R	U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		Sundry Print Report 09/26/2024
	Well Name: GRAMA 8817 16-9 FEDERAL COM	Well Location: T22S / R34E / SEC 16 / SESW / 32.38512 / -103.4785634	County or Parish/State: LEA / NM
	Well Number: 8H	Type of Well: OIL WELL	Allottee or Tribe Name:
	Lease Number: NMNM82799	Unit or CA Name: GRAMA 8817 JV P FED COM 2H	Unit or CA Number: NMNM136737
	US Well Number: 3002551033	Operator: BTA OIL PRODUCERS LLC	

Notice of Intent

Sundry ID: 2811132

Type of Submission: Notice of Intent

Date Sundry Submitted: 09/10/2024

Date proposed operation will begin: 09/10/2024

Type of Action: APD Change Time Sundry Submitted: 03:33 8

Procedure Description: BTA Oil Producers, LLC respectfully requests the following footage, casing, cement, and drill plan changes to the original APD as approved. We are also requesting the option to use a Spudder Rig. Please see attached documents for more details. OLD FOOTAGES: SHL: 246' FSL & 1537' FWL (NO CHANGE) FTP: 100' FSL & 660' FWL LTP: 100' FNL & 660' FWL BHL: 50' FNL & 660' FWL NEW FOOTAGES KOP: 50' FSL & 660' FWL FTP: 100' FSL & 659' FWL LTP: 100' FNL & 351' FWL BHL: 50' FNL & 350' FWL

NOI Attachments

Procedure Description

Copy_of_Grama__08H_revised_to_four_string_9_17_24_DRILL_PLANS_20240918140603.pdf

GRAMA_8817_16_9_FED_COM_8H_REV1_CERTIFIED_C102__Revised_9_9_24__20240910090213.pdf

Grama_8817_16_9_Fed_Com__8H_WM_20240910090154.pdf

Grama_8817_16_9_Fed_Com__8H_Well_Plan_Rpt_20240910090154.pdf

BTA_Oil_Producers___Spud_Rig_Procedure_20240910090134.pdf

k	eceived by OCD: 9/26/2024 8:29:05 AM Well Name: GRAMA 8817 16-9 FEDERAL COM	Well Location: T22S / R34E / SEC 16 / SESW / 32.38512 / -103.4785634	County or Parish/State: LEA		
	Well Number: 8H	Type of Well: OIL WELL	Allottee or Tribe Name:		
	Lease Number: NMNM82799	Unit or CA Name: GRAMA 8817 JV P FED COM 2H	Unit or CA Number: NMNM136737		
	US Well Number: 3002551033	Operator: BTA OIL PRODUCERS LLC			

Conditions of Approval

Additional

BTA_OIL_GRAMA_8817_16_9_FED_COM_8H_COAs_20240925103944.pdf

SEC16_T22S_R34E_GRAMA_8817_16_9_FED_COM_Lea__BTA_OIL_PRODUCERS_LLC_45560_JS_20240925103 945.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: SAMMY HAJAR

Name: BTA OIL PRODUCERS LLC

Title: Regulatory Analyst

Street Address: 104 S. Pecos

City: Midland

State: TX

State:

Phone: (432) 682-3753

Email address: shajar@btaoil.com

Field

Representative Name:	
Street Address:	
City:	
Phone:	
Email address:	

Zip:

BLM Point of Contact

BLM POC Name: CHRISTOPHER WALLS BLM POC Phone: 5752342234 Disposition: Approved Signature: Chris Walls BLM POC Title: Petroleum Engineer BLM POC Email Address: cwalls@blm.gov

Disposition Date: 09/26/2024

Released to Imaging: 9/27/2024 2:41:08 PM

Signed on: SEP 18, 2024 02:06 PM

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	BTA Oil Producers LLC
WELL NAME & NO.:	GRAMA 8817 16-9 FEDERAL COM 8H
SURFACE HOLE FOOTAGE:	246'/S & 1537'/W
BOTTOM HOLE FOOTAGE	50'/N & 350'/W
LOCATION:	Section 16, T.22 S., R.34 E., NMP
COUNTY:	Lea County, New Mexico

COA

H2S	• Yes	C No	
Potash	None	C Secretary	© R-111-P
Cave/Karst Potential	• Low	C Medium	C High
Cave/Karst Potential	Critical		
Variance	C None	Itex Hose	C Other
Wellhead	Conventional	• Multibowl	C Both
Wellhead Variance	C Diverter		
Other	□4 String	Capitan Reef	□WIPP
Other	□ Fluid Filled	🗆 Pilot Hole	Open Annulus
Cementing	Contingency	EchoMeter	Primary Cement
	Cement Squeeze		Squeeze
Special Requirements	Water Disposal	COM	🗖 Unit
Special Requirements	□ Batch Sundry		
Special Requirements	Break Testing	□ Offline	Casing
Variance		Cementing	Clearance

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated AT SPUD. As a result, the Hydrogen Sulfide area must meet 43 CFR part 3170 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

Primary Casing Design:

1. The **13-3/8** inch surface casing shall be set at approximately 1700 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable

fresh water) and cemented to the surface. The surface hole shall be $17 \ 1/2$ inch in diameter.

- a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u>
 <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, potash or capitan reef. Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or

similar method that reflects the as-drilled size of the wellbore.

- In <u>Capitan Reef Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- Special Capitan Reef requirements. If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following:

- Switch to fresh water mud to protect the Capitan Reef and use fresh water mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.
- Daily drilling reports from the Base of the Salt to the setting of the intermediate casing are to be submitted to the BLM CFO engineering staff via e-mail by 0800 hours each morning. Any lost circulation encountered is to be recorded on these drilling reports. The daily drilling report should show mud volume per shift/tour. Failure to submit these reports will result in an Incidence of Non-Compliance being issued for failure to comply with the Conditions of Approval. If not already planned, the operator shall run a caliper survey for the intermediate well bore and submit to the appropriate BLM office.
- 3. The minimum required fill of cement behind the **7-5/8** inch intermediate liner is:
 - Cement should tie-back 100 feet into the previous casing. Operator shall provide method of verification.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, potash or capitan reef. Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.
- 4. The minimum required fill of cement behind the 5-1/2 X 5 inch production casing is:
 - Cement should tie-back at least 50 feet on top of Capitan Reef top or 200 feet into the previous casing, whichever is greater. If cement does not circulate see B.1.a, c-d above.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, potash or capitan reef.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
 - 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the **13-3/8** inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000** (**5M**) psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in Onshore Order 1 and 2.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

(Note: For a minimum 5M BOPE or less (Utilizing a 10M BOPE system) BOPE Break Testing Variance

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (**575-706-2779**) prior to the commencement of any BOPE Break Testing operations.

- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-689-5981 Lea County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per Onshore Oil and Gas Order No. 2.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Eddy County

EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220,

BLM_NM_CFO_DrillingNotifications@BLM.GOV (575) 361-2822

Lea County

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - i. Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per 43 CFR 3172 as soon as 2nd Rig is rigged up on well.

- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. For intervals in which cement to surface is required, cement to surface should be verified with a visual check and density or pH check to differentiate cement from spacer and drilling mud. The results should be documented in the driller's log and daily reports.

A. CASING

- Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least <u>8</u> hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have

well specific cement details onsite prior to pumping the cement for each casing string.

- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-Q potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in **43 CFR 3172**.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - i. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.

- ii. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- iii. Manufacturer representative shall install the test plug for the initial BOP test.
- iv. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
- v. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - i. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - ii. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
 - iii. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds

compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).

- iv. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- v. The results of the test shall be reported to the appropriate BLM office.
- vi. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- vii. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- viii. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JS 9/25/2024

