Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

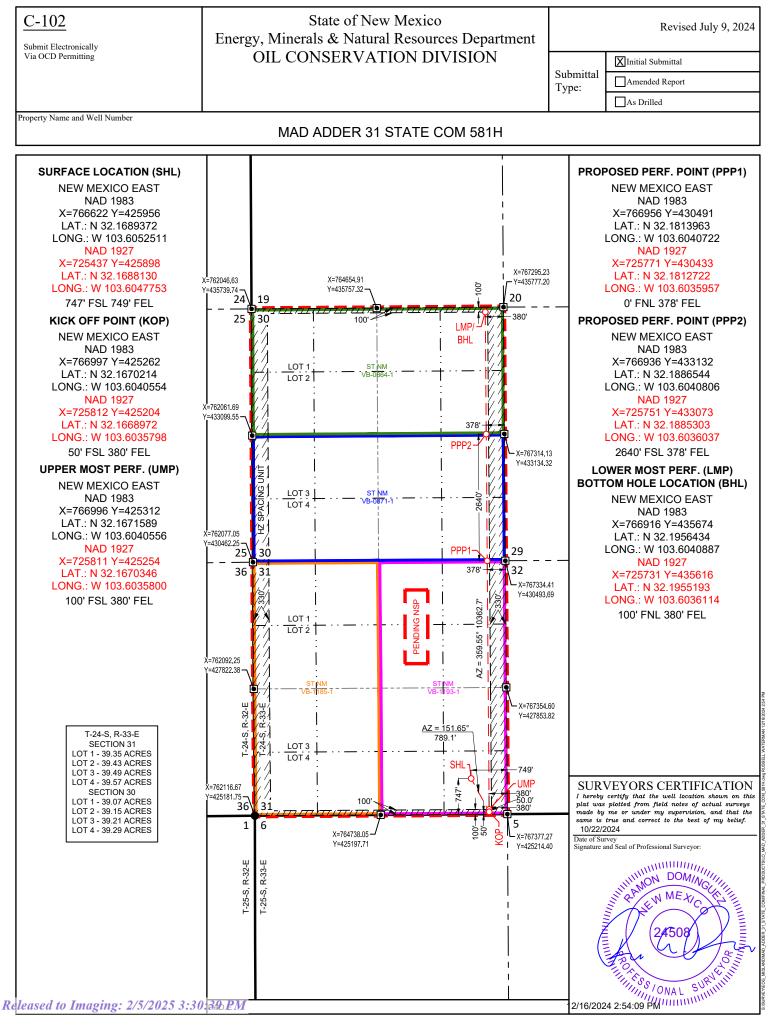
State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 1 of 86

Form C-101 August 1, 2011 Permit 382052

APPLICATION FOR PERMIT TO DRILL, RE-ENTER, DEEPEN, PLUGBACK, OR ADD A ZONE

	ame and Address OG RESOURCES IN(0								2. 00	GRID Number 7377	
-	09 Champions Drive									3. AP	l Number	
Mic	dland, TX 79706										30-025-543	14
4. Property Co			5. Property							6. We	ell No.	
330	6936			MAD ADD	ER 31 S	TATE COM					581H	
						7. Surfac	e Location					
UL - Lot	Section	Township		Range		Lot Idn	Feet From	N/S Line	Feet Fre	om	E/W Line	County
P	31	2	4S	3	33E		747	S		749	E	Lea
						8. Proposed Bot	tom Hole Loca	tion				
UL - Lot	Section	Township	F	Range		Lot Idn	Feet From	N/S Line	Feet Fr	om	E/W Line	County
A	30	24	4S	3	3E	A	100	N		380	E	Lea
						9 Pool I	nformation					
WC-025 G-0)7 S243225C;LWR E	ONE SPRIN				5.1 0011	Infilmation				97	7964
	,						lell lufe meetier					
11. Work Type		12. Well Typ	-		12 Cob	Additional W le/Rotary	ell Information	14. Lease Type		5 Ground	Level Elevation	
	w Well		IL		15. Cabi	le/Rotary		State			3506	
16. Multiple		17. Proposed			18. Form	nation		19. Contractor	2	0. Spud D		
N		. 2	2088			Bone Spring					2/15/2025	
Depth to Grou	nd water				Distance	e from nearest fresh	water well		ſ	Distance to	nearest surface wat	er
⊠ We will be	using a closed-loop	o system in lie	eu of lined	l pits								
						Proposed Casing						
Туре	Hole Size	Casing		_	-	Weight/ft	Setting			of Cement		Estimated TOC
Surf	13		75	-		0.5	10			330		0
Int1 Prod	9.875 7.875	8.6	-			32 4.5	<u>51</u> 113	-		680 2160		0 4684
Prod	6.75	5.				20	220					4684
TIOU	0.70	0.	0							.100	I	-00-
					Casing	g/Cement Progra	m: Additional	Comments				
			-			Proposed Blowo	ut Prevention	Program				
	Туре				Working I			Test Pres			Ма	nufacturer
	Double Ram				50	00		300)			
							1					
23. I hereby knowledge a	certify that the inforn	nation given a	bove is tru	le and cor	nplete to	the best of my			OIL CONSE	RVATION	DIVISION	
	tify I have complied	with 19 15 1	1 9 (Δ) NM	AC Man	d/or 19 1	5 14 9 (B) NMAC						
X, if applica		with 15.16.1	1.5 (A) Mi		0/01 10.1	0.14.0 (D) MILAC						
,												
Signature:												
Printed Name	: Electronical	y filed by Patr	icia Dona	ld			Approved By:	Matthew 0	Gomez			
Title:	Regulatory S	Specialist					Title:					
Email Address	e: Patricia_Do	nald@eogres	ources.co	om			Approved Date	2/5/2025			Expiration Date: 2/	5/2027
Date:	1/22/2025		PI	hone: 432-	488-768	4	Conditions of	Approval Attach	ed			


Received by OCD: 1/22/2025 2:50:22 PM

Page 2 of 86

<u>C-102</u>	!!		Energy		State of New ls & Natura		Department		Revise	d July 9, 2024
Submit Electronic Via OCD Permitt				OIL CONSERVATION DIVISION				Initial Submittal		
								Submittal Type:	Amended Report	
								51	As Drilled	
		W	ELL LC	CATIO	N AND AC	REAGE DE	EDICATION	N PLAT		
API Number 30-025-5	54314			97964	Pool N		G-07 S24322	5C; LWR B		
	36936		Property Name		AD ADDER	31 STATE C	ОМ			581H
OGRID No.	7377		Operator Name		EOG RESO	URCES, INC			Ground Level Eleva	tion 8506'
Surface Owner:	State Fee	Tribal 🗌 Federal				Mineral Owner:	State Fee Tribal	Federal		
					Surface	Location				
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the N/S	Feet from the E/W	Latitude		Longitude	County
Р	31	24-S	33-E	-	747' S	749' E	N 32.1689	372 W 1	03.6052511	LEA
				•	Bottom Ho	le Location				
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the N/S	Feet from the E/W	Latitude		Longitude	County
A	30	24-S	33-E	-	100' N	380' E	N 32.1956	434 W 1	03.6040887	LEA
Dedicated Acres	Infill on Dof	ining Wall Dofin	ing Wall ADI			Orradonning Sussing	$U_{\rm M}(\mathbf{V}/\mathbf{N})$	Concolidat	ad Cada	
1274.56										
	DEFIN						Y	· 🗆 v 🗆 v	С	
Order Numbers		PENDIN	IG INSP			well Setbacks are un	der Common Ownersh		0	
				i	-	oint (KOP)				
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the N/S	Feet from the E/W				County
P	31	24-S	33-E	-	50' S	380' E	N 32.1670	214 VV 1	03.6040554	LEA
					First Take	Point (FTP)				
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the N/S	Feet from the E/W	Latitude		Longitude	County
Р	31	24-S	33-E	-	100' S	380' E	N 32.1671	589 W 1	03.6040556	LEA
					Last Take I	Point (LTP)				
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the N/S	Feet from the E/W	Latitude		Longitude	County
A	30	24-S	33-E	-	100' N	380' E	N 32.19564	434 W 1	03.6040887	LEA
Unitized Area or A			_	Spacing Unity	Type	l Vertical	Ground	Floor Elevation	3531'	
		REEMENT							0001	
OPERATO	OR CERTII	FICATION				SURVEYOF	RS CERTIFICA	TION		
I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief; and, if the well is a vertical or directional well, that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with an owner of a working interest or unleased mineral interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division.				I hereby certify that the well location shown on this blat, wooning that the same notes of actual surveys made by me or under my supervision, and that the same is true and correct to the best of my belief.						
If this well is a horizontal well, I further certify that this organization has received The consent of at least one lessee or owner of a working interest or unleased mineral interest in each tract (in the target pool or formation) in which any part of the well's completed interval will be located or obtained a compulsory pooling order from the division.				24508 24508 2000 24508 24508 2000 20				ANNIN THE REAL		
Kay	la Mc	Conne	ll	01	1/06/25			12/16/2024 2	54:09 PM	IIII
Signature KAYLA	MCCON	NELL	Date			Signature and Seal of	of Professional Survey	or Date	e	
Print Name KAYLA	MCCON	NELL@E	OGRESC	URCES	.COM	Certificate Number	Date of	of Survey 10/22/2024		
E-mail Address								, <i>, , , , , , , , , , , , , , , , , , </i>		

Received by OCD: 1/22/2025 2:50:22 PM

Page 3 of 86

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

PERMIT CONDITIONS OF APPROVAL

Operator Name and	d Address:	API Number:			
EOG R	ESOURCES INC [7377]	30-025-54314			
5509 C	hampions Drive	Well:			
Midland	d, TX 79706	MAD ADDER 31 STATE COM #581H			
OCD Reviewer	Condition				
matthew.gomez	A [C-103] Sub. Drilling (C-103N) is required within (10) days of spud.				
matthew.gomez	Notify the OCD 24 hours prior to casing & cement.				
	w.gomez Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string.				
0	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation mud, drilling fluids and solids must be contained in a steel closed loop system.	n from the oil or diesel. This includes synthetic oils. Oil based			
matthew.gomez	Cement is required to circulate on both surface and intermediate1 strings of casing.				
matthew.gomez	If cement does not circulate on any string, a Cement Bond Log (CBL) is required for that string of casi	ing.			
matthew.gomez	File As Drilled C-102 and a directional Survey with C-104 completion packet.				
matthew.gomez	Administrative order required for non-standard spacing unit prior to production.				
matthew.gomez	Operator is only approved for casing Design A. If Design B is needed or any other change, please sul	omit form C-103A to make the changes.			

Form APD Conditions

Page 4 of 86

Seog resources

EOG Batch Casing

Pad Name:Mad Adder 31 State Com

SHL: Section 31, Township 24-S, Range 33-E, LEA County, NM

EOG requests for the below wells to be approved for all designs listed in the Blanket Casing Design ('EOG BLM Variance 5a - Alternate Shallow Casing Designs.pdf' OR 'EOG BLM Variance 5b - Alternate Deep Casing Designs.pdf') document. The MDs and TVDs for all intervals are within the boundary conditions. The max inclination and DLS are also within the boundary conditions. The directional plans for the wells are attached separately.

Well Name	API #	Surface		Intermediate		Production	
wen Name	ALI#	MD	TVD	MD	TVD	MD	TVD
Mad Adder 31 State Com #101H	30-025-****	1,000	1,000	5,352	5,132	20,043	9,634
Mad Adder 31 State Com #201H	30-025-****	1,000	1,000	5,182	5,132	20,621	10,365
Mad Adder 31 State Com #202H	30-025-****	1,000	1,000	5,162	5,132	20,600	10,365
Mad Adder 31 State Com #211H	30-025-****	1,000	1,000	5,234	5,132	20,668	10,365
Mad Adder 31 State Com #301H	30-025-****	1,000	1,000	5,176	5,132	20,721	10,470
Mad Adder 31 State Com #302H	30-025-****	1,000	1,000	5,152	5,132	20,696	10,470
Mad Adder 31 State Com #401H	30-025-****	1,000	1,000	5,336	5,132	21,145	10,750
Mad Adder 31 State Com #581H	30-025-****	1,000	1,000	5,184	5,132	22,088	11,830
Mad Adder 31 State Com #582H	30-025-****	1,000	1,000	5,338	5,132	22,227	11,830
Mad Adder 31 State Com #583H	30-025-****	1,000	1,000	5,145	5,132	22,048	11,830

EOG Batch Casing

Variances

EOG requests the additional variance(s) in the attached document(s):

- EOG BLM Variance 2a Intermediate Bradenhead Cement
- EOG BLM Variance 3d Production Offline Cement
- EOG BLM Variance 3a_b BOP Break-test and Offline Intermediate Cement
- EOG BLM Variance 4a Salt Section Annular Clearance
- EOG BLM Variance 5a Alternate Shallow Casing Designs

Seog resources

Page 7 of 86

EOG Batch Casing

GEOLOGIC NAME OF SURFACE FORMATION:

Permian

ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler	813'
Tamarisk Anhydrite	975'
Top of Salt	1,617'
Base of Salt	5,032'
Lamar	5,281'
Bell Canyon	5,312'
Cherry Canyon	6,321'
Brushy Canyon	7,856'
Bone Spring Lime	9,427'
Leonard (Avalon) Shale	9,458'
1st Bone Spring Sand	10,418'
2nd Bone Spring Shale	10,634'
2nd Bone Spring Sand	11,033'
3rd Bone Spring Carb	11,454'
3rd Bone Spring Sand	12,028'

ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

0-400'	Fresh Water
5,312'	Oil
6,321'	Oil
7,856'	Oil
9,458'	Oil
10,418'	Oil
10,634'	Oil
11,033'	Oil
	5,312' 6,321' 7,856' 9,458' 10,418' 10,634'

No other Formations are expected to give up oil, gas or fresh water in measurable quantities. Surface fresh water sands will be protected by setting surface casing at 1,000' and circulating cement back to surface.

