K

Received by OC	D: 9/30/2024 3:	10:10 PM					Page 1 of
Form 3160-5 (June 2019)		UNITED STATES ARTMENT OF THE INT EAU OF LAND MANAG				ON Expi 5 Lease Serial No	PRM APPROVED //B No. 1004-0137 res: October 31, 2021
	o not use this f	OTICES AND REPOR form for proposals to Use Form 3160-3 (APL	drill or to	re-enter ar		6. If Indian, Allottee or	
	SUBMIT IN 1	RIPLICATE - Other instruction	ions on page	2		7. If Unit of CA/Agreen	nent, Name and/or No.
1. Type of Well	Well Gas W	Vell Other				8. Well Name and No.	PISTOLERO 15 FED/301H
2. Name of Operat	OF EOG RESOUR	CES INCORPORATED				9. API Well No. 30-02	5-52550
3a. Address 1111	BAGBY SKY LOB	BY 2, HOUSTON, TX 77(3b (7	o. Phone No. <i>(i</i> 13) 651-700			10. Field and Pool or E	
4. Location of Wel SEC 15/T25S/F		.,M., or Survey Description)				11. Country or Parish, S LEA/NM	State
	12. CHE	CK THE APPROPRIATE BOX	(ES) TO IND	ICATE NATUR	E OF NOTI	CE, REPORT OR OTH	ER DATA
TYPE OF S	UBMISSION			ТҮ	PE OF ACT	ΓION	
✓ Notice of In	ntent	Acidize		ulic Fracturing		uction (Start/Resume) amation	Water Shut-Off
Subsequent	Report	Casing Repair Change Plans		Construction nd Abandon		mplete porarily Abandon	Other
Final Aband	donment Notice	Convert to Injection	Plug E		_	r Disposal	
the proposal is the Bond under completion of	to deepen directiona r which the work wil the involved operational Abandonment Not	Ily or recomplete horizontally, g l be perfonned or provide the B ns. If the operation results in a	give subsurfac ond No. on fil multiple comp	e locations and e with BLM/BL bletion or recom	measured an A. Required pletion in a	ad true vertical depths of subsequent reports mus new interval, a Form 31	k and approximate duration thereof. If all pertinent markers and zones. Attach to be filed within 30 days following 60-4 must be filed once testing has been e operator has detennined that the site
Pistolero 15	5 Fed Com 301H (F	KA 301H) API #: 30-025-52	550				
EOG respe	ctfully requests an	amendment to our approved	APD for this	well to reflect	the followir	ng changes:	
Change nar	me from Pistolero 1	5 Fed 301H to Pistolero 15 I	Fed Com 301	IH.			
-		4-E, Sec 27, 100' FSL, 330' 0' FSL, 2170' FWL, Lea Co.,		o., NM,			
Change tar	get formation to Leo	onard B.					
Update cas	ing and cement pro	ogram to current design - Bat	ch Sundry IE) #2779141			
	that the foregoing is / Ph: (432) 848-9	true and correct. Name (Printe		Regulato Title	ry Specialis	st	
(El Signature	lectronic Submissio	n)		Date		03/11/20	24
		THE SPACE F	OR FEDE	RAL OR S	TATE OF	ICE USE	
Approved by							
KEITH P IMMA	TTY / Ph: (575) 988	3-4722 / Approved		Title ENG	GINEER	D	03/19/2024 ate
		ned. Approval of this notice doe quitable title to those rights in t			ARLSBAD		

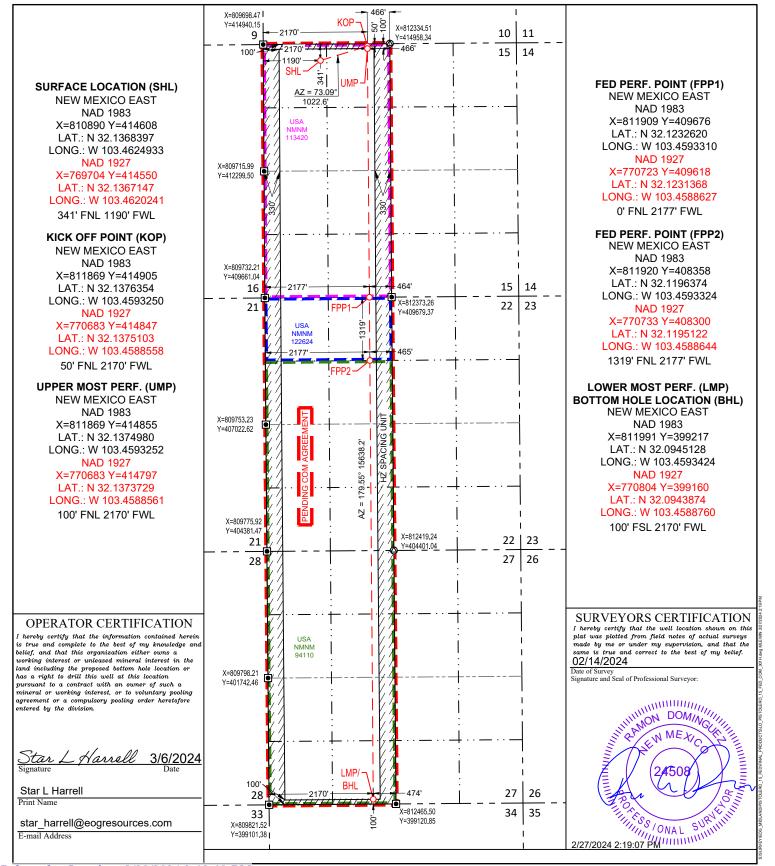
which would entitle the applicant to conduct operations thereon.

Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

(Instructions on page 2)

DISTRICT I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-0720 DISTRICT II 811 S. Firat St., Artesia, NM 88210 Phone: (575) 748-9720 DISTRICT III 1000 Rio Brazos Rd., Aztee, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 DISTRICT IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, New Mexico 87505


Page 2 of 73 Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

WELL	LOCATION	AND ACRE	AGE DEDIC	CATION PL	AЛ
	LUCATION	AND ACKE			~ 1

Al	PI Number		Pool Code Pool Name											
30-02	5-52550		51020			51020 RED HILLS; LOWER BONE					RED HILLS; LOWER BONE SPRING			
Property Co	de				Proper	y Name			Well Nun	Well Number				
317615				PI	STOLER	D 15 F	ED COM		30)1H				
OGRID N	lo.				Operat	r Name			Elevati	on				
7377	7			E	DG RESC	URC	ES, INC.		33	333'				
					Surface I	ocatio	n							
UL or lot no.	Section	Township	Range	Lot Idn	Feet from	the	North/South line	Feet from the	East/West line	County				
D	15	25-S	34-E	-	34	1'	NORTH	1190'	WEST	LEA				
			Bottom Ho	le Locati	on If Diff	erent F	rom Surface							
UL or lot no.	Section	Township	Range	Lot Idn	Feet from	ihe	North/South line	Feet from the	East/West line	County				
N	27	25-S	25-S 34-E - 100' SOUTH 2170'						WEST	LEA				
Dedicated Acres	Joint or I	nfill	Consolidated Code Order No.											
960.00			PENDING COM AGREEMENT											

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

éeog resources

Pistolero 15 Fed Com 301H

Revised Permit Information 02/01/2024:

Well Name: Pistolero 15 Fed Com 301H; FKA Pistolero 15 Fed Com 301H
Location: SHL: 341' FNL & 1190' FWL, Section 15, T-25-S, R-34-E, Lea Co., N.M.
BHL: 100' FSL & 2170' FWL, Section 27, T-25-S, R-34-E, Lea Co., N.M.

<u>1.</u> C										
Hole	Interval MD		Interval MD Interval TVD		Csg					
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn		
16"	0	990	0	1,000	13-3/8"	54.5#	J-55	STC		
11"	0	5,240	0	5,160	9-5/8"	40#	J-55	LTC		
7-7/8"	0	9,930	0	9,518	6"	22.3#	P110-EC	DWC/C IS		
6-3/4"	9,930	25,912	9,518	10,352	5-1/2"	20#	P110-EC	DWC/C IS MS		

1. CASING PROGRAM

**For highlighted rows above, variance is requested to run entire string of either 6" or 5-1/2" casing string above due to availablility.

Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized, in the cement slurry, for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Onshore Order #2 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

		Wt.	Yld	
Depth	No. Sacks	ppg	Ft3/sk	Slurry Description
1,000'	260	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)
13-3/8''	160	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 800')
5,160' _{9-5/8''}	480	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	170	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 4192')
25,912' _{6''}	550	10.5	3.21	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC @ 4740')
	1880	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL- 549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ 9960')

2. CEMENTING PROGRAM:

Seog resources

Pistolero 15 Fed Com 301H

Additive	Purpose				
Bentonite Gel	Lightweight/Lost circulation prevention				
Calcium Chloride	Accelerator				
Cello-flake	Lost circulation prevention				
Sodium Metasilicate	Accelerator				
MagOx	Expansive agent				
Pre-Mag-M	Expansive agent				
Sodium Chloride	Accelerator				
FL-62	Fluid loss control				
Halad-344	Fluid loss control				
Halad-9	Fluid loss control				
HR-601	Retarder				
Microbond	Expansive Agent				

Cement integrity tests will be performed immediately following plug bump.

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

3. MUD PROGRAM:

Depth (TVD)	Туре	Weight (ppg)	Viscosity	Water Loss
0 – 1,000'	Fresh - Gel	8.6-8.8	28-34	N/c
1,000' - 5,160'	Brine	9.0-10.5	28-34	N/c
5,160' - 25,912'	Oil Base	8.8-9.5	58-68	N/c - 6

Seog resources

Pistolero 15 Fed Com 301H

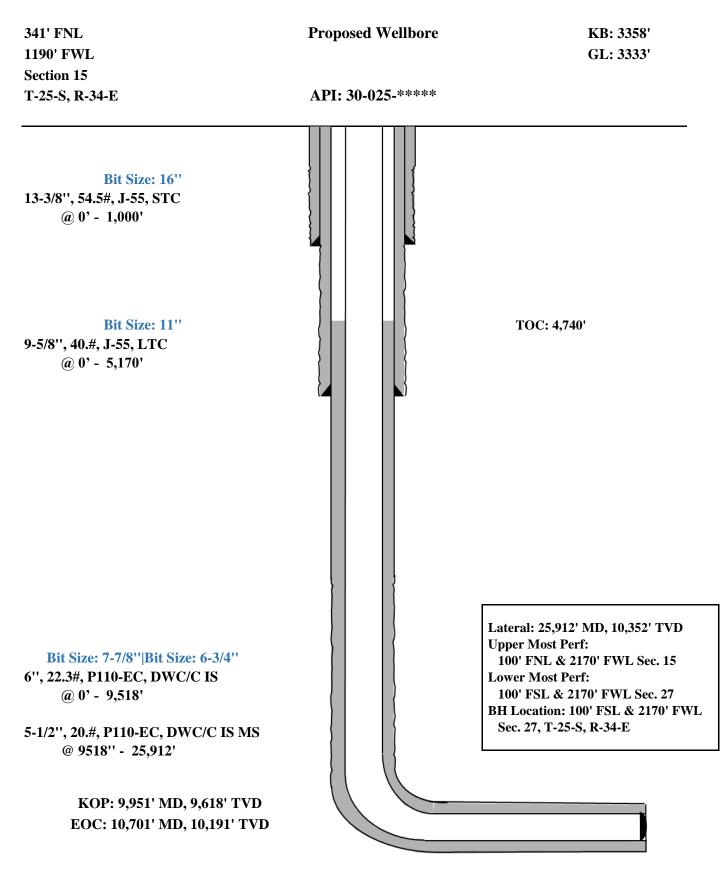
4. VARIANCE REQUESTS:

EOG requests the additional variance(s) in the attached document(s):

Variances requested include (supporting documents attached):

- BOP Break Testing for 5M Intermediate Intervals (EOG BLM Variance 3a_b)
- Offline Cementing for Surface and Intermediate Intervals (EOG BLM Variance 3a_b)
- Salt Interval Washout Annular Clearnace (EOG BLM Variance 4a)

Pistolero 15 Fed Com 301H


8. TUBING REQUIREMENTS:

EOG respectively requests an exception to the following NMOCD rule:

 19.15.16.10 Casing AND TUBING RQUIREMENTS: J (3): "The operator shall set tubing as near the bottom as practical and tubing perforations shall not be more than 250 feet above top of pay zone."

With horizontal flowing and gas lifted wells an end of tubing depth placed at or slightly above KOP is a conservative way to ensure the tubing stays clean from debris, plugging, and allows for fewer well interventions post offset completion. The deeper the tubulars are run into the curve, the higher the probability is that the tubing will become stuck in sand and or well debris as the well produces over time. An additional consideration for EOT placement during artificial lift installations is avoiding the high dog leg severity and inclinations found in the curve section of the wellbore to help improve reliability and performance. Dog leg severity and inclinations tend not to hamper gas lifted or flowing wells, but they do effect other forms of artificial lift like rod pump or ESP (electric submersible pump). Keeping the EOT above KOP is an industry best practice for those respective forms of artificial lift.

Pistolero 15 Fed Com 301H

éeog resources

Pistolero 15 Fed Com 301H

1. GEOLOGIC NAME OF SURFACE FORMATION:

Permian

2. ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler	875'
Tamarisk Anhydrite	960'
Top of Salt	1,255'
Base of Salt	5,061'
Lamar	5,323'
Bell Canyon	5,346'
Cherry Canyon	6,301'
Brushy Canyon	7,887'
Bone Spring Lime	9,298'
Leonard (Avalon) Shale	9,335'
1st Bone Spring Sand	9,606'
2nd Bone Spring Shale	10,317'
2nd Bone Spring Sand	10,836'
3rd Bone Spring Carb	11,372'
3rd Bone Spring Sand	11,904'
Wolfcamp	12,358'
TD	10,352'

3. ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0-400'	Fresh Water
Bell Canyon	5,346'	Oil
Cherry Canyon	6,301'	Oil
Brushy Canyon	7,887'	Oil
Leonard (Avalon) Shale	9,335'	Oil
1st Bone Spring Sand	9,606'	Oil
2nd Bone Spring Shale	10,317'	Oil
2nd Bone Spring Sand	10,836'	Oil

Midland

Lea County, NM (NAD 83 NME) Pistolero 15 Fed #301H

ОН

Plan: Plan #0.2

Standard Planning Report

28 February, 2024

Planning Report

Database: Company: Project: Site: Well: Wellbore: Design:	PEDM Midland Lea County, NM Pistolero 15 Fed #301H OH Plan #0.2	(NAD 83 NI	ME)	TVD Referen MD Reference North Reference	e:	Well #301H kb = 26' @ 339 kb = 26' @ 339 Grid Minimum Curv	59.0usft	
Project	Lea County, NM (NAD 83 NM	IE)					
Geo Datum:	US State Plane 198 North American Dat New Mexico Easter	tum 1983		System Datun	1:	Mean Sea Level		
Site	Pistolero 15 Fed							
Site Position: From: Position Uncertainty:	Map 0	.0 usft	Northing: Easting: Slot Radius:	812,078	5.00 usft Latitud 8.00 usft Longit 9/16 "			2° 8' 7.059 N 27' 31.217 W
Well	#301H							
Well Position	+N/-S +E/-W	0.0 usft 0.0 usft	Northing: Easting:		414,608.00 usft 810,890.00 usft	Latitude: Longitude:		.º 8' 12.626 N 27' 44.980 W
Position Uncertainty Grid Convergence:		0.0 usft 0.46 °	Wellhead Ele	vation:	usft	Ground Level:		3,333.0 usft
Wellbore	OH							
Magnetics	Model Name		Sample Date	Declinatio (°)	n	Dip Angle (°)	Field Strength (nT)	
	IGRF2	020	2/21/2023		6.29	59.78	47,277.94276	371
Design	Plan #0.2							
Audit Notes: Version:			Phase:	PLAN	Tie On De	oth:	0.0	
Vertical Section:		(u	rom (TVD) sft)).0	+N/-S (usft) 0.0	+E/-W (usft) 0.0		irection (°) 175.91	
Plan Survey Tool Pro Depth From (usft)	Depth To (usft) Sur	ate 2/28/2 vey (Wellbo	2024 pre)	Tool Name	Rem	arks		
1 0.0	25,912.3 Pla	n #0.2 (OH)		EOG MWD+IFR ⁴ MWD + IFR1				

.

Planning Report

Database:	PEDM	Local Co-ordinate Reference:	Well #301H
Company:	Midland	TVD Reference:	kb = 26' @ 3359.0usft
Project:	Lea County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3359.0usft
Site:	Pistolero 15 Fed	North Reference:	Grid
Well:	#301H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan #0.2		

Plan Sections

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,268.0	0.00	0.00	1,268.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,707.2	8.78	73.12	1,705.5	9.8	32.2	2.00	2.00	0.00	73.12	
7,966.7	8.78	73.12	7,891.5	287.2	946.8	0.00	0.00	0.00	0.00	
8,405.9	0.00	0.00	8,329.0	297.0	979.0	2.00	-2.00	0.00	180.00	
9,951.4	0.00	0.00	9,874.5	297.0	979.0	0.00	0.00	0.00	0.00	KOP(Pistolero 15 F
10,171.8	26.46	180.00	10,087.2	247.0	979.0	12.00	12.00	81.65	180.00	FTP(Pistolero 15 Fe
10,701.3	90.00	179.55	10,351.9	-180.5	981.3	12.00	12.00	-0.09	-0.51	
15,453.0	90.00	179.55	10,352.0	-4,932.0	1,019.0	0.00	0.00	0.00	0.00	FEDPP1(Pistolero
16,771.1	90.00	179.50	10,352.0	-6,250.0	1,030.0	0.00	0.00	0.00	-88.46	FEDPP2(Pistolero
25,912.3	90.00	179.61	10,352.0	-15,391.0	1,101.0	0.00	0.00	0.00	90.65	PBHL(Pistolero 15

