U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		Sundry Print Repor
Well Name: STAGE FRIGHT 12/7 FED COM	Well Location: T21S / R25E / SEC 11 / LOT 4 / 32.4905071 / -104.357849	County or Parish/State: EDDY / NM
Well Number: 616H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM0454228	Unit or CA Name:	Unit or CA Number:
US Well Number:	Operator: MEWBOURNE OIL COMPANY	

Notice of Intent

Sundry ID: 2808195

Type of Submission: Notice of Intent

Date Sundry Submitted: 08/23/2024

Date proposed operation will begin: 08/23/2024

Type of Action: APD Change Time Sundry Submitted: 07:30

Procedure Description: Mewbourne Oil Company request that the following change be made to the Stage Fright 12/7 Fed Com #616H (APD# 10400094560): 1. Change well name f/ Stage Fright 12/7 Fed Com #616H to Stage Fright 12/7 Fed Com #716H 2. Change producing formation from 3rd Bone Spring to Wolfcamp. 3. Change csg set depths to account for change in producing formation. Attached C102, Csg Assumptions, Drlg Program, Dir Plan & Plot, Addinfo.

NOI Attachments

Procedure Description

Stage_Fright_12_7_Fed_Com_716H_AddInfo_20240823072931.pdf Stage_Fright_12_7_Fed_Com_716H_MOC_Dir_Plot_20240823072923.pdf Stage_Fright_12_7_Fed_Com_716H_MOC_Dir_Plan_20240823072915.pdf Stage_Fright_12_7_Fed_Com_716H_Drlg_Program_20240823072756.pdf Stage_Fright_12_7_Fed_Com_716H_CsgAssumptions_20240823072748.pdf STAGE_FRIGHT_12_7_FED_COM_716H_C102_20240823072740.pdf Stage_Fright_12_7_Fed_Com_716H_Sundries_20240823072721.pdf

Received by OCD: 8/26/2024 10:03:37 AM Well Name: STAGE FRIGHT 12/7 FED COM	Well Location: T21S / R25E / SEC 11 / LOT 4 / 32.4905071 / -104.357849	County or Parish/State: EDBY ? of NM
Well Number: 616H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM0454228	Unit or CA Name:	Unit or CA Number:
US Well Number:	Operator: MEWBOURNE OIL COMPANY	
l		

Conditions of Approval

Additional

STAGE_FRIGHT_12_7_FED_COM_716H_Sundry_2808195_COA_20240823144937.pdf

State: NM

State:

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: CONNER WHITLEY

Name: MEWBOURNE OIL COMPANY

Title: ENGINEER

Street Address: 901 W TAOS ST

City: HOBBS

Phone: (806) 202-5974

Email address: CWHITLEY@MEWBOURNE.COM

Field

Representative Name: Street Address: City: Phone:

Email address:

BLM Point of Contact

BLM POC Name: CHRISTOPHER WALLS BLM POC Phone: 5752342234 Disposition: Approved Signature: Chris Walls Signed on: AUG 23, 2024 07:30 AM

BLM POC Title: Petroleum Engineer

Zip:

BLM POC Email Address: cwalls@blm.gov

Disposition Date: 08/26/2024

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	MEWBOURNE OIL COMPANY
WELL NAME & NO.:	STAGE FRIGHT 12/7 FED COM 716H
APD ID:	10400094560
LOCATION:	Section 11, T21S, R25E. NMP
COUNTY:	Eddy County, New Mexico 💌

Previously known as **STAGE FRIGHT 12/8 FED COM 616H**. Changes approved through engineering via Sundry 2808195 on 8/23/2024. Any previous COAs not addressed within the updated COAs still apply.

COA

H ₂ S	0	No	lacksquare	Yes
Potash /	None	O Secretary	O R-111-Q	Open Annulus
WIPP				□ WIPP
Cave / Karst	O Low	O Medium	O High	Critical
Wellhead	O Conventional	Multibowl	O Both	O Diverter
Cementing	Primary Squeeze	Cont. Squeeze	EchoMeter	DV Tool
Special Req	Capitan Reef	🗆 Water Disposal	COM	🗆 Unit
Waste Prev.	© Self-Certification	O Waste Min. Plan	• APD Submitted	prior to 06/10/2024
Additional	Flex Hose	Casing Clearance	Pilot Hole	Break Testing
Language	□ Four-String	Offline Cementing	🗆 Fluid-Filled	_

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H₂S) Drilling Plan shall be activated at spud. As a result, the Hydrogen Sulfide area must meet all requirements from 43 CFR 3176, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

Primary Casing program

- 1. The 13-3/8 inch surface casing shall be set at approximately 450 ft. in Seven Rivers formation and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic-type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the

cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.

- b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8 hours** or **500 psi** compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The 9-5/8 inch intermediate casing shall be set in a competent bed at approximately 1,825 ft. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

Option 1 (Single Stage): Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, and Capitan Reef.

Option 2 (**Two-stage with DV tool:** The operator has proposed utilize a DV tool. The selected depth is below the Salado and is an acceptable set point. Operator may adjust depth of DV tool if it remains below the Salado and cement volumes are adjusted accordingly. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. **First stage to DV tool:** Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool: Cement to surface. If cement does not circulate, contact the appropriate BLM office. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, and Capitan Reef.

Note: Excess cement for the 2nd stage is below the BLM's recommendation of 25%. More cement might be needed.

- ◆ In <u>Critical Cave/Karst Areas</u> cement must come to surface on the first three casing strings.
- In <u>Capitan Reef Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- Special Capitan Reef requirements. If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following:

(Use this for 3 string wells in the Capitan Reef, if 4 string well ensure FW based mud used across the Capitan interval)

• Switch to freshwater mud to protect the Capitan Reef and use freshwater mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.

- Daily drilling reports from the Base of the Salt to the setting of the intermediate casing are to be submitted to the BLM CFO engineering staff via e-mail by 0800 hours each morning. Any lost circulation encountered is to be recorded on these drilling reports. The daily drilling report should show mud volume per shift/tour. Failure to submit these reports will result in an Incidence of Non-Compliance being issued for failure to comply with the Conditions of Approval. If not already planned, the operator shall run a caliper survey for the intermediate well bore and submit to the appropriate BLM office.
- **3.** Operator has proposed to set **7 inch P-110** production casing at approximately **7,216 ft.** (7,184 ft. TVD). The minimum required fill of cement behind the **7** inch production casing is:
 - **Cement to surface.** If cement does not circulate, contact the appropriate BLM office. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, and Capitan Reef.

Note: Excess cement is below the BLM's recommendation of 25%. More cement might be needed.

- 4. The minimum required fill of cement behind the 4-1/2 inch production liner is:
 - Cement should tie-back **100 feet** into the previous casing. Operator shall provide method of verification.

Primary Casing program

- 1. The 13-3/8 inch surface casing shall be set at approximately 450 ft. in Seven Rivers formation and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic-type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8 hours** or **500 psi** compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The 9-5/8 inch intermediate casing shall be set in a competent bed at approximately 1,825 ft. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

Option 1 (Single Stage): Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, and Capitan Reef.

Option 2 (**Two-stage with DV tool:** The operator has proposed utilize a DV tool. The selected depth is below the Salado and is an acceptable set point. Operator may adjust depth of DV tool if it remains below the Salado and cement volumes are adjusted accordingly. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. **First stage to DV tool:** Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool: Cement to surface. If cement does not circulate, contact the appropriate BLM office. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, and Capitan Reef.

Note: Excess cement for the 2^{nd} stage is below the BLM's recommendation of 25%. More cement might be needed.

- ♦ In <u>Critical Cave/Karst Areas</u> cement must come to surface on the first three casing strings.
- In <u>Capitan Reef Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- Special Capitan Reef requirements. If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following:

(Use this for 3 string wells in the Capitan Reef, if 4 string well ensure FW based mud used across the Capitan interval)

- Switch to freshwater mud to protect the Capitan Reef and use freshwater mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.
- Daily drilling reports from the Base of the Salt to the setting of the intermediate casing are to be submitted to the BLM CFO engineering staff via e-mail by 0800 hours each morning. Any lost circulation encountered is to be recorded on these drilling reports. The daily drilling report should show mud volume per shift/tour. Failure to submit these reports will result in an Incidence of Non-Compliance being issued for failure to comply with the Conditions of Approval. If not already planned, the operator shall run a caliper survey for the intermediate well bore and submit to the appropriate BLM office.
- **3.** Operator has proposed to set **7 inch P-110** production casing at approximately **8,116 ft.** (7,757 ft. TVD). The minimum required fill of cement behind the **7** inch production casing is:

• **Cement to surface.** If cement does not circulate, contact the appropriate BLM office. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, and Capitan Reef.

Note: Excess cement is below the BLM's recommendation of 25%. More cement might be needed.

- 4. The minimum required fill of cement behind the 4-1/2 inch production liner is:
 - Cement should tie-back **100 feet** into the previous casing. Operator shall provide method of verification.

Offline Cementing

Operator has been (**Approved**) to pump the proposed cement program offline in the **Surface and intermediate(s) intervals**. Offline cementing should commence within 24 hours of landing the casing for the interval. Notify the BLM 4hrs prior to the commencement of any offline cementing procedure at **Eddy County: 575-361-2822**.

C. PRESSURE CONTROL

- 1. Variance approved to use **flex line** from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
- Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi. The BOP/BOPE and annular preventer shall be pressure-tested in accordance with title 43 CFR 3172.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one-inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in the **title 43 CFR 3172.6(b)(9)** must be followed.

BOPE Break Testing Variance

• BOPE Break Testing is ONLY permitted for intervals utilizing a 5M BOPE or less.

(Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP.)

- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR 3172.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR 3171 and 3172.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the</u> <u>Communitization Agreement number is known, it shall also be on the sign.</u>

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Contact Eddy County Petroleum Engineering Inspection Staff:

Email or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220;

BLM_NM_CFO_DrillingNotifications@BLM.GOV; (575) 361-2822

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - i. Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - iii. BOP/BOPE test to be conducted per **43 CFR 3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the doghouse or stairway area.
- 3. For intervals in which cement to surface is required, cement to surface should be verified with a visual check and density or pH check to differentiate cement from spacer and drilling mud. The results should be documented in the driller's log and daily reports.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi

at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.

- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-Q potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in **43 CFR 3172**.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - i. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.