Mad Adder 31 State Com 401H API #: 30-025-**** Variances

EOG respectfully requests the below variances to be applied to the above well:

- Variance is requested to waive the centralizer requirements for the intermediate casing in the intermediate hole. An expansion additive will be utilized, in the cement slurry, for the entire length of the intermediate interval to maximize cement bond and zonal isolation.

- Variance is also requested to waive the centralizer requirements for the production casing in the production hole. An expansion additive will be utilized, in the cement slurry, for the entire length of the production interval to maximize cement bond and zonal isolation.

- Bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.

- Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).

- Variance is requested to use a 5,000 psi annular BOP with the 10,000 psi BOP stack.

- EOG Resources requests the option to contract a Surface Rig to drill, set surface casing, and Cement on the subject well. After WOC 8 hours or 500 psi compressive strength (whichever is greater), the Surface Rig will move off so the wellhead can be installed. A welder will cut the casing to the proper height and weld on the wellhead (both "A" and "B" sections). The weld will be tested to 1,500 psi. All valves will be closed and a wellhead cap will be installed (diagram attached). If the timing between rigs is such that EOG Resources would not be able to preset the surface, the Primary Rig will MIRU and drill the well in its entirety per the APD.

EOG requests the additional variance(s) in the attached document(s):

- EOG BLM Variance 3a_b BOP Break-test and Offline Intermediate Cement
- EOG BLM Variance 3c Shallow Target Production Offline Bradenhead Cement
- EOG BLM Variance 3d Production Offline Cement
- EOG BLM Variance 4a Salt Section Annular Clearance
- EOG BLM Variance 5a Alternate Shallow Casing Designs

EOG requests variance from minimum standards to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as 1000 sack bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (2.30 yld, 12.91 ppg) will be executed as a contingency. Top of cement will be verified by Echo-meter.

EOG will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program.

EOG will report to the BLM the volume of fluid (limited to 5 bbls) used to flush intermediate casing valves following backside cementing procedures.

EOG Resources Inc. (EOG) respectfully requests a variance from the minimum standards to allow for offline bradenhead cementing of the production string after primary cementing operations have been completed. The primary cement job will be pumped conventionally (online) to top of the Brushy Canyon and will cover the target production intervals, and after production pack-off is set and tested, bradenhead will be pumped through casing valves between the production and intermediate casings (offline). For the bradenhead stage of production cementing, the barriers remain the same for offline cementing compared to performing it online.

The bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.

Salt Section Annular Clearance Variance Request

Daniel Moose

Current Design (Salt Strings)

0.422" Annular clearance requirement

- Casing collars shall have a minimum clearance of 0.422 inches on all sides in the hole/casing annulus, with recognition that variances can be granted for justified exceptions.

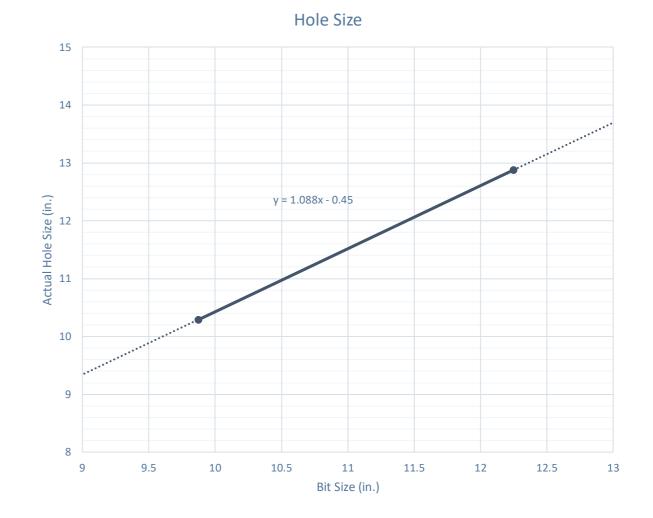
- 12.25" Hole x 9.625"40# J55/HCK55 LTC Casing
 - 1.3125" Clearance to casing OD
 - 0.8125" Clearance to coupling OD
- 9.875" Hole x 8.75" 38.5# P110 Sprint-SF Casing
 - 0.5625" Clearance to casing OD
 - 0.433" Clearance to coupling OD

Annular Clearance Variance Request

EOG request permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Onshore Order #2 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues

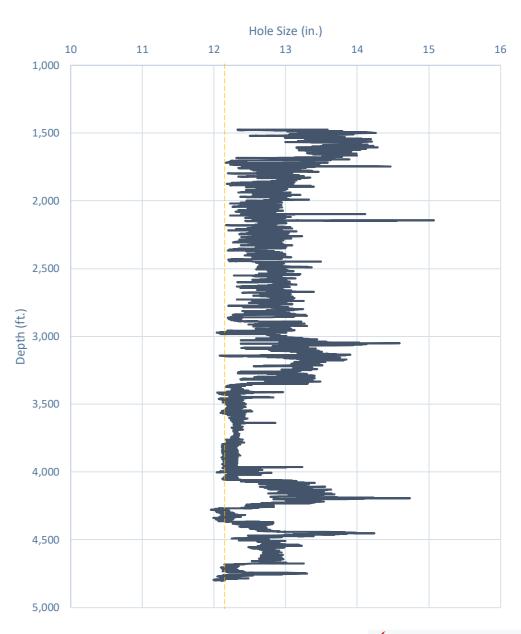
Received by OCD: 1/22/2025 2:50:22 PM


Volumetric Hole Size Calculation

Hole Size Calculations Off Cement Volumes

- Known volume of cement pumped
- Known volume of cement returned to surface
- Must not have had any losses
- Must have bumped plug

Average Hole Size

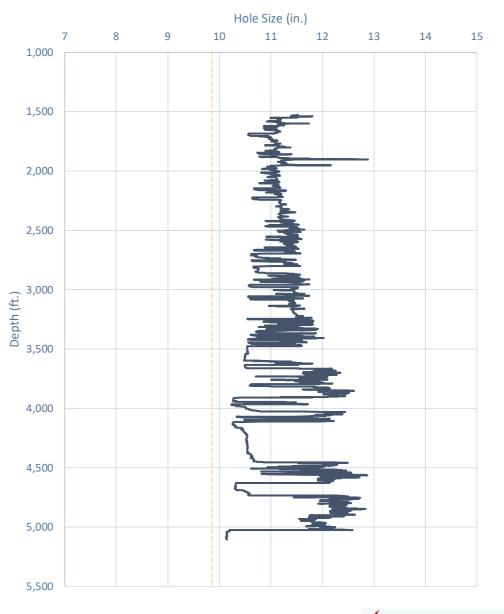

- 12.25" Hole
 - 12.88" Hole
 - 5.13% diameter increase
 - 10.52% area increase
 - 0.63" Average enlargement
 - 0.58" Median enlargement
 - 179 Well Count
- 9.875" Hole
 - 10.30" Hole
 - 4.24% diameter increase
 - 9.64% area increase
 - 0.42" Average enlargement
 - 0.46" Median enlargement
 - 11 Well Count

Caliper Hole Size (12.25")

Average Hole Size

- 12.25" Bit
 - 12.76" Hole
 - 4.14% diameter increase
 - 8.44% area increase
 - 0.51" Average enlargement
 - 0.52" Median enlargement
 - Brine

Modelo 10 Fed Com #501H



Whirling Wind 11 Fed Com #744H

Average Hole Size

- 9.875" Hole
 - 11.21" Hole
 - 13.54% diameter increase
 - 28.92% area increase
 - 1.33" Average enlargement
 - 1.30" Median enlargement
 - EnerLite

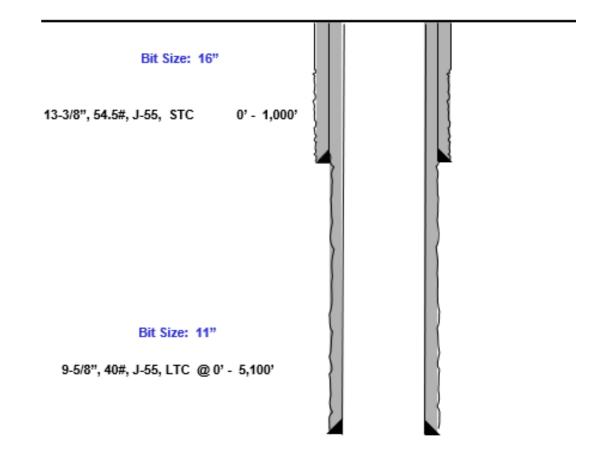
Design A

Proposed 11" Hole with 9.625" 40# J55/HCK55 LTC Casing

- 11" Bit + 0.52" Average hole enlargement = 11.52" Hole Size
 - 0.9475" Clearance to casing OD

$$=\frac{11.52 - 9.625}{2}$$

475" Clearance to


 0.4475" Clearance to coupling OD 11.52 - 10.625

$$1.52 - 10$$


= -

- Previous Shoe 13.375" 54.5# J55 STC
 - 0.995" Clearance to coupling OD (~1,200' overlap)

$$=\frac{12.615-10.625}{2}$$

Design B

.

Released to Imaging: 2/5/2025 3:30:39 PM

Casing Spec Sheets

PERFORMANCE DATA

API LTC		
Technical	Data	Sheet

9.625 in 40.00 lbs/ft

K55 HC

Tubular Parameters

Size	9.625	in	Minimum Yield	55	ksi
Nominal Weight	40.00	lbs/ft	Minimum Tensile	95	ksi
Grade	K55 HC		Yield Load	629	kips
PE Weight	38.94	lbs/ft	Tensile Load	1088	kips
Wall Thickness	0.395	in	Min. Internal Yield Pressure	3,950	psi
Nominal ID	8.835	in	Collapse Pressure	3600	psi
Drift Diameter	8.750	in		•	·
Nom. Pipe Body Area	11.454	in²			
	•				

Connection Parameters

Connection OD	10.625	in
Coupling Length	10.500	in
Threads Per Inch	8	tpi
Standoff Thread Turns	3.50	turns
Make-Up Loss	4.750	in
Min. Internal Yield Pressure	3,950	psi

Pipe Body and API Connections Performance Data

13.375	54.50/0.380	J55

New Search »

« Back to Previous List

USC 💽 Metric

10

PDF

6/8/2015 10:04:37 AM					
Mechanical Properties	Ptpe	BTC	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Pipe	BTC	LTC	STC	
Outside Diameter	13.375	14.375	-	14.375	in.
Wall Thickness	0.380	-	-	-	in.
Inside Diameter	12.615	12.615	-	12.615	in.
Standard Drift	12.459	12.459	-	12.459	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	54.50	-	-	-	lbs/ft
Plain End Weight	52.79	-	-	-	lbs/ft
Performance	Ptpe	BTC	LTC	STC	
Minimum Collapse Pressure	1,130	1,130	-	1,130	psi
Minimum Internal Yield Pressure	2,740	2,740	-	2,740	psi
Minimum Pipe Body Yield Strength	853.00	-	-	-	1000 lbs
Joint Strength	-	909	-	514	1000 lbs
Reference Length	-	11,125	-	6,290	ft
Make-Up Data	Ptpe	BTC	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque	-	-	-	3,860	fl-lbs
Maximum Make-Up Torque	-	-	-	6,430	ft-lbs

Casing Spec Sheets

Pipe Body and API Connections Performance Data

10.750 40.50/0.350 J55					PD
New Search »					« Back to Previous L
					USC 💽 Metr
/8/2015 10:14:05 AM					
Mechanical Properties	Ptpe	BTC	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-		psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	10.750	11.750	-	11.750	in.
Wall Thickness	0.350	-	-		in.
Inside Diameter	10.050	10.050	-	10.050	in.
Standard Drift	9.894	9.894	-	9.894	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	40.50	-	-		lbs/ft
Plain End Weight	38.91	-	-		lbs/ft
Performance	Ptpe	втс	LTC	STC	
Minimum Collapse Pressure	1,580	1,580	-	1,580	psi
Minimum Internal Yield Pressure	3,130	3,130	-	3,130	psi
Minimum Pipe Body Yield Strength	629.00	-	-		1000 lbs
Joint Strength	-	700	-	420	1000 lbs
Reference Length	-	11,522		6,915	ft
Make-Up Data	Pipe	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque	-	-	-	3,150	ft-lbs
Maximum Make-Up Torque	-	-	-	5,250	ft-lbs

				AF	1 301, 1	0th Ed. Co		Join Bata	Silee
O.D. (in) 8.625	WEIGHT (I Nominal: Plain End:	b/ft) 32.00 31.13	WALL (ir 0.352	1 I	ADE 55	* API DRIF 1 7.796	「 (in)	RBW 87.	
N	laterial Propert	ies (PE)			F	ipe Body I	Data (F	°E)	
	Pipe					Geom	etry		
Minimum Y	ield Strength:	55	ksi	Nomir				7.92 ir	
Maximum \	rield Strength:	80	ksi	Nomir	al Area	:		9.149 ir	n ²
Minimum T	ensile Strength:	75	ksi	*Spec	ial/Alt. D			7.875 ir	nch
	Coupling					Perform			
	ield Strength:		ksi		•	ld Strength	:	503 k	•
	rield Strength:		ksi		se Resi Vield Pre	stance:		2,530 p	
/linimum T	ensile Strength:	75	ksi		storical)			3,930 p	si
	API Connection Coupling OD: 9				AF	PI Connecti	on To	rque	
	STC Perform				:	STC Torqu	e (ft-lb	s)	
STC Intern	al Pressure:	3,930	psi	Min:	2,793	Opti:	3,724	Max:	4,65
STC Joint	Strength:	372	kips						
	LTC Perform	ance				LTC Torqu	e (ft-lb	s)	
TC Interna	al Pressure:	3,930	psi	Min:	3,130	Opti:	4,174	Max:	5,21
LTC Joint S	0		kips						
SC-BTC P	erformance - C	plg OD =	9.125"		1	BTC Torqu	e (ft-lb	s)	
BTC Intern	al Pressure:	3,930	psi	follo	w API gui	idelines regard	ding pos	itional mal	ke up
STC Joint	Strength:	503	kips						
	:	*Alt. Drift will	be used unles	ss API Drift	is specifie	d on order.			
	above API connect	ions do not		eds, VAM® ipe bodv ra		n connections	are ava	ailable up t	0
BTC Joint S	Strength:	503 *Alt. Drift will	kips be used unles suit your nee	ss API Drift eds, VAM®	w API gui is specifie 9 premiur	idelines regard d on order.	ling pos	itional mak	

eog

11

EOG BLANKET CASING DESIGN VARIANCE

EOG respectfully requests the drill plans in the attached document 'EOG Alternate Casing Designs – BLM APPROVED' be added to the COA's for this well. These designs have been approved by the BLM down to the TVDs listed below and will allow EOG to run alternate casing designs for this well if necessary.