SEC16-T22S-R34E_GRAMA 8817 16-9 FED COM_Lea_BTA OIL PRODUCERS LLC_45560_JS

13 3/8	su	rface csg in a	17 1/2	inch hole.		Design	Factors			Surface	5	
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	54.50		j 55	stc	5.55	1.28	0.49	1,700	4	0.85	2.22	92,650
"B"			,	stc				0				0
	w/8.4#	/g mud, 30min Sfc Csg Tes	st psig: 1,169	Tail Cmt	does not	circ to sfc.	Totals:	1,700	-			92,650
comparison of		linimum Required Cerr						,				
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cpl
17 1/2	0.6946	1365	2365	1181	100	10.00	3207	5M				1.56
urst Frac Grad	dient(s) for Segm	ent(s) A, B = , b All >	0.70, ОК.		Alt Burst OK							
9 5/8	casi	ng inside the	12.2/0			Design	Eactore		a a	Int 1		
Segment	#/ft	Grade	13 3/8	Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	40.00	Jiaue	hcl 80	ltc	3.97	1.55	1.03	5,270	1	а-в 1.79	2.68	-
"B"	-0.00				5.37	1.00	1.00	5,270 0		1.13	2.00	210,800
	w/8 /#	/g mud, 30min Sfc Csg Tes	stinsig: 1,500				Totals:	5,270				210,800
	W/0.4/			nded to achieve a top of	0	ft from su		1700				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cpl
12 1/4	0.3132	600	1294	1735	-25	10.00	2874	3M				0.81
			3600				sum of sx	<u>Σ CuFt</u>				2%exces
D V Tool(s): by stage % :		147	3600 114		Does not me	et CEO 25% ex	1860	<u>Σ CuFt</u> 3881				Σ%exces 124
D V Tool(s): by stage % :	Lir		114		Does not me	eet CFO 25% ex	1860 cess			Liner		
D V Tool(s): by stage % : 7 5/8	Lir #/ft	147 ner w/top @ Grade			Does not me Joint	Design Fac	1860 cess ctors	3881	B@s	Liner a-B		124
D V Tool(s): by stage % : 7 5/8		ner w/top @	114	Coupling			1860 cess		B@s 1	-		124 Weigh
by stage % : by stage % : 7 5/8 Segment	#/ft	ner w/top @	114		Joint	<u>Design Fac</u> Collapse	1860 ccess ctors Burst	3881		a-B	a-C	124 Weigh
D V Tool(s): by stage % : 7 5/8 Segment "A"	#/ft 29.70	ner w/top @	114 5170 p 110	Coupling fj	Joint	<u>Design Fac</u> Collapse	1860 ccess ctors Burst	3881 Length 5,540		a-B	a-C	124 Weigh 164,53 0
D V Tool(s): by stage % : 7 5/8 Segment "A"	#/ft 29.70	ner w/top @ Grade /g mud, 30min Sfc Csg Tes	114 5170 p 110 st psig: 626 t volume(s) are inter	Coupling fj	Joint	<u>Design Fac</u> Collapse	1860 ccess ctors Burst 1.35 Totals:	3881 Length 5,540 0		a-B	a-C 2.14	124 Weigh 164,53 0
D V Tool(s): by stage % : 7 5/8 Segment "A" "B" Hole	#/ft 29.70 w/8.4# Annular	ner w/top @ Grade /g mud, 30min Sfc Csg Tes The cement 1 Stage	114 5170 p 110 st psig: 626 t volume(s) are inter 1 Stage	Coupling fj 0.00 nded to achieve a top of Min	Joint 0.76 5070 1 Stage	Design Fac Collapse 1.18 ft from su Drilling	1860 Cess Ctors Burst 1.35 Totals: Irface or a Calc	3881 Length 5,540 0 5,540 200 Req'd		a-B	a-C 2.14	124 Weigh 164,533 0 164,533 overlap. Min Dis
D V Tool(s): by stage % : 7 5/8 Segment "A" "B" Hole Size	#/ft 29.70 w/8.4# Annular Volume	her w/top @ Grade /g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx	114 5170 p 110 st psig: 626 t volume(s) are inter 1 Stage CuFt Cmt	Coupling fj 0.00 nded to achieve a top of Min Cu Ft	Joint 0.76 5070 1 Stage % Excess	Design Fac Collapse 1.18 ft from su Drilling Mud Wt	1860 ccess ctors Burst 1.35 Totals: irface or a Calc MASP	3881 Length 5,540 0 5,540 200 Req'd BOPE		a-B	a-C 2.14	124 Weight 164,538 0 164,538 overlap. Min Dist Hole-Cpl
D V Tool(s): by stage % : 7 5/8 Segment "A" "B" Hole Size 8 3/4	#/ft 29.70 w/8.4# Annular Volume 0.1005	ner w/top @ Grade /g mud, 30min Sfc Csg Tes The cement 1 Stage	114 5170 p 110 st psig: 626 t volume(s) are inter 1 Stage	Coupling fj 0.00 nded to achieve a top of Min	Joint 0.76 5070 1 Stage	Design Fac Collapse 1.18 ft from su Drilling	1860 Cess Ctors Burst 1.35 Totals: Irface or a Calc	3881 Length 5,540 0 5,540 200 Req'd		a-B	a-C 2.14	124 Weigh 164,533 0 164,533 overlap. Min Dis
D V Tool(s): by stage % : 7 5/8 Segment "A" "B" Hole Size 8 3/4	#/ft 29.70 w/8.4# Annular Volume 0.1005	her w/top @ Grade /g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx	114 5170 p 110 st psig: 626 t volume(s) are inter 1 Stage CuFt Cmt	Coupling fj 0.00 nded to achieve a top of Min Cu Ft 568	Joint 0.76 5070 1 Stage % Excess 17	Design Fac Collapse 1.18 ft from su Drilling Mud Wt	1860 ccess ctors Burst 1.35 Totals: irface or a Calc MASP	3881 Length 5,540 0 5,540 200 Req'd BOPE		a-B	a-C 2.14	124 Weigh 164,533 0 164,533 overlap. Min Dis Hole-Cpl
D V Tool(s): by stage % : 7 5/8 Segment "A" "B" Hole Size 8 3/4 Class 'C' tail cm	#/ft 29.70 w/8.4# Annular Volume 0.1005	her w/top @ Grade /g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx	114 5170 p 110 st psig: 626 t volume(s) are inter 1 Stage CuFt Cmt	Coupling fj 0.00 nded to achieve a top of Min Cu Ft	Joint 0.76 5070 1 Stage % Excess 17	Design Fac Collapse 1.18 ft from su Drilling Mud Wt	1860 ccess ctors Burst 1.35 Totals: irface or a Calc MASP	3881 Length 5,540 0 5,540 200 Req'd BOPE		a-B	a-C 2.14	124 Weigh 164,533 0 164,533 overlap. Min Dis Hole-Cpl
D V Tool(s): by stage % : 7 5/8 Segment "A" "B" Hole Size 8 3/4 Class 'C' tail cm	#/ft 29.70 w/8.4# Annular Volume 0.1005 tt yld > 1.35	her w/top @ Grade /g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 270	5170 p 110 st psig: 626 t volume(s) are inter 1 Stage CuFt Cmt 664	Coupling fj 0.00 nded to achieve a top of Min Cu Ft 568	Joint 0.76 5070 1 Stage % Excess 17	Design Fac Collapse 1.18 ft from su Drilling Mud Wt 9.40	1860 ccess ctors Burst 1.35 Totals: irface or a Calc MASP 3137	3881 Length 5,540 0 5,540 200 Req'd BOPE		a-B 2.41	a-C 2.14	124 Weigh 164,533 0 164,533 overlap. Min Dis Hole-Cpl
D V Tool(s): by stage % : 7 5/8 Segment "A" "B" Hole Size 8 3/4 Class 'C' tail cm Tail cmt 5 1/2	#/ft 29.70 w/8.4# Annular Volume 0.1005 ht yld > 1.35 casi	her w/top @ Grade /g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 270 ng inside the	114 5170 p 110 st psig: 626 t volume(s) are inter 1 Stage CuFt Cmt	Coupling fj 0.00 nded to achieve a top of Min Cu Ft 568 Does not meet CFO 25%	Joint 0.76 5070 1 Stage % Excess 17 excess	Design Fac Collapse 1.18 ft from su Drilling Mud Wt 9.40	1860 cess ctors Burst 1.35 Totals: urface or a Calc MASP 3137	3881 Length 5,540 0 5,540 200 Req'd BOPE 5M	1	a-B 2.41 Prod 1	a-C 2.14	124 Weigh 164,533 0 164,533 overlap. Min Dis Hole-Cpl 0.56
D V Tool(s): by stage % : 7 5/8 Segment "A" "B" Hole Size 8 3/4 Class 'C' tail cm Tail cmt 5 1/2 Segment	#/ft 29.70 w/8.4# Annular Volume 0.1005 ht yld > 1.35 casi #/ft	her w/top @ Grade /g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 270	114 5170 p 110 st psig: 626 t volume(s) are inter 1 Stage CuFt Cmt 664 7 5/8	Coupling fj 0.00 nded to achieve a top of Min Cu Ft 568 Does not meet CFO 25% Coupling	Joint 0.76 5070 1 Stage % Excess 17 excess Body	Design Fac Collapse 1.18 ft from su Drilling Mud Wt 9.40 <u>Design I</u> Collapse	1860 cess ctors Burst 1.35 Totals: urface or a Calc MASP 3137 Factors Burst	3881 Length 5,540 5,540 200 Req'd BOPE 5M	1 B@s	a-B 2.41 Prod 1 a-B	a-C 2.14	124 Weigh 164,533 0 164,533 overlap. Min Dis Hole-Cpl 0.56 Weigh
D V Tool(s): by stage % : 7 5/8 Segment "A" "B" Hole Size 8 3/4 Class 'C' tail cm Tail cmt 5 1/2 Segment "A"	#/ft 29.70 w/8.4# Annular Volume 0.1005 tt yld > 1.35 casi #/ft 20.00	her w/top @ Grade /g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 270 ng inside the	114 5170 p 110 st psig: 626 t volume(s) are inter 1 Stage CuFt Cmt 664 7 5/8 p 110	Coupling fj 0.00 nded to achieve a top of Min Cu Ft 568 Does not meet CFO 25%	Joint 0.76 5070 1 Stage % Excess 17 excess 80dy 2.87	Design Fac Collapse 1.18 ft from su Drilling Mud Wt 9.40 <u>Design I</u> Collapse 2.11	1860 ccess ctors Burst 1.35 Totals: irface or a Calc MASP 3137 Satisfies Sati	3881 Length 5,540 200 Req'd BOPE 5M Length 10,510	1 B@s 2	a-B 2.41 Prod 1 a-B 4.03	a-C 2.14 a-C 3.78	124 Weigh 164,533 overlap. Min Dis Hole-Cpl 0.56 Weigh 210,200
D V Tool(s): by stage % : 7 5/8 Segment "A" "B" Hole Size 8 3/4 class 'C' tail cm Tail cmt 5 1/2 Segment	#/ft 29.70 w/8.4# Annular Volume 0.1005 tt yld > 1.35 casi #/ft 20.00 18.00	her w/top @ Grade /g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 270 ing inside the Grade	114 5170 p 110 tt psig: 626 t volume(s) are inter 1 Stage CuFt Cmt 664 7 5/8 p 110 p 110 p 110	Coupling fj 0.00 nded to achieve a top of Min Cu Ft 568 Does not meet CFO 25% Coupling	Joint 0.76 5070 1 Stage % Excess 17 excess Body	Design Fac Collapse 1.18 ft from su Drilling Mud Wt 9.40 <u>Design I</u> Collapse	1860 ccess ctors Burst 1.35 Totals: urface or a Calc MASP 3137 Saturnation Factors Burst 2.25 2.43	3881 Length 5,540 200 Req'd BOPE 5M Length 10,510 11,122	1 B@s	a-B 2.41 Prod 1 a-B	a-C 2.14	124 Weigh 164,53 0 164,53 overlap. Min Dis Hole-Cpl 0.56 Weigh 210,20 200,19
D V Tool(s): by stage % : 7 5/8 Segment "A" "B" Hole Size 8 3/4 Class 'C' tail cm 5 1/2 Segment "A"	#/ft 29.70 w/8.4# Annular Volume 0.1005 tt yld > 1.35 casi #/ft 20.00 18.00	her w/top @ Grade /g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 270 ng inside the Grade	114 5170 p 110 st psig: 626 t volume(s) are inter 1 Stage CuFt Cmt 664 7 5/8 p 110 p 110 p 110 p 110 st psig: 2,312	Coupling fj 0.00 nded to achieve a top of Min Cu Ft 568 Does not meet CFO 25% Coupling btc btc	Joint 0.76 5070 1 Stage % Excess 17 excess 80dy 2.87 7.69	Design Fac Collapse 1.18 ft from su Drilling Mud Wt 9.40 <u>Design I</u> Collapse 2.11 2.18	1860 ccess ctors Burst 1.35 Totals: urface or a Calc MASP 3137 Factors Burst 2.25 2.43 Totals:	3881 Length 5,540 0 5,540 200 Req'd BOPE 5M Length 10,510 11,122 21,632	1 B@s 2	a-B 2.41 Prod 1 a-B 4.03	a-C 2.14 a-C 3.78 4.29	124 Weigh 164,53 0 164,53 overlap. Min Dis Hole-Cp 0.56 Weigh 210,20 200,19 410,39
D V Tool(s): by stage % : 7 5/8 Segment "A" "B" Hole Size 8 3/4 class 'C' tail cm Tail cmt 5 1/2 Segment "A" "B"	#/ft 29.70 w/8.4# Annular Volume 0.1005 ht yld > 1.35 casi #/ft 20.00 18.00 w/8.4#	her w/top @ Grade /g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 270 ng inside the Grade /g mud, 30min Sfc Csg Tes The cement	114 5170 p 110 st psig: 626 t volume(s) are inter 1 Stage CuFt Cmt 664 7 5/8 p 110 p 110 p 110 st psig: 2,312 t volume(s) are inter	Coupling fj 0.00 nded to achieve a top of Min Cu Ft 568 Does not meet CFO 25% Coupling btc btc btc	Joint 0.76 5070 1 Stage % Excess 17 excess Body 2.87 7.69 10510	Design Fac Collapse 1.18 ft from su Drilling Mud Wt 9.40 <u>Design I</u> Collapse 2.11 2.18 ft from su	1860 ccess ctors Burst 1.35 Totals: urface or a Calc MASP 3137 Salar Eactors Burst 2.25 2.43 Totals: urface or a	3881 Length 5,540 0 5,540 200 Req'd BOPE 5M 10,510 11,122 21,632 200	1 B@s 2	a-B 2.41 Prod 1 a-B 4.03	a-C 2.14 a-C 3.78 4.29	124 Weigh 164,53 0 164,53 overlap. Min Dis Hole-Cpl 0.56 Weigh 210,20 200,19 410,39 overlap.
D V Tool(s): by stage % : 7 5/8 Segment "A" "B" Hole Size 8 3/4 Class 'C' tail cm Tail cmt 5 1/2 Segment "A" "B"	#/ft 29.70 w/8.4# Annular Volume 0.1005 ht yld > 1.35 casi #/ft 20.00 18.00 w/8.4# Annular	her w/top @ Grade /g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 270 Ing inside the Grade /g mud, 30min Sfc Csg Tes The cement 1 Stage	114 5170 p 110 st psig: 626 t volume(s) are inter 1 Stage CuFt Cmt 664 7 5/8 p 110 p 110 p 110 p 110 st psig: 2,312 t volume(s) are inter 1 Stage	Coupling fj 0.00 nded to achieve a top of Min Cu Ft 568 Does not meet CFO 25% Coupling btc btc btc	Joint 0.76 5070 1 Stage % Excess 17 excess 8 Body 2.87 7.69 10510 1 Stage	Design Fac Collapse 1.18 ft from su Drilling Mud Wt 9.40 Design I Collapse 2.11 2.18 ft from su Drilling	1860 ccess Ctors Burst 1.35 Totals: urface or a Calc MASP 3137 Factors Burst 2.25 2.43 Totals: urface or a Calc	3881 Length 5,540 0 5,540 200 Req'd BOPE 5M 10,510 11,122 21,632 200 Req'd	1 B@s 2	a-B 2.41 Prod 1 a-B 4.03	a-C 2.14 a-C 3.78 4.29	124 Weigh 164,53 0 164,53 overlap. Min Dis Hole-Cpl 0.56 Weigh 210,20 200,19 410,39 overlap. Min Dis
V Tool(s) : by stage % : 7 5/8 Segment "A" "B" Hole Size 8 3/4 lass 'C' tail cm Tail cmt 5 1/2 Segment "A" "B"	#/ft 29.70 w/8.4# Annular Volume 0.1005 ht yld > 1.35 casi #/ft 20.00 18.00 w/8.4#	her w/top @ Grade /g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 270 ng inside the Grade /g mud, 30min Sfc Csg Tes The cement	114 5170 p 110 st psig: 626 t volume(s) are inter 1 Stage CuFt Cmt 664 7 5/8 p 110 p 110 p 110 st psig: 2,312 t volume(s) are inter	Coupling fj 0.00 nded to achieve a top of Min Cu Ft 568 Does not meet CFO 25% Coupling btc btc btc	Joint 0.76 5070 1 Stage % Excess 17 excess Body 2.87 7.69 10510	Design Fac Collapse 1.18 ft from su Drilling Mud Wt 9.40 <u>Design I</u> Collapse 2.11 2.18 ft from su	1860 ccess ctors Burst 1.35 Totals: urface or a Calc MASP 3137 Salar Eactors Burst 2.25 2.43 Totals: urface or a	3881 Length 5,540 0 5,540 200 Req'd BOPE 5M 10,510 11,122 21,632 200	1 B@s 2	a-B 2.41 Prod 1 a-B 4.03	a-C 2.14 a-C 3.78 4.29	124 Weigh 164,53 0 164,53 overlap. Min Dis Hole-Cpl 0.56 Weigh 210,20 200,19 410,39 overlap.

