ceived by OCD: 2/31/2024 10:52:33 AM U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		Sundry Print Repor
Well Name: CHINCOTEAGUE 8-32 FED STATE COM	Well Location: T25S / R32E / SEC 8 / SWNE / 32.1453463 / -103.6961035	County or Parish/State: LEA / NM
Well Number: 733H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM061873B	Unit or CA Name:	Unit or CA Number:
US Well Number: 3002552978	Operator: DEVON ENERGY PRODUCTION COMPANY LP	

Notice of Intent

Sundry ID: 2800579

EMOC

Type of Submission: Notice of Intent

Date Sundry Submitted: 07/13/2024

Date proposed operation will begin: 07/13/2024

Type of Action: APD Change Time Sundry Submitted: 04:03

Procedure Description: Devon Energy Production Co., L.P. (Devon) respectfully requests to change the BHL and spacing on the subject well. Devon is also updating surface casing/hole size and connections and requesting variances for break testing and offline cementing. Devon Energy Production Company, L.P. will circulate class C cement to surface behind the 10-3/4" casing. Please see attached updated C102, Drill plan, directional plan, spec sheets, break test and offline cementing variance. API: 30-025-52978 Permitted BHL: NWNE, 20 FNL, 1650 FEL, 32-24S-32E Proposed BHL: NWNE, 20 FNL, 2045 FEL, 32-24S-32E

NOI Attachments

Procedure Description

WA018437907_CHINCOTEAGUE_8_32_FED_STATE_COM_733H_WL_R1_SIGNED_20240713141749.pdf

Offline_Cementing___Variance_Request_20240713141745.pdf

break_test_variance_BOP_1_15_24_20240713141740.pdf

5.5_20__P110HP_CDC_HTQ_20240713141737.pdf

CHINCOTEAGUE_8_32_FED_STATE_COM_733H_20240713141738.pdf

CHINCOTEAGUE_8_32_FED_STATE_COM_733H_Directional_Plan_07_11_24_20240713141738.pdf

10.750_45.5lb_J55_BTC_20240713141738.pdf

8.625_32lb_P110_MOFXL_20240713141738.pdf

Well Name: CHINCOTEAGUE 8-32 FED STATE COM	Well Location: T25S / R32E / SEC 8 / SWNE / 32.1453463 / -103.6961035	County or Parish/State: LEAP 2 0			
Well Number: 733H	Type of Well: OIL WELL	Allottee or Tribe Name:			
Lease Number: NMNM061873B	Unit or CA Name:	Unit or CA Number:			
US Well Number:	Operator: DEVON ENERGY PRODUCTION COMPANY LP				
Conditions of Approva	al				
ecialist Review					
	_733H_Sundry_ID_2800579_2024073013	33913.pdf			
Operator					
crime for any person knowingly and will	prrect. Title 18 U.S.C. Section 1001 and Tit fully to make to any department or agency ions as to any matter within its jurisdiction. gulations requiring a	of the United States any false, fictition			
Operator Electronic Signature: CHEL	.SEY GREEN Si	gned on: JUL 13, 2024 02:14 PM			
Name: DEVON ENERGY PRODUCTIO	ON COMPANY LP				
Title: Regulatory Compliance Profession	onal				
Street Address: 333 WEST SHERIDA	NAVENUE				
City: OKLAHOMA CITY Sta	ate: OK				
Phone: (405) 228-8595					
Email address: CHELSEY.GREEN@D	DVN.COM				
Field					

Representative Name: Street Address: City: Phone: Email address:

State:

BLM Point of Contact

BLM POC Name: LONG VO BLM POC Phone: 5759885402 Disposition: Approved Signature: Long Vo BLM POC Title: Petroleum EngineerBLM POC Email Address: LVO@BLM.GOVDisposition Date: 07/30/2024

Zip:

Received by OCD: 7/31/2024 10:52:33 AM

eceived by OCD. 77517202	14 10.32.33 AM			I uge 5 0j	
Form 3160-5 (June 2019)	UNITED STAT DEPARTMENT OF THE BUREAU OF LAND MAN	INTERIOR	O	DRM APPROVED MB No. 1004-0137 res: October 31, 2021	
Do not use t		ORTS ON WELLS to drill or to re-enter an APD) for such proposals.	6. If Indian, Allottee or	Tribe Name	
SUBM	IT IN TRIPLICATE - Other inst	ructions on page 2	7. If Unit of CA/Agree	ment, Name and/or No.	
1. Type of Well	Gas Well Other		8. Well Name and No.		
2. Name of Operator			9. API Well No.		
3a. Address		3b. Phone No. <i>(include area code)</i>	10. Field and Pool or E	10. Field and Pool or Exploratory Area	
4. Location of Well (Footage, Sec	., T.,R.,M., or Survey Description	n)	11. Country or Parish, S	State	
12.	CHECK THE APPROPRIATE I	BOX(ES) TO INDICATE NATURE (J DF NOTICE, REPORT OR OTH	ER DATA	
TYPE OF SUBMISSION		TYPI	E OF ACTION		
Notice of Intent	Acidize	Deepen Hydraulic Fracturing	Production (Start/Resume) Reclamation	Water Shut-Off Well Integrity	
Subsequent Report	Casing Repair Change Plans	New Construction	Recomplete Temporarily Abandon	Other	
Final Abandonment Notice		= .	Water Disposal		
the proposal is to deepen dire the Bond under which the wo completion of the involved op	ctionally or recomplete horizonta rk will be perfonned or provide the perations. If the operation results	Ily, give subsurface locations and me he Bond No. on file with BLM/BIA. in a multiple completion or recomple	asured and true vertical depths of Required subsequent reports mus tion in a new interval, a Form 31	k and approximate duration thereof. If f all pertinent markers and zones. Attach t be filed within 30 days following 60-4 must be filed once testing has been the operator has detennined that the site	

14. I hereby certify that the foregoing is true and correct. Name (<i>Printed/Typed</i>)			
1	Title		
Signature	Date		
Signature [
THE SPACE FOR FEDER	RAL OR STATE OF	FICE USE	
Approved by			
	Title	Date	
Conditions of approval, if any, are attached. Approval of this notice does not warrant of certify that the applicant holds legal or equitable title to those rights in the subject leas which would entitle the applicant to conduct operations thereon.			
Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any any false, fictitious or fraudulent statements or representations as to any matter within		llfully to make to any department or agency of the Unite	ed States

(Instructions on page 2)

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

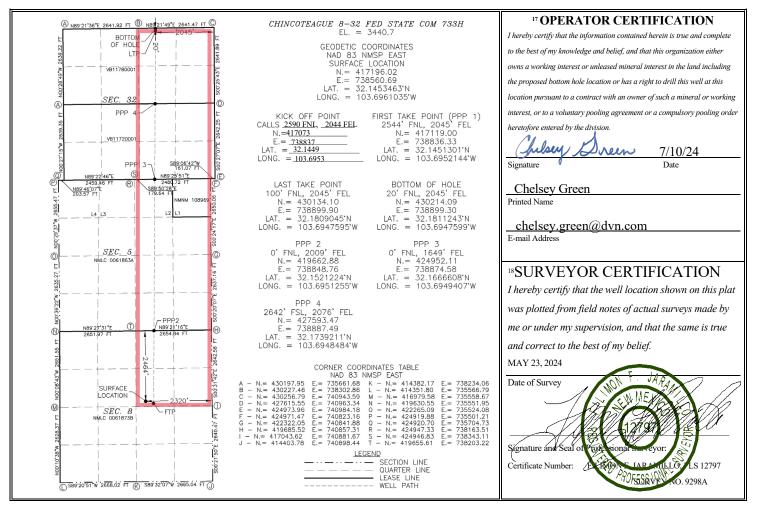
The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

Additional Information


Location of Well

0. SHL: SWNE / 2464 FNL / 2320 FEL / TWSP: 25S / RANGE: 32E / SECTION: 8 / LAT: 32.1453463 / LONG: -103.6961035 (TVD: 0 feet, MD: 0 feet) PPP: SWNE / 2544 FNL / 1650 FEL / TWSP: 25S / RANGE: 32E / SECTION: 8 / LAT: 32.1451362 / LONG: -103.6939384 (TVD: 11754 feet, MD: 11812 feet) PPP: SWSE / 156 FSL / 1612 FEL / TWSP: 25S / RANGE: 32E / SECTION: 5 / LAT: 32.1525465 / LONG: -103.6938315 (TVD: 12237 feet, MD: 14800 feet) BHL: NWNE / 20 FNL / 1650 FEL / TWSP: 24S / RANGE: 32E / SECTION: 32 / LAT: 32.1811302 / LONG: -103.6934838 (TVD: 12330 feet, MD: 25198 feet) State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

			WELL LC			REAGE DEDIC					
¹ A	PI Number	r		² Pool Code	e	³ Pool Name					
30-025	-52978		98270 WC-025 G-08 S253216D;UPPER WOLFCAMP								
⁴ Property C	ode				⁵ Property	Name			⁶ Well Number		
326213			CHINCOTEAGUE 8-32 FED STATE COM 733H								
⁷ OGRID N	lo.				⁸ Operator	Name			⁹ Elevation		
6137		DEVON ENERGY PRODUCTION COMPANY, L.P. 3440.7									
						e Location					
UL or lot no.	Section	Townshi	ip Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West l	ine County		
G	8	25 S	32 E		2464	NORTH	2320	EAST	LEA		
			пF	Bottom H	Iole Location	If Different Fr	om Surface		· · · · ·		
UL or lot no.	Section	Townshi	ip Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West l	ine County		
В	32	24 S	32 E		20	NORTH	2045	EAST	LEA		
12 Dedicated Acres	¹³ Joint	or Infill	¹⁴ Consolidation	n Code			¹⁵ Order No.				
800.83											

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Received by OCD: 7/31/2024 10:52:33 AM

Х

Intent	
--------	--

API #

30-025-52978			
Operator Name:		Property Name:	Well Number
DEVON ENERGY P	RODUCTION	CHINCOTEAGUE 8-32 FED STATE	733H
COMPANY, L.P.		СОМ	

Kick Off Point (KOP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
G	8	25S	32E		2590	NORTH	2044	EAST	LEA
Latitu	de				Longitude				NAD
	32.14	49			10	03.6953			83

First Take Point (FTP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
G	8	25S	32E		2544	NORTH	2045	EAST	LEA
Latitu 32.1	^{de} 45130	1			Longitude 103.6952	2144			NAD 83

Last Take Point (LTP)

UL B	Section 32	Township 24S	Range 32E	Lot	Feet 100	From N/S NORTH	Feet 2045	From E/W EAST	County LEA
Latitude				Longituc	le		NAD		
32.1	80904	5			103.6	947595			83

Is this well the defining well for the Horizontal Spacing Unit?

Is this well an infill well?

Y

If infill is yes please provide API if available, Operator Name and well number for Defining well for Horizontal Spacing Unit.

 API #

 30-025-53005

 Operator Name:

 Property Name:

 DEVON ENERGY PRODUCTION COMPANY, L.P.

 CHINCOTEAGUE 8-32 FED STATE COM

KZ 06/29/2018

Offline Cementing

Variance Request

Devon Energy requests to offline cement on intermediate strings that are set in formations shallower than the Wolfcamp. Prior to commencing offline cementing operations, the well will be monitored for any abnormal pressures and confirmed to be static. A dual manifold system (equipped with chokes) for the returns will also be utilized as a redundancy. All equipment used for offline cementing will have a minimum 5M rating to match intermediate sections' 5M BOPE requirements.

Section 2 - Blowout Preventer Testing Procedure

Variance Request

Devon Energy requests to only test BOP connection breaks after drilling out of surface casing and while skidding between wells which conforms to API Standard 53 and industry standards. This test will include the Top Pipe Rams, HCR, Kill Line Check Valve, QDC (quick disconnect to wellhead) and Shell of the 10M BOPE to 5M for 10 minutes. If a break to the flex hose that runs to the choke manifold is required due to repositioning from a skid, the HCR will remain open during the shell test to include that additional break. The variance only pertains to intermediate hole-sections and no deeper than the Bone Springs Formation where 5M BOP tests are required. The initial BOP test will follow 43 CFR 3172, and subsequent tests following a skid will only test connections that are broken. The annular preventer will be tested to 100% working pressure. This variance will meet or exceed 43 CFR 3172 per the following: Devon Energy will perform a full BOP test per 43 CFR 3172 before drilling out of the intermediate casing string(s) and starting the production hole, before starting any hole section that requires a 10M test, before the expiration of the allotted 14-days for 5M intermediate batch drilling or when the drilling rig is fully mobilized to a new well pad, whichever is sooner. We will utilize a 200' TVD tolerance between intermediate shoes as the cutoff for a full BOP test. The BLM will be contacted 4hrs prior to a BOPE test. The BLM will be notified if and when a well control event is encountered. Break test will be a 14 day interval and not a 30 day full BOPE test interval. If in the event break testing is not utilized, then a full BOPE test would be conducted.

1. Well Control Response:

1. Primary barrier remains fluid

2. In the event of an influx due to being underbalanced and after a realized gain or flow, the order of closing BOPE is as follows:

- a) Annular first
- b) If annular were to not hold, Upper pipe rams second (which were tested on the skid BOP test)
- c) If the Upper Pipe Rams were to not hold, Lower Pipe Rams would be third

Page 11 of 59

U. S. Steel Tubular Products 5.500" 20.00lb/ft (0.361" Wall) P110 HP USS-CDC HTQ[®]

ECHANICAL PROPERTIES	Pipe	USS-CDC HTQ [®]		
Minimum Yield Strength	125,000		psi	
Maximum Yield Strength	140,000		psi	
Minimum Tensile Strength	130,000		psi	
DIMENSIONS	Pipe	USS-CDC $HTQ^{\mathbb{R}}$		
Outside Diameter	5.500	6.300	in.	
Wall Thickness	0.361		in.	
Inside Diameter	4.778	4.778	in.	
Standard Drift	4.653	4.653	in.	
Alternate Drift			in.	
Nominal Linear Weight, T&C	20.00		lb/ft	
Plain End Weight	19.83		lb/ft	
ECTION AREA	Pipe	USS-CDC HTQ [®]		
Critical Area	5.828	5.828	sq. in.	
Joint Efficiency		97.0	%	
ERFORMANCE	Pipe	USS-CDC HTQ [®]		
Minimum Collapse Pressure	13,150	13,150	psi	
External Pressure Leak Resistance		10,520	psi	
Minimum Internal Yield Pressure	14,360	14,360	psi	
Minimum Pipe Body Yield Strength	729,000		lb	
Joint Strength		707,000	lb	
Compression Rating		424,000	lb	
Reference Length		23,567	ft	
Maximum Uniaxial Bend Rating		60.6	deg/100 ft	
IAKE-UP DATA	Pipe	USS-CDC HTQ [®]		
Make-Up Loss		4.63	in.	
Minimum Make-Up Torque		14,500	ft-lb	
Maximum Make-Up Torque		20,500	ft-lb	
Connection Yield Torque		25,300	ft-lb	

Notes

1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness and Specified Minimum Yield Strength (SMYS).

2. Uniaxial bending rating shown is structural only, and equal to compression efficiency.

3. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).

4. Reference length is calculated by joint strength divided by nominal threaded and coupled weight with 1.5 safety factor.

5. Connection external pressure leak resistance has been verified to 80% API pipe body collapse pressure following the guidelines of API 5C5 Cal II.

Legal Notice

USS - CDC HTQ[®] (High Torque Casing Drilling Connection) is a trademark of U. S. Steel Corporation. This product is a modified API Buttress threaded and coupled connection designed for drilling with casing applications. All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380 1-877-893-9461 connections@uss.com www.usstubular.com

CHINCOTEAGUE 8-32 FED STATE COM 733H

1. Geologic Formations

TVD of target	12330	Pilot hole depth	N/A
MD at TD:	25138	Deepest expected fresh water	

Basin

	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	739		
Salt	1104		
Base of Salt	4373		
Delaware	4561		
Cherry Canyon	5769		
Brushy Canyon	6690		
1st Bone Spring Lime	8768		
Bone Spring 1st	9857		
Bone Spring 2nd	10075		
3rd Bone Spring Lime	10581		
Bone Spring 3rd	11332		
Wolfcamp	11754		

*H2S, water flows, loss of circulation, abnormal pressures, etc.

