

Application for Permit to Drill

U.S. Department of the Interior Bureau of Land Management

Date Printed: 10/07/2024 04:40 PM

APD Package Report

APD ID: 10400097897 Well Status: AAPD

APD Received Date: 04/11/2024 04:32 AM Well Name: POKER LAKE UNIT 22 DTD

Operator: XTO PERMIAN OPERATING LLC Well Number: 401H

APD Package Report Contents

- Form 3160-3

- Operator Certification Report

- Application Report

- Application Attachments

-- Well Plat: 1 file(s)

- Drilling Plan Report

- Drilling Plan Attachments

-- Blowout Prevention Choke Diagram Attachment: 1 file(s)

-- Blowout Prevention BOP Diagram Attachment: 1 file(s)

-- Casing Spec Documents: 2 file(s)

-- Casing Taperd String Specs: 2 file(s)

-- Casing Design Assumptions and Worksheet(s): 3 file(s)

-- Hydrogen sulfide drilling operations plan: 1 file(s)

-- Proposed horizontal/directional/multi-lateral plan submission: 1 file(s)

-- Other Facets: 6 file(s)

-- Other Variances: 5 file(s)

- SUPO Report

- SUPO Attachments

-- Existing Road Map: 1 file(s)

-- Attach Well map: 1 file(s)

-- Water source and transportation map: 1 file(s)

-- Well Site Layout Diagram: 1 file(s)

-- Recontouring attachment: 4 file(s)

-- Other SUPO Attachment: 1 file(s)

- PWD Report

- PWD Attachments

-- None

- Bond Report
- Bond Attachments
 - -- None

Form 3160-3 FORM APPROVED OMB No. 1004-0137 (June 2015) Expires: January 31, 2018 **UNITED STATES** DEPARTMENT OF THE INTERIOR 5. Lease Serial No. NMNM02862 BUREAU OF LAND MANAGEMENT APPLICATION FOR PERMIT TO DRILL OR REENTER 6. If Indian, Allotee or Tribe Name 7. If Unit or CA Agreement, Name and No. **✓** DRILL 1a. Type of work: REENTER NMNM071016X/POKER LAKE UNIT 1b. Type of Well: Oil Well Gas Well Other 8. Lease Name and Well No. 1c. Type of Completion: Hydraulic Fracturing Single Zone ✓ Multiple Zone POKER LAKE UNIT 22 DTD 401H 2. Name of Operator 9. API Well No. XTO PERMIAN OPERATING LLC 30-015-55522 3a. Address 3b. Phone No. (include area code) 10. Field and Pool, or Exploratory Wildcat G-06 S243026M/BONE SPRING 6401 HOLIDAY HILL ROAD BLDG 5, MIDLAND, TX 7970 (432) 683-2277 4. Location of Well (Report location clearly and in accordance with any State requirements: *) 11. Sec., T. R. M. or Blk. and Survey or Area SEC 22/T24S/R30E/NMP At surface NWNE / 233 FNL / 1387 FEL / LAT 32.20994 / LONG -103.864763 At proposed prod. zone SENE / 2627 FNL / 1004 FEL / LAT 32.174393 / LONG -103,863458 12. County or Parish 13. State 14. Distance in miles and direction from nearest town or post office* **EDDY** NM 15. Distance from proposed* 16. No of acres in lease 17. Spacing Unit dedicated to this well 233 feet location to neares 800.0 property or lease line, ft. (Also to nearest drig. unit line, if any) 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file to nearest well, drilling, completed, 30 feet 10479 feet / 23254 feet FED: COB000050 applied for, on this lease, ft. 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 3430 feet 01/23/2025 45 days 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see 2. A Drilling Plan. Item 20 above). 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification. 6. Such other site specific information and/or plans as may be requested by the SUPO must be filed with the appropriate Forest Service Office). 25. Signature Name (Printed/Typed) Date (Electronic Submission) RICHARD REDUS / Ph: (432) 682-8873 04/11/2024 Permitting Manager Approved by (Signature) Date Name (Printed/Typed) (Electronic Submission) CODY LAYTON / Ph: (575) 234-5959 10/04/2024 Title Office Assistant Field Manager Lands & Minerals Carlsbad Field Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached.

APPROVED WITH CONDITIONS

Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency

(Continued on page 2)

*(Instructions on page 2)

of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

Additional Operator Remarks

Location of Well

0. SHL: NWNE / 233 FNL / 1387 FEL / TWSP: 24S / RANGE: 30E / SECTION: 22 / LAT: 32.20994 / LONG: -103.864763 (TVD: 0 feet, MD: 0 feet) PPP: NENE / 100 FNL / 1005 FEL / TWSP: 24S / RANGE: 30E / SECTION: 22 / LAT: 32.210313 / LONG: -103.863528 (TVD: 10479 feet, MD: 11000 feet) PPP: NESE / 2633 FSL / 998 FEL / TWSP: 24S / RANGE: 30E / SECTION: 22 / LAT: 32.203343 / LONG: -103.863515 (TVD: 10479 feet, MD: 13700 feet) BHL: SENE / 2627 FNL / 1004 FEL / TWSP: 24S / RANGE: 30E / SECTION: 34 / LAT: 32.174393 / LONG: -103.863458 (TVD: 10479 feet, MD: 23254 feet)

BLM Point of Contact

Name: MARIAH HUGHES Title: Land Law Examiner Phone: (575) 234-5972 Email: mhughes@blm.gov

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

Phone: (505) 476-3441 Fax: (55) 476-3462

General Information Phone: (505) 629-6116

Online Phone Directory Visit:

https://www.emnrd.nm.gov/ocd/contact-us/

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION

Revised July 9	, 2024	
Submit Electro	nically	,
via OCD Permi	tting	

0.1. 21	
Submittal Type:	☐ Amended Report
7 1	☐ As Drilled

					WELL LOCA	ATIO	N INFORMATION				
API N	30	-015- <mark>55522</mark>	Pool Code	97798		Poo	ol Name WILDCA	T G-06 S24	3026M; BO	NE SPRING	
Proper	ty Code 333	192	Property Na	nme POk	(ER LAKE UNIT	Г 22 [Well Number 401H				er
OGRI			Operator Na	ame XTC	PERMIAN OP	ERA	TING, LLC			Ground Lev 3,430'	rel Elevation
Surfac	e Owner: 🗆	State □ Fee □	Tribal 🛛 Fed	eral			Mineral Owner: S	State 🗆 Fee	□ Tribal 🛛	Federal	
					Su	rface	Location				
UL	Section	Township	Range	Lot	Ft. from N/S		Ft. from E/W	Latitude	I	ongitude	County
В	22	248	30E		233' FNL		1,387' FEL	32.20994		103.864763	EDDY
		1	I	1	Botto	m Ho	ole Location		L		l .
UL	Section	Township	Range	Lot	Ft. from N/S		Ft. from E/W	Latitude	I	ongitude	County
Н	34	24S	30E		2,627' FNL		1,004' FEL	32.17439	3 -	103.863458	EDDY
Dedica	ated Acres	Infill or Defin	ning Well	Well Defining Well API			Overlapping Spacing Unit (Y/N) Consolidat			ion Code	
800.0	0	Infill		3001549886			No		ι	J	
Order	Numbers.	N/A			Well setbacks are under Common Ownership: XIYes □No						
					Kick	Off P	Point (KOP)				
UL	Section	Township	Range	Lot	Ft. from N/S		Ft. from E/W	Latitude	I	ongitude	County
В	22	24S	30E		233' FNL		1,387' FEL	32.20994	0 -	103.864763	EDDY
					First '	Take	Point (FTP)				
UL	Section	Township	Range	Lot	Ft. from N/S		Ft. from E/W	Latitude	I	Longitude	County
Α	22	24S	30E		100' FNL		1,005' FEL	32.21031	3 -	103.863528	EDDY
					Last	Take !	Point (LTP)				
UL	Section	Township	Range	Lot	Ft. from N/S		Ft. from E/W	Latitude	I	ongitude	County
I	34	24S	30E		2,537' FNL		1,004' FEL	32.17464	0 -	103.863459	EDDY
				Т				1			
Unitize	ed Area or Ar NMNM105	rea of Uniform II 422429	nterest	Spacing	Unit Type 🖄 Hoi	rizonta	al □ Vertical	Grou	ınd Floor Ele	vation: 3,430)'
OPER.	ATOR CERT	TFICATIONS				S	URVEYOR CERTIFIC	ATIONS			

I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief, and, if the well is a vertical or directional well, that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with an owner of a working interest or unleased mineral interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division.

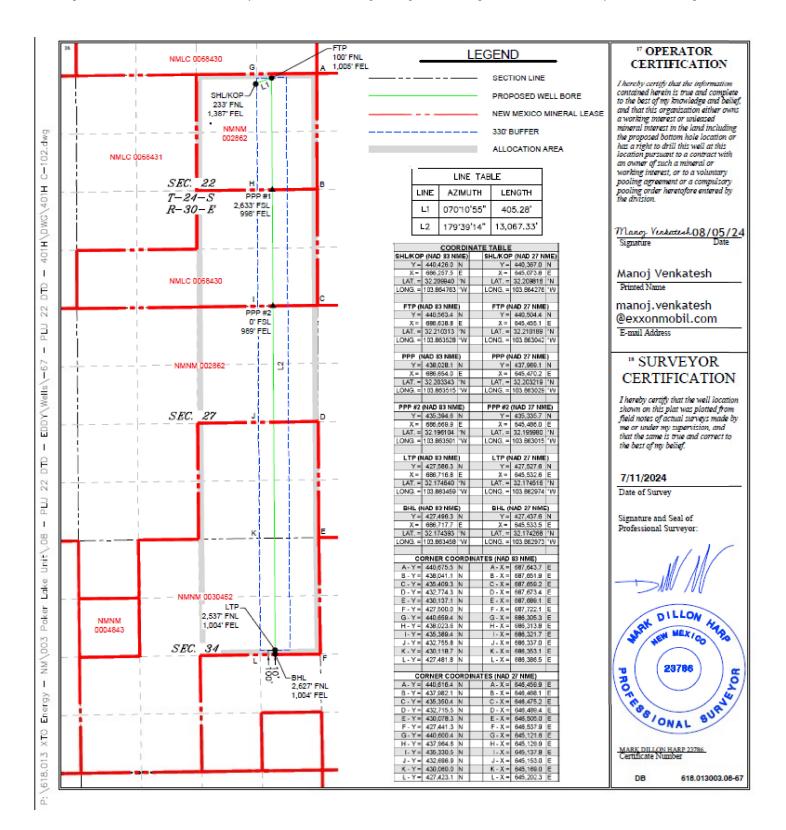
If this well is a horizontal well, I further certify that this organization has received the consent of at least one lessee or owner of a working interest or unleased mineral interest in each tract (in the target pool or formation) in which any part of the well's completed interval will be located or obtained a compulsory pooling order from the division.

Samantha Weis	10/08/2024
Signature	Date
Samantha Weis	
Printed Name	
samantha r bartnik@exxonmobil o	com

I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made by me or under my supervision, and that the same is true and correct to the best of my belief.

See Below

Signature and Seal of Professional Surveyor


Certificate Number Date of Survey

Note: No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Email Address

This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is closest to any outer boundary of the tract.

Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed, contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description <u>Effective May 25, 2021</u>

I. Operator:	XTO Permian Operating, LLC	OGRID:	<u>373075</u>	Date: <u>09 / 16 / 2024</u>	
II. Type: ⊠ Origin	nal \square Amendment due to \square 19.15.27	.9.D(6)(a) NMAC [3 19.15.27.9.D(6)(b)	NMAC □ Other.	
If Other, please desc	cribe:				

III. Well(s): Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	3 yr Anticipated decline Oil BBL/D	Anticipated Gas MCF/D	3 yr Anticipated decline Gas MCF/D	Anticipated Produced Water BBL/D	3 yr Anticipated decline Water BBL/D
Poker Lake Unit 22 DTD 103H	TBD	22 T24S R30E	916 FNL, 113 FWL	1,800	200	7,500	1,200	7,000	800
Poker Lake Unit 22 DTD 106H	TBD	22 T24S R30E	916 FNL, 203 FWL	1,800	200	7,500	1,200	7,000	800
Poker Lake Unit 22 DTD 907H	TBD	22 T24S R30E	916 FNL, 233 FWL	1,800	200	7,500	1,200	7,000	800
Poker Lake Unit 22 DTD 145H	TBD	22 T24S R30E	916 FNL, 173 FWL	1,800	200	7,500	1,200	7,000	800
Poker Lake Unit 22 DTD 153H	TBD	22 T24S R30E	414 FNL,1946 FEL	1,800	200	7,500	1,200	7,000	800
Poker Lake Unit 22 DTD 194H	TBD	22 T24S R30E	916 FNL, 143 FWL	1,900	200	3,250	900	3,750	450
Poker Lake Unit 22 DTD 197H	TBD	22 T24S R30E	414 FNL, 2286 FEL	1,900	200	3,250	900	3,750	450
Poker Lake Unit 22 DTD 201H	TBD	22 T24S R30E	13 FNL, 1534 FWL	1,900	200	3,250	900	3,750	450
Poker Lake Unit 22 DTD 202H	TBD	22 T24S R30E	13 FNL, 1564 FWL	1,800	200	7,500	1,200	7,000	800
Poker Lake Unit 22 DTD 203H	TBD	22 T24S R30E	13 FNL, 1594 FWL	1,900	200	3,250	900	3,750	450
Poker Lake Unit 22 DTD 204H	TBD	22 T24S R30E	13 FNL, 1654 FWL	1,800	200	7,500	1,200	7,000	800
Poker Lake Unit 22 DTD 205H	TBD	22 T24S R30E	13 FNL, 1684 FWL	1,900	200	3,250	900	3,750	450

Poker Lake Unit 22 DTD 401H	TBD	22 T24S R30E	233 FNL, 1387 FEL	1,900	200	3,250	900	3,750	450
Poker Lake Unit 22 DTD 402H	TBD	22 T24S R30E	233 FNL, 1357 FEL	1,800	200	7,500	1,200	7,000	800
Poker Lake Unit 22 DTD 403H	TBD	22 T24S R30E	233 FNL, 1327 FEL	1,800	200	7,500	1,200	7,000	800
Poker Lake Unit 22 DTD 404H	TBD	22 T24S R30E	233 FNL, 1297 FEL	1,900	200	3,250	900	3,750	450
Poker Lake Unit 22 DTD 405H	TBD	22 T24S R30E	233 FNL, 1267 FEL	1,800	200	7,500	1,200	7,000	800
Poker Lake Unit 22 DTD 406H	TBD	22 T24S R30E	233 FNL, 1237 FEL	1,800	200	7,500	1,200	7,000	800

IV. Central Delivery Point Name: PLU 22 DTD CTB [See 19.15.27.9(D)(1) NMAC]

V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or

proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	Spud Date	TD Reached	Completion	Initial Flow	First Production
Well Raine	7111	Spad Bate	Date	Commencement Date	Back Date	Date
Poker Lake Unit 22 DTD	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
103H						
Poker Lake Unit 22 DTD	<u>TBD</u>	<u>TBD</u>	TBD	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
106H						
Poker Lake Unit 22 DTD	TBD	TBD	TBD	<u>TBD</u>	TBD	TBD
907H						
Poker Lake Unit 22 DTD	TBD	<u>TBD</u>	TBD	<u>TBD</u>	TBD	<u>TBD</u>
145H Poker Lake Unit 22 DTD	TDD	TDD	TDD	TDD	TDD	TDD
153H	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
Poker Lake Unit 22 DTD	TDD	TDD	TDD	TDD	TDD	TDD
194H	TBD	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
Poker Lake Unit 22 DTD	TIP D	TED D	TDD	TED D	TERR	TED D
197H	TBD	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
D. I. I. I. I. I. I. O. DED						
Poker Lake Unit 22 DTD 201H	TBD	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
Poker Lake Unit 22 DTD 202H	TBD	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
Poker Lake Unit 22 DTD 203H	TBD	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
Poker Lake Unit 22 DTD 204H	TBD	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
Poker Lake Unit 22 DTD 205H	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
203H						
Poker Lake Unit 22 DTD	TBD	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
401H						
Poker Lake Unit 22 DTD	<u>TBD</u>	TBD	<u>TBD</u>	<u>TBD</u>	TBD	<u>TBD</u>
402H						
Poker Lake Unit 22 DTD	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
403H						
L			l .			

during active and planned maintenance.

Poker Lake Unit 22 DTD 404H	<u>TBD</u>	TBD	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
Poker Lake Unit 22 DTD 405H	<u>TBD</u>	TBD	TBD	<u>TBD</u>	<u>TBD</u>	TBD
Poker Lake Unit 22 DTD 406H	<u>TBD</u>	TBD	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>

VI. Separation Equipm	ent: Attacl	a complete descri	ption of how Op	perator will size separation	equipment to op	timize gas capture.
VII. Operational Pract Subsection A through F			ription of the ac	ctions Operator will take t	o comply with the	ne requirements of
VIII. Best Managemen	it Practices: [☐ Attach a comple	te description of	f Operator's best manager	ment practices to	minimize venting

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable

☑ Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

reporting area must complete this section.

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Ш	Operator	System	ULSTR of Tie-in	Anticipated Gathering	Available Maximum Daily Capacity
				Start Date	of System Segment Tie-in
ľ					

XI. Map. \square Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the
production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of
he segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system $oxtimes$ will $oxtimes$ will no	ot have capacity to gather 100% of the anticipated natural gas
production volume from the well prior to the date of first production.	

XIII. Line Pressure. Operator \square does \square does not anticipate that its existing well(s) connected to the same segment, or portion, of	the
natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

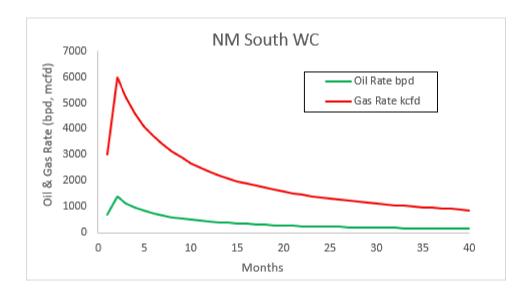
☐ Attach	Operator's	s plan t	to manage proc	luction in response	to the increased	line pressure.
----------	------------	----------	----------------	---------------------	------------------	----------------

XIV. Confidentiality:

Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal: ☑ Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or ☐ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. If Operator checks this box, Operator will select one of the following: Well Shut-In. \(\times \) Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or Venting and Flaring Plan. \Box Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including: power generation on lease; (a) (b) power generation for grid; compression on lease; (c) liquids removal on lease; (d)


- reinjection for underground storage; (e)
- reinjection for temporary storage; **(f)**
- reinjection for enhanced oil recovery; (g)
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
- Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become (a) unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Samantha Weis
Printed Name: Samantha Weis
Title: Permitting Advisor
E-mail Address: samantha.r.bartnik@exxonmobil.com
Date: 10/03/2024
Phone: +1-832-625-7361
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

Drilling Plan Data Report

10/07/2024

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400097897

Operator Name: XTO PERMIAN OPERATING LLC

Well Name: POKER LAKE UNIT 22 DTD

Well Type: OIL WELL

Submission Date: 04/11/2024

Highlighted data reflects the most recent changes

Well Number: 401H

Well Work Type: Drill

Show Final Text

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio
14264991	QUATERNARY	3430	0	0	ALLUVIUM	USEABLE WATER	N
14264992	RUSTLER	2268	1162	1162	ANHYDRITE, SANDSTONE	USEABLE WATER	N
14264993	SALADO	1865	1565	1565	SALT	NONE	N
14264990	BASE OF SALT	-328	3758	3758	SALT	NONE	N
14264994	DELAWARE	-522	3952	3952	LIMESTONE, SANDSTONE	NATURAL GAS, OIL, OTHER: Produced Water	N
14264989	BRUSHY CANYON	-3068	6498	6498	SANDSTONE	NATURAL GAS, OIL, OTHER : Produced Water	N
14264995	BONE SPRING	-4392	7822	7822	LIMESTONE, SANDSTONE	NATURAL GAS, OIL, OTHER : Produced Water	Y
14264996	BONE SPRING 1ST	-5101	8531	8531	LIMESTONE, SANDSTONE	NATURAL GAS, OIL, OTHER : Produced Water	Y
14264997	BONE SPRING 2ND	-5686	9116	9116	LIMESTONE, SANDSTONE	NATURAL GAS, OIL, OTHER : Produced Water	Y
14264988	BONE SPRING 3RD	-6899	10329	10329	LIMESTONE, SANDSTONE	NATURAL GAS, OIL, OTHER : Produced Water	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 5M Rating Depth: 10479

Equipment: Once the permanent WH is installed on the Surface casing, the blow out preventer equipment (BOP) will consist of a 5M Hydril and a 5M Double Ram BOP. XTO will use a Multi-Bowl system which is attached.

Requesting Variance? YES

Variance request: A variance is requested to allow use of a flex hose as the choke line from the BOP to the Choke Manifold. If this hose is used, a copy of the manufacturer's certification and pressure test chart will be kept on the rig. Attached is an example of a certification and pressure test chart. The manufacturer does not require anchors. XTO requests a variance to be able to batch drill this well if necessary. In doing so, XTO will set casing and ensure that the well is cemented properly (unless approval is given for offline cementing) and the well is static. With floats holding, no pressure on the csg annulus, and the installation of a 10K TA cap as per Cactus recommendations, XTO will contact the BLM to skid the rig to drill the remaining wells on the pad. Once surface and both intermediate strings are all completed, XTO will begin drilling the production hole on

each of the wells. A variance is requested to ONLY test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API standard 53 states, that for pad drilling operation, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken. We will request permission to ONLY retest broken pressure seals if the following conditions are met: 1. After a full BOP test is conducted on the first well on the pad 2. When skidding to drill an intermediate section that does not penetrate into the Wolfcamp.

Testing Procedure: All BOP testing will be done by an independent service company. Operator will test as per BLM 43 CFR 3172

Choke Diagram Attachment:

PLU_22_DTD_5MCM_20240406094552.pdf

BOP Diagram Attachment:

PLU_22_DTD_5MBOP_20240524051930.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	12.2 5	9.625	NEW	API	N	0	1262	0	1262	3430	2168	1262	J-55	40	BUTT	4.99	1.74	DRY	12.4 8	DRY	12.4 8
	INTERMED IATE	8.75	7.625	NEW	API	Υ	0	9578	0	9563	3411	-6133	9578	L-80	29.7	FJ	2.5	2.12	DRY	2.45	DRY	2.45
	PRODUCTI ON	6.75	5.5	NEW	NON API	Υ	0	23254	0	10479	3411	-7049	23254	P- 110		OTHER - Talon HTQ/Freedo m HTQ	2	1.05	DRY	2.1	DRY	2.1

Casing Attachments

Casing Attachments

Casing ID: 1

String

SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

POKER_LAKE_UNIT_22_DTD_401H_Csg_20240406113832.pdf

Casing ID: 2

String

INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

POKER_LAKE_UNIT_22_DTD_401H_Csg_20240406114015.pdf

Casing Design Assumptions and Worksheet(s):

POKER_LAKE_UNIT_22_DTD_401H_Csg_20240406114032.pdf

Casing ID: 3

String

PRODUCTION

Inspection Document:

Spec Document:

Freedom_5.5000_20.0000_0.3610__P110_RY_20240709073614.pdf
Talon_HTQ_RD_5.5000_20.0000_0.3610__P110_RY_20240709073615.pdf

Tapered String Spec:

POKER_LAKE_UNIT_22_DTD_401H_Csg_20240406113921.pdf

Casing Design Assumptions and Worksheet(s):

POKER_LAKE_UNIT_22_DTD_401H_Csg_20240406113942.pdf

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	1262	320	1.87	10.5	598.4	100	EconoCem- HLTRRC	NA
SURFACE	Tail		0	1262	130	1.35	14.8	175.5	100	Class C	2% CaCl
INTERMEDIATE	Lead		0	6498	280	1.35	14.8	378	100	Class C	NA
INTERMEDIATE	Tail		6498	9578	730	1.33	14.8	970.9	100	Class C	NA
PRODUCTION	Lead		9278	9778	20	2.69	11.5	53.8	30	NeoCem	NA
PRODUCTION	Tail		9778	2325 4	960	1.51	13.2	1449. 6	30	VersaCem	NA

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: The necessary mud products for weight addition and fluid loss control will be on location at all times.

