Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

4. Property Code

UL - Lot

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

#### State of New Mexico **Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 1 of 85 Form C-101 August 1, 2011

Permit 382001

E/W Line

County

97784

#### APPLICATION FOR PERMIT TO DRILL, RE-ENTER, DEEPEN, PLUGBACK, OR ADD A ZONE 1. Operator Name and Address 2. OGRID Number EOG RESOURCES INC 7377 5509 Champions Drive 3. API Number Midland, TX 79706 30-025-54301 5. Property Name 6. Well No. MAD ADDER 31 STATE COM 336936 101H

N/S Line

Feet From

7. Surface Location Lot Idn Feet From

| 0                                | 31      | 24S      | 33E   |         | 1219      | S        | 2042      | E        | Lea    |
|----------------------------------|---------|----------|-------|---------|-----------|----------|-----------|----------|--------|
| 8. Proposed Bottom Hole Location |         |          |       |         |           |          |           |          |        |
| UL - Lot                         | Section | Township | Range | Lot Idn | Feet From | N/S Line | Feet From | E/W Line | County |
| A                                | 30      | 24S      | 33E   | A       | 100       | Ν        | 1025      | E        | Lea    |
|                                  |         |          |       |         |           |          |           |          |        |

WC-025 G-06 S253201M;UPPER BONE SPR

Section

| Additional Well Information |                    |                                        |                                   |                            |  |  |  |  |
|-----------------------------|--------------------|----------------------------------------|-----------------------------------|----------------------------|--|--|--|--|
| 11. Work Type               | 12. Well Type      | 13. Cable/Rotary                       | 14. Lease Type                    | 15. Ground Level Elevation |  |  |  |  |
| New Well                    | OIL                |                                        | State                             | 3526                       |  |  |  |  |
| 16. Multiple                | 17. Proposed Depth | 18. Formation                          | 19. Contractor                    | 20. Spud Date              |  |  |  |  |
| N                           | 20043              | Upper Bone Spring                      |                                   | 2/15/2025                  |  |  |  |  |
| Depth to Ground water       |                    | Distance from nearest fresh water well | Distance to nearest surface water |                            |  |  |  |  |
|                             |                    |                                        |                                   |                            |  |  |  |  |

9. Pool Information

We will be using a closed-loop system in lieu of lined pits

Township

Range

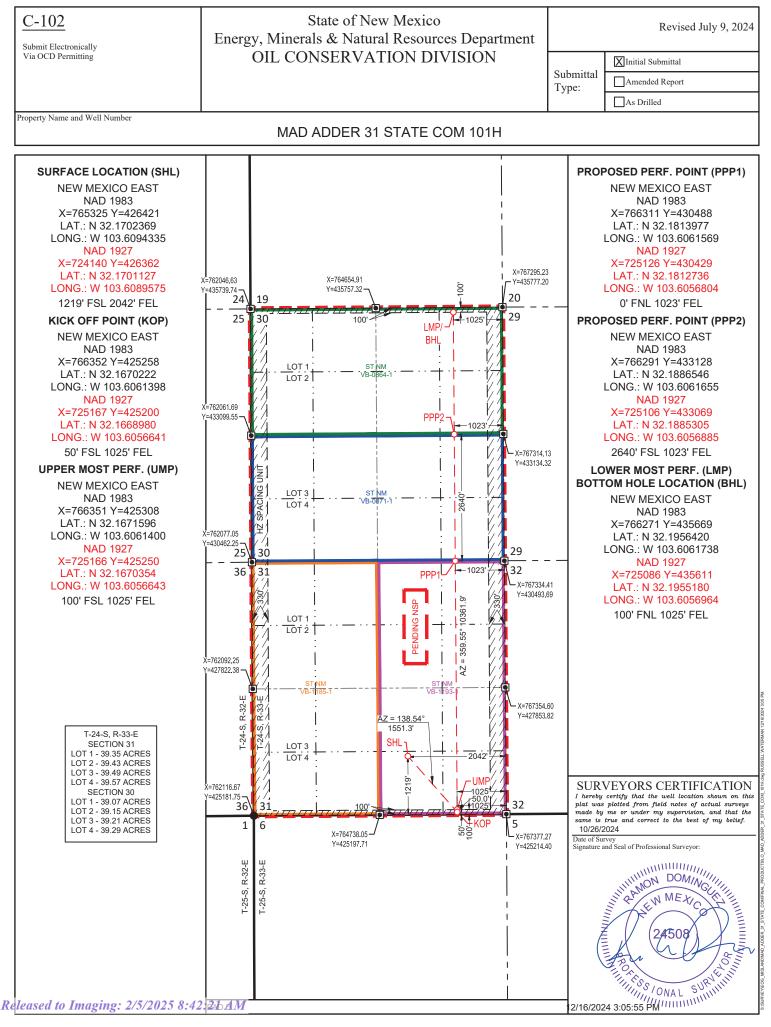
|      | zi. Proposed dasing and dement Program |             |                  |               |                 |               |  |  |  |  |  |
|------|----------------------------------------|-------------|------------------|---------------|-----------------|---------------|--|--|--|--|--|
| Туре | Hole Size                              | Casing Size | Casing Weight/ft | Setting Depth | Sacks of Cement | Estimated TOC |  |  |  |  |  |
| Surf | 13                                     | 10.75       | 40.5             | 1000          | 330             | 0             |  |  |  |  |  |
| Int1 | 9.875                                  | 8.625       | 32               | 5352          | 680             | 0             |  |  |  |  |  |
| Prod | 7.875                                  | 6           | 24.5             | 9259          | 1920            | 4852          |  |  |  |  |  |
| Prod | 6.75                                   | 5.5         | 20               | 20043         | 1920            | 4852          |  |  |  |  |  |

21 Proposed Casing and Coment Program

**Casing/Cement Program: Additional Comments** 

| 22. Proposed Blowout Prevention Program |                  |               |              |  |  |  |  |
|-----------------------------------------|------------------|---------------|--------------|--|--|--|--|
| Туре                                    | Working Pressure | Test Pressure | Manufacturer |  |  |  |  |
| Double Ram                              | 5000             | 3000          |              |  |  |  |  |

| knowledge and b | pelief.                             | true and complete to the best of my NMAC ⊠ and/or 19.15.14.9 (B) NMAC |                | OIL CONS                  | ERVATION DIVISION |
|-----------------|-------------------------------------|-----------------------------------------------------------------------|----------------|---------------------------|-------------------|
| Printed Name:   | Electronically filed by Patricia Do | nald                                                                  | Approved By:   | Matthew Gomez             |                   |
| Title:          | Regulatory Specialist               | Title:                                                                |                |                           |                   |
| Email Address:  | Patricia_Donald@eogresources        | Approved Date:                                                        | 2/5/2025       | Expiration Date: 2/5/2027 |                   |
| Date:           | 1/22/2025                           | Conditions of App                                                     | roval Attached |                           |                   |


Received by OCD: 1/22/2025 2:13:24 PM

Page 2 of 85

| <u>C-102</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                    |               | S                  | State of Nev                                                                                                                   | v Mexico                                                                          |                                |                 | Revise             | ed July 9, 202 |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------|---------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------|-----------------|--------------------|----------------|--------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
| Submit Electronically         Energy, Minerals & Natural           Via OCD Permitting         OIL CONSERVATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                    |               |                    | al Resources Department                                                                                                        |                                                                                   |                                |                 | <u> </u>           |                |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                    |               |                    | ION DIVIS                                                                                                                      | SION                                                                              | Submittal                      |                 |                    |                |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                    |               |                    |                                                                                                                                |                                                                                   |                                | Туре:           | Amended Report     |                |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                    |               |                    |                                                                                                                                |                                                                                   |                                |                 | As Drilled         |                |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
| API Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | W                  | Pool Code     | DCATIO.            | N AND AC                                                                                                                       |                                                                                   | EDICATION                      |                 |                    |                |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
| 30-025-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4301           |                    |               | <del>97964</del> 9 | 7784                                                                                                                           | WC-025                                                                            | 5 G-06 S253201<br>G-07 S243225 | C; LWR B        |                    |                |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 336936         |                    | Property Name |                    | AD ADDER                                                                                                                       | 31 STATE C                                                                        | OM                             |                 |                    | 01H            |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
| OGRID No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7377           |                    | Operator Name |                    | EOG RESO                                                                                                                       | URCES, INC                                                                        | <b>)</b> .                     |                 | Ground Level Eleva | 3526'          |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
| urface Owner: 🗙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | State Fee      | Tribal Federal     |               |                    |                                                                                                                                | Mineral Owner:                                                                    | State Fee Tribal               | Federal         |                    |                |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                    |               |                    | Surface                                                                                                                        | Location                                                                          |                                |                 |                    |                |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
| UL or lot no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Section        | Township           | Range         | Lot Idn            | Feet from the N/S                                                                                                              | Feet from the E/W                                                                 | Latitude                       |                 | Longitude          | County         |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31             | 24-S               | 33-E          | -                  | 1219' S                                                                                                                        | 2042' E                                                                           | N 32.17023                     | 69 W 1          | 03.6094335         | LEA            |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                    |               |                    |                                                                                                                                | le Location                                                                       |                                |                 |                    |                |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
| UL or lot no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Section        | Township           | Range         | Lot Idn            |                                                                                                                                | Feet from the E/W                                                                 | Latitude                       |                 | Longitude          | County         |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30             | 24-S               | 33-E          | -                  | 100' N                                                                                                                         | 1025' E                                                                           | N 32.19564                     | 20 W 1          | 03.6061738         | LEA            |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
| edicated Acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Infill or Def  | ining Well Defin   | ing Well API  |                    |                                                                                                                                | Overlapping Spacing                                                               | r Unit (V/N)                   | Consolida       | ed Code            |                |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
| 1274.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DEFIN          |                    | ing wen mit   |                    |                                                                                                                                | Y C                                                                               |                                |                 |                    |                |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
| der Numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | PENDIN             |               |                    |                                                                                                                                | Well Setbacks are under Common Ownership: Yes No                                  |                                |                 |                    |                |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | I LINDI            |               |                    |                                                                                                                                | 1                                                                                 |                                |                 | -                  |                |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
| UL or lot no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Section        | Township           | Range         | Lot Idn            |                                                                                                                                | Point (KOP)<br>Feet from the E/W                                                  | Latitude                       |                 | Longitude          | County         |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
| P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31             | 24-S               | 33-E          | -                  | 50' S                                                                                                                          | 1025' E                                                                           | N 32.16702                     | 22 1/1          | 03.6061398         | LEA            |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51             | 24-0               | 00-L          | -                  | 00 0                                                                                                                           | 1020 L                                                                            | 11 52.10702                    |                 | 03.0001330         |                |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                    |               |                    |                                                                                                                                | Point (FTP)                                                                       |                                |                 |                    |                |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
| UL or lot no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Section        | Township           | Range         | Lot Idn            | Feet from the N/S                                                                                                              |                                                                                   |                                |                 |                    | County         |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
| Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31             | 24-S               | 33-E          | -                  | 100' S                                                                                                                         | 1025' E                                                                           | N 32.16715                     | 96 W 1          | 03.6061400         | LEA            |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                    |               |                    | Last Take                                                                                                                      | Point (LTP)                                                                       |                                |                 |                    |                |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
| UL or lot no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Section        | Township           | Range         | Lot Idn            |                                                                                                                                | Feet from the E/W                                                                 | Latitude                       |                 | Longitude          | County         |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30             | 24-S               | 33-E          | -                  | 100' N                                                                                                                         | 1025' E                                                                           | N 32.19564                     | 20 W 1          | 03.6061738         | LEA            |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 277.10         | -                  |               | 10                 |                                                                                                                                |                                                                                   | la                             |                 |                    |                |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
| nitized Area or A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Intrest<br>REEMENT | -             | Spacing Unity      |                                                                                                                                | al Vertical                                                                       | Ground I                       | Floor Elevation | 3551'              |                |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                    |               | 1                  |                                                                                                                                |                                                                                   |                                |                 |                    |                |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
| OPERATO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DR CERTI       | FICATION           |               |                    |                                                                                                                                | SURVEYOR                                                                          | RS CERTIFICA                   | ΓΙΟΝ            |                    |                |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
| I hereby certi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | fy that the is | nformation con     |               |                    | complete to the                                                                                                                | I hereby certify that the well location shown on this shat was plotted from field |                                |                 |                    |                |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
| best of my knowledge and belief; and, if the well is a vertical or directional well,<br>that this organization either owns a working interest or unleased mineral interest<br>in the land including the proposed bottom hole location or has a right to drill this<br>well at this location pursuant to a contract with an owner of a working interest<br>or unleased mineral interest, or to a voluniary pooling agreement or a compulsory<br>pooling order heretofore entered by the division.<br>If this well is a horizontal well, I further certify that this organization has<br>received The consent of at least one lessee or owner of a working interest or<br>unleased mineral interest in each tract (in the target pool or formation) in which<br>any part of the well's completed interval will be located or obtained a compulsory<br>pooling order from the division.<br>Kayla McConnell 01/06/25 |                |                    |               |                    | notes of actual surveys made by me or under my supervision, and that the same<br>is true and correct to the best of my belief. |                                                                                   |                                |                 |                    |                |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                    |               |                    |                                                                                                                                |                                                                                   |                                |                 |                    |                |                    | BONNEL SU                                      | Le Contractiones de la con |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                    |               |                    |                                                                                                                                |                                                                                   |                                |                 |                    |                | 12/16/2024 3       | B:05:54 PM//////////////////////////////////// | MILIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                    |               |                    | Signature U<br>KAYLA I                                                                                                         | ACCONI                                                                            | NELL                           | Date            |                    |                | Signature and Seal | of Professional Surveyor                       | Dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                    |               |                    | Print Name                                                                                                                     |                                                                                   |                                |                 |                    |                | Certificate Number | Date of                                        | Survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MCCON          | NELL@E             | OGRESC        | DURCES             | .COM                                                                                                                           |                                                                                   |                                | 10/26/2024      |                    |                |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |
| E-mail Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                    |               |                    |                                                                                                                                | 1                                                                                 |                                |                 |                    |                |                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |

Received by OCD: 1/22/2025 2:13:24 PM

Page 3 of 85



Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

#### State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

PERMIT CONDITIONS OF APPROVAL

| Operator Name and | d Address:                                                                                                                                                                                                                                                              | API Number:                                                       |  |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|
| EOG R             | ESOURCES INC [7377]                                                                                                                                                                                                                                                     | 30-025-54301                                                      |  |  |  |  |
| 5509 C            | hampions Drive                                                                                                                                                                                                                                                          | Well:                                                             |  |  |  |  |
| Midland           | 1, TX 79706                                                                                                                                                                                                                                                             | MAD ADDER 31 STATE COM #101H                                      |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                         |                                                                   |  |  |  |  |
| OCD Reviewer      | Condition                                                                                                                                                                                                                                                               |                                                                   |  |  |  |  |
| matthew.gomez     | A [C-103] Sub. Drilling (C-103N) is required within (10) days of spud.                                                                                                                                                                                                  |                                                                   |  |  |  |  |
| matthew.gomez     | Notify the OCD 24 hours prior to casing & cement.                                                                                                                                                                                                                       |                                                                   |  |  |  |  |
|                   | 2 Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string. |                                                                   |  |  |  |  |
| 0                 | Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation mud, drilling fluids and solids must be contained in a steel closed loop system.                                                                                    | n from the oil or diesel. This includes synthetic oils. Oil based |  |  |  |  |
| matthew.gomez     | Cement is required to circulate on both surface and intermediate1 strings of casing.                                                                                                                                                                                    |                                                                   |  |  |  |  |
| matthew.gomez     | If cement does not circulate on any string, a Cement Bond Log (CBL) is required for that string of cas                                                                                                                                                                  | ing.                                                              |  |  |  |  |
| matthew.gomez     | File As Drilled C-102 and a directional Survey with C-104 completion packet.                                                                                                                                                                                            |                                                                   |  |  |  |  |
| matthew.gomez     | Administrative order required for non-standard spacing unit prior to production.                                                                                                                                                                                        |                                                                   |  |  |  |  |
| matthew.gomez     | Operator is only approved for casing Design A. If another design is needed or any other change, please submit form C-103A to make the changes.                                                                                                                          |                                                                   |  |  |  |  |

Permit 382001

Page 4 of 85

# **S**eog resources

#### **EOG Batch Casing**

#### Pad Name:Mad Adder 31 State Com

SHL: Section 31, Township 24-S, Range 33-E, LEA County, NM

EOG requests for the below wells to be approved for all designs listed in the Blanket Casing Design ('EOG BLM Variance 5a - Alternate Shallow Casing Designs.pdf' OR 'EOG BLM Variance 5b - Alternate Deep Casing Designs.pdf') document. The MDs and TVDs for all intervals are within the boundary conditions. The max inclination and DLS are also within the boundary conditions. The directional plans for the wells are attached separately.

| Well Name                    | API #       | Surface |       | Intermediate |       | Production |        |
|------------------------------|-------------|---------|-------|--------------|-------|------------|--------|
| wen Name                     | AFI#        | MD      | TVD   | MD           | TVD   | MD         | TVD    |
| Mad Adder 31 State Com #101H | 30-025-**** | 1,000   | 1,000 | 5,352        | 5,132 | 20,043     | 9,634  |
| Mad Adder 31 State Com #201H | 30-025-**** | 1,000   | 1,000 | 5,182        | 5,132 | 20,621     | 10,365 |
| Mad Adder 31 State Com #202H | 30-025-**** | 1,000   | 1,000 | 5,162        | 5,132 | 20,600     | 10,365 |
| Mad Adder 31 State Com #211H | 30-025-**** | 1,000   | 1,000 | 5,234        | 5,132 | 20,668     | 10,365 |
| Mad Adder 31 State Com #301H | 30-025-**** | 1,000   | 1,000 | 5,176        | 5,132 | 20,721     | 10,470 |
| Mad Adder 31 State Com #302H | 30-025-**** | 1,000   | 1,000 | 5,152        | 5,132 | 20,696     | 10,470 |
| Mad Adder 31 State Com #401H | 30-025-**** | 1,000   | 1,000 | 5,336        | 5,132 | 21,145     | 10,750 |
| Mad Adder 31 State Com #581H | 30-025-**** | 1,000   | 1,000 | 5,184        | 5,132 | 22,088     | 11,830 |
| Mad Adder 31 State Com #582H | 30-025-**** | 1,000   | 1,000 | 5,338        | 5,132 | 22,227     | 11,830 |
| Mad Adder 31 State Com #583H | 30-025-**** | 1,000   | 1,000 | 5,145        | 5,132 | 22,048     | 11,830 |



#### **EOG Batch Casing**

#### Variances

EOG requests the additional variance(s) in the attached document(s):

- EOG BLM Variance 2a Intermediate Bradenhead Cement
- EOG BLM Variance 3d Production Offline Cement
- EOG BLM Variance 3a\_b BOP Break-test and Offline Intermediate Cement
- EOG BLM Variance 4a Salt Section Annular Clearance
- EOG BLM Variance 5a Alternate Shallow Casing Designs

# **S**eog resources

Page 7 of 85

#### **EOG Batch Casing**

#### **GEOLOGIC NAME OF SURFACE FORMATION:**

Permian

#### ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

| Rustler                | 813'    |
|------------------------|---------|
| Tamarisk Anhydrite     | 975'    |
| Top of Salt            | 1,617'  |
| Base of Salt           | 5,032'  |
| Lamar                  | 5,281'  |
| Bell Canyon            | 5,312'  |
| Cherry Canyon          | 6,321'  |
| Brushy Canyon          | 7,856'  |
| Bone Spring Lime       | 9,427'  |
| Leonard (Avalon) Shale | 9,458'  |
| 1st Bone Spring Sand   | 10,418' |
| 2nd Bone Spring Shale  | 10,634' |
| 2nd Bone Spring Sand   | 11,033' |
| 3rd Bone Spring Carb   | 11,454' |
| 3rd Bone Spring Sand   | 12,028' |
|                        |         |

#### ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

| Upper Permian Sands    | 0-400'  | Fresh Water |
|------------------------|---------|-------------|
| Bell Canyon            | 5,312'  | Oil         |
| Cherry Canyon          | 6,321'  | Oil         |
| Brushy Canyon          | 7,856'  | Oil         |
| Leonard (Avalon) Shale | 9,458'  | Oil         |
| 1st Bone Spring Sand   | 10,418' | Oil         |
| 2nd Bone Spring Shale  | 10,634' | Oil         |
| 2nd Bone Spring Sand   | 11,033' | Oil         |
|                        |         |             |

No other Formations are expected to give up oil, gas or fresh water in measurable quantities. Surface fresh water sands will be protected by setting surface casing at 1,000' and circulating cement back to surface.

| Re | ceived l | bv ( | )CD: | 1/22/202 | <b>25 2:13:2</b> 4 | <i>PM</i> |
|----|----------|------|------|----------|--------------------|-----------|
|----|----------|------|------|----------|--------------------|-----------|

| State of New Mexico                      |            |
|------------------------------------------|------------|
| Energy, Minerals and Natural Resources I | Department |

Submit Electronically Via E-permitting

**Oil Conservation Division** 1220 South St. Francis Dr. Santa Fe, NM 87505

#### NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

#### **Section 1 – Plan Description** Effective May 25, 2021

I. Operator: \_\_\_\_EOG Resources, Inc. \_\_\_\_OGRID: \_\_\_\_7377\_\_\_\_\_Date: 1/21/2025

II. . Other. **Type:** ⊠ Original □ Amendment due to □ 19.15.27.9.D(6)(a) NMAC □ 19.15.27.9.D(6)(b) NMAC □

If Other, please describe:

III. Well(s): Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

| Well Name                   | API | ULSTR        | Footages                 | Anticipated<br>Oil BBL/D | Anticipated<br>Gas MCF/D | Anticipated<br>Produced Water<br>BBL/D |
|-----------------------------|-----|--------------|--------------------------|--------------------------|--------------------------|----------------------------------------|
| MAD ADDER 31 STATE COM 101H |     | O-31-24S-33E | 1219' FSL &<br>2042' FEL | +/- 1000                 | +/- 3500                 | +/- 3000                               |
|                             |     |              |                          |                          |                          |                                        |

IV. Central Delivery Point Name: MAD ADDER 31 STATE COM CTB [See 19.15.27.9(D)(1) NMAC]

V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

|          | Date     | Commencement Date | Back Date | Date     |
|----------|----------|-------------------|-----------|----------|
| 01/30/25 | 03/26/25 | 04/1/25           | 05/1/25   | 05/15/25 |
|          | 01/30/25 |                   |           |          |

VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture.

VII. Operational Practices: 🛛 Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.

VIII. Best Management Practices: Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

#### Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

I Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

#### IX. Anticipated Natural Gas Production:

| Well | API | Anticipated Average<br>Natural Gas Rate MCF/D | Anticipated Volume of Natural<br>Gas for the First Year MCF |
|------|-----|-----------------------------------------------|-------------------------------------------------------------|
|      |     |                                               |                                                             |
|      |     |                                               |                                                             |

#### X. Natural Gas Gathering System (NGGS):

| Operator | System | ULSTR of Tie-in | Anticipated Gathering<br>Start Date | Available Maximum Daily Capacity<br>of System Segment Tie-in |
|----------|--------|-----------------|-------------------------------------|--------------------------------------------------------------|
|          |        |                 |                                     |                                                              |
|          |        |                 |                                     |                                                              |

**XI. Map.**  $\Box$  Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

**XII. Line Capacity.** The natural gas gathering system  $\Box$  will  $\Box$  will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

**XIII.** Line Pressure. Operator  $\Box$  does  $\Box$  does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

□ Attach Operator's plan to manage production in response to the increased line pressure.

**XIV. Confidentiality:**  $\Box$  Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

#### <u>Section 3 - Certifications</u> <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 $\boxtimes$  Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 $\Box$  Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:* 

**Well Shut-In.**  $\Box$  Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

**Venting and Flaring Plan.**  $\Box$  Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (**h**) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

#### Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Kayla McConnell Printed Name: KAYLA MCCONNELL Title: Regulatory Specialist E-mail Address: KAYLA\_MCCONNELL@EOGRESOURCES.COM Date: 01/21/2025 Phone: (432) 265-6804 **OIL CONSERVATION DIVISION** (Only applicable when submitted as a standalone form) Approved By: Title: Approval Date: Conditions of Approval:

#### Natural Gas Management Plan Items VI-VIII

# VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture.

- Separation equipment will be sized to provide adequate separation for anticipated rates.
- Adequate separation relates to retention time for Liquid Liquid separation and velocity for Gas-Liquid separation.
- Collection systems are appropriately sized to handle facility production rates on all (3) phases.
- Ancillary equipment and metering is selected to be serviced without flow interruptions or the need to release gas from the well.

## VII. Operational Practices: Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F 19.15.27.8 NMAC.

#### Drilling Operations

- All flare stacks will be properly sized. The flare stacks will be located at a minimum 100' from the nearest surface hole location on the pad.
- All natural gas produced during drilling operations will be flared, unless there is an equipment malfunction and/or to avoid risk of an immediate and substantial adverse impact on safety and the environment, at which point the gas will be vented.

#### Completions/Recompletions Operations

- New wells will not be flowed back until they are connected to a properly sized gathering system.
- The facility will be built/sized for maximum anticipated flowrates and pressures to minimize waste.
- For flowback operations, multiple stages of separation will be used as well as excess VRU and blowers to make sure waste is minimized off the storage tanks and facility.
- During initial flowback, the well stream will be routed to separation equipment.
- At an existing facility, when necessary, post separation natural gas will be flared until it meets pipeline specifications, at which point it will be turned into a collection system.
- At a new facility, post separation natural gas will be vented until storage tanks can safely function, at which point it will be flared until it meets pipeline spec.

#### Production Operations

- Weekly AVOs will be performed on all facilities.
- All flares will be equipped with auto-ignition systems and continuous pilot operations.
- After a well is stabilized from liquid unloading, the well will be turned back into the collection system.
- All plunger lift systems will be optimized to limit the amount of waste.
- All tanks will have automatic gauging equipment installed.
- Leaking thief hatches found during AVOs will be cleaned and properly re-sealed.

#### Performance Standards

- Production equipment will be designed to handle maximum anticipated rates and pressure.
- All flared gas will be combusted in a flare stack that is properly sized and designed to ensure proper combustion.
- Weekly AVOs will be performed on all wells and facilities that produce more than 60 Mcfd.

#### Measurement & Estimation

- All volume that is flared and vented that is not measured will be estimated.
- All measurement equipment for flared volumes will conform to API 14.10.
- No meter bypasses with be installed.

• When metering is not practical due to low pressure/low rate, the vented or flared volume will be estimated.

#### <u>VIII. Best Management Practices: Attach a complete description of Operator's best management practices to minimize</u> venting during active and planned maintenance.

- During downhole well maintenance, EOG will use best management practices to vent as minimally as possible.
- Prior to the commencement of any maintenance, the tank or vessel will be isolated from the rest of the facilities.
  All valves upstream of the equipment will be closed and isolated.
- After equipment has been isolated, the equipment will be blown down to as low a pressure as possible into the collection system.
- If the equipment being maintained cannot be relieved into the collection system, it shall be released to a tank where the vapor can either be captured or combusted if possible.
- After downhole well maintenance, natural gas will be flared until it reaches pipeline specification.