The designs and associated details listed are the "worst case scenario" boundaries for design safety factors. Location and lithology have NOT been accounted for in these designs. The specific well details will be based on the APD/Sundry package and the information listed in the COA.

The mud program will not change from the original design for this well. Summary of the mud programs for both shallow and deep targets are listed at the end of this document. If the target is changing, a sundry will be filed to update the casing design and mud/cement programs.

Cement volumes listed in this document are for reference only. The cement volumes for the specific well will be adjusted to ensure cement tops meet BLM requirements as listed in the COA and to allow bradenhead cementing when applicable.

This blanket document only applies to wells with three string designs outside of Potash and Capitan Reef boundaries.

SI	nallow Desig	n Boundary (Conditions	5
	Deepest	Deepest	Max Inc	Max DLS
	MD (ft)	TVD (ft)	(deg)	(°/100usft)
Surface	2030	2030	0	0
Intermediate	7793	5650	40	8
Production	28578	12000	90	25

Shallow Design A

- - - (NOUM	171					
Hole	Interv	al MD	Interva	al TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC
6-3/4"	0	29,353	0	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS

4. CASING PROGRAM

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

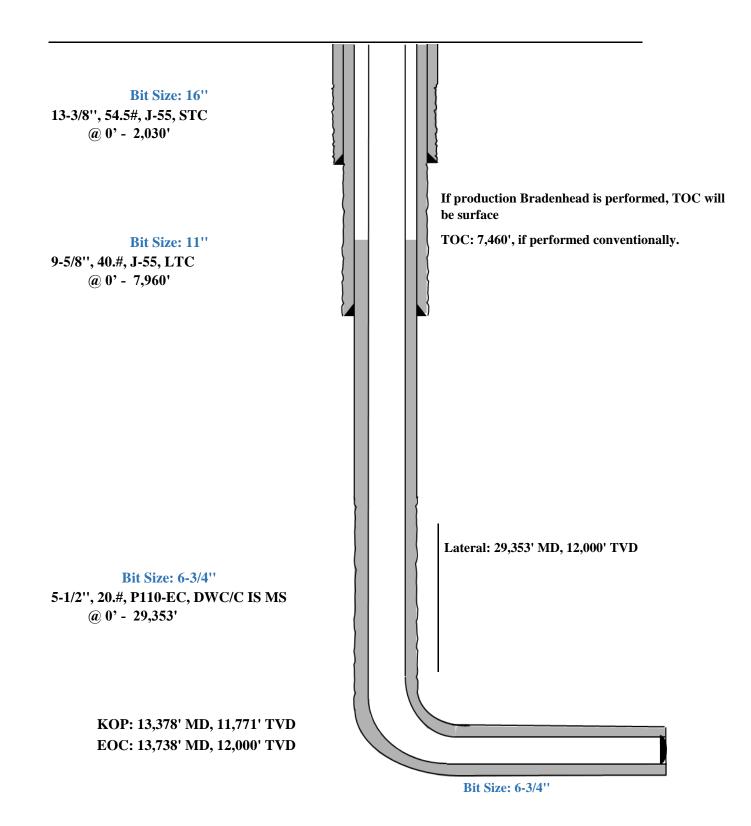
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidny Description
2,030' 13-3/8''	570	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' 9-5/8''	760	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	250	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' _{5-1/2''}	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	1480	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)

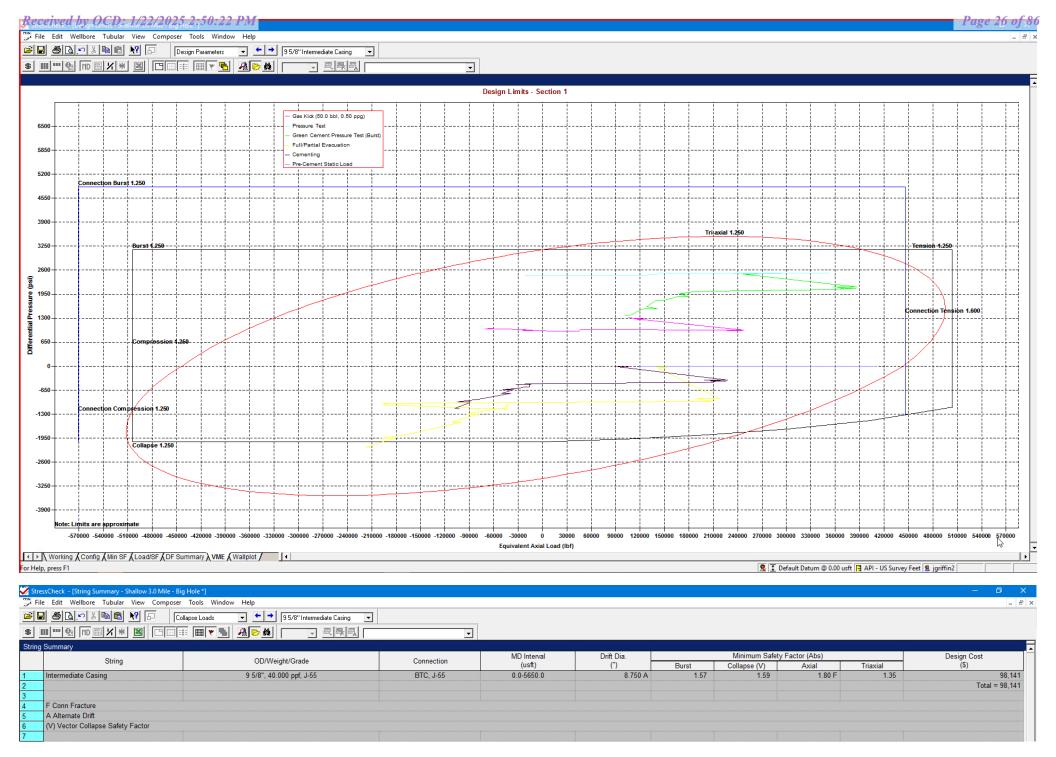

5. CEMENTING PROGRAM:

Shallow Design A

Proposed Wellbore

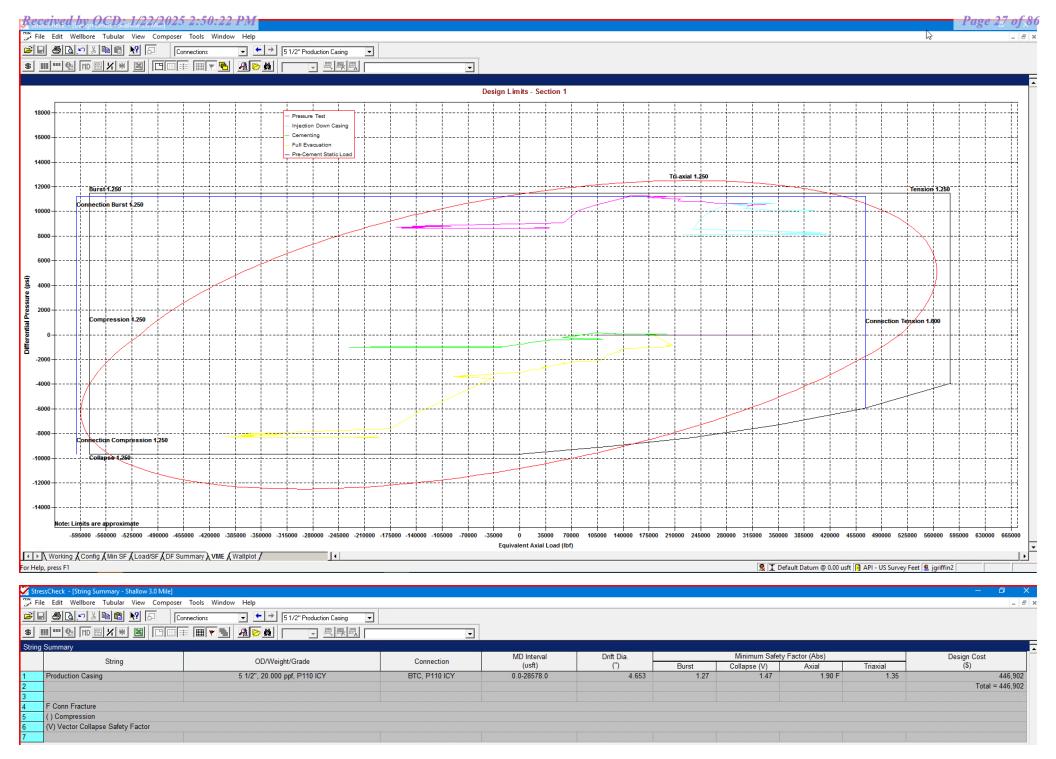
KB: 3558' GL: 3533'

▼ ← → 95/8" Intermediate Casing ▼


Depth (MD)		orce (lbf)	Equivalent	Bending Stress		Absolute S	afety Factor		Temperature	Pressur	e (psi)	Addt'l Pickup To	Buckled
(usft)	Apparent (w/Bending)	Actual (w/o Bending)	Axial Load (lbf)	at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	(°F)	Internal	External	Prevent Buck. (lbf)	Length (usft
0	252987	228954	253140	2098.2	1.69	1.58	N/A	2.82 F	70.00	2500.00	0.00	N/A	N/A
100	247735	223702	248466	2098.2	1.69	1.58	N/A	2.88 F	71.10	2543.63	43.63		
 100		223701	235716	986.2	1.71	1.58	N/A	3.04 F	71.10	2543.64	43.64		
1700	341565	139667	352253	17627.2	1.53	1.57	N/A	2.09 F	88.70	3241.64	741.64		
1700	312979	139666	323488	15131.5	1.58	1.57	N/A	2.28 F	88.70	3241.65	741.65		
1850	336881	132027	348440	17885.2	1.51	1.57	N/A	2.12 F	90.29	3305.05	805.05		
1850	318549	132027	329984	16284.8	1.54	1.57	N/A	2.24 F	90.29	3305.06	805.06		
1950	320468	127243	332475	16869.9	1.52	1.57	N/A	2.23 F	91.30	3344.87	844.87		
1950	312802	127243	324756	16200.7	1.53	1.57	N/A	2.28 F	91.30	3344.87	844.87		
2050	307858	122773	320295	16159.3	1.52	1.57	N/A	2.32 F	92.23	3381.89	881.89		
2050	303560	122772	315965	15784.1	1.53	1.57	N/A	2.35 F	92.23	3381.89	881.89		
2300	151294	112633	163658	3375.4	1.71	1.57	N/A	4.72 F	94.35	3466.13	966.13		
2300	132741	112633	144956	1755.6	1.72	1.57	N/A	5.38 F	94.35	3466.14	966.14		
2370	129966	109858	142452	1755.6	1.72	1.57	N/A	5.49 F	94.94	3489.28	989.28		
2370	127909	107800	140922	1755.6	1.75	1.60	N/A	5.58 F	94.94	3489.29	1036.40		
2700	105515	94232	119785	985.1	1.75	1.60	N/A	6.77 F	97.73	3599.97	1152.35		
2700	111680	94231	126006	1523.4	1.75	1.60	N/A	6.39 F	97.73	3599.97	1152.35		
3100	110766	77783	126839	2879.6	1.71	1.60	N/A	6.44 F	101.11	3734.23	1293.00		
3100	97392	77783	113331	1712.1	1.73	1.60	N/A	7.33 F	101.11	3734.23	1293.01		
3700	71565	53303	89806	1594.4	1.70	1.61	N/A	9.97 F	106.15	3934.24	1502.54		
3700	60887	53302	79004	662.3	1.71	1.61	N/A	11.72 F	106.16	3934.25	1502.55		
4650	34671	14219	56495	1785.6	1.64	1.61	N/A	20.59 F	114.20	4253.37	1836.86		
4900	44595	4828	67626	3472.0	1.59	1.61	N/A	16.01 F	116.32	4337.37	1924.87		
4900	28975	4828	51775	2108.2	1.62	1.61	N/A	24.64 F	116.32	4337.38	1924.87		
5029	22103	34	45340	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.40	1969.94		
5029	22102	33	45339	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.41	1969.95		
5600	-45329	-21341	-20805	2094.3	1.57	1.62	N/A	(13.67)	122.23	4572.11	2170.78		
5650	-40465	-23210	-15657	1506.5	1.58	1.62	N/A	(15.31)	122.66	4588.87	2188.34		
										;			
F	Conn Fracture												
()	Compression												
	Vector Collapse Safety	y Factor											
· · · · · · · · · · · · · · · · · · ·													