CHINCOTEAGUE 8-32 FED STATE COM 733H

	Wt Wt				Casing	Interval	Casing Interval		
Hole Size	Csg. Size	(PPF)	Grade	Conn	From (MD)	To (MD)	From (TVD)	To (TVD)	
14 3/4	10 3/4	45 1/2	J-55	BTC	0	764	0	764	
9 7/8	8 5/8	32	P110HSCY	MOFXL	0	11569	0	11569	
7 7/8	5 1/2	20	P110HP	CDC-HTQ	0	25138	0	12330	

2. Casing Program (Primary Design)

•All casing strings will be tested in accordance with 43 CFR 3172. Must have table for contingency casing.

3. Cementing Program (Primary Design)

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures.

Casing	# Sks	тос	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	469	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	489	Surf	13.0	2.3	2nd State: Bradenhead Squeeze - Lead: Class C Cement + additives
Int I	563	6713	13.2	1.44	Tail: Class H / C + additives
Production	117	9669	9	3.27	Lead: Class H /C + additives
Froduction	1783	11669	13.2	1.44	Tail: Class H / C + additives

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Prod	10%

CHINCOTEAGUE 8-32 FED STATE COM 733H

.

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	T	уре	~	Tested to:
			Anı	nular	X	50% of rated working pressure
Int 1	13-5/8"	5M		d Ram	Х	
Int I	15 5/0	5101	*	e Ram		5M
			Doub	le Ram	X	5101
			Other*			
			Annular (5M)		Х	100% of rated working pressure
Production	13-5/8"	10M	Blind Ram		Х	- 10M
Tioduction		10101	Pipe Ram			
			Double Ram		Х	10111
			Other*			
	Annular (5M)					
			Blind Ram			
			Pipe Ram			
			Double Ram			
			Other*			
N A variance is requested for	the use of a	a diverter on	the surface	casing. See	attached for	schematic.
Y A variance is requested to a	run a 5 M ar	nnular on a	10M system			

4. Pressure Control Equipment (Three String Design)

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)		
Surface	FW Gel	8.5-9		
Intermediate	DBE / Cut Brine	10-10.5		
Production	OBM	10-10.5		

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging, (Coring and Testing
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the
Х	Completion Rpeort and sbumitted to the BLM.
	No logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain.
	Coring? If yes, explain.

Addition	al logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
Х	CBL	Production casing
Х	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?						
BH pressure at deepest TVD	6732						
Abnormal temperature	No						
M'_{1}							

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

 Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of 43 CFR 3176. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

 N
 H2S is present

Y H2S plan attached.

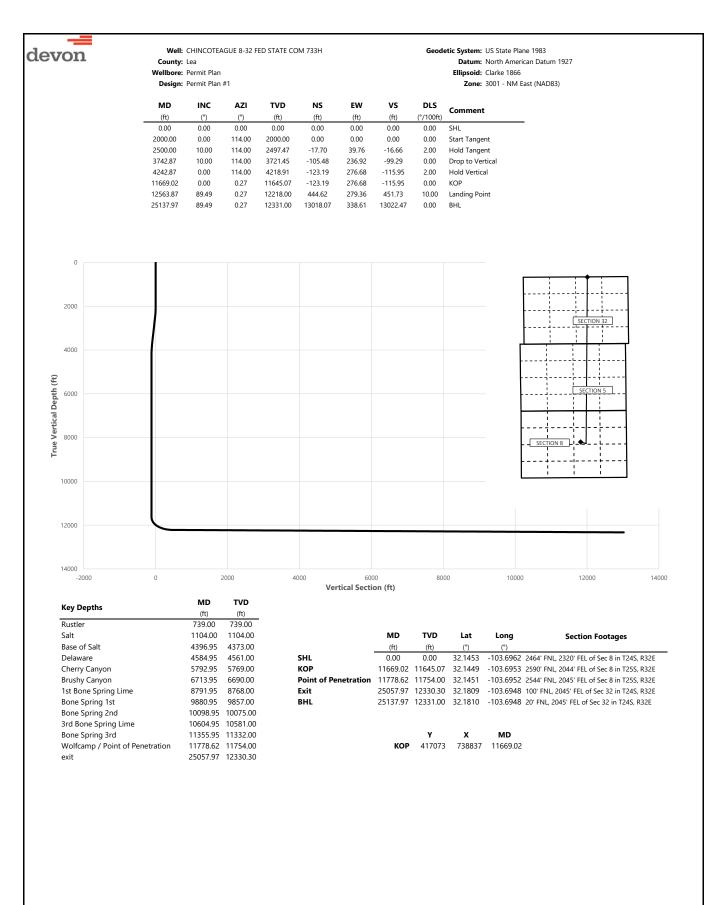
8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially


- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (43 CFR 3172, all COAs and NMOCD regulations).

 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.

- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments

X Directional Plan Other, describe

ı		County:			ED STATE CO	M 733H			Geodetic System: US State Plane 1983 Datum: North American Datum 1 Ellipsoid: Clarke 1866
			Permit Plan						Zone: 3001 - NM East (NAD83)
	MD	INC	AZI	TVD	NS	EW	vs	DLS	Comment
	(ft) 0.00	(°) 0.00	(°) 0.00	(ft) 0.00	(ft) 0.00	(ft) 0.00	(ft) 0.00	(°/100ft) 0.00	SHL
	0.00	0.00	0.00 114.00	100.00	0.00	0.00	0.00	0.00	SHL
	00.00	0.00	114.00	200.00	0.00	0.00	0.00	0.00	
	00.00	0.00	114.00	300.00	0.00	0.00	0.00	0.00	
	00.00	0.00	114.00	400.00	0.00	0.00	0.00	0.00	
5	00.00	0.00	114.00	500.00	0.00	0.00	0.00	0.00	
	00.00	0.00	114.00	600.00	0.00	0.00	0.00	0.00	
	00.00	0.00	114.00	700.00	0.00	0.00	0.00	0.00	
	39.00	0.00	114.00	739.00	0.00	0.00	0.00	0.00	Rustler
	00.00 00.00	0.00 0.00	114.00 114.00	800.00 900.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	
	00.00	0.00	114.00	1000.00	0.00	0.00	0.00	0.00	
	100.00	0.00	114.00	1100.00	0.00	0.00	0.00	0.00	
	104.00	0.00	114.00	1104.00	0.00	0.00	0.00	0.00	Salt
	200.00	0.00	114.00	1200.00	0.00	0.00	0.00	0.00	
13	300.00	0.00	114.00	1300.00	0.00	0.00	0.00	0.00	
	400.00	0.00	114.00	1400.00	0.00	0.00	0.00	0.00	
	500.00	0.00	114.00	1500.00	0.00	0.00	0.00	0.00	
	500.00	0.00	114.00	1600.00	0.00	0.00	0.00	0.00	
	700.00	0.00	114.00	1700.00	0.00	0.00	0.00	0.00	
	300.00 900.00	0.00 0.00	114.00 114.00	1800.00 1900.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	
	00.00	0.00	114.00	2000.00	0.00	0.00	0.00	0.00	Start Tangent
	100.00	2.00	114.00	2099.98	-0.71	1.59	-0.67	2.00	Start rangent
	200.00	4.00	114.00	2199.84	-2.84	6.38	-2.67	2.00	
	300.00	6.00	114.00	2299.45	-6.38	14.34	-6.01	2.00	
24	400.00	8.00	114.00	2398.70	-11.34	25.47	-10.67	2.00	
	500.00	10.00	114.00	2497.47	-17.70	39.76	-16.66	2.00	Hold Tangent
	500.00	10.00	114.00	2595.95	-24.77	55.62	-23.31	0.00	
	700.00	10.00	114.00	2694.43	-31.83	71.49	-29.96	0.00	
	300.00	10.00	114.00	2792.91	-38.89	87.35	-36.61	0.00	
	900.00 900.00	10.00 10.00	114.00 114.00	2891.39 2989.87	-45.95 -53.02	103.21 119.08	-43.25 -49.90	0.00 0.00	
	100.00	10.00	114.00	3088.35	-60.08	134.94	-49.90	0.00	
	200.00	10.00	114.00	3186.83	-67.14	150.80	-63.20	0.00	
	300.00	10.00	114.00	3285.31	-74.21	166.67	-69.85	0.00	
34	400.00	10.00	114.00	3383.79	-81.27	182.53	-76.49	0.00	
35	500.00	10.00	114.00	3482.27	-88.33	198.40	-83.14	0.00	
	500.00	10.00	114.00	3580.75	-95.39	214.26	-89.79	0.00	
	700.00	10.00	114.00	3679.23	-102.46	230.12	-96.44	0.00	
	742.87	10.00	114.00	3721.45	-105.48	236.92	-99.29	0.00	Drop to Vertical
	300.00	8.86	114.00	3777.81	-109.29	245.47	-102.87	2.00	
	900.00 900.00	6.86 4.86	114.00 114.00	3876.87 3976.34	-114.85 -119.00	257.96 267.28	-108.10 -112.01	2.00 2.00	
	100.00	4.86 2.86	114.00	3976.34 4076.11	-119.00	267.28	-112.01	2.00	
	200.00	0.86	114.00	4076.05	-123.06	276.39	-114.59	2.00	
	242.87	0.00	114.00	4218.91	-123.19	276.68	-115.95	2.00	Hold Vertical
	300.00	0.00	0.27	4276.05	-123.19	276.68	-115.95	0.00	
43	396.95	0.00	0.27	4373.00	-123.19	276.68	-115.95	0.00	Base of Salt
	400.00	0.00	0.27	4376.05	-123.19	276.68	-115.95	0.00	
	500.00	0.00	0.27	4476.05	-123.19	276.68	-115.95	0.00	
	584.95	0.00	0.27	4561.00	-123.19	276.68	-115.95	0.00	Delaware
	500.00	0.00	0.27	4576.05	-123.19	276.68	-115.95	0.00	
	700.00	0.00	0.27	4676.05 4776.05	-123.19	276.68	-115.95	0.00	
	300.00 900.00	0.00 0.00	0.27 0.27	4776.05 4876.05	-123.19 -123.19	276.68 276.68	-115.95 -115.95	0.00 0.00	
	00.00	0.00	0.27	4876.05	-123.19	276.68	-115.95	0.00	
	100.00	0.00	0.27	5076.05	-123.19	276.68	-115.95	0.00	
	200.00	0.00	0.27	5176.05	-123.19	276.68	-115.95	0.00	
	300.00	0.00	0.27	5276.05	-123.19	276.68	-115.95	0.00	
	400.00	0.00	0.27	5376.05	-123.19	276.68	-115.95	0.00	
	500.00	0.00	0.27	5476.05	-123.19	276.68	-115.95	0.00	
	500.00	0.00	0.27	5576.05	-123.19	276.68	-115.95	0.00	
	700.00	0.00	0.27	5676.05	-123.19	276.68	-115.95	0.00	
	792.95	0.00	0.27	5769.00	-123.19	276.68	-115.95	0.00	Cherry Canyon
	300.00	0.00	0.27	5776.05	-123.19	276.68	-115.95	0.00	
	900.00	0.00	0.27	5876.05	-123.19	276.68	-115.95	0.00	
	00.00 100.00	0.00 0.00	0.27 0.27	5976.05 6076.05	-123.19 -123.19	276.68 276.68	-115.95 -115.95	0.00	
	200.00	0.00	0.27	6076.05 6176.05	-123.19 -123.19	276.68	-115.95	0.00 0.00	
02	0	0.00	0.21	0110.00	123.13	210.00	. 13.33	0.00	

. —		Walls	CHINCOT	AGUE 8-32 FE		М 732Ц			Geodetic System: US State Plane 1983
devon		County:			U JIAIE CU	11000			Datum: North American Datum 1927
		Wellbore:		n					Ellipsoid: Clarke 1866
		Design:	Permit Pla	n #1					Zone: 3001 - NM East (NAD83)
	MD	INC	AZI	TVD	NS	EW	VS	DLS	Comment
	(ft) 6300.00	(°) 0.00	(°) 0.27	(ft) 6276.05	(ft) -123.19	(ft) 276.68	(ft) -115.95	(°/100ft) 0.00	
	6400.00	0.00	0.27	6376.05	-123.19	276.68	-115.95	0.00	
	6500.00	0.00	0.27	6476.05	-123.19	276.68	-115.95	0.00	
	6600.00	0.00	0.27	6576.05	-123.19	276.68	-115.95	0.00	
	6700.00	0.00	0.27	6676.05	-123.19	276.68	-115.95	0.00	
	6713.95	0.00	0.27	6690.00	-123.19	276.68	-115.95	0.00	Brushy Canyon
	6800.00 6900.00	0.00 0.00	0.27 0.27	6776.05 6876.05	-123.19 -123.19	276.68 276.68	-115.95 -115.95	0.00 0.00	
	7000.00	0.00	0.27	6976.05	-123.19	276.68	-115.95	0.00	
	7100.00	0.00	0.27	7076.05	-123.19	276.68	-115.95	0.00	
	7200.00	0.00	0.27	7176.05	-123.19	276.68	-115.95	0.00	
	7300.00	0.00	0.27	7276.05	-123.19	276.68	-115.95	0.00	
	7400.00	0.00	0.27	7376.05	-123.19	276.68	-115.95	0.00	
	7500.00	0.00	0.27	7476.05	-123.19	276.68	-115.95	0.00	
	7600.00 7700.00	0.00 0.00	0.27 0.27	7576.05 7676.05	-123.19 -123.19	276.68 276.68	-115.95 -115.95	0.00 0.00	
	7800.00	0.00	0.27	7776.05	-123.19	276.68	-115.95	0.00	
	7900.00	0.00	0.27	7876.05	-123.19	276.68	-115.95	0.00	
	8000.00	0.00	0.27	7976.05	-123.19	276.68	-115.95	0.00	
	8100.00	0.00	0.27	8076.05	-123.19	276.68	-115.95	0.00	
	8200.00	0.00	0.27	8176.05	-123.19	276.68	-115.95	0.00	
	8300.00	0.00	0.27	8276.05	-123.19	276.68	-115.95	0.00	
	8400.00 8500.00	0.00 0.00	0.27 0.27	8376.05 8476.05	-123.19 -123.19	276.68 276.68	-115.95 -115.95	0.00 0.00	
	8600.00	0.00	0.27	8576.05	-123.19	276.68	-115.95	0.00	
	8700.00	0.00	0.27	8676.05	-123.19	276.68	-115.95	0.00	
	8791.95	0.00	0.27	8768.00	-123.19	276.68	-115.95	0.00	1st Bone Spring Lime
	8800.00	0.00	0.27	8776.05	-123.19	276.68	-115.95	0.00	
	8900.00	0.00	0.27	8876.05	-123.19	276.68	-115.95	0.00	
	9000.00	0.00	0.27	8976.05	-123.19	276.68	-115.95	0.00	
	9100.00 9200.00	0.00 0.00	0.27 0.27	9076.05 9176.05	-123.19 -123.19	276.68 276.68	-115.95 -115.95	0.00 0.00	
	9300.00	0.00	0.27	9276.05	-123.19	276.68	-115.95	0.00	
	9400.00	0.00	0.27	9376.05	-123.19	276.68	-115.95	0.00	
	9500.00	0.00	0.27	9476.05	-123.19	276.68	-115.95	0.00	
	9600.00	0.00	0.27	9576.05	-123.19	276.68	-115.95	0.00	
	9700.00	0.00	0.27	9676.05	-123.19	276.68	-115.95	0.00	
	9800.00 9880.95	0.00 0.00	0.27 0.27	9776.05 9857.00	-123.19 -123.19	276.68 276.68	-115.95 -115.95	0.00 0.00	Bone Spring 1st
	9900.00	0.00	0.27	9876.05	-123.19	276.68	-115.95	0.00	bone spring ist
	10000.00	0.00	0.27	9976.05	-123.19	276.68	-115.95	0.00	
	10098.95	0.00	0.27	10075.00	-123.19	276.68	-115.95	0.00	Bone Spring 2nd
	10100.00	0.00	0.27	10076.05	-123.19	276.68	-115.95	0.00	
	10200.00	0.00	0.27	10176.05	-123.19	276.68	-115.95	0.00	
	10300.00 10400.00	0.00 0.00	0.27 0.27	10276.05 10376.05	-123.19 -123.19	276.68 276.68	-115.95 -115.95	0.00 0.00	
	10500.00	0.00	0.27	10476.05	-123.19	276.68	-115.95	0.00	
	10600.00	0.00	0.27	10576.05	-123.19	276.68	-115.95	0.00	
	10604.95	0.00	0.27	10581.00	-123.19	276.68	-115.95	0.00	3rd Bone Spring Lime
	10700.00	0.00	0.27	10676.05	-123.19	276.68	-115.95	0.00	
	10800.00	0.00	0.27	10776.05	-123.19	276.68	-115.95	0.00	
	10900.00 11000.00	0.00 0.00	0.27 0.27	10876.05 10976.05	-123.19 -123.19	276.68 276.68	-115.95 -115.95	0.00 0.00	
	11100.00	0.00	0.27	11076.05	-123.19	276.68	-115.95	0.00	
	11200.00	0.00	0.27	11176.05	-123.19	276.68	-115.95	0.00	
	11300.00	0.00	0.27	11276.05	-123.19	276.68	-115.95	0.00	
	11355.95	0.00	0.27	11332.00	-123.19	276.68	-115.95	0.00	Bone Spring 3rd
	11400.00	0.00	0.27	11376.05	-123.19	276.68	-115.95	0.00	
	11500.00	0.00	0.27	11476.05	-123.19	276.68	-115.95	0.00	
	11600.00 11669.02	0.00 0.00	0.27 0.27	11576.05 11645.07	-123.19 -123.19	276.68 276.68	-115.95 -115.95	0.00 0.00	KOP
	11700.00	3.10	0.27	11676.03	-123.19	276.68	-115.95	10.00	
	11778.62	10.96	0.27	11754.00	-112.74	276.73	-105.50	10.00	Wolfcamp / Point of Penetration
	11800.00	13.10	0.27	11774.91	-108.28	276.75	-101.05	10.00	
	11900.00	23.10	0.27	11869.84	-77.25	276.90	-70.03	10.00	
	12000.00	33.10	0.27	11957.94	-30.22	277.12	-23.00	10.00	
	12100.00	43.10	0.27	12036.54	31.41 105 74	277.41	38.61	10.00	
	12200.00 12300.00	53.10 63.10	0.27 0.27	12103.24 12156.02	105.74 190.53	277.76 278.16	112.93 197.70	10.00 10.00	
	12400.00	73.10	0.27	12193.27	283.19	278.60	290.34	10.00	

