| Received by UCD: 3/3/2024 12:23:38 PM<br>U.S. Department of the Interior<br>BUREAU OF LAND MANAGEMENT |                                                                        | Sundry Print Report<br>09/03/2024    |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------|
| Well Name: ATLATL 11 10 FED COM                                                                       | Well Location: T22S / R27E / SEC 11 /<br>NESE / 32.40517 / -104.153025 | County or Parish/State: EDDY /<br>NM |
| Well Number: 333H                                                                                     | Type of Well: OIL WELL                                                 | Allottee or Tribe Name:              |
| Lease Number: NMNM64583                                                                               | Unit or CA Name:                                                       | Unit or CA Number:                   |
| US Well Number: 30-015-55246                                                                          | <b>Operator:</b> DEVON ENERGY<br>PRODUCTION COMPANY LP                 |                                      |

# **Notice of Intent**

Sundry ID: 2798533

Type of Submission: Notice of Intent

Date Sundry Submitted: 07/02/2024

Date proposed operation will begin: 07/02/2024

Type of Action: APD Change Time Sundry Submitted: 07:47

**Procedure Description:** Devon Energy Production Co., L.P. (Devon) respectfully requests offline cementing for the subject well. See Variance attached. Devon Energy Production Co., L.P. (Devon) respectfully requests to move surface and intermediate casing and change the weight, grade and connection. Please see attached spec sheet, and drill plan. Devon Energy Production Co., L.P. (Devon) respectfully requests to change the BHL and formation on the subject well. Please see attached revised C102, Drill plan, directional plan. Permitted Formation: Esperanza Bone Spring and Proposed Formation: Purple Sage Wolfcamp (Gas) Permitted BHL: NWSW, 2100 FSL, 20 FWL, 10-22S-27E Proposed BHL: NWSW, 1410 FSL, 20 FWL, 10-22S-27E

# **NOI Attachments**

## **Procedure Description**

13.375\_54.50\_J55\_20240702074634.pdf

10.750\_45.50\_HCL80\_SCC\_20240702074615.PDF

 $8.625\_0.352\_P110\_ICY\_Wedge\_441\_02162024\_20240702074534.pdf$ 

 $5.500\_0.361\_P110\_ICY\_TXP\_BTC\_01242024\_20240702074519.pdf$ 

ATLATL\_11\_10\_FED\_COM\_333H\_R2\_20240702073824.pdf

ATLATL\_11\_10\_FED\_COM\_333H\_Directional\_Plan\_06\_13\_24\_20240702073809.pdf

WA022066495\_ATLATL\_11\_10\_FED\_COM\_333H\_WL\_R2\_UPDATED\_20240702073749.pdf

| eceived by OCD: 9/3/2024 12:23:38 PM<br>Well Name: ATLATE 11 10 FED COM | Well Location: T22S / R27E / SEC 11 /<br>NESE / 32.40517 / -104.153025 | County or Parish/State: EDBy 7 of NM |
|-------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------|
| Well Number: 333H                                                       | Type of Well: OIL WELL                                                 | Allottee or Tribe Name:              |
| Lease Number: NMNM64583                                                 | Unit or CA Name:                                                       | Unit or CA Number:                   |
| US Well Number:                                                         | <b>Operator:</b> DEVON ENERGY<br>PRODUCTION COMPANY LP                 |                                      |

Offline\_Cementing\_\_\_Variance\_Request\_20240702073706.pdf

# **Conditions of Approval**

## **Specialist Review**

Atlatl\_11\_10\_Fed\_Com\_333H\_Sundry\_ID\_2798533\_20240703083438.pdf

# Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

### **Operator Electronic Signature:** ARIANNA EVANS

Name: DEVON ENERGY PRODUCTION COMPANY LP

Title: Regulatory

Street Address: 333 W SHERIDAN AVE

City: OKLAHOMA CITY State: OK

Phone: (405) 552-4514

Email address: ARIANNA.EVANS@DVN.COM

# **Field**

| Representative Name: |
|----------------------|
| Street Address:      |
| City:                |
| Phone:               |
| Email address:       |

State:

Zip:

# **BLM Point of Contact**

BLM POC Name: LONG VO BLM POC Phone: 5759885402 Disposition: Approved Signature: Long Vo BLM POC Title: Petroleum Engineer BLM POC Email Address: LVO@BLM.GOV Disposition Date: 07/03/2024

Signed on: JUL 02, 2024 07:39 AM

#### K

| Received by OCL                                                                                                                                                                                                                                                          | ): 9/3/2024 12:                                                                                          | 23:38 PM                                                                                                                                             |                                                                             |                                                              |                                                           |                                                                                                | Page 3 of                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Form 3160-5<br>(June 2019) UNITED STATES<br>DEPARTMENT OF THE INTERIOR<br>BUREAU OF LAND MANAGEMENT<br>SUNDRY NOTICES AND REPORTS ON WELLS<br>Do not use this form for proposals to drill or to re-enter an<br>abandoned well. Use Form 3160-3 (APD) for such proposals. |                                                                                                          |                                                                                                                                                      | ERIOR<br>EMENT                                                              |                                                              |                                                           | Ex<br>5. Lease Serial No.                                                                      | FORM APPROVED<br>OMB No. 1004-0137<br>pires: October 31, 2021                                                                                   |
|                                                                                                                                                                                                                                                                          |                                                                                                          |                                                                                                                                                      | 6 If Indian Allattaa                                                        | NMNM64583                                                    |                                                           |                                                                                                |                                                                                                                                                 |
|                                                                                                                                                                                                                                                                          |                                                                                                          |                                                                                                                                                      | า<br>ร.                                                                     | o. 11 Indian, Allouee                                        | or The Name                                               |                                                                                                |                                                                                                                                                 |
|                                                                                                                                                                                                                                                                          | SUBMIT IN T                                                                                              | TRIPLICATE - Other instructio                                                                                                                        | ons on page 2                                                               |                                                              |                                                           | 7. If Unit of CA/Agr                                                                           | eement, Name and/or No.                                                                                                                         |
| 1. Type of Well                                                                                                                                                                                                                                                          |                                                                                                          |                                                                                                                                                      |                                                                             |                                                              |                                                           | 9 Wall Nama and N                                                                              |                                                                                                                                                 |
| Oil V                                                                                                                                                                                                                                                                    | Well Gas W                                                                                               | Vell Other                                                                                                                                           |                                                                             |                                                              |                                                           | 8. well Name and No. ATLATL 11 10 FED COM/333H                                                 |                                                                                                                                                 |
| 2. Name of Operato                                                                                                                                                                                                                                                       | r DEVON ENERG                                                                                            | 3Y PRODUCTION COMPANY                                                                                                                                | ( LP                                                                        |                                                              |                                                           | 9. API Well No.                                                                                |                                                                                                                                                 |
| 3a. Address 333 W                                                                                                                                                                                                                                                        | /EST SHERIDAN                                                                                            | AVE, OKLAHOMA CITY, 3b. (40                                                                                                                          | Phone No. <i>(inc</i> )<br>95) 235-3611                                     | lude area coo                                                | le)                                                       | 10. Field and Pool or<br>ESPERANZA/BO                                                          | Exploratory Area                                                                                                                                |
| 4. Location of Well<br>SEC 11/T22S/R2                                                                                                                                                                                                                                    | (Footage, Sec., T.,R<br>27E/NMP                                                                          | <i>.,M., or Survey Description)</i>                                                                                                                  |                                                                             |                                                              |                                                           | 11. Country or Parish<br>EDDY/NM                                                               | n, State                                                                                                                                        |
|                                                                                                                                                                                                                                                                          | 12. CHE                                                                                                  | CK THE APPROPRIATE BOX(                                                                                                                              | ES) TO INDIC                                                                | ATE NATUR                                                    | E OF NOTI                                                 | CE, REPORT OR OT                                                                               | HER DATA                                                                                                                                        |
| TYPE OF SU                                                                                                                                                                                                                                                               | JBMISSION                                                                                                |                                                                                                                                                      |                                                                             | ТУ                                                           | PE OF ACT                                                 | ΓΙΟΝ                                                                                           |                                                                                                                                                 |
| ✓ Notice of Inte                                                                                                                                                                                                                                                         | ent                                                                                                      | Acidize                                                                                                                                              | Deepen<br>Hydrauli                                                          | c Fracturing                                                 | Produ                                                     | uction (Start/Resume)<br>amation                                                               | Water Shut-Off Well Integrity                                                                                                                   |
| Subsequent F                                                                                                                                                                                                                                                             | Report                                                                                                   | Casing Repair                                                                                                                                        | New Cor                                                                     | Abandon                                                      | Reco                                                      | mplete                                                                                         | Other                                                                                                                                           |
| Final Abando                                                                                                                                                                                                                                                             | onment Notice                                                                                            | Convert to Injection                                                                                                                                 | Plug Bac                                                                    | k                                                            | Wate                                                      | r Disposal                                                                                     |                                                                                                                                                 |
| the Bond under<br>completion of th<br>completed. Fina<br>is ready for fina<br>Devon Energ                                                                                                                                                                                | which the work wil<br>ne involved operatic<br>al Abandonment Nor<br>l inspection.)<br>gy Production Co., | I be perfonned or provide the Boo<br>ons. If the operation results in a m<br>tices must be filed only after all m<br>, L.P. (Devon) respectfully req | nd No. on file v<br>nultiple complet<br>requirements, in<br>uests offline c | vith BLM/BL<br>tion or recom<br>cluding recla<br>ementing fo | A. Required<br>pletion in a mation, have<br>r the subject | subsequent reports m<br>new interval, a Form 2<br>e been completed and<br>ct well. See Varianc | ust be filed within 30 days following<br>3160-4 must be filed once testing has been<br>the operator has detennined that the site<br>e attached. |
| Devon Energ                                                                                                                                                                                                                                                              | gy Production Co.,                                                                                       | , L.P. (Devon) respectfully req                                                                                                                      | uests to move                                                               | surface and                                                  | d intermedia                                              | ate casing and char                                                                            | nge the weight, grade and                                                                                                                       |
| Please see a                                                                                                                                                                                                                                                             | attached spec she                                                                                        | et, and drill plan.                                                                                                                                  |                                                                             |                                                              |                                                           |                                                                                                |                                                                                                                                                 |
| Devon Energ<br>revised C102<br>Permitted BF                                                                                                                                                                                                                              | gy Production Co.,<br>2, Drill plan, direct<br>HL: NWSW, 2100                                            | , L.P. (Devon) respectfully req<br>ional plan. Permitted Formatic<br>FSL, 20 FWL, 10-22S-27E                                                         | uests to chang<br>on: Esperanza                                             | ge the BHL a<br>Bone Sprin                                   | and formati<br>g and Prop                                 | on on the subject w<br>osed Formation: Pu                                                      | ell. Please see attached<br>Irple Sage Wolfcamp (Gas)                                                                                           |
| Proposed BH                                                                                                                                                                                                                                                              | HL: NWSW, 1410                                                                                           | FSL, 20 FWL, 10-22S-27E                                                                                                                              |                                                                             |                                                              |                                                           |                                                                                                |                                                                                                                                                 |
| 14. I hereby certify t<br>ARIANNA EVANS                                                                                                                                                                                                                                  | hat the foregoing is<br>3 / Ph: (405) 552-                                                               | true and correct. Name (Printed. 4514                                                                                                                | l/Typed)<br>Tit                                                             | Regulato                                                     | ry                                                        |                                                                                                |                                                                                                                                                 |
| (Electronic Submission)                                                                                                                                                                                                                                                  |                                                                                                          |                                                                                                                                                      | Da                                                                          | te                                                           |                                                           | 07/02/2                                                                                        | 2024                                                                                                                                            |
|                                                                                                                                                                                                                                                                          |                                                                                                          | THE SPACE FO                                                                                                                                         |                                                                             | AL OR S                                                      | TATE OF                                                   | ICE USE                                                                                        |                                                                                                                                                 |
| Approved by                                                                                                                                                                                                                                                              |                                                                                                          |                                                                                                                                                      |                                                                             | _                                                            |                                                           |                                                                                                |                                                                                                                                                 |
| LONG VO / Ph: (575) 988-5402 / Approved                                                                                                                                                                                                                                  |                                                                                                          |                                                                                                                                                      |                                                                             | Title Pet                                                    | roleum Eng                                                | ineer                                                                                          | 07/03/2024<br>Date                                                                                                                              |
| Conditions of approval, if any, are attached. Approval of this notice does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease Offic                                                                           |                                                                                                          |                                                                                                                                                      |                                                                             | Office C                                                     | ARLSBAD                                                   |                                                                                                |                                                                                                                                                 |

| Conditions of approval, if any, are attached. Approval of this notice does not warrant or      |
|------------------------------------------------------------------------------------------------|
| certify that the applicant holds legal or equitable title to those rights in the subject lease |
| which would entitle the applicant to conduct operations thereon.                               |
|                                                                                                |

Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

(Instructions on page 2)

.

#### **GENERAL INSTRUCTIONS**

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

### SPECIFIC INSTRUCTIONS

*Item 4* - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

*Item 13:* Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

### NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

**BURDEN HOURS STATEMENT:** Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

# **Additional Information**

# Location of Well

0. SHL: NESE / 1845 FSL / 404 FEL / TWSP: 22S / RANGE: 27E / SECTION: 11 / LAT: 32.40517 / LONG: -104.153025 (TVD: 0 feet, MD: 0 feet) PPP: NWSW / 2100 FSL / 1172 FWL / TWSP: 22S / RANGE: 27E / SECTION: 11 / LAT: 32.4058956 / LONG: -104.1650301 (TVD: 8861 feet, MD: 12800 feet) BHL: NWSW / 2100 FNL / 20 FWL / TWSP: 22S / RANGE: 27E / SECTION: 10 / LAT: 32.4058 / LONG: -104.1859 (TVD: 8715 feet, MD: 19228 feet)



# <u>13-3/8"</u> <u>54.50#</u> <u>.380</u> <u>J-55</u>

# **Dimensions (Nominal)**

| Outside Diameter | 13.375 | in.    |
|------------------|--------|--------|
| Wall             | 0.380  | in.    |
| Inside Diameter  | 12.615 | in.    |
| Drift            | 12.459 | in.    |
| Weight, T&C      | 54.500 | lbs/ft |
| Weight, PE       | 52.790 | lbs/ft |

# Performance Ratings, Minimum

| Collapse, PE              | 1130 | psi      |
|---------------------------|------|----------|
| Internal Yields Pressure  |      |          |
| PE                        | 2730 | psi      |
| STC                       | 2730 | PSI      |
| BTC                       | 2730 | psi      |
| Yield Strength, Pipe Body | 853  | 1000 lbs |
| Joint Strength, STC       | 514  | 1000 lbs |
| Joint Strength, BTC       | 909  | 1000 lbs |

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.





# API 5CT 10.750" 45.50lb/ft HCL80 Casing Performance Data Sheet

Manufactured to specifications of API 5CT 9th edition and bears the API monogram.

| Grade                      | HCL80                                                                       |
|----------------------------|-----------------------------------------------------------------------------|
|                            |                                                                             |
| <b></b>                    | Pipe Body Mechanical Properties                                             |
| Minimum Yield Strength     | 80,000 psi                                                                  |
| Maximum Yield Strength     | 95,000 psi                                                                  |
| Minimum Tensile Strength   | 95,000 psi                                                                  |
| Maximum Hardness           | 23.0 HRC                                                                    |
|                            |                                                                             |
|                            | Sizes                                                                       |
| OD                         | 10 3/4                                                                      |
| Nominal Wall Thickness     | .400 in                                                                     |
| Nominal Weight, T&C        | 45.50 lb/ft                                                                 |
| Nominal Weight, PE         | 44.26 lb/ft                                                                 |
| Nominal ID                 | 9.950 in                                                                    |
| Standard Drift             | 9.794 in                                                                    |
| Alternate Drift            | 9.875 in                                                                    |
|                            |                                                                             |
| Coupling Special Clearance | Size                                                                        |
| OD                         | 11.25 in                                                                    |
| Min. Length                | 10.625 in                                                                   |
| Diameter of Counter Bore   | 10.890 in                                                                   |
| Width of bearing face      | .375 in                                                                     |
|                            |                                                                             |
|                            | Minimum Performance                                                         |
| Collapse Pressure          | 2,940 psi                                                                   |
| Internal Pressure Yield    | 5,210 psi                                                                   |
| Pipe body Tension Yield    | 1,040,000 lbs                                                               |
| Joint Strength STC         | 692,000 lbs                                                                 |
| Joint Strength LTC         | N/A                                                                         |
| Joint Strength BTC         | 1,063,000 lbs                                                               |
|                            |                                                                             |
|                            | Inspection and Testing                                                      |
| Visual                     | OD Longitidunal and independent 3rd party SEA                               |
|                            |                                                                             |
|                            |                                                                             |
| NDT                        | Independent 3rd party full body EMI and End Area Inspection after hydrotest |
|                            | Calibration notch sensitivity: 10% of specified wall thickness              |

|           | <u>Color code</u>                    |
|-----------|--------------------------------------|
| Pipe ends | One red, one brown and one blue band |
| Couplings | Red with one brown band              |

#### Received by OCD: 9/3/2024 12:23:38 PM

Tenaris

# TenarisHydril Wedge 441<sup>®</sup> - AD



|    | Pipe Body            |
|----|----------------------|
|    |                      |
|    | Grade: P110-ICY      |
|    | 1st Band: White      |
| en | 2nd Band: Pale Green |
|    | 3rd Band: Pale Green |
|    | 4th Band: -          |
|    | 5th Band: -          |
|    | 6th Band: -          |
|    |                      |

| Outside Diameter     | 8.625 in. | Wall Thickness  | 0.352 in.         | Grade | P110-ICY |
|----------------------|-----------|-----------------|-------------------|-------|----------|
| Min. Wall Thickness  | 90.00 %   | Pipe Body Drift | Alternative Drift | Туре  | Casing   |
| Connection OD Option | REGULAR   |                 |                   |       |          |

#### **Pipe Body Data**

| Geometry       |             |                  |             |
|----------------|-------------|------------------|-------------|
| Nominal OD     | 8.625 in.   | Wall Thickness   | 0.352 in.   |
| Nominal Weight | 32.00 lb/ft | Plain End Weight | 31.13 lb/ft |
| Drift          | 7.875 in.   | OD Tolerance     | API         |
| Nominal ID     | 7.921 in.   |                  |             |

#### Performance

Coupling

Grade: P110-ICY Body: White 1st Band: Pale Gre 2nd Band: -3rd Band: -

| Body Yield Strength          | 1144 x1000 lb |
|------------------------------|---------------|
| Min. Internal Yield Pressure | 9180 psi      |
| SMYS                         | 125,000 psi   |
| Collapse Pressure            | 4000 psi      |

#### **Connection Data**

| Geometry             |           |
|----------------------|-----------|
| Connection OD        | 8.889 in. |
| Coupling Length      | 8.862 in. |
| Connection ID        | 7.921 in. |
| Make-up Loss         | 3.744 in. |
| Threads per inch     | 3.43      |
| Connection OD Option | Regular   |

| Performance                |                |
|----------------------------|----------------|
| Tension Efficiency         | 81.20 %        |
| Joint Yield Strength       | 929 x1000 lb   |
| Internal Pressure Capacity | 9180 psi       |
| Compression Efficiency     | 81.20 %        |
| Compression Strength       | 929 x1000 lb   |
| Max. Allowable Bending     | 53.59 °/100 ft |
| External Pressure Capacity | 4000 psi       |

| Make-Up Torques         |              |
|-------------------------|--------------|
| Minimum                 | 23,000 ft-Ib |
| Optimum                 | 24,000 ft-Ib |
| Maximum                 | 27,000 ft-lb |
|                         |              |
| Operation Limit Torques |              |
| Operating Torque        | 59,000 ft-Ib |
| Yield Torque            | 70,000 ft-Ib |
|                         |              |
| Buck-On                 |              |
| Minimum                 | 27,000 ft-lb |
| Maximum                 | 29,000 ft-Ib |
|                         |              |

#### Notes

For the lastest performance data, always visit our website: www.tenaris.com For further information on concepts indicated in this datasheet, download the Datasheet Manual from www.tenaris.com

Tenaris has issued this document for general information only, and the information in this document, including, without limitation, any pictures, drawings or designs ("Information") is not intended to constitute professional or any other type of advice or recommendation and is provided on an "as is" basis. No warranty is given. Tenaris has not independently verified any information – if any- provided by the user in connection with, or for the purpose of, the Information contained hereunder. The use of the Information is at user's own risk and Tenaris does not assume any responsibility or liability of any kind for any loss, damage or injury resulting from, or in connection with any Information contained hereunder or any use thereof. The Information in this document is subject to change or modification without notice. Tenaris's products and services are subject to Tenaris's standard terms and conditions or otherwise to the terms resulting from the respective contracts of sale or services, as the case may be, between petitioner and Tenaris. For more complete information please contact a Tenaris's representative or visit our website at www.tenaris.com . ©Tenaris 2024. All rights reserved.

#### Received by OCD: 9/3/2024 12:23:38 PM

Tenaris





Printed on: 01 Page 9 of 62

| Pipe Body            |
|----------------------|
|                      |
| Grade: P110-ICY      |
| 1st Band: White      |
| 2nd Band: Pale Green |
| 3rd Band: Pale Green |
| 4th Band: -          |
| 5th Band: -          |
| 6th Band: -          |

| Outside Diameter     | 5.500 in. | Wall Thickness  | 0.361 in.    | Grade | P110-ICY |
|----------------------|-----------|-----------------|--------------|-------|----------|
| Min. Wall Thickness  | 87.50 %   | Pipe Body Drift | API Standard | Туре  | Casing   |
| Connection OD Option | REGULAR   |                 |              |       |          |

#### Pipe Body Data

| Nominal ID     | 4.778 in.   |
|----------------|-------------|
| Drift          | 4.653 in.   |
| Nominal Weight | 20.00 lb/ft |
| Nominal OD     | 5.500 in.   |
| Geometry       |             |

| Wall Thickness   | 0.361 in.   |
|------------------|-------------|
| Plain End Weight | 19.83 lb/ft |
| OD Tolerance     | API         |

#### Performance

Coupling

Grade: P110-ICY Body: White 1st Band: Pale Green 2nd Band: -3rd Band: -

| Body Yield Strength          | 729 x1000 lb |
|------------------------------|--------------|
| Min. Internal Yield Pressure | 14,360 psi   |
| SMYS                         | 125,000 psi  |
| Collapse Pressure            | 12,300 psi   |

#### **Connection Data**

| Geometry             |           |
|----------------------|-----------|
| Connection OD        | 6.100 in. |
| Coupling Length      | 9.450 in. |
| Connection ID        | 4.766 in. |
| Make-up Loss         | 4.204 in. |
| Threads per inch     | 5         |
| Connection OD Option | Regular   |

| Performance                |              |
|----------------------------|--------------|
| Tension Efficiency         | 100 %        |
| Joint Yield Strength       | 729 x1000 lb |
| Internal Pressure Capacity | 14,360 psi   |
| Compression Efficiency     | 100 %        |
| Compression Strength       | 729 x1000 lb |
| Max. Allowable Bending     | 104 °/100 ft |
| External Pressure Capacity | 12,300 psi   |

| Make-Up Torques         |              |
|-------------------------|--------------|
| Minimum                 | 11,540 ft-lb |
| Optimum                 | 12,820 ft-lb |
| Maximum                 | 14,100 ft-Ib |
| Operation Limit Torques |              |
| Operating Torque        | 22,700 ft-lb |
| Yield Torque            | 25,250 ft-lb |

#### Notes

This connection is fully interchangeable with: TXP® BTC - 5.5 in. - 0.275 (15.50) / 0.304 (17.00) / 0.415 (23.00) / 0.476 (26.00) in. (lb/ft) Connections with Dopeless® Technology are fully compatible with the same connection in its doped version Datasheet is also valid for Special Bevel option when applicable - except for Coupling Face Load, which will be reduced. Please contact a local Tenaris technical sales representative. Standard coupling design comes with optimized 20° bevel.

For the lastest performance data, always visit our website: www.tenaris.com For further information on concepts indicated in this datasheet, download the Datasheet Manual from www.tenaris.com

Tenaris has issued this document for general information only, and the information in this document, including, without limitation, any pictures, drawings or designs ("Information") is not intended to constitute professional or any other type of advice or recommendation and is provided on an "as is" basis. No warranty is given. Tenaris has not independently verified any information –if any- provided by the user in connection with, or for the purpose of, the Information contained hereunder. The use of the Information is at user's own risk and Tenaris does not assume any responsibility or liability of any kind for any loss, damage or injury resulting from, or in connection with any Information contained hereunder or any use thereof. The Information in this document is subject to change or modification without notice. Tenaris's products and services are subject to Tenaris's standard terms and conditions or otherwise to the terms resulting from the respective contracts of sale or services, as the case may be, between petitioner and Tenaris. For more complete information please contact a Tenaris's representative or visit our website at www.tenaris.com . ©Tenaris 2024. All rights reserved.

#### 1. Geologic Formations

| TVD of target | 9382  | Pilot hole depth             | N/A |
|---------------|-------|------------------------------|-----|
| MD at TD:     | 19912 | Deepest expected fresh water |     |

Basin

|                      | Depth   | Water/Mineral  |          |
|----------------------|---------|----------------|----------|
| Formation            | (TVD)   | Bearing/Target | Hazards* |
|                      | from KB | Zone?          |          |
| Rustler              | 172     |                |          |
| Salt                 | 419     |                |          |
| Base of Salt         | 857     |                |          |
| Capitan Reef Top     | 971     |                |          |
| Delaware             | 2207    |                |          |
| Cherry Canyon        | 3547    |                |          |
| Brushy Canyon        | 4261    |                |          |
| 1st Bone Spring Lime | 5464    |                |          |
| Bone Spring 1st      | 6586    |                |          |
| Bone Spring 2nd      | 7282    |                |          |
| 3rd Bone Spring Lime | 7582    |                |          |
| Bone Spring 3rd      | 8556    |                |          |
| Wolfcamp             | 8951    |                |          |
|                      |         |                |          |
|                      |         |                |          |
|                      |         |                |          |
|                      |         |                |          |
|                      |         |                |          |

\*H2S, water flows, loss of circulation, abnormal pressures, etc.