✓ ► Working Config Min SF Load/SF DF Summary VME Wallplot For Help, press F1

🤶 🛨 Default Datum @ 0.00 usft 🖪 API - US Survey Feet 😫 jgriffin2


9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi

*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 2/5/2025 3:30:39 PM

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 2/5/2025 3:30:39 PM

Page 6 of 31

Seog resources

Shallow Design B

		nooni						
Hole	Interv	al MD	Interva	l TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13-1/2"	0	2,161	0	2,030	10-3/4"	40.5#	J-55	STC
9-7/8"	0	7,951	0	5,650	8-5/8"	32#	J-55	BTC-SC
6-3/4"	0	29,353	0	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS

4. CASING PROGRAM

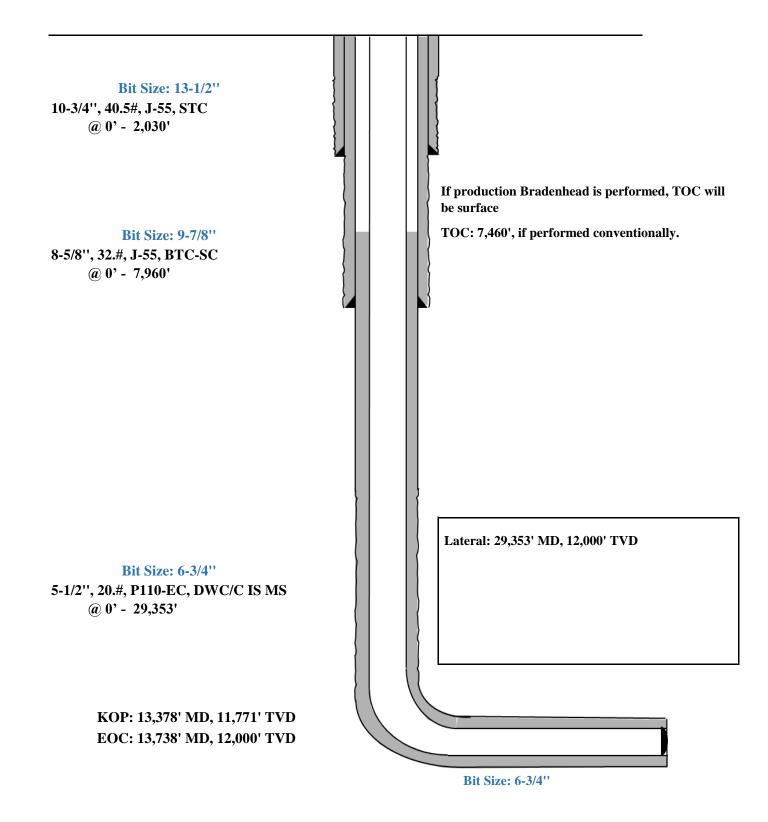
Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.


		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidny Description
2,030' 10-3/4''	530	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
	140	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' 8-5/8''	470	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	210	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' _{5-1/2''}	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	1480	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)

5. CEMENTING PROGRAM:

Shallow Casing Design B

Proposed Wellbore KB: 3558'

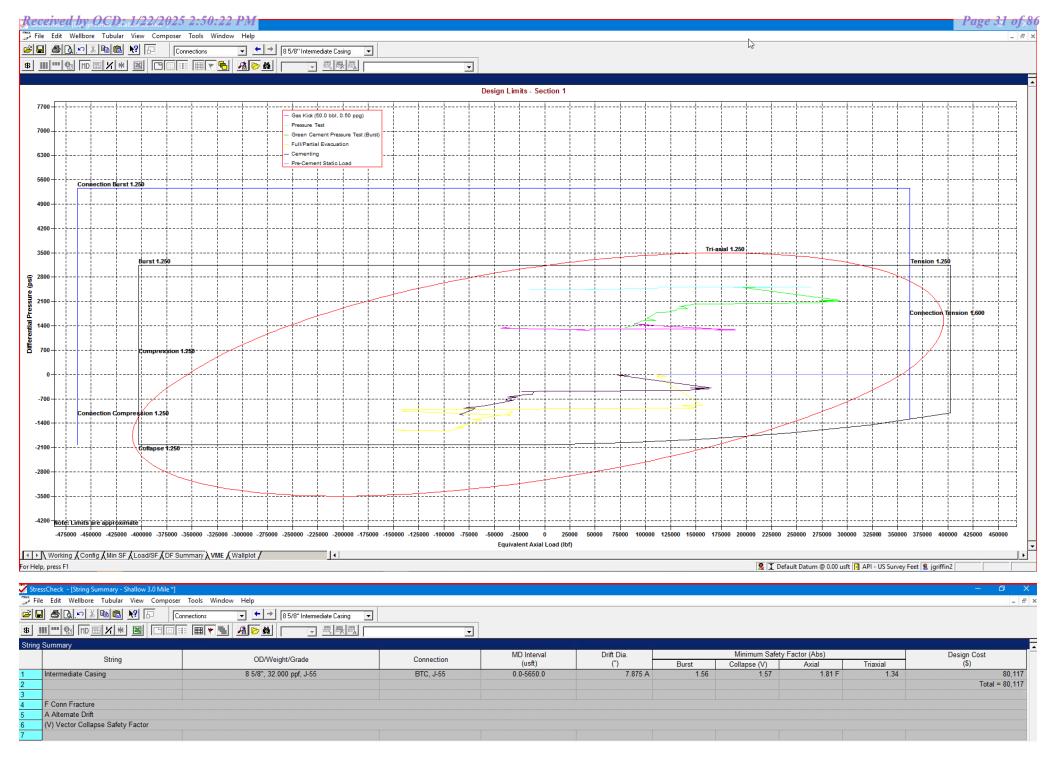
GL: 3533'

StressCheck - [Triaxial Results - Shallow 3.0 Mile *]
File Edit Wellbore Tubular View Composer Tools Window Help

Page 30 of 86

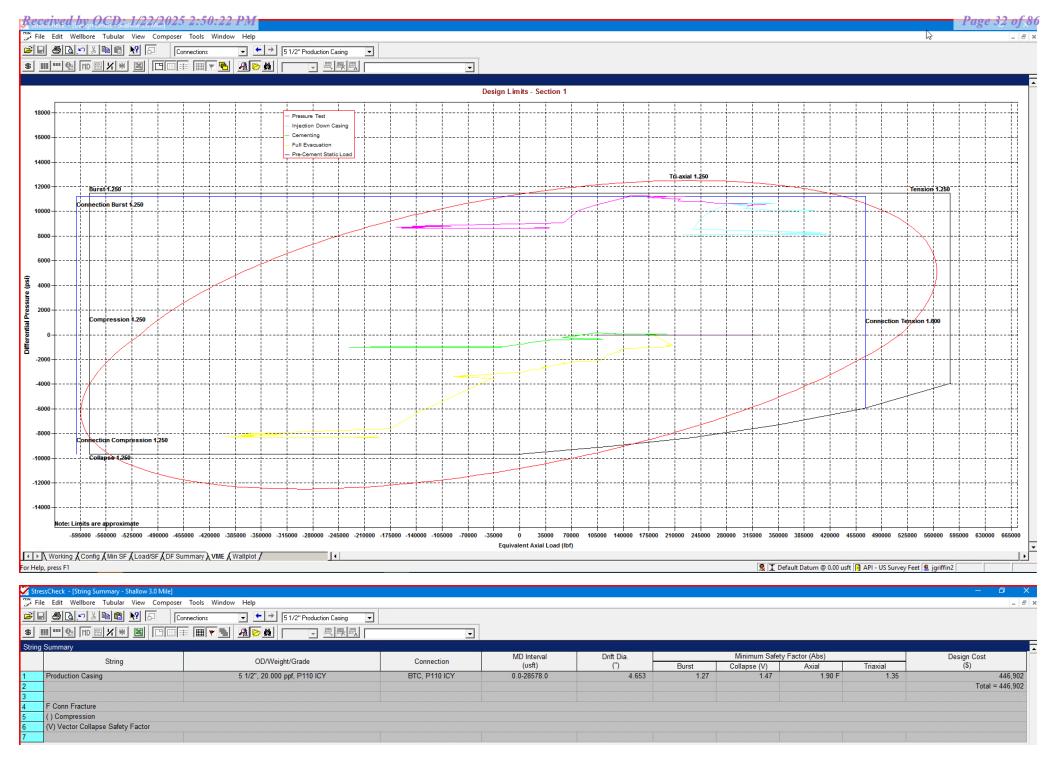
_ 8 >

Bults	Axial Fo	orce (lbf)	Envirolant	Bending Stress		Absolute S	afety Factor		Terreter	Pressur	e (psi)	Add#1 Distance To	Buckled
Depth (MD) (usft)	Apparent (w/Bending)	Actual (w/o Bending)	Equivalent Axial Load (lbf)	at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	Temperature (°F)	Internal	External	Addt'l Pickup To Prevent Buck. (lbf)	Length (usft
 0	200426	183224	200546	1880.2	1.68	1.57	N/A	2.89 F	70.00	2500.00	0.00	N/A	N/A
 100	196229	179028	196812	1880.2	1.69	1.57	N/A	2.95 F	71.10	2543.63	43.63		
100	187111	179027	187686	883.7	1.70	1.57	N/A	3.10 F	71.10	2543.64	43.64		
1700	256401	111891	264835	15795.8	1.56	1.56	N/A	2.26 F	88.70	3241.64	741.64		
1700	235940	111891	244247	13559.4	1.60	1.56	N/A	2.45 F	88.70	3241.65	741.65		
1850	252413	105788	261533	16027.0	1.54	1.56	N/A	2.29 F	90.29	3305.05	805.05		
1850	239292	105787	248323	14592.9	1.56	1.56	N/A	2.42 F	90.29	3305.06	805.06		
1950	240267	101966	249748	15117.2	1.54	1.56	N/A	2.41 F	91.30	3344.87	844.87		
1950	234781	101965	244223	14517.5	1.56	1.56	N/A	2.47 F	91.30	3344.87	844.87		
2050	230871	98395	240694	14480.4	1.55	1.56	N/A	2.51 F	92.23	3381.89	881.89		
2050	227794	98394	237594	14144.2	1.55	1.56	N/A	2.54 F	92.23	3381.89	881.89		
2300	117966	90294	127818	3024.7	1.70	1.56	N/A	4.91 F	94.35	3466.13	966.13		
2300	104686	90293	114432	1573.2	1.71	1.56	N/A	5.53 F	94.35	3466.14	966.14		
2370	102469	88077	112431	1573.2	1.71	1.56	N/A	5.65 F	94.94	3489.28	989.28		
2370	100817	86424	111200	1573.2	1.75	1.59	N/A	5.75 F	94.94	3489.29	1036.40		
2700	83660	75583	95052	882.8	1.74	1.59	N/A	6.92 F	97.73	3599.97	1152.35		
2700	88072	75583	99504	1365.1	1.74	1.59	N/A	6.58 F	97.73	3599.97	1152.35		
3100	86049	62442	98863	2580.4	1.71	1.59	N/A	6.73 F	101.11	3734.23	1293.00		
3100	76477	62441	89195	1534.2	1.72	1.59	N/A	7.57 F	101.11	3734.23	1293.01		
3700	55953	42882	70509	1428.8	1.69	1.60	N/A	10.35 F	106.15	3934.24	1502.54		
3700	48311	42881	62778	593.5	1.71	1.60	N/A	11.99 F	106.16	3934.25	1502.55		
4000	41458	33043	56865	919.9	1.69	1.60	N/A	13.97 F	108.69	4034.82	1607.91		
4650	26293	11655	43706	1600.1	1.63	1.60	N/A	22.03 F	114.20	4253.37	1836.86		
4900	32619	4156	50970	3111.2	1.59	1.60	N/A	17.76 F	116.32	4337.37	1924.87		
4900	21439	4155	39625	1889.2	1.61	1.60	N/A	27.02 F	116.32	4337.38	1924.87		
5039	15822	26	34389	1726.6	1.61	1.61	N/A	36.61 F	117.49	4383.77	1973.48		
5039	15822	26	34388	1726.6	1.61	1.61	N/A	36.61 F	117.49	4383.78	1973.49		
5600	-33912	-16743	-14286	1876.7	1.57	1.61	N/A	(14.60)	122.23	4572.11	2170.78		
5650	-30585	-18235	-10742	1350.0	1.58	1.61	N/A	(16.18)	122.66	4588.87	2188.34		
FC	Conn Fracture												
	Compression												
(V) V	/ector Collapse Safety	Factor											


-

For Help, press F1

🕱 I Default Datum @ 0.00 usft 🖪 API - US Survey Feet 😫 jgriffin2


8-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi

*Modelling done with 8-5/8" 32# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 2/5/2025 3:30:39 PM

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 2/5/2025 3:30:39 PM

Page 11 of 31

Shallow Design C

		ROOM	111					
Hole	Interv	al MD	Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC
7-7/8"	0	29,353	0	12,000	6"	24.5#	P110-EC	VAM Sprint-SF

