Form 3160-5 (June 2019)

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

FORM APPROVED OMB No. 1004-0137 Expires: October 31, 2021

BUR	EAU OF LAND MANAGEMENT		5. Lease Serial No.	5. Lease Serial No. NMNM119276			
Do not use this t	IOTICES AND REPORTS ON W form for proposals to drill or to Use Form 3160-3 (APD) for suc	o re-enter an	6. If Indian, Allottee	or Tribe Name			
SUBMIT IN	TRIPLICATE - Other instructions on pag	e 2	7. If Unit of CA/Agre	eement, Name and/or No.			
1. Type of Well Oil Well Gas V	Vell Other		8. Well Name and No	O. MODELO 10 FED COM/605H			
2. Name of Operator EOG RESOURG	CES INCORPORATED		9. API Well No.	30-025-52824			
3a. Address 1111 BAGBY SKY LOB	•	(include area code) 00	10. Field and Pool or TRISTE DRAW; E				
4. Location of Well (Footage, Sec., T., F SEC 10/T24S/R32E/NMP	2.,M., or Survey Description)		11. Country or Parish LEA/NM	n, State			
12. CHE	CK THE APPROPRIATE BOX(ES) TO INI	DICATE NATURE OF NO	TICE, REPORT OR OT	THER DATA			
TYPE OF SUBMISSION		TYPE OF A	CTION				
Notice of Intent		raulic Fracturing Re	roduction (Start/Resume)	Well Integrity			
Subsequent Report	Change Plans Plug		ecomplete emporarily Abandon	Other			
Final Abandonment Notice	Convert to Injection Plug	Back W	ater Disposal	x			
the Bond under which the work will completion of the involved operation completed. Final Abandonment No is ready for final inspection.) EOG respectfully requests an Modelo 10 Fed Com 219H (Fed Change name from Modelo 10 Change BHL from T-24-S, R-3 to T-24-S, R-32-E, Sec 15, 14 Change target formation to Le	Pred Com 605H to Modelo 10 Fed Com 12-E, Sec 15, 1419' FSL, 580' FWL, LEA 19' FSL, 450' FWL, LEA Co., N.M. 19 conard B.	ile with BLM/BIA. Require pletion or recompletion in its, including reclamation, he is well to reflect the following 219H.	ed subsequent reports m a new interval, a Form ave been completed and	sust be filed within 30 days following 3160-4 must be filed once testing has been			
	true and correct. Name (Printed/Typed)	ľ					
STAR HARRELL / Ph: (432) 848-9	161	Regulatory Speci	alist				
(Electronic Submission Signature	on)	Date	04/23/2	2024			
	THE SPACE FOR FED	ERAL OR STATE O	OFICE USE	·			
Approved by							
KEITH P IMMATTY / Ph: (575) 988	3-4722 / Approved	ENGINEER Title		05/02/2024 Date			
	hed. Approval of this notice does not warran equitable title to those rights in the subject le duct operations thereon.		,D				
Title 18 U.S.C. Section 1001 and Title 4	3 U.S.C. Section 1212 make it a crime for a	ny nerson knowingly and w	villfully to make to any d	lenartment or agency of the United States			

Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United State any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

Additional Information

Additional Remarks

(EOG BLM Variance 5a - Alternate Shallow Casing Designs.pdf) document.

Location of Well

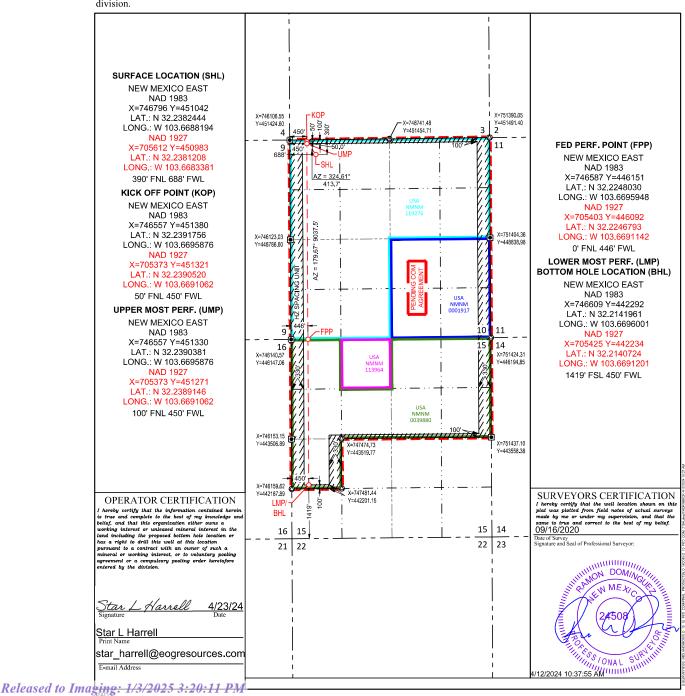
 $0. \ SHL: TR\ D\ /\ 390\ FNL\ /\ 688\ FWL\ /\ TWSP: \ 24S\ /\ RANGE: \ 32E\ /\ SECTION: \ 10\ /\ LAT: \ 32.2382444\ /\ LONG: \ -103.6688194\ (\ TVD: \ 0\ feet,\ MD: \ 0\ feet\)$ $PPP: \ TR\ D\ /\ 100\ FNL\ /\ 580\ FWL\ /\ TWSP: \ 24S\ /\ RANGE: \ 32E\ /\ SECTION: \ 10\ /\ LAT: \ 32.23904\ /\ LONG: \ -103.6691673\ (\ TVD: \ 11923\ feet,\ MD: \ 11943\ feet\)$ $BHL: \ TR\ L\ /\ 1419\ FSL\ /\ 580\ FWL\ /\ TWSP: \ 24S\ /\ RANGE: \ 32E\ /\ SECTION: \ 15\ /\ LAT: \ 32.2141975\ /\ LONG: \ -103.6691808\ (\ TVD: \ 12188\ feet,\ MD: \ 21081\ feet\)$

DISTRICT IV

DISTRICT I
1625 N. French Dr., Hobbs, NM. 88240
Pilone: (575) 393-616 Fax: (575) 393-0720
DISTRICT II
81 S. Fred St., Artesia, NM. 88210
Pilone: (575) 748-1285 Fax: (575) 748-9720
DISTRICT III
1000 Rio Brazes Rd., Aziee, NM. 87410

1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, New Mexico 87505


Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

☐ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

		77.1		ALIUN.	AND ACKEA	GE DEDICAL	IONTLAI			
1	PI Number			Pool Code		T ·	Pool Name	0 1		
30-02	25-52824			96603		Triste Draw; Bone Spring				
Property Co					Property Name			Well Nun	nber	
32548	6			MODELO 10 FED COM 219H						
OGRID N	o.				Operator Name Elevation					
7377	'			EC	G RESOURC	ES, INC.		36	42'	
					Surface Locat	ion		•		
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County	
D	10	24 - S	32 - E	-	390'	NORTH	688'	WEST	LEA	
			Bott	om Hole	Location If Diff	erent From Surfac	e			
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County	
L	15	24 - S	32 - E	32-E - 1419' SOUTH 450' WEST LEA						
Dedicated Acres	Joint or	Infill	Consolidated Code Order No.							
1000.00					PEN	DING COM AGR	REEMENT			

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Revised Permit Information 03/27/2024:

Well Name: Modelo 10 Fed Com 219H; FKA Modelo 10 Fed Com 605H

Location: SHL: 390' FNL & 688' FWL, Section 10, T-24-S, R-32-E, LEA Co., N.M.

BHL: 1419' FSL & 450' FWL, Section 15, T-24-S, R-32-E, LEA Co., N.M.

1. CASING PROGRAM:

Hole	Interv	al MD	Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13-1/2"	0	1,250	0	1,250	10-3/4"	40.5#	J-55	STC
9-7/8"	0	4,775	0	4,760	8-5/8"	32#	J-55	BTC-SC
6-3/4"	0	18,398	0	9,500	5-1/2"	20#	P110-EC	DWC/C IS MS

Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

2. CEMENTING PROGRAM:

Depth	No. Sacks	Wt.	Yld Ft3/sk	Slurry Description
1,250'	330	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)
ŕ	140	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1,050')
4,760' 8-5/8"	290	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	130	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 3,820')
18,398' 5-1/2"	300	10.5	3.21	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC @ 4,260')
	660	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ 9040')

Additive	Purpose					
Bentonite Gel	Lightweight/Lost circulation prevention					
Calcium Chloride	Accelerator					
Cello-flake	Lost circulation prevention					
Sodium Metasilicate	Accelerator					
MagOx	Expansive agent					
Pre-Mag-M	Expansive agent					
Sodium Chloride	Accelerator					
FL-62	Fluid loss control					
Halad-344	Fluid loss control					
Halad-9	Fluid loss control					
HR-601	Retarder					
Microbond	Expansive Agent					

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

3. MUD PROGRAM:

Depth (TVD)	Type	Weight (ppg)	Viscosity	Water Loss
0 – 1,250'	Fresh - Gel	8.6-8.8	28-34	N/c
1,250' – 4,760'	Brine	9.0-10.5	28-34	N/c
4,760' – 18,398'	Oil Base	8.8-9.5	58-68	N/c - 6

4. VARIANCE REQUESTS:

EOG requests the additional variance(s) in the attached document(s):

Variances requested include (supporting documents attached):

- BOP Break Testing for 5M Intermediate Intervals (EOG BLM Variance 3a b)
- Offline Cementing for Surface and Intermediate Intervals (EOG BLM Variance 3a b)
- Salt Interval Washout Annular Clearnace (EOG BLM Variance 4a)
- EOG requests approval to use alternate casing designs listed in the Blanket Casing Design (EOG BLM Variance 5a Alternate Shallow Casing Designs.pdf) document.

5. TUBING REQUIREMENTS

EOG respectively requests an exception to the following NMOCD rule:

• 19.15.16.10 Casing AND TUBING RQUIREMENTS:

J (3): "The operator shall set tubing as near the bottom as practical and tubing perforations shall not be more than 250 feet above top of pay zone."

With horizontal flowing and gas lifted wells an end of tubing depth placed at or slightly above KOP is a conservative way to ensure the tubing stays clean from debris, plugging, and allows for fewer well interventions post offset completion. The deeper the tubulars are run into the curve, the higher the probability is that the tubing will become stuck in sand and or well debris as the well produces over time. An additional consideration for EOT placement during artificial lift installations is avoiding the high dog leg severity and inclinations found in the curve section of the wellbore to help improve reliability and performance. Dog leg severity and inclinations tend not to hamper gas lifted or flowing wells, but they do effect other forms of artificial lift like rod pump or ESP (electric submersible pump). Keeping the EOT above KOP is an industry best practice for those respective forms of artificial lift.

390' FNL

Revised Wellbore

KB: 3667' GL: 3642'

688' FWL Section 10

T-24-S, R-32-E

API: 30-025-52824

Bit Size: 13-1/2" 10-3/4", 40.5#, J-55, STC @ 0' - 1,250' Bit Size: 9-7/8" 8-5/8", 32.#, J-55, BTC-SC @ 0' - 4,760' **TOC: 4,260'** Bit Size: 6-3/4" 5-1/2", 20.#, P110-EC, DWC/C IS MS @ 0' - 18,398' Lateral: 18,398' MD, 9,500' TVD **Upper Most Perf:** 100' FNL & 450' FWL Sec. 10 **Lower Most Perf:** 1419' FSL & 450' FWL Sec. 15 BH Location: 1419' FSL & 450' FWL Sec. 15 T-24-S R-32-E KOP: 9,038' MD, 9,023' TVD EOC: 9,788' MD, 9,500' TVD

GEOLOGIC NAME OF SURFACE FORMATION:

Permian

ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler	1,165'
Tamarisk Anhydrite	1,225'
Top of Salt	1,460'
Base of Salt	4,655'
Lamar	4,895'
Bell Canyon	4,922'
Cherry Canyon	5,690'
Brushy Canyon	7,169'
Bone Spring Lime	8,800'
Leonard (Avalon) Shale	8,967'
1st Bone Spring Sand	9,975'
2nd Bone Spring Shale	10,220'
2nd Bone Spring Sand	10,559'
3rd Bone Spring Carb	11,099'
3rd Bone Spring Sand	11,864'
Wolfcamp	12,219'
TD	9,500'

ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0-400'	Fresh War
Bell Canyon	4,922'	Oil
Cherry Canyon	5,690'	Oil
Brushy Canyon	7,169'	Oil
Leonard (Avalon) Shale	8,967'	Oil
1st Bone Spring Sand	9,975'	Oil
2nd Bone Spring Shale	10,220'	Oil
2nd Bone Spring Sand	10,559'	Oil

ter

Modelo 10 Fed Com 219H (FKA 605H) API #: 30-025-52824 Variances

EOG respectfully requests the below variances to be applied to the above well:

- Variance is requested to waive the centralizer requirements for the intermediate casing in the intermediate hole. An expansion additive will be utilized, in the cement slurry, for the entire length of the intermediate interval to maximize cement bond and zonal isolation.
- Variance is also requested to waive the centralizer requirements for the production casing in the production hole. An expansion additive will be utilized, in the cement slurry, for the entire length of the production interval to maximize cement bond and zonal isolation.
- Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).
 - Variance is requested to use a 5,000 psi annular BOP with the 10,000 psi BOP stack.
- EOG Resources requests the option to contract a Surface Rig to drill, set surface casing, and Cement on the subject well. After WOC 8 hours or 500 psi compressive strength (whichever is greater), the Surface Rig will move off so the wellhead can be installed. A welder will cut the casing to the proper height and weld on the wellhead (both "A" and "B" sections). The weld will be tested to 1,500 psi. All valves will be closed and a wellhead cap will be installed (diagram attached). If the timing between rigs is such that EOG Resources would not be able to preset the surface, the Primary Rig will MIRU and drill the well in its entirety per the APD.

EOG requests the additional variance(s) in the attached document(s):

- EOG BLM Variance 3a b BOP Break-test and Offline Intermediate Cement
- EOG BLM Variance 4a Salt Section Annular Clearance
- EOG BLM Variance 5a Alternate Shallow Casing Designs

Midland

Lea County, NM (NAD 83 NME) Modelo 10 Fed Com #219H

ОН

Plan: Plan #0.2

Standard Planning Report

22 April, 2024

Database: PEDMB Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Modelo 10 Fed Com Well: #219H

Wellbore: OH
Design: Plan #0.2

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #219H

kb = 26' @ 3668.0usft kb = 26' @ 3668.0usft

Grid

Minimum Curvature

Project Lea County, NM (NAD 83 NME)

Map System:US State Plane 1983Geo Datum:North American Datum 1983Map Zone:New Mexico Eastern Zone

System Datum:

Mean Sea Level

Site Modelo 10 Fed Com

 Site Position:
 Northing:
 451,286.00 usft
 Latitude:
 32° 14′ 19.830 N

 From:
 Map
 Easting:
 750,991.00 usft
 Longitude:
 103° 39′ 18.896 W

Position Uncertainty: 0.0 usft Slot Radius: 13-3/16 "

Well #219H

Well Position +N/-S 0.0 usft 451,042.00 usft 32° 14' 17.675 N Northing: Latitude: +E/-W 0.0 usft Easting: 746,796.00 usft Longitude: 103° 40' 7.755 W 0.0 usft Wellhead Elevation: Ground Level: 3,642.0 usft **Position Uncertainty** usft

Grid Convergence: 0.35 °

Wellbore OH

 Magnetics
 Model Name
 Sample Date
 Declination (°)
 Dip Angle (°)
 Field Strength (nT)

 IGRF2020
 9/13/2021
 6.56
 59.89
 47,465,43329893

Design Plan #0.2

Audit Notes:

Version:Phase:PLANTie On Depth:0.0

 Vertical Section:
 Depth From (TVD)
 +N/-S
 +E/-W
 Direction (usft)

 0.0
 0.0
 0.0
 0.0
 181.22

Plan Survey Tool Program Date 4/22/2024

Depth From Depth To

(usft) (usft) Survey (Wellbore) Tool Name Remarks

1 0.0 18,398.4 Plan #0.2 (OH) EOG MWD+IFR1

MWD + IFR1

Database: PEDMB Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Modelo 10 Fed Com

 Well:
 #219H

 Wellbore:
 OH

 Design:
 Plan #0.2

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #219H

kb = 26' @ 3668.0usft kb = 26' @ 3668.0usft

Grid

Plan Sections										
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,613.1	4.26	324.74	1,612.9	6.5	-4.6	2.00	2.00	0.00	324.74	
6,971.1	4.26	324.74	6,956.1	331.5	-234.4	0.00	0.00	0.00	0.00	
7,184.2	0.00	0.00	7,169.0	338.0	-239.0	2.00	-2.00	0.00	180.00	
9,037.7	0.00	0.00	9,022.5	338.0	-239.0	0.00	0.00	0.00	0.00	KOP(Modelo 10 Fed (
9,258.2	26.46	180.00	9,235.2	288.0	-239.0	12.00	12.00	81.65	180.00	FTP(Modelo 10 Fed C
9,787.7	90.00	179.66	9,499.9	-139.5	-237.2	12.00	12.00	-0.06	-0.38	
14,539.3	90.00	179.66	9,500.0	-4,891.0	-209.0	0.00	0.00	0.00	0.00	Fed Perf 1(Modelo 10
18,398.4	90.00	179.69	9,500.0	-8,750.0	-187.0	0.00	0.00	0.00	87.24	PBHL(Modelo 10 Fed

Database: PEDMB Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Modelo 10 Fed Com