Planning Report

Database:	PEDM	Local Co-ordinate Reference:	Well #301H
Company:	Midland	TVD Reference:	kb = 26' @ 3359.0usft
Project:	Lea County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3359.0usft
Site:	Pistolero 15 Fed	North Reference:	Grid
Well:	#301H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan #0.2		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,268.0	0.00	0.00	1,268.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.64	73.12	1,300.0	0.1	0.2	0.0	2.00	2.00	0.00
1,400.0	2.64	73.12	1,400.0	0.9	2.9	-0.7	2.00	2.00	0.00
1,500.0	4.64	73.12	1,499.7	2.7	9.0	-2.1	2.00	2.00	0.00
1,600.0	6.64	73.12	1,599.3	5.6	18.4	-4.3	2.00	2.00	0.00
1,707.2	8.78	73.12	1,705.5	9.8	32.2	-7.4	2.00	2.00	0.00
1,800.0	8.78	73.12	1,797.2	13.9	45.7	-10.6	0.00	0.00	0.00
1,900.0	8.78	73.12	1,896.0	18.3	60.3	-14.0	0.00	0.00	0.00
2,000.0	8.78	73.12	1,994.8	22.7	74.9	-17.3	0.00	0.00	0.00
2,100.0	8.78	73.12	2,093.7	27.2	89.6	-20.7	0.00	0.00	0.00
2,200.0	8.78	73.12	2,192.5	31.6	104.2	-24.1	0.00	0.00	0.00
2,300.0	8.78	73.12	2,291.3	36.0	118.8	-27.5	0.00	0.00	0.00
2,400,0	8.78	73.12	2,390.2	40.5	133.4	-30.8	0.00	0.00	0.00
2,400.0 2,500.0	8.78	73.12	2,390.2 2,489.0	40.5 44.9	133.4	-30.8	0.00	0.00 0.00	0.00
2,600.0	8.78	73.12	2,587.8	49.3	148.0	-34.2	0.00	0.00	0.00
2,000.0	8.78	73.12	2,686.6	49.3 53.8	102.0	-37.0	0.00	0.00	0.00
2,700.0	8.78	73.12	2,000.0	58.2	191.8	-41.0	0.00	0.00	0.00
2,900.0	8.78	73.12	2,884.3	62.6	206.5	-47.7	0.00	0.00	0.00
3,000.0	8.78	73.12	2,983.1	67.1	221.1	-51.1	0.00	0.00	0.00
3,100.0	8.78	73.12	3,081.9	71.5	235.7	-54.5	0.00	0.00	0.00
3,200.0	8.78	73.12	3,180.8	75.9	250.3	-57.9	0.00	0.00	0.00
3,300.0	8.78	73.12	3,279.6	80.4	264.9	-61.3	0.00	0.00	0.00
3,400.0	8.78	73.12	3,378.4	84.8	279.5	-64.6	0.00	0.00	0.00
3,500.0	8.78	73.12	3,477.3	89.2	294.1	-68.0	0.00	0.00	0.00
3,600.0	8.78	73.12	3,576.1	93.7	308.7	-71.4	0.00	0.00	0.00
3,700.0	8.78	73.12	3,674.9	98.1	323.4	-74.8	0.00	0.00	0.00
3,800.0	8.78	73.12	3,773.7	102.5	338.0	-78.2	0.00	0.00	0.00
3,900.0	8.78	73.12	3,872.6	107.0	352.6	-81.5	0.00	0.00	0.00
4,000.0	8.78	73.12	3,971.4	111.4	367.2	-84.9	0.00	0.00	0.00
4,100.0	8.78	73.12	4,070.2	115.8	381.8	-88.3	0.00	0.00	0.00
4,200.0	8.78	73.12	4,169.0	120.3	396.4	-91.7	0.00	0.00	0.00
4,300.0	8.78	73.12	4,267.9	124.7	411.0	-95.1	0.00	0.00	0.00
4,400.0	8.78	73.12	4,366.7	129.1	425.7	-98.4	0.00	0.00	0.00
4,500.0	8.78	73.12	4,465.5	133.6	440.3	-101.8	0.00	0.00	0.00
4,600.0	8.78	73.12	4,564.4	138.0	454.9	-105.2	0.00	0.00	0.00
4,700.0	8.78	73.12	4,663.2	142.4	469.5	-108.6	0.00	0.00	0.00
4,800.0	8.78	73.12	4,762.0	146.9	484.1	-111.9	0.00	0.00	0.00
4,900.0	8.78	73.12	4,860.8	151.3	498.7	-115.3	0.00	0.00	0.00
5,000.0	8.78	73.12	4,959.7	155.7	513.3	-118.7	0.00	0.00	0.00
5,100.0	8.78	73.12	5,058.5	160.2	527.9	-122.1	0.00	0.00	0.00
5,200.0	8.78	73.12	5,157.3	164.6	542.6	-125.5	0.00	0.00	0.00

2/28/2024 2:18:12PM

Planning Report

Database:	PEDM	Local Co-ordinate Reference:	Well #301H
Company:	Midland	TVD Reference:	kb = 26' @ 3359.0usft
Project:	Lea County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3359.0usft
Site:	Pistolero 15 Fed	North Reference:	Grid
Well:	#301H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan #0.2		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,300.0	8.78	73.12	5,256.1	169.0	557.2	-128.8	0.00	0.00	0.00
5,400.0	8.78	73.12	5,355.0	173.5	571.8	-132.2	0.00	0.00	0.00
5,500.0	8.78	73.12	5,453.8	177.9	586.4	-135.6	0.00	0.00	0.00
5,600.0	8.78	73.12	5,552.6	182.3	601.0	-139.0	0.00	0.00	0.00
	8.78	73.12		186.8	615.6	-142.4	0.00	0.00	
5,700.0			5,651.5						0.00
5,800.0	8.78	73.12	5,750.3	191.2	630.2	-145.7	0.00	0.00	0.00
5,900.0	8.78	73.12	5,849.1	195.6	644.8	-149.1	0.00	0.00	0.00
6,000.0	8.78	73.12	5,947.9	200.1	659.5	-152.5	0.00	0.00	0.00
6,100.0	8.78	73.12	6,046.8	204.5	674.1	-155.9	0.00	0.00	0.00
6,200.0	8.78	73.12	6,145.6	208.9	688.7	-159.3	0.00	0.00	0.00
6,300.0	8.78	73.12	6,244.4	213.4	703.3	-162.6	0.00	0.00	0.00
0,000.0		10.12							
6,400.0	8.78	73.12	6,343.2	217.8	717.9	-166.0	0.00	0.00	0.00
6,500.0	8.78	73.12	6,442.1	222.2	732.5	-169.4	0.00	0.00	0.00
6,600.0	8.78	73.12	6,540.9	226.7	747.1	-172.8	0.00	0.00	0.00
6,700.0	8.78	73.12	6,639.7	231.1	761.8	-176.2	0.00	0.00	0.00
6,800.0	8.78	73.12	6,738.6	235.5	776.4	-179.5	0.00	0.00	0.00
6,900.0	8.78	73.12	6,837.4	240.0	791.0	-182.9	0.00	0.00	0.00
7,000.0	8.78	73.12	6,936.2	244.4	805.6	-186.3	0.00	0.00	0.00
7,100.0	8.78	73.12	7,035.0	248.8	820.2	-189.7	0.00	0.00	0.00
7,200.0	8.78	73.12	7,133.9	253.3	834.8	-193.0	0.00	0.00	0.00
7,300.0	8.78	73.12	7,232.7	257.7	849.4	-196.4	0.00	0.00	0.00
7,400.0	8.78	73.12	7,331.5	262.1	864.0	-199.8	0.00	0.00	0.00
7,500.0	8.78	73.12	7,430.3	266.6	878.7	-203.2	0.00	0.00	0.00
7,600.0	8.78	73.12	7,529.2	271.0	893.3	-206.6	0.00	0.00	0.00
	8.78	73.12		271.0	907.9	-200.0	0.00		
7,700.0			7,628.0					0.00	0.00
7,800.0	8.78	73.12	7,726.8	279.9	922.5	-213.3	0.00	0.00	0.00
7,900.0	8.78	73.12	7,825.6	284.3	937.1	-216.7	0.00	0.00	0.00
7,966.7	8.78	73.12	7,891.5	287.2	946.8	-219.0	0.00	0.00	0.00
8,000.0	8.12	73.12	7,924.5	288.7	951.5	-220.0	2.00	-2.00	0.00
8,100.0	6.12	73.12	8,023.7	292.3	963.4	-222.8	2.00	-2.00	0.00
8,200.0	4.12	73.12	8,123.3	294.9	971.9	-224.8	2.00	-2.00	0.00
8,300.0	2.12	73.12	8,223.2	296.4	977.1	-226.0	2.00	-2.00	0.00
8,405.9	0.00	0.00	8,329.0	290.4	979.0	-226.4	2.00	-2.00	0.00
8,405.9	0.00	0.00	8,329.0 8,423.1	297.0	979.0 979.0	-220.4	0.00	0.00	0.00
	0.00		8,523.1	297.0	979.0 979.0	-220.4	0.00	0.00	0.00
8,600.0		0.00							
8,700.0	0.00	0.00	8,623.1	297.0	979.0	-226.4	0.00	0.00	0.00
8,800.0	0.00	0.00	8,723.1	297.0	979.0	-226.4	0.00	0.00	0.00
8,900.0	0.00	0.00	8,823.1	297.0	979.0	-226.4	0.00	0.00	0.00
9,000.0	0.00	0.00	8,923.1	297.0	979.0	-226.4	0.00	0.00	0.00
9,100.0	0.00	0.00	9,023.1	297.0	979.0	-226.4	0.00	0.00	0.00
9,200.0	0.00	0.00	9,123.1	297.0	979.0	-226.4	0.00	0.00	0.00
9,300.0	0.00	0.00	9,223.1	297.0	979.0	-226.4	0.00	0.00	0.00
9,300.0	0.00	0.00	9,323.1	297.0	979.0 979.0	-220.4	0.00	0.00	0.00
9,400.0 9,500.0	0.00	0.00	9,323.1	297.0	979.0 979.0	-220.4	0.00	0.00	0.00
	0.00					-226.4			
9,600.0		0.00	9,523.1	297.0	979.0		0.00	0.00	0.00
9,700.0	0.00	0.00	9,623.1	297.0	979.0	-226.4	0.00	0.00	0.00
9,800.0	0.00	0.00	9,723.1	297.0	979.0	-226.4	0.00	0.00	0.00
9,900.0	0.00	0.00	9,823.1	297.0	979.0	-226.4	0.00	0.00	0.00
9,951.4	0.00	0.00	9,874.5	297.0	979.0	-226.4	0.00	0.00	0.00
9,975.0	2.84	180.00	9,898.1	296.4	979.0	-225.8	12.00	12.00	0.00
10,000.0	5.84	180.00	9,923.1	294.5	979.0	-223.9	12.00	12.00	0.00
10,025.0	8.84	180.00	9,947.9	291.3	979.0 070.0	-220.7	12.00	12.00	0.00
10,050.0 10,075.0	11.84 14.84	180.00 180.00	9,972.4 9,996.8	286.8 281.1	979.0	-216.3	12.00	12.00 12.00	0.00 0.00
	14 ×4	180.00	y yyn X	781.1	979.0	-210.5	12.00	12.00	() ()

2/28/2024 2:18:12PM

COMPASS 5000.16 Build 100

Planning Report

Database:	PEDM	Local Co-ordinate Reference:	Well #301H
Company:	Midland	TVD Reference:	kb = 26' @ 3359.0usft
Project:	Lea County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3359.0usft
Site:	Pistolero 15 Fed	North Reference:	Grid
Well:	#301H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan #0.2		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,100.0	17.84	180.00	10,020.8	274.0	979.0	-203.5	12.00	12.00	0.00
10,125.0	20.84	180.00	10,044.3	265.8	979.0	-195.2	12.00	12.00	0.00
10,150.0	23.84	180.00	10,067.5	256.3	979.0	-185.8	12.00	12.00	0.00
10,171.8	26.46	180.00	10,087.2	247.0	979.0	-176.5	12.00	12.00	0.00
10,175.0	26.84	179.99	10,090.1	245.6	979.0	-175.1	12.00	12.00	-0.24
10,200.0	29.84	179.94	10,112.1	233.7	979.0	-163.2	12.00	12.00	-0.21
10,225.0	32.84	179.90	10,133.4	220.7	979.0	-150.3	12.00	12.00	-0.18
10,250.0	35.84	179.86	10,154.0	206.6	979.1	-136.2	12.00	12.00	-0.15
10,275.0	38.84	179.83	10,173.9	191.4	979.1	-121.1	12.00	12.00	-0.13
10,300.0	41.84	179.80	10,193.0	175.3	979.2	-104.9	12.00	12.00	-0.11
10,325.0	44.84	179.77	10,211.2	158.1	979.2	-87.8	12.00	12.00	-0.10
10,350.0	47.84	179.75	10,228.4	140.0	979.3	-69.8	12.00	12.00	-0.09
10,375.0	50.84	179.73	10,244.7	121.0	979.4 070 5	-50.9	12.00	12.00	-0.08
10,400.0	53.84	179.71	10,260.0	101.3	979.5	-31.1	12.00	12.00	-0.08
10,425.0	56.84	179.69	10,274.2	80.7	979.6	-10.6	12.00	12.00	-0.07
10,450.0	59.84	179.68	10,287.3	59.4	979.7	10.6	12.00	12.00	-0.07
10,475.0	62.84	179.66	10,299.3	37.5	979.8	32.5	12.00	12.00	-0.06
10,500.0	65.84	179.65	10,310.1	15.0	980.0	55.0	12.00	12.00	-0.06
10,525.0	68.84	179.63	10,319.8	-8.1	980.1	78.0	12.00	12.00	-0.06
10,550.0	71.84	179.62	10,328.2	-31.6	980.3	101.5	12.00	12.00	-0.05
10,575.0	74.84	179.61	10,335.3	-55.6	980.4	125.4	12.00	12.00	-0.05
10,600.0	77.84	179.59	10,341.2	-79.9	980.6	149.7	12.00	12.00	-0.05
10,625.0	80.84	179.58	10,345.9	-104.5	980.8	174.2	12.00	12.00	-0.05
10,650.0	83.84	179.57	10,349.2	-129.2	980.9	198.9	12.00	12.00	-0.05
10,675.0	86.84	179.56	10,351.2	-154.1	981.1	223.8	12.00	12.00	-0.05
10,701.3	90.00	179.55	10,351.9	-180.5	981.3	250.0	12.00	12.00	-0.05
10,800.0	90.00	179.55	10,351.9	-279.1	982.1	348.5	0.00	0.00	0.00
10,900.0	90.00	179.55 179.55	10,351.9	-379.1 -479.1	982.9 983.7	448.3 548.1	0.00 0.00	0.00 0.00	0.00 0.00
11,000.0	90.00		10,351.9						
11,100.0	90.00	179.55	10,352.0	-579.1	984.5	647.9	0.00	0.00	0.00
11,200.0	90.00	179.55	10,352.0	-679.1	985.3	747.7	0.00	0.00	0.00
11,300.0	90.00	179.55	10,352.0	-779.1	986.1	847.5	0.00	0.00	0.00
11,400.0	90.00	179.55	10,352.0	-879.1	986.9	947.3	0.00	0.00	0.00
11,500.0	90.00	179.55	10,352.0	-979.1	987.7	1,047.1	0.00	0.00	0.00
11,600.0	90.00	179.55	10,352.0	-1,079.1	988.5	1,146.9	0.00	0.00	0.00
11,700.0	90.00	179.55	10,352.0	-1,179.1	989.3	1,246.7	0.00	0.00	0.00
11,800.0	90.00	179.55	10,352.0	-1,279.1	990.1	1,346.5	0.00	0.00	0.00
11,900.0	90.00	179.55	10,352.0	-1,379.1	990.8	1,446.3	0.00	0.00	0.00
12,000.0	90.00	179.55	10,352.0	-1,479.1	991.6	1,546.1	0.00	0.00	0.00
12,100.0	90.00	179.55	10,352.0	-1,579.1	992.4	1,645.9	0.00	0.00	0.00
12,200.0	90.00	179.55	10,352.0	-1,679.1	993.2	1,745.7	0.00	0.00	0.00
12,200.0	90.00	179.55	10,352.0	-1,779.1	994.0	1,845.5	0.00	0.00	0.00
12,400.0 12,500.0	90.00 90.00	179.55 179.55	10,352.0 10,352.0	-1,879.1 -1,979.1	994.8 995.6	1,945.3 2,045.1	0.00 0.00	0.00 0.00	0.00 0.00
12,600.0	90.00	179.55	10,352.0	-2,079.1	996.4	2,144.9	0.00	0.00	0.00
12,700.0	90.00	179.55	10,352.0	-2,179.1	997.2	2,244.7	0.00	0.00	0.00
12,800.0	90.00	179.55	10,352.0	-2,279.1	998.0	2,344.5	0.00	0.00	0.00
12,900.0	90.00	179.55	10,352.0	-2,379.1	998.8	2,444.3	0.00	0.00	0.00
13,000.0	90.00	179.55	10,352.0	-2,479.1	999.6	2,544.1	0.00	0.00	0.00
13,100.0	90.00	179.55	10,352.0	-2,579.0	1,000.4	2,643.9	0.00	0.00	0.00
13,200.0	90.00	179.55	10,352.0	-2,679.0	1,001.1	2,743.7	0.00	0.00	0.00
13,300.0	90.00	179.55	10,352.0	-2,779.0	1,001.9	2,843.5	0.00	0.00	0.00
13,400.0	90.00	179.55	10,352.0	-2,879.0	1,002.7	2,943.2	0.00	0.00	0.00
13.500.0	90.00	179.55	10,352.0	-2,979.0	1,003.5	3,043.0	0.00	0.00	0.00

2/28/2024 2:18:12PM

.

Planning Report

Database:	PEDM	Local Co-ordinate Reference:	Well #301H
Company:	Midland	TVD Reference:	kb = 26' @ 3359.0usft
Project:	Lea County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3359.0usft
Site:	Pistolero 15 Fed	North Reference:	Grid
Well:	#301H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan #0.2		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
13,600.0	90.00	179.55	10,352.0	-3,079.0	1,004.3	3,142.8	0.00	0.00	0.00
13,700.0	90.00	179.55	10,352.0	-3,179.0	1,005.1	3,242.6	0.00	0.00	0.00
13,800.0	90.00	179.55	10,352.0	-3,279.0	1,005.9	3,342.4	0.00	0.00	0.00
13,900.0	90.00	179.55	10,352.0	-3,379.0	1,006.7	3,442.2	0.00	0.00	0.00
14,000.0	90.00	179.55	10,352.0	-3,479.0	1,007.5	3,542.0	0.00	0.00	0.00
14,100.0	90.00	179.55	10,352.0	-3,579.0	1,008.3	3,641.8	0.00	0.00	0.00
14,200.0	90.00	179.55	10,352.0	-3,679.0	1,009.1	3,741.6	0.00	0.00	0.00
14,300.0	90.00	179.55	10,352.0	-3,779.0	1,009.9	3,841.4	0.00	0.00	0.00
14,400.0	90.00	179.55	10,352.0	-3,879.0	1,010.7	3,941.2	0.00	0.00	0.00
14,500.0	90.00	179.55	10,352.0	-3,979.0	1,011.4	4,041.0	0.00	0.00	0.00
14,600.0	90.00	179.55	10,352.0	-4,079.0	1,012.2	4,140.8	0.00	0.00	0.00
14,700.0	90.00	179.55	10,352.0	-4,179.0	1,013.0	4,240.6	0.00	0.00	0.00
14,800.0	90.00	179.55	10,352.0	-4,279.0	1,013.8	4,340.4	0.00	0.00	0.00
14,900.0	90.00	179.55	10,352.0	-4,379.0	1,014.6	4,440.2	0.00	0.00	0.00
15,000.0	90.00	179.55	10,352.0	-4,479.0	1,015.4	4,540.0	0.00	0.00	0.00
15,100.0	90.00	179.55	10,352.0	-4,579.0	1,016.2	4,639.8	0.00	0.00	0.00
15,200.0	90.00	179.55	10,352.0	-4,679.0	1,017.0	4,739.6	0.00	0.00	0.00
15,300.0	90.00	179.55	10,352.0	-4,779.0	1,017.8	4,839.4	0.00	0.00	0.00
15,400.0	90.00	179.55	10,352.0	-4,879.0	1,018.6	4,939.2	0.00	0.00	0.00
15,453.0	90.00	179.55	10,352.0	-4,932.0	1,019.0	4,992.1	0.00	0.00	0.00
15,500.0	90.00	179.54	10,352.0	-4,979.0	1,019.4	5,039.0	0.00	0.00	0.00
15,600.0	90.00	179.54	10,352.0	-5,079.0	1,020.2	5,138.8	0.00	0.00	0.00
15,700.0	90.00	179.54	10,352.0	-5,179.0	1,021.0	5,238.6	0.00	0.00	0.00
15,800.0	90.00	179.53	10,352.0	-5,279.0	1,021.8	5,338.4	0.00	0.00	0.00
15,900.0	90.00	179.53	10,352.0	-5,379.0	1,022.6	5,438.2	0.00	0.00	0.00
16,000.0	90.00	179.53	10,352.0	-5,479.0	1,023.4	5,538.0	0.00	0.00	0.00
16,100.0	90.00	179.52	10,352.0	-5,579.0	1,024.3	5,637.8	0.00	0.00	0.00
16,200.0	90.00	179.52	10,352.0	-5,678.9	1,025.1	5,737.6	0.00	0.00	0.00
16,300.0	90.00	179.51	10,352.0	-5,778.9	1,025.9	5,837.4	0.00	0.00	0.00
16,400.0	90.00	179.51	10,352.0	-5,878.9	1,026.8	5,937.2	0.00	0.00	0.00
16,500.0	90.00	179.51	10,352.0	-5,978.9	1,027.6	6,037.0	0.00	0.00	0.00
16,600.0	90.00	179.50	10,352.0	-6,078.9	1,028.5	6,136.8	0.00	0.00	0.00
16,700.0	90.00	179.50	10,352.0	-6,178.9	1,029.4	6,236.6	0.00	0.00	0.00
16,771.1	90.00	179.50	10,352.0	-6,250.0	1,030.0	6,307.6	0.00	0.00	0.00
16,800.0	90.00	179.50	10,352.0	-6,278.9	1,030.3	6,336.4	0.00	0.00	0.00
16,900.0	90.00	179.50	10,352.0	-6,378.9	1,031.1	6,436.2	0.00	0.00	0.00
17,000.0	90.00	179.50	10,352.0	-6,478.9	1,032.0	6,536.0	0.00	0.00	0.00
17,100.0	90.00	179.50	10,352.0	-6,578.9	1,032.9	6,635.8	0.00	0.00	0.00
17,200.0	90.00	179.50	10,352.0	-6,678.9	1,033.7	6,735.6	0.00	0.00	0.00
17,300.0	90.00	179.50	10,352.0	-6,778.9	1,034.6	6,835.5	0.00	0.00	0.00
17,400.0	90.00	179.51	10,352.0	-6,878.9	1,035.5	6,935.3	0.00	0.00	0.00
17,500.0	90.00	179.51	10,352.0	-6,978.9	1,036.3	7,035.1	0.00	0.00	0.00
17,600.0	90.00	179.51	10,352.0	-7,078.9	1,037.2	7,134.9	0.00	0.00	0.00
17,700.0	90.00	179.51	10,352.0	-7,178.9	1,038.0	7,234.7	0.00	0.00	0.00
17,800.0	90.00	179.51	10,352.0	-7,278.9	1,038.9	7,334.5	0.00	0.00	0.00
17,900.0	90.00	179.51	10,352.0	-7,378.9	1,039.8	7,434.3	0.00	0.00	0.00
18,000.0	90.00	179.51	10,352.0	-7,478.9	1,040.6	7,534.1	0.00	0.00	0.00
18,100.0	90.00	179.51	10,352.0	-7,578.9	1,041.5	7,633.9	0.00	0.00	0.00
18,200.0	90.00	179.52	10,352.0	-7,678.9	1,042.3	7,733.7	0.00	0.00	0.00
18,300.0	90.00	179.52	10,352.0	-7,778.9	1,043.1	7,833.5	0.00	0.00	0.00
18,400.0	90.00	179.52	10,352.0	-7,878.9	1,044.0	7,933.3	0.00	0.00	0.00
18,500.0	90.00	179.52	10,352.0	-7,978.9	1,044.8	8,033.1	0.00	0.00	0.00
18,600.0	90.00	179.52	10,352.0	-8,078.9	1,045.7	8,132.9	0.00	0.00	0.00
18,700.0	90.00	179.52	10,352.0	-8,178.9	1,046.5	8,232.7	0.00	0.00	0.00