#### 2. Casing Program (Primary Design)

|            |           | Wt     |          |         | Casing       | Interval | Casing        | Interval |
|------------|-----------|--------|----------|---------|--------------|----------|---------------|----------|
| Hole Size  | Csg. Size | (PPF)  | Grade    | Conn    | From<br>(MD) | To (MD)  | From<br>(TVD) | To (TVD) |
| 17 1/2     | 13 3/8    | 54 1/2 | J-55     | BTC     | 0            | 200      | 0             | 200      |
| 12 1/4     | 10 3/4    | 45 1/2 | HCL80    | BTC SCC | 0            | 2300     | 0             | 2300     |
| 9.875x8.75 | 5 1/2     | 20     | P-110ICY | TXP     | 0            | 19912    | 0             | 9382     |

• All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for contingency casing.

\*9.875" hole down to KOP, and then 8.75" hole

#### 3. Cementing Program (Primary Design)

| Casing     | # Sks | тос  | Wt.<br>ppg | Yld<br>(ft3/sack) | Slurry Description               |
|------------|-------|------|------------|-------------------|----------------------------------|
| Surface    | 183   | Surf | 13.2       | 1.44              | Lead: Class C Cement + additives |
| Int 1      | 135   | Surf | 9          | 3.27              | Lead: Class C Cement + additives |
| Int I      | 101   | 1800 | 13.2       | 1.44              | Tail: Class H / C + additives    |
| Production | 962   | 1300 | 9          | 3.27              | Lead: Class H /C + additives     |
| FIGURETION | 3037  | 9075 | 13.2       | 1.44              | Tail: Class H / C + additives    |

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures.

| Casing String              | % Excess |
|----------------------------|----------|
| Surface                    | 50%      |
| Intermediate 1             | 30%      |
| Intermediate 1 (Two Stage) | 25%      |
| Prod                       | 10%      |

#### 2. Casing Program (Alternative Design)

| Hole Size | Csg. Size | WH<br>(PPF) | Grade    | Conn      | Top (MD) | Bottom<br>(MD) | Top (TVD) | Bottom<br>(TVD) |
|-----------|-----------|-------------|----------|-----------|----------|----------------|-----------|-----------------|
| 17 1/2    | 13 3/8    | 54 1/2      | J-55     | BTC       | 0.0      | 200 MD         | 0         | 200 TVD         |
| 12 1/4    | 10 3/4    | 45 1/2      | HCL80    | BTC SCC   | 0.0      | 2300 MD        | 0         | 2300 TVD        |
| 9 7/8     | 8 5/8     | 8 5/8       | P-110ICY | Wedge 441 | 0        | 9075 MD        | 0         | 9027 TVD        |
| 7 7/8     | 5 1/2     | 20          | P-110ICY | TXP       | 0        | 19912 MD       | 0         | 9382 TVD        |

#### 3. Cementing Program (Alternative Design)

| Casing        | # Sks | тос  | Wt. (lb/gal) | Yld<br>(ft3/sack) | Slurry Description               |
|---------------|-------|------|--------------|-------------------|----------------------------------|
| Surface       | 183   | Surf | 13.2         | 1.44              | Lead: Class C Cement + additives |
| Int           | 135   | Surf | 9            | 3.27              | Lead: Class C Cement + additives |
| Int           | 101   | 1800 | 13.2         | 1.44              | Tail: Class H / C + additives    |
| Test 1        | 172   | Surf | 9            | 3.27              | Lead: Class C Cement + additives |
| Int I         | 558   | 4261 | 13.2         | 1.44              | Tail: Class H / C + additives    |
| Due due tiere | 117   | 7075 | 9            | 3.27              | Lead: Class H /C + additives     |
| Fiodetion     | 1434  | 9075 | 13.2         | 1.44              | Tail: Class H / C + additives    |

| BOP installed and tested before drilling which hole? | Size?                                                                                                | Min.<br>Required<br>WP | Ту        | ре       | ~     | Tested to:                    |      |      |      |      |      |      |      |      |      |      |     |  |    |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------|-----------|----------|-------|-------------------------------|------|------|------|------|------|------|------|------|------|------|-----|--|----|
|                                                      |                                                                                                      |                        | Ann       | ular     | Х     | 50% of rated working pressure |      |      |      |      |      |      |      |      |      |      |     |  |    |
| Int 1                                                | 13-5/8"                                                                                              | 5M                     | Blind     | Ram      | Х     |                               |      |      |      |      |      |      |      |      |      |      |     |  |    |
| Int I                                                | 15-5/0                                                                                               | 5111                   | Pipe      | Ram      |       | 5M                            |      |      |      |      |      |      |      |      |      |      |     |  |    |
|                                                      |                                                                                                      |                        | Doubl     | e Ram    | Х     | 5101                          |      |      |      |      |      |      |      |      |      |      |     |  |    |
|                                                      |                                                                                                      |                        | Other*    |          |       |                               |      |      |      |      |      |      |      |      |      |      |     |  |    |
|                                                      |                                                                                                      |                        | Annula    | or (5M)  | x     | 50% of rated working          |      |      |      |      |      |      |      |      |      |      |     |  |    |
| Production                                           | 13-5/8"                                                                                              |                        |           | u (3141) | 21    | pressure                      |      |      |      |      |      |      |      |      |      |      |     |  |    |
|                                                      |                                                                                                      | 5M                     | Blind Ram |          | Х     |                               |      |      |      |      |      |      |      |      |      |      |     |  |    |
| Tioddetion                                           |                                                                                                      |                        | 5141      | 5101     | 5141  | 5101                          | 5111 | 5141 | 5111 | 5111 | 5111 | 5111 | 5141 | 5141 | 5141 | Pipe | Ram |  | 5M |
|                                                      |                                                                                                      |                        |           | Doubl    | e Ram | Х                             | 5141 |      |      |      |      |      |      |      |      |      |     |  |    |
|                                                      |                                                                                                      |                        | Other*    |          |       |                               |      |      |      |      |      |      |      |      |      |      |     |  |    |
|                                                      |                                                                                                      |                        | Annula    | ur (5M)  |       |                               |      |      |      |      |      |      |      |      |      |      |     |  |    |
|                                                      |                                                                                                      |                        | Blind     | Ram      |       |                               |      |      |      |      |      |      |      |      |      |      |     |  |    |
|                                                      |                                                                                                      |                        | Pipe      | Ram      |       |                               |      |      |      |      |      |      |      |      |      |      |     |  |    |
|                                                      |                                                                                                      |                        | Doubl     | e Ram    |       |                               |      |      |      |      |      |      |      |      |      |      |     |  |    |
|                                                      |                                                                                                      |                        | Other*    |          |       |                               |      |      |      |      |      |      |      |      |      |      |     |  |    |
| N A variance is requested for                        | A variance is requested for the use of a diverter on the surface casing. See attached for schematic. |                        |           |          |       |                               |      |      |      |      |      |      |      |      |      |      |     |  |    |
| Y A variance is requested to                         | A variance is requested to run a 5 M annular on a 10M system                                         |                        |           |          |       |                               |      |      |      |      |      |      |      |      |      |      |     |  |    |

#### 4. Pressure Control Equipment (Three String Design)

#### 5. Mud Program (Three String Design)

| Section      | Туре            | Weight<br>(ppg) |
|--------------|-----------------|-----------------|
| Surface      | FW Gel          | 8.5-9           |
| Intermediate | DBE / Cut Brine | 10-10.5         |
| Production   | OBM             | 10-10.5         |

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

| What will be used to monitor the loss or gain of fluid? | PVT/Pason/Visual Monitoring |
|---------------------------------------------------------|-----------------------------|

#### 6. Logging and Testing Procedures

| Logging, C | foring and Testing                                                                                              |
|------------|-----------------------------------------------------------------------------------------------------------------|
|            | Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the |
| Х          | Completion Report and sbumitted to the BLM.                                                                     |
|            | No logs are planned based on well control or offset log information.                                            |
|            | Drill stem test? If yes, explain.                                                                               |
|            | Coring? If yes, explain.                                                                                        |

| Additional | logs planned | Interval                |
|------------|--------------|-------------------------|
|            | Resistivity  | Int. shoe to KOP        |
|            | Density      | Int. shoe to KOP        |
| X          | CBL          | Production casing       |
| Х          | Mud log      | Intermediate shoe to TD |
|            | PEX          |                         |

#### 7. Drilling Conditions

| Condition                  | Specfiy what type and where? |  |  |  |  |  |
|----------------------------|------------------------------|--|--|--|--|--|
| BH pressure at deepest TVD | 5122                         |  |  |  |  |  |
| Abnormal temperature       | No                           |  |  |  |  |  |
|                            |                              |  |  |  |  |  |

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

 Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

 N
 H2S is present

Y H2S plan attached.

#### 8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

1 Spudder rig will move in and batch drill surface hole.

- a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- $^{3}$  The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
  - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments

X Directional Plan Other, describe



| devon |         | Well:<br>County:<br>Wellbore:<br>Design: | ATLATL 11-<br>Eddy<br>Permit Plan<br>Permit Plan | 10 FED COM<br>#1   | 333H               |        |                     |           | Geodetic System: US State Plane 1983<br>Datum: North American Datum 1927<br>Ellipsoid: Clarke 1866<br>Zone: 3001 - NM East (NAD83) |
|-------|---------|------------------------------------------|--------------------------------------------------|--------------------|--------------------|--------|---------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------|
|       | MD      | INC                                      | AZI                                              | TVD                | NS                 | EW     | vs                  | DLS       | Comment                                                                                                                            |
| -     | (ft)    | (°)                                      | (°)                                              | (ft)               | (ft)               | (ft)   | (ft)                | (°/100ft) | CLI                                                                                                                                |
|       | 100.00  | 0.00                                     | 139.00                                           | 100.00             | 0.00               | 0.00   | 0.00                | 0.00      | SHL                                                                                                                                |
|       | 172.00  | 0.00                                     | 139.00                                           | 172.00             | 0.00               | 0.00   | 0.00                | 0.00      | Rustler                                                                                                                            |
|       | 200.00  | 0.00                                     | 139.00                                           | 200.00             | 0.00               | 0.00   | 0.00                | 0.00      |                                                                                                                                    |
|       | 300.00  | 0.00                                     | 139.00                                           | 300.00             | 0.00               | 0.00   | 0.00                | 0.00      |                                                                                                                                    |
|       | 400.00  | 0.00                                     | 139.00                                           | 400.00             | 0.00               | 0.00   | 0.00                | 0.00      |                                                                                                                                    |
|       | 419.00  | 0.00                                     | 139.00                                           | 419.00             | 0.00               | 0.00   | 0.00                | 0.00      | Salt                                                                                                                               |
|       | 500.00  | 0.00                                     | 139.00                                           | 500.00             | 0.00               | 0.00   | 0.00                | 0.00      |                                                                                                                                    |
|       | 600.00  | 0.00                                     | 139.00                                           | 600.00             | 0.00               | 0.00   | 0.00                | 0.00      |                                                                                                                                    |
|       | 700.00  | 0.00                                     | 139.00                                           | 700.00             | 0.00               | 0.00   | 0.00                | 0.00      |                                                                                                                                    |
|       | 857.00  | 0.00                                     | 139.00                                           | 857.00             | 0.00               | 0.00   | 0.00                | 0.00      | Bace of Salt                                                                                                                       |
|       | 900.00  | 0.00                                     | 139.00                                           | 900.00             | 0.00               | 0.00   | 0.00                | 0.00      | base of Salt                                                                                                                       |
|       | 971.00  | 0.00                                     | 139.00                                           | 971.00             | 0.00               | 0.00   | 0.00                | 0.00      | Capitan Reef Top                                                                                                                   |
|       | 1000.00 | 0.00                                     | 139.00                                           | 1000.00            | 0.00               | 0.00   | 0.00                | 0.00      |                                                                                                                                    |
|       | 1100.00 | 0.00                                     | 139.00                                           | 1100.00            | 0.00               | 0.00   | 0.00                | 0.00      |                                                                                                                                    |
|       | 1200.00 | 0.00                                     | 139.00                                           | 1200.00            | 0.00               | 0.00   | 0.00                | 0.00      |                                                                                                                                    |
|       | 1300.00 | 0.00                                     | 139.00                                           | 1300.00            | 0.00               | 0.00   | 0.00                | 0.00      |                                                                                                                                    |
|       | 1400.00 | 0.00                                     | 139.00                                           | 1400.00            | 0.00               | 0.00   | 0.00                | 0.00      |                                                                                                                                    |
|       | 1600.00 | 0.00                                     | 139.00                                           | 1600.00            | 0.00               | 0.00   | 0.00                | 0.00      |                                                                                                                                    |
|       | 1700.00 | 0.00                                     | 139.00                                           | 1700.00            | 0.00               | 0.00   | 0.00                | 0.00      |                                                                                                                                    |
|       | 1800.00 | 0.00                                     | 139.00                                           | 1800.00            | 0.00               | 0.00   | 0.00                | 0.00      |                                                                                                                                    |
|       | 1900.00 | 0.00                                     | 139.00                                           | 1900.00            | 0.00               | 0.00   | 0.00                | 0.00      |                                                                                                                                    |
|       | 2000.00 | 0.00                                     | 139.00                                           | 2000.00            | 0.00               | 0.00   | 0.00                | 0.00      | Start Tangent                                                                                                                      |
|       | 2100.00 | 2.00                                     | 139.00                                           | 2099.98            | -1.32              | 1.14   | -1.09               | 2.00      |                                                                                                                                    |
|       | 2200.00 | 4.00                                     | 139.00                                           | 2199.84            | -5.27              | 4.58   | -4.35               | 2.00      | Dela an                                                                                                                            |
|       | 2207.18 | 4.14                                     | 139.00                                           | 2207.00            | -5.65              | 4.91   | -4.67               | 2.00      | Delaware                                                                                                                           |
|       | 2300.00 | 8.00                                     | 139.00                                           | 2398.70            | -21.04             | 18.29  | -17 39              | 2.00      |                                                                                                                                    |
|       | 2500.00 | 10.00                                    | 139.00                                           | 2497.47            | -32.85             | 28.55  | -27.15              | 2.00      | Hold Tangent                                                                                                                       |
|       | 2600.00 | 10.00                                    | 139.00                                           | 2595.95            | -45.95             | 39.95  | -37.98              | 0.00      | -                                                                                                                                  |
|       | 2700.00 | 10.00                                    | 139.00                                           | 2694.43            | -59.06             | 51.34  | -48.81              | 0.00      |                                                                                                                                    |
|       | 2800.00 | 10.00                                    | 139.00                                           | 2792.91            | -72.16             | 62.73  | -59.64              | 0.00      |                                                                                                                                    |
|       | 2900.00 | 10.00                                    | 139.00                                           | 2891.39            | -85.27             | 74.12  | -70.47              | 0.00      |                                                                                                                                    |
|       | 3000.00 | 10.00                                    | 139.00                                           | 2989.87            | -98.37             | 85.52  | -81.30              | 0.00      |                                                                                                                                    |
|       | 3200.00 | 10.00                                    | 139.00                                           | 3186.83            | -111.40            | 108 30 | -92.15              | 0.00      |                                                                                                                                    |
|       | 3300.00 | 10.00                                    | 139.00                                           | 3285.31            | -137.69            | 119.69 | -113.79             | 0.00      |                                                                                                                                    |
|       | 3400.00 | 10.00                                    | 139.00                                           | 3383.79            | -150.80            | 131.08 | -124.62             | 0.00      |                                                                                                                                    |
|       | 3500.00 | 10.00                                    | 139.00                                           | 3482.27            | -163.90            | 142.48 | -135.46             | 0.00      |                                                                                                                                    |
|       | 3565.73 | 10.00                                    | 139.00                                           | 3547.00            | -172.51            | 149.96 | -142.57             | 0.00      | Cherry Canyon                                                                                                                      |
|       | 3600.00 | 10.00                                    | 139.00                                           | 3580.75            | -177.01            | 153.87 | -146.29             | 0.00      |                                                                                                                                    |
|       | 3700.00 | 10.00                                    | 139.00                                           | 3679.23            | -190.11            | 105.20 | -157.12             | 0.00      |                                                                                                                                    |
|       | 3900.00 | 10.00                                    | 139.00                                           | 3876.20            | -216.32            | 188.05 | -178.78             | 0.00      |                                                                                                                                    |
|       | 4000.00 | 10.00                                    | 139.00                                           | 3974.68            | -229.43            | 199.44 | -189.61             | 0.00      |                                                                                                                                    |
|       | 4100.00 | 10.00                                    | 139.00                                           | 4073.16            | -242.53            | 210.83 | -200.44             | 0.00      |                                                                                                                                    |
|       | 4200.00 | 10.00                                    | 139.00                                           | 4171.64            | -255.64            | 222.22 | -211.27             | 0.00      |                                                                                                                                    |
|       | 4290.74 | 10.00                                    | 139.00                                           | 4261.00            | -267.53            | 232.56 | -221.10             | 0.00      | Brushy Canyon                                                                                                                      |
|       | 4300.00 | 10.00                                    | 139.00                                           | 4270.12            | -268.74            | 233.62 | -222.10             | 0.00      |                                                                                                                                    |
|       | 4400.00 | 10.00                                    | 139.00                                           | 4368.60            | -281.85            | 245.01 | -232.93             | 0.00      |                                                                                                                                    |
|       | 4500.00 | 10.00                                    | 139.00                                           | 4407.00            | -294.95            | 250.40 | -243.77             | 0.00      |                                                                                                                                    |
|       | 4700.00 | 10.00                                    | 139.00                                           | 4664.04            | -321.16            | 279.19 | -265.43             | 0.00      |                                                                                                                                    |
|       | 4800.00 | 10.00                                    | 139.00                                           | 4762.52            | -334.27            | 290.58 | -276.26             | 0.00      |                                                                                                                                    |
|       | 4900.00 | 10.00                                    | 139.00                                           | 4861.00            | -347.38            | 301.97 | -287.09             | 0.00      |                                                                                                                                    |
|       | 5000.00 | 10.00                                    | 139.00                                           | 4959.48            | -360.48            | 313.36 | -297.92             | 0.00      |                                                                                                                                    |
|       | 5100.00 | 10.00                                    | 139.00                                           | 5057.97            | -373.59            | 324.75 | -308.75             | 0.00      |                                                                                                                                    |
|       | 5200.00 | 10.00                                    | 139.00                                           | 5156.45            | -386.69            | 336.15 | -319.58             | 0.00      |                                                                                                                                    |
|       | 5300.00 | 10.00                                    | 139.00                                           | 5254.93<br>5277 51 | -399.80<br>-402.80 | 347.54 | -33U.4 I<br>_332 QA | 0.00      | Drop to Vertical                                                                                                                   |
|       | 5400.00 | 8,46                                     | 139.00                                           | 5353.58            | -412.13            | 358.26 | -340.61             | 2,00      | Diop to Vertice                                                                                                                    |
|       | 5500.00 | 6.46                                     | 139.00                                           | 5452.73            | -421.93            | 366.78 | -348.70             | 2.00      |                                                                                                                                    |
|       | 5511.34 | 6.23                                     | 139.00                                           | 5464.00            | -422.87            | 367.60 | -349.48             | 2.00      | 1st Bone Spring Lime                                                                                                               |
|       | 5600.00 | 4.46                                     | 139.00                                           | 5552.27            | -429.11            | 373.02 | -354.63             | 2.00      |                                                                                                                                    |
|       | 5700.00 | 2.46                                     | 139.00                                           | 5652.08            | -433.66            | 376.97 | -358.40             | 2.00      |                                                                                                                                    |
|       | 5800.00 | 0.46                                     | 139.00                                           | 5752.04            | -435.58            | 378.64 | -359.98             | 2.00      |                                                                                                                                    |
|       | 5822.93 | 0.00                                     | 139.00                                           | 5//4.9/            | -435.65            | 378.70 | -360.04             | 2.00      | Hold vertical                                                                                                                      |
|       | 5500.00 | 0.00                                     | 210.03                                           | 5052.04            | -55.00             | 570.70 | 500.04              | 0.00      |                                                                                                                                    |

| devon |                    | Well:                | ATLATL 11-          | 10 FED COM         | 333H               |                      |                    |           | Geodetic System:     | US State Plane 1983                      |
|-------|--------------------|----------------------|---------------------|--------------------|--------------------|----------------------|--------------------|-----------|----------------------|------------------------------------------|
|       |                    | County:<br>Wellbore: | Eddy<br>Permit Plan |                    |                    |                      |                    |           | Datum:<br>Ellipsoid: | North American Datum 1927<br>Clarke 1866 |
|       |                    | Design:              | Permit Plan         | #1                 |                    |                      |                    |           | Zone:                | 3001 - NM East (NAD83)                   |
|       | MD                 | INC                  | AZI                 | TVD                | NS                 | EW                   | vs                 | DLS       | Commont              |                                          |
| -     | (ft)               | (°)                  | (°)                 | (ft)               | (ft)               | (ft)                 | (ft)               | (°/100ft) | comment              |                                          |
|       | 6000.00<br>6100.00 | 0.00                 | 270.05<br>270.05    | 5952.04<br>6052.04 | -435.65<br>-435.65 | 378.70<br>378.70     | -360.04<br>-360.04 | 0.00      |                      |                                          |
|       | 6200.00            | 0.00                 | 270.05              | 6152.04            | -435.65            | 378.70               | -360.04            | 0.00      |                      |                                          |
|       | 6300.00            | 0.00                 | 270.05              | 6252.04            | -435.65            | 378.70               | -360.04            | 0.00      |                      |                                          |
|       | 6400.00            | 0.00                 | 270.05              | 6352.04            | -435.65            | 378.70               | -360.04            | 0.00      |                      |                                          |
|       | 6600.00            | 0.00                 | 270.05              | 6552.04            | -435.65            | 378.70               | -360.04            | 0.00      |                      |                                          |
|       | 6633.96            | 0.00                 | 270.05              | 6586.00            | -435.65            | 378.70               | -360.04            | 0.00      | Bone Spring 1st      |                                          |
|       | 6700.00            | 0.00                 | 270.05              | 6652.04            | -435.65            | 378.70               | -360.04            | 0.00      |                      |                                          |
|       | 6800.00            | 0.00                 | 270.05              | 6752.04            | -435.65            | 378.70               | -360.04            | 0.00      |                      |                                          |
|       | 7000.00            | 0.00                 | 270.05              | 6952.04<br>6952.04 | -435.65            | 378.70               | -360.04            | 0.00      |                      |                                          |
|       | 7100.00            | 0.00                 | 270.05              | 7052.04            | -435.65            | 378.70               | -360.04            | 0.00      |                      |                                          |
|       | 7200.00            | 0.00                 | 270.05              | 7152.04            | -435.65            | 378.70               | -360.04            | 0.00      |                      |                                          |
|       | 7300.00            | 0.00                 | 270.05              | 7252.04            | -435.65            | 378.70               | -360.04            | 0.00      | Reas Carias 2ad      |                                          |
|       | 7329.96            | 0.00                 | 270.05              | 7352.00            | -435.65            | 378.70               | -360.04            | 0.00      | Bone Spring 2nd      |                                          |
|       | 7500.00            | 0.00                 | 270.05              | 7452.04            | -435.65            | 378.70               | -360.04            | 0.00      |                      |                                          |
|       | 7600.00            | 0.00                 | 270.05              | 7552.04            | -435.65            | 378.70               | -360.04            | 0.00      |                      |                                          |
|       | 7629.96            | 0.00                 | 270.05              | 7582.00            | -435.65            | 378.70               | -360.04            | 0.00      | 3rd Bone Spring      | Lime                                     |
|       | 7800.00            | 0.00                 | 270.05              | 7652.04            | -435.65            | 378.70               | -360.04            | 0.00      |                      |                                          |
|       | 7900.00            | 0.00                 | 270.05              | 7852.04            | -435.65            | 378.70               | -360.04            | 0.00      |                      |                                          |
|       | 8000.00            | 0.00                 | 270.05              | 7952.04            | -435.65            | 378.70               | -360.04            | 0.00      |                      |                                          |
|       | 8100.00            | 0.00                 | 270.05              | 8052.04            | -435.65            | 378.70               | -360.04            | 0.00      |                      |                                          |
|       | 8200.00            | 0.00                 | 270.05              | 8252.04            | -435.65            | 378.70               | -360.04            | 0.00      |                      |                                          |
|       | 8400.00            | 0.00                 | 270.05              | 8352.04            | -435.65            | 378.70               | -360.04            | 0.00      |                      |                                          |
|       | 8500.00            | 0.00                 | 270.05              | 8452.04            | -435.65            | 378.70               | -360.04            | 0.00      |                      |                                          |
|       | 8600.00            | 0.00                 | 270.05              | 8552.04            | -435.65            | 378.70               | -360.04            | 0.00      | Popo Spring and      |                                          |
|       | 8700.00            | 0.00                 | 270.05              | 8652.04            | -435.65            | 378.70               | -360.04            | 0.00      | Bone Spring 3rd      |                                          |
|       | 8800.00            | 0.00                 | 270.05              | 8752.04            | -435.65            | 378.70               | -360.04            | 0.00      |                      |                                          |
|       | 8900.00            | 0.00                 | 270.05              | 8852.04            | -435.65            | 378.70               | -360.04            | 0.00      |                      |                                          |
|       | 8998.96            | 0.00                 | 270.05              | 8951.00            | -435.65            | 378.70               | -360.04            | 0.00      | Wolfcamp / Point     | of Penetration                           |
|       | 9000.00<br>9075 14 | 0.00                 | 270.05              | 8952.04<br>9027.18 | -435.65            | 378.70               | -360.04            | 0.00      | KOP                  |                                          |
|       | 9100.00            | 2.49                 | 270.05              | 9052.04            | -435.65            | 378.17               | -359.50            | 10.00     |                      |                                          |
|       | 9200.00            | 12.49                | 270.05              | 9151.06            | -435.64            | 365.15               | -346.50            | 10.00     |                      |                                          |
|       | 9300.00            | 22.49                | 270.05              | 9246.32            | -435.61            | 335.14               | -316.52            | 10.00     |                      |                                          |
|       | 9400.00<br>9500.00 | 42.49                | 270.05              | 9334.92<br>9414.17 | -435.57            | 289.05               | -270.47            | 10.00     |                      |                                          |
|       | 9600.00            | 52.49                | 270.05              | 9481.66            | -435.46            | 154.65               | -136.20            | 10.00     |                      |                                          |
|       | 9700.00            | 62.49                | 270.05              | 9535.34            | -435.38            | 70.43                | -52.05             | 10.00     |                      |                                          |
|       | 9800.00            | 72.49                | 270.05              | 9573.58            | -435.30            | -21.83               | 40.12              | 10.00     |                      |                                          |
|       | 9987.84            | 91.27                | 270.05              | 9600.00            | -435.14            | -206.95              | 225.07             | 10.00     | Landing Point        |                                          |
|       | 10000.00           | 91.27                | 270.05              | 9599.73            | -435.13            | -219.11              | 237.22             | 0.00      | 5                    |                                          |
|       | 10100.00           | 91.27                | 270.05              | 9597.51            | -435.04            | -319.09              | 337.10             | 0.00      |                      |                                          |
|       | 10200.00           | 91.27<br>91.27       | 270.05              | 9595.30            | -434.95<br>-434.87 | -419.06<br>-519.04   | 436.99<br>536.87   | 0.00      |                      |                                          |
|       | 10400.00           | 91.27                | 270.05              | 9590.86            | -434.78            | -619.01              | 636.75             | 0.00      |                      |                                          |
|       | 10500.00           | 91.27                | 270.05              | 9588.65            | -434.69            | -718.99              | 736.64             | 0.00      |                      |                                          |
|       | 10600.00           | 91.27                | 270.05              | 9586.43            | -434.61            | -818.96              | 836.52             | 0.00      |                      |                                          |
|       | 10700.00           | 91.27                | 270.05              | 9584.21<br>9582.00 | -434.52            | -918.94              | 936.40<br>1036.29  | 0.00      |                      |                                          |
|       | 10900.00           | 91.27                | 270.05              | 9579.78            | -434.35            | -1118.89             | 1136.17            | 0.00      |                      |                                          |
|       | 11000.00           | 91.27                | 270.05              | 9577.56            | -434.26            | -1218.86             | 1236.05            | 0.00      |                      |                                          |
|       | 11100.00           | 91.27                | 270.05              | 9575.35            | -434.17            | -1318.84             | 1335.94            | 0.00      |                      |                                          |
|       | 11200.00           | 91.27<br>91.27       | 270.05              | 9570.91            | -434.09<br>-434.00 | -1410.82<br>-1518.79 | 1435.82<br>1535.70 | 0.00      |                      |                                          |
|       | 11400.00           | 91.27                | 270.05              | 9568.70            | -433.91            | -1618.77             | 1635.59            | 0.00      |                      |                                          |
|       | 11500.00           | 91.27                | 270.05              | 9566.48            | -433.83            | -1718.74             | 1735.47            | 0.00      |                      |                                          |
|       | 11600.00           | 91.27                | 270.05              | 9564.27            | -433.74            | -1818.72             | 1835.35            | 0.00      |                      |                                          |
|       | 11800.00           | 91.27<br>91.27       | 270.05              | 9559.83            | -433.55<br>-433.56 | -1918.69             | 2035.12            | 0.00      |                      |                                          |
|       | 11900.00           | 91.27                | 270.05              | 9557.62            | -433.48            | -2118.64             | 2135.00            | 0.00      |                      |                                          |
|       | 12000.00           | 91.27                | 270.05              | 9555.40            | -433.39            | -2218.62             | 2234.89            | 0.00      |                      |                                          |
|       | 12100.00           | 91.27<br>91.27       | 270.05              | 9553.18            | -433.30            | -2318.59             | 2334.77            | 0.00      |                      |                                          |
|       | 12200.00           | 31.21                | 270.05              | 3020.97            | -433.22            | -2410.57             | 2434.05            | 0.00      |                      |                                          |