## Midland

Lea County, NM (NAD 83 NME) Mad Adder 31 State Com #101H

OH

Plan: Plan #0.1 RT

## **Standard Planning Report**

06 January, 2025



| Ceogre                                                                      |                                                                                  |                      |                                       |                                                                                   |                                  |                                                                            |                                       |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------|---------------------------------------|-----------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------|---------------------------------------|
| Database:<br>Company:<br>Project:<br>Site:<br>Well:<br>Wellbore:<br>Design: | PEDMB<br>Midland<br>Lea County, N<br>Mad Adder 31<br>#101H<br>OH<br>Plan #0.1 RT |                      | ME)                                   | Local Co-ordin<br>TVD Reference<br>MD Reference<br>North Referen<br>Survey Calcul | :<br>ce:                         | Well #101H<br>kb = 26' @ 3552<br>kb = 26' @ 3552<br>Grid<br>Minimum Curvat | .0usft                                |
| Project                                                                     | Lea County, N                                                                    | M (NAD 83 NM         | 1E)                                   |                                                                                   |                                  |                                                                            |                                       |
| Geo Datum:                                                                  | US State Plane<br>North American I<br>New Mexico Eas                             | Datum 1983           |                                       | System Datum:                                                                     |                                  | Mean Sea Level                                                             |                                       |
| Site                                                                        | Mad Adder 31                                                                     | State Com            |                                       |                                                                                   |                                  |                                                                            |                                       |
| Site Position:<br>From:<br>Position Uncertainty:                            | Мар                                                                              | 0.0 usft             | Northing:<br>Easting:<br>Slot Radius: | 426,421.<br>765,325.<br>13-3/                                                     | 00 usft Longitue                 |                                                                            | 32° 10' 12.858 N<br>103° 36' 33.958 W |
| Well                                                                        | #101H                                                                            |                      |                                       |                                                                                   |                                  |                                                                            |                                       |
| Well Position                                                               | +N/-S<br>+E/-W                                                                   | 0.0 usft<br>0.0 usft | Northing:<br>Easting:                 |                                                                                   | 26,421.00 usft<br>65,325.00 usft | Latitude:<br>Longitude:                                                    | 32° 10' 12.858 N<br>103° 36' 33.958 W |
| Position Uncertainty<br>Grid Convergence:                                   |                                                                                  | 0.0 usft<br>0.39 °   | Wellhead Elev                         | vation:                                                                           | usft                             | Ground Level:                                                              | 3,526.0 usft                          |
| Wellbore                                                                    | ОН                                                                               |                      |                                       |                                                                                   |                                  |                                                                            |                                       |
| Magnetics                                                                   | Model Nan                                                                        | ne                   | Sample Date                           | Declination<br>(°)                                                                |                                  | Dip Angle<br>(°)                                                           | Field Strength<br>(nT)                |
|                                                                             | IGR                                                                              | F2020                | 1/6/2025                              |                                                                                   | 6.14                             | 59.72                                                                      | 47,086.39292720                       |
| Design                                                                      | Plan #0.1 RT                                                                     |                      |                                       |                                                                                   |                                  |                                                                            |                                       |
| Audit Notes:                                                                |                                                                                  |                      |                                       |                                                                                   |                                  |                                                                            |                                       |
| Version:                                                                    |                                                                                  |                      | Phase:                                | PLAN                                                                              | Tie On Dept                      | h:                                                                         | 0.0                                   |
| Vertical Section:                                                           |                                                                                  | (u                   | rom (TVD)<br>Isft)                    | +N/-S<br>(usft)                                                                   | +E/-W<br>(usft)                  |                                                                            | ection<br>(°)                         |
|                                                                             |                                                                                  | (                    | 0.0                                   | 0.0                                                                               | 0.0                              | 5                                                                          | .84                                   |
| Plan Survey Tool Pro                                                        | gram                                                                             | Date 1/6/20          | )25                                   |                                                                                   |                                  |                                                                            |                                       |
| Depth From<br>(usft)                                                        | Depth To<br>(usft) \$                                                            | Survey (Wellbo       | ore)                                  | Tool Name                                                                         | Rema                             | rks                                                                        |                                       |
| 1 0.0                                                                       | 20,042.6 F                                                                       | Plan #0.1 RT ((      | OH)                                   | EOG MWD+IFR1<br>MWD + IFR1                                                        |                                  |                                                                            |                                       |
|                                                                             |                                                                                  |                      |                                       |                                                                                   |                                  |                                                                            |                                       |



| Database: | PEDMB                       | Local Co-ordinate Reference: | Well #101H            |
|-----------|-----------------------------|------------------------------|-----------------------|
| Company:  | Midland                     | TVD Reference:               | kb = 26' @ 3552.0usft |
| Project:  | Lea County, NM (NAD 83 NME) | MD Reference:                | kb = 26' @ 3552.0usft |
| Site:     | Mad Adder 31 State Com      | North Reference:             | Grid                  |
| Well:     | #101H                       | Survey Calculation Method:   | Minimum Curvature     |
| Wellbore: | ОН                          |                              |                       |
| Design:   | Plan #0.1 RT                |                              |                       |

Plan Sections

| Measured |             |         | Vertical |          |         | Dogleg      | Build       | Turn        |        |                     |
|----------|-------------|---------|----------|----------|---------|-------------|-------------|-------------|--------|---------------------|
| Depth    | Inclination | Azimuth | Depth    | +N/-S    | +E/-W   | Rate        | Rate        | Rate        | TFO    |                     |
| (usft)   | (°)         | (°)     | (usft)   | (usft)   | (usft)  | (°/100usft) | (°/100usft) | (°/100usft) | (°)    | Target              |
| 0.0      | 0.00        | 0.00    | 0.0      | 0.0      | 0.0     | 0.00        | 0.00        | 0.00        | 0.00   |                     |
| 1,500.0  | 0.00        | 0.00    | 1,500.0  | 0.0      | 0.0     | 0.00        | 0.00        | 0.00        | 0.00   |                     |
| 2,277.8  | 15.56       | 138.55  | 2,268.3  | -78.7    | 69.5    | 2.00        | 2.00        | 0.00        | 138.55 |                     |
| 7,280.5  | 15.56       | 138.55  | 7,087.7  | -1,084.3 | 957.5   | 0.00        | 0.00        | 0.00        | 0.00   |                     |
| 8,058.3  | 0.00        | 0.00    | 7,856.0  | -1,163.0 | 1,027.0 | 2.00        | -2.00       | 0.00        | 180.00 |                     |
| 9,358.8  | 0.00        | 0.00    | 9,156.5  | -1,163.0 | 1,027.0 | 0.00        | 0.00        | 0.00        | 0.00   | KOP(Mad Adder 31 S  |
| 9,579.3  | 26.46       | 358.85  | 9,369.2  | -1,113.0 | 1,026.0 | 12.00       | 12.00       | -0.52       | 358.85 | FTP(Mad Adder 31 S  |
| 10,108.8 | 90.00       | 359.58  | 9,633.9  | -685.6   | 1,021.2 | 12.00       | 12.00       | 0.14        | 0.81   |                     |
| 14,861.5 | 90.00       | 359.58  | 9,634.0  | 4,067.0  | 986.0   | 0.00        | 0.00        | 0.00        | 0.00   | Fed Perf 1(Mad Adde |
| 17,501.5 | 90.00       | 359.56  | 9,634.0  | 6,707.0  | 966.0   | 0.00        | 0.00        | 0.00        | -84.16 | Fed Perf 2(Mad Adde |
| 20,042.6 | 90.00       | 359.54  | 9,634.0  | 9,248.0  | 946.0   | 0.00        | 0.00        | 0.00        | -98.38 | PBHL(Mad Adder 31   |



| Database: | PEDMB                       | Local Co-ordinate Reference: | Well #101H            |
|-----------|-----------------------------|------------------------------|-----------------------|
| Company:  | Midland                     | TVD Reference:               | kb = 26' @ 3552.0usft |
| Project:  | Lea County, NM (NAD 83 NME) | MD Reference:                | kb = 26' @ 3552.0usft |
| Site:     | Mad Adder 31 State Com      | North Reference:             | Grid                  |
| Well:     | #101H                       | Survey Calculation Method:   | Minimum Curvature     |
| Wellbore: | ОН                          | -                            |                       |
| Design:   | Plan #0.1 RT                |                              |                       |

Planned Survey

| Measured<br>Depth<br>(usft) | Inclination<br>(°) | Azimuth<br>(°) | Vertical<br>Depth<br>(usft) | +N/-S<br>(usft) | +E/-W<br>(usft) | Vertical<br>Section<br>(usft) | Dogleg<br>Rate<br>(°/100usft) | Build<br>Rate<br>(°/100usft) | Turn<br>Rate<br>(°/100usft) |
|-----------------------------|--------------------|----------------|-----------------------------|-----------------|-----------------|-------------------------------|-------------------------------|------------------------------|-----------------------------|
| 0.0                         | 0.00               | 0.00           | 0.0                         | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
| 100.0                       | 0.00               | 0.00           | 100.0                       | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
| 200.0                       | 0.00               | 0.00           | 200.0                       | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
| 300.0                       | 0.00               | 0.00           | 300.0                       | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
| 400.0                       | 0.00               | 0.00           | 400.0                       | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
| 500.0                       | 0.00               | 0.00           | 500.0                       | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
| 600.0                       | 0.00               | 0.00           | 600.0                       | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
| 700.0                       | 0.00               | 0.00           | 700.0                       | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
| 800.0                       | 0.00               | 0.00           | 800.0                       | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
| 900.0                       | 0.00               | 0.00           | 900.0                       | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
|                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 1,000.0                     | 0.00               | 0.00           | 1,000.0                     | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
| 1,100.0                     | 0.00               | 0.00           | 1,100.0                     | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
| 1,200.0                     | 0.00               | 0.00           | 1,200.0                     | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
| 1,300.0                     | 0.00               | 0.00           | 1,300.0                     | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
| 1,400.0                     | 0.00               | 0.00           | 1,400.0                     | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
| 1,500.0                     | 0.00               | 0.00           | 1,500.0                     | 0.0             | 0.0             | 0.0                           | 0.00                          | 0.00                         | 0.00                        |
| 1,600.0                     | 2.00               | 138.55         | 1,600.0                     | -1.3            | 1.2             | -1.2                          | 2.00                          | 2.00                         | 0.00                        |
| 1,700.0                     | 4.00               | 138.55         | 1,699.8                     | -5.2            | 4.6             | -4.7                          | 2.00                          | 2.00                         | 0.00                        |
| 1,800.0                     | 6.00               | 138.55         | 1,799.5                     | -11.8           | 10.4            | -10.6                         | 2.00                          | 2.00                         | 0.00                        |
| 1,900.0                     | 8.00               | 138.55         | 1,898.7                     | -20.9           | 18.5            | -18.9                         | 2.00                          | 2.00                         | 0.00                        |
| 2,000.0                     | 10.00              | 138.55         | 1,997.5                     | -32.6           | 28.8            | -29.5                         | 2.00                          | 2.00                         | 0.00                        |
| 2,100.0                     | 12.00              | 138.55         | 2,095.6                     | -46.9           | 41.4            | -42.5                         | 2.00                          | 2.00                         | 0.00                        |
| 2,200.0                     | 14.00              | 138.55         | 2,193.1                     | -63.8           | 56.3            | -57.7                         | 2.00                          | 2.00                         | 0.00                        |
| 2,277.8                     | 15.56              | 138.55         | 2,268.3                     | -78.7           | 69.5            | -71.2                         | 2.00                          | 2.00                         | 0.00                        |
| 2,300.0                     | 15.56              | 138.55         | 2,289.7                     | -83.1           | 73.4            | -75.2                         | 0.00                          | 0.00                         | 0.00                        |
| 2,400.0                     | 15.56              | 138.55         | 2,386.0                     | -103.2          | 91.2            | -93.4                         | 0.00                          | 0.00                         | 0.00                        |
| 2,500.0                     | 15.56              | 138.55         | 2,482.3                     | -123.3          | 108.9           | -111.6                        | 0.00                          | 0.00                         | 0.00                        |
| 2,600.0                     | 15.56              | 138.55         | 2,578.7                     | -143.4          | 126.7           | -129.8                        | 0.00                          | 0.00                         | 0.00                        |
| 2,700.0                     | 15.56              | 138.55         | 2,675.0                     | -163.5          | 144.4           | -148.0                        | 0.00                          | 0.00                         | 0.00                        |
| 2,800.0                     | 15.56              | 138.55         | 2,771.3                     | -183.6          | 162.2           | -166.2                        | 0.00                          | 0.00                         | 0.00                        |
| 2,900.0                     | 15.56              | 138.55         | 2,867.7                     | -203.7          | 179.9           | -184.4                        | 0.00                          | 0.00                         | 0.00                        |
| 3,000.0                     | 15.56              | 138.55         | 2,964.0                     | -223.8          | 197.7           | -202.6                        | 0.00                          | 0.00                         | 0.00                        |
| 3,100.0                     | 15.56              | 138.55         | 3,060.4                     | -243.9          | 215.4           | -220.8                        | 0.00                          | 0.00                         | 0.00                        |
| 3,200.0                     | 15.56              | 138.55         | 3,156.7                     | -264.0          | 233.2           | -238.9                        | 0.00                          | 0.00                         | 0.00                        |
| 3,300.0                     | 15.56              | 138.55         | 3,253.0                     | -284.2          | 250.9           | -257.1                        | 0.00                          | 0.00                         | 0.00                        |
| 3,400.0                     | 15.56              | 138.55         | 3,349.4                     | -304.3          | 268.7           | -275.3                        | 0.00                          | 0.00                         | 0.00                        |
| 3,500.0                     | 15.56              | 138.55         | 3,445.7                     | -324.4          | 286.4           | -293.5                        | 0.00                          | 0.00                         | 0.00                        |
| 3,600.0                     | 15.56              | 138.55         | 3,542.0                     | -344.5          | 304.2           | -311.7                        | 0.00                          | 0.00                         | 0.00                        |
| 3,700.0                     | 15.56              | 138.55         | 3,638.4                     | -364.6          | 321.9           | -329.9                        | 0.00                          | 0.00                         | 0.00                        |
| 3,800.0                     | 15.56              | 138.55         | 3,734.7                     | -384.7          | 339.7           | -348.1                        | 0.00                          | 0.00                         | 0.00                        |
| 3,900.0                     | 15.56              | 138.55         | 3,831.1                     | -404.8          | 357.4           | -366.3                        | 0.00                          | 0.00                         | 0.00                        |
| 4,000.0                     | 15.56              | 138.55         | 3,927.4                     | -424.9          | 375.2           | -384.5                        | 0.00                          | 0.00                         | 0.00                        |
| 4,100.0                     | 15.56              | 138.55         | 4,023.7                     | -445.0          | 392.9           | -402.7                        | 0.00                          | 0.00                         | 0.00                        |
| 4,200.0                     | 15.56              | 138.55         | 4,120.1                     | -465.1          | 410.7           | -420.9                        | 0.00                          | 0.00                         | 0.00                        |
| 4,300.0                     | 15.56              | 138.55         | 4,216.4                     | -485.2          | 428.4           | -439.1                        | 0.00                          | 0.00                         | 0.00                        |
| 4,400.0                     | 15.56              | 138.55         | 4,312.7                     | -505.3          | 446.2           | -457.3                        | 0.00                          | 0.00                         | 0.00                        |
| 4,500.0                     | 15.56              | 138.55         | 4,409.1                     | -525.4          | 463.9           | -475.4                        | 0.00                          | 0.00                         | 0.00                        |
| 4,600.0                     | 15.56              | 138.55         | 4,505.4                     | -545.5          | 481.7           | -493.6                        | 0.00                          | 0.00                         | 0.00                        |
| 4,000.0                     | 15.56              | 138.55         | 4,601.7                     | -565.6          | 401.7           | -493.0                        | 0.00                          | 0.00                         | 0.00                        |
| 4,800.0                     | 15.56              | 138.55         | 4,698.1                     | -585.7          | 499.4<br>517.2  | -530.0                        | 0.00                          | 0.00                         | 0.00                        |
|                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 4,900.0                     | 15.56              | 138.55         | 4,794.4                     | -605.8          | 535.0           | -548.2                        | 0.00                          | 0.00                         | 0.00                        |
| 5,000.0                     | 15.56              | 138.55         | 4,890.8                     | -625.9          | 552.7           | -566.4                        | 0.00                          | 0.00                         | 0.00                        |
| 5,100.0                     | 15.56              | 138.55         | 4,987.1                     | -646.0          | 570.5           | -584.6                        | 0.00                          | 0.00                         | 0.00                        |
| 5,200.0                     | 15.56              | 138.55         | 5,083.4                     | -666.1          | 588.2           | -602.8                        | 0.00                          | 0.00                         | 0.00                        |

1/6/2025 3:34:57PM

COMPASS 5000.16 Build 100



| Database: | PEDMB                       | Local Co-ordinate Reference: | Well #101H            |
|-----------|-----------------------------|------------------------------|-----------------------|
| Company:  | Midland                     | TVD Reference:               | kb = 26' @ 3552.0usft |
| Project:  | Lea County, NM (NAD 83 NME) | MD Reference:                | kb = 26' @ 3552.0usft |
| Site:     | Mad Adder 31 State Com      | North Reference:             | Grid                  |
| Well:     | #101H                       | Survey Calculation Method:   | Minimum Curvature     |
| Wellbore: | OH                          |                              |                       |
| Design:   | Plan #0.1 RT                |                              |                       |

Planned Survey

| Measured<br>Depth<br>(usft) | Inclination<br>(°) | Azimuth<br>(°) | Vertical<br>Depth<br>(usft) | +N/-S<br>(usft) | +E/-W<br>(usft) | Vertical<br>Section<br>(usft) | Dogleg<br>Rate<br>(°/100usft) | Build<br>Rate<br>(°/100usft) | Turn<br>Rate<br>(°/100usft) |
|-----------------------------|--------------------|----------------|-----------------------------|-----------------|-----------------|-------------------------------|-------------------------------|------------------------------|-----------------------------|
| 5,300.0                     | 15.56              | 138.55         | 5,179.8                     | -686.2          | 606.0           | -621.0                        | 0.00                          | 0.00                         | 0.00                        |
| 5,400.0                     | 15.56              | 138.55         | 5,276.1                     | -706.3          | 623.7           | -639.2                        | 0.00                          | 0.00                         | 0.00                        |
| 5,500.0                     | 15.56              | 138.55         | 5,372.4                     | -726.4          | 641.5           | -657.4                        | 0.00                          | 0.00                         | 0.00                        |
| 5,600.0                     | 15.56              | 138.55         | 5,468.8                     | -746.5          | 659.2           | -675.6                        | 0.00                          | 0.00                         | 0.00                        |
|                             | 15.56              | 138.55         |                             | -766.6          | 677.0           | -693.7                        | 0.00                          | 0.00                         | 0.00                        |
| 5,700.0                     |                    |                | 5,565.1                     |                 |                 |                               |                               |                              |                             |
| 5,800.0                     | 15.56              | 138.55         | 5,661.4                     | -786.7          | 694.7           | -711.9                        | 0.00                          | 0.00                         | 0.00                        |
| 5,900.0                     | 15.56              | 138.55         | 5,757.8                     | -806.8          | 712.5           | -730.1                        | 0.00                          | 0.00                         | 0.00                        |
| 6,000.0                     | 15.56              | 138.55         | 5,854.1                     | -826.9          | 730.2           | -748.3                        | 0.00                          | 0.00                         | 0.00                        |
| 6,100.0                     | 15.56              | 138.55         | 5,950.5                     | -847.0          | 748.0           | -766.5                        | 0.00                          | 0.00                         | 0.00                        |
| 6,200.0                     | 15.56              | 138.55         | 6,046.8                     | -867.1          | 765.7           | -784.7                        | 0.00                          | 0.00                         | 0.00                        |
| 6,300.0                     | 15.56              | 138.55         | 6,143.1                     | -887.2          | 783.5           | -802.9                        | 0.00                          | 0.00                         | 0.00                        |
|                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 6,400.0                     | 15.56              | 138.55         | 6,239.5                     | -907.3          | 801.2           | -821.1                        | 0.00                          | 0.00                         | 0.00                        |
| 6,500.0                     | 15.56              | 138.55         | 6,335.8                     | -927.4          | 819.0           | -839.3                        | 0.00                          | 0.00                         | 0.00                        |
| 6,600.0                     | 15.56              | 138.55         | 6,432.1                     | -947.5          | 836.7           | -857.5                        | 0.00                          | 0.00                         | 0.00                        |
| 6,700.0                     | 15.56              | 138.55         | 6,528.5                     | -967.6          | 854.5           | -875.7                        | 0.00                          | 0.00                         | 0.00                        |
| 6,800.0                     | 15.56              | 138.55         | 6,624.8                     | -987.7          | 872.2           | -893.9                        | 0.00                          | 0.00                         | 0.00                        |
|                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 6,900.0                     | 15.56              | 138.55         | 6,721.2                     | -1,007.8        | 890.0           | -912.0                        | 0.00                          | 0.00                         | 0.00                        |
| 7,000.0                     | 15.56              | 138.55         | 6,817.5                     | -1,027.9        | 907.7           | -930.2                        | 0.00                          | 0.00                         | 0.00                        |
| 7,100.0                     | 15.56              | 138.55         | 6,913.8                     | -1,048.1        | 925.5           | -948.4                        | 0.00                          | 0.00                         | 0.00                        |
| 7,200.0                     | 15.56              | 138.55         | 7,010.2                     | -1,068.2        | 943.2           | -966.6                        | 0.00                          | 0.00                         | 0.00                        |
| 7,280.5                     | 15.56              | 138.55         | 7,087.7                     | -1,084.3        | 957.5           | -981.3                        | 0.00                          | 0.00                         | 0.00                        |
| 7,300.0                     | 15.17              | 138.55         | 7,106.5                     | -1,088.2        | 961.0           | -984.8                        | 2.00                          | -2.00                        | 0.00                        |
| 7,400.0                     | 13.17              | 138.55         | 7,203.5                     | -1,106.6        | 977.2           | -1,001.4                      | 2.00                          | -2.00                        | 0.00                        |
| 7,500.0                     | 11.17              | 138.55         | 7,301.2                     | -1,122.3        | 991.1           | -1,015.7                      | 2.00                          | -2.00                        | 0.00                        |
| 7,600.0                     | 9.17               | 138.55         | 7,399.6                     | -1,135.6        | 1,002.8         | -1,027.6                      | 2.00                          | -2.00                        | 0.00                        |
| 7,700.0                     | 7.17               | 138.55         | 7,498.6                     | -1,146.2        | 1,012.2         | -1,037.3                      | 2.00                          | -2.00                        | 0.00                        |
|                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 7,800.0                     | 5.17               | 138.55         | 7,598.0                     | -1,154.3        | 1,019.3         | -1,044.6                      | 2.00                          | -2.00                        | 0.00                        |
| 7,900.0                     | 3.17               | 138.55         | 7,697.8                     | -1,159.7        | 1,024.1         | -1,049.5                      | 2.00                          | -2.00                        | 0.00                        |
| 8,000.0                     | 1.17               | 138.55         | 7,797.7                     | -1,162.6        | 1,026.6         | -1,052.1                      | 2.00                          | -2.00                        | 0.00                        |
| 8,058.3                     | 0.00               | 0.00           | 7,856.0                     | -1,163.0        | 1,027.0         | -1,052.5                      | 2.00                          | -2.00                        | 0.00                        |
| 8,100.0                     | 0.00               | 0.00           | 7,897.7                     | -1,163.0        | 1,027.0         | -1,052.5                      | 0.00                          | 0.00                         | 0.00                        |
| 8,200.0                     | 0.00               | 0.00           | 7,997.7                     | -1,163.0        | 1,027.0         | -1,052.5                      | 0.00                          | 0.00                         | 0.00                        |
| 8,300.0                     | 0.00               | 0.00           | 8,097.7                     | -1,163.0        | 1,027.0         | -1,052.5                      | 0.00                          | 0.00                         | 0.00                        |
| 8,400.0                     | 0.00               | 0.00           | 8,197.7                     | -1,163.0        | 1,027.0         | -1,052.5                      | 0.00                          | 0.00                         | 0.00                        |
|                             | 0.00               |                | 8,297.7                     |                 | 1,027.0         | -1,052.5                      | 0.00                          | 0.00                         | 0.00                        |
| 8,500.0                     |                    | 0.00           |                             | -1,163.0        |                 |                               |                               |                              |                             |
| 8,600.0                     | 0.00               | 0.00           | 8,397.7                     | -1,163.0        | 1,027.0         | -1,052.5                      | 0.00                          | 0.00                         | 0.00                        |
| 8,700.0                     | 0.00               | 0.00           | 8,497.7                     | -1,163.0        | 1,027.0         | -1,052.5                      | 0.00                          | 0.00                         | 0.00                        |
| 8,800.0                     | 0.00               | 0.00           | 8,597.7                     | -1,163.0        | 1,027.0         | -1,052.5                      | 0.00                          | 0.00                         | 0.00                        |
| 8,900.0                     | 0.00               | 0.00           | 8,697.7                     | -1,163.0        | 1,027.0         | -1,052.5                      | 0.00                          | 0.00                         | 0.00                        |
| 9,000.0                     | 0.00               | 0.00           | 8,797.7                     | -1,163.0        | 1,027.0         | -1,052.5                      | 0.00                          | 0.00                         | 0.00                        |
| 9,100.0                     | 0.00               | 0.00           | 8,897.7                     | -1,163.0        | 1,027.0         | -1,052.5                      | 0.00                          | 0.00                         | 0.00                        |
|                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 9,200.0                     | 0.00               | 0.00           | 8,997.7                     | -1,163.0        | 1,027.0         | -1,052.5                      | 0.00                          | 0.00                         | 0.00                        |
| 9,300.0                     | 0.00               | 0.00           | 9,097.7                     | -1,163.0        | 1,027.0         | -1,052.5                      | 0.00                          | 0.00                         | 0.00                        |
| 9,358.8                     | 0.00               | 0.00           | 9,156.5                     | -1,163.0        | 1,027.0         | -1,052.5                      | 0.00                          | 0.00                         | 0.00                        |
| 9,375.0                     | 1.94               | 358.85         | 9,172.7                     | -1,162.7        | 1,027.0         | -1,052.2                      | 12.00                         | 12.00                        | 0.00                        |
| 9,400.0                     | 4.94               | 358.85         | 9,197.6                     | -1,161.2        | 1,027.0         | -1,050.7                      | 12.00                         | 12.00                        | 0.00                        |
| 9,425.0                     | 7.95               | 358.85         | 9,222.5                     | -1,158.4        | 1,026.9         | -1,047.9                      | 12.00                         | 12.00                        | 0.00                        |
| 9,450.0                     | 10.95              | 358.85         | 9,247.1                     | -1,154.3        | 1,026.8         | -1,043.8                      | 12.00                         | 12.00                        | 0.00                        |
| 9,475.0                     | 13.95              | 358.85         | 9,271.5                     | -1,148.9        | 1,026.7         | -1,038.5                      | 12.00                         | 12.00                        | 0.00                        |
| 9,500.0                     | 16.95              | 358.85         | 9,295.6                     | -1,142.3        | 1,026.6         | -1,030.9                      | 12.00                         | 12.00                        | 0.00                        |
| 9,525.0                     | 19.95              | 358.85         | 9,319.4                     | -1,134.4        | 1,020.0         | -1,031.9                      | 12.00                         | 12.00                        | 0.00                        |
|                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 9,550.0                     | 22.95              | 358.85         | 9,342.6                     | -1,125.2        | 1,026.2         | -1,015.0                      | 12.00                         | 12.00                        | 0.00                        |
| 9,575.0<br>9,579.3          | 25.95              | 358.85         | 9,365.4                     | -1,114.9        | 1,026.0         | -1,004.7                      | 12.00                         | 12.00                        | 0.00                        |
|                             | 26.46              | 358.85         | 9,369.2                     | -1,113.0        | 1,026.0         | -1,002.8                      | 12.00                         | 12.00                        | 0.00                        |

1/6/2025 3:34:57PM

Page 5

COMPASS 5000.16 Build 100

.



| Database: | PEDMB                       | Local Co-ordinate Reference: | Well #101H            |
|-----------|-----------------------------|------------------------------|-----------------------|
| Company:  | Midland                     | TVD Reference:               | kb = 26' @ 3552.0usft |
| Project:  | Lea County, NM (NAD 83 NME) | MD Reference:                | kb = 26' @ 3552.0usft |
| Site:     | Mad Adder 31 State Com      | North Reference:             | Grid                  |
| Well:     | #101H                       | Survey Calculation Method:   | Minimum Curvature     |
| Wellbore: | OH                          |                              |                       |
| Design:   | Plan #0.1 RT                |                              |                       |

