

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Sundry Print Reports
08/26/2024

County or Parish/State: LEA /

Well Name: CHINCOTEAGUE 8-32

FED STATE COM

Well Number: 624H

Well Location: T25S / R32E / SEC 8 /

SENE / 32.1457883 / -103.690113

Allottee or Tribe Name:

Lease Number: NMLC061873B

Unit or CA Name:

Type of Well: OIL WELL

Unit or CA Number:

US Well Number: 30-025-53046

Operator: DEVON ENERGY PRODUCTION COMPANY LP

Notice of Intent

Sundry ID: 2800582

Type of Submission: Notice of Intent

Date Sundry Submitted: 07/23/2024

Date proposed operation will begin: 07/13/2024

72072021

Type of Action: APD Change

Time Sundry Submitted: 01:02

Procedure Description: Devon Energy Production Co., L.P. (Devon) respectfully requests to change the SHL, BHL, spacing, pool code and depth on the subject well. Devon is also updating surface casing/hole size and connections and requesting variances for break testing and offline cementing. Devon Energy Production Company, L.P. will circulate class C cement to surface behind the 10-3/4" casing. Please see attached updated C102, Drill plan, directional plan, spec sheets, break test and offline cementing variance. API: 30-025-53046 Permitted SHL: SENE, 2313 FNL, 465 FEL, 8-25S-32E Proposed SHL: SENE, 2463 FNL, 585 FEL, 8-25S-32E Permitted BHL: NENE, 20 FNL, 550 FEL, 32-24S-32E Proposed BHL: NENE, 20 FNL, 500 FEL, 32-24S-32E Permitted TVD/MD: 12039/24905 Proposed TVD/MD: 11041/23846

NOI Attachments

Procedure Description

WA018438615_CHINCOTEAGUE_8_32_FED_STATE_COM_624H_WL_R1_SIGNED_20240723125706.pdf

CHINCOTEAGUE_8_32_FED_STATE_COM_624H_20240723124905.pdf

CHINCOTEAGUE_8_32_FED_STATE_COM_624H_Directional_Plan_07_18_24_20240723124905.pdf

AA000213614_CHINCOTEAGUE_8_WELLPAD_3_WP_R3_SITE_MAP_20240713154535.pdf

break_test_variance_BOP_1_15_24_20240713150729.pdf

Offline_Cementing____Variance_Request_20240713150728.pdf

8.625_32lb_P110_MOFXL_20240713150727.pdf

eived by OCD: 8/26/2024 4:39:46 AM Well Name: CHINCOTEAGUE 8-32

FED STATE COM

Well Location: T25S / R32E / SEC 8 / SENE / 32.1457883 / -103.690113

County or Parish/State: LEA/

Type of Well: OIL WELL

Allottee or Tribe Name:

Lease Number: NMLC061873B

Well Number: 624H

Unit or CA Name:

Unit or CA Number:

US Well Number:

Operator: DEVON ENERGY PRODUCTION COMPANY LP

10.750_45.5lb_J55_BTC_20240713150726.pdf

 $5.5_20_P110HP_CDC_HTQ_20240713150726.pdf$

Conditions of Approval

Additional

8_25_32_H_Sundry_ID_2800582_Chincoteague_8_32_Fed_State_Com_624H_20240730125400.pdf

ChincoTeague_8_32_Fed_State_Com_624H_Dr_COA_20240730125400.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: CHELSEY GREEN Signed on: JUL 13, 2024 03:07 PM

Name: DEVON ENERGY PRODUCTION COMPANY LP

Title: Regulatory Compliance Professional

Street Address: 333 WEST SHERIDAN AVENUE

City: OKLAHOMA CITY State: OK

Phone: (405) 228-8595

Email address: CHELSEY.GREEN@DVN.COM

Field

Representative Name:

Street Address:

City:

State:

Zip:

Phone:

Email address:

BLM Point of Contact

BLM POC Name: CHRISTOPHER WALLS BLM POC Title: Petroleum Engineer

BLM POC Phone: 5752342234 BLM POC Email Address: cwalls@blm.gov

Disposition: Approved Disposition Date: 08/23/2024

Signature: Chris Walls

Page 2 of 2

Form 3160-5 (June 2019)

UNITED STATES DEPARTMENT OF THE INTERIOR

FORM APPROVE	O
OMB No. 1004-013	7
Expires: October 31, 2	02

BURI	EAU OF LAND MANAGEMENT	5. Lease Serial No.	5. Lease Serial No.		
Do not use this t	OTICES AND REPORTS ON Vorm for proposals to drill or to Use Form 3160-3 (APD) for su	6. If Indian, Allottee o	6. If Indian, Allottee or Tribe Name		
SUBMIT IN	TRIPLICATE - Other instructions on pag	ge 2	7. If Unit of CA/Agree	ement, Name and/or No.	
1. Type of Well					
Oil Well Gas W	Vell Other		8. Well Name and No.		
2. Name of Operator			9. API Well No.		
3a. Address	3b. Phone No.	(include area code)	10. Field and Pool or I	Exploratory Area	
4. Location of Well (Footage, Sec., T.,R	.,M., or Survey Description)		11. Country or Parish,	State	
12. CHE	CK THE APPROPRIATE BOX(ES) TO IN	DICATE NATURE OF N	OTICE, REPORT OR OTH	HER DATA	
TYPE OF SUBMISSION		TYPE OF	ACTION		
Notice of Intent	Acidize Dee	_	Production (Start/Resume) Reclamation	Water Shut-Off Well Integrity	
Subsequent Report	Casing Repair New	Construction F	Recomplete	Other	
Final Abandonment Notice			Temporarily Abandon Water Disposal		
completed. Final Abandonment Not is ready for final inspection.)	ons. If the operation results in a multiple contices must be filed only after all requiremen				
14. I hereby certify that the foregoing is	true and correct. Name (Printed/Typed)				
		Title			
Signature		Date			
	THE SPACE FOR FED	ERAL OR STATE	OFICE USE		
Approved by					
		Title	I	Date	
	ned. Approval of this notice does not warran equitable title to those rights in the subject leduct operations thereon.				
Title 18 U.S.C. Section 1001 and Title 4	3 U.S.C Section 1212, make it a crime for a	ny person knowingly and	willfully to make to any de	epartment or agency of the United States	

Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United State any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

(Form 3160-5, page 2)

Additional Information

Location of Well

0. SHL: SENE / 2313 FNL / 465 FEL / TWSP: 25S / RANGE: 32E / SECTION: 8 / LAT: 32.1457883 / LONG: -103.690113 (TVD: 0 feet, MD: 0 feet)
PPP: SENE / 2543 FNL / 550 FEL / TWSP: 25S / RANGE: 32E / SECTION: 8 / LAT: 32.145155 / LONG: -103.6903853 (TVD: 11754 feet, MD: 11811 feet)
PPP: SESE / 146 FSL / 512 FEL / TWSP: 25S / RANGE: 32E / SECTION: 5 / LAT: 32.152545 / LONG: -103.6902883 (TVD: 11971 feet, MD: 14500 feet)
PPP: LOT 1 / 1241 FNL / 469 FEL / TWSP: 25S / RANGE: 32E / SECTION: 5 / LAT: 32.1632645 / LONG: -103.6901537 (TVD: 11997 feet, MD: 18400 feet)
BHL: NENE / 20 FNL / 550 FEL / TWSP: 24S / RANGE: 32E / SECTION: 32 / LAT: 32.1811455 / LONG: -103.6899289 (TVD: 12039 feet, MD: 24905 feet)