| _     |          |           |                  |                    |                             |                      |                    |           |                                      |
|-------|----------|-----------|------------------|--------------------|-----------------------------|----------------------|--------------------|-----------|--------------------------------------|
| devon |          | Well:     | ATLATL 11-       | 10 FED COM         | 333H                        |                      |                    |           | Geodetic System: US State Plane 1983 |
| uevon |          | County:   | Eddy             |                    |                             |                      |                    |           | Datum: North American Datum 1927     |
|       |          | Wellbore: | Permit Plan      |                    |                             |                      |                    |           | Ellipsoid: Clarke 1866               |
|       |          | Design:   | Permit Plan      | #1                 |                             |                      |                    |           | <b>Zone:</b> 3001 - NM East (NAD83)  |
|       | MD       | INC       | AZI              | TVD                | NS                          | EW                   | vs                 | DLS       | 6                                    |
| _     | (ft)     | (°)       | (°)              | (ft)               | (ft)                        | (ft)                 | (ft)               | (°/100ft) | Comment                              |
|       | 12300.00 | 91.27     | 270.05           | 9548.75            | -433.13                     | -2518.54             | 2534.54            | 0.00      |                                      |
|       | 12400.00 | 91.27     | 270.05           | 9546.53            | -433.04                     | -2618.52             | 2634.42            | 0.00      |                                      |
|       | 12500.00 | 91.27     | 270.05           | 9544.32            | -432.96                     | -2/18.50             | 2/34.30            | 0.00      |                                      |
|       | 12000.00 | 91.27     | 270.05           | 9539.88            | -432.07                     | -2010.47             | 2034.13            | 0.00      |                                      |
|       | 12800.00 | 91.27     | 270.05           | 9537.67            | -432.70                     | -3018.42             | 3033.95            | 0.00      |                                      |
|       | 12900.00 | 91.27     | 270.05           | 9535.45            | -432.61                     | -3118.40             | 3133.84            | 0.00      |                                      |
|       | 13000.00 | 91.27     | 270.05           | 9533.23            | -432.52                     | -3218.37             | 3233.72            | 0.00      |                                      |
|       | 13100.00 | 91.27     | 270.05           | 9531.02            | -432.44                     | -3318.35             | 3333.60            | 0.00      |                                      |
|       | 13200.00 | 91.27     | 270.05           | 9528.80            | -432.35                     | -3418.32             | 3433.48            | 0.00      |                                      |
|       | 13300.00 | 91.27     | 270.05           | 9526.58            | -432.26                     | -3518.30             | 3533.37            | 0.00      |                                      |
|       | 13400.00 | 91.27     | 270.05           | 9524.37            | -432.18                     | -3618.27             | 3033.25            | 0.00      |                                      |
|       | 13500.00 | 91.27     | 270.05           | 9519 93            | -432.09                     | -3818 22             | 3833.02            | 0.00      |                                      |
|       | 13700.00 | 91.27     | 270.05           | 9517.72            | -431.91                     | -3918.20             | 3932.90            | 0.00      |                                      |
|       | 13800.00 | 91.27     | 270.05           | 9515.50            | -431.83                     | -4018.18             | 4032.78            | 0.00      |                                      |
|       | 13900.00 | 91.27     | 270.05           | 9513.28            | -431.74                     | -4118.15             | 4132.67            | 0.00      |                                      |
|       | 14000.00 | 91.27     | 270.05           | 9511.07            | -431.65                     | -4218.13             | 4232.55            | 0.00      |                                      |
|       | 14100.00 | 91.27     | 270.05           | 9508.85            | -431.57                     | -4318.10             | 4332.43            | 0.00      |                                      |
|       | 14200.00 | 91.27     | 270.05           | 9506.63            | -431.48                     | -4418.08             | 4432.32            | 0.00      |                                      |
|       | 14300.00 | 91.27     | 270.05           | 9504.42            | -431.39<br>421.21           | -4518.05             | 4532.20            | 0.00      |                                      |
|       | 14400.00 | 91.27     | 270.05           | 9499 98            | -431.31                     | -4718.00             | 4032.00            | 0.00      |                                      |
|       | 14600.00 | 91.27     | 270.05           | 9497.77            | -431.13                     | -4817.98             | 4831.85            | 0.00      |                                      |
|       | 14700.00 | 91.27     | 270.05           | 9495.55            | -431.05                     | -4917.95             | 4931.73            | 0.00      |                                      |
|       | 14800.00 | 91.27     | 270.05           | 9493.33            | -430.96                     | -5017.93             | 5031.62            | 0.00      |                                      |
|       | 14900.00 | 91.27     | 270.05           | 9491.12            | -430.87                     | -5117.90             | 5131.50            | 0.00      |                                      |
|       | 15000.00 | 91.27     | 270.05           | 9488.90            | -430.79                     | -5217.88             | 5231.38            | 0.00      |                                      |
|       | 15100.00 | 91.27     | 270.05           | 9486.69            | -430.70                     | -5317.86             | 5331.27            | 0.00      |                                      |
|       | 15200.00 | 91.27     | 270.05           | 9464.47            | -430.61                     | -5417.83             | 5431.15            | 0.00      |                                      |
|       | 15400.00 | 91.27     | 270.05           | 9480.04            | -430.44                     | -5617.78             | 5630.92            | 0.00      |                                      |
|       | 15500.00 | 91.27     | 270.05           | 9477.82            | -430.35                     | -5717.76             | 5730.80            | 0.00      |                                      |
|       | 15600.00 | 91.27     | 270.05           | 9475.60            | -430.26                     | -5817.73             | 5830.68            | 0.00      |                                      |
|       | 15700.00 | 91.27     | 270.05           | 9473.39            | -430.18                     | -5917.71             | 5930.57            | 0.00      |                                      |
|       | 15800.00 | 91.27     | 270.05           | 9471.17            | -430.09                     | -6017.68             | 6030.45            | 0.00      |                                      |
|       | 15900.00 | 91.27     | 270.05           | 9468.95            | -430.00                     | -6117.66             | 6130.33            | 0.00      |                                      |
|       | 16000.00 | 91.27     | 270.05           | 9466.74            | -429.92                     | -6217.63             | 6230.22            | 0.00      |                                      |
|       | 16200.00 | 91.27     | 270.05           | 9462 30            | -429.05                     | -6417 58             | 6429.98            | 0.00      |                                      |
|       | 16300.00 | 91.27     | 270.05           | 9460.09            | -429.66                     | -6517.56             | 6529.87            | 0.00      |                                      |
|       | 16400.00 | 91.27     | 270.05           | 9457.87            | -429.57                     | -6617.54             | 6629.75            | 0.00      |                                      |
|       | 16500.00 | 91.27     | 270.05           | 9455.65            | -429.48                     | -6717.51             | 6729.63            | 0.00      |                                      |
|       | 16600.00 | 91.27     | 270.05           | 9453.44            | -429.40                     | -6817.49             | 6829.52            | 0.00      |                                      |
|       | 16700.00 | 91.27     | 270.05           | 9451.22            | -429.31                     | -6917.46             | 6929.40            | 0.00      |                                      |
|       | 16800.00 | 91.27     | 270.05           | 9449.00            | -429.22                     | -/01/.44             | 7029.28            | 0.00      |                                      |
|       | 17000.00 | 91.27     | 270.05           | 9444 57            | -429.14                     | -7217 39             | 7229.05            | 0.00      |                                      |
|       | 17100.00 | 91.27     | 270.05           | 9442.35            | -428.96                     | -7317.36             | 7328.93            | 0.00      |                                      |
|       | 17200.00 | 91.27     | 270.05           | 9440.14            | -428.88                     | -7417.34             | 7428.81            | 0.00      |                                      |
|       | 17300.00 | 91.27     | 270.05           | 9437.92            | -428.79                     | -7517.31             | 7528.70            | 0.00      |                                      |
|       | 17400.00 | 91.27     | 270.05           | 9435.70            | -428.70                     | -7617.29             | 7628.58            | 0.00      |                                      |
|       | 17500.00 | 91.27     | 270.05           | 9433.49            | -428.61                     | -7717.27             | 7728.46            | 0.00      |                                      |
|       | 17600.00 | 91.27     | 270.05           | 9431.27            | -428.53                     | -/81/.24             | 7828.35            | 0.00      |                                      |
|       | 17800.00 | 91.27     | 270.05           | 9429.05            | -420.44                     | -8017 19             | 8028 11            | 0.00      |                                      |
|       | 17900.00 | 91.27     | 270.05           | 9424.62            | -428.27                     | -8117.17             | 8128.00            | 0.00      |                                      |
|       | 18000.00 | 91.27     | 270.05           | 9422.40            | -428.18                     | -8217.14             | 8227.88            | 0.00      |                                      |
|       | 18100.00 | 91.27     | 270.05           | 9420.19            | -428.09                     | -8317.12             | 8327.76            | 0.00      |                                      |
|       | 18200.00 | 91.27     | 270.05           | 9417.97            | -428.01                     | -8417.09             | 8427.65            | 0.00      |                                      |
|       | 18300.00 | 91.27     | 270.05           | 9415.75            | -427.92                     | -8517.07             | 8527.53            | 0.00      |                                      |
|       | 18400.00 | 91.27     | 270.05           | 9413.54            | -427.83                     | -8617.04             | 8627.41            | 0.00      |                                      |
|       | 18600.00 | 91.27     | 270.05<br>270.05 | 9411.32<br>9209 10 | -421.15<br>- <u>4</u> 27.66 | -0/1/.U2<br>-8816.00 | 0121.3U<br>8827 19 | 0.00      |                                      |
|       | 18700.00 | 91.27     | 270.05           | 9406.89            | -427.57                     | -8916.97             | 8927.06            | 0.00      |                                      |
|       | 18800.00 | 91.27     | 270.05           | 9404.67            | -427.49                     | -9016.95             | 9026.95            | 0.00      |                                      |
|       | 18900.00 | 91.27     | 270.05           | 9402.46            | -427.40                     | -9116.92             | 9126.83            | 0.00      |                                      |
|       | 19000.00 | 91.27     | 270.05           | 9400.24            | -427.31                     | -9216.90             | 9226.71            | 0.00      |                                      |
|       | 19100.00 | 91.27     | 270.05           | 9398.02            | -427.23                     | -9316.87             | 9326.60            | 0.00      |                                      |
|       | 19200.00 | 91.27     | 270.05           | 9395.81            | -427.14                     | -9416.85             | 9426.48            | 0.00      |                                      |

| devon |          | Well:<br>County:<br>Wellbore:<br>Design: | ATLATL 11-<br>Eddy<br>Permit Plar<br>Permit Plar | -10 FED COM<br>1<br>1 #1 |         | Geodetic System: US State Plane 1983<br>Datum: North American Datum 1927<br>Ellipsoid: Clarke 1866<br>Zone: 3001 - NM East (NAD83) |          |           |         |  |
|-------|----------|------------------------------------------|--------------------------------------------------|--------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|---------|--|
|       | MD       | INC                                      | AZI                                              | TVD                      | NS      | EW                                                                                                                                 | vs       | DLS       | Comment |  |
|       | (ft)     | (°)                                      | (°)                                              | (ft)                     | (ft)    | (ft)                                                                                                                               | (ft)     | (°/100ft) |         |  |
|       | 19300.00 | 91.27                                    | 270.05                                           | 9393.59                  | -427.05 | -9516.82                                                                                                                           | 9526.36  | 0.00      |         |  |
|       | 19400.00 | 91.27                                    | 270.05                                           | 9391.37                  | -426.96 | -9616.80                                                                                                                           | 9626.25  | 0.00      |         |  |
|       | 19500.00 | 91.27                                    | 270.05                                           | 9389.16                  | -426.88 | -9716.77                                                                                                                           | 9726.13  | 0.00      |         |  |
|       | 19600.00 | 91.27                                    | 270.05                                           | 9386.94                  | -426.79 | -9816.75                                                                                                                           | 9826.01  | 0.00      |         |  |
|       | 19700.00 | 91.27                                    | 270.05                                           | 9384.72                  | -426.70 | -9916.72                                                                                                                           | 9925.90  | 0.00      |         |  |
|       | 19800.00 | 91.27                                    | 270.05                                           | 9382.51                  | -426.62 | -10016.70                                                                                                                          | 10025.78 | 0.00      |         |  |
|       | 19832.46 | 91.27                                    | 270.05                                           | 9381.79                  | -426.59 | -10049.15                                                                                                                          | 10058.20 | 0.00      | exit    |  |
|       | 19900.00 | 91.27                                    | 270.05                                           | 9380.29                  | -426.53 | -10116.67                                                                                                                          | 10125.66 | 0.00      |         |  |
|       | 19912.46 | 91.27                                    | 270.05                                           | 9380.00                  | -426.48 | -10129.13                                                                                                                          | 10138.10 | 0.00      | BHL     |  |
|       |          |                                          |                                                  |                          |         |                                                                                                                                    |          |           |         |  |



Released to Imaging: 11/19/2024 1:10:37 PM

### Received by OCD: 9/3/2024 12:23:38 PM

| Intent |
|--------|
|--------|

| х | As | Drilled |
|---|----|---------|
|   |    |         |

| API #                           |           |                      |             |
|---------------------------------|-----------|----------------------|-------------|
|                                 |           |                      |             |
| Operator Name:                  |           | Property Name:       | Well Number |
| DEVON ENERGY PI<br>COMPANY, LP. | RODUCTION | ATLATL 11-10 FED COM | 333H        |

## Kick Off Point (KOP)

| UL          | Section | Township | Range | Lot | Feet        | From N/S | Feet | From E/W | County |
|-------------|---------|----------|-------|-----|-------------|----------|------|----------|--------|
| 1           | 11      | 22S      | 27E   |     | 1410        | SOUTH    | 48   | EAST     | EDDY   |
| Latitude    |         |          |       |     | Longitude   |          | NAD  |          |        |
| 32.40387707 |         |          |       |     | -104.151881 | 83       |      |          |        |

# First Take Point (FTP)

| UL<br>            | Section               | Township 22-S | Range<br>27-E | Lot | Feet<br><b>1410</b>     | From N/S | Feet<br>100 | From E/W | County<br>EDDY |
|-------------------|-----------------------|---------------|---------------|-----|-------------------------|----------|-------------|----------|----------------|
| Latitu <b>32.</b> | <sup>de</sup><br>4039 | 72            |               |     | Longitude <b>104.15</b> | 2016     |             |          | NAD<br>83      |

# Last Take Point (LTP)

| ul<br>L               | Section 10 | Township 22-S | Range<br>27-E | Lot | Feet<br>1410     | From N/S | Feet<br>100 | From E/W | County<br>EDDY |
|-----------------------|------------|---------------|---------------|-----|------------------|----------|-------------|----------|----------------|
| Latitude<br>32.404040 |            |               |               |     | Longitud<br>104. | 185589   | 9           |          | NAD<br>83      |

Is this well the defining well for the Horizontal Spacing Unit? YES

Is this well an infill well?

NO

If infill is yes please provide API if available, Operator Name and well number for Defining well for Horizontal Spacing Unit.

| API #          |                |             |
|----------------|----------------|-------------|
| Operator Name: | Property Name: | Well Number |
|                |                |             |

KZ 06/29/2018

## **Offline Cementing**

#### Variance Request

Devon Energy requests to offline cement on intermediate strings that are set in formations shallower than the Wolfcamp. Prior to commencing offline cementing operations, the well will be monitored for any abnormal pressures and confirmed to be static. A dual manifold system (equipped with chokes) for the returns will also be utilized as a redundancy. All equipment used for offline cementing will have a minimum 5M rating to match intermediate sections' 5M BOPE requirements.

| U.S. Department of the Interior<br>BUREAU OF LAND MANAGEMENT |                                                                        | 07/03/2024                        |
|--------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------|
| Well Name: ATLATL 11 10 FED COM                              | Well Location: T22S / R27E / SEC 11 /<br>NESE / 32.40517 / -104.153025 | County or Parish/State: EDDY / NM |
| Well Number: 333H                                            | Type of Well: OIL WELL                                                 | Allottee or Tribe Name:           |
| Lease Number: NMNM64583                                      | Unit or CA Name:                                                       | Unit or CA Number:                |
| US Well Number:                                              | <b>Operator:</b> DEVON ENERGY<br>PRODUCTION COMPANY LP                 |                                   |

LONG VO Date: 2024.07.03 09:33:05 - 05'00'

Sundry Print Rapo

# **Notice of Intent**

Received by MCD 9/3/2024 12:23:38 PM

Sundry ID: 2798533

Type of Submission: Notice of Intent

Date Sundry Submitted: 07/02/2024

Date proposed operation will begin: 07/02/2024

Type of Action: APD Change Time Sundry Submitted: 07:47

**Procedure Description:** Devon Energy Production Co., L.P. (Devon) respectfully requests offline cementing for the subject well. See Variance attached. Devon Energy Production Co., L.P. (Devon) respectfully requests to move surface and intermediate casing and change the weight, grade and connection. Please see attached spec sheet, and drill plan. Devon Energy Production Co., L.P. (Devon) respectfully requests to change the BHL and formation on the subject well. Please see attached revised C102, Drill plan, directional plan. Permitted Formation: Esperanza Bone Spring and Proposed Formation: Purple Sage Wolfcamp (Gas) Permitted BHL: NWSW, 2100 FSL, 20 FWL, 10-22S-27E Proposed BHL: NWSW, 1410 FSL, 20 FWL, 10-22S-27E

**NOI Attachments** 

## **Procedure Description**

13.375\_54.50\_J55\_20240702074634.pdf

10.750\_45.50\_HCL80\_SCC\_20240702074615.PDF

8.625\_0.352\_P110\_ICY\_Wedge\_441\_\_02162024\_20240702074534.pdf

 $5.500\_0.361\_P110\_ICY\_TXP\_BTC\_01242024\_20240702074519.pdf$ 

ATLATL\_11\_10\_FED\_COM\_333H\_R2\_20240702073824.pdf

ATLATL\_11\_10\_FED\_COM\_333H\_Directional\_Plan\_06\_13\_24\_20240702073809.pdf

WA022066495\_ATLATL\_11\_10\_FED\_COM\_333H\_WL\_R2\_UPDATED\_20240702073749.pdf

| Received by OCD: 9/3/2024 12:23:38 PM<br>Well Name: ATLATE 11 10 FED COM | Well Location: T22S / R27E / SEC 11 /<br>NESE / 32.40517 / -104.153025 | County or Parish/State: EBD ?5, of 6<br>NM |
|--------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------|
| Well Number: 333H                                                        | Type of Well: OIL WELL                                                 | Allottee or Tribe Name:                    |
| Lease Number: NMNM64583                                                  | Unit or CA Name:                                                       | Unit or CA Number:                         |
| US Well Number:                                                          | <b>Operator:</b> DEVON ENERGY<br>PRODUCTION COMPANY LP                 |                                            |

Offline\_Cementing\_\_\_Variance\_Request\_20240702073706.pdf

# **Operator**

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

**Operator Electronic Signature:** ARIANNA EVANS

Signed on: JUL 02, 2024 07:39 AM

Zip:

Name: DEVON ENERGY PRODUCTION COMPANY LP

Title: Regulatory

Street Address: 333 W SHERIDAN AVE

City: OKLAHOMA CITY State: OK

Phone: (405) 552-4514

Email address: ARIANNA.EVANS@DVN.COM

State:

# **Field**

Representative Name:

Street Address:

City:

Phone:

Email address:

# PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

| <b>OPERATOR'S NAME:</b> | Devon Energy Production Company LP |
|-------------------------|------------------------------------|
| LEASE NO.:              | NMNM64583                          |
| LOCATION:               | Section 11, T.22 S., R.27 E., NMPM |
| COUNTY:                 | Eddy County, New Mexico            |

| WELL NAME & NO.:           | Atlatl 11 10 Fed Com 333H |
|----------------------------|---------------------------|
| <b>BOTTOM HOLE FOOTAGE</b> | 1410'/S & 20'/W           |
| ATS/API ID:                | ATS-23-1423               |
| APD ID:                    | 10400092144               |
| Sundry ID:                 | 2798533                   |
| Date APD Submitted:        |                           |

# COA

| <b>Primary Desig</b> | ;n:                       |                  |                |
|----------------------|---------------------------|------------------|----------------|
| H2S                  | Yes 🔽                     |                  |                |
| Potash               | None                      |                  |                |
| Cave/Karst           | Medium 🔽                  |                  |                |
| Potential            |                           |                  |                |
| Cave/Karst           | Critical                  |                  |                |
| Potential            |                           |                  |                |
| Variance             | 🖸 None                    | 🖸 Flex Hose      | C Other        |
| Wellhead             | Conventional and Multibow | /Ⅰ               |                |
| Other                | □4 String                 | Capitan Reef     | □ WIPP         |
|                      |                           | None             |                |
|                      |                           |                  |                |
| Other                | Pilot Hole                | Open Annulus     |                |
|                      | None 🔻                    |                  |                |
| Cementing            | Contingency Squeeze       | Echo-Meter       | Primary Cement |
|                      | None                      | None 🔫           | Squeeze        |
|                      |                           |                  | None 🚽         |
| Special              | □ Water                   | COM              | Unit Unit      |
| Requirements         | Disposal/Injection        |                  |                |
| Special              | □ Batch Sundry            | Waste Prevention |                |
| Requirements         |                           | None 🝷           |                |
| Special              | Break Testing             | ✓ Offline        | Casing         |
| Requirements         | _                         | Cementing        | Clearance      |
| Variance             |                           | _                |                |

| mut Design. |
|-------------|
|-------------|

| Potash                  | None 🔽              |                   |                                   |
|-------------------------|---------------------|-------------------|-----------------------------------|
| Cave/Karst<br>Potential | Medium 💌            |                   |                                   |
| Cave/Karst<br>Potential | Critical            |                   |                                   |
| Other                   | ✓ 4 String          | Capitan Reef None | □WIPP                             |
| Other                   | Pilot Hole None     | Open Annulus      |                                   |
| Cementing               | Contingency Squeeze | Echo-Meter Int 2  | Primary Cement<br>Squeeze<br>None |

# A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Delaware** formation. As a result, the Hydrogen Sulfide area must meet **43 CFR part 3170 Subpart 3176** requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

# **Primary Casing Design:**

# **B.** CASING

- The 13-3/8 inch surface casing shall be set at approximately 350 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt when present, and below usable fresh water) and cemented to the surface. The surface hole shall be 17 1/2 inch in diameter.
  - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
  - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
  - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
  - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

# Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

- 2. The minimum required fill of cement behind the 10-3/4 inch intermediate casing is:
  - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
  - In <u>Medium Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
  - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification.
     Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash. Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

# Alternate Casing Design:

# C. CASING

- 4. The 13-3/8 inch surface casing shall be set at approximately 350 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt when present, and below usable fresh water) and cemented to the surface. The surface hole shall be 17 1/2 inch in diameter.
  - e. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
  - f. Wait on cement (WOC) time for a primary cement job will be a minimum of  $\underline{8}$ <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
  - g. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
  - h. If cement falls back, remedial cementing will be done prior to drilling out that string.

# Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

- 5. The minimum required fill of cement behind the 10-3/4 inch intermediate casing is:
  - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

# Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

6. The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:

# **Option 1 (Single Stage):**

• Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

# **Option 2:**

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

- a. First stage: Operator will cement with intent to reach the top of the Brushy Canyon at 4261' (730 sxs Class H/C+ additives).
- b. Second stage:
  - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified. (Squeeze 200 sxs Class C)
     Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Operator has proposed to pump down 10-3/4" X 8-5/8" annulus after primary cementing stage. <u>Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus Or operator shall run a CBL from TD of the 8-5/8" casing to surface after the second stage BH to verify TOC.</u>

Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out. Operator must run one CBL per Well Pad. Operator may conduct a negative and positive pressure test during completion to remediate sustained casing pressure.

If cement does not reach surface, the next casing string must come to surface.

Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures.

- In <u>Medium Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 7. The minimum required fill of cement behind the 5-1/2 inch production casing is:
  - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification.
     Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

# **D. PRESSURE CONTROL**

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

# **Option 1:**

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 3000 (3M) psi. Annular which shall be tested to 2100 (70% Working Pressure) psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 10-3/4 intermediate casing shoe shall be 5000 (5M) psi. Annular which shall be tested to 3500 (70% Working Pressure) psi.
- c. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the **8-5/8** inch intermediate casing shoe shall be **5000 (5M)** psi.

# **Option 2:**

- a. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the 13-3/8 inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.
  - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
  - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
  - c. Manufacturer representative shall install the test plug for the initial BOP test.
  - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
  - e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.

# E. SPECIAL REQUIREMENT (S)

# **Communitization Agreement**

• The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.

- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR part 3170 Subpart 3171
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

# **BOPE Break Testing Variance (Approved)**

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at **21**-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR part 3170 Subpart 3172.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

# **Offline Cementing**

Operator has been (Approved) to pump the proposed cement program offline in the Intermediate(s) interval.

Offline cementing should commence within 24 hours of landing the casing for the interval.

Notify the BLM 4hrs prior to cementing offline at Eddy County: 575-361-2822.

# GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Eddy County

**EMAIL** or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220,

BLM\_NM\_CFO\_DrillingNotifications@BLM.GOV (575) 361-2822

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
  - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
  - b. When the operator proposes to set surface casing with Spudder Rig
    - Notify the BLM when moving in and removing the Spudder Rig.
    - Notify the BLM when moving in the 2<sup>nd</sup> Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
    - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

# A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or

if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL
- All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.

- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
  - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
  - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
  - c. Manufacturer representative shall install the test plug for the initial BOP test.
  - d. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
  - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
  - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
  - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been

done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)

- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170
  Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.

# C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

# D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Long Vo (LVO) 7/3/2024

#### . 11 oon 1 10 00 20. 01. 0 10 10 00

| Page  | 39  | of        | 62 |
|-------|-----|-----------|----|
| 1 "8" | ~ ~ | <b>vj</b> |    |

.

| keceived by OCL                                                                                 | ): 9/3/2024 12                                                                                        | :23:38 PM                                                                                                                              |                                                                               |                                                          |                                                  |                                                     |                                                                                                 |                                        | Page 39 of                                                                                                                                          |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Form 3160-5<br>(June 2019)                                                                      | DE                                                                                                    | UNITED STATI                                                                                                                           | ES<br>INTERIOR                                                                |                                                          |                                                  |                                                     | Ел                                                                                              | FORM<br>OMB 1<br>apires:               | APPROVED<br>No. 1004-0137<br>October 31, 2021                                                                                                       |
| BUREAU OF LAND MANAGEMENT                                                                       |                                                                                                       |                                                                                                                                        |                                                                               | 5. Lease Serial No.                                      | NMNN                                             | 164583                                              |                                                                                                 |                                        |                                                                                                                                                     |
| Do<br>abar                                                                                      | SUNDRY I<br>not use this<br>ndoned well.                                                              | NOTICES AND REPO<br>form for proposals<br>Use Form 3160-3 (A                                                                           | ORTS ON W<br>to drill or to<br>PD) for suc                                    | IELLS                                                    | ter an<br>oosals.                                |                                                     | 6. If Indian, Allottee                                                                          | or Trib                                | e Name                                                                                                                                              |
|                                                                                                 | SUBMIT IN                                                                                             | TRIPLICATE - Other instr                                                                                                               | uctions on page                                                               | e 2                                                      |                                                  |                                                     | 7. If Unit of CA/Ag                                                                             | eement                                 | t, Name and/or No.                                                                                                                                  |
| 1. Type of Well                                                                                 |                                                                                                       |                                                                                                                                        |                                                                               |                                                          |                                                  |                                                     |                                                                                                 |                                        |                                                                                                                                                     |
| V Oil V                                                                                         | Well Gas                                                                                              | Well Other                                                                                                                             |                                                                               |                                                          |                                                  |                                                     | 8. Well Name and N                                                                              | <sup>0.</sup> ATL                      | ATL 11 10 FED COM/333H                                                                                                                              |
| 2. Name of Operato                                                                              | <sup>r</sup> DEVON ENER                                                                               | GY PRODUCTION COMP                                                                                                                     | ANY LP                                                                        |                                                          |                                                  |                                                     | 9. API Well No.                                                                                 |                                        |                                                                                                                                                     |
| 3a. Address 333 W<br>CITY,                                                                      | /EST SHERIDAN<br>OK 73102                                                                             | I AVE, OKLAHOMA                                                                                                                        | 3b. Phone No.<br>(405) 235-361                                                | <i>(include d</i><br>11                                  | rea code)                                        |                                                     | 10. Field and Pool o<br>ESPERANZA/BC                                                            | r Explo<br>NE SF                       | ratory Area<br>PRING                                                                                                                                |
| 4. Location of Well<br>SEC 11/T22S/R                                                            | (Footage, Sec., T.,.<br>27E/NMP                                                                       | R.,M., or Survey Description,                                                                                                          | )                                                                             |                                                          |                                                  |                                                     | 11. Country or Paris                                                                            | h, State                               | :                                                                                                                                                   |
| 010 11/1220/14                                                                                  | 12 011                                                                                                |                                                                                                                                        | OV(FR) TO DI                                                                  |                                                          |                                                  |                                                     |                                                                                                 |                                        | <u>рата</u>                                                                                                                                         |
|                                                                                                 | 12. CHI                                                                                               | ECK THE APPROPRIATE B                                                                                                                  | OX(ES) TO INI                                                                 | DICALE                                                   | NATURE                                           | OF NOT                                              | CE, REPORT OR O                                                                                 | HERI                                   | JAIA                                                                                                                                                |
| TYPE OF SU                                                                                      | BMISSION                                                                                              |                                                                                                                                        |                                                                               |                                                          | TYP                                              | E OF AC                                             | FION                                                                                            |                                        |                                                                                                                                                     |
| ✓ Notice of Int                                                                                 | ent                                                                                                   | Alter Casing                                                                                                                           |                                                                               | en<br>aulic Frac                                         | turing                                           | Recla                                               | amation (Start/Resume                                                                           |                                        | Well Integrity                                                                                                                                      |
| Subsequent I                                                                                    | Report                                                                                                | Casing Repair                                                                                                                          | New                                                                           | Construct                                                | ion                                              | Reco                                                | mplete                                                                                          |                                        | Other                                                                                                                                               |
|                                                                                                 | · · ·                                                                                                 | Change Plans                                                                                                                           | Plug                                                                          | and Aban                                                 | don                                              | Temp                                                | oorarily Abandon                                                                                |                                        |                                                                                                                                                     |
| Final Abando                                                                                    | onment Notice                                                                                         | Convert to Injection                                                                                                                   | Plug                                                                          | Back                                                     | atimatad                                         | Wate                                                | r Disposal                                                                                      | corls on                               | d approvimate duration thereaf. If                                                                                                                  |
| the proposal is t<br>the Bond under<br>completion of th<br>completed. Fina<br>is ready for fina | o deepen direction<br>which the work wine<br>involved operational<br>abandonment Not<br>linspection.) | ally or recomplete horizontal<br>ill be perfonned or provide th<br>ions. If the operation results i<br>otices must be filed only after | ly, give subsurfa<br>e Bond No. on fi<br>n a multiple com<br>all requirements | ice location<br>ile with B<br>apletion of<br>s, includin | ns and me<br>LM/BIA.<br>r recomple<br>ng reclama | easured ar<br>Required<br>etion in a<br>ation, have | ad true vertical depths<br>subsequent reports m<br>new interval, a Form<br>e been completed and | of all j<br>ust be<br>3160-4<br>the op | pertinent markers and zones. Attach<br>filed within 30 days following<br>must be filed once testing has been<br>erator has detennined that the site |
| Devon Energ                                                                                     | gy Production Co                                                                                      | ., L.P. (Devon) respectfully                                                                                                           | requests offlin                                                               | ne cemer                                                 | ting for th                                      | he subjec                                           | ct well. See Variand                                                                            | e attao                                | ched.                                                                                                                                               |
| Devon Energ<br>connection.<br>Please see a                                                      | gy Production Co                                                                                      | ., L.P. (Devon) respectfully<br>eet, and drill plan.                                                                                   | requests to m                                                                 | ove surfa                                                | ace and in                                       | ntermedi                                            | ate casing and cha                                                                              | nge the                                | e weight, grade and                                                                                                                                 |
| Devon Energ                                                                                     | gy Production Co<br>2, Drill plan, direc                                                              | ., L.P. (Devon) respectfully<br>tional plan. Permitted Forr                                                                            | requests to ch<br>nation: Espera                                              | nange the<br>nza Bone                                    | e BHL an<br>Spring a                             | d formati<br>and Prop                               | on on the subject w<br>osed Formation: Pu                                                       | ell. Ple<br>irple S                    | ease see attached<br>age Wolfcamp (Gas)                                                                                                             |
| Permitted BI                                                                                    | HL: NWSW, 2100                                                                                        | FSL, 20 FWL, 10-22S-27                                                                                                                 | E                                                                             |                                                          |                                                  |                                                     |                                                                                                 |                                        |                                                                                                                                                     |
| Proposed BH                                                                                     | HL: NWSW, 1410                                                                                        | ) FSL, 20 FWL, 10-22S-27                                                                                                               | E                                                                             |                                                          |                                                  |                                                     |                                                                                                 |                                        |                                                                                                                                                     |
|                                                                                                 |                                                                                                       |                                                                                                                                        |                                                                               |                                                          |                                                  |                                                     |                                                                                                 |                                        |                                                                                                                                                     |
| 14. I hereby certify t<br>ARIANNA EVANS                                                         | hat the foregoing i<br>S / Ph: (405) 552                                                              | s true and correct. Name (Pr<br>-4514                                                                                                  | inted/Typed)                                                                  | Re<br>Title                                              | egulatory                                        |                                                     |                                                                                                 |                                        |                                                                                                                                                     |
| (Ele<br>Signature                                                                               | ctronic Submissi                                                                                      | on)                                                                                                                                    |                                                                               | Date                                                     |                                                  |                                                     | 07/02/                                                                                          | 2024                                   |                                                                                                                                                     |
|                                                                                                 |                                                                                                       | THE SPACE                                                                                                                              | E FOR FEDI                                                                    | ERAL                                                     | OR STA                                           |                                                     | ICE USE                                                                                         |                                        |                                                                                                                                                     |
| Approved by                                                                                     |                                                                                                       |                                                                                                                                        |                                                                               |                                                          |                                                  |                                                     |                                                                                                 |                                        |                                                                                                                                                     |
|                                                                                                 |                                                                                                       |                                                                                                                                        |                                                                               | Tit                                                      | le                                               |                                                     |                                                                                                 | Date                                   |                                                                                                                                                     |

| Conditions of approval, if any, are attached. Approval of this notice does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. | CARLSBAD<br>Office |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|

Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

(Instructions on page 2)

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

### SPECIFIC INSTRUCTIONS

*Item 4* - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

*Item 13:* Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

## NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

**BURDEN HOURS STATEMENT:** Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

# **Additional Information**

# Location of Well

0. SHL: NESE / 1845 FSL / 404 FEL / TWSP: 22S / RANGE: 27E / SECTION: 11 / LAT: 32.40517 / LONG: -104.153025 (TVD: 0 feet, MD: 0 feet) PPP: NWSW / 2100 FSL / 1172 FWL / TWSP: 22S / RANGE: 27E / SECTION: 11 / LAT: 32.4058956 / LONG: -104.1650301 (TVD: 8861 feet, MD: 12800 feet) BHL: NWSW / 2100 FNL / 20 FWL / TWSP: 22S / RANGE: 27E / SECTION: 10 / LAT: 32.4058 / LONG: -104.1859 (TVD: 8715 feet, MD: 19228 feet)



# <u>13-3/8"</u> <u>54.50#</u> <u>.380</u> <u>J-55</u>

# **Dimensions (Nominal)**

| Outside Diameter | 13.375 | in.    |
|------------------|--------|--------|
| Wall             | 0.380  | in.    |
| Inside Diameter  | 12.615 | in.    |
| Drift            | 12.459 | in.    |
| Weight, T&C      | 54.500 | lbs/ft |
| Weight, PE       | 52.790 | lbs/ft |

# Performance Ratings, Minimum

| Collapse, PE              | 1130 | psi      |
|---------------------------|------|----------|
| Internal Yields Pressure  |      |          |
| PE                        | 2730 | psi      |
| STC                       | 2730 | PSI      |
| BTC                       | 2730 | psi      |
| Yield Strength, Pipe Body | 853  | 1000 lbs |
| Joint Strength, STC       | 514  | 1000 lbs |
| Joint Strength, BTC       | 909  | 1000 lbs |

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.



# API 5CT 10.750" 45.50lb/ft HCL80 Casing Performance Data Sheet

Manufactured to specifications of API 5CT 9th edition and bears the API monogram.

| Grade                      | HCL80                                                                       |
|----------------------------|-----------------------------------------------------------------------------|
|                            |                                                                             |
|                            | Pipe Body Mechanical Properties                                             |
| Minimum Yield Strength     | 80,000 psi                                                                  |
| Maximum Yield Strength     | 95,000 psi                                                                  |
| Minimum Tensile Strength   | 95,000 psi                                                                  |
| Maximum Hardness           | 23.0 HRC                                                                    |
|                            |                                                                             |
|                            | Sizes                                                                       |
| OD                         | 10 3/4                                                                      |
| Nominal Wall Thickness     | .400 in                                                                     |
| Nominal Weight, T&C        | 45.50 lb/ft                                                                 |
| Nominal Weight, PE         | 44.26 lb/ft                                                                 |
| Nominal ID                 | 9.950 in                                                                    |
| Standard Drift             | 9.794 in                                                                    |
| Alternate Drift            | 9.875 in                                                                    |
|                            |                                                                             |
| Coupling Special Clearance | Size                                                                        |
| OD                         | 11.25 in                                                                    |
| Min. Length                | 10.625 in                                                                   |
| Diameter of Counter Bore   | 10.890 in                                                                   |
| Width of bearing face      | .375 in                                                                     |
|                            |                                                                             |
|                            | Minimum Performance                                                         |
| Collapse Pressure          | 2,940 psi                                                                   |
| Internal Pressure Yield    | 5,210 psi                                                                   |
| Pipe body Tension Yield    | 1,040,000 lbs                                                               |
| Joint Strength STC         | 692,000 lbs                                                                 |
| Joint Strength LTC         | N/A                                                                         |
| Joint Strength BTC         | 1,063,000 lbs                                                               |
|                            |                                                                             |
|                            | Inspection and Testing                                                      |
| Visual                     | OD Longitidunal and independent 3rd party SEA                               |
|                            |                                                                             |
|                            |                                                                             |
| NDT                        | Independent 3rd party full body EMI and End Area Inspection after hydrotest |
|                            | Calibration notch sensitivity: 10% of specified wall thickness              |

|           | <u>Color code</u>                    |
|-----------|--------------------------------------|
| Pipe ends | One red, one brown and one blue band |
| Couplings | Red with one brown band              |

#### Received by OCD: 9/3/2024 12:23:38 PM

Tenaris

# TenarisHydril Wedge 441<sup>®</sup> - AD



| Pipe Body            |
|----------------------|
|                      |
| Grade: P110-ICY      |
| 1st Band: White      |
| 2nd Band: Pale Green |
| 3rd Band: Pale Green |
| 4th Band: -          |
| 5th Band: -          |
| 6th Band: -          |
|                      |

| Outside Diameter     | 8.625 in. | Wall Thickness  | 0.352 in.         | Grade | P110-ICY |
|----------------------|-----------|-----------------|-------------------|-------|----------|
| Min. Wall Thickness  | 90.00 %   | Pipe Body Drift | Alternative Drift | Туре  | Casing   |
| Connection OD Option | REGULAR   |                 |                   |       |          |

#### **Pipe Body Data**

| Geometry       |             |                  |             |
|----------------|-------------|------------------|-------------|
| Nominal OD     | 8.625 in.   | Wall Thickness   | 0.352 in.   |
| Nominal Weight | 32.00 lb/ft | Plain End Weight | 31.13 lb/ft |
| Drift          | 7.875 in.   | OD Tolerance     | API         |
| Nominal ID     | 7.921 in.   |                  |             |

#### Performance

Coupling

Grade: P110-ICY Body: White 1st Band: Pale Green 2nd Band: -3rd Band: -

| Body Yield Strength          | 1144 x1000 lb |
|------------------------------|---------------|
| Min. Internal Yield Pressure | 9180 psi      |
| SMYS                         | 125,000 psi   |
| Collapse Pressure            | 4000 psi      |

#### **Connection Data**

| Geometry             |           |
|----------------------|-----------|
| Connection OD        | 8.889 in. |
| Coupling Length      | 8.862 in. |
| Connection ID        | 7.921 in. |
| Make-up Loss         | 3.744 in. |
| Threads per inch     | 3.43      |
| Connection OD Option | Regular   |

| Performance                |                |
|----------------------------|----------------|
| Tension Efficiency         | 81.20 %        |
| Joint Yield Strength       | 929 x1000 lb   |
| Internal Pressure Capacity | 9180 psi       |
| Compression Efficiency     | 81.20 %        |
| Compression Strength       | 929 x1000 lb   |
| Max. Allowable Bending     | 53.59 °/100 ft |
| External Pressure Capacity | 4000 psi       |

| Make-Up Torques         |              |
|-------------------------|--------------|
| Minimum                 | 23,000 ft-Ib |
| Optimum                 | 24,000 ft-Ib |
| Maximum                 | 27,000 ft-Ib |
|                         |              |
| Operation Limit Torques |              |
| Operating Torque        | 59,000 ft-lb |
| Yield Torque            | 70,000 ft-Ib |
|                         |              |
| Buck-On                 |              |
| Minimum                 | 27,000 ft-lb |
| Maximum                 | 29,000 ft-Ib |
|                         |              |

#### Notes

For the lastest performance data, always visit our website: www.tenaris.com For further information on concepts indicated in this datasheet, download the Datasheet Manual from www.tenaris.com

Tenaris has issued this document for general information only, and the information in this document, including, without limitation, any pictures, drawings or designs ("Information") is not intended to constitute professional or any other type of advice or recommendation and is provided on an "as is" basis. No warranty is given. Tenaris has not independently verified any information – if any- provided by the user in connection with, or for the purpose of, the Information contained hereunder. The use of the Information is at user's own risk and Tenaris does not assume any responsibility or liability of any kind for any loss, damage or injury resulting from, or in connection with any Information contained hereunder or any use thereof. The Information in this document is subject to change or modification without notice. Tenaris's products and services are subject to Tenaris's standard terms and conditions or otherwise to the terms resulting from the respective contracts of sale or services, as the case may be, between petitioner and Tenaris. For more complete information please contact a Tenaris's representative or visit our website at www.tenaris.com . ©Tenaris 2024. All rights reserved.

#### Received by OCD: 9/3/2024 12:23:38 PM

Tenaris





Printed on: Page 45 of 62

| Grade: P110-ICY      | G  |
|----------------------|----|
| Body: White          | 1  |
| 1st Band: Pale Green | 2  |
| 2nd Band: -          | 3  |
| 3rd Band: -          | 4  |
|                      | 51 |

Coupling

#### Pipe Body Frade: P110-ICY st Band: White nd Band: Pale Green rd Band: Pale Green th Band: th Band: -6th Band: -

| Outside Diameter     | 5.500 in. | Wall Thickness  | 0.361 in.    | Grade | P110-IC1 |
|----------------------|-----------|-----------------|--------------|-------|----------|
| Min. Wall Thickness  | 87.50 %   | Pipe Body Drift | API Standard | Туре  | Casing   |
| Connection OD Option | REGULAR   |                 |              |       |          |

#### Pipe Body Data

| Nominal ID     | 4.778 in.   |
|----------------|-------------|
| Drift          | 4.653 in.   |
| Nominal Weight | 20.00 lb/ft |
| Nominal OD     | 5.500 in.   |
| Geometry       |             |

| Wall Thickness   | 0.361 in.   |
|------------------|-------------|
| Plain End Weight | 19.83 lb/ft |
| OD Tolerance     | API         |

#### Performance

| Body Yield Strength          | 729 x1000 lb |
|------------------------------|--------------|
| Min. Internal Yield Pressure | 14,360 psi   |
| SMYS                         | 125,000 psi  |
| Collapse Pressure            | 12,300 psi   |

#### **Connection Data**

| Geometry             |           |
|----------------------|-----------|
| Connection OD        | 6.100 in. |
| Coupling Length      | 9.450 in. |
| Connection ID        | 4.766 in. |
| Make-up Loss         | 4.204 in. |
| Threads per inch     | 5         |
| Connection OD Option | Regular   |

| Performance                |              |
|----------------------------|--------------|
| Tension Efficiency         | 100 %        |
| Joint Yield Strength       | 729 x1000 lb |
| Internal Pressure Capacity | 14,360 psi   |
| Compression Efficiency     | 100 %        |
| Compression Strength       | 729 x1000 lb |
| Max. Allowable Bending     | 104 °/100 ft |
| External Pressure Capacity | 12,300 psi   |

| Make-Up Torques         |              |
|-------------------------|--------------|
| Minimum                 | 11,540 ft-Ib |
| Optimum                 | 12,820 ft-Ib |
| Maximum                 | 14,100 ft-Ib |
| Operation Limit Torques |              |
| Operating Torque        | 22,700 ft-lb |
| Yield Torque            | 25,250 ft-lb |

#### Notes

This connection is fully interchangeable with: TXP® BTC - 5.5 in. - 0.275 (15.50) / 0.304 (17.00) / 0.415 (23.00) / 0.476 (26.00) in. (lb/ft) Connections with Dopeless® Technology are fully compatible with the same connection in its doped version Datasheet is also valid for Special Bevel option when applicable - except for Coupling Face Load, which will be reduced. Please contact a local Tenaris technical sales representative. Standard coupling design comes with optimized 20° bevel.

For the lastest performance data, always visit our website: www.tenaris.com For further information on concepts indicated in this datasheet, download the Datasheet Manual from www.tenaris.com

Tenaris has issued this document for general information only, and the information in this document, including, without limitation, any pictures, drawings or designs ("Information") is not intended to constitute professional or any other type of advice or recommendation and is provided on an "as is" basis. No warrantly is given. Tenaris has not independently verified any information – if any- provided by the user in connection with, or for the purpose of, the Information contained hereunder. The use of the Information is at user's own risk and Tenaris does not assume any responsibility or liability of any kind for any loss, damage or injury resulting from, or in connection with any Information contained hereunder or any use thereof. The Information in this document is subject to change or modification without notice. Tenaris's products and services are subject to Tenaris's standard terms and conditions or otherwise to the terms resulting from the respective contracts of sale or services, as the case may be, between petitioner and Tenaris. For more complete information please contact a Tenaris's representative or visit our website at www.tenaris.com . ©Tenaris 2024. All rights reserved.

#### 1. Geologic Formations

| TVD of target | 9382  | Pilot hole depth             | N/A |
|---------------|-------|------------------------------|-----|
| MD at TD:     | 19912 | Deepest expected fresh water |     |

Basin

|                      | Depth   | Water/Mineral  |          |
|----------------------|---------|----------------|----------|
| Formation            | (TVD)   | Bearing/Target | Hazards* |
|                      | from KB | Zone?          |          |
| Rustler              | 172     |                |          |
| Salt                 | 419     |                |          |
| Base of Salt         | 857     |                |          |
| Capitan Reef Top     | 971     |                |          |
| Delaware             | 2207    |                |          |
| Cherry Canyon        | 3547    |                |          |
| Brushy Canyon        | 4261    |                |          |
| 1st Bone Spring Lime | 5464    |                |          |
| Bone Spring 1st      | 6586    |                |          |
| Bone Spring 2nd      | 7282    |                |          |
| 3rd Bone Spring Lime | 7582    |                |          |
| Bone Spring 3rd      | 8556    |                |          |
| Wolfcamp             | 8951    |                |          |
|                      |         |                |          |
|                      |         |                |          |
|                      |         |                |          |
|                      |         |                |          |
|                      |         |                |          |

\*H2S, water flows, loss of circulation, abnormal pressures, etc.

#### 2. Casing Program (Primary Design)

|                                 |        | Wt     |              |         | Casing 1      |          | Casing Interval |      |
|---------------------------------|--------|--------|--------------|---------|---------------|----------|-----------------|------|
| Hole Size Csg. Size (PPF) Grade | Grade  | Conn   | From<br>(MD) | To (MD) | From<br>(TVD) | To (TVD) |                 |      |
| 17 1/2                          | 13 3/8 | 54 1/2 | J-55         | BTC     | 0             | 200      | 0               | 200  |
| 12 1/4                          | 10 3/4 | 45 1/2 | HCL80        | BTC SCC | 0             | 2300     | 0               | 2300 |
| 9.875x8.75                      | 5 1/2  | 20     | P-110ICY     | TXP     | 0             | 19912    | 0               | 9382 |

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for contingency casing.