_									
		Well:	CHINCOT	AGUE 8-32 FE	D STATE CO	M 733H			Geodetic System: US State Plane 1983
L		County:	Lea						Datum: North American Datum
		Wellbore:							Ellipsoid: Clarke 1866
		Design:	Permit Pla	n #1					Zone: 3001 - NM East (NAD83)
	MD	INC	AZI	TVD	NS	EW	vs	DLS	Comment
_	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	
	12500.00 12563.87	83.10 89.49	0.27 0.27	12213.87 12218.00	380.92 444.62	279.06 279.36	388.04 451.73	10.00 10.00	Landing Point
	12600.00	89.49	0.27	12218.32	480.75	279.53	487.85	0.00	
	12700.00	89.49	0.27	12219.22	580.74	280.00	587.83	0.00	
	12800.00	89.49	0.27	12220.12	680.74	280.47	687.80	0.00	
	12900.00	89.49	0.27	12221.02	780.73	280.94	787.77	0.00	
	13000.00	89.49	0.27	12221.92	880.73	281.41	887.75	0.00	
	13100.00	89.49	0.27	12222.82	980.72	281.88	987.72	0.00	
	13200.00	89.49	0.27	12223.72	1080.72	282.36	1087.69	0.00	
	13300.00 13400.00	89.49 89.49	0.27 0.27	12224.62 12225.52	1180.71 1280.71	282.83 283.30	1187.67 1287.64	0.00 0.00	
	13500.00	89.49	0.27	12226.41	1380.70	283.77	1387.61	0.00	
	13600.00	89.49	0.27	12227.31	1480.70	284.24	1487.59	0.00	
	13700.00	89.49	0.27	12228.21	1580.69	284.71	1587.56	0.00	
	13800.00	89.49	0.27	12229.11	1680.68	285.18	1687.53	0.00	
	13900.00	89.49	0.27	12230.01	1780.68	285.65	1787.51	0.00	
	14000.00	89.49	0.27	12230.91	1880.67	286.13	1887.48	0.00	
	14100.00	89.49 89.49	0.27	12231.81 12232 71	1980.67 2080.66	286.60 287.07	1987.45 2087.43	0.00	
	14200.00 14300.00	89.49 89.49	0.27 0.27	12232.71 12233.60	2080.66 2180.66	287.07 287.54	2087.43 2187.40	0.00 0.00	
	14300.00	89.49 89.49	0.27	12233.00	2180.66	287.54	2187.40	0.00	
	14500.00	89.49	0.27	12235.40	2380.65	288.48	2387.35	0.00	
	14600.00	89.49	0.27	12236.30	2480.64	288.95	2487.32	0.00	
	14700.00	89.49	0.27	12237.20	2580.64	289.42	2587.29	0.00	
	14800.00	89.49	0.27	12238.10	2680.63	289.90	2687.27	0.00	
	14900.00	89.49	0.27	12239.00	2780.63	290.37	2787.24	0.00	
	15000.00 15100.00	89.49 89.49	0.27 0.27	12239.90 12240.79	2880.62 2980.62	290.84 291.31	2887.21 2987.19	0.00 0.00	
	15200.00	89.49 89.49	0.27	12240.79	3080.62	291.51	3087.16	0.00	
	15300.00	89.49	0.27	12242.59	3180.61	292.25	3187.13	0.00	
	15400.00	89.49	0.27	12243.49	3280.60	292.72	3287.10	0.00	
	15500.00	89.49	0.27	12244.39	3380.60	293.19	3387.08	0.00	
	15600.00	89.49	0.27	12245.29	3480.59	293.66	3487.05	0.00	
	15700.00	89.49	0.27	12246.19	3580.59	294.14	3587.02	0.00	
	15800.00	89.49	0.27	12247.09	3680.58	294.61	3687.00	0.00	
	15900.00 16000.00	89.49 89.49	0.27 0.27	12247.99 12248.88	3780.58 3880.57	295.08 295.55	3786.97 3886.94	0.00 0.00	
	16100.00	89.49	0.27	12249.78	3980.57	296.02	3986.92	0.00	
	16200.00	89.49	0.27	12250.68	4080.56	296.49	4086.89	0.00	
	16300.00	89.49	0.27	12251.58	4180.56	296.96	4186.86	0.00	
	16400.00	89.49	0.27	12252.48	4280.55	297.43	4286.84	0.00	
	16500.00	89.49	0.27	12253.38	4380.55	297.91	4386.81	0.00	
	16600.00	89.49	0.27	12254.28	4480.54	298.38	4486.78	0.00	
	16700.00 16800.00	89.49 89.49	0.27 0.27	12255.18 12256.07	4580.54 4680.53	298.85 299.32	4586.76 4686 73	0.00 0.00	
	16800.00	89.49 89.49	0.27	12256.07 12256.97	4680.53 4780.53	299.32 299.79	4686.73 4786.70	0.00	
	17000.00	89.49	0.27	12257.87	4880.52	300.26	4886.68	0.00	
	17100.00	89.49	0.27	12258.77	4980.52	300.73	4986.65	0.00	
	17200.00	89.49	0.27	12259.67	5080.51	301.20	5086.62	0.00	
	17300.00	89.49	0.27	12260.57	5180.50	301.68	5186.60	0.00	
	17400.00	89.49	0.27	12261.47	5280.50	302.15	5286.57	0.00	
	17500.00	89.49 89.49	0.27	12262.37	5380.49	302.62	5386.54	0.00	
	17600.00 17700.00	89.49 89.49	0.27 0.27	12263.26 12264.16	5480.49 5580.48	303.09 303.56	5486.52 5586.49	0.00 0.00	
	17700.00	89.49 89.49	0.27	12264.16	5580.48 5680.48	303.56	5586.49 5686.46	0.00	
	17900.00	89.49	0.27	12265.96	5780.47	304.50	5786.44	0.00	
	18000.00	89.49	0.27	12266.86	5880.47	304.97	5886.41	0.00	
	18100.00	89.49	0.27	12267.76	5980.46	305.45	5986.38	0.00	
	18200.00	89.49	0.27	12268.66	6080.46	305.92	6086.36	0.00	
	18300.00	89.49	0.27	12269.56	6180.45	306.39	6186.33	0.00	
	18400.00	89.49	0.27	12270.46	6280.45	306.86	6286.30	0.00	
	18500.00	89.49	0.27	12271.35	6380.44	307.33	6386.28	0.00	
	18600.00 18700.00	89.49 89.49	0.27 0.27	12272.25 12273.15	6480.44 6580.43	307.80 308.27	6486.25 6586.22	0.00 0.00	
	18700.00	89.49 89.49	0.27	12273.15	6580.43 6680.43	308.27	6686.20	0.00	
	18900.00	89.49	0.27	12274.05	6780.42	309.22	6786.17	0.00	
	19000.00	89.49	0.27	12275.85	6880.42	309.69	6886.14	0.00	
	19100.00	89.49	0.27	12276.75	6980.41	310.16	6986.12	0.00	
	19200.00	89.49	0.27	12277.65	7080.41	310.63	7086.09	0.00	
	19300.00	89.49	0.27	12278.54	7180.40	311.10	7186.06	0.00	

on	Well: CHINCOTEAGUE 8-32 FED STATE COM 733H County: Lea Wellbore: Permit Plan Design: Permit Plan #1								Geodetic System: US State Plane 1983 Datum: North American Datum 1927 Ellipsoid: Clarke 1866 Zone: 3001 - NM East (NAD83)		
	MD (ft)	INC (°)	AZI (°)	TVD (ft)	NS (ft)	EW (ft)	VS (ft)	DLS (°/100ft)	Comment		
-	19400.00	89.49	0.27	12279.44	7280.40	311.57	7286.04	0.00			
	19500.00	89.49	0.27	12280.34	7380.39	312.04	7386.01	0.00			
	19600.00	89.49	0.27	12281.24	7480.39	312.51	7485.98	0.00			
	19700.00	89.49	0.27	12282.14	7580.38	312.98	7585.96	0.00			
	19800.00	89.49	0.27	12283.04	7680.38	313.46	7685.93	0.00			
	19900.00	89.49	0.27	12283.94	7780.37	313.93	7785.90	0.00			
	20000.00	89.49	0.27	12284.84	7880.37	314.40	7885.88	0.00			
	20100.00	89.49	0.27	12285.74	7980.36	314.87	7985.85	0.00			
	20200.00	89.49	0.27	12286.63	8080.36	315.34	8085.82	0.00			
	20300.00	89.49	0.27	12287.53	8180.35	315.81	8185.80	0.00			
	20400.00	89.49	0.27	12288.43	8280.35	316.28	8285.77	0.00			
	20500.00	89.49	0.27	12289.33	8380.34	316.75	8385.74	0.00			
	20600.00	89.49	0.27	12290.23	8480.33	317.23	8485.72	0.00			
	20700.00	89.49	0.27	12291.13	8580.33	317.70	8585.69	0.00			
	20800.00	89.49	0.27	12292.03	8680.32	318.17	8685.66	0.00			
	20900.00	89.49	0.27	12292.93	8780.32	318.64	8785.64	0.00			
	21000.00	89.49	0.27	12293.82	8880.31	319.11	8885.61	0.00			
	21100.00	89.49	0.27	12294.72	8980.31	319.58	8985.58	0.00			
	21200.00	89.49	0.27	12295.62	9080.30	320.05	9085.56	0.00			
	21300.00	89.49	0.27	12296.52	9180.30	320.52	9185.53	0.00			
	21400.00	89.49	0.27	12297.42	9280.29	321.00	9285.50	0.00			
	21500.00	89.49	0.27	12298.32	9380.29	321.47	9385.48	0.00			
	21600.00	89.49	0.27	12299.22	9480.28	321.94	9485.45	0.00			
	21700.00	89.49	0.27	12300.12	9580.28	322.41	9585.42	0.00			
	21800.00	89.49	0.27	12301.01	9680.27	322.88	9685.40	0.00			
	21900.00	89.49	0.27	12301.91	9780.27	323.35	9785.37	0.00			
	22000.00	89.49	0.27	12302.81	9880.26	323.82	9885.34	0.00			
	22100.00	89.49	0.27	12303.71	9980.26	324.29	9985.32	0.00			
	22200.00	89.49	0.27	12304.61	10080.25	324.77	10085.29	0.00			
	22300.00	89.49	0.27	12305.51	10180.25	325.24	10185.26	0.00			
	22400.00	89.49	0.27	12306.41	10280.24	325.71	10285.24	0.00			
	22500.00	89.49	0.27	12307.31	10380.24	326.18	10385.21	0.00			
	22600.00	89.49	0.27	12308.21		326.65	10485.18	0.00			
	22700.00	89.49	0.27	12309.10	10580.23	327.12	10585.16	0.00			
	22800.00	89.49	0.27	12310.00	10680.22	327.59	10685.13	0.00			
	22900.00	89.49	0.27	12310.90	10780.22	328.06	10785.10	0.00			
	23000.00	89.49	0.27	12311.80	10880.21	328.53	10885.08	0.00			
	23100.00	89.49	0.27	12312.70	10980.21	329.01	10985.05	0.00			
	23200.00	89.49	0.27	12313.60	11080.20	329.48	11085.02	0.00			
	23300.00	89.49	0.27	12314.50		329.95	11184.99	0.00			
	23400.00	89.49	0.27		11280.19	330.42	11284.97	0.00			
	23500.00	89.49	0.27	12316.29		330.89	11384.94	0.00			
	23600.00	89.49	0.27	12317.19		331.36	11484.91	0.00			
	23700.00	89.49 89.49	0.27	12318.09		331.83	11584.89	0.00			
	23800.00	89.49 89.49	0.27	12318.99		332.30	11684.86	0.00			
	23900.00 24000.00	89.49 89.49	0.27	12319.89 12320.79		332.78	11784.83	0.00			
	24000.00 24100.00	89.49 89.49	0.27 0.27	12320.79		333.25 333.72	11884.81 11984.78	0.00 0.00			
	24100.00 24200.00	89.49 89.49	0.27	12321.69		333.72 334.19	11984.78	0.00			
	24200.00 24300.00	89.49 89.49	0.27	12322.59		334.19 334.66	12084.75	0.00			
	24300.00	89.49 89.49	0.27	12323.46		334.66 335.13	12184.73	0.00			
	24400.00 24500.00	89.49 89.49	0.27	12324.38		335.13	12284.70	0.00			
	24500.00	89.49 89.49	0.27	12325.28		336.07	12384.67	0.00			
	24800.00	89.49 89.49	0.27	12320.18		336.55	12584.63	0.00			
	24700.00	89.49 89.49	0.27		12580.12	337.02	12584.62	0.00			
	24800.00	89.49 89.49	0.27	12327.98		337.02 337.49	12084.59	0.00			
	25000.00	89.49 89.49	0.27	12328.88		337.49 337.96	12784.57	0.00			
	25057.97	89.49	0.27	12320.30		338.23	12942.49	0.00	exit		
	25100.00	89.49	0.27	12330.68		338.43	12984.51	0.00			
	25137.97	89.49	0.27	12331.00		338.61	13022.47	0.00	BHL		

.