Describe the mud monitoring system utilized: Spud with fresh water/native mud. Drill out from under surface casing with Saturated Salt solution. Saturated Salt mud will be used while drilling through the salt formation. Use fibrous materials as needed to control seepage and lost circulation. Pump viscous sweeps as needed for hole cleaning. Pump speed will be recorded on a daily drilling report after mudding up. A Pason or Totco will be used to detect changes in loss or gain of mud volume. A mud test will be performed every 24 hours to determine: density, viscosity, strength, filtration and pH as necessary. Use available solids controls equipment to help keep mud weight down after mud up. Rig up solids control equipment to operate as a closed loop system.

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	НА	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
9578	2325 4	OIL-BASED MUD	10.2	10.7							

Peratos, Nomo: YTD DERMIND PERATING LLC

Page 20 of 6

Well Name: POKER LAKE UNIT 22 DTD Well Number: 401H

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Hd	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	1262	WATER-BASED MUD	8.4	8.9						ï	
3952	9578	OTHER : BDE/OBM	9	9.5						6	
1262	3952	SALT SATURATED	10.5	11					1		

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Open hole logging will not be done on this well.

List of open and cased hole logs run in the well:

GAMMA RAY LOG, CEMENT BOND LOG, DIRECTIONAL SURVEY, MEASUREMENT WHILE DRILLING, MUD LOG/GEOLOGICAL LITHOLOGY LOG,

Coring operation description for the well:

No coring is planned for the well.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 5558 Anticipated Surface Pressure: 3252

Anticipated Bottom Hole Temperature(F): 190

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations

XTO_Energy_H2S_Plan_Updated_20240806085723.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

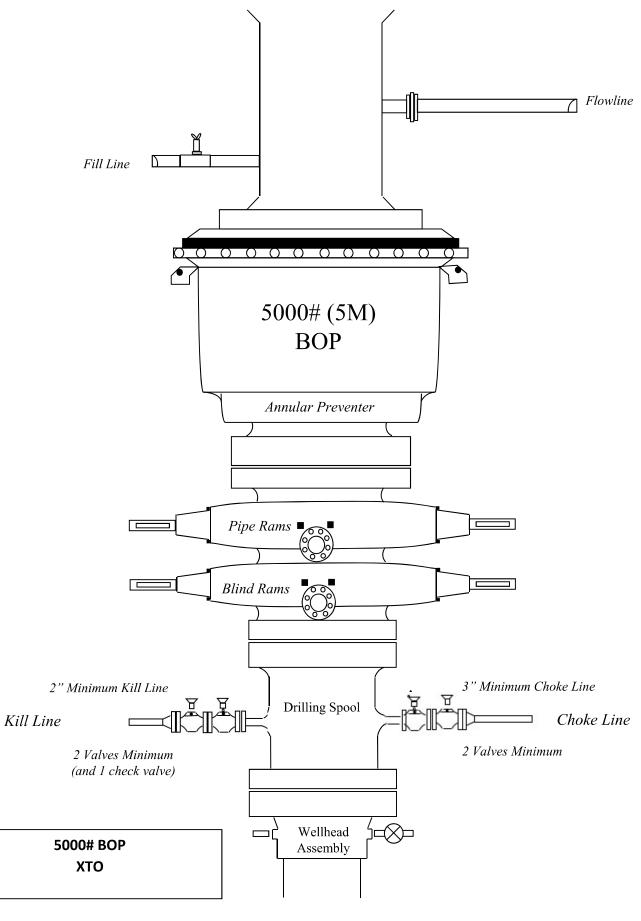
POKER LAKE UNIT 22 DTD 401H DD 20240406100338.pdf

Other proposed operations facets description:

Other proposed operations facets attachment:

POKER_LAKE_UNIT_22_DTD_401H_Cmt_20240406100313.pdf
POKER_LAKE_UNIT_22_DTD_401H_RL_20240709074529.pdf
PLU_22_DTD_H2S_DiaC_20240709074255.pdf
PLU_22_DTD_H2S_DiaA_20240709074334.pdf
PLU_22_DTD_H2S_DiaB_20240709074338.pdf
PLU_22_DTD_H2S_DiaD_20240709074349.pdf

Other Variance attachment:


Spudder_Rig_Request_20240806093311.pdf

Offline_Cement_Variance_Surf___Interm_Csg_20240806093311.pdf

Updated_Flex_Hose_20240806093311.pdf

BOP_Break_Test_Variance_20240823094104.pdf

9.625_7.625_5.5_3_String_Slimhole_HBE0000479_4_20240823094217.pdf

Casing Assumptions

	SF SF SF Burst Collapse Tension	1.74 4.99 12.48	2.91 2.92 1.96	2.12 2.50 2.45	1.05 2.21 2.10	1.05 2.00 2.10	<u> </u>
	New/Used B	New 1	New 2	New 2	New 1	New 1	
	Collar	втс	Flush Joint	Flush Joint	Semi-Premium	Semi-Flush	
	Grade	J-55	RY P-110	HC L-80	RY P-110	RY P-110	
	Weight	40	29.7	29.7	20	20	
	OD Csg	9.625	7.625	7.625	5.5	5.5	
	Depth	0' – 1262'	0' – 4000'	4000' – 9578'	0' – 9478'	9478' - 23254'	
g Design	Hole Size	12.25	8.75	8.75	6.75	6.75	
Casin ased to In	paging: 10/1	1/2024	8:51:3	3 AM			

Cement Variance Request

Intermediate Casing:

XTO requests to pump a two stage cement job on the 7-5/8" intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brush Canyon (6498') and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. If cement is not visually confirmed to circulate to surface, the final cement top after the second stage job will be verified by Echo-meter. If necessary, a top out consisting of 1,500 sack of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (2.30 yld, 12.91 ppg) will be executed as a contingency. If cement is still unable to circulate to surface, another Echo-meter run will be performed for cement top verification.

XTO will report to the BLM the volume of fluid (limited to 5 bbls) used to flush intermediate casing valves following backside cementing procedures.

XTO requests to pump an Optional Lead if well conditions dictate in an attempt to bring cement inside the first intermediate casing. If cement reaches the desired height, the BLM will be notified and the second stage bradenhead squeeze and subsequent TOC verification will be negated.

XTO requests the option to conduct the bradenhead squeeze and TOC verification offline as per standard approval from BLM when unplanned remediation is needed and batch drilling is approved. In the event the bradenhead is conducted, we will ensure the first stage cement job is cemented properly and the well is static with floats holding and no pressure on the csg annulus as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

Production Casing:

XTO requests the option to offline cement and remediate (if needed) surface and intermediate casing strings where batch drilling is approved and if unplanned remediation is needed. XTO will ensure well is static with no pressure on the csg annulus, as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed when applicable per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops. Offline cement operations will then be conducted after the rig is moved off the current well to the next well in the batch sequence.

XTO respectfully requests approval to utilize a spudder rig to pre-set surface casing.

Description of Operations:

- 1. Spudder rig will move in to drill the surface hole and pre-set surface casing on the well.
 - a. After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
 - b. The spudder rig will utilize fresh water-based mud to drill the surface hole to TD. Solids control will be handled entirely on a closed loop basis. No earth pits will be used.
- 2. The wellhead will be installed and tested as soon as the surface casing is cut off and WOC time has been reached.
- 3. A blind flange at the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wing valves.
 - a. A means for intervention will be maintained while the drilling rig is not over the well.
- 4. Spudder rig operations are expected to take 2-3 days per well on the pad.
- 5. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 6. Drilling Operations will begin with a larger rig and a BOP stack equal to or greater than the pressure rating that was permitted will be nippled up and tested on the wellhead before drilling operations resume on each well.
 - a. The larger rig will move back onto the location within 90 days from the point at which the wells are secured and the spudder rig is moved off location.
 - b. The BLM will be notified 24 hours before the larger rig moves back on the pre-set locations
- 7. XTO will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations.
- 8. Once the rig is removed, XTO will secure the wellhead area by placing a guard rail around the cellar area.

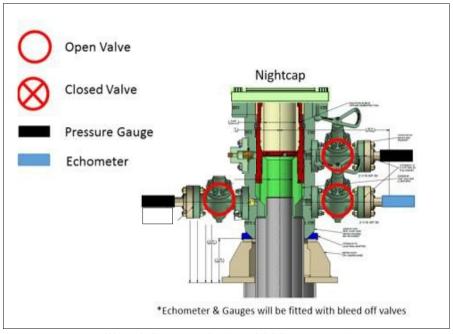
XTO Permian Operating, LLC Offline Cementing Variance Request

XTO requests the option to cement the surface and intermediate casing strings offline as a prudent batch drilling efficiency of acreage development.

1. Cement Program

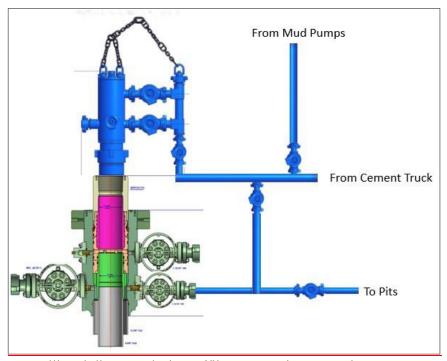
No changes to the cement program will take place for offline cementing.

2. Offline Cementing Procedure


The operational sequence will be as follows. If a well control event occurs, the BLM will be contacted for approval prior to conducting offline cementing operations.

- 1. Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment (float collar and shoe)
- 2. Land casing with mandrel
- 3. Fill pipe with kill weight fluid, do not circulate through floats and confirm well is static
- 4. Set annular packoff shown below and pressure test to confirm integrity of the seal. Pressure ratings of wellhead components and valves is 5,000 psi.
- 5. After confirmation of both annular barriers and internal barriers, nipple down BOP and install cap flange.
 - a. If any barrier fails to test, the BOP stack will not be nippled down until after the cement job is completed with cement 500ft above the highest formation capable of flow with kill weight mud above or after it has achieved 50-psi compressive strength if kill weight fluid cannot be verified.