\*9.875" hole down to KOP, and then 8.75" hole

#### 3. Cementing Program (Primary Design)

| Casing     | # Sks | тос  | Wt.<br>ppg | Yld<br>(ft3/sack) | Slurry Description               |
|------------|-------|------|------------|-------------------|----------------------------------|
| Surface    | 183   | Surf | 13.2       | 1.44              | Lead: Class C Cement + additives |
| Int 1      | 135   | Surf | 9          | 3.27              | Lead: Class C Cement + additives |
| Int I      | 101   | 1800 | 13.2       | 1.44              | Tail: Class H / C + additives    |
| Production | 962   | 1300 | 9          | 3.27              | Lead: Class H /C + additives     |
| Production | 3037  | 9075 | 13.2       | 1.44              | Tail: Class H / C + additives    |

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures.

| Casing String              | % Excess |
|----------------------------|----------|
| Surface                    | 50%      |
| Intermediate 1             | 30%      |
| Intermediate 1 (Two Stage) | 25%      |
| Prod                       | 10%      |

#### 2. Casing Program (Alternative Design)

| Hole Size | Csg. Size | WH<br>(PPF)            | Grade    | Conn      | Top (MD) | Bottom<br>(MD) | Top (TVD) | Bottom<br>(TVD) |
|-----------|-----------|------------------------|----------|-----------|----------|----------------|-----------|-----------------|
| 17 1/2    | 13 3/8    | 54 1/2                 | J-55     | BTC       | 0.0      | 200 MD         | 0         | 200 TVD         |
| 12 1/4    | 10 3/4    | 45 1/2                 | HCL80    | BTC SCC   | 0.0      | 2300 MD        | 0         | 2300 TVD        |
| 9 7/8     | 8 5/8     | - <del>8-5/8</del> -32 | P-110ICY | Wedge 441 | 0        | 9075 MD        | 0         | 9027 TVD        |
| 7 7/8     | 5 1/2     | 20                     | P-110ICY | TXP       | 0        | 19912 MD       | 0         | 9382 TVD        |

#### 3. Cementing Program (Alternative Design)

| Casing        | # Sks | тос      | Wt. (lb/gal)   | Yld<br>(ft3/sack) | Slurry Description               |  |
|---------------|-------|----------|----------------|-------------------|----------------------------------|--|
| Surface       | 183   | Surf     | Surf 13.2 1.44 |                   | Lead: Class C Cement + additives |  |
| Int           | 135   | Surf 9   |                | 3.27              | Lead: Class C Cement + additives |  |
| Int           | 101   | 1800     | 13.2           | 1.44              | Tail: Class H / C + additives    |  |
| Test 1        | 172   | Surf     | 9              | 3.27              | Lead: Class C Cement + additives |  |
| Int I         | 558   | 4261     | 13.2           | 1.44              | Tail: Class H / C + additives    |  |
| Due due tiere | 117   | 117 7075 |                | 3.27              | Lead: Class H /C + additives     |  |
| Production    | 1434  | 9075     | 13.2           | 1.44              | Tail: Class H / C + additives    |  |

#### Squeeze 200 sxs Class C from Brushy Canyon to surface

.

| BOP installed and tested before drilling which hole? | Size?        | Min.<br>Required<br>WP | Туре                     | ~              | Tested to:                    |
|------------------------------------------------------|--------------|------------------------|--------------------------|----------------|-------------------------------|
|                                                      |              |                        | Annular                  | Х              | 50% of rated working pressure |
| Int 1                                                | 13-5/8"      | 5M                     | Blind Ram                | Х              |                               |
| Int I                                                | 15-5/8       | JIVI                   | Pipe Ram                 |                | 5M                            |
|                                                      |              |                        | Double Ram               | Х              | 5101                          |
|                                                      |              |                        | Other*                   |                |                               |
|                                                      |              |                        | Appular (5M)             | x              | 50% of rated working          |
|                                                      |              |                        | Ailiulai (SWI)           | А              | pressure                      |
| Production                                           | 13 5/8"      | 5M                     | Blind Ram                | Х              |                               |
| Troduction                                           | 15-5/0       | 5111                   | Pipe Ram                 |                | 5M                            |
|                                                      |              |                        | Double Ram               | Х              | 5101                          |
|                                                      |              |                        | Other*                   |                |                               |
|                                                      |              |                        | Annular (5M)             |                |                               |
|                                                      |              |                        | Blind Ram                |                |                               |
|                                                      |              |                        | Pipe Ram                 |                |                               |
|                                                      |              |                        | Double Ram               |                |                               |
|                                                      |              |                        | Other*                   |                |                               |
| N A variance is requested for                        | r the use of | a diverter or          | n the surface casing. Se | e attached for | schematic.                    |
| Y A variance is requested to                         | run a 5 M a  | nnular on a            | 10M system               |                |                               |

#### 4. Pressure Control Equipment (Three String Design)

#### 5. Mud Program (Three String Design)

| Section      | Туре            | Weight<br>(ppg) |
|--------------|-----------------|-----------------|
| Surface      | FW Gel          | 8.5-9           |
| Intermediate | DBE / Cut Brine | 10-10.5         |
| Production   | OBM             | 10-10.5         |

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

| What will be used to monitor the loss or gain of fluid? | PVT/Pason/Visual Monitoring |
|---------------------------------------------------------|-----------------------------|

#### 6. Logging and Testing Procedures

| Logging, C | foring and Testing                                                                                              |
|------------|-----------------------------------------------------------------------------------------------------------------|
|            | Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the |
| Х          | Completion Report and sbumitted to the BLM.                                                                     |
|            | No logs are planned based on well control or offset log information.                                            |
|            | Drill stem test? If yes, explain.                                                                               |
|            | Coring? If yes, explain.                                                                                        |

| Additiona | al logs planned | Interval                |
|-----------|-----------------|-------------------------|
|           | Resistivity     | Int. shoe to KOP        |
|           | Density         | Int. shoe to KOP        |
| Х         | CBL             | Production casing       |
| Х         | Mud log         | Intermediate shoe to TD |
|           | PEX             |                         |

#### 7. Drilling Conditions

| Condition                  | Specfiy what type and where? |
|----------------------------|------------------------------|
| BH pressure at deepest TVD | 5122                         |
| Abnormal temperature       | No                           |
| MCC C 1 1 12               |                              |

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

 Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

 N
 H2S is present

Y H2S plan attached.

#### 8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

1 Spudder rig will move in and batch drill surface hole.

- a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- $^{3}$  The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
  - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments

X Directional Plan Other, describe



| devon |                    | Well:<br>County:<br>Wellbore:<br>Design: | ATLATL 11-<br>Eddy<br>Permit Plan<br>Permit Plan | 10 FED COM<br>#1   | 333H               |                  |                    |           | Geodetic System: US State Plane 1983<br>Datum: North American Datum 1927<br>Ellipsoid: Clarke 1866<br>Zone: 3001 - NM East (NAD83) |
|-------|--------------------|------------------------------------------|--------------------------------------------------|--------------------|--------------------|------------------|--------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------|
|       | MD                 | INC                                      | AZI                                              | TVD                | NS                 | EW               | vs                 | DLS       |                                                                                                                                    |
| _     | (ft)               | (°)                                      | (°)                                              | (ft)               | (ft)               | (ft)             | (ft)               | (°/100ft) | Comment                                                                                                                            |
|       | 0.00               | 0.00                                     | 0.00                                             | 0.00               | 0.00               | 0.00             | 0.00               | 0.00      | SHL                                                                                                                                |
|       | 172.00             | 0.00                                     | 139.00                                           | 172.00             | 0.00               | 0.00             | 0.00               | 0.00      | Rustler                                                                                                                            |
|       | 200.00             | 0.00                                     | 139.00                                           | 200.00             | 0.00               | 0.00             | 0.00               | 0.00      |                                                                                                                                    |
|       | 300.00             | 0.00                                     | 139.00                                           | 300.00             | 0.00               | 0.00             | 0.00               | 0.00      |                                                                                                                                    |
|       | 400.00             | 0.00                                     | 139.00                                           | 400.00             | 0.00               | 0.00             | 0.00               | 0.00      | Calt                                                                                                                               |
|       | 500.00             | 0.00                                     | 139.00                                           | 500.00             | 0.00               | 0.00             | 0.00               | 0.00      | Sait                                                                                                                               |
|       | 600.00             | 0.00                                     | 139.00                                           | 600.00             | 0.00               | 0.00             | 0.00               | 0.00      |                                                                                                                                    |
|       | 700.00             | 0.00                                     | 139.00                                           | 700.00             | 0.00               | 0.00             | 0.00               | 0.00      |                                                                                                                                    |
|       | 800.00             | 0.00                                     | 139.00                                           | 800.00             | 0.00               | 0.00             | 0.00               | 0.00      | Base of Salt                                                                                                                       |
|       | 900.00             | 0.00                                     | 139.00                                           | 900.00             | 0.00               | 0.00             | 0.00               | 0.00      |                                                                                                                                    |
|       | 971.00             | 0.00                                     | 139.00                                           | 971.00             | 0.00               | 0.00             | 0.00               | 0.00      | Capitan Reef Top                                                                                                                   |
|       | 1000.00            | 0.00                                     | 139.00                                           | 1000.00            | 0.00               | 0.00             | 0.00               | 0.00      |                                                                                                                                    |
|       | 1200.00            | 0.00                                     | 139.00                                           | 1200.00            | 0.00               | 0.00             | 0.00               | 0.00      |                                                                                                                                    |
|       | 1300.00            | 0.00                                     | 139.00                                           | 1300.00            | 0.00               | 0.00             | 0.00               | 0.00      |                                                                                                                                    |
|       | 1400.00            | 0.00                                     | 139.00                                           | 1400.00            | 0.00               | 0.00             | 0.00               | 0.00      |                                                                                                                                    |
|       | 1500.00            | 0.00                                     | 139.00                                           | 1500.00            | 0.00               | 0.00             | 0.00               | 0.00      |                                                                                                                                    |
|       | 1700.00            | 0.00                                     | 139.00                                           | 1700.00            | 0.00               | 0.00             | 0.00               | 0.00      |                                                                                                                                    |
|       | 1800.00            | 0.00                                     | 139.00                                           | 1800.00            | 0.00               | 0.00             | 0.00               | 0.00      |                                                                                                                                    |
|       | 1900.00            | 0.00                                     | 139.00                                           | 1900.00            | 0.00               | 0.00             | 0.00               | 0.00      | Charle Tananant                                                                                                                    |
|       | 2000.00            | 2.00                                     | 139.00                                           | 2000.00            | -1.32              | 1.14             | -1.09              | 2.00      | Start Tangent                                                                                                                      |
|       | 2200.00            | 4.00                                     | 139.00                                           | 2199.84            | -5.27              | 4.58             | -4.35              | 2.00      |                                                                                                                                    |
|       | 2207.18            | 4.14                                     | 139.00                                           | 2207.00            | -5.65              | 4.91             | -4.67              | 2.00      | Delaware                                                                                                                           |
|       | 2300.00            | 6.00<br>8.00                             | 139.00<br>139.00                                 | 2299.45            | -11.84<br>-21.04   | 10.30<br>18.29   | -9.79<br>-17.39    | 2.00      |                                                                                                                                    |
|       | 2500.00            | 10.00                                    | 139.00                                           | 2497.47            | -32.85             | 28.55            | -27.15             | 2.00      | Hold Tangent                                                                                                                       |
|       | 2600.00            | 10.00                                    | 139.00                                           | 2595.95            | -45.95             | 39.95            | -37.98             | 0.00      | -                                                                                                                                  |
|       | 2700.00            | 10.00                                    | 139.00                                           | 2694.43            | -59.06             | 51.34            | -48.81             | 0.00      |                                                                                                                                    |
|       | 2900.00            | 10.00                                    | 139.00                                           | 2891.39            | -85.27             | 74.12            | -39.64             | 0.00      |                                                                                                                                    |
|       | 3000.00            | 10.00                                    | 139.00                                           | 2989.87            | -98.37             | 85.52            | -81.30             | 0.00      |                                                                                                                                    |
|       | 3100.00            | 10.00                                    | 139.00                                           | 3088.35            | -111.48            | 96.91            | -92.13             | 0.00      |                                                                                                                                    |
|       | 3200.00            | 10.00                                    | 139.00<br>139.00                                 | 3186.83            | -124.58<br>-137.69 | 108.30<br>119.69 | -102.96<br>-113.79 | 0.00      |                                                                                                                                    |
|       | 3400.00            | 10.00                                    | 139.00                                           | 3383.79            | -150.80            | 131.08           | -124.62            | 0.00      |                                                                                                                                    |
|       | 3500.00            | 10.00                                    | 139.00                                           | 3482.27            | -163.90            | 142.48           | -135.46            | 0.00      |                                                                                                                                    |
|       | 3565.73            | 10.00                                    | 139.00                                           | 3547.00            | -172.51            | 149.96           | -142.57            | 0.00      | Cherry Canyon                                                                                                                      |
|       | 3700.00            | 10.00                                    | 139.00                                           | 3679.23            | -190.11            | 165.26           | -140.29            | 0.00      |                                                                                                                                    |
|       | 3800.00            | 10.00                                    | 139.00                                           | 3777.72            | -203.22            | 176.65           | -167.95            | 0.00      |                                                                                                                                    |
|       | 3900.00            | 10.00                                    | 139.00                                           | 3876.20            | -216.32            | 188.05           | -178.78            | 0.00      |                                                                                                                                    |
|       | 4000.00            | 10.00                                    | 139.00                                           | 3974.68<br>4073.16 | -229.43<br>-242 53 | 199.44<br>210.83 | -189.61<br>-200.44 | 0.00      |                                                                                                                                    |
|       | 4200.00            | 10.00                                    | 139.00                                           | 4171.64            | -255.64            | 222.22           | -211.27            | 0.00      |                                                                                                                                    |
|       | 4290.74            | 10.00                                    | 139.00                                           | 4261.00            | -267.53            | 232.56           | -221.10            | 0.00      | Brushy Canyon                                                                                                                      |
|       | 4300.00            | 10.00                                    | 139.00                                           | 4270.12            | -268.74            | 233.62           | -222.10            | 0.00      |                                                                                                                                    |
|       | 4500.00            | 10.00                                    | 139.00                                           | 4308.00            | -294.95            | 256.40           | -243.77            | 0.00      |                                                                                                                                    |
|       | 4600.00            | 10.00                                    | 139.00                                           | 4565.56            | -308.06            | 267.79           | -254.60            | 0.00      |                                                                                                                                    |
|       | 4700.00            | 10.00                                    | 139.00                                           | 4664.04            | -321.16            | 279.19           | -265.43            | 0.00      |                                                                                                                                    |
|       | 4800.00            | 10.00                                    | 139.00                                           | 4762.52            | -334.27<br>-347.38 | 290.58<br>301.97 | -276.26            | 0.00      |                                                                                                                                    |
|       | 5000.00            | 10.00                                    | 139.00                                           | 4959.48            | -360.48            | 313.36           | -297.92            | 0.00      |                                                                                                                                    |
|       | 5100.00            | 10.00                                    | 139.00                                           | 5057.97            | -373.59            | 324.75           | -308.75            | 0.00      |                                                                                                                                    |
|       | 5200.00            | 10.00                                    | 139.00                                           | 5156.45            | -386.69            | 336.15           | -319.58            | 0.00      |                                                                                                                                    |
|       | 5300.00<br>5322.93 | 10.00                                    | 139.00                                           | 5254.93<br>5277.51 | -399.80<br>-402.80 | 347.54<br>350.15 | -330.41<br>-332.90 | 0.00      | Drop to Vertical                                                                                                                   |
|       | 5400.00            | 8.46                                     | 139.00                                           | 5353.58            | -412.13            | 358.26           | -340.61            | 2.00      |                                                                                                                                    |
|       | 5500.00            | 6.46                                     | 139.00                                           | 5452.73            | -421.93            | 366.78           | -348.70            | 2.00      |                                                                                                                                    |
|       | 5511.34            | 6.23<br>4 46                             | 139.00                                           | 5464.00<br>5552 27 | -422.87<br>-429 11 | 367.60           | -349.48<br>-354 62 | 2.00      | 1st Bone Spring Lime                                                                                                               |
|       | 5700.00            | 2.46                                     | 139.00                                           | 5652.08            | -433.66            | 376.97           | -358.40            | 2.00      |                                                                                                                                    |
|       | 5800.00            | 0.46                                     | 139.00                                           | 5752.04            | -435.58            | 378.64           | -359.98            | 2.00      |                                                                                                                                    |
|       | 5822.93            | 0.00                                     | 139.00                                           | 5774.97            | -435.65            | 378.70           | -360.04            | 2.00      | Hold Vertical                                                                                                                      |
|       | 2200.00            | 0.00                                     | 270.05                                           | 5052.04            | -435.65            | 3/8./0           | -360.04            | 0.00      |                                                                                                                                    |

| devon |          | Well:<br>County:     | ATLATL 11-<br>Eddy         | 10 FED COM         | 333H               |          |                  |           | Geodetic System: US State Pla<br>Datum: North Amer | ane 1983<br>rican Datum 1927 |
|-------|----------|----------------------|----------------------------|--------------------|--------------------|----------|------------------|-----------|----------------------------------------------------|------------------------------|
|       |          | Wellbore:<br>Design: | Permit Plan<br>Permit Plan | #1                 |                    |          |                  |           | Ellipsoid: Clarke 1866<br>Zone: 3001 - NM          | 5<br>East (NAD83)            |
|       | MD       | INC                  | AZI                        | TVD                | NS                 | EW       | vs               | DLS       | Commont                                            |                              |
| -     | (ft)     | (°)                  | (°)                        | (ft)               | (ft)               | (ft)     | (ft)             | (°/100ft) | comment                                            |                              |
|       | 6000.00  | 0.00                 | 270.05                     | 5952.04            | -435.65            | 378.70   | -360.04          | 0.00      |                                                    |                              |
|       | 6200.00  | 0.00                 | 270.05                     | 6052.04<br>6152.04 | -435.65            | 378.70   | -360.04          | 0.00      |                                                    |                              |
|       | 6300.00  | 0.00                 | 270.05                     | 6252.04            | -435.65            | 378.70   | -360.04          | 0.00      |                                                    |                              |
|       | 6400.00  | 0.00                 | 270.05                     | 6352.04            | -435.65            | 378.70   | -360.04          | 0.00      |                                                    |                              |
|       | 6500.00  | 0.00                 | 270.05                     | 6452.04            | -435.65            | 378.70   | -360.04          | 0.00      |                                                    |                              |
|       | 6600.00  | 0.00                 | 270.05                     | 6552.04            | -435.65            | 378.70   | -360.04          | 0.00      |                                                    |                              |
|       | 6633.96  | 0.00                 | 270.05                     | 6586.00            | -435.65            | 378.70   | -360.04          | 0.00      | Bone Spring 1st                                    |                              |
|       | 6700.00  | 0.00                 | 270.05                     | 6752.04            | -435.65            | 378.70   | -360.04          | 0.00      |                                                    |                              |
|       | 6900.00  | 0.00                 | 270.05                     | 6852.04            | -435.65            | 378.70   | -360.04          | 0.00      |                                                    |                              |
|       | 7000.00  | 0.00                 | 270.05                     | 6952.04            | -435.65            | 378.70   | -360.04          | 0.00      |                                                    |                              |
|       | 7100.00  | 0.00                 | 270.05                     | 7052.04            | -435.65            | 378.70   | -360.04          | 0.00      |                                                    |                              |
|       | 7200.00  | 0.00                 | 270.05                     | 7152.04            | -435.65            | 378.70   | -360.04          | 0.00      |                                                    |                              |
|       | 7300.00  | 0.00                 | 270.05                     | 7252.04            | -435.65            | 378.70   | -360.04          | 0.00      | Dana Carina Dad                                    |                              |
|       | 7329.96  | 0.00                 | 270.05                     | 7282.00            | -435.65            | 378.70   | -360.04          | 0.00      | Bone Spring 2nd                                    |                              |
|       | 7500.00  | 0.00                 | 270.05                     | 7452.04            | -435.65            | 378.70   | -360.04          | 0.00      |                                                    |                              |
|       | 7600.00  | 0.00                 | 270.05                     | 7552.04            | -435.65            | 378.70   | -360.04          | 0.00      |                                                    |                              |
|       | 7629.96  | 0.00                 | 270.05                     | 7582.00            | -435.65            | 378.70   | -360.04          | 0.00      | 3rd Bone Spring Lime                               |                              |
|       | 7700.00  | 0.00                 | 270.05                     | 7652.04            | -435.65            | 378.70   | -360.04          | 0.00      |                                                    |                              |
|       | 7800.00  | 0.00                 | 270.05                     | 7752.04            | -435.65            | 378.70   | -360.04          | 0.00      |                                                    |                              |
|       | 7900.00  | 0.00                 | 270.05                     | 7852.04            | -435.65            | 378.70   | -360.04          | 0.00      |                                                    |                              |
|       | 8100.00  | 0.00                 | 270.05                     | 8052.04            | -435.65            | 378.70   | -360.04          | 0.00      |                                                    |                              |
|       | 8200.00  | 0.00                 | 270.05                     | 8152.04            | -435.65            | 378.70   | -360.04          | 0.00      |                                                    |                              |
|       | 8300.00  | 0.00                 | 270.05                     | 8252.04            | -435.65            | 378.70   | -360.04          | 0.00      |                                                    |                              |
|       | 8400.00  | 0.00                 | 270.05                     | 8352.04            | -435.65            | 378.70   | -360.04          | 0.00      |                                                    |                              |
|       | 8500.00  | 0.00                 | 270.05                     | 8452.04            | -435.65            | 378.70   | -360.04          | 0.00      |                                                    |                              |
|       | 8600.00  | 0.00                 | 270.05                     | 8552.04            | -435.65            | 378.70   | -360.04          | 0.00      | Ropo Spring 2rd                                    |                              |
|       | 8700.00  | 0.00                 | 270.05                     | 8652.04            | -435.65            | 378.70   | -360.04          | 0.00      | bolle spring stu                                   |                              |
|       | 8800.00  | 0.00                 | 270.05                     | 8752.04            | -435.65            | 378.70   | -360.04          | 0.00      |                                                    |                              |
|       | 8900.00  | 0.00                 | 270.05                     | 8852.04            | -435.65            | 378.70   | -360.04          | 0.00      |                                                    |                              |
|       | 8998.96  | 0.00                 | 270.05                     | 8951.00            | -435.65            | 378.70   | -360.04          | 0.00      | Wolfcamp / Point of Penetra                        | ation                        |
|       | 9000.00  | 0.00                 | 270.05                     | 8952.04            | -435.65            | 378.70   | -360.04          | 0.00      |                                                    |                              |
|       | 9075.14  | 2.49                 | 270.05                     | 9027.18            | -435.65            | 378.70   | -360.04          | 10.00     | KUP                                                |                              |
|       | 9200.00  | 12.49                | 270.05                     | 9151.06            | -435.64            | 365.15   | -346.50          | 10.00     |                                                    |                              |
|       | 9300.00  | 22.49                | 270.05                     | 9246.32            | -435.61            | 335.14   | -316.52          | 10.00     |                                                    |                              |
|       | 9400.00  | 32.49                | 270.05                     | 9334.92            | -435.57            | 289.05   | -270.47          | 10.00     |                                                    |                              |
|       | 9500.00  | 42.49                | 270.05                     | 9414.17            | -435.52            | 228.27   | -209.75          | 10.00     |                                                    |                              |
|       | 9600.00  | 52.49                | 270.05                     | 9481.66            | -435.46            | 154.65   | -136.20          | 10.00     |                                                    |                              |
|       | 9700.00  | 62.49<br>72.49       | 270.05                     | 9535.34            | -435.38            | -21.83   | -52.05<br>40.12  | 10.00     |                                                    |                              |
|       | 9900.00  | 82.49                | 270.05                     | 9595.22            | -435.22            | -119.33  | 137.53           | 10.00     |                                                    |                              |
|       | 9987.84  | 91.27                | 270.05                     | 9600.00            | -435.14            | -206.95  | 225.07           | 10.00     | Landing Point                                      |                              |
|       | 10000.00 | 91.27                | 270.05                     | 9599.73            | -435.13            | -219.11  | 237.22           | 0.00      |                                                    |                              |
|       | 10100.00 | 91.27                | 270.05                     | 9597.51            | -435.04            | -319.09  | 337.10           | 0.00      |                                                    |                              |
|       | 10200.00 | 91.27                | 270.05                     | 9595.30            | -434.95            | -419.06  | 436.99           | 0.00      |                                                    |                              |
|       | 10300.00 | 91.27                | 270.05                     | 9593.08            | -434.87<br>-434.78 | -519.04  | 530.07<br>636.75 | 0.00      |                                                    |                              |
|       | 10500.00 | 91.27                | 270.05                     | 9588.65            | -434.69            | -718.99  | 736.64           | 0.00      |                                                    |                              |
|       | 10600.00 | 91.27                | 270.05                     | 9586.43            | -434.61            | -818.96  | 836.52           | 0.00      |                                                    |                              |
|       | 10700.00 | 91.27                | 270.05                     | 9584.21            | -434.52            | -918.94  | 936.40           | 0.00      |                                                    |                              |
|       | 10800.00 | 91.27                | 270.05                     | 9582.00            | -434.43            | -1018.91 | 1036.29          | 0.00      |                                                    |                              |
|       | 10900.00 | 91.27                | 270.05                     | 95/9./8            | -434.35            | -1118.89 | 1136.17          | 0.00      |                                                    |                              |
|       | 11100.00 | 91.27<br>91.27       | 270.05                     | 9575 35            | -434.20<br>-434.17 | -1210.00 | 1230.05          | 0.00      |                                                    |                              |
|       | 11200.00 | 91.27                | 270.05                     | 9573.13            | -434.09            | -1418.82 | 1435.82          | 0.00      |                                                    |                              |
|       | 11300.00 | 91.27                | 270.05                     | 9570.91            | -434.00            | -1518.79 | 1535.70          | 0.00      |                                                    |                              |
|       | 11400.00 | 91.27                | 270.05                     | 9568.70            | -433.91            | -1618.77 | 1635.59          | 0.00      |                                                    |                              |
|       | 11500.00 | 91.27                | 270.05                     | 9566.48            | -433.83            | -1718.74 | 1735.47          | 0.00      |                                                    |                              |
|       | 11600.00 | 91.27                | 270.05                     | 9564.27            | -433.74            | -1818.72 | 1835.35          | 0.00      |                                                    |                              |
|       | 11800.00 | 91.27<br>91.27       | 270.05                     | 9562.05<br>9559 83 | -433.65<br>-433.56 | -1918.69 | 1935.24          | 0.00      |                                                    |                              |
|       | 11900.00 | 91.27                | 270.05                     | 9557.62            | -433.48            | -2118.64 | 2135.00          | 0.00      |                                                    |                              |
|       | 12000.00 | 91.27                | 270.05                     | 9555.40            | -433.39            | -2218.62 | 2234.89          | 0.00      |                                                    |                              |
|       | 12100.00 | 91.27                | 270.05                     | 9553.18            | -433.30            | -2318.59 | 2334.77          | 0.00      |                                                    |                              |
|       | 12200.00 | 91.27                | 270.05                     | 9550.97            | -433.22            | -2418.57 | 2434.65          | 0.00      |                                                    |                              |