<u>10-3/4"</u>	<u>45.50#</u>	<u>0.400"</u>	<u>J-55</u>						
Dimensions (Nominal)									
Outside Diameter Wall Inside Diameter Drift			10.750 0.400 9.950 9.875	in. in. in. in.					
Weight, T&C Weight, PE			45.500 44.260	lbs/ft lbs/ft					
Performance	Properties								
Collapse			2090	psi					
Internal Yield Pres	sure at Minimum Yield								
	PE		3580	psi					
	STC		3580	psi					
	BTC		3580	psi					
Yield Strength, Pip	e Body		715	1000 lbs					
Joint Strength									
	STC		493	1000 lbs					
	втс		796	1000 lbs					
	BTC Special Clearance (11.25" OD Cplg)	506	1000 lbs					

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

			MO-FXL 8-	-5/8 32.0		
MO-FXL		P110HSCY MinYS125ksi				
*1 Pipe Body: BMP P110HS	CDS#					
		SD7.875				
•	Date					
Connection Dat		Dute	21 110	. 20		
Geometry	<u>Imperial</u>		<u>S.I.</u>			
Pipe Body	-					
Grade *1	P110HSCY		P110HSCY			
MinYS *1	125	ksi	125	ksi		
Pipe OD (D)	8 5/8	in	219.08	mm		
Weight	32.00	lb/ft	47.68	kg/m		
Actual weight	31.10		46.34	kg/m		
Wall Thickness (t)	0.352	in	8.94	mm		
Pipe ID(d)	7.921	in	201.19	mm		
Pipe body cross section	9.149	in ²	5.902	mm ²		
	7 875		-	mm		
-	-	-	-	-		
Connection						
Box OD (W)	8.625	in	219.08	mm		
PIN ID	7.921	in	201.19	mm		
Make up Loss	3.847	in	97.71	mm		
Box Critical Area	5.853	in ²	3686	mm ²		
Joint load efficiency	69		69	%		
S.M.Y.S. *1	1,144	kips	5,087	kN		
M.I.Y.P. *1	8,930	psi	61.59	MPa		
Collapse Strength *1	4,300	psi	29.66	MPa		
Note S.M.Y.S.= Specified Minimum YIELD Strength of Pipe body						
M.I.Y.P. = Minimum Internal Yield Pressure of Pipe body						
		e Strength 4,30	Opsi			
	for Connectio	n				
Tensile Yield load	789 kips	(69%	of S.M.Y.S.)			
Min. Compression Yield	789 kips	(69%	of S.M.Y.S.)			
Internal Pressure	6,250 psi	(70%	of M.I.Y.P.)			
External Pressure	100% of Collapse Strength					
Max. DLS (deg. /100ft)		29				
Recommended Torque						
	13 600	ft_lb	18 400	N-m		
				N-m		
				N-m		
	-			N-m		
			·			
Note . Operational Max.	orque can be appli	ca ior nigi		///		
Legal Notice The use of this information is at the reader/user's risk and no warranty is implied or expressed by Metal One Corporation or its parents, subsidiaries or affiliates (herein collectively referred to as "Metal One") with respect to the use of information contained herein. The information provided on this Connection Data Sheet is for informational purposes only, and was prepared by reference to engineering information that is specific to the subject products, without regard to safety-related factors, all of which are the sole responsibility of the operators and users of the subject connectors. Metal One assumes no responsibility for any errors with respect to this information. Statements regarding the suitability of products for certain types of applications are based on Metal One's knowledge of typical requirements that are often						
	*1 Pipe Body: BMP P110HSC Special Drift 7.8 Connection Data Geometry Pipe Body Grade *1 MinYS *1 Pipe OD (D) Weight Actual weight Wall Thickness (t) Pipe DO (d) Pipe body cross section Special Drift Dia. *1 	Inperior Pipe Body Grade *1 P110HSCY MinYS *1 125 Pipe OD (D) 8 5/8 Weight 32.00 Actual weight 31.10 Wall Thickness (t) 0.352 Pipe ID (d) 7.921 Pipe body cross section 9.149 Special Drift Dia. *1 7.875	*1 Pipe Body: BMP P110HSCY MinYS125ksi Special Drift 7.875" CDS# Geometry Imperial Pipe Body Imperial Grade *1 P110HSCY MinYS *1 MinYS *1 125 ksi Pipe DO (D) 8 5/8 in Weight 32.00 Ib/ft Actual weight 31.10 Wall Thickness (t) 0.352 in Pipe D (d) 7.921 in Pipe D (d) 7.921 in Pipe body cross section 9.149 in ² Special Drift Dia. *1 7.875 in - - - - - - Connection Box OD (W) 8.625 in PIN ID 7.921 in Make up Loss 3.847 in Dox Critical Area 5.853 in ² Joint load efficiency 69 % Thread Taper 1 /10 (1. Number of Threads 5 Performance Specified Minimum YIELD Stremotion Smote S.M.Y.S.= Specified Minimum YI	MO-FXL P110HSCY P110H *1 Pipe Body: BMP P110HSCY MinYS125ksi Special Drift 7.875" CDS# P110H Connection Data Sheet Date 27-No Geometry Imperial S.I. Pipe Body Grade *1 P110HSCY P110HSCY MinYS *1 125 ksi 125 Pipe OD (D) 8 5/8 in 219.08 Weight 32.00 Ib/ft 47.68 Actual weight 31.10 46.34 Wall Thickness (t) 0.352 in 8.94 Pipe ID (d) 7.921 in 200.03 - - - - - Connection Box OD (W) 8.625 in 219.08 PiN ID 7.921 in 201.19 Make up Loss 3.847 in 97.71 Box Critical Area 5.853 in² 3686 Joint Load efficiency 69 % 69 Thread Taper 1 / 10 (1.2" per ft) Number of Threads 5 TPI		

Statements regarding the suitability of products for certain types of applications are based on Metal One's knowledge of typical requirements that are often placed on Metal One products in standard well configurations. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application

The products described in this Connection Data Sheet are not recommended for use in deep water offshore applications. For more information, please refer to <u>http://www.mtlo.co.jp/mo-con/_images/top/WebsiteTerms_Active_20333287_1.pdf</u> the contents of which are incorporated by reference into this Connection Data Sheet.

even by OCD: 2/31/2024 10:52:33 AM .S. Department of the Interior UREAU OF LAND MANAGEMENT		Sundry Print Repo
Well Name: CHINCOTEAGUE 8-32 FED STATE COM	Well Location: T25S / R32E / SEC 8 / SWNE / 32.1453463 / -103.6961035	County or Parish/State: LEA / NM
Well Number: 733H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM061873B	Unit or CA Name:	Unit or CA Number:
US Well Number:	Operator: DEVON ENERGY PRODUCTION COMPANY LP	

Notice of Intent

Sundry ID: 2800579

AEMOO

Type of Submission: Notice of Intent

Date Sundry Submitted: 07/13/2024

Date proposed operation will begin: 07/13/2024

Type of Action: APD Change Time Sundry Submitted: 04:03

Procedure Description: Devon Energy Production Co., L.P. (Devon) respectfully requests to change the BHL and spacing on the subject well. Devon is also updating surface casing/hole size and connections and requesting variances for break testing and offline cementing. Devon Energy Production Company, L.P. will circulate class C cement to surface behind the 10-3/4" casing. Please see attached updated C102, Drill plan, directional plan, spec sheets, break test and offline cementing variance. API: 30-025-52978 Permitted BHL: NWNE, 20 FNL, 1650 FEL, 32-24S-32E Proposed BHL: NWNE, 20 FNL, 2045 FEL, 32-24S-32E

NOI Attachments

Procedure Description

WA018437907_CHINCOTEAGUE_8_32_FED_STATE_COM_733H_WL_R1_SIGNED_20240713141749.pdf

Offline_Cementing___Variance_Request_20240713141745.pdf

break_test_variance_BOP_1_15_24_20240713141740.pdf

5.5_20__P110HP_CDC_HTQ_20240713141737.pdf

CHINCOTEAGUE_8_32_FED_STATE_COM_733H_20240713141738.pdf

CHINCOTEAGUE_8_32_FED_STATE_COM_733H_Directional_Plan_07_11_24_20240713141738.pdf

10.750_45.5lb_J55_BTC_20240713141738.pdf

8.625_32lb_P110_MOFXL_20240713141738.pdf

Received by OCD: 7/31/2024 10:52:33 AM Well Name: CHINCOTEAGUE 8-32 FED STATE COM	Well Location: T25S / R32E / SEC 8 / SWNE / 32.1453463 / -103.6961035	County or Parish/State: LEA 25 of NM
Well Number: 733H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM061873B	Unit or CA Name:	Unit or CA Number:
US Well Number:	Operator: DEVON ENERGY PRODUCTION COMPANY LP	

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: CHELSEY GREEN Name: DEVON ENERGY PRODUCTION COMPANY LP Title: Regulatory Compliance Professional Street Address: 333 WEST SHERIDAN AVENUE City: OKLAHOMA CITY State: OK Phone: (405) 228-8595

Email address: CHELSEY.GREEN@DVN.COM

Field

Representative Name: Street Address: City: State: Phone: Email address: Signed on: JUL 13, 2024 02:14 PM

Zip:

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

	Devon Energy Production Company LP NMLC061873B
LOCATION:	Section 8, T.25 S., R.32 E., NMPM
COUNTY:	Lea County, New Mexico 💌

WELL NAME & NO.:	Chincoteague 8-32 Fed State Com 733H
BOTTOM HOLE FOOTAGE	20'/N & 2045'/E
ATS/API ID:	30-025-52978
APD ID:	10400084226
Sundry ID:	N/a
Date APD Submitted:	N/a

COA

r			
H2S	No		
Potash	None 🔽	None	
Cave/Karst Potential	Low		
Cave/Karst Potential	Critical		
Variance	C None	🖸 Flex Hose	C Other
Wellhead	Conventional and Multibov	vl 🔽	
Other	□ 4 String	Capitan Reef None	□WIPP
Other	Pilot Hole None	C Open Annulus	
Cementing	Contingency Squeeze	Echo-Meter Int 1	Primary Cement Squeeze None
Special Requirements	□ Water Disposal/Injection	COM	🗖 Unit
Special Requirements	Batch Sundry	Waste Prevention None	
Special Requirements Variance	✓ Break Testing	✓ Offline Cementing	Casing Clearance

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet **43 CFR part 3170 Subpart 3176**, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- The 10-3/4 inch surface casing shall be set at approximately 815 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt when present, and below usable fresh water) and cemented to the surface. The surface hole shall be 14 3/4 inch in diameter.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

2. The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above.

Option 2:

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

- a. First stage: Operator will cement with intent to reach the top of the Brushy Canyon at 6690' (563 sxs Class H/C+ additives).
- b. Second stage:
 - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified. (Squeeze 489 sxs Class C)

Operator has proposed to pump down **10-3/4**" X **8-5/8**" annulus after primary cementing stage. <u>Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus Or operator shall run a CBL from TD of the **8-5/8**" casing to surface after the second stage <u>BH to verify TOC.</u></u>

Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out. Operator must run one CBL per Well Pad. Operator may conduct a negative and positive pressure test during completion to remediate sustained casing pressure.

If cement does not reach surface, the next casing string must come to surface.

Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification. Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2.

Option 1:

a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi. Annular which shall be tested to **5000 (5M)** psi.

b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 8-5/8 inch intermediate casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.

Option 2:

Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the **10-3/4** inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **10,000** (**10M**) psi. Variance is approved to use a **5000** (**5M**) Annular which shall be tested to **5000** (**5M**) psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR part 3170 Subpart 3171
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

BOPE Break Testing Variance (Approved)

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-689-5981 Lea County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at **21**-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR part 3170 Subpart 3172.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Offline Cementing

Operator has been (**Approved**) to pump the proposed cement program offline in the **Intermediate(s) interval**.

Offline cementing should commence within 24 hours of landing the casing for the interval.

Notify the BLM 4hrs prior to cementing offline at Lea County: 575-689-5981.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL
- All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke

manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be

initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)

- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170
 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and

.

disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Long Vo (LVO) 7/30/2024

Received by OCD: 7/31/2024 10:52:33 AM

	Page 37 of 59	
DDDOLED		

BUR SUNDRY N Do not use this t	UNITED STATE PARTMENT OF THE I EAU OF LAND MAN NOTICES AND REPO form for proposals of Use Form 3160-3 (A	FORM APPROVED OMB No. 1004-0137 Expires: October 31, 2021 5. Lease Serial No. 6. If Indian, Allottee or Tribe Name			
SUBMIT IN	TRIPLICATE - Other instru	uctions on page 2		7. If Unit of CA/Agreen	nent, Name and/or No.
1. Type of Well Gas V	Vell Other			8. Well Name and No.	
2. Name of Operator				9. API Well No.	
3a. Address		3b. Phone No. <i>(include area code)</i>)	10. Field and Pool or Ex	ploratory Area
4. Location of Well (Footage, Sec., T., F	R.,M., or Survey Description))		11. Country or Parish, S	tate
12. CHE	CK THE APPROPRIATE B	OX(ES) TO INDICATE NATURE	OF NOTI	ICE, REPORT OR OTHE	ER DATA
TYPE OF SUBMISSION		ТҮР	E OF AC	TION	
Notice of Intent	Acidize	Deepen Hydraulic Fracturing	_	luction (Start/Resume) amation	Water Shut-Off Well Integrity
Subsequent Report	Casing Repair Change Plans	New Construction Plug and Abandon	\equiv	omplete porarily Abandon	Other
Final Abandonment Notice	Convert to Injection	Plug Back	Wate	er Disposal	
the Bond under which the work will completion of the involved operation	ally or recomplete horizontal Il be perfonned or provide th ons. If the operation results in	ly, give subsurface locations and me e Bond No. on file with BLM/BIA. n a multiple completion or recompletion.	easured ar Required etion in a	nd true vertical depths of subsequent reports must new interval, a Form 316	all pertinent markers and zones. Attach

14. I hereby certify that the foregoing is true and correct. Name (<i>Printed/Typed</i>)			
Т	itle		
Signature	ate		
THE SPACE FOR FEDER	AL OR STATE C	OFICE USE	
Approved by			
	Title]	Date
Conditions of approval, if any, are attached. Approval of this notice does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon.			
Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any p any false, fictitious or fraudulent statements or representations as to any matter within it		villfully to make to any de	epartment or agency of the United States

(Instructions on page 2)

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

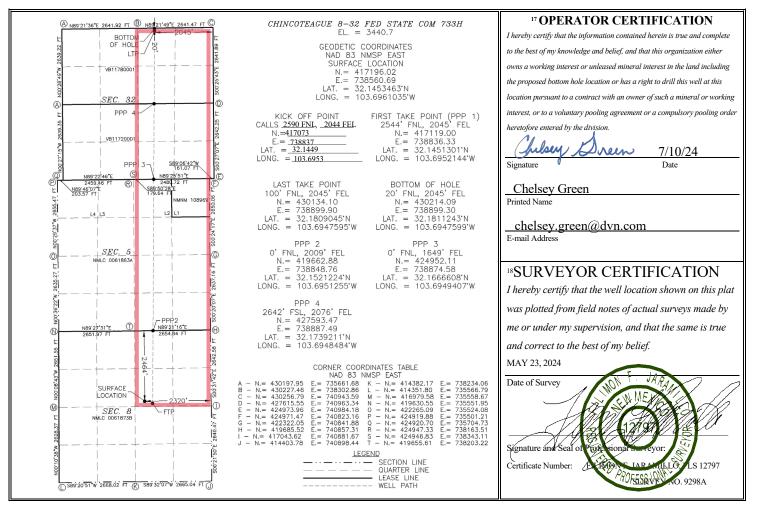
Additional Information

Location of Well

0. SHL: SWNE / 2464 FNL / 2320 FEL / TWSP: 25S / RANGE: 32E / SECTION: 8 / LAT: 32.1453463 / LONG: -103.6961035 (TVD: 0 feet, MD: 0 feet) PPP: SWNE / 2544 FNL / 1650 FEL / TWSP: 25S / RANGE: 32E / SECTION: 8 / LAT: 32.1451362 / LONG: -103.6939384 (TVD: 11754 feet, MD: 11812 feet) PPP: SWSE / 156 FSL / 1612 FEL / TWSP: 25S / RANGE: 32E / SECTION: 5 / LAT: 32.1525465 / LONG: -103.6938315 (TVD: 12237 feet, MD: 14800 feet) BHL: NWNE / 20 FNL / 1650 FEL / TWSP: 24S / RANGE: 32E / SECTION: 32 / LAT: 32.1811302 / LONG: -103.6934838 (TVD: 12330 feet, MD: 25198 feet)