- ii. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- iii. Manufacturer representative shall install the test plug for the initial BOP test.
- iv. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
- v. If the cement does not circulate and one-inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - i. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - ii. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (Only applies to single stage cement jobs, prior to the cement setting up.)
 - iii. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
 - iv. The test shall be run on a 5000-psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one-hour chart. A circular chart shall have a maximum 2-hour clock. If a twelve hour or twenty-four-hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - v. The results of the test shall be reported to the appropriate BLM office.

- vi. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- vii. The BOP/BOPE test shall include a low-pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- viii. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

SA 08/23/2024

Operator Name:	Property Name:	Well Number
Mewbourne Oil Company	Stage Fright 12/7 Fed Com	716H

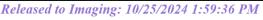
Kick Off Point (KOP)

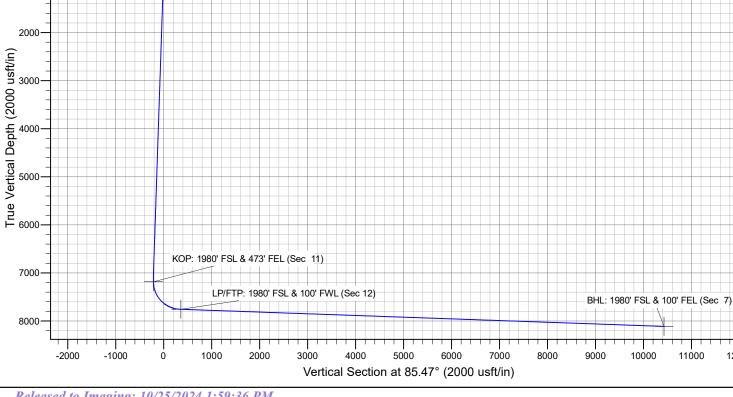
UL		Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
Ι		11	21	26	-	1980'	FSL	473'	FEL	Eddy
			Latitude				Long	itude		NAD
32.492	1142					-104.35869	58			83

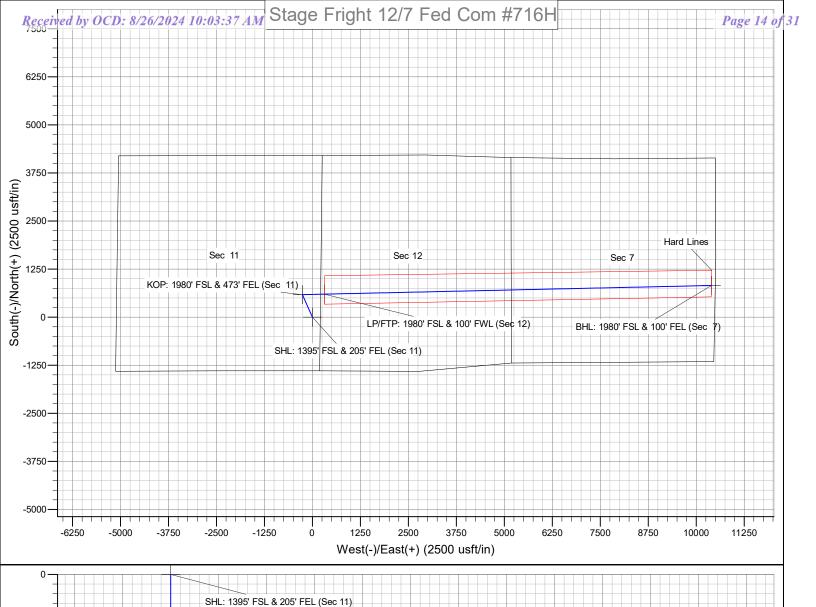
First Take Point (FTP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
L	12	21	26	-	1980'	FSL	100'	FWL	Eddy
		Latitude				Long	itude		NAD
32.4921133	3				-104.35683	78			83

Last Take Point (LTP)


UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
Ι	7	21	26	-	1980'	FSL	100'	FEL	Eddy
		Latitude				Long	itude		NAD
32.4927713	3				-104.32413	316			83


Is this well the defining well for the Horizontal Spacing Unit? N Is this well an infill well? Y


If infill is yes please provide API if available, Operator Name and well number for Defining well for Horizontal Spacing Unit.

API #

Operator Name:	Property Name:	Well Number
Mewbourne Oil Company	Stage Fright 12/8 Fed Com	718H

Mewbourne Oil Company

Eddy County, New Mexico NAD 83 Stage Fright 12/7 Fed Com #716H Sec 11, T21S, R25E SHL: 1395' FSL & 205' FEL (Sec 11) BHL: 1980' FSL & 100' FEL (Sec 7)

Plan: Design #1

Standard Planning Report

31 July, 2024

Database: Company: Project: Site: Well: Wellbore: Design:	Mewł Eddy Stage Sec 1 BHL:	Hobbs Mewbourne Oil Company Eddy County, New Mexico NAD 83 Stage Fright 12/7 Fed Com #716H Sec 11, T21S, R25E BHL: 1980' FSL & 100' FEL (Sec 7) Design #1			Local Co-ordinate Reference:Site Stage Fright 12/7 Fed Com #716HTVD Reference:WELL @ 3340.0usft (Original Well Elev)MD Reference:WELL @ 3340.0usft (Original Well Elev)North Reference:GridSurvey Calculation Method:Minimum Curvature					
Project	Eddy	County, New I	Mexico NAD 8	33						
Map System: Geo Datum: Map Zone:	North A	te Plane 1983 merican Datu exico Eastern	m 1983		System D	atum:	G	round Level		
Site	Stage	Fright 12/7 Fe	ed Com #716	H						
Site Position: From: Position Uncerta	Ma inty:	p 0.0 t	North Eastii usft Slot F	•	533,7	178.10 usft 778.70 usft 3-3/16 "	Latitude: Longitude:			32.4905070 -104.3578489
Well	Sec 11	, T21S, R25E								
Well Position Position Uncerta Grid Convergence	•	0	.0 usft Ea .0 usft We	orthing: Isting: ellhead Elev	vation:	542,178.10 533,778.70 3,340.0	usft Lo	titude: ngitude: ound Level:		32.4905070 -104.3578489 3,316.0 usfl
Wellbore	BHL:	1980' FSL & 1	100' FEL (Sec	; 7)						
Magnetics	Мо	del Name	Sample	e Date	Declina (°)			Angle °)	Field Str (nT)	-
		IGRF2010	12	2/31/2014		7.53		60.21	48,312.	12609450
Design	Desig	n #1								
Audit Notes: Version:			Phas	e: l	PROTOTYPE	Tie	e On Depth:		0.0	
Vertical Section:		De	epth From (T (usft)	VD)	+N/-S (usft)		/-W sft)		ection (°)	
			0.0		0.0	C	0.0		5.47	
Plan Survey Too Depth From (usft) 1 0.0	Dept (us	h To	7/31/2024 / (Wellbore) #1 (BHL: 198	80' FSL & 10	Tool Name		Remarks			
Plan Sections						Desiler	Decilet	T		
Measured Depth Incl (usft)	lination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0 550.0 838.1	0.00 0.00 5.76	0.00 0.00 335.95	0.0 550.0 837.7	0.0 0.0 13.2	0.0 0.0 -5.9	0.00 0.00 2.00	0.00 0.00 2.00	0.00 0.00	0.00 0.00 335.95	
6,927.6 7,215.7 8,096.2	5.76 0.00 87.98	335.95 0.00 88.72	6,896.3 7,184.0 7,757.0	571.6 584.8 597.2	-255.1 -261.0 292.0	0.00 2.00 9.99	0.00 -2.00 9.99	0.00	0.00 180.00 K0 88.72	DP: 1980' FSL & 4
18,208.8	87.98	88.72	8,113.0	823.0	10,395.9	0.00	0.00			HL: 1980' FSL & 1