Chincoteague 8-32 Fed State Com 624H

10 3/4	surf	ace csg in a	14 3/4 i	inch hole.		Design	Factors			Surface		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weigh
"A"	45.50		j 55	btc	18.94	5.39	0.64	830	10	1.07	10.17	37,76
"B"				btc				0				0
	w/8 4#/	g mud, 30min Sfc Csg Test	t nsig: 1 500	Tail Cmt	does not	circ to sfc.	Totals:	830				37,76
omnarison o		nimum Required Cem										,
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Di
Size	Volume	Cmt Sx	_	Cu Ft	•	Mud Wt	MASP	BOPE				
			CuFt Cmt		% Excess							Hole-C
14 3/4	0.5563	469	675	462	46	9.00	3352	5M				1.50
Burst Frac Grad	lient(s) for Segmer	nt(s) A, B = , b All > 0.	.70, OK.									
										1		
8 5/8		g inside the	10 3/4		1-1-4	<u>Design</u>		1 11	ВС	Int 1	- 0	107
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weig
"A"	32.00		p 110	mo-fxl	2.39	0.77	1.04	10,300	1	1.74	1.28	
"B"								0				0
	w/8.4#/	g mud, 30min Sfc Csg Test	t psig: -120				Totals:	10,300				329,6
		The cement	volume(s) are intend	led to achieve a top of	0	ft from su	rface or a	830				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Di
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-C
9 7/8	0.1261	420	605	1306	-54	10.50	3593	5M				0.63
D V Tool(s):			6690			10100	sum of sx	Σ CuFt				Σ%exce
												32
hii atawa 0/ .												
, ,	t yld > 1.35	33	32				908	1727				02
lass 'C' tail cm								1/2/				
Tail cmt	casin	g inside the	8 5/8			Design Fa	ctors			Prod 1		
Tail cmt 5 1/2 Segment	casin #/ft			Coupling	Joint	Collapse	ctors Burst	Length	B@s	a-B	a-C	Weig
	casin	g inside the		Coupling cdc-htq	Joint 2.90		ctors		B@s 2			
Tail cmt 5 1/2 Segment	casin #/ft	g inside the	8 5/8			Collapse	ctors Burst	Length		a-B		Weig
Tail cmt 5 1/2 Segment "A"	casin #/ft	g inside the	8 5/8			Collapse	ctors Burst	Length 23,846		a-B		Weig 476,93
Tail cmt 5 1/2 Segment "A" "B"	casin #/ft	g inside the	8 5/8			Collapse	ctors Burst	Length 23,846		a-B		Weig 476,9
Tail cmt 5 1/2 Segment "A" "B" "C"	casin #/ft 20.00	g inside the Grade	8 5/8 p 110	cdc-htq		Collapse	ctors Burst 2.1	Length 23,846 0 0		a-B		Weig 476,9 0 0
Tail cmt 5 1/2 Segment "A" "B" "C"	casin #/ft 20.00	g inside the Grade g mud, 30min Sfc Csg Test	85/8 p 110 t psig: 2,429	cdc-htq 0	2.90	Collapse 2.03	Ctors Burst 2.1 Totals:	Length 23,846 0 0 0 23,846		a-B		Weig 476,9 0 0 0 476,9
Tail cmt 5 1/2 Segment "A" "B" "C" "D"	casin #/ft 20.00	g inside the Grade g mud, 30min Sfc Csg Test The cement	8 5/8 p 110 t psig: 2,429 volume(s) are intend	cdc-htq 0 led to achieve a top of	2.90	Collapse 2.03	Ctors Burst 2.1 Totals: rface or a	Length 23,846 0 0 0 23,846 200		a-B		Weig 476,9: 0 0 0 476,9: overlap.
Tail cmt 5 1/2 Segment "A" "B" "C" "D"	casin #/ft 20.00 w/8.4#//	g inside the Grade g mud, 30min Sfc Csg Test The cement 1 Stage	8 5/8 p 110 t psig: 2,429 volume(s) are intend 1 Stage	cdc-htq 0 led to achieve a top of Min	2.90 10100 1 Stage	Collapse 2.03 ft from su Drilling	Ctors Burst 2.1 Totals: rface or a Calc	Length 23,846 0 0 0 23,846 200 Req'd		a-B		Weig 476,9: 0 0 0 476,9: overlap. Min Di
Tail cmt 51/2 Segment "A" "B" "C" "D"	casin #/ft 20.00 w/8.4#// Annular Volume	g inside the Grade g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx	8 5/8 p 110 t psig: 2,429 volume(s) are intend 1 Stage CuFt Cmt	odc-htq 0 led to achieve a top of Min Cu Ft	2.90 10100 1 Stage % Excess	ft from su Drilling Mud Wt	Ctors Burst 2.1 Totals: rface or a	Length 23,846 0 0 0 23,846 200		a-B		Weig 476,9: 0 0 476,9: overlap. Min Di
Tail cmt 51/2 Segment "A" "B" "C" "D" Hole Size 7 7/8	casin #/ft 20.00 w/8.4#// Annular Volume 0.1733	g inside the Grade g mud, 30min Sfc Csg Test The cement 1 Stage	8 5/8 p 110 t psig: 2,429 volume(s) are intend 1 Stage	cdc-htq 0 led to achieve a top of Min	2.90 10100 1 Stage	Collapse 2.03 ft from su Drilling	Ctors Burst 2.1 Totals: rface or a Calc	Length 23,846 0 0 0 23,846 200 Req'd		a-B		Weig 476,9: 0 0 0 476,9: overlap.
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 class 'C' tail cm	casin #/ft 20.00 w/8.4#// Annular Volume 0.1733	g inside the Grade g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx	8 5/8 p 110 t psig: 2,429 volume(s) are intend 1 Stage CuFt Cmt	odc-htq 0 led to achieve a top of Min Cu Ft	2.90 10100 1 Stage % Excess	ft from su Drilling Mud Wt	Ctors Burst 2.1 Totals: rface or a Calc	Length 23,846 0 0 0 23,846 200 Req'd		a-B		Weig 476,9: 0 0 476,9: overlap. Min Di
Tail cmt 51/2 Segment "A" "B" "C" "D"	casin #/ft 20.00 w/8.4#// Annular Volume 0.1733	g inside the Grade g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx	8 5/8 p 110 t psig: 2,429 volume(s) are intend 1 Stage CuFt Cmt	odc-htq 0 led to achieve a top of Min Cu Ft	2.90 10100 1 Stage % Excess	ft from su Drilling Mud Wt	Ctors Burst 2.1 Totals: rface or a Calc	Length 23,846 0 0 0 23,846 200 Req'd		a-B		Weig 476,9: 0 0 476,9: overlap. Min Di
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 Class 'C' tail cm	casin #/ft 20.00 w/8.4#// Annular Volume 0.1733	g inside the Grade g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx	8 5/8 p 110 t psig: 2,429 volume(s) are intend 1 Stage CuFt Cmt	odc-htq 0 led to achieve a top of Min Cu Ft	2.90 10100 1 Stage % Excess	ft from su Drilling Mud Wt	Totals: rface or a Calc MASP	Length 23,846 0 0 0 23,846 200 Req'd	2	a-B	3.40	Weig 476,9: 0 0 476,9: overlap. Min Di
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 class 'C' tail cm' #N/A 0	casin #/ft 20.00 w/8.4#// Annular Volume 0.1733	g inside the Grade g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx	8 5/8 p 110 t psig: 2,429 volume(s) are intend 1 Stage CuFt Cmt 2946	odc-htq 0 led to achieve a top of Min Cu Ft	2.90 10100 1 Stage % Excess	ft from su Drilling Mud Wt 10.50	Totals: rface or a Calc MASP	Length 23,846 0 0 0 23,846 200 Req'd	2	a-B 3.52	3.40	Weig 476,9 0 0 476,9 overlap. Min Di
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 Class 'C' tail cm	casin #/ft 20.00 w/8.4#// Annular Volume 0.1733 tyld > 1.35	g inside the Grade g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 1897	8 5/8 p 110 t psig: 2,429 volume(s) are intend 1 Stage CuFt Cmt 2946	cdc-htq 0 ded to achieve a top of Min Cu Ft 2382	2.90 10100 1 Stage % Excess 24	ft from su Drilling Mud Wt 10.50	Totals: rface or a Calc MASP	Length 23,846 0 0 0 23,846 200 Req'd BOPE	2	a-B 3.52	3.40	Weig 476,9 0 0 476,9 overlap. Min Di Hole-C
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 class 'C' tail cm' #N/A 0 Segment	casin #/ft 20.00 w/8.4#// Annular Volume 0.1733 tyld > 1.35	g inside the Grade g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 1897	8 5/8 p 110 t psig: 2,429 volume(s) are intend 1 Stage CuFt Cmt 2946	cdc-htq 0 led to achieve a top of Min Cu Ft 2382 Coupling	2.90 10100 1 Stage % Excess 24	ft from su Drilling Mud Wt 10.50	Totals: rface or a Calc MASP	Length 23,846 0 0 0 23,846 200 Req'd BOPE	2	a-B 3.52	3.40	Weig 476,9 0 0 476,9 overlap, Min D Hole-C 0.75
Tail cmt 51/2 Segment "A" "B" "C" "D" Hole Size 77/8 Class 'C' tail cm #N/A 0 Segment "A"	casin #/ft 20.00 w/8.4#// Annular Volume 0.1733 tyld > 1.35	g inside the Grade g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 1897 Grade	p 110 t psig: 2,429 volume(s) are intend 1 Stage CuFt Cmt 2946	cdc-htq 0 led to achieve a top of Min Cu Ft 2382 Coupling 0.00	2.90 10100 1 Stage % Excess 24	ft from su Drilling Mud Wt 10.50	Totals: Totals: rface or a Calc MASP	Length 23,846 0 0 0 23,846 200 Req'd BOPE Length 0	2	a-B 3.52	3.40	Weig 476,9 0 0 476,9 overlap. Min D Hole-C 0.79
Tail cmt 51/2 Segment "A" "B" "C" "D" Hole Size 77/8 Class 'C' tail cm #N/A 0 Segment "A"	casin #/ft 20.00 w/8.4#// Annular Volume 0.1733 tyld > 1.35	g inside the Grade g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 1897 Grade	8 5/8 p 110 t psig: 2,429 volume(s) are intend 1 Stage CuFt Cmt 2946	cdc-htq 0 led to achieve a top of Min Cu Ft 2382 Coupling 0.00 0.00	2.90 10100 1 Stage % Excess 24 #N/A	ft from su Drilling Mud Wt 10.50	Totals: Totals: Totals:	Length 23,846 0 0 0 23,846 200 Req'd BOPE Length 0 0	2	a-B 3.52	3.40	Weig 476,9 0 0 476,9 overlap Min D Hole-C 0.75
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 5 2/3 Class 'C' tail cm #N/A 0 Segment "A" "B"	casin #/ft 20.00 w/8.4#// Annular Volume 0.1733 tyld > 1.35	g inside the Grade g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 1897 Grade	8 5/8 p 110 t psig: 2,429 volume(s) are intend 1 Stage CuFt Cmt 2946 5 1/2	cdc-htq 0 led to achieve a top of Min Cu Ft 2382 Coupling 0.00 0.00 his csg, TOC intended	2.90 10100 1 Stage % Excess 24 #N/A	ft from su Drilling Mud Wt 10.50 Design Collapse	Totals: rface or a Calc MASP Factors Burst Totals: rface or a	Length 23,846 0 0 0 23,846 200 Req'd BOPE	2	a-B 3.52	3.40	Weig 476,9 0 0 476,9 overlap Min D Hole-C 0.75 Weig 0 0 overlap
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 Class 'C' tail cm #N/A 0 Segment "A" "B"	casin #/ft 20.00 w/8.4#/ft Annular Volume 0.1733 tyld > 1.35 #/ft w/8.4#/ft Annular	g inside the Grade g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 1897 Grade g mud, 30min Sfc Csg Test Cmt vol c: 1 Stage	8 5/8 p 110 t psig: 2,429 volume(s) are intend 1 Stage CuFt Cmt 2946 5 1/2 t psig: alc below includes the stage of the	cdc-htq 0 ded to achieve a top of Min Cu Ft 2382 Coupling 0.00 0.00 his csg, TOC intended Min	2.90 10100 1 Stage % Excess 24 #N/A #N/A	ft from su Drilling Mud Wt 10.50 Design Collapse ft from su Drilling	Totals: rface or a Calc MASP Totals: rface or a Calc MASP Totals: rface or a Calc	Length 23,846 0 0 23,846 200 Req'd BOPE Length 0 0 #N/A Req'd	2	a-B 3.52	3.40	Weig 476,9 0 0 476,9 overlap. Min D Hole-C 0.75 Weig 0 0 overlap.
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 5 2/3 Class 'C' tail cm #N/A 0 Segment "A" "B"	casin #/ft 20.00 w/8.4#// Annular Volume 0.1733 tyld > 1.35	g inside the Grade g mud, 30min Sfc Csg Test The cement 1 Stage Cmt Sx 1897 Grade	8 5/8 p 110 t psig: 2,429 volume(s) are intend 1 Stage CuFt Cmt 2946 5 1/2	cdc-htq 0 led to achieve a top of Min Cu Ft 2382 Coupling 0.00 0.00 his csg, TOC intended	2.90 10100 1 Stage % Excess 24 #N/A	ft from su Drilling Mud Wt 10.50 Design Collapse	Totals: rface or a Calc MASP Factors Burst Totals: rface or a	Length 23,846 0 0 0 23,846 200 Req'd BOPE	2	a-B 3.52	3.40	Weig 476,9 0 0 476,9 overlap. Hole-C 0.79 Weig 0 0