2/28/2024 2:18:12PM

Planning Report

Database:	PEDM	Local Co-ordinate Reference:	Well #301H
Company:	Midland	TVD Reference:	kb = 26' @ 3359.0usft
Project:	Lea County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3359.0usft
Site:	Pistolero 15 Fed	North Reference:	Grid
Well:	#301H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan #0.2		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
18,800.		179.52	10,352.0	-8,278.9	1,047.3	8,332.5	0.00	0.00	0.00
18,900.		179.52	10,352.0	-8,378.9	1,048.2	8,432.3	0.00	0.00	0.00
19,000.		179.53	10,352.0	-8,478.8	1,049.0	8,532.1	0.00	0.00	0.00
19,100.		179.53	10,352.0	-8,578.8	1,049.8	8,631.9	0.00	0.00	0.00
19,200.	0 90.00	179.53	10,352.0	-8,678.8	1,050.6	8,731.7	0.00	0.00	0.00
19,300.		179.53	10,352.0	-8,778.8	1,051.5	8,831.5	0.00	0.00	0.00
19,400.		179.53	10,352.0	-8,878.8	1,052.3	8,931.3	0.00	0.00	0.00
19,500.		179.53	10,352.0	-8,978.8	1,053.1	9,031.1	0.00	0.00	0.00
19,600.	0 90.00	179.53	10,352.0	-9,078.8	1,053.9	9,130.9	0.00	0.00	0.00
19,700.	0 90.00	179.53	10,352.0	-9,178.8	1,054.7	9,230.7	0.00	0.00	0.00
19,800.	0 90.00	179.54	10,352.0	-9,278.8	1,055.5	9,330.5	0.00	0.00	0.00
19,900.	0 90.00	179.54	10,352.0	-9,378.8	1,056.4	9,430.3	0.00	0.00	0.00
20,000.	0 90.00	179.54	10,352.0	-9,478.8	1,057.2	9,530.1	0.00	0.00	0.00
20,100.	0 90.00	179.54	10,352.0	-9,578.8	1,058.0	9,629.9	0.00	0.00	0.00
20,200.		179.54	10,352.0	-9,678.8	1,058.8	9,729.7	0.00	0.00	0.00
20,300.		179.54	10,352.0	-9,778.8	1,059.6	9,829.5	0.00	0.00	0.00
20,400.		179.54	10,352.0	-9,878.8	1,060.4	9,929.3	0.00	0.00	0.00
20,500.		179.54	10,352.0	-9,978.8	1,061.2	10,029.1	0.00	0.00	0.00
20,600.	0 90.00	179.55	10,352.0	-10,078.8	1,062.0	10,128.9	0.00	0.00	0.00
20,700.	0 90.00	179.55	10,352.0	-10,178.8	1,062.8	10,228.7	0.00	0.00	0.00
20,800.	0 90.00	179.55	10,352.0	-10,278.8	1,063.5	10,328.5	0.00	0.00	0.00
20,900.	0 90.00	179.55	10,352.0	-10,378.8	1,064.3	10,428.3	0.00	0.00	0.00
21,000.	0 90.00	179.55	10,352.0	-10,478.8	1,065.1	10,528.1	0.00	0.00	0.00
21,100.	0 90.00	179.55	10,352.0	-10,578.8	1,065.9	10,627.9	0.00	0.00	0.00
21,200.	0 90.00	179.55	10,352.0	-10,678.8	1,066.7	10,727.7	0.00	0.00	0.00
21,300.	0 90.00	179.55	10,352.0	-10,778.8	1,067.5	10,827.5	0.00	0.00	0.00
21,400.	0 90.00	179.56	10,352.0	-10,878.8	1,068.2	10,927.3	0.00	0.00	0.00
21,500.	0 90.00	179.56	10,352.0	-10,978.8	1,069.0	11,027.1	0.00	0.00	0.00
21,600.	0 90.00	179.56	10,352.0	-11,078.8	1,069.8	11,126.9	0.00	0.00	0.00
21,700.	0 90.00	179.56	10,352.0	-11,178.8	1,070.6	11,226.7	0.00	0.00	0.00
21,800.		179.56	10,352.0	-11,278.8	1,071.3	11,326.5	0.00	0.00	0.00
21,900.		179.56	10,352.0	-11,378.8	1,072.1	11,426.2	0.00	0.00	0.00
22,000.		179.56	10,352.0	-11,478.8	1,072.8	11,526.0	0.00	0.00	0.00
22,100.	.0 90.00	179.56	10,352.0	-11,578.7	1,073.6	11,625.8	0.00	0.00	0.00
22,200.		179.57	10,352.0	-11,678.7	1,074.4	11,725.6	0.00	0.00	0.00
22,300.		179.57	10,352.0	-11,778.7	1,075.1	11,825.4	0.00	0.00	0.00
22,400.		179.57	10,352.0	-11,878.7	1,075.9	11,925.2	0.00	0.00	0.00
22,500.		179.57	10,352.0	-11,978.7	1,076.6	12,025.0	0.00	0.00	0.00
22,600.	0 90.00	179.57	10,352.0	-12,078.7	1,077.4	12,124.8	0.00	0.00	0.00
22,700.		179.57	10,352.0	-12,178.7	1,078.1	12,224.6	0.00	0.00	0.00
22,800.		179.57	10,352.0	-12,278.7	1,078.9	12,324.4	0.00	0.00	0.00
22,900.		179.57	10,352.0	-12,378.7	1,079.6	12,424.2	0.00	0.00	0.00
23,000.		179.58	10,352.0	-12,478.7	1,080.4	12,524.0	0.00	0.00	0.00
23,100.	0 90.00	179.58	10,352.0	-12,578.7	1,081.1	12,623.8	0.00	0.00	0.00
23,200.		179.58	10,352.0	-12,678.7	1,081.8	12,723.6	0.00	0.00	0.00
23,300.		179.58	10,352.0	-12,778.7	1,082.6	12,823.4	0.00	0.00	0.00
23,400.		179.58	10,352.0	-12,878.7	1,083.3	12,923.2	0.00	0.00	0.00
23,500.		179.58	10,352.0	-12,978.7	1,084.0	13,023.0	0.00	0.00	0.00
23,600.		179.58	10,352.0	-13,078.7	1,084.8	13,122.8	0.00	0.00	0.00
23,700.		179.58	10,352.0	-13,178.7	1,085.5	13,222.6	0.00	0.00	0.00
23,800.		179.59	10,352.0	-13,278.7	1,086.2	13,322.4	0.00	0.00	0.00
23,900.		179.59	10,352.0	-13,378.7	1,086.9	13,422.2	0.00	0.00	0.00
24,000. 24,100.		179.59 179.59	10,352.0 10,352.0	-13,478.7 -13,578.7	1,087.7 1,088.4	13,522.0 13,621.7	0.00 0.00	0.00 0.00	0.00 0.00
24,100.	5 90.00	119.09	10,332.0	-10,070.7	1,000.4	10,021.7	0.00	0.00	0.00

2/28/2024 2:18:12PM

Planning Report

Database:	PEDM	Local Co-ordinate Reference:	Well #301H
Company:	Midland	TVD Reference:	kb = 26' @ 3359.0usft
Project:	Lea County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3359.0usft
Site:	Pistolero 15 Fed	North Reference:	Grid
Well:	#301H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan #0.2		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
24,200.0 24,300.0 24,400.0 24,500.0 24,600.0 24,600.0 24,700.0 24,800.0 24,900.0	90.00 90.00 90.00 90.00 90.00 90.00 90.00	179.59 179.59 179.59 179.59 179.60 179.60 179.60 179.60	10,352.0 10,352.0 10,352.0 10,352.0 10,352.0 10,352.0 10,352.0 10,352.0	-13,678.7 -13,778.7 -13,878.7 -13,978.7 -14,078.7 -14,078.7 -14,178.7 -14,278.7 -14,378.7	1,089.1 1,089.8 1,090.5 1,091.2 1,091.9 1,092.6 1,093.3 1,094.0	13,721.5 13,821.3 13,921.1 14,020.9 14,120.7 14,220.5 14,320.3 14,420.1	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
25,000.0 25,100.0 25,200.0 25,300.0 25,300.0 25,400.0	90.00 90.00 90.00	179.60 179.60 179.60 179.60 179.61	10,352.0 10,352.0 10,352.0 10,352.0 10,352.0 10,352.0	-14,478.7 -14,578.7 -14,678.7 -14,778.7 -14,878.7	1,094.7 1,095.4 1,096.1 1,096.8 1,097.5	14,519.9 14,619.7 14,719.5 14,819.3 14,919.0	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
25,500.0 25,600.0 25,700.0 25,800.0	90.00 90.00 90.00 90.00	179.61 179.61 179.61 179.61	10,352.0 10,352.0 10,352.0 10,352.0	-14,978.7 -15,078.7 -15,178.7 -15,278.7	1,098.2 1,098.9 1,099.6 1,100.2	15,018.8 15,118.6 15,218.4 15,318.2	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
25,900.0 25,912.3		179.61 179.61	10,352.0 10,352.0	-15,378.7 -15,391.0	1,100.9 1,101.0	15,418.0 15,430.3	0.00 0.00	0.00 0.00	0.00 0.00

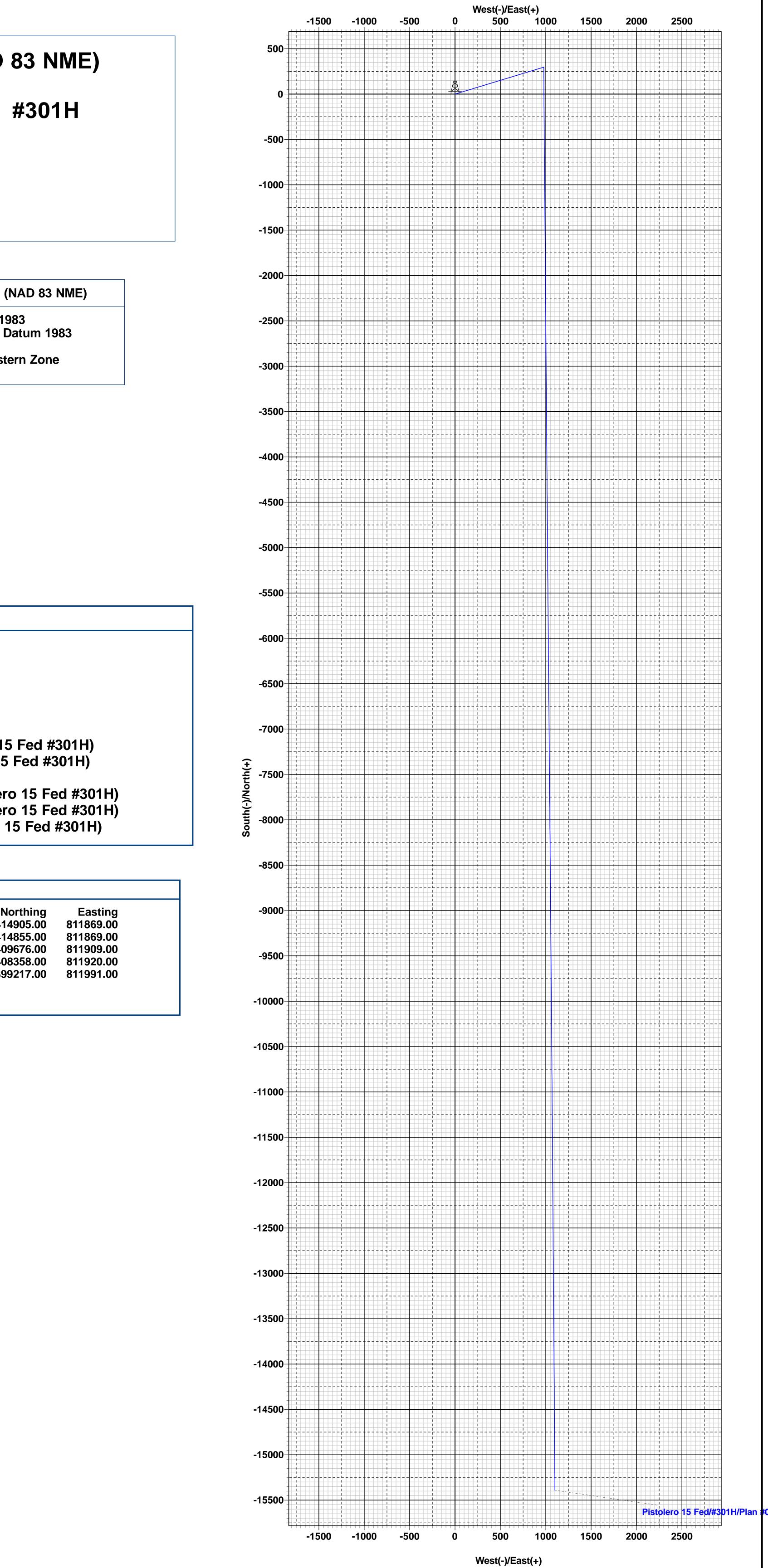
Design Targets

Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
KOP(Pistolero 15 Fed # - plan hits target cento - Point	0.00 er	0.00	9,874.5	297.0	979.0	414,905.00	811,869.00	32° 8' 15.486 N	103° 27' 33.567 W
FTP(Pistolero 15 Fed #3 - plan hits target cente - Point	0.00 er	0.00	10,087.2	247.0	979.0	414,855.00	811,869.00	32° 8' 14.991 N	103° 27' 33.572 W
PBHL(Pistolero 15 Fed ‡ - plan hits target cente - Point	0.00 er	0.00	10,352.0	-15,391.0	1,101.0	399,217.00	811,991.00	32° 5' 40.242 N	103° 27' 33.628 W
FEDPP2(Pistolero 15 Fe - plan hits target cente - Point	0.00 er	0.00	10,352.0	-6,250.0	1,030.0	408,358.00	811,920.00	32° 7' 10.699 N	103° 27' 33.592 W
FEDPP1(Pistolero 15 Fє - plan hits target cento - Point	0.00 er	0.00	10,352.0	-4,932.0	1,019.0	409,676.00	811,909.00	32° 7' 23.742 N	103° 27' 33.595 W

leogresources

To convert a Magnetic Direction to a Grid Direction, Add 5.83° To convert a Magnetic Direction to a True Direction, Add 6.29° East To convert a True Direction to a Grid Direction, Subtract 0.46°

G


Lea County, NM (NAD 83 NME)

Pistolero 15 Fed

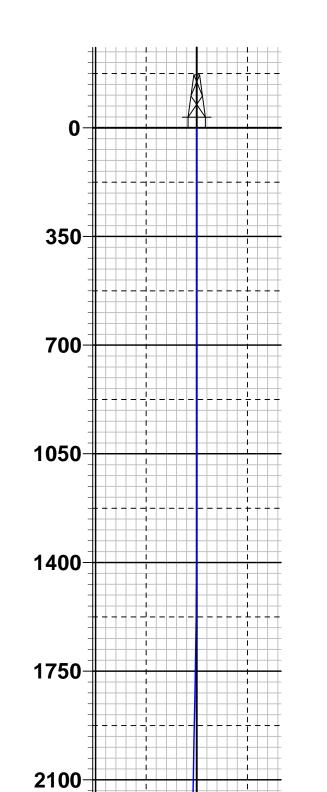
Plan #0.2

PROJECT DETAILS: Lea County, NM (NAD 83 NME)

Geodetic System: US State Plane 1983 Datum: North American Datum 1983 Ellipsoid: GRS 1980 Zone: New Mexico Eastern Zone System Datum: Mean Sea Level