Planned Survey

| Measured<br>Depth<br>(usft) | Inclination<br>(°) | Azimuth<br>(°)   | Vertical<br>Depth<br>(usft) | +N/-S<br>(usft) | +E/-W<br>(usft) | Vertical<br>Section<br>(usft) | Dogleg<br>Rate<br>(°/100usft) | Build<br>Rate<br>(°/100usft) | Turn<br>Rate<br>(°/100usft) |
|-----------------------------|--------------------|------------------|-----------------------------|-----------------|-----------------|-------------------------------|-------------------------------|------------------------------|-----------------------------|
| 9,600.0                     | 28.95              | 358.93           | 9,387.6                     | -1,103.4        | 1,025.8         | -993.2                        | 12.00                         | 12.00                        | 0.35                        |
| 9,625.0                     | 31.95              | 359.00           | 9,409.1                     | -1,090.7        | 1,025.6         | -980.7                        | 12.00                         | 12.00                        | 0.29                        |
|                             |                    |                  |                             |                 |                 |                               |                               |                              |                             |
| 9,650.0                     | 34.95              | 359.06           | 9,430.0                     | -1,076.9        | 1,025.4         | -967.0                        | 12.00                         | 12.00                        | 0.25                        |
| 9,675.0                     | 37.95              | 359.12           | 9,450.1                     | -1,062.1        | 1,025.1         | -952.2                        | 12.00                         | 12.00                        | 0.21                        |
| 9,700.0                     | 40.95              | 359.16           | 9,469.4                     | -1,046.2        | 1,024.9         | -936.5                        | 12.00                         | 12.00                        | 0.19                        |
| 9,725.0                     | 43.95              | 359.20           | 9,487.8                     | -1,029.3        | 1,024.6         | -919.7                        | 12.00                         | 12.00                        | 0.17                        |
| 9,750.0                     | 46.95              | 359.24           | 9,505.4                     | -1,011.5        | 1,024.4         | -902.0                        | 12.00                         | 12.00                        | 0.15                        |
| 9.775.0                     | 49.95              | 359.27           | 9,521.9                     | -992.8          | 1,024.2         | -883.4                        | 12.00                         | 12.00                        | 0.13                        |
| -,                          |                    |                  |                             |                 |                 |                               |                               |                              |                             |
| 9,800.0                     | 52.95              | 359.30           | 9,537.5                     | -973.3          | 1,023.9         | -864.0                        | 12.00                         | 12.00                        | 0.12                        |
| 9,825.0                     | 55.95              | 359.33           | 9,552.0                     | -952.9          | 1,023.7         | -843.8                        | 12.00                         | 12.00                        | 0.11                        |
| 9,850.0                     | 58.95              | 359.36           | 9,565.5                     | -931.8          | 1,023.4         | -822.9                        | 12.00                         | 12.00                        | 0.11                        |
| 9,875.0                     | 61.95              | 359.38           | 9,577.8                     | -910.1          | 1,023.2         | -801.3                        | 12.00                         | 12.00                        | 0.10                        |
| 9,900.0                     | 64.95              | 359.41           | 9,589.0                     | -887.7          | 1,023.0         | -779.0                        | 12.00                         | 12.00                        | 0.09                        |
| 9,925.0                     | 67.95              | 359.43           | 9,599.0                     | -864.8          | 1,023.0         | -756.3                        | 12.00                         | 12.00                        | 0.09                        |
| ,                           |                    |                  |                             |                 |                 |                               |                               |                              |                             |
| 9,950.0                     | 70.95              | 359.45           | 9,607.8                     | -841.4          | 1,022.5         | -733.0                        | 12.00                         | 12.00                        | 0.09                        |
| 9,975.0                     | 73.95              | 359.47           | 9,615.3                     | -817.6          | 1,022.3         | -709.3                        | 12.00                         | 12.00                        | 0.08                        |
| 10,000.0                    | 76.95              | 359.49           | 9,621.6                     | -793.4          | 1,022.1         | -685.3                        | 12.00                         | 12.00                        | 0.08                        |
| 10,025.0                    | 79.95              | 359.51           | 9,626.6                     | -768.9          | 1,021.8         | -660.9                        | 12.00                         | 12.00                        | 0.08                        |
| 10,050.0                    | 82.95              | 359.53           | 9,630.3                     | -744.2          | 1,021.6         | -636.4                        | 12.00                         | 12.00                        | 0.08                        |
| 10,075.0                    | 85.95              | 359.55           | 9,632.7                     | -719.3          | 1,021.4         | -611.6                        | 12.00                         | 12.00                        | 0.08                        |
| ,                           |                    |                  |                             |                 |                 |                               |                               |                              |                             |
| 10,100.0                    | 88.95              | 359.57           | 9,633.8                     | -694.3          | 1,021.2         | -586.8                        | 12.00                         | 12.00                        | 0.08                        |
| 10,108.8                    | 90.00              | 359.58           | 9,633.9                     | -685.6          | 1,021.2         | -578.1                        | 12.00                         | 12.00                        | 0.08                        |
| 10,200.0                    | 90.00              | 359.58           | 9,633.9                     | -594.3          | 1,020.5         | -487.4                        | 0.00                          | 0.00                         | 0.00                        |
| 10,300.0                    | 90.00              | 359.58           | 9,633.9                     | -494.3          | 1,019.8         | -388.0                        | 0.00                          | 0.00                         | 0.00                        |
| 10,400.0                    | 90.00              | 359.58           | 9,633.9                     | -394.3          | 1,019.0         | -288.6                        | 0.00                          | 0.00                         | 0.00                        |
| 10,500.0                    | 90.00              | 359.58           | 9,633.9                     | -294.3          | 1,018.3         | -189.2                        | 0.00                          | 0.00                         | 0.00                        |
| 10,600.0                    | 90.00              | 359.58           | 9,633.9<br>9,633.9          | -194.4          | 1,017.5         | -109.2                        | 0.00                          | 0.00                         | 0.00                        |
| 10,000.0                    | 90.00              | 559.50           | 9,000.9                     |                 | 1,017.5         |                               |                               | 0.00                         | 0.00                        |
| 10,700.0                    | 90.00              | 359.58           | 9,633.9                     | -94.4           | 1,016.8         | 9.6                           | 0.00                          | 0.00                         | 0.00                        |
| 10,800.0                    | 90.00              | 359.58           | 9,633.9                     | 5.6             | 1,016.1         | 109.0                         | 0.00                          | 0.00                         | 0.00                        |
| 10,900.0                    | 90.00              | 359.58           | 9,633.9                     | 105.6           | 1,015.3         | 208.4                         | 0.00                          | 0.00                         | 0.00                        |
| 11,000.0                    | 90.00              | 359.58           | 9,633.9                     | 205.6           | 1,014.6         | 307.8                         | 0.00                          | 0.00                         | 0.00                        |
| 11,100.0                    | 90.00              | 359.58           | 9,633.9                     | 305.6           | 1,013.8         | 407.2                         | 0.00                          | 0.00                         | 0.00                        |
|                             |                    |                  |                             |                 |                 |                               |                               |                              |                             |
| 11,200.0                    | 90.00              | 359.58           | 9,633.9                     | 405.6           | 1,013.1         | 506.6                         | 0.00                          | 0.00                         | 0.00                        |
| 11,300.0                    | 90.00              | 359.58           | 9,633.9                     | 505.6           | 1,012.4         | 606.0                         | 0.00                          | 0.00                         | 0.00                        |
| 11,400.0                    | 90.00              | 359.58           | 9,633.9                     | 605.6           | 1,011.6         | 705.4                         | 0.00                          | 0.00                         | 0.00                        |
| 11,500.0                    | 90.00              | 359.58           | 9,633.9                     | 705.6           | 1,010.9         | 804.8                         | 0.00                          | 0.00                         | 0.00                        |
| 11,600.0                    | 90.00              | 359.58           | 9,633.9                     | 805.6           | 1,010.1         | 904.2                         | 0.00                          | 0.00                         | 0.00                        |
| 11 700 0                    | 90.00              | 359.58           | 9,633.9                     | 905.6           | 1 000 4         | 1 002 6                       | 0.00                          | 0.00                         | 0.00                        |
| 11,700.0                    |                    |                  |                             |                 | 1,009.4         | 1,003.6                       |                               |                              |                             |
| 11,800.0                    | 90.00              | 359.58           | 9,633.9                     | 1,005.6         | 1,008.7         | 1,103.0                       | 0.00                          | 0.00                         | 0.00                        |
| 11,900.0                    | 90.00              | 359.58           | 9,633.9                     | 1,105.6         | 1,007.9         | 1,202.4                       | 0.00                          | 0.00                         | 0.00                        |
| 12,000.0                    | 90.00              | 359.58           | 9,633.9                     | 1,205.6         | 1,007.2         | 1,301.8                       | 0.00                          | 0.00                         | 0.00                        |
| 12,100.0                    | 90.00              | 359.58           | 9,634.0                     | 1,305.6         | 1,006.4         | 1,401.2                       | 0.00                          | 0.00                         | 0.00                        |
| 12.200.0                    | 90.00              | 359.58           | 9,634.0                     | 1,405.6         | 1.005.7         | 1,500.6                       | 0.00                          | 0.00                         | 0.00                        |
| 12,300.0                    | 90.00              | 359.58           | 9,634.0                     | 1,505.6         | 1,005.0         | 1,600.1                       | 0.00                          | 0.00                         | 0.00                        |
| 12,300.0                    | 90.00              | 359.58           | 9,634.0                     | 1,605.6         | 1,003.0         | 1,699.5                       | 0.00                          | 0.00                         | 0.00                        |
| 12,400.0                    | 90.00              |                  | 9,634.0<br>9,634.0          |                 | 1,004.2         | 1,699.5                       |                               | 0.00                         | 0.00                        |
|                             |                    | 359.58           |                             | 1,705.6         |                 |                               | 0.00                          |                              |                             |
| 12,600.0                    | 90.00              | 359.58           | 9,634.0                     | 1,805.6         | 1,002.7         | 1,898.3                       | 0.00                          | 0.00                         | 0.00                        |
| 12,700.0                    | 90.00              | 359.58           | 9,634.0                     | 1,905.6         | 1,002.0         | 1,997.7                       | 0.00                          | 0.00                         | 0.00                        |
| 12,800.0                    | 90.00              | 359.58           | 9,634.0                     | 2,005.6         | 1,001.3         | 2,097.1                       | 0.00                          | 0.00                         | 0.00                        |
| 12,900.0                    | 90.00              | 359.58           | 9,634.0                     | 2,105.6         | 1,000.5         | 2,196.5                       | 0.00                          | 0.00                         | 0.00                        |
| 13,000.0                    | 90.00              | 359.58           | 9,634.0                     | 2,205.6         | 999.8           | 2,190.3                       | 0.00                          | 0.00                         | 0.00                        |
| 13,100.0                    | 90.00              | 359.58<br>359.58 | 9,634.0<br>9,634.0          | 2,205.6         | 999.8<br>999.0  | 2,295.9<br>2,395.3            | 0.00                          | 0.00                         | 0.00                        |
| 13,100.0                    | 90.00              | 339.30           | 9,034.0                     | 2,303.0         | 999.0           | 2,390.3                       | 0.00                          | 0.00                         | 0.00                        |
| 13,200.0                    | 90.00              | 359.58           | 9,634.0                     | 2,405.6         | 998.3           | 2,494.7                       | 0.00                          | 0.00                         | 0.00                        |
| 13,300.0                    | 90.00              | 359.58           | 9,634.0                     | 2,505.6         | 997.6           | 2,594.1                       | 0.00                          | 0.00                         | 0.00                        |

1/6/2025 3:34:57PM

.



OH

Plan #0.1 RT

**Planning Report** 

Planned Survey

Site:

Well:

Wellbore:

Design:

| Measured<br>Depth<br>(usft) | Inclination<br>(°) | Azimuth<br>(°)   | Vertical<br>Depth<br>(usft) | +N/-S<br>(usft)    | +E/-W<br>(usft) | Vertical<br>Section<br>(usft) | Dogleg<br>Rate<br>(°/100usft) | Build<br>Rate<br>(°/100usft) | Turn<br>Rate<br>(°/100usft) |
|-----------------------------|--------------------|------------------|-----------------------------|--------------------|-----------------|-------------------------------|-------------------------------|------------------------------|-----------------------------|
| 13,400.0                    | 90.00              | 359.58           | 9,634.0                     | 2,605.6            | 996.8           | 2,693.5                       | 0.00                          | 0.00                         | 0.00                        |
| 13,500.0                    | 90.00              | 359.58           | 9,634.0                     | 2,705.6            | 996.1           | 2,792.9                       | 0.00                          | 0.00                         | 0.00                        |
| 13,600.0                    | 90.00              | 359.58           | 9,634.0                     | 2,805.6            | 995.3           | 2,892.3                       | 0.00                          | 0.00                         | 0.00                        |
| 13,700.0                    | 90.00              | 359.58           | 9,634.0                     | 2,905.6            | 994.6           | 2,991.7                       | 0.00                          | 0.00                         | 0.00                        |
| 13,800.0                    | 90.00              | 359.58           | 9,634.0                     | 3,005.6            | 993.9           | 3,091.1                       | 0.00                          | 0.00                         | 0.00                        |
| 13,900.0                    | 90.00              | 359.58           | 9,634.0                     | 3,105.6            | 993.1           | 3,190.5                       | 0.00                          | 0.00                         | 0.00                        |
| 14,000.0                    | 90.00              | 359.58           | 9,634.0                     | 3,205.6            | 992.4           | 3,289.9                       | 0.00                          | 0.00                         | 0.00                        |
| 14,100.0                    | 90.00              | 359.58           | 9,634.0                     | 3,305.6            | 991.6           | 3,389.3                       | 0.00                          | 0.00                         | 0.00                        |
| 14,200.0                    | 90.00              | 359.58           | 9.634.0                     | 3,405.5            | 990.9           | 3,488.7                       | 0.00                          | 0.00                         | 0.00                        |
| 14,300.0                    | 90.00              | 359.58           | 9,634.0                     | 3,505.5            | 990.2           | 3,588.1                       | 0.00                          | 0.00                         | 0.00                        |
| 14,400.0                    | 90.00              | 359.58           | 9,634.0                     | 3,605.5            | 989.4           | 3,687.5                       | 0.00                          | 0.00                         | 0.00                        |
| 14,500.0                    | 90.00              | 359.58           | 9,634.0                     | 3,705.5            | 988.7           | 3,786.9                       | 0.00                          | 0.00                         | 0.00                        |
| 14,600.0                    | 90.00              | 359.58           | 9,634.0                     | 3,805.5            | 987.9           | 3,886.3                       | 0.00                          | 0.00                         | 0.00                        |
| 14,700.0                    | 90.00              | 359.58           | 9,634.0                     | 3,905.5            | 987.2           | 3,985.7                       | 0.00                          | 0.00                         | 0.00                        |
| 14,700.0                    | 90.00              | 359.58<br>359.58 | 9,634.0<br>9,634.0          | 3,905.5<br>4,005.5 | 987.2<br>986.5  | 3,965.7<br>4,085.1            | 0.00                          | 0.00                         | 0.00                        |
| 14,861.5                    | 90.00              | 359.58           | 9,634.0                     | 4,067.0            | 986.0           | 4,005.1                       | 0.00                          | 0.00                         | 0.00                        |
| 14,900.0                    | 90.00              | 359.58           | 9,634.0                     | 4,105.5            | 985.7           | 4,184.5                       | 0.00                          | 0.00                         | 0.00                        |
| 15,000.0                    | 90.00              | 359.57           | 9,634.0                     | 4,205.5            | 985.0           | 4,283.9                       | 0.00                          | 0.00                         | 0.00                        |
|                             |                    |                  | 9,634.0                     | ,                  |                 |                               |                               |                              | 0.00                        |
| 15,100.0<br>15,200.0        | 90.00<br>90.00     | 359.57<br>359.57 | 9,634.0<br>9,634.0          | 4,305.5<br>4,405.5 | 984.2<br>983.5  | 4,383.3<br>4,482.7            | 0.00<br>0.00                  | 0.00<br>0.00                 | 0.00                        |
| 15,200.0                    | 90.00              | 359.57           | 9,634.0<br>9,634.0          | 4,405.5            | 983.5<br>982.7  | 4,482.7<br>4,582.1            | 0.00                          | 0.00                         | 0.00                        |
| 15,400.0                    | 90.00              | 359.57           | 9,634.0                     | 4,605.5            | 982.0           | 4,582.1                       | 0.00                          | 0.00                         | 0.00                        |
| 15,500.0                    | 90.00              | 359.57           | 9,634.0                     | 4,705.5            | 981.2           | 4,780.9                       | 0.00                          | 0.00                         | 0.00                        |
|                             |                    |                  |                             |                    |                 |                               |                               |                              |                             |
| 15,600.0                    | 90.00              | 359.57           | 9,634.0                     | 4,805.5            | 980.5<br>070 7  | 4,880.3                       | 0.00                          | 0.00                         | 0.00                        |
| 15,700.0<br>15,800.0        | 90.00              | 359.57<br>359.57 | 9,634.0<br>9,634.0          | 4,905.5            | 979.7<br>979.0  | 4,979.7<br>5 070 1            | 0.00<br>0.00                  | 0.00<br>0.00                 | 0.00<br>0.00                |
| 15,800.0<br>15,900.0        | 90.00<br>90.00     | 359.57<br>359.57 | 9,634.0<br>9,634.0          | 5,005.5<br>5,105.5 | 979.0<br>978.2  | 5,079.1<br>5,178.5            | 0.00                          | 0.00                         | 0.00                        |
| 16,000.0                    | 90.00<br>90.00     | 359.57<br>359.57 | 9,634.0<br>9,634.0          | 5,105.5<br>5,205.5 | 978.2<br>977.5  | 5,178.5<br>5,277.9            | 0.00                          | 0.00                         | 0.00                        |
|                             |                    |                  |                             |                    |                 |                               |                               |                              |                             |
| 16,100.0                    | 90.00              | 359.57           | 9,634.0                     | 5,305.5            | 976.7           | 5,377.3                       | 0.00                          | 0.00                         | 0.00                        |
| 16,200.0                    | 90.00              | 359.57           | 9,634.0                     | 5,405.5            | 976.0           | 5,476.7                       | 0.00                          | 0.00                         | 0.00                        |
| 16,300.0                    | 90.00              | 359.57           | 9,634.0                     | 5,505.5            | 975.2           | 5,576.2                       | 0.00                          | 0.00                         | 0.00                        |
| 16,400.0                    | 90.00              | 359.56           | 9,634.0                     | 5,605.5            | 974.5<br>072 7  | 5,675.6                       | 0.00                          | 0.00                         | 0.00<br>0.00                |
| 16,500.0                    | 90.00              | 359.56           | 9,634.0                     | 5,705.5            | 973.7           | 5,775.0                       | 0.00                          | 0.00                         |                             |
| 16,600.0                    | 90.00              | 359.56           | 9,634.0                     | 5,805.5            | 972.9           | 5,874.4                       | 0.00                          | 0.00                         | 0.00                        |
| 16,700.0                    | 90.00              | 359.56           | 9,634.0                     | 5,905.5            | 972.2           | 5,973.8                       | 0.00                          | 0.00                         | 0.00                        |
| 16,800.0                    | 90.00              | 359.56           | 9,634.0                     | 6,005.5            | 971.4           | 6,073.2                       | 0.00                          | 0.00                         | 0.00                        |
| 16,900.0                    | 90.00              | 359.56           | 9,634.0                     | 6,105.5            | 970.6           | 6,172.6                       | 0.00                          | 0.00                         | 0.00                        |
| 17,000.0                    | 90.00              | 359.56           | 9,634.0                     | 6,205.5            | 969.9           | 6,272.0                       | 0.00                          | 0.00                         | 0.00                        |
| 17,100.0                    | 90.00              | 359.56           | 9,634.0                     | 6,305.5            | 969.1           | 6,371.4                       | 0.00                          | 0.00                         | 0.00                        |
| 17,200.0                    | 90.00              | 359.56           | 9,634.0                     | 6,405.5            | 968.3           | 6,470.8                       | 0.00                          | 0.00                         | 0.00                        |
| 17,300.0                    | 90.00              | 359.56           | 9,634.0                     | 6,505.5            | 967.6           | 6,570.2                       | 0.00                          | 0.00                         | 0.00                        |
| 17,400.0                    | 90.00              | 359.56           | 9,634.0                     | 6,605.5            | 966.8           | 6,669.6                       | 0.00                          | 0.00                         | 0.00                        |
| 17,501.5                    | 90.00              | 359.56           | 9,634.0                     | 6,707.0            | 966.0           | 6,770.5                       | 0.00                          | 0.00                         | 0.00                        |
| 17,600.0                    | 90.00              | 359.56           | 9,634.0                     | 6,805.5            | 965.2           | 6,868.3                       | 0.00                          | 0.00                         | 0.00                        |
| 17,700.0                    | 90.00              | 359.55           | 9,634.0                     | 6,905.4            | 964.5           | 6,967.7                       | 0.00                          | 0.00                         | 0.00                        |
| 17,800.0                    | 90.00              | 359.55           | 9,634.0                     | 7,005.4            | 963.7           | 7,067.1                       | 0.00                          | 0.00                         | 0.00                        |
| 17,900.0                    | 90.00              | 359.55           | 9,634.0                     | 7,105.4            | 962.9           | 7,166.5                       | 0.00                          | 0.00                         | 0.00                        |
| 18,000.0                    | 90.00              | 359.55           | 9,634.0                     | 7,205.4            | 962.1           | 7,265.9                       | 0.00                          | 0.00                         | 0.00                        |
| 18,100.0                    | 90.00              | 359.55           | 9,634.0                     | 7,305.4            | 961.3           | 7,365.3                       | 0.00                          | 0.00                         | 0.00                        |
| 18,200.0                    | 90.00              | 359.55           | 9,634.0                     | 7,405.4            | 960.6           | 7,464.7                       | 0.00                          | 0.00                         | 0.00                        |
| 18,300.0                    | 90.00              | 359.55           | 9,634.0                     | 7,505.4            | 959.8           | 7,564.1                       | 0.00                          | 0.00                         | 0.00                        |
| 18,400.0                    | 90.00              | 359.55           | 9,634.0                     | 7,605.4            | 959.0           | 7,663.5                       | 0.00                          | 0.00                         | 0.00                        |
| 18,500.0                    | 90.00              | 359.55           | 9,634.0                     | 7,705.4            | 958.2           | 7,762.9                       | 0.00                          | 0.00                         | 0.00                        |
|                             |                    |                  |                             |                    |                 |                               |                               |                              |                             |

#### 1/6/2025 3:34:57PM



Planned Survey

| Measured<br>Depth<br>(usft) | Inclination<br>(°) | Azimuth<br>(°) | Vertical<br>Depth<br>(usft) | +N/-S<br>(usft) | +E/-W<br>(usft) | Vertical<br>Section<br>(usft) | Dogleg<br>Rate<br>(°/100usft) | Build<br>Rate<br>(°/100usft) | Turn<br>Rate<br>(°/100usft) |
|-----------------------------|--------------------|----------------|-----------------------------|-----------------|-----------------|-------------------------------|-------------------------------|------------------------------|-----------------------------|
| 18,700.0                    | 90.00              | 359.55         | 9,634.0                     | 7,905.4         | 956.6           | 7,961.7                       | 0.00                          | 0.00                         | 0.00                        |
| 18,800.0                    | 90.00              | 359.55         | 9,634.0                     | 8,005.4         | 955.9           | 8,061.1                       | 0.00                          | 0.00                         | 0.00                        |
| 18,900.0                    | 90.00              | 359.55         | 9,634.0                     | 8,105.4         | 955.1           | 8,160.5                       | 0.00                          | 0.00                         | 0.00                        |
| 19,000.0                    | 90.00              | 359.55         | 9,634.0                     | 8,205.4         | 954.3           | 8,259.9                       | 0.00                          | 0.00                         | 0.00                        |
| 19,100.0                    | 90.00              | 359.55         | 9,634.0                     | 8,305.4         | 953.5           | 8,359.3                       | 0.00                          | 0.00                         | 0.00                        |
| 19,200.0                    | 90.00              | 359.55         | 9,634.0                     | 8,405.4         | 952.7           | 8,458.7                       | 0.00                          | 0.00                         | 0.00                        |
| 19,300.0                    | 90.00              | 359.55         | 9,634.0                     | 8,505.4         | 951.9           | 8,558.1                       | 0.00                          | 0.00                         | 0.00                        |
| 19,400.0                    | 90.00              | 359.55         | 9,634.0                     | 8,605.4         | 951.1           | 8,657.5                       | 0.00                          | 0.00                         | 0.00                        |
| 19,500.0                    | 90.00              | 359.55         | 9,634.0                     | 8,705.4         | 950.3           | 8,756.9                       | 0.00                          | 0.00                         | 0.00                        |
| 19,600.0                    | 90.00              | 359.54         | 9,634.0                     | 8,805.4         | 949.5           | 8,856.3                       | 0.00                          | 0.00                         | 0.00                        |
| 19,700.0                    | 90.00              | 359.54         | 9,634.0                     | 8,905.4         | 948.7           | 8,955.7                       | 0.00                          | 0.00                         | 0.00                        |
| 19,800.0                    | 90.00              | 359.54         | 9,634.0                     | 9,005.4         | 947.9           | 9,055.1                       | 0.00                          | 0.00                         | 0.00                        |
| 19,900.0                    | 90.00              | 359.54         | 9,634.0                     | 9,105.4         | 947.1           | 9,154.5                       | 0.00                          | 0.00                         | 0.00                        |
| 20,000.0                    | 90.00              | 359.54         | 9,634.0                     | 9,205.4         | 946.3           | 9,253.9                       | 0.00                          | 0.00                         | 0.00                        |
| 20,042.6                    | 90.00              | 359.54         | 9,634.0                     | 9,248.0         | 946.0           | 9,296.3                       | 0.00                          | 0.00                         | 0.00                        |

#### **Design Targets**

| Target Name<br>- hit/miss target<br>- Shape                   | Dip Angle<br>(°) | Dip Dir.<br>(°) | TVD<br>(usft) | +N/-S<br>(usft) | +E/-W<br>(usft) | Northing<br>(usft) | Easting<br>(usft) | Latitude         | Longitude         |
|---------------------------------------------------------------|------------------|-----------------|---------------|-----------------|-----------------|--------------------|-------------------|------------------|-------------------|
| KOP(Mad Adder 31 Stat<br>- plan hits target cente<br>- Point  | 0.00<br>er       | 0.00            | 9,156.5       | -1,163.0        | 1,027.0         | 425,258.00         | 766,352.00        | 32° 10' 1.281 N  | 103° 36' 22.102 W |
| FTP(Mad Adder 31 State<br>- plan hits target cente<br>- Point | 0.00<br>er       | 0.00            | 9,369.2       | -1,113.0        | 1,026.0         | 425,308.00         | 766,351.00        | 32° 10' 1.776 N  | 103° 36' 22.109 W |
| Fed Perf 2(Mad Adder 3<br>- plan hits target cente<br>- Point | 0.00<br>er       | 0.01            | 9,634.0       | 6,707.0         | 966.0           | 433,128.00         | 766,291.00        | 32° 11' 19.161 N | 103° 36' 22.192 W |
| PBHL(Mad Adder 31 Sta<br>- plan hits target cento<br>- Point  | 0.00<br>er       | 0.00            | 9,634.0       | 9,248.0         | 946.0           | 435,669.00         | 766,271.00        | 32° 11' 44.306 N | 103° 36' 22.225 W |
| Fed Perf 1(Mad Adder 3<br>- plan hits target cente<br>- Point | 0.00<br>er       | 0.00            | 9,634.0       | 4,067.0         | 986.0           | 430,488.00         | 766,311.00        | 32° 10' 53.036 N | 103° 36' 22.167 W |

Released to Imaging: 2/5/2025 8:42:21 AM

# leogresources

Lea County, NM (NAD 83 NME)

Mad Adder 31 State Com #101H

**Plan #0.1 RT** 

Datum: North American Datum 1983 Ellipsoid: GRS 1980 Zone: New Mexico Eastern Zone System Datum: Mean Sea Level

|       | <b>— -</b> -       |                                                                                                                                                                                                                                                                                                                                                                                          |   | West(-)/E                               | last(+) |      |                             |                                       |
|-------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------|---------|------|-----------------------------|---------------------------------------|
| -1050 | -700               | -350                                                                                                                                                                                                                                                                                                                                                                                     | 0 | 350                                     | 700     | 1050 | 1400                        | 1750                                  |
| 9450  |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
|       |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
|       | - <u>+</u> + + + + |                                                                                                                                                                                                                                                                                                                                                                                          |   | +++++++++++++++++++++++++++++++++++++++ |         |      |                             | + + + + + + + + + + + + + + + + + + + |
|       |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
| 9100  |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             | Mad Adder 31 S                        |
|       |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
|       | - +                |                                                                                                                                                                                                                                                                                                                                                                                          | + | + + + + + + + + + + + + + + + + + +     |         | +    |                             | + <b>- +</b>                          |
|       |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
| 8750  |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
|       |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
|       | - +                | • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                      |   | + + + + ·                               |         |      |                             |                                       |
|       |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
| 8400  |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
|       |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
|       |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
|       |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
| 8050  |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
|       |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
|       |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
| 7700  |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
|       |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
|       |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
|       |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
| 7350  |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
|       |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
|       | - +                | 1<br>1<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>2<br>4<br>1<br>4<br>1 | + | + + <b>-</b> + ·                        | +       | +    |                             | + + <b>- +</b>                        |
|       |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
| 7000  |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
|       |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
|       | - +                | • <b>•</b> • • • • • <b>•</b> • <b>•</b> • • • • • • •                                                                                                                                                                                                                                                                                                                                   |   | + + + + +                               |         |      | + + + - <b>-</b> + <b>+</b> | + + + + +                             |
|       |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
| 6650  |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
|       |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
|       | -+                 | • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                          | + | + + + + ·                               |         |      | + + <b>-</b> + <b>+</b>     |                                       |
|       |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |
| 6300  |                    |                                                                                                                                                                                                                                                                                                                                                                                          |   |                                         |         |      |                             |                                       |

- i - - -

-

- - + - -

-+--

--++-

- - + - - -

--+--

--+--

------

--+--

----

-+--

--+--

- - - + + - - -

• + + + + •

--+--

------

--+--

• + + + + •

- - + - -

- + + +

- - + + - -

---+--

--++-

--+-

--+-

--+--

--++-+

- - - + - - -

- - + + - -

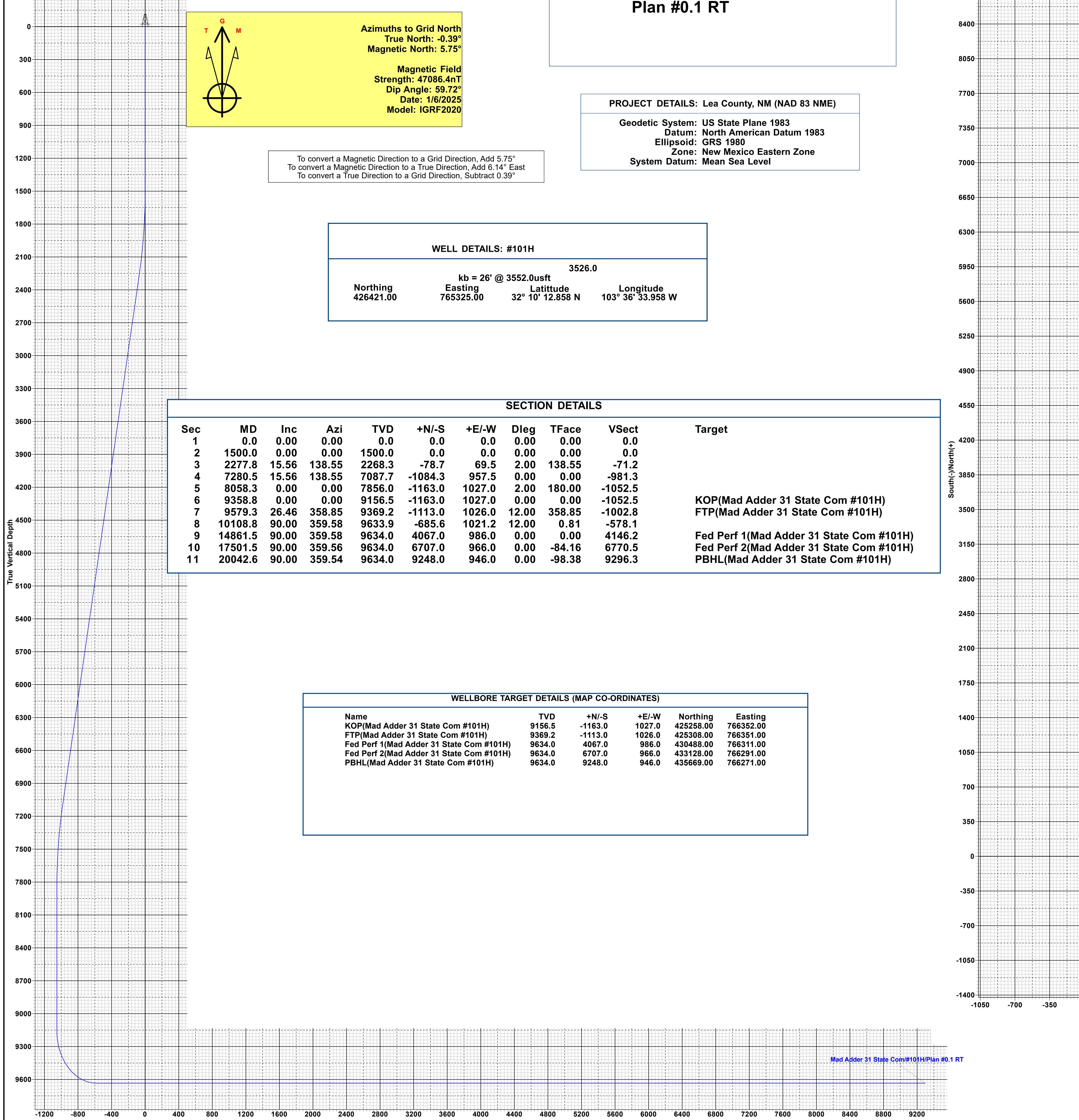
. - + + - .