7/31/2024 12:00:33PM

Database:	Hobbs	Local Co-ordinate Reference:	Site Stage Fright 12/7 Fed Com #716H
Company:	Mewbourne Oil Company	TVD Reference:	WELL @ 3340.0usft (Original Well Elev)
Project:	Eddy County, New Mexico NAD 83	MD Reference:	WELL @ 3340.0usft (Original Well Elev)
Site:	Stage Fright 12/7 Fed Com #716H	North Reference:	Grid
Well:	Sec 11, T21S, R25E	Survey Calculation Method:	Minimum Curvature
Wellbore:	BHL: 1980' FSL & 100' FEL (Sec 7)	-	
Design:	Design #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
SHL: 1395'	FSL & 205' F	EL (Sec 11)							
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
550.0	0.00	0.00	550.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	1.00	335.95	600.0	0.4	-0.2	-0.1	2.00	2.00	0.00
700.0	3.00	335.95	699.9	3.6	-1.6	-1.3	2.00	2.00	0.00
800.0	5.00	335.95	799.7	10.0	-4.4	-3.6	2.00	2.00	0.00
838.1 900.0	5.76 5.76	335.95 335.95	837.7 899.2	13.2	-5.9 -8.4	-4.8 -6.9	2.00	2.00 0.00	0.00
1,000.0	5.76	335.95 335.95	899.2 998.7	18.9 28.1	-0.4 -12.5	-0.9 -10.3	0.00 0.00	0.00	0.00 0.00
1,100.0	5.76	335.95	1,098.2	37.2	-12.5	-10.5	0.00	0.00	0.00
1,200.0	5.76	335.95	1,197.7	46.4	-20.7	-17.0	0.00	0.00	0.00
1,300.0	5.76	335.95	1,297.2	55.6	-24.8	-20.3	0.00	0.00	0.00
1,400.0	5.76	335.95	1,396.7	64.7	-28.9	-23.7	0.00	0.00	0.00
1,500.0	5.76	335.95	1,496.2	73.9	-33.0	-27.1	0.00	0.00	0.00
1,600.0	5.76 5.76	335.95 335.95	1,595.7	83.1 92.2	-37.1 -41.2	-30.4	0.00	0.00	0.00
1,700.0	5.76		1,695.2		-41.2	-33.8	0.00	0.00	0.00
1,800.0	5.76	335.95	1,794.7	101.4	-45.3	-37.1	0.00	0.00	0.00
1,900.0	5.76	335.95	1,894.1	110.6	-49.4	-40.5	0.00	0.00	0.00
2,000.0	5.76	335.95	1,993.6	119.8	-53.4	-43.8	0.00	0.00	0.00
2,100.0	5.76	335.95	2,093.1	128.9	-57.5	-47.2	0.00	0.00	0.00
2,200.0	5.76	335.95	2,192.6	138.1	-61.6	-50.5	0.00	0.00	0.00
2,300.0	5.76	335.95	2,292.1	147.3	-65.7	-53.9	0.00	0.00	0.00
2,400.0	5.76	335.95	2,391.6	156.4	-69.8	-57.3	0.00	0.00	0.00
2,500.0	5.76	335.95	2,491.1	165.6	-73.9	-60.6	0.00	0.00	0.00
2,600.0	5.76	335.95	2,590.6	174.8	-78.0	-64.0	0.00	0.00	0.00
2,700.0	5.76	335.95	2,690.1	183.9	-82.1	-67.3	0.00	0.00	0.00
2,800.0	5.76	335.95	2,789.6	193.1	-86.2	-70.7	0.00	0.00	0.00
2,900.0	5.76	335.95	2,889.1	202.3	-90.3	-74.0	0.00	0.00	0.00
3,000.0	5.76	335.95	2,988.6	211.4	-94.4	-77.4	0.00	0.00	0.00
3,100.0	5.76	335.95	3,088.1	220.6	-98.5	-80.7	0.00	0.00	0.00
3,200.0	5.76	335.95	3,187.6	229.8	-102.6	-84.1	0.00	0.00	0.00
3,300.0	5.76	335.95	3,287.1	239.0	-106.6	-87.5	0.00	0.00	0.00
3,400.0	5.76	335.95	3,386.6	239.0	-110.0	-90.8	0.00	0.00	0.00
3,500.0	5.76	335.95	3,486.1	257.3	-114.8	-94.2	0.00	0.00	0.00
3,600.0	5.76	335.95	3,585.6	266.5	-118.9	-97.5	0.00	0.00	0.00
3,700.0	5.76	335.95	3,685.1	275.6	-123.0	-100.9	0.00	0.00	0.00
3,800.0	5.76 5.76	335.95	3,784.5	284.8	-127.1	-104.2	0.00	0.00	0.00
3,900.0 4,000.0	5.76 5.76	335.95 335.95	3,884.0 3,983.5	294.0 303.1	-131.2 -135.3	-107.6 -110.9	0.00 0.00	0.00 0.00	0.00 0.00
4,000.0	5.76	335.95	4,083.0	312.3	-135.5	-110.9	0.00	0.00	0.00
4,100.0	5.76	335.95	4,182.5	321.5	-143.5	-117.7	0.00	0.00	0.00
-									
4,300.0	5.76	335.95	4,282.0	330.6	-147.6	-121.0	0.00	0.00	0.00
4,400.0	5.76	335.95	4,381.5	339.8	-151.7	-124.4	0.00	0.00	0.00
4,500.0	5.76 5.76	335.95	4,481.0	349.0	-155.8	-127.7	0.00	0.00	0.00
4,600.0	5.76 5.76	335.95 335.95	4,580.5	358.2 367.3	-159.8 -163.9	-131.1 -134.4	0.00 0.00	0.00 0.00	0.00 0.00
4,700.0			4,680.0						
4,800.0	5.76	335.95	4,779.5	376.5	-168.0	-137.8	0.00	0.00	0.00
4,900.0	5.76	335.95	4,879.0	385.7	-172.1	-141.2	0.00	0.00	0.00
5,000.0	5.76	335.95	4,978.5	394.8	-176.2	-144.5	0.00	0.00	0.00
024 12:00:33PM				Page 3				001/	PASS 5000.16 E

Released to Imaging: 10/25/2024 1:59:36 PM

.

Database:	Hobbs	Local Co-ordinate Reference:	Site Stage Fright 12/7 Fed Com #716H
Company:	Mewbourne Oil Company	TVD Reference:	WELL @ 3340.0usft (Original Well Elev)
Project:	Eddy County, New Mexico NAD 83	MD Reference:	WELL @ 3340.0usft (Original Well Elev)
Site:	Stage Fright 12/7 Fed Com #716H	North Reference:	Grid
Well:	Sec 11, T21S, R25E	Survey Calculation Method:	Minimum Curvature
Wellbore:	BHL: 1980' FSL & 100' FEL (Sec 7)	-	
Design:	Design #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,100.0 5,200.0	5.76 5.76	335.95 335.95	5,078.0 5,177.5	404.0 413.2	-180.3 -184.4	-147.9 -151.2	0.00 0.00	0.00 0.00	0.00 0.00
5,300.0 5,400.0 5,500.0 5,600.0 5,700.0	5.76 5.76 5.76 5.76 5.76 5.76	335.95 335.95 335.95 335.95 335.95 335.95	5,277.0 5,376.5 5,476.0 5,575.4 5,674.9	422.3 431.5 440.7 449.8 459.0	-188.5 -192.6 -196.7 -200.8 -204.9	-154.6 -157.9 -161.3 -164.6 -168.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
5,800.0 5,900.0 6,000.0 6,100.0 6,200.0	5.76 5.76 5.76 5.76 5.76 5.76	335.95 335.95 335.95 335.95 335.95 335.95	5,774.4 5,873.9 5,973.4 6,072.9 6,172.4	468.2 477.4 486.5 495.7 504.9	-209.0 -213.0 -217.1 -221.2 -225.3	-171.4 -174.7 -178.1 -181.4 -184.8	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
6,300.0 6,400.0 6,500.0 6,600.0 6,700.0	5.76 5.76 5.76 5.76 5.76 5.76	335.95 335.95 335.95 335.95 335.95 335.95	6,271.9 6,371.4 6,470.9 6,570.4 6,669.9	514.0 523.2 532.4 541.5 550.7	-229.4 -233.5 -237.6 -241.7 -245.8	-188.1 -191.5 -194.8 -198.2 -201.6	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
6,800.0 6,900.0 6,927.6 7,000.0 7,100.0	5.76 5.76 5.76 4.31 2.31	335.95 335.95 335.95 335.95 335.95 335.95	6,769.4 6,868.9 6,896.3 6,968.5 7,068.3	559.9 569.0 571.6 577.4 582.7	-249.9 -254.0 -255.1 -257.7 -260.0	-204.9 -208.3 -209.2 -211.3 -213.3	0.00 0.00 0.00 2.00 2.00	0.00 0.00 0.00 -2.00 -2.00	0.00 0.00 0.00 0.00 0.00
7,200.0 7,215.7 KOP: 1980	0.31 0.00 ' FSL & 473' F	335.95 0.00 EL (Sec 11)	7,168.3 7,184.0	584.8 584.8	-261.0 -261.0	-214.0 -214.0	2.00 2.00	-2.00 -2.00	0.00 0.00
7,250.0 7,300.0 7,350.0	3.42 8.42 13.42	88.72 88.72 88.72	7,218.2 7,268.0 7,317.0	584.8 584.9 585.1	-260.0 -254.8 -245.4	-213.0 -207.9 -198.4	9.99 9.99 9.99	9.99 9.99 9.99	0.00 0.00 0.00
7,400.0 7,450.0 7,500.0 7,550.0 7,600.0	18.41 23.41 28.41 33.40 38.40	88.72 88.72 88.72 88.72 88.72 88.72	7,365.1 7,411.8 7,456.8 7,499.6 7,540.1	585.5 585.9 586.3 586.9 587.6	-231.7 -213.8 -192.0 -166.3 -137.0	-184.7 -166.9 -145.1 -119.5 -90.2	9.99 9.99 9.99 9.99 9.99 9.99	9.99 9.99 9.99 9.99 9.99 9.99	0.00 0.00 0.00 0.00 0.00
7,650.0 7,700.0 7,750.0 7,800.0 7,850.0	43.40 48.39 53.39 58.38 63.38	88.72 88.72 88.72 88.72 88.72 88.72	7,577.9 7,612.7 7,644.2 7,672.3 7,696.6	588.3 589.1 590.0 590.9 591.9	-104.3 -68.4 -29.6 11.7 55.4	-57.5 -21.7 17.0 58.3 101.9	9.99 9.99 9.99 9.99 9.99 9.99	9.99 9.99 9.99 9.99 9.99 9.99	0.00 0.00 0.00 0.00 0.00
7,900.0 7,950.0 8,000.0 8,050.0 8,096.2	68.38 73.37 78.37 83.37 87.98	88.72 88.72 88.72 88.72 88.72 88.72	7,717.0 7,733.4 7,745.6 7,753.5 7,757.0	592.9 593.9 595.0 596.1 597.2	101.0 148.2 196.7 246.0 292.0	147.5 194.6 243.0 292.3 338.2	9.99 9.99 9.99 9.99 9.99 9.99	9.99 9.99 9.99 9.99 9.99	0.00 0.00 0.00 0.00 0.00
8,100.0 8,116.1	87.98 87.98	88.72 88.72	7,757.1 7,757.7	597.2 597.6	295.8 311.9	342.1 358.1	0.00 0.00	0.00 0.00	0.00 0.00
		' FWL (Sec 12		E00 E	205.0	444.0	0.00	0.00	0.00
8,200.0 8,300.0 8,400.0	87.98 87.98 87.98	88.72 88.72 88.72	7,760.7 7,764.2 7,767.7	599.5 601.7 603.9	395.8 495.7 595.6	441.8 541.6 641.4	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
8,500.0 8,600.0 8,700.0 8,800.0 8,900.0	87.98 87.98 87.98 87.98 87.98 87.98	88.72 88.72 88.72 88.72 88.72 88.72	7,771.2 7,774.7 7,778.3 7,781.8 7,785.3	606.2 608.4 610.6 612.9 615.1	695.5 795.4 895.3 995.2 1,095.2	741.2 840.9 940.7 1,040.5 1,140.3	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00

7/31/2024 12:00:33PM

Page 4

COMPASS 5000.16 Build 97

.