Carlsbad Field Office 7/30/2024

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: Devon Energy Production Company LP

LEASE NO.: | NMLC061873B

LOCATION: Section 8, T.25 S., R.32 E., NMPM

COUNTY: Lea County, New Mexico

WELL NAME & NO.: | Chincoteague 8-32 Fed State Com 624H

BOTTOM HOLE FOOTAGE | 20'/N & 500'/E

ATS/API ID: 30-025-53046 APD ID: 10400084210

Sundry ID: N/a

Date APD Submitted: N/a

COA

H2S	No 🔽		
Potash	None	None	
Cave/Karst Potential	Low		
Cave/Karst Potential	☐ Critical		
Variance	■ None	Flex Hose	C Other
Wellhead	Conventional and Multibov	vI 🔽	
Other	□4 String	Capitan Reef None	□WIPP
Other	Pilot Hole None	□ Open Annulus	
Cementing	Contingency Squeeze None	Echo-Meter Int 1	Primary Cement Squeeze None
Special Requirements	☐ Water Disposal/Injection	▽ COM	□ Unit
Special Requirements	☐ Batch Sundry	Waste Prevention None	
Special Requirements Variance	▼ Break Testing	✓ Offline Cementing	☐ Casing Clearance

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet **43 CFR part 3170 Subpart 3176**, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The 10-3/4 inch surface casing shall be set at approximately 830 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt when present, and below usable fresh water) and cemented to the surface. The surface hole shall be 14 3/4 inch in diameter.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

2. The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above.

Option 2:

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

- a. First stage: Operator will cement with intent to reach the top of the Brushy Canyon at 6690' (420 sxs Class H/C+ additives).
- b. Second stage:
 - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified. (Squeeze 488 sxs Class C)

Operator has proposed to pump down 10-3/4" X 8-5/8" annulus after primary cementing stage. Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus Or operator shall run a CBL from TD of the 8-5/8" casing to surface after the second stage BH to verify TOC.

Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out. Operator must run one CBL per Well Pad. Operator may conduct a negative and positive pressure test during completion to remediate sustained casing pressure.

If cement does not reach surface, the next casing string must come to surface.

Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 200 feet into previous casing string.
 Operator shall provide method of verification.
 Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2.

Option 1:

a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi. Annular which shall be tested to 3500 (70% Working Pressure) psi.

b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 8-5/8 inch intermediate casing shoe shall be 5000 (5M) psi.

Option 2:

Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the 10-3/4 inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR part 3170 Subpart 3171
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

BOPE Break Testing Variance (Approved)

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-689-5981 Lea County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR part 3170 Subpart 3172.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Offline Cementing

Operator has been (**Approved**) to pump the proposed cement program offline in the **Intermediate(s) interval**.

Offline cementing should commence within 24 hours of landing the casing for the interval.

Notify the BLM 4hrs prior to cementing offline at Lea County: 575-689-5981.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

✓ Lea County
Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL
- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke

manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be

- initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and

disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Long Vo (LVO) 7/30/2024

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410

Phone: (505) 334-6178 Fax: (505) 334-6170 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

District IV

12 Dedicated Acres

13 Joint or Infill

14 Consolidation Code

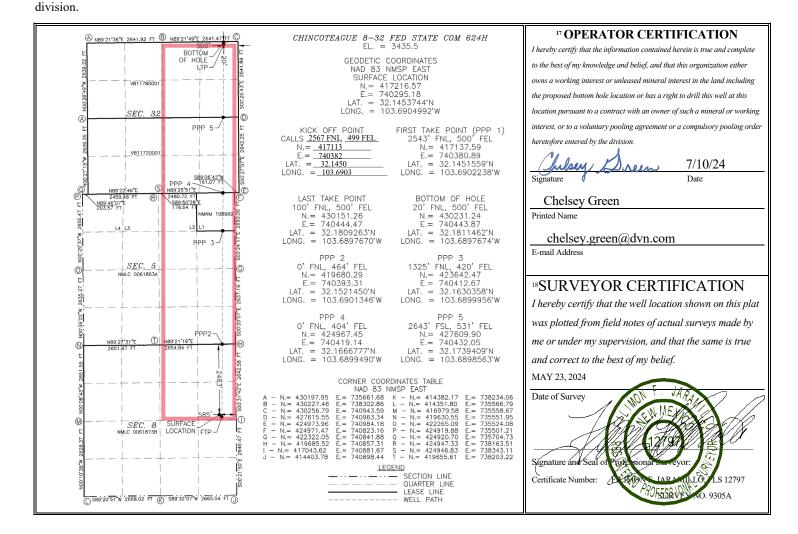
State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION

> 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT


¹ API Number		² Pool Code			
30-025-53046		97899	WC-025 G-06 S253206M;BONE SPRING		
⁴ Property Code		⁵ Pr	⁶ Well Number		
326213		CHINCOTEAGUI	E 8-32 FED STATE COM	624H	
⁷ OGRID No.		8 O _I	⁹ Elevation		
6137		DEVON ENERGY PRO	ODUCTION COMPANY, L.P.	3435.5	

¹⁰ Surface Location

15 Order No.

	UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
	H	8	25 S	32 E		2463	NORTH	585	EAST	LEA
				п]	Bottom H	lole Location	If Different Fr	om Surface		
Ī	UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
	\mathbf{A}	32	24 S	32 E		20	NORTH	500	EAST	LEA

800.83 No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the

Intent	t X	As Dril	led											
API#														
-	-025-530					Droi	oorty N	lama						Well Number
•	rator Nai		ארטטווס	TION	J	-	perty N			8-32	FFI	ת פת	ΔTE	624H
DEVON ENERGY PRODUCTION CHINCOTEAGUE 8-32 FED STATE COMPANY, L.P. COM								~! L	02411					
Kick C	Off Point	(KOP)												
UL	Section	Township	Range	Lot	Feet		From N	I/S	Feet		Fron	n E/W	County	
					T									
Latitu	ıde				Longitu	ıde							NAD	
First 1	Take Poir	nt (FTP)												
UL	Section	Township	Range	Lot	Feet		From N		Feet			n E/W	County	
Н	8	25S	32E		2543		NOR	ГН	500		EAS	ST	LEA	
Latitu	^{ide} 145155	a			Longitu 103.6		228						NAD 83	
JZ.	140100				100.0	JJ02	2200						03	
	_													
Last T	ake Poin	t (LTP)												
UL	Section	Township	Range	Lot	Feet		m N/S	Feet		From		Count	У	
A Latitu	32 Ide	24S	32E		100 Longitu		RTH	500		EAS	1	LEA NAD		
	 180926	3			103.6		7670					83		
								_		_				
Is this	well the	defining v	vell for th	e Horiz	zontal Sp	oacin	g Unit?		N	_				
امله ما	مم المنين	:f:]			7									
is this	well an	infill well?		Υ										
If infil	l is yes p	lease prov	ide API if	availab	ole, Opei	rator	Name	and v	vell n	umbe	r for I	Definir	ng well fo	r Horizontal
	ng Unit.	•			•								-	
API#			1											
30-	-025-5300	01												
Ope	rator Na	me:	1			Prop	perty N	lame						Well Number
DE	/ON FNF	RGY PRODU	רדוטא רטי	MPANV	I P	CI	HINCOT	EAGU	E 8-32	2 FED S	STATE	сом		627H
"	V OIN LINE!	.5111000	Choir Coi	VII PAINT	, =-1 .						_			02/11
						·								1