 Well:
 #219H

 Wellbore:
 OH

 Design:
 Plan #0.2

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #219H

kb = 26' @ 3668.0usft kb = 26' @ 3668.0usft

Grid

sign.	Flail #U.Z								
anned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
0.008	0.00	0.00	0.008	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0				0.00	
					0.0	0.0	0.00		0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	2.00	324.74	1,500.0	1.4	-1.0	-1.4	2.00	2.00	0.00
1,600.0	4.00	324.74	1,599.8	5.7	-4.0	-5.6	2.00	2.00	0.00
1,613.1	4.26	324.74	1,612.9	6.5	-4.6	-6.4	2.00	2.00	0.00
·			•						
1,700.0	4.26	324.74	1,699.6	11.7	- 8.3	-11.6	0.00	0.00	0.00
1,800.0	4.26	324.74	1,799.3	17.8	-12.6	-17.5	0.00	0.00	0.00
1,900.0	4.26	324.74	1,899.0	23.9	-16.9	-23.5	0.00	0.00	0.00
2,000.0	4.26	324.74	1,998.7	29.9	-21.2	-29.5	0.00	0.00	0.00
•			•						
2,100.0	4.26	324.74	2,098.5	36.0	-25.5	-35.5	0.00	0.00	0.00
2,200.0	4.26	324.74	2,198.2	42.1	-29.8	-41.4	0.00	0.00	0.00
2,300.0	4.26	324.74	2,297.9	48.1	-34.0	-47.4	0.00	0.00	0.00
2,400.0	4.26	324.74	2,397.6	54.2	-38.3	-53.4	0.00	0.00	0.00
·			•						
2,500.0	4.26	324.74	2,497.4	60.3	-42.6	-59.4	0.00	0.00	0.00
2,600.0	4.26	324.74	2,597.1	66.3	-46.9	-65.3	0.00	0.00	0.00
2,700.0	4.26	324.74	2,696.8	72.4	-51.2	-71.3	0.00	0.00	0.00
2,800.0	4.26	324.74	2,796.5	78.5	-55.5	-77.3	0.00	0.00	0.00
2,000.0	4.20	324.74	2,790.5	70.5	-55.5	-11.3	0.00	0.00	0.00
2,900.0	4.26	324.74	2,896.2	84.5	-59.8	-83.2	0.00	0.00	0.00
3,000.0	4.26	324.74	2,996.0	90.6	-64.1	-89.2	0.00	0.00	0.00
3,100.0	4.26	324.74	3,095.7	96.7	-68.4	-95.2	0.00	0.00	0.00
3,200.0	4.26	324.74	3,195.4	102.7	-72.7	-101.2	0.00	0.00	0.00
3,300.0	4.26	324.74	3,295.1	108.8	-76.9	-107.1	0.00	0.00	0.00
3,400.0	4.26	324.74	3,394.9	114.9	-81.2	-113.1	0.00	0.00	0.00
3,500.0	4.26	324.74	3,494.6	120.9	-85.5	-119.1	0.00	0.00	0.00
3.600.0	4.26	324.74	3.594.3	127.0	-89.8	-125.1	0.00	0.00	0.00
.,			-,						
3,700.0	4.26	324.74	3,694.0	133.1	-94.1	-131.0	0.00	0.00	0.00
3,800.0	4.26	324.74	3,793.8	139.1	-98.4	-137.0	0.00	0.00	0.00
3,900.0	4.26	324.74	3,893.5	145.2	-102.7	-143.0	0.00	0.00	0.00
4,000.0	4.26	324.74	3,993.2	151.3	-107.0	-149.0	0.00	0.00	0.00
4,100.0	4.26	324.74	4,092.9	157.3	-111.3	-154.9	0.00	0.00	0.00
4,200.0	4.26	324.74	4,192.7	163.4	-115.5	-160.9	0.00	0.00	0.00
4,300.0	4.26	324.74	4,292.4	169.5	-119.8	-166.9	0.00	0.00	0.00
	4.20							0.00	0.00
4,400.0	4.26	324.74	4,392.1	175.5	-124.1	-172.9	0.00	0.00	0.00
4,500.0	4.26	324.74	4,491.8	181.6	-128.4	-178.8	0.00	0.00	0.00
·									
4,600.0	4.26	324.74	4,591.5	187.7	-132.7	-184.8	0.00	0.00	0.00
4,700.0	4.26	324.74	4,691.3	193.7	-137.0	-190.8	0.00	0.00	0.00
4,800.0	4.26	324.74	4,791.0	199.8	-141.3	-196.7	0.00	0.00	0.00
	7.20								
4,900.0	4.26	324.74	4,890.7	205.9	-145.6	-202.7	0.00	0.00	0.00
5,000.0	4.26	324.74	4,990.4	211.9	-149.9	-208.7	0.00	0.00	0.00
,									
5,100.0	4.26	324.74	5,090.2	218.0	-154.2	-214.7	0.00	0.00	0.00
5,200.0	4.26	324.74	5,189.9	224.1	-158.4	-220.6	0.00	0.00	0.00

Database: PEDMB Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Modelo 10 Fed Com

 Well:
 #219H

 Wellbore:
 OH

 Design:
 Plan #0.2

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #219H

kb = 26' @ 3668.0usft kb = 26' @ 3668.0usft

Grid

	Flatt #U.Z								
anned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,300.0	4.26	324.74	5,289.6	230.1	-162.7	-226.6	0.00	0.00	0.00
5,400.0	4.26	324.74	5,389.3	236.2	-167.0	-232.6	0.00	0.00	0.00
5,500.0	4.26	324.74	5,489.1	242.3	-171.3	-238.6	0.00	0.00	0.00
5,600.0	4.26	324.74	5,588.8	248.3	-175.6	-244.5	0.00	0.00	0.00
5,700.0	4.26	324.74	5,688.5	254.4	-179.9	-250.5	0.00	0.00	0.00
5,800.0	4.26	324.74	5,788.2	260.5	-184.2	-256.5	0.00	0.00	0.00
5,900.0	4.26	324.74	5,888.0	266.5	-188.5	-262.5	0.00	0.00	0.00
6,000.0	4.26	324.74	5.987.7	272.6	-192.8	-268.4	0.00	0.00	0.00
6,100.0	4.26	324.74	6,087.4	278.7	-197.1	-274.4	0.00	0.00	0.00
6,200.0	4.26	324.74	6,187.1	284.7	-201.3	-280.4	0.00	0.00	0.00
6,300.0	4.26	324.74	6,286.8	290.8	-205.6	-286.4	0.00	0.00	0.00
6,400.0	4.26	324.74	6,386.6	296.9	-209.9	-292.3	0.00	0.00	0.00
6,500.0	4.26	324.74	6,486.3	303.0	-214.2	-298.3	0.00	0.00	0.00
6,600.0	4.26	324.74	6,586.0	309.0	-218.5	-304.3	0.00	0.00	0.00
6,700.0	4.26	324.74	6,685.7	315.1	-222.8	-310.3	0.00	0.00	0.00
6,800.0	4.26	324.74	6,785.5	321.2	-227.1	-316.2	0.00	0.00	0.00
6,900.0	4.26	324.74	6,885.2	327.2	-231.4	-322.2	0.00	0.00	0.00
6,971.1	4.26	324.74	6,956.1	331.5	-234.4	-326.4	0.00	0.00	0.00
7,000.0	3.68	324.74	6,984.9	333.2	-235.6	-328.1	2.00	-2.00	0.00
7,100.0	1.68	324.74	7,084.8	337.0	-238.3	-331.8	2.00	-2.00	0.00
7,184.2	0.00	0.00	7,169.0	338.0	-239.0	-332.8	2.00	-2.00	0.00
7,200.0	0.00	0.00	7,184.8	338.0	-239.0	-332.8	0.00	0.00	0.00
7,300.0	0.00	0.00	7,184.8	338.0	-239.0	-332.8	0.00	0.00	0.00
·									
7,400.0	0.00	0.00	7,384.8	338.0	-239.0	-332.8	0.00	0.00	0.00
7,500.0	0.00	0.00	7,484.8	338.0	-239.0	-332.8	0.00	0.00	0.00
7,600.0	0.00	0.00	7,584.8	338.0	-239.0	-332.8	0.00	0.00	0.00
7,700.0	0.00	0.00	7,684.8	338.0	-239.0	-332.8	0.00	0.00	0.00
7,800.0	0.00	0.00	7,784.8	338.0	-239.0	-332.8	0.00	0.00	0.00
7,900.0	0.00	0.00	7,884.8	338.0	-239.0	-332.8	0.00	0.00	0.00
8,000.0	0.00	0.00	7,984.8	338.0	-239.0	-332.8	0.00	0.00	0.00
8,100.0	0.00	0.00	8,084.8	338.0	-239.0	-332.8	0.00	0.00	0.00
8,200.0	0.00	0.00	8,184.8	338.0	-239.0	-332.8	0.00	0.00	0.00
8,300.0	0.00	0.00	8,284.8	338.0	-239.0	-332.8	0.00	0.00	0.00
8,400.0	0.00	0.00	8,384.8	338.0	-239.0	-332.8	0.00	0.00	0.00
8,500.0	0.00	0.00	8,484.8	338.0	-239.0	-332.8	0.00	0.00	0.00
8,600.0	0.00	0.00	8,584.8	338.0	-239.0	-332.8	0.00	0.00	0.00
8,700.0	0.00	0.00	8,684.8	338.0	-239.0	-332.8	0.00	0.00	0.00
8.800.0	0.00	0.00	8,784.8	338.0	-239.0	-332.8	0.00	0.00	0.00
8,900.0	0.00	0.00	8,884.8	338.0	-239.0 -239.0	-332.8	0.00	0.00	0.00
9,000.0	0.00	0.00	8,984.8	338.0	-239.0	-332.8	0.00	0.00	0.00
9,000.0	0.00	0.00	9,022.5	338.0	-239.0 -239.0	-332.8	0.00	0.00	0.00
•									
9,050.0	1.48	180.00	9,034.8	337.8	-239.0	-332.7	12.00	12.00	0.00
9,075.0	4.48	180.00	9,059.8	336.5	-239.0	-331.4	12.00	12.00	0.00
9,100.0	7.48	180.00	9,084.6	333.9	-239.0	-328.8	12.00	12.00	0.00
9,125.0	10.48	180.00	9,109.3	330.0	-239.0	-324.9	12.00	12.00	0.00
9,150.0	13.48	180.00	9,133.8	324.9	-239.0	-319.7	12.00	12.00	0.00
9,175.0	16.48	180.00	9,157.9	318.4	-239.0	-313.2	12.00	12.00	0.00
9,200.0	19.48	180.00	9,181.7	310.7	-239.0	-305.5	12.00	12.00	0.00
9,225.0	22.48	180.00	9,205.0	301.7	-239.0	-296.6	12.00	12.00	0.00
9,250.0	25.48	180.00	9,227.9	291.6	-239.0	-286.4	12.00	12.00	0.00
9,258.2	26.46	180.00	9,235.2	288.0	-239.0	-282.8	12.00	12.00	0.00
9,275.0	28.48	179.97	9,250.1	280.2	-239.0	-275.1	12.00	12.00	-0.17
9,300.0	31.48	179.94	9,271.8	267.7	-239.0	-262.6	12.00	12.00	-0.14
9,325.0	34.48	179.91	9,292.8	254.1	-239.0	-249.0	12.00	12.00	-0.12

Database: PEDMB Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Modelo 10 Fed Com

 Well:
 #219H

 Wellbore:
 OH

 Design:
 Plan #0.2

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #219H

kb = 26' @ 3668.0usft kb = 26' @ 3668.0usft

Grid

esign:	Plan #0.2								
lanned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,350.0	37.48	179.88	9,313.0	239.4	-238.9	-234.3	12.00	12.00	-0.10
9,375.0	40.48	179.86	9,332.4	223.7	-238.9	-218.6	12.00	12.00	-0.09
9,400.0	43.48	179.84	9,351.0	207.0	-238.9	-201.9	12.00	12.00	-0.08
9,425.0	46.48	179.82	9,368.7	189.3	-238.8	-184.2	12.00	12.00	-0.07
9,450.0	49.48	179.80	9,385.4 9.401.2	170.8	-238.7	-165.6	12.00	12.00	-0.06
9,475.0 9,500.0	52.48 55.48	179.79 179.78	9,401.2 9,415.9	151.3 131.1	-238.7 -238.6	-146.2 -126.0	12.00 12.00	12.00 12.00	-0.06 -0.05
9,525.0 9,550.0	58.48 61.48	179.76 179.75	9,429.5 9,442.0	110.2 88.5	-238.5 -238.4	-105.0 -83.4	12.00 12.00	12.00 12.00	-0.05 -0.05
9,575.0	64.48	179.73	9,453.4	66.3	-238.3	-61.2	12.00	12.00	-0.04
9,600.0	67.48	179.73	9,463.5	43.4	-238.2	-38.3	12.00	12.00	-0.04
9,625.0	70.48	179.72	9,472.5	20.1	-238.1	-15.0	12.00	12.00	-0.04
9,650.0	73.48	179.71	9.480.2	-3.7	-238.0	8.8	12.00	12.00	-0.04
9,675.0	76.48	179.70	9,486.7	-27.8	-237.9	32.9	12.00	12.00	-0.04
9,700.0	79.48	179.69	9,491.9	-52.3	-237.7	57.3	12.00	12.00	-0.04
9,725.0	82.48	179.68	9,495.8	-77.0	-237.6	82.0	12.00	12.00	-0.04
9,750.0	85.48	179.67	9,498.5	-101.8	-237.5	106.9	12.00	12.00	-0.04
9,775.0	88.48	179.66	9,499.8	-126.8	-237.3	131.8	12.00	12.00	-0.04
9,787.7	90.00	179.66	9,499.9	-139.5	-237.2	144.5	12.00	12.00	-0.04
9,800.0	90.00	179.66	9,499.9	-151.8	-237.2	156.8	0.00	0.00	0.00
9,900.0	90.00	179.66	9,499.9	-251.8	-236.6	256.8	0.00	0.00	0.00
10,000.0	90.00	179.66	9,499.9	-351.8	-236.0	356.7	0.00	0.00	0.00
10,100.0	90.00	179.66	9,499.9	-451.8	-235.4	456.7	0.00	0.00	0.00
10,200.0	90.00	179.66	9,499.9	-551.8	-234.8	556.7	0.00	0.00	0.00
10,300.0	90.00	179.66	9,500.0	-651.8	-234.2	656.6	0.00	0.00	0.00
10,400.0 10,500.0	90.00 90.00	179.66 179.66	9,500.0 9,500.0	-751.8 -851.8	-233.6 -233.0	756.6 856.5	0.00 0.00	0.00 0.00	0.00 0.00
10,600.0	90.00	179.66	9,500.0	-951.8	-232.4	956.5	0.00	0.00	0.00
10,700.0	90.00	179.66	9,500.0	-1,051.8	-231.8	1,056.5	0.00	0.00	0.00
10,800.0	90.00	179.66	9,500.0	-1,151.8	-231.2	1,156.4	0.00	0.00	0.00
10,900.0	90.00	179.66	9,500.0	-1,251.8	-230.6	1,256.4	0.00	0.00	0.00
11,000.0	90.00	179.66	9,500.0	-1,351.8	-230.0	1,356.4	0.00	0.00	0.00
11,100.0	90.00	179.66	9,500.0	-1,451.8	-229.4	1,456.3	0.00	0.00	0.00
11,200.0	90.00	179.66	9,500.0	-1,551.7	-228.8	1,556.3	0.00	0.00	0.00
11,300.0	90.00	179.66	9,500.0	-1,651.7	-228.3	1,656.2	0.00	0.00	0.00
11,400.0	90.00	179.66	9,500.0	-1,751.7	-227.7	1,756.2	0.00	0.00	0.00
11,500.0	90.00	179.66	9,500.0	-1,851.7	-227.1	1,856.2	0.00	0.00	0.00
11,600.0	90.00	179.66	9,500.0	-1,951.7	-226.5	1,956.1	0.00	0.00	0.00
11,700.0	90.00	179.66	9,500.0	-2,051.7	-225.9	2,056.1	0.00	0.00	0.00
11,800.0 11,900.0	90.00 90.00	179.66 179.66	9,500.0 9,500.0	-2,151.7 -2,251.7	-225.3 -224.7	2,156.1 2,256.0	0.00 0.00	0.00 0.00	0.00 0.00
12,000.0	90.00	179.66	9,500.0	-2,251.7 -2,351.7	-224.7 -224.1	2,256.0	0.00	0.00	0.00
12,100.0	90.00	179.66	9.500.0	-2,451.7	-223.5	2,455.9	0.00	0.00	0.00
12,100.0	90.00	179.66	9,500.0 9,500.0	-2,451.7 -2,551.7	-223.5 -222.9	2,455.9 2,555.9	0.00	0.00	0.00
12,300.0	90.00	179.66	9,500.0	-2,651.7 -2,651.7	-222.3	2,655.9	0.00	0.00	0.00
12,400.0	90.00	179.66	9,500.0	-2,751.7	-221.7	2,755.8	0.00	0.00	0.00
12,500.0	90.00	179.66	9,500.0	-2,851.7	-221.1	2,855.8	0.00	0.00	0.00
12,600.0	90.00	179.66	9,500.0	-2,951.7	-220.5	2,955.8	0.00	0.00	0.00
12,700.0	90.00	179.66	9,500.0	-3,051.7	-219.9	3,055.7	0.00	0.00	0.00
12,800.0	90.00	179.66	9,500.0	-3,151.7	-219.3	3,155.7	0.00	0.00	0.00
12,900.0	90.00	179.66	9,500.0	-3,251.7	-218.7	3,255.7	0.00	0.00	0.00
13,000.0	90.00	179.66	9,500.0	-3,351.7	-218.1	3,355.6	0.00	0.00	0.00
13,100.0	90.00	179.66	9,500.0	-3,451.7	-217.6	3,455.6	0.00	0.00	0.00
13,200.0	90.00	179.66	9,500.0	-3,551.7	-217.0	3,555.5	0.00	0.00	0.00

Database: PEDMB Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Modelo 10 Fed Com