Data	base:	Hobbs	Local Co-ordinate Reference:	Site Stage Fright 12/7 Fed Com #716H
Com	ipany:	Mewbourne Oil Company	TVD Reference:	WELL @ 3340.0usft (Original Well Elev)
Proje	ect:	Eddy County, New Mexico NAD 83	MD Reference:	WELL @ 3340.0usft (Original Well Elev)
Site:	1	Stage Fright 12/7 Fed Com #716H	North Reference:	Grid
Well:	:	Sec 11, T21S, R25E	Survey Calculation Method:	Minimum Curvature
Well	bore:	BHL: 1980' FSL & 100' FEL (Sec 7)		
Desi	gn:	Design #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9.000.0	87.98	88.72	7,788.8	617.3	1,195.1	1,240.1	0.00	0.00	0.00
9,100.0	87.98	88.72	7,792.3	619.6	1,295.0	1,339.8	0.00	0.00	0.00
9,200.0	87.98	88.72	7,795.9	621.8	1,394.9	1,439.6	0.00	0.00	0.00
9,300.0	87.98	88.72	7,799.4	624.0	1,494.8	1,539.4	0.00	0.00	0.00
9,400.0	87.98	88.72	7,802.9	626.3	1,594.7	1,639.2	0.00	0.00	0.00
9,500.0	87.98	88.72	7,806.4	628.5	1,694.6	1,738.9	0.00	0.00	0.00
9,600.0	87.98	88.72	7,809.9	630.7	1,794.5	1,838.7	0.00	0.00	0.00
9,700.0	87.98	88.72	7,813.5	633.0	1,894.5	1,938.5	0.00	0.00	0.00
9,800.0	87.98	88.72	7,817.0	635.2	1,994.4	2,038.3	0.00	0.00	0.00
9,900.0	87.98	88.72	7,820.5	637.4	2,094.3	2,138.1	0.00	0.00	0.00
10,000.0	87.98	88.72	7,824.0	639.7	2,194.2	2,237.8	0.00	0.00	0.00
10,100.0	87.98	88.72	7,827.5	641.9	2,294.1	2,337.6	0.00	0.00	0.00
10,200.0	87.98	88.72	7,831.1	644.1	2,394.0	2,437.4	0.00	0.00	0.00
10,300.0	87.98	88.72	7,834.6	646.4	2,493.9	2,537.2	0.00	0.00	0.00
10,400.0	87.98	88.72	7,838.1	648.6	2,593.8	2,636.9	0.00	0.00	0.00
10,500.0	87.98	88.72	7,841.6	650.8	2,693.8	2,736.7	0.00	0.00	0.00
10,600.0	87.98	88.72	7,845.1	653.1	2,793.7	2,836.5	0.00	0.00	0.00
10,700.0	87.98	88.72	7,848.7	655.3	2,893.6	2,936.3	0.00	0.00	0.00
10,800.0	87.98	88.72	7,852.2	657.5	2,993.5	3,036.1	0.00	0.00	0.00
10,900.0	87.98	88.72	7,855.7	659.8	3,093.4	3,135.8	0.00	0.00	0.00
11,000.0	87.98	88.72	7,859.2	662.0	3,193.3	3,235.6	0.00	0.00	0.00
11,100.0	87.98	88.72	7,862.7	664.2	3,293.2	3,335.4	0.00	0.00	0.00
11,200.0	87.98	88.72	7,866.3	666.5	3,393.2	3,435.2	0.00	0.00	0.00
11,300.0	87.98	88.72	7,869.8	668.7	3,493.1	3,534.9	0.00	0.00	0.00
11,400.0	87.98	88.72	7,873.3	670.9	3,593.0	3,634.7	0.00	0.00	0.00
11,500.0	87.98	88.72	7,876.8	673.2	3,692.9	3,734.5	0.00	0.00	0.00
11,600.0	87.98	88.72	7,880.3	675.4	3,792.8	3,834.3	0.00	0.00	0.00
11,700.0	87.98	88.72	7,883.9	677.6	3,892.7	3,934.1	0.00	0.00	0.00
11,800.0	87.98	88.72	7,887.4	679.9	3,992.6	4,033.8	0.00	0.00	0.00
11,900.0	87.98	88.72	7,890.9	682.1	4,092.5	4,133.6	0.00	0.00	0.00
12,000.0	87.98	88.72	7,894.4	684.3	4,192.5	4,233.4	0.00	0.00	0.00
12,100.0	87.98	88.72	7,897.9	686.6	4,292.4	4,333.2	0.00	0.00	0.00
12,200.0	87.98	88.72	7,901.5	688.8	4,392.3	4,432.9	0.00	0.00	0.00
12,300.0	87.98	88.72	7,905.0	691.0	4,492.2	4,532.7	0.00	0.00	0.00
12,400.0	87.98	88.72	7,908.5	693.3	4,592.1	4,632.5	0.00	0.00	0.00
12,500.0	87.98	88.72	7,912.0	695.5	4,692.0	4,732.3	0.00	0.00	0.00
12,600.0	87.98	88.72	7,915.5	697.7	4,791.9	4,832.1	0.00	0.00	0.00
12,700.0	87.98	88.72	7,919.1	700.0	4,891.8	4,931.8	0.00	0.00	0.00
12,800.0	87.98	88.72	7,922.6	702.2	4,991.8	5,031.6	0.00	0.00	0.00
12,900.0	87.98	88.72	7,926.1	704.4	5,091.7	5,131.4	0.00	0.00	0.00
13,000.0	87.98	88.72	7,929.6	706.7	5,191.6	5,231.2	0.00	0.00	0.00
13,100.0	87.98	88.72	7,933.2	708.9	5,291.5	5,330.9	0.00	0.00	0.00
13,200.0	87.98	88.72	7,936.7	711.1	5,391.4	5,430.7	0.00	0.00	0.00
13,300.0	87.98	88.72	7,940.2	713.4	5,491.3	5,530.5	0.00	0.00	0.00
13,400.0	87.98	88.72	7,943.7	715.6	5,591.2	5,630.3	0.00	0.00	0.00
13,500.0	87.98	88.72	7,947.2	717.8	5,691.2	5,730.1	0.00	0.00	0.00
13,600.0	87.98	88.72	7,950.8	720.1	5,791.1	5,829.8	0.00	0.00	0.00
13,700.0	87.98	88.72	7,954.3	722.3	5,891.0	5,929.6	0.00	0.00	0.00
13,800.0	87.98	88.72	7,957.8	724.5	5,990.9	6,029.4	0.00	0.00	0.00
13,900.0	87.98	88.72	7,961.3	726.8	6,090.8	6,129.2	0.00	0.00	0.00
14,000.0	87.98	88.72	7,964.8	729.0	6,190.7	6,228.9	0.00	0.00	0.00
14,100.0	87.98	88.72	7,968.4	731.2	6,290.6	6,328.7	0.00	0.00	0.00
14,200.0	87.98	88.72	7,971.9	733.5	6,390.5	6,428.5	0.00	0.00	0.00
14,300.0	87.98	88.72	7,975.4	735.7	6.490.5	6,528.3	0.00	0.00	0.00

7/31/2024 12:00:33PM

Page 5

COMPASS 5000.16 Build 97

Data	abase:	Hobbs	Local Co-ordinate Reference:	Site Stage Fright 12/7 Fed Com #716H
			Loodi oo oraniate reference.	5 5
Com	npany:	Mewbourne Oil Company	TVD Reference:	WELL @ 3340.0usft (Original Well Elev)
	• •			e (e)
Proj	ect:	Eddy County, New Mexico NAD 83	MD Reference:	WELL @ 3340.0usft (Original Well Elev)
014	_	Champ Enight 10/7 East Camp #71011		
Site:	1	Stage Fright 12/7 Fed Com #716H	North Reference:	Grid
Well	•	Sec 11, T21S, R25E	Survey Calculation Method:	Minimum Curvature
wen		360 H, 1213, N23E	Survey Calculation Method.	
Wall	lbore:	BHL: 1980' FSL & 100' FEL (Sec 7)		
AAGU	ibore.	DITE. 1300 TOE & 100 TEE (Sec 7)		
Desi	ian:	Design #1		
Desi	iyii.	Design #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
14,400.0	87.98	88.72	7,978.9	737.9	6,590.4	6,628.1	0.00	0.00	0.00
14,500.0 14,600.0 14,700.0 14,800.0 14,900.0	87.98 87.98 87.98 87.98 87.98 87.98	88.72 88.72 88.72 88.72 88.72	7,982.4 7,986.0 7,989.5 7,993.0 7,996.5	740.2 742.4 744.6 746.9 749.1	6,690.3 6,790.2 6,890.1 6,990.0 7,089.9	6,727.8 6,827.6 6,927.4 7,027.2 7,126.9	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
15,000.0 15,100.0 15,200.0 15,300.0 15,400.0	87.98 87.98 87.98 87.98 87.98 87.98	88.72 88.72 88.72 88.72 88.72 88.72	8,000.0 8,003.6 8,007.1 8,010.6 8,014.1	751.3 753.6 755.8 758.0 760.3	7,189.8 7,289.8 7,389.7 7,489.6 7,589.5	7,226.7 7,326.5 7,426.3 7,526.1 7,625.8	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
15,500.0 15,600.0 15,700.0 15,800.0 15,900.0	87.98 87.98 87.98 87.98 87.98 87.98	88.72 88.72 88.72 88.72 88.72 88.72	8,017.6 8,021.2 8,024.7 8,028.2 8,031.7	762.5 764.7 767.0 769.2 771.4	7,689.4 7,789.3 7,889.2 7,989.2 8,089.1	7,725.6 7,825.4 7,925.2 8,024.9 8,124.7	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
16,000.0 16,100.0 16,200.0 16,300.0 16,400.0	87.98 87.98 87.98 87.98 87.98 87.98	88.72 88.72 88.72 88.72 88.72 88.72	8,035.2 8,038.8 8,042.3 8,045.8 8,049.3	773.7 775.9 778.1 780.4 782.6	8,189.0 8,288.9 8,388.8 8,488.7 8,588.6	8,224.5 8,324.3 8,424.1 8,523.8 8,623.6	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
16,500.0 16,600.0 16,700.0 16,800.0 16,900.0	87.98 87.98 87.98 87.98 87.98 87.98	88.72 88.72 88.72 88.72 88.72 88.72	8,052.8 8,056.4 8,059.9 8,063.4 8,066.9	784.8 787.1 789.3 791.5 793.8	8,688.5 8,788.5 8,888.4 8,988.3 9,088.2	8,723.4 8,823.2 8,922.9 9,022.7 9,122.5	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
17,000.0 17,100.0 17,200.0 17,300.0 17,400.0	87.98 87.98 87.98 87.98 87.98 87.98	88.72 88.72 88.72 88.72 88.72	8,070.4 8,074.0 8,077.5 8,081.0 8,084.5	796.0 798.2 800.5 802.7 804.9	9,188.1 9,288.0 9,387.9 9,487.8 9,587.8	9,222.3 9,322.0 9,421.8 9,521.6 9,621.4	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
17,500.0 17,600.0 17,700.0 17,800.0 17,900.0	87.98 87.98 87.98 87.98 87.98	88.72 88.72 88.72 88.72 88.72 88.72	8,088.0 8,091.6 8,095.1 8,098.6 8,102.1	807.2 809.4 811.6 813.9 816.1	9,687.7 9,787.6 9,887.5 9,987.4 10,087.3	9,721.2 9,820.9 9,920.7 10,020.5 10,120.3	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
18,000.0 18,100.0 18,208.8	87.98 87.98 87.98 ' FSL & 100' F l	88.72 88.72 88.72	8,105.6 8,109.2 8,113.0	818.3 820.6 823.0	10,187.2 10,287.2 10,395.9	10,220.0 10,319.8 10,428.4	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00