KZ 06/29/2018

CHINCOTEAGUE 8-32 FED STATE COM 624H

1. Geologic Formations

TVD of target	11041	Pilot hole depth	N/A
MD at TD:	23846	Deepest expected fresh water	

Basin

Dasin			
	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	739		
Salt	1104		
Base of Salt	4373		
Delaware	4561		
Cherry Canyon	5769		
Brushy Canyon	6690		
1st Bone Spring Lime	8768		
Bone Spring 1st	9857		
Bone Spring 2nd	10075		
3rd Bone Spring Lime	10581		

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program (Primary Design)

	, , , , , , , , , , , , , , , , , , ,	Wt				Interval	Casing	Interval
Hole Size	Csg. Size	(PPF)	Grade	Conn	From (MD)	To (MD)	From (TVD)	To (TVD)
14 3/4	10 3/4	45 1/2	J-55	ВТС	0	764	0	764
9 7/8	8 5/8	32	P110HSCY	MOFXL	0	10300	0	10300
7 7/8	5 1/2	20	P110HP	CDC-HTQ	0	23846	0	11041

[•]All casing strings will be tested in accordance with 43 CFR 3172. Must have table for contingency casing.

3. Cementing Program (Primary Design)

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures.

Casing	# Sks	TOC	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	469	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	488	Surf	13.0	2.3	2nd State: Bradenhead Squeeze - Lead: Class C Cement + additives
IIIt I	420	6699	13.2	1.44	Tail: Class H / C + additives
Production	117	8400	9	3.27	Lead: Class H /C + additives
Froduction	1780	10400	13.2	1.44	Tail: Class H / C + additives

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Prod	10%

4. Pressure Control Equipment (Three String Design)

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Ty	ype	✓	Tested to:
			Anı	nular	X	50% of rated working pressure
Int 1	13-5/8"	5M	Bline	l Ram	X	
IIIt I	13-3/6	JIVI	Pipe	Ram		5M
			Doub	le Ram	X	JIVI
			Other*			
			Annul	ar (5M)	X	50% of rated working pressure
Dun dunation	13-5/8"	514	Bline	d Ram	X	
Production	13-3/8	5M	Pipe	Ram		514
			Doub	le Ram	X	5M
			Other*			
			Annul	ar (5M)		
			Blind	d Ram		
			Pipe	Ram		
			Doub	le Ram]
			Other*			
N A variance is requested for	the use of a	diverter or	the surface	casing. See	attached for s	chematic.
Y A variance is requested to a	run a 5 M a	nnular on a	10M system			

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging, C	Coring and Testing
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the
X	Completion Report and sbumitted to the BLM.
	No logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain.
	Coring? If yes, explain.

Additional l	ogs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
X	CBL	Production casing
X	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	6028
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

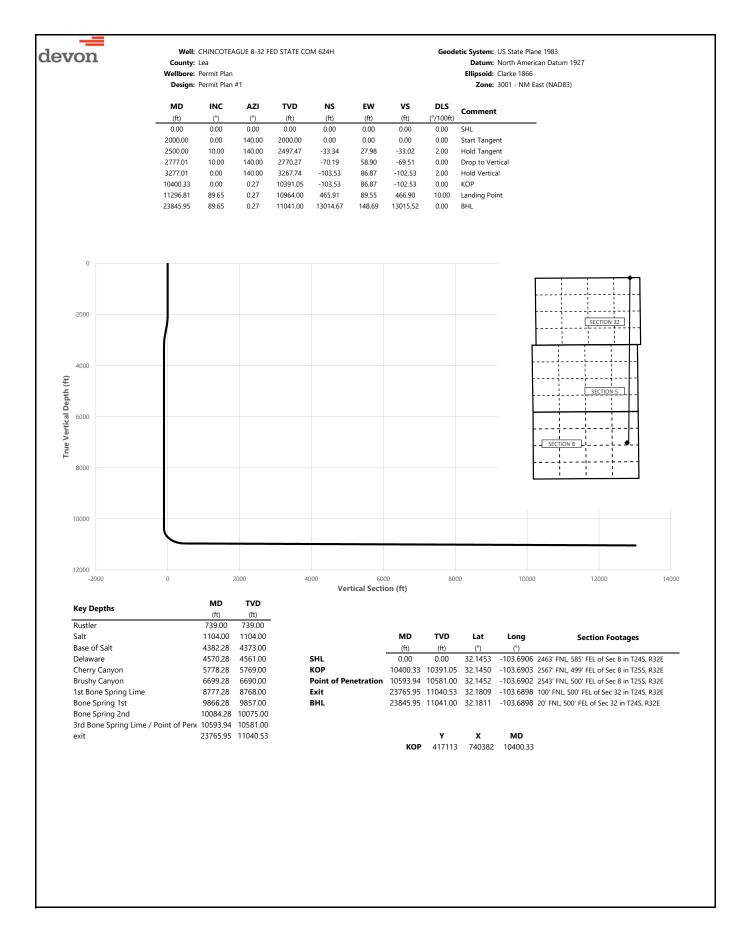
Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of 43 CFR 3176. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

measured va	alues and formations will be provided to the BEW.
N	H2S is present
Y	H2S plan attached.

CHINCOTEAGUE 8-32 FED STATE COM 624H

8. Other facets of operation

Is this a walking operation? Potentially


- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (43 CFR 3172, all COAs and NMOCD regulations).
- 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachme	ents
X	Directional Plan
	Other, describe

Well: CHINCOTEAGUE 8-32 FED STATE COM 624H

Geodetic System: US State Plane 1983

County: Lea

Datum: North American Datu

Wellbore: Permit Plan

Design: Permit Plan #1

Datum: North American Datum 1927 Ellipsoid: Clarke 1866 Zone: 3001 - NM East (NAD83)