| devon |          | Well:<br>County:<br>Wellbore:<br>Design: | ATLATL 11-<br>Eddy<br>Permit Plar<br>Permit Plar | -10 FED COM<br>1<br>1 #1 | 333H               |                      |                    |           | Geodetic System: US State Plane 1983<br>Datum: North American Datum 1927<br>Ellipsoid: Clarke 1866<br>Zone: 3001 - NM East (NAD83) |
|-------|----------|------------------------------------------|--------------------------------------------------|--------------------------|--------------------|----------------------|--------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------|
|       | MD       | INC                                      | AZI                                              | TVD                      | NS                 | EW                   | vs                 | DLS       | Comment                                                                                                                            |
| -     | (ft)     | (°)                                      | (°)                                              | (ft)                     | (ft)               | (ft)                 | (ft)               | (°/100ft) |                                                                                                                                    |
|       | 12300.00 | 91.27<br>91.27                           | 270.05                                           | 9548.75                  | -433.13            | -2518.54             | 2534.54            | 0.00      |                                                                                                                                    |
|       | 12400.00 | 91.27                                    | 270.05                                           | 9544.32                  | -432.96            | -2718.50             | 2734.30            | 0.00      |                                                                                                                                    |
|       | 12600.00 | 91.27                                    | 270.05                                           | 9542.10                  | -432.87            | -2818.47             | 2834.19            | 0.00      |                                                                                                                                    |
|       | 12700.00 | 91.27                                    | 270.05                                           | 9539.88                  | -432.78            | -2918.45             | 2934.07            | 0.00      |                                                                                                                                    |
|       | 12800.00 | 91.27                                    | 270.05                                           | 9537.67                  | -432.70            | -3018.42             | 3033.95            | 0.00      |                                                                                                                                    |
|       | 12900.00 | 91.27                                    | 270.05                                           | 9535.45                  | -432.61            | -3118.40             | 3133.84            | 0.00      |                                                                                                                                    |
|       | 13000.00 | 91.27                                    | 270.05                                           | 9533.23<br>9531.02       | -432.52<br>-432.44 | -3218.37             | 3233.72            | 0.00      |                                                                                                                                    |
|       | 13200.00 | 91.27                                    | 270.05                                           | 9528.80                  | -432.35            | -3418.32             | 3433.48            | 0.00      |                                                                                                                                    |
|       | 13300.00 | 91.27                                    | 270.05                                           | 9526.58                  | -432.26            | -3518.30             | 3533.37            | 0.00      |                                                                                                                                    |
|       | 13400.00 | 91.27                                    | 270.05                                           | 9524.37                  | -432.18            | -3618.27             | 3633.25            | 0.00      |                                                                                                                                    |
|       | 13500.00 | 91.27                                    | 270.05                                           | 9522.15                  | -432.09            | -3718.25             | 3733.13            | 0.00      |                                                                                                                                    |
|       | 13600.00 | 91.27                                    | 270.05                                           | 9519.93                  | -432.00            | -3818.22             | 3833.02            | 0.00      |                                                                                                                                    |
|       | 13700.00 | 91.27                                    | 270.05                                           | 9515 50                  | -431.91            | -4018 18             | 4032.50            | 0.00      |                                                                                                                                    |
|       | 13900.00 | 91.27                                    | 270.05                                           | 9513.28                  | -431.74            | -4118.15             | 4132.67            | 0.00      |                                                                                                                                    |
|       | 14000.00 | 91.27                                    | 270.05                                           | 9511.07                  | -431.65            | -4218.13             | 4232.55            | 0.00      |                                                                                                                                    |
|       | 14100.00 | 91.27                                    | 270.05                                           | 9508.85                  | -431.57            | -4318.10             | 4332.43            | 0.00      |                                                                                                                                    |
|       | 14200.00 | 91.27                                    | 270.05                                           | 9506.63                  | -431.48            | -4418.08             | 4432.32            | 0.00      |                                                                                                                                    |
|       | 14300.00 | 91.27                                    | 270.05                                           | 9504.42                  | -431.39<br>-431.31 | -4518.05             | 4532.20            | 0.00      |                                                                                                                                    |
|       | 14500.00 | 91.27                                    | 270.05                                           | 9499.98                  | -431.22            | -4718.00             | 4731.97            | 0.00      |                                                                                                                                    |
|       | 14600.00 | 91.27                                    | 270.05                                           | 9497.77                  | -431.13            | -4817.98             | 4831.85            | 0.00      |                                                                                                                                    |
|       | 14700.00 | 91.27                                    | 270.05                                           | 9495.55                  | -431.05            | -4917.95             | 4931.73            | 0.00      |                                                                                                                                    |
|       | 14800.00 | 91.27                                    | 270.05                                           | 9493.33                  | -430.96            | -5017.93             | 5031.62            | 0.00      |                                                                                                                                    |
|       | 14900.00 | 91.27                                    | 270.05                                           | 9491.12                  | -430.87            | -5117.90             | 5131.50            | 0.00      |                                                                                                                                    |
|       | 15100.00 | 91.27                                    | 270.05                                           | 9486.90<br>9486.69       | -430.79            | -5217.66             | 5331.50            | 0.00      |                                                                                                                                    |
|       | 15200.00 | 91.27                                    | 270.05                                           | 9484.47                  | -430.61            | -5417.83             | 5431.15            | 0.00      |                                                                                                                                    |
|       | 15300.00 | 91.27                                    | 270.05                                           | 9482.25                  | -430.53            | -5517.81             | 5531.03            | 0.00      |                                                                                                                                    |
|       | 15400.00 | 91.27                                    | 270.05                                           | 9480.04                  | -430.44            | -5617.78             | 5630.92            | 0.00      |                                                                                                                                    |
|       | 15500.00 | 91.27                                    | 270.05                                           | 9477.82                  | -430.35            | -5717.76             | 5730.80            | 0.00      |                                                                                                                                    |
|       | 15600.00 | 91.27                                    | 270.05                                           | 9475.60                  | -430.26            | -5017.73             | 5030.00<br>5930.57 | 0.00      |                                                                                                                                    |
|       | 15800.00 | 91.27                                    | 270.05                                           | 9471.17                  | -430.09            | -6017.68             | 6030.45            | 0.00      |                                                                                                                                    |
|       | 15900.00 | 91.27                                    | 270.05                                           | 9468.95                  | -430.00            | -6117.66             | 6130.33            | 0.00      |                                                                                                                                    |
|       | 16000.00 | 91.27                                    | 270.05                                           | 9466.74                  | -429.92            | -6217.63             | 6230.22            | 0.00      |                                                                                                                                    |
|       | 16100.00 | 91.27                                    | 270.05                                           | 9464.52                  | -429.83            | -6317.61             | 6330.10            | 0.00      |                                                                                                                                    |
|       | 16200.00 | 91.27                                    | 270.05                                           | 9462.30                  | -429.74            | -6417.58             | 6429.98            | 0.00      |                                                                                                                                    |
|       | 16400.00 | 91.27                                    | 270.05                                           | 9457.87                  | -429.57            | -6617.54             | 6629.75            | 0.00      |                                                                                                                                    |
|       | 16500.00 | 91.27                                    | 270.05                                           | 9455.65                  | -429.48            | -6717.51             | 6729.63            | 0.00      |                                                                                                                                    |
|       | 16600.00 | 91.27                                    | 270.05                                           | 9453.44                  | -429.40            | -6817.49             | 6829.52            | 0.00      |                                                                                                                                    |
|       | 16700.00 | 91.27                                    | 270.05                                           | 9451.22                  | -429.31            | -6917.46             | 6929.40            | 0.00      |                                                                                                                                    |
|       | 16800.00 | 91.27                                    | 270.05                                           | 9449.00                  | -429.22            | -/01/.44             | 7029.28            | 0.00      |                                                                                                                                    |
|       | 17000.00 | 91.27                                    | 270.05                                           | 9444.57                  | -429.05            | -7217.39             | 7229.05            | 0.00      |                                                                                                                                    |
|       | 17100.00 | 91.27                                    | 270.05                                           | 9442.35                  | -428.96            | -7317.36             | 7328.93            | 0.00      |                                                                                                                                    |
|       | 17200.00 | 91.27                                    | 270.05                                           | 9440.14                  | -428.88            | -7417.34             | 7428.81            | 0.00      |                                                                                                                                    |
|       | 17300.00 | 91.27                                    | 270.05                                           | 9437.92                  | -428.79            | -7517.31             | 7528.70            | 0.00      |                                                                                                                                    |
|       | 17400.00 | 91.27                                    | 270.05                                           | 9435.70                  | -428.70            | -7617.29             | 7628.58            | 0.00      |                                                                                                                                    |
|       | 17500.00 | 91.27                                    | 270.05                                           | 9433.49                  | -428.53            | -7817.24             | 7828 35            | 0.00      |                                                                                                                                    |
|       | 17700.00 | 91.27                                    | 270.05                                           | 9429.05                  | -428.44            | -7917.22             | 7928.23            | 0.00      |                                                                                                                                    |
|       | 17800.00 | 91.27                                    | 270.05                                           | 9426.84                  | -428.35            | -8017.19             | 8028.11            | 0.00      |                                                                                                                                    |
|       | 17900.00 | 91.27                                    | 270.05                                           | 9424.62                  | -428.27            | -8117.17             | 8128.00            | 0.00      |                                                                                                                                    |
|       | 18000.00 | 91.27                                    | 270.05                                           | 9422.40                  | -428.18            | -8217.14             | 8227.88            | 0.00      |                                                                                                                                    |
|       | 18200.00 | 91.27                                    | 270.05                                           | 9420.19                  | -428.09            | -0317.12             | 8427.65            | 0.00      |                                                                                                                                    |
|       | 18300.00 | 91.27                                    | 270.05                                           | 9415.75                  | -427.92            | -8517.07             | 8527.53            | 0.00      |                                                                                                                                    |
|       | 18400.00 | 91.27                                    | 270.05                                           | 9413.54                  | -427.83            | -8617.04             | 8627.41            | 0.00      |                                                                                                                                    |
|       | 18500.00 | 91.27                                    | 270.05                                           | 9411.32                  | -427.75            | -8717.02             | 8727.30            | 0.00      |                                                                                                                                    |
|       | 18600.00 | 91.27                                    | 270.05                                           | 9409.10                  | -427.66            | -8816.99             | 8827.18            | 0.00      |                                                                                                                                    |
|       | 18700.00 | 91.27                                    | 270.05                                           | 9406.89                  | -427.57            | -8916.97             | 8927.06            | 0.00      |                                                                                                                                    |
|       | 18900.00 | 91.27<br>91.27                           | 270.05                                           | 9404.67<br>9402 46       | -427.49<br>-427.40 | -9010.95<br>-9116 92 | 9020.95<br>9126 RR | 0.00      |                                                                                                                                    |
|       | 19000.00 | 91.27                                    | 270.05                                           | 9400.24                  | -427.31            | -9216.90             | 9226.71            | 0.00      |                                                                                                                                    |
|       | 19100.00 | 91.27                                    | 270.05                                           | 9398.02                  | -427.23            | -9316.87             | 9326.60            | 0.00      |                                                                                                                                    |
|       | 19200.00 | 91.27                                    | 270.05                                           | 9395.81                  | -427.14            | -9416.85             | 9426.48            | 0.00      |                                                                                                                                    |

| devon |          | Well:<br>County:<br>Wellbore:<br>Design: | ATLATL 11-<br>Eddy<br>Permit Plar<br>Permit Plar | 10 FED COM<br>1<br>1 #1 | 333H    |           | Geodetic System: US State Plane 1983<br>Datum: North American Datum 1927<br>Ellipsoid: Clarke 1866<br>Zone: 3001 - NM East (NAD83) |           |         |  |  |  |
|-------|----------|------------------------------------------|--------------------------------------------------|-------------------------|---------|-----------|------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|--|--|--|
|       | MD       | INC                                      | AZI                                              | TVD                     | NS      | EW        | vs                                                                                                                                 | DLS       | Comment |  |  |  |
|       | (ft)     | (°)                                      | (°)                                              | (ft)                    | (ft)    | (ft)      | (ft)                                                                                                                               | (°/100ft) |         |  |  |  |
|       | 19300.00 | 91.27                                    | 270.05                                           | 9393.59                 | -427.05 | -9516.82  | 9526.36                                                                                                                            | 0.00      |         |  |  |  |
|       | 19400.00 | 91.27                                    | 270.05                                           | 9391.37                 | -426.96 | -9616.80  | 9626.25                                                                                                                            | 0.00      |         |  |  |  |
|       | 19500.00 | 91.27                                    | 270.05                                           | 9389.16                 | -426.88 | -9716.77  | 9726.13                                                                                                                            | 0.00      |         |  |  |  |
|       | 19600.00 | 91.27                                    | 270.05                                           | 9386.94                 | -426.79 | -9816.75  | 9826.01                                                                                                                            | 0.00      |         |  |  |  |
|       | 19700.00 | 91.27                                    | 270.05                                           | 9384.72                 | -426.70 | -9916.72  | 9925.90                                                                                                                            | 0.00      |         |  |  |  |
|       | 19800.00 | 91.27                                    | 270.05                                           | 9382.51                 | -426.62 | -10016.70 | 10025.78                                                                                                                           | 0.00      |         |  |  |  |
|       | 19832.46 | 91.27                                    | 270.05                                           | 9381.79                 | -426.59 | -10049.15 | 10058.20                                                                                                                           | 0.00      | exit    |  |  |  |
|       | 19900.00 | 91.27                                    | 270.05                                           | 9380.29                 | -426.53 | -10116.67 | 10125.66                                                                                                                           | 0.00      |         |  |  |  |
|       | 19912.46 | 91.27                                    | 270.05                                           | 9380.00                 | -426.48 | -10129.13 | 10138.10                                                                                                                           | 0.00      | BHL     |  |  |  |
|       |          |                                          |                                                  |                         |         |           |                                                                                                                                    |           |         |  |  |  |

| DISTRICT I<br>1625 N. FRENCH DR., H<br>Phone: (575) 393-6161 Fa<br>DISTRICT II<br>811 S. FIRST ST., AF<br>Phone: (575) 746-1283<br>DISTRICT III<br>1000 RIO BRAZOS RD<br>Phone: (555) 334-6176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0BBS, NM 88<br>x: (575) 393-(<br>TESIA, NM<br>Fax: (575) 74<br>., AZTEC, N | 240 Ener<br>1720 Ener<br>88210<br>8-9720 | cgy, Mine<br>DIL C(<br>12<br>Sa                                                                                                        | erals &<br>DNSE<br>220 SO<br>anta F                                                                                                                                                                                | State of New<br>Natural I<br>CRVATIC<br>UTH ST. F.<br>e, New Me                                                                                                                        | w Mexico<br>Resources De<br>DN DIVIS<br>RANCIS DR.<br>xico 87505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | epartment<br>SION                                           | F<br>Revised A<br>Submit one copy t<br>Distri                                                                                                            | Form C-102<br>ugust 1, 2011<br>o appropriate<br>act Office           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| DISTRICT IV<br>1220 S. ST. FRANCIS DR<br>Phone: (505) 476-3460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ., SANTA FE,                                                               | NM 87505                                 |                                                                                                                                        |                                                                                                                                                                                                                    |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | □ AMEND                                                                                                                                                  | ED REPORT                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - Tux. (000)                                                               | 110 0102                                 | WELL LOC                                                                                                                               | CATION                                                                                                                                                                                                             | AND ACREA                                                                                                                                                                              | GE DEDICATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ON PLAT                                                     |                                                                                                                                                          |                                                                      |
| API N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | umber                                                                      |                                          | 98220                                                                                                                                  | )<br>)                                                                                                                                                                                                             | PU                                                                                                                                                                                     | RPLE SAGE; W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VOLFCAMP                                                    | (GAS)                                                                                                                                                    |                                                                      |
| Property Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ode                                                                        |                                          |                                                                                                                                        | ATLAT                                                                                                                                                                                                              | Property Nam<br>L 11-10 I                                                                                                                                                              | re<br>FED COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                             | Well Num<br>33                                                                                                                                           | nber<br>3H                                                           |
| <b>ogrid n₀.</b><br>6137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |                                          | DEVON E                                                                                                                                | NERGY                                                                                                                                                                                                              | <sup>Operator Nam</sup><br>PRODUCTI                                                                                                                                                    | Ne<br>ON COMPANY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7, L.P.                                                     | Elevation 307                                                                                                                                            | on<br>4.2'                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                            | 1                                        |                                                                                                                                        |                                                                                                                                                                                                                    | Surface Loca                                                                                                                                                                           | ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             | I                                                                                                                                                        |                                                                      |
| UL or lot No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Section                                                                    | Township                                 | Range                                                                                                                                  | Lot Idn                                                                                                                                                                                                            | Feet from the                                                                                                                                                                          | North/South line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Feet from the                                               | East/West line                                                                                                                                           | County                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                         | 22-S                                     | 27-E                                                                                                                                   |                                                                                                                                                                                                                    | 1845                                                                                                                                                                                   | SOUTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 404                                                         | EAST                                                                                                                                                     | EDDY                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                            |                                          | Bottom I                                                                                                                               | Hole Loca                                                                                                                                                                                                          | ation If Diffe                                                                                                                                                                         | erent From Sur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | face                                                        |                                                                                                                                                          |                                                                      |
| UL or lot No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | section<br>10                                                              | Township<br>22-S                         | Range<br>27–E                                                                                                                          | Lot Idn                                                                                                                                                                                                            | Feet from the $1410$                                                                                                                                                                   | North/South line<br>SOUTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Feet from the<br>20                                         | East/West line<br>WEST                                                                                                                                   | <b>County</b><br>EDDY                                                |
| Dedicated Acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Joint o                                                                    | or Infill Co                             | onsolidation Co                                                                                                                        | ode Ord                                                                                                                                                                                                            | er No.                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                                                                                                                                          |                                                                      |
| 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |                                          |                                                                                                                                        |                                                                                                                                                                                                                    | NSL                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                                                                                                                                          |                                                                      |
| NO ALLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VABLE V                                                                    | VILL BE A<br>OR A                        | SSIGNED TO<br>NON-STAND                                                                                                                | O THIS C<br>ARD UNI                                                                                                                                                                                                | COMPLETION U<br>T HAS BEEN                                                                                                                                                             | UNTIL ALL INTER<br>APPROVED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RESTS HAVE E<br>THE DIVISION                                | BEEN CONSOLID                                                                                                                                            | ATED                                                                 |
| NAD 83 NMSP EAST<br>SURFACE LOCATION<br>N:511179.13<br>E:596983.72<br>LAT:32.405170<br>LON:104.153025<br><u>KICK OFF POINT</u><br>CALLS:<br>N:510743.5<br>E:597762<br>LAT:32.40387702<br>LON:L04.15188191<br>FIRST TAKE POINT (PF<br>1410' FSL 100' FEL<br>N:510743.89<br>E:597295.85<br>LAT:32.403972<br>LON:104.152016<br><u>AST TAKE POINT</u><br>1410' FSL 100' FWL<br>N:510752.65<br>E:586934.60<br>LAT:32.404040<br>LON:104.185589<br><u>BOTTOM OF HOLE</u><br>N:510746.02<br>E:586854.59<br>LAT:32.404040<br>LON:104.185848<br><u>PPP_2</u><br>1410' FSL 2646' FW<br>N:510746.02<br>E:594761.37<br>LAT:32.403900<br>LON:104.185287<br>M:510747.12<br>E:593435.88<br>LAT:32.403990<br>LON:104.164523<br><u>PPP_3</u> | 2 <u>9 1)</u><br>SEC. 11<br>SEC. 10<br>L SEC. 11                           |                                          | и 00123<br>333H LTP<br>3333H BHL<br>С N 8956                                                                                           | <u>D.C.</u><br>E.F.                                                                                                                                                                                                | NM 0<br>NM 0<br>NM 0<br>O<br>S R27E<br>NM<br>OP 5<br>NM<br>T7 H N 89'57'44'<br>OPERATU<br>I hereby<br>herein is true<br>or unleased min<br>including the p                             | A73303A<br>Z<br>A73303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7303A<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018<br>Z<br>A7018 | NM 064583                                                   | BIA<br>BIA<br>BIA<br>BIA<br>BIA<br>BIA<br>BIA<br>BIA<br>BIA<br>BIA                                                                                       | SHL<br>SHL<br>SHL<br>SHL<br>SHL<br>Control of the same is my belief. |
| 1410' FSL 0' FEL SI<br>N:510748.23<br>E:592115.81<br>LAT:32.404007<br>LON:104.168801<br><u>PPP 5</u><br>1410' FSL 2644' FE<br>N:510750.44<br>E:589471.96<br>LAT:32.404024<br>LON:104.177367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EC. 10<br>_ SEC. 10                                                        |                                          | A = N:514648.<br>B = N:514605.<br>C = N:514605.<br>E = N:51996.<br>F = N:511996.<br>G = N:5093342.<br>H = N:509338.2<br>J = N:509335.1 | 62 E:586820.3<br>47 E:592087.5<br>29 E:594735.7<br>73 E:597375.0<br>70 E:592713.2<br>50 E:59478.5<br>77 E:589478.5<br>2 E:592118.7<br>2 E:592118.7<br>2 E:592118.7<br>2 E:592118.7<br>2 E:592118.7<br>2 E:592118.7 | or has a right<br>location pursua<br>owner of such :<br>or to a volunta<br>compulsory poo<br>by the division.<br>Signature<br>Arianna Ev<br>Printed Name<br>arianna.ev<br>Emeil Addeee | to drill this well at the<br>nt to a contract with<br>mineral or working into<br>ry pooling agreement of<br>ling order heretofore e.<br>Date<br>ans<br>vans@dvn.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | is<br>an<br>prest,<br>r a<br>ntered<br>7/2/24<br>Certificat | DATE OF SURVEY<br>& Seal of Profession<br>WEX<br>23261<br>P<br>23261<br>P<br>23261<br>P<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | R. DEHOYOS                                                           |

**Released to Imaging: 11/19/2024 1:10:37 PM** 

#### Received by OCD: 9/3/2024 12:23:38 PM

| Intent |
|--------|
|--------|

| As Drilled |  |
|------------|--|
|------------|--|

API #

| Operator Name:                          | Property Name:       | Well Number |
|-----------------------------------------|----------------------|-------------|
| DEVON ENERGY PRODUCTION<br>COMPANY, LP. | ATLATL 11-10 FED COM | 333H        |

## Kick Off Point (KOP)

| UL          | Section | Township | Range | Lot         | Feet      | From N/S | Feet | From E/W | County |
|-------------|---------|----------|-------|-------------|-----------|----------|------|----------|--------|
| 1           | 11      | 22S      | 27E   |             | 1410      | SOUTH    | 48   | EAST     | EDDY   |
| Latitu      | de      |          |       |             | Longitude |          |      |          | NAD    |
| 32.40387707 |         |          |       | -104.151881 |           | 83       |      |          |        |

# First Take Point (FTP)

| UL<br>            | Section | Township 22-S | Range<br>27-E | Lot | Feet<br><b>1410</b> | From N/S | Feet<br>100 | From E/W | County<br>EDDY |
|-------------------|---------|---------------|---------------|-----|---------------------|----------|-------------|----------|----------------|
| Latitu <b>32.</b> | 4039    | 72            |               |     | Longitude<br>104.15 | 2016     |             |          | NAD<br>83      |

# Last Take Point (LTP)

| ul<br>L              | Section 10            | Township 22-S | Range<br>27-E | Lot | Feet<br>1410     | From N/S | Feet<br>100 | From E/W  | County<br>EDDY |
|----------------------|-----------------------|---------------|---------------|-----|------------------|----------|-------------|-----------|----------------|
| Latitu<br><b>32.</b> | <sup>de</sup><br>4040 | 40            |               |     | Longitud<br>104. | 185589   | 9           | NAD<br>83 |                |

Is this well the defining well for the Horizontal Spacing Unit? YES

Is this well an infill well?

NO

If infill is yes please provide API if available, Operator Name and well number for Defining well for Horizontal Spacing Unit.

| API #          |                |             |
|----------------|----------------|-------------|
| Operator Name: | Property Name: | Well Number |
|                |                |             |

KZ 06/29/2018

## **Offline Cementing**

#### Variance Request

Devon Energy requests to offline cement on intermediate strings that are set in formations shallower than the Wolfcamp. Prior to commencing offline cementing operations, the well will be monitored for any abnormal pressures and confirmed to be static. A dual manifold system (equipped with chokes) for the returns will also be utilized as a redundancy. All equipment used for offline cementing will have a minimum 5M rating to match intermediate sections' 5M BOPE requirements.