Carlsbad Field Office

.

Released to Imaging: 9/27/2024 2:41:08 PM

Grama 8817 16 - 9 Fed Com #8H

11256

21632

BTA Oil Producers, LLC 104 S Pecos Midland, TX 79701

DRILLING PLAN

WELL:

TVD:

MD:

Casing Program

Hole Size	Csg.Size	From (MD)	To (MD)	From (TVD)	To (TVD)	Tapered String	Weight (lbs)	Grade	Conn.	Collapse	Burst	Body Tension	Joint Tension	Dry/ Buoyant	Mud Weight (ppg)
17 1/2	13 3/8	0	1700	0	1700	No	54.5	J-55	STC	1.5	3.7	9.2	5.5	Dry	8.3
12 1/4	9 5/8	0	5270	0	5240	No	40	HCL80	LTC	1.6	2.1	4.3	4.0	Dry	10
8 3/4	7 5/8	5170	10710	5140	10637	No	29.7	P110	FJ	1.9	1.8	3.0	3.0	Dry	9.4
6 3/4	5 1/2	0	10510	0	10437	Yes	20	P110	Buttress	2.1	2.4	1.6	1.6	Dry	9.6
6 3/4			21632	10437	11256	Yes	18	P110	Buttress	2.1	2.9	2.9	3.0	Dry	9.6

*9 5/8" has DV Tool @ 3600'

Dv Tool Depth 3600

.. D

Cementing	ementing Program										
Csg. Size		Stage Tool Depth	Top MD of Segment	Bottom MD of Segment	Cement Type	Quantity (sk)	Yield (cu. Ft./sk)	Density (lbs. gal)	Volume (cu.ft.)	% Excess	Additives
13 3/8	Lead		0	1505	Class C	1165	1.8	13.5	2097	100%	2% CaCl2
	Tail		1505	1700	Class C	200	1.34	14.8	268	100%	2% CaCl2
	Stg 2 Lead		0	3200	Class C	1060	2.19	12.7	2321.4	100%	0.5% CaCl2
9 5/8	Stg 2 Tail		3200	3600	Class C	200	1.33	14.8	266	50%	1% CaCl2
	Stg 1 Lead		3600	4870	Class C	400	2.64	10.5	1056	100%	0.5% CaCl2
	Stg 1 Tail		4870	5270	Class C	200	1.19	15.6	238	100%	1% CaCl2
7 5/8	Lead		5170	9710	Class C	160	3.34	10.7	534.4	15%	.5% Fluid loss
	Tail		9710	10710	Class H	110	1.18	15.6	129.8	15%	.5% Fluid loss
5 1/2	Lead										
	Tail		9710	10510							
5	Lead										
	Tail		10510	21632	Class H	1265	1.27	14.8	1606.55	10%	0.1% Fluid Loss

BOP/CHOKE

Pressure Rating	5M	Rating Depth:	14000	Requesting Variance?	5M Annular on 10M BOPE Choke Hose Multi Bowl Wellhead			
Pressure								
Anticipated I	Bottom Hole Pres	sure:	5,619 psi					
Anticipated I	Bottom Hole Tem	perature:	171 °F					
Anticipated a	Anticipated abnormal pressures, temperatures, or potential geologic hazards? None							
Anticipated Bottom Surface Pressure: Hydrogen sulfide drilling operations plan required?			_{3,143} psi Yes					

Circulatin	Circulating Medium Table									
De	epth (TVD)	Trace	Weight (ppg)							
From To		Туре	weight (ppg)							
0	1700	FW Spud	8.3 - 8.4							
1700	5270	Brine	10							
5270	10637	Cut Brine	9.1 -9.4							
10637	11256	Cut Brine	9.1 - 9.6							