		Permit Plan						Zone: 3001 - NM East (NAD83)
	Design.	i cimile i idii						Zone. 3001 MM East (MADOS)
MD	INC	AZI	TVD	NS	EW	vs	DLS	Comment
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	SHL
100.00	0.00	140.00	100.00	0.00	0.00	0.00	0.00	
200.00	0.00	140.00	200.00	0.00	0.00	0.00	0.00	
300.00 400.00	0.00	140.00 140.00	300.00 400.00	0.00	0.00	0.00	0.00	
500.00	0.00	140.00	500.00	0.00	0.00	0.00	0.00	
600.00	0.00	140.00	600.00	0.00	0.00	0.00	0.00	
700.00	0.00	140.00	700.00	0.00	0.00	0.00	0.00	
739.00	0.00	140.00	739.00	0.00	0.00	0.00	0.00	Rustler
800.00	0.00	140.00	800.00	0.00	0.00	0.00	0.00	
900.00	0.00	140.00	900.00	0.00	0.00	0.00	0.00	
1000.00	0.00	140.00	1000.00	0.00	0.00	0.00	0.00	
1100.00	0.00	140.00	1100.00	0.00	0.00	0.00	0.00	Call
1104.00	0.00	140.00 140.00	1104.00	0.00	0.00	0.00	0.00	Salt
1200.00 1300.00	0.00	140.00	1200.00 1300.00	0.00	0.00	0.00	0.00	
1400.00	0.00	140.00	1400.00	0.00	0.00	0.00	0.00	
1500.00	0.00	140.00	1500.00	0.00	0.00	0.00	0.00	
1600.00	0.00	140.00	1600.00	0.00	0.00	0.00	0.00	
1700.00	0.00	140.00	1700.00	0.00	0.00	0.00	0.00	
1800.00	0.00	140.00	1800.00	0.00	0.00	0.00	0.00	
1900.00	0.00	140.00	1900.00	0.00	0.00	0.00	0.00	
2000.00	0.00	140.00	2000.00	0.00	0.00	0.00	0.00	Start Tangent
2100.00	2.00	140.00	2099.98	-1.34	1.12	-1.32	2.00	
2200.00	4.00	140.00	2199.84	-5.35	4.49	-5.29	2.00	
2300.00 2400.00	6.00 8.00	140.00 140.00	2299.45 2398.70	-12.02 -21.36	10.09 17.92	-11.91 -21.15	2.00 2.00	
2500.00	10.00	140.00	2497.47	-33.34	27.98	-33.02	2.00	Hold Tangent
2600.00	10.00	140.00	2595.95	-46.64	39.14	-46.19	0.00	Tiold rangent
2700.00	10.00	140.00	2694.43	-59.94	50.30	-59.37	0.00	
2777.01	10.00	140.00	2770.27	-70.19	58.90	-69.51	0.00	Drop to Vertical
2800.00	9.54	140.00	2792.92	-73.18	61.40	-72.47	2.00	·
2900.00	7.54	140.00	2891.81	-84.55	70.95	-83.74	2.00	
3000.00	5.54	140.00	2991.15	-93.28	78.27	-92.38	2.00	
3100.00	3.54	140.00	3090.83	-99.34	83.36	-98.38	2.00	
3200.00	1.54	140.00	3190.73	-102.74	86.21	-101.74	2.00	
3277.01	0.00	140.00	3267.74	-103.53	86.87	-102.53	2.00	Hold Vertical
3300.00	0.00	0.27	3290.72	-103.53	86.87	-102.53	0.00	
3400.00 3500.00	0.00	0.27 0.27	3390.72 3490.72	-103.53 -103.53	86.87 86.87	-102.53 -102.53	0.00	
3600.00	0.00	0.27	3590.72	-103.53	86.87	-102.53	0.00	
3700.00	0.00	0.27	3690.72	-103.53	86.87	-102.53	0.00	
3800.00	0.00	0.27	3790.72	-103.53	86.87	-102.53	0.00	
3900.00	0.00	0.27	3890.72	-103.53	86.87	-102.53	0.00	
4000.00	0.00	0.27	3990.72	-103.53	86.87	-102.53	0.00	
4100.00	0.00	0.27	4090.72	-103.53	86.87	-102.53	0.00	
4200.00	0.00	0.27	4190.72	-103.53	86.87	-102.53	0.00	
4300.00	0.00	0.27	4290.72	-103.53	86.87	-102.53	0.00	- 100
4382.28	0.00	0.27	4373.00	-103.53	86.87	-102.53	0.00	Base of Salt
4400.00	0.00	0.27	4390.72 4490.72	-103.53	86.87 86.87	-102.53	0.00	
4500.00 4570.28	0.00	0.27 0.27	4490.72 4561.00	-103.53 -103.53	86.87 86.87	-102.53 -102.53	0.00	Delaware
4600.00	0.00	0.27	4590.72	-103.53	86.87	-102.53	0.00	Sciunare
4700.00	0.00	0.27	4690.72	-103.53	86.87	-102.53	0.00	
4800.00	0.00	0.27	4790.72	-103.53	86.87	-102.53	0.00	
4900.00	0.00	0.27	4890.72	-103.53	86.87	-102.53	0.00	
5000.00	0.00	0.27	4990.72	-103.53	86.87	-102.53	0.00	
5100.00	0.00	0.27	5090.72	-103.53	86.87	-102.53	0.00	
5200.00	0.00	0.27	5190.72	-103.53	86.87	-102.53	0.00	
5300.00	0.00	0.27	5290.72	-103.53	86.87	-102.53	0.00	
5400.00	0.00	0.27	5390.72	-103.53	86.87	-102.53	0.00	
5500.00 5600.00	0.00	0.27 0.27	5490.72 5590.72	-103.53 -103.53	86.87 86.87	-102.53 -102.53	0.00	
5700.00	0.00	0.27	5590.72 5690.72	-103.53 -103.53	86.87 86.87	-102.53 -102.53	0.00	
5778.28	0.00	0.27	5769.00	-103.53	86.87	-102.53	0.00	Cherry Canyon
5800.00	0.00	0.27	5790.72	-103.53	86.87	-102.53	0.00	
5900.00	0.00	0.27	5890.72	-103.53	86.87	-102.53	0.00	
6000.00	0.00	0.27	5990.72	-103.53	86.87	-102.53	0.00	
6100.00	0.00	0.27	6090.72	-103.53	86.87	-102.53	0.00	
6200.00	0.00	0.27	6190.72	-103.53	86.87	-102.53	0.00	

Well: CHINCOTEAGUE 8-32 FED STATE COM 624H

County: Lea

Wellbore: Permit Plan

Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927 Ellipsoid: Clarke 1866

	Design:	Permit Plan	n #1					Zone: 3001 - NM East (NAD83)
MD (ft)	INC (°)	AZI (°)	TVD (ft)	NS (ft)	EW (ft)	VS (ft)	DLS (°/100ft)	Comment
6300.00	0.00	0.27	6290.72	-103.53	86.87	-102.53	0.00	
6400.00	0.00	0.27	6390.72	-103.53	86.87	-102.53	0.00	
6500.00	0.00	0.27	6490.72	-103.53	86.87	-102.53	0.00	
6600.00	0.00	0.27	6590.72	-103.53	86.87	-102.53	0.00	
6699.28	0.00	0.27	6690.00	-103.53	86.87	-102.53	0.00	Brushy Canyon
6700.00	0.00	0.27	6690.72	-103.53	86.87	-102.53	0.00	
6800.00 6900.00	0.00	0.27 0.27	6790.72 6890.72	-103.53 -103.53	86.87 86.87	-102.53 -102.53	0.00	
7000.00	0.00	0.27	6990.72	-103.53	86.87	-102.53	0.00	
7100.00	0.00	0.27	7090.72	-103.53	86.87	-102.53	0.00	
7200.00	0.00	0.27	7190.72	-103.53	86.87	-102.53	0.00	
7300.00	0.00	0.27	7290.72	-103.53	86.87	-102.53	0.00	
7400.00	0.00	0.27	7390.72	-103.53	86.87	-102.53	0.00	
7500.00	0.00	0.27	7490.72	-103.53	86.87	-102.53	0.00	
7600.00	0.00	0.27	7590.72	-103.53	86.87	-102.53	0.00	
7700.00	0.00	0.27	7690.72	-103.53	86.87	-102.53	0.00	
7800.00 7900.00	0.00	0.27 0.27	7790.72 7890.72	-103.53 -103.53	86.87	-102.53 -102.53	0.00	
8000.00	0.00	0.27	7990.72	-103.53	86.87 86.87	-102.53	0.00	
8100.00	0.00	0.27	8090.72	-103.53	86.87	-102.53	0.00	
8200.00	0.00	0.27	8190.72	-103.53	86.87	-102.53	0.00	
8300.00	0.00	0.27	8290.72	-103.53	86.87	-102.53	0.00	
8400.00	0.00	0.27	8390.72	-103.53	86.87	-102.53	0.00	
8500.00	0.00	0.27	8490.72	-103.53	86.87	-102.53	0.00	
8600.00	0.00	0.27	8590.72	-103.53	86.87	-102.53	0.00	
8700.00	0.00	0.27	8690.72	-103.53	86.87	-102.53	0.00	4.0. 6.1.11
8777.28	0.00	0.27	8768.00	-103.53	86.87	-102.53	0.00	1st Bone Spring Lime
8800.00 8900.00	0.00	0.27 0.27	8790.72 8890.72	-103.53 -103.53	86.87 86.87	-102.53 -102.53	0.00	
9000.00	0.00	0.27	8990.72	-103.53	86.87	-102.53	0.00	
9100.00	0.00	0.27	9090.72	-103.53	86.87	-102.53	0.00	
9200.00	0.00	0.27	9190.72	-103.53	86.87	-102.53	0.00	
9300.00	0.00	0.27	9290.72	-103.53	86.87	-102.53	0.00	
9400.00	0.00	0.27	9390.72	-103.53	86.87	-102.53	0.00	
9500.00	0.00	0.27	9490.72	-103.53	86.87	-102.53	0.00	
9600.00	0.00	0.27	9590.72	-103.53	86.87	-102.53	0.00	
9700.00 9800.00	0.00	0.27 0.27	9690.72 9790.72	-103.53 -103.53	86.87	-102.53	0.00	
9866.28	0.00	0.27	9857.00	-103.53	86.87 86.87	-102.53 -102.53	0.00	Bone Spring 1st
9900.00	0.00	0.27	9890.72	-103.53	86.87	-102.53	0.00	bone spring 1st
10000.00	0.00	0.27	9990.72	-103.53	86.87	-102.53	0.00	
10084.28	0.00	0.27	10075.00	-103.53	86.87	-102.53	0.00	Bone Spring 2nd
10100.00	0.00	0.27	10090.72	-103.53	86.87	-102.53	0.00	
10200.00	0.00	0.27	10190.72	-103.53	86.87	-102.53	0.00	
10300.00	0.00	0.27	10290.72	-103.53	86.87	-102.53	0.00	
10400.00	0.00	0.27	10390.72	-103.53	86.87	-102.53	0.00	KOD
10400.33 10500.00	0.00 9.97	0.27 0.27	10391.05 10490.22	-103.53 -94.88	86.87 86.91	-102.53 -93.88	0.00 10.00	KOP
10500.00	19.36	0.27	10490.22	-94.00 -71.13	87.02	-70.13	10.00	3rd Bone Spring Lime / Point of Penetration
10600.00	19.97	0.27	10586.71	-69.09	87.03	-68.09	10.00	
10700.00	29.97	0.27	10677.25	-26.93	87.23	-25.94	10.00	
10800.00	39.97	0.27	10759.09	30.30	87.50	31.30	10.00	
10900.00	49.97	0.27	10829.75	100.88	87.83	101.88	10.00	
11000.00	59.97	0.27	10887.08	182.66	88.22	183.66	10.00	
11100.00	69.97	0.27	10929.34	273.15	88.65	274.15	10.00	
11200.00	79.97	0.27	10955.25	369.60 465.91	89.10	370.60	10.00	Landing Daint
11296.81 11300.00	89.65 89.65	0.27 0.27	10964.00 10964.02	469.09	89.55 89.57	466.90 470.08	10.00 0.00	Landing Point
11400.00	89.65	0.27	10964.63	569.09	90.04	570.08	0.00	
11500.00	89.65	0.27	10965.25	669.09	90.51	670.08	0.00	
11600.00	89.65	0.27	10965.86	769.08	90.98	770.07	0.00	
11700.00	89.65	0.27	10966.47	869.08	91.45	870.07	0.00	
11800.00	89.65	0.27	10967.09	969.08	91.93	970.06	0.00	
11900.00	89.65	0.27	10967.70	1069.07	92.40	1070.06	0.00	
12000.00	89.65	0.27	10968.32	1169.07	92.87	1170.06	0.00	
12100.00	89.65	0.27	10968.93	1269.07	93.34	1270.05	0.00	
12200.00	89.65	0.27	10969.54	1369.06	93.81	1370.05	0.00	
12300.00 12400.00	89.65 89.65	0.27 0.27	10970.16 10970.77	1469.06 1569.06	94.28 94.75	1470.04 1570.04	0.00	
12500.00	89.65	0.27	10970.77	1669.06	95.22	1670.04	0.00	