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505


Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

Page 40 of 59

			WELL L	DCATIO	N AND ACF	REAGE DEDIC	CATION PLA	۸T			
¹ A	API Number	r		² Pool Cod	e	³ Pool Name					
30-025	-52978			98270		WC-025 G-08 S253216D;UPPER WO				VOLFCAMP	
⁴ Property C	Code				⁵ Property	Name			⁶ Well Number		
326213				CHINCO	COTEAGUE 8-32 FED STATE COM					733H	
⁷ OGRID N	No.				⁸ Operator	Name				⁹ Elevation	
6137			DEV	ON ENE	RGY PRODU	CTION COMPA	NY, L.P.		3440.7		
	·				[™] Surfac	e Location					
UL or lot no.	Section	Townshi	p Range	Lot Idn	Feet from the	North/South line	Feet from the	East/W	est line	County	
G	8	25 S	32 E		2464	NORTH	2320	EA	ST	LEA	
			11	Bottom H	Iole Location	If Different Fr	om Surface			•	
UL or lot no.	Section	Townshi	p Range	Lot Idn	Feet from the	North/South line	Feet from the	East/W	est line	County	
В	32	24 S	32 E		20	NORTH	2045	EA	ST	LEA	
¹² Dedicated Acres	s ¹³ Joint	or Infill	¹⁴ Consolidatio	on Code		·	¹⁵ Order No.				
800.83											

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Received by OCD: 7/31/2024 10:52:33 AM

Х

Intent

API #

30-025-52978			
Operator Name:		Property Name:	Well Number
DEVON ENERGY P COMPANY, L.P.	RODUCTION	CHINCOTEAGUE 8-32 FED STATE COM	733H

Kick Off Point (KOP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
G	8	25S	32E		2590	NORTH	2044	EAST	LEA
Latitu	de				Longitude				NAD
	32.14	49			10)3.6953			83

First Take Point (FTP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
G	8	25S	32E		2544	NORTH	2045	EAST	LEA
Latitu 32.1	^{ide} 45130	1			Longitude 103.6952	2144			NAD 83

Last Take Point (LTP)

UL B	Section 32	Township 24S	Range 32E	Lot	Feet 100	From N/S NORTH	Feet 2045	From E/W EAST	County LEA
Latitu	de				Longituc	le			NAD
32.1	80904	5			103.6	947595			83

Is this well the defining well for the Horizontal Spacing Unit?

Is this well an infill well?

If infill is yes please provide API if available, Operator Name and well number for Defining well for Horizontal Spacing Unit.

API #		
30-025-53005		
Operator Name:	Property Name:	Well Number
DEVON ENERGY PRODUCTION COMPANY, L.P.	CHINCOTEAGUE 8-32 FED STATE COM	737H

Offline Cementing

Variance Request

Devon Energy requests to offline cement on intermediate strings that are set in formations shallower than the Wolfcamp. Prior to commencing offline cementing operations, the well will be monitored for any abnormal pressures and confirmed to be static. A dual manifold system (equipped with chokes) for the returns will also be utilized as a redundancy. All equipment used for offline cementing will have a minimum 5M rating to match intermediate sections' 5M BOPE requirements.

Section 2 - Blowout Preventer Testing Procedure

Variance Request

Devon Energy requests to only test BOP connection breaks after drilling out of surface casing and while skidding between wells which conforms to API Standard 53 and industry standards. This test will include the Top Pipe Rams, HCR, Kill Line Check Valve, QDC (quick disconnect to wellhead) and Shell of the 10M BOPE to 5M for 10 minutes. If a break to the flex hose that runs to the choke manifold is required due to repositioning from a skid, the HCR will remain open during the shell test to include that additional break. The variance only pertains to intermediate hole-sections and no deeper than the Bone Springs Formation where 5M BOP tests are required. The initial BOP test will follow 43 CFR 3172, and subsequent tests following a skid will only test connections that are broken. The annular preventer will be tested to 100% working pressure. This variance will meet or exceed 43 CFR 3172 per the following: Devon Energy will perform a full BOP test per 43 CFR 3172 before drilling out of the intermediate casing string(s) and starting the production hole, before starting any hole section that requires a 10M test, before the expiration of the allotted 14-days for 5M intermediate batch drilling or when the drilling rig is fully mobilized to a new well pad, whichever is sooner. We will utilize a 200' TVD tolerance between intermediate shoes as the cutoff for a full BOP test. The BLM will be contacted 4hrs prior to a BOPE test. The BLM will be notified if and when a well control event is encountered. Break test will be a 14 day interval and not a 30 day full BOPE test interval. If in the event break testing is not utilized, then a full BOPE test would be conducted.

1. Well Control Response:

1. Primary barrier remains fluid

2. In the event of an influx due to being underbalanced and after a realized gain or flow, the order of closing BOPE is as follows:

- a) Annular first
- b) If annular were to not hold, Upper pipe rams second (which were tested on the skid BOP test)
- c) If the Upper Pipe Rams were to not hold, Lower Pipe Rams would be third

Page 45 of 59

U. S. Steel Tubular Products 5.500" 20.00lb/ft (0.361" Wall) P110 HP USS-CDC HTQ[®]

MECHANICAL PROPERTIES	Pipe	USS-CDC HTQ [®]		
Minimum Yield Strength	125,000		psi	
Maximum Yield Strength	140,000		psi	
Minimum Tensile Strength	130,000		psi	
DIMENSIONS	Pipe	USS-CDC HTQ [®]		
Outside Diameter	5.500	6.300	in.	
Wall Thickness	0.361		in.	
Inside Diameter	4.778	4.778	in.	
Standard Drift	4.653	4.653	in.	
Alternate Drift			in.	
Nominal Linear Weight, T&C	20.00		lb/ft	
Plain End Weight	19.83		lb/ft	
SECTION AREA	Pipe	USS-CDC HTQ [®]		
Critical Area	5.828	5.828	sq. in.	
Joint Efficiency		97.0	%	
PERFORMANCE	Pipe	USS-CDC HTQ [®]		
Minimum Collapse Pressure	13,150	13,150	psi	
External Pressure Leak Resistance		10,520	psi	
Minimum Internal Yield Pressure	14,360	14,360	psi	
Minimum Pipe Body Yield Strength	729,000		lb	
Joint Strength		707,000	lb	
Compression Rating		424,000	lb	
Reference Length		23,567	ft	
Maximum Uniaxial Bend Rating		60.6	deg/100 ft	
MAKE-UP DATA	Pipe	USS-CDC HTQ [®]		
Make-Up Loss		4.63	in.	
Minimum Make-Up Torque		14,500	ft-lb	
Maximum Make-Up Torque		20,500	ft-lb	
Connection Yield Torque		25,300	ft-lb	

Notes

1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness and Specified Minimum Yield Strength (SMYS).

2. Uniaxial bending rating shown is structural only, and equal to compression efficiency.

3. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).

4. Reference length is calculated by joint strength divided by nominal threaded and coupled weight with 1.5 safety factor.

5. Connection external pressure leak resistance has been verified to 80% API pipe body collapse pressure following the guidelines of API 5C5 Cal II.

Legal Notice

USS - CDC HTQ[®] (High Torque Casing Drilling Connection) is a trademark of U. S. Steel Corporation. This product is a modified API Buttress threaded and coupled connection designed for drilling with casing applications. All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380 1-877-893-9461 connections@uss.com www.usstubular.com

CHINCOTEAGUE 8-32 FED STATE COM 733H

1. Geologic Formations

TVD of target	12330	Pilot hole depth	N/A
MD at TD:	25138	Deepest expected fresh water	

Basin

Formation	Depth (TVD)	Water/Mineral Bearing/Target	Hazards*		
Rustler	from KB 739	Zone?			
Salt	1104				
Base of Salt	4373				
Delaware	4561				
Cherry Canyon	5769				
Brushy Canyon	6690				
1st Bone Spring Lime	8768				
Bone Spring 1st	9857				
Bone Spring 2nd	10075				
3rd Bone Spring Lime	10581				
Bone Spring 3rd	11332				
Wolfcamp	11754				

*H2S, water flows, loss of circulation, abnormal pressures, etc.

CHINCOTEAGUE 8-32 FED STATE COM 733H

	Wt				Casing	Interval	Casing Interval	
Hole Size	Csg. Size	(PPF)	Grade	Conn	Conn From (MD)		From (TVD)	To (TVD)
14 3/4	10 3/4	45 1/2	J-55	BTC	0	764	0	764
9 7/8	8 5/8	32	P110HSCY	MOFXL	0	11569	0	11569
7 7/8	5 1/2	20	P110HP	CDC-HTQ	0	25138	0	12330

2. Casing Program (Primary Design)

•All casing strings will be tested in accordance with 43 CFR 3172. Must have table for contingency casing.

3. Cementing Program (Primary Design)

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures.

Casing	# Sks	тос	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	469	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	489	Surf	13.0	2.3	2nd State: Bradenhead Squeeze - Lead: Class C Cement + additives
Int I	563	6713	13.2	1.44	Tail: Class H / C + additives
Production	117	9669	9	3.27	Lead: Class H /C + additives
Production	1783	11669	13.2	1.44	Tail: Class H / C + additives

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Prod	10%

CHINCOTEAGUE 8-32 FED STATE COM 733H

.

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		~	Tested to:
			Anı	nular	X	50% of rated working pressure
Int 1	13-5/8"	5M		d Ram	Х	
Int I	15 5/0	5101		e Ram		- 5M
			Doub	le Ram	Х	511
			Other*			
		5/8" 10M	Annular (5M)		Х	100% of rated working pressure
Production	13-5/8"		Blind Ram		Х	
Tioduction			Pipe Ram Double Ram			
					Х	10111
			Other*			
			Annular (5M)			
			Blind Ram			
			Pipe Ram			
			Double Ram			
			Other*			
N A variance is requested for	the use of a	a diverter or	n the surface	casing. See	attached for	schematic.
Y A variance is requested to a	run a 5 M ar	nnular on a	10M system	l		

4. Pressure Control Equipment (Three String Design)

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring
---	-----------------------------

6. Logging and Testing Procedures

Logging,	Logging, Coring and Testing						
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the						
Х	Completion Rpeort and sbumitted to the BLM.						
	No logs are planned based on well control or offset log information.						
	Drill stem test? If yes, explain.						
	Coring? If yes, explain.						

Additiona	al logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
Х	CBL	Production casing
Х	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Specfiy what type and where?
6732
No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrationsgreater than 100 ppm, the operator will comply with the provisions of 43 CFR 3176. If Hydrogen Sulfide is encounteredmeasured values and formations will be provided to the BLM.NH2S is present

Y H2S plan attached.

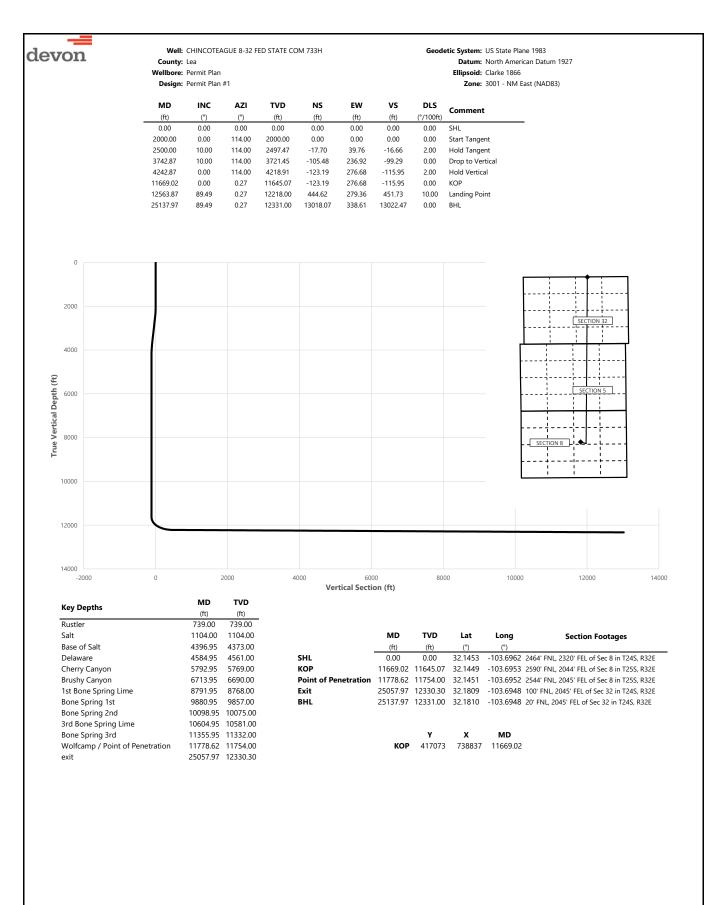
8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially


- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (43 CFR 3172, all COAs and NMOCD regulations).

 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.

- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments

X Directional Plan Other, describe

deres		Well	CHINCOTE	AGUE 8-32 FI	ED STATE CO	M 733H			Geodetic System: US State Plane 1983
devon		County:							Datum: North American Datum 1927
			Permit Plan						Ellipsoid: Clarke 1866
		Design:	Permit Plan	#1					Zone: 3001 - NM East (NAD83)
	MD	INC	AZI	TVD	NS	EW	vs	DLS	Comment
_	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	
	0.00 100.00	0.00 0.00	0.00	0.00 100.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	SHL
	200.00	0.00	114.00 114.00	200.00	0.00	0.00	0.00	0.00	
	300.00	0.00	114.00	300.00	0.00	0.00	0.00	0.00	
	400.00	0.00	114.00	400.00	0.00	0.00	0.00	0.00	
	500.00 600.00	0.00	114.00	500.00	0.00	0.00	0.00 0.00	0.00 0.00	
	700.00	0.00 0.00	114.00 114.00	600.00 700.00	0.00 0.00	0.00 0.00	0.00	0.00	
	739.00	0.00	114.00	739.00	0.00	0.00	0.00	0.00	Rustler
	800.00	0.00	114.00	800.00	0.00	0.00	0.00	0.00	
	900.00 1000.00	0.00 0.00	114.00 114.00	900.00 1000.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	
	1100.00	0.00	114.00	1100.00	0.00	0.00	0.00	0.00	
	1104.00	0.00	114.00	1104.00	0.00	0.00	0.00	0.00	Salt
	1200.00	0.00	114.00	1200.00	0.00	0.00	0.00	0.00	
	1300.00 1400.00	0.00 0.00	114.00 114.00	1300.00 1400.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	
	1500.00	0.00	114.00	1500.00	0.00	0.00	0.00	0.00	
	1600.00	0.00	114.00	1600.00	0.00	0.00	0.00	0.00	
	1700.00	0.00	114.00	1700.00	0.00	0.00	0.00	0.00	
	1800.00 1900.00	0.00 0.00	114.00 114.00	1800.00 1900.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	
	2000.00	0.00	114.00	2000.00	0.00	0.00	0.00	0.00	Start Tangent
	2100.00	2.00	114.00	2099.98	-0.71	1.59	-0.67	2.00	-
	2200.00	4.00	114.00	2199.84	-2.84	6.38	-2.67	2.00	
	2300.00 2400.00	6.00 8.00	114.00 114.00	2299.45 2398.70	-6.38 -11.34	14.34 25.47	-6.01 -10.67	2.00 2.00	
	2500.00	10.00	114.00	2497.47	-17.70	39.76	-16.66	2.00	Hold Tangent
	2600.00	10.00	114.00	2595.95	-24.77	55.62	-23.31	0.00	
	2700.00	10.00	114.00	2694.43	-31.83	71.49	-29.96	0.00	
	2800.00 2900.00	10.00 10.00	114.00 114.00	2792.91 2891.39	-38.89 -45.95	87.35 103.21	-36.61 -43.25	0.00 0.00	
	3000.00	10.00	114.00	2989.87	-53.02	119.08	-49.90	0.00	
	3100.00	10.00	114.00	3088.35	-60.08	134.94	-56.55	0.00	
	3200.00 3300.00	10.00 10.00	114.00	3186.83	-67.14	150.80	-63.20 -69.85	0.00	
	3300.00	10.00	114.00 114.00	3285.31 3383.79	-74.21 -81.27	166.67 182.53	-69.85 -76.49	0.00 0.00	
	3500.00	10.00	114.00	3482.27	-88.33	198.40	-83.14	0.00	
	3600.00	10.00	114.00	3580.75	-95.39	214.26	-89.79	0.00	
	3700.00 3742.87	10.00 10.00	114.00 114.00	3679.23 3721.45	-102.46 -105.48	230.12 236.92	-96.44 -99.29	0.00 0.00	Drop to Vertical
	3800.00	8.86	114.00	3777.81	-109.29	245.47	-102.87	2.00	
	3900.00	6.86	114.00	3876.87	-114.85	257.96	-108.10	2.00	
	4000.00	4.86	114.00	3976.34	-119.00	267.28	-112.01	2.00	
	4100.00 4200.00	2.86 0.86	114.00 114.00	4076.11 4176.05	-121.74 -123.06	273.43 276.39	-114.59 -115.83	2.00 2.00	
	4242.87	0.00	114.00	4218.91	-123.19	276.68	-115.95	2.00	Hold Vertical
	4300.00	0.00	0.27	4276.05	-123.19	276.68	-115.95	0.00	
	4396.95	0.00	0.27	4373.00	-123.19	276.68	-115.95	0.00	Base of Salt
	4400.00 4500.00	0.00 0.00	0.27 0.27	4376.05 4476.05	-123.19 -123.19	276.68 276.68	-115.95 -115.95	0.00 0.00	
	4584.95	0.00	0.27	4561.00	-123.19	276.68	-115.95	0.00	Delaware
	4600.00	0.00	0.27	4576.05	-123.19	276.68	-115.95	0.00	
	4700.00	0.00	0.27	4676.05	-123.19	276.68	-115.95	0.00	
	4800.00 4900.00	0.00 0.00	0.27 0.27	4776.05 4876.05	-123.19 -123.19	276.68 276.68	-115.95 -115.95	0.00 0.00	
	4900.00 5000.00	0.00	0.27	4976.05	-123.19	276.68	-115.95	0.00	
	5100.00	0.00	0.27	5076.05	-123.19	276.68	-115.95	0.00	
	5200.00	0.00	0.27	5176.05	-123.19	276.68	-115.95	0.00	
	5300.00 5400.00	0.00 0.00	0.27 0.27	5276.05 5376.05	-123.19 -123.19	276.68 276.68	-115.95 -115.95	0.00 0.00	
	5500.00	0.00	0.27	5476.05	-123.19	276.68	-115.95	0.00	
	5600.00	0.00	0.27	5576.05	-123.19	276.68	-115.95	0.00	
	5700.00	0.00	0.27	5676.05	-123.19	276.68	-115.95	0.00	Characterization
	5792.95 5800.00	0.00 0.00	0.27 0.27	5769.00 5776.05	-123.19 -123.19	276.68 276.68	-115.95 -115.95	0.00 0.00	Cherry Canyon
	5900.00	0.00	0.27	5876.05	-123.19	276.68	-115.95	0.00	
	6000.00	0.00	0.27	5976.05	-123.19	276.68	-115.95	0.00	
	6100.00	0.00	0.27	6076.05	-123.19	276.68	-115.95	0.00	
	6200.00	0.00	0.27	6176.05	-123.19	276.68	-115.95	0.00	

		Well	CHINCOTE	AGUE 8-32 FE	D STATE CO	M 733H			Geodetic System: US State Plane 1983
devon		County:			2 JIAIE CU				Datum: North American Datum 1927
		Wellbore:	Permit Pla						Ellipsoid: Clarke 1866
		Design:	Permit Pla	n #1					Zone: 3001 - NM East (NAD83)
	MD	INC	AZI	TVD	NS	EW	vs	DLS	•
_	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
	6300.00	0.00	0.27	6276.05	-123.19	276.68	-115.95	0.00	
	6400.00 6500.00	0.00 0.00	0.27 0.27	6376.05 6476.05	-123.19 -123.19	276.68 276.68	-115.95 -115.95	0.00 0.00	
	6600.00	0.00	0.27	6576.05	-123.19	276.68	-115.95	0.00	
	6700.00	0.00	0.27	6676.05	-123.19	276.68	-115.95	0.00	
	6713.95	0.00	0.27	6690.00	-123.19	276.68	-115.95	0.00	Brushy Canyon
	6800.00 6900.00	0.00 0.00	0.27 0.27	6776.05 6876.05	-123.19 -123.19	276.68 276.68	-115.95 -115.95	0.00 0.00	
	7000.00	0.00	0.27	6976.05	-123.19	276.68	-115.95	0.00	
	7100.00	0.00	0.27	7076.05	-123.19	276.68	-115.95	0.00	
	7200.00	0.00	0.27	7176.05	-123.19	276.68	-115.95	0.00	
	7300.00 7400.00	0.00 0.00	0.27 0.27	7276.05 7376.05	-123.19 -123.19	276.68 276.68	-115.95 -115.95	0.00 0.00	
	7500.00	0.00	0.27	7476.05	-123.19	276.68	-115.95	0.00	
	7600.00	0.00	0.27	7576.05	-123.19	276.68	-115.95	0.00	
	7700.00	0.00	0.27	7676.05	-123.19	276.68	-115.95	0.00	
	7800.00 7900.00	0.00 0.00	0.27 0.27	7776.05 7876.05	-123.19 -123.19	276.68 276.68	-115.95 -115.95	0.00 0.00	
	8000.00	0.00	0.27	7976.05	-123.19	276.68	-115.95	0.00	
	8100.00	0.00	0.27	8076.05	-123.19	276.68	-115.95	0.00	
	8200.00	0.00	0.27	8176.05	-123.19	276.68	-115.95	0.00	
	8300.00 8400.00	0.00 0.00	0.27 0.27	8276.05 8376.05	-123.19 -123.19	276.68 276.68	-115.95 -115.95	0.00 0.00	
	8500.00	0.00	0.27	8476.05	-123.19	276.68	-115.95	0.00	
	8600.00	0.00	0.27	8576.05	-123.19	276.68	-115.95	0.00	
	8700.00	0.00	0.27	8676.05	-123.19	276.68	-115.95	0.00	1.1 Deve Centre Line
	8791.95 8800.00	0.00 0.00	0.27 0.27	8768.00 8776.05	-123.19 -123.19	276.68 276.68	-115.95 -115.95	0.00 0.00	1st Bone Spring Lime
	8900.00	0.00	0.27	8876.05	-123.19	276.68	-115.95	0.00	
	9000.00	0.00	0.27	8976.05	-123.19	276.68	-115.95	0.00	
	9100.00	0.00	0.27	9076.05	-123.19	276.68	-115.95	0.00	
	9200.00 9300.00	0.00 0.00	0.27 0.27	9176.05 9276.05	-123.19 -123.19	276.68 276.68	-115.95 -115.95	0.00 0.00	
	9400.00	0.00	0.27	9376.05	-123.19	276.68	-115.95	0.00	
	9500.00	0.00	0.27	9476.05	-123.19	276.68	-115.95	0.00	
	9600.00 9700.00	0.00	0.27 0.27	9576.05	-123.19	276.68	-115.95	0.00	
	9700.00 9800.00	0.00 0.00	0.27	9676.05 9776.05	-123.19 -123.19	276.68 276.68	-115.95 -115.95	0.00 0.00	
	9880.95	0.00	0.27	9857.00	-123.19	276.68	-115.95	0.00	Bone Spring 1st
	9900.00	0.00	0.27	9876.05	-123.19	276.68	-115.95	0.00	
	10000.00 10098.95	0.00 0.00	0.27 0.27	9976.05 10075.00	-123.19 -123.19	276.68 276.68	-115.95 -115.95	0.00 0.00	Bone Spring 2nd
	10100.00	0.00	0.27	10076.05	-123.19	276.68	-115.95	0.00	bole sping zha
	10200.00	0.00	0.27	10176.05	-123.19	276.68	-115.95	0.00	
	10300.00	0.00	0.27	10276.05	-123.19	276.68	-115.95	0.00	
	10400.00 10500.00	0.00 0.00	0.27 0.27	10376.05 10476.05	-123.19 -123.19	276.68 276.68	-115.95 -115.95	0.00 0.00	
	10500.00	0.00	0.27	10476.05	-123.19	276.68	-115.95	0.00	
	10604.95	0.00	0.27	10581.00	-123.19	276.68	-115.95	0.00	3rd Bone Spring Lime
	10700.00	0.00	0.27	10676.05	-123.19	276.68	-115.95	0.00	
	10800.00 10900.00	0.00 0.00	0.27 0.27	10776.05 10876.05	-123.19 -123.19	276.68 276.68	-115.95 -115.95	0.00 0.00	
	11000.00	0.00	0.27	10976.05	-123.19	276.68	-115.95	0.00	
	11100.00	0.00	0.27	11076.05	-123.19	276.68	-115.95	0.00	
	11200.00	0.00	0.27	11176.05	-123.19	276.68	-115.95	0.00	
	11300.00 11355.95	0.00 0.00	0.27 0.27	11276.05 11332.00	-123.19 -123.19	276.68 276.68	-115.95 -115.95	0.00 0.00	Bone Spring 3rd
	11400.00	0.00	0.27	11376.05	-123.19	276.68	-115.95	0.00	
	11500.00	0.00	0.27	11476.05	-123.19	276.68	-115.95	0.00	
	11600.00	0.00	0.27	11576.05	-123.19	276.68	-115.95	0.00	
	11669.02 11700.00	0.00 3.10	0.27 0.27	11645.07 11676.03	-123.19 -122.35	276.68 276.69	-115.95 -115.11	0.00 10.00	КОР
	11778.62	10.96	0.27	11754.00	-122.55	276.09	-105.50	10.00	Wolfcamp / Point of Penetration
	11800.00	13.10	0.27	11774.91	-108.28	276.75	-101.05	10.00	
	11900.00	23.10	0.27	11869.84	-77.25	276.90	-70.03	10.00	
	12000.00 12100.00	33.10 43.10	0.27 0.27	11957.94 12036.54	-30.22 31.41	277.12 277.41	-23.00 38.61	10.00 10.00	
	12200.00	43.10 53.10	0.27	12036.34	105.74	277.41	112.93	10.00	
	12300.00	63.10	0.27	12156.02	190.53	278.16	197.70	10.00	
	12400.00	73.10	0.27	12193.27	283.19	278.60	290.34	10.00	
1									

-									
		14/-1/	CUNCOT			M 72211			Goodotic System: LIC State Plane 1002
devon		Well: County:		AGUE 8-32 FE	JIAIE CO	111 1331			Geodetic System: US State Plane 1983 Datum: North American Datum 1927
		Wellbore:		n					Ellipsoid: Clarke 1866
		Design:	Permit Pla	n #1					Zone: 3001 - NM East (NAD83)
				-					
	MD (ft)	INC (°)	AZI (°)	TVD (ft)	NS (ft)	EW (ft)	VS (ft)	DLS (°/100ft)	Comment
-	12500.00	83.10	0.27	12213.87	380.92	279.06	388.04	10.00	
	12563.87	89.49	0.27	12218.00	444.62	279.36	451.73	10.00	Landing Point
	12600.00	89.49	0.27	12218.32	480.75	279.53	487.85	0.00	
	12700.00	89.49	0.27	12219.22	580.74	280.00	587.83	0.00	
	12800.00 12900.00	89.49 89.49	0.27 0.27	12220.12 12221.02	680.74 780.73	280.47 280.94	687.80 787.77	0.00 0.00	
	13000.00	89.49	0.27	12221.92	880.73	281.41	887.75	0.00	
	13100.00	89.49	0.27	12222.82	980.72	281.88	987.72	0.00	
	13200.00	89.49	0.27	12223.72	1080.72	282.36	1087.69	0.00	
	13300.00 13400.00	89.49 89.49	0.27 0.27	12224.62 12225.52	1180.71 1280.71	282.83 283.30	1187.67 1287.64	0.00 0.00	
	13400.00	89.49	0.27	12226.41	1380.70	283.50	1387.61	0.00	
	13600.00	89.49	0.27	12227.31	1480.70	284.24	1487.59	0.00	
	13700.00	89.49	0.27	12228.21	1580.69	284.71	1587.56	0.00	
	13800.00	89.49	0.27	12229.11	1680.68	285.18	1687.53	0.00	
	13900.00 14000.00	89.49 89.49	0.27 0.27	12230.01 12230.91	1780.68 1880.67	285.65 286.13	1787.51 1887.48	0.00 0.00	
	14000.00	89.49 89.49	0.27	12230.91	1980.67	286.60	1987.45	0.00	
	14200.00	89.49	0.27	12232.71	2080.66	287.07	2087.43	0.00	
	14300.00	89.49	0.27	12233.60	2180.66	287.54	2187.40	0.00	
	14400.00	89.49	0.27	12234.50	2280.65	288.01	2287.37	0.00	
	14500.00 14600.00	89.49 89.49	0.27 0.27	12235.40 12236.30	2380.65 2480.64	288.48 288.95	2387.35 2487.32	0.00 0.00	
	14700.00	89.49	0.27	12237.20	2580.64	289.42	2587.29	0.00	
	14800.00	89.49	0.27	12238.10	2680.63	289.90	2687.27	0.00	
	14900.00	89.49	0.27	12239.00	2780.63	290.37	2787.24	0.00	
	15000.00 15100.00	89.49 89.49	0.27 0.27	12239.90 12240.79	2880.62 2980.62	290.84 291.31	2887.21 2987.19	0.00 0.00	
	15200.00	89.49	0.27	12240.79	3080.61	291.31	3087.16	0.00	
	15300.00	89.49	0.27	12242.59	3180.61	292.25	3187.13	0.00	
	15400.00	89.49	0.27	12243.49	3280.60	292.72	3287.10	0.00	
	15500.00	89.49	0.27 0.27	12244.39 12245.29	3380.60 3480.59	293.19	3387.08	0.00	
	15600.00 15700.00	89.49 89.49	0.27	12245.29	3580.59	293.66 294.14	3487.05 3587.02	0.00 0.00	
	15800.00	89.49	0.27	12247.09	3680.58	294.61	3687.00	0.00	
	15900.00	89.49	0.27	12247.99	3780.58	295.08	3786.97	0.00	
	16000.00	89.49	0.27	12248.88	3880.57	295.55	3886.94	0.00	
	16100.00 16200.00	89.49 89.49	0.27 0.27	12249.78 12250.68	3980.57 4080.56	296.02 296.49	3986.92 4086.89	0.00 0.00	
	16300.00	89.49	0.27	12251.58	4180.56	296.96	4186.86	0.00	
	16400.00	89.49	0.27	12252.48	4280.55	297.43	4286.84	0.00	
	16500.00	89.49	0.27	12253.38	4380.55	297.91	4386.81	0.00	
	16600.00 16700.00	89.49 89.49	0.27 0.27	12254.28 12255.18	4480.54 4580.54	298.38 298.85	4486.78 4586.76	0.00 0.00	
	16800.00	89.49	0.27	12255.18	4680.53	299.32	4686.73	0.00	
	16900.00	89.49	0.27	12256.97	4780.53	299.79	4786.70	0.00	
	17000.00	89.49	0.27	12257.87	4880.52	300.26	4886.68	0.00	
	17100.00 17200.00	89.49 89.49	0.27 0.27	12258.77 12259.67	4980.52 5080.51	300.73 301.20	4986.65 5086.62	0.00 0.00	
	17200.00	89.49 89.49	0.27	12260.57	5180.50	301.20	5186.60	0.00	
	17400.00	89.49	0.27	12261.47	5280.50	302.15	5286.57	0.00	
	17500.00	89.49	0.27	12262.37	5380.49	302.62	5386.54	0.00	
	17600.00 17700.00	89.49 89.49	0.27 0.27	12263.26 12264.16	5480.49 5580.48	303.09 303.56	5486.52 5586.49	0.00 0.00	
	17700.00	89.49 89.49	0.27	12264.16	5580.48 5680.48	303.56 304.03	5586.49 5686.46	0.00	
	17900.00	89.49	0.27	12265.96	5780.47	304.50	5786.44	0.00	
	18000.00	89.49	0.27	12266.86	5880.47	304.97	5886.41	0.00	
	18100.00	89.49	0.27	12267.76	5980.46	305.45	5986.38	0.00	
	18200.00 18300.00	89.49 89.49	0.27 0.27	12268.66 12269.56	6080.46 6180.45	305.92 306.39	6086.36 6186.33	0.00 0.00	
	18400.00	89.49 89.49	0.27	12209.30	6280.45	306.86	6286.30	0.00	
	18500.00	89.49	0.27	12271.35	6380.44	307.33	6386.28	0.00	
	18600.00	89.49	0.27	12272.25	6480.44	307.80	6486.25	0.00	
	18700.00	89.49	0.27	12273.15	6580.43	308.27	6586.22	0.00	
	18800.00 18900.00	89.49 89.49	0.27 0.27	12274.05 12274.95	6680.43 6780.42	308.74 309.22	6686.20 6786.17	0.00 0.00	
	18900.00	89.49 89.49	0.27	12274.95	6780.42 6880.42	309.22 309.69	6886.14	0.00	
	19100.00	89.49	0.27	12276.75	6980.41	310.16	6986.12	0.00	
	19200.00	89.49	0.27	12277.65	7080.41	310.63	7086.09	0.00	
	19300.00	89.49	0.27	12278.54	7180.40	311.10	7186.06	0.00	