4. CASING PROGRAM

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

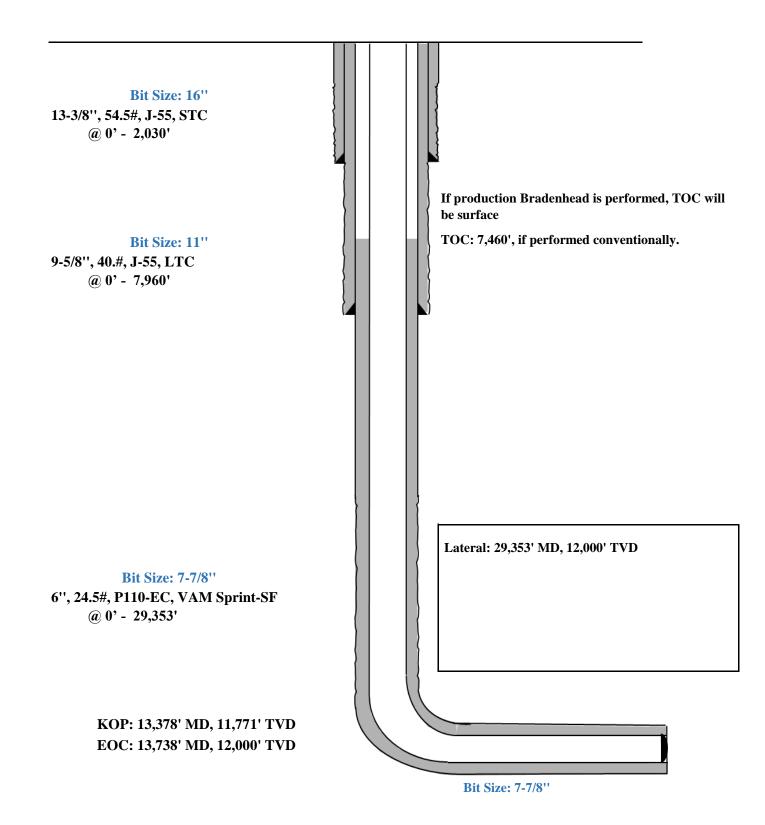
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" casing in the 7-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 7-7/8" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	
2,030'	570	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-
13-3/8''				Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2%
				Sodium Metasilicate (TOC @ 1830')
8,050'	760	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC
9-5/8''				@ Surface)
	250	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353'	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6%
6''				Bentonite Gel (TOC @ surface)
	2500	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5%
				NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of
				Brushy)


5. CEMENTING PROGRAM:

Shallow Design C

Proposed Wellbore

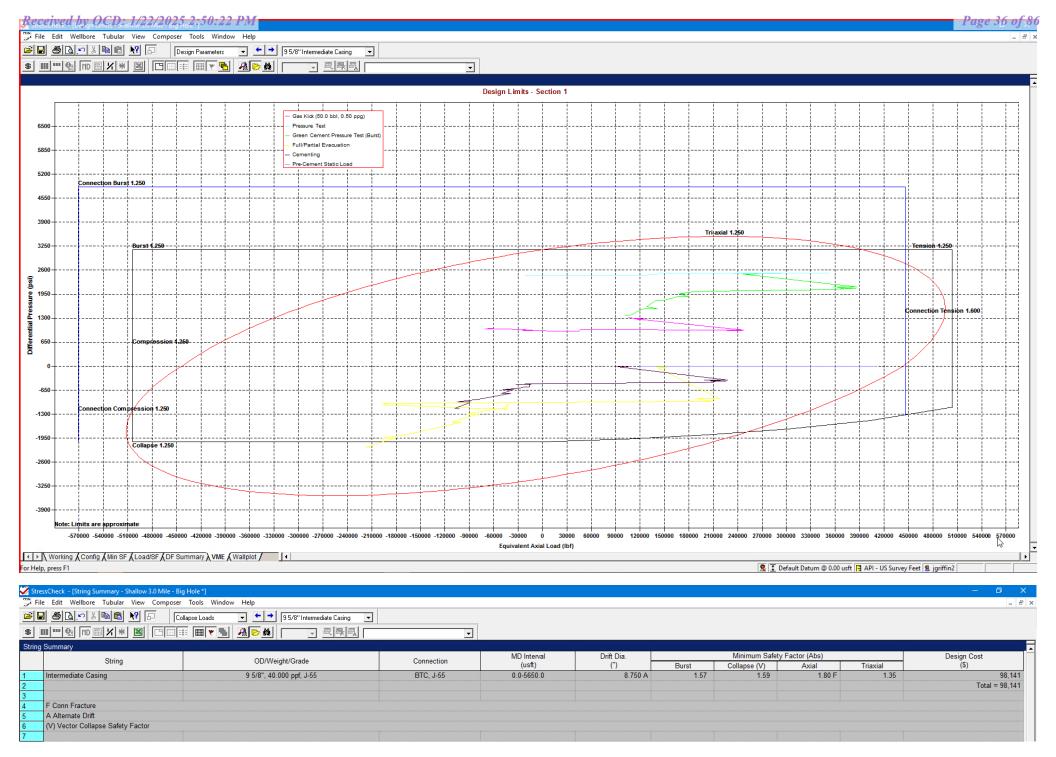
KB: 3558' GL: 3533'

F 6 1 1 1 1

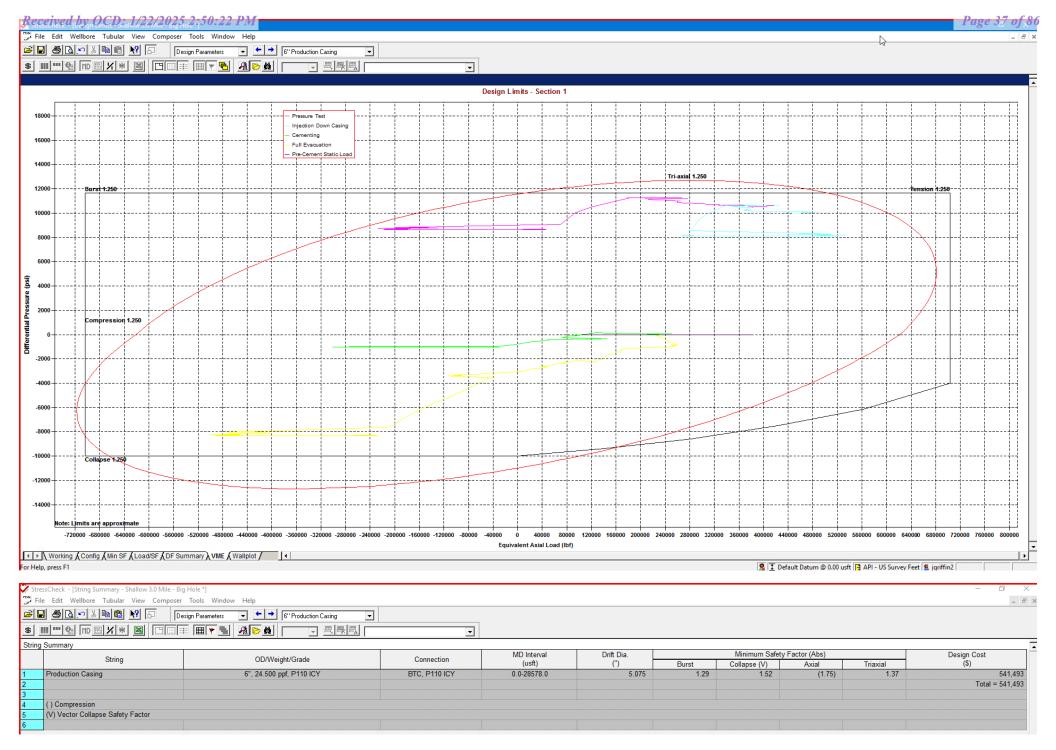
▼ ← → 95/8" Intermediate Casing ▼

-		Axial F	orce (lbf)				Absolute S	afety Factor		_	Pressur	e (psi)		
	oth (MD) (usft)	Apparent (w/Bending)	Actual (w/o Bending)	Equivalent Axial Load (lbf)	Bending Stress at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	Temperature (°F)	Internal	External	Addt'l Pickup To Prevent Buck. (lbf)	Buckled Length (usft
	0	252987	228954	253140	2098.2	1.69	1.58	N/A	2.82 F	70.00	2500.00	0.00	N/A	N/A
	100	247735	223702	248466	2098.2	1.69	1.58	N/A	2.88 F	71.10	2543.63	43.63		
	100	234996	223701	235716	986.2	1.71	1.58	N/A	3.04 F	71.10	2543.64	43.64		
	1700	341565	139667	352253	17627.2	1.53	1.57	N/A	2.09 F	88.70	3241.64	741.64		
	1700	312979	139666	323488	15131.5	1.58	1.57	N/A	2.28 F	88.70	3241.65	741.65		
	1850	336881	132027	348440	17885.2	1.51	1.57	N/A	2.12 F	90.29	3305.05	805.05		
	1850	318549	132027	329984	16284.8	1.54	1.57	N/A	2.24 F	90.29	3305.06	805.06		
	1950	320468	127243	332475	16869.9	1.52	1.57	N/A	2.23 F	91.30	3344.87	844.87		
	1950	312802	127243	324756	16200.7	1.53	1.57	N/A	2.28 F	91.30	3344.87	844.87		
	2050	307858	122773	320295	16159.3	1.52	1.57	N/A	2.32 F	92.23	3381.89	881.89		
	2050	303560	122772	315965	15784.1	1.53	1.57	N/A	2.35 F	92.23	3381.89	881.89		
	2300	151294	112633	163658	3375.4	1.71	1.57	N/A	4.72 F	94.35	3466.13	966.13		
	2300	132741	112633	144956	1755.6	1.72	1.57	N/A	5.38 F	94.35	3466.14	966.14		
	2370	129966	109858	142452	1755.6	1.72	1.57	N/A	5.49 F	94.94	3489.28	989.28		
	2370	127909	107800	140922	1755.6	1.75	1.60	N/A	5.58 F	94.94	3489.29	1036.40		
	2700	105515	94232	119785	985.1	1.75	1.60	N/A	6.77 F	97.73	3599.97	1152.35		
	2700	111680	94231	126006	1523.4	1.75	1.60	N/A	6.39 F	97.73	3599.97	1152.35		
	3100	110766	77783	126839	2879.6	1.71	1.60	N/A	6.44 F	101.11	3734.23	1293.00		
	3100	97392	77783	113331	1712.1	1.73	1.60	N/A	7.33 F	101.11	3734.23	1293.01		
	3700	71565	53303	89806	1594.4	1.70	1.61	N/A	9.97 F	106.15	3934.24	1502.54		
	3700	60887	53302	79004	662.3	1.71	1.61	N/A	11.72 F	106.16	3934.25	1502.55		
	4650	34671	14219	56495	1785.6	1.64	1.61	N/A	20.59 F	114.20	4253.37	1836.86		
	4900	44595	4828	67626	3472.0	1.59	1.61	N/A	16.01 F	116.32	4337.37	1924.87		
	4900	28975	4828	51775	2108.2	1.62	1.61	N/A	24.64 F	116.32	4337.38	1924.87		
	5029	22103	34	45340	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.40	1969.94		
	5029	22102	33	45339	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.41	1969.95		
	5600	-45329	-21341	-20805	2094.3	1.57	1.62	N/A	(13.67)	122.23	4572.11	2170.78		
	5650	-40465	-23210	-15657	1506.5	1.58	1.62	N/A	(15.31)	122.66	4588.87	2188.34		
	F	Conn Fracture												
	()	Compression												
	(V)	Vector Collapse Safety	y Factor											

•


✓ ► Working Config Min SF Load/SF DF Summary WE Wallplot For Help, press F1

🕵 I Default Datum @ 0.00 usft 🖪 API - US Survey Feet 🙎 jgriffin2


9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi

•

*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

*Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 2/5/2025 3:30:39 PM

Shallow Design D

 C		noom						
Hole	Interv	al MD	Interva	l TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC
7-7/8"	0	13,278	0	11,671	6"	22.3#	P110-EC	DWC/C IS
6-3/4"	13,278	29,353	11,671	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS

4. CASING PROGRAM

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

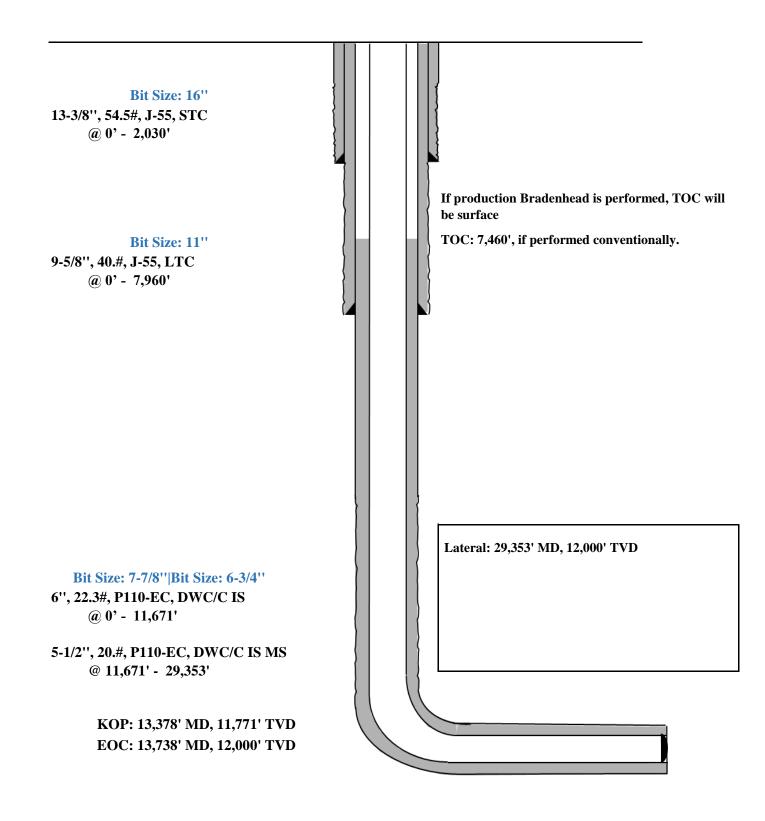
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized in the cement slurry for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidiny Description
2,030' 13-3/8''	570	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' 9-5/8''	760	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	250	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' _{6''}	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	2500	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)