--+--

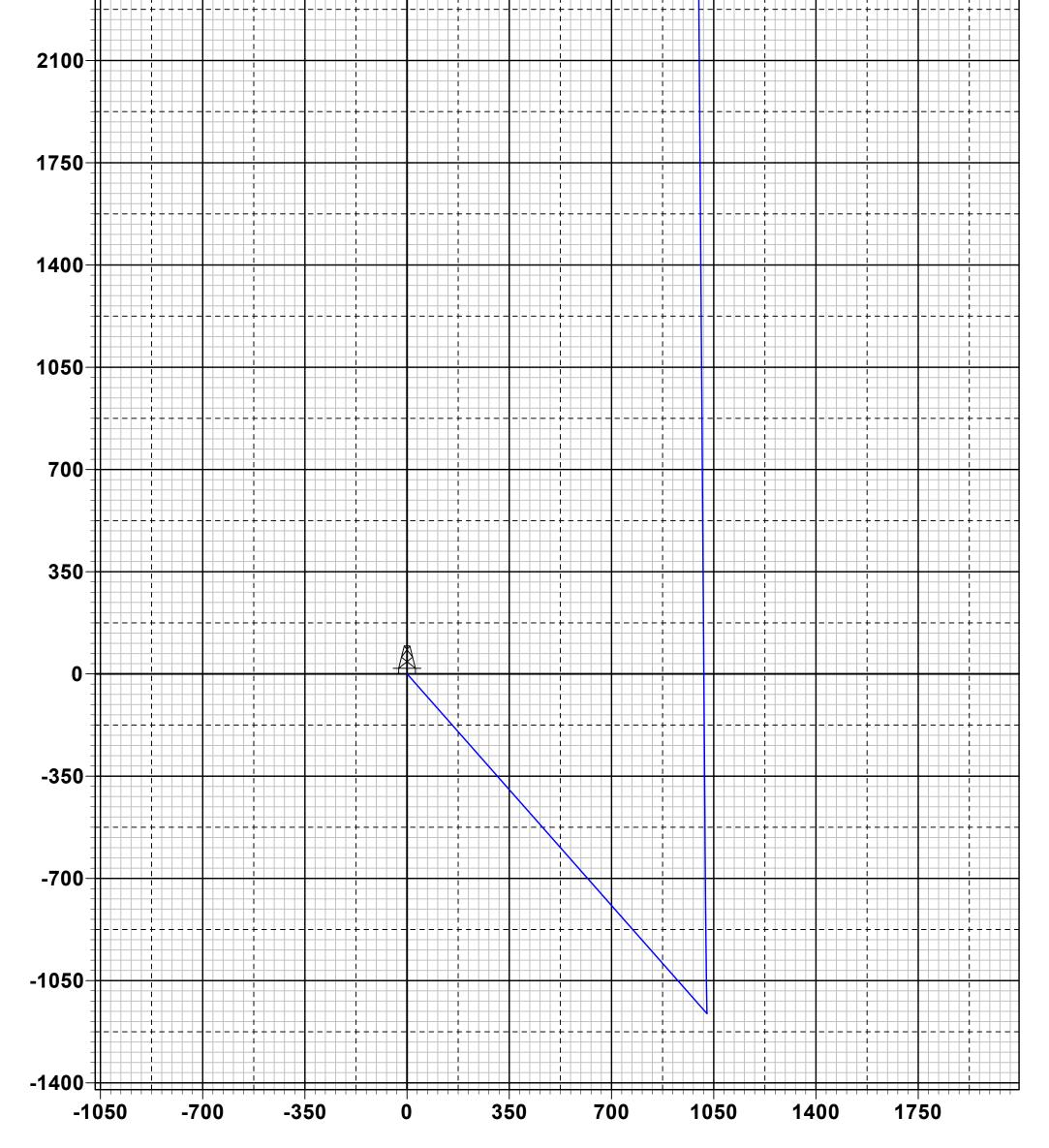
--+--

-+--

--+--

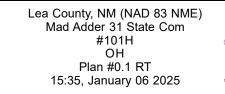

--+--

--+--


- - + - - -

--+--

. \_ \_ + + - -




| Name                                     | TVD    | +N/-S   | +E/-W  | Northing  | Easting   |
|------------------------------------------|--------|---------|--------|-----------|-----------|
| KOP(Mad Adder 31 State Com #101H)        | 9156.5 | -1163.0 | 1027.0 | 425258.00 | 766352.00 |
| FTP(Mad Adder 31 State Com #101H)        | 9369.2 | -1113.0 | 1026.0 | 425308.00 | 766351.00 |
| Fed Perf 1(Mad Adder 31 State Com #101H) | 9634.0 | 4067.0  | 986.0  | 430488.00 | 766311.00 |
| Fed Perf 2(Mad Adder 31 State Com #101H) | 9634.0 | 6707.0  | 966.0  | 433128.00 | 766291.00 |
| PBHL(Mad Adder 31 State Com #101H)       | 9634.0 | 9248.0  | 946.0  | 435669.00 | 766271.00 |
|                                          |        |         |        |           |           |
|                                          |        |         |        |           |           |
|                                          |        |         |        |           |           |
|                                          |        |         |        |           |           |
|                                          |        |         |        |           |           |
|                                          |        |         |        |           |           |
|                                          |        |         |        |           |           |
|                                          |        |         |        |           |           |
|                                          |        |         |        |           |           |
|                                          |        |         |        |           |           |
|                                          |        |         |        |           |           |
|                                          |        |         |        |           |           |
|                                          |        |         |        |           |           |
|                                          |        |         |        |           |           |
|                                          |        |         |        |           |           |
|                                          |        |         |        |           |           |
|                                          |        |         |        |           |           |
|                                          |        |         |        |           |           |
|                                          |        |         |        |           |           |
|                                          |        |         |        |           |           |
|                                          |        |         |        |           |           |



West(-)/East(+)

Vertical Section at 5.84°





#### Mad Adder 31 State Com 101H API #: 30-025-\*\*\*\* Variances

EOG respectfully requests the below variances to be applied to the above well:

- Variance is requested to waive the centralizer requirements for the intermediate casing in the intermediate hole. An expansion additive will be utilized, in the cement slurry, for the entire length of the intermediate interval to maximize cement bond and zonal isolation.

- Variance is also requested to waive the centralizer requirements for the production casing in the production hole. An expansion additive will be utilized, in the cement slurry, for the entire length of the production interval to maximize cement bond and zonal isolation.

- Bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.

- Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).

- Variance is requested to use a 5,000 psi annular BOP with the 10,000 psi BOP stack.

- EOG Resources requests the option to contract a Surface Rig to drill, set surface casing, and Cement on the subject well. After WOC 8 hours or 500 psi compressive strength (whichever is greater), the Surface Rig will move off so the wellhead can be installed. A welder will cut the casing to the proper height and weld on the wellhead (both "A" and "B" sections). The weld will be tested to 1,500 psi. All valves will be closed and a wellhead cap will be installed (diagram attached). If the timing between rigs is such that EOG Resources would not be able to preset the surface, the Primary Rig will MIRU and drill the well in its entirety per the APD.

EOG requests the additional variance(s) in the attached document(s):

- EOG BLM Variance 3a\_b BOP Break-test and Offline Intermediate Cement
- EOG BLM Variance 3c Shallow Target Production Offline Bradenhead Cement
- EOG BLM Variance 3d Production Offline Cement
- EOG BLM Variance 4a Salt Section Annular Clearance
- EOG BLM Variance 5a Alternate Shallow Casing Designs



#### Intermediate Bradenhead Cement:

EOG requests variance from minimum standards to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as 1000 sack bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (2.30 yld, 12.91 ppg) will be executed as a contingency. Top of cement will be verified by Echo-meter.

EOG will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program.

EOG will report to the BLM the volume of fluid (limited to 5 bbls) used to flush intermediate casing valves following backside cementing procedures.



EOG Resources Inc. (EOG) respectfully requests a variance from the minimum standards to allow for offline bradenhead cementing of the production string after primary cementing operations have been completed. The primary cement job will be pumped conventionally (online) to top of the Brushy Canyon and will cover the target production intervals, and after production pack-off is set and tested, bradenhead will be pumped through casing valves between the production and intermediate casings (offline). For the bradenhead stage of production cementing, the barriers remain the same for offline cementing compared to performing it online.

The bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.



# Salt Section Annular Clearance Variance Request

**Daniel Moose** 

# **Current Design (Salt Strings)**

## 0.422" Annular clearance requirement

- Casing collars shall have a minimum clearance of 0.422 inches on all sides in the hole/casing annulus, with recognition that variances can be granted for justified exceptions.

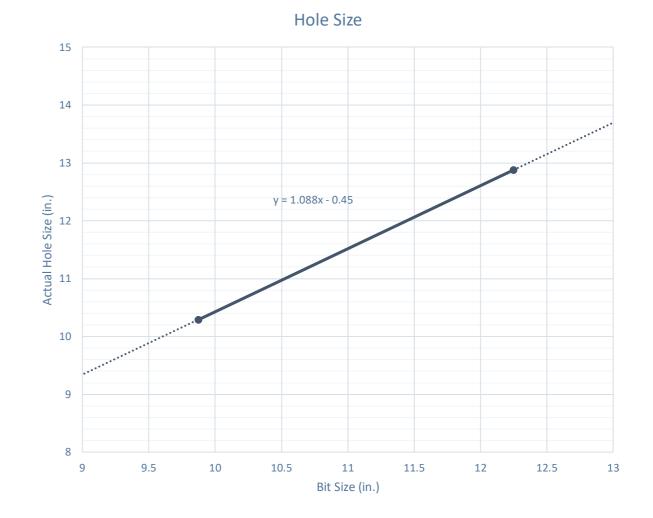
- 12.25" Hole x 9.625"40# J55/HCK55 LTC Casing
  - 1.3125" Clearance to casing OD
  - 0.8125" Clearance to coupling OD
- 9.875" Hole x 8.75" 38.5# P110 Sprint-SF Casing
  - 0.5625" Clearance to casing OD
  - 0.433" Clearance to coupling OD

# **Annular Clearance Variance Request**

EOG request permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Onshore Order #2 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues

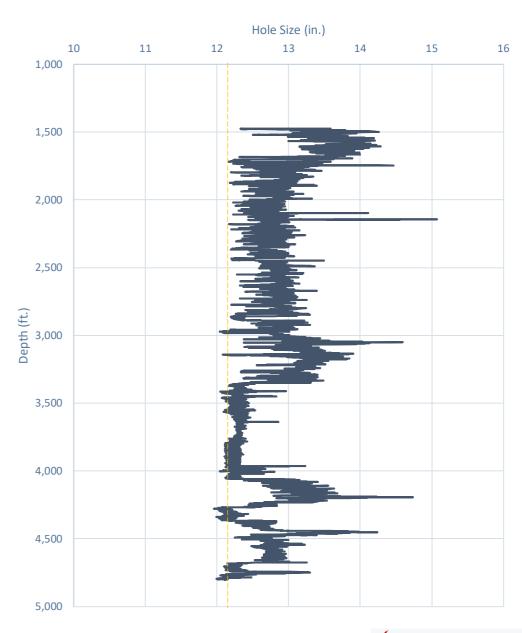
Received by OCD: 1/22/2025 2:13:24 PM


# **Volumetric Hole Size Calculation**

## **Hole Size Calculations Off Cement Volumes**

- Known volume of cement pumped
- Known volume of cement returned to surface
- Must not have had any losses
- Must have bumped plug

#### **Average Hole Size**


- 12.25" Hole
  - 12.88" Hole
    - 5.13% diameter increase
    - 10.52% area increase
  - 0.63" Average enlargement
  - 0.58" Median enlargement
  - 179 Well Count
- 9.875" Hole
  - 10.30" Hole
    - 4.24% diameter increase
    - 9.64% area increase
  - 0.42" Average enlargement
  - 0.46" Median enlargement
  - 11 Well Count



# Caliper Hole Size (12.25")

## **Average Hole Size**

- 12.25" Bit
  - 12.76" Hole
    - 4.14% diameter increase
    - 8.44% area increase
  - 0.51" Average enlargement
  - 0.52" Median enlargement
  - Brine



Modelo 10 Fed Com #501H



15

## Whirling Wind 11 Fed Com #744H

## Hole Size (in.) 7 8 9 10 11 12 13 14 1,000 1,500 2,000 2,500 Depth (ft.) 3,000 3,500 4,000 4,500 5,000 5,500

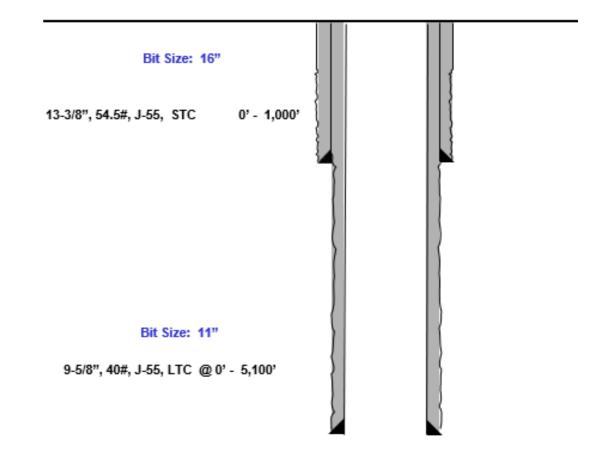
Caliper Hole Size (9.875")

## **Average Hole Size**

- 9.875" Hole
  - 11.21" Hole
    - 13.54% diameter increase
    - 28.92% area increase
  - 1.33" Average enlargement
  - 1.30" Median enlargement
  - EnerLite

# **Design A**

## Proposed 11" Hole with 9.625" 40# J55/HCK55 LTC Casing

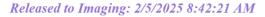

- 11" Bit + 0.52" Average hole enlargement = 11.52" Hole Size
  - 0.9475" Clearance to casing OD

$$=\frac{11.52-9.625}{2}$$
• 0.4475" Clearance to

4475" Clearance to coupling OD  $= \frac{11.52 - 10.625}{11.52}$ 

- Previous Shoe 13.375" 54.5# J55 STC
  - 0.995" Clearance to coupling OD (~1,200' overlap)

$$=\frac{12.615-10.625}{2}$$




# **Design B**









# **Casing Spec Sheets**

#### **PERFORMANCE DATA**

| API LTC   |      |       |
|-----------|------|-------|
| Technical | Data | Sheet |

9.625 in 40.00 lbs/ft

K55 HC

#### Tubular Parameters

| Size                | 9.625  | in     | Minimum Yield                | 55    | ksi  |
|---------------------|--------|--------|------------------------------|-------|------|
| Nominal Weight      | 40.00  | lbs/ft | Minimum Tensile              | 95    | ksi  |
| Grade               | K55 HC |        | Yield Load                   | 629   | kips |
| PE Weight           | 38.94  | lbs/ft | Tensile Load                 | 1088  | kips |
| Wall Thickness      | 0.395  | in     | Min. Internal Yield Pressure | 3,950 | psi  |
| Nominal ID          | 8.835  | in     | Collapse Pressure            | 3600  | psi  |
| Drift Diameter      | 8.750  | in     |                              | •     |      |
| Nom. Pipe Body Area | 11.454 | in²    |                              |       |      |

#### **Connection Parameters**

| 10.625 | in                           |
|--------|------------------------------|
| 10.500 | in                           |
| 8      | tpi                          |
| 3.50   | turns                        |
| 4.750  | in                           |
| 3,950  | psi                          |
|        | 10.500<br>8<br>3.50<br>4.750 |

#### Pipe Body and API Connections Performance Data

|--|

## New Search »

« Back to Previous List

USC 🔵 Metric

PDF

| 6/8/2015 10:04:37 AM             |        |        |     |        |          |
|----------------------------------|--------|--------|-----|--------|----------|
| Mechanical Properties            | Ptpe   | втс    | LTC | STC    |          |
| Minimum Yield Strength           | 55,000 | -      | -   | -      | psi      |
| Maximum Yield Strength           | 80,000 | -      | -   | -      | psi      |
| Minimum Tensile Strength         | 75,000 | -      | -   | -      | psi      |
| Dimensions                       | Pipe   | BTC    | LTC | STC    |          |
| Outside Diameter                 | 13.375 | 14.375 | -   | 14.375 | in.      |
| Wall Thickness                   | 0.380  | -      | -   | -      | in.      |
| Inside Diameter                  | 12.615 | 12.615 | -   | 12.615 | in.      |
| Standard Drift                   | 12.459 | 12.459 | -   | 12.459 | in.      |
| Alternate Drift                  | -      | -      | -   | -      | in.      |
| Nominal Linear Weight, T&C       | 54.50  | -      | -   | -      | libs/ft  |
| Plain End Weight                 | 52.79  | -      | -   | -      | lbs/ft   |
| Performance                      | Ptpe   | втс    | LTC | STC    |          |
| Minimum Collapse Pressure        | 1,130  | 1,130  | -   | 1,130  | psi      |
| Minimum Internal Yield Pressure  | 2,740  | 2,740  | -   | 2,740  | psi      |
| Minimum Pipe Body Yield Strength | 853.00 | -      | -   | -      | 1000 lbs |
| Joint Strength                   | -      | 909    | -   | 514    | 1000 lbs |
| Reference Length                 | -      | 11,125 | -   | 6,290  | ft       |
| Make-Up Data                     | Ptpe   | BTC    | LTC | STC    |          |
| Make-Up Loss                     | -      | 4.81   | -   | 3.50   | in.      |
| Minimum Make-Up Torque           | -      | -      | -   | 3,860  | ft-lbs   |
| Maximum Make-Up Torque           | -      | -      | -   | 6,430  | ft-lbs   |



# **Casing Spec Sheets**

#### Pipe Body and API Connections Performance Data

| 10.750 40.50/0.350 J55           |        |        |     |        | PD                   |
|----------------------------------|--------|--------|-----|--------|----------------------|
| New Search »                     |        |        |     |        | « Back to Previous L |
|                                  |        |        |     |        | USC 🔵 Metr           |
| /8/2015 10:14:05 AM              |        |        |     |        |                      |
| Mechanical Properties            | Pipe   | BTC    | LTC | STC    |                      |
| Minimum Yield Strength           | 55,000 | -      | -   | -      | psi                  |
| Maximum Yield Strength           | 80,000 |        |     |        | psi                  |
| Minimum Tensile Strength         | 75,000 | -      | -   | -      | psi                  |
| Dimensions                       | Ріре   | BTC    | LTC | STC    |                      |
| Outside Diameter                 | 10.750 | 11.750 | -   | 11.750 | in.                  |
| Wall Thickness                   | 0.350  | -      |     |        | in.                  |
| Inside Diameter                  | 10.050 | 10.050 | -   | 10.050 | in.                  |
| Standard Drift                   | 9.894  | 9.894  | -   | 9.894  | in.                  |
| Alternate Drift                  | -      | -      | -   |        | in.                  |
| Nominal Linear Weight, T&C       | 40.50  | -      | -   |        | lbs/ft               |
| Plain End Weight                 | 38.91  | -      | -   |        | lbs/ft               |
| Performance                      | Pipe   | втс    | LTC | STC    |                      |
| Minimum Collapse Pressure        | 1,580  | 1,580  | -   | 1,580  | psi                  |
| Minimum Internal Yield Pressure  | 3,130  | 3,130  | -   | 3,130  | psi                  |
| Minimum Pipe Body Yield Strength | 629.00 | -      |     |        | 1000 lbs             |
| Joint Strength                   | -      | 700    | -   | 420    | 1000 lbs             |
| Reference Length                 | -      | 11,522 | -   | 6,915  | ft                   |
| Make-Up Data                     | Ріре   | втс    | LTC | STC    |                      |
| Make-Up Loss                     | -      | 4.81   | -   | 3.50   | in.                  |
| Minimum Make-Up Torque           | -      | -      | -   | 3,150  | ft-lbs               |
| Maximum Make-Up Torque           | -      | -      |     | 5,250  | ft-lbs               |

| RBW %<br>87.5         |
|-----------------------|
| n                     |
| 9                     |
|                       |
| 7.92 inch             |
| 9.149 in <sup>2</sup> |
| 7.875 inch            |
|                       |
| 503 kips              |
| 2,530 psi             |
| 3,930 psi             |
| lne                   |
| )                     |
| Max: 4,65             |
|                       |
| )                     |
| Max: 5,21             |
|                       |
| )                     |
| onal make up          |
|                       |
|                       |
| able up to            |
|                       |

eog

Released to Imaging: 2/5/2025 8:42:21 AM

11



# EOG BLANKET CASING DESIGN VARIANCE

EOG respectfully requests the drill plans in the attached document 'EOG Alternate Casing Designs – BLM APPROVED' be added to the COA's for this well. These designs have been approved by the BLM down to the TVDs listed below and will allow EOG to run alternate casing designs for this well if necessary.

The designs and associated details listed are the "worst case scenario" boundaries for design safety factors. Location and lithology have NOT been accounted for in these designs. The specific well details will be based on the APD/Sundry package and the information listed in the COA.

The mud program will not change from the original design for this well. Summary of the mud programs for both shallow and deep targets are listed at the end of this document. If the target is changing, a sundry will be filed to update the casing design and mud/cement programs.

Cement volumes listed in this document are for reference only. The cement volumes for the specific well will be adjusted to ensure cement tops meet BLM requirements as listed in the COA and to allow bradenhead cementing when applicable.

This blanket document only applies to wells with three string designs outside of Potash and Capitan Reef boundaries.

| Sł           | Shallow Design Boundary Conditions |          |         |             |  |  |  |  |  |  |
|--------------|------------------------------------|----------|---------|-------------|--|--|--|--|--|--|
|              | Deepest                            | Deepest  | Max Inc | Max DLS     |  |  |  |  |  |  |
|              | MD (ft)                            | TVD (ft) | (deg)   | (°/100usft) |  |  |  |  |  |  |
| Surface      | 2030                               | 2030     | 0       | 0           |  |  |  |  |  |  |
| Intermediate | 7793                               | 5650     | 40      | 8           |  |  |  |  |  |  |
| Production   | 28578                              | 12000    | 90      | 25          |  |  |  |  |  |  |



Shallow Design A

| <b></b> - C |           | ROOM    |           |              |         |        |         |             |
|-------------|-----------|---------|-----------|--------------|---------|--------|---------|-------------|
| Hole        | Interv    | al MD   | Interva   | Interval TVD |         |        |         |             |
| Size        | From (ft) | To (ft) | From (ft) | To (ft)      | OD      | Weight | Grade   | Conn        |
| 16"         | 0         | 2,161   | 0         | 2,030        | 13-3/8" | 54.5#  | J-55    | STC         |
| 11"         | 0         | 7,951   | 0         | 5,650        | 9-5/8"  | 40#    | J-55    | LTC         |
| 6-3/4"      | 0         | 29,353  | 0         | 12,000       | 5-1/2"  | 20#    | P110-EC | DWC/C IS MS |

# 4. CASING PROGRAM

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

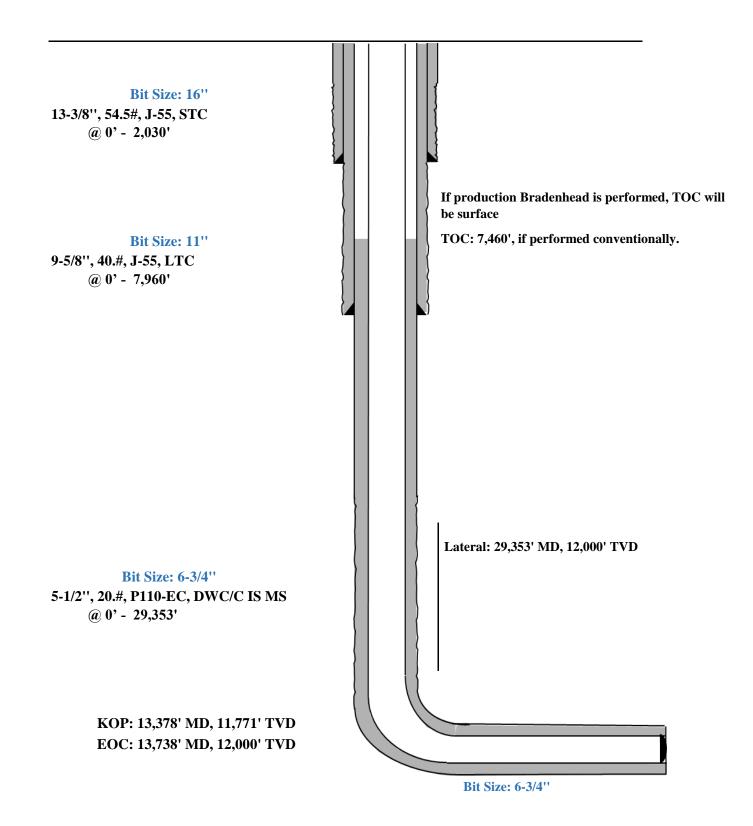
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

|                               |           | Wt.  | Yld    | Slurry Description                                                                                                                                |
|-------------------------------|-----------|------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth                         | No. Sacks | ppg  | Ft3/sk | Sidny Description                                                                                                                                 |
| 2,030'<br>13-3/8''            | 570       | 13.5 | 1.73   | Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-<br>Flake (TOC @ Surface)                                                    |
|                               | 160       | 14.8 | 1.34   | Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2%<br>Sodium Metasilicate (TOC @ 1830')                                                 |
| <b>8,050'</b><br>9-5/8''      | 760       | 12.7 | 2.22   | Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC<br>@ Surface)                                                                       |
|                               | 250       | 14.8 | 1.32   | Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')                                                                                               |
| 29,353'<br><sub>5-1/2''</sub> | 1000      | 14.8 | 1.32   | Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6%<br>Bentonite Gel (TOC @ surface)                                                       |
|                               | 1480      | 13.2 | 1.52   | Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5%<br>NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of<br>Brushy) |


# 5. CEMENTING PROGRAM:

# **S**eog resources

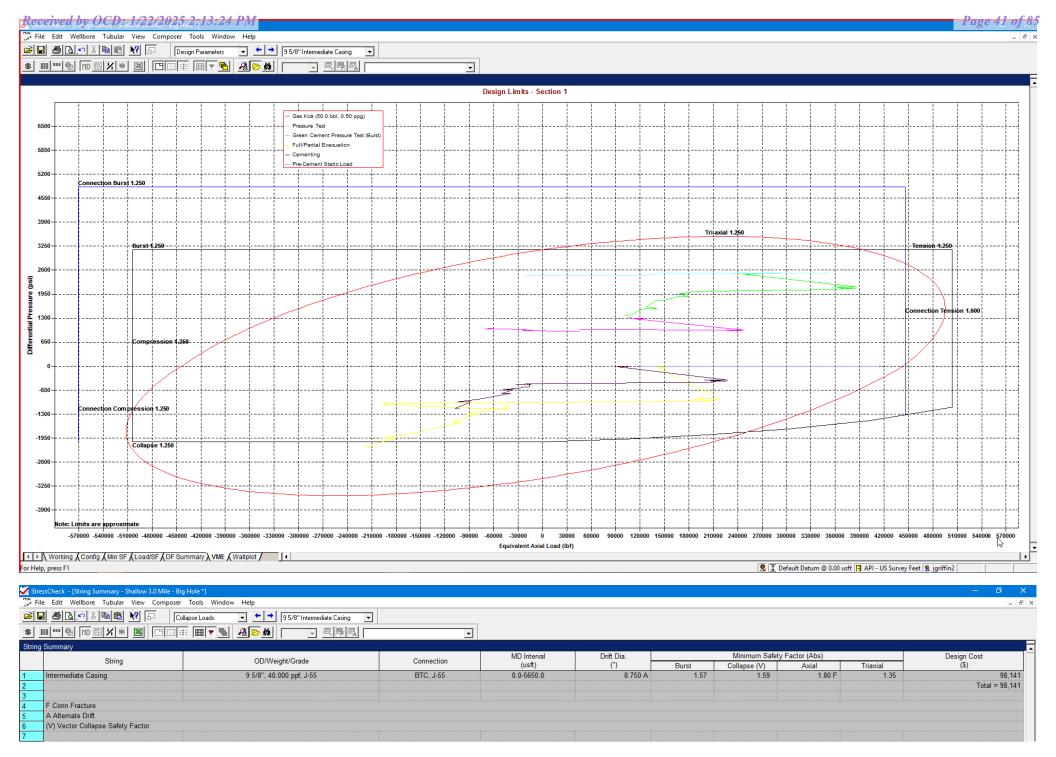
Shallow Design A

Proposed Wellbore

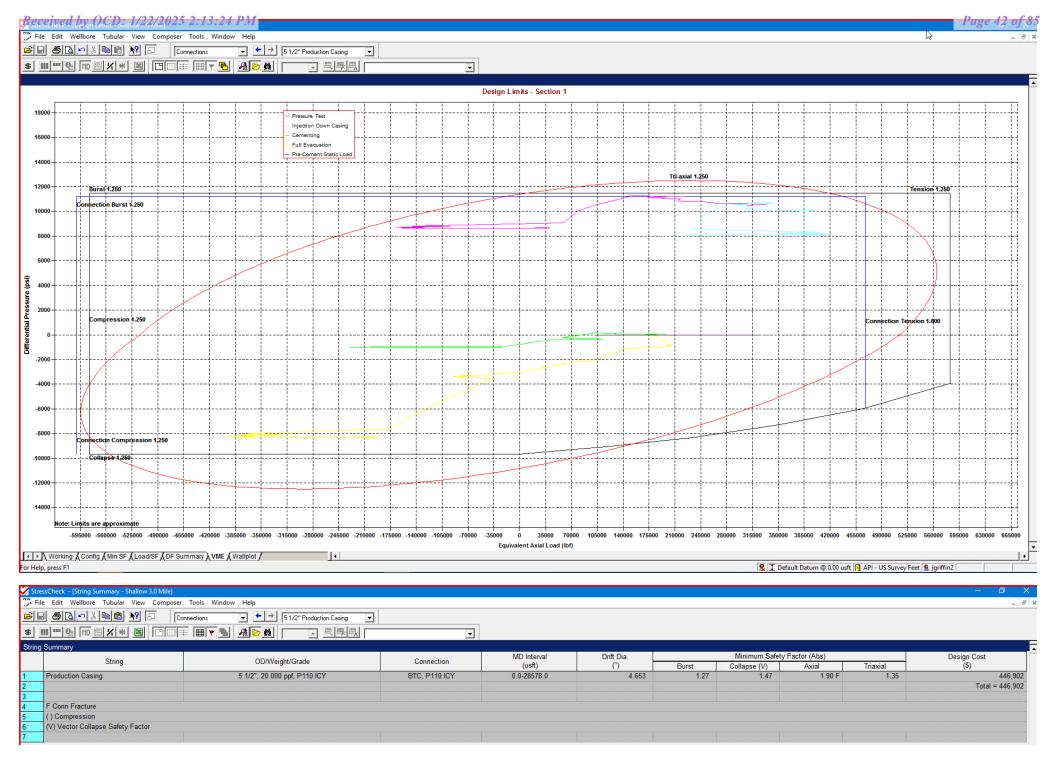
KB: 3558' GL: 3533'