evon		County: Wellbore:	Lea		D STATE COI	M 733H			Geodetic System: US State Plane 1983 Datum: North American Datum 1927 Ellipsoid: Clarke 1866 Zone: 3001 - NM East (NAD83)
	MD (ft)	INC (°)	AZI (°)	TVD (ft)	NS (ft)	EW (ft)	VS (ft)	DLS (°/100ft)	Comment
	19400.00	89.49	0.27	12279.44	7280.40	311.57	7286.04	0.00	
	19500.00	89.49	0.27	12280.34	7380.39	312.04	7386.01	0.00	
	19600.00	89.49	0.27	12281.24	7480.39	312.51	7485.98	0.00	
	19700.00	89.49	0.27	12282.14	7580.38	312.98	7585.96	0.00	
	19800.00	89.49	0.27	12283.04	7680.38	313.46	7685.93	0.00	
	19900.00	89.49	0.27	12283.94	7780.37	313.93	7785.90	0.00	
	20000.00	89.49	0.27	12284.84	7880.37	314.40	7885.88	0.00	
	20100.00	89.49	0.27	12285.74	7980.36	314.87	7985.85	0.00	
	20200.00	89.49	0.27	12286.63	8080.36	315.34	8085.82	0.00	
	20300.00	89.49	0.27	12287.53	8180.35	315.81	8185.80	0.00	
	20400.00	89.49	0.27	12288.43	8280.35	316.28	8285.77	0.00	
	20500.00	89.49	0.27	12289.33	8380.34	316.75	8385.74	0.00	
	20600.00	89.49	0.27	12290.23	8480.33	317.23	8485.72	0.00	
	20700.00	89.49 89.49	0.27	12291.13	8580.33	317.70	8585.69	0.00	
	20800.00	89.49	0.27	12292.03	8680.32	318.17	8685.66	0.00	
	20900.00	89.49 89.49	0.27	12292.93	8780.32 8880 31	318.64 319.11	8785.64 8885.61	0.00	
	21000.00 21100.00	89.49 89.49	0.27 0.27	12293.82 12294.72	8880.31 8980.31	319.11 319.58	8885.61 8985.58	0.00 0.00	
	21200.00	89.49 89.49	0.27	12294.72	9080.31 9080.30	319.58	9085.56	0.00	
	21200.00	89.49 89.49	0.27	12295.62	9080.30 9180.30	320.05	9085.58 9185.53	0.00	
	21300.00	89.49	0.27	12290.32	9280.29	320.52	9285.50	0.00	
	21500.00	89.49	0.27	12298.32	9380.29	321.47	9385.48	0.00	
	21600.00	89.49	0.27	12299.22	9480.28	321.94	9485.45	0.00	
	21700.00	89.49	0.27	12300.12	9580.28	322.41	9585.42	0.00	
	21800.00	89.49	0.27	12301.01	9680.27	322.88	9685.40	0.00	
	21900.00	89.49	0.27	12301.91	9780.27	323.35	9785.37	0.00	
	22000.00	89.49	0.27	12302.81	9880.26	323.82	9885.34	0.00	
	22100.00	89.49	0.27	12303.71	9980.26	324.29	9985.32	0.00	
	22200.00	89.49	0.27	12304.61	10080.25	324.77	10085.29	0.00	
	22300.00	89.49	0.27	12305.51	10180.25	325.24	10185.26	0.00	
	22400.00	89.49	0.27	12306.41	10280.24	325.71	10285.24	0.00	
	22500.00	89.49	0.27	12307.31	10380.24	326.18	10385.21	0.00	
	22600.00	89.49	0.27	12308.21	10480.23	326.65	10485.18	0.00	
	22700.00	89.49	0.27		10580.23	327.12	10585.16	0.00	
	22800.00	89.49	0.27	12310.00	10680.22	327.59	10685.13	0.00	
	22900.00	89.49	0.27		10780.22	328.06	10785.10	0.00	
	23000.00	89.49	0.27	12311.80	10880.21	328.53	10885.08	0.00	
	23100.00	89.49	0.27	12312.70		329.01	10985.05	0.00	
	23200.00	89.49	0.27	12313.60	11080.20	329.48	11085.02	0.00	
	23300.00	89.49	0.27		11180.20	329.95	11184.99	0.00	
	23400.00 23500.00	89.49 89.49	0.27	12315.40 12316.29	11280.19	330.42	11284.97	0.00	
	23500.00 23600.00	89.49 89.49	0.27 0.27		11380.19 11480.18	330.89 331.36	11384.94 11484.91	0.00 0.00	
	23700.00 23800.00	89.49 89.49	0.27 0.27	12318.09	11580.18 11680 17	331.83 332.30	11584.89 11684.86	0.00 0.00	
	23900.00	89.49 89.49	0.27		11780.16	332.50	11784.83	0.00	
	24000.00	89.49	0.27		11880.16	333.25	11784.83	0.00	
	24000.00	89.49	0.27	12320.79	11980.15	333.72	11984.78	0.00	
	24200.00	89.49	0.27		12080.15	334.19	12084.75	0.00	
	24300.00	89.49	0.27		12180.14	334.66	12184.73	0.00	
	24400.00	89.49	0.27	12324.38		335.13	12284.70	0.00	
	24500.00	89.49	0.27		12380.13	335.60	12384.67	0.00	
	24600.00	89.49	0.27		12480.13	336.07	12484.65	0.00	
	24700.00	89.49	0.27	12327.08		336.55	12584.62	0.00	
	24800.00	89.49	0.27		12680.12	337.02	12684.59	0.00	
	24900.00	89.49	0.27	12328.88		337.49	12784.57	0.00	
	25000.00	89.49	0.27		12880.11	337.96	12884.54	0.00	
	25057.97	89.49	0.27	12330.30		338.23	12942.49	0.00	exit
	25100.00	89.49	0.27	12330.68		338.43	12984.51	0.00	
	25137.97	89.49	0.27	12331.00		338.61	13022.47	0.00	BHL

<u>10-3/4"</u>	<u>45.50#</u>	<u>0.400"</u>	<u>J-55</u>	
Dimensions ((Nominal)			
Outside Diameter Wall Inside Diameter			10.750 0.400 9.950	in. in. in.
Drift			9.875	in.
Weight, T&C Weight, PE			45.500 44.260	lbs/ft lbs/ft
<u>Performance</u>	e Properties			
Collapse			2090	psi
Internal Yield Pres	sure at Minimum Yield			
	PE		3580	psi
	STC		3580	psi
	ВТС		3580	psi
Yield Strength, Pip	e Body		715	1000 lbs
Joint Strength				
	STC		493	1000 lbs
	BTC		796	1000 lbs
	BTC Special Clearance (11.25" OD Cplg)	506	1000 lbs

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

Metal One Corp.				MO-FXL 8	-5/8 32 0					
metal one corp.	MO-FXL		MO-FXL 8-5/8 32.0 P110HSCY							
Metal <mark>O</mark> ne	*1 Pipe Body: BMP P110HS	CDS#	MinYS125ksi							
	Special Drift 7.8			SD7.8						
	Connection Data		Date	27-No						
	Connection Data	Sileet	Dale	27-110	V-20					
	Geometry	<u>Imperia</u>	<u>al</u>	<u>S.I.</u>						
	Pipe Body									
	Grade *1	P110HSCY		P110HSCY						
	MinYS *1	125	ksi	125	ksi					
	Pipe OD (D)	8 5/8	in	219.08	mm					
MO-FXL	Weight	32.00	lb/ft	47.68	kg/m					
1	Actual weight	31.10		46.34	kg/m					
	Wall Thickness (t)	0.352	in	8.94	mm					
	Pipe ID (d)	7.921	in	201.19	mm					
	Pipe body cross section	9.149	in ²	5,902	mm ²					
	Special Drift Dia. *1	7.875	in	200.03	mm					
	-	-	-	-	-					
					11					
	Connection									
\uparrow \leftrightarrow	Box OD (W)	8.625	in	219.08	mm					
K	PIN ID	7.921	in	201.19	mm					
Box	Make up Loss	3.847	in	97.71	mm					
critical	Box Critical Area	5.853	in ²	3686	mm ²					
area	Joint load efficiency	69	%	69	%					
	Thread Taper 1 / 10 (1.2" per ft)									
ς Ι	Number of Threads 5 TPI									
Make up loss	Performance Properties for Pipe Body									
	S.M.Y.S. *1	1,144	kips	5,087	kN					
Pin	M.I.Y.P. *1	8,930	psi	61.59	MPa					
critical	Collapse Strength *1	4,300	psi	29.66	MPa					
area	Note S.M.Y.S.= Specified Minimum YIELD Strength of Pipe body M.I.Y.P. = Minimum Internal Yield Pressure of Pipe body *1: BMP P110HSCY: MinYS125ksi, SD7.875, Collapse Strength 4,300psi Performance Properties for Connection Performance Properties for Connection									
	Tensile Yield load	789 kips		of SMVC.						
₩			1	of S.M.Y.S.)						
	Min. Compression Yield	789 kips 6,250 psi	-							
	External Pressure	0,200 psr		of M.I.Y.P.)						
	Max. DLS (deg. /100ft)		2	of Collapse Strength						
	Max. DES (deg. / 1001)		2	9						
	Recommended Torque									
	Min.	13,600	ft-lb	18,400	N-m					
	Opti.	14,900	ft-lb	20,200	N-m					
	Max.	16,200	ft-lb	21,900	N-m					
	Operational Max.	28,400	ft-lb	38,500	N-m					
	Note : Operational Max. t	orque can be appli	ed for high	n torque applicatio	on					
affiliates (herein collectively referred to Data Sheet is for informational purpos regard to safety-related factors, all of responsibility for any errors with respe	ader/user's risk and no warranty is implied o as "Metal One") with respect to the use of es only, and was prepared by reference to which are the sole responsibility of the ope ct to this information.	f information contained l engineering informatior rators and users of the s	herein. The i n that is spec subject conne	information provided o ific to the subject prod ectors. Metal One ass	n this Connection ucts, without umes no					

Statements regarding the suitability of products for certain types of applications are based on Metal One's knowledge of typical requirements that are often placed on Metal One products in standard well configurations. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application

The products application. For more information, please refer to the products described in this Connection Data Sheet are not recommended for use in deep water offshore applications. For more information, please refer to <u>http://www.mtlo.co.jp/mo-con/_images/top/WebsiteTerms_Active_20333287_1.pdf</u> the contents of which are incorporated by reference into this Connection Data Sheet.