#### ATLATL 11 10 Fed Com 333H

| 13 3/8                                                                                                                                                                                    | surfa                                                                                                                                                                                                     | ace csg in a                                                                                                                                                                                                                                                     | 17 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | inch hole.                                                                                                                                                       |                                                                                                       | Design I                                                                                                                                                        | Factors                                                                                                                                                                     |                                                                                                                                                |                                    | Surface                                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Segment                                                                                                                                                                                   | #/ft                                                                                                                                                                                                      | Grade                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Coupling                                                                                                                                                         | Body                                                                                                  | Collapse                                                                                                                                                        | Burst                                                                                                                                                                       | Length                                                                                                                                         | B@s                                | a-B                                           | a-C                                      | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| "A"                                                                                                                                                                                       | 54.50                                                                                                                                                                                                     | j                                                                                                                                                                                                                                                                | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | btc                                                                                                                                                              | 44.73                                                                                                 | 6.91                                                                                                                                                            | 2.18                                                                                                                                                                        | 350                                                                                                                                            | 18                                 | 3.65                                          | 13.04                                    | 19,075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| "B"                                                                                                                                                                                       |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | btc                                                                                                                                                              |                                                                                                       |                                                                                                                                                                 |                                                                                                                                                                             | 0                                                                                                                                              |                                    |                                               |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| í                                                                                                                                                                                         | w/8.4#/g                                                                                                                                                                                                  | mud, 30min Sfc Csg Test psig:                                                                                                                                                                                                                                    | 1,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tail Cmt                                                                                                                                                         | does not                                                                                              | circ to sfc.                                                                                                                                                    | Totals:                                                                                                                                                                     | 350                                                                                                                                            |                                    |                                               |                                          | 19,075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Comparison of                                                                                                                                                                             | of Proposed to Min                                                                                                                                                                                        | imum Required Cement V                                                                                                                                                                                                                                           | /olumes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                  |                                                                                                       |                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                |                                    |                                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Hole                                                                                                                                                                                      | Annular                                                                                                                                                                                                   | 1 Stage                                                                                                                                                                                                                                                          | 1 Stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Min                                                                                                                                                              | 1 Stage                                                                                               | Drilling                                                                                                                                                        | Calc                                                                                                                                                                        | Req'd                                                                                                                                          |                                    |                                               |                                          | Min Dist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Size                                                                                                                                                                                      | Volume                                                                                                                                                                                                    | Cmt Sx                                                                                                                                                                                                                                                           | CuFt Cmt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cu Ft                                                                                                                                                            | % Excess                                                                                              | Mud Wt                                                                                                                                                          | MASP                                                                                                                                                                        | BOPE                                                                                                                                           |                                    |                                               |                                          | Hole-Cplg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 17 1/2                                                                                                                                                                                    | 0.6946                                                                                                                                                                                                    | 183                                                                                                                                                                                                                                                              | 264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 243                                                                                                                                                              | 8                                                                                                     | 9.00                                                                                                                                                            | 749                                                                                                                                                                         | 2M                                                                                                                                             |                                    |                                               |                                          | 1.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                  |                                                                                                       |                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                |                                    |                                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                  |                                                                                                       |                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                |                                    |                                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| r=                                                                                                                                                                                        |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                  |                                                                                                       |                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                |                                    |                                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 10 3/4                                                                                                                                                                                    | casing                                                                                                                                                                                                    | g inside the                                                                                                                                                                                                                                                     | 13 3/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |                                                                                                       | Design I                                                                                                                                                        | Factors                                                                                                                                                                     |                                                                                                                                                |                                    | Int 1                                         | -                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Segment                                                                                                                                                                                   | #/tt                                                                                                                                                                                                      | Grade                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Coupling                                                                                                                                                         | Joint                                                                                                 | Collapse                                                                                                                                                        | Burst                                                                                                                                                                       | Length                                                                                                                                         | B@s                                | a-B                                           | a-C                                      | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| "A"                                                                                                                                                                                       | 45.50                                                                                                                                                                                                     | nci                                                                                                                                                                                                                                                              | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DIC SCC                                                                                                                                                          | 9.94                                                                                                  | 2.34                                                                                                                                                            | 1.06                                                                                                                                                                        | 2,300                                                                                                                                          | 4                                  | 1.77                                          | 3.93                                     | 104,650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| P                                                                                                                                                                                         | 10 411                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                  | 1 5 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                  |                                                                                                       |                                                                                                                                                                 | Totala                                                                                                                                                                      | 2 200                                                                                                                                          |                                    |                                               |                                          | 104 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| l III                                                                                                                                                                                     | w/8.4#/g                                                                                                                                                                                                  | mud, 30min Sfc Csg Test psig:                                                                                                                                                                                                                                    | 1,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | adad to cobious a top of                                                                                                                                         | 0                                                                                                     | ft from ou                                                                                                                                                      | Totals:                                                                                                                                                                     | 2,300                                                                                                                                          |                                    |                                               |                                          | 104,050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Hole                                                                                                                                                                                      | Annular                                                                                                                                                                                                   | 1 Stage                                                                                                                                                                                                                                                          | 1 Stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Min                                                                                                                                                              | U<br>1 Stano                                                                                          | Drilling                                                                                                                                                        | Calc                                                                                                                                                                        | 200<br>Regid                                                                                                                                   |                                    |                                               |                                          | Min Diet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Size                                                                                                                                                                                      | Volume                                                                                                                                                                                                    | Cmt Sy                                                                                                                                                                                                                                                           | CuEt Cmt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cu Et                                                                                                                                                            | % Excess                                                                                              | Mud Wt                                                                                                                                                          | MASP                                                                                                                                                                        | ROPE                                                                                                                                           |                                    |                                               |                                          | Hole-Cola                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12 1/4                                                                                                                                                                                    | 0 1882                                                                                                                                                                                                    | 236                                                                                                                                                                                                                                                              | 587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 450                                                                                                                                                              | 30                                                                                                    | 10.50                                                                                                                                                           | 2938                                                                                                                                                                        | 3M                                                                                                                                             |                                    |                                               |                                          | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DV Tool(s):                                                                                                                                                                               | 0.1002                                                                                                                                                                                                    | 200                                                                                                                                                                                                                                                              | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 400                                                                                                                                                              | 00                                                                                                    | 10.00                                                                                                                                                           | sum of sx                                                                                                                                                                   | Σ CuFt                                                                                                                                         |                                    |                                               |                                          | Σ%excess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| t by stage % :                                                                                                                                                                            |                                                                                                                                                                                                           | #VALUE!                                                                                                                                                                                                                                                          | #VALUE!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                  |                                                                                                       |                                                                                                                                                                 | 236                                                                                                                                                                         | 587                                                                                                                                            |                                    |                                               |                                          | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Class 'C' tail cn                                                                                                                                                                         | nt yld > 1.35                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                  |                                                                                                       |                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                |                                    |                                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| i                                                                                                                                                                                         |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                  |                                                                                                       |                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                |                                    |                                               |                                          | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                  |                                                                                                       |                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                |                                    |                                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                  |                                                                                                       |                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                |                                    |                                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                  |                                                                                                       |                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                |                                    |                                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8 5/8                                                                                                                                                                                     | casing                                                                                                                                                                                                    | g inside the                                                                                                                                                                                                                                                     | 10 3/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |                                                                                                       | Design Fac                                                                                                                                                      | <u>ctors</u>                                                                                                                                                                |                                                                                                                                                |                                    | Int 2                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8 5/8<br>Segment                                                                                                                                                                          | casinį<br>#/ft                                                                                                                                                                                            | g inside the<br>Grade                                                                                                                                                                                                                                            | 10 3/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Coupling                                                                                                                                                         | Joint                                                                                                 | Design Fac                                                                                                                                                      | ctors<br>Burst                                                                                                                                                              | Length                                                                                                                                         | B@s                                | Int 2<br>a-B                                  | a-C                                      | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8 5/8<br>Segment<br>"A"                                                                                                                                                                   | casing<br>#/ft<br>32.00                                                                                                                                                                                   | g inside the<br>Grade<br>P                                                                                                                                                                                                                                       | <b>10 3/4</b><br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Coupling<br>wedge 441                                                                                                                                            | Joint<br>3.22                                                                                         | Design Fac<br>Collapse<br>0.81                                                                                                                                  | <u>ctors</u><br>Burst<br>1.79                                                                                                                                               | Length<br>9,075                                                                                                                                | <b>B@s</b><br>2                    | Int 2<br>a-B<br>3.01                          | <b>a-C</b><br>1.36                       | Weight<br>290,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8 5/8<br>Segment<br>"A"<br>"B"                                                                                                                                                            | casing<br>#/ft<br>32.00                                                                                                                                                                                   | g inside the<br><b>Grade</b><br>P                                                                                                                                                                                                                                | <b>10 3/4</b><br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Coupling<br>wedge 441                                                                                                                                            | Joint<br>3.22                                                                                         | Design Fac<br>Collapse<br>0.81                                                                                                                                  | <u>ctors</u><br>Burst<br>1.79                                                                                                                                               | Length<br>9,075<br>0                                                                                                                           | <b>B@s</b><br>2                    | Int 2<br>a-B<br>3.01                          | <b>a-C</b><br>1.36                       | Weight<br>290,400<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8 5/8<br>Segment<br>"A"<br>"B"<br>"C"<br>"D"                                                                                                                                              | casing<br>#/ft<br>32.00                                                                                                                                                                                   | g inside the<br>Grade<br>P                                                                                                                                                                                                                                       | <b>10 3/4</b><br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Coupling<br>wedge 441                                                                                                                                            | Joint<br>3.22                                                                                         | Design Fac<br>Collapse<br>0.81                                                                                                                                  | ctors<br>Burst<br>1.79                                                                                                                                                      | Length<br>9,075<br>0<br>0                                                                                                                      | <b>B@s</b><br>2                    | Int 2<br>a-B<br>3.01                          | <b>a-C</b><br>1.36                       | Weight<br>290,400<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8 5/8<br>Segment<br>"A"<br>"B"<br>"C"<br>"D"                                                                                                                                              | casing<br>#/ft<br>32.00                                                                                                                                                                                   | g inside the<br>Grade<br>P                                                                                                                                                                                                                                       | <b>10 3/4</b><br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Coupling<br>wedge 441                                                                                                                                            | Joint<br>3.22                                                                                         | Design Fac<br>Collapse<br>0.81                                                                                                                                  | <u>ctors</u><br>Burst<br>1.79<br>Totals:                                                                                                                                    | Length<br>9,075<br>0<br>0<br>0<br>9,075                                                                                                        | <b>B@s</b><br>2                    | Int 2<br>a-B<br>3.01                          | <b>a-C</b><br>1.36                       | Weight<br>290,400<br>0<br>0<br>0<br>290,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8 5/8<br>Segment<br>"A"<br>"B"<br>"C"<br>"D"                                                                                                                                              | casin;<br>#/ft<br>32.00<br>w/8.4#/g                                                                                                                                                                       | g inside the<br>Grade<br>P<br>mud, 30min Sfc Csg Test psig:<br>The cement volu                                                                                                                                                                                   | <b>10 3/4</b><br>110<br>1,986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Coupling<br>wedge 441                                                                                                                                            | Joint<br>3.22                                                                                         | Design Fac<br>Collapse<br>0.81                                                                                                                                  | Ctors<br>Burst<br>1.79<br>Totals:                                                                                                                                           | Length<br>9,075<br>0<br>0<br>9,075<br>2300                                                                                                     | <b>B@s</b><br>2                    | Int 2<br>a-B<br>3.01                          | <b>a-C</b><br>1.36                       | Weight<br>290,400<br>0<br>0<br>290,400<br>0verlap.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8 5/8<br>Segment<br>"A"<br>"C"<br>"D"<br>Hole                                                                                                                                             | casing<br>#/ft<br>32.00<br>w/8.4#/g<br>Annular                                                                                                                                                            | g inside the<br>Grade<br>P<br>mud, 30min Sfc Csg Test psig:<br>The cement volur<br>1 Stage                                                                                                                                                                       | <b>10 3/4</b><br>110<br>1,986<br>ne(s) are inter<br>1 Stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Coupling<br>wedge 441<br>nded to achieve a top of                                                                                                                | Joint<br>3.22<br>0                                                                                    | Design Fac<br>Collapse<br>0.81                                                                                                                                  | Ctors<br>Burst<br>1.79<br>Totals:<br>rface or a<br>Calc                                                                                                                     | Length<br>9,075<br>0<br>0<br>9,075<br>2300<br>Rea <sup>r</sup> d                                                                               | <b>B@s</b><br>2                    | Int 2<br>a-B<br>3.01                          | <b>a-C</b><br>1.36                       | Weight<br>290,400<br>0<br>0<br>290,400<br>overlap.<br>Min Dist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8 5/8<br>Segment<br>"A"<br>"B"<br>"C"<br>"D"<br>Hole<br>Size                                                                                                                              | casing<br>#/ft<br>32.00<br>w/8.4#/g<br>Annular<br>Volume                                                                                                                                                  | g inside the<br>Grade<br>P<br>mud, 30min Sfc Csg Test psig:<br>The cement volur<br>1 Stage<br>Cmt Sx                                                                                                                                                             | 10 3/4<br>110<br>1,986<br>ne(s) are inter<br>1 Stage<br>CuFt Cmt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Coupling<br>wedge 441<br>nded to achieve a top of<br>Min<br>Cu Ft                                                                                                | Joint<br>3.22<br>0<br>1 Stage<br>% Excess                                                             | Design Far<br>Collapse<br>0.81<br>ft from su<br>Drilling<br>Mud Wt                                                                                              | Ctors<br>Burst<br>1.79<br>Totals:<br>rface or a<br>Calc<br>MASP                                                                                                             | Length<br>9,075<br>0<br>0<br>9,075<br>2300<br>Req'd<br>BOPE                                                                                    | <b>B@s</b><br>2                    | Int 2<br>a-B<br>3.01                          | <b>a-C</b><br>1.36                       | Weight<br>290,400<br>0<br>290,400<br>overlap.<br>Min Dist<br>Hole-Cplg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8 5/8<br>Segment<br>"A"<br>"C"<br>"D"<br>Hole<br>Size<br>9 7/8                                                                                                                            | casing<br>#/ft<br>32.00<br>w/8.4#/g<br>Annular<br>Volume<br>0.1261                                                                                                                                        | g inside the<br>Grade<br>P<br>mud, 30min Sfc Csg Test psig:<br>The cement volur<br>1 Stage<br>Cmt Sx<br>730                                                                                                                                                      | 10 3/4<br>110<br>1,986<br>me(s) are inter<br>1 Stage<br>CuFt Cmt<br>1366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Coupling<br>wedge 441<br>nded to achieve a top of<br>Min<br>Cu Ft<br>1163                                                                                        | Joint<br>3.22<br>0<br>1 Stage<br>% Excess<br>17                                                       | Design Far<br>Collapse<br>0.81<br>ft from su<br>Drilling<br>Mud Wt<br>10.50                                                                                     | Totals:<br>fface or a<br>Calc<br>MASP<br>3053                                                                                                                               | Length<br>9,075<br>0<br>0<br>9,075<br>2300<br>Req'd<br>BOPE<br>5M                                                                              | <b>B@s</b><br>2                    | Int 2<br>a-B<br>3.01                          | <b>a-C</b><br>1.36                       | Weight<br>290,400<br>0<br>290,400<br>overlap.<br>Min Dist<br>Hole-Cplg<br>0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8 5/8<br>Segment<br>"A"<br>"B"<br>"C"<br>"D"<br>Hole<br>Size<br>9 7/8                                                                                                                     | casing<br>#/ft<br>32.00<br>w/8.4#/g<br>Annular<br>Volume<br>0.1261<br>Settii                                                                                                                              | g inside the<br>Grade<br>P<br>mud, 30min Sfc Csg Test psig:<br>The cement volur<br>1 Stage<br>Cmt Sx<br>730<br>ng Depths for D V Tool(s):                                                                                                                        | 10 3/4<br>110<br>1,986<br>me(s) are inter<br>1 Stage<br>CuFt Cmt<br>1366<br>4261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Coupling<br>wedge 441<br>nded to achieve a top of<br>Min<br>Cu Ft<br>1163                                                                                        | Joint<br>3.22<br>0<br>1 Stage<br>% Excess<br>17                                                       | Design Far<br>Collapse<br>0.81<br>ft from su<br>Drilling<br>Mud Wt<br>10.50                                                                                     | Totals:<br>rface or a<br>Calc<br>MASP<br>3053<br>sum of sx                                                                                                                  | Length<br>9,075<br>0<br>0<br>9,075<br>2300<br>Req'd<br>BOPE<br>5M<br>Σ CuFt                                                                    | <b>B@s</b><br>2                    | Int 2<br>a-B<br>3.01                          | <b>a-C</b><br>1.36                       | Weight           290,400           0           0           290,400           overlap.           Min Dist           Hole-Cplg           0.49                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8 5/8<br>Segment<br>"A"<br>"B"<br>"C"<br>"D"<br>Hole<br>Size<br>9 7/8                                                                                                                     | casing<br>#/ft<br>32.00<br>w/8.4#/g<br>Annular<br>Volume<br>0.1261<br>Settii<br>ss cmt by stage:                                                                                                          | g inside the<br>Grade<br>P<br>mud, 30min Sfc Csg Test psig:<br>The cement volur<br>1 Stage<br>Cmt Sx<br>730<br>ng Depths for D V Tool(s):<br>125                                                                                                                 | 10 3/4<br>110<br>1,986<br>me(s) are inter<br>1 Stage<br>CuFt Cmt<br>1366<br>4261<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Coupling<br>wedge 441<br>nded to achieve a top of<br>Min<br>Cu Ft<br>1163                                                                                        | Joint<br>3.22<br>0<br>1 Stage<br>% Excess<br>17                                                       | Design Far<br>Collapse<br>0.81<br>ft from su<br>Drilling<br>Mud Wt<br>10.50                                                                                     | Totals:<br>rface or a<br>Calc<br>MASP<br>3053<br>sum of sx<br>930                                                                                                           | Length<br>9,075<br>0<br>0<br>9,075<br>2300<br>Req'd<br>BOPE<br>5M<br>Σ CuFt<br>2020                                                            | <b>B@s</b><br>2                    | Int 2<br>a-B<br>3.01                          | <b>a-C</b><br>1.36                       | Weight           290,400           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0.49           ∑%excess           74                                                                                                                                                                                                                                                                                           |
| 8 5/8<br>Segment<br>"A"<br>"B"<br>"C"<br>"D"<br>Hole<br>Size<br>9 7/8<br>% excer<br>Class 'C' tail on                                                                                     | casing<br>#/ft<br>32.00<br>w/8.4#/g<br>Annular<br>Volume<br>0.1261<br>Settin<br>ss cmt by stage:<br>mt yld > 1.35                                                                                         | g inside the<br>Grade<br>P<br>mud, 30min Sfc Csg Test psig:<br>The cement volun<br>1 Stage<br>Cmt Sx<br>730<br>ng Depths for D V Tool(s):<br>125                                                                                                                 | 10 3/4<br>110<br>1,986<br>me(s) are inter<br>1 Stage<br>CuFt Cmt<br>1366<br>4261<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Coupling<br>wedge 441<br>nded to achieve a top of<br>Min<br>Cu Ft<br>1163                                                                                        | Joint<br>3.22<br>0<br>1 Stage<br>% Excess<br>17                                                       | Design Fac<br>Collapse<br>0.81<br>ft from su<br>Drilling<br>Mud Wt<br>10.50                                                                                     | Ctors<br>Burst<br>1.79<br>Totals:<br>rface or a<br>Calc<br>MASP<br>3053<br>sum of sx<br>930                                                                                 | Length<br>9,075<br>0<br>0<br>9,075<br>2300<br>Req'd<br>BOPE<br>5M<br><u>Σ CuFt</u><br>2020                                                     | <b>B@s</b><br>2                    | Int 2<br>a-B<br>3.01                          | <b>a-C</b><br>1.36                       | Weight           290,400           0           0           290,400           overlap.           Min Dist           Hole-Cplg           0.49           ∑%excess           74                                                                                                                                                                                                                                                                                                                                                                                       |
| 8 5/8<br>Segment<br>"A"<br>"B"<br>"C"<br>"D"<br>Hole<br>Size<br>9 7/8<br>% excer<br>Class 'C' tail or                                                                                     | casing<br>#/ft<br>32.00<br>w/8.4#/g<br>Annular<br>Volume<br>0.1261<br>0.1261<br>settin<br>ss cmt by stage:<br>nt yld > 1.35                                                                               | g inside the<br>Grade<br>P<br>mud, 30min Sfc Csg Test psig:<br>The cement volur<br>1 Stage<br>Cmt Sx<br>730<br>ng Depths for D V Tool(s):<br>125                                                                                                                 | 10 3/4<br>110<br>1,986<br>me(s) are inter<br>1 Stage<br>CuFt Cmt<br>1366<br>4261<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Coupling<br>wedge 441<br>nded to achieve a top of<br>Min<br>Cu Ft<br>1163                                                                                        | Joint<br>3.22<br>0<br>1 Stage<br>% Excess<br>17                                                       | Design Fac<br>Collapse<br>0.81<br>ft from su<br>Drilling<br>Mud Wt<br>10.50                                                                                     | Ctors<br>Burst<br>1.79<br>Totals:<br>rface or a<br>Calc<br>MASP<br>3053<br>sum of sx<br>930                                                                                 | Length<br>9,075<br>0<br>0<br>9,075<br>2300<br>Req'd<br>BOPE<br>5M<br>Σ CuFt<br>2020                                                            | <b>B@s</b><br>2                    | Int 2<br>a-B<br>3.01                          | <b>a-C</b><br>1.36                       | Weight           290,400           0           290,400           overlap.           Min Dist           Hole-Cplg           0.49           Σ%excess           74                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8 5/8<br>Segment<br>"A"<br>"B"<br>"C"<br>"D"<br>Hole<br>Size<br>9 7/8<br>% excer<br>class 'C' tail or<br>Tail cmt                                                                         | casing<br>#/ft<br>32.00<br>w/8.4#/g<br>Annular<br>Volume<br>0.1261<br>Settii<br>ss cmt by stage:<br>nt yld > 1.35                                                                                         | g inside the<br>Grade<br>P<br>mud, 30min Sfc Csg Test psig:<br>The cement volur<br>1 Stage<br>Cmt Sx<br>730<br>ng Depths for D V Tool(s):<br>125                                                                                                                 | 10 3/4<br>110<br>1,986<br>me(s) are inter<br>1 Stage<br>CuFt Cmt<br>1366<br>4261<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Coupling<br>wedge 441                                                                                                                                            | Joint<br>3.22<br>0<br>1 Stage<br>% Excess<br>17                                                       | Design Fac<br>Collapse<br>0.81<br>ft from su<br>Drilling<br>Mud Wt<br>10.50                                                                                     | Ctors<br>Burst<br>1.79<br>Totals:<br>rface or a<br>Calc<br>MASP<br>3053<br>sum of sx<br>930                                                                                 | Length<br>9,075<br>0<br>0<br>9,075<br>2300<br>Req'd<br>BOPE<br>5M<br>Σ CuFt<br>2020                                                            | <b>B@s</b> 2                       | Int 2<br>a-B<br>3.01                          | <b>a-C</b><br>1.36                       | Weight           290,400           0           290,400           0           290,400           overlap.           Min Dist           Hole-Cplg           0.49           ∑%excess           74                                                                                                                                                                                                                                                                                                                                                                     |
| 8 5/8<br>Segment<br>"A"<br>"B"<br>"C"<br>"D"<br>Hole<br>Size<br>9 7/8<br>% excet<br>Class 'C' tail on<br>Tail cmt<br>5 1/2                                                                | casing<br>#/ft<br>32.00<br>w/8.4#/g<br>Annular<br>Volume<br>0.1261<br>Settii<br>ss cmt by stage:<br>nt yld > 1.35                                                                                         | g inside the<br>Grade<br>P<br>mud, 30min Sfc Csg Test psig:<br>The cement volur<br>1 Stage<br>Cmt Sx<br>730<br>ng Depths for D V Tool(s):<br>125                                                                                                                 | 10 3/4<br>110<br>1,986<br>me(s) are inter<br>1 Stage<br>CuFt Cmt<br>1366<br>4261<br>18<br>8 5/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Coupling<br>wedge 441                                                                                                                                            | Joint<br>3.22<br>0<br>1 Stage<br>% Excess<br>17                                                       | Design Fac<br>Collapse<br>0.81<br>ft from su<br>Drilling<br>Mud Wt<br>10.50                                                                                     | Totals:<br>face or a<br>Calc<br>MASP<br>3053<br>sum of sx<br>930<br>Factors                                                                                                 | Length<br>9,075<br>0<br>0<br>9,075<br>2300<br>Req'd<br>BOPE<br>5M<br>Σ CuFt<br>2020                                                            | <b>B@s</b> 2                       | Int 2<br>a-B<br>3.01                          | <b>a-C</b><br>1.36                       | Weight           290,400           0           0           290,400           overlap.           Min Dist           Hole-Cplg           0.49           ∑%excess           74                                                                                                                                                                                                                                                                                                                                                                                       |
| 8 5/8<br>Segment<br>"A"<br>"B"<br>"C"<br>"D"<br>Hole<br>Size<br>9 7/8<br>% excet<br>Class 'C' tail on<br>Tail cmt<br>5 1/2<br>Segment                                                     | casing<br>#/ft<br>32.00<br>w/8.4#/g<br>Annular<br>Volume<br>0.1261<br>Settii<br>ss cmt by stage:<br>nt yld > 1.35<br>casing<br>#/ft                                                                       | g inside the<br>Grade<br>P<br>mud, 30min Sfc Csg Test psig:<br>The cement volur<br>1 Stage<br>Cmt Sx<br>730<br>ng Depths for D V Tool(s):<br>125<br>g inside the<br>Grade                                                                                        | 10 3/4<br>110<br>1,986<br>me(s) are inter<br>1 Stage<br>CuFt Cmt<br>1366<br>4261<br>18<br>8 5/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Coupling<br>wedge 441                                                                                                                                            | Joint<br>3.22<br>0<br>1 Stage<br>% Excess<br>17                                                       | Design Far<br>Collapse<br>0.81<br>ft from su<br>Drilling<br>Mud Wt<br>10.50                                                                                     | Totals:<br>face or a<br>Calc<br>MASP<br>3053<br>sum of sx<br>930<br>Factors<br>Burst<br>2001                                                                                | Length<br>9,075<br>0<br>0<br>9,075<br>2300<br>Req'd<br>BOPE<br>5M<br>ΣCuFt<br>2020                                                             | B@s<br>2<br>B@s                    | Int 2<br>a-B<br>3.01<br>Prod 1<br>a-B         | a-C<br>1.36                              | Weight           290,400           0           0           290,400           overlap.           Min Dist           Hole-Cplg           0.49           ∑%excess           74                                                                                                                                                                                                                                                                                                                                                                                       |
| 8 5/8<br>Segment<br>"A"<br>"B"<br>"C"<br>"D"<br>Hole<br>Size<br>9 7/8<br>% excer<br>Class 'C' tail on<br>Tail cmt<br>5 1/2<br>Segment<br>"A"                                              | casing<br>#/ft<br>32.00<br>w/8.4#/g<br>Annular<br>Volume<br>0.1261<br>Setti<br>ss cmt by stage:<br>mt yld > 1.35<br>casing<br>#/ft<br>20.00                                                               | g inside the<br>Grade<br>P<br>mud, 30min Sfc Csg Test psig:<br>The cement volur<br>1 Stage<br>Cmt Sx<br>730<br>ng Depths for D V Tool(s):<br>125<br>g inside the<br>Grade<br>P                                                                                   | 10 3/4<br>110<br>1,986<br>ne(s) are inter<br>1 Stage<br>CuFt Cmt<br>1366<br>4261<br>18<br>8 5/8<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Coupling<br>wedge 441                                                                                                                                            | Joint<br>3.22<br>0<br>1 Stage<br>% Excess<br>17<br>Joint<br>3.89                                      | Design Far<br>Collapse<br>0.81<br>ft from su<br>Drilling<br>Mud Wt<br>10.50<br>Design I<br>Collapse<br>2.36                                                     | Totals:<br>face or a<br>Calc<br>MASP<br>3053<br>sum of sx<br>930<br>Factors<br>Burst<br>2.81                                                                                | Length<br>9,075<br>0<br>0<br>9,075<br>2300<br>Req'd<br>BOPE<br>5M<br>ΣCuFt<br>2020                                                             | <b>B@s</b><br>2<br><b>B@s</b><br>3 | Int 2<br>a-B<br>3.01<br>Prod 1<br>a-B<br>4.70 | <b>a-C</b><br>1.36<br><b>a-C</b><br>3.96 | Weight           290,400           0           290,400           0           290,400           overlap.           Min Dist           Hole-Cplg           0.49           ∑%excess           74           Weight           398,240                                                                                                                                                                                                                                                                                                                                  |
| 8 5/8<br>Segment<br>"A"<br>"B"<br>"C"<br>"D"<br>Hole<br>Size<br>9 7/8<br>% excet<br>Class 'C' tail on<br>Tail omt<br>5 1/2<br>Segment<br>"A"<br>"B"                                       | casing<br>#/ft<br>32.00<br>w/8.4#/g<br>Annular<br>Volume<br>0.1261<br>Setth<br>ss cmt by stage:<br>nt yld > 1.35<br>casing<br>#/ft<br>20.00                                                               | g inside the<br>Grade<br>P<br>mud, 30min Sfc Csg Test psig:<br>The cement volur<br>1 Stage<br>Cmt Sx<br>730<br>ng Depthe for D V Tool(s):<br>125<br>g inside the<br>Grade<br>P                                                                                   | 10 3/4<br>110<br>1,986<br>me(s) are inter<br>1 Stage<br>CuFt Cmt<br>1366<br>4261<br>18<br>8 5/8<br>110<br>2 004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Coupling<br>wedge 441                                                                                                                                            | Joint<br>3.22<br>0<br>1 Stage<br>% Excess<br>17<br>Joint<br>3.89                                      | Design Far<br>Collapse<br>0.81<br>ft from su<br>Drilling<br>Mud Wt<br>10.50<br>Design I<br>Collapse<br>2.36                                                     | Ctors<br>Burst<br>1.79<br>Totals:<br>rface or a<br>Calc<br>MASP<br>3053<br>sum of sx<br>930<br>Factors<br>Burst<br>2.81                                                     | Length<br>9,075<br>0<br>0<br>9,075<br>2300<br>Req'd<br>BOPE<br>5M<br>ΣCuFt<br>2020                                                             | <b>B@s</b><br>2<br><b>B@s</b><br>3 | Int 2<br>a-B<br>3.01<br>Prod 1<br>a-B<br>4.70 | <b>a-C</b><br>1.36<br><b>a-C</b><br>3.96 | Weight           290,400           0           290,400           0           290,400           overlap.           Min Dist           Hole-Cplg           0.49           ∑%excess           74           Weight           398,240           0           208,240                                                                                                                                                                                                                                                                                                    |
| 8 5/8<br>Segment<br>"A"<br>"B"<br>"C"<br>"D"<br>Hole<br>Size<br>9 7/8<br>% excer<br>Class 'C' tail on<br>Tail cmt<br>5 1/2<br>Segment<br>"A"<br>"B"                                       | casing<br>#/ft<br>32.00<br>w/8.4#/g<br>Annular<br>Volume<br>0.1261<br>Setti<br>ss cmt by stage:<br>mt yld > 1.35<br>casing<br>#/ft<br>20.00<br>w/8.4#/g                                                   | g inside the<br>Grade<br>P<br>mud, 30min Sfc Csg Test psig:<br>The cement volur<br>1 Stage<br>Cmt Sx<br>730<br>ng Depths for D V Tool(s):<br>125<br>g inside the<br>Grade<br>P<br>mud, 30min Sfc Csg Test psig:                                                  | 10 3/4<br>110<br>1,986<br>me(s) are inter<br>1 Stage<br>CuFt Cmt<br>1366<br>4261<br>18<br>8 5/8<br>110<br>2,064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Coupling<br>wedge 441                                                                                                                                            | Joint<br>3.22<br>0<br>1 Stage<br>% Excess<br>17<br>Joint<br>3.89                                      | Design Far<br>Collapse<br>0.81<br>ft from su<br>Drilling<br>Mud Wt<br>10.50<br>Design I<br>Collapse<br>2.36                                                     | Ctors<br>Burst<br>1.79<br>Totals:<br>rface or a<br>Calc<br>MASP<br>3053<br>sum of sx<br>930<br>Pactors<br>Burst<br>2.81<br>Totals:                                          | Length<br>9,075<br>0<br>0<br>9,075<br>2300<br>Req'd<br>BOPE<br>5M<br>Σ CuFt<br>2020<br>Length<br>19,912<br>0<br>19,912                         | <b>B@s</b><br>2<br><b>B@s</b><br>3 | Int 2<br>a-B<br>3.01<br>Prod 1<br>a-B<br>4.70 | <b>a-C</b><br>1.36<br><b>a-C</b><br>3.96 | Weight           290,400           0           0           0           0           0           0           0           0           0           290,400           overlap.           Min Dist           Hole-Cplg           0.49           ∑%excess           74           Weight           398,240           0           398,240           0           398,240                                                                                                                                                                                                    |
| 8 5/8<br>Segment<br>"A"<br>"B"<br>"C"<br>"D"<br>Hole<br>Size<br>9 7/8<br>% excer<br>Class 'C' tail on<br>Tail cmt<br>5 1/2<br>Segment<br>"A"<br>"B"                                       | casing<br>#/ft<br>32.00<br>w/8.4#/g<br>Annular<br>Volume<br>0.1261<br>Settin<br>ss cmt by stage:<br>mt yld > 1.35<br>casing<br>#/ft<br>20.00<br>w/8.4#/g                                                  | g inside the<br>Grade<br>P<br>mud, 30min Sfc Csg Test psig:<br>The cement volur<br>1 Stage<br>Cmt Sx<br>730<br>ng Depths for D V Tool(s):<br>125<br>g inside the<br>Grade<br>P<br>mud, 30min Sfc Csg Test psig:<br>The cement volur<br>1 Stace                   | 10 3/4<br>110<br>1,986<br>me(s) are inter<br>1 Stage<br>CuFt Cmt<br>1366<br>4261<br>18<br>8 5/8<br>110<br>2,064<br>me(s) are inter<br>1 Stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Coupling<br>wedge 441<br>nded to achieve a top of<br>Min<br>Cu Ft<br>1163<br><b>Coupling</b><br>txp                                                              | Joint<br>3.22<br>0<br>1 Stage<br>% Excess<br>17<br>Joint<br>3.89<br>8875                              | Design Far<br>Collapse<br>0.81<br>ft from su<br>Drilling<br>Mud Wt<br>10.50<br><u>Design I</u><br>Collapse<br>2.36                                              | Ctors<br>Burst<br>1.79<br>Totals:<br>rface or a<br>Calc<br>MASP<br>3053<br>sum of sx<br>930<br>Factors<br>Burst<br>2.81<br>Totals:<br>rface or a                            | Length<br>9,075<br>0<br>0<br>9,075<br>2300<br>Req'd<br>BOPE<br>5M<br>Σ CuFt<br>2020<br>Length<br>19,912<br>200<br>Pag'd                        | <b>B@s</b><br>2<br><b>B@s</b><br>3 | Int 2<br>a-B<br>3.01<br>Prod 1<br>a-B<br>4.70 | <b>a-C</b><br>1.36<br><b>a-C</b><br>3.96 | Weight           290,400           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0.49           ∑%excess           74           Weight           398,240           0           398,240           0           398,240                                                                                                                                                                                            |
| 8 5/8<br>Segment<br>"A"<br>"B"<br>"C"<br>"D"<br>Hole<br>Size<br>9 7/8<br>% exce:<br>Class 'C' tail on<br>Tail cmt<br>5 1/2<br>Segment<br>"A"<br>"B"<br>Hole<br>Sizo                       | casing<br>#/ft<br>32.00<br>w/8.4#/g<br>Annular<br>Volume<br>0.1261<br>0.1261<br>ss cmt by stage:<br>mt yld > 1.35<br>casing<br>#/ft<br>20.00<br>w/8.4#/g<br>Annular                                       | g inside the<br>Grade<br>P<br>mud, 30min Sfc Csg Test psig:<br>The cement volur<br>1 Stage<br>Cmt Sx<br>730<br>ng Depths for D V Tool(s):<br>125<br>g inside the<br>Grade<br>P<br>mud, 30min Sfc Csg Test psig:<br>The cement volur<br>1 Stage<br>Cmt Sx         | 10 3/4<br>110<br>1,986<br>me(s) are inter<br>1 Stage<br>CuFt Cmt<br>1366<br>4261<br>18<br>8 5/8<br>110<br>2,064<br>me(s) are inter<br>1 Stage<br>CuFt Cmt<br>1 Stage<br>2,064<br>me(s) are inter<br>1 Stage<br>CuFt Cmt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Coupling<br>wedge 441<br>nded to achieve a top of<br>Min<br>Cu Ft<br>1163<br>Coupling<br>txp<br>nded to achieve a top of<br>Min<br>Cu Ft                         | Joint<br>3.22<br>0<br>1 Stage<br>% Excess<br>17<br>Joint<br>3.89<br>8875<br>1 Stage<br>% Excess       | Design Far<br>Collapse<br>0.81<br>ft from su<br>Drilling<br>Mud Wt<br>10.50<br>Design I<br>Collapse<br>2.36<br>ft from su<br>Drilling<br>Mud Wt                 | Ctors<br>Burst<br>1.79<br>Totals:<br>rface or a<br>Calc<br>MASP<br>3053<br>sum of sx<br>930<br>Factors<br>Burst<br>2.81<br>Totals:<br>rface or a<br>Calc<br>MASP            | Length<br>9,075<br>0<br>0<br>9,075<br>2300<br>Req'd<br>BOPE<br>5M<br>Σ CuFt<br>2020<br>Length<br>19,912<br>0<br>19,912<br>200<br>Req'd<br>POPE | <b>B@s</b><br>2<br><b>B@s</b><br>3 | Int 2<br>a-B<br>3.01<br>Prod 1<br>a-B<br>4.70 | <b>a-C</b><br>1.36<br><b>a-C</b><br>3.96 | Weight           290,400           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           290,400           0           290,400           200,400           200,400           200,400           Weight           398,240           0           398,240           0           398,240           0           398,240           0           398,240           0           398,240           0           398,240           0 |
| 8 5/8<br>Segment<br>"A"<br>"B"<br>"C"<br>"D"<br>Hole<br>Size<br>9 7/8<br>% excer<br>Class 'C' tail on<br>Tail cmt<br>5 1/2<br>Segment<br>"A"<br>"B"<br>Hole<br>Size<br>7 7/8              | casing<br>#/ft<br>32.00<br>w/8.4#/g<br>Annular<br>Volume<br>0.1261<br>scettii<br>ss cmt by stage:<br>nt yld > 1.35<br>casing<br>#/ft<br>20.00<br>w/8.4#/g<br>Annular<br>volume<br>0.1733                  | g inside the<br>Grade<br>P<br>mud, 30min Sfc Csg Test psig:<br>The cement volur<br>1 Stage<br>Cmt Sx<br>730<br>ng Depths for D V Tool(s):<br>125<br>g inside the<br>Grade<br>P<br>mud, 30min Sfc Csg Test psig:<br>The cement volur<br>1 Stage<br>Cmt Sx<br>1551 | 10 3/4<br>110<br>1,986<br>me(s) are inter<br>1 Stage<br>CuFt Cmt<br>1366<br>4261<br>18<br>8 5/8<br>110<br>2,064<br>me(s) are inter<br>1 Stage<br>CuFt Cmt<br>2448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Coupling<br>wedge 441<br>nded to achieve a top of<br>Min<br>Cu Ft<br>1163<br>Coupling<br>txp<br>nded to achieve a top of<br>Min<br>Cu Ft<br>1913                 | Joint<br>3.22<br>0<br>1 Stage<br>% Excess<br>17<br>Joint<br>3.89<br>8875<br>1 Stage<br>% Excess<br>28 | Design Far<br>Collapse<br>0.81<br>ft from su<br>Drilling<br>Mud Wt<br>10.50<br>Design I<br>Collapse<br>2.36<br>ft from su<br>Drilling<br>Mud Wt<br>10.50        | Ctors<br>Burst<br>1.79<br>Totals:<br>rface or a<br>Calc<br>MASP<br>3053<br>sum of sx<br>930<br>Factors<br>Eactors<br>Burst<br>2.81<br>Totals:<br>rface or a<br>Calc<br>MASP | Length<br>9,075<br>0<br>0<br>9,075<br>2300<br>Req'd<br>BOPE<br>5M<br>Σ CuFt<br>2020<br>Length<br>19,912<br>0<br>19,912<br>200<br>Req'd<br>BOPE | <b>B@s</b><br>2<br><b>B@s</b><br>3 | Int 2<br>a-B<br>3.01<br>Prod 1<br>a-B<br>4.70 | <b>a-C</b><br>1.36<br><b>a-C</b><br>3.96 | Weight           290,400           0           0           0           0           290,400           overlap.           Min Dist           Hole-Cplg           0.49           ∑%excess           74           Weight           398,240           0           398,240           overlap.           Min Dist           Hole-Cplg           0,89                                                                                                                                                                                                                     |
| 8 5/8<br>Segment<br>"A"<br>"C"<br>"D"<br>Hole<br>Size<br>9 7/8<br>% excer<br>Class 'C' tail on<br>Tail cmt<br>5 1/2<br>Segment<br>"A"<br>"B"<br>Hole<br>Size<br>7 7/8<br>Class 'H tail on | casing<br>#/ft<br>32.00<br>w/8.4#/g<br>Annular<br>Volume<br>0.1261<br>scettii<br>ss cmt by stage:<br>nt yld > 1.35<br>casing<br>#/ft<br>20.00<br>w/8.4#/g<br>Annular<br>Volume<br>0.1733<br>mt vld > 1.20 | g inside the<br>Grade<br>P<br>mud, 30min Sfc Csg Test psig:<br>The cement volur<br>1 Stage<br>Cmt Sx<br>730<br>ng Depths for D V Tool(s):<br>125<br>g inside the<br>Grade<br>P<br>mud, 30min Sfc Csg Test psig:<br>The cement volur<br>1 Stage<br>Cmt Sx<br>1551 | 10 3/4<br>110<br>1,986<br>me(s) are inter<br>1 Stage<br>CuFt Cmt<br>1366<br>4261<br>18<br>8 5/8<br>110<br>2,064<br>me(s) are inter<br>1 Stage<br>CuFt Cmt<br>2,064<br>me(s) are inter<br>1 Stage<br>CuFt Cmt<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>1 Stage<br>CuFt Cmt<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,064<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Methods<br>2,075<br>Method | Coupling<br>wedge 441<br>nded to achieve a top of<br>Min<br>Cu Ft<br>1163<br>Coupling<br>txp<br>nded to achieve a top of<br>Min<br>Cu Ft<br>1913<br>ast top XXX. | Joint<br>3.22<br>0<br>1 Stage<br>% Excess<br>17<br>Joint<br>3.89<br>8875<br>1 Stage<br>% Excess<br>28 | Design Fac<br>Collapse<br>0.81<br>ft from su<br>Drilling<br>Mud Wt<br>10.50<br><u>Design I</u><br>Collapse<br>2.36<br>ft from su<br>Drilling<br>Mud Wt<br>10.50 | Ctors<br>Burst<br>1.79<br>Totals:<br>rface or a<br>Calc<br>MASP<br>3053<br>sum of sx<br>930<br>Factors<br>Eactors<br>Burst<br>2.81<br>Totals:<br>rface or a<br>Calc<br>MASP | Length<br>9,075<br>0<br>0<br>9,075<br>2300<br>Req'd<br>BOPE<br>5M<br>Σ CuFt<br>2020<br>Length<br>19,912<br>0<br>19,912<br>200<br>Req'd<br>BOPE | <b>B@s</b><br>2<br><b>B@s</b><br>3 | Int 2<br>a-B<br>3.01<br>Prod 1<br>a-B<br>4.70 | <b>a-C</b><br>1.36<br><b>a-C</b><br>3.96 | Weight           290,400           0           0           0           290,400           overlap.           Min Dist           Hole-Cplg           0.49           ∑%excess           74           Weight           398,240           o           398,240           overlap.           Min Dist           Hole-Cplg           0.398,240           overlap.           Min Dist           Hole-Cplg           0.89                                                                                                                                                   |