# Sele Sele


| L | Depth (MD)   |                         | orce (lbf)              | Equivalent       | Bending Stress   |              | Absolute S   | afety Factor |                   | Temperature      | Pressure           | (psi)              | Addt'l Pickup To    | Buckled     |
|---|--------------|-------------------------|-------------------------|------------------|------------------|--------------|--------------|--------------|-------------------|------------------|--------------------|--------------------|---------------------|-------------|
|   | (usft)       | Apparent<br>(w/Bending) | Actual<br>(w/o Bending) | Axial Load (lbf) | at OD (psi)      | Triaxial     | Burst        | Collapse (V) | Axial             | (°F)             | Internal           | External           | Prevent Buck. (lbf) | Length (usf |
|   | 0            | 252987                  | 228954                  | 253140           | 2098.2           | 1.69         | 1.58         | N/A          | 2.82 F            | 70.00            | 2500.00            | 0.00               | N/A                 | N/A         |
|   | 100          | 247735                  | 223702                  | 248466           | 2098.2           | 1.69         | 1.58         | N/A          | 2.88 F            | 71.10            | 2543.63            | 43.63              |                     |             |
|   | 100          | 234996                  | 223701                  | 235716           | 986.2            | 1.71         | 1.58         | N/A          | 3.04 F            | 71.10            | 2543.64            | 43.64              |                     |             |
|   | 1700         | 341565                  | 139667                  | 352253           | 17627.2          | 1.53         | 1.57         | N/A          | 2.09 F            | 88.70            | 3241.64            | 741.64             |                     |             |
|   | 1700         | 312979                  | 139666                  | 323488           | 15131.5          | 1.58         | 1.57         | N/A          | 2.28 F            | 88.70            | 3241.65            | 741.65             |                     |             |
|   | 1850         | 336881                  | 132027                  | 348440           | 17885.2          | 1.51         | 1.57         | N/A          | 2.12 F            | 90.29            | 3305.05            | 805.05             |                     |             |
|   | 1850         | 318549                  | 132027                  | 329984           | 16284.8          | 1.54         | 1.57         | N/A          | 2.24 F            | 90.29            | 3305.06            | 805.06             |                     |             |
|   | 1950         | 320468                  | 127243                  | 332475           | 16869.9          | 1.52         | 1.57         | N/A          | 2.23 F            | 91.30            | 3344.87            | 844.87             |                     |             |
|   | 1950         | 312802                  | 127243                  | 324756           | 16200.7          | 1.53         | 1.57         | N/A          | 2.28 F            | 91.30            | 3344.87            | 844.87             |                     |             |
|   | 2050         | 307858                  | 122773                  | 320295           | 16159.3          | 1.52         | 1.57         | N/A          | 2.32 F            | 92.23            | 3381.89            | 881.89             |                     |             |
|   | 2050         | 303560                  | 122772                  | 315965           | 15784.1          | 1.53         | 1.57         | N/A          | 2.35 F            | 92.23            | 3381.89            | 881.89             |                     |             |
|   | 2300         | 151294                  | 112633                  | 163658           | 3375.4           | 1.71         | 1.57         | N/A          | 4.72 F            | 94.35            | 3466.13            | 966.13             |                     |             |
|   | 2300         | 132741                  | 112633                  | 144956           | 1755.6           | 1.72         | 1.57         | N/A          | 5.38 F            | 94.35<br>94.94   | 3466.14            | 966.14<br>989.28   |                     |             |
|   | 2370<br>2370 | 129966<br>127909        | 109858<br>107800        | 142452<br>140922 | 1755.6<br>1755.6 | 1.72<br>1.75 | 1.57<br>1.60 | N/A          | 5.49 F<br>5.58 F  | 94.94<br>94.94   | 3489.28            | 989.28<br>1036.40  |                     |             |
|   | 2370         | 127909                  | 94232                   |                  |                  | 1.75         |              | N/A          |                   | 94.94            | 3489.29            | 1036.40            |                     |             |
|   |              |                         |                         | 119785           | 985.1<br>1523.4  |              | 1.60         | N/A          | 6.77 F<br>6.39 F  |                  | 3599.97            |                    |                     |             |
|   | 2700         | 111680<br>110766        | 94231<br>77783          | 126006           | 2879.6           | 1.75         | 1.60         | N/A          |                   | 97.73            | 3599.97<br>3734.23 | 1152.35<br>1293.00 |                     |             |
|   | 3100<br>3100 | 97392                   | 77783                   | 126839<br>113331 | 1712.1           | 1.71         | 1.60<br>1.60 | N/A<br>N/A   | 6.44 F<br>7.33 F  | 101.11<br>101.11 | 3734.23            | 1293.00            |                     |             |
|   | 3100         | 71565                   | 53303                   | 89806            | 1712.1           | 1.73         | 1.60         | N/A          | 9.97 F            | 101.11           | 3734.23            | 1502.54            |                     |             |
|   | 3700         | 60887                   | 53302                   | 79004            | 662.3            | 1.70         | 1.61         | N/A          | 9.97 F<br>11.72 F | 106.15           | 3934.25            | 1502.54            |                     |             |
|   | 4650         | 34671                   | 14219                   | 56495            | 1785.6           | 1.64         | 1.61         | N/A          | 20.59 F           | 114.20           | 4253.37            | 1836.86            |                     |             |
|   | 4900         | 44595                   | 4828                    | 67626            | 3472.0           | 1.64         | 1.61         | N/A          | 20.55 F           | 114.20           | 4337.37            | 1924.87            |                     |             |
|   | 4900         | 28975                   | 4828                    | 51775            | 2108.2           | 1.62         | 1.61         | N/A          | 24.64 F           | 116.32           | 4337.38            | 1924.87            |                     |             |
|   | 5029         | 20373                   | 34                      | 45340            | 1926.8           | 1.61         | 1.61         | N/A          | 32.30 F           | 117.40           | 4380.40            | 1969.94            |                     |             |
|   | 5029         | 22103                   | 33                      | 45339            | 1926.8           | 1.61         | 1.61         | N/A          | 32.30 F           | 117.40           | 4380.41            | 1969.95            |                     |             |
|   | 5600         | -45329                  | -21341                  | -20805           | 2094.3           | 1.57         | 1.62         | N/A          | (13.67)           | 122.23           | 4572.11            | 2170.78            |                     |             |
|   | 5650         | -40465                  | -23210                  | -15657           | 1506.5           | 1.58         | 1.62         | N/A          | (15.31)           | 122.66           | 4588.87            | 2188.34            |                     |             |
|   | 5050         | -0+05                   | 20210                   | 10001            | 1000.0           | 1.50         | 1.02         |              | (13.51)           | 122.00           | 4300.07            | 2100.34            |                     |             |
|   | F            | Conn Fracture           |                         |                  |                  |              |              |              |                   |                  |                    |                    |                     |             |
|   |              | Compression             |                         |                  |                  |              |              |              |                   |                  |                    |                    |                     |             |
|   |              | Vector Collapse Safet   | v Factor                |                  |                  |              |              |              |                   |                  |                    |                    |                     |             |
|   | × /          | •                       | ,<br>                   |                  |                  |              |              |              |                   |                  |                    |                    |                     |             |

✓ ► Working Config Min SF Load/SF DF Summary VME Wallplot For Help, press F1


🕵 I Default Datum @ 0.00 usft 🖪 API - US Survey Feet 😫 jgriffin2

9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi



\*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.



\*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

### Released to Imaging: 2/5/2025 8:42:21 AM

Page 6 of 31

# **S**eog resources

Shallow Design B

| <b></b> . ( |           | NOUNA   |           |              |         |        |         |             |
|-------------|-----------|---------|-----------|--------------|---------|--------|---------|-------------|
| Hole        | Interv    | al MD   | Interva   | Interval TVD |         |        |         |             |
| Size        | From (ft) | To (ft) | From (ft) | To (ft)      | OD      | Weight | Grade   | Conn        |
| 13-1/2"     | 0         | 2,161   | 0         | 2,030        | 10-3/4" | 40.5#  | J-55    | STC         |
| 9-7/8"      | 0         | 7,951   | 0         | 5,650        | 8-5/8"  | 32#    | J-55    | BTC-SC      |
| 6-3/4"      | 0         | 29,353  | 0         | 12,000       | 5-1/2"  | 20#    | P110-EC | DWC/C IS MS |

# 4. CASING PROGRAM

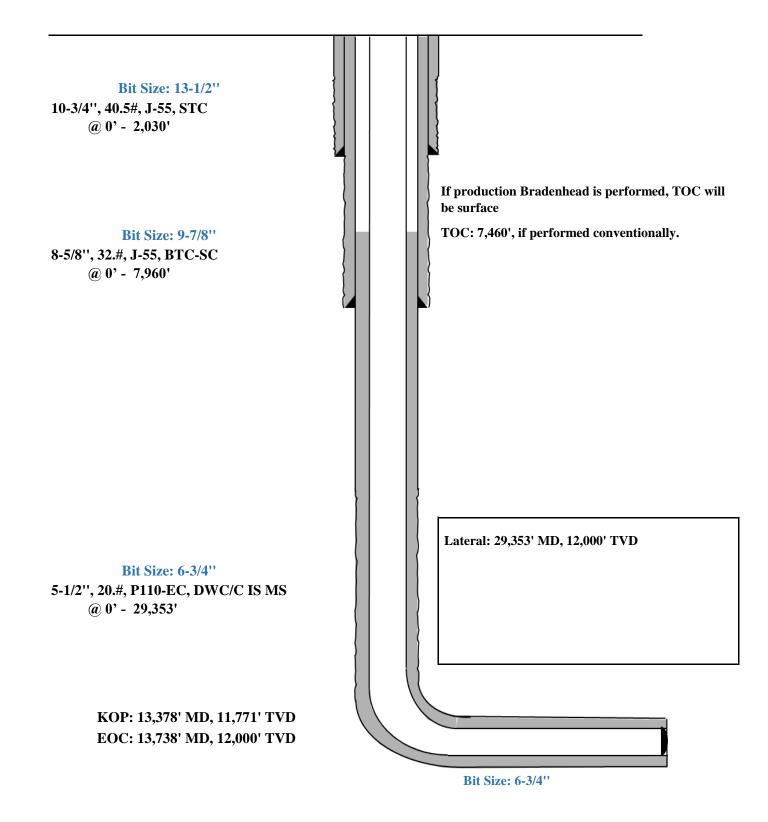
Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.


|                               |           | Wt.  | Yld    | Slurry Description                                                                                                                                |
|-------------------------------|-----------|------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth                         | No. Sacks | ppg  | Ft3/sk | Sidny Description                                                                                                                                 |
| 2,030'<br>10-3/4''            | 530       | 13.5 | 1.73   | Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-<br>Flake (TOC @ Surface)                                                    |
|                               | 140       | 14.8 | 1.34   | Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2%<br>Sodium Metasilicate (TOC @ 1830')                                                 |
| 8,050'<br><sub>8-5/8''</sub>  | 470       | 12.7 | 2.22   | Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC<br>@ Surface)                                                                       |
|                               | 210       | 14.8 | 1.32   | Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')                                                                                               |
| 29,353'<br><sub>5-1/2''</sub> | 1000      | 14.8 | 1.32   | Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6%<br>Bentonite Gel (TOC @ surface)                                                       |
|                               | 1480      | 13.2 | 1.52   | Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5%<br>NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of<br>Brushy) |

# 5. CEMENTING PROGRAM:

**Shallow Casing Design B** 

Proposed Wellbore KB: 3558'

GL: 3533'

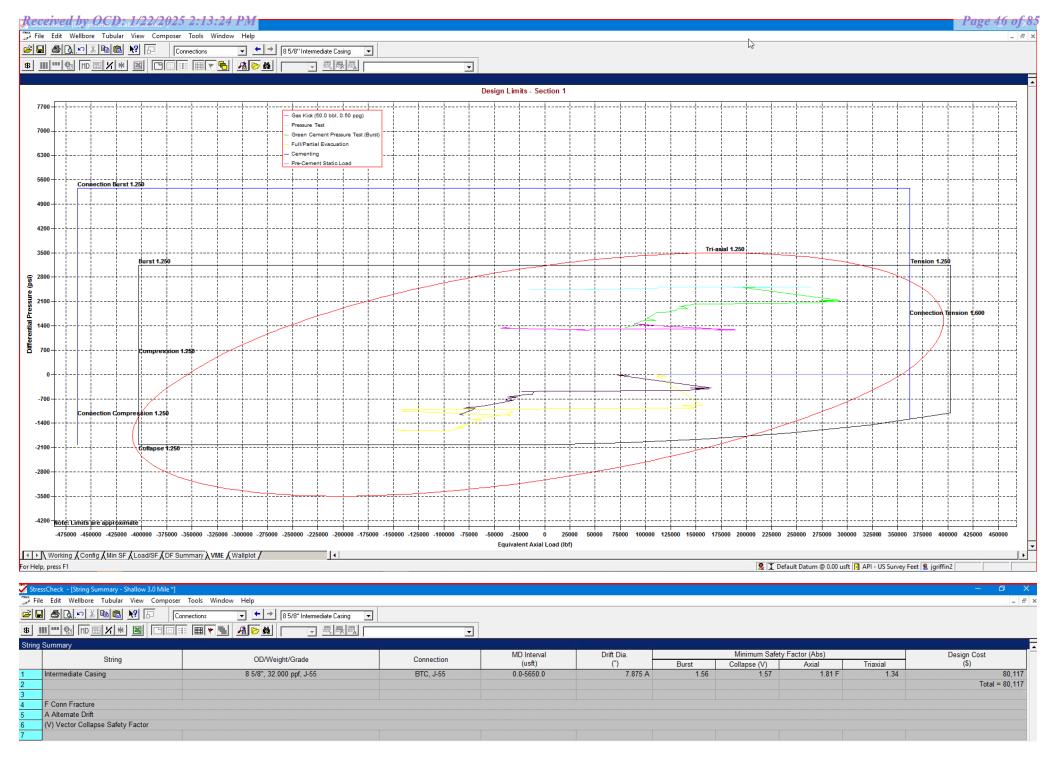


StressCheck - [Triaxial Results - Shallow 3.0 Mile \*]
<sup>max</sup>/<sub>2</sub> File Edit Wellbore Tubular View Composer Tools Window Help

\_ 8 :

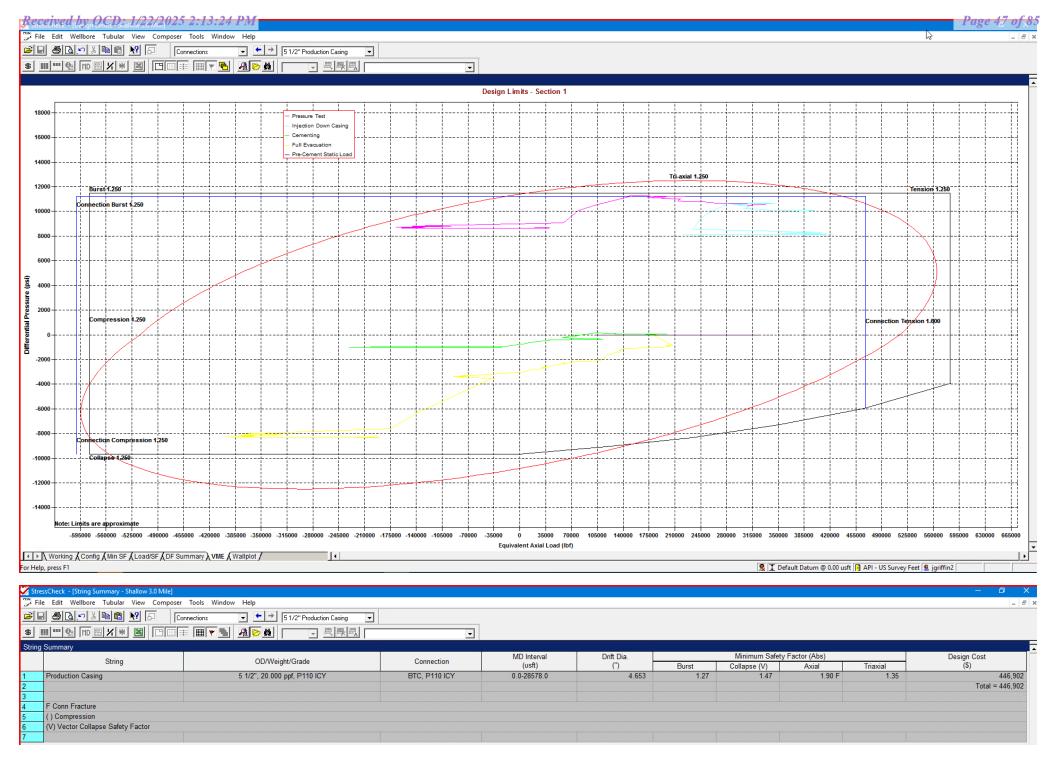
 Image: Image

|                      | Axial                                                         | Force (lbf)             | Equivalent       | Bending Stress |          | Absolute S | afety Factor |         | Temperature | Pressure | e (psi)  | Addt'l Pickup To    | Buckled     |
|----------------------|---------------------------------------------------------------|-------------------------|------------------|----------------|----------|------------|--------------|---------|-------------|----------|----------|---------------------|-------------|
| Depth (MD)<br>(usft) | Apparent<br>(w/Bending)                                       | Actual<br>(w/o Bending) | Axial Load (lbf) | at OD (psi)    | Triaxial | Burst      | Collapse (V) | Axial   | (°F)        | Internal | External | Prevent Buck. (lbf) | Length (usf |
|                      | 0 200426                                                      | 183224                  | 200546           | 1880.2         | 1.68     | 1.57       | N/A          | 2.89 F  | 70.00       | 2500.00  | 0.00     | N/A                 | N/A         |
|                      | 100 196229                                                    | 179028                  | 196812           | 1880.2         | 1.69     | 1.57       | N/A          | 2.95 F  | 71.10       | 2543.63  | 43.63    |                     |             |
|                      | 100 187111                                                    | 179027                  | 187686           | 883.7          | 1.70     | 1.57       | N/A          | 3.10 F  | 71.10       | 2543.64  | 43.64    |                     |             |
|                      | 700 256401                                                    | 111891                  | 264835           | 15795.8        | 1.56     | 1.56       | N/A          | 2.26 F  | 88.70       | 3241.64  | 741.64   |                     |             |
|                      | 700 235940                                                    | 111891                  | 244247           | 13559.4        | 1.60     | 1.56       | N/A          | 2.45 F  | 88.70       | 3241.65  | 741.65   |                     |             |
|                      | 850 252413                                                    | 105788                  | 261533           | 16027.0        | 1.54     | 1.56       | N/A          | 2.29 F  | 90.29       | 3305.05  | 805.05   |                     |             |
|                      | 850 239292                                                    | 105787                  | 248323           | 14592.9        | 1.56     | 1.56       | N/A          | 2.42 F  | 90.29       | 3305.06  | 805.06   |                     |             |
|                      | 950 240267                                                    | 101966                  | 249748           | 15117.2        | 1.54     | 1.56       | N/A          | 2.41 F  | 91.30       | 3344.87  | 844.87   |                     |             |
|                      | 950 234781                                                    | 101965                  | 244223           | 14517.5        | 1.56     | 1.56       | N/A          | 2.47 F  | 91.30       | 3344.87  | 844.87   |                     |             |
|                      | 050 230871                                                    | 98395                   | 240694           | 14480.4        | 1.55     | 1.56       | N/A          | 2.51 F  | 92.23       | 3381.89  | 881.89   |                     |             |
|                      | 050 227794                                                    | 98394                   | 237594           | 14144.2        | 1.55     | 1.56       | N/A          | 2.54 F  | 92.23       | 3381.89  | 881.89   |                     |             |
|                      | 300 117966                                                    | 90294                   | 127818           | 3024.7         | 1.70     | 1.56       | N/A          | 4.91 F  | 94.35       | 3466.13  | 966.13   |                     |             |
|                      | 300 104686                                                    | 90293                   | 114432           | 1573.2         | 1.71     | 1.56       | N/A          | 5.53 F  | 94.35       | 3466.14  | 966.14   |                     |             |
|                      | 370 102469                                                    | 88077                   | 112431           | 1573.2         | 1.71     | 1.56       | N/A          | 5.65 F  | 94.94       | 3489.28  | 989.28   |                     |             |
|                      | 370 100817                                                    | 86424                   | 111200           | 1573.2         | 1.75     | 1.59       | N/A          | 5.75 F  | 94.94       | 3489.29  | 1036.40  |                     |             |
|                      | 700 83660                                                     | 75583                   | 95052            | 882.8          | 1.74     | 1.59       | N/A          | 6.92 F  | 97.73       | 3599.97  | 1152.35  |                     |             |
|                      | 700 88072                                                     | 75583                   | 99504            | 1365.1         | 1.74     | 1.59       | N/A          | 6.58 F  | 97.73       | 3599.97  | 1152.35  |                     |             |
|                      | 100 86049                                                     | 62442                   | 98863            | 2580.4         | 1.71     | 1.59       | N/A          | 6.73 F  | 101.11      | 3734.23  | 1293.00  |                     |             |
|                      | 100 76477                                                     | 62441                   | 89195            | 1534.2         | 1.72     | 1.59       | N/A          | 7.57 F  | 101.11      | 3734.23  | 1293.01  |                     |             |
|                      | 700 55953                                                     | 42882                   | 70509            | 1428.8         | 1.69     | 1.60       | N/A          | 10.35 F | 106.15      | 3934.24  | 1502.54  |                     |             |
|                      | 700 48311                                                     | 42881                   | 62778            | 593.5          | 1.71     | 1.60       | N/A          | 11.99 F | 106.16      | 3934.25  | 1502.55  |                     |             |
|                      | 000 41458                                                     | 33043                   | 56865            | 919.9          | 1.69     | 1.60       | N/A          | 13.97 F | 108.69      | 4034.82  | 1607.91  |                     |             |
|                      | 650 26293                                                     | 11655                   | 43706            | 1600.1         | 1.63     | 1.60       | N/A          | 22.03 F | 114.20      | 4253.37  | 1836.86  |                     |             |
|                      | 900 32619                                                     | 4156                    | 50970            | 3111.2         | 1.59     | 1.60       | N/A          | 17.76 F | 116.32      | 4337.37  | 1924.87  |                     |             |
|                      | 900 21439                                                     | 4155                    | 39625            | 1889.2         | 1.61     | 1.60       | N/A          | 27.02 F | 116.32      | 4337.38  | 1924.87  |                     |             |
|                      | 039 15822                                                     | 26                      | 34389            | 1726.6         | 1.61     | 1.61       | N/A          | 36.61 F | 117.49      | 4383.77  | 1973.48  |                     |             |
|                      | 039 15822                                                     | 26                      | 34388            | 1726.6         | 1.61     | 1.61       | N/A          | 36.61 F | 117.49      | 4383.78  | 1973.49  |                     |             |
|                      | 600 -33912                                                    | -16743                  | -14286           | 1876.7         | 1.57     | 1.61       | N/A          | (14.60) | 122.23      | 4572.11  | 2170.78  |                     |             |
| 56                   | 650 -30585                                                    | -18235                  | -10742           | 1350.0         | 1.58     | 1.61       | N/A          | (16.18) | 122.66      | 4588.87  | 2188.34  |                     |             |
|                      |                                                               |                         |                  |                |          |            |              |         |             |          |          |                     |             |
|                      | E A E .                                                       |                         |                  |                |          |            |              |         |             |          |          |                     |             |
|                      | F Conn Fracture                                               |                         |                  |                |          |            |              |         |             |          |          |                     |             |
|                      | F Conn Fracture<br>() Compression<br>(V) Vector Collapse Safe |                         |                  |                |          |            |              |         |             |          |          |                     |             |


-

For Help, press F1

🕱 I Default Datum @ 0.00 usft 🖪 API - US Survey Feet 😫 jgriffin2


8-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi



\*Modelling done with 8-5/8" 32# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

# Released to Imaging: 2/5/2025 8:42:21 AM



\*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

### Released to Imaging: 2/5/2025 8:42:21 AM

Page 11 of 31



**Shallow Design C** 

|        |           | noonn   |              |         |         |        |         |               |
|--------|-----------|---------|--------------|---------|---------|--------|---------|---------------|
| Hole   | Interv    | al MD   | Interval TVD |         | Csg     |        |         |               |
| Size   | From (ft) | To (ft) | From (ft)    | To (ft) | OD      | Weight | Grade   | Conn          |
| 16"    | 0         | 2,161   | 0            | 2,030   | 13-3/8" | 54.5#  | J-55    | STC           |
| 11"    | 0         | 7,951   | 0            | 5,650   | 9-5/8"  | 40#    | J-55    | LTC           |
| 7-7/8" | 0         | 29,353  | 0            | 12,000  | 6"      | 24.5#  | P110-EC | VAM Sprint-SF |

# 4. CASING PROGRAM

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

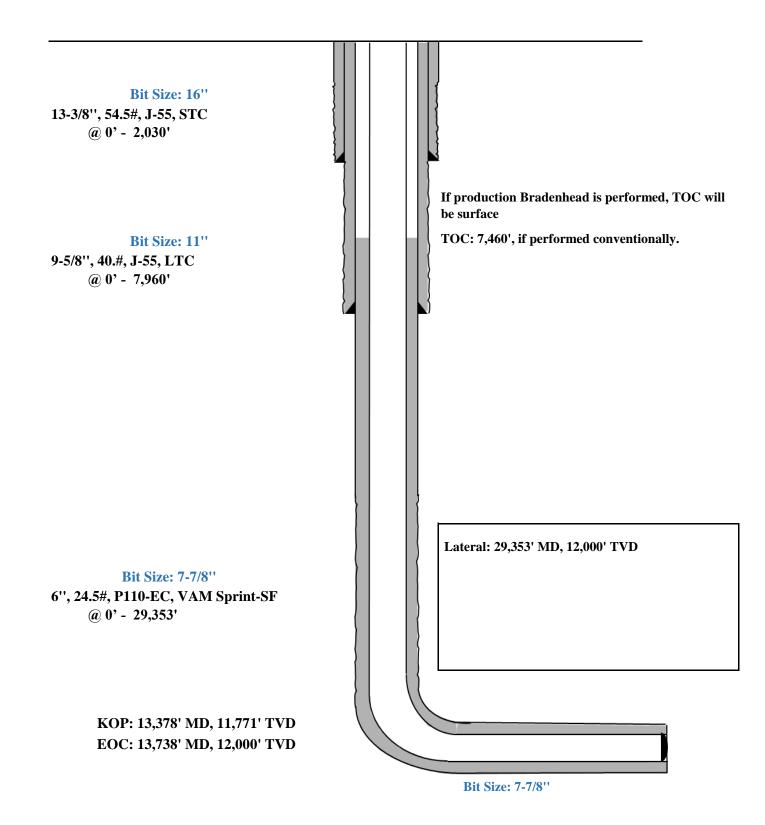
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" casing in the 7-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 7-7/8" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

|                           |           | Wt.  | Yld    | Shume Description                                                                                                                                 |
|---------------------------|-----------|------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth                     | No. Sacks | ppg  | Ft3/sk | Slurry Description                                                                                                                                |
| 2,030'                    | 570       | 13.5 | 1.73   | Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-<br>Flake (TOC @ Surface)                                                    |
| 13-3/8"                   | 160       | 14.8 | 1.34   | Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2%<br>Sodium Metasilicate (TOC @ 1830')                                                 |
| <b>8,050'</b><br>9-5/8''  | 760       | 12.7 | 2.22   | Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC<br>@ Surface)                                                                       |
|                           | 250       | 14.8 | 1.32   | Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')                                                                                               |
| 29,353'<br><sub>6''</sub> | 1000      | 14.8 | 1.32   | Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6%<br>Bentonite Gel (TOC @ surface)                                                       |
|                           | 2500      | 13.2 | 1.52   | Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5%<br>NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of<br>Brushy) |