Database: Company: Project: Site: Well: Wellbore: Design:	Company:Mewbourne Oil CompanyProject:Eddy County, New Mexico NAD 83Site:Stage Fright 12/7 Fed Com #716HWell:Sec 11, T21S, R25EWellbore:BHL: 1980' FSL & 100' FEL (Sec 7)					ordinate Referen rence: ence: erence: alculation Metho		Site Stage Fright 12/7 Fed Com #716H WELL @ 3340.0usft (Original Well Elev) WELL @ 3340.0usft (Original Well Elev) Grid Minimum Curvature			
Design Targets											
Target Name - hit/miss target - Shape	Dip Angl (°)	e Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	East (us	•	Latitude	Longitude	
SHL: 1395' FSL & 20 - plan hits target - Point	• • •	0.00	0.0	0.0	0.0	542,178.10	533	,778.70	32.4905070	-104.3578489	
KOP: 1980' FSL & 47 - plan hits target - Point		0.00	7,184.0	584.8	-261.0	542,762.90	533	,517.70	32.4921143	-104.3586958	
LP/FTP: 1980' FSL 8 - plan hits target - Point		0 360.00	7,757.7	597.6	311.9	542,775.71	534	,090.60	32.4921499	-104.3568377	
BHL: 1980' FSL & 10 - plan hits target - Point		0.00	8,113.0	823.0	10,395.9	543,001.10	544	,174.60	32.4927713	-104.3241315	

Received by OCD: 8/26/2024 10:03:37 AM

Well Location	GL: 3316'										
Point	Calls	Leases	Aliquot	Section	Township	Range	County	Lat	Long	TVD	MD
SHL	SHL: 1395' FSL & 205' FEL (Sec 11)	NMLC0070409	SESE	11	218	26E	Eddy	32.4905071	104.3578490	0'	0'
KOP	KOP: 1980' FSL & 473' FEL (Sec 11)	NMLC0070409	NESE	11	218	26E	Eddy	32.4921142	104.3586958	7,184'	7,216'
FTP	FTP: 1980' FSL & 100' FWL (Sec 12)	NMNM0454228	NWSW	12	21S	26E	Eddy	32.4921133	104.3568378	7,757'	8,116'
BHL	BHL: 1980' FSL & 100' FEL (Sec 7)	State	NESE	7	21S	26E	Eddy	32.4927713	104.3241316	8,113'	18,208'

GEOLOGY

Formation	Est. Top (TVD)	Lithology	Mineral Resources	Formation	Est. Top (TVD)	Lithology	Mineral Resources
Rustler				Yeso			
Castile				Delaware (Lamar)	1903'	Limestone/Dolomite	Oil/Natural Gas
Salt Top				Bell Canyon			
Salt Base				Cherry Canyon			
Yates				Manzanita Marker			
Seven Rivers				Basal Brushy Canyon			
Queen				Bone Spring	3658'	Limestone	Oil/Natural Gas
Capitan	675'	Limestone/Dolomite	Usable Water	1st Bone Spring	5294'	Sandstone	Oil/Natural Gas
Grayburg				2nd Bone Spring	5936'	Sandstone	Oil/Natural Gas
San Andres				3rd Bone Spring	7272'	Sandstone	Oil/Natural Gas
Glorietta				Wolfcamp	7660'	Shale/Sandstone/Limestone	Oil/Natural Gas

	(Casing Program	m Design A		BLM Minimum Safety Factors	1.125	1.0	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet	
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	400'	400'	13.375" 48# H40 STC	4.30	9.67	16.77	28.18
Int	12.25"	0'	0'	1825'	1825'	9.625" 36# J55 LTC	2.48	4.31	6.89	8.58
Production	8.75"	0'	0'	7216'	7184'	7" 26# P110 LTC	1.76	2.80	3.69	4.42
Liner	6.125"	7016'	6984'	18208'	8113'	4.5" 13.5# P110 LTC	2.11	2.45	2.24	2.79

All casing strings will be tested in accordance with 43 CFR Part 3172. Must have table for contingency casing.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	Y
If yes, does production casing cement tie back a minimum of 50° above the Reef?	Y
Is well within the designated 4 string boundary.	N
Is well located in SOPA but not in R-111-Q?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-Q and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is an open annulus used to satisfy R-111-Q? If yes, see cement design.	
Is an engineered weak point used to satisfy R-111-Q?	
If yes, at what depth is the weak point planned?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	Y
If yes, are there three strings cemented to surface?	Y

Design A - Cement Program

Csg. Size		# Sacks	Wt., lb/gal	Yield, ft ³ /sack	TOC/BOC	Volume, ft ³	% Excess	Slurry Description			
13.375 in	LEAD	140	12.5	2.12	0' - 211'	300	100%	Class C: Salt, Gel, Extender, LCM			
15.575 III	TAIL	200	14.8	1.34	211' - 400'	268	100%	Class C: Retarder			
1st Stg 9.625 in	LEAD	100	12.5	2.12 650' - 1180' 220 2500		25%	Class C: Salt, Gel, Extender, LCM				
1st stg 9.025 m	TAIL	200	14.8	1.34	1180' - 1825'	268	23%	Class C: Retarder			
9 5/8" DV Tool @ 650'											
	LEAD	60	12.5	2.12	0' - 320'	130		Class C: Salt, Gel, Extender, LCM			
2nd Stg 9.625 in	TAIL	100	14.8	1.34	320' - 650'	134	25%	Class C: Retarder			
7 in	LEAD	400	12.5	2.12	0' - 4640'	850	25%	Class C: Salt, Gel, Extender, LCM, Defoamer			
/ III	TAIL	400	15.6	1.18	4640' - 7216'	472	23%	Class H: Retarder, Fluid Loss, Defoamer			
4.5 in	LEAD	720	13.5	1.85	7016' - 18208'	1340	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti- settling Agent			

Pressure Control Equipment

BOP installed and tested before drilling hole, in:	Size, in	System Rated WP	Туре			Tested to:	Rating Depth			
	13.375	5M	A	Annular	Х	2500#				
			Blind Ram		Х					
12.25		13.375	13.375	13.375	5M	Pipe Ram		Х	5000#	18,208'
			Double Ram			3000#				
								Other*		

*Specify if additional ram is utilized.

Equipment: Annular, Pipe Rams, Blind Rams, Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

Variance Request: A variance is requested for the use of a flexible choke line from the BOP to the choke manifold. See attached for hydrostatic test chart. Anchors are not required by manufacturer. Variance is requested to use a multi bowl wellhead. Variance is requested to perform break testing according to attached procedure. If a breaktesting variance is approved & incorporated, API Standard 53 will be incorporated and testing annular BOP to 70% of RWP or 100% of MASP, whichever is greater, will be performed.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per 43 CFR Part 3172 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

Y	Formation integrity test will be performed per 43 CFR Part 3172. On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with 43 CFR Part 3172.
Ν	Mewbourne Oil Company request a variance to use a 5000 psi annular BOP with a 10,000 psi BOP stack.

Mud Program

Mud Wt., lb/gal	Mud Type
8.4 - 8.6	Fresh Water
8.4 - 8.6	Fresh Water
8.6 - 9.5	Cut-Brine
10.0 - 12.	OBM
	lb/gal 8.4 - 8.6 8.4 - 8.6 8.6 - 9.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	Pason/PVT/Visual Monitoring
---	-----------------------------

Logging and Testing Procedures

Logging	, Coring and Testing.					
Ν	Will run GR/CNL from KOP (7216') to surface (horizontal well – vertical portion of hole). Stated logs run will be in the Completion Report and submitted to the BLM.					
Y	No logs are planned based on well control or offset log information. Offset Well: Stage Fright 12/7 Fed Com #718H					
N	Coring? If yes, explain:					

Open & Cased Hole Logs Run In the Well

Caliper		Cement Bond Log	CNL/FDC
Compensated Densilog		Compensated Neutron Log	Computer Generated Log
Dip Meter Log	<	Directional Survey	Dual Induction/Microresistivity
Dual Lateral Log/Microspherically Focused		Electric Log	Formation Density Compensated Log
Gamma Ray Log	<	Measurement While Drilling	Mud Log/Geological Lithology Log
Other		Porosity-Resistivity Log	Sidewall Neutron Log
Sonic Log		Spontaneous Potential Log	Temperature Log

Drilling Conditions

Condition	Specify what type and where?						
BH Pressure at deepest TVD	5063 psi						
BH Temperature	165						
Abnormal Temp, Pressure, or Geologic Hazards	No						
Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers							
in surface hole. Weighted mud for possible over-press	ure in Wolfcamp formation.						

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

	H2S is present
Х	H2S Plan attached

Mewbourne Oil Company, Stage Fright 12/7 Fed Com 716H Sec 11, T21S, R25E SHL: 1395' FSL 205' FEL (Sec 11) BHL: 1980' FSL 100' FEL (Sec 7)

Other facets of operation

Mewbourne Oil Company also requests approval to implement Design B as described below. BLM will be notified of elected design.									
Offline Cementing Variance: Variance is requested to perform offline cementing according to the attached procedure. R-111Q: Mewbourne proposes performing Open Hole Cementing per R-									

		Casing Program	m Design B		BLM Minimum Safety Factors	1.125	1.0	1.6 Dry	1.6 Dry	
Cashig Hogram Desgi D						DEM Minimum Safety Factors	1.125	1.0	1.8 Wet	1.8 Wet
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt	SF Body
Surface	17.5"	0'	0'	400'	400'	13.375" 48# H40 STC	4.30	9.67	16.77	28.18
Int	12.25"	0'	0'	1825'	1825'	9.625" 36# J55 LTC	2.48	4.31	6.89	8.58
Production	8.75"	0'	0'	8116'	7757'	7" 26# P110 LTC	1.63	2.60	3.28	3.93
Liner	6.125"	7216'	7184'	18208'	8113'	4.5" 13.5# P110 LTC	2.11	2.45	2.28	2.84

All casing strings will be tested in accordance with 43 CFR Part 3172. Must have table for contingency casing.