Annular packoff with both external and internal seals


XTO Permian Operating, LLC Offline Cementing Variance Request

Wellhead diagram during skidding operations

- 6. Skid rig to next well on pad.
- 7. Confirm well is static before removing cap flange, flange will not be removed and offline cementing operations will not commence until well is under control. If well is not static, casing outlet valves will provide access to both the casing ID and annulus. Rig or third party pump truck will kill well prior to cementing or nippling up for further remediation.
 - a. Well Control Plan
 - i. The Drillers Method will be the primary well control method to regain control of the wellbore prior to cementing, if wellbore conditions do not permit the drillers method other methods of well control may be used
 - ii. Rig pumps or a 3rd party pump will be tied into the upper casing valve to pump down the casing ID
 - iii. A high pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
 - iv. Once influx is circulated out of the hole, kill weight mud will be circulated
 - v. Well will be confirmed static
 - vi. Once confirmed static, cap flange will be removed to allow for offline cementing operations to commence
- 8. Install offline cement tool
- 9. Rig up cement equipment

XTO Permian Operating, LLC Offline Cementing Variance Request

Wellhead diagram during offline cementing operations

- 10. Circulate bottoms up with cement truck
 - a. If gas is present on bottoms up, well will be shut in and returns rerouted through gas buster to handle entrained gas
 - b. Max anticipated time before circulating with cement truck is 6 hrs
- 11. Perform cement job taking returns from the annulus wellhead valve
- 12. Confirm well is static and floats are holding after cement job
- 13. Remove cement equipment, offline cement tools and install night cap with pressure gauge for monitoring.

GATES ENGINEERING & SERVICES NORTH AMERICA

7603 Prairie Oak Dr.

Houston, TX. 77086

PHONE: +1 (281) 602-4100

FAX: +1 (281) 602-4147

EMAIL: gesna.quality@gates.com

WEB: www.gates.com/oilandgas

NEW CHOKE HOSE

INSTAUED 02-10-2024

CERTIFICATE OF CONFORMANCE

This is to verify that the items detailed below meet the requirements of the Customer's Purchase Order referenced herein, and are in Conformance with applicable specifications, and that Records of Required Tests are on file and subject to examination. The following items were inspected and hydrostatically tested at **Gates Engineering & Services North America** facilities in Houston, TX, USA.

CU	ST	0	M	ER	:	
		-				

NABORS DRILLING TECHNOLOGIES USA DBA NABORS DRILLING USA

CUSTOMER P.O.#:

15582803 (TAG NABORS PO #15582803 SN 74621 ASSET 66-1531)

CUSTOMER P/N:

IMR RETEST SN 74621 ASSET #66-1531

PART DESCRIPTION:

RETEST OF CUSTOMER 3" X 45 FT 16C CHOKE & KILL HOSE ASSEMBLY C/W 4 1/16" 10K

FLANGES

SALES ORDER #:

529480

QUANTITY:

- 1

SERIAL #:

74621 H3-012524-1

SIGNATURE: 7. CUSTUSE

TITLE: QUALITY ASSURANCE

DATE: 1/25/2024

H3-15/16

1/25/2024 11:48:06 AM

TEST REPORT

CUSTOMER

Company:

Nabors Industries Inc.

TEST OBJECT

Serial number: H3-012524-1

Lot number:

Production description:

74621/66-1531

Description:

74621/66-1531

Sales order #:

529480

Customer reference:

FG1213

Hose ID: Part number: 3" 16C CK

TEST INFORMATION

Test procedure:

GTS-04-053

Fitting 1:

Test pressure:

15000.00 3600.00

Part number:

3.0 x 4-1/16 10K

Test pressure hold: Work pressure:

10000.00

Description:

3.0 x 4-1/16 10K

Work pressure hold:

900.00

psi sec %

psi

sec

Fitting 2: Part number:

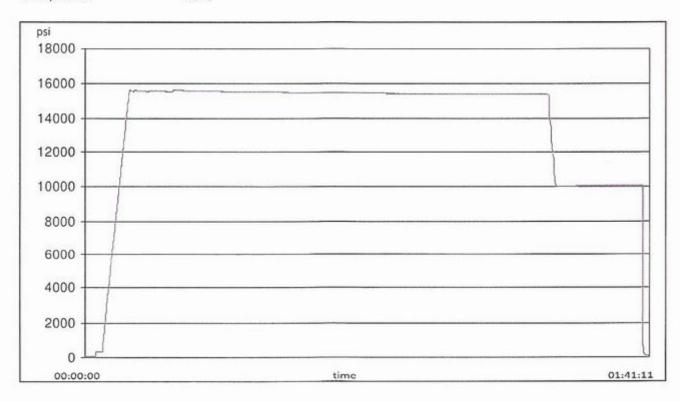
Length difference: Length difference: 0.00 0.00

inch

Description:

Visual check:

Pressure test result: PASS Length:

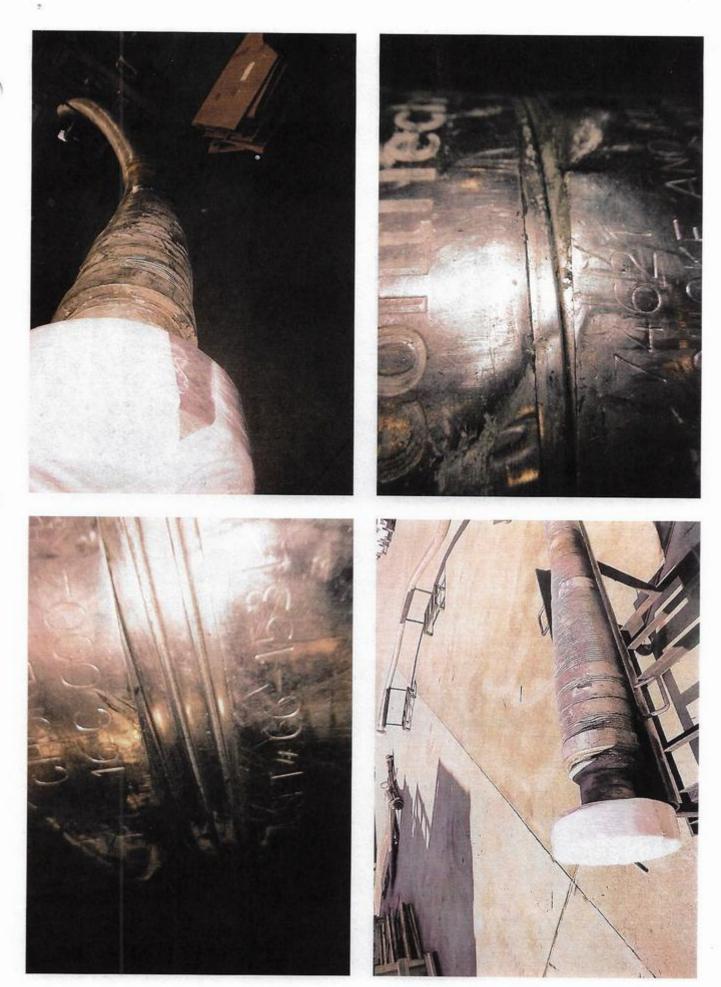

feet

45

Length measurement result:

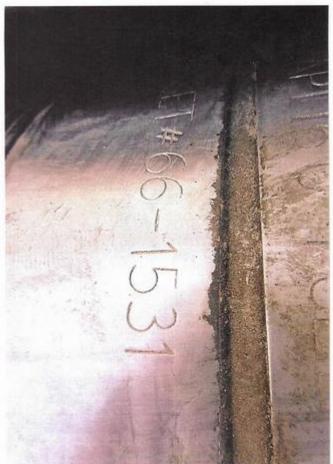
Test operator:

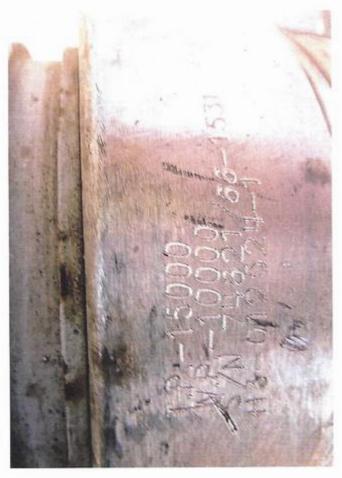
Travis


H3-15/16

1/25/2024 11:48:06 AM

TEST REPORT


GAUGE TRACEABILITY


Description	Serial number	Calibration date	Calibration due date
S-25-A-W	110D3PHO	2023-06-06	2024-06-06
S-25-A-W	110IQWDG	2023-05-16	2024-05-16
Comment			
comment			

Released to Imaging: 10/11/2024 8:51:33 AM

Released to Imaging: 10/11/2024 8:51:33 AM

Subject: Request for a Variance Allowing break Testing of the Blowout Preventer Equipment (BOPE)

XTO Energy requests a variance to ONLY test broken pressure seals on the BOPE and function test BOP when skidding a drilling rig between multiple wells on a pad.

Background

Onshore Oil and Gas Order CFR Title 43 Part 3170, Drilling Operations, Sections III.A.2.i.iv.B states that the BOP test must be performed whenever any seal subject to test pressure is broken. The current interpretation of the Bureau of Land Management (BLM) requires a complete BOP test and not just a test of the affected component. CFR Title 43 Part 3170 states, "Some situation may exist either on a well-by-well basis or field-wide basis whereby it is commonly accepted practice to vary a particular minimum standard(s) established in this order. This situation can be resolved by requesting a variance...". XTO Energy feels the break testing the BOPE is such a situation. Therefore, as per CFR Title 43 Part 3170, XTO Energy submits this request for the variance.

Supporting Documentation

CFR Title 43 Part 3170 became effective on December 19, 1988 and has remained the standard for regulating BLM onshore drilling operations for over 30 years. During this time there have been significant changes in drilling technology. BLM continues to use the variance request process to allow for the use of modern technology and acceptable engineering practices that have arisen since CFR Title 43 Part 3170 was originally released. The XTO Energy drilling rig fleet has many modern upgrades that allow the intact BOP stack to be moved between well slots on a multi-well pad, as well as, wellhead designs that incorporate quick connects facilitating release of the BOP from the wellhead without breaking any BOP stack components apart. These technologies have been used extensively offshore, and other regulators, API, and many operators around the world have endorsed break testing as safe and reliable.

Figure 1: Winch System attached to BOP Stack

Figure 2: BOP Winch System

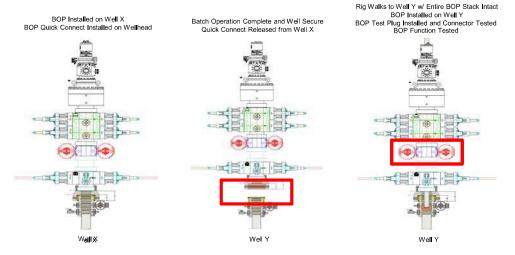
American Petroleum Institute (API) standards, specification and recommended practices are considered the industry standard and are consistently utilized and referenced by the industry. CFR Title 43 Part 3170recognizes API recommended Practices (RP) 53 in its original development. API Standard 53, *Well Control Equipment Systems for Drilling Wells* (Fifth Edition, December 2018, Annex C, Table C.4) recognizes break testing as an acceptable practice. Specifically, API Standard 53, Section 5.3.7.1 states "A pressure test of the pressure containing component shall be performed following the disconnection or repair, limited to the affected component." See Table C.4 below for reference.