 Well:
 #219H

 Wellbore:
 OH

 Design:
 Plan #0.2

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #219H

kb = 26' @ 3668.0usft kb = 26' @ 3668.0usft

Grid

nned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
13,300.0	90.00	179.66	9,500.0	-3,651.7	-216.4	3,655.5	0.00	0.00	0.00
13,400.0	90.00	179.66	9,500.0	-3,751.7 -3,751.7	-215.4 -215.8	3,755.5	0.00	0.00	0.00
13,500.0	90.00	179.66	9,500.0	-3,851.7	-215.2	3,855.4	0.00	0.00	0.00
13,600.0	90.00	179.66	9,500.0	-3,951.7	-214.6	3,955.4	0.00	0.00	0.00
13,700.0	90.00	179.66	9,500.0	-4,051.7	-214.0	4,055.4	0.00	0.00	0.00
13,800.0	90.00	179.66	9,500.0	-4,151.7	-213.4	4,155.3	0.00	0.00	0.00
13,900.0	90.00	179.66	9,500.0	-4,251.7	-212.8	4,255.3	0.00	0.00	0.00
14,000.0	90.00	179.66	9,500.0	-4,351.7	-212.2	4,355.2	0.00	0.00	0.00
14,100.0	90.00	179.66	9,500.0	-4,451.7	-211.6	4,455.2	0.00	0.00	0.00
14,200.0	90.00	179.66	9,500.0	-4,551.7 -4,551.7	-211.0 -211.0	4,455.2	0.00	0.00	0.00
14,200.0	90.00	179.66	9,500.0			4,655.1		0.00	0.00
				-4,651.7	-210.4		0.00		
14,400.0	90.00	179.66	9,500.0	-4,751.7	-209.8	4,755.1	0.00	0.00	0.00
14,500.0	90.00	179.66	9,500.0	-4,851.7	-209.2	4,855.1	0.00	0.00	0.00
14,539.3	90.00	179.66	9,500.0	-4,891.0	-209.0	4,894.3	0.00	0.00	0.00
14,600.0	90.00	179.66	9,500.0	-4,951.7	-208.6	4,955.0	0.00	0.00	0.00
14,700.0	90.00	179.66	9,500.0	-5,051.7	-208.0	5,055.0	0.00	0.00	0.00
14,800.0	90.00	179.66	9,500.0	-5,151.7	-207.5	5,154.9	0.00	0.00	0.00
14,900.0	90.00	179.66	9,500.0	-5,251.7	-206.9	5,254.9	0.00	0.00	0.00
•			•	·					
15,000.0	90.00	179.66	9,500.0	-5,351.7	-206.3	5,354.9	0.00	0.00	0.00
15,100.0	90.00	179.66	9,500.0	-5,451.7	-205.7	5,454.8	0.00	0.00	0.00
15,200.0	90.00	179.66	9,500.0	-5,551.7	-205.1	5,554.8	0.00	0.00	0.00
15,300.0	90.00	179.66	9,500.0	-5,651.7	-204.5	5,654.8	0.00	0.00	0.00
15,400.0	90.00	179.67	9,500.0	-5,751.7	-203.9	5,754.7	0.00	0.00	0.00
15,500.0	90.00	179.67	9,500.0	-5,851.7	-203.3	5,854.7	0.00	0.00	0.00
15,600.0	90.00	179.67	9,500.0	-5,951.7	-202.8	5,954.6	0.00	0.00	0.00
15,700.0	90.00	179.67	9,500.0	-6,051.7	-202.2	6,054.6	0.00	0.00	0.00
15,800.0	90.00	179.67	9,500.0	-6,151.7	-201.6	6,154.6	0.00	0.00	0.00
15,900.0	90.00	179.67	9,500.0	-6,251.7	-201.0	6,254.5	0.00	0.00	0.00
16,000.0	90.00	179.67	9,500.0	6 251 7	200 5	6,354.5	0.00	0.00	0.00
•				-6,351.7	-200.5				
16,100.0	90.00	179.67	9,500.0	-6,451.7	-199.9	6,454.5	0.00	0.00	0.00
16,200.0	90.00	179.67	9,500.0	-6,551.7	-199.3	6,554.4	0.00	0.00	0.00
16,300.0	90.00	179.67	9,500.0	-6,651.7	-198.7	6,654.4	0.00	0.00	0.00
16,400.0	90.00	179.67	9,500.0	-6,751.7	-198.2	6,754.4	0.00	0.00	0.00
16,500.0	90.00	179.67	9,500.0	-6,851.7	-197.6	6,854.3	0.00	0.00	0.00
16,600.0	90.00	179.67	9,500.0	-6,951.7	-197.0	6,954.3	0.00	0.00	0.00
16,700.0	90.00	179.68	9,500.0	-7,051.7	-196.5	7,054.2	0.00	0.00	0.00
16,800.0	90.00	179.68	9,500.0	-7,151.7	-195.9	7,154.2	0.00	0.00	0.00
16,900.0	90.00	179.68	9,500.0	-7,251.7	-195.3	7,254.2	0.00	0.00	0.00
17,000,0	00.00	170.60			104.0		0.00	0.00	0.00
17,000.0	90.00	179.68	9,500.0	-7,351.6	-194.8	7,354.1	0.00	0.00	0.00
17,100.0	90.00	179.68	9,500.0	-7,451.6	-194.2	7,454.1	0.00	0.00	0.00
17,200.0	90.00	179.68	9,500.0	-7,551.6	-193.6	7,554.1	0.00	0.00	0.00
17,300.0	90.00	179.68	9,500.0	- 7,651.6	-193.1	7,654.0	0.00	0.00	0.00
17,400.0	90.00	179.68	9,500.0	-7,751.6	-192.5	7,754.0	0.00	0.00	0.00
17,500.0	90.00	179.68	9,500.0	-7,851.6	-192.0	7,853.9	0.00	0.00	0.00
17,600.0	90.00	179.68	9,500.0	-7,951.6	-191.4	7,953.9	0.00	0.00	0.00
17,700.0	90.00	179.68	9,500.0	-8,051.6	-190.8	8,053.9	0.00	0.00	0.00
17,800.0	90.00	179.68	9,500.0	-8,151.6	-190.3	8,153.8	0.00	0.00	0.00
17,900.0	90.00	179.68	9,500.0	-8,251.6	-189.7	8,253.8	0.00	0.00	0.00
•			•						
18,000.0	90.00	179.68	9,500.0	-8,351.6	-189.2	8,353.8	0.00	0.00	0.00
18,100.0	90.00	179.69	9,500.0	-8,451.6	-188.6	8,453.7	0.00	0.00	0.00
18,200.0	90.00	179.69	9,500.0	-8,551.6	-188.1	8,553.7	0.00	0.00	0.00
18,300.0	90.00	179.69	9,500.0	-8,651.6	-187.5	8,653.7	0.00	0.00	0.00
18,398.4	90.00	179.69	9,500.0	-8,750.0	-187.0	8,752.0	0.00	0.00	0.00

Database: PEDMB Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Modelo 10 Fed Com

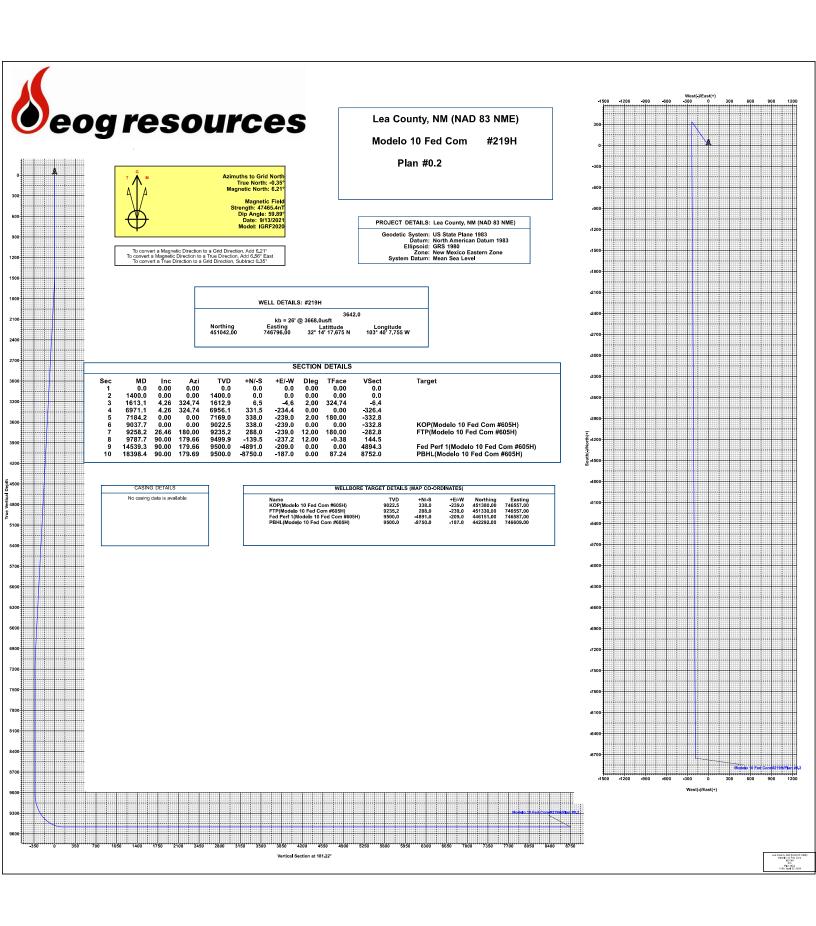
 Well:
 #219H

 Wellbore:
 OH

 Design:
 Plan #0.2

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:


Survey Calculation Method:

Well #219H

kb = 26' @ 3668.0usft kb = 26' @ 3668.0usft

Grid

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
KOP(Modelo 10 Fed Col - plan hits target cent - Point	0.00 ter	0.00	9,022.5	338.0	-239.0	451,380.00	746,557.00	32° 14' 21.035 N	103° 40' 10.514 W
FTP(Modelo 10 Fed Cor - plan hits target cent - Point	0.00 ter	0.00	9,235.2	288.0	-239.0	451,330.00	746,557.00	32° 14' 20.540 N	103° 40' 10.517 W
PBHL(Modelo 10 Fed Co - plan hits target cent - Point	0.00 ter	0.00	9,500.0	-8,750.0	-187.0	442,292.00	746,609.00	32° 12' 51.102 N	103° 40' 10.562 W
Fed Perf 1(Modelo 10 Fe - plan hits target cent - Point	0.00 ter	0.00	9,500.0	-4,891.0	-209.0	446,151.00	746,587.00	32° 13' 29.290 N	103° 40' 10.540 W

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

Pad Name: Modelo 10 Fed Com Shallow

SHL: Section 10, Township 24-S, Range 32-E, LEA County, NM

EOG requests for the below wells to be approved for all four designs listed in the Blanket Casing Design ('EOG BLM Variance 5a - Alternate Shallow Casing Designs.pdf' OR 'EOG BLM Variance 5b - Alternate Deep Casing Designs.pdf') document. The MDs and TVDs for all intervals are within the boundary conditions. The max inclination and DLS are also within the boundary conditions. The directional plans for the wells are attached separately.

Well Name	API#	Sur	face	Intern	1ediate	Produ	uction
wen Name	AFI#	MD	TVD	MD	TVD	MD	TVD
Modelo 10 Fed Com #002H (FKA 754H)	30-025-51993	1,250	1,250	4,841	4,760	16,107	8,464
Modelo 10 Fed Com #003H (FKA 755H)	30-025-51810	1,250	1,250	4,797	4,760	16,075	8,464
Modelo 10 Fed Com #214H (FKA 704H)	30-025-52876	1,250	1,250	4,851	4,760	17,183	9,500
Modelo 10 Fed Com #215H (FKA 702H)	30-025-52820	1,250	1,250	4,972	4,760	17,261	9,500
Modelo 10 Fed Com #216H (FKA 707H)	30-025-52827	1,250	1,250	4,813	4,760	17,117	9,500
Modelo 10 Fed Com #217H (FKA 604H)	30-025-52823	1,250	1,250	4,773	4,760	17,078	9,500
Modelo 10 Fed Com #218H (FKA 709H)	30-025-51991	1,250	1,250	4,777	4,760	18,400	9,500
Modelo 10 Fed Com #219H (FKA 605H)	30-025-52824	1,250	1,250	4,775	4,760	18,398	9,500
Modelo 10 Fed Com #313H (FKA 703H)	30-025-52884	1,250	1,250	4,920	4,760	17,722	10,006
Modelo 10 Fed Com #314H (FKA 708H)	30-025-52877	1,250	1,250	4,778	4,760	17,590	10,006
Modelo 10 Fed Com #315H (FKA 710H)	30-025-51992	1,250	1,250	4,771	4,760	18,899	10,006

ALL PREVIOUS COAS STILL APPLY

COA

H2S	• Yes	O No	
Potash	None	O Secretary	O R-111-P
Cave/Karst Potential	• Low	O Medium	O High
Cave/Karst Potential	O Critical		
Variance	O None	• Flex Hose	Other
Wellhead	Conventional	Multibowl	OBoth
Wellhead Variance	O Diverter		
Other	☐4 String	☐ Capitan Reef	□WIPP
Other	☐ Fluid Filled	☐ Pilot Hole	☐ Open Annulus
Cementing	☐ Contingency	☐ EchoMeter	☐ Primary Cement
_	Cement Squeeze		Squeeze
Special Requirements	☐ Water Disposal	☑ COM	□ Unit
Special Requirements	☐ Batch Sundry		
Special Requirements	☑ Break Testing	☑ Offline	✓ Casing
Variance		Cementing	Clearance

A. CASING

Above listed wells are approved for 4 Designs listed in the "EOG BLM Variance 5a - Alternate Shallow Casing Designs" document. The casing set points and directional plans for the wells in the batch are within the boundary conditions reviewed in the blanket design. The COA is written for the deepest well on the pad. Operator is responsible to review the cement volumes based on the set points, design executed and to achieve the TOC requirements listed in the COA.

Shallow Design A:

- 1. The 13-3/8 inch surface casing shall be set at approximately 1,250 feet TVD (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The 9-5/8 inch intermediate casing shall be set at approximately 4,760 feet TVD.
 - Mud weight could brine up to 10.2ppg. Reviewed and OK
 - Keep casing half full during run for collapse SF

The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

- Cement to surface. If cement does not circulate see B.1.a, c-d above.
- 3. The **5-1/2** inch production casing shall be set at approximately **18,899** feet. The minimum required fill of cement behind the **5-1/2** inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Shallow Design B:

- 1. The **10-3/4** inch surface casing shall be set at approximately **1,250** feet **TVD** (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The 8-5/8 inch intermediate casing shall be set at approximately 4,760 feet TVD.
 - Mud weight could brine up to 10.2ppg. Reviewed and OK
 - Keep casing half full during run for collapse SF

The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:

- Cement to surface. If cement does not circulate see B.1.a, c-d above.
- 3. The **5-1/2** inch production casing shall be set at approximately **18,899** feet. The minimum required fill of cement behind the **5-1/2** inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Shallow Design C:

- 1. The 13-3/8 inch surface casing shall be set at approximately 1,250 feet TVD (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after

- completing the cement job.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8 hours** or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The 9-5/8 inch intermediate casing shall be set at approximately 4,760 feet TVD.
 - Mud weight could brine up to 10.2ppg. Reviewed and OK
 - Keep casing half full during run for collapse SF

The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

- Cement to surface. If cement does not circulate see B.1.a, c-d above.
- 3. The 6 inch production casing shall be set at approximately 18,899 feet. The minimum required fill of cement behind the 6 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Shallow Design D:

- 1. The 13-3/8 inch surface casing shall be set at approximately 1,250 feet TVD (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - e. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - f. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - g. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - h. If cement falls back, remedial cementing will be done prior to drilling out that

string.

- 2. The 9-5/8 inch intermediate casing shall be set at approximately 4,760 feet TVD.
 - Mud weight could brine up to 10.2ppg. Reviewed and OK
 - Keep casing half full during run for collapse SF

The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

- Cement to surface. If cement does not circulate see B.1.a, c-d above.
- 3. The 6 inch x 5.5 inch tapered production casing shall be set at approximately 18,899 feet. The minimum required fill of cement behind the 6 inch x 5.5 inch tapered production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

(Note: For a minimum 5M BOPE or less (Utilizing a 10M BOPE system) BOPE Break Testing Variance

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-689-5981 Lea County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR part 3170 Subpart 3172.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Offline Cementing

Offline cementing OK for surface and intermediate intervals. Notify the BLM prior to the commencement of any offline cementing procedure.

Casing Clearance:

Overlap clearance OK.

- Salt annular variance in place.
- 1" surface clearance not met. Operator aware and will perf and squeeze if necessary

Operator shall clean up cycles until wellbore is clear of cuttings and any large debris, ensure cutting sizes are adequate "coffee ground or less" before cementing.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Eddy County
 EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220,
 BLM_NM_CFO_DrillingNotifications@BLM.GOV (575) 361-2822
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43 CFR part 3170 Subpart 3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area

immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the

- formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR part 3170 Subpart 3172 must be followed.

- e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
 - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
 - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - e. The results of the test shall be reported to the appropriate BLM office.
 - f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.

- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

KPI 5/2/2024

Break-test BOP & Offline Cementing:

EOG Resources Inc. (EOG) respectfully requests a variance from the minimum standards for well control equipment testing of ECFR Title 43 Part 3172.6(b)(9)(iv) to allow a testing schedule of the blow out preventer (BOP) and blow out prevention equipment (BOPE) along with Batch Drilling & Offline cement operations to include the following:

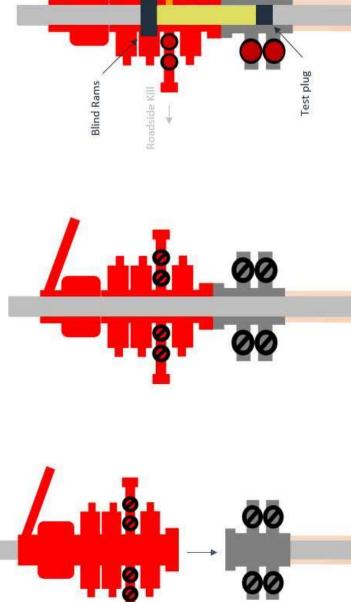
- Full BOPE test at first installation on the pad.
- Full BOPE test every 21 days.
- This test will be conducted for 5M rated hole intervals only.
- Each rig requesting the break-test variance is capable of picking up the BOP without damaging components using winches, following API Standard 53, Well Control Equipment Systems for Drilling Wells (Fifth edition, December 2018, Annex C. Table C.4) which recognizes break testing as an acceptable practice.
- Function tests will be performed on the following BOP elements:
 - Annular → during each full BOPE test
 - Upper Pipe Rams \rightarrow On trip ins where FIT required
 - Blind Rams → Every trip
 - Lower Pipe Rams → during each full BOPE test
- Break testing BOP and BOPE coupled with batch drilling operations and option to offline cement and/or remediate (if needed) any surface or intermediate sections, according to attached offline cementing support documentation.
- After the well section is secured, the BOP will be disconnected from the wellhead and walked with the rig to another well on the pad.
- TA cap will also be installed per Wellhead vendor procedure and pressure inside the
 casing will be monitored via the valve on the TA cap as per standard batch drilling
 ops.

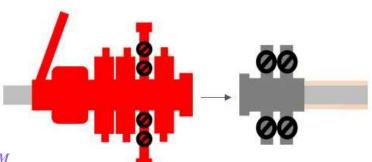
Break Test Diagram (HCR valve)

1. Set plug in wellhead (lower barrier) Close Blind Rams (upper barrier)

Steps

- Close roadside kill
- Open HCR (pressure application)


4


- Open wellhead valves below test plug
- to ensure if leak past test plug, pressure won't be applied to wellbore 9
 - Tie BOP testers high pressure line to main choke manifold crown valve 7.
 - Pressure up to test break
- Bleed test pressure from BOP testing unit 00

Pressure

HCR

Testing this break

Update Presentation Descriptor


Break Test Diagram (Test Joint)

1. Set plug in with test joint wellhead Steps

Pressure

- Close Upper Pipe Rams (upper barrier) (lower barrier)
 - Close roadside kill 3
- pressure won't be applied to wellbore Open wellhead valves below test plug to ensure if leak past test plug, Close HCR 4 .
 - Tie BOP testers high pressure line to top of test joint 6
 - Pressure up to test break
- Bleed test pressure from BOP testing 7. 8

Testing this break

Offline Intermediate Cementing Procedure **eog resources**

2/24/2022

Cement Program

No changes to the cement program will take place for offline cementing. ,

Summarized Operational Procedure for Intermediate Casing

- Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment back pressure valves. **⊢**i
- Float equipment is equipped with two back pressure valves rated to a minimum of 5,000 psi
- Land production casing on mandrel hanger through BOP. 2
- a. If casing is unable to be landed with a mandrel hanger, then the casing will be cemented online.
- Break circulation and confirm no restrictions.

ω.