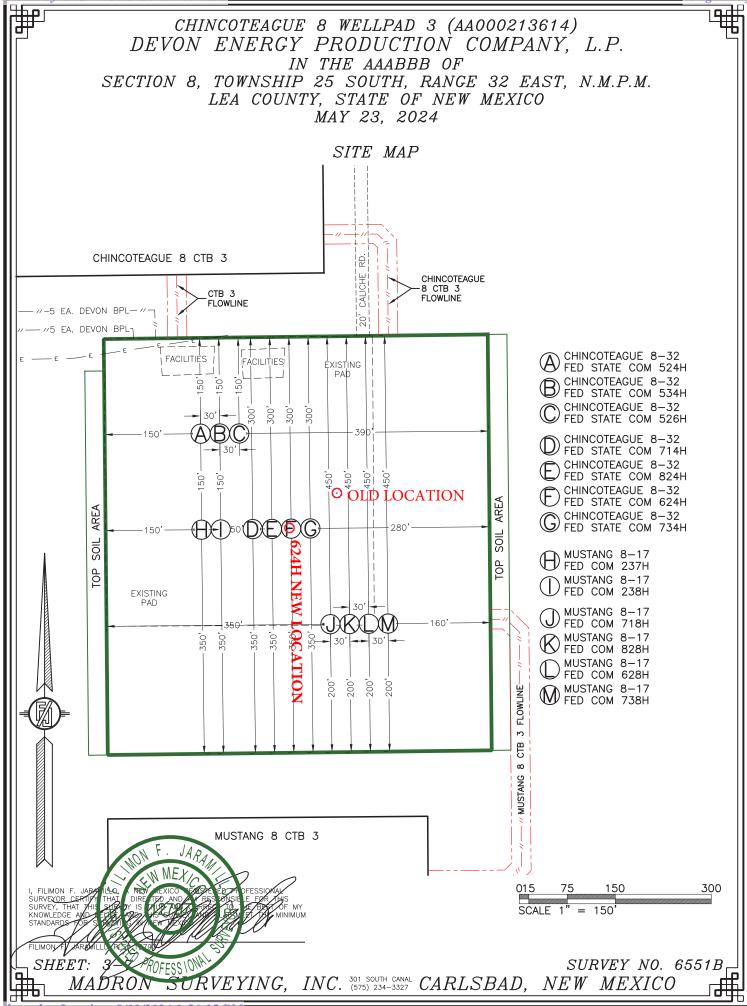
Well: CHINCOTEAGUE 8-32 FED STATE COM 624H

County: Lea
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927 **Ellipsoid:** Clarke 1866

	Design:	Permit Plai	n #1					Zone: 3001 - NM East (NAD83)
MD	INC	AZI	TVD	NS	EW	VS	DLS	Comment
(ft) 12600.00	(°) 89.65	(°) 0.27	(ft) 10972.00	(ft) 1769.05	(ft) 95.70	(ft) 1770.03	(°/100ft) 0.00	
12700.00	89.65	0.27	10972.60	1869.05	96.17	1870.03	0.00	
12800.00	89.65	0.27	10973.23	1969.05	96.64	1970.02	0.00	
12900.00	89.65	0.27	10973.84	2069.04	97.11	2070.02	0.00	
13000.00	89.65	0.27	10974.45	2169.04	97.58	2170.01	0.00	
13100.00	89.65	0.27	10975.07	2269.04	98.05	2270.01	0.00	
13200.00	89.65	0.27	10975.68	2369.03	98.52	2370.01	0.00	
13300.00	89.65	0.27	10976.29	2469.03	98.99	2470.00	0.00	
13400.00 13500.00	89.65	0.27	10976.91	2569.03	99.47	2570.00	0.00	
13600.00	89.65 89.65	0.27 0.27	10977.52 10978.14	2669.03 2769.02	99.94 100.41	2669.99 2769.99	0.00	
13700.00	89.65	0.27	10978.75	2869.02	100.41	2869.99	0.00	
13800.00	89.65	0.27	10979.36	2969.02	101.35	2969.98	0.00	
13900.00	89.65	0.27	10979.98	3069.01	101.82	3069.98	0.00	
14000.00	89.65	0.27	10980.59	3169.01	102.29	3169.97	0.00	
14100.00	89.65	0.27	10981.20	3269.01	102.76	3269.97	0.00	
14200.00	89.65	0.27	10981.82	3369.00	103.24	3369.96	0.00	
14300.00	89.65	0.27	10982.43	3469.00	103.71	3469.96	0.00	
14400.00	89.65	0.27	10983.04	3569.00	104.18	3569.96	0.00	
14500.00	89.65	0.27	10983.66	3669.00	104.65	3669.95	0.00	
14600.00	89.65	0.27	10984.27	3768.99	105.12	3769.95	0.00	
14700.00	89.65 89.65	0.27 0.27	10984.89	3868.99 3968.99	105.59	3869.94 3969.94	0.00	
14800.00 14900.00	89.65	0.27	10985.50 10986.11	4068.98	106.06 106.53	4069.94	0.00	
15000.00	89.65	0.27	10986.71	4168.98	107.01	4169.93	0.00	
15100.00	89.65	0.27	10987.34	4268.98	107.48	4269.93	0.00	
15200.00	89.65	0.27	10987.95	4368.98	107.95	4369.92	0.00	
15300.00	89.65	0.27	10988.57	4468.97	108.42	4469.92	0.00	
15400.00	89.65	0.27	10989.18	4568.97	108.89	4569.91	0.00	
15500.00	89.65	0.27	10989.80	4668.97	109.36	4669.91	0.00	
15600.00	89.65	0.27	10990.41	4768.96	109.83	4769.91	0.00	
15700.00	89.65	0.27	10991.02	4868.96	110.30	4869.90	0.00	
15800.00	89.65	0.27	10991.64	4968.96	110.78	4969.90	0.00	
15900.00 16000.00	89.65 89.65	0.27 0.27	10992.25 10992.86	5068.95 5168.95	111.25 111.72	5069.89 5169.89	0.00	
16100.00	89.65	0.27	10992.88	5268.95	111.72	5269.89	0.00	
16200.00	89.65	0.27	10994.09	5368.95	112.66	5369.88	0.00	
16300.00	89.65	0.27	10994.71	5468.94	113.13	5469.88	0.00	
16400.00	89.65	0.27	10995.32	5568.94	113.60	5569.87	0.00	
16500.00	89.65	0.27	10995.93	5668.94	114.07	5669.87	0.00	
16600.00	89.65	0.27	10996.55	5768.93	114.54	5769.87	0.00	
16700.00	89.65	0.27	10997.16	5868.93	115.02	5869.86	0.00	
16800.00	89.65	0.27	10997.77	5968.93	115.49	5969.86	0.00	
16900.00	89.65	0.27	10998.39 10999.00	6068.92	115.96	6069.85 6169.85	0.00	
17000.00	89.65 89.65	0.27 0.27	10999.00	6168.92 6268.92	116.43	6269.84	0.00	
17100.00 17200.00	89.65 89.65	0.27	11000.23	6368.92	116.90 117.37	6369.84	0.00	
17300.00	89.65	0.27	11000.23	6468.91	117.84	6469.84	0.00	
17400.00	89.65	0.27	11000.04	6568.91	118.31	6569.83	0.00	
17500.00	89.65	0.27	11002.07	6668.91	118.79	6669.83	0.00	
17600.00	89.65	0.27	11002.68	6768.90	119.26	6769.82	0.00	
17700.00	89.65	0.27	11003.30	6868.90	119.73	6869.82	0.00	
17800.00	89.65	0.27	11003.91	6968.90	120.20	6969.82	0.00	
17900.00	89.65	0.27	11004.53	7068.89	120.67	7069.81	0.00	
18000.00	89.65	0.27	11005.14	7168.89	121.14	7169.81	0.00	
18100.00 18200.00	89.65 89.65	0.27 0.27	11005.75 11006.37	7268.89 7368.89	121.61	7269.80 7369.80	0.00	
18300.00	89.65	0.27	11006.37	7468.88	122.08 122.56	7369.80	0.00	
18400.00	89.65	0.27	11000.38	7568.88	123.03	7569.79	0.00	
18500.00	89.65	0.27	11007.33	7668.88	123.50	7669.79	0.00	
18600.00	89.65	0.27	11008.82	7768.87	123.97	7769.78	0.00	
18700.00	89.65	0.27	11009.43	7868.87	124.44	7869.78	0.00	
18800.00	89.65	0.27	11010.05	7968.87	124.91	7969.77	0.00	
18900.00	89.65	0.27	11010.66	8068.86	125.38	8069.77	0.00	
19000.00	89.65	0.27	11011.28	8168.86	125.85	8169.77	0.00	
19100.00	89.65	0.27	11011.89	8268.86	126.33	8269.76	0.00	
19200.00	89.65	0.27	11012.50	8368.86	126.80	8369.76	0.00	
19300.00	89.65	0.27	11013.12	8468.85	127.27	8469.75	0.00	
	00.05	0.27	11012 72					
19400.00 19500.00	89.65 89.65	0.27 0.27	11013.73 11014.34	8568.85 8668.85	127.74 128.21	8569.75 8669.75	0.00	