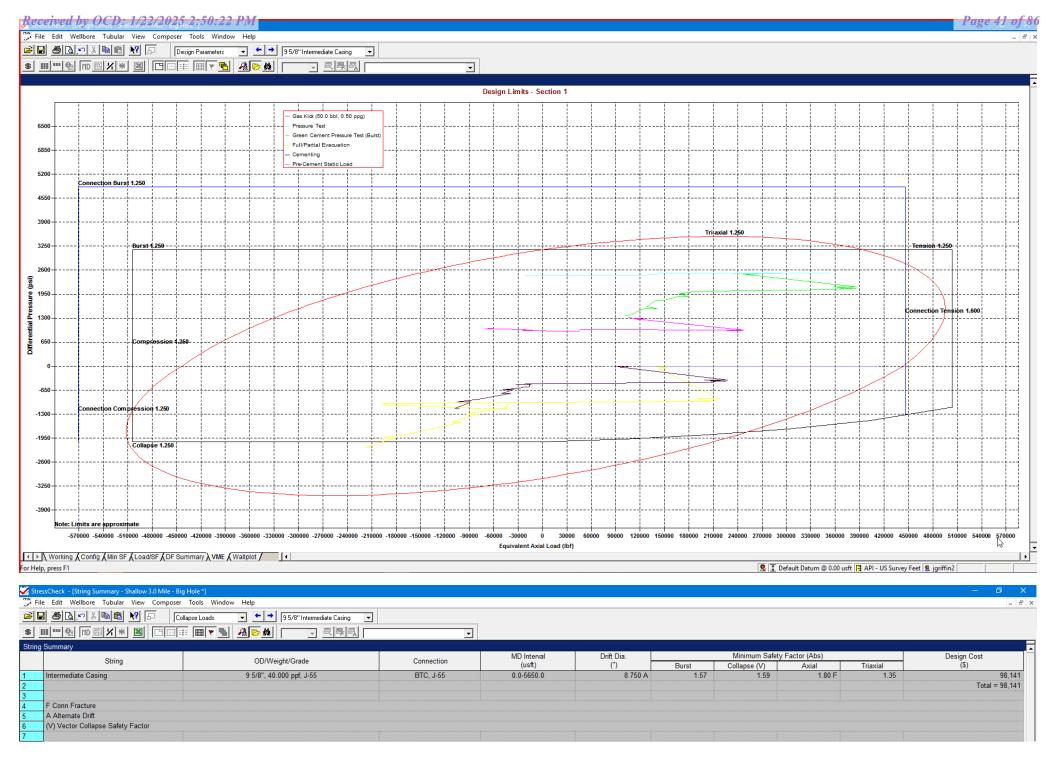

5. CEMENTING PROGRAM:

Seog resources

Shallow Design D

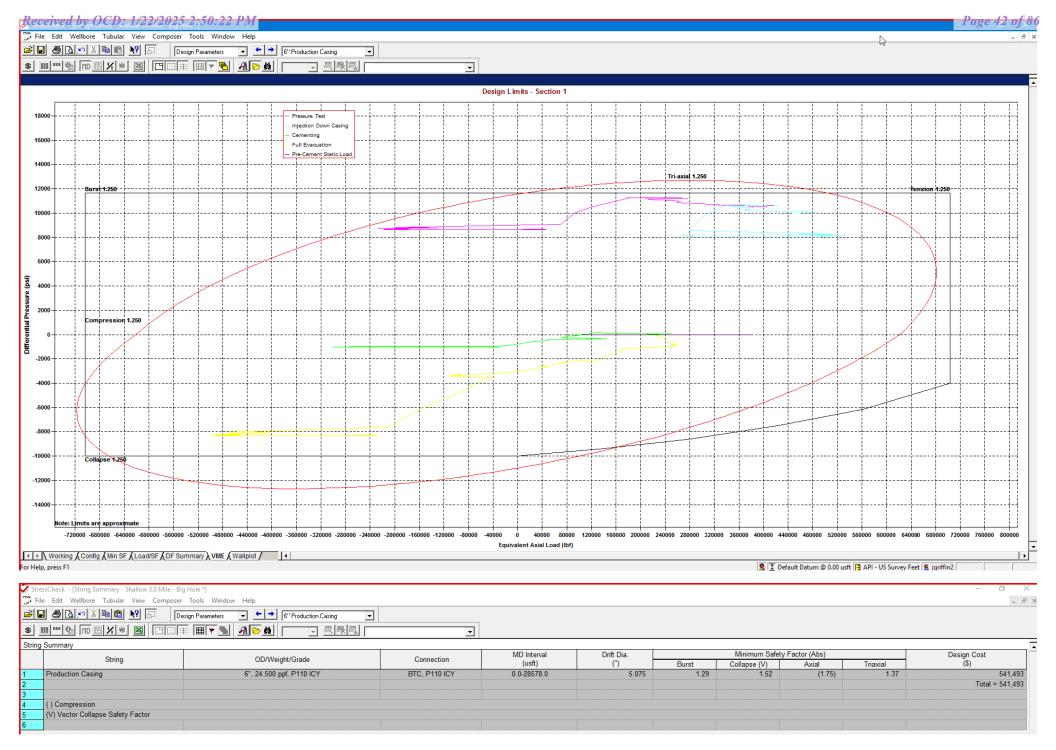
Proposed Wellbore

KB: 3558' GL: 3533'

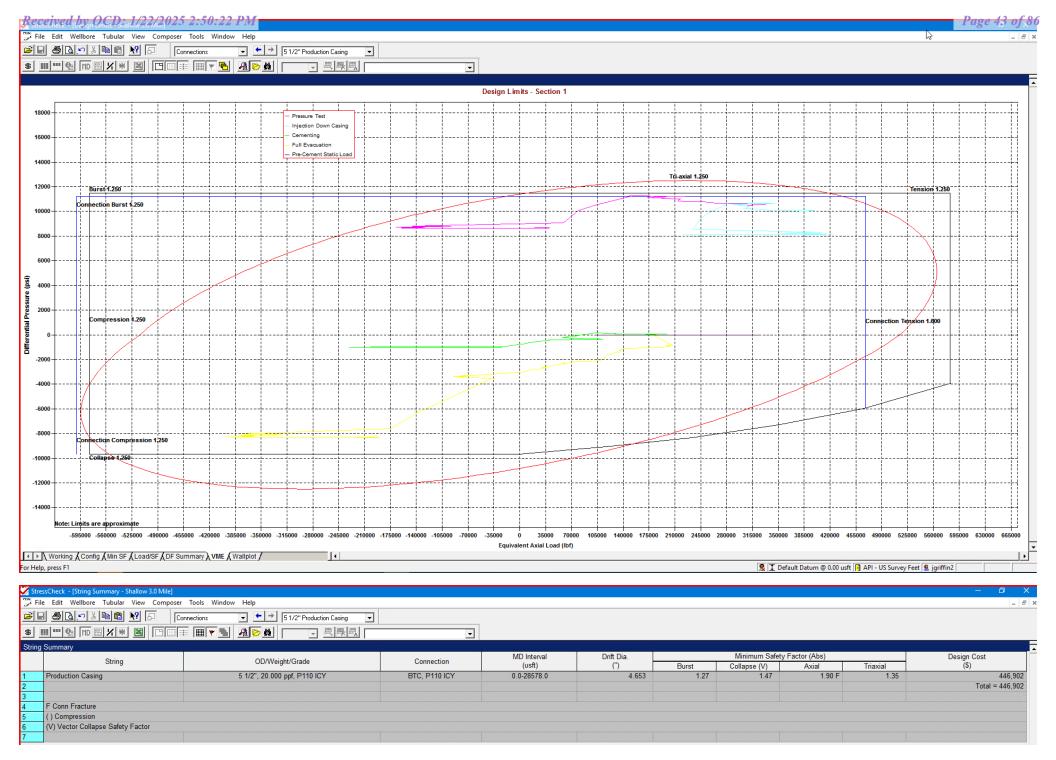

File Edit Wellbore Tubular View Composer Tools Window Help

Page 40 of 86 - 8 >

Depth (MD)		Force (lbf)	Equivalent	Bending Stress		Absolute S	afety Factor		Temperature	Pressur	e (psi)	Addt'l Pickup To	Buckled
(usft)	Apparent (w/Bending)	Actual (w/o Bending)	Axial Load (lbf)	at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	(°F)	Internal	External	Prevent Buck. (lbf)	Length (usf
	0 252987	228954	253140	2098.2	1.69	1.58	N/A	2.82 F	70.00	2500.00	0.00	N/A	N/A
	00 247735	223702	248466	2098.2	1.69	1.58	N/A	2.88 F	71.10	2543.63	43.63		
	00 234996	223701	235716	986.2	1.71	1.58	N/A	3.04 F	71.10	2543.64	43.64		
	00 341565	139667	352253	17627.2	1.53	1.57	N/A	2.09 F	88.70	3241.64	741.64		
	00 312979	139666	323488	15131.5	1.58	1.57	N/A	2.28 F	88.70	3241.65	741.65		
	336881	132027	348440	17885.2	1.51	1.57	N/A	2.12 F	90.29	3305.05	805.05		
	318549	132027	329984	16284.8	1.54	1.57	N/A	2.24 F	90.29	3305.06	805.06		
	50 320468	127243	332475	16869.9	1.52	1.57	N/A	2.23 F	91.30	3344.87	844.87		
	50 312802	127243	324756	16200.7	1.53	1.57	N/A	2.28 F	91.30	3344.87	844.87		
	50 307858	122773	320295	16159.3	1.52	1.57	N/A	2.32 F	92.23	3381.89	881.89		
	303560	122772	315965	15784.1	1.53	1.57	N/A	2.35 F	92.23	3381.89	881.89		
	151294	112633	163658	3375.4	1.71	1.57	N/A	4.72 F	94.35	3466.13	966.13		
	132741	112633	144956	1755.6	1.72	1.57	N/A	5.38 F	94.35	3466.14	966.14		
	129966	109858	142452	1755.6	1.72	1.57	N/A	5.49 F	94.94	3489.28	989.28		
	127909	107800	140922	1755.6	1.75	1.60	N/A	5.58 F	94.94	3489.29	1036.40		
	00 105515	94232	119785	985.1	1.75	1.60	N/A	6.77 F	97.73	3599.97	1152.35		
	00 111680	94231	126006	1523.4	1.75	1.60	N/A	6.39 F	97.73	3599.97	1152.35		
	00 110766	77783	126839	2879.6	1.71	1.60	N/A	6.44 F	101.11	3734.23	1293.00		
	00 97392 00 71565	77783	113331	1712.1 1594.4	1.73	1.60	N/A	7.33 F 9.97 F	101.11 106.15	3734.23	1293.01		
		53303	89806		1.70	1.61	N/A			3934.24	1502.54		
	700 60887 550 34671	53302	79004 56495	662.3	1.71 1.64	1.61	N/A	11.72 F	106.16	3934.25 4253.37	1502.55 1836.86		
	100 34671	14219 4828	67626	1785.6 3472.0	1.64	1.61 1.61	N/A N/A	20.59 F 16.01 F	114.20 116.32	4337.37	1924.87		
	00 44595	4828	51775	2108.2	1.62	1.61	N/A	24.64 F	116.32	4337.38	1924.87		
	20975	4020	45340	1926.8	1.61	1.61	N/A	32.30 F	110.32	4380.40	1924.07		
	22103	33	45339	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.40	1969.95		
	600 -45329	-21341	-20805	2094.3	1.57	1.62	N/A	(13.67)	122.23	4572.11	2170.78		
	i50 -40465	-23210	-15657	1506.5	1.57	1.62	N/A	(15.31)	122.25	4572.11	2188.34		
5		23210	10001	1000.0	1.50	1.02		(10.01)	122.00	4300.07	2100.04		
	F Conn Fracture												
	() Compression (V) Vector Collapse Safe	tv Factor											


9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi


*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 2/5/2025 3:30:39 PM

*Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 2/5/2025 3:30:39 PM

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 2/5/2025 3:30:39 PM

Page 22 of 31

1

CASING PROGRAM

Seog resources

Shallow Casing Design E

<u>1.</u> C	ASINGI		1					
Hole	Interv	al MD	Interva	l TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13"	0	2,025	0	2,025	10-3/4"	40.5#	J-55	STC
9-7/8"	0	7,793	0	5,645	8-5/8"	32#	J-55	BTC-SC
7-7/8"	0	12,626	0	10,896	6"	24.5#	P110-EC	VAM Sprint-TC
6-3/4"	12,626	28,578	10,896	11,225	5-1/2"	20#	P110-EC	VAM Sprint SF

**For highlighted rows above, variance is requested to run entire string of either 6" or 5-1/2" casing string above due to availablility.