- Ensure no blockage of float equipment and appropriate annular returns.
- Perform flow check to confirm well is static. ь а.
- Set pack-off 4
- If utilizing a fluted/ported mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid, remove landing joint, and set annular packoff through BOP. Pressure test to 5,000 psi for 10 min.
- If utilizing a solid mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid. Pressure test seals to 5,000 psi for 10 min. Remove landing joint through BOP. <u>.</u>
- After confirmation of both annular barriers and the two casing barriers, install TA plug and pressure test to 5,000 psi for 10 min. Notify the BLM with intent to proceed with nipple down and offline cementing. 5.
- Minimum 4 hrs notice.
- With the well secured and BLM notified, nipple down BOP and secure on hydraulic carrier or cradle. 6.
- Note, if any of the barriers fail to test, the BOP stack will not be nippled down until after the cement job has concluded and both lead and tail slurry have reached 500 psi.
- Skid/Walk rig off current well.
- Confirm well is static before removing TA Plug.
- Cementing operations will not proceed until well is under control. (If well is not static, notify BLM and proceed to kill)
- Casing outlet valves will provide access to both the casing ID and annulus. Rig or third party pump truck will kill well prior to ь а.
- Well control plan can be seen in Section B, Well Control Procedures.
- If need be, rig can be moved back over well and BOP nippled back up for any further remediation. ن خ

Page | 1

eog resources

2/24/2022

Offline Intermediate Cementing Procedure

- e. Diagram for rig positioning relative to offline cementing can be seen in Figure 4.
- 9. Rig up return lines to take returns from wellhead to pits and rig choke.
- Test all connections and lines from wellhead to choke manifold to 5,000 psi high for 10 min.
- b. If either test fails, perform corrections and retest before proceeding.
 - Return line schematics can be seen in Figure 3.
- 10. Remove TA Plug from the casing.
- 11. Install offline cement tool.
- Current offline cement tool schematics can be seen in Figure 1 (Cameron) and Figure 2 (Cactus).
- 12. Rig up cement head and cementing lines.
- Pressure test cement lines against cement head to 80% of casing burst for 10 min.
- 13. Break circulation on well to confirm no restrictions.
- a. If gas is present on circulation, well will be shut in and returns rerouted through gas buster.
- Max anticipated time before circulating with cement truck is 6 hrs.
- 14. Pump cement job as per plan.
- At plug bump, test casing to 0.22 psi/ft or 1500 psi, whichever is greater.
- If plug does not bump on calculated, shut down and wait 8 hrs or 500 psi compressive strength, whichever is greater before testing casing.
- 15. Confirm well is static and floats are holding after cement job.
- With floats holding and backside static:
 - i. Remove cement head.
 - If floats are leaking:

<u>ە</u>

- Shut-in well and WOC (Wait on Cement) until tail slurry reaches 500 psi compressive strength and the casing is static prior to removing cement head.
- If there is flow on the backside:

ن

- Shut in well and WOC until tail slurry reaches 500 psi compressive strength. Ensure that the casing is static prior to removing cement head.
 - 16. Remove offline cement tool.
- 17. Install night cap with pressure gauge for monitoring.
- 18. Test night cap to 5,000 psi for 10 min.

2/24/2022

Example Well Control Plan Content

A. Well Control Component Table

The table below, which covers the cementing of the **5M MASP (Maximum Allowable Surface Pressure) portion of the well**, outlines the well control component rating in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the BOP nippled up to the wellhead.

Intermediate hole section, 5M requirement

Component	RWP
Pack-off	10M
Casing Wellhead Valves	10M
Annular Wellhead Valves	5M
TA Plug	10M
Float Valves	5M
2" 1502 Lo-Torque Valves	15M

B. Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while circulating and cementing through the Offline Cement Adapter.

General Procedure While Circulating

- Sound alarm (alert crew).
- 2. Shut down pumps.
- 3. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 4. Confirm shut-in.
- 5. Notify tool pusher/company representative.

Page | 3

2/24/2022

eog resources

Offline Intermediate Cementing Procedure

6. Read and record the following:

a. SICP (Shut in Casing Pressure) and AP (Annular Pressure)

- b. Pit gain
- d. Regroup and identify forward plan to continue circulating out kick via rig choke and mud/gas separator. Circulate and adjust mud density as needed to control well c. Time

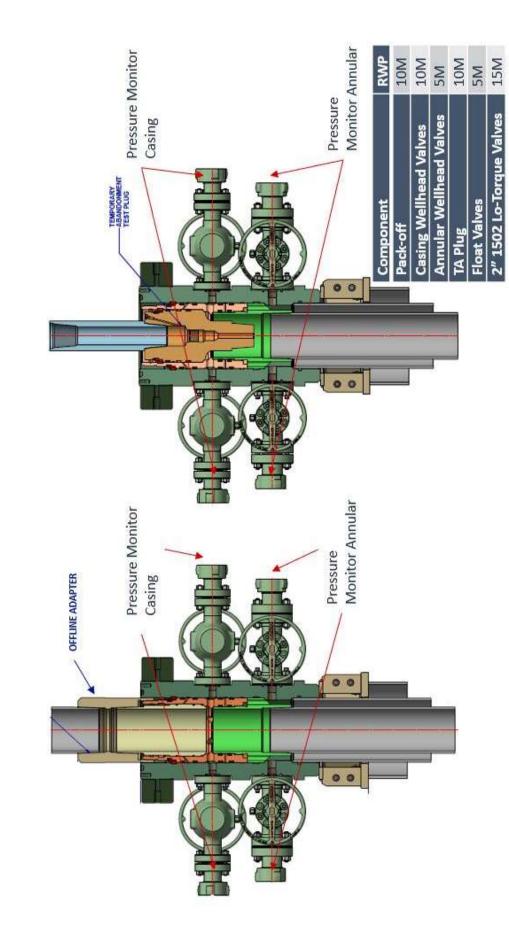
General Procedure While Cementing

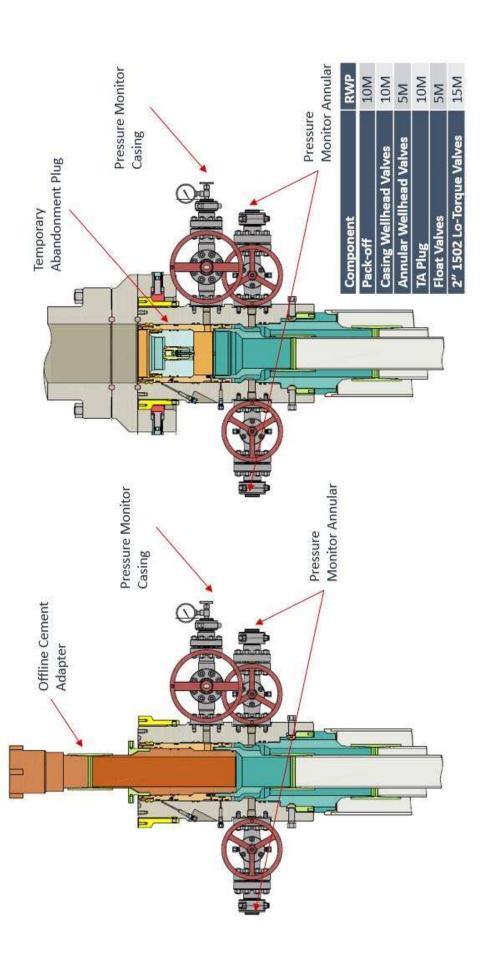
- Sound alarm (alert crew).
- Shut down pumps.
- Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
 - Confirm shut-in. 4.
- Notify tool pusher/company representative.
- Open rig choke and begin pumping again taking returns through choke manifold and mud/gas separator. 5. 6. 8.
 - Continue to place cement until plug bumps.
- At plug bump close rig choke and cement head.
- Read and record the following
- a. SICP and AP
 - b. Pit gain
- d. Shut-in annulus valves on wellhead

General Procedure After Cementing

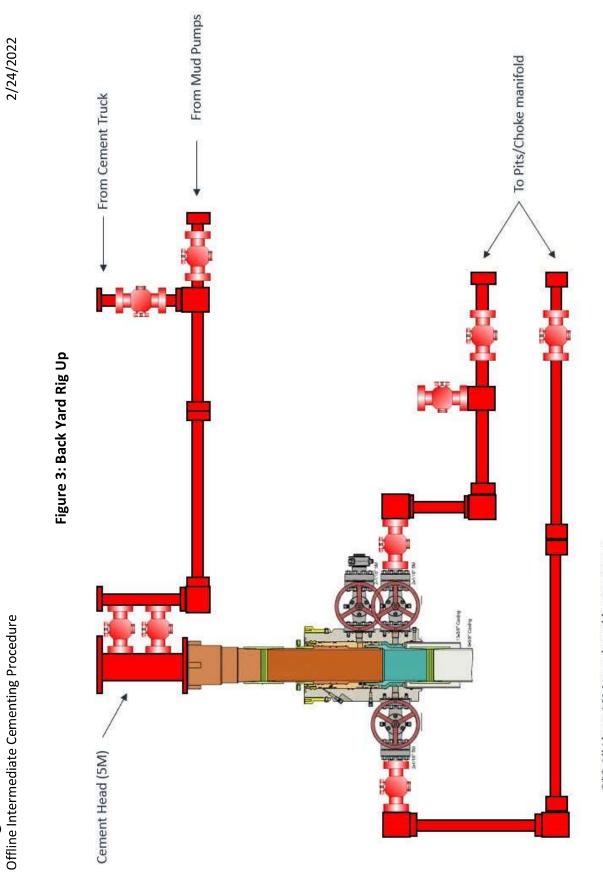
- Sound alarm (alert crew)
- Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
 - Confirm shut-in.
- Notify tool pusher/company representative. 4. .
 - Read and record the following: SICP and AP ö.
 - Pit gain Þ.
- Time
- Shut-in annulus valves on wellhead ن خ

Page | 4




Figure 1: Cameron TA Plug and Offline Adapter Schematic

Page | 5


2/24/2022

Øeog resources Offline Intermediate Cementing Procedure

Figure 2: Cactus TA Plug and Offline Adapter Schematic

Page | 6

*** All Lines 10M rated working pressure

Page | 7

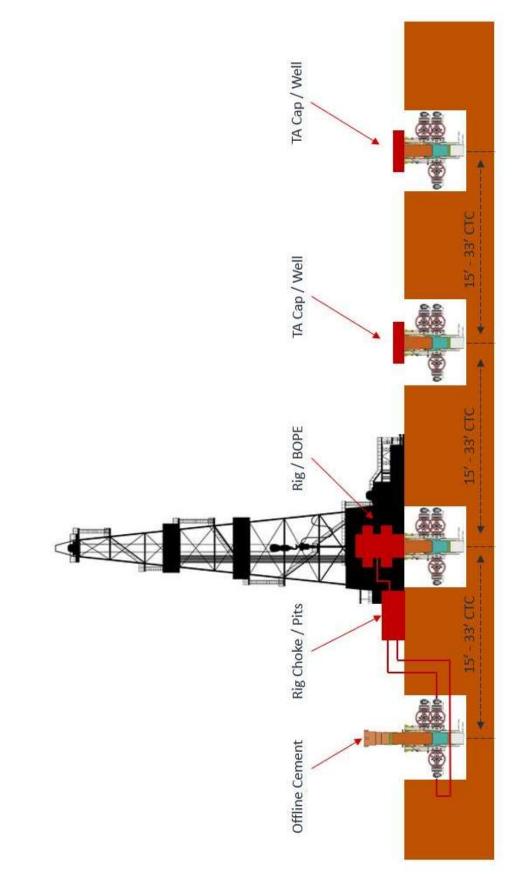


Figure 4: Rig Placement Diagram

Page | 8

Seogresources

Salt Section Annular Clearance Variance Request

Daniel Moose

Current Design (Salt Strings)

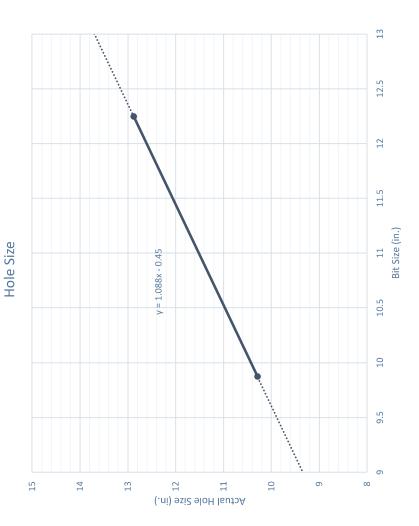
0.422" Annular clearance requirement

- Casing collars shall have a minimum clearance of 0.422 inches on all sides in the hole/casing annulus, with recognition that variances can be granted for justified exceptions.
- 12.25" Hole x 9.625" 40# J55/HCK55 LTC Casing
- 1.3125" Clearance to casing OD
- 0.8125" Clearance to coupling OD
- 9.875" Hole x 8.75" 38.5# P110 Sprint-SF Casing
- 0.5625" Clearance to casing OD
- 0.433" Clearance to coupling OD

Annular Clearance Variance Request

EOG request permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Onshore Order #2 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues

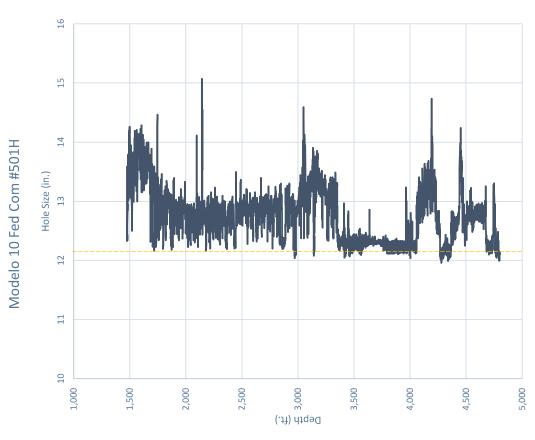

Volumetric Hole Size Calculation

Hole Size Calculations Off Cement Volumes

- Known volume of cement pumped
- Known volume of cement returned to surface
- Must not have had any losses
 - Must have bumped plug

Average Hole Size

- 12.25" Hole
- 12.88" Hole
- 5.13% diameter increase
- 10.52% area increase
 - 0.63" Average enlargement
 - 0.58" Median enlargement
 - 179 Well Count
- 9.875" Hole
- 10.30" Hole
- 4.24% diameter increase
 - 9.64% area increase
- 0.42" Average enlargement
 - 0.46" Median enlargement
 - 11 Well Count

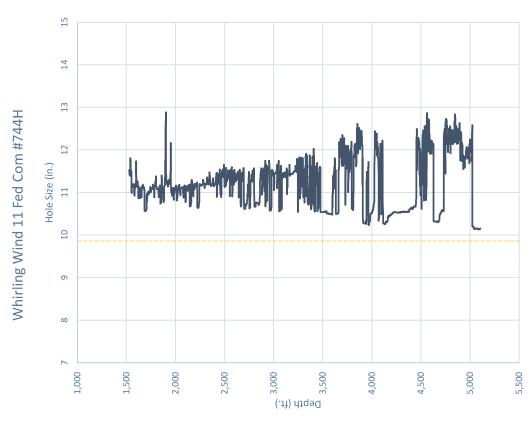


≫60

Caliper Hole Size (12.25")

Average Hole Size

- 12.25" Bit
- 12.76" Hole
- 4.14% diameter increase
- 8.44% area increase
 - 0.44/0 alca IIIClea
- 0.51" Average enlargement 0.52" Median enlargement
- Brine


Caliper Hole Size (9.875")

Average Hole Size

- 9.875" Hole
- 11.21" Hole
- 13.54% diameter increase
- 28.92% area increase
- 1.33" Average enlargement

1.30" Median enlargement

EnerLite

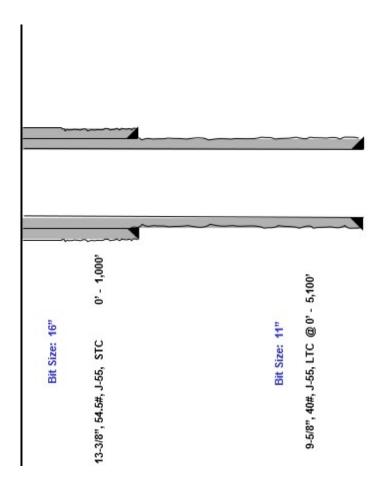
Design A

Proposed 11" Hole with 9.625" 40# J55/HCK55 LTC Casing

11" Bit + 0.52" Average hole enlargement = 11.52" Hole Size

• 0.9475" Clearance to casing OD

$$=\frac{11.52-9.625}{11.52-9.625}$$


• 0.4475" Clearance to coupling OD

$$= \frac{11.52 - 10.625}{3}$$

 0.995" Clearance to coupling OD (~1,200' Previous Shoe - 13.375" 54.5# J55 STC

$$=\frac{12.615-10.625}{2}$$

overlap)

∞

Annular Clearance Variance

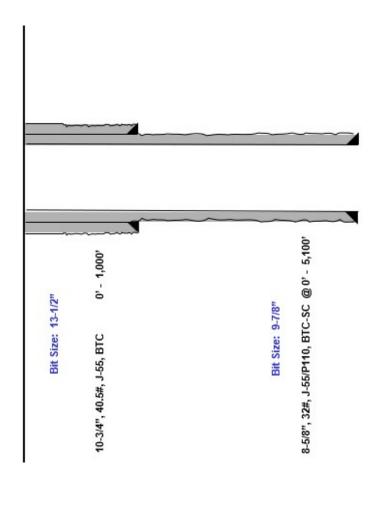
Design B

Proposed 9.875" Hole with 8.625" 32# J55/P110 BTC-SC Casing

9.875" Bit + 0.42" Average hole enlargement = 10.295" Hole Size

• 0.835" Clearance to casing OD

$$= \frac{10.295 - 8.625}{10.295 - 8.625}$$


• 0.585" Clearance to coupling OD

$$=\frac{10.295-9.125}{}$$

Previous Shoe – 10.75" 40.5# J55 STC

0.4625" Clearance to coupling OD (~1,200' overlap)

$$=\frac{10.05-9.125}{2}$$

Seogresources

Index

Casing Spec Sheets

PERFORMANCE DATA

40.00 lbs/ft 9.625 in **Technical Data Sheet** API LTC

K55 HC

Size	9.625	<u>.</u>	Minimum Yield
Nominal Weight	40.00	lbs/ft	Minimum Tensile
Grade	K55 HC		Yield Load
PE Weight	38.94	lbs/ft	Tensile Load
Wall Thickness	0.395	E	Min. Internal Yield Pressure
Nominal ID	8.835	Ē	Collapse Pressure
Drift Diameter	8.750	u	
Nom. Pipe Body Area	11,454	in ²	

55 95 629 1088 3,950

Connection Parameters		
Connection OD	10.625	Œ
Coupling Length	10.500	Ξ
Threads Per Inch	80	tþi
Standoff Thread Turns	3.50	turns
Make-Up Loss	4.750	Ξ
Min. Internal Yield Pressure	3,950	psi

Pipe Body and API Connections Performance Data 13.375 54.50/0.380 J55

					USC WELL
6/8/2015 10:04:37 AM					
Mechanical Properties	Pipe	BTC	רונכ	STC	
Minimum Yreld Strength	55,000	ı	1	ı	psi
Maximum Yield Strength	80,000	1	1	1	isd
Minimum Tensile Strength	75,000	,	1	1	isd
Dimensions	Pipe	BTC	TIC	STC	
Outside Diameter	13.375	14.375	ı	14.375	. <u>u</u> i
Wall Thickness	0.380	1	1	1	, <u>u</u>
Inside Diameter	12.615	12.615	1	12.615	ij.
Standard Drift	12.459	12.459	ï	12.459	Ē
Allemate Drift	ı	ı	ı	ı	ĿĠ
Nominal Linear Weight, T&C	54.50		ı	ι	Il/sdl
Plain End Weight	52.79	1	1	ı	ll/sql
Performance	Pipe	BTC	רונכ	STC	
Minimum Collapse Pressure	1,130	1,130	1	1,130	psi
Minimum Internal Yield Pressure	2,740	2,740	ı	2,740	isd
Minimum Pipe Body Yield Strength	853.00	,	ı	ı	1000 lbs
Joint Strength		606	ı	514	1000 lbs
Reference Length		11,125	ı	6,290	E
Make-Up Data	Pipe	BTC	ונכ	STC	
Make-Up Loss	1	4.81	1	3.50	Ë
Minimum Make-Up Torque	1	1	1	3,860	fl-lbs
Maximum Make-Up Torque		,	ı	6,430	ft-lbs