Azimuths to Grid North

Magnetic North: 5.83°


Strength: 47277.9nT

Dip Angle: 59.78° Date: 2/21/2023

Model: IGRF2020

True North: -0.46°

Magnetic Field

--+--

+++

 \vdash \vdash \perp \downarrow \downarrow

• + + + + + +

• – – + + – – –

· - - - - - - - -

i

> ____

· - - + - - -

____ • - - + + - - -

--+--

> · + + + +

i

• - - + - - -

2450

2800

3150

3500

3850

4200

4550

4900

5250

5600-

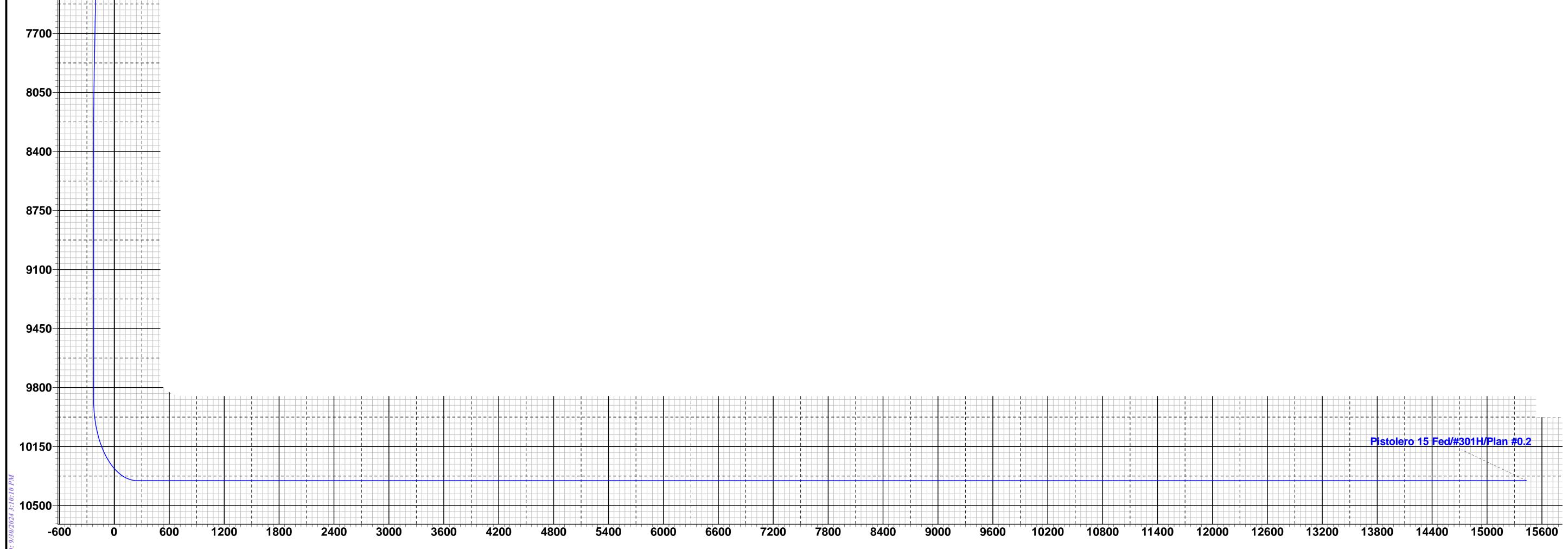
5950

6300

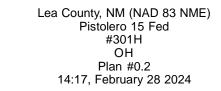
6650-

7000

7350


Dept

9



						SEC	TION DE	ETAILS		
Sec	MD	Inc	Azi	TVD	+N/-S	+E/-W	Dleg	TFace	VSect	Target
1	0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.0	
2	1268.0	0.00	0.00	1268.0	0.0	0.0	0.00	0.00	0.0	
3	1707.2	8.78	73.12	1705.5	9.8	32.2	2.00	73.12	-7.4	
4	7966.7	8.78	73.12	7891.5	287.2	946.8	0.00	0.00	-219.0	
5	8405.9	0.00	0.00	8329.0	297.0	979.0	2.00	180.00	-226.4	
6	9951.4	0.00	0.00	9874.5	297.0	979.0	0.00	0.00	-226.4	KOP(Pistolero 15 Fed #301H)
7	10171.8	26.46	180.00	10087.2	247.0	979.0	12.00	180.00	-176.5	FTP(Pistolero 15 Fed #301H)
8	10701.3	90.00	179.55	10351.9	-180.5	981.3	12.00	-0.51	250.0	
9	15453.0	90.00	179.55	10352.0	-4932.0	1019.0	0.00	0.00	4992.1	FEDPP1(Pistolero 15 Fed #301H)
10	16771.1	90.00	179.50	10352.0	-6250.0	1030.0	0.00	-88.46	6307.6	FEDPP2(Pistolero 15 Fed #301H)
11	25912.3	90.00	179.61	10352.0	-15391.0	1101.0	0.00	90.65	15430.3	PBHL(Pistolero 15 Fed #301H)

CASING DETAILS	WELLBORE TARGET DETAILS (MAP CO-ORDINATES)								
No casing data is available	Name	TVD	+N/-S	+E/-W	Northing	0 0			
	KOP(Pistolero 15 Fed #301H)	9874.5	297.0	979.0	414905.00	811869.00			
	FTP(Pistolero 15 Fed #301H)	10087.2	247.0	979.0	414855.00	811869.00			
	FEDPP1(Pistolero 15 Fed #301H)	10352.0	-4932.0	1019.0	409676.00	811909.00			
	FEDPP2(Pistolero 15 Fed #301H)	10352.0	-6250.0	1030.0	408358.00	811920.00			
	PBHL(Pistolero 15 Fed #301H)	10352.0	-15391.0	1101.0	399217.00	811991.00			

Vertical Section at 175.91°

EOG BLANKET CASING DESIGN VARIANCE

EOG respectfully requests the drill plans in the attached document 'EOG Alternate Casing Designs – BLM APPROVED' be added to the COA's for this well. These designs have been approved by the BLM down to the TVDs listed below and will allow EOG to run alternate casing designs for this well if necessary.

The designs and associated details listed are the "worst case scenario" boundaries for design safety factors. Location and lithology have NOT been accounted for in these designs. The specific well details will be based on the APD/Sundry package and the information listed in the COA.

The mud program will not change from the original design for this well. Summary of the mud programs for both shallow and deep targets are listed at the end of this document. If the target is changing, a sundry will be filed to update the casing design and mud/cement programs.

Cement volumes listed in this document are for reference only. The cement volumes for the specific well will be adjusted to ensure cement tops meet BLM requirements as listed in the COA and to allow bradenhead cementing when applicable.

This blanket document only applies to wells with three string designs outside of Potash and Capitan Reef boundaries.

Sł	nallow Desig	n Boundary (Conditions	5
	Deepest	Deepest	Max Inc	Max DLS
	MD (ft)	TVD (ft)	(deg)	(°/100usft)
Surface	2030	2030	0	0
Intermediate	7793	5650	40	8
Production	28578	11225	90	25

<u>I.</u> (ASINGI	NUUNA	IVI					
Hole	Interv	al MD	Interva	l TVD	Csg			
Size	From (ft)	To (ft)	From (ft) To (ft)		OD	Weight	Grade	Conn
16"	0	2,030	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,793	0	5,650	9-5/8"	40#	J-55	LTC
6-3/4"	0	28,578	0	11,225	5-1/2"	20#	P110-EC	DWC/C IS MS

1. CASING PROGRAM

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

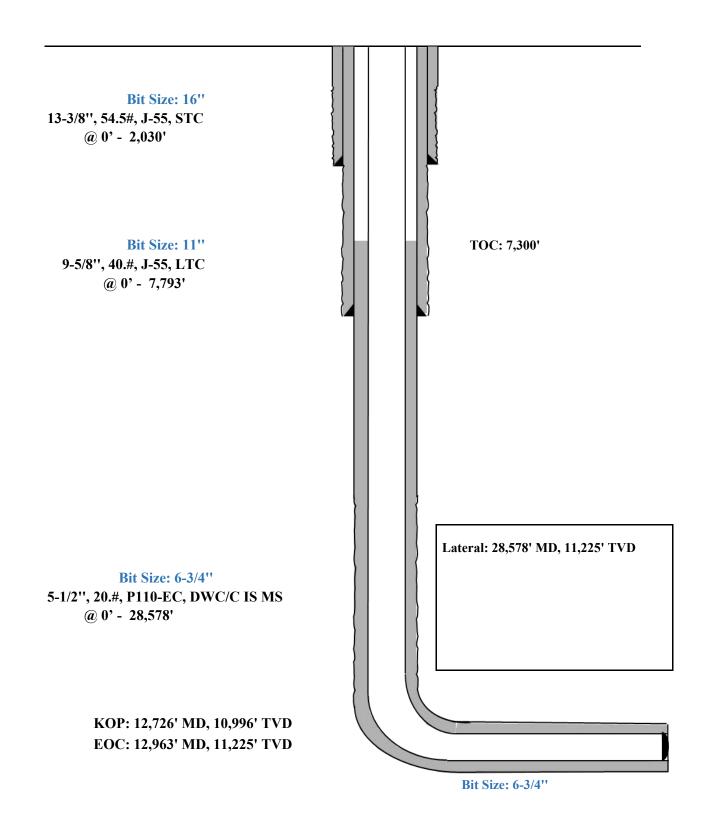
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidiny Description
2,030'	570	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-
13-3/8''				Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium
				Metasilicate (TOC @ 1830')
7,793'	770	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @
9-5/8''				Surface)
	250	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6238')
28,578'	410	10.5	3.21	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC
5-1/2''				@ 7300')
	1110	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5%
				NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @
				12730')


2. CEMENTING PROGRAM:

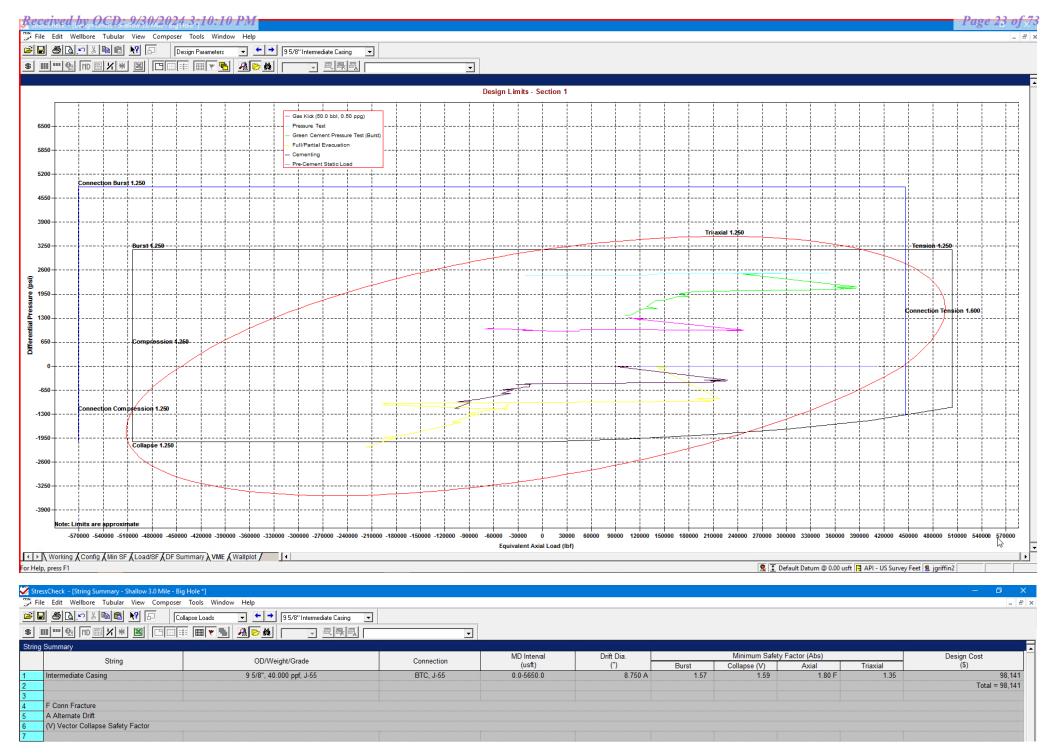
Shallow Design A

Proposed Wellbore

KB: 3558' GL: 3533'

Released to Imaging: 9/30/2024 3:12:18 PM

▼ ← → 95/8" Intermediate Casing ▼ IΓ


ľ	Results Depth (MD)	Axial F	orce (lbf)	Equivalent Bending Stress			Absolute S	afety Factor		Temperature	Pressure (psi)		Addt'l Pickup To	Buckled
	(usft)	Apparent (w/Bending)	Actual (w/o Bending)	Axial Load (lbf)	at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	(°F)	Internal	External	Prevent Buck. (lbf)	Length (usft
Ī	0	252987	228954	253140	2098.2	1.69	1.58	N/A	2.82 F	70.00	2500.00	0.00	N/A	N/A
	100	247735	223702	248466	2098.2	1.69	1.58	N/A	2.88 F	71.10	2543.63	43.63		
	100	234996	223701	235716	986.2	1.71	1.58	N/A	3.04 F	71.10	2543.64	43.64		
	1700	341565	139667	352253	17627.2	1.53	1.57	N/A	2.09 F	88.70	3241.64	741.64		
	1700	312979	139666	323488	15131.5	1.58	1.57	N/A	2.28 F	88.70	3241.65	741.65		
	1850	336881	132027	348440	17885.2	1.51	1.57	N/A	2.12 F	90.29	3305.05	805.05		
	1850	318549	132027	329984	16284.8	1.54	1.57	N/A	2.24 F	90.29	3305.06	805.06		
	1950	320468	127243	332475	16869.9	1.52	1.57	N/A	2.23 F	91.30	3344.87	844.87		
	1950	312802	127243	324756	16200.7	1.53	1.57	N/A	2.28 F	91.30	3344.87	844.87		
	2050	307858	122773	320295	16159.3	1.52	1.57	N/A	2.32 F	92.23	3381.89	881.89		
	2050	303560	122772	315965	15784.1	1.53	1.57	N/A	2.35 F	92.23	3381.89	881.89		
	2300	151294	112633	163658	3375.4	1.71	1.57	N/A	4.72 F	94.35	3466.13	966.13		
	2300	132741	112633	144956	1755.6	1.72	1.57	N/A	5.38 F	94.35	3466.14	966.14		
	2370	129966	109858	142452	1755.6	1.72	1.57	N/A	5.49 F	94.94	3489.28	989.28		
	2370	127909	107800	140922	1755.6	1.75	1.60	N/A	5.58 F	94.94	3489.29	1036.40		
	2700	105515	94232	119785	985.1	1.75	1.60	N/A	6.77 F	97.73	3599.97	1152.35		
	2700	111680	94231	126006	1523.4	1.75	1.60	N/A	6.39 F	97.73	3599.97	1152.35		
	3100	110766	77783	126839	2879.6	1.71	1.60	N/A	6.44 F	101.11	3734.23	1293.00		
	3100	97392	77783	113331	1712.1	1.73	1.60	N/A	7.33 F	101.11	3734.23	1293.01		
	3700	71565	53303	89806	1594.4	1.70	1.61	N/A	9.97 F	106.15	3934.24	1502.54		
	3700	60887	53302	79004	662.3	1.71	1.61	N/A	11.72 F	106.16	3934.25	1502.55		
	4650	34671	14219	56495	1785.6	1.64	1.61	N/A	20.59 F	114.20	4253.37	1836.86		
	4900	44595	4828	67626	3472.0	1.59	1.61	N/A	16.01 F	116.32	4337.37	1924.87		
	4900	28975	4828	51775	2108.2	1.62	1.61	N/A	24.64 F	116.32	4337.38	1924.87		
	5029	22103	34	45340	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.40	1969.94		
	5029	22102	33	45339	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.41	1969.95		
	5600	-45329	-21341	-20805	2094.3	1.57	1.62	N/A	(13.67)	122.23	4572.11	2170.78		
	5650	-40465	-23210	-15657	1506.5	1.58	1.62	N/A	(15.31)	122.66	4588.87	2188.34		
	F	Conn Fracture												
		Compression												
		Vector Collapse Safety	v Factor											
	(•)													

✓ ► Working Config Min SF Load/SF DF Summary VME Wallplot For Help, press F1

🤶 🛨 Default Datum @ 0.00 usft 🖪 API - US Survey Feet 😫 jgriffin2


9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi

*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 9/30/2024 3:12:18 PM

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 9/30/2024 3:12:18 PM

Page 6 of 32

<u>I.</u> (ASINGI	NUGNA	IVI					
Hole	Interv	al MD	Interva	l TVD	Csg			
Size	From (ft)	To (ft)	From (ft) To (ft)		OD	Weight	Grade	Conn
13-1/2"	0	2,030	0	2,030	10-3/4"	40.5#	J-55	STC
9-7/8"	0	7,793	0	5,650	8-5/8"	32#	J-55	BTC-SC
6-3/4"	0	28,578	0	11,225	5-1/2"	20#	P110-EC	DWC/C IS MS

1. CASING PROGRAM

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

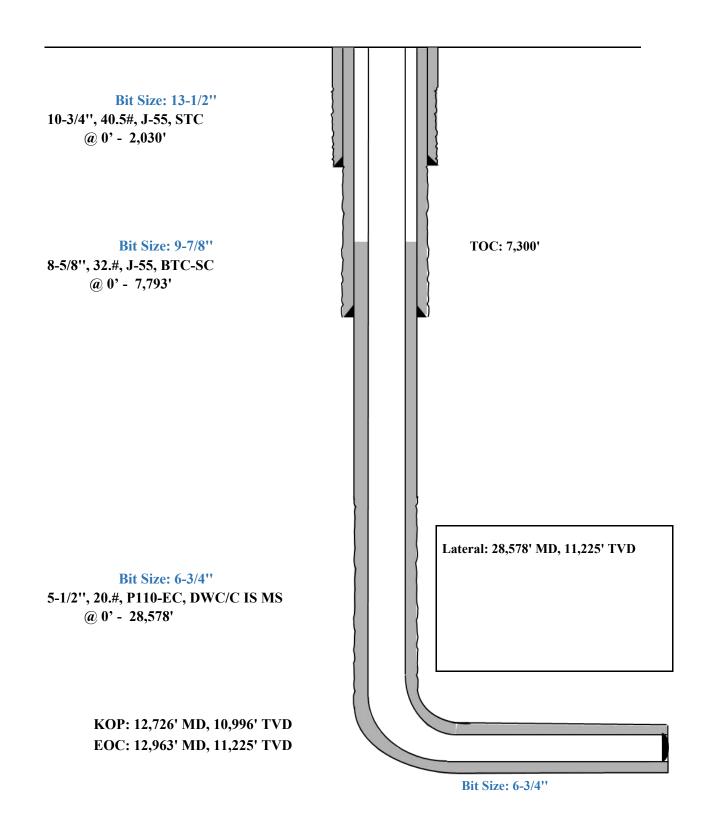
Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidiny Description
2,030'	530	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-
10-3/4''				Flake (TOC @ Surface)
	140	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium
				Metasilicate (TOC @ 1830')
7,793'	460	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @
8-5/8''				Surface)
	210	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6238')
28,578'	400	10.5	3.21	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC
5-1/2''				@ 7300')
	1110	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5%
				NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @
				12730')


2. CEMENTING PROGRAM:

Shallow Design B

Proposed Wellbore

KB: 3558' GL: 3533'

StressCheck - [Triaxial Results - Shallow 3.0 Mile *]

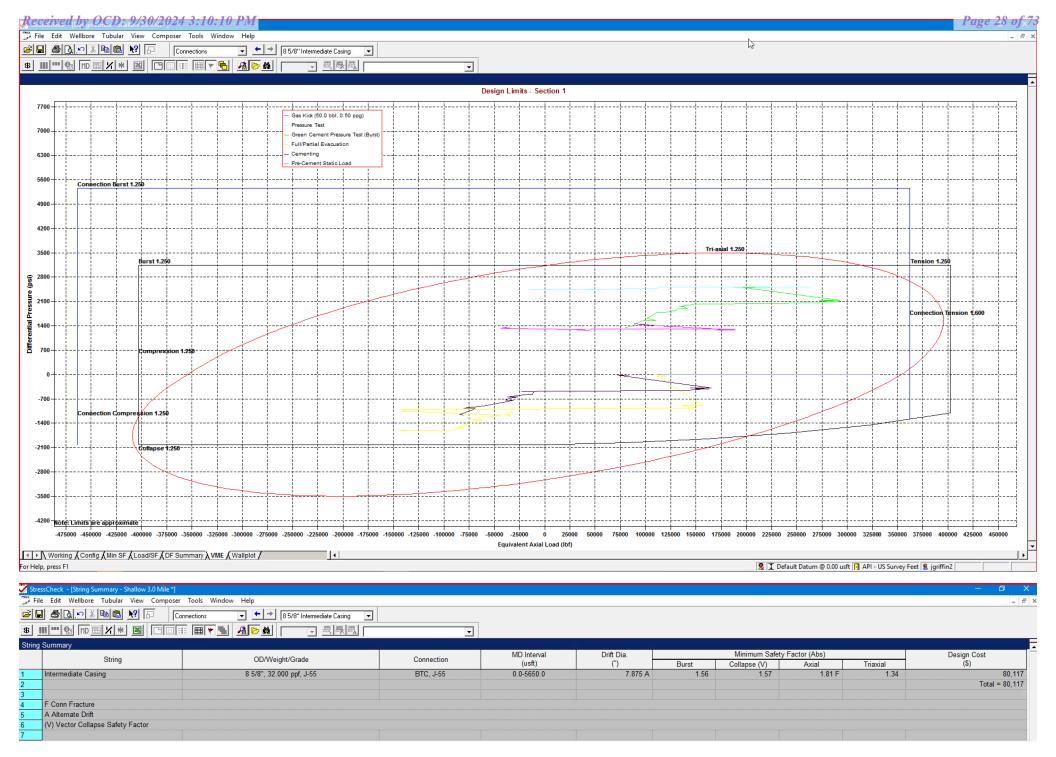
- 8 :