<u>C-102</u>

Submit Electronically

Via OCD Permitting

State of New Mexico Energy, Minerals, & Natural Resources Department OIL CONSERVATION DIVISION

Page 15 of 28

Revised July 9, 2024

 Submittal

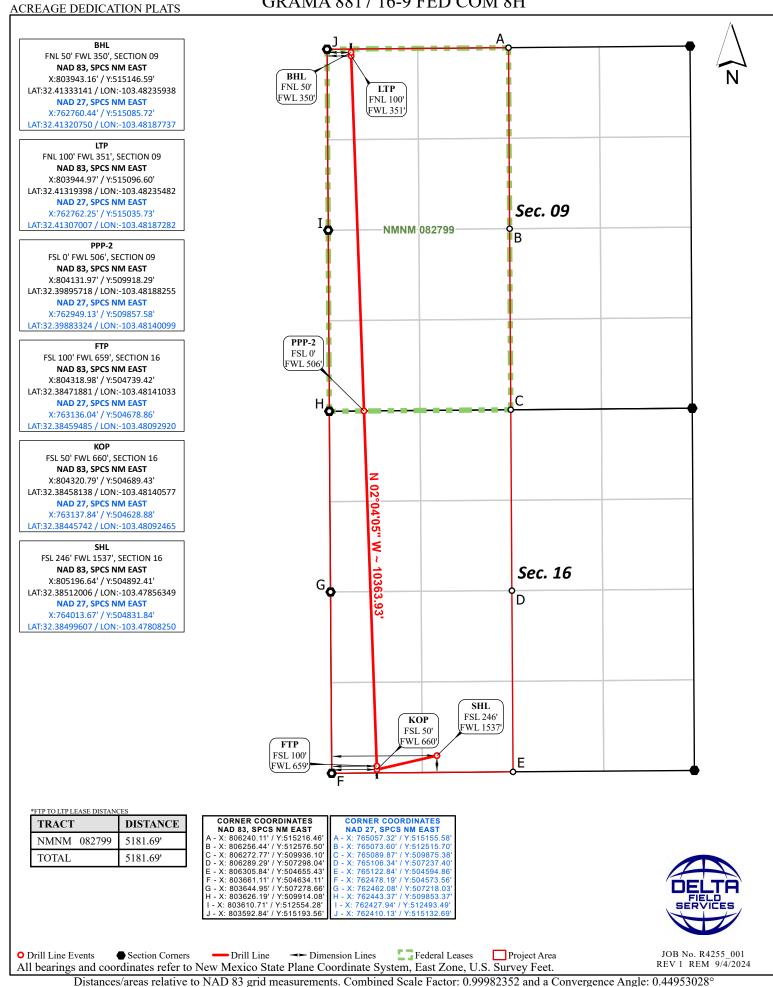
 Type:

 As Drilled

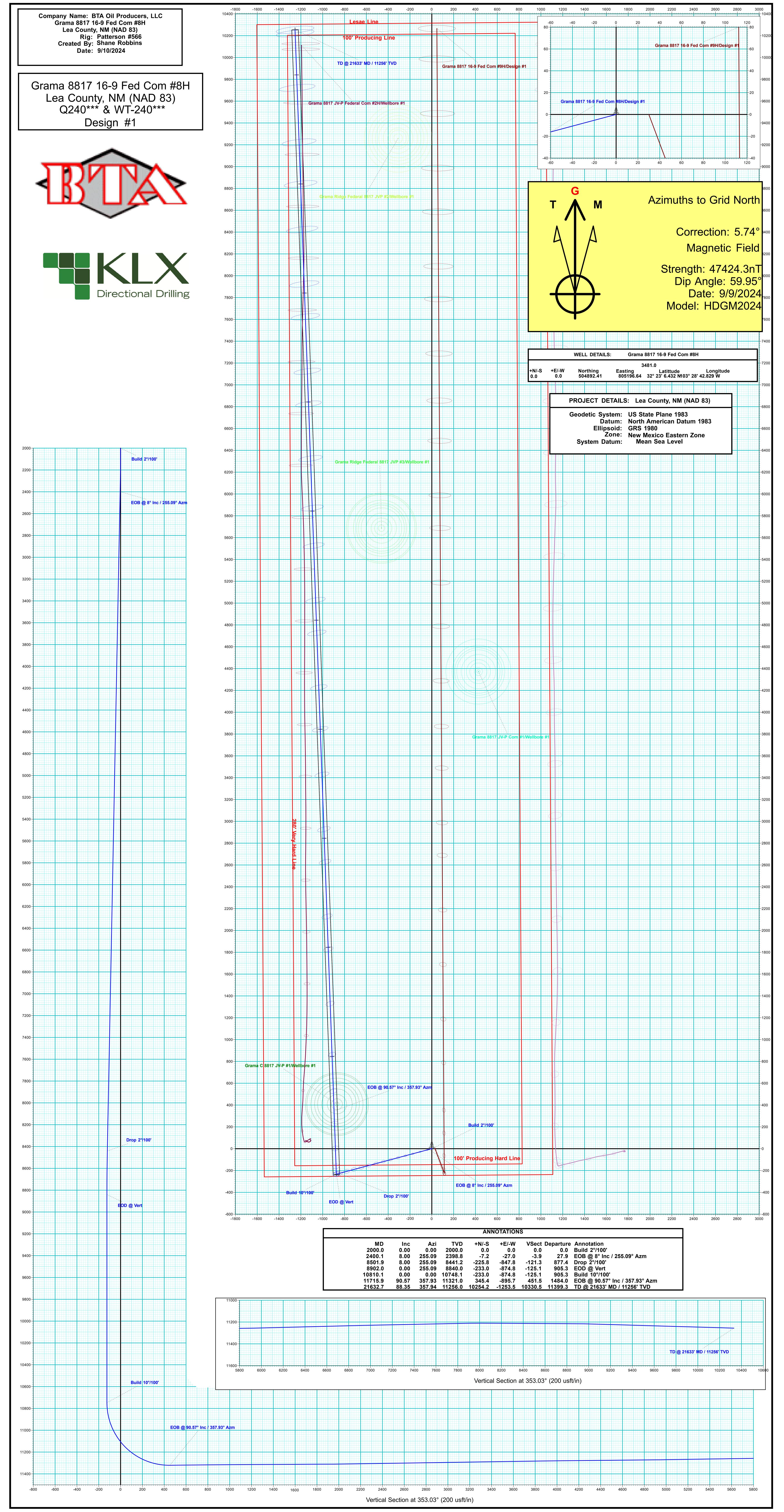
					WELL LOCATIO	N INFORMATION					
API Nun 30-	nber 025-51033		Pool Code			Pool Name Ante	lope Ri	idge; Bone	Spring North		
Property 333	7 Code 3756		Property Na	ame	CD AMA 9917	Well Number 817 16-9 FED COM 8H					
OGRID	No		Operator N	ame	GRAMA 8817	10-9 FED COM	Ground Level Elevation				
oonub	26029	7	operator i t		BTA OIL PRO						
Surface		X State	Fee Tr	ibal 🗌	Federal	Mineral Owner: X	State	Fee	Tribal X Feder		
Surface						Location	Jotate				
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitu	de (NAD83)	Longitude (NAD83)	County	
Ν	16	228	34E		246' FSL	1537' FWL	32.3	38512006	-103.47856349	LEA	
	•		•	•	Bottom Ho	le Location	•				
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitu	de (NAD83)	Longitude (NAD83)	County	
D	09	22S	34E		50' FNL	350' FWL	32.4	41333141	-103.48235938	LEA	
Dedicate	ed Acres	Infill or Defir	ning Well	Definin	g Well API	Overlapping Spacing Uni	t (Y/N)		Consolidation Code		
64	40.00					No					
Order Numbers:					Well setbacks are under Common Ownership: X Yes No						
					Kick Off P	oint (KOP)					
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude (NAD83)		Longitude (NAD83)	County	
М	16	22S	34E		50' FSL	660' FWL	32.38458138		-103.48140577	LEA	
					First Take	Point (FTP)					
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitu	de (NAD83)	Longitude (NAD83)	County	
М	16	228	34E		100' FSL	659' FWL	32.3	38471881	-103.48141033	LEA	
					Last Take	Point (LTP)					
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitu	de (NAD83)	Longitude (NAD83)	County	
D	09	228	34E		100' FNL	351' FWL	32.4	41319398	-103.48235482	LEA	
Unitized	l Area or Area	of Uniform Inte	rest	Snaoin	g Unit Type: 🛛 🕅 Horizo	antal Vantical		Ground Floor	Elevation		
				Spacin	g Olit Type. 🔥 Horizo	ontal Vertical			3481'		
OPER	ATOR CEI	RTIFICATIO	NS			SURVEYOR CERT	IFICAT	TIONS			
I hereby	certify that th	e information co	ontained herein	is true and	l complete to the best of my	I hereby certify that the w	ell locatio	n shown on this	plat was plotted from	field notes of	
	0 0				well, that this organization lead including the	actual surveys made by me or under my supervision, and that the same is true and correct to the best of my belief.					
propose	d bottom hole	location or has	a right to drill	this well at	this location pursuant to a	the best of my benef.					
					<i>ul interest, or to a voluntary tered by the division.</i>						
pooling agreement or a compulsory pooling order heretofore entered by the division. If this well is a horizontal well, I further certify that this organization has received the								LOTUINS	10px		
consent	of at least one	lessee or owner	r of a working i	interest or i	unleased mineral interest in	EN METO					
					the well's completed from the division.						
Sam	my Hajar		9/10/20	024		(21653) (21653)					
Signa			Date			l l	A Of		J.S.		
Samn	ny Hajar					SSIONAL SUR					

Printed Name

SHAJAR@BTAOIL.COM


Signature and Seal of Professional Surveyor

Email Address	Certificate Number	Date of Survey
Land to Imanium, 0/17/2027 2:41.08 D34	21653	SEPTEMBER 6, 2024


Released to Imaging of 27/2024 as the Mompletion until all interests have been consolidated or a non-standard unit has been approved by the division.