Tab	ole C.4—Initial Pressure Te	esting, Surface BOP Stacks	
	Pressure Test—Low	Pressure Test-	-High Pressure ^{ac}
Component to be Pressure Tested	Pressure ^{ac} psig (MPa)	Change Out of Component, Elastomer, or Ring Gasket	No Change Out of Component, Elastomer, or Ring Gasket
Annular preventer ^b	250 to 350 (1.72 to 2.41)	RWP of annular preventer	MASP or 70% annular RWP, whichever is lower.
Fixed pipe, variable bore, blind, and BSR preventers ^{bd}	250 to 350 (1.72 to 2.41)	RWP of ram preventer or wellhead system, whichever is lower	ITP
Choke and kill line and BOP side outlet valves below ram preventers (both sides)	250 to 350 (1.72 to 2.41)	RWP of side outlet valve or wellhead system, whichever is lower	ITP
Choke manifold—upstream of chokes ^e	250 to 350 (1.72 to 2.41)	RWP of ram preventers or wellhead system, whichever is lower	ITP
Choke manifold—downstream of chokese	250 to 350 (1.72 to 2.41)	RWP of valve(s), line(s), or M whichever is lower	MASP for the well program,
Kelly, kelly valves, drill pipe safety valves, IBOPs	250 to 350 (1.72 to 2.41)	MASP for the well program	
 Annular(s) and VBR(s) shall be pre For pad drilling operations, moving pressure-controlling connections For surface offshore operations, the 	during the evaluation period. The psssure tested on the largest and sm from one wellhead to another within when the integrity of a pressure se ram BOPs shall be pressure testand operations, the ram BOPs shall	oressure shall not decrease below the allest OD drill pipe to be used in well n the 21 days, pressure testing is req	program. juired for pressure-containing an the closing and locking pressur

The Bureau of Safety and Environmental Enforcement (BSEE), Department of Interior, has also utilized the API standards, specification and best practices in the development of its offshore oil and gas regulations and incorporates them by reference within its regulations.

Break testing has been approved by the BLM in the past with other operators based on the detailed information provided in this document.

XTO Energy feels break testing and our current procedures meet the intent of CFR Title 43 Part 317 Oand often exceed it. There has been no evidence that break testing results in more components failing than seen on full BOP tests. XTO Energy's internal standards requires complete BOPE tests more often than that of CFR Title 43 Part 3170 (Every 21 days). In addition to function testing the annular, pipe rams and blind rams after

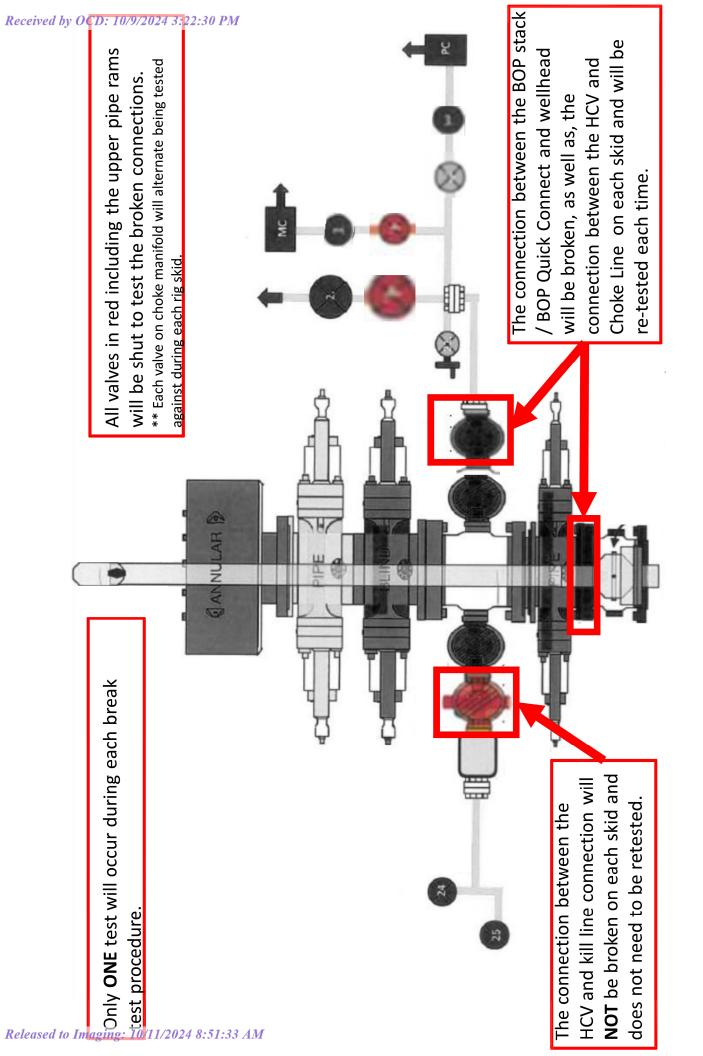

each BOP nipple up, XTO Energy performs a choke drill with the rig crew prior to drilling out every casing shoe. This is additional training for the rig crew that exceeds the requirements of the CFR Title 43 Part 3170.

Procedures

- XTO Energy will use this document for our break testing plan for New Mexico Delaware basin.
 The summary below will be referenced in the APD or Sundry Notice and receive approval prior
 to implementing this variance.
- 2. XTO Energy will perform BOP break testing on multi-wells pads where multiple intermediate sections can be drilled and cased within the 21-day BOP test window.
 - a. A full BOP test will be conducted on the first well on the pad.
 - b. The first intermediate hole section drilled on the pad will be the deepest. All of the remaining hole sections will be the same depth or shallower.
 - i. Our Lower WC targets set the intermediate casing shoe no deeper than the Wolfcamp B.
 - ii. Our Upper WC targets set the intermediate casing shoe shallower than the Wolfcamp B.
 - c. A Full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.
 - d. A full BOP test will be required prior to drilling any production hole.
- 3. After performing a complete BOP test on the first well, the intermediate hole section will be drilled and cased, two breaks would be made on the BOP equipment.
 - a. Between the HCV valve and choke line connection
 - b. Between the BOP quick connect and the wellhead
- 4. The BOP is then lifted and removed from the wellhead by a hydraulic system.
- 5. After skidding to the next well, the BOP is moved to the wellhead by the same hydraulic system and installed.
- 6. The connections mentioned in 3a and 3b will then be reconnected.
- 7. Install test plug into the wellhead using test joint or drill pipe.
- 8. A shell test is performed against the upper pipe rams testing the two breaks.
- 9. The shell test will consist of a 250 psi low test and a high test to the value submitted in the APD or Sundry (e.g. 5,000 psi or 10,000psi).
- 10. Function test will be performed on the following components: lower pipe rams, blind rams, and annular.

- 11. For a multi-well pad the same two breaks on the BOP would be made and on the next wells and steps 4 through 10 would be repeated.
- 12. A second break test would only be done if the intermediate hole section being drilled could not be completed within the 21 day BOP test window.

Note: Picture below highlights BOP components that will be tested during batch operations


Summary

A variance is requested to **ONLY** test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API Standard 53 states, that for pad drilling operation, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken.

The BOP will be secured by a hydraulic carrier or cradle. The BLM will be contacted if a Well Control event occurs prior to the commencement of a BOPE Break Testing operation.

Based on discussions with the BLM on February 27th 2020 and the supporting documentation submitted to the BLM, we will request permission to ONLY retest broken pressure seals if the following conditions are met:

- 1. After a full BOP test is conducted on the first well on the pad.
- 2. The first intermediate hole section drilled on the pad will be the deepest. All of the remaining hole sections will be the same depth or shallower.
- 3. Full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.
- 4. Full BOP test will be required prior to drilling the production hole.

5-1/2" Ca

Well Plan Report - Poker Lake Unit 22 DTD South 401H

Well Plan Report

Well Plan Report - Poker Lake Unit 22 DTD Sout	Measured Depth: 23253.68 ft	10479.00 ft	Cartographic New Mexico East - Reference System: NAD 27	Northing: 440367.00 ft	Easting: 645073.80 ft	3462	Ground Level: 3430	North Reference:	-
Unit 22 DTD §	.68 ft	.00 ft	o East - NAD 27	.00 ft	.80 ft	3462.00 ft	3430.00 ft	Grid	

Pian sections	ב							
Measured			ΔΛ			Build	Turn	Dogleg
Depth	Inclination	Azimuth	RKB	Y Offset	X Offset	Rate	Rate	Rate
(#)	(Ded)	(Deg)	(#)	(#)	(#)	(Deg/100ft)	(Deg/100ft)	(Deg/100ft) Target
0.00	00.00	00.00	00.00	00.00	00.00	00.0	00.00	00.00
1100.00	00.00	00.00	1100.00	00.00	00.00	00.00	00.00	00.00
1315.22	4.30	70.18	1315.02	2.74	7.60	2.00	0.00	2.00
6499.80	4.30	70.18	6484.98	134.66	373.70	00.00	0.00	00.00
6715.03	00.00	00.00	6700.00	137.40	381.30	-2.00	00.00	2.00
9777.83	00.00	00.00	9762.80	137.40	381.30	00.00	00.00	00:00
10902.83	90.00	179.66	10479.00	-578.78	385.57	8.00	00.00	8.00
23163.69	90.00	179.66	10479.00	-12839.43	458.76	00.00	00.00	0.00 LTP 23
23253.68	00.06	179.66	10479.00	-12929.41	459.30	00.00	00.00	0.00 BHL 23

	Tool	Nsed	
	Semi- minor	of Bias Error Error Azimuth Used	
	Semi- Semi- major minor	Error /	
	Semi- major	Error	
	Magnitude	of Bias	
		Bias	I.HTML
	Vertical	Error	South401F
I		Bias	ZZDTDS
South 401	Lateral	Error	erLakeUnit
DTD S		Bias	orts/Pok
Poker Lake Unit 22 DTD South 401H	TVD Highside	Error Bias Error Bias Error Bias	anning/Repo
Poker La	DVT D	RKB	ace/WellPla
Position Uncertainty	Measured	Depth Inclination Azimuth	file:///C:/Users/arsriva/Landmark/DecisionSpace/WellPlanning/Reports/PokerLakeUnit22DTDSouth401H.HTML
			•