The Edit Wellbore Tubular View Composer Tools Window Help

Image: Second secon

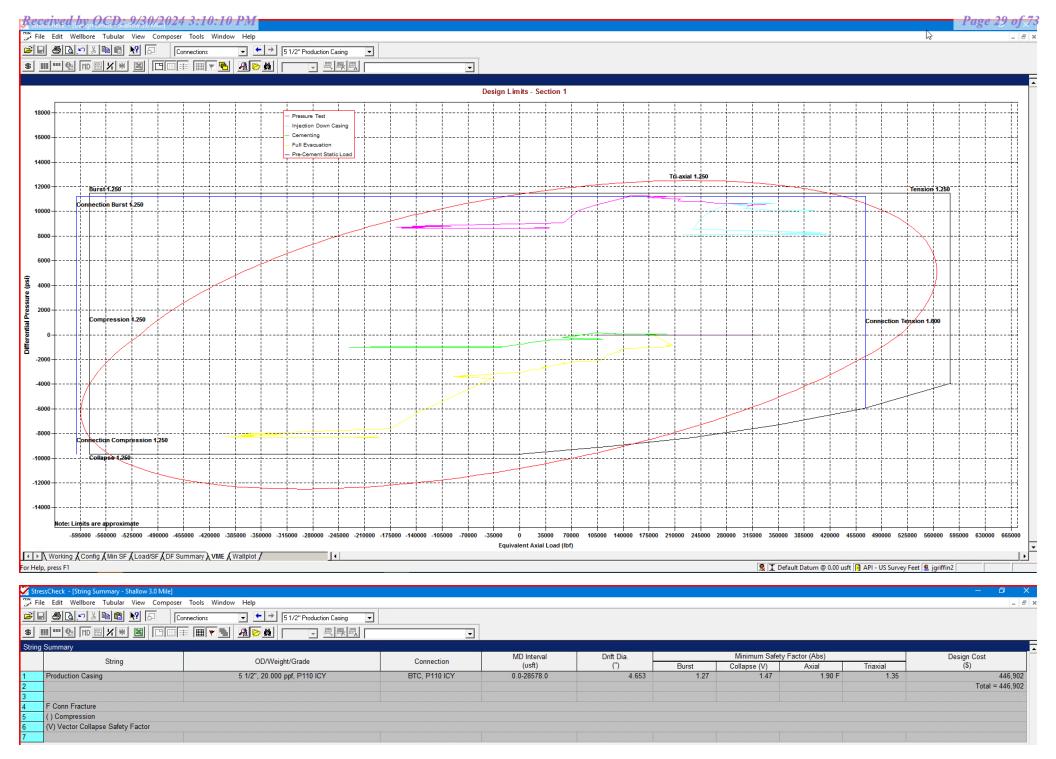
Death (M		Axial Fo	orce (lbf)	Envirolant	Deading Observe		Absolute S	afety Factor		Transition	Pressure	e (psi)	Addt'l Pickup To	Buckled
Depth (M (usft)		Apparent (w/Bending)	Actual (w/o Bending)	Equivalent Axial Load (lbf)	Bending Stress at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	Temperature (°F)	Internal	External	Prevent Buck. (lbf)	Length (usft
	0	200426	183224	200546	1880.2	1.68	1.57	N/A	2.89 F	70.00	2500.00	0.00	N/A	N/A
	100	196229	179028	196812	1880.2	1.69	1.57	N/A	2.95 F	71.10	2543.63	43.63		
	100	187111	179027	187686	883.7	1.70	1.57	N/A	3.10 F	71.10	2543.64	43.64		
	1700	256401	111891	264835	15795.8	1.56	1.56	N/A	2.26 F	88.70	3241.64	741.64		
	1700	235940	111891	244247	13559.4	1.60	1.56	N/A	2.45 F	88.70	3241.65	741.65		
	1850	252413	105788	261533	16027.0	1.54	1.56	N/A	2.29 F	90.29	3305.05	805.05		
	1850	239292	105787	248323	14592.9	1.56	1.56	N/A	2.42 F	90.29	3305.06	805.06		
	1950	240267	101966	249748	15117.2	1.54	1.56	N/A	2.41 F	91.30	3344.87	844.87		
	1950	234781	101965	244223	14517.5	1.56	1.56	N/A	2.47 F	91.30	3344.87	844.87		
	2050	230871	98395	240694	14480.4	1.55	1.56	N/A	2.51 F	92.23	3381.89	881.89		
	2050	227794	98394	237594	14144.2	1.55	1.56	N/A	2.54 F	92.23	3381.89	881.89		
	2300	117966	90294	127818	3024.7	1.70	1.56	N/A	4.91 F	94.35	3466.13	966.13		
	2300	104686	90293	114432	1573.2	1.71	1.56	N/A	5.53 F	94.35	3466.14	966.14		
	2370	102469	88077	112431	1573.2	1.71	1.56	N/A	5.65 F	94.94	3489.28	989.28		
	2370	100817	86424	111200	1573.2	1.75	1.59	N/A	5.75 F	94.94	3489.29	1036.40		
	2700	83660	75583	95052	882.8	1.74	1.59	N/A	6.92 F	97.73	3599.97	1152.35		
	2700	88072	75583	99504	1365.1	1.74	1.59	N/A	6.58 F	97.73	3599.97	1152.35		
	3100	86049	62442	98863	2580.4	1.71	1.59	N/A	6.73 F	101.11	3734.23	1293.00		
	3100	76477	62441	89195	1534.2	1.72	1.59	N/A	7.57 F	101.11	3734.23	1293.01		
	3700	55953	42882	70509	1428.8	1.69	1.60	N/A	10.35 F	106.15	3934.24	1502.54		
	3700	48311	42881	62778	593.5	1.71	1.60	N/A	11.99 F	106.16	3934.25	1502.55		
	4000	41458	33043	56865	919.9	1.69	1.60	N/A	13.97 F	108.69	4034.82	1607.91		
	4650	26293	11655	43706	1600.1	1.63	1.60	N/A	22.03 F	114.20	4253.37	1836.86		
	4900	32619	4156	50970	3111.2	1.59	1.60	N/A	17.76 F	116.32	4337.37	1924.87		
	4900	21439	4155	39625	1889.2	1.61	1.60	N/A	27.02 F	116.32	4337.38	1924.87		
	5039	15822	26	34389	1726.6	1.61	1.61	N/A	36.61 F	117.49	4383.77	1973.48		
	5039	15822	26	34388	1726.6	1.61	1.61	N/A	36.61 F	117.49	4383.78	1973.49		
1	5600 5650	-33912	-16743	-14286	1876.7	1.57	1.61	N/A	(14.60)	122.23	4572.11	2170.78		
		-30585	-18235	-10742	1350.0	1.58	1.61	N/A	(16.18)	122.66	4588.87	2188.34		
	0000													
	FC	Conn Fracture												
	F ()	Compression												
	F ()		Factor											

Working Config Min SF Load/SF DF Summary WME Wallplot
 For Help, press F1


🕵 I Default Datum @ 0.00 usft 📑 API - US Survey Feet 🙎 jgriffin2

8-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi


•

ЪĒ

*Modelling done with 8-5/8" 32# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 9/30/2024 3:12:18 PM

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 9/30/2024 3:12:18 PM

Page 11 of 32

<u>1.</u> (I. CASING I KOUKAM											
Hole	Interv	al MD	MD Interval TVD		Csg							
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn				
16"	0	2,030	0	2,030	13-3/8"	54.5#	J-55	STC				
11"	0	7,793	0	5,650	9-5/8"	40#	J-55	LTC				
7-7/8"	0	28,578	0	11,225	6"	24.5#	P110-EC	VAM Sprint-SF				

1. CASING PROGRAM

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

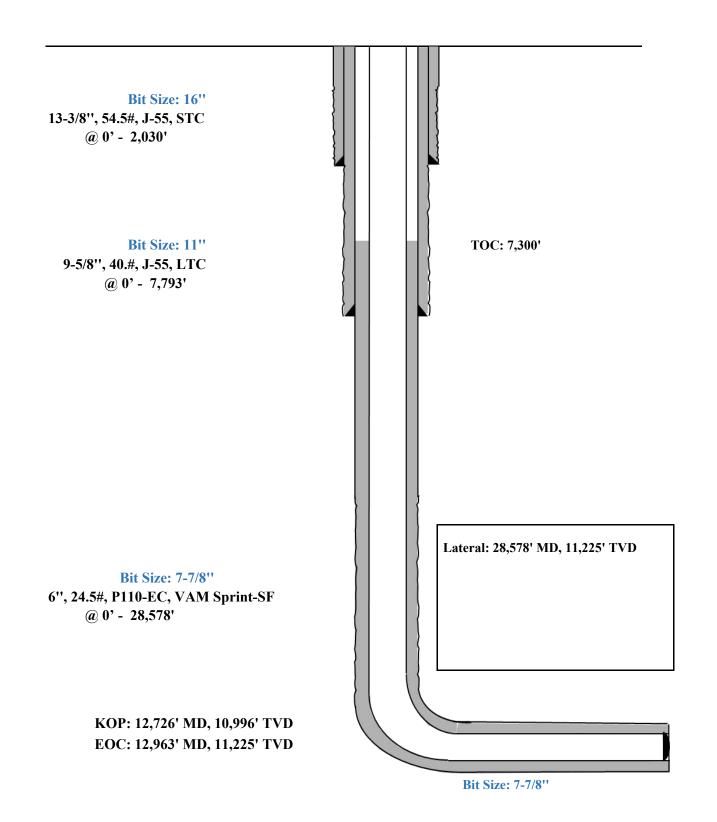
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" casing in the 7-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 7-7/8" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

		Wt.	Yld	Slurry Description						
Depth	No. Sacks	ppg	Ft3/sk							
2,030'	570	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-						
13-3/8''				Flake (TOC @ Surface)						
	160	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium						
				Metasilicate (TOC @ 1830')						
7,793'	770	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @						
9-5/8''				Surface)						
	250	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6238')						
28,578'	650	10.5	3.21	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC						
6''				@ 7300')						
	1870	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5%						
				NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @						
				12730')						


2. CEMENTING PROGRAM:

Seog resources

Shallow Design C

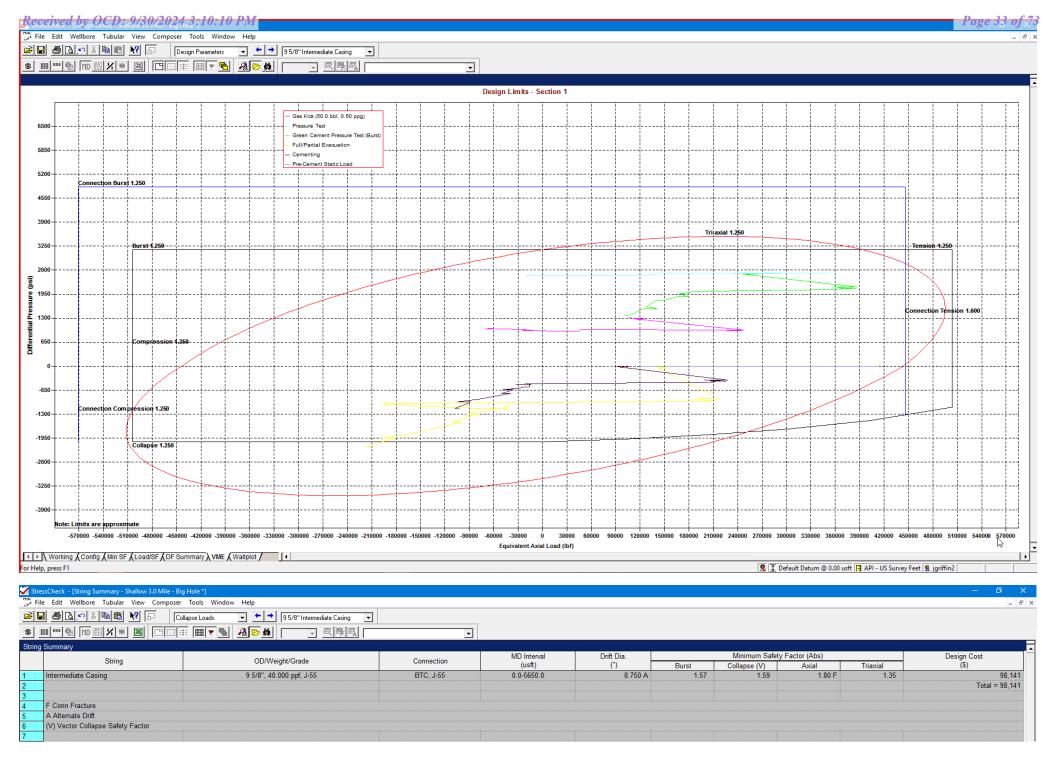
Proposed Wellbore

KB: 3558' GL: 3533'

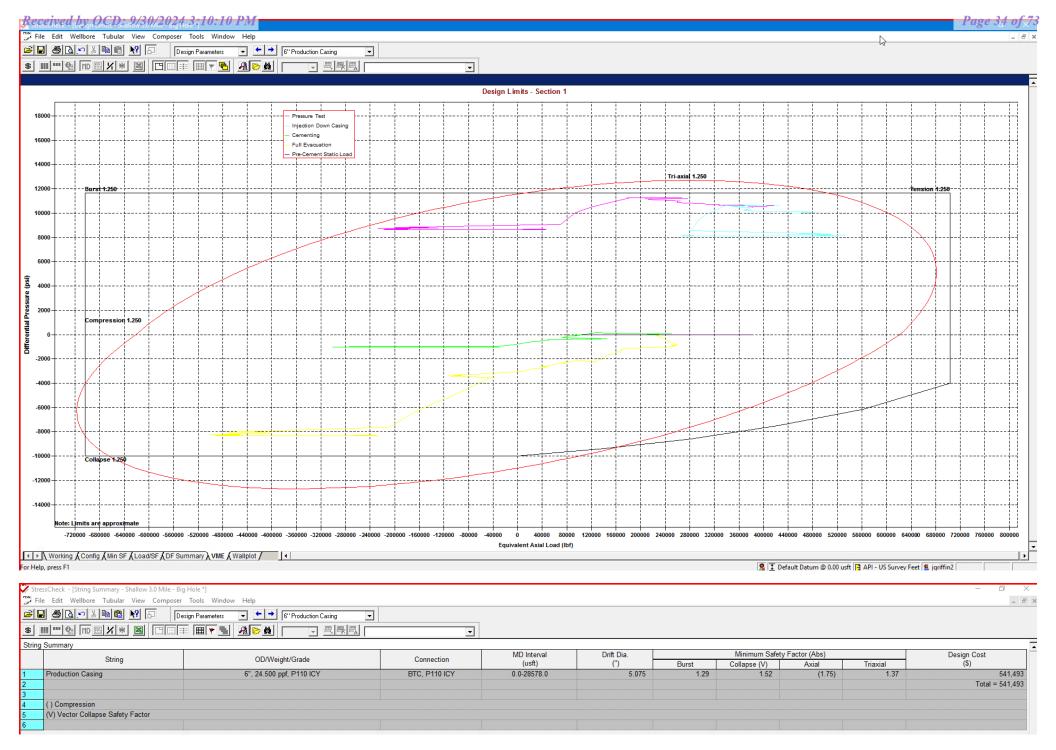
F 6 1 1 1 1 IΓ

▼ ← → 95/8" Intermediate Casing ▼

Axial Force (lbf)		F		Absolute Safety Factor				T	Pressure (psi)		A 198 D' 1 T		
Depth (MD) (usft)	Apparent (w/Bending)	Actual (w/o Bending)	Equivalent Axial Load (Ibf)	Bending Stress at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	Temperature (°F)	Internal	External	Addt'l Pickup To Prevent Buck. (Ibf)	Buckled Length (usft
	0 252987	228954	253140	2098.2	1.69	1.58	N/A	2.82 F	70.00	2500.00	0.00	N/A	N/A
10	0 247735	223702	248466	2098.2	1.69	1.58	N/A	2.88 F	71.10	2543.63	43.63		
10		223701	235716	986.2	1.71	1.58	N/A	3.04 F	71.10	2543.64	43.64		
170		139667	352253	17627.2	1.53	1.57	N/A	2.09 F	88.70	3241.64	741.64		
170	0 312979	139666	323488	15131.5	1.58	1.57	N/A	2.28 F	88.70	3241.65	741.65		
185		132027	348440	17885.2	1.51	1.57	N/A	2.12 F	90.29	3305.05	805.05		
185		132027	329984	16284.8	1.54	1.57	N/A	2.24 F	90.29	3305.06	805.06		
195		127243	332475	16869.9	1.52	1.57	N/A	2.23 F	91.30	3344.87	844.87		
195	0 312802	127243	324756	16200.7	1.53	1.57	N/A	2.28 F	91.30	3344.87	844.87		
205		122773	320295	16159.3	1.52	1.57	N/A	2.32 F	92.23	3381.89	881.89		
205		122772	315965	15784.1	1.53	1.57	N/A	2.35 F	92.23	3381.89	881.89		
230		112633	163658	3375.4	1.71	1.57	N/A	4.72 F	94.35	3466.13	966.13		
230		112633	144956	1755.6	1.72	1.57	N/A	5.38 F	94.35	3466.14	966.14		
237		109858	142452	1755.6	1.72	1.57	N/A	5.49 F	94.94	3489.28	989.28		
237		107800	140922	1755.6	1.75	1.60	N/A	5.58 F	94.94	3489.29	1036.40		
270		94232	119785	985.1	1.75	1.60	N/A	6.77 F	97.73	3599.97	1152.35		
270		94231	126006	1523.4	1.75	1.60	N/A	6.39 F	97.73	3599.97	1152.35		
310		77783	126839	2879.6	1.71	1.60	N/A	6.44 F	101.11	3734.23	1293.00		
310		77783	113331	1712.1	1.73	1.60	N/A	7.33 F	101.11	3734.23	1293.01		
370		53303	89806	1594.4	1.70	1.61	N/A	9.97 F	106.15	3934.24	1502.54		
370		53302	79004	662.3	1.71	1.61	N/A	11.72 F	106.16	3934.25	1502.55		
465		14219	56495	1785.6	1.64	1.61	N/A	20.59 F	114.20	4253.37	1836.86		
490		4828	67626	3472.0	1.59	1.61	N/A	16.01 F	116.32	4337.37	1924.87		
490		4828	51775	2108.2	1.62	1.61	N/A	24.64 F	116.32	4337.38	1924.87		
502		34	45340	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.40	1969.94		
502		33	45339	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.41	1969.95		
560		-21341	-20805	2094.3	1.57	1.62	N/A	(13.67)	122.23	4572.11	2170.78		
565	0 -40465	-23210	-15657	1506.5	1.58	1.62	N/A	(15.31)	122.66	4588.87	2188.34		
	F Conn Fracture												
) Compression												
	<u> </u>	v Eastar											
	y vector conapse salet	y i actor											
~	 Vector Collapse Safet 	y Factor											


•

✓ ► Working Config Min SF Load/SF DF Summary VME Wallplot For Help, press F1


🕵 I Default Datum @ 0.00 usft 🖪 API - US Survey Feet 🙎 jgriffin2

9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi

*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

*Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 9/30/2024 3:12:18 PM

CASING PROGRAM

4

Seog resources

4 . C											
Hole	Interval MD		Interval TVD		Csg						
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn			
16"	0	2,030	0	2,030	13-3/8"	54.5#	J-55	STC			
11"	0	7,793	0	5,650	9-5/8"	40#	J-55	LTC			
7-7/8"	0	12,626	0	10,896	6"	22.3#	P110-EC	DWC/C IS			
6-3/4"	12,626	28,578	10,896	11,225	5-1/2"	20#	P110-EC	DWC/C IS MS			

Shallow Design D

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

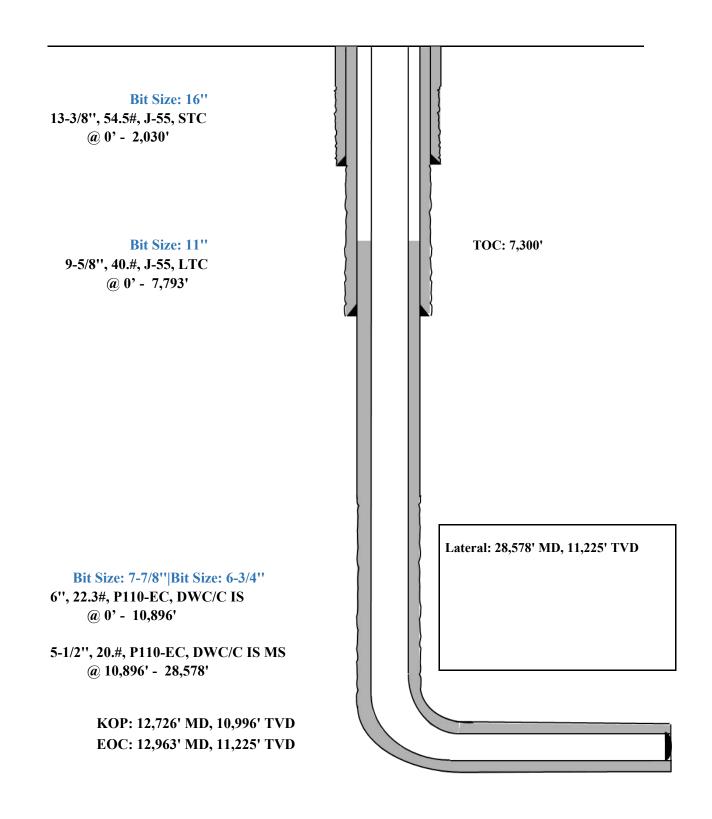
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized in the cement slurry for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