GRAMA 8817 16-9 FED COM 8H

Page 16 of 28

Released to Imaging: 9/27/2024 2:41:08 PM

Released to Imaging: 9/27/2024 2:41:08 PM

BTA Oil Producers, LLC

Lea County, NM (NAD 83) Sec 16, T22-S, R34-E Grama 8817 16-9 Fed Com #8H

Wellbore #1

Plan: Design #1

KLX Well Planning Report

10 September, 2024

Well Planning Report

Database: Company: Project: Site: Well: Wellbore: Design:	Lea Coun Sec 16, T	roducers, LLC ty, NM (NAD 83 22-S, R34-E 17 16-9 Fed Co #1		TVD Refe MD Refer North Ref	ence:		Well Grama 88 WELL @ 3506 WELL @ 3506 Grid Minimum Curv	.0usft (Patte .0usft (Patte	rson #566)
Project	Lea Count	y, NM (NAD 83)							
Map System: Geo Datum: Map Zone:		ane 1983 can Datum 198 Eastern Zone	3	System Da	itum:	I	Mean Sea Level		
Site	Sec 16, T2	2-S, R34-E							
Site Position: From: Position Uncertair	Map nty:	0.0 usft	Northing: Easting: Slot Radius:	,	19.20 usft	Latitude: Longitude Grid Conv			32° 23' 5.986 N 103° 28' 2.920 W 0.46 °
Well	Grama 881	7 16-9 Fed Cor	n #8H						
Well Position	+N/-S +E/-W	17.6 usft -3,422.6 usft	Northing: Easting:		504,892.41 805,196.64		atitude: ongitude:		32° 23' 6.432 N 103° 28' 42.829 W
Position Uncertain	ıty	0.0 usft	Wellhead I	Elevation:		G	iround Level:		3,481.0 usft
Wellbore	Wellbore #	#1							
Magnetics	Model I	Name	Sample Date	Declina (°)	tion	Dip	Angle (°)		Strength nT)
	HD	GM2024	9/9/2024	1	6.20		59.95	47,42	24.30000000
Design	Design #1								
Audit Notes: Version:			Phase:	PLAN	Tie	e On Depth	:	0.0	
Vertical Section:		(u	rom (TVD) sft)	+N/-S (usft)		/-W sft)		ection (°)	
		(0.0	0.0	0	.0	35	3.03	

Well Planning Report

Database: Company:	KLXDirectional-AD BTA Oil Producers, LLC	Local Co-ordinate Reference: TVD Reference:	Well Grama 8817 16-9 Fed Com #8H WELL @ 3506.0usft (Patterson #566)
Project:	Lea County, NM (NAD 83)	MD Reference:	WELL @ 3506.0usft (Patterson #566)
Site:	Sec 16, T22-S, R34-E	North Reference:	Grid
Well:	Grama 8817 16-9 Fed Com #8H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Plan Sections

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,400.1	8.00	255.09	2,398.8	-7.2	-27.0	2.00	2.00	0.00	255.09	
8,501.9	8.00	255.09	8,441.2	-225.8	-847.8	0.00	0.00	0.00	0.00	
8,902.0	0.00	0.00	8,840.0	-233.0	-874.8	2.00	-2.00	0.00	180.00	VP Grama 8H
10,810.1	0.00	0.00	10,748.1	-233.0	-874.8	0.00	0.00	0.00	0.00	
11,715.9	90.57	357.93	11,321.0	345.4	-895.7	10.00	10.00	-0.23	357.93	
12,217.2	90.57	357.93	11,316.0	846.4	-913.8	0.00	0.00	0.00	0.00	T1 GRAMA 8H
12,231.7	90.28	357.93	11,315.9	860.9	-914.3	2.00	-2.00	0.00	-179.97	
13,217.2	90.28	357.93	11,311.0	1,845.7	-949.9	0.00	0.00	0.00	0.00	T2 GRAMA 8H
13,246.4	90.87	357.93	11,310.7	1,874.9	-951.0	2.00	2.00	0.00	0.00	
14,217.3	90.87	357.93	11,296.0	2,845.1	-986.0	0.00	0.00	0.00	0.00	T3 GRAMA 8H
14,217.8	90.86	357.93	11,296.0	2,845.5	-986.0	2.00	-2.00	0.00	179.96	
15,217.5	5 90.86	357.93	11,281.0	3,844.4	-1,022.1	0.00	0.00	0.00	0.00	T4 GRAMA 8H
15,231.9	90.57	357.93	11,280.8	3,858.8	-1,022.7	2.00	-2.00	0.00	-180.00	
16,217.5	5 90.57	357.93	11,271.0	4,843.7	-1,058.3	0.00	0.00	0.00	0.00	T5 GRAMA 8H
16,232.0	90.86	357.93	11,270.8	4,858.3	-1,058.8	2.00	2.00	0.00	0.00	
17,217.6	90.86	357.93	11,256.0	5,843.1	-1,094.4	0.00	0.00	0.00	0.00	T6 GRAMA 8H
17,246.6	6 91.44	357.93	11,255.4	5,872.0	-1,095.4	2.00	2.00	0.00	0.00	
18,217.9	91.44	357.93	11,231.0	6,842.4	-1,130.5	0.00	0.00	0.00	0.00	T7 GRAMA 8H
18,232.8	91.14	357.93	11,230.7	6,857.3	-1,131.0	2.00	-2.00	0.00	180.00	
19,218.1	91.14	357.93	11,211.0	7,841.8	-1,166.6	0.00	0.00	0.00	0.00	T8 GRAMA 8H
19,292.4	89.66	357.93	11,210.5	7,916.0	-1,169.3	2.00	-2.00	0.00	180.00	
20,218.2	89.66	357.93	11,216.0	8,841.1	-1,202.7	0.00	0.00	0.00	0.00	T9 GRAMA 8H
20,283.6	88.35	357.94	11,217.1	8,906.5	-1,205.1	2.00	-2.00	0.02	179.39	
21,632.7	88.35	357.94	11,256.0	10,254.2	-1,253.5	0.00	0.00	0.00	0.00	PBHL Grama 8817

Well Planning Report

Database: Company:	KLXDirectional-AD BTA Oil Producers, LLC	Local Co-ordinate Reference: TVD Reference:	Well Grama 8817 16-9 Fed Com #8H WELL @ 3506.0usft (Patterson #566)
Project:	Lea County, NM (NAD 83)	MD Reference:	WELL @ 3506.0usft (Patterson #566)
Site:	Sec 16, T22-S, R34-E	North Reference:	Grid
Well:	Grama 8817 16-9 Fed Com #8H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0 100.0 200.0 300.0 400.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.0 100.0 200.0 300.0 400.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
500.0 600.0 700.0 800.0 900.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	500.0 600.0 700.0 800.0 900.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
1,000.0 1,100.0 1,200.0 1,300.0 1,400.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	1,000.0 1,100.0 1,200.0 1,300.0 1,400.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
1,500.0 1,600.0 1,700.0 1,800.0 1,900.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	1,500.0 1,600.0 1,700.0 1,800.0 1,900.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
Build 2°/10	0'								
2,000.0 2,100.0 2,200.0 2,300.0	0.00 2.00 4.00 6.00	0.00 255.09 255.09 255.09	2,000.0 2,100.0 2,199.8 2,299.5	0.0 -0.4 -1.8 -4.0	0.0 -1.7 -6.7 -15.2	0.0 -0.2 -1.0 -2.2	0.00 2.00 2.00 2.00	0.00 2.00 2.00 2.00	0.00 0.00 0.00 0.00
	Inc / 255.09° A								
2,400.1	8.00	255.09	2,398.8	-7.2	-27.0	-3.9	2.00	2.00	0.00
2,500.0 2,600.0 2,700.0 2,800.0 2,900.0	8.00 8.00 8.00 8.00 8.00 8.00	255.09 255.09 255.09 255.09 255.09 255.09	2,497.7 2,596.8 2,695.8 2,794.8 2,893.8	-10.8 -14.3 -17.9 -21.5 -25.1	-40.4 -53.8 -67.3 -80.8 -94.2	-5.8 -7.7 -9.6 -11.5 -13.5	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
3,000.0 3,100.0 3,200.0 3,300.0	8.00 8.00 8.00 8.00	255.09 255.09 255.09 255.09	2,992.9 3,091.9 3,190.9 3,289.9	-28.7 -32.3 -35.8 -39.4	-107.7 -121.1 -134.6 -148.0	-15.4 -17.3 -19.2 -21.2	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
3,400.0 3,500.0 3,600.0 3,700.0 3,800.0	8.00 8.00 8.00 8.00 8.00 8.00	255.09 255.09 255.09 255.09 255.09	3,389.0 3,488.0 3,587.0 3,686.0 3,785.1	-43.0 -46.6 -50.2 -53.8 -57.3	-161.5 -174.9 -188.4 -201.8 -215.3	-23.1 -25.0 -26.9 -28.9 -30.8	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
3,800.0 3,900.0	8.00 8.00	255.09 255.09	3,785.1 3,884.1	-57.3 -60.9	-215.3 -228.7	-30.8 -32.7	0.00	0.00	0.00
4,000.0 4,100.0 4,200.0 4,300.0 4,400.0	8.00 8.00 8.00 8.00 8.00 8.00	255.09 255.09 255.09 255.09 255.09 255.09	3,983.1 4,082.1 4,181.2 4,280.2 4,379.2	-64.5 -68.1 -71.7 -75.2 -78.8	-242.2 -255.6 -269.1 -282.5 -296.0	-34.6 -36.6 -38.5 -40.4 -42.3	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
4,500.0 4,600.0 4,700.0 4,800.0	8.00 8.00 8.00 8.00	255.09 255.09 255.09 255.09	4,478.3 4,577.3 4,676.3 4,775.3	-82.4 -86.0 -89.6 -93.2	-309.4 -322.9 -336.4 -349.8	-44.3 -46.2 -48.1 -50.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
4,900.0 5,000.0	8.00 8.00	255.09 255.09	4,874.4 4,973.4	-96.7 -100.3	-363.3 -376.7	-52.0 -53.9	0.00 0.00	0.00 0.00	0.00 0.00
5,100.0	8.00	255.09	5,072.4	-103.9	-390.2	-55.8	0.00	0.00	0.00