	_UDTD_22	PLUDTD_22	-UDTD_22	.UDTD_22	.UDTD_22	PLUDTD_22	-UDTD_22	.UDTD_22	_UDTD_22	-UDTD_22	.UDTD_22	.UDTD_22	-UDTD_22	_UDTD_22	_UDTD_22	.UDTD_22	PLUDTD_22	-UDTD_22	-UDTD_22	_UDTD_22		_UDTD_22											
	·MS+GS_XTO_P		-MS+GS_XTO_P	-MS+GS_XTO_P	-MS+GS_XTO_P		-MS+GS_XTO_P	·MS+GS_XTO_P	·MS+GS_XTO_P	-MS+GS_XTO_P	-MS+GS_XTO_P	-MS+GS_XTO_P	-MS+GS_XTO_P	-MS+GS_XTO_P	-MS+GS_XTO_P	·MS+GS_XTO_P	-MS+GS_XTO_P	-MS+GS_XTO_P	-MS+GS_XTO_P	-MS+GS_XTO_P		-MS+GS_XTO_P	MS+GS_XTO_P-MS+GS_XTO_F	·MS+GS_XTO_P ·MS+GS_XTO_P ·MS+GS_XTO_F	MS+GS_XTO_P MS+GS_XTO_P MS+GS_XTO_P -MS+GS_XTO_P	MS+GS_XTO_P MS+GS_XTO_P MS+GS_XTO_P -MS+GS_XTO_F MS+GS_XTO_F	MS+GS_XTO_P MS+GS_XTO_P MS+GS_XTO_P MS+GS_XTO_P MS+GS_XTO_P MS+GS_XTO_F	MS+GS_XTO_P MS+GS_XTO_P MS+GS_XTO_P MS+GS_XTO_P MS+GS_XTO_P MS+GS_XTO_P MS+GS_XTO_P	MS+GS_XTO_P MS+GS_XTO_P MS+GS_XTO_P MS+GS_XTO_P MS+GS_XTO_P MS+GS_XTO_P MS+GS_XTO_P MS+GS_XTO_P	MS+GS_XTO_P MS+GS_XTO_P MS+GS_XTO_P MS+GS_XTO_P MS+GS_XTO_P MS+GS_XTO_P MS+GS_XTO_P MS+GS_XTO_P MS+GS_XTO_P	MS+GS_XTO_P	MS+GS_XTO_P MS+GS_XTO_P	MS+GS_XTO_P MS+GS_XTO_P
(,)	0.000 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD	90.000 MWD+IFR1+SAG+MS+GS_XTO	90.000 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD	90.000 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD	90.000 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD	90.000 MWD+IFR1+SAG+MS+GS_XTO	90.000 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD	90.000 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD	90.000 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_	90.000 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD	90.000 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD	90.000 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD	90.097 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD	90.401 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_	90.583 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD	90.635 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD	90.686 MWD+IFR1+SAG+MS+GS_XTO_	90.753 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD	90.834 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_	90.925 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_		91.024 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD											
Œ	0.000	0.179	0.538	968.0	1,255	1.613	1.972	2.330	2.689	3.047	3,405	3.764	4.117	4.465	4.520	4.815	5.163	5.513	5.864	6.216	0	6.568	6.921	6.921 7.275	6.921 7.275 7.628	6.921 7.275 7.628 7.982	6.968 6.921 7.275 7.628 7.982 8.337	6.568 6.921 7.275 7.628 7.982 8.337 8.691	6.568 6.921 7.275 7.628 7.982 8.337 8.691	6.568 6.921 7.275 7.628 7.982 8.337 8.691 9.046	6.568 6.921 7.275 7.628 7.982 8.337 8.691 9.046 9.401	6.568 6.921 7.275 7.628 7.982 8.337 8.691 9.046 9.401	6.568 6.921 7.275 7.628 7.982 8.337 8.691 9.046 9.401 9.757
(£	0.000	0.358	0.717	1.075	1.434	1.792	2.151	2.509	2.868	3.226	3.585	3.943	4.296	4.645	4.699	4.996	5.348	5.700	6.054	6.408	6.763		7.118	7.118	7.118 7.474 7.830	7.118 7.474 7.830 8.186	7.118 7.474 7.830 8.186 8.542	7.118 7.474 7.830 8.186 8.542 8.899	7.118 7.474 7.830 8.186 8.542 8.899 9.256	7.118 7.474 7.830 8.186 8.542 8.899 9.256	7.118 7.474 7.830 8.186 8.542 8.899 9.256 9.613		
(£	0.000	0.000	0.000	0.000	0.000	000'0	0.000	000'0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000		
(#) (#)	0.000 0.000	2.300 0.000	2.310 0.000	2.326 0.000	2.347 0.000	2.375 0.000	2.407 0.000	2.445 0.000	2.486 0.000	2.533 0.000	2.583 0.000	2.636 0.000	2.692 0.000	2.750 0.000	2.757 0.000	2.810 0.000	2.876 0.000	2.944 0.000	3.015 0.000	3.088 0.000	3.163 0.000		3.240 0.000										
Œ	0.000	000.0	000.0	0.000	0000	0.000	0.000	0.000	0.000	0.000	0.000	0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000	00.000	00.000	00000	00.00	00000	00.00	00000
Œ)	0.000	0.179	0.538	968.0	1.255	1.613	1.972	2.330	2.689	3.047	3.405	3.764	4.276	4.624	4.677	4.974	5.325	5.678	6.031	6.384	6.738		7.093	7.093	7.093 7.448 7.804	7.093 7.448 7.804 8.159	7.093 7.448 7.804 8.159 8.515	7.093 7.448 7.804 8.159 8.515 8.871	7.093 7.448 7.804 8.159 8.515 8.871 9.228	7.093 7.448 7.804 8.159 8.515 8.871 9.228	7.093 7.448 7.804 8.159 8.515 8.871 9.228 9.585	7.093 7.448 7.804 8.159 8.515 8.871 9.228 9.585 9.941	7.093 7.448 7.804 8.159 8.515 8.871 9.228 9.585 9.941 10.298
(ft) (ft)	0.000 0.000	0.358 0.000	0.717 0.000	1.075 0.000	1.434 0.000	1.792 0.000	2.151 0.000	2.509 0.000	2.868 0.000	3.226 0.000	3.585 0.000	3.943 0.000	4.136 0.000	4.478 0.000	4.529 0.000	4 825 0 000	5.176 0.000	5.527 0.000	5.880 0.000	6.233 0.000	6.587 0.000		6.941 0.000										
(£	0.000	100.000	200,000	300,000	400.000	500,000	000'009	700,000	800.000	900.006	1000.000	1100,000	1199.980	1299.838	1315.022	1399.558	1499.276	1598.994	1698.712	1798.430	1898.148	1007 966	000.7661	2097.584	2097.584 2197.302	2097.584 2197.302 2297.020	2097.584 2197.302 2297.020 2396.738	2097.584 2197.302 2297.020 2396.738 2496.456	2097.584 2197.302 2297.020 2396.738 2496.456 2596.174	2097.584 2197.302 2297.020 2396.738 2496.456 2596.174 2695.891	2097.584 2197.302 2297.020 2396.738 2496.456 2596.174 2695.891 2795.609	2097.584 2197.302 2297.020 2396.738 2496.456 2596.174 2695.891 2795.609	2097.584 2197.302 2297.020 2396.738 2496.456 2596.174 2695.891 2795.609 2895.327
0)	00000	0.000	0.000	0.000	0.000	0000	0.000	000'0	0.000	000.0	0.000	0.000	70.184	70.184	70.184	70.184	70.184	70.184	70.184	70.184	70.184	70 184	5	70.184	70.184	70.184 70.184 70.184	70.184 70.184 70.184 70.184	70.184 70.184 70.184 70.184	70.184 70.184 70.184 70.184 70.184	70.184 70.184 70.184 70.184 70.184	70.184 70.184 70.184 70.184 70.184 70.184	70.184 70.184 70.184 70.184 70.184 70.184	70.184 70.184 70.184 70.184 70.184 70.184 70.184
0	0.000	0.000	0.000	0.000	0.000	0.000	0000	0.000	0.000	0.000	0.000	0.000	2.000	4.000	4.304	4.304	4.304	4.304	4.304	4.304	4.304	4 304	5	4.304	4.304	4.304	4.304 4.304 4.304	4.304 4.304 4.304 4.304 4.304	4.304 4.304 4.304 4.304 4.304	4.304 4.304 4.304 4.304 4.304 4.304 4.304	4.304 4.304 4.304 4.304 4.304 4.304 4.304	4.304 4.304 4.304 4.304 4.304 4.304 4.304 4.304	4.304 4.304 4.304 4.304 4.304 4.304 4.304 4.304 4.304
(0.000	100.000	200.000	300 000	400.000	200,000	000.009	700.000	800.000	000.006	1000,000	1100.000	1200.000	1300.000	1315.225	1400.000	1500.000	1600.000	1700.000	1800.000	1900.000	2000.000		000.00	000.00	2100.000 2200.000 2300.000	2100.000 2200.000 2300.000 2400.000	2100.000 2200.000 2300.000 2400.000 2500.000	2100.000 2200.000 2300.000 2400.000 2500.000	00.000 00.000 00.000 00.000 00.000	00.000 00.000 00.000 00.000 00.000	00.000 00.000 00.000 00.000 00.000 00.000	2100.000 2200.000 2400.000 2500.000 2600.000 2700.000 2800.000

3/4/24, 9:38 PM

3/9

3/4/24, 9:38 PM

file:///C:/Users/arsriva/Landmark/DecisionSpace/WellPlanning/Reports/PokerLakeUnit22DTDSouth401H.HTML

3/4/24, 9:38 PM

2/9

file:///C:/Users/arsriva/Landmark/DecisionSpace/WellPlanning/Reports/PokerLakeUnit22DTDSouth401H.HTML

K	ecen	ea t	y O	CD	. 10	/9/2	024	3:2	2:30	r	1																						Page	e 4/
	-7.497 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-7.262 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-7.042 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-6.834 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-6.639 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-6.454 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-6.279 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-6.114 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-5.958 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-5.809 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-5.668 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-5.534 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-5.406 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-5.285 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-5.169 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-5.058 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-4.952 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-4.850 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-4.753 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-4.660 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-4.570 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-4.484 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-4.402 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-4.323 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-4.246 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-4.173 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-4.102 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-4.034 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-3.968 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-3.904 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-3.843 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-3.783 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-3.726 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-3.670 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22
	37.026	37.047	37.068	37.090	37.113	37.136	37.160	37.185	37.210	37.236	37.262	37.289	37.317	37.345	37.374	37.403	37.433	37.464	37.496	37.527	37.560	37.593	37 627	37.661	37.696	37 732	37.768	37 805	37.842	37.880	37 919	37.958	37.998	38.038
	40.386	40.624	40.870	41.123	41.382	41.647	41.919	42.197	42.482	42.772	43.068	43.370	43.678	43.991	44.309	44.633	44.962	45.296	45.635	45.979	46.328	46.681	47.039	47.401	47.767	48.138	48.513	48.892	49.274	49.661	50.051	50.446	50.843	51.244
n Report	000.0	000.0	000.0	000.0	000.0	000.0	000.0	000.0	000.0	000.0	00000	000.0	000.0	000.0	000.0	000.0	00000	000.0	000.0	000.0	00000	00000	000.0	000.0	000.0	000.0	000.0	000.0	000.0	000.0	00000	000.0	000.0	000.0
Well Plan Report	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	330 0.000	21.119 0.000	414 0.000	715 0.000	021 0.000	332 0.000	22.648 0.000	968 0.000	293 0.000	322 0.000	23.955 0.000	293 0.000	334 0.000	978 0.000	326 0.000	378 0.000	032 0.000	390 0.000	26.750 0.000	27.114 0.000	27.480 0.000	348 0.000	220 0.000	28.593 0.000	000.0 696	347 0.000	728 0.000	30.110 0.000	194 0.000	380 0.000	268 0.000	358 0.000	32.050 0.000	443 0.000
	00 20.830		00 21.414	00 21.715	00 22.021	00 22.332		00 22.968	00 23.293	00 23.622		00 24.293	00 24.634	00 24.978	00 25.326	00 25.678	00 26.032	00 26.390				00 27.848	00 28.220		00 28.969	00 29.347	00 29.728		30.494	00 30.880	00 31.268	00 31.658		00 32.443
	36 -0.000	75 -0.000	21 -0.000	74 -0.000	33 -0.000	000.0- 66	71 -0.000	50 -0.000	34 -0.000	25 -0.000	21 -0.000	24 -0.000	32 -0.000	45 -0.000	34 -0.000	38 -0.000	18 -0.000	52 -0.000	91 -0.000	35 -0.000	84 -0.000	38 -0.000	96 -0.000	29 -0.000	25 -0.000	000.0- 96	72 -0.000	51 -0.000	34 -0.000	21 -0.000	12 -0.000	000 0- 90	04 -0.000	000.0- 90
	0 40.336	0 40.575	0 40.821	0 41.074	0 41.333	0 41.599	0 41,871	0 42.150	0 42.434	0 42.725	0 43.021	0 43.324	0 43.632	0 43.945	0 44.264	0 44.588	0 44.918	0 45.252	0 45.591	0 45.935	0 46.284	0 46.638	0 46.996	0 47.359	0 47.725	0 48.096	0 48.472	0 48.851	0 49.234	0 49.621	0 50.012	0 50 406	0 50.804	0 51.206
	30 0.000	19 0.000	14 0.000	15 0.000	21 0.000	32 0.000	18 0.000	38 0.000	93 0.000	22 0.000	55 0.000	93 0.000	34 0.000	78 0.000	26 0.000	78 0.000	32 0.000	90 0.000	50 0.000	14 0.000	30 0.000	18 0.000	20 0.000	93 0.000	0000 69	47 0.000	28 0.000	10 0.000	94 0.000	30 0.000	38 0.000	58 0.000	000.00	43 0.000
	20.830	21.119	21.414	21,715	22.021	22.332	22.648	22.968	23.293	23.622	23.955	24.293	24.634	24.978	25.326	25.678	26.032	26.390	26.750	27.114	27.480	27.848	28.220	28.593	28 969	29.347	29.728	30.110	30.494	30.880	31.268	31.658	32.050	32.443
	10478.997	10478.997	10478.997	10478.997	10478.997	10478.997	10478,997	10478.997	10478.997	10478.997	10478.997	10478.997	10478,997	10478.997	10478.997	10478.997	10478.997	10478.997	10478.997	10478.997	10478.997	10478.997	10478.997	10478.997	10478 997	10478.997	10478.997	10478.997	10478.997	10478.997	10478.997	10478 997	10478.997	10478.997
	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1	179.658 1
	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000 1	90.000 1	90.000	90.000	90.000	90.000 1	90.000	90.000	90.000 1	90.000 1	90.000 1
Σ																																		
/4/24, 9:38 PM	13200.000	13300.000	13400.000	13500.000	13600.000	13700.000	13800,000	13900.000	14000.000	14100.000	14200.000	14300,000	14400.000	14500.000	14600.000	14700.000	14800.000	14900.000	15000.000	15100.000	15200.000	15300.000	15400.000	15500.000	15600.000	15700.000	15800.000	15900.000	16000.000	16100.000	16200.000	16300.000	16400.000	16500.000