Annular Clearance Variance

≫60

Casing Spec Sheets

Pipe Body and API Connections Performance Data 10.750 40.50/0.350 J55

PDF

evious List	Metric	
« Back to Previous I	OSC	
		44.06 A

6/8/2015 10:14:05 AM					
Mechanical Properties	Pipe	BTC	TIC	STC	
Minimum Yield Strength	55,000	1	1	1	isd
Maximum Yield Strength	80,000	1	1	ı	isd
Minimum Tensile Strength	75,000	1	1	1	isd
Dimensions	Pipe	втс	TLC	STC	
Outside Diameter	10.750	11.750	-	11.750	ij
Wall Thickness	0.350	-		ı	ï.
Inside Diameter	10.050	10.050	-	10.050	in.
Standard Drift	9.894	9.894		9.894	Ë
Alternale Drift	ı	ı	1	1	ŭ.
Nominal Linear Weight, T&C	40.50	-			lbs/ff
Plain End Weight	38.91	-	-	1	th/sdl
Performance	Pipe	BTC	רונכ	STC	
Minimum Collapse Pressure	1,580	1,580		1,580	psi
Minimum Internal Vield Pressure	3,130	3,130		3,130	isd
Minimum Pipe Body Yield Strength	629.00	ı	1	1	1000 lbs
Joint Strength	1	700	1	420	1000 lbs
Reference Length	ı	11,522	ı	6,915	E
Make-Up Data	Pipe	ВТС	רונכ	STC	
Make-Up Loss	1	4.81	-	3.50	Ë
Minimum Make-Up Torque	I	1	1	3,150	#-lbs
Maximum Make-Up Torque	ı	ı	1	5,250	#-lbs

▼ vallourec	API 5CT, 10th Ed. Connection Data Sheet	n) GRADE * API DRIFT (in) RBW % J55 7.796 87.5	Pipe Body Data (PE)	Geometry	Nominal ID: 7.92 inch	Nominal Area: 9.149 in ²	*Special/Alt. Drift: 7.875 inch	Performance	Pipe Body Yield Strength: 503 kips	Collapse Resistance: 2,530 psi	Internal Yield Pressure: 3,930 psi (API Historical)	API Connection Torque	STC Torque (ft-lbs)	Min: 2,793 Opti: 3,724 Max: 4,655		LTC Torque (ft-lbs)	Min: 3,130 Opti: 4,174 Max: 5,217	DTC Towns (# lbc)	pic loidue (it-ibs)	follow API guidelines regarding positional make up		*Alt. Drift will be used unless API Drift is specified on order.	uit your needs, VAM® premium connections are available up to 100% of pipe body ratings.	ALL INFORMATION IS PROVIDED BY VALUDIEC OR ITS AFFLUETS AT USER'S SOLE BISK, WITHOUT LUBELIT FOR LOSS, DAMAGE OR NUISP RELUTING FROM THE USE THEREOF. A BLO SHALL HAVE SHASS, WHICH WASHARD TO BE RESPONSED TO BE A WINNING THE SHALL OF SHALL HAVE AND A SHALL HAVE A S	UCH LOSSES OR DAMAGES WERE FORESEEABLE OR VALLOUREC OR ITS AFFILIATES WERE ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
		b/ft) WALL (in) 32.00 0.352	ies (PE)	w W	55 ksi	80 ksi	75 ksi		55 ksi	80 ksi	75 ksi	n Data .625"	ance	3,930 psi	372 kips	ance	3,930 psi	417 kips plg OD = 9.125"		3,930 psi	503 kips	*Alt. Drift will be used unle	"If above API connections do not suit your needs, 100% of pipe b	OR ITS AFFILIATES AT USER'S SOLE F LITY OR REPRESENTATION OF ANY KII CURACY OR COMPLETENESS. THE IN MOT BEEN VERIFIED OR TESTED. IN I QUENTIAL LOSS OR DAMAGE (INICLU	RISING, AND WHETHER SUCH LUSSES POSSIBILITY
		O.D. (in) WEIGHT (lb/ft) Nominal: 32 8.625 Plain End: 31	Material Properties (PE)	Pipe	Minimum Yield Strength:	Maximum Yield Strength:	Minimum Tensile Strength:	Coupling	Minimum Yield Strength:	Maximum Yield Strength:	Minimum Tensile Strength:	API Connection Data Coupling OD: 9.625"	STC Performance	STC Internal Pressure:	STC Joint Strength:	LTC Performance	LTC Internal Pressure:	LTC Joint Strength: 417 SC-BTC Performance - Cplg OD =		BTC Internal Pressure:	BTC Joint Strength:		**If above API connect	ALL INFORMATION IS PROVIDED BY VALLOUREC AND ON AN "AS IS" BASIS WITHOUT WARRAN MERCHANNERUN, FINESSE SOR BURDOSE, AC ONLY AND IS BASED ON ESTIMATES THAT HANG INCLORITAL, PLINTINE, EJEMPLARY OR CONSE	ANTICIPATED PROFIT) HOWEVER CAUSED OR AR 2/20/20/21

VALLOUREC STAR 8.625 32# J65 S S2L2 DA 7.875 W/O# SLN # PO# MADE IN USA FT LB

EOG BLANKET CASING DESIGN VARIANCE

EOG respectfully requests the drill plans in the attached document 'EOG Alternate Casing Designs – BLM APPROVED' be added to the COA's for this well. These designs have been approved by the BLM down to the TVDs listed below and will allow EOG to run alternate casing designs for this well if necessary.

The designs and associated details listed are the "worst case scenario" boundaries for design safety factors. Location and lithology have NOT been accounted for in these designs. The specific well details will be based on the APD/Sundry package and the information listed in the COA.

The mud program will not change from the original design for this well. Summary of the mud programs for both shallow and deep targets are listed at the end of this document. If the target is changing, a sundry will be filed to update the casing design and mud/cement programs.

Cement volumes listed in this document are for reference only. The cement volumes for the specific well will be adjusted to ensure cement tops meet BLM requirements as listed in the COA and to allow bradenhead cementing when applicable.

This blanket document only applies to wells with three string designs outside of Potash and Capitan Reef boundaries.

SI	nallow Desig	n Boundary (Conditions	}
	Deepest	Deepest	Max Inc	Max DLS
	MD (ft)	TVD (ft)	(deg)	(°/100usft)
Surface	2030	2030	0	0
Intermediate	7793	5650	40	8
Production	28578	11225	90	25

Shallow Design A

1. CASING PROGRAM

Hole	Interv	al MD	Interva	al TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,030	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,793	0	5,650	9-5/8"	40#	J-55	LTC
6-3/4"	0	28,578	0	11,225	5-1/2"	20#	P110-EC	DWC/C IS MS

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

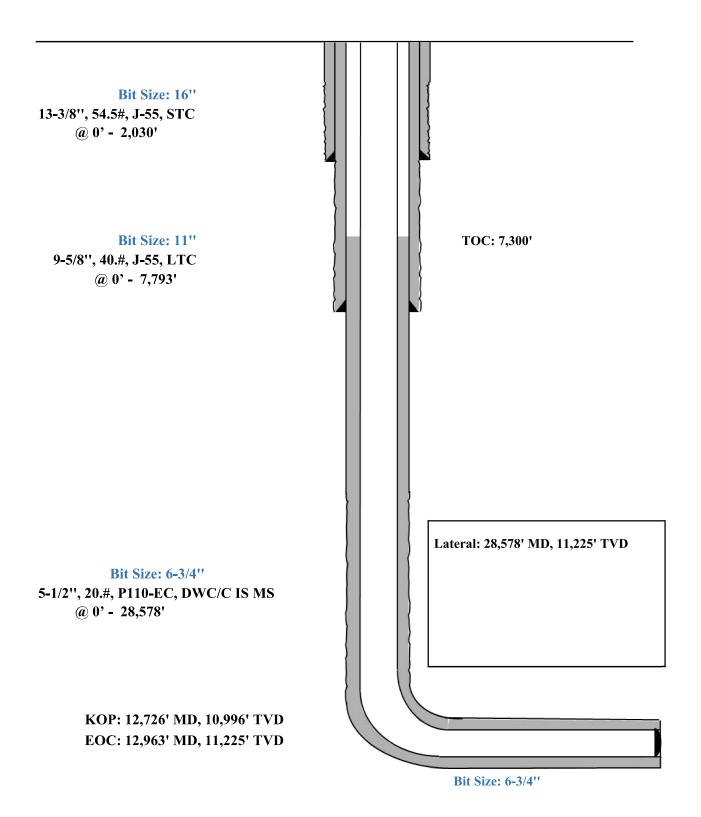
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

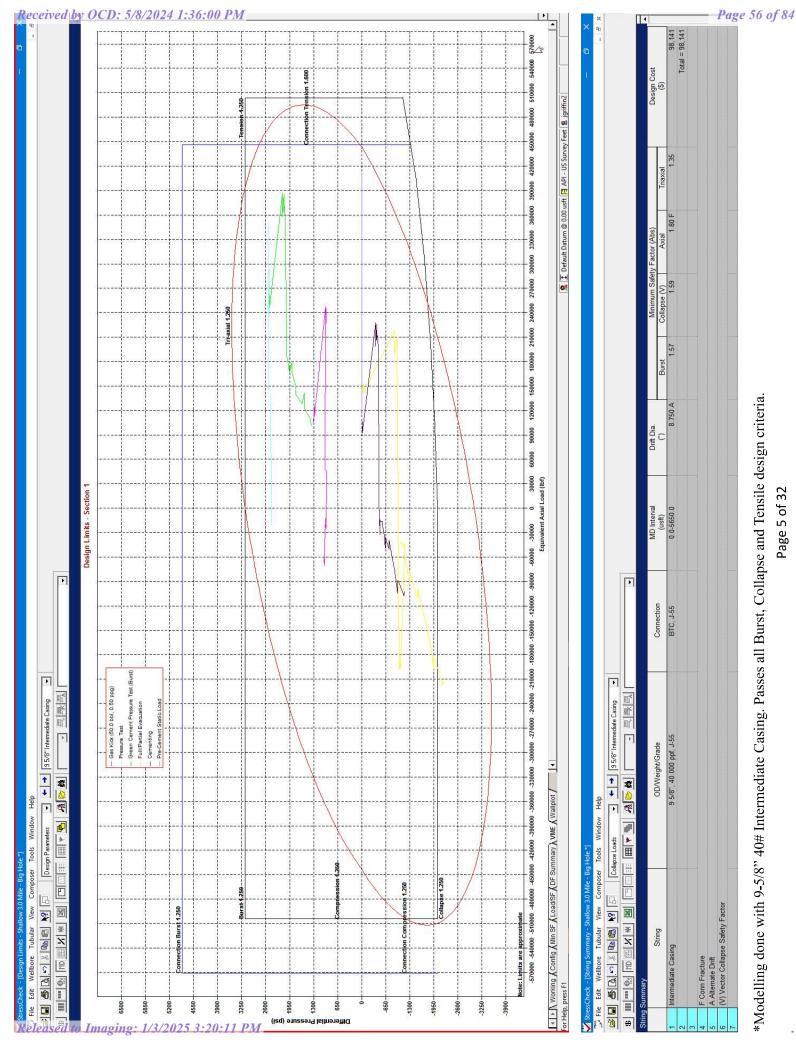
EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

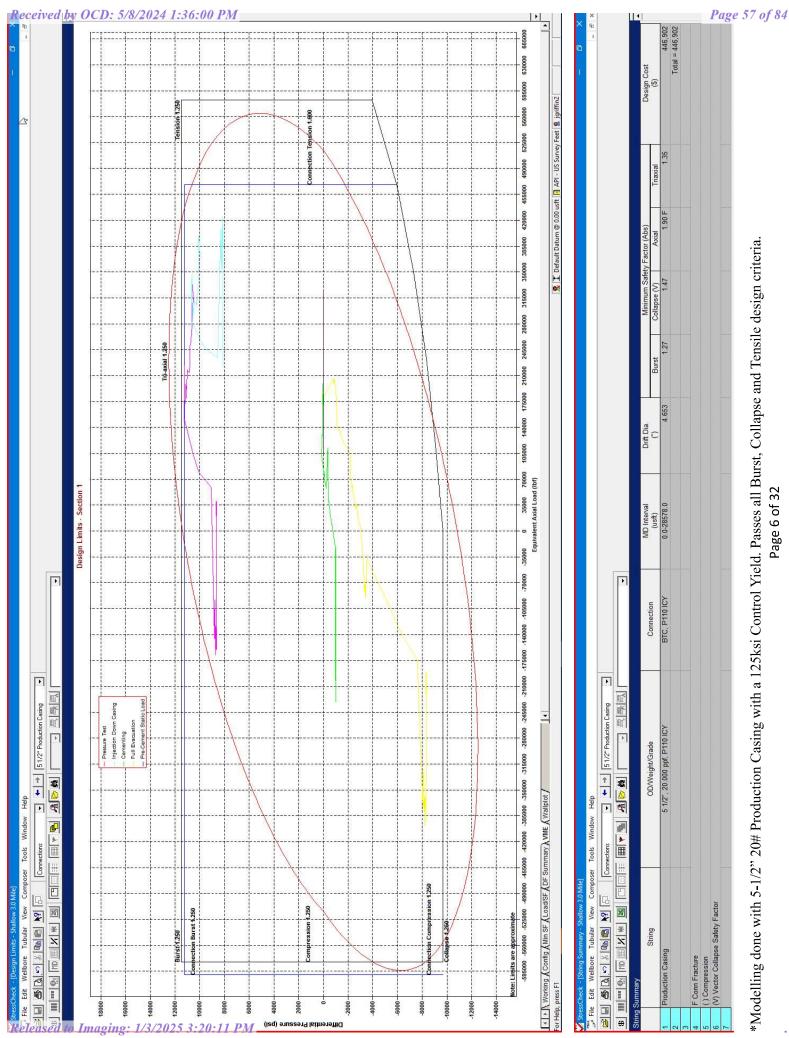
2. **CEMENTING PROGRAM:**


		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidity Description
2,030'	570	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
13-3/8"	160	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
7,793' 9-5/8"	770	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	250	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6238')
28,578' 5-1/2"	410	10.5	3.21	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC @ 7300')
	1110	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ 12730')

Shallow Design A


Proposed Wellbore

KB: 3558' GL: 3533'



