24	Collapse 2.03 ft from su Drilling Mud Wt 10.50 Design	Ctors Burst 2.1 Totals: Inface or a Calc MASP Factors	Length 23,831 0 23,831 200 Req'd BOPE	2	a-B 3.53	a-C 3.40	Weigh 476,62 0 476,62 overlap. Min Dis Hole-Cp 0.79
by stage % : Class 'C' tail cm 5 1/2 Segment "A" "B" Hole Size 7 7/8 Class 'C' tail cm #N/A 0 Segment	cas #/ft 20.00 w/8.4 Annular Volume 0.1733	sing inside the Grade 1#/g mud, 30min Sfc Csg Test p The cement v 1 Stage Cmt Sx	32 8 5/8 p 110 sig: 2,423 rolume(s) are inter 1 Stage CuFt Cmt 2946	cdc-htq nded to achieve a top of Min Cu Ft 2383	2.91 10081 1 Stage % Excess	Collapse 2.03 ft from su Drilling Mud Wt 10.50	ctors Burst 2.1 Totals: Irface or a Calc MASP	Length 23,831 0 23,831 200 Req'd BOPE	2	a-B 3.53	a-C 3.40	Weigh 476,62 0 476,62 overlap. Min Dis Hole-Cp 0.79 Weigh
y stage % : lass 'C' tail cm 5 1/2 Segment "A" "B" Hole Size 7 7/8 lass 'C' tail cm #N/A 0 Segment "A"	ca: #/ft 20.00 w/8.4 Annular Volume 0.1733 itt yld > 1.35	sing inside the Grade I#/g mud, 30min Sfc Csg Test p The cement v 1 Stage Cmt Sx 1897	32 8 5/8 p 110 sig: 2,423 rolume(s) are inter 1 Stage CuFt Cmt 2946	cdc-htq nded to achieve a top of Min Cu Ft 2383 Coupling 0.00	2.91 10081 1 Stage % Excess 24	Collapse 2.03 ft from su Drilling Mud Wt 10.50 Design	Ctors Burst 2.1 Totals: Inface or a Calc MASP Factors	Length 23,831 0 23,831 200 Req'd BOPE	2	a-B 3.53	a-C 3.40	Weigh 476,62 0 476,62 overlap. Min Dis Hole-Cp 0.79 Weigh 0
by stage % : class 'C' tail cm 5 1/2 Segment "A" "B" Hole Size 7 7/8 class 'C' tail cm #N/A 0 Segment	cat #/ft 20.00 w/8.4 Annular Volume 0.1733 it yld > 1.35 #/ft	sing inside the Grade #/g mud, 30min Sfc Csg Test p The cement v 1 Stage Cmt Sx 1897 Grade	32 8 5/8 p 110 p 110 psig: 2,423 rolume(s) are inter 1 Stage CuFi Cmt 2946 5 1/2	cdc-htq nded to achieve a top of Min Cu Ft 2383	2.91 10081 1 Stage % Excess 24	Collapse 2.03 ft from su Drilling Mud Wt 10.50 Design	ctors Burst 2.1 Totals: urface or a Calc MASP Factors Burst	Length 23,831 0 23,831 200 Req'd BOPE	2	a-B 3.53	a-C 3.40	Weigh 476,62 0 476,62 overlap. Min Dis Hole-Cp 0.79 0.79
y stage % : lass 'C' tail cm 5 1/2 Segment "A" "B" Hole Size 7 7/8 lass 'C' tail cm #N/A 0 Segment "A"	cat #/ft 20.00 w/8.4 Annular Volume 0.1733 it yld > 1.35 #/ft	sing inside the Grade #/g mud, 30min Sfc Csg Test p The cement v 1 Stage Cmt Sx 1897 Grade	32 8 5/8 p 110 sig: 2,423 rolume(s) are inter 1 Stage CuFt Cmt 2946 5 1/2	cdc-htq nded to achieve a top of Min Cu Ft 2383 Coupling 0.00 0.00	2.91 10081 1 Stage % Excess 24 #N/A	Collapse 2.03 ft from su Drilling Mud Wt 10.50 <u>Design</u> Collapse	ctors Burst 2.1 Totals: Inface or a Calc MASP Factors Burst	Length 23,831 0 23,831 200 Req'd BOPE Length 0 0	2	a-B 3.53	a-C 3.40 sing> a-C	Weigh 476,62 0 476,62 overlap. Min Dis Hole-Cp 0.79 0.79
y stage % : lass 'C' tail cm 5 1/2 Segment "A" "B" Hole Size 7 7/8 lass 'C' tail cm #N/A 0 Segment "A" "B"	ca: #/ft 20.00 w/8.4 Annular Volume 0.1733 ut yld > 1.35 #/ft w/8.4	sing inside the Grade #/g mud, 30min Sfc Csg Test p The cement v 1 Stage Cmt Sx 1897 Grade	32 8 5/8 p 110 sig: 2,423 rolume(s) are inter 1 Stage CuFt Cmt 2946 5 1/2 sig: alc below includes	cdc-htq nded to achieve a top of Min Cu Ft 2383 Coupling 0.00 0.00 0.00	2.91 10081 1 Stage % Excess 24 #N/A #N/A	Collapse 2.03 ft from su Drilling Mud Wt 10.50 <u>Design</u> Collapse	ctors Burst 2.1 Totals: Inface or a Calc MASP Factors Burst	Length 23,831 0 23,831 200 Req'd BOPE Length 0 0 0 %	2	a-B 3.53	a-C 3.40 sing> a-C	Weigh 476,62 overlap. Min Dis Hole-Cp 0.79 Weigh 0 0 0 0 0 0 0