K	ecen	ea t	y O	CD	: 10	19/2	024	5:2	2:30	r	1																					-	Page	2 48
	-3.617 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-3.565 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-3.514 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-3.465 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-3.418 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-3.372 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-3.327 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-3.284 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-3.241 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-3.200 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-3.161 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-3.122 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-3.084 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-3.047 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-3.012 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-2.977 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-2.943 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-2.910 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-2.877 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-2.846 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-2.815 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-2.785 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-2.756 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-2.727 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-2.700 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-2.672 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-2.646 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-2.620 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-2.594 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-2.569 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-2.545 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-2.521 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-2.498 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	-2.475 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22
	38.079	38.121	38.163	38,206	38.249	38,293	38,337	38.382	38.428	38.474	38.521	38.568	38.616	38.664	38.713	38.763	38.813	38.863	38.914	38.966	39.018	39.071	39.125	39.178	39.233	39.288	39.343	39,399	39,456	39.513	39.571	39,629	39.687	39.747
	51.649	52.057	52.468	52.883	53,300	53.721	54.144	54.570	55.000	55.432	55.866	56.304	56.744	57.186	57.631	58.078	58.528	58.980	59.434	59.891	60.349	60.810	61.272	61.737	62.204	62.672	63.143	63.615	64.089	64.565	65.042	65.521	66.002	66.485
Well Plan Report	0.000	0.000	0.000	0.000	0.000	000.0	0000	000.0	000.0	0.000	0.000	000.0	000.0	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000'0	0.000	0000
Well F	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	32.838	33.234	33,632	34.031	34.431	34.833	35.236	35.641	36.046	36.453	36.861	37.269	37.679	38.090	38.502	38.915	39.329	39.744	40.159	40.575	40.993	41.411	41.829	42.249	42.669	43.090	43.511	43.933	44.356	44.780	45.204	45.628	46.054	46.479
	0.000	-0.000	-0.000	-0.000	-0.000	0.000	-0.000	0.000	0.000	-0.000	-0.000	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0000	0000	-0.000
	51.611	52.019	52.430	52.845	53.263	53.684	54.107	54.534	54.964	55.396	55.831	56.269	56.709	57.152	57.597	58.044	58.494	58.946	59.401	59.858	60.316	60.777	61.240	61.705	62.172	62.641	63.112	63.584	64.058	64.534	65.012	65.491	65.972	66.455
	3 0.000	000'0 1	000'0	000'0	000'0	0.000	000.0	0000	00000	3 0.000	0.000	00000	00000	0.000	0.000	0.000	000'0	000'0 1	000'0	0.000	3 0.000	00000	000'0	000'0 6	000'0 6	000'0	000'0	3 0.000	000'0	000'0 (000'0 1	3 0.000	00000	00000
	32.838	33.234	33,632	34.031	34.431	34.833	35.236	35.641	36.046	36.453	36.861	37.269	37.679	38.090	38.502	38.915	39.329	39.744	40.159	40.575	40.993	41.411	41.829	42.249	42.669	43.090	43.511	43.933	44.356	44.780	45.204	45.628	46.054	46.479
	10478.997	10478.997	10478.997	10478.997	10478.997	10478,997	10478.997	10478,997	10478,997	10478.997	10478.997	10478,997	10478.997	10478.997	10478.997	10478.997	10478.997	10478.997	10478.997	10478.997	10478.997	10478.997	10478.997	10478.997	10478.997	10478.997	10478.997	10478.997	10478.997	10478.997	10478.997	10478.997	10478.997	10478.997
	179.658	179.658	179.658	179.658	179.658	179.658	179.658	179.658	179.658	179.658	179.658	179.658	179.658	179.658	179.658	179.658	179.658	179.658	179.658	179.658	179.658	179.658	179.658	179.658	179.658	179.658	179.658	179.658	179.658	179.658	179.658	179 658	179.658	179.658
	000'06	000'06	000'06	000 06	000'06	000 06	000'06	000 06	000'06	000'06	000.06	000 06	000'06	000'06	000'06	000.06	000.06	000.06	000'06	000.06	000.06	000.06	000.06	000'06	000.06	000.06	000.06	000.06	000'06	000'06	000'06	000'06	000'06	000'06
/4/24, 9:38 PM	16600.000	16700.000	16800,000	16900,000	17000.000	17100.000	17200,000	17300.000	17400.000	17500.000	17600.000	17700.000	17800.000	17900.000	18000.000	18100.000	18200.000	18300.000	18400.000	18500.000	18600.000	18700.000	18800.000	18900.000	19000.000	19100.000	19200.000	19300.000	19400.000	19500.000	19600.000	19700.000	19800.000	19900.000

3/4/24, 9:38 PM

6/8

file:///C:/Users/arsriva/Landmark/DecisionSpace/WellPlanning/Reports/PokerLakeUnit22DTDSouth401H.HTML

3/4/24, 9:38 PM					Well P	Well Plan Report	
23253.679	90.000	179.658	90.000 179.658 10478.997	60.997 0.000 83.370 -0.000 60.997 0.000	00000 266.09	0.000 83.393 42.014 -1.	-1.915 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22
Plan Targets			Poker Lak	Poker Lake Unit 22 DTD South 401H			
•				Measured Depth	Grid Northing	Grid Easting	TVD MSL Target Shape
Target Name				(tt)	(#)	(#)	(ft)
FTP 23				10600.51	440504.40	645455.10	7017.00 RECTANGLE
SHL 23				10677.65	440368.58	645089.35	6854.81 RECTANGLE
LTP 23				23163.66	427527.60	645532.60	7017.00 RECTANGLE
BHL 23				23253.67	427437.60	645533.50	7017.00 RECTANGLE

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: XTO

LEASE NO.: NNNM02862

LOCATION: Sec. 22, T.24 S, R 30 E

COUNTY: Eddy County, New Mexico

WELL NAME & NO.: Poker Lake Unit 22 DTD 401H

SURFACE HOLE FOOTAGE: 233'/N & 1387'/E

BOTTOM HOLE FOOTAGE: 2627'/N & 1004'/E

COA

H ₂ S	•	No	0	Yes
Potash /	None	Secretary	○ R-111-Q	Open Annulus
WIPP	Choose	e an option (including bla	nk option.)	☐ WIPP
Cave / Karst	Low	Medium	ं High	Critical
Wellhead	 Conventional 	Multibowl	O Both	Diverter
Cementing	Primary Squeeze	Cont. Squeeze	EchoMeter	DV Tool
Special Req	Capitan Reef	Water Disposal	☐ COM	Unit
Waste Prev.	© Self-Certification	C Waste Min. Plan	APD Submitted p	prior to 06/10/2024
Additional	Flex Hose	Casing Clearance	Pilot Hole	Break Testing
Language	Four-String	Offline Cementing	Fluid-Filled	

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet 43 CFR 3176 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The 9-5/8 inch surface casing shall be set at approximately 800 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8 hours** or **500 pounds compressive strength**, whichever is greater. (This is to include the

lead cement)

- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 7-5/8 inch Intermediate casing is: Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.
 - a. First stage: Operator will cement with intent to reach the top of the Brushy Canyon at 6498'
 - b. **Second stage:** Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst.

Operator has proposed to pump down Surface X Intermediate 1 annulus after primary cementing stage. Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus OR operator shall run a CBL from TD of the Surface casing to tieback requirements listed above after the second stage BH to verify TOC. Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out. Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures.

If cement does not reach surface, the next casing string must come to surface.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
- 2. Operator has proposed a multi-bowl wellhead assembly. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.

- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one-inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172 must be followed.

D. SPECIAL REQUIREMENT (S)

Unit Wells

The well sign for a unit well shall include the unit number in addition to the surface and bottom hole lease numbers. This also applies to participating area numbers. If a participating area has not been established, the operator can use the general unit designation, but will replace the unit number with the participating area number when the sign is replaced.

Commercial Well Determination

A commercial well determination shall be submitted after production has been established for at least six months. (This is not necessary for secondary recovery unit wells)

BOPE Break Testing Variance

- BOPE Break Testing is ONLY permitted for intervals utilizing a 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP.)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR 3172.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Offline Cementing

Contact the BLM prior to the commencement of any offline cementing procedure.

Engineer may elect to vary this language. Speak with Chris about implementing changes and whether that change seems reasonable.

Casing Clearance

String does not meet 0.422" clearance requirement per 43 CFR 3172. Cement tieback requirement increased 100' for Production casing tieback. Operator may contact approving engineer to discuss changing casing set depth or grade to meet clearance requirement.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Contact Eddy County Petroleum Engineering Inspection Staff:

Email or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220; **BLM NM CFO DrillingNotifications@BLM.GOV**; (575) 361-2822

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - i. Notify the BLM when moving in and removing the Spudder Rig.
 - ii. Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - iii. BOP/BOPE test to be conducted per **43 CFR 3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. For intervals in which cement to surface is required, cement to surface should be verified with a visual check and density or pH check to differentiate cement from spacer and drilling mud. The results should be documented in the driller's log and daily reports.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-Q potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR 3172.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's

requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - i. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - ii. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - iii. Manufacturer representative shall install the test plug for the initial BOP test.
 - iv. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - v. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - i. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - ii. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve

- open. (only applies to single stage cement jobs, prior to the cement setting up.)
- iii. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to **43 CFR 3172** with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- iv. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- v. The results of the test shall be reported to the appropriate BLM office.
- vi. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- vii. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- viii. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be

disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Approved by Zota Stevens on 10/2/2024 575-234-5998 / zstevens@blm.gov

HYDROGEN SULFIDE (H2S) CONTINGENCY PLAN

Assumed 100 ppm ROE = 3000'

100 ppm H2S concentration shall trigger activation of this plan.