	Y or N						
Is casing new? If used, attach certification as required in Onshore Order #1	Y						
Is casing API approved? If no, attach casing specification sheet.	Y						
Is premium or uncommon casing planned? If yes attach casing specification sheet.							
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).							
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?							
Is well located within Capitan Reef?	Y						
If yes, does production casing cement tie back a minimum of 50' above the Reef?	Y						
Is well within the designated 4 string boundary.	Ν						
Is well located in SOPA but not in R-111-Q?	N						
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?							
Is well located in R-111-Q and SOPA?	N						
If yes, are the first three strings cemented to surface?							
Is 2 nd string set 100' to 600' below the base of salt?							
Is an open annulus used to satisfy R-111-Q? If yes, see cement design.							
Is an engineered weak point used to satisfy R-111-Q?							
If yes, at what depth is the weak point planned?							
Is well located in high Cave/Karst?	N						
If yes, are there two strings cemented to surface?							
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?							
Is well located in critical Cave/Karst?	Y						
If yes, are there three strings cemented to surface?	Y						

Design B - Cement Program

Csg. Size		# Sacks	Wt., lb/gal	Yield, ft ³ /sack	TOC/BOC	Volume, ft ³	% Excess	Slurry Description
13.375 in	LEAD	140	12.5	2.12	0' - 211'	300	100%	Class C: Salt, Gel, Extender, LCM
15.575 m	TAIL	200	14.8	1.34	211' - 400'	268	100%	Class C: Retarder
1st Stg 9.625 in	LEAD	100	12.5	2.12	650' - 1180'	220	25%	Class C: Salt, Gel, Extender, LCM
1st Stg 9.025 m	TAIL	200	14.8	1.34	1180' - 1825'	268	2.370	Class C: Retarder
					9 5/	8'' DV Tool @ 650'		
	LEAD	60	12.5	2.12	0' - 320'	130		Class C: Salt, Gel, Extender, LCM
2nd Stg 9.625 in	TAIL	100	14.8	1.34	320' - 650'	134	25%	Class C: Retarder
7 in	LEAD	480	12.5	2.12	0' - 5548'	1020	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
/ m	TAIL	400	15.6	1.18	5548' - 8116'	472	23%	Class H: Retarder, Fluid Loss, Defoamer
4.5 in	LEAD	700	13.5	1.85	7216' - 18208'	1300	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti- settling Agent

Mewbourne Oil Company, Stage Fright 12/7 Fed Com 716H Sec 11, T21S, R25E SHL: 1395' FSL 205' FEL (Sec 11) BHL: 1980' FSL 100' FEL (Sec 7)

		Casing Prog	ram Design A		BLM Minimum Safety Factors	1.125	1.0	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet	
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	400'	400'	13.375" 48# H40 STC	4.30	9.67	16.77	28.18
Int	12.25"	0'	0'	1825'	1825'	9.625" 36# J55 LTC	2.48	4.31	6.89	8.58
Production	8.75"	0'	0'	7216'	7184'	7" 26# P110 LTC	1.76	2.80	3.69	4.42
Liner	6.125"	7016'	6984'	18208'	8113'	4.5" 13.5# P110 LTC	2.11	2.45	2.24	2.79

Cement Program

				2		2		
Casing		# Sacks	Wt. lb/gal	Yield ft ³ /sack	TOC/BOC	Volume ft ³	% Excess	Slurry Description
13.375 in	LEAD	140	12.5	2.12	0' - 211'	300	100%	Class C: Salt, Gel, Extender, LCM
15.575 m	TAIL	200	14.8	1.34	211' - 400'	268	10070	Class C: Retarder
1st Stg 9.625 in	LEAD	100	12.5	2.12	650' - 1180'	220	25%	Class C: Salt, Gel, Extender, LCM
13t 5tg 7.025 m	TAIL	200	14.8	1.34	1180' - 1825'	268	2.3 %	Class C: Retarder
					9 5/8'' D	V Tool @ 650'		
2nd Stg 9.625 in	LEAD	60	12.5	2.12	0' - 320'	130	25%	Class C: Salt, Gel, Extender, LCM
2110 Stg 9.025 III	TAIL	100	14.8	1.34	320' - 650'	134	2.370	Class C: Retarder
7 in	LEAD	400	12.5	2.12	0' - 4640'	850	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
/ш	TAIL	400	15.6	1.18	4640' - 7216'	472	2.3 %	Class H: Retarder, Fluid Loss, Defoamer
4.5 in	LEAD	720	13.5	1.85	7016' - 18208'	1340	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti- settling Agent

Design A - Mud Program Depth

0' - 400'

400' - 1825' 1825' - 7216' 7216' - 18208'

		Geology				
Mud Wt	Mud Type	Formation	Est. Top (TVD)	Mineral Resources	Formation	Est. Top
8.4 - 8.6		Rustler			Yeso	
8.4 - 8.6	Fresh Water	Castile			Delaware (Lamar)	1903
8.4 - 8.6	Fresh Water	Salt Top			Bell Canyon	
8.6 - 9.5	Cut-Brine	Salt Base			Cherry Canyon	
10.0 - 12.	OBM	Yates			Manzanita Marker	
•		Seven Rivers			Basal Brushy Canyon	
		Queen			Bone Spring	3658
		Capitan	675'	Usable Water	1st Bone Spring	5294
		Grayburg			2nd Bone Spring	5936
		San Andres			3rd Bone Spring	7272
					, , , , , , , , , , , , , , , , , , ,	

Glorieta

All casing strings will be tested in accordance with 43 CFR Part 3170 Subpart 3172. Must have table for contingency casing.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Ŷ
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Ν
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	v
If vest notated winim Capatin Capatin Capatin Capating Ca	v I
is well within the designated 4 string boundary.	N
Is well located in SOPA but not in R-111-O?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	11
Is well located in R-111-Q and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is an open annulus used to satisfy R-111-Q? If yes, see cement design.	
Is an engineered weak point used to satisfy R-111-Q?	
If yes, at what depth is the weak point planned?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	Y
If yes, are there three strings cemented to surface?	Y

Mineral Resources

Oil/Natural Gas

Oil/Natural Gas Oil/Natural Gas Oil/Natural Gas Oil/Natural Gas Oil/Natural Gas

.

5294' 5936' 7272' 7660'

Wolfcamp

Mewbourne Oil Company, Stage Fright 12/7 Fed Com 716H Sec 11, T21S, R25E SHL: 1395' FSL 205' FEL (Sec 11) BHL: 1980' FSL 100' FEL (Sec 7)

		Casing Prog	ram Design B			BLM Minimum Safety Factors	1.125	1.0	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet
String	Hole Size	Top MD	Top TVD	Bot MD	Bot TVD	Csg. Size	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
Surface	17.5"	0'	0'	400'	400'	13.375" 48# H40 STC	4.30	9.67	16.77	28.18
Int	12.25"	0'	0'	1825'	1825'	9.625" 36# J55 LTC	2.48	4.31	6.89	8.58
Production	8.75"	0'	0'	8116'	7757'	7" 26# P110 LTC	1.63	2.60	3.28	3.93
Liner	6.125"	7216'	7184'	18208'	8113'	4.5" 13.5# P110 LTC	2.11	2.45	2.28	2.84

Design B - Cement Program	n							
Casing		# Sacks	Wt. lb/gal	Yield ft ³ /sack	TOC/BOC	Volume ft ³	% Excess	Slurry Description
13.375 in	LEAD	140	12.5	2.12	0' - 211'	300	100%	Class C: Salt, Gel, Extender, LCM
15.575 III	TAIL	200	14.8	1.34	211' - 400'	268	100%	Class C: Retarder
1st Stg 9.625 in	LEAD	100	12.5	2.12	650' - 1180'	220	25%	Class C: Salt, Gel, Extender, LCM
1st stg 5.025 m	TAIL	200	14.8	1.34	1180' - 1825'	268	23%	Class C: Retarder
					9 5/8'' E	OV Tool @ 650'		
2nd Stg 9.625 in	LEAD	60	12.5	2.12	0' - 320'	130	25%	Class C: Salt, Gel, Extender, LCM
2110 Stg 9.025 III	TAIL	100	14.8	1.34	320' - 650'	134	23%	Class C: Retarder
7 in	LEAD	480	12.5	2.12	0' - 5548'	1020	25%	Class C: Salt, Gel, Extender, LCM, Defoamer
7 Ш	TAIL	400	15.6	1.18	5548' - 8116'	472	2.370	Class H: Retarder, Fluid Loss, Defoamer
4.5 in	LEAD	700	13.5	1.85	7216' - 18208'	1300	25%	Class H: Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti- settling Agent

Design B - Mud Program			Geology					
Depth	Mud Wt	Mud Type	Formation	Est. Top (TVD)	Mineral Resources	Formation	Est. Top (TVD)	Mineral Resources
	8.4 - 8.6		Rustler			Yeso		
0' - 400'	8.4 - 8.6	Fresh Water	Castile			Delaware (Lamar)	1903'	Oil/Natural Gas
400' - 1825'	8.4 - 8.6	Fresh Water	Salt Top			Bell Canyon		
1825' - 8116'	8.6 - 9.5	Cut-Brine	Salt Base			Cherry Canyon		
8116' - 18208'	10.0 - 12.	OBM	Yates			Manzanita Marker		
E			Seven Rivers			Basal Brushy Canyon		
			Queen			Bone Spring	3658'	Oil/Natural Gas
			Capitan	675'	Usable Water	1st Bone Spring	5294'	Oil/Natural Gas
			Grayburg			2nd Bone Spring	5936'	Oil/Natural Gas
			San Andres			3rd Bone Spring	7272'	Oil/Natural Gas
			Glorieta			Wolfcamp	7660'	Oil/Natural Gas

All casing strings will be tested in accordance with 43 CFR Part 3170 Subpart 3172. Must have table for contingency casing.