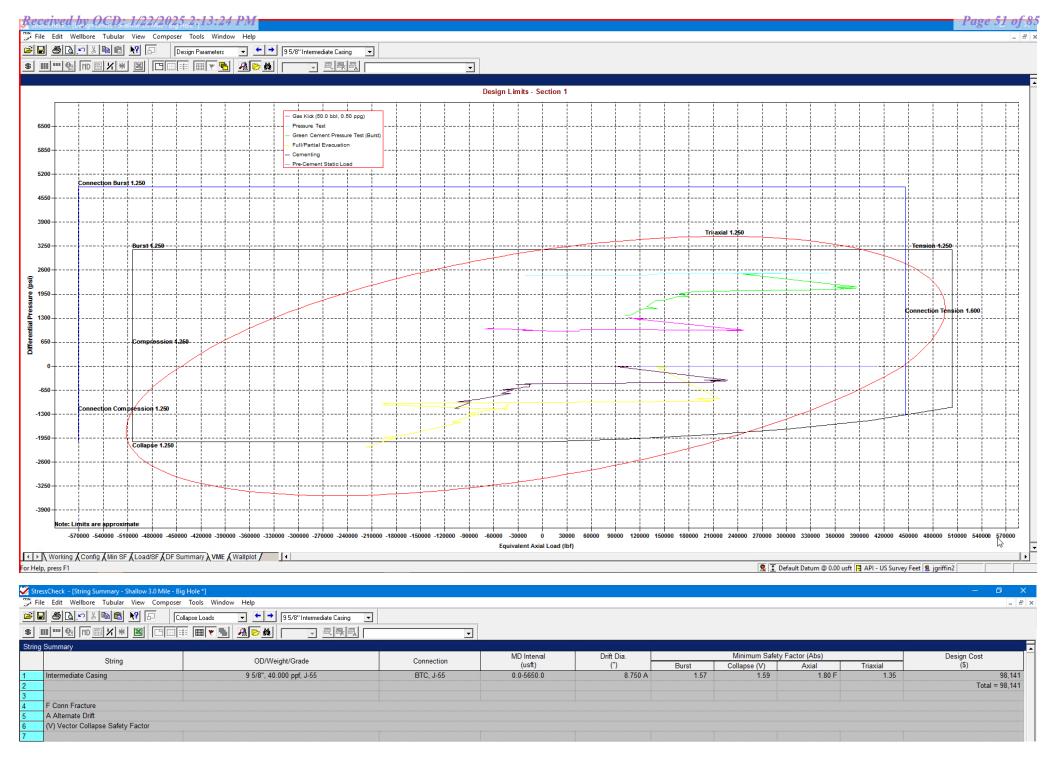

# 5. CEMENTING PROGRAM:

# **S**eog resources

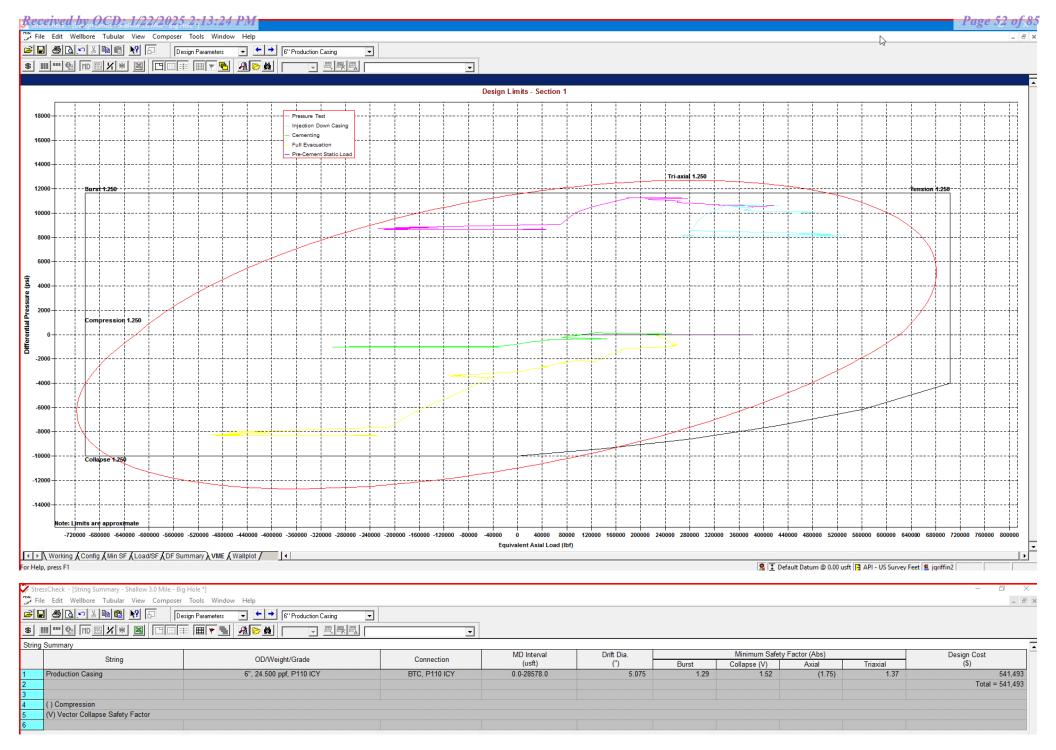
Shallow Design C

Proposed Wellbore

KB: 3558' GL: 3533'




### 


| Depth (MD) |                         | orce (lbf)              | Equivalent       | Bending Stress |          | Absolute S | afety Factor |         | Temperature | Pressure | e (psi)  | Addt'l Pickup To    | Buckled     |
|------------|-------------------------|-------------------------|------------------|----------------|----------|------------|--------------|---------|-------------|----------|----------|---------------------|-------------|
| (usft)     | Apparent<br>(w/Bending) | Actual<br>(w/o Bending) | Axial Load (lbf) | at OD (psi)    | Triaxial | Burst      | Collapse (V) | Axial   | (°F)        | Internal | External | Prevent Buck. (lbf) | Length (ust |
| (          |                         | 228954                  | 253140           | 2098.2         | 1.69     | 1.58       | N/A          | 2.82 F  | 70.00       | 2500.00  | 0.00     | N/A                 | N/A         |
| 100        |                         | 223702                  | 248466           | 2098.2         | 1.69     | 1.58       | N/A          | 2.88 F  | 71.10       | 2543.63  | 43.63    |                     |             |
| 100        |                         | 223701                  | 235716           | 986.2          | 1.71     | 1.58       | N/A          | 3.04 F  | 71.10       | 2543.64  | 43.64    |                     |             |
| 1700       |                         | 139667                  | 352253           | 17627.2        | 1.53     | 1.57       | N/A          | 2.09 F  | 88.70       | 3241.64  | 741.64   |                     |             |
| 1700       |                         | 139666                  | 323488           | 15131.5        | 1.58     | 1.57       | N/A          | 2.28 F  | 88.70       | 3241.65  | 741.65   |                     |             |
| 1850       |                         | 132027                  | 348440           | 17885.2        | 1.51     | 1.57       | N/A          | 2.12 F  | 90.29       | 3305.05  | 805.05   |                     |             |
| 1850       |                         | 132027                  | 329984           | 16284.8        | 1.54     | 1.57       | N/A          | 2.24 F  | 90.29       | 3305.06  | 805.06   |                     |             |
| 1950       |                         | 127243                  | 332475           | 16869.9        | 1.52     | 1.57       | N/A          | 2.23 F  | 91.30       | 3344.87  | 844.87   |                     |             |
| 1950       |                         | 127243                  | 324756           | 16200.7        | 1.53     | 1.57       | N/A          | 2.28 F  | 91.30       | 3344.87  | 844.87   |                     |             |
| 2050       | 307858                  | 122773                  | 320295           | 16159.3        | 1.52     | 1.57       | N/A          | 2.32 F  | 92.23       | 3381.89  | 881.89   |                     |             |
| 2050       |                         | 122772                  | 315965           | 15784.1        | 1.53     | 1.57       | N/A          | 2.35 F  | 92.23       | 3381.89  | 881.89   |                     |             |
| 2300       |                         | 112633                  | 163658           | 3375.4         | 1.71     | 1.57       | N/A          | 4.72 F  | 94.35       | 3466.13  | 966.13   |                     |             |
| 2300       |                         | 112633                  | 144956           | 1755.6         | 1.72     | 1.57       | N/A          | 5.38 F  | 94.35       | 3466.14  | 966.14   |                     |             |
| 2370       |                         | 109858                  | 142452           | 1755.6         | 1.72     | 1.57       | N/A          | 5.49 F  | 94.94       | 3489.28  | 989.28   |                     |             |
| 2370       |                         | 107800                  | 140922           | 1755.6         | 1.75     | 1.60       | N/A          | 5.58 F  | 94.94       | 3489.29  | 1036.40  |                     |             |
| 2700       |                         | 94232                   | 119785           | 985.1          | 1.75     | 1.60       | N/A          | 6.77 F  | 97.73       | 3599.97  | 1152.35  |                     |             |
| 2700       |                         | 94231                   | 126006           | 1523.4         | 1.75     | 1.60       | N/A          | 6.39 F  | 97.73       | 3599.97  | 1152.35  |                     |             |
| 3100       |                         | 77783                   | 126839           | 2879.6         | 1.71     | 1.60       | N/A          | 6.44 F  | 101.11      | 3734.23  | 1293.00  |                     |             |
| 3100       |                         | 77783                   | 113331           | 1712.1         | 1.73     | 1.60       | N/A          | 7.33 F  | 101.11      | 3734.23  | 1293.01  |                     |             |
| 3700       |                         | 53303                   | 89806            | 1594.4         | 1.70     | 1.61       | N/A          | 9.97 F  | 106.15      | 3934.24  | 1502.54  |                     |             |
| 3700       |                         | 53302                   | 79004            | 662.3          | 1.71     | 1.61       | N/A          | 11.72 F | 106.16      | 3934.25  | 1502.55  |                     |             |
| 4650       |                         | 14219                   | 56495            | 1785.6         | 1.64     | 1.61       | N/A          | 20.59 F | 114.20      | 4253.37  | 1836.86  |                     |             |
| 4900       |                         | 4828                    | 67626            | 3472.0         | 1.59     | 1.61       | N/A          | 16.01 F | 116.32      | 4337.37  | 1924.87  |                     |             |
| 4900       |                         | 4828                    | 51775            | 2108.2         | 1.62     | 1.61       | N/A          | 24.64 F | 116.32      | 4337.38  | 1924.87  |                     |             |
| 5029       |                         | 34                      | 45340            | 1926.8         | 1.61     | 1.61       | N/A          | 32.30 F | 117.40      | 4380.40  | 1969.94  |                     |             |
| 5029       |                         | 33                      | 45339            | 1926.8         | 1.61     | 1.61       | N/A          | 32.30 F | 117.40      | 4380.41  | 1969.95  |                     |             |
| 5600       |                         | -21341                  | -20805           | 2094.3         | 1.57     | 1.62       | N/A          | (13.67) | 122.23      | 4572.11  | 2170.78  |                     |             |
| 5650       | -40465                  | -23210                  | -15657           | 1506.5         | 1.58     | 1.62       | N/A          | (15.31) | 122.66      | 4588.87  | 2188.34  |                     |             |
| F          | Conn Fracture           |                         |                  |                |          |            |              |         |             |          |          |                     |             |
|            | ) Compression           |                         |                  |                |          |            |              |         |             |          |          |                     |             |
|            | ) Vector Collapse Safet | / Factor                |                  |                |          |            |              |         |             |          |          |                     |             |
|            | , rootor conapce caret  | ,                       |                  |                |          |            |              |         |             |          |          |                     |             |

9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi



\*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.



\*Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

# Released to Imaging: 2/5/2025 8:42:21 AM

Shallow Design D

| <del></del> C |           | nooni   |              |         |         |        |         |             |
|---------------|-----------|---------|--------------|---------|---------|--------|---------|-------------|
| Hole          | Interv    | al MD   | Interval TVD |         | Csg     |        |         |             |
| Size          | From (ft) | To (ft) | From (ft)    | To (ft) | OD      | Weight | Grade   | Conn        |
| 16"           | 0         | 2,161   | 0            | 2,030   | 13-3/8" | 54.5#  | J-55    | STC         |
| 11"           | 0         | 7,951   | 0            | 5,650   | 9-5/8"  | 40#    | J-55    | LTC         |
| 7-7/8"        | 0         | 13,278  | 0            | 11,671  | 6"      | 22.3#  | P110-EC | DWC/C IS    |
| 6-3/4"        | 13,278    | 29,353  | 11,671       | 12,000  | 5-1/2"  | 20#    | P110-EC | DWC/C IS MS |

# 4. CASING PROGRAM

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

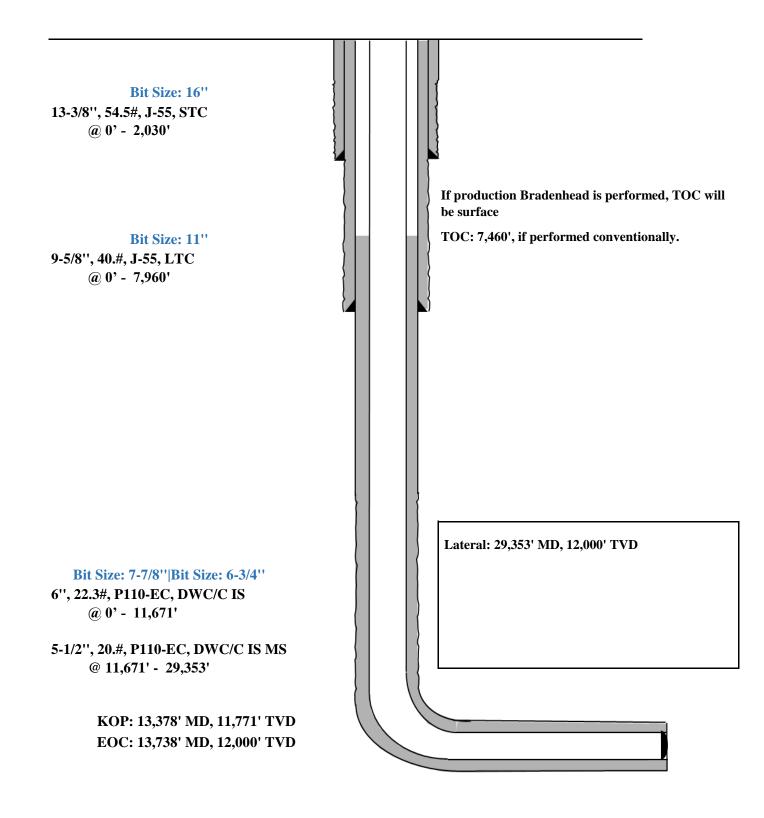
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized in the cement slurry for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

|          |           | Wt.  | Yld    | Slurry Description                                                    |
|----------|-----------|------|--------|-----------------------------------------------------------------------|
| Depth    | No. Sacks | ppg  | Ft3/sk |                                                                       |
| 2,030'   | 570       | 13.5 | 1.73   | Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- |
| 13-3/8'' |           |      |        | Flake (TOC @ Surface)                                                 |
|          | 160       | 14.8 | 1.34   | Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2%          |
|          |           |      |        | Sodium Metasilicate (TOC @ 1830')                                     |
| 8,050'   | 760       | 12.7 | 2.22   | Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC         |
| 9-5/8''  |           |      |        | @ Surface)                                                            |
|          | 250       | 14.8 | 1.32   | Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')                   |
|          |           |      |        |                                                                       |
| 29,353'  | 1000      | 14.8 | 1.32   | Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6%            |
| 6''      |           |      |        | Bentonite Gel (TOC @ surface)                                         |
|          | 2500      | 13.2 | 1.52   | Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5%    |
|          |           |      |        | NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of      |
|          |           |      |        | Brushy)                                                               |


# 5. CEMENTING PROGRAM:



**Shallow Design D** 

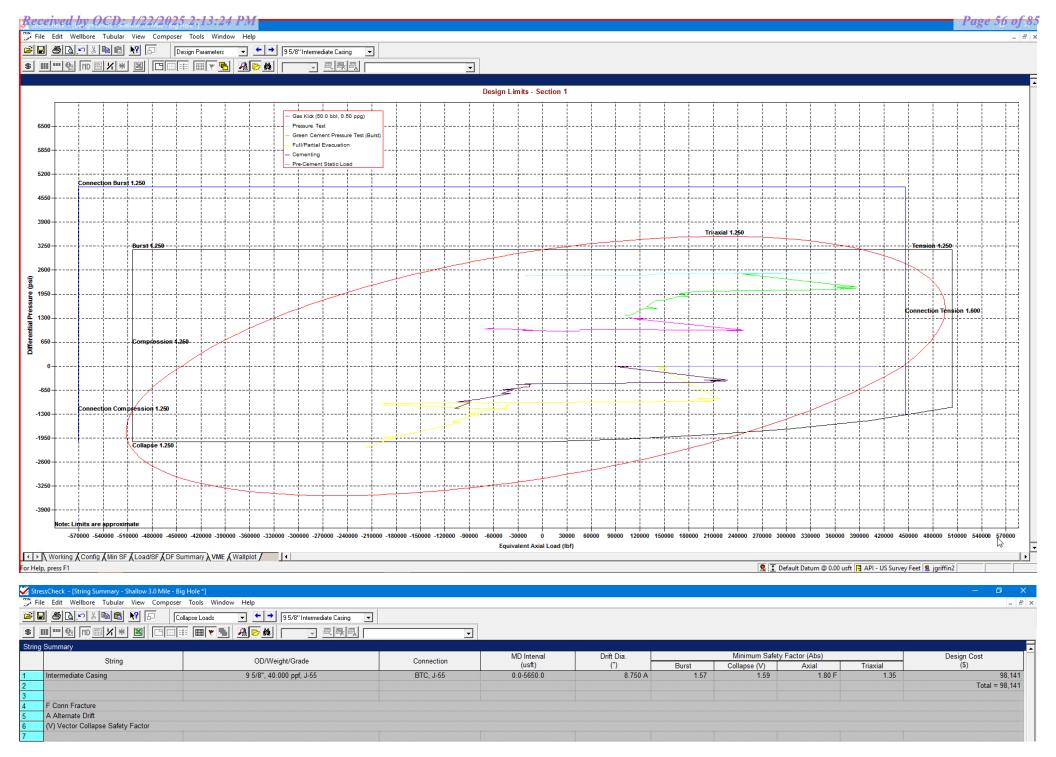
Proposed Wellbore

KB: 3558' GL: 3533'

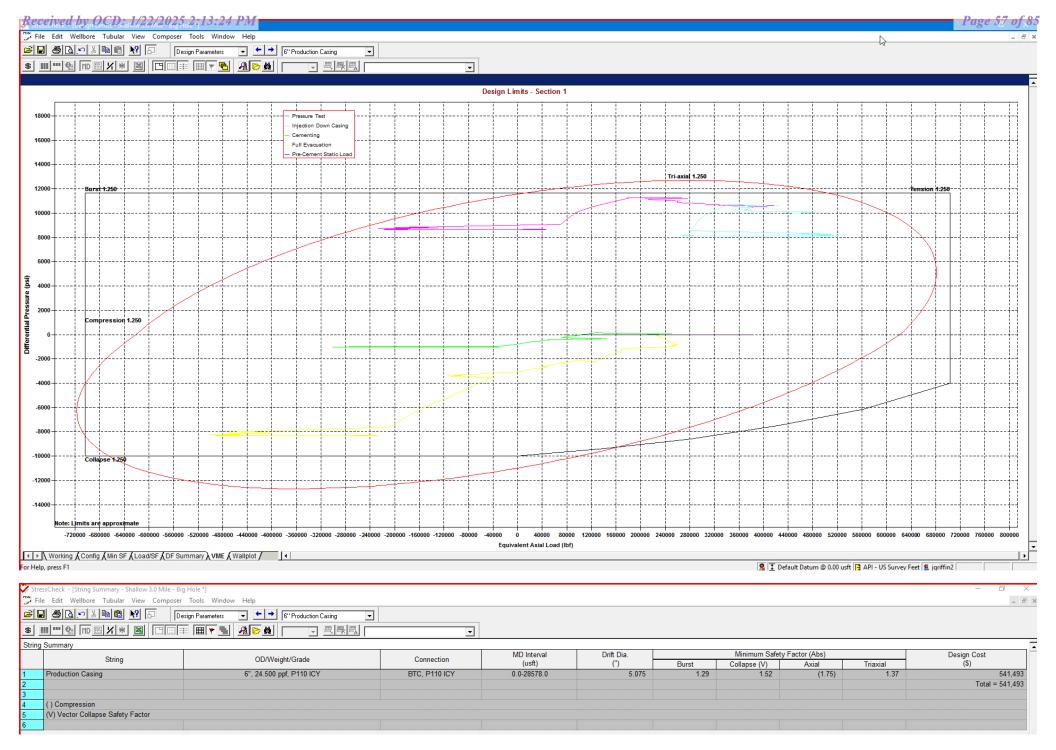


File Edit Wellbore Tubular View Composer Tools Window Help

### ▼ ← → 95/8" Intermediate Casing ▼

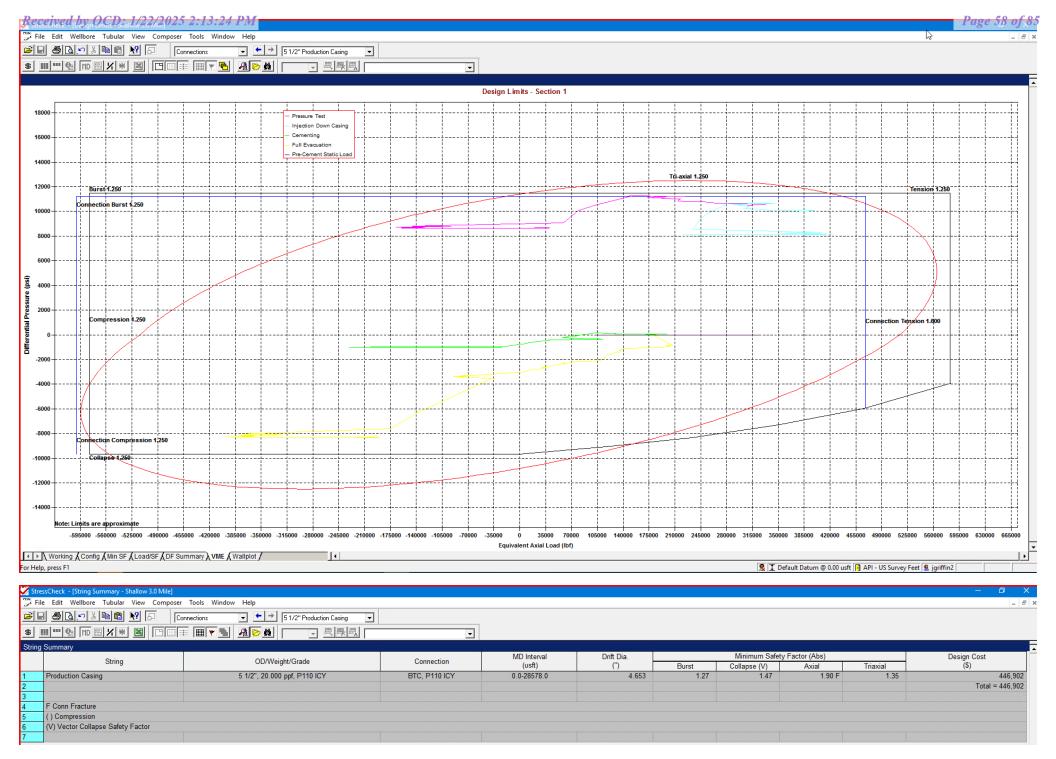

| Depth (MD) |                                                              | Force (lbf)             | Equivalent       | Bending Stress  |              | Absolute S   | afety Factor |                    | Temperature      | Pressur            | re (psi)           | Addt'l Pickup To    | Buckled      |
|------------|--------------------------------------------------------------|-------------------------|------------------|-----------------|--------------|--------------|--------------|--------------------|------------------|--------------------|--------------------|---------------------|--------------|
| (usft)     | Apparent<br>(w/Bending)                                      | Actual<br>(w/o Bending) | Axial Load (lbf) | at OD (psi)     | Triaxial     | Burst        | Collapse (V) | Axial              | (°F)             | Internal           | External           | Prevent Buck. (lbf) | Length (usft |
|            | 0 252987                                                     | 228954                  | 253140           | 2098.2          | 1.69         | 1.58         | N/A          | 2.82 F             | 70.00            | 2500.00            | 0.00               | N/A                 | N/A          |
|            | 00 247735                                                    | 223702                  | 248466           | 2098.2          | 1.69         | 1.58         | N/A          | 2.88 F             | 71.10            | 2543.63            | 43.63              |                     |              |
|            | 00 234996                                                    | 223701                  | 235716           | 986.2           | 1.71         | 1.58         | N/A          | 3.04 F             | 71.10            | 2543.64            | 43.64              |                     |              |
|            | 00 341565                                                    | 139667                  | 352253           | 17627.2         | 1.53         | 1.57         | N/A          | 2.09 F             | 88.70            | 3241.64            | 741.64             |                     |              |
|            | 00 312979                                                    | 139666                  | 323488           | 15131.5         | 1.58         | 1.57         | N/A          | 2.28 F             | 88.70            | 3241.65            | 741.65             |                     |              |
|            | 50 336881                                                    | 132027                  | 348440           | 17885.2         | 1.51         | 1.57         | N/A          | 2.12 F             | 90.29            | 3305.05            | 805.05             |                     |              |
|            | 50 318549                                                    | 132027                  | 329984           | 16284.8         | 1.54         | 1.57         | N/A          | 2.24 F             | 90.29            | 3305.06            | 805.06             |                     |              |
|            | 50 320468                                                    | 127243                  | 332475           | 16869.9         | 1.52         | 1.57         | N/A          | 2.23 F             | 91.30            | 3344.87            | 844.87             |                     |              |
|            | 50 312802                                                    | 127243                  | 324756           | 16200.7         | 1.53         | 1.57         | N/A          | 2.28 F             | 91.30            | 3344.87            | 844.87             |                     |              |
| 20         |                                                              | 122773                  | 320295           | 16159.3         | 1.52         | 1.57         | N/A          | 2.32 F             | 92.23            | 3381.89            | 881.89             |                     |              |
| 20         |                                                              | 122772                  | 315965           | 15784.1         | 1.53         | 1.57         | N/A          | 2.35 F             | 92.23            | 3381.89            | 881.89             |                     |              |
| 23         |                                                              | 112633                  | 163658           | 3375.4          | 1.71         | 1.57         | N/A          | 4.72 F             | 94.35            | 3466.13            | 966.13             |                     |              |
| 23         |                                                              | 112633                  | 144956           | 1755.6          | 1.72         | 1.57         | N/A          | 5.38 F             | 94.35            | 3466.14            | 966.14             |                     |              |
| 23         |                                                              | 109858                  | 142452           | 1755.6          | 1.72         | 1.57         | N/A          | 5.49 F             | 94.94            | 3489.28            | 989.28             |                     |              |
| 23         |                                                              | 107800                  | 140922           | 1755.6          | 1.75         | 1.60         | N/A          | 5.58 F             | 94.94            | 3489.29            | 1036.40            |                     |              |
| 27         |                                                              | 94232                   | 119785           | 985.1           | 1.75         | 1.60         | N/A          | 6.77 F             | 97.73            | 3599.97            | 1152.35            |                     |              |
| 27         |                                                              | 94231                   | 126006           | 1523.4          | 1.75         | 1.60         | N/A          | 6.39 F             | 97.73            | 3599.97            | 1152.35            |                     |              |
| 31         |                                                              | 77783                   | 126839           | 2879.6          | 1.71         | 1.60         | N/A          | 6.44 F             | 101.11           | 3734.23            | 1293.00            |                     |              |
| 31         |                                                              | 77783                   | 113331           | 1712.1          | 1.73         | 1.60         | N/A          | 7.33 F             | 101.11           | 3734.23            | 1293.01            |                     |              |
| 37         |                                                              | 53303                   | 89806            | 1594.4<br>662.3 | 1.70<br>1.71 | 1.61         | N/A          | 9.97 F             | 106.15<br>106.16 | 3934.24            | 1502.54<br>1502.55 |                     |              |
| 37<br>46   |                                                              | 53302<br>14219          | 79004<br>56495   | 1785.6          | 1.71         | 1.61<br>1.61 | N/A          | 11.72 F<br>20.59 F |                  | 3934.25<br>4253.37 | 1836.86            |                     |              |
| 40         |                                                              | 4828                    | 67626            | 3472.0          | 1.64         | 1.61         | N/A<br>N/A   | 20.59 F<br>16.01 F | 114.20<br>116.32 | 4337.37            | 1924.87            |                     |              |
| 49         |                                                              | 4828                    | 51775            | 2108.2          | 1.62         | 1.61         | N/A<br>N/A   | 24.64 F            | 116.32           | 4337.38            | 1924.87            |                     |              |
| 45         |                                                              | 4020<br>34              | 45340            | 1926.8          | 1.62         | 1.61         | N/A          | 24.64 F<br>32.30 F | 110.32           | 4380.40            | 1924.07            |                     |              |
|            | 29 22103                                                     | 33                      | 45339            | 1926.8          | 1.61         | 1.61         | N/A<br>N/A   | 32.30 F            | 117.40           | 4380.40            | 1969.95            |                     |              |
|            | -45329                                                       | -21341                  | -20805           | 2094.3          | 1.57         | 1.62         | N/A          | (13.67)            | 122.23           | 4572.11            | 2170.78            |                     |              |
|            |                                                              | -23210                  | -15657           | 1506.5          | 1.57         | 1.62         | N/A          | (15.31)            | 122.25           | 4572.11            | 2188.34            |                     |              |
| 56         | -40403                                                       | -23210                  | -13031           | 1300.3          | 1.50         | 1.02         |              | (13.31)            | 122.00           | 4300.01            | 2100.34            |                     |              |
| 56         |                                                              |                         |                  |                 |              |              |              |                    |                  |                    |                    |                     |              |
| 56         | E Conn Fracture                                              |                         |                  |                 |              |              |              |                    |                  |                    |                    |                     |              |
|            | F Conn Fracture                                              |                         |                  |                 |              |              |              |                    |                  |                    |                    |                     |              |
|            | F Conn Fracture<br>() Compression<br>V) Vector Collapse Safe | ty Factor               |                  |                 |              |              |              |                    |                  |                    |                    |                     |              |

For Help, press F1


🙎 👤 Default Datum @ 0.00 usft 📑 API - US Survey Feet 🙎 jgriffin2

9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi




\*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.