this			+	→ 9 5/8" Intermediate Casing	▶ Bu									
Appeniest Appe					-									
According (According) According (According) According (According) According (According) Tenand Feature (According) According	axial Results	Axial	orce (lbf)				Absolute Safeth	Factor			Pressure	(psi)		
Mail No. Mail No.	Depth (MD) (usft)	Apparent (w/Bending)	Actual (w/o Bending)	Equivalent Axial Load (lbf)	Bending Stress at OD (psi)	Triaxial		Collapse (V)	Axial	Temperature (°F)	Internal	External	Addt'l Pickup To Prevent Buck. (lbf)	Buckled Length (usft)
24496 22406 25406 169 159 NA 288 F 71 10 2543 E 24496 12320 25436 25546 169 169 NA 208 F 71 10 2543 E 34166 32240 3526 1572 163 167 NA 208 F 71 10 2543 E 35881 12027 32448 17512 159 167 NA 208 F 88 70 32416 35881 12027 32486 1752 145 157 NA 224 F 90 29 32416 31881 12027 32594 16583 145 157 NA 224 F 90 29 32416 31881 12027 32594 16583 145 157 NA 224 F 90 29 32416 31882 12724 12027 145 157 NA 224 F 90 29 32416 11524 1212 121 127 NA 228 F 91	0		228954	253140	2098.2	1.69	1.58	N/A	2.82 F	70.00	2500.00	00.00	N/A	N/A
24496 1570 3875 1757 156 NA 30 F 1710 24514 1846 1710 24514 1710 24514 1710 24514 1710 24514 1710 24514 1710 24514 1710 24514 1710 24514 1710 24514 1710 24514 1710 24514 1710 24514 1710 24514 1710 24514 1710 24514 24514 1710 24514 24514 24514 1720 1710 2721 272	100		223702	248466	2098.2	1.69	1.58	N/A	2.88 F	71.10	2543.63	43.63		
314565 13966 32253 11671 183 157 NA 2.06 F 88 70 324164 312681 13966 32243 11511 183 157 NA 2.28 F 88 70 324164 312681 13066 323480 15824 151 NA 2.28 F 90.29 300.66 310644 17202 32480 15284 152 NA 2.28 F 90.29 300.66 32046 15202 32480 152 157 NA 2.28 F 90.29 300.66 30166 15202 15202 15202 15202 150.66 300.66 300.66 30166 15202 15202 15202 15202 150.66 300.66	100		223701	235716	386.2	1,71	1.58	N/A	3.04 F	71.10	2543.64	43.64		
319543 13966 34248 15131 154 157 NA 2.2 F 90.29 3304 66 319643 15248 15248 1543 154 157 NA 2.2 F 90.29 3304 66 319643 15227 32446 16284 165 15 15 90.29 3304 66 316643 15227 152964 16589 152 15 90.29 3304 67 317844 15227 15294 16589 15 15 16 90.29 3304 60 317844 15227 15096 152 15 16 90.29 3304 67 317846 1523 16189 15 17 16 16 16 16 16 16 16 16 16 344 344 344 17 344 17 16 16 16 16 16 16 16 16 16 16 16 16 16 16	1700		139667	352253	17627.2	1.53	1.57	N/A	2.09 F	88.70	3241.64	741.64		
318649 132027 38440 1788-5 157 N/A 2.12 9 0.29 3306.06 318649 123024 16204 1.62 1.67 N/A 2.12 9 0.29 3306.06 220468 127243 322476 16204 1.62 1.67 N/A 2.23 F 9 1.30 334.87 37086 12724 320295 16506 1.6204 1.67 N/A 2.26 F 9 1.30 334.87 300560 122772 36066 16504 1.72 N/A 2.26 F 9 1.30 334.87 112244 112633 14566 1776 1.77 N/A 2.26 F 9 1.30 334.87 112714 112633 14566 1776 1.77 N/A 2.26 F 9 1.30 334.87 112740 107866 1756 1.75 1.60 N/A 5.76 F 9 1.30 334.87 11060 1100 1.75 1.76 1.77 1.77 1.77 9 1.2	1700		139666	323488	15131.5	1.58	1.57	N/A	2.28 F	88.70	3241.65	741.65		
31864 12202 12204 16284 144 157 N/A 2.24 F 90.29 334.08 F 31864 172243 322475 16869 1.12 1.57 N/A 2.28 F 91.30 334.08 F 31866 1527 1656 1659 1.57 1.67 N/A 2.28 F 91.30 334.08 F 303660 122773 32475 1659 1.57 N/A 2.28 F 91.30 334.08 F 16524 122773 316965 157 1.67 N/A 2.28 F 91.30 334.08 F 16524 12272 316965 175 1.75 N/A 4.72 F 91.30 334.08 F 16524 12772 1.75 1.75 1.60 N/A 4.72 F 94.32 3466.13 1600 17000 14092 1.75 1.75 1.60 N/A 6.29 F 94.34 87.33 3466.13 11160 17000 14022 1.75 1.75	1850		132027	348440	17885.2	1.51	1.57	NA	2.12 F	90.29	3305.05	805.05		
200466 172243 332476 16690 152 157 NA 2.25 F 91.30 3344 B7 307868 12773 320756 16500 7 152 157 NA 2.26 F 91.30 3344 B7 307869 12777 310566 1650 7 153 157 NA 2.26 F 91.30 3341 B7 153040 11053 16566 1772 175 177 NA 4.27 F 94.35 346613 153040 11063 14456 1756 177 167 NA 6.38 F 94.35 346613 14206 14060 1406 NA 6.38 F 94.35 346613 34613 14056 1420 1756 177 160 NA 6.78 F 94.35 346613 14056 1420 177 160 NA 6.78 F 94.35 346614 14056 1420 177 160 NA 6.44 F 10111 374.23 <td>1850</td> <td></td> <td>132027</td> <td>329984</td> <td>16284.8</td> <td>1.54</td> <td>1.57</td> <td>N/A</td> <td>2.24 F</td> <td>90.29</td> <td>3305.06</td> <td>90'508</td> <td></td> <td></td>	1850		132027	329984	16284.8	1.54	1.57	N/A	2.24 F	90.29	3305.06	90'508		
3/12/202 127743 3/24/76 16500 7 1.63 1.57 NA 2.28 F 9.130 3344.87 3/03/66 122773 3/24/76 16593 1.57 NA 2.28 F 9.130 3344.87 3/03/60 122773 316966 157844 1.57 NA 2.36 F 9.23 3381.89 3/03/60 122773 16568 1756 1.72 1.57 NA 5.36 F 9.43 3466.13 14394 17566 1.72 1.57 NA 5.86 F 9.43 3466.13 14096 14922 1756 1.72 1.60 NA 5.86 F 9.43 3466.13 14096 14922 1756 1.72 1.60 NA 5.86 F 9.43 3466.13 14064 1756 1.72 1.60 NA 5.86 F 9.43 3466.13 14064 1778 1.72 1.60 NA 5.86 F 9.43 3466.13 14064	1950		127243	332475	16869.9	1.52	1.57	N/A	2.23 F	91.30	3344.87	844.87		
307868 122773 302956 16593 165 157 NA 2.26 P 92.23 338189 15124 112633 16566 1774.1 1.57 NA 2.36 P 94.35 338189 15124 112633 16566 172 1.57 NA 4.12 F 94.35 3466 14 14324 11666 172 1.57 NA 6.36 F 94.36 3466 14 127306 10780 14092 1756 G 1.75 1.60 NA 6.36 F 94.94 3489 29 110551 9423 14092 1756 G 1.75 1.60 NA 6.36 F 94.94 3466 14 11076 9423 14092 175 G 1.75 1.60 NA 6.36 F 94.94 3466 14 11076 9423 17600 1.75 1.60 NA 6.36 F 94.94 3466 14 11076 11076 1.71 1.60 NA 6.37 F 10.11 374	1950		127243	324756	16200.7	1.53	1.57	N/A	2.28 F	91.30	3344.87	844.87		
1303560 172772 319566 15784.1 1.53 1.57 N/A 4.72 F 92.2 38189 1303560 172772 15966 1756 1.72 1.57 N/A 4.72 F 94.36 3466.13 112274 112633 144956 1756 1.72 1.57 N/A 6.38 F 94.35 3466.13 129966 1109868 144422 1756 1.72 1.60 N/A 6.38 F 94.34 3469.28 3466.14 129969 1103868 14780 1756 1.75 1.60 N/A 6.78 F 94.34 3469.28 3466.14 110561 34232 119786 96.2 1.75 1.60 N/A 6.78 F 94.34 3469.28 366.14 110566 77783 1152006 1523.4 1.75 1.60 N/A 6.38 F 94.34 346.23 374.23 11056 77783 14328 172 1.61 N/A 1.73 1.61	2050		122773	320295	16159.3	1.52	1.57	NA	2.32 F	92.23	3381.89	881.89		
151294 112633 163668 3375.4 1.71 1.57 N/A 4.77 F 94.35 3466.13 112936 10968 175.6 175.6 1.72 1.57 N/A 5.86 F 94.94 3495.24 12996 109808 14245 175.6 1.75 1.60 N/A 5.68 F 94.94 3492.29 107800 14092 175.6 1.75 1.60 N/A 5.68 F 94.94 3492.29 110561 S 9422 14092 175.6 1.75 1.60 N/A 5.68 F 94.94 3492.29 11061 S 9422 14092 175.6 1.77 1.60 N/A 6.77 F 97.34 3492.29 11064 S 9422 1778 160 N/A 6.44 F 10.11 3734.23 11076 S 1778 160 N/A 173 F 10.11 3734.23 11076 S 14219 6643 177 161 N/A 173 F 10.61	2050		122772	315965	15784.1	1.53	1.57	A/N	2.35 F	92.23	3381.89	881.89		
132/41 11753 144956 172 157 NA 5.38 945 94514 340514 123966 107800 144956 1756 172 157 NA 5.49 F 94.94 349512 123966 107800 140922 1756 1.75 160 NA 6.58 F 94.94 34922 1105515 94231 149782 175 160 NA 6.78 F 97.73 359937 1105516 94231 12986 152 175 160 NA 6.78 F 94.94 34922 110561 94231 12986 152 175 160 NA 6.77 F 94.94 3499.72 11056 77783 123303 28996 1.71 173 160 NA 7.35 F 10.11 3734.23 1456 60887 778 154 17 161 NA 7.35 F 10.11 3734.23 1456 60887 145 161 <td< td=""><td>2300</td><td></td><td>112633</td><td>163658</td><td>3375.4</td><td>1.7</td><td>1.57</td><td>A/A</td><td>4.72 F</td><td>94.35</td><td>3466.13</td><td>966.13</td><td></td><td></td></td<>	2300		112633	163658	3375.4	1.7	1.57	A/A	4.72 F	94.35	3466.13	966.13		
129966 117804 142452 1765 1.75 1.67 NA 5.49 F 94.94 3489.28 129966 107809 1472452 1756 1.75 1.60 NA 6.58 F 94.94 3489.28 105515 9423 119785 985.1 1.75 1.60 NA 6.77 F 97.73 3599.97 111680 9423 12600 1523.4 1.75 1.60 NA 6.77 F 97.73 3599.97 111680 9423 17783 12600 1.77 1.60 NA 6.77 F 97.73 3599.97 111680 9423 17721 1.73 1.60 NA 6.78 F 97.73 3599.97 9478 1778 1.61 NA 1.61 NA 1.74 F 100.11 3742.23 1774 1.721 1.77 1.61 NA 1.61 117.24 116.40 117.74 116.20 117.74 116.70 117.74 117.72 117.72	2300		112633	144956	1/55.6	1.72	1.5/	N/A	5.38 F	94.35	3466.14	966.14		
12/1019 11/1019/20	2370		109858	142452	1755.6	1.72	1.57	Y :	5.49 F	94.94	3489.28	989.28		
105-15 942.22 119/18 963-1 1.75 1.60 NA 6.77 97.73 3599-97 110766 77783 126006 1263.4 1.75 1.60 N/A 6.44 F 01.11 3734.23 110766 77783 146333 2879.6 1.71 1.60 N/A 6.44 F 101.11 3734.23 71565 53302 28906 1544 1.70 1.61 N/A 7.35 F 101.11 3734.23 6087 53302 7904 662.3 1.71 1.61 N/A 7.17 F 106.15 3934.24 4459 4828 67626 1.74 1.61 N/A 1.61 F 1.62 4337.37 2877 4828 67626 3472.0 1.59 1.61 N/A 1.62 1.63 4337.37 2877 4828 67626 3472.0 1.59 1.61 N/A 1.63 1.17.40 4337.37 2870 4534 4534 <t< td=""><td>2370</td><td></td><td>107800</td><td>140922</td><td>1755.6</td><td>1.75</td><td>1.60</td><td>AN:</td><td>5.58 F</td><td>94.94</td><td>3489 29</td><td>1036.40</td><td></td><td></td></t<>	2370		107800	140922	1755.6	1.75	1.60	AN:	5.58 F	94.94	3489 29	1036.40		
117660 74231 126639 1724 1.50 NA 6.44 10111 3734 3744 23 126639 1721 1.60 NA 6.44 10111 3734 3734 23 13333 17121 1.73 1.60 NA 7.33 10111 3734 23 13333 17121 1.73 1.60 NA 7.33 10111 3734 23 1334 17121 1.73 1.61 NA 1.72 1.01 1.22 1.61 1.61 NA 1.61 1.62 3934 24 1.62 1.63	2700		94232	119/85	985.1	1.75	1.60	N/A	6.77 F	97.73	3599.97	1152.35		
1770 1772 1730 1742 1750 1772 1750 1772 1750 1772 1750 1772 1750 1750 1772 1750	2700		34231	126006	1523.4	1.75	1.60	N/A	6.39 F	97.73	3599.97	1752.35		
71565 53302 6906 15944 1.70 1.61 N/A 997 F 106.15 3934.24 60887 53302 7904 662.3 171 1.61 N/A 1172 F 106.16 3934.25 34671 14219 56496 1766 1.61 N/A 20.59 F 114.20 4253.37 44829 67626 3472.0 1.69 1.61 N/A 24.64 F 116.22 4337.37 22013 4828 61775 2108.2 1.61 N/A 24.64 F 116.22 4337.38 22013 33 4530 1.62 1.61 N/A 24.64 F 116.22 4337.38 22013 343 1.62 1.61 N/A 32.30 F 117.40 4380.40 45529 -21311 -2004.3 1.61 N/A (15.31) 122.66 4588.87 Compression -1566.5 1.58 1.62 N/A (15.31) 122.66 4588.87	3100		77783	113334	1712.1	173	160	A/N	7.33 F	101 11	50 PELE	1293.00		
60887 53302 79004 662.3 1.71 1.61 N/A 11.72 F 106.16 3934.25 34671 14219 56496 1786.6 164 1.61 N/A 20.59 F 114.20 4253.37 44995 4828 67826 347.0 1.59 1.61 N/A 16.0 F 116.2 4337.37 22103 34 45340 1926.8 1.61 1/61 N/A 24.64 F 117.40 4380.41 22102 33 45339 1926.8 1.61 1/61 N/A 32.30 F 117.40 4380.41 44532 22310 -1567 1.62 1/61 N/A 32.30 F 117.40 4380.41 A0465 23210 -1567 1.56 1.58 1.62 N/A (15.31) 122.23 4572.11 Compression -1567 1.56 1.56 1.62 N/A (15.31) 122.66 4588.87	3700		53303	89806	1594.4	1.70	1.61	N/A	9.97 F	106.15	3934.24	1502.54		
34671 14219 56496 1786 G 164 161 NA 20.59 F 114 20 4253 37 44596 4828 67626 347.20 159 161 NA 20.59 F 116 22 4337 37 22103 4828 67726 150 161 NA 24.64 F 116 22 4337 38 22103 34 45340 1926 8 161 161 NA 32.30 F 117.40 4380.41 45329 23240 2094.3 1.67 1.62 NA (13.67) 122.23 4572.11 Compression 40465 2.94.3 1.58 1.62 NA (15.31) 122.66 4588.87	3700		53302	79004	662.3	17.1	1.61	N/A	11.72 F	106.16	3934.25	1502.55		
44596 4828 67626 3472 0 1.59 1.61 NA 16 OF 116.32 4337.37 28975 4828 51775 2108.2 1.62 1.61 NA 24.64 F 116.32 4337.38 28975 34 45340 1926.8 1.61 NA 32.30 F 117.40 4380.40 22102 33 45339 1956.8 1.61 1.61 NA 32.30 F 117.40 4380.41 45329 -23210 -15657 1.50 1.62 NA (13.67) 122.23 4572.11 Compression -15667 1.50 1.62 NA (15.31) 122.66 4588.87	4650		14219	56495	1785.6	1.64	1.61	NA	20.59 F	114.20	4253.37	1836.86		
28975 4888 51775 2108.2 161 NA 24.64F 116.22 4387.38 22103 34 45340 1926.8 161 161 NA 32.30F 117.40 4380.40 22102 33 45339 1956.8 161 161 NA 32.30F 117.40 4380.41 45329 -23210 -1567 1506.5 1.67 1.62 N/A (15.31) 122.66 4588.87 Compression Compression Compression Compression Compression Compression Compression Compression	4900		4828	67626	3472.0	1.59	1.61	N/A	16.01 F	116.32	4337.37	1924.87		
22102 34 45340 1926.8 1.61 N/A 32.30 F 117.40 4380.40 22102 2314 2533 1926.8 1.61 N/A 1.67 117.40 4380.41 45329 21341 22086 2094.3 1.57 1.62 N/A (13.67) 122.23 4572.11 Compression Vector Collapse Safety Factor	4900		4828	51775	2108.2	1.62	1.61	N/A	24.64 F	116.32	4337.38	1924.87		
22102 33 45339 1956 8 161 161 NA 32.30 F 117.40 4380.41 445229 -21341 -20805 2094.3 1.57 1.62 N/A (13.67) 122.23 4572.11 Conn Fracture Compression Vector Collapse Safety Factor	5028		34	45340	1926.8	1.61	1.61	NA	32.30 F	117.40	4380.40	1969.94		
45229 -21341 -20805 20943 1.57 1.62 N/A (13.67) 122.23 4572.11 40465 -23210 -15667 1506.5 1.58 1.62 N/A (15.31) 122.66 4588.87 Compression Vector Collapse Safety Factor	5028		33	45339	1926.8	19.1	1.61	N/A	32.30 F	117.40	4380.41	1969.95		
40465 -23210 -15667 1506.5 1.58 1.62 N/A (15.31) 122.66 4588.87 Compression Vector Collapse Safety Factor	9099		-21341	-20805	2094.3	1.57	1.62	N/A	(13.67)	122.23	4572.11	2170.78		
F Com Fracture () Compression (V) Vector Collapse Safety Factor	0595		-23210	-15657	1506.5	1.58	1.62	ΝΆ	(15.31)	122.66	4588.87	2188.34		
() Compression (V) Vector Collapse Safety Factor														
(V) Vector Collapse Safety Factor		Conn Fracture												
inne (Asaec action) and (A)	- 50	Vorter College Sefet	To option											
	(A)	vector collapse date	וא ו מכוטו											
												∠\$	26.	

9-5/8" Intermediate Casing Pressure Test: Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi

*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Shallow Design B

1. CASING PROGRAM

Hole	Interv	al MD	Interva	d TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13-1/2"	0	2,030	0	2,030	10-3/4"	40.5#	J-55	STC
9-7/8"	0	7,793	0	5,650	8-5/8"	32#	J-55	BTC-SC
6-3/4"	0	28,578	0	11,225	5-1/2"	20#	P110-EC	DWC/C IS MS

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

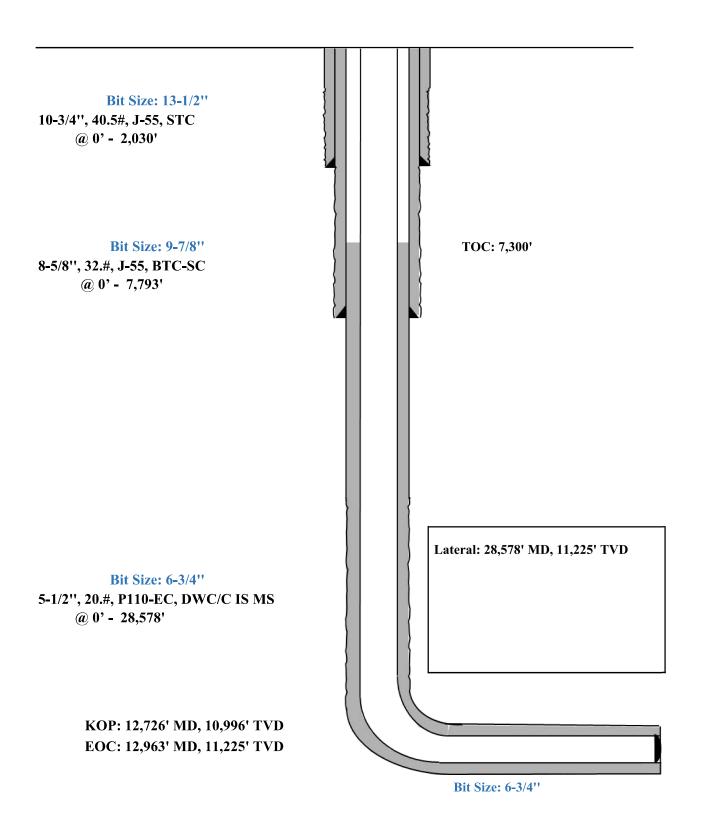
Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

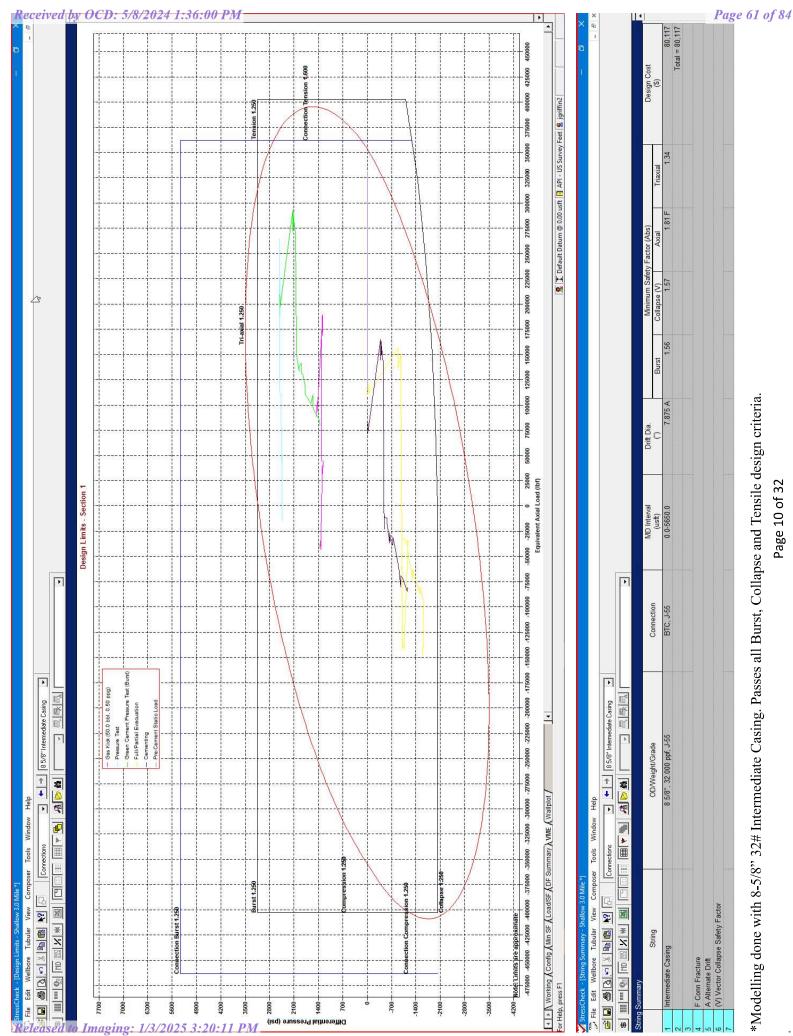
2. CEMENTING PROGRAM:

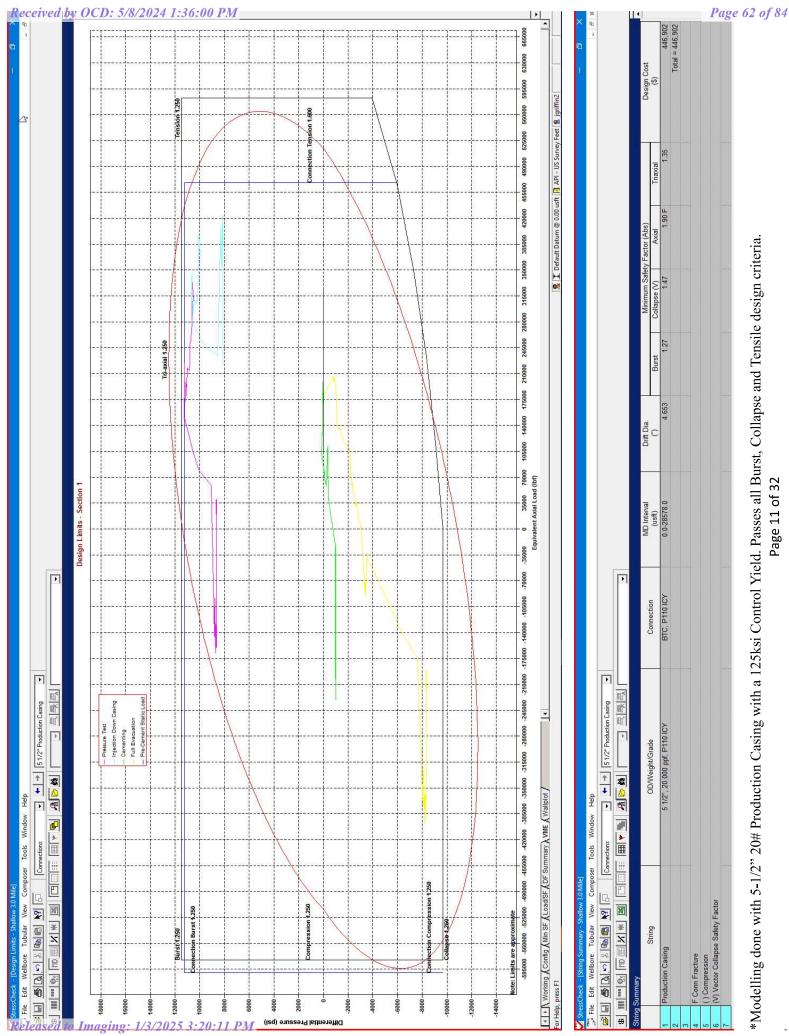

<u></u>		HOING	GIVIII.	
		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidily Description
2,030'	530	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-
10-3/4''				Flake (TOC @ Surface)
	140	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium
				Metasilicate (TOC @ 1830')
7,793'	460	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @
8-5/8''				Surface)
	210	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6238')
28,578'	400	10.5	3.21	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC
5-1/2''				@ 7300')
	1110	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5%
				NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @
				12730')

Shallow Design B

Proposed Wellbore

KB: 3558' GL: 3533'




8-5/8" Intermediate Casing Pressure Test: Internal Profile based off Surface Pressure + Hydrost

internal Profile based off Surface Pressure + Hydrostatic: 4589 psi

External Profile based off Pore Pressure: 2188 psi

*Modelling done with 8-5/8" 32# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Page 11 of 32

Shallow Design C

1. CASING PROGRAM

Hole	Interv	al MD Inter		Interval TVD				
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,030	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,793	0	5,650	9-5/8"	40#	J-55	LTC
7-7/8"	0	28,578	0	11,225	6"	24.5#	P110-EC	VAM Sprint-SF

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

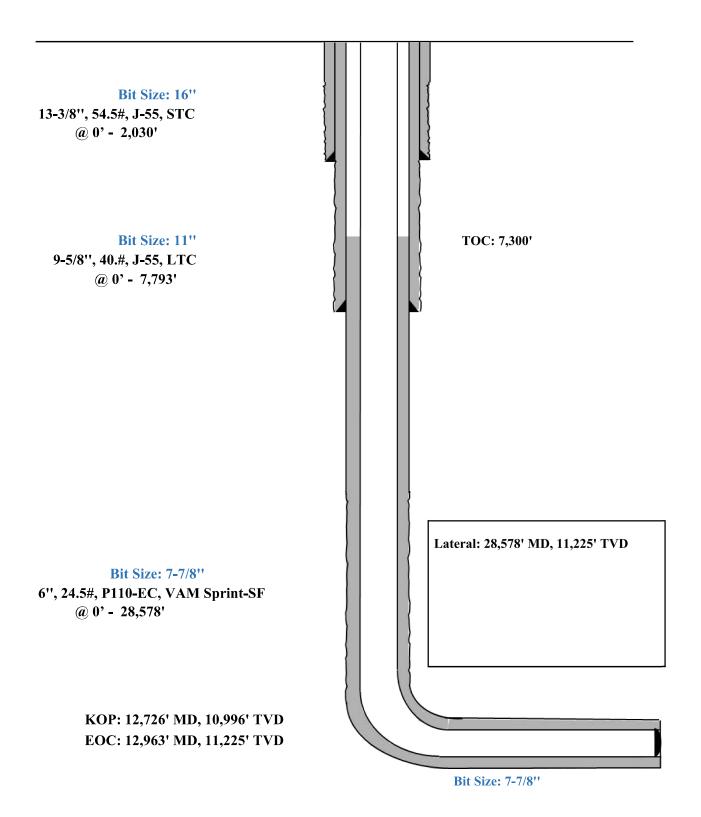
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" casing in the 7-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 7-7/8" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

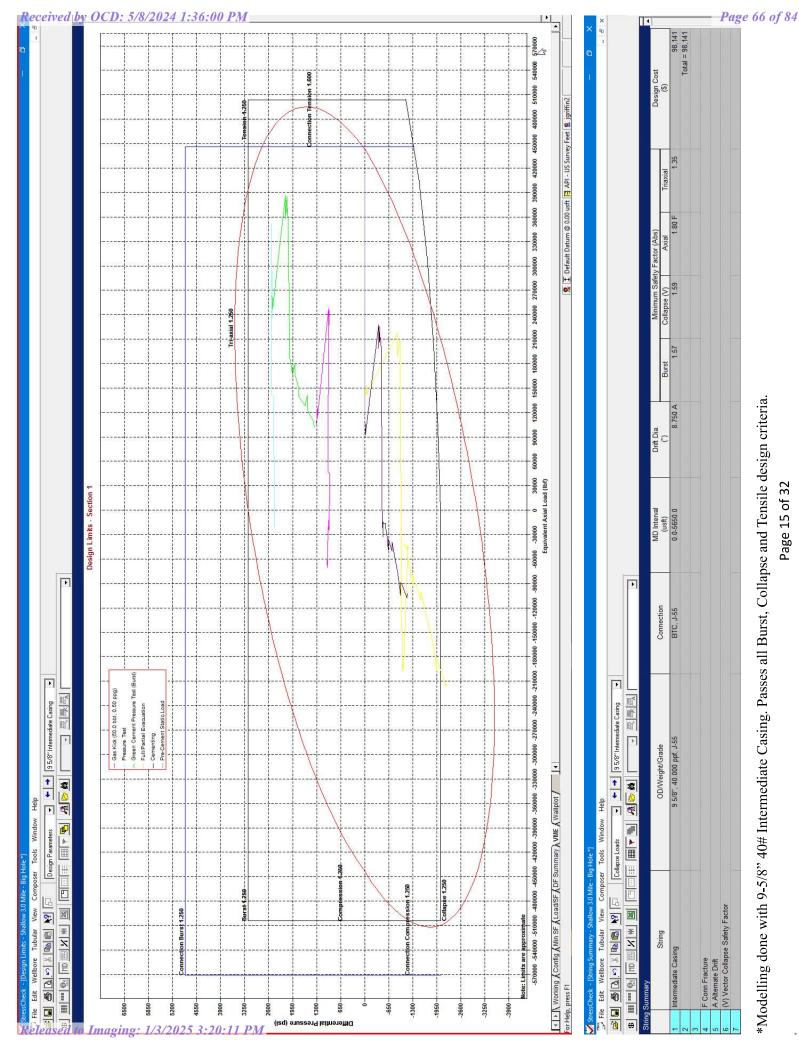
- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

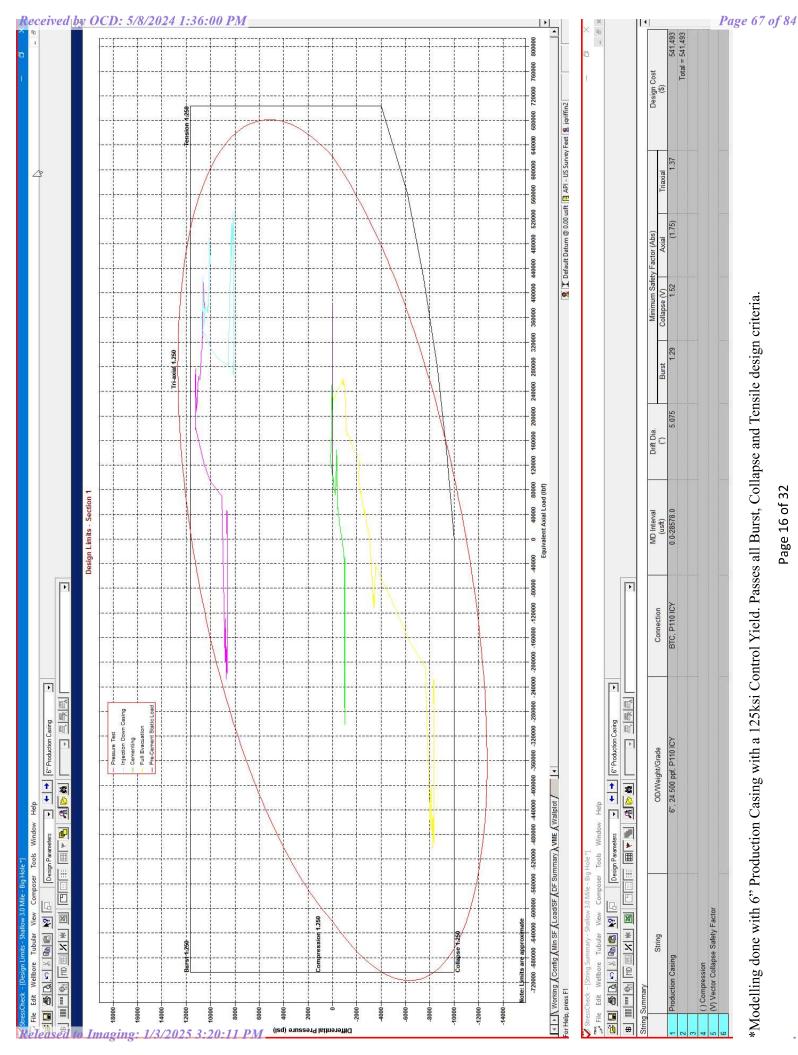
2. CEMENTING PROGRAM:


<u></u>	CEMENTING I ROGRAM.							
		Wt.	Yld	Slurry Description				
Depth	No. Sacks	ppg	Ft3/sk					
2,030'	570	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-				
13-3/8''				Flake (TOC @ Surface)				
	160	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium				
				Metasilicate (TOC @ 1830')				
7,793'	770	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @				
9-5/8''				Surface)				
	250	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6238')				
28,578'	650	10.5	3.21	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC				
6''				@ 7300')				
	1870	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5%				
				NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @				
				12730')				

Shallow Design C

Proposed Wellbore


KB: 3558' GL: 3533'


9-5/8" Intermediate Casing Pressure Test:

nternal Profile based off Surface Pressure + Hydrostatic: 4589 psi

External Profile based off Pore Pressure: 2188 psi

*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

*Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Shallow Design D

4. CASING PROGRAM

Hole	Interval MD		Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,030	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,793	0	5,650	9-5/8"	40#	J-55	LTC
7-7/8"	0	12,626	0	10,896	6"	22.3#	P110-EC	DWC/C IS
6-3/4"	12,626	28,578	10,896	11,225	5-1/2"	20#	P110-EC	DWC/C IS MS

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

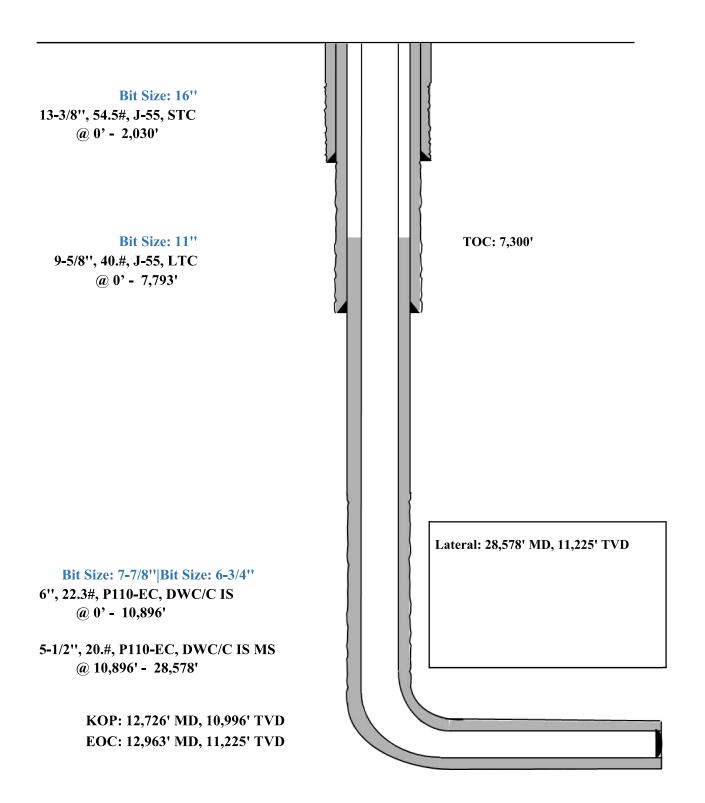
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized in the cement slurry for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

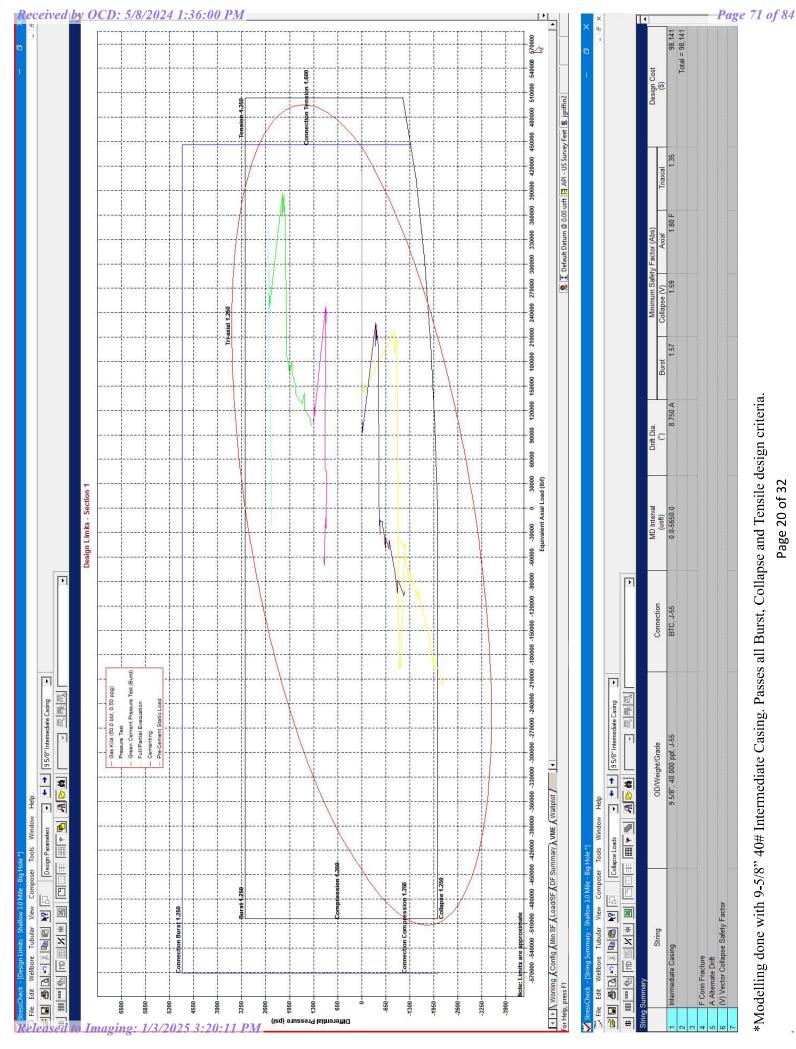
- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

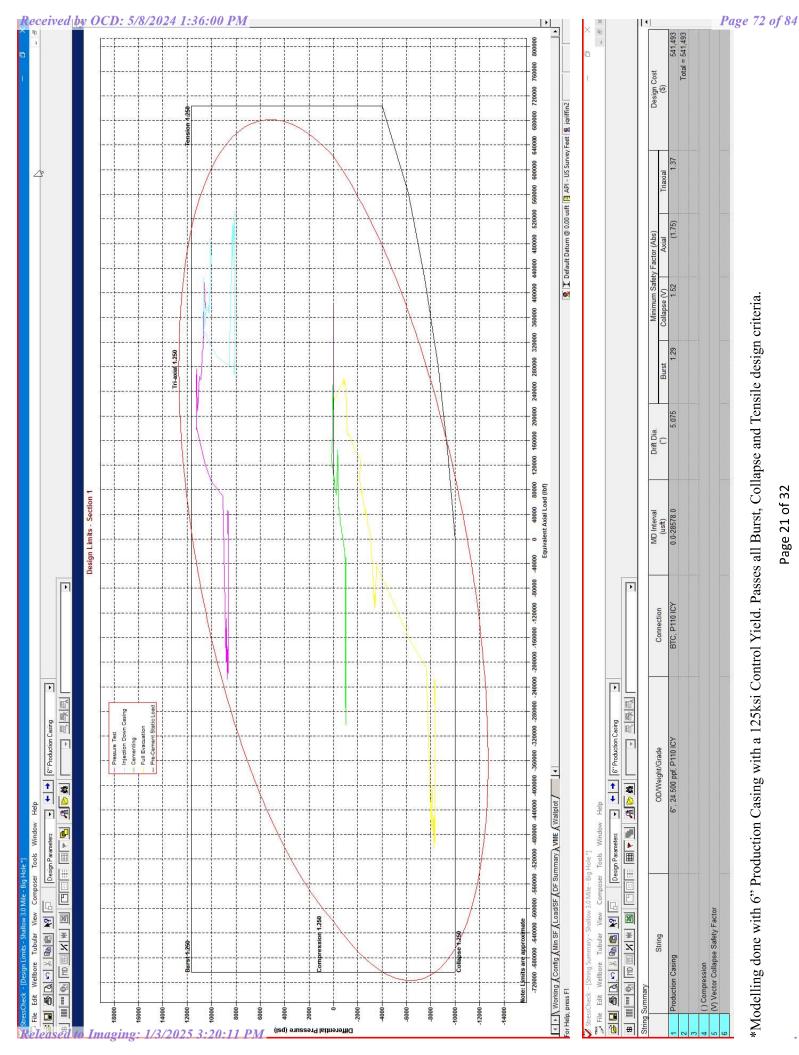
5. CEMENTING PROGRAM:


		Wt.	Yld	Slurry Description	
Depth	No. Sacks	ppg	Ft3/sk	Siulty Description	
2,030' 13-3/8"	570	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)	
	160	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')	
7,793' 9-5/8"	770	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)	
	250	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6238')	
28,578' 6"	650	10.5	3.21	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC @ 7300')	
	1870	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ 12730')	