Emergency Procedures

In the event of a release of gas containing H₂S, the first responder(s) must

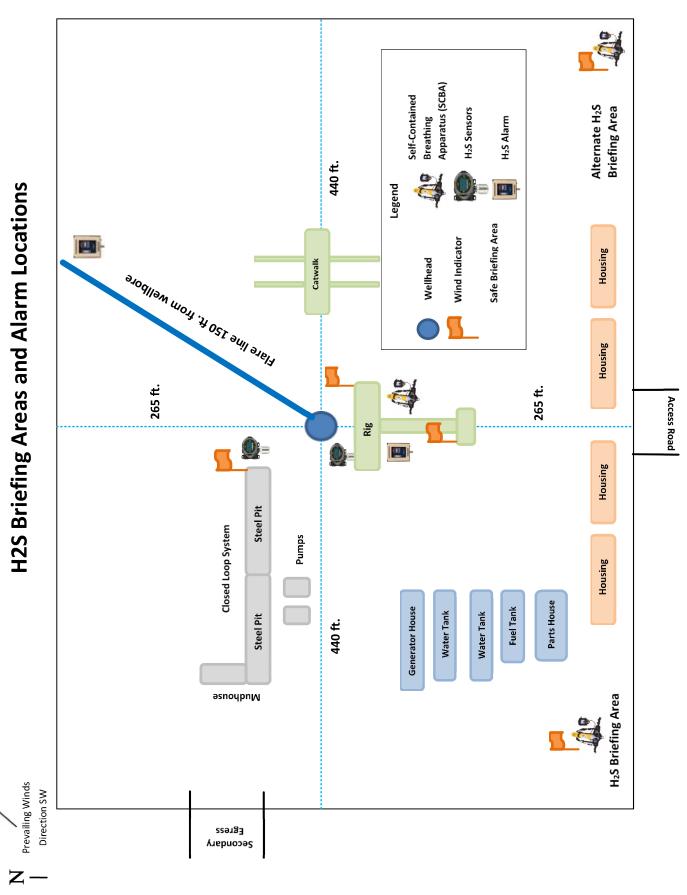
- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response
- Take precautions to avoid personal injury during this operation.
- Contact operator and/or local officials to aid in operation. See list of phone numbers attached.
- Have received training in the
 - o Detection of H₂S, and
 - o Measures for protection against the gas,
 - o Equipment used for protection and emergency response.

Ignition of Gas source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever this is an ignition of the gas.

Characteristics of H₂S and SO₂

on a doconocio	00 01 1120 an	u 002			
Common Name	Chemical Formula	Specific Gravity	Threshold Limit	Hazardous Limit	Lethal Concentration
Hydrogen Sulfide	H ₂ S	1.189 Air = I	10 ppm	100 ppm/hr	600 ppm
Sulfur Dioxide	SO ₂	2.21 Air = I	2 ppm	N/A	1000 ppm


Contacting Authorities

All XTO location personnel must liaison with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including directions to site. The following call list of essential and potential responders has been prepared for use during a release. (Operator Name)'s response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER).

CARLSBAD OFFICE – EDDY & LEA COUNTIES

3104 E. Greene St., Carlsbad, NM 88220 Carlsbad, NM	575-887-7329
XTO PERSONNEL: Will Dacus, Drilling Manager Brian Dunn, Drilling Supervisor Robert Bartels, Construction Execution Planner Andy Owens, EH & S Manager Frank Fuentes, Production Foreman	832-948-5021 832-653-0490 406-478-3617 903-245-2602 575-689-3363
SHERIFF DEPARTMENTS:	
Eddy County	575-887-7551
Lea County	575-396-3611
NEW MEXICO STATE POLICE:	575-392-5588
FIRE DEPARTMENTS: Carlsbad Eunice Hobbs Jal Lovington	911 575-885-2111 575-394-2111 575-397-9308 575-395-2221 575-396-2359
HOSPITALS:	911
Carlsbad Medical Emergency	575-885-2111
Eunice Medical Emergency	575-394-2112
Hobbs Medical Emergency	575-397-9308
Jal Medical Emergency	575-395-2221
Lovington Medical Emergency	575-396-2359
AGENT NOTIFICATIONS: For Lea County: Bureau of Land Management – Hobbs New Mexico Oil Conservation Division – Hobbs	575-393-3612 575-393-6161
For Eddy County:	
Bureau of Land Management - Carlsbad	575-234-5972
New Mexico Oil Conservation Division - Artesia	575-748-1283

H2S Briefing Areas and Alarm Locations

Access Road Alternate H₂S Briefing Area Parts House **Generator House Fuel Tank** Water Tank Water Tank 440 ft. Steel Pit **Closed Loop System** Pumps Housing **H2S Briefing Areas and Alarm Locations** Steel Pit Housing əsnoqpnM 265 ft. Rig 265 ft. Flare line 150 ft. from wellbore Housing Apparatus (SCBA) Self-Contained H₂S Sensors Housing Breathing Catwalk H₂S Alarm Legend 440 ft. Safe Briefing Area Wind Indicator Wellhead Los Briefing Area Access Road Prevailing Winds Direction SW

 \leftarrow Z-

Well Name: POKER LAKE UNIT 22 DTD Well Number: 401H

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit? NO

Reserve pit length (ft.)

Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? Y

Description of cuttings location Cuttings. The well will be drilled utilizing a closed-loop mud system. Drill cuttings will be held in roll-off style mud boxes and taken to a New Mexico Oil Conservation Division (NMOCD) approved disposal site. Drilling Fluids. These will be contained in steel mud pits and then taken to a NMOCD approved commercial disposal facility. Produced Fluids. Water produced from the well during completion will be held temporarily in steel tanks and then taken to a NMOCD approved commercial disposal facility. Oil produced during operations will be stored in tanks until sold.

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary

Are you requesting any Ancillary Facilities?: N

Ancillary Facilities

Comments:

Section 9 - Well Site

Well Site Layout Diagram:

POKER_LAKE_UNIT_22_DTD_401H_Well_20240406090440.pdf

Comments: Multi-well pad.

Released to Imaging: 10/11/2024 8:51:33 AM

Well Name: POKER LAKE UNIT 22 DTD Well Number: 401H

Section 10 - Plans for Surface Reclamation

Type of disturbance: No New Surface Disturbance Multiple Well Pad Name: POKER LAKE UNIT 22 DTD

Multiple Well Pad Number: D

Recontouring

PLU 22 DTD IR2 20240406090540.pdf PLU 22 DTD IR1 20240406090540.pdf PLU 22 DTD IR3 20240406090540.pdf PLU 22 DTD IR4 20240406090540.pdf

Drainage/Erosion control construction: Initial seedbed preparation will consist of recontouring to the appropriate interim or final reclamation standard. All compacted areas to be seeded will be ripped to a minimum depth of 18 inches with a minimum furrow spacing of 2 feet, followed by recontouring the surface and then evenly spreading the stockpiled topsoil. Prior to seeding, the seedbed will be scarified to a depth of no less than 4-6 inches

Drainage/Erosion control reclamation: Erosion features are equal to or less than surrounding area and erosion control is sufficient so that water naturally infiltrates into the soil and gullying, headcutting, slumping, and deep or excessive rills (greater than 3 inches) are not observed.

Well pad proposed disturbance

(acres):

Road proposed disturbance (acres):

Powerline proposed disturbance

(acres):

Pipeline proposed disturbance

Total proposed disturbance: 0

(acres):

Other proposed disturbance (acres):

Well pad interim reclamation (acres): 0 Well pad long term disturbance

(acres): 0

Road interim reclamation (acres): 0 Road long term disturbance (acres): 0

Powerline interim reclamation (acres): Powerline long term disturbance

(acres): 0

Pipeline interim reclamation (acres): 0 Pipeline long term disturbance

(acres): 0

Other interim reclamation (acres): 0 Other long term disturbance (acres): 0

Total interim reclamation: 0 Total long term disturbance: 0

Disturbance Comments:

Reconstruction method: The original stock piled topsoil will be spread over the areas being reclaimed and the original landform will be restored for all disturbed areas including well pads, production facilities, roads, pipelines, and utility corridors as close as possible to the original topography. The location will then be ripped and seeded.

Topsoil redistribution: The original stock piled topsoil will be spread over the areas being reclaimed and the original landform will be restored for all disturbed areas including well pads, production facilities, roads, pipelines, and utility corridors as close as possible to the original topography. The location will then be ripped and seeded.

Soil treatment: A self-sustaining, vigorous, diverse, native (or otherwise approved) plan community will be established on the site with a density sufficient to control erosion and invasion by non-native plants and to re-establish wildlife habitat or forage production. At a minimum, the established plant community will consist of species included in the seed mix and/or desirable species occurring in the surrounding natural vegetation

<style isBold="true">Existing Vegetation at the well pad:</style> Soils are classified as Simona Gravelly Fine Sandy Loam and Simona-Bippus Complex. Simona soils are found on alluvial fans and plans and form in mixed alluvium and/or Aeolian sands. Bippus soils are found on alluvial fans and floodplains and form in mixed alluvium. The SimonaBippus soils are dominant to the east and the Simona Gravelly Fine Sandy Loams are dominant to the West. Dominant vegetation species include: mesquite, sumac snakeweed, and various forbs and grasses. Ground cover is minimal, offering 90 percent visibility

Existing Vegetation at the well pad

Well Name: POKER LAKE UNIT 22 DTD Well Number: 401H

<style isBold="true">Existing Vegetation Community at the road:</style> Soils are classified as Simona Gravelly Fine Sandy Loam and Simona-Bippus Complex. Simona soils are found on alluvial fans and plans and form in mixed alluvium and/or Aeolian sands. Bippus soils are found on alluvial fans and floodplains and form in mixed alluvium. The SimonaBippus soils are dominant to the east and the Simona Gravelly Fine Sandy Loams are dominant to the West. Dominant vegetation species include: mesquite, sumac snakeweed, and various forbs and grasses. Ground cover is minimal, offering 90 percent visibility

Existing Vegetation Community at the road

<style isBold="true">Existing Vegetation Community at the pipeline:</style> Soils are classified as Simona Gravelly Fine Sandy Loam and Simona-Bippus Complex. Simona soils are found on alluvial fans and plans and form in mixed alluvium and/or Aeolian sands. Bippus soils are found on alluvial fans and floodplains and form in mixed alluvium. The SimonaBippus soils are dominant to the east and the Simona Gravelly Fine Sandy Loams are dominant to the West. Dominant vegetation species include: mesquite, sumac snakeweed, and various forbs and grasses. Ground cover is minimal, offering 90 percent visibility

Existing Vegetation Community at the pipeline

<style isBold=&guot;true&guot;>Existing Vegetation Community at other disturbances:</style> Soils are classified as Simona Gravelly Fine Sandy Loam and Simona-Bippus Complex. Simona soils are found on alluvial fans and plans and form in mixed alluvium and/or Aeolian sands. Bippus soils are found on alluvial fans and floodplains and form in mixed alluvium. The SimonaBippus soils are dominant to the east and the Simona Gravelly Fine Sandy Loams are dominant to the West. Dominant vegetation species include: mesquite, sumac snakeweed, and various forbs and grasses. Ground cover is minimal, offering 90 percent visibility

Total pounds/Acre:

Existing Vegetation Community at other disturbances

Non native seed used? N

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? N

Seedling transplant description

Will seed be harvested for use in site reclamation? N

Seed harvest description:

Seed harvest description attachment:

Seed

Seed Table

Seed Summary

Pounds/Acre

Seed Type

Seed reclamation

Operator Contact/Responsible Official

Released to Imaging: 10/11/2024 8:51:33 AM

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 391360

CONDITIONS

| Operator: | OGRID: |
|---|---|
| XTO PERMIAN OPERATING LLC. | 373075 |
| 6401 HOLIDAY HILL ROAD
MIDLAND. TX 79707 | Action Number: 391360 |
| , | Action Type: |
| | [C-101] BLM - Federal/Indian Land Lease (Form 3160-3) |

CONDITIONS

| Created By | Condition | Condition Date |
|-------------|--|----------------|
| ward.rikala | Notify OCD 24 hours prior to casing & cement | 10/11/2024 |
| ward.rikala | Will require a File As Drilled C-102 and a Directional Survey with the C-104 | 10/11/2024 |
| ward.rikala | Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string | 10/11/2024 |
| ward.rikala | Cement is required to circulate on both surface and intermediate1 strings of casing | 10/11/2024 |
| ward.rikala | If cement does not circulate on any string, a CBL is required for that string of casing | 10/11/2024 |
| ward.rikala | Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system | 10/11/2024 |