		Wt.	Yld	Slurry Description						
Depth	No. Sacks	ppg	Ft3/sk	Sidily Description						
2,030'	570	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-						
13-3/8''				Flake (TOC @ Surface)						
	160	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium						
				Metasilicate (TOC @ 1830')						
7,793'	770	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @						
9-5/8''				Surface)						
	250	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6238')						
28,578'	650	10.5	3.21	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC						
6''				@ 7300')						
	1870	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5%						
				NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @						
				12730')						


5. CEMENTING PROGRAM:

Seog resources

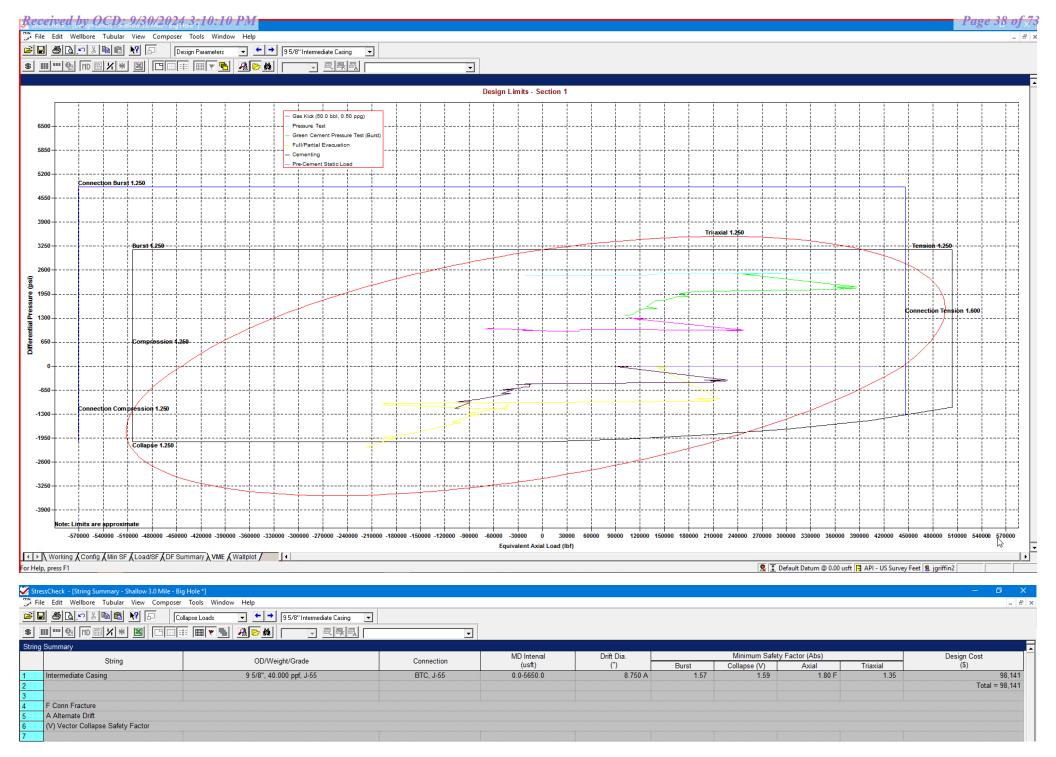
Shallow Design D

Proposed Wellbore

KB: 3558' GL: 3533'

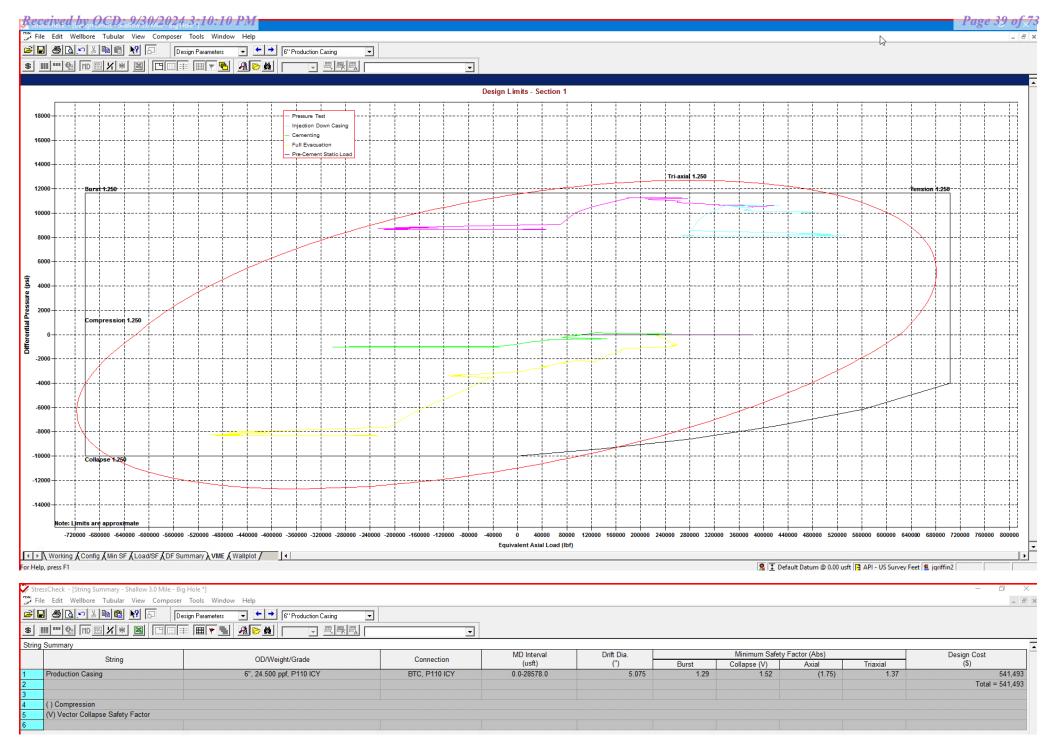
File Edit Wellbore Tubular View Composer Tools Window Help

🖻 🖬 🚳 🖪 💌 🗴 🛍 💼 🕺 🕞

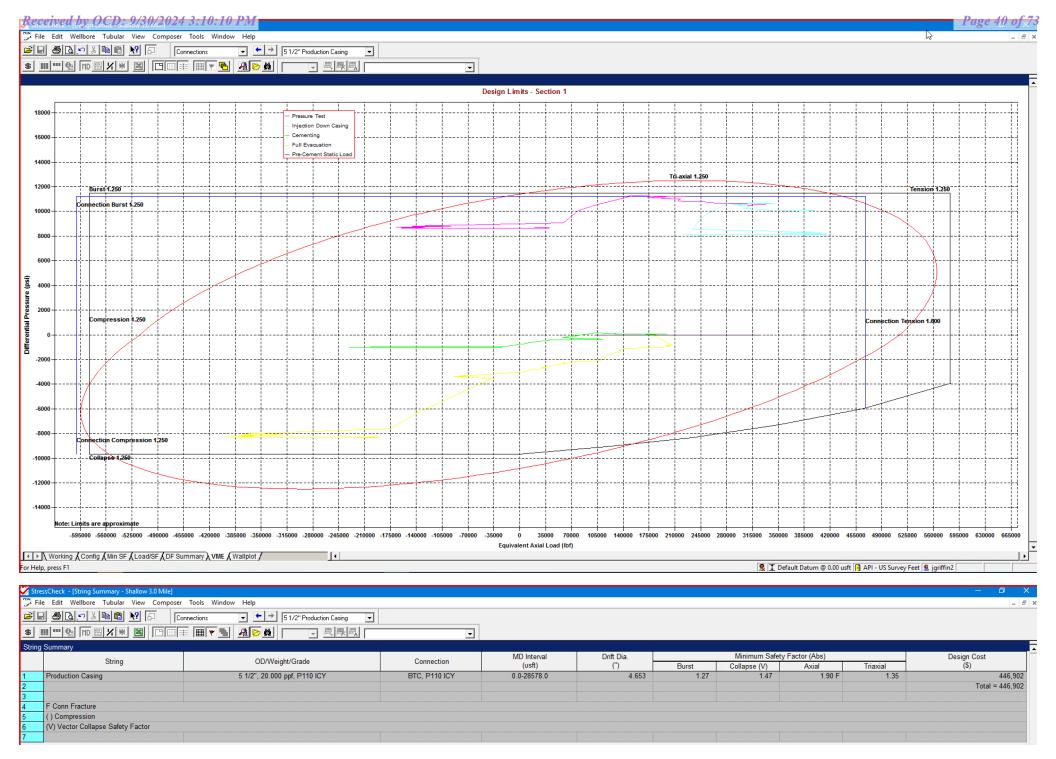

Depth (MD) (usft)		orce (lbf)	Equivalent	Bending Stress		Absolute S	afety Factor		Temperature	Pressure	(psi)	Addt'l Pickup To	Buckleo
	Apparent (w/Bending)	Actual (w/o Bending)	Axial Load (lbf)	at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	(°F)	Internal	External	Prevent Buck. (lbf)	Length (u
0	252987	228954	253140	2098.2	1.69	1.58	N/A	2.82 F	70.00	2500.00	0.00	N/A	N/A
100	247735	223702	248466	2098.2	1.69	1.58	N/A	2.88 F	71.10	2543.63	43.63		
100	234996	223701	235716	986.2	1.71	1.58	N/A	3.04 F	71.10	2543.64	43.64		
1700	341565	139667	352253	17627.2	1.53	1.57	N/A	2.09 F	88.70	3241.64	741.64		
1700	312979	139666	323488	15131.5	1.58	1.57	N/A	2.28 F	88.70	3241.65	741.65		
1850	336881	132027	348440	17885.2	1.51	1.57	N/A	2.12 F	90.29	3305.05	805.05		
1850	318549	132027	329984	16284.8	1.54	1.57	N/A	2.24 F	90.29	3305.06	805.06		
1950	320468	127243	332475	16869.9	1.52	1.57	N/A	2.23 F	91.30	3344.87	844.87		
1950	312802	127243	324756	16200.7	1.53	1.57	N/A	2.28 F	91.30	3344.87	844.87		
2050	307858	122773	320295	16159.3	1.52	1.57	N/A	2.32 F	92.23	3381.89	881.89		
2050	303560	122772	315965	15784.1	1.53	1.57	N/A	2.35 F	92.23	3381.89	881.89		
2300	151294	112633	163658	3375.4	1.71	1.57	N/A	4.72 F	94.35	3466.13	966.13		
2300	132741	112633	144956	1755.6	1.72	1.57	N/A	5.38 F	94.35	3466.14	966.14		
2370	129966	109858	142452	1755.6	1.72	1.57	N/A	5.49 F	94.94	3489.28	989.28		
2370	127909	107800	140922	1755.6	1.75	1.60	N/A	5.58 F	94.94	3489.29	1036.40		
2700	105515	94232	119785	985.1	1.75	1.60	N/A	6.77 F	97.73	3599.97	1152.35		
2700	111680	94231	126006	1523.4	1.75	1.60	N/A	6.39 F	97.73	3599.97	1152.35		
3100	110766	77783	126839	2879.6	1.71	1.60	N/A	6.44 F	101.11	3734.23	1293.00		
3100	97392	77783	113331	1712.1	1.73	1.60	N/A	7.33 F	101.11	3734.23	1293.01		
3700	71565	53303	89806	1594.4	1.70	1.61	N/A	9.97 F	106.15	3934.24	1502.54		
3700	60887	53302	79004	662.3	1.71	1.61	N/A	11.72 F	106.16	3934.25	1502.55		
4650	34671	14219	56495	1785.6	1.64	1.61	N/A	20.59 F	114.20	4253.37	1836.86		
4900	44595	4828	67626	3472.0	1.59	1.61	N/A	16.01 F	116.32	4337.37	1924.87		
4900	28975	4828	51775	2108.2	1.62	1.61	N/A	24.64 F	116.32	4337.38	1924.87		
5029	22103	34	45340	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.40	1969.94		
5029	22102	33	45339	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.41	1969.95		
5600	-45329	-21341	-20805	2094.3	1.57	1.62	N/A	(13.67)	122.23	4572.11	2170.78		
5650	-40465	-23210	-15657	1506.5	1.58	1.62	N/A	(15.31)	122.66	4588.87	2188.34		
	Conn Fracture												
	Compression												
	Vector Collapse Safety	/ Factor											

For Help, press F1

🙎 🛨 Default Datum @ 0.00 usft 🖪 API - US Survey Feet 🙎 jgriffin2


9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi


*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 9/30/2024 3:12:18 PM

*Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 9/30/2024 3:12:18 PM

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 9/30/2024 3:12:18 PM

Page 22 of 32

MUD PROGRAM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal. The applicable depths and properties of the drilling fluid systems are as follows:

Measured Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0 – 2,030'	Fresh - Gel	8.6-8.8	28-34	N/c
2,030' – 7,793'	Brine	9-10.5	28-34	N/c
5,450' – 28,578' Lateral	Oil Base	8.8-9.5	58-68	N/c - 6

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

CEMENTING ADDITIVES:

Additive	Purpose
Bentonite Gel	Lightweight/Lost circulation prevention
Calcium Chloride	Accelerator
Cello-flake	Lost circulation prevention
Sodium Metasilicate	Accelerator
MagOx	Expansive agent
Pre-Mag-M	Expansive agent
Sodium Chloride	Accelerator
FL-62	Fluid loss control
Halad-344	Fluid loss control
Halad-9	Fluid loss control
HR-601	Retarder
Microbond	Expansive Agent

Cement integrity tests will be performed immediately following plug bump.

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

Pipe Bodu and API Connections Performance Data Received by OCD: 9/30/2024 3:10:10 PM 13.375 54.50/0.380 J55

Page 42 of 73 PDF

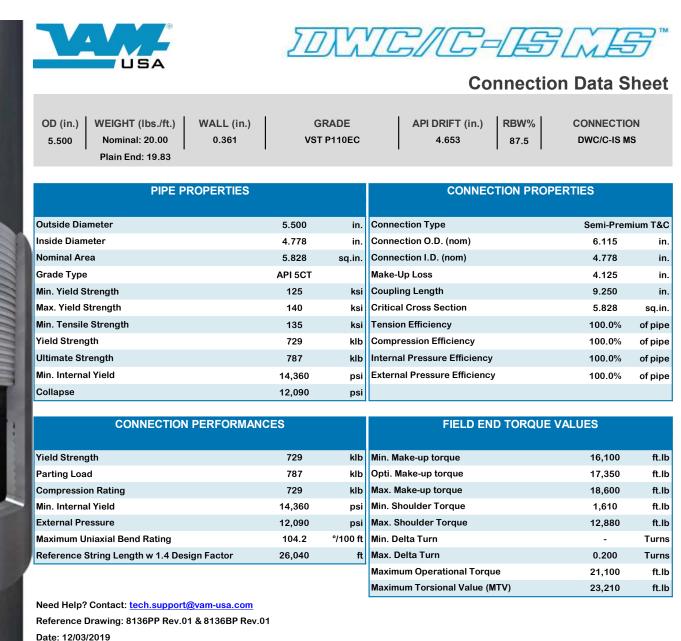
New Search »

a Back to Previous List

USC O Metric

6/8/2015 10:04:37 AM					
Mechanical Properties	Ptpe	BTC	LTC	STC	
Minimum Yield Strength	55,000				psi
Maximum Yield Strength	80,000			-	psi
Minimum Tensile Strength	75,000				psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	13.375	14.375	-	14.375	in.
Wall Thickness	0.380				in.
Inside Diameter	12.615	12.615	-	12.615	in.
Standard Drift	12.459	12.459		12.459	in.
Alternate Drift	-		-	-	in.
Nominal Linear Weight, T&C	54.50	-		2-2	lbs/ft
Plain End Weight	52.79				lbs/ft
Performance	Ріре	втс	LTC	STC	
Minimum Collapse Pressure	1,130	1,130		1,130	psi
Minimum Internal Yield Pressure	2,740	2,740		2,740	psi
Minimum Pipe Body Yield Strength	853.00	-	-	-	1000 lbs
Joint Strength	=	909	. 	514	1000 lbs
Reference Length	-	11,125	<u> </u>	6,290	n
Make-Up Data	Ptpe	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque				3,860	ft-lbs
Released to Imaging: 9/30/2024 3:12:18 PM Maximum Make-Up Torque	Page 24 of₋32		-	6,430	ft-lbs

Pipe Body and API Connections Performance Data Received by OCD: 9/30/2024 3:10:10 PM 9.625 40.00/0.395 J55


Page 43 of 73 PDF

New Search »

« Back to Previous List

USC O Metric

6/8/2015 10:23:27 AM					
Mechanical Properties	Pipe	втс	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-		psi
Minimum Tensile Strength	75,000	-	<u> </u>	-	psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	9.625	10.625	10.625	10.625	in.
Wall Thickness	0.395	E.	57.)		in.
Inside Diameter	8.835	8.835	8.835	8.835	in.
Standard Drift	8.679	8.679	8.679	8.679	in.
Alternate Drift	8.750	8.750	8.750	8.750	in.
Nominal Linear Weight, T&C	40.00	-	-		lbs/ft
Plain End Weight	38.97	-	_	-	lbs/ft
Performance	Pipe	BTC	LTC	STC	
Minimum Collapse Pressure	2,570	2,570	2,570	2,570	psi
Minimum Internal Yield Pressure	3,950	3,950	3,950	3,950	psi
Minimum Pipe Body Yield Strength	630.00	-		-	1000 lbs
Joint Strength		714	520	452	1000 lbs
Reference Length	-	11,898	8,665	7,529	ft
Make-Up Data	Pipe	втс	LTC	STC	
Make-Up Loss	-	4.81	4.75	3.38	in.
Minimum Make-Up Torque		<u> </u>	3,900	3,390	ft-lbs
Released to Imaging: 9/30/2024 3:12:18 PM Maximum Make-Up Torque	Page 25 of 32	-	6,500	5,650	ft-lbs

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages.

Time: 06:19:27 PM

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234 VAM[®] USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

1. DWC connections are available with a seal ring (SR) option.

2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.

Connection performance properties are based on nominal pipe body and connection dimensions.
 DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
 DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.

6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.

7. Bending efficiency is equal to the compression efficiency.

8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.

9. Connection yield torque is not to be exceeded.

10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.

11. DWC connections will accommodate API standard drift diameters.

12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages.