Chincoteague 8-32 Fed State Com 733H

10 3/4		surface csg in a	14 3/4	inch hole.		Design	Factors			Surface	9	
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	45.50		j 55	btc	19.29	5.49	0.57	815	10	0.95	10.36	37,083
"B"			,	btc				0				0
	w	/8.4#/g mud, 30min Sfc Csg Test	psig: 1.500	Tail Cmt	does not	circ to sfc.	Totals:	815				37,083
omparison o		to Minimum Required Ceme										- ,
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cpl
14 3/4	0.5563	469	675	453	49	9.00	3765	5M				1.50
140/4	0.0000	400	010	400	40	5.00	0100	- China - Chin				1.00
Burst Frac Grad	dient(s) for	Segment(s) A, B = , b All > C).70, OK.		Site plat (pip	e racks S or E)	as per 0.0.1.	.III.D.4.i. not	found.			
8 5/8		casing inside the	10 3/4			Design	Factors			Int 1		
Segment	#/ft	Grade	/	Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	32.00		p 110	mo-fxl	2.13	0.68	0.93	11.569	1	1.56	1.14	
"B"								0	· ·			0
_	w	/8.4#/g mud, 30min Sfc Csg Test	psig: -673				Totals:	11,569				370,20
				nded to achieve a top of	0	ft from su		815				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd				Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cpl
9 7/8	0.1261	563	811	1466	-45	10.50	4013	5M				0.63
	0.1201	000	6690	1400	-10	10.00	sum of sx	<u>Σ CuFt</u>				Σ%exces
												2 /06/063
D V Tool(s):		22										32
by stage % : Class 'C' tail cm		32 Segment(s): A, B, C, D = 0.54,	32	oblem!!			1052	1935				32
by stage % : Class 'C' tail cm Burst Frac Grad Tail cmt	dient(s) for	Segment(s): A, B, C, D = 0.54,	32 b, c, d <0.70 a Pro	oblem!!		Design Fa	1052		a a	Prod 1		
by stage % : Class 'C' tail cm Burst Frac Grad Tail cmt 5 1/2	dient(s) for s	Segment(s): A, B, C, D = 0.54, casing inside the	32		loint	Design Fa	1052	1935	B@s	Prod 1		
by stage % : Class 'C' tail cm Burst Frac Grac Tail cmt 5 1/2 Segment	dient(s) for s	Segment(s): A, B, C, D = 0.54,	32 b, c, d <0.70 a Pro 8 5/8	Coupling	Joint	Collapse	1052 <u>ctors</u> Burst	1935	B@s	a-B	a-C	Weight
by stage % : Class 'C' tail cm Burst Frac Grac Tail cmt 5 1/2 Segment "A"	dient(s) for s	Segment(s): A, B, C, D = 0.54, casing inside the	32 b, c, d <0.70 a Pro		Joint 2.60		1052	1935 Length 25,138	B@s 2		a-C	Weight 502,760
by stage % : Class 'C' tail cm Burst Frac Grac Tail cmt 5 1/2 Segment	dient(s) for s #/ft 20.00	Segment(s): A, B, C, D = 0.54, casing inside the Grade	32 b, c, d <0.70 a Pro 8 5/8 p 110	Coupling		Collapse	1052 <u>ctors</u> <u>Burst</u> 1.88	1935 Length 25,138 0	<u> </u>	a-B	a-C	Weight 502,760 0
by stage % : Class 'C' tail cm Burst Frac Grac Tail cmt 5 1/2 Segment "A"	dient(s) for s #/ft 20.00	Segment(s): A, B, C, D = 0.54, casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test	32 b, c, d <0.70 a Pro 8 5/8 p 110 psig: 2,713	Coupling cdc-htq	2.60	Collapse 1.81	1052 ctors Burst 1.88 Totals:	1935 Length 25,138 0 25,138	<u> </u>	a-B	a-C	Weight 502,760 0 502,760
by stage % : Class 'C' tail cm Burst Frac Grac Tail cmt 5 1/2 Segment "A" "B"	dient(s) for s #/ft 20.00	Segment(s): A, B, C, D = 0.54, casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement	32 b, c, d <0.70 a Pro 8 5/8 p 110 psig: 2,713 volume(s) are inter	Coupling cdc-htq nded to achieve a top of	2.60 11369	Collapse 1.81 ft from su	1052 ctors Burst 1.88 Totals: rface or a	1935 Length 25,138 0 25,138 200	<u> </u>	a-B	a-C	Weight 502,760 0 502,760 overlap.
by stage % : Class 'C' tail cm Burst Frac Grac Tail cmt 5 1/2 Segment "A" "B" Hole	dient(s) for s #/ft 20.00 w Annular	Segment(s): A, B, C, D = 0.54, casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 Stage	32 b, c, d <0.70 a Pro 8 5/8 p 110 psig: 2,713 volume(s) are inter 1 Stage	Coupling cdc-htq nded to achieve a top of Min	2.60 11369 1 Stage	Collapse 1.81 ft from su Drilling	1052 ctors Burst 1.88 Totals: rface or a Calc	1935 Length 25,138 0 25,138 200 Req'd	<u> </u>	a-B	a-C	Weight 502,760 0 502,760 overlap. Min Dist
by stage % : Class 'C' tail cm Burst Frac Grac Tail cmt 5 1/2 Segment "A" "B" Hole Size	dient(s) for s #/ft 20.00 w Annular Volume	Segment(s): A, B, C, D = 0.54, casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 1 Stage Cmt Sx	32 b, c, d <0.70 a Pro 8 5/8 p 110 psig: 2,713 volume(s) are inter 1 Stage CuFt Cmt	Coupling cdc-htq nded to achieve a top of Min Cu Ft	2.60 11369 1 Stage % Excess	Collapse 1.81 ft from su Drilling Mud Wt	1052 ctors Burst 1.88 Totals: rface or a	1935 Length 25,138 0 25,138 200	<u> </u>	a-B	a-C	Weight 502,760 0 502,760 overlap. Min Dist Hole-Cpl
by stage % : Class 'C' tail cm Burst Frac Grac Tail cmt 5 1/2 Segment "A" "B" Hole	dient(s) for #/ft 20.00 w Annular Volume 0.1733	Segment(s): A, B, C, D = 0.54, casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 1 Stage Cmt Sx 1900	32 b, c, d <0.70 a Pro 8 5/8 p 110 psig: 2,713 volume(s) are inter 1 Stage	Coupling cdc-htq nded to achieve a top of Min	2.60 11369 1 Stage	Collapse 1.81 ft from su Drilling	1052 ctors Burst 1.88 Totals: rface or a Calc	1935 Length 25,138 0 25,138 200 Req'd	<u> </u>	a-B	a-C	Weight 502,760 0 502,760
by stage % : Class 'C' tail cm Burst Frac Grad Tail cmt 5 1/2 Segment "A" "B" Hole Size 7 7/8	dient(s) for #/ft 20.00 w Annular Volume 0.1733	Segment(s): A, B, C, D = 0.54, casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 1 Stage Cmt Sx 1900	32 b, c, d <0.70 a Pro 8 5/8 p 110 psig: 2,713 volume(s) are inter 1 Stage CuFt Cmt	Coupling cdc-htq nded to achieve a top of Min Cu Ft	2.60 11369 1 Stage % Excess	Collapse 1.81 ft from su Drilling Mud Wt	1052 ctors Burst 1.88 Totals: rface or a Calc	1935 Length 25,138 0 25,138 200 Req'd	<u> </u>	a-B	a-C	Weight 502,760 0 502,760 overlap. Min Dist Hole-Cpl
by stage % : Class 'C' tail cm Burst Frac Grac Tail cmt 5 1/2 Segment "A" "B" Hole Size 7 7/8 Class 'C' tail cm	dient(s) for #/ft 20.00 w Annular Volume 0.1733	Segment(s): A, B, C, D = 0.54, casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 1 Stage Cmt Sx 1900	32 b, c, d <0.70 a Pro 8 5/8 p 110 psig: 2,713 volume(s) are inter 1 Stage CuFt Cmt	Coupling cdc-htq nded to achieve a top of Min Cu Ft	2.60 11369 1 Stage % Excess	Collapse 1.81 ft from su Drilling Mud Wt	1052 ctors Burst 1.88 Totals: rface or a Calc MASP	1935 Length 25,138 0 25,138 200 Req'd	2	a-B	a-C 3.04	Weight 502,760 0 502,760 overlap. Min Dist Hole-Cpl
by stage % : Class 'C' tail cm Surst Frac Grac Tail cmt 5 1/2 Segment "A" "B" Hole Size 7 7/8 Class 'C' tail cm #N/A 0	dient(s) for #/ft 20.00 w Annular Volume 0.1733	Segment(s): A, B, C, D = 0.54, casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 1 Stage Cmt Sx 1900	32 b, c, d <0.70 a Pro 8 5/8 p 110 psig: 2,713 volume(s) are inter 1 Stage CuFt Cmt 2950	Coupling cdc-htq nded to achieve a top of Min Cu Ft	2.60 11369 1 Stage % Excess	Collapse 1.81 ft from su Drilling Mud Wt 10.50	1052 ctors Burst 1.88 Totals: rface or a Calc MASP	1935 Length 25,138 0 25,138 200 Req'd	2	a-B 3.15	a-C 3.04	Weight 502,760 0 502,760 overlap. Min Dist Hole-Cpl
by stage % : class 'C' tail cm Surst Frac Grac Tail cmt 5 1/2 Segment "A" "B" Hole Size 7 7/8 class 'C' tail cm #N/A 0	dient(s) for 1 #/ft 20.00 w Annular Volume 0.1733 itt yld > 1.35	Segment(s): A, B, C, D = 0.54, casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 1900	32 b, c, d <0.70 a Pro 8 5/8 p 110 psig: 2,713 volume(s) are inter 1 Stage CuFt Cmt 2950	Coupling cdc-htq nded to achieve a top of Min Cu Ft 2386	2.60 11369 1 Stage % Excess 24	Collapse 1.81 ft from su Drilling Mud Wt 10.50 Design	1052 ctors Burst 1.88 Totals: rface or a Calc MASP Factors	1935 Length 25,138 0 25,138 200 Req'd BOPE	2	a-B 3.15	a-C 3.04	Weight 502,760 0 502,760 overlap. Min Dist Hole-Cpl 0.79
by stage % : class 'C' tail cm burst Frac Grac Tail cmt 5 1/2 Segment "A" "B" Hole Size 7 7/8 class 'C' tail cm #N/A 0 Segment	dient(s) for 1 #/ft 20.00 w Annular Volume 0.1733 itt yld > 1.35	Segment(s): A, B, C, D = 0.54, casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 1900	32 b, c, d <0.70 a Pro 8 5/8 p 110 psig: 2,713 volume(s) are inter 1 Stage CuFt Cmt 2950	Coupling cdc-htq nded to achieve a top of Min Cu Ft 2386 Coupling	2.60 11369 1 Stage % Excess 24	Collapse 1.81 ft from su Drilling Mud Wt 10.50 Design	1052 ctors Burst 1.88 Totals: rface or a Calc MASP Factors	1935 Length 25,138 0 25,138 200 Req'd BOPE	2	a-B 3.15	a-C 3.04	Weigh 502,76 0 502,76 overlap. Min Dis Hole-Cpi 0.79 Weigh
by stage % : class 'C' tail cm burst Frac Grac Tail cmt 5 1/2 Segment "A" "B" Hole Size 7 7/8 class 'C' tail cm \$ 0 Segment "A"	dient(s) for : #/ft 20.00 w Annular Volume 0.1733 it yld > 1.35 #/ft	Segment(s): A, B, C, D = 0.54, casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 1900 Grade	32 b, c, d <0.70 a Pro 8 5/8 p 110 psig: 2,713 volume(s) are inter 2950 5 1/2	Coupling cdc-htq nded to achieve a top of Min Cu Ft 2386 Coupling 0.00	2.60 11369 1 Stage % Excess 24	Collapse 1.81 ft from su Drilling Mud Wt 10.50 Design	1052 ttors Burst 1.88 Totals: Inface or a Calc MASP Factors Burst	1935 Length 25,138 00 25,138 200 Req'd BOPE	2	a-B 3.15	a-C 3.04	Weigh 502,76 0 502,76 overlap. Min Dis Hole-Cpl 0.79 Weigh 0
by stage % : class 'C' tail cm burst Frac Grac Tail cmt 5 1/2 Segment "A" "B" Hole Size 7 7/8 class 'C' tail cm \$ 0 Segment "A"	dient(s) for : #/ft 20.00 w Annular Volume 0.1733 it yld > 1.35 #/ft	Segment(s): A, B, C, D = 0.54, casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement of 1 Stage Cmt Sx 1900 Grade /8.4#/g mud, 30min Sfc Csg Test	32 b, c, d <0.70 a Pro 8 5/8 p 110 psig: 2,713 volume(s) are inter 1 Stage CuFt Cmt 2950 5 1/2	Coupling cdc-htq nded to achieve a top of Min Cu Ft 2386 Coupling 0.00 0.00	2.60 11369 1 Stage % Excess 24 #N/A	Collapse 1.81 ft from su Drilling Mud Wt 10.50 <u>Design</u> Collapse	1052 tors Burst 1.88 Totals: rface or a Calc MASP Factors Burst Totals:	1935 Length 25,138 00 25,138 200 Req'd BOPE	2	a-B 3.15	a-C 3.04	Weigh 502,76 0 502,76 0 verlap. Min Dis Hole-Cpl 0.79 0.79
by stage % : Class 'C' tail cm Burst Frac Grac Tail cmt 5 1/2 Segment "A" "B" Hole Size 7 7/8 Class 'C' tail cm #N/A 0 Segment "A" "B"	dient(s) for : #/ft 20.00 w Annular Volume 0.1733 ut yld > 1.35 tt yld > 1.35 #/ft	Segment(s): A, B, C, D = 0.54, casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement of 1 Stage Cmt Sx 1900 Grade /8.4#/g mud, 30min Sfc Csg Test Cmt vol csg	32 b, c, d <0.70 a Pro 8 5/8 p 110 psig: 2,713 volume(s) are inter 1 Stage CuFt Cmt 2950 5 1/2	Coupling cdc-htq nded to achieve a top of Min Cu Ft 2386 Coupling 0.00 0.00 0.00	2.60 11369 1 Stage % Excess 24 #N/A #N/A	Collapse 1.81 ft from su Drilling Mud Wt 10.50 <u>Design</u> Collapse	1052 ctors Burst 1.88 Totals: rface or a Calc MASP Factors Burst Totals: rface or a	1935 Length 25,138 200 Req'd BOPE Length 0 0 0 0	2	a-B 3.15	a-C 3.04	Weigh 502,76 0 502,76 overlap. Min Dis Hole-Cp 0.79 Weigh 0 0 0 0 0 0 0 0
by stage % : Class 'C' tail cm Surst Frac Grac Tail cmt 5 1/2 Segment "A" "B" Hole Size 7 7/8 Class 'C' tail cm #N/A 0 Segment "A" "B" Hole	dient(s) for : #/ft 20.00 w Annular Volume 0.1733 it yld > 1.35 #/ft w Annular	Segment(s): A, B, C, D = 0.54, casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement of 1 Stage Cmt Sx 1900 Grade /8.4#/g mud, 30min Sfc Csg Test Cmt vol c: 1 Stage	32 b, c, d <0.70 a Pro 8 5/8 p 110 psig: 2,713 volume(s) are inter 1 Stage CuFt Cmt 2950 5 1/2 psig: alc below includes 1 Stage	Coupling cdc-htq nded to achieve a top of Min Cu Ft 2386 Coupling 0.00 0.00 0.00 this csg, TOC intended Min	2.60 11369 1 Stage % Excess 24 #N/A 1 Stage	Collapse 1.81 ft from su Drilling Mud Wt 10.50 <u>Design</u> Collapse ft from su Drilling	1052 ctors Burst 1.88 Totals: rface or a Calc MASP Factors Burst Totals: rface or a Calc	1935 Length 25,138 200 Req'd BOPE Length 0 0 0 0 #N/A Req'd	2	a-B 3.15	a-C 3.04	Weigh 502,760 overlap. Min Dis Hole-Cpl 0.79 Weigh 0 0 0 overlap. Min Dis
by stage % : class 'C' tail cm surst Frac Grac Tail cmt 5 1/2 Segment "A" "B" Hole Size 7 7/8 class 'C' tail cm #N/A 0 Segment "A" "B" Hole Size	dient(s) for : #/ft 20.00 w Annular Volume 0.1733 ut yld > 1.35 tt yld > 1.35 #/ft	Segment(s): A, B, C, D = 0.54, casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement of 1 Stage Cmt Sx 1900 Grade /8.4#/g mud, 30min Sfc Csg Test Cmt vol c: 1 Stage Cmt Sx	32 b, c, d <0.70 a Pro 8 5/8 p 110 psig: 2,713 volume(s) are inter 1 Stage CuFt Cmt 2950 5 1/2 psig: alc below includes 1 Stage CuFt Cmt	Coupling cdc-htq nded to achieve a top of Min Cu Ft 2386 Coupling 0.00 0.00 0.00 this csg, TOC intended Min Cu Ft	2.60 11369 1 Stage % Excess 24 #N/A 1 Stage % Excess	Collapse 1.81 ft from su Drilling Mud Wt 10.50 <u>Design</u> Collapse	1052 ctors Burst 1.88 Totals: rface or a Calc MASP Factors Burst Totals: rface or a	1935 Length 25,138 200 Req'd BOPE Length 0 0 0 0	2	a-B 3.15	a-C 3.04	Weigh 502,760 overlap. Min Dis Hole-Cpl 0.79 Weigh 0 0 0 0 0 0 0
by stage % : class 'C' tail cm furst Frac Grac 5 1/2 Segment "A" "B" Hole Size 7 7/8 class 'C' tail cm #N/A 0 Segment "A" "B" Hole	dient(s) for : #/ft 20.00 w Annular Volume 0.1733 it yld > 1.35 #/ft w Annular	Segment(s): A, B, C, D = 0.54, casing inside the Grade /8.4#/g mud, 30min Sfc Csg Test The cement of 1 Stage Cmt Sx 1900 Grade /8.4#/g mud, 30min Sfc Csg Test Cmt vol c: 1 Stage	32 b, c, d <0.70 a Pro 8 5/8 p 110 psig: 2,713 volume(s) are inter 1 Stage CuFt Cmt 2950 5 1/2 psig: alc below includes 1 Stage	Coupling cdc-htq nded to achieve a top of Min Cu Ft 2386 Coupling 0.00 0.00 0.00 this csg, TOC intended Min Cu Ft 0	2.60 11369 1 Stage % Excess 24 #N/A 1 Stage	Collapse 1.81 ft from su Drilling Mud Wt 10.50 <u>Design</u> Collapse ft from su Drilling	1052 ctors Burst 1.88 Totals: rface or a Calc MASP Factors Burst Totals: rface or a Calc	1935 Length 25,138 200 Req'd BOPE Length 0 0 0 0 #N/A Req'd	2	a-B 3.15	a-C 3.04	Weigh 502,76 0 502,76 overlap. Min Dis Hole-Cpl 0.79 Weigh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	368933
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By		Condition Date
pkautz	ALL PREVIOUS COA"S APPLY	9/10/2024

Page 59 of 59

Action 368933