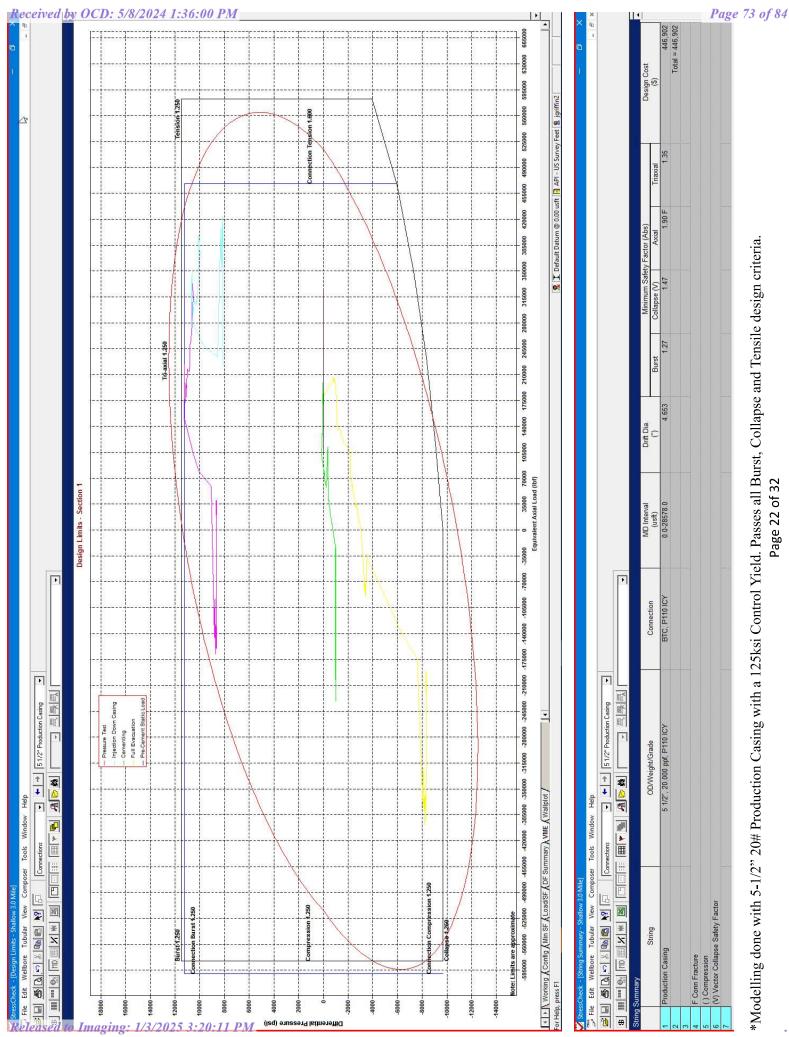
Shallow Design D

Proposed Wellbore


KB: 3558' GL: 3533'


9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi


External Profile based off Pore Pressure: 2188 psi

*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

*Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Page 22 of 32

MUD PROGRAM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal. The applicable depths and properties of the drilling fluid systems are as follows:

Measured Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0 – 2,030'	Fresh - Gel	8.6-8.8	28-34	N/c
2,030' – 7,793'	Brine	9-10.5	28-34	N/c
5,450' – 28,578' Lateral	Oil Base	8.8-9.5	58-68	N/c - 6

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

CEMENTING ADDITIVES:

Additive	Purpose
Bentonite Gel	Lightweight/Lost circulation prevention
Calcium Chloride	Accelerator
Cello-flake	Lost circulation prevention
Sodium Metasilicate	Accelerator
MagOx	Expansive agent
Pre-Mag-M	Expansive agent
Sodium Chloride	Accelerator
FL-62	Fluid loss control
Halad-344	Fluid loss control
Halad-9	Fluid loss control
HR-601	Retarder
Microbond	Expansive Agent

Cement integrity tests will be performed immediately following plug bump.

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

Released to					Received b
Pape Body and API Connections Performance	Data				y OCD: 5.
New Search »					/8/2024 Back to Previous
5 3:20					36:00 DSN
6/3/15 10:04:37 AM					0 P
Mac hantcal Properties	Pipe	BTC	LTC	STC	M
Minimum Yield Strength	55,000	J	j	1	bsi
Maximum Yield Strength	80,000	-	_	-	psi
Minimum Tensile Strength	75,000	1	1	ı	psi
Dimensions	Pipe	BTC) TIC	STC	
Outside Diameter	13.375	14.375	-	14.375	in.
Wall Thickness	0.380	ı	ï	1	in.
Inside Diameter	12.615	12.615	1	12.615	in.
Standard Drift	12.459	12.459	T.	12.459	ï.
Alternate Drift	1	1	1	1	in.
Nominal Linear Weight, T&C	54.50	1	ť	1	lbs/ft
Plain End Weight	52.79	1	ì	1	lbs/ft
Performance	Pipe	ВТС	LTC	STC	
Minimum Collapse Pressure	1,130	1,130	ì	1,130	psi
Minimum Internal Yield Pressure	2,740	2,740	1	2,740	isd
Minimum Pipe Body Yield Strength	853.00	1	1	1	1000 lbs
Joint Strength	ı	606	ı	514	1000 lbs
Reference Length	31	11,125	í.	6,290	u
Маке-Up Data	Pipe	втс	LTC	STC	
Make-Up Loss	1	4.81	i	3.50	Ë
Minimum Make-Up Torque	r	ī	ī	3,860	ft-lbs
Maximum Make-Up Torque	age 24 of 32	1	1	6,430	P sql-u
					Page 75 of 84

Protesses Body and API Connections Performance Displays 40.00/0.395 155	Data				Received by OCT
ing: 1/3/202					: 5/8/2024 10 Previous 15t
5 3:20					:36:0 O DSN
6/8/2015 10:23:27 AM	3-) 	0 P
Mechanical Properties	Pipe	втс	LTC	STC	·M
Minimum Yield Strength	55,000	1	1	1	psi
Maximum Yield Strength	80,000	I	L	ı	psi
Minimum Tensile Strength	75,000	it.	Ĵ	1	psi
Dimensions	Pipe	BTC	LTC	STC	
Outside Diameter	9.625	10.625	10.625	10.625	in.
Wall Thickness	0.395	t	t	-	in.
Inside Diameter	8.835	8.835	8.835	8.835	in.
Standard Drift	8.679	8.679	8.679	8.679	in.
Alternate Drift	8.750	8.750	8.750	8.750	in.
Nominal Linear Weight, T&C	40.00	1	E	-	lbs/ft
Plain End Weight	38.97	=	j	1	lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	2,570	2,570	2,570	2,570	psi
Minimum Internal Yield Pressure	3,950	3,950	3,950	3,950	psi
Minimum Pipe Body Yield Strength	630.00	1	1	1	1000 lbs
Joint Strength	F	714	520	452	1000 lbs
Reference Length	1	11,898	8,665	7,529	ш
Make-Up Data	Pipe	втс	LTC	STC	
Make-Up Loss	1	4.81	4.75	3.38	in.
Minimum Make-Up Torque	003-10-1-1	2.0	3,900	3,390	ff-lbs
Maximum Make-Up Torque	Fage 25 01 52	F	6,500	5,650	Posq _{1-t}
					age 76 of 84

Connection Data Sheet

OD (in.) WEIGHT (lbs./ft.) 5.500 Nominal: 20.00 WALL (in.) 0.361 GRADE VST P110EC **API DRIFT** (in.) 4.653

RBW% 87.5

CONNECTION DWC/C-IS MS

Plain End: 19.83

	PIPE PROPERTIES			CONNECTION PRO	OPERTIES	
Outside Diameter		5.500	in.	Connection Type	Semi-Prem	ium T&C
Inside Diameter		4.778	in.	Connection O.D. (nom)	6.115	in.
Nominal Area		5.828	sq.in.	Connection I.D. (nom)	4.778	in.
Grade Type		API 5CT		Make-Up Loss	4.125	in.
Min. Yield Strength		125	ksi	Coupling Length	9.250	in.
Max. Yield Strength		140	ksi	Critical Cross Section	5.828	sq.in.
Min. Tensile Strength		135	ksi	Tension Efficiency	100.0%	of pipe
Yield Strength		729	klb	Compression Efficiency	100.0%	of pipe
Ultimate Strength		787	klb	Internal Pressure Efficiency	100.0%	of pipe
Min. Internal Yield		14,360	psi	External Pressure Efficiency	100.0%	of pipe
Collapse		12,090	psi			

CONNECTION PERFORMANCES					
Yield Strength	729	klb			
Parting Load	787	klb			
Compression Rating	729	klb			
Min. Internal Yield	14,360	psi			
External Pressure	12,090	psi			
Maximum Uniaxial Bend Rating	104.2	°/100 ft			
Reference String Length w 1.4 Design Factor	26,040	ft			

	FIELD END TORQUE VA	LUES	
b	Min. Make-up torque	16,100	ft.lb
b	Opti. Make-up torque	17,350	ft.lb
b	Max. Make-up torque	18,600	ft.lb
si	Min. Shoulder Torque	1,610	ft.lb
si	Max. Shoulder Torque	12,880	ft.lb
ft	Min. Delta Turn	-	Turns
ft	Max. Delta Turn	0.200	Turns
_	Maximum Operational Torque	21,100	ft.lb
	Maximum Torsional Value (MTV)	23,210	ft.lb

Need Help? Contact: tech.support@vam-usa.com
Reference Drawing: 8136PP Rev.01 & 8136BP Rev.01

Date: 12/03/2019 Time: 06:19:27 PM

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

VAM USA 2107 CityWest Boulevard Suite 1300

Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234

VAM® USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- 2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- 4. DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- 8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torque is not to be exceeded.
- 10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- 11. DWC connections will accommodate API standard drift diameters.
- 12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for

purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

Released to Imaging: 1/3/2025 3:20:11 PM

Pipe Body and API Connections Performance Data

10.750 40.50/0.350 J55

New Search »

.. Back to Previous List

PDF

6/8/2015 10:14:05 AM					
Mechanical Properties	Pipe	BTC	LTC	STC	
Minimum Yield Strength	55,000	Ĭ.	1	t	ISC
Maximum Yield Strength	80,000	ì	ij		isd
Minimum Tensile Strength	75,000	Î.	ı	T)	isd
Dimensions	Pipe	BTC	TIC	STC	
Outside Diameter	10.750	11.750	,	11.750	Ë
Wall Thickness	0.350	ï	i):	Ĕ
Inside Diameter	10.050	10.050	ì	10.050	Ë
Standard Drift	9.894	9.894	ı	9.894	ੂ⊑
Alternate Drift	1	ì	1	1	in.
Nominal Linear Weight, T&C	40.50	ji	1	ij	lbs/ff
Plain End Weight	38.91	1		(8)	lbs/ft
Performance	Pipe	BTC	LTC	STC	
Minimum Collapse Pressure	1,588	1,580	1	1,580	psi
Minimum Internal Yield Pressure	3,130	3,130	ı	3,130	isd
Minimum Pipe Body Vield Strength	629.00	1	.,		1000 lbs
Joint Strength	E	700	ı	420	1000 lbs
Reference Length	1	11,522	ū	6,915	H
Make-Up Data	Ptpe	ВТС	LTC	STC	
Make-Up Loss	1	4.81	ŧ	3.50	in.
Minimum Make-Up Torque	ı	ř		3,150	fl-lbs
Maximum Make-Up Torque	Page <u>2</u> 8 of 32	j	9	5,250	fl-lbs

API 5CT, 10th Ed. Connection Data Sheet

O.D. (in)	WEIGHT	(lb/ft)	WALL (in)	GRADE	*API DRIFT (in)	RBW %
8.625	Nominal: Plain End:	32.00 31.13	0.352	J55	7.796	87.5

Material Properties	(PE)
Pipe	
Minimum Yield Strength:	55 ksi
Maximum Yield Strength:	80 ksi
Minimum Tensile Strength:	75 ksi
Coupling	
Minimum Yield Strength:	55 ksi
Maximum Yield Strength:	80 ksi
Minimum Tensile Strength:	75 ksi

Pipe Body Dat	a (PE)
Geometry	У
Nominal ID:	7.92 inch
Nominal Area:	9.149 in ²
*Special/Alt. Drift:	7.875 inch
Performan	ce
Pipe Body Yield Strength:	503 kips
Collapse Resistance:	2,530 psi
Internal Yield Pressure: (API Historical)	3,930 psi

API Connection		
Coupling OD: 9.0	625"	
STC Performa	nce	
STC Internal Pressure:	3,930	psi
STC Joint Strength:	372	kips
LTC Performa	ınce	
LTC Internal Pressure:	3,930	psi
LTC Joint Strength:	417	kips
SC-BTC Performance - Cp	olg OD =	9.125"
BTC Internal Pressure:	3,930	psi
BTC Joint Strength:	503	kips

	API Connection Torque				
	5	STC Tor	que (ft-lb	s)	
Min:	2,793	Opti:	3,724	Max:	4,655
	l	TC Tor	que (ft-lb	s)	
Min:	3,130	Opti:	4,174	Max:	5,217
		OTC Tou	aa / f t lh	· • \	
	BTC Torque (ft-lbs)				
follow API guidelines regarding positional make up					

*Alt. Drift will be used unless API Drift is specified on order.

**If above API connections do not suit your needs, VAM® premium connections are available up to 100% of pipe body ratings.

ALL INFORMATION IS PROVIDED BY VALLOUREC OR ITS AFFILIATES AT USER'S SOLE RISK, WITHOUT LIABILITY FOR LOSS, DAMAGE OR INJURY RESULTING FROM THE USE THEREOF; AND ON AN "AS IS" BASIS WITHOUT WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR PURPOSE, ACCURACY OR COMPLETENESS. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND IS BASED ON ESTIMATES THAT HAVE NOT BEEN VERIFIED OR TESTED. IN NO EVENT SHALL VALLOUREC OR ITS AFFILIATES BE RESPONSIBLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, EXEMPLARY OR CONSEQUENTIAL LOSS OR DAMAGE (INCLUDING WITHOUT LIMITATION, LOSS OF BARGAIN, LOSS OF REVENUE, PROFIT OR ANTICIPATED PROFIT) HOWEVER CAUSED OR ARISING, AND WHETHER SUCH LOSSES OR DAMAGES WERE FORESEEABLE OR VALLOUREC OR ITS AFFILIATES WERE ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Rev 3, 7/30/2021 POSSIBILITY OF SUCH DAM/AGES. 10/21/2022 15:24

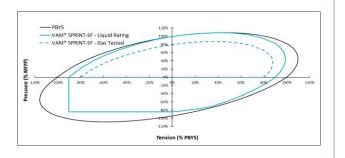
Issued on: 10 Feb. 2021 by Wesley Ott

Connection Data Sheet

OD 6 in. Weight (lb/ft) Nominal: 24.50 Plain End: 23.95 Wall Th. 0.400 in. Grade P110EC

API Drift: 5.075 in.

Connection
VAM® SPRINT-SF


PIPE PROPERTIES				
Nominal OD	6.000	in.		
Nominal ID	5.200	in.		
Nominal Cross Section Area	7.037	sqin.		
Grade Type	Hig	h Yield		
Min. Yield Strength	125	ksi		
Max. Yield Strength	140	ksi		
Min. Ultimate Tensile Strength	135	ksi		

CONNECTION PROPERTIES		
Connection Type	Integral :	Semi-Flush
Connection OD (nom):	6.277	in.
Connection ID (nom):	5.146	in.
Make-Up Loss	5.386	in.
Critical Cross Section	6.417	sqin.
Tension Efficiency	91.0	% of pipe
Compression Efficiency	91.0	% of pipe
Internal Pressure Efficiency	100	% of pipe
External Pressure Efficiency	100	% of pipe

CONNECTION PERFORMANCES			
Tensile Yield Strength	801	klb	
Compression Resistance	801	klb	
Internal Yield Pressure	14,580	psi	
Collapse Resistance	12,500	psi	
Max. Structural Bending	83	°/100ft	
Max. Bending with ISO/API Sealability	30	°/100ft	

TORQUE VALUES		
Min. Make-up torque	21,750	ft.lb
Opt. Make-up torque	24,250	ft.lb
Max. Make-up torque	26,750	ft.lb
Max. Torque with Sealability (MTS)	53,000	ft.lb

VAM® SPRINT-SF is a semi-flush connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections and tight clearance requirements.

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com Do you need help on this product? - Remember no one knows VAM® like VAM®

uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

^{* 87.5%} RBW

DUIC/C-FS"

Connection Data Sheet

 OD (in.)
 WEIGHT (lbs./ft.)
 WALL (in.)
 GRADE
 API DRIFT (in.)
 RBW%
 CONNECTION

 6.000
 Nominal: 22.30
 0.360
 VST P110EC
 5.155
 92.5
 DWC/C-IS

 Plain End: 21.70

PIPE PROPERTIES		
Nominal OD	6.000	in.
Nominal ID	5.280	in.
Nominal Area	6.379	sq.in.
Grade Type	API 5CT	
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Tensile Strength	135	ksi
Yield Strength	797	klb
Ultimate Strength	861	klb
Min. Internal Yield Pressure	13,880	psi
Collapse Pressure	9,800	psi

CONNECTION PERFORMANCES				
Yield Strength	797	klb		
Parting Load	861	klb		
Compression Rating	797	klb		
Min. Internal Yield	13,880	psi		
External Pressure	9,800	psi		
Maximum Uniaxial Bend Rating	47.7	°/100 ft		
Reference String Length w 1.4 Design Factor	25,530	ft.		

Need Help? Contact: <u>tech.support@vam-usa.com</u>
Reference Drawing: 8135PP Rev.02 & 8135BP Rev.02

Date: 07/30/2020 Time: 07:50:47 PM

CONNECTION PRO	PERTIES	
Connection Type	Semi-Prer	nium T&C
Connection OD (nom)	6.650	in.
Connection ID (nom)	5.280	in.
Make-Up Loss	4.313	in.
Coupling Length	9.625	in.
Critical Cross Section	6.379	sq.in.
Tension Efficiency	100.0%	of pipe
Compression Efficiency	100.0%	of pipe
Internal Pressure Efficiency	100.0%	of pipe
External Pressure Efficiency	100.0%	of pipe

FIELD END TORQUE VALUES		
Min. Make-up torque	17,000	ft.lb
Opti. Make-up torque	18,250	ft.lb
Max. Make-up torque	19,500	ft.lb
Min. Shoulder Torque	1,700	ft.lb
Max. Shoulder Torque	13,600	ft.lb
Min. Delta Turn	-	Turns
Max. Delta Turn	0.200	Turns
Maximum Operational Torque	24,200	ft.lb
Maximum Torsional Value (MTV)	26,620	ft.lb

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

VAM USA

2107 CityWest Boulevard Suite 1300

Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234

VAM[®] USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- 2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- 4. DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- 8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torque is not to be exceeded.
- 10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- 11. DWC connections will accommodate API standard drift diameters.
- 12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of base, loss of base, loss of base, loss of base in a filiates was advised of the possibility of such damages.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 342147

CONDITIONS

Operator:	OGRID:
EOG RESOURCES INC	7377
5509 Champions Drive	Action Number:
Midland, TX 79706	342147
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By		Condition Date
pkautz	If cement is not circulated to surface during cementing operations, a Cement Bond Log (CBL) is required.	1/3/2025
pkautz	Cement is required to circulate on both surface and intermediate1 strings of casing.	1/3/2025