Well: CHINCOTEAGUE 8-32 FED STATE COM 624H

County: Lea Wellbore: Permit Plan Design: Permit Plan #1 Geodetic System: US State Plane 1983

Datum: North American Datum 1927 **Ellipsoid:** Clarke 1866

Zone: 3001 - NM East (NAD83)

MD	INC	AZI	TVD	NS	EW	vs	DLS	·
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Com
19600.00	89.65	0.27	11014.96	8768.84	128.68	8769.74	0.00	
19700.00	89.65	0.27	11015.57	8868.84	129.15	8869.74	0.00	
19800.00	89.65	0.27	11016.19	8968.84	129.62	8969.73	0.00	
19900.00	89.65	0.27	11016.80	9068.83	130.10	9069.73	0.00	
20000.00	89.65	0.27	11017.41	9168.83	130.57	9169.72	0.00	
20100.00	89.65	0.27	11018.03	9268.83	131.04	9269.72	0.00	
20200.00	89.65	0.27	11018.64	9368.83	131.51	9369.72	0.00	
20300.00	89.65	0.27	11019.25	9468.82	131.98	9469.71	0.00	
20400.00	89.65	0.27	11019.87	9568.82	132.45	9569.71	0.00	
20500.00	89.65	0.27	11020.48	9668.82	132.92	9669.70	0.00	
20600.00	89.65	0.27	11021.10	9768.81	133.39	9769.70	0.00	
20700.00	89.65	0.27	11021.71	9868.81	133.87	9869.70	0.00	
20800.00	89.65	0.27	11022.32	9968.81	134.34	9969.69	0.00	
20900.00	89.65	0.27	11022.94	10068.80	134.81	10069.69	0.00	
21000.00	89.65	0.27	11023.55	10168.80	135.28	10169.68	0.00	
21100.00	89.65	0.27	11024.16	10268.80	135.75	10269.68	0.00	
21200.00	89.65	0.27	11024.78	10368.80	136.22	10369.67	0.00	
21300.00	89.65	0.27	11025.39	10468.79	136.69	10469.67	0.00	
21400.00	89.65	0.27	11026.01	10568.79	137.16	10569.67	0.00	
21500.00	89.65	0.27	11026.62	10668.79	137.64	10669.66	0.00	
21600.00	89.65	0.27	11027.23	10768.78	138.11	10769.66	0.00	
21700.00	89.65	0.27	11027.85	10868.78	138.58	10869.65	0.00	
21800.00	89.65	0.27	11028.46	10968.78	139.05	10969.65	0.00	
21900.00	89.65	0.27	11029.07		139.52	11069.65	0.00	
22000.00	89.65	0.27	11029.69	11168.77	139.99	11169.64	0.00	
22100.00	89.65	0.27		11268.77	140.46	11269.64	0.00	
22200.00	89.65	0.27		11368.77	140.93	11369.63	0.00	
22300.00	89.65	0.27	11031.53	11468.76	141.40	11469.63	0.00	
22400.00	89.65	0.27	11032.14	11568.76	141.88	11569.63	0.00	
22500.00	89.65	0.27	11032.76	11668.76	142.35	11669.62	0.00	
22600.00	89.65	0.27	11032.70	11768.75	142.82	11769.62	0.00	
22700.00	89.65	0.27	11033.98	11868.75	143.29	11869.61	0.00	
22800.00	89.65	0.27	11033.90	11968.75	143.29	11969.61	0.00	
22900.00	89.65	0.27	11034.00	12068.74	144.23	12069.60	0.00	
23000.00	89.65	0.27	11035.21	12168.74	144.23	12169.60	0.00	
23100.00	89.65	0.27	11035.62	12166.74	144.70	12169.60	0.00	
23200.00	89.65	0.27	11037.05	12368.74	145.65	12369.59	0.00	
23300.00	89.65	0.27	11037.67	12468.73	146.12	12469.59	0.00	
23400.00	89.65	0.27	11038.28	12568.73	146.59	12569.58	0.00	
23500.00	89.65	0.27	11038.89	12668.73	147.06	12669.58	0.00	
23600.00	89.65	0.27	11039.51	12768.72	147.53	12769.58	0.00	
23700.00	89.65	0.27	11040.12		148.00	12869.57	0.00	
23765.95	89.65	0.27	11040.53	12934.67	148.31	12935.52	0.00	exit
23800.00	89.65	0.27	11040.73	12968.72	148.47	12969.57	0.00	5
23845.95	89.65	0.27	11041.00	13014.67	148.69	13015.52	0.00	BHL

Section 2 - Blowout Preventer Testing Procedure

Variance Request

Devon Energy requests to only test BOP connection breaks after drilling out of surface casing and while skidding between wells which conforms to API Standard 53 and industry standards. This test will include the Top Pipe Rams, HCR, Kill Line Check Valve, QDC (quick disconnect to wellhead) and Shell of the 10M BOPE to 5M for 10 minutes. If a break to the flex hose that runs to the choke manifold is required due to repositioning from a skid, the HCR will remain open during the shell test to include that additional break. The variance only pertains to intermediate hole-sections and no deeper than the Bone Springs Formation where 5M BOP tests are required. The initial BOP test will follow 43 CFR 3172, and subsequent tests following a skid will only test connections that are broken. The annular preventer will be tested to 100% working pressure. This variance will meet or exceed 43 CFR 3172 per the following: Devon Energy will perform a full BOP test per 43 CFR 3172 before drilling out of the intermediate casing string(s) and starting the production hole, before starting any hole section that requires a 10M test, before the expiration of the allotted 14-days for 5M intermediate batch drilling or when the drilling rig is fully mobilized to a new well pad, whichever is sooner. We will utilize a 200' TVD tolerance between intermediate shoes as the cutoff for a full BOP test. The BLM will be contacted 4hrs prior to a BOPE test. The BLM will be notified if and when a well control event is encountered. Break test will be a 14 day interval and not a 30 day full BOPE test interval. If in the event break testing is not utilized, then a full BOPE test would be conducted.

- 1. Well Control Response:
- 1. Primary barrier remains fluid
- 2. In the event of an influx due to being underbalanced and after a realized gain or flow, the order of closing BOPE is as follows:
 - a) Annular first
 - b) If annular were to not hold, Upper pipe rams second (which were tested on the skid BOP test)
 - c) If the Upper Pipe Rams were to not hold, Lower Pipe Rams would be third

Offline Cementing

Variance Request

Devon Energy requests to offline cement on intermediate strings that are set in formations shallower than the Wolfcamp. Prior to commencing offline cementing operations, the well will be monitored for any abnormal pressures and confirmed to be static. A dual manifold system (equipped with chokes) for the returns will also be utilized as a redundancy. All equipment used for offline cementing will have a minimum 5M rating to match intermediate sections' 5M BOPE requirements.