is casing new? If used, attach certification as required in Onshore Order #1 Y s casing API approve?? If no, attach casing specification sheet. Y S casing API approve?? If no, attach casing specification sheet. N S permitum or uncommon casing specification sheet. N S permitum or uncommon casing specification sheet. N S used he above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria). Y Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing? S well located within Capitan Reef? Y If yes, does production casing cernent tie back a minimum of 50' above the Reef? If yes, does production casing cernent tie back a minimum of 50' above the Reef? S well located in SOPA but not in R-111-Q? N If yes, as the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing? S well located in R-111-Q and SOPA? If yes, are the first 2 strings cemented to surface? Is well within the esting a to surface? If yes, are used to surface? If yes, are used to surface? Is a one namulus used to satify R-111-Q? If yes, are weak point yeas, see cement design. S an one namulus used to satify R-111-Q? If yes, are whe depth is the weak point planned? S well located in high Cave/Karst? If yes, are there two strings cemented to surface? If yes, are there two strings cemented to surface? If yes, are when depth is the weak point planned? S well located in high Cave/Karst? If yes, are there two strings cemented to surface? If yes, are there two s		
is casing API approved? If no, attach casing specification sheet. Y is premium or uncommon casing planned? If yes attach casing specification sheet. N Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria). Y Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing? Y is well located within Capitan Reef? Y If yes, does production casing cement to back a minimum of 50° above the Reef? Y is well located in SOPA but not in R-111-Q? Y If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500° into previous casing? N is well located in R-111-Q N If yes, are the first 2 strings cemented to surface? N is well located in R-111-Q N If yes, are the first three strings cemented to surface? N is a open annubus used to satify R-111-Q? N If yes, are the first three strings cemented to surface? S is an enjametered weak point used to satify R-111-Q? N If yes, are the first three strings cement design. S is an enjametered weak point planned? S is an enjametered weak point used to satify R-111-Q?		Y or N
is premium or uncommon casing planned? If yes attach casing specification sheet. N Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria). Y Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing? Y is well located within Capitan Reef? Y If yes, does production casing cement tie back a minimum of 50° above the Reef? Y Is well vithin the designated 4 string boundary. N is well located in SOPA but not in R-111-Q? N If yes, ace the first 2 strings cemented to surface and 3 rd string cement tied back 500° into previous casing? N is well located in R-111-Q and SOPA? N If yes, are the first three strings cemented to surface? N is an open annulus used to satisfy R-111-Q? If yes, see cement design. S is an open annulus used to satisfy R-111-Q? If yes, see cement design. S is an open annulus used to satisfy R-111-Q? S if yes, are the first three strings cemented based string. S if yes, are the rew opting talender? S if yes, are the first three strings cemented based string. S is an open annulus used to satisfy R-111-Q? If yes, see cement design. S if yes, are there two strings cemented to surface? S if yes, are there two strings ce		Y
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria). Y Will the pipe be kept at a minimum 13 fluid filled to avoid approaching the collapse pressure rating of the casing? Y is well located within Capitan Reef? Y If yes, does production casing cement ite back a minimum of 50° above the Reef? Y Is well located in SOPA but not in R-111-Q? Y Is well located in SOPA but not in R-111-Q? N If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500° into previous casing? N is well located in N-111-Q and SOPA? N If yes, are the first 12 strings cemented to surface? N is a negineered weak point used to satify R-111-Q? N If yes, are the first 12 strings cemented to surface? S is a negineered weak point used to satify R-111-Q? N is a negineered weak point planned? S is well located in high Cave/Karst? N if yes, are there two strings cemented to surface? S is well located in high Cave/Karst? N if yes, are there two strings cemented to surface? S is well located in high Cave/Karst? N if yes, are there two str	Is casing API approved? If no, attach casing specification sheet.	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing? Y is well located within Capitan Reef? Y If yes, does production casing cement tie back a minimum of 50° above the Reef? Y Is well within the designated 4 string boundary. N is well located in SOPA but not in R-111-Q? N If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500° into previous casing? N is well located in R-111-Q and SOPA? N If yes, are the first 2 strings cemented to surface? N Is 'string st 100° to 600° below the base of salt? N is an engineered weak point used to satisfy R-111-Q? Y If yes, are ther two strings cemented to surface? S is well located in high Cave/Karst? N If yes, are there two strings cemented to surface? N is an engineered weak point used to satisfy R-111-Q? Y is well located in high Cave/Karst? N If yes, are there two strings cemented to surface? N is well located in high Cave/Karst? N is well located in in high Cave/Karst? N if yes, are there two strings cemented to surface? N if yes, a	Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
b b b b b is well located within Capitan Reef? Y Y is well within the design ement tie back a minimum of 50° above the Reef? Y N is well within the design ement tie back a minimum of 50° above the Reef? N N is well within the design ement tie back a minimum of 50° above the Reef? N N is well located in SOPA but not in R-111-Q? N N N if yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500° into previous casing? N N is well located in R-111-Q and SOPA? If yes, are the first three strings cemented to surface? N N is a well nocated in R-111-Q and SOPA? If yes, are the first three strings cemented to surface? S N is a no enjacered weak point used to satisfy R-111-Q? If yes, are the first three strings cemented to surface? S	Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
If yes, does production casing cement tie back a minimum of 50' above the Reef? Y Is well within the designated 4 string boundary. N is well within the designated 4 string boundary. N is well located in SOPA but not in R-111-Q? N If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing? N is well located in R-111-Q and SOPA? N If yes, are the first three strings cemented to surface? N is well located in R-111-Q in dSOPA? N If yes, are the first three strings cemented to surface? N is a open annulus used to satify R-111-Q? N is an opnicered weak point used to satify R-111-Q? See cement design. is an engineered weak point used to satify R-111-Q? If yes, are there two strings cemented to surface? is well located in high Cave/Karst? N If yes, are there two strings cemented to surface? N If yes, are there a contingency casing if lost circulation occurs? N is well located in high Cave/Karst? N If yes, is there a contingency casing if lost circulation occurs? N is well located in circula Cave/Karst? Y	Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
If yes, does production casing cement tie back a minimum of 50' above the Reef? Y Is well within the designated 4 string boundary. N is well within the designated 4 string boundary. N is well located in SOPA but not in R-111-Q? N If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing? N is well located in R-111-Q and SOPA? N If yes, are the first three strings cemented to surface? N is well located in R-111-Q in dSOPA? N If yes, are the first three strings cemented to surface? N is a open annulus used to satify R-111-Q? N is an opnicered weak point used to satify R-111-Q? See cement design. is an engineered weak point used to satify R-111-Q? If yes, are there two strings cemented to surface? is well located in high Cave/Karst? N If yes, are there two strings cemented to surface? N If yes, are there a contingency casing if lost circulation occurs? N is well located in high Cave/Karst? N If yes, is there a contingency casing if lost circulation occurs? N is well located in circula Cave/Karst? Y		
Is well within the designated 4 string boundary. Is well located in SOPA but not in R-111-Q? If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing? If yes, are the first 12 strings cemented to surface? Is well located in R-111-Q? If yes, see cement design. Is an engineered weak point used to satisfy R-111-Q? If yes, at what depth is the weak point planned? If yes, are there two strings cemented to surface? If yes, are there two strings cemented to surface? If yes, are there two strings cemented to surface? If yes, are there two strings cemented to surface? If yes, are there two strings cemented to surface? If yes, are there two strings cemented to surface? If yes, are there two strings cemented to surface? If yes, are there two strings cemented to surface? If yes, are there two strings cemented to surface? If yes, is there a contingency casing if lost circulation occurs? Y	Is well located within Capitan Reef?	Y
is well located in SOPA but not in R-111-Q? If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing? is well located in R-111-Q and SOPA? If yes, are the first three strings cemented to surface? Is 2 rd string set 100' to 600' below the base of salt? Is an open annulus used to satisfy R-111-Q? If yes, see cement design. Is an open annulus used to satisfy R-111-Q? If yes, at what depth is the weak point planned? If yes, are there two strings cemented to surface? If yes, are there two strings cemented to surface? If yes, are there two strings cemented to surface? If yes, are there two strings cemented to surface? If yes, are there two strings cemented to surface? If yes, are there two strings cemented to surface? If yes, are there two strings cemented to surface? If yes, are there two strings cemented to surface? If yes, are there two strings cemented to surface? If yes, is there a contingency casing if lost circulation occurs? Y	If yes, does production casing cement tie back a minimum of 50' above the Reef?	Y
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500° into previous casing? Image: String Stri	Is well within the designated 4 string boundary.	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500° into previous casing? Image: String Stri		
is well located in retitical Cave/Karst? Y	Is well located in SOPA but not in R-111-Q?	N
If yes, are the first three strings cemented to surface? If yes, are the first three strings cemented to surface? If yes, set loo' below the base of salt? is an open annulus used to satisfy R-111-Q? If yes, see cement design. If yes, are there weak point used to satisfy R-111-Q? If yes, are there two strings cemented to surface? is well located in high Cave/Karst? N If yes, is there a contingency casing if lost circulation occurs? N is well located in circuical Cave/Karst? Y Y	If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
If yes, are the first three strings cemented to surface? If yes, are the first three strings cemented to surface? If yes, set loo' below the base of salt? is an open annulus used to satisfy R-111-Q? If yes, see cement design. If yes, are there weak point used to satisfy R-111-Q? If yes, are there two strings cemented to surface? is well located in high Cave/Karst? N If yes, is there a contingency casing if lost circulation occurs? N is well located in circuical Cave/Karst? Y Y		
Is 2 nd string set 100' to 600' below the base of salt? Is is an open annulus used to satisfy R-111-Q? If yes, see cement design. Is is an engineered weak point used to satisfy R-111-Q? If yes, see tement design. If yes, at what depth is the weak point planned? Is is well located in high Cave/Karst? N If yes, are there two strings cemented to surface? Is (For 2 string wells) If yes, is there a contingency casing if lost circulation occurs? Y	Is well located in R-111-Q and SOPA?	N
is an open annuhus used to satisfy R-111-Q? If yes, see cement design	If yes, are the first three strings cemented to surface?	
is an engineered weak point used to satisfy R-111-Q? If yes, at what depth is the weak point planned? is well located in high Cave/Karst? If yes, are there two strings cemented to surface? (For 2 string wells) If yes, is there a contingency casing if lost circulation occurs? is well located in critical Cave/Karst? Y	Is 2 nd string set 100' to 600' below the base of salt?	
If yes, at what depth is the weak point planned? If yes, at what depth is the weak point planned? If yes, are there two strings cemented to surface? (For 2 string wells) If yes, is there a contingency casing if lost circulation occurs? If yes well located in critical Cave/Karst? If yes are there two strings cemented to surface? If yes are there	Is an open annulus used to satisfy R-111-Q? If yes, see cement design.	
is well located in ritical Cave/Karst? N (For 2 string wells) If yes, is there a contingency casing if lost circulation occurs? Set Unit of the circulation occurs? Set Unit occurs? Set Unit of the circulation occurs? Set Unit occur	Is an engineered weak point used to satisfy R-111-Q?	
If yes, are there two strings cemented to surface? (For 2 string wells) If yes, is there a contingency casing if lost circulation occurs? (Swell located in critical Cave/Karst?	If yes, at what depth is the weak point planned?	
If yes, are there two strings cemented to surface? (For 2 string wells) If yes, is there a contingency casing if lost circulation occurs? (Swell located in critical Cave/Karst?		
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	Is well located in high Cave/Karst?	N
is well located in critical Cave/Karst? Y	If yes, are there two strings cemented to surface?	
	(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
If yes, are there three strings cemented to surface?	Is well located in critical Cave/Karst?	Y
	If yes, are there three strings cemented to surface?	Y