by stage % : class 'C' tail cm 5 1/2 Segment "A" "B" Hole Size 7 7/8 class 'C' tail cm #N/A 0 Segment "A" "B" Hole	ca: #/ft 20.00 w/8.4 Annular Volume 0.1733 it yld > 1.35 #/ft w/8.4 Annular	sing inside the Grade #/g mud, 30min Sfc Csg Test p The cement V 1 Stage Cmt Sx 1897 Grade #/g mud, 30min Sfc Csg Test p Cmt vol cs 1 Stage	32 8 5/8 p 110 sig: 2,423 rolume(s) are inter 1 Stage CuFt Cmt 2946 5 1/2 sig: alc below includes 1 Stage	cdc-htq nded to achieve a top of Min Cu Ft 2383 Coupling 0.00 0.00 0.00 this csg, TOC intended Min	2.91 10081 1 Stage % Excess 24 #N/A 1 Stage	Collapse 2.03 ft from su Drilling Mud Wt 10.50 <u>Design</u> Collapse ft from su Drilling	ctors Burst 2.1 Totals: Inface or a Calc MASP Factors Burst Totals: Inface or a Calc	Length 23,831 0 23,831 200 Req'd BOPE Length 0 0 0 #N/A Req'd	2	a-B 3.53	a-C 3.40 sing> a-C	Weigh 476,62 overlap. Min Dis Hole-Cp 0.79 Weigh 0 0 0 overlap. Min Dis
by stage % : ilass 'C' tail cm 5 1/2 Segment "A" "B" Hole Size 7 7/8 lass 'C' tail cm #N/A 0 Segment "A" "B" Hole Size Hole Size	ca: #/ft 20.00 w/8.4 Annular Volume 0.1733 ut yld > 1.35 #/ft w/8.4	sing inside the Grade #/g mud, 30min Sfc Csg Test p The cement v 1 Stage Cmt Sx 1897 Grade #/g mud, 30min Sfc Csg Test p Cmt vol ca 1 Stage Cmt Sx	32 8 5/8 p 110 sig: 2,423 rolume(s) are inter 1 Stage CuFt Cmt 2946 5 1/2 sig: alc below includes 1 Stage CuFt Cmt	cdc-htq nded to achieve a top of Min Cu Ft 2383 Coupling 0.00 0.00 this csg, TOC intended Min Cu Ft	2.91 10081 1 Stage % Excess 24 #N/A 1 Stage % Excess	Collapse 2.03 ft from su Drilling Mud Wt 10.50 <u>Design</u> Collapse	ctors Burst 2.1 Totals: Inface or a Calc MASP Factors Burst	Length 23,831 0 23,831 200 Req'd BOPE Length 0 0 0 %	2	a-B 3.53	a-C 3.40 sing> a-C	Weigh 476,62 overlap. Min Dis Hole-Cp 0.79 Weigh 0 0 0 0 0 0 0
by stage % : ilass 'C' tail cm 5 1/2 Segment "A" "B" Hole Size 7 7/8 ilass 'C' tail cm #N/A 0 Segment "A" "B" Hole	ca: #/ft 20.00 w/8.4 Annular Volume 0.1733 it yld > 1.35 #/ft w/8.4 Annular	sing inside the Grade #/g mud, 30min Sfc Csg Test p The cement V 1 Stage Cmt Sx 1897 Grade #/g mud, 30min Sfc Csg Test p Cmt vol cs 1 Stage	32 8 5/8 p 110 sig: 2,423 rolume(s) are inter 1 Stage CuFt Cmt 2946 5 1/2 sig: alc below includes 1 Stage	cdc-htq nded to achieve a top of Min Cu Ft 2383 Coupling 0.00 0.00 this csg, TOC intended Min Cu Ft 0	2.91 10081 1 Stage % Excess 24 #N/A 1 Stage	Collapse 2.03 ft from su Drilling Mud Wt 10.50 <u>Design</u> Collapse ft from su Drilling	ctors Burst 2.1 Totals: Inface or a Calc MASP Factors Burst Totals: Inface or a Calc	Length 23,831 0 23,831 200 Req'd BOPE Length 0 0 0 #N/A Req'd	2	a-B 3.53	a-C 3.40 sing> a-C	Weigh 476,62 overlap. Min Dis Hole-Cp 0.79 Weigh 0 0 0 overlap. Min Dis

.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	368931
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By	Condition	Condition Date
pkautz	ALL PREVIOUS COA'S APPLY	9/10/2024

Action 368931

Page 59 of 59