\*Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

# Released to Imaging: 2/5/2025 8:42:21 AM



\*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

### Released to Imaging: 2/5/2025 8:42:21 AM

Page 22 of 31

1

CASING PROGRAM

# **S**eog resources

# Shallow Casing Design E

| Hole   | Interv    | Interval MD Interval TVD |           | Csg     |         |        |         |               |  |  |  |
|--------|-----------|--------------------------|-----------|---------|---------|--------|---------|---------------|--|--|--|
| Size   | From (ft) | To (ft)                  | From (ft) | To (ft) | OD      | Weight | Grade   | Conn          |  |  |  |
| 13"    | 0         | 2,025                    | 0         | 2,025   | 10-3/4" | 40.5#  | J-55    | STC           |  |  |  |
| 9-7/8" | 0         | 7,793                    | 0         | 5,645   | 8-5/8"  | 32#    | J-55    | BTC-SC        |  |  |  |
| 7-7/8" | 0         | 12,626                   | 0         | 10,896  | 6"      | 24.5#  | P110-EC | VAM Sprint-TC |  |  |  |
| 6-3/4" | 12,626    | 28,578                   | 10,896    | 11,225  | 5-1/2"  | 20#    | P110-EC | VAM Sprint SF |  |  |  |

\*\*For highlighted rows above, variance is requested to run entire string of either 6" or 5-1/2" casing string above due to availablility.

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

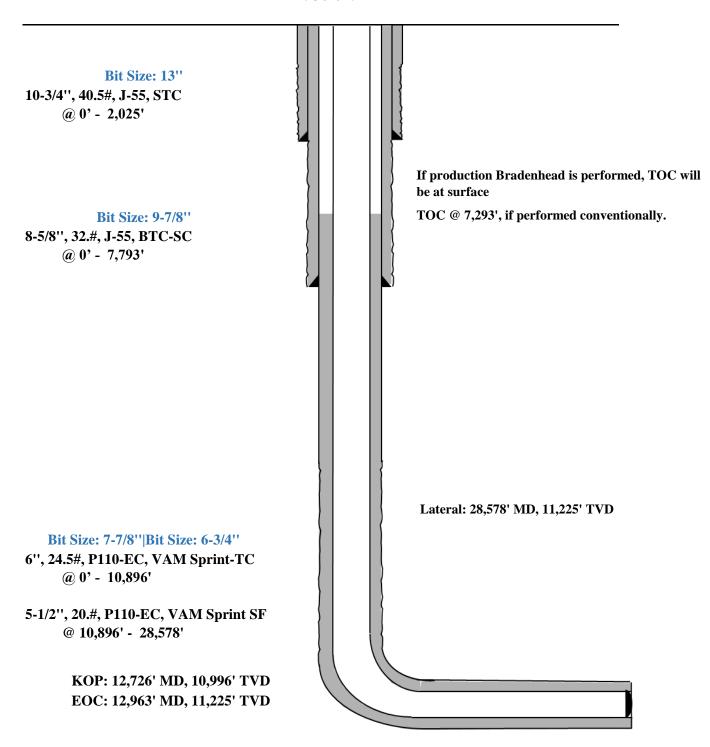
Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized in the cement slurry for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

| Depth                    | No.<br>Sacks | Wt.                | Yld<br>Ft3/sk | Slurry Description                                                                                                                  |
|--------------------------|--------------|--------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 2,030'<br>10-3/4"        | 450          | <b>ppg</b><br>13.5 | 1.73          | Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-<br>Flake (TOC @ Surface)                                      |
|                          | 120          | 14.8               | 1.34          | Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium<br>Metasilicate (TOC @ 1830')                                   |
| 7,890'<br>8-5/8"         | 460          | 12.7               | 2.22          | Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)                                                            |
|                          | 210          | 14.8               | 1.32          | Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6234')                                                                                 |
| 28,578'<br><sub>6"</sub> | 1000         | 14.8               | 1.32          | Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6%<br>Bentonite Gel (TOC @ surface)                                         |
|                          | 2410         | 13.2               | 1.52          | Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ 8140') |


# 2. CEMENTING PROGRAM:

# **S**eog resources

**Shallow Casing Design E** 

GL: 3533'

API: 30-025-\*\*\*\*



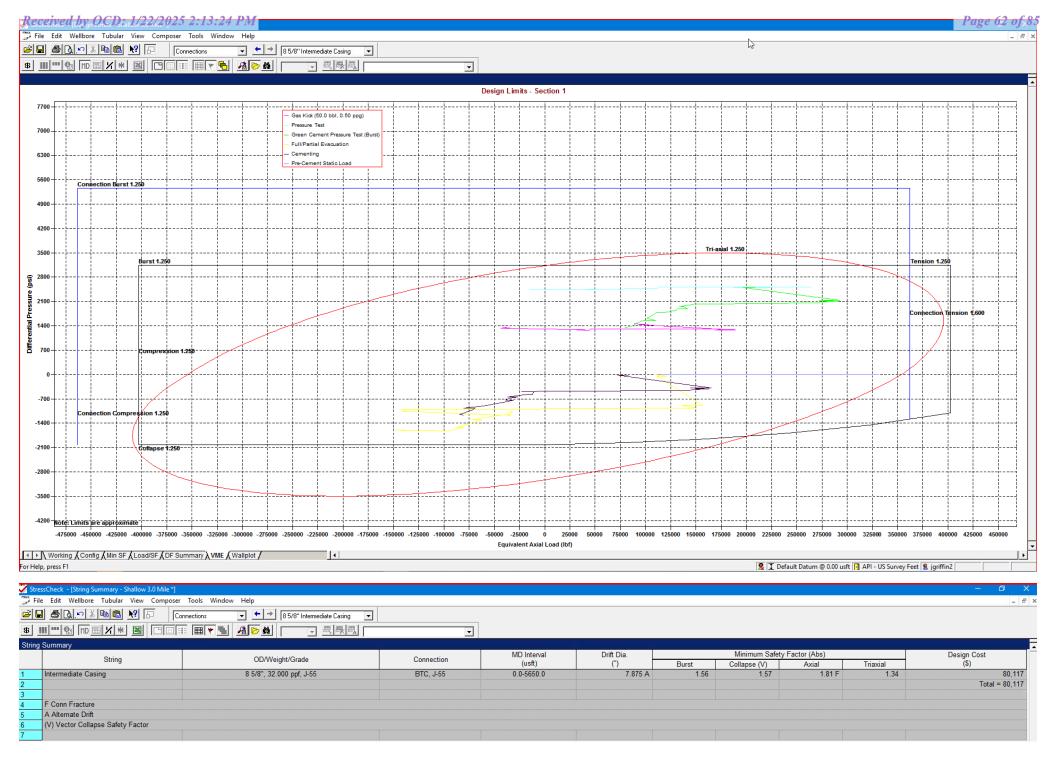
StressCheck - [Triaxial Results - Shallow 3.0 Mile \*]
File Edit Wellbore Tubular View Composer Tools Window Help

Page 61 of 85

\_ 8 >

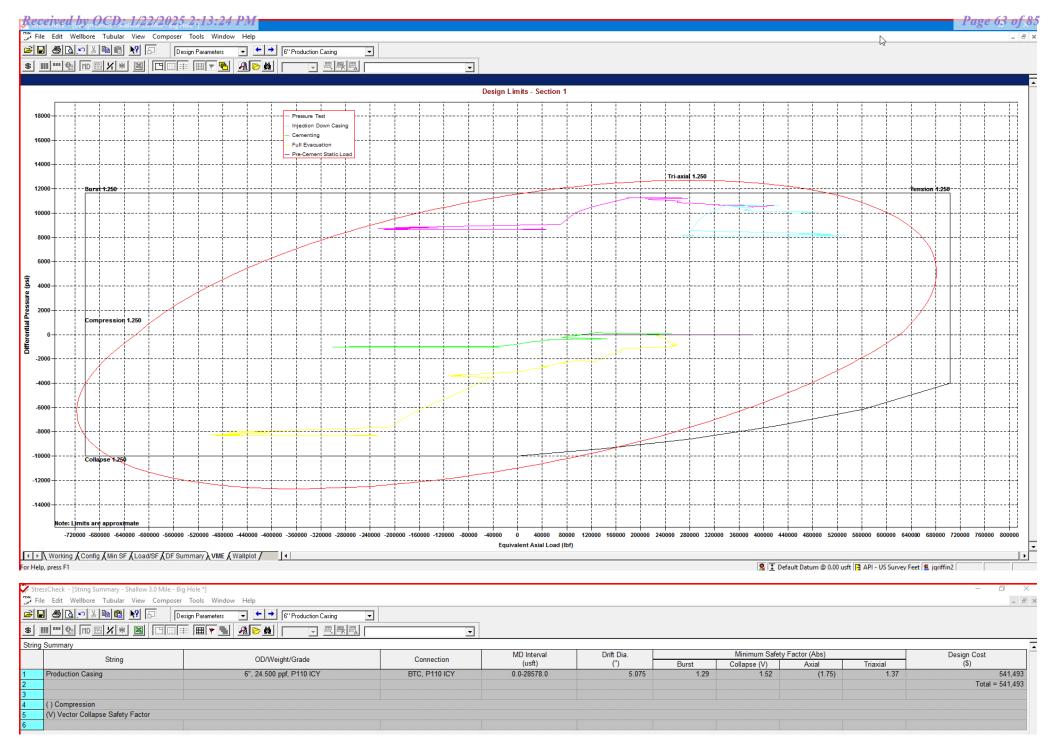
 Image: Second secon

| ults                 | Axial F                 | orce (lbf)              | Envirolant                     | Reading Observe               |          | Absolute S | afety Factor |         | Tananahan           | Pressure | e (psi)  | Addit Dialwa Ta                         | Dualdad                  |
|----------------------|-------------------------|-------------------------|--------------------------------|-------------------------------|----------|------------|--------------|---------|---------------------|----------|----------|-----------------------------------------|--------------------------|
| Depth (MD)<br>(usft) | Apparent<br>(w/Bending) | Actual<br>(w/o Bending) | Equivalent<br>Axial Load (lbf) | Bending Stress<br>at OD (psi) | Triaxial | Burst      | Collapse (V) | Axial   | Temperature<br>(°F) | Internal | External | Addt'l Pickup To<br>Prevent Buck. (lbf) | Buckled<br>Length (usft) |
| 0                    | 200426                  | 183224                  | 200546                         | 1880.2                        | 1.68     | 1.57       | N/A          | 2.89 F  | 70.00               | 2500.00  | 0.00     | N/A                                     | N/A                      |
| 100                  | 196229                  | 179028                  | 196812                         | 1880.2                        | 1.69     | 1.57       | N/A          | 2.95 F  | 71.10               | 2543.63  | 43.63    |                                         |                          |
| 100                  | 187111                  | 179027                  | 187686                         | 883.7                         | 1.70     | 1.57       | N/A          | 3.10 F  | 71.10               | 2543.64  | 43.64    |                                         |                          |
| 1700                 | 256401                  | 111891                  | 264835                         | 15795.8                       | 1.56     | 1.56       | N/A          | 2.26 F  | 88.70               | 3241.64  | 741.64   |                                         |                          |
| 1700                 | 235940                  | 111891                  | 244247                         | 13559.4                       | 1.60     | 1.56       | N/A          | 2.45 F  | 88.70               | 3241.65  | 741.65   |                                         |                          |
| 1850                 | 252413                  | 105788                  | 261533                         | 16027.0                       | 1.54     | 1.56       | N/A          | 2.29 F  | 90.29               | 3305.05  | 805.05   |                                         |                          |
| 1850                 | 239292                  | 105787                  | 248323                         | 14592.9                       | 1.56     | 1.56       | N/A          | 2.42 F  | 90.29               | 3305.06  | 805.06   |                                         |                          |
| 1950                 | 240267                  | 101966                  | 249748                         | 15117.2                       | 1.54     | 1.56       | N/A          | 2.41 F  | 91.30               | 3344.87  | 844.87   |                                         |                          |
| 1950                 | 234781                  | 101965                  | 244223                         | 14517.5                       | 1.56     | 1.56       | N/A          | 2.47 F  | 91.30               | 3344.87  | 844.87   |                                         |                          |
| 2050                 | 230871                  | 98395                   | 240694                         | 14480.4                       | 1.55     | 1.56       | N/A          | 2.51 F  | 92.23               | 3381.89  | 881.89   |                                         |                          |
| 2050                 | 227794                  | 98394                   | 237594                         | 14144.2                       | 1.55     | 1.56       | N/A          | 2.54 F  | 92.23               | 3381.89  | 881.89   |                                         |                          |
| 2300                 | 117966                  | 90294                   | 127818                         | 3024.7                        | 1.70     | 1.56       | N/A          | 4.91 F  | 94.35               | 3466.13  | 966.13   |                                         |                          |
| 2300                 | 104686                  | 90293                   | 114432                         | 1573.2                        | 1.71     | 1.56       | N/A          | 5.53 F  | 94.35               | 3466.14  | 966.14   |                                         |                          |
| 2370                 | 102469                  | 88077                   | 112431                         | 1573.2                        | 1.71     | 1.56       | N/A          | 5.65 F  | 94.94               | 3489.28  | 989.28   |                                         |                          |
| 2370                 | 100817                  | 86424                   | 111200                         | 1573.2                        | 1.75     | 1.59       | N/A          | 5.75 F  | 94.94               | 3489.29  | 1036.40  |                                         |                          |
| 2700                 | 83660                   | 75583                   | 95052                          | 882.8                         | 1.74     | 1.59       | N/A          | 6.92 F  | 97.73               | 3599.97  | 1152.35  |                                         |                          |
| 2700                 | 88072                   | 75583                   | 99504                          | 1365.1                        | 1.74     | 1.59       | N/A          | 6.58 F  | 97.73               | 3599.97  | 1152.35  |                                         |                          |
| 3100                 | 86049                   | 62442                   | 98863                          | 2580.4                        | 1.71     | 1.59       | N/A          | 6.73 F  | 101.11              | 3734.23  | 1293.00  |                                         |                          |
| 3100                 | 76477                   | 62441                   | 89195                          | 1534.2                        | 1.72     | 1.59       | N/A          | 7.57 F  | 101.11              | 3734.23  | 1293.01  |                                         |                          |
| 3700                 | 55953                   | 42882                   | 70509                          | 1428.8                        | 1.69     | 1.60       | N/A          | 10.35 F | 106.15              | 3934.24  | 1502.54  |                                         |                          |
| 3700                 | 48311                   | 42881                   | 62778                          | 593.5                         | 1.71     | 1.60       | N/A          | 11.99 F | 106.16              | 3934.25  | 1502.55  |                                         |                          |
| 4000                 | 41458                   | 33043                   | 56865                          | 919.9                         | 1.69     | 1.60       | N/A          | 13.97 F | 108.69              | 4034.82  | 1607.91  |                                         |                          |
| 4650                 | 26293                   | 11655                   | 43706                          | 1600.1                        | 1.63     | 1.60       | N/A          | 22.03 F | 114.20              | 4253.37  | 1836.86  |                                         |                          |
| 4900                 | 32619                   | 4156                    | 50970                          | 3111.2                        | 1.59     | 1.60       | N/A          | 17.76 F | 116.32              | 4337.37  | 1924.87  |                                         |                          |
| 4900                 | 21439                   | 4155                    | 39625                          | 1889.2                        | 1.61     | 1.60       | N/A          | 27.02 F | 116.32              | 4337.38  | 1924.87  |                                         |                          |
| 5039                 | 15822                   | 26                      | 34389                          | 1726.6                        | 1.61     | 1.61       | N/A          | 36.61 F | 117.49              | 4383.77  | 1973.48  |                                         |                          |
| 5039                 | 15822                   | 26                      | 34388                          | 1726.6                        | 1.61     | 1.61       | N/A          | 36.61 F | 117.49              | 4383.78  | 1973.49  |                                         |                          |
| 5600                 | -33912                  | -16743                  | -14286                         | 1876.7                        | 1.57     | 1.61       | N/A          | (14.60) | 122.23              | 4572.11  | 2170.78  |                                         |                          |
| 5650                 | -30585                  | -18235                  | -10742                         | 1350.0                        | 1.58     | 1.61       | N/A          | (16.18) | 122.66              | 4588.87  | 2188.34  |                                         |                          |
| F                    | Conn Fracture           |                         |                                |                               |          |            |              |         |                     |          |          |                                         |                          |
|                      | Compression             |                         |                                |                               |          |            |              |         |                     |          |          |                                         |                          |
|                      | ector Collapse Safety   | / Factor                |                                |                               |          |            |              |         |                     |          |          |                                         |                          |
|                      |                         |                         |                                |                               |          |            |              |         |                     |          |          |                                         |                          |


-

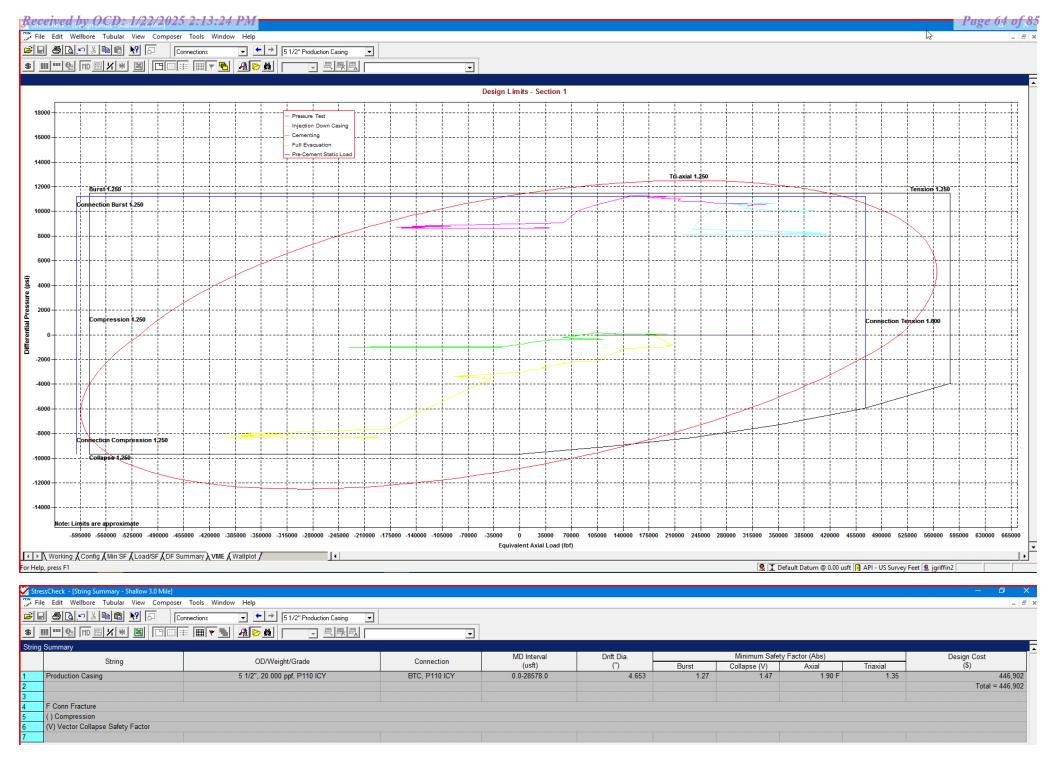
For Help, press F1

🕱 I Default Datum @ 0.00 usft 🖪 API - US Survey Feet 😫 jgriffin2


8-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi




\*Modelling done with 8-5/8" 32# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

# Released to Imaging: 2/5/2025 8:42:21 AM



\*Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

# Released to Imaging: 2/5/2025 8:42:21 AM



\*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

### Released to Imaging: 2/5/2025 8:42:21 AM

Page 28 of 31

| Additive            | Purpose                                 |
|---------------------|-----------------------------------------|
| Bentonite Gel       | Lightweight/Lost circulation prevention |
| Calcium Chloride    | Accelerator                             |
| Cello-flake         | Lost circulation prevention             |
| Sodium Metasilicate | Accelerator                             |
| MagOx               | Expansive agent                         |
| Pre-Mag-M           | Expansive agent                         |
| Sodium Chloride     | Accelerator                             |
| FL-62               | Fluid loss control                      |
| Halad-344           | Fluid loss control                      |
| Halad-9             | Fluid loss control                      |
| HR-601              | Retarder                                |
| Microbond           | Expansive Agent                         |

# Shallow Casing Design 501H

Cement integrity tests will be performed immediately following plug bump.

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

EOG requests variance from minimum standards to pump a two stage cement job on the production casing string with the first stage being pumped conventionally with the calculated top of cement at the top of the Brushy Canyon and the second stage performed as a 1000 sack bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of 400 sacks of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (1.32 yld, 14.8 ppg) will be executed as a contingency. Top will be verified by Echo-meter.

Bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.



# **MUD PROGRAM:**

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal. The applicable depths and properties of the drilling fluid systems are as follows:

| Measured Depth              | Туре        | Weight (ppg) | Viscosity | Water Loss |
|-----------------------------|-------------|--------------|-----------|------------|
| 0 – 2,030'                  | Fresh - Gel | 8.6-8.8      | 28-34     | N/c        |
| 2,030' – 7,793'             | Brine       | 9-10.5       | 28-34     | N/c        |
| 5,450' – 28,578'<br>Lateral | Oil Base    | 8.8-9.5      | 58-68     | N/c - 6    |

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.



**Appendix A - Spec Sheets** 

.

# Pipe Bodu and API Connections Performance Data Received by OCD: 1/22/2025 2:13:24 PM 13.375 54.50/0.380 J55

Page 68 of 85 PDF

New Search »

« Back to Previous List

USC O Metric

| 6/8/2015 10:04:37 AM                                               |        | -                    |                    |        |          |
|--------------------------------------------------------------------|--------|----------------------|--------------------|--------|----------|
| Mechanical Properties                                              | Ptpe   | BTC                  | LTC                | STC    |          |
| Minimum Yield Strength                                             | 55,000 |                      |                    |        | psi      |
| Maximum Yield Strength                                             | 80,000 |                      | <del></del>        | -      | psi      |
| Minimum Tensile Strength                                           | 75,000 |                      |                    |        | psi      |
| Dimensions                                                         | Pipe   | втс                  | LTC                | STC    |          |
| Outside Diameter                                                   | 13.375 | 14.375               | -                  | 14.375 | in.      |
| Wall Thickness                                                     | 0.380  | =                    | ( <del>77</del> 2) |        | in.      |
| Inside Diameter                                                    | 12.615 | 12.615               | -                  | 12.615 | in.      |
| Standard Drift                                                     | 12.459 | 12.459               | 100                | 12.459 | in.      |
| Alternate Drift                                                    | -      | -                    | -                  | -      | in.      |
| Nominal Linear Weight, T&C                                         | 54.50  | -                    | : <del>-</del> 0   | · - ·  | lbs/ft   |
| Plain End Weight                                                   | 52.79  |                      |                    |        | lbs/ft   |
| Performance                                                        | Pipe   | втс                  | LTC                | STC    |          |
| Minimum Collapse Pressure                                          | 1,130  | 1, <mark>1</mark> 30 | -                  | 1,130  | psi      |
| Minimum Internal Yield Pressure                                    | 2,740  | 2,740                | . <del></del>      | 2,740  | psi      |
| Minimum Pipe Body Yield Strength                                   | 853.00 |                      | -                  | -      | 1000 lbs |
| Joint Strength                                                     | -      | 909                  | 1775               | 514    | 1000 lbs |
| Reference Length                                                   | -      | 11,125               | -                  | 6,290  | ft       |
| Make-Up Data                                                       | Pipe   | втс                  | LTC                | STC    |          |
| Make-Up Loss                                                       | -      | 4.81                 | -                  | 3.50   | in.      |
| Minimum Make-Up Torque                                             | -      | -                    | <del></del> 8      | 3,860  | ft-lbs   |
| Released to Imaging: 2/5/2025 8:42:21 AM<br>Maximum Make-Up Torque | -      |                      | _                  | 6,430  | ft-lbs   |

# Pipe Body and API Connections Performance Data Received by OCD: 1/22/2025 2:13:24 PM 9.625 40.00/0.395 J55

Page 69 of 85 PDF

New Search »

« Back to Previous List

USC O Metric

| 6/8/2015 10:23:27 AM                                               |        |        |        |        |          |
|--------------------------------------------------------------------|--------|--------|--------|--------|----------|
| Mechanical Properties                                              | Pipe   | втс    | LTC    | STC    |          |
| Minimum Yield Strength                                             | 55,000 | -      |        | -      | psi      |
| Maximum Yield Strength                                             | 80,000 | -      | -      | -      | psi      |
| Minimum Tensile Strength                                           | 75,000 |        |        |        | psi      |
| Dimensions                                                         | Pipe   | втс    | LTC    | STC    |          |
| Outside Diameter                                                   | 9.625  | 10.625 | 10.625 | 10.625 | in.      |
| Wall Thickness                                                     | 0.395  |        | 27. s  |        | in.      |
| Inside Diameter                                                    | 8.835  | 8.835  | 8.835  | 8.835  | in.      |
| Standard Drift                                                     | 8.679  | 8.679  | 8.679  | 8.679  | in.      |
| Alternate Drift                                                    | 8.750  | 8.750  | 8.750  | 8.750  | in.      |
| Nominal Linear Weight, T&C                                         | 40.00  | -      | =      |        | lbs/ft   |
| Plain End Weight                                                   | 38.97  | -      |        | -      | lbs/ft   |
| Performance                                                        | Pipe   | втс    | LTC    | STC    |          |
| Minimum Collapse Pressure                                          | 2,570  | 2,570  | 2,570  | 2,570  | psi      |
| Minimum Internal Yield Pressure                                    | 3,950  | 3,950  | 3,950  | 3,950  | psi      |
| Minimum Pipe Body Yield Strength                                   | 630.00 | -      |        |        | 1000 lbs |
| Joint Strength                                                     |        | 714    | 520    | 452    | 1000 lbs |
| Reference Length                                                   |        | 11,898 | 8,665  | 7,529  | π        |
| Make-Up Data                                                       | Pipe   | втс    | LTC    | STC    |          |
| Make-Up Loss                                                       |        | 4.81   | 4.75   | 3.38   | in.      |
| Minimum Make-Up Torque                                             | 22     | -      | 3,900  | 3,390  | ft-lbs   |
| Released to Imaging: 2/5/2025 8:42:21 AM<br>Maximum Make-Up Torque |        | -      | 6,500  | 5,650  | ft-lbs   |

### *Received by OCD: 1/22/2025 2:13:24 PM*



For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages.

Time: 06:19:27 PM



VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234 VAM<sup>®</sup> USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

1. DWC connections are available with a seal ring (SR) option.

2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.

Connection performance properties are based on nominal pipe body and connection dimensions.
 DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
 DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.

6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.

7. Bending efficiency is equal to the compression efficiency.

8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.

9. Connection yield torque is not to be exceeded.

10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.

11. DWC connections will accommodate API standard drift diameters.

12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages.