Received by OCD: 8/26/2024 10:03:37 AM

•

<u>C-10</u>	2		Ene	rgv. Min	State of New Mexico Revised July erals & Natural Resources Department							
	t Electronica					FION DIVISION					-	
Via O	CD Permitti	ng						Subm	ittal	tal Initial Submittal		
								Type:		Amended Rep	ort	
										□ As Drilled		
					WELL LOCAT	TION INFORMATIC	DN					
API Nı	ımber		Pool Code	98324]	Pool Name WC; W						
-	y Code		Property N	^{ame} S	TAGE FRIG	HT 12/7 FE	D COM		Well	Number	716H	
OGRIE	^{0 No.} 1474	4	Operator N	ame	MEWBOUR	NE OIL COM				nd Level Elevation	3316'	
Surface	e Owner: 🗆	State □Fee [🗆 Tribal 🔲 F	ederal		Mineral Owner:	□ State □ Fee	□ Tribal	□Fe	deral		
					Surf	ace Location						
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude		Long	itude	County	
Р	11	21S	25E	4	1395 FSL	205 FEL	32.49050	71°N	104	.3578490°W	EDDY	
						Hole Location						
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude		Long	itude	County	
I	7	21S	26E		1980 FSL		32.49277	1 3°N	C	.3241316°W	EDDY	
1	1	~15	201		1500 151		05.40511	10 11	101	.0.41010 "	EDDI	
Dedica 320	ted Acres	Infill or Defi	ning Well	Defining	g Well API	Overlapping Spa	cing Unit (Y/N)	Consolie				
	Numbers.			1		Well setbacks ar	e under Common	Ownersl	nip: 🗆] Yes 🗌 No		
		1	1_	1_	1	off Point (KOP)	1					
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude		Long		County	
Ι	11	21S	25E	1	1980 FSI	473 FEL	32.49211	42°N	104	.3586958°₩	EDDY	
					First Ta	ake Point (FTP)	1					
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude		Long	itude	County	
L	12	21S	25E	12	1980 FSI	100 FWL	32.49211	33°N	104	.3568378°W	EDDY	
		•		•	Last Ta	ike Point (LTP)						
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude		Long	itude	County	
Unitize	d Area or A	rea of Uniform	Interest	Spacing	Unit Type 🗌 Hor	izontal 🗌 Vertical	Grour	nd Floor I	Elevat	ion:		
					<i></i>							
OPER	ATOR CER	TIFICATIONS	S			SURVEYOR CER	TIFICATIONS					
my know organiza includin location interest, entered If this w consent	vledge and beli ation either ow g the proposed pursuant to a or to a volunta by the division ell is a horizon of at least one	ef, and , if the wel ns a working inter bottom hole local contract with an o ary pooling agreen tal well, I further lessee or owner oj	Il is a vertical or rest or unleased tion or has a rig wner of a work ment or a compu certify that this f a working inte.	directional mineral inter th to drill thi ing interest o ulsory pooling organization rest or unlea.	rest in the land is well at this r unleased mineral g order heretofore	I hereby certify that th surveys made by me u my belief.	nder my supervices	N ME 19680	CO	ts plotted from field no ne is true and correct t	tes of actual o the best of	
interval	will be located	for obtained a col Mitley		g order from			N°SSI	ONAL 9	SUR	/		
Signature		0	Date			Signature and Seal of Pro	\	\mathbf{r}				
Conr	ner Whit	ley				i Kobert M	1. Howel	1				
Printed N	ame					Certificate Number	Date of Surve	ey				
cwhit	tley@me	ewbourne	.com			19680		٥	6/2	8/2024		
Email Ad	dress				ταραυ		0	-/~				

Note: No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division. Released to Imaging: 10/25/2024 1:59:36 PM JOB #: LS23070593D

ACREAGE DEDICATION PLATS

This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is a directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is closest to any outer boundary of the tract.

Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed, contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

<u>5 89*51'32</u>	<u>" W 2645.92' (</u> 	D <u>s 89*55'32'</u> 	" <u>W 2662.12'⁽</u> 	ES 89°42'39"	' <u>W 2686.74'</u> LOT 3) <u>N 88*15'19'</u> . ^{LOT 2} .	" <u>W 2231.80'⁽</u>	GN 89*17'56"	<u>W 2682.94</u> '(H) LOT 7 (40.74 Ac.)		69,		<u>W 2647.45'Un</u> 	<u>v <i>89*31'59" W</i> </u> 	<u>2593.84'</u>
	 	 +		(42.89 Ac.)	(42.67 Ac.) NMNMO	' 	(34.87 Ac.) & 	(40.71 Ac.)	(40.74 Ac.)	' 	(40.18 Ac.) 33 		 + -	 	
			1'02" E 2799.52'	LOT 5 (42.44 Ac.)		1	LOT 8 (35.56 Ac.) 0 ≈	LOT 9 (40.45 Ac.)	1			(W)	(
	· + 7 		$\frac{1}{1}$	(42.35 Ac.)	LOT 11 (42.78 Ac.)	LOT 10 (37.85 Ac.)	LOT 9 (36.65 Ac.)	LOT 3			<u>100'</u> - ВН	707.42' 	8 	+ - 	
		_LOT 2 (42.69 Ac.) + — — — — — 	<u>s</u>	205'	 	 		4 * 			°g, ∱	'54' E 2'	+·		
	1	LOT 3 (42.66 Ac.)	2.70 Ac	LOT 13 (41.92 Ac.)	LOT 14 (42.34 Ac.)	LOT 15 (38.61 Ac.)	LOT 16 4.	LOT 4			198	90.10	l I		

N: 543668.4 - E: 549527.7

Producing Area Project Area

CORNER DATA NAD 83 GRID – NM EAST

A: FOUND BRASS CAP "1948"	M: FOUND BRASS CAP "1976"
N: 540770.5 – E: 528651.8	N: 541026.6 – E: 549538.3
B: FOUND BRASS CAP "1948"	N: FOUND BRASS CAP "1976"
N: 543569.8 – E: 528689.8	N: 541024.5 – E: 546888.5
C: FOUND BRASS CAP "1948"	0: FOUND BRASS CAP "1976"
N: 546371.3 – E: 528727.9	N: 541022.7 – E: 544236.0
D: FOUND BRASS CAP "1948"	P: FOUND BRASS CAP "LS4404"
N: 546377.8 – E: 531373.1	N: 541003.5 – E: 541591.4
E: FOUND BRASS CAP "1948"	Q: FOUND BRASS CAP "1948"
N: 546381.2 – E: 534034.6	N: 540984.4 – E: 538969.0
F: FOUND BRASS CAP "1948"	R: FOUND BRASS CAP "1948"
N: 546394.8 — E: 536720.6	N: 540767.6 – E: 536549.1
G: CALCULATED CORNER	S: FOUND BRASS CAP "1948"
N: 546326.9 – E: 538950.8	N: 540783.7 – E: 533967.0
H: FOUND BRASS CAP "1976"	T: FOUND BRASS CAP "1948"
N: 546294.1 – E: 541632.9	N: 540782.8 – E: 531306.8
l: FOUND BRASS CAP "1976"	U: FOUND BRASS CAP "1948"
N: 546317.9 — E: 544276.2	N: 543582.3 — E: 534000.4
J: FOUND BRASS CAP "1976"	V: FOUND BRASS CAP "1948"
N: 546330.4 – E: 546923.0	N: 543659.8 – E: 538957.1
K: CALCULATED CORNER	W: FOUND BRASS CAP "1976"
N: 546309.2 – E: 549516.1	N: 543728.9 — E: 544288.7
L: FOUND BRASS CAP "1976"	

<u>GEODETIC DATA</u> NAD 83 GRID – NM EAST
<u>SURFACE_LOCATION_(SL)</u> N: 542178.1 – E: 533778.7
LAT: 32.4905071° N LONG: 104.3578490° W
<u>KICK OFF POINT (KOP)</u> <u>1980' FSL – 473' FEL SEC.11</u> N: 542762.9 – E: 533517.7
LAT: 32.4921142°N LONG: 104.3586958°W
<u>FIRST_TAKE_POINT_(FTP)</u> 1980'FSL – 100'FWL_SEC.12 N: 542762.4 – E: 534090.6
LAT: 32.4921133°N LONG: 104.3568378°W
<u>BOTTOM HOLE (BH)</u> N: 543001.1 – E: 544174.6

LAT: 32.4927713° N LONG: 104.3241316° W

Sundry Request:

Mewbourne Oil Company request that the following change be made to the Stage Fright 12/7 Fed Com #616H (APD# 10400094560):

- 1. Change well name f/ Stage Fright 12/7 Fed Com #616H to Stage Fright 12/7 Fed Com #716H
- 2. Change producing formation from 3rd Bone Spring to Wolfcamp.
- 3. Change csg set depths to account for change in producing formation.

Attached C102, Csg Assumptions, Drlg Program, Dir Plan & Plot, Addinfo.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
MEWBOURNE OIL CO	14744
P.O. Box 5270	Action Number:
Hobbs, NM 88241	377525
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By	Condition	Condition Date
ward.rikala	All original COA's still apply. Additionally, if cement does not circulated to surface during cementing operations, then a CBL is required.	10/25/2024

Action 377525