Pipe Bod and API Gannactions Performance Data

10.750 40.50/0.350 J55

New Search »
« Back to Previous List

USC 🔵 Metric

6/8/2015	10:14:05 AM	

6/8/2015 10:14:05 AM					
Mechanical Properties	Pipe	BTC	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Ptpe	втс	LTC	STC	
Outside Diameter	10.750	11.750	-	11.750	in.
Wall Thickness	0.350	-	-	-	in.
Inside Diameter	10.050	10.050	-	10.050	in.
Standard Drift	9.894	9.894	-	9.894	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	40.50	-	-	-	lbs/ft
Plain End Weight	38.91	-	-	-	lbs/ft
Performance	Ptpe	ВТС	LTC	STC	
Minimum Collapse Pressure	1,580	1,580	-	1,580	psi
Minimum Internal Yield Pressure	3,130	3,130	-	3,130	psi
Minimum Pipe Body Yield Strength	629.00	-	-	-	1000 lbs
Joint Strength	-	700	-	420	1000 lbs
Reference Length	-	11,522	-	6,915	ft
Make-Up Data	Ptpe	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque		-		3,150	ft-Ibs
Released to Imaging: 9/30/2024 3:12:18 PM Maximum Make-Up Torque	Page <u>2</u> 8 of 32		-	5,250	ft-lbs

API 5CT, 10th Ed, Connection Data Sheet

O.D. (in) WEIGHT (I	,	WALL (i	in)	GRA	DE	*API DRI	FT (in)	RBV	V %
8.625 Nominal: Plain End:	32.00 31.13	0.352		J5	5	7.79	96	87	.5
Material Propert	ies (PE)				F	Pipe Body	y Data (PE)	
Pipe						Geo	metry		
Minimum Yield Strength:	55	ksi		Nomina	al ID:			7.92	inch
Maximum Yield Strength:	80	ksi		Nomina	al Area	:		9.149	in ²
Minimum Tensile Strength:	75	ksi		*Specia	al/Alt. [Drift:		7.875	inch
Coupling	I					Perfo	rmance		
Minimum Yield Strength:	55	ksi		Pipe Bo	ody Yie	eld Streng	ith:	503	kips
Maximum Yield Strength:	80	ksi		Collaps	e Res	istance:		2,530	psi
Minimum Tensile Strength:	75	ksi		Internal \ (API Hist		essure:		3,930	psi
					loniour)				
API Connection					,	PI Conne	ction To	orque	
API Connection Coupling OD: 9 STC Perform	.625"				AF	PI Connee STC Torc		-	
Coupling OD: 9	.625"	psi		Min:	AF			-	4,65
Coupling OD: 9 STC Perform	.625" ance				AF	STC Toro	que (ft-ll	os)	4,6
Coupling OD: 9 STC Perform STC Internal Pressure:	.625" ance 3,930 372				AF 2,793	STC Toro	q ue (ft-ll 3,724	bs) Max:	4,65
Coupling OD: 9 STC Perform STC Internal Pressure: STC Joint Strength:	.625" ance 3,930 372	kips			AF 2,793	STC Torc Opti:	q ue (ft-ll 3,724	bs) Max:	
Coupling OD: 9 STC Perform STC Internal Pressure: STC Joint Strength: LTC Perform	.625" ance 3,930 372 ance	kips psi		Min:	AF 2,793	STC Torc Opti: LTC Torc	que (ft-II 3,724 que (ft-II	Max:	
Coupling OD: 9 STC Perform STC Internal Pressure: STC Joint Strength: LTC Perform LTC Internal Pressure:	.625" ance 3,930 372 ance 3,930 417	kips psi kips		Min:	AF 2,793 3,130	STC Torc Opti: LTC Torc	que (ft-II 3,724 que (ft-II 4,174	Max: Max: DS) Max:	4,65 5,2
Coupling OD: 9 STC Perform STC Internal Pressure: STC Joint Strength: LTC Perform LTC Internal Pressure: LTC Joint Strength:	.625" ance 3,930 372 ance 3,930 417	kips psi kips 9.125"		Min: Min:	AF 2,793 3,130	STC Torc Opti: LTC Torc Opti:	que (ft-II 3,724 que (ft-II 4,174 que (ft-II	Max: Max: DS) Max:	5,21

**If above API connections do not suit your needs, VAM® premium connections are available up to 100% of pipe body ratings.

ALL INFORMATION IS PROVIDED BY VALLOUREC OR ITS AFFILIATES AT USER'S SOLE RISK, WITHOUT LIABILITY FOR LOSS, DAMAGE OR INJURY RESULTING FROM THE USE THEREOF; AND ON AN "AS IS" BASIS WITHOUT WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR PURPOSE, ACCURACY OR COMPLETENESS. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND IS BASED ON ESTIMATES THAT HAVE NOT BEEN VERIFIED OR TESTED. IN NO EVENT SHALL VALLOUREC OR ITS AFFILIATES BE RESPONSIBLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, EXEMPLARY OR CONSEQUENTIAL LOSS OR DAMAGE (INCLUDING WITHOUT LIMITATION, LOSS OF USE, LOSS OF BARGAIN, LOSS OF REVENUE, PROFIT OR ANTICIPATED PROFIT) HOWEVER CAUSED OR ARISING, AND WHETHER SUCH LOSSES OR DAMAGES WERE FORESEEABLE OR VALLOUREC OR ITS AFFILIATES WERE ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Rev 3, 7/30/2021

S S2L2 DA 7.875 W/O# SLN # PO# MADE IN USA FT LB

VALLOUREC STAR 8.625 32# J55

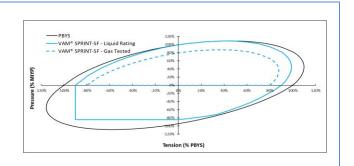
10/21/2022 15:24

Issued on: 10 Feb. 2021 by Wesley Ott

VAM SIPRINT-SIF
Connection Data Sheet

OD	Weight (lb/ft)	Wall Th.	Grade	API Drift:	Connection
6 in.	Nominal: 24.50 Plain End: 23.95	0.400 in.	P110EC	5.075 in.	VAM [®] SPRINT-SF

PI PE PROPERTI ES		
Nominal OD	6.000	in.
Nominal ID	5.200	in.
Nominal Cross Section Area	7.037	sqin.
Grade Type	Hig	jh Yield
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Ultimate Tensile Strength	135	ksi


CONNECTION PROPERTIES		
Connection Type	Integral	Semi-Flush
Connection OD (nom):	6.277	in.
Connection ID (nom):	5.146	in.
Make-Up Loss	5.386	in.
Critical Cross Section	6.417	sqin.
Tension Efficiency	91.0	% of pipe
Compression Efficiency	91.0	% of pipe
Internal Pressure Efficiency	100	% of pipe
External Pressure Efficiency	100	% of pipe

CONNECTI ON PERFORMANCE		
Tensile Yield Strength	801	klb
Compression Resistance	801	klb
Internal Yield Pressure	14,580	psi
Collapse Resistance	12,500	psi
Max. Structural Bending	83	°/100ft
Max. Bending with ISO/API Sealability	30	°/100ft

TORQUE VALUES		
Min. Make-up torque	21,750	ft.lb
Opt. Make-up torque	24,250	ft.lb
Max. Make-up torque	26,750	ft.lb
Max. Torque with Sealability (MTS)	53,000	ft.lb

* 87.5% RBW

VAM® SPRINT-SF is a semi-flush connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections and tight clearance requirements.

Do you need help on this product? - Remember no one knows VAM® like VAM®

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Connection Data Sheet

OD (in.)	WEIGHT (lbs./ft.)	WALL (in.)	GRADE	API DRIFT (in.)	RBW%	CONNECTION
6.000	Nominal: 22.30	0.360	VST P110EC	5.155	92.5	DWC/C-IS
		·		•	•	

PIPE PROPERTIES		
Nominal OD	6.000	in.
Nominal ID	5.280	in.
Nominal Area	6.379	sq.in.
Grade Type	API 5CT	
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Tensile Strength	135	ksi
Yield Strength	797	klb
Ultimate Strength	861	klb
Min. Internal Yield Pressure	13,880	psi
Collapse Pressure	9,800	psi

CONNECTION PERFORMA	NCES	
Yield Strength	797	klb
Parting Load	861	klb
Compression Rating	797	klb
Min. Internal Yield	13,880	psi
External Pressure	9,800	psi
Maximum Uniaxial Bend Rating	47.7	°/100 ft
Reference String Length w 1.4 Design Factor	25,530	ft.

CONNECTION PRO	PERTIES	
Connection Type	Semi-Prem	nium T&C
Connection OD (nom)	6.650	in.
Connection ID (nom)	5.280	in.
Make-Up Loss	4.313	in.
Coupling Length	9.625	in.
Critical Cross Section	6.379	sq.in.
Tension Efficiency	100.0%	of pipe
Compression Efficiency	100.0%	of pipe
Internal Pressure Efficiency	100.0%	of pipe
External Pressure Efficiency	100.0%	of pipe

FIELD END TORQUE V	ALUES	
Min. Make-up torque	17,000	ft.lb
Opti. Make-up torque	18,250	ft.lb
Max. Make-up torque	19,500	ft.lb
Min. Shoulder Torque	1,700	ft.lb
Max. Shoulder Torque	13,600	ft.lb
Min. Delta Turn	-	Turns
Max. Delta Turn	0.200	Turns
Maximum Operational Torque	24,200	ft.lb
Maximum Torsional Value (MTV)	26,620	ft.lb

Need Help? Contact: <u>tech.support@vam-usa.com</u> Reference Drawing: 8135PP Rev.02 & 8135BP Rev.02 Date: 07/30/2020

Time: 07:50:47 PM

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234 VAM[®] USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

1. DWC connections are available with a seal ring (SR) option.

2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.

3. Connection performance properties are based on nominal pipe body and connection dimensions.

4. DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.

5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.

6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.

7. Bending efficiency is equal to the compression efficiency.

8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.

9. Connection yield torque is not to be exceeded.

10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values

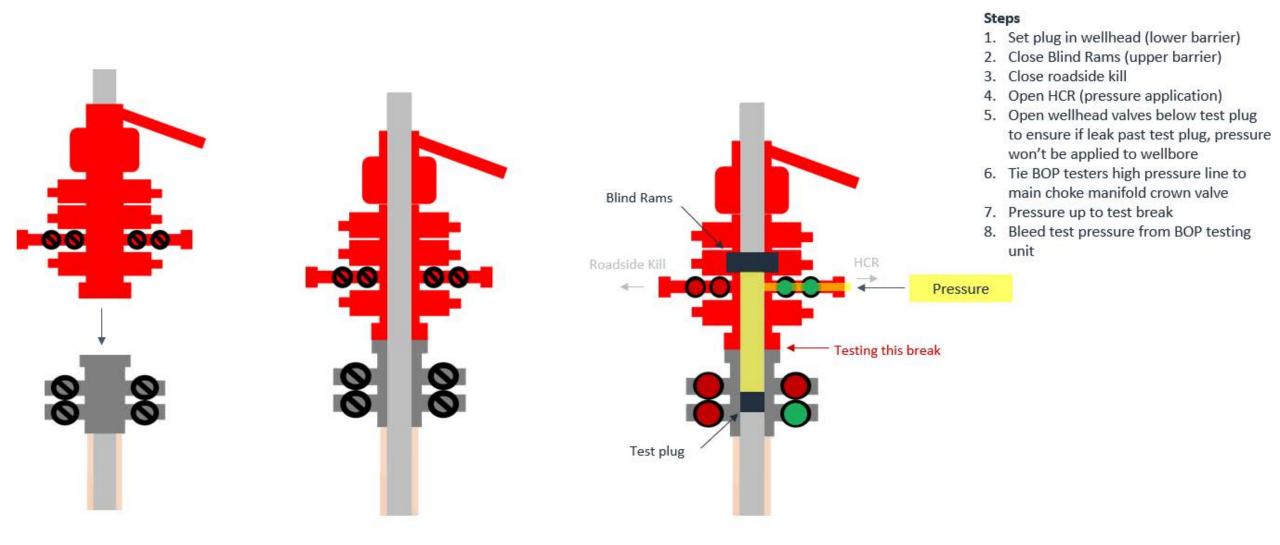
are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.

11. DWC connections will accommodate API standard drift diameters.

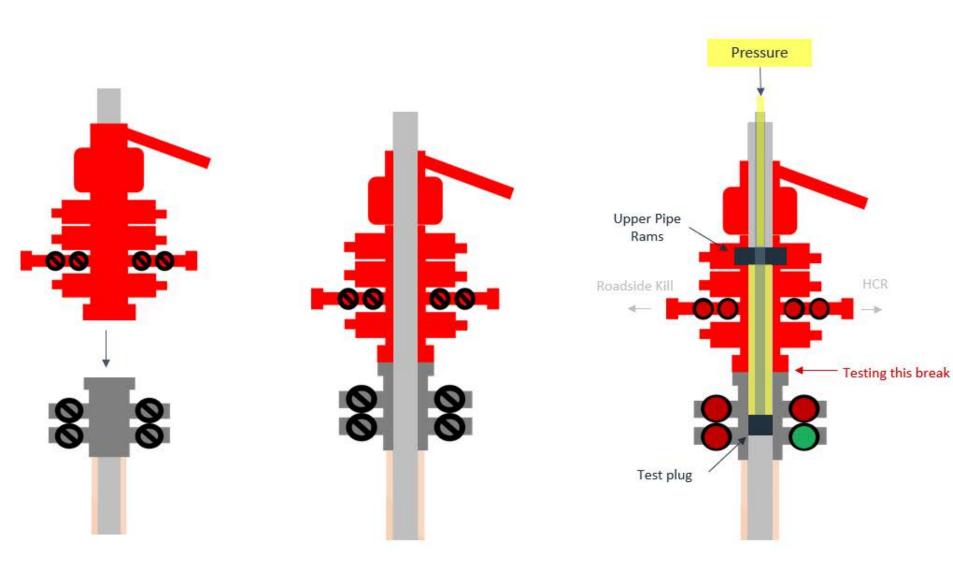
12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.



Break-test BOP & Offline Cementing:


EOG Resources Inc. (EOG) respectfully requests a variance from the minimum standards for well control equipment testing of ECFR Title 43 Part 3172.6(b)(9)(iv) to allow a testing schedule of the blow out preventer (BOP) and blow out prevention equipment (BOPE) along with Batch Drilling & Offline cement operations to include the following:

- Full BOPE test at first installation on the pad.
- Full BOPE test every 21 days.
- This test will be conducted for 5M rated hole intervals only.
- Each rig requesting the break-test variance is capable of picking up the BOP without damaging components using winches, following API Standard 53, Well Control Equipment Systems for Drilling Wells (Fifth edition, December 2018, Annex C. Table C.4) which recognizes break testing as an acceptable practice.
- Function tests will be performed on the following BOP elements:
 - Annular **à** during each full BOPE test
 - Upper Pipe Rams **à** On trip ins where FIT required
 - Blind Rams **à** Every trip
 - Lower Pipe Rams à during each full BOPE test
- Break testing BOP and BOPE coupled with batch drilling operations and option to offline cement and/or remediate (if needed) any surface or intermediate sections, according to attached offline cementing support documentation.
- After the well section is secured, the BOP will be disconnected from the wellhead and walked with the rig to another well on the pad.
- TA cap will also be installed per Wellhead vendor procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

Break Test Diagram (HCR valve)

Break Test Diagram (Test Joint)

Steps

- 1. Set plug in with test joint wellhead (lower barrier)
- 2. Close Upper Pipe Rams (upper barrier)
- 3. Close roadside kill
- 4. Close HCR
- Open wellhead valves below test plug to ensure if leak past test plug, pressure won't be applied to wellbore
- 6. Tie BOP testers high pressure line to top of test joint
- 7. Pressure up to test break
- 8. Bleed test pressure from BOP testing unit

Seog resources Offline Intermediate Cementing Procedure

Cement Program

1. No changes to the cement program will take place for offline cementing.

Summarized Operational Procedure for Intermediate Casing

- 1. Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment back pressure valves.
 - a. Float equipment is equipped with two back pressure valves rated to a minimum of 5,000 psi.
- 2. Land production casing on mandrel hanger through BOP.
 - a. If casing is unable to be landed with a mandrel hanger, then the **casing will be cemented online**.
- 3. Break circulation and confirm no restrictions.
 - a. Ensure no blockage of float equipment and appropriate annular returns.
 - b. Perform flow check to confirm well is static.
- 4. Set pack-off
 - a. If utilizing a fluted/ported mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid, remove landing joint, and set annular packoff through BOP. Pressure test to 5,000 psi for 10 min.
 - b. If utilizing a solid mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid. Pressure test seals to 5,000 psi for 10 min. Remove landing joint through BOP.
- 5. After confirmation of both annular barriers and the two casing barriers, install TA plug and pressure test to 5,000 psi for 10 min. Notify the BLM with intent to proceed with nipple down and offline cementing.
 - a. Minimum 4 hrs notice.
- 6. With the well secured and BLM notified, nipple down BOP and secure on hydraulic carrier or cradle.
 - a. Note, if any of the barriers fail to test, the BOP stack will not be nippled down until after the cement job has concluded and both lead and tail slurry have reached 500 psi.
- 7. Skid/Walk rig off current well.
- 8. Confirm well is static before removing TA Plug.
 - a. Cementing operations will not proceed until well is under control. (If well is not static, notify BLM and proceed to kill)
 - b. Casing outlet valves will provide access to both the casing ID and annulus. Rig or third party pump truck will kill well prior to cementing.
 - c. Well control plan can be seen in Section B, Well Control Procedures.
 - d. If need be, rig can be moved back over well and BOP nippled back up for any further remediation.

Page | 1

beog resources

Offline Intermediate Cementing Procedure

- e. Diagram for rig positioning relative to offline cementing can be seen in Figure 4.
- 9. Rig up return lines to take returns from wellhead to pits and rig choke.
 - a. Test all connections and lines from wellhead to choke manifold to 5,000 psi high for 10 min.
 - b. If either test fails, perform corrections and retest before proceeding.
 - c. Return line schematics can be seen in Figure 3.
- 10. Remove TA Plug from the casing.
- 11. Install offline cement tool.
 - a. Current offline cement tool schematics can be seen in Figure 1 (Cameron) and Figure 2 (Cactus).
- 12. Rig up cement head and cementing lines.
 - a. Pressure test cement lines against cement head to 80% of casing burst for 10 min.
- 13. Break circulation on well to confirm no restrictions.
 - a. If gas is present on circulation, well will be shut in and returns rerouted through gas buster.
 - b. Max anticipated time before circulating with cement truck is 6 hrs.
- 14. Pump cement job as per plan.
 - a. At plug bump, test casing to 0.22 psi/ft or 1500 psi, whichever is greater.
 - b. If plug does not bump on calculated, shut down and wait 8 hrs or 500 psi compressive strength, whichever is greater before testing casing.
- 15. Confirm well is static and floats are holding after cement job.
 - a. With floats holding and backside static:
 - i. Remove cement head.
 - b. If floats are leaking:
 - i. Shut-in well and WOC (Wait on Cement) until tail slurry reaches 500 psi compressive strength and the casing is static prior to removing cement head.
 - c. If there is flow on the backside:
 - i. Shut in well and WOC until tail slurry reaches 500 psi compressive strength. Ensure that the casing is static prior to removing cement head.
- 16. Remove offline cement tool.
- 17. Install night cap with pressure gauge for monitoring.
- 18. Test night cap to 5,000 psi for 10 min.

Example Well Control Plan Content

A. Well Control Component Table

The table below, which covers the cementing of the <u>5M MASP (Maximum Allowable Surface Pressure) portion of the well</u>, outlines the well control component rating in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the BOP nippled up to the wellhead.

Intermediate hole section, 5M requirement

Component	RWP
Pack-off	10M
Casing Wellhead Valves	10M
Annular Wellhead Valves	5M
TA Plug	10M
Float Valves	5M
2" 1502 Lo-Torque Valves	15M

B. Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while circulating and cementing through the Offline Cement Adapter.

General Procedure While Circulating

- 1. Sound alarm (alert crew).
- 2. Shut down pumps.
- 3. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 4. Confirm shut-in.
- 5. Notify tool pusher/company representative.

Page | 3

2/24/2022

2/24/2022

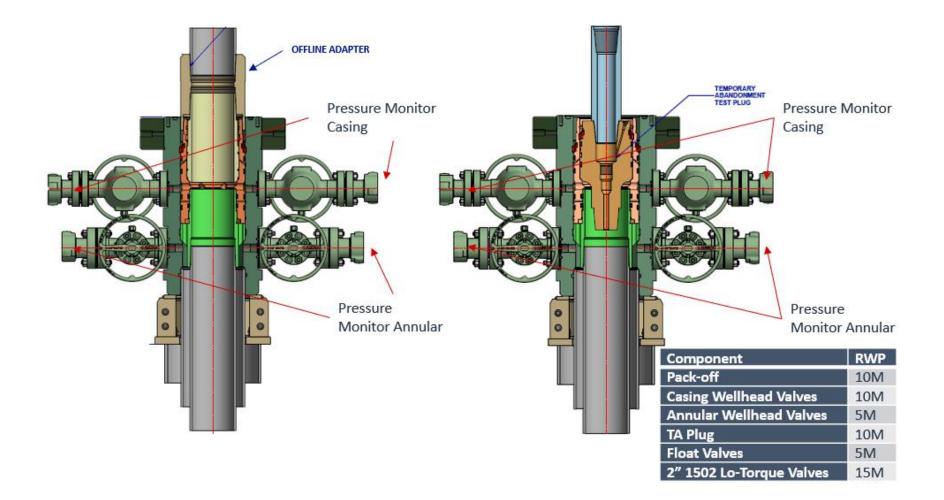
Seog resources

Offline Intermediate Cementing Procedure

- 6. Read and record the following:
 - a. SICP (Shut in Casing Pressure) and AP (Annular Pressure)
 - b. Pit gain
 - c. Time
 - d. Regroup and identify forward plan to continue circulating out kick via rig choke and mud/gas separator. Circulate and adjust mud density as needed to control well.