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

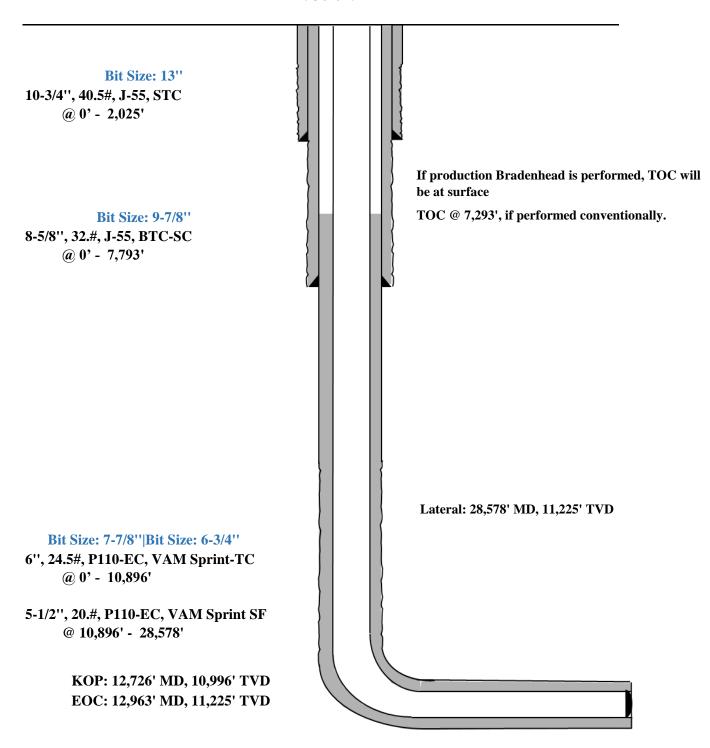
Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized in the cement slurry for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

Depth	No. Sacks	Wt.	Yld Ft3/sk	Slurry Description
2,030' 10-3/4"	450	ppg 13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
	120	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
7,890' 8-5/8"	460	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	210	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6234')
28,578' _{6"}	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	2410	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ 8140')


2. CEMENTING PROGRAM:

Seog resources

Shallow Casing Design E

GL: 3533'

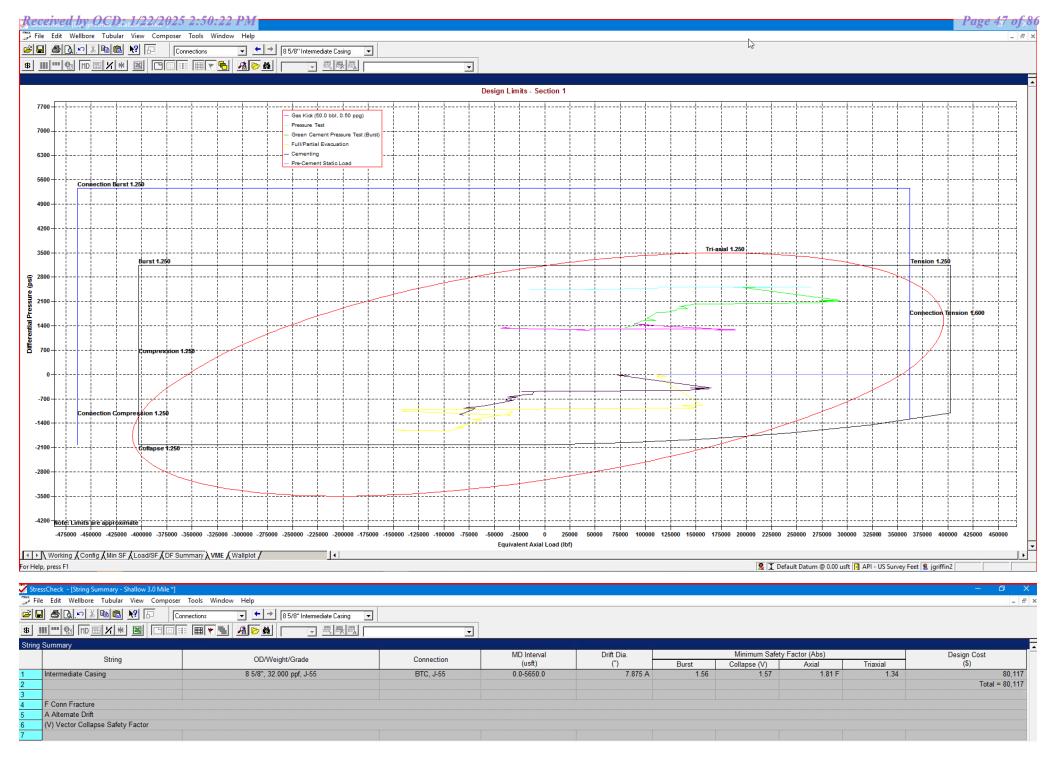
API: 30-025-****

StressCheck - [Triaxial Results - Shallow 3.0 Mile *]
File Edit Wellbore Tubular View Composer Tools Window Help

Page 46 of 86

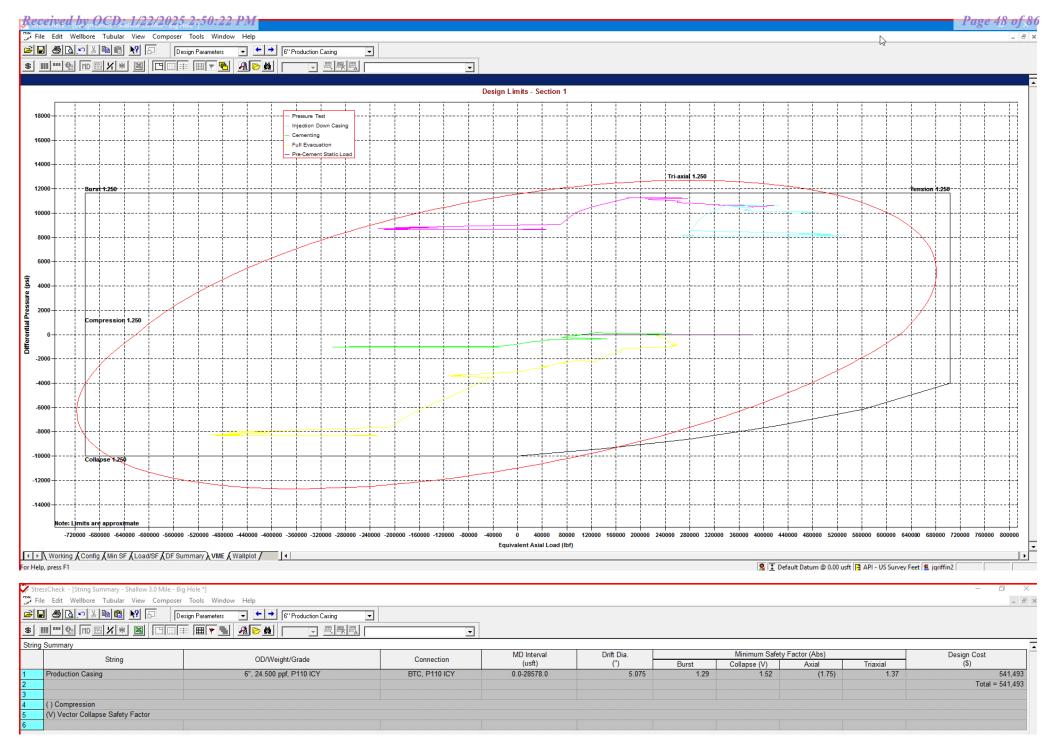
_ 8 >

Apparent (w/Bending) 200426 196229 187111 2256401 225940 2252413 239292 240267 233781 230871 227794 117966 104686 102469 100817 83660 88072 88049 76477	Actual (w/o Bending) 183224 179027 111891 111891 105788 105787 101966 98395 98394 90294 90293 88077 86424 75583	Equivalent Axial Load (lbf) 200546 196812 187686 264835 244247 261533 2448223 249748 2448223 240694 237594 127818 114432 112431 111202	Bending Stress at OD (psi) 1880.2 1880.2 883.7 15795.8 13559.4 16027.0 14592.9 15117.2 14517.5 14480.4 14144.2 3024.7 1573.2 1573.2	Triaxial 1.68 1.69 1.70 1.56 1.56 1.54 1.56 1.55 1.55 1.55 1.70 1.71 1.71	Burst 1.57 1.57 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56	Collapse (V) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Axial 2.89 F 2.95 F 3.10 F 2.26 F 2.24 F 2.29 F 2.42 F 2.41 F 2.41 F 2.51 F 2.54 F	Temperature (°F) 70.00 71.10 71.10 88.70 88.70 90.29 90.29 90.29 91.30 91.30 91.30 92.23 92.23	Internal 2500.00 2543.63 2543.64 3241.64 3241.65 3305.05 3305.06 3305.06 3344.87 3344.87 3344.87 3381.89	External 0.00 43.63 43.64 741.64 741.65 805.05 805.05 844.87 844.87 881.89	Addt'l Pickup To Prevent Buck. (lbf) N/A	Buckled Length (usft) N/A
196229 187111 266401 235940 252413 239292 240267 234781 239794 102669 104686 102469 100817 83660 88072 86049 76477	179028 179027 111891 111891 105788 105787 101966 98395 98394 90294 90293 88077 86424 7583 75683	196812 187686 264835 244247 261533 248323 249748 244223 244624 237594 127818 114432 112431 11200	1880.2 883.7 15795.8 13559.4 16027.0 14592.9 15117.2 14517.5 14480.4 14144.2 3024.7 1573.2	1.69 1.70 1.56 1.54 1.54 1.54 1.55 1.55 1.55 1.70 1.71	1.57 1.57 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56	N/A N/A N/A N/A N/A N/A N/A N/A N/A	2.95 F 3.10 F 2.26 F 2.45 F 2.29 F 2.42 F 2.41 F 2.41 F 2.51 F 2.51 F	71.10 71.10 88.70 90.29 90.29 91.30 91.30 92.23	2543.63 2543.64 3241.64 3305.05 3305.06 3344.87 3344.87 3381.89	43.63 43.64 741.64 741.65 805.05 805.06 844.87 844.87 881.89	N/A	N/A
187111 256401 235940 252413 239292 240267 234781 230871 227794 117966 104686 102669 100817 83660 88072 86049	179027 111891 111891 105788 105787 101966 101965 98396 90294 90293 88077 86424 75583	187686 264835 244247 261533 248323 249748 244924 240594 237594 127818 114432 112241 11220	883.7 15795.8 13559.4 16027.0 14592.9 15117.2 14517.5 14480.4 14144.2 3024.7 1573.2	1.70 1.56 1.60 1.54 1.56 1.54 1.56 1.55 1.55 1.70 1.71	1.57 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56	N/A N/A N/A N/A N/A N/A N/A N/A	3.10 F 2.26 F 2.45 F 2.42 F 2.42 F 2.41 F 2.47 F 2.51 F 2.54 F	71.10 88.70 90.29 90.29 91.30 91.30 91.30 92.23	2543.64 3241.65 3305.05 3305.06 3344.87 3344.87 3381.89	43.64 741.64 741.65 805.05 805.06 844.87 844.87 844.87 881.89		
256401 235940 252413 239292 240267 234781 230871 227794 117966 104686 102469 102469 100817 83660 88072 86049	111891 111891 105788 105787 101966 98395 98394 90294 90293 88077 86424 75583	264835 244247 261533 248323 249748 244223 240694 237594 127818 114432 1127818 114231	15795.8 13559.4 16027.0 14592.9 15117.2 14517.5 14480.4 14144.2 3024.7 1573.2	1.56 1.60 1.54 1.56 1.54 1.56 1.55 1.55 1.55 1.70 1.71	1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56	N/A N/A N/A N/A N/A N/A N/A	2.26 F 2.45 F 2.29 F 2.42 F 2.41 F 2.47 F 2.51 F 2.54 F	88.70 88.70 90.29 90.29 91.30 91.30 92.23	3241.64 3241.65 3305.05 3305.06 3344.87 3344.87 3344.87 3381.89	741.64 741.65 805.05 805.06 844.87 844.87 844.87 881.89		
235940 252413 239292 240267 234781 230871 227794 117966 104686 102469 104686 102469 100817 83660 88072 86049	111891 105788 105787 101966 98395 98394 90294 90293 88077 86424 75683 75683	244247 261533 248323 249748 244223 240694 237594 127818 114432 112431 11220	13559.4 16027.0 14592.9 15117.2 14517.5 14480.4 14144.2 3024.7 1573.2	1.60 1.54 1.56 1.54 1.56 1.55 1.55 1.70 1.71	1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56	N/A N/A N/A N/A N/A N/A N/A	2.45 F 2.29 F 2.42 F 2.41 F 2.47 F 2.51 F 2.54 F	88.70 90.29 90.29 91.30 91.30 92.23	3241.65 3305.05 3305.06 3344.87 3344.87 3381.89	741.65 805.05 805.06 844.87 844.87 844.87 881.89		
252413 239292 240267 234781 230871 227794 117966 104686 102469 100817 83660 88072 86049 76477	105788 105787 101966 98395 98394 90294 90293 88077 86424 75883 75683	261533 248323 249748 244223 240694 237594 127818 114432 112431 11220	16027 0 14592 9 15117 2 14517 5 14480 4 14144 2 3024.7 1573 2	1.54 1.56 1.54 1.56 1.55 1.55 1.55 1.70 1.71	1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56	N/A N/A N/A N/A N/A	2.29 F 2.42 F 2.41 F 2.47 F 2.51 F 2.54 F	90.29 90.29 91.30 91.30 92.23	3305.05 3305.06 3344.87 3344.87 3381.89	805.05 805.06 844.87 844.87 881.89		
239292 240267 234781 230871 227794 117966 104686 102469 100817 83660 88072 86049	105787 101966 101965 98395 98394 90294 90293 88077 86424 75583	248323 249748 244223 240694 237594 127818 114432 112431 11220	14592.9 15117.2 14517.5 14480.4 14144.2 3024.7 1573.2 1573.2	1.56 1.54 1.56 1.55 1.55 1.70 1.71	1.56 1.56 1.56 1.56 1.56 1.56	N/A N/A N/A N/A N/A	2.42 F 2.41 F 2.47 F 2.51 F 2.54 F	90.29 91.30 91.30 92.23	3305.06 3344.87 3344.87 3381.89	805.06 844.87 844.87 881.89		
240267 234781 230871 227794 117966 104686 102469 102469 102469 100817 83660 88072 86049	101966 101965 98395 90294 90293 88077 86424 75583	249748 244223 240694 237594 127818 114432 112431 111200	15117.2 14517.5 14480.4 14144.2 3024.7 1573.2 1573.2	1.54 1.56 1.55 1.55 1.70 1.71	1.56 1.56 1.56 1.56 1.56	N/A N/A N/A N/A	2.41 F 2.47 F 2.51 F 2.54 F	91.30 91.30 92.23	3344.87 3344.87 3381.89	844.87 844.87 881.89		
234781 230871 227794 117966 104686 102469 100817 83660 88072 88049 88049 76477	101965 98395 98394 90294 90293 88077 86424 75683 75583	244223 240694 237594 127818 114432 112431 111200	14517.5 14480.4 14144.2 3024.7 1573.2 1573.2	1.56 1.55 1.55 1.70 1.71	1.56 1.56 1.56 1.56	N/A N/A N/A	2.47 F 2.51 F 2.54 F	91.30 92.23	3344.87 3381.89	844.87 881.89		
230871 227794 117966 104686 102469 100817 83660 88060 88049 86049 76477	98395 98394 90294 90293 88077 86424 7583 75583	240694 237594 127818 114432 112431 111200	14480.4 14144.2 3024.7 1573.2 1573.2	1.55 1.55 1.70 1.71	1.56 1.56 1.56	N/A N/A	2.51 F 2.54 F	92.23	3381.89	881.89		
227794 117966 104686 102469 100817 83660 88072 86049 76477	98394 90294 90293 88077 86424 75583 75583	237594 127818 114432 112431 111200	14144.2 3024.7 1573.2 1573.2	1.55 1.70 1.71	1.56 1.56	N/A	2.54 F					
117966 104686 102469 100817 83660 88072 88072 88049 76477	90294 90293 88077 86424 75583 75583	127818 114432 112431 111200	3024.7 1573.2 1573.2	1.70 1.71	1.56			92.23	2221 20			
104686 102469 100817 83660 88072 86049 76477	90293 88077 86424 75583 75583	114432 112431 111200	1573.2 1573.2	1.71		N/A				881.89		
102469 100817 83660 88072 86049 76477	88077 86424 75583 75583	112431 111200	1573.2		1.56		4.91 F	94.35	3466.13	966.13		
100817 83660 88072 86049 76477	86424 75583 75583	111200		1 71		N/A	5.53 F	94.35	3466.14	966.14		
83660 88072 86049 76477	75583 75583		1573.2		1.56	N/A	5.65 F	94.94	3489.28	989.28		
88072 86049 76477	75583	95052		1.75	1.59	N/A	5.75 F	94.94	3489.29	1036.40		
86049 76477			882.8	1.74	1.59	N/A	6.92 F	97.73	3599.97	1152.35		
76477		99504	1365.1	1.74	1.59	N/A	6.58 F	97.73	3599.97	1152.35		
	62442	98863	2580.4	1.71	1.59	N/A	6.73 F	101.11	3734.23	1293.00		
EE063	62441	89195	1534.2	1.72	1.59	N/A	7.57 F	101.11	3734.23	1293.01		
	42882	70509	1428.8	1.69	1.60	N/A	10.35 F	106.15	3934.24	1502.54		
48311	42881	62778	593.5	1.71	1.60	N/A	11.99 F	106.16	3934.25	1502.55		
41458	33043	56865	919.9	1.69	1.60	N/A	13.97 F	108.69	4034.82	1607.91		
26293	11655	43706	1600.1	1.63	1.60	N/A	22.03 F	114.20	4253.37	1836.86		
32619	4156	50970	3111.2	1.59	1.60	N/A	17.76 F	116.32	4337.37	1924.87		
-30585	-18235	-10742	1350.0	1.58	1.61	N/A	(16.18)	122.66	4588.87	2188.34		
Vector Collapse Safe	y Factor											
										l		
	21439 15822 15822 -33912 -30585 Conn Fracture Compression	21439 4155 15822 26 15822 26 -33912 -16743 -30585 -18235 Conn Fracture	21439 4155 39625 15822 26 34389 15822 26 34384 -33912 -16743 -14286 -30685 -18235 -10742 Conn Fracture - -	21439 4155 39625 1889.2 15822 26 34389 1726.6 15822 26 34388 1726.6 -33912 -16743 -14266 1876.7 -30585 -18235 -10742 1350.0	21439 4155 39625 1889.2 1.61 15822 26 34389 1726.6 1.61 15822 26 34388 1726.6 1.61 -33912 -16743 -14286 1876.7 1.57 -30585 -18235 -10742 1350.0 1.58 Conn Fracture - - - -	21439 4155 39625 1889.2 1.61 1.60 15822 26 34389 1726.6 1.61 1.61 15822 26 34388 1726.6 1.61 1.61 -33912 -16743 -14286 1876.7 1.57 1.61 -30585 -18235 -10742 1350.0 1.58 1.61	21439 4155 39625 1889.2 1.61 1.60 N/A 15822 26 34389 1726.6 1.61 1.61 N/A 15822 26 34389 1726.6 1.61 1.61 N/A -33912 -16743 -1426 1876.7 1.57 1.61 N/A -30585 -18235 -10742 1350.0 1.58 1.61 N/A Conn Fracture	21439 4155 39625 1889.2 1.61 1.60 N/A 27.02 F 15822 26 34389 1726.6 1.61 1.61 N/A 36.61 F 15822 26 34388 1726.6 1.61 1.61 N/A 36.61 F -33912 -16743 -14286 1876.7 1.57 1.61 N/A (14.60) -30585 -18235 -10742 1350.0 1.58 1.61 N/A (16.18) Conn Fracture Compression	21439 4155 39625 1889.2 1.61 1.60 N/A 27.02 F 116.32 15822 26 34389 1726.6 1.61 1.61 N/A 36.61 F 117.49 15822 26 34388 1726.6 1.61 1.61 N/A 36.61 F 117.49 -33912 -16743 -14286 1876.7 1.57 1.61 N/A (14.60) 122.23 -30585 -18235 -10742 1350.0 1.58 1.61 N/A (16.18) 122.66 Com Fracture - - - - - -	21439 4155 39625 1889.2 1.61 1.60 N/A 27 02 F 116.32 4337.38 15822 26 34389 1726.6 1.61 1.61 N/A 36.61 F 117.49 4383.78 15822 26 34388 1726.6 1.61 1.61 N/A 36.61 F 117.49 4383.78 -33912 -16743 -14286 1876.7 1.57 1.61 N/A (14.60) 122.23 4572.11 -30586 -18235 -10742 1350.0 1.58 1.61 N/A (16.18) 122.66 4588.87 Com Fracture	21439 4155 39625 1889.2 1.61 1.60 N/A 27.02 F 116.32 4337.38 1924.87 15822 26 34389 1726.6 1.61 1.61 N/A 36.61 F 117.49 4383.77 1973.48 15822 26 34388 1726.6 1.61 1.61 N/A 36.61 F 117.49 4383.77 1973.48 15822 26 34388 1726.6 1.61 1.61 N/A 36.61 F 117.49 4383.77 1973.48 -33912 -16743 -14286 1876.7 1.57 1.61 N/A (14.60) 122.23 4572.11 2170.78 -30585 -18235 -10742 1350.0 1.58 1.61 N/A (16.18) 122.66 4568.87 2188.34 Com Fracture	21439 4155 39625 1889.2 1.61 1.60 N/A 27.02 F 116.32 4337.38 1924.87 15822 26 34389 1726.6 1.61 1.61 N/A 36.61 F 117.49 4383.77 1973.48 15822 26 34388 1726.6 1.61 1.61 N/A 36.61 F 117.49 4383.78 1973.49 -33912 -16743 -14286 1876.7 1.57 1.61 N/A (14.60) 122.23 4572.11 2170.78 -30585 -18235 -10742 1350.0 1.58 1.61 N/A (16.18) 122.66 4558.87 2188.34 Com Fracture