# Pipe: Body: and APRI 2 Gonnactions Performance Data

10.750 40.50/0.350 J55

New Search » « Back to Previous List

USC 🔵 Metric

| 15 | 10:14:05 | AM |  |  |  |
|----|----------|----|--|--|--|

| 6/8/2015 10:14:05 AM                                               |        |        |     |        |          |
|--------------------------------------------------------------------|--------|--------|-----|--------|----------|
| Mechanical Properties                                              | Ptpe   | BTC    | LTC | STC    |          |
| Minimum Yield Strength                                             | 55,000 | -      | -   | -      | psi      |
| Maximum Yield Strength                                             | 80,000 | -      | -   | -      | psi      |
| Minimum Tensile Strength                                           | 75,000 | -      | -   | -      | psi      |
| Dimensions                                                         | Ptpe   | BTC    | LTC | STC    |          |
| Outside Diameter                                                   | 10.750 | 11.750 | -   | 11.750 | in.      |
| Wall Thickness                                                     | 0.350  | -      | -   | -      | in.      |
| Inside Diameter                                                    | 10.050 | 10.050 |     | 10.050 | in.      |
| Standard Drift                                                     | 9.894  | 9.894  |     | 9.894  | in.      |
| Alternate Drift                                                    | -      | -      | -   | -      | in.      |
| Nominal Linear Weight, T&C                                         | 40.50  | -      | -   | -      | lbs/ft   |
| Plain End Weight                                                   | 38.91  | -      | -   | -      | lbs/ft   |
| Performance                                                        | Ptpe   | BTC    | LTC | STC    |          |
| Minimum Collapse Pressure                                          | 1,580  | 1,580  | -   | 1,580  | psi      |
| Minimum Internal Yield Pressure                                    | 3,130  | 3,130  | -   | 3,130  | psi      |
| Minimum Pipe Body Yield Strength                                   | 629.00 | -      | -   | -      | 1000 lbs |
| Joint Strength                                                     | -      | 700    |     | 420    | 1000 lbs |
| Reference Length                                                   | -      | 11,522 | -   | 6,915  | ft       |
| Make-Up Data                                                       | Pipe   | BTC    | LTC | STC    |          |
| Make-Up Loss                                                       | -      | 4.81   | -   | 3.50   | in.      |
| Minimum Make-Up Torque                                             | -      |        |     | 3,150  | ft-Ibs   |
| Released to Imaging: 2/5/2025 8:42:21 AM<br>Maximum Make-Up Torque | -      | -      | -   | 5,250  | ft-lbs   |



#### API 5CT, 10th Ed. Connection Data Sheet

| O.D. (in) WEIGHT (lb/ft) WALL (                            |                                                                                                                                                      |                                                                  |                                             |   | GR       | ADE                               | *API DRI                                             | FT (in)                                                    | RBV                                 | ₩%              |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------|---|----------|-----------------------------------|------------------------------------------------------|------------------------------------------------------------|-------------------------------------|-----------------|
| 8.625                                                      | Nominal:<br>Plain End:                                                                                                                               | 32.00<br>31.13                                                   | 0.35                                        | 2 | J        | 55                                | 7.79                                                 | 6                                                          | 87                                  | <i>.</i> 5      |
| Ma                                                         | aterial Propert                                                                                                                                      | ties (PE)                                                        |                                             |   |          | F                                 | Pipe Body                                            | / Data (I                                                  | PE)                                 |                 |
|                                                            | Pipe                                                                                                                                                 |                                                                  |                                             |   |          |                                   | Geor                                                 | metry                                                      |                                     |                 |
| Minimum Yie                                                | eld Strength:                                                                                                                                        | 55                                                               | ksi                                         |   | Nomir    | nal ID:                           |                                                      |                                                            | 7.92                                | inch            |
| Maximum Yi                                                 | ield Strength:                                                                                                                                       | 80                                                               | ksi                                         |   | Nomir    | nal Area                          | :                                                    |                                                            | 9.149                               | in <sup>2</sup> |
| Minimum Te                                                 | ensile Strength:                                                                                                                                     | 75                                                               | ksi                                         |   | *Spec    | ial/Alt. [                        | Drift:                                               |                                                            | 7.875                               | inch            |
| Coupling                                                   |                                                                                                                                                      |                                                                  |                                             |   |          |                                   | Perfor                                               | mance                                                      |                                     |                 |
| Minimum Yie                                                | eld Strength:                                                                                                                                        | 55                                                               | ksi                                         |   | Pipe E   | Body Yie                          | eld Streng                                           | th:                                                        | 503                                 | kips            |
| Maximum Yi                                                 | ield Strength:                                                                                                                                       | 80                                                               | ksi                                         |   |          |                                   | istance:                                             |                                                            | 2,530                               | psi             |
|                                                            |                                                                                                                                                      |                                                                  |                                             |   | Internal | Yield Pro                         | essure:                                              |                                                            |                                     |                 |
| Minimum Te                                                 | ensile Strength:                                                                                                                                     | 75                                                               | ksi                                         |   |          | storical)                         |                                                      |                                                            | 3,930                               | psi             |
|                                                            | API Connectio                                                                                                                                        | n Data                                                           | ksi                                         |   |          | istorical)                        | PI Connec                                            | tion To                                                    |                                     | psi             |
|                                                            |                                                                                                                                                      | <b>n Data</b><br>9.625"                                          | ksi                                         |   |          | istorical)<br>AF                  |                                                      |                                                            | orque                               | psi             |
| ļ                                                          | API Connectio                                                                                                                                        | <b>n Data</b><br>9.625"                                          |                                             |   |          | istorical)<br>AF                  | PI Connec                                            |                                                            | orque                               | psi<br>4,68     |
| ļ                                                          | API Connectio<br>Coupling OD: 9<br>STC Perform<br>al Pressure:                                                                                       | n Data<br>9.625"<br>ance<br>3,930                                |                                             |   | (API Hi  | istorical)<br>AF                  | PI Connec<br>STC Torq                                | ue (ft-lk                                                  | rque<br>os)                         |                 |
| A<br>STC Interna                                           | API Connectio<br>Coupling OD: 9<br>STC Perform<br>al Pressure:                                                                                       | n Data<br>9.625"<br>ance<br>3,930<br>372                         | psi                                         |   | (API Hi  | AF<br>2,793                       | PI Connec<br>STC Torq                                | j <b>ue (ft-ll</b><br>3,724                                | orque<br>os)<br>Max:                |                 |
| A<br>STC Interna<br>STC Joint S                            | API Connectio<br>Coupling OD: 9<br>STC Perform<br>al Pressure:<br>Strength:                                                                          | n Data<br>9.625"<br>ance<br>3,930<br>372                         | psi<br>kips                                 |   | (API Hi  | AF<br>2,793                       | PI Connect<br>STC Torq<br>Opti:                      | j <b>ue (ft-ll</b><br>3,724                                | orque<br>os)<br>Max:                | 4,65            |
| A<br>STC Interna<br>STC Joint S                            | API Connectio<br>Coupling OD: 9<br>STC Perform<br>al Pressure:<br>Strength:<br>LTC Perform<br>I Pressure:                                            | n Data<br>0.625"<br>ance<br>3,930<br>372<br>ance<br>3,930        | psi<br>kips                                 |   | (API Hi  | AF<br>2,793                       | PI Connect<br>STC Torq<br>Opti:<br>LTC Torq          | j <b>ue (ft-lk</b><br>3,724<br>j <b>ue (ft-lk</b>          | orque<br>os)<br>Max:<br>os)         | 4,6             |
| STC Interna<br>STC Joint S<br>LTC Internal<br>LTC Joint St | API Connectio<br>Coupling OD: 9<br>STC Perform<br>al Pressure:<br>Strength:<br>LTC Perform<br>I Pressure:                                            | n Data<br>0.625"<br>ance<br>3,930<br>372<br>ance<br>3,930<br>417 | psi<br>kips<br>psi<br>kips                  |   | (API Hi  | storical)<br>AF<br>2,793<br>3,130 | PI Connect<br>STC Torq<br>Opti:<br>LTC Torq          | j <b>ue (ft-lk</b><br>3,724<br>j <b>ue (ft-lk</b><br>4,174 | mrque<br>DS)<br>Max:<br>DS)<br>Max: | 4,6             |
| STC Interna<br>STC Joint S<br>LTC Internal<br>LTC Joint St | API Connectio<br>Coupling OD: 9<br>STC Perform<br>al Pressure:<br>Strength:<br>LTC Perform<br>Il Pressure:<br>trength:<br>trength:<br>erformance - C | n Data<br>0.625"<br>ance<br>3,930<br>372<br>ance<br>3,930<br>417 | psi<br>kips<br>psi<br>kips<br><b>9.125"</b> |   | (API Hi  | storical)<br>AF<br>2,793<br>3,130 | PI Connect<br>STC Torq<br>Opti:<br>LTC Torq<br>Opti: | jue (ft-lk<br>3,724<br>jue (ft-lk<br>4,174<br>jue (ft-lk   | orque<br>DS)<br>Max:<br>DS)<br>Max: | 4,65<br>5,21    |

\*Alt. Drift will be used unless API Drift is specified on order.

\*\*If above API connections do not suit your needs, VAM® premium connections are available up to 100% of pipe body ratings.

ALL INFORMATION IS PROVIDED BY VALLOUREC OR ITS AFFILIATES AT USER'S SOLE RISK, WITHOUT LIABILITY FOR LOSS, DAMAGE OR INJURY RESULTING FROM THE USE THEREOF; AND ON AN "AS IS" BASIS WITHOUT WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR PURPOSE, ACCURACY OR COMPLETENESS. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND IS BASED ON ESTIMATES THAT HAVE NOT BEEN VERIFIED OR TESTED. IN NO EVENT SHALL VALLOUREC OR ITS AFFILIATES BE RESPONSIBLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, EXEMPLARY OR CONSEQUENTIAL LOSS OR DAMAGE (INCLUDING WITHOUT LIMITATION, LOSS OF USE, LOSS OF BARGAIN, LOSS OF REVENUE, PROFIT ANTICIPATED PROFIT) HOWEVER CAUSED OR ARISING, AND WHETHER SUCH LOSSES OR DAMAGES. POSSIBILITY OF SUCH DAMAGES.

Rev 3, 7/30/2021

S S2L2 DA 7.875 W/O# SLN # PO# MADE IN USA FT LB

VALLOUREC STAR 8.625 32# J55

10/21/2022 15:24

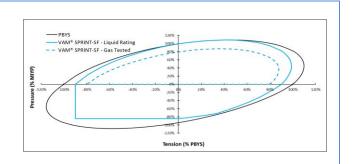


#### Issued on: 10 Feb. 2021 by Wesley Ott



| OD    | Weight (lb/ft)   | Wall Th.  | Grade  | API Drift: | Connection                 |
|-------|------------------|-----------|--------|------------|----------------------------|
| 6 in. | Nominal: 24.50   | 0.400 in. | P110EC | 5.075 in.  | VAM <sup>®</sup> SPRINT-SF |
|       | Plain End: 23.95 |           |        |            |                            |

| PI PE PROPERTI ES              |       |          |
|--------------------------------|-------|----------|
| Nominal OD                     | 6.000 | in.      |
| Nominal ID                     | 5.200 | in.      |
| Nominal Cross Section Area     | 7.037 | sqin.    |
| Grade Type                     | Hig   | jh Yield |
| Min. Yield Strength            | 125   | ksi      |
| Max. Yield Strength            | 140   | ksi      |
| Min. Ultimate Tensile Strength | 135   | ksi      |


| CONNECTION PROPERTIES        |          |            |
|------------------------------|----------|------------|
| Connection Type              | Integral | Semi-Flush |
| Connection OD (nom):         | 6.277    | in.        |
| Connection ID (nom):         | 5.146    | in.        |
| Make-Up Loss                 | 5.386    | in.        |
| Critical Cross Section       | 6.417    | sqin.      |
| Tension Efficiency           | 91.0     | % of pipe  |
| Compression Efficiency       | 91.0     | % of pipe  |
| Internal Pressure Efficiency | 100      | % of pipe  |
| External Pressure Efficiency | 100      | % of pipe  |

| CONNECTION PERFORMANCES               |        |         |  |  |  |  |  |
|---------------------------------------|--------|---------|--|--|--|--|--|
| Tensile Yield Strength                | 801    | klb     |  |  |  |  |  |
| Compression Resistance                | 801    | klb     |  |  |  |  |  |
| Internal Yield Pressure               | 14,580 | psi     |  |  |  |  |  |
| Collapse Resistance                   | 12,500 | psi     |  |  |  |  |  |
| Max. Structural Bending               | 83     | °/100ft |  |  |  |  |  |
| Max. Bending with ISO/API Sealability | 30     | °/100ft |  |  |  |  |  |

| TORQUE VALUES                      |        |       |
|------------------------------------|--------|-------|
| Min. Make-up torque                | 21,750 | ft.lb |
| Opt. Make-up torque                | 24,250 | ft.lb |
| Max. Make-up torque                | 26,750 | ft.lb |
| Max. Torque with Sealability (MTS) | 53,000 | ft.lb |

\* 87.5% RBW

VAM® SPRINT-SF is a semi-flush connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections and tight clearance requirements.



#### Do you need help on this product? - Remember no one knows VAM® like VAM®

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com



#### **Connection Data Sheet**

| OD (in.) | WEIGHT (lbs./ft.) | WALL (in.) | GRADE      | API DRIFT (in.) | RBW% | CONNECTION |
|----------|-------------------|------------|------------|-----------------|------|------------|
| 6.000    | Nominal: 22.30    | 0.360      | VST P110EC | 5.155           | 92.5 | DWC/C-IS   |
|          | Plain End: 21 70  |            | •          |                 | •    | •          |

| PIPE PROPERTIES              | PIPE PROPERTIES |        |  |  |  |  |  |
|------------------------------|-----------------|--------|--|--|--|--|--|
|                              |                 |        |  |  |  |  |  |
| Nominal OD                   | 6.000           | in.    |  |  |  |  |  |
| Nominal ID                   | 5.280           | in.    |  |  |  |  |  |
| Nominal Area                 | 6.379           | sq.in. |  |  |  |  |  |
| Grade Type                   | API 5CT         |        |  |  |  |  |  |
| Min. Yield Strength          | 125             | ksi    |  |  |  |  |  |
| Max. Yield Strength          | 140             | ksi    |  |  |  |  |  |
| Min. Tensile Strength        | 135             | ksi    |  |  |  |  |  |
| Yield Strength               | 797             | klb    |  |  |  |  |  |
| Ultimate Strength            | 861             | klb    |  |  |  |  |  |
| Min. Internal Yield Pressure | 13,880          | psi    |  |  |  |  |  |
| Collapse Pressure            | 9,800           | psi    |  |  |  |  |  |

|                                             | NCES   |          |
|---------------------------------------------|--------|----------|
| Yield Strength                              | 797    | klb      |
| Parting Load                                | 861    | klb      |
| Compression Rating                          | 797    | klb      |
| Min. Internal Yield                         | 13,880 | psi      |
| External Pressure                           | 9,800  | psi      |
| Maximum Uniaxial Bend Rating                | 47.7   | °/100 ft |
| Reference String Length w 1.4 Design Factor | 25,530 | ft.      |

| CONNECTION PRO               | PERTIES   |          |
|------------------------------|-----------|----------|
| Connection Type              | Semi-Prem | nium T&C |
| Connection OD (nom)          | 6.650     | in.      |
| Connection ID (nom)          | 5.280     | in.      |
| Make-Up Loss                 | 4.313     | in.      |
| Coupling Length              | 9.625     | in.      |
| Critical Cross Section       | 6.379     | sq.in.   |
| Tension Efficiency           | 100.0%    | of pipe  |
| Compression Efficiency       | 100.0%    | of pipe  |
| Internal Pressure Efficiency | 100.0%    | of pipe  |
| External Pressure Efficiency | 100.0%    | of pipe  |
|                              |           |          |

| FIELD END TORQUE VALUES       |        |       |  |  |  |  |
|-------------------------------|--------|-------|--|--|--|--|
|                               |        |       |  |  |  |  |
| Min. Make-up torque           | 17,000 | ft.lb |  |  |  |  |
| Opti. Make-up torque          | 18,250 | ft.lb |  |  |  |  |
| Max. Make-up torque           | 19,500 | ft.lb |  |  |  |  |
| Min. Shoulder Torque          | 1,700  | ft.lb |  |  |  |  |
| Max. Shoulder Torque          | 13,600 | ft.lb |  |  |  |  |
| Min. Delta Turn               | -      | Turns |  |  |  |  |
| Max. Delta Turn               | 0.200  | Turns |  |  |  |  |
| Maximum Operational Torque    | 24,200 | ft.lb |  |  |  |  |
| Maximum Torsional Value (MTV) | 26,620 | ft.lb |  |  |  |  |

Need Help? Contact: <u>tech.support@vam-usa.com</u> Reference Drawing: 8135PP Rev.02 & 8135BP Rev.02 Date: 07/30/2020

Time: 07:50:47 PM

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates us advised of the possibility of such damages.



VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234 VAM<sup>®</sup> USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

1. DWC connections are available with a seal ring (SR) option.

2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.

3. Connection performance properties are based on nominal pipe body and connection dimensions.

4. DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.

5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.

6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.

7. Bending efficiency is equal to the compression efficiency.

8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.

9. Connection yield torque is not to be exceeded.

10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.

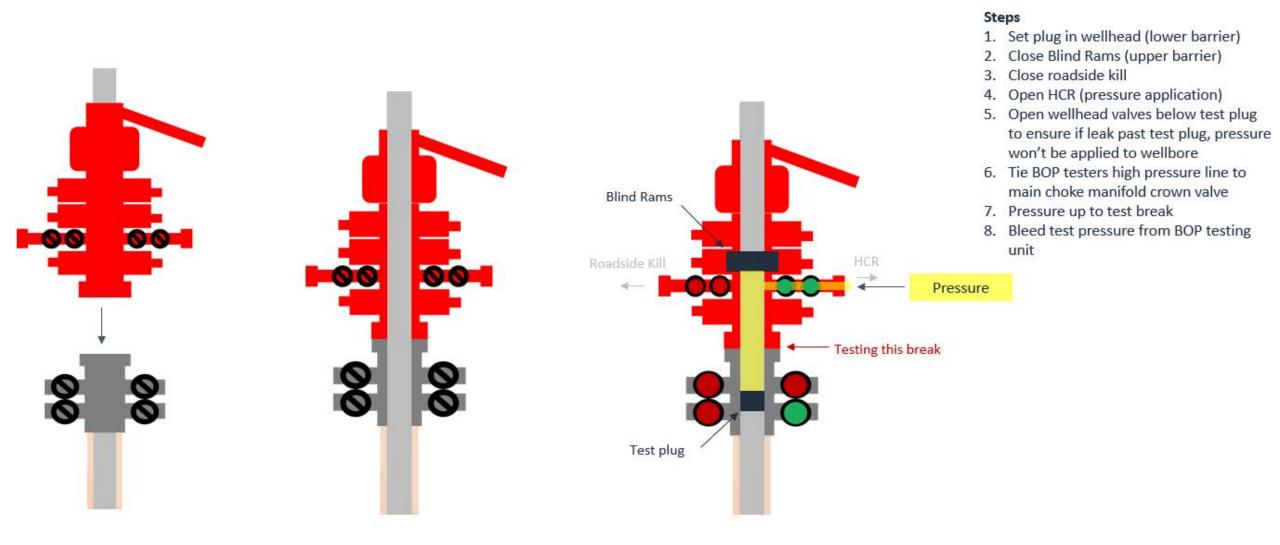
11. DWC connections will accommodate API standard drift diameters.

12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

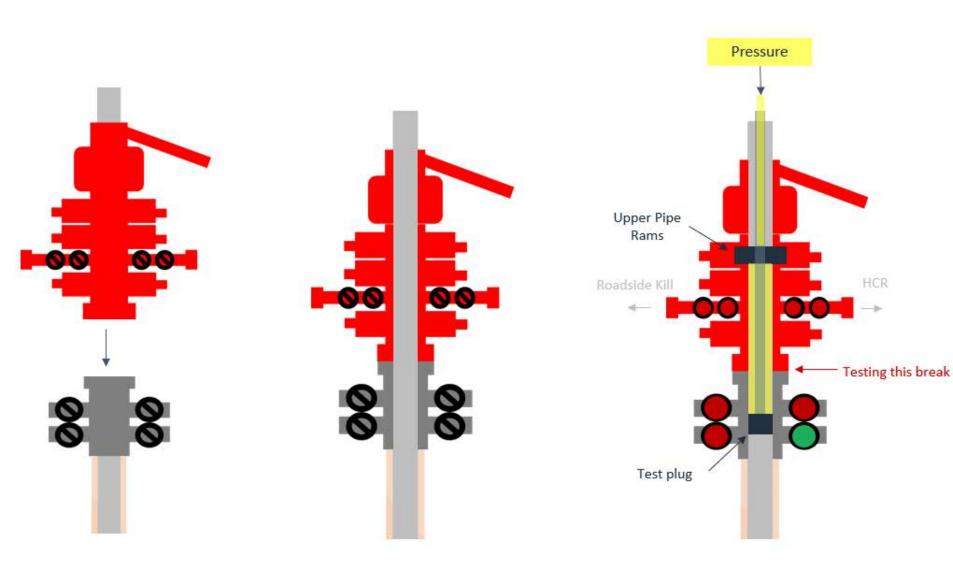
Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.






#### **Break-test BOP & Offline Cementing:**

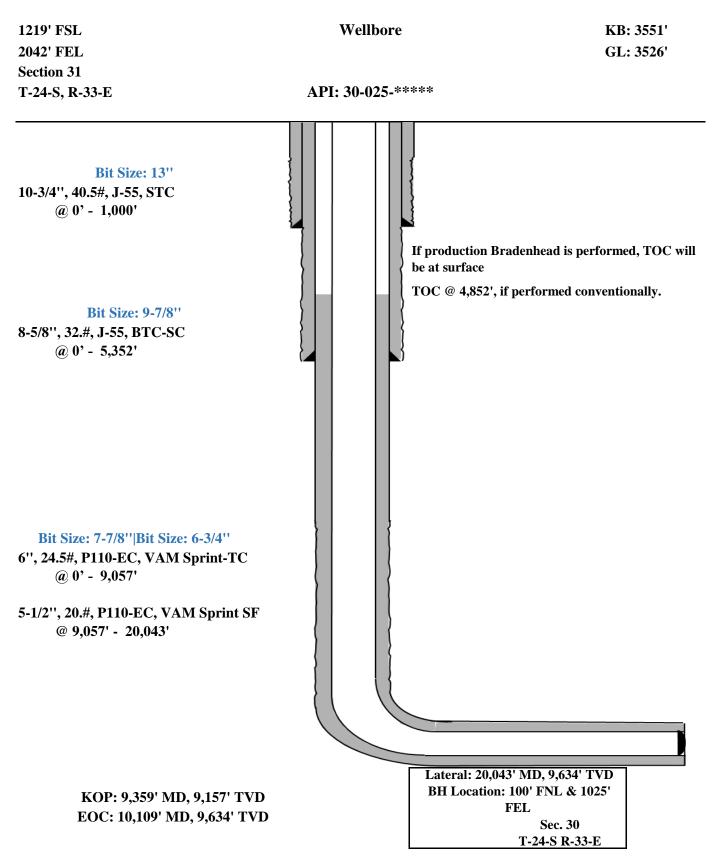

EOG Resources Inc. (EOG) respectfully requests a variance from the minimum standards for well control equipment testing of ECFR Title 43 Part 3172.6(b)(9)(iv) to allow a testing schedule of the blow out preventer (BOP) and blow out prevention equipment (BOPE) along with Batch Drilling & Offline cement operations to include the following:

- Full BOPE test at first installation on the pad.
- Full BOPE test every 30 days.
- This test will be conducted for 5M rated hole intervals only.
- Each rig requesting the break-test variance is capable of picking up the BOP without damaging components using winches, following API Standard 53, Well Control Equipment Systems for Drilling Wells (Fifth edition, December 2018, Annex C. Table C.4) which recognizes break testing as an acceptable practice.
- Function tests will be performed on the following BOP elements:
  - Annular **à** during each full BOPE test
  - Upper Pipe Rams **à** On trip ins where FIT required
  - Blind Rams **à** Every trip
  - Lower Pipe Rams à during each full BOPE test
- Break testing BOP and BOPE coupled with batch drilling operations and option to offline cement and/or remediate (if needed) any surface or intermediate sections, according to attached offline cementing support documentation.
- After the well section is secured, the BOP will be disconnected from the wellhead and walked with the rig to another well on the pad.
- TA cap will also be installed per Wellhead vendor procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

# **Break Test Diagram (HCR valve)**



# **Break Test Diagram (Test Joint)**




#### Steps

- 1. Set plug in with test joint wellhead (lower barrier)
- 2. Close Upper Pipe Rams (upper barrier)
- 3. Close roadside kill
- 4. Close HCR
- Open wellhead valves below test plug to ensure if leak past test plug, pressure won't be applied to wellbore
- 6. Tie BOP testers high pressure line to top of test joint
- 7. Pressure up to test break
- 8. Bleed test pressure from BOP testing unit

## **S**eog resources

#### Mad Adder 31 State Com 101H



## \delta eog resources

#### **Permit Information:**

Well Name: Mad Adder 31 State Com 101H

Location: SHL: 1219' FSL & 2042' FEL, Section 31, T-24-S, R-33-E, LEA Co., N.M. BHL: 100' FNL & 1025' FEL, Section 30, T-24-S, R-33-E, LEA Co., N.M.

#### **Casing Program:**

| Hole   | Interv    | Interval MD |           | l TVD   | Csg     |        |         |               |
|--------|-----------|-------------|-----------|---------|---------|--------|---------|---------------|
| Size   | From (ft) | To (ft)     | From (ft) | To (ft) | OD      | Weight | Grade   | Conn          |
| 13"    | 0         | 1,000       | 0         | 1,000   | 10-3/4" | 40.5#  | J-55    | STC           |
| 9-7/8" | 0         | 5,352       | 0         | 5,132   | 8-5/8"  | 32#    | J-55    | BTC-SC        |
| 7-7/8" | 0         | 9,259       | 0         | 9,057   | 6"      | 24.5#  | P110-EC | VAM Sprint-TC |
| 6-3/4" | 9,259     | 20,043      | 9,057     | 9,634   | 5-1/2"  | 20#    | P110-EC | VAM Sprint SF |

\*\*For highlighted rows above, variance is requested to run entire string of either or casing string above due to availablility.

| Cement Program: |              |      |        |                                                                   |  |  |  |
|-----------------|--------------|------|--------|-------------------------------------------------------------------|--|--|--|
|                 | No.<br>Sacks | Wt.  | Yld    | Slurry Description                                                |  |  |  |
| Depth           |              | ppg  | Ft3/sk |                                                                   |  |  |  |
| 1,000'          | 230          | 13.5 | 1.73   | Class C/H + additives (TOC @ Surface)                             |  |  |  |
|                 | 100          | 14.8 | 1.34   | Class C/H + additives                                             |  |  |  |
| 5,350'          | 430          | 12.7 | 1.11   | Tail: Class C/H + additives + expansion additives (TOC @ Surface) |  |  |  |
|                 | 250          | 14.8 | 1.5    | Lead: Class C/H + additives (TOC @ 4,106')                        |  |  |  |
| 20,043'         | 650          | 10.5 | 3.21   | Lead: Class C/H + additives (TOC @ 4,852')                        |  |  |  |
|                 | 1270         | 13.2 | 1.52   | Tail: Class C/H + additives                                       |  |  |  |

#### **Mud Program:**

| Section      | Depth                       | Туре        | Weight (ppg) | Viscosity | Water Loss |  |
|--------------|-----------------------------|-------------|--------------|-----------|------------|--|
| Surface      | 0-1,000'                    | Fresh - Gel | 8.6-9.2      | 28-34     | N/c        |  |
| Intermediate | 1,000' - 5,130'             | Brine       | 9.0-10.5     | 28-34     | N/c        |  |
| Production   | 5,130' – 20,043'<br>Lateral | Oil Base    | 8.8-9.5      | 58-68     | N/c - 6    |  |



#### Mad Adder 31 State Com 101H

#### **TUBING REQUIREMENTS**

EOG respectively requests an exception to the following NMOCD rule:

 19.15.16.10 Casing AND TUBING RQUIREMENTS: J (3): "The operator shall set tubing as near the bottom as practical and tubing perforations shall not be more than 250 feet above top of pay zone."

With horizontal flowing and gas lifted wells an end of tubing depth placed at or slightly above KOP is a conservative way to ensure the tubing stays clean from debris, plugging, and allows for fewer well interventions post offset completion. The deeper the tubulars are run into the curve, the higher the probability is that the tubing will become stuck in sand and or well debris as the well produces over time. An additional consideration for EOT placement during artificial lift installations is avoiding the high dog leg severity and inclinations found in the curve section of the wellbore to help improve reliability and performance. Dog leg severity and inclinations tend not to hamper gas lifted or flowing wells, but they do effect other forms of artificial lift like rod pump or ESP (electric submersible pump). Keeping the EOT above KOP is an industry best practice for those respective forms of artificial lift.



#### Mad Adder 31 State Com 101H

### Hydrogen Sulfide Plan Summary

A. All personnel shall receive proper H2S training in accordance with Onshore Order III.C.3.a.

B. Briefing Area: two perpendicular areas will be designated by signs and readily accessible.

C. Required Emergency Equipment:

- Well control equipment
- a. Flare line 150' from wellhead to be ignited by flare gun.
- b. Choke manifold with a remotely operated choke.
- c. Mud/gas separator

■ Protective equipment for essential personnel.

Breathing apparatus:

- a. Rescue Packs (SCBA) 1 unit shall be placed at each breathing area, 2 shall be stored in the safety trailer.
- b. Work/Escape packs —4 packs shall be stored on the rig floor with sufficient air hose not to restrict work activity.
- c. Emergency Escape Packs —4 packs shall be stored in the doghouse for emergency evacuation.

Auxiliary Rescue Equipment:

- a. Stretcher
- b. Two OSHA full body harness
- c. 100 ft 5/8 inch OSHA approved rope
- d. 1-20# class ABC fire extinguisher

■ H2S detection and monitoring equipment:

The stationary detector with three sensors will be placed in the upper dog house if equipped, set to visually alarm @ 10 ppm and audible @ 14 ppm. Calibrate a minimum of every 30 days or as needed. The sensors will be placed in the following places: Rig floor / Bell nipple / End of flow line or where well bore fluid is being discharged.

(Gas sample tubes will be stored in the safety trailer)

- Visual warning systems.
  - a. One color code condition sign will be placed at the entrance to the site reflecting the possible conditions at the site.
  - b. A colored condition flag will be on display, reflecting the current condition

at

c. Two wind socks will be placed in strategic locations, visible from all angles.



#### ■ Mud program:

The mud program has been designed to minimize the volume of H2S circulated to surface. The operator will have the necessary mud products to minimize hazards while drilling in H2S bearing zones.

#### ■ Metallurgy:

All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.

#### ■ Communication:

Communication will be via cell phones and land lines where available.

### **S**eog resources

.

### Mad Adder 31 State Com #101H Emergency Assistance Telephone List

| PUBLIC SAFETY:                  |        | <b>911</b> of  |
|---------------------------------|--------|----------------|
| Lea County Sheriff's Department |        | (575) 396-3611 |
| Rod Coffman                     |        |                |
| Fire Department:                |        |                |
| Carlsbad                        |        | (575) 885-3125 |
| Artesia                         |        | (575) 746-5050 |
| Hospitals:                      |        |                |
| Carlsbad                        |        | (575) 887-4121 |
| Artesia                         |        | (575) 748-3333 |
| Hobbs                           |        | (575) 392-1979 |
| Dept. of Public Safety/Carlsbad |        | (575) 748-9718 |
| Highway Department              |        | (575) 885-3281 |
| New Mexico Oil Conservation     |        | (575) 476-3440 |
| NMOCD Inspection Group - South  |        | (575) 626-0830 |
| U.S. Dept. of Labor             |        | (575) 887-1174 |
| EOG Resources, Inc.             |        |                |
| EOG / Midland                   | Office | (432) 686-3600 |
|                                 |        |                |
| Company Drilling Consultants:   |        |                |
| David Dominque                  | Cell   | (985) 518-5839 |
| Mike Vann                       | Cell   | (817) 980-5507 |
| Drilling Engineer               |        |                |
| Stephen Davis                   | Cell   | (432) 235-9789 |
| Matt Day                        | Cell   | (432) 296-4456 |
| Drilling Manager                |        |                |
| Branden Keener                  | Office | (432) 686-3752 |
|                                 | Cell   | (210) 294-3729 |
| Drilling Superintendent         |        |                |
| Steve Kelly                     | Office | (432) 686-3706 |
|                                 | Cell   | (210) 416-7894 |
| H&P Drilling                    |        |                |
| H&P Drilling                    | Office | (432) 563-5757 |
| H&P 651 Drilling Rig            | Rig    | (903) 509-7131 |
|                                 |        |                |
| Tool Pusher:                    |        |                |
| Johnathan Craig                 | Cell   | (817) 760-6374 |
| Brad Garrett                    |        |                |
| Safety:                         |        |                |
| Brian Chandler (HSE Manager)    | Office | (432) 686-3695 |
|                                 | Cell   | (817) 239-0251 |