9/10/2024 8:43:59AM

Page 4

COMPASS 5000.17 Build 03

Well Planning Report

	Database: Company:	KLXDirectional-AD BTA Oil Producers, LLC	Local Co-ordinate Reference: TVD Reference:	Well Grama 8817 16-9 Fed Com #8H WELL @ 3506.0usft (Patterson #566)
	Project:	Lea County, NM (NAD 83)	MD Reference:	WELL @ 3506.0usft (Patterson #566)
S	Site:	Sec 16, T22-S, R34-E	North Reference:	Grid
v	Vell:	Grama 8817 16-9 Fed Com #8H	Survey Calculation Method:	Minimum Curvature
V	Vellbore:	Wellbore #1		
C	Design:	Design #1		

Planned Survey

	Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
	5,200.0 5,300.0 5,400.0	8.00 8.00 8.00	255.09 255.09 255.09	5,171.4 5,270.5 5,369.5	-107.5 -111.1 -114.7	-403.6 -417.1 -430.5	-57.7 -59.6 -61.6	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
	5,500.0 5,600.0 5,700.0 5,800.0 5,900.0	8.00 8.00 8.00 8.00 8.00 8.00	255.09 255.09 255.09 255.09 255.09 255.09	5,468.5 5,567.5 5,666.6 5,765.6 5,864.6	-118.2 -121.8 -125.4 -129.0 -132.6	-444.0 -457.4 -470.9 -484.3 -497.8	-63.5 -65.4 -67.3 -69.3 -71.2	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
	6,000.0 6,100.0 6,200.0 6,300.0 6,400.0	8.00 8.00 8.00 8.00 8.00	255.09 255.09 255.09 255.09 255.09 255.09	5,963.6 6,062.7 6,161.7 6,260.7 6,359.7	-136.2 -139.7 -143.3 -146.9 -150.5	-511.2 -524.7 -538.1 -551.6 -565.1	-73.1 -75.0 -77.0 -78.9 -80.8	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
	6,500.0 6,600.0 6,700.0 6,800.0 6,900.0	8.00 8.00 8.00 8.00 8.00	255.09 255.09 255.09 255.09 255.09 255.09	6,458.8 6,557.8 6,656.8 6,755.9 6,854.9	-154.1 -157.7 -161.2 -164.8 -168.4	-578.5 -592.0 -605.4 -618.9 -632.3	-82.7 -84.7 -86.6 -88.5 -90.4	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
	7,000.0 7,100.0 7,200.0 7,300.0 7,400.0	8.00 8.00 8.00 8.00 8.00 8.00	255.09 255.09 255.09 255.09 255.09 255.09	6,953.9 7,052.9 7,152.0 7,251.0 7,350.0	-172.0 -175.6 -179.1 -182.7 -186.3	-645.8 -659.2 -672.7 -686.1 -699.6	-92.4 -94.3 -96.2 -98.1 -100.1	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
	7,500.0 7,600.0 7,700.0 7,800.0 7,900.0	8.00 8.00 8.00 8.00 8.00	255.09 255.09 255.09 255.09 255.09	7,449.0 7,548.1 7,647.1 7,746.1 7,845.1	-189.9 -193.5 -197.1 -200.6 -204.2	-713.0 -726.5 -739.9 -753.4 -766.8	-102.0 -103.9 -105.8 -107.7 -109.7	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
	8,000.0 8,100.0 8,200.0 8,300.0 8,400.0	8.00 8.00 8.00 8.00 8.00	255.09 255.09 255.09 255.09 255.09 255.09	7,944.2 8,043.2 8,142.2 8,241.2 8,340.3	-207.8 -211.4 -215.0 -218.6 -222.1	-780.3 -793.7 -807.2 -820.7 -834.1	-111.6 -113.5 -115.4 -117.4 -119.3	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
	Drop 2°/100 8,501.9 8,600.0 8,700.0 8,800.0	8.00 6.04 4.04 2.04	255.09 255.09 255.09 255.09	8,441.2 8,538.5 8,638.1 8,738.0	-225.8 -228.9 -231.1 -232.5	-847.8 -859.4 -867.9 -873.0	-121.3 -122.9 -124.1 -124.9	0.00 2.00 2.00 2.00	0.00 -2.00 -2.00 -2.00	0.00 0.00 0.00 0.00
	EOD @ Ver 8,902.0 9,000.0 9,100.0 9,200.0	t 0.00 0.00 0.00 0.00	255.09 0.00 0.00 0.00	8,840.0 8,938.0 9,038.0 9,138.0	-233.0 -233.0 -233.0 -233.0	-874.8 -874.8 -874.8 -874.8	-125.1 -125.1 -125.1 -125.1	2.00 0.00 0.00 0.00	-2.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
	9,300.0 9,400.0 9,500.0	0.00 0.00 0.00	0.00 0.00 0.00	9,238.0 9,338.0 9,438.0	-233.0 -233.0 -233.0	-874.8 -874.8 -874.8	-125.1 -125.1 -125.1	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
	9,600.0 9,700.0 9,800.0 9,900.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	9,538.0 9,638.0 9,738.0 9,838.0	-233.0 -233.0 -233.0 -233.0	-874.8 -874.8 -874.8 -874.8	-125.1 -125.1 -125.1 -125.1	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
	10,000.0 10,100.0 10,200.0 10,300.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	9,938.0 10,038.0 10,138.0 10,238.0	-233.0 -233.0 -233.0 -233.0	-874.8 -874.8 -874.8 -874.8	-125.1 -125.1 -125.1 -125.1	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
9/1	0/2024 8:43:59AM				Page 5				COMF	PASS 5000.17 Build 0

Released to Imaging: 9/27/2024 2:41:08 PM

Well Planning Report

KLXDirectional-AD	Local Co-ordinate Reference:	Well Grama 8817 16-9 Fed Com #8H
BTA Oil Producers, LLC	TVD Reference:	WELL @ 3506.0usft (Patterson #566)
Lea County, NM (NAD 83)	MD Reference:	WELL @ 3506.0usft (Patterson #566)
Sec 16, T22-S, R34-E	North Reference:	Grid
Grama 8817 16-9 Fed Com #8H	Survey Calculation Method:	Minimum Curvature
Wellbore #1	-	
Design #1		
	BTA Oil Producers, LLC Lea County, NM (NAD 83) Sec 16, T22-S, R34-E Grama 8817 16-9 Fed Com #8H Wellbore #1	BTA Oil Producers, LLC TVD Reference: Lea County, NM (NAD 83) MD Reference: Sec 16, T22-S, R34-E North Reference: Grama 8817 16-9 Fed Com #8H Survey Calculation Method: Wellbore #1 Wellbore #1