.

#### ATLATL 11 10 Fed Com 333H

| 13 3/8         | su               | rface csg in a              | 17 1/2             | inch hole.              |                | Design I          | actors         |                  |                                                            | Surface  |       |                    |
|----------------|------------------|-----------------------------|--------------------|-------------------------|----------------|-------------------|----------------|------------------|------------------------------------------------------------|----------|-------|--------------------|
| Segment        | #/ft             | Grade                       |                    | Coupling                | Body           | Collapse          | Burst          | Length           | B@s                                                        | a-B      | a-C   | Weight             |
| "A"<br>"B"     | 54.50            |                             | j 55               | btc<br>btc              | 44.73          | 6.91              | 2.18           | 350<br>0         | 18                                                         | 3.65     | 13.04 | 19,075<br><b>0</b> |
| í              | w/8.4            | #/g mud, 30min Sfc Csg Test | psig: 1,500        | Tail Cmt                | does not       | circ to sfc.      | Totals:        | 350              |                                                            |          |       | 19,075             |
| Comparison o   | of Proposed to I | Minimum Required Ceme       | ent Volumes        | Ma                      | 4 Channe       | Deilline          | Cala           |                  |                                                            |          |       | Min Dist           |
| Hole           | Annular          | 1 Stage                     | 1 Stage            | WIN<br>Ov Et            | 1 Stage        | Drilling          | Caic           | Red.q            |                                                            |          |       | Win Dist           |
| 5ize           | Volume           |                             |                    | 00 Ft                   | % EXCess       |                   | 740            | OM               |                                                            |          |       | 1 56               |
| 17 1/2         | 0.6946           | 103                         | 204                | 243                     | 0              | 9.00              | 749            | 2111             |                                                            |          |       | 1.00               |
| <br> <br>      |                  |                             |                    |                         | Site plat (pip | e racks S or E) a | is per 0.0.1.1 | II.D.4.i. not fo | und.                                                       |          |       |                    |
| 10 3/4         | cas              | ing inside the              | 13 3 /8            |                         |                | Design I          | actors         |                  |                                                            | Int 1    |       |                    |
| Segment        | #/ft             | Grade                       | 15 5/0             | Coupling                | Joint          | Collanse          | Burst          | l enath          | B@s                                                        | a-B      | a-C   | Weight             |
| "A"            | 45 50            | Ciudo                       | hcl 80             | btc scc                 | 9.94           | 2 34              | 1 02           | 2 300            | 4                                                          | 1 71     | 3.93  | 104 650            |
| "B"            | 10100            |                             |                    | 210 000                 | 0.01           | 2.01              |                | 0                | •                                                          |          | 0.00  | 0                  |
| _              | w/8.4            | #/g mud. 30min Sfc Csg Test | psig: 1.500        |                         |                |                   | Totals:        | 2.300            |                                                            |          |       | 104.650            |
|                | , -              | The cement v                | olume(s) are inten | ded to achieve a top of | 0              | ft from su        | rface or a     | 350              |                                                            |          |       | overlap.           |
| Hole           | Annular          | 1 Stage                     | 1 Stage            | Min                     | 1 Stage        | Drilling          | Calc           | Req'd            |                                                            |          |       | Min Dist           |
| Size           | Volume           | Cmt Sx                      | CuFt Cmt           | Cu Ft                   | % Excess       | Mud Wt            | MASP           | BOPE             |                                                            |          |       | Hole-Cplg          |
| 12 1/4         | 0.1882           | 236                         | 587                | 450                     | 30             | 10.50             | 3053           | 5M               |                                                            |          |       | 0.50               |
| r D V Tool(s): |                  |                             |                    |                         |                |                   | sum of sx      | <u>Σ CuFt</u>    |                                                            |          |       | Σ%excess           |
| t by stage % : |                  | #VALUE!                     | #VALUE!            |                         |                |                   | 236            | 587              |                                                            |          |       | 30                 |
| 51/2           | cas              | ing inside the              | 10 3/4             |                         |                | Design Fa         | tors           |                  | 1                                                          | Prod 1   |       |                    |
| Segment        | #/ft             | Grade                       | 10 3/4             | Coupling                | Joint          | Collapse          | Burst          | Lenath           | B@s                                                        | a-B      | a-C   | Weight             |
| "A"            | 20.00            |                             | p 110              | txp                     | 3.89           | 2.44              | 2.81           | 9,075            | 3                                                          | 4.70     | 4.10  | 181,500            |
| "B"            | 20.00            |                             | p 110              | txp                     | 118.73         | 2.36              | 2.81           | 10,837           | 3                                                          | 4.70     | 3.96  | 216,740            |
| "C"            |                  |                             |                    |                         |                |                   |                | 0                |                                                            |          |       | 0                  |
| "D"            |                  |                             |                    | 0                       |                |                   |                | 0                |                                                            |          |       | 0                  |
|                | w/8.4            | #/g mud, 30min Sfc Csg Test | psig: 1,997        |                         |                |                   | Totals:        | 19,912           |                                                            |          |       | 398,240            |
| ļ              |                  | The cement v                | olume(s) are inten | ded to achieve a top of | 2100           | ft from su        | rface or a     | 200              |                                                            |          |       | overlap.           |
| Hole           | Annular          | 1 Stage                     | 1 Stage            | Min                     | 1 Stage        | Drilling          | Calc           | Req'd            |                                                            |          |       | Min Dist           |
| Size           | Volume           | Cmt Sx                      | CuFt Cmt           | Cu Ft                   | % Excess       | Mud Wt            | MASP           | BOPE             |                                                            |          |       | Hole-Cplg          |
| 9 7/8          | 0.3669           | 3999                        | 7519               | 6536                    | 15             | 10.50             |                |                  |                                                            |          |       | 1.89               |
|                | it yiu > 1.55    |                             |                    |                         |                |                   |                |                  |                                                            |          |       |                    |
| #N/A           |                  |                             |                    |                         |                |                   |                |                  |                                                            |          |       |                    |
| 0              |                  |                             | 5 1/2              |                         |                | Design I          | actors         |                  | <c< td=""><td>hoose Ca</td><td>sing&gt;</td><td></td></c<> | hoose Ca | sing> |                    |
| Segment        | #/ft             | Grade                       |                    | Coupling                | #N/A           | Collapse          | Burst          | Length           | B@s                                                        | a-B      | a-C   | Weight             |
| "A"            |                  |                             |                    | 0.00                    |                |                   |                | 0                | •                                                          |          |       | 0                  |
| "B"            |                  |                             |                    | 0.00                    |                |                   |                | 0                |                                                            |          |       | 0                  |
| Í              | w/8.4            | #/g mud, 30min Sfc Csg Test | psig:              |                         |                |                   | Totals:        | 0                |                                                            |          |       | 0                  |
|                |                  | Cmt vol ca                  | Ic below includes  | this csg, TOC intended  | #N/A           | ft from su        | rface or a     | #N/A             |                                                            |          |       | overlap.           |
| Hole           | Annular          | 1 Stage                     | 1 Stage            | Min                     | 1 Stage        | Drilling          | Calc           | Req'd            |                                                            |          |       | Min Dist           |
| Size           | Volume           | Cmt Sx                      | CuFt Cmt           | Cu Ft                   | % Excess       | Mud Wt            | MASP           | BOPE             |                                                            |          |       | Hole-Cplg          |
| 0              |                  | #N/A                        | #N/A               | 0                       | #N/A           |                   |                |                  |                                                            |          |       |                    |
| #N/A           |                  |                             | Capitan Reef e     | st top XXXX.            |                |                   |                |                  |                                                            |          |       |                    |

.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

| Operator:                           | OGRID:                               |
|-------------------------------------|--------------------------------------|
| DEVON ENERGY PRODUCTION COMPANY, LP | 6137                                 |
| 333 West Sheridan Ave.              | Action Number:                       |
| Oklahoma City, OK 73102             | 380112                               |
|                                     | Action Type:                         |
|                                     | [C-103] NOI Change of Plans (C-103A) |

| CONDITIONS  |                                                                                                                                                                                                                                                                                                    |                |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Created By  | Condition                                                                                                                                                                                                                                                                                          | Condition Date |
| ward.rikala | Prior to the submission of this C-104, there was a C-103 NOI submitted for approval. The C-103 NOI was not approved or rejected; however, the work requested in the C-103 NOI was performed and completed without NMOCD approval. This action is currently under review from our legal department. | 11/19/2024     |

CONDITIONS

Page 62 of 62

.

Action 380112