General Procedure While Cementing

- 1. Sound alarm (alert crew).
- 2. Shut down pumps.
- 3. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 4. Confirm shut-in.
- 5. Notify tool pusher/company representative.
- 6. Open rig choke and begin pumping again taking returns through choke manifold and mud/gas separator.
- 7. Continue to place cement until plug bumps.
- 8. At plug bump close rig choke and cement head.
- 9. Read and record the following
 - a. SICP and AP
 - b. Pit gain
 - c. Time
 - d. Shut-in annulus valves on wellhead

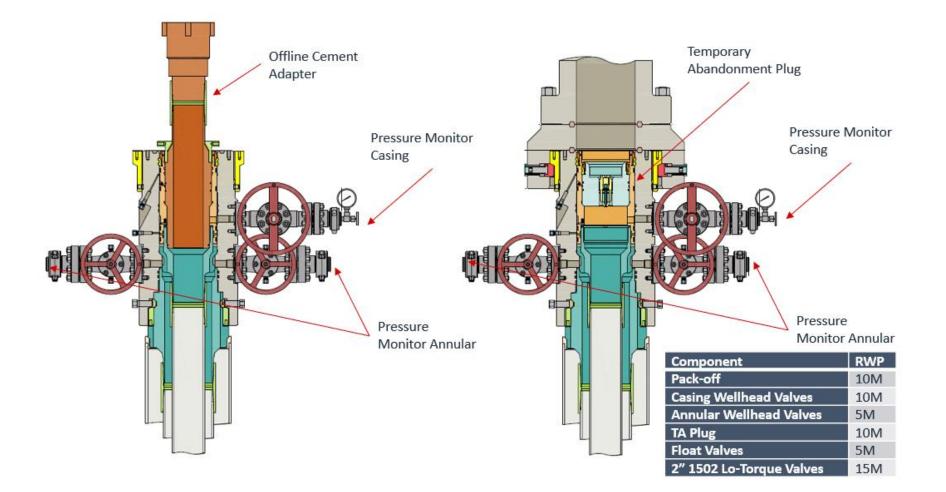

General Procedure After Cementing

- 1. Sound alarm (alert crew).
- 2. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 3. Confirm shut-in.
- 4. Notify tool pusher/company representative.
- 5. Read and record the following:
 - a. SICP and AP
 - b. Pit gain
 - c. Time
 - d. Shut-in annulus valves on wellhead

Page | 4

Seog resources Offline Intermediate Cementing Procedure

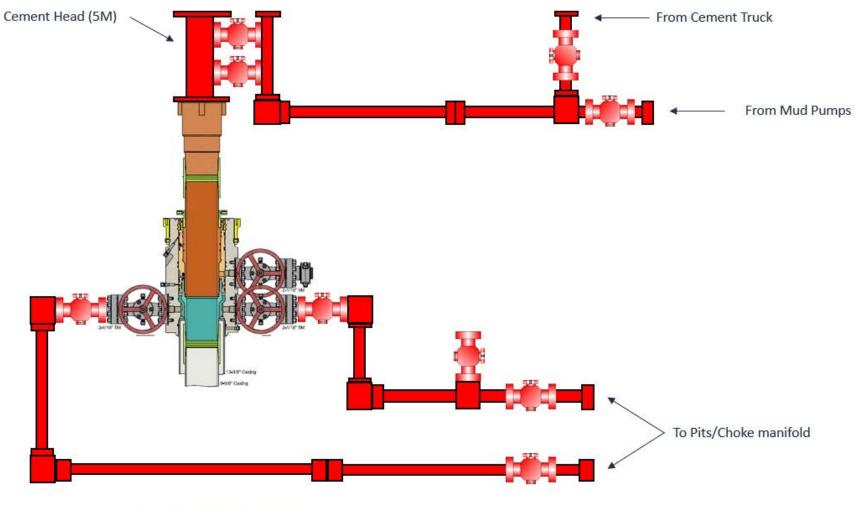
Figure 1: Cameron TA Plug and Offline Adapter Schematic



Page 58 of 73

2/24/2022

Offline Intermediate Cementing Procedure



2/24/2022

2/24/2022

*** All Lines 10M rated working pressure

Page | 7

2/24/2022

Salt Section Annular Clearance Variance Request

Daniel Moose

Current Design (Salt Strings)

0.422" Annular clearance requirement

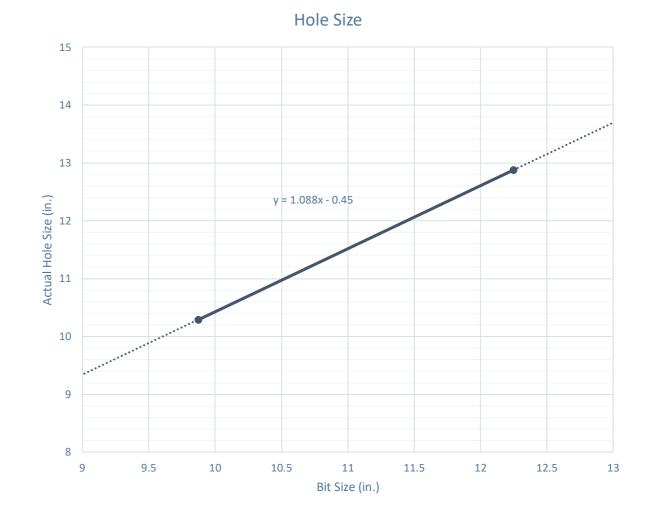
- Casing collars shall have a minimum clearance of 0.422 inches on all sides in the hole/casing annulus, with recognition that variances can be granted for justified exceptions.

- 12.25" Hole x 9.625"40# J55/HCK55 LTC Casing
 - 1.3125" Clearance to casing OD
 - 0.8125" Clearance to coupling OD
- 9.875" Hole x 8.75" 38.5# P110 Sprint-SF Casing
 - 0.5625" Clearance to casing OD
 - 0.433" Clearance to coupling OD

Annular Clearance Variance Request

EOG request permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Onshore Order #2 under the following conditions:

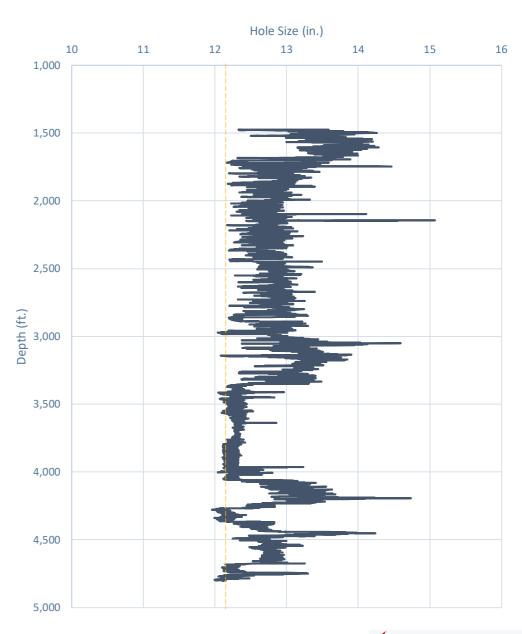
- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues


Volumetric Hole Size Calculation

Hole Size Calculations Off Cement Volumes

- Known volume of cement pumped
- Known volume of cement returned to surface
- Must not have had any losses
- Must have bumped plug

Average Hole Size

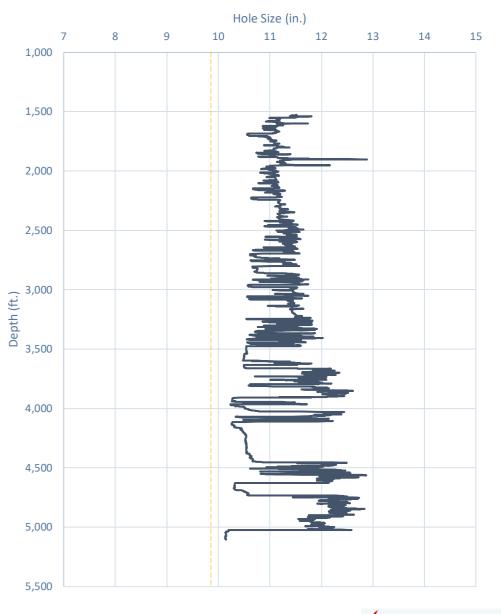

- 12.25" Hole
 - 12.88" Hole
 - 5.13% diameter increase
 - 10.52% area increase
 - 0.63" Average enlargement
 - 0.58" Median enlargement
 - 179 Well Count
- 9.875" Hole
 - 10.30" Hole
 - 4.24% diameter increase
 - 9.64% area increase
 - 0.42" Average enlargement
 - 0.46" Median enlargement
 - 11 Well Count

Caliper Hole Size (12.25")

Average Hole Size

- 12.25" Bit
 - 12.76" Hole
 - 4.14% diameter increase
 - 8.44% area increase
 - 0.51" Average enlargement
 - 0.52" Median enlargement
 - Brine

Modelo 10 Fed Com #501H



Whirling Wind 11 Fed Com #744H

Caliper Hole Size (9.875")

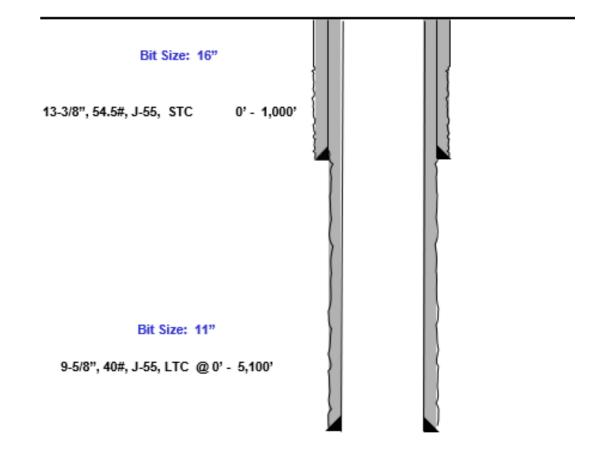
Average Hole Size

- 9.875" Hole
 - 11.21" Hole
 - 13.54% diameter increase
 - 28.92% area increase
 - 1.33" Average enlargement
 - 1.30" Median enlargement
 - EnerLite

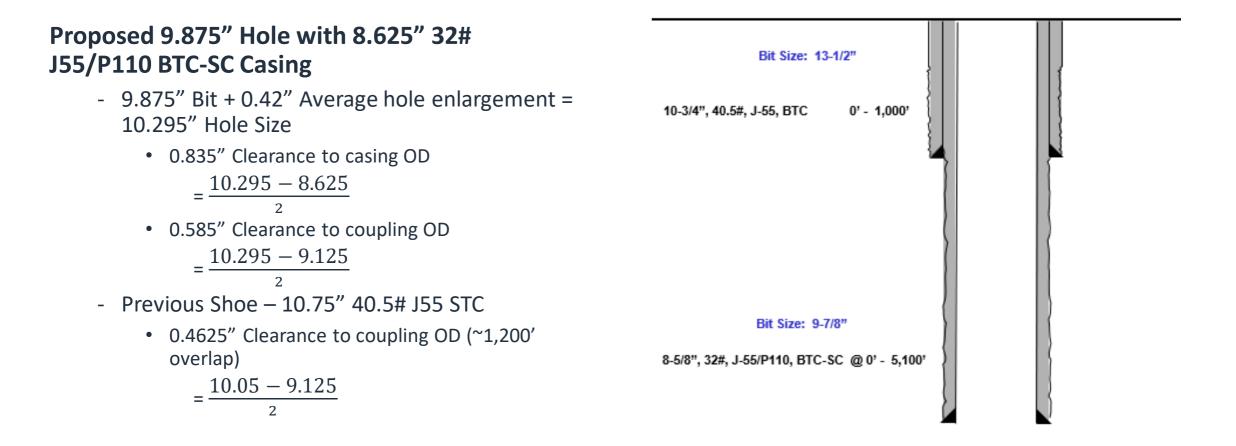
Design A

Proposed 11" Hole with 9.625" 40# J55/HCK55 LTC Casing

- 11" Bit + 0.52" Average hole enlargement = 11.52" Hole Size
 - 0.9475" Clearance to casing OD


$$=\frac{11.52 - 9.625}{2}$$
4475" Clearance to

0.4475" Clearance to coupling OD
 11 52 - 10 625


= -

- Previous Shoe 13.375" 54.5# J55 STC
 - 0.995" Clearance to coupling OD (~1,200' overlap)

$$=\frac{12.615-10.625}{2}$$

Design B

.

Casing Spec Sheets

PERFORMANCE DATA

API LTC		
Technical	Data	Sheet

9.625 in 40.00 lbs/ft

K55 HC

Tubular Parameters

Size	9.625	in	Minimum Yield	55	ksi
Nominal Weight	40.00	lbs/ft	Minimum Tensile	95	ksi
Grade	K55 HC		Yield Load	629	kips
PE Weight	38.94	lbs/ft	Tensile Load	1088	kips
Wall Thickness	0.395	in	Min. Internal Yield Pressure	3,950	psi
Nominal ID	8.835	in	Collapse Pressure	3600	psi
Drift Diameter	8.750	in			
Nom. Pipe Body Area	11.454	in²			

Connection Parameters

10.625	in
10.500	in
8	tpi
3.50	turns
4.750	in
3,950	psi
	10.500 8 3.50 4.750

Pipe Body and API Connections Performance Data

13.375	54.50/0.380	J55

New Search »

« Back to Previous List

USC 💽 Metric

PDF

6/8/2015 10:04:37 AM					
Mechanical Properties	Ptpe	BTC	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Pipe	BTC	LTC	STC	
Outside Diameter	13.375	14.375	-	14.375	in.
Wall Thickness	0.380	-	-	-	in.
Inside Diameter	12.615	12.615	-	12.615	in.
Standard Drift	12.459	12.459	-	12.459	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	54.50	-	-	-	lbs/ft
Plain End Weight	52.79	-	-	-	lbs/ft
Performance	Ptpe	BTC	LTC	STC	
Minimum Collapse Pressure	1,130	1,130	-	1,130	psi
Minimum Internal Yield Pressure	2,740	2,740	-	2,740	psi
Minimum Pipe Body Yield Strength	853.00	-	-	-	1000 lbs
Joint Strength	-	909	-	514	1000 lbs
Reference Length	-	11,125	-	6,290	ft
Make-Up Data	Ptpe	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque	-	-	-	3,860	fl-lbs
Maximum Make-Up Torque	-	-	-	6,430	ft-lbs

Casing Spec Sheets

Pipe Body and API Connections Performance Data

10.750 40.50/0.350 J55					Pl			
New Search »								
					USC 💽 Me			
/8/2015 10:14:05 AM								
Mechanical Properties	Ptpe	BTC	LTC	STC				
Minimum Yield Strength	55,000	-	-	-	psi			
Maximum Yield Strength	80,000	-	-	-	psi			
Minimum Tensile Strength	75,000	-	-	-	psi			
Dimensions	Pipe	втс	LTC	STC				
Outside Diameter	10.750	11.750	-	11.750	in.			
Wall Thickness	0.350		-		in.			
Inside Diameter	10.050	10.050	-	10.050	in.			
Standard Drift	9.894	9.894	-	9.894	in.			
Alternate Drift	-	-	-	-	in.			
Nominal Linear Weight, T&C	40.50	-	-	-	lbs/ft			
Plain End Weight	38.91	-	-		lbs/ft			
Performance	Ptpe	втс	LTC	STC				
Minimum Collapse Pressure	1,580	1,580	-	1,580	psi			
Minimum Internal Yield Pressure	3,130	3,130	-	3,130	psi			
Minimum Pipe Body Yield Strength	629.00	-	-		1000 lbs			
Joint Strength	-	700	-	420	1000 lbs			
Reference Length	-	11,522	-	6,915	ft			
Make-Up Data	Pipe	втс	LTC	STC				
Make-Up Loss	-	4.81	-	3.50	in.			
Minimum Make-Up Torque	-	-	-	3,150	ft-lbs			
Maximum Make-Up Torque	_	-	-	5,250	ft-lbs			

				AF	PI 5CT, 1	10th Ed. C	onnect	ion Data	a Shee	
O.D. (in) 8.625	WEIGHT (I Nominal: Plain End:	b/ft) 32.00 31.13	WALL (ir 0.352	1	ADE 155	* API DRIF 7.79		RBW % 87.5		
	Material Propert	ies (PE)			F	Pipe Body	Data (I	PE)		
	Pipe				Geometry					
Minimum `	/ield Strength:	55	ksi	Nomi	nal ID:			7.92 i		
Maximum	Yield Strength:	80	ksi	Nomi	nal Area			9.149 i	n ²	
Minimum T	Fensile Strength:		ksi	*Spec	cial/Alt. [7.875 i	nch	
	Coupling					Perfor				
	/ield Strength:		ksi		•	eld Strengt	h:	503 k	•	
Maximum	Yield Strength:	80	ksi		pse Res al Yield Pre			2,530 p		
Minimum 1	Fensile Strength:	75	ksi		listorical)	655016.		3,930 p	osi	
	API Connectio Coupling OD: 9				AF	PI Connec	tion To	Torque		
	STC Perform			STC Torque (ft-lbs)						
STC Interr	al Pressure:	3,930	psi	Min:	2,793	Opti:	3,724	Max:	4,65	
STC Joint	Strength:	372	kips							
	LTC Perform	ance				LTC Torq	ue (ft-lk	os)		
	al Pressure:	3,930	psi	Min:	3,130	Opti:	4,174	Max:	5,21	
LTC Joint	•		kips							
SC-BICF	erformance - C	pig OD =	9.125"			BTC Torq	ue (ft-ll	os)		
BTC Interr	al Pressure:	3,930	psi	follo	ow API gu	idelines rega	rding po	sitional ma	ke up	
BTC Joint	Strength:	503	kips							
		*Alt. Drift will	be used unle	ss API Drif	t is specifie	ed on order.				
**	f above API connect	tions do not	suit your ne 100% of p			m connectior	is are av	ailable up t	to	
AND ON AN "A MERCHANTABIL ONLY AND IS BAS INCIDENTAL, PU	N IS PROVIDED BY VALLOUREC S IS" BASIS WITHOUT WARRAN ITY, FITNESS FOR PURPOSE, AC ED ON ESTIMATES THAT HAVE NITIVE, EXEMPLARY OR CONSE SFIT) HOWEVER CAUSED OR AF	ITY OR REPRESENT CURACY OR COMP NOT BEEN VERIFIE QUENTIAL LOSS OF	ATION OF ANY KIN PLETENESS. THE INF ED OR TESTED. IN N R DAMAGE (INCLUE THER SUCH LOSSES	D, WHETHER E ORMATION CC O EVENT SHAL NING WITHOUT	XPRESS OR IMP INTAINED IN TH L VALLOUREC C LIMITATION, L WERE FORESEE	LIED, INCLUDING W HIS DOCUMENT IS PI OR ITS AFFILIATES BE OSS OF USE, LOSS C	ITHOUT LIMI ROVIDED FOR RESPONSIBL	TATION ANY WA INFORMATIONA FOR ANY INDIR OSS OF REVENU LIATES WERE AD	RRANTY OF AL PURPOSE RECT, SPECIA E, PROFIT C	

eog

11

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
EOG RESOURCES INC	7377
5509 Champions Drive	Action Number:
Midland, TX 79706	388542
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By		Condition Date
pkautz	ALL PREVIOUS COA'S APPLY	9/30/2024

Page 73 of 73

Action 388542