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,400.0	0.00	0.00	10,338.0	-233.0	-874.8	-125.1	0.00	0.00	0.00
10,500.0 10,600.0 10,700.0 10,800.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	10,438.0 10,538.0 10,638.0 10,738.0	-233.0 -233.0 -233.0 -233.0	-874.8 -874.8 -874.8 -874.8	-125.1 -125.1 -125.1 -125.1	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
Build 10°/1 10,810.1	0.00 0.00	0.00	10,748.1	-233.0	-874.8	-125.1	0.00	0.00	0.00
10,850.0 10,900.0 10,950.0 11,000.0 11,050.0	3.99 8.99 13.99 18.99 23.99	357.93 357.93 357.93 357.93 357.93 357.93	10,787.9 10,837.6 10,886.6 10,934.5 10,981.0	-231.6 -225.9 -216.0 -201.8 -183.5	-874.8 -875.0 -875.4 -875.9 -876.6	-123.7 -118.1 -108.2 -94.0 -75.8	10.00 10.00 10.00 10.00 10.00	10.00 10.00 10.00 10.00 10.00	0.00 0.00 0.00 0.00 0.00
11,100.0 11,150.0 11,200.0 11,250.0 11,300.0	28.99 33.99 38.99 43.99 48.99	357.93 357.93 357.93 357.93 357.93	11,025.8 11,068.4 11,108.6 11,146.0 11,180.4	-161.2 -135.1 -105.4 -72.4 -36.1	-877.4 -878.3 -879.4 -880.6 -881.9	-53.6 -27.6 2.0 35.0 71.1	10.00 10.00 10.00 10.00 10.00	10.00 10.00 10.00 10.00 10.00	0.00 0.00 0.00 0.00 0.00
11,350.0 11,400.0 11,450.0 11,500.0 11,550.0	53.99 58.99 63.99 68.99 73.99	357.93 357.93 357.93 357.93 357.93 357.93	11,211.6 11,239.2 11,263.0 11,283.0 11,298.8	3.0 44.6 88.5 134.3 181.7	-883.3 -884.8 -886.4 -888.0 -889.8	110.1 151.6 195.4 241.1 288.3	10.00 10.00 10.00 10.00 10.00	10.00 10.00 10.00 10.00 10.00	0.00 0.00 0.00 0.00 0.00
11,600.0 11,650.0 11,700.0	78.99 83.99 88.99	357.93 357.93 357.93	11,310.5 11,317.9 11,321.0	230.2 279.6 329.5	-891.5 -893.3 -895.1	336.7 386.0 435.7	10.00 10.00 10.00	10.00 10.00 10.00	0.00 0.00 0.00
EOB @ 90 11,715.9	.57° Inc / 357.9 90.57	3° Azm 357.93	11,321.0	345.4	-895.7	451.5	9.98	9.98	0.00
11,800.0	90.57	357.93	11,320.2	429.4	-898.7	535.3	0.00	0.00	0.00
11,900.0 12,000.0 12,100.0 12,200.0 12,217.2	90.57 90.57 90.57 90.57 90.57	357.93 357.93 357.93 357.93 357.93 357.93	11,319.2 11,318.2 11,317.2 11,316.2 11,316.0	529.4 629.3 729.2 829.1 846.4	-902.3 -905.9 -909.5 -913.2 -913.8	634.9 734.6 834.2 933.8 951.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
12,231.7 12,300.0 12,400.0 12,500.0 12,600.0	90.28 90.28 90.28 90.28 90.28	357.93 357.93 357.93 357.93 357.93 357.93	11,315.9 11,315.6 11,315.1 11,314.6 11,314.1	860.9 929.1 1,029.0 1,128.9 1,228.9	-914.3 -916.8 -920.4 -924.0 -927.6	965.4 1,033.5 1,133.1 1,232.7 1,332.4	2.00 0.00 0.00 0.00 0.00	-2.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
12,700.0 12,800.0 12,900.0 13,000.0 13,100.0	90.28 90.28 90.28 90.28 90.28	357.93 357.93 357.93 357.93 357.93 357.93	11,313.6 11,313.1 11,312.6 11,312.1 11,311.6	1,328.8 1,428.7 1,528.7 1,628.6 1,728.5	-931.2 -934.8 -938.4 -942.1 -945.7	1,432.0 1,531.6 1,631.3 1,730.9 1,830.5	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
13,200.0 13,217.2 13,246.4 13,300.0 13,400.0	90.28 90.28 90.87 90.87 90.87	357.93 357.93 357.93 357.93 357.93 357.93	11,311.1 11,311.0 11,310.7 11,309.9 11,308.4	1,828.5 1,845.7 1,874.9 1,928.4 2,028.3	-949.3 -949.9 -951.0 -952.9 -956.5	1,930.2 1,947.3 1,976.4 2,029.8 2,129.4	0.00 0.00 2.00 0.00 0.00	0.00 0.00 2.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
13,500.0 13,600.0 13,700.0 13,800.0 13,900.0	90.87 90.87 90.87 90.87 90.87	357.93 357.93 357.93 357.93 357.93 357.93	11,306.9 11,305.4 11,303.8 11,302.3 11,300.8	2,128.3 2,228.2 2,328.1 2,428.0 2,527.9	-960.1 -963.7 -967.3 -970.9 -974.6	2,229.0 2,328.7 2,428.3 2,527.9 2,627.5	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00

Well Planning Report

Database: Company:	KLXDirectional-AD BTA Oil Producers, LLC	Local Co-ordinate Reference: TVD Reference:	Well Grama 8817 16-9 Fed Com #8H WELL @ 3506.0usft (Patterson #566)
Project:	Lea County, NM (NAD 83)	MD Reference:	WELL @ 3506.0usft (Patterson #566)
Site:	Sec 16, T22-S, R34-E	North Reference:	Grid
Well:	Grama 8817 16-9 Fed Com #8H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
14,000.0 14,100.0 14,200.0 14,217.3 14,217.8	90.87 90.87 90.87 90.87 90.87 90.86	357.93 357.93 357.93 357.93 357.93 357.93	11,299.3 11,297.8 11,296.3 11,296.0 11,296.0	2,627.9 2,727.8 2,827.7 2,845.1 2,845.5	-978.2 -981.8 -985.4 -986.0 -986.0	2,727.1 2,826.8 2,926.4 2,943.7 2,944.1	0.00 0.00 0.00 0.00 2.00	0.00 0.00 0.00 0.00 -2.00	0.00 0.00 0.00 0.00 0.00
14,300.0 14,400.0 14,500.0 14,600.0 14,700.0	90.86 90.86 90.86 90.86 90.86	357.93 357.93 357.93 357.93 357.93 357.93	11,294.8 11,293.3 11,291.8 11,290.3 11,288.8	2,927.6 3,027.6 3,127.5 3,227.4 3,327.3	-989.0 -992.6 -996.2 -999.8 -1,003.5	3,026.0 3,125.6 3,225.3 3,324.9 3,424.5	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
14,800.0 14,900.0 15,000.0 15,100.0 15,200.0	90.86 90.86 90.86 90.86 90.86	357.93 357.93 357.93 357.93 357.93 357.93	11,287.3 11,285.8 11,284.3 11,282.8 11,281.3	3,427.3 3,527.2 3,627.1 3,727.0 3,827.0	-1,007.1 -1,010.7 -1,014.3 -1,017.9 -1,021.5	3,524.1 3,623.8 3,723.4 3,823.0 3,922.6	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
15,217.5 15,231.9 15,300.0 15,400.0 15,500.0	90.86 90.57 90.57 90.57 90.57	357.93 357.93 357.93 357.93 357.93 357.93	11,281.0 11,280.8 11,280.1 11,279.1 11,278.1	3,844.4 3,858.8 3,926.9 4,026.8 4,126.7	-1,022.1 -1,022.7 -1,025.1 -1,028.7 -1,032.3	3,940.0 3,954.4 4,022.3 4,121.9 4,221.5	0.00 2.00 0.00 0.00 0.00	0.00 -2.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
15,600.0 15,700.0 15,800.0 15,900.0 16,000.0	90.57 90.57 90.57 90.57 90.57	357.93 357.93 357.93 357.93 357.93	11,277.2 11,276.2 11,275.2 11,274.2 11,273.2	4,226.7 4,326.6 4,426.5 4,526.5 4,626.4	-1,036.0 -1,039.6 -1,043.2 -1,046.8 -1,050.4	4,321.1 4,420.8 4,520.4 4,620.0 4,719.7	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
16,100.0 16,200.0 16,217.5 16,232.0 16,300.0	90.57 90.57 90.57 90.86 90.86	357.93 357.93 357.93 357.93 357.93 357.93	11,272.2 11,271.2 11,271.0 11,270.8 11,269.8	4,726.3 4,826.3 4,843.7 4,858.3 4,926.2	-1,054.0 -1,057.6 -1,058.3 -1,058.8 -1,061.2	4,819.3 4,918.9 4,936.4 4,950.8 5,018.5	0.00 0.00 0.00 2.00 0.00	0.00 0.00 2.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
16,400.0 16,500.0 16,600.0 16,700.0 16,800.0	90.86 90.86 90.86 90.86 90.86	357.93 357.93 357.93 357.93 357.93 357.93	11,268.3 11,266.8 11,265.3 11,263.8 11,262.3	5,026.1 5,126.0 5,225.9 5,325.9 5,425.8	-1,064.9 -1,068.5 -1,072.1 -1,075.7 -1,079.3	5,118.2 5,217.8 5,317.4 5,417.0 5,516.7	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
16,900.0 17,000.0 17,100.0 17,200.0 17,217.6	90.86 90.86 90.86 90.86 90.86	357.93 357.93 357.93 357.93 357.93 357.93	11,260.8 11,259.3 11,257.8 11,256.3 11,256.0	5,525.7 5,625.6 5,725.6 5,825.5 5,843.1	-1,082.9 -1,086.5 -1,090.1 -1,093.7 -1,094.4	5,616.3 5,715.9 5,815.5 5,915.2 5,932.7	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
17,246.6 17,300.0 17,400.0 17,500.0 17,600.0	91.44 91.44 91.44 91.44 91.44	357.93 357.93 357.93 357.93 357.93 357.93	11,255.4 11,254.1 11,251.6 11,249.0 11,246.5	5,872.0 5,925.4 6,025.3 6,125.2 6,225.1	-1,095.4 -1,097.4 -1,101.0 -1,104.6 -1,108.2	5,961.5 6,014.8 6,114.4 6,214.0 6,313.6	2.00 0.00 0.00 0.00 0.00	2.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
17,700.0 17,800.0 17,900.0 18,000.0 18,100.0	91.44 91.44 91.44 91.44 91.44	357.93 357.93 357.93 357.93 357.93 357.93	11,244.0 11,241.5 11,239.0 11,236.5 11,234.0	6,325.0 6,424.9 6,524.8 6,624.7 6,724.6	-1,111.8 -1,115.4 -1,119.0 -1,122.6 -1,126.2	6,413.2 6,512.8 6,612.4 6,712.0 6,811.6	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
18,200.0 18,217.9 18,232.8 18,300.0	91.44 91.44 91.14 91.14	357.93 357.93 357.93 357.93 357.93	11,231.5 11,231.0 11,230.7 11,229.3	6,824.5 6,842.4 6,857.3 6,924.4	-1,129.9 -1,130.5 -1,131.0 -1,133.5	6,911.2 6,929.1 6,943.8 7,010.8	0.00 0.00 2.00 0.00	0.00 0.00 -2.00 0.00	0.00 0.00 0.00 0.00