etal One Corp.	MO-FXL			MO-FXL 8-5/8 32.	
37.10			CDS#	P110H	
Metal <mark>O</mark> ne	*1 Pipe Body: BMP P110HSC			MinYS125ksi	
	Special Drift 7.8			SD7.875	
	Connection Data	Sheet	Date	27-Nov-23	
	Geometry Imperio		<u>ul</u>	<u>S.I.</u>	
	Pipe Body				
	Grade *1	P110HSCY		P110HSCY	
	MinYS *1	125	ksi	125	ksi
	Pipe OD (D)	8 5/8	in	219.08	mm
MO-FXL	Weight	32.00	lb/ft	47.68	kg/m
	Actual weight	31.10		46.34	kg/m
	Wall Thickness (t)	0.352	in	8.94	mm
	Pipe ID (d)	7.921	in	201.19	mm
	Pipe body cross section	9.149	in ²	5,902	mm^2
	Special Drift Dia. *1	7.875	in	200.03	mm
	-	-	-	-	-
	Connection				
	Box OD (W)	8.625	in	219.08	mm
\uparrow \rightleftharpoons	PIN ID	7.921	in	201.19	mm
	Make up Loss	3.847		97.71	
Box	•		in in ²		mm 2
critical	Box Critical Area	5.853		3686	mm ²
area	Joint load efficiency	69	%	69	%
	Number of Threads	Thread Taper 1 / 10 (1.2" per ft) Number of Threads 5 TPI			
 	Performance				
up		for Direct Dealer			
up [Performance Properties			5.007	LAL
qu qu	Performance Properties S.M.Y.S. *1	1,144	kips	5,087	kN MDe
up au	Performance Properties S.M.Y.S. *1 M.I.Y.P. *1	1,144 8,930	kips psi	61.59	MPa
Pin critical	Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1	1,144 8,930 4,300	kips psi psi	61.59 29.66	MPa MPa
oss D	Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif	1,144 8,930 4,300 ied Minimum YIE	kips psi psi LD Stre	61.59 29.66 ngth of Pipe bo	MPa MPa dy
oss D Pin critical	Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim	1,144 8,930 4,300 ied Minimum YIE um Internal Yield	kips psi psi ELD Strei	61.59 29.66 ngth of Pipe body re of Pipe body	MPa MPa dy
Pin critical	Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinyS1	1,144 8,930 4,300 ied Minimum YIE um Internal Yield 25ksi, SD7.875,	kips psi psi ELD Streid Pressui Collapse	61.59 29.66 ngth of Pipe body re of Pipe body	MPa MPa dy
Pin critical	Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinyS1 Performance Properties	1,144 8,930 4,300 ied Minimum YIE um Internal Yiel 25ksi, SD7.875, for Connectio	kips psi psi ELD Streed Pressur Collapse	61.59 29.66 ngth of Pipe body e of Pipe body e Strength 4,30	MPa MPa dy
Pin critical	Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield load	1,144 8,930 4,300 ied Minimum YIE um Internal Yielo 25ksi, SD7.875, for Connectio 789 kips	kips psi psi ELD Streid Pressui Collapse n (69%	61.59 29.66 ngth of Pipe body e of Pipe body e Strength 4,30 of S.M.Y.S.)	MPa MPa dy
Pin critical	Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield load Min. Compression Yield	1,144 8,930 4,300 ied Minimum YIE um Internal Yield 25ksi, SD7.875, for Connectio 789 kips 789 kips	kips psi psi LD Streid Pressui Collapse n (69%	61.59 29.66 Ingth of Pipe body Strength 4,30 of S.M.Y.S.)	MPa MPa dy
oss D Pin critical	Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure	1,144 8,930 4,300 ied Minimum YIE um Internal Yielo 25ksi, SD7.875, for Connectio 789 kips	kips psi psi LD Streid Pressui Collapse n (69% (69% 70%	61.59 29.66 Ingth of Pipe body Strength 4,30 of S.M.Y.S.) of S.M.Y.S.)	MPa MPa dy 0psi
oss D Pin critical	Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure	1,144 8,930 4,300 ied Minimum YIE um Internal Yield 25ksi, SD7.875, for Connectio 789 kips 789 kips	kips psi psi psi psi psi psi psi psi psi	61.59 29.66 Ingth of Pipe body Strength 4,30 of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St	MPa MPa dy 0psi
oss D Pin critical	Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure	1,144 8,930 4,300 ied Minimum YIE um Internal Yield 25ksi, SD7.875, for Connectio 789 kips 789 kips	kips psi psi LD Streid Pressui Collapse n (69% (69% 70%	61.59 29.66 Ingth of Pipe body Strength 4,30 of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St	MPa MPa dy 0psi
oss D Pin critical	Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque	1,144 8,930 4,300 ied Minimum YIE um Internal Yield 25ksi, SD7.875, for Connectio 789 kips 789 kips 6,250 psi	kips psi psi Hollow (69%) (69%) (70%) 100% (22)	61.59 29.66 Ingth of Pipe body e of Pipe body e Strength 4,30 of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse Si	MPa MPa dy Opsi trength
oss D Pin critical	Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min.	1,144 8,930 4,300 ied Minimum YIE um Internal Yield 25ksi, SD7.875, for Connectio 789 kips 789 kips 6,250 psi	kips psi psi psi psi psi psi psi psi psi	61.59 29.66 Ingth of Pipe body Strength 4,30 of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St	MPa MPa dy 0psi
loss D Pin critical	Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti.	1,144 8,930 4,300 ied Minimum YIE um Internal Yield 25ksi, SD7.875, for Connectio 789 kips 789 kips 6,250 psi	kips psi psi Pressur Collapse n (69% 70% 100% c 2	61.59 29.66 Ingth of Pipe booke of Pipe body Strength 4,30 of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse Signature of Signature	MPa MPa dy Opsi trength N-m N-m
Pin critical	Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min.	1,144 8,930 4,300 ied Minimum YIE um Internal Yield 25ksi, SD7.875, for Connectio 789 kips 789 kips 6,250 psi	kips psi psi Pressur Collapse n (69% 70% 100% c	61.59 29.66 Ingth of Pipe body Strength 4,30 of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St	MPa MPa dy Opsi trength

Legal Notice

The use of this information is at the reader/user's risk and no warranty is implied or expressed by Metal One Corporation or its parents, subsidiaries or affiliates (herein collectively referred to as "Metal One") with respect to the use of information contained herein. The information provided on this Connection Data Sheet is for informational purposes only, and was prepared by reference to engineering information that is specific to the subject products, without regard to safety-related factors, all of which are the sole responsibility of the operators and users of the subject connectors. Metal One assumes no responsibility for any errors with respect to this information.

Statements regarding the suitability of products for certain types of applications are based on Metal One's knowledge of typical requirements that are often placed on Metal One products in standard well configurations. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application

The products described in this Connection Data Sheet are not recommended for use in deep water offshore applications. For more information, please refer to http://www.mtlo.co.jp/mo-con/_images/top/WebsiteTerms_Active_20333287_1.pdf the contents of which are incorporated by reference into this Connection Data Sheet.

<u>10-3/4"</u>	<u>45.50#</u>	<u>0.400"</u>	<u>J-55</u>		
<u>Dimensions (Nominal)</u>					
Outside Diameter			10.750	in.	
Wall			0.400	in.	
Inside Diameter			9.950	in.	
Drift			9.875	in.	
Weight, T&C			45.500	lbs/ft	
Weight, PE			44.260	lbs/ft	
<u>Performance</u>	Properties				
Collapse			2090	psi	
Internal Yield Press	sure at Minimum Yield				
	PE		3580	psi	
	STC		3580	psi	
	ВТС		3580	psi	
Yield Strength, Pipe	e Body		715	1000 lbs	
Joint Strength					
	STC		493	1000 lbs	
	ВТС		796	1000 lbs	
	BTC Special Clearance (11.25" OD Cplg)	506	1000 lbs	

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

2/21/2024 7:47:29 AM

U. S. Steel Tubular Products 5.500" 20.00lb/ft (0.361" Wall)

P110 HP USS-CDC HTQ®

		Y	
MECHANICAL PROPERTIES	Pipe	USS-CDC HTQ [®]	
Minimum Yield Strength	125,000		psi
Maximum Yield Strength	140,000		psi
Minimum Tensile Strength	130,000		psi
IMENSIONS	Pipe	USS-CDC HTQ [®]	
Outside Diameter	5.500	6.300	in.
Wall Thickness	0.361		in.
Inside Diameter	4.778	4.778	in.
Standard Drift	4.653	4.653	in.
Alternate Drift			in.
Nominal Linear Weight, T&C	20.00		lb/ft
Plain End Weight	19.83		lb/ft
ECTION AREA	Pipe	USS-CDC HTQ [®]	
Critical Area	5.828	5.828	sq. in.
Joint Efficiency		97.0	%
ERFORMANCE	Pipe	USS-CDC HTQ [®]	
Minimum Collapse Pressure	13,150	13,150	psi
External Pressure Leak Resistance		10,520	psi
Minimum Internal Yield Pressure	14,360	14,360	psi
Minimum Pipe Body Yield Strength	729,000		lb
Joint Strength		707,000	lb
Compression Rating		424,000	lb
Reference Length		23,567	ft
Maximum Uniaxial Bend Rating		60.6	deg/100 ft
AKE-UP DATA	Pipe	USS-CDC HTQ [®]	
Make-Up Loss		4.63	in.
Minimum Make-Up Torque		14,500	ft-lb
Maximum Make-Up Torque		20,500	ft-lb
Connection Yield Torque		25,300	ft-lb

Notes

- 1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness and Specified Minimum Yield Strength (SMYS).
- 2. Uniaxial bending rating shown is structural only, and equal to compression efficiency.
- 3. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 4. Reference length is calculated by joint strength divided by nominal threaded and coupled weight with 1.5 safety factor.
- 5. Connection external pressure leak resistance has been verified to 80% API pipe body collapse pressure following the guidelines of API 5C5 Cal II.

Legal Notice

USS - CDC HTQ[®] (High Torque Casing Drilling Connection) is a trademark of U. S. Steel Corporation. This product is a modified API Buttress threaded and coupled connection designed for drilling with casing applications. All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

> 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380

1-877-893-9461 connections@uss.com www.usstubular.com

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 377317

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	377317
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By		Condition Date
pkautz	TOC MUST BE DETERMINED BY CBL.	9/13/2024