9/10/2024 8:43:59AM

COMPASS 5000.17 Build 03

Well Planning Report

Database:	KLXDirectional-AD	Local Co-ordinate Reference:	Well Grama 8817 16-9 Fed Com #8H
Company:	BTA Oil Producers, LLC	TVD Reference:	WELL @ 3506.0usft (Patterson #566)
Project:	Lea County, NM (NAD 83)	MD Reference:	WELL @ 3506.0usft (Patterson #566)
Site:	Sec 16, T22-S, R34-E	North Reference:	Grid
Well:	Grama 8817 16-9 Fed Com #8H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
18,400.0	91.14	357.93	11,227.3	7,024.4	-1,137.1	7,110.4	0.00	0.00	0.00
18,500.0 18,600.0 18,700.0 18,800.0 18,900.0	91.14 91.14 91.14 91.14 91.14	357.93 357.93 357.93 357.93 357.93 357.93	11,225.3 11,223.3 11,221.3 11,219.3 11,217.3	7,124.3 7,224.2 7,324.1 7,424.0 7,523.9	-1,140.7 -1,144.3 -1,147.9 -1,151.5 -1,155.1	7,210.0 7,309.7 7,409.3 7,508.9 7,608.5	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
19,000.0 19,100.0 19,200.0 19,218.1 19,292.4	91.14 91.14 91.14 91.14 89.66	357.93 357.93 357.93 357.93 357.93 357.93	11,215.4 11,213.4 11,211.4 11,211.0 11,210.5	7,623.8 7,723.8 7,823.7 7,841.8 7,916.0	-1,158.7 -1,162.4 -1,166.0 -1,166.6 -1,169.3	7,708.1 7,807.7 7,907.3 7,925.4 7,999.4	0.00 0.00 0.00 0.00 2.00	0.00 0.00 0.00 0.00 -2.00	0.00 0.00 0.00 0.00 0.00
19,300.0 19,400.0 19,500.0 19,600.0 19,700.0	89.66 89.66 89.66 89.66 89.66	357.93 357.93 357.93 357.93 357.93 357.93	11,210.5 11,211.1 11,211.7 11,212.3 11,212.9	7,923.6 8,023.5 8,123.5 8,223.4 8,323.3	-1,169.6 -1,173.2 -1,176.8 -1,180.4 -1,184.0	8,007.0 8,106.6 8,206.2 8,305.9 8,405.5	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
19,800.0 19,900.0 20,000.0 20,100.0 20,200.0	89.66 89.66 89.66 89.66 89.66	357.93 357.93 357.93 357.93 357.93 357.93	11,213.5 11,214.1 11,214.7 11,215.3 11,215.9	8,423.3 8,523.2 8,623.1 8,723.1 8,823.0	-1,187.6 -1,191.3 -1,194.9 -1,198.5 -1,202.1	8,505.1 8,604.8 8,704.4 8,804.0 8,903.7	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
20,218.2 20,283.6 20,300.0 20,400.0 20,500.0	89.66 88.35 88.35 88.35 88.35 88.35	357.93 357.94 357.94 357.94 357.94 357.94	11,216.0 11,217.1 11,217.6 11,220.5 11,223.4	8,841.1 8,906.5 8,922.9 9,022.8 9,122.7	-1,202.7 -1,205.1 -1,205.7 -1,209.3 -1,212.9	8,921.8 8,987.0 9,003.3 9,102.9 9,202.5	0.00 2.00 0.00 0.00 0.00	0.00 -2.00 0.00 0.00 0.00	0.00 0.02 0.00 0.00 0.00
20,600.0 20,700.0 20,800.0 20,900.0 21,000.0	88.35 88.35 88.35 88.35 88.35 88.35	357.94 357.94 357.94 357.94 357.94 357.94	11,226.3 11,229.1 11,232.0 11,234.9 11,237.8	9,222.6 9,322.5 9,422.4 9,522.3 9,622.2	-1,216.4 -1,220.0 -1,223.6 -1,227.2 -1,230.8	9,302.1 9,401.6 9,501.2 9,600.8 9,700.4	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
21,100.0 21,200.0 21,300.0 21,400.0 21,500.0	88.35 88.35 88.35 88.35 88.35 88.35	357.94 357.94 357.94 357.94 357.94 357.94	11,240.7 11,243.5 11,246.4 11,249.3 11,252.2	9,722.1 9,822.0 9,921.9 10,021.7 10,121.6	-1,234.4 -1,238.0 -1,241.5 -1,245.1 -1,248.7	9,800.0 9,899.6 9,999.2 10,098.8 10,198.4	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
21,600.0	88.35	357.94	11,255.1	10,221.5	-1,252.3	10,298.0	0.00	0.00	0.00
TD @ 2163 21,632.7	3' MD / 11256' 88.35	TVD 357.94	11,256.0	10,254.2	-1,253.5	10,330.5	0.00	0.00	0.00

Well Planning Report

Database: Company: Project: Site: Well: Wellbore: Design:	KLXDirectional-AD BTA Oil Producers, LLC Lea County, NM (NAD 83) Sec 16, T22-S, R34-E Grama 8817 16-9 Fed Com #8H Wellbore #1 Design #1				TVD Refer MD Refer North Ref	ence:	WELL WELL Grid	Well Grama 8817 16-9 Fed Com #8H WELL @ 3506.0usft (Patterson #566) WELL @ 3506.0usft (Patterson #566) Grid Minimum Curvature		
Design Targets										
Target Name - hit/miss target - Shape	Dip Angle (°)	e Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude	
T10 GRAMA 8H - plan misses tar - Point	0.0 get center b		0.0 at 0.0usft N	9,840.5 ID (0.0 TVD,	-1,238.9 0.0 N, 0.0 E	514,732.90 E)	803,957.77	32° 24' 43.899 N	103° 28' 56.362 W	
VP Grama 8H - plan hits target - Point	0.0 center	0 0.00	8,840.0	-233.0	-874.8	504,659.44	804,321.87	32° 23' 4.196 N	103° 28' 53.051 W	
T8 GRAMA 8H - plan hits target - Point	0.0 center	0 0.00	11,211.0	7,841.8	-1,166.6	512,734.20	804,030.01	32° 24' 24.116 N	103° 28' 55.705 W	
T9 GRAMA 8H - plan hits target - Point	0.0 center	0 0.00	11,216.0	8,841.1	-1,202.7	513,733.55	803,993.89	32° 24' 34.008 N	103° 28' 56.033 W	
T7 GRAMA 8H - plan hits target - Point	0.0 center	0 0.00	11,231.0	6,842.4	-1,130.5	511,734.85	804,066.13	32° 24' 14.225 N	103° 28' 55.376 W	
PBHL Grama 8817 1 - plan hits target - Point		0 0.00	11,256.0	10,254.2	-1,253.5	515,146.59	803,943.16	32° 24' 47.993 N	103° 28' 56.494 W	
T6 GRAMA 8H - plan hits target - Point	0.0 center	0 0.00	11,256.0	5,843.1	-1,094.4	510,735.51	804,102.26	32° 24' 4.334 N	103° 28' 55.048 W	
T5 GRAMA 8H - plan hits target - Point	0.0 center	0 0.00	11,271.0	4,843.7	-1,058.3	509,736.16	804,138.38	32° 23' 54.443 N	103° 28' 54.719 W	
T4 GRAMA 8H - plan hits target - Point	0.0 center	0 0.00	11,281.0	3,844.4	-1,022.1	508,736.81	804,174.50	32° 23' 44.552 N	103° 28' 54.391 W	
T3 GRAMA 8H - plan hits target - Point	0.0 center	0 0.00	11,296.0	2,845.1	-986.0	507,737.46	804,210.62	32° 23' 34.661 N	103° 28' 54.062 W	
T2 GRAMA 8H - plan hits target - Point	0.0 center	0 0.00	11,311.0	1,845.7	-949.9	506,738.12	804,246.74	32° 23' 24.770 N	103° 28' 53.734 W	
T1 GRAMA 8H - plan hits target - Point	0.0 center	0 0.00	11,316.0	846.4	-913.8	505,738.77	804,282.86	32° 23' 14.879 N	103° 28' 53.406 W	

Plan Annotations

Measured	Vertical	Local Coordinates		Lical Local Coordinates		
Depth (usft)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Comment		
2,000.0	2,000.0	0.0	0.0	Build 2°/100'		
2,400.1	2,398.8	-7.2	-27.0	EOB @ 8° Inc / 255.09° Azm		
8,501.9	8,441.2	-225.8	-847.8	Drop 2°/100'		
8,902.0	8,840.0	-233.0	-874.8	EOD @ Vert		
10,810.1	10,748.1	-233.0	-874.8	Build 10°/100'		
11,715.9	11,321.0	345.4	-895.7	EOB @ 90.57° Inc / 357.93° Azm		
21,632.7	11,256.0	10,254.2	-1,253.5	TD @ 21633' MD / 11256' TVD		

9/10/2024 8:43:59AM

BTA Oil Producers, LLC

Spud Rig Procedure

Spudder rig will move in to drill the surface hole and pre-set surface casing on the well. a. After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (43 CFR 3172, all COAs and NMOCD regulations).

b. The spudder rig will utilize fresh water-based mud to drill the surface hole to TD. Solids control will be handled entirely on a closed loop basis. No earth pits will be used.

2. The wellhead will be installed and tested as soon as the surface casing is cut off and WOC time has been reached.

3. A blind flange at the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wing valves.

a. A means for intervention will be maintained while the drilling rig is not over the well.

4. Spudder rig operations are expected to take 2-3 days per well on the pad.

5. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations.

6. Drilling Operations will begin with a larger rig and a BOP stack equal to or greater than the pressure rating that was permitted will be nippled up and tested on the wellhead before drilling operations resume on each well.

a. The larger rig will move back onto the location within 90 days from the point at which the wells are secured and the spudder rig is moved off location.

b. The BLM will be notified 24 hours before the larger rig moves back on the pre-set locations

7. BTA Oil Producers, LLC will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations.

8. Once the rig is removed, BTA Oil Producers, LLC will secure the wellhead area by placing a guard rail around the cellar area

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
BTA OIL PRODUCERS, LLC	260297
104 S Pecos	Action Number:
Midland, TX 79701	387057
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By		Condition Date
pkautz	ALL PREVIOUS COA'S APPLY.	9/27/2024

Action 387057

Page 28 of 28