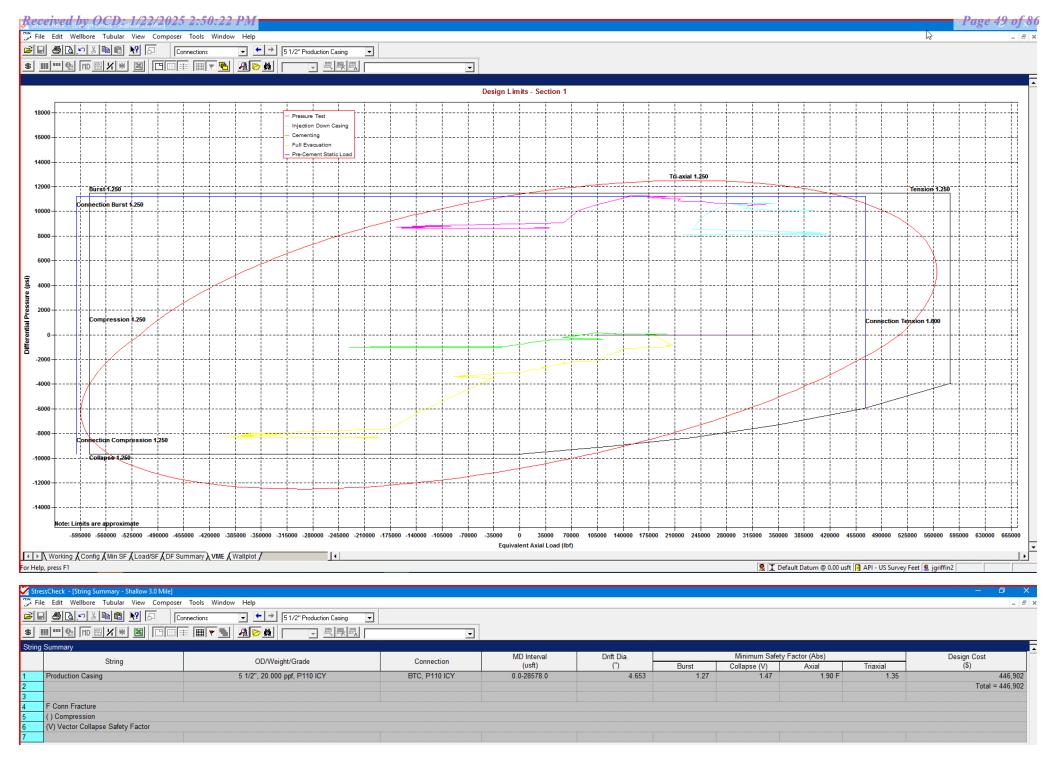

-

For Help, press F1

🙎 1 Default Datum @ 0.00 usft 📔 API - US Survey Feet 😫 jgriffin2


8-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi


*Modelling done with 8-5/8" 32# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 2/5/2025 3:30:39 PM

*Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 2/5/2025 3:30:39 PM

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 2/5/2025 3:30:39 PM

Page 28 of 31

Additive	Purpose
Bentonite Gel	Lightweight/Lost circulation prevention
Calcium Chloride	Accelerator
Cello-flake	Lost circulation prevention
Sodium Metasilicate	Accelerator
MagOx	Expansive agent
Pre-Mag-M	Expansive agent
Sodium Chloride	Accelerator
FL-62	Fluid loss control
Halad-344	Fluid loss control
Halad-9	Fluid loss control
HR-601	Retarder
Microbond	Expansive Agent

Shallow Casing Design 501H

Cement integrity tests will be performed immediately following plug bump.

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

EOG requests variance from minimum standards to pump a two stage cement job on the production casing string with the first stage being pumped conventionally with the calculated top of cement at the top of the Brushy Canyon and the second stage performed as a 1000 sack bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of 400 sacks of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (1.32 yld, 14.8 ppg) will be executed as a contingency. Top will be verified by Echo-meter.

Bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.

MUD PROGRAM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal. The applicable depths and properties of the drilling fluid systems are as follows:

Measured Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0 – 2,030'	Fresh - Gel	8.6-8.8	28-34	N/c
2,030' – 7,793'	Brine	9-10.5	28-34	N/c
5,450' – 28,578' Lateral	Oil Base	8.8-9.5	58-68	N/c - 6

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

Appendix A - Spec Sheets

•

Pipe Bodu and API Connections Performance Data Received by OCD: 1/22/2025 2:50:22 PM 13.375 54.50/0.380 J55

Page 53 of 86 PDF

New Search »

« Back to Previous List

USC O Metric

6/8/2015 10:04:37 AM		2			
Mechanical Properties	Pipe	втс	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000			-	psi
Minimum Tensile Strength	75,000			-	psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	13.375	14.375	-	14.375	in.
Wall Thickness	0.380	=	-		in.
Inside Diameter	12.615	12.615		12.615	in.
Standard Drift	12.459	12.459	. 	12.459	in.
Alternate Drift	-		-	-	in.
Nominal Linear Weight, T&C	54.50	-		-	lbs/ft
Plain End Weight	52.79			-	lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	1,130	1,130		1,130	psi
Minimum Internal Yield Pressure	2,740	2,740	-	2,740	psi
Minimum Pipe Body Yield Strength	853.00	÷ ·		-	1000 lbs
Joint Strength	=	909	 0	514	1000 lbs
Reference Length	-	11,125	-	6,290	n
Make-Up Data	Ріре	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque	-			3,860	ft-lbs
Released to Imaging: 2/5/2025 3:30:39 PM Maximum Make-Up Torque	-			6,430	ft-lbs

Pipe Body and API Connections Performance Data Received by OCD: 1/22/2025 2:50:22 PM 9.625 40.00/0.395 J55

Page 54 of 86 PDF

New Search »

« Back to Previous List

USC O Metric

6/8/2015 10:23:27 AM					
Mechanical Properties	Pipe	втс	LTC	STC	
Minimum Yield Strength	55,000	-		-	psi
Maximum Yield Strength	80,000		=		psi
Minimum Tensile Strength	75,000			-	psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	9.625	10.625	10.625	10.625	in.
Wall Thickness	0.395				in.
Inside Diameter	8.835	8.835	8.835	8.835	in.
Standard Drift	8.679	8.679	8.679	8.679	in.
Alternate Drift	8.750	8.750	8.750	8.750	in.
Nominal Linear Weight, T&C	40.00	-	-		Ibs/ft
Plain End Weight	38.97	-		-	lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	2,570	2,570	2,570	2,570	psi
Minimum Internal Yield Pressure	3,950	3,950	3,950	3,950	psi
Minimum Pipe Body Yield Strength	630.00	-			1000 lbs
Joint Strength		714	520	452	1000 lbs
Reference Length	-	11,898	8,665	7,529	ft
Make-Up Data	Pipe	втс	LTC	STC	
Make-Up Loss	-	4.81	4.75	3.38	in.
Minimum Make-Up Torque	12		3,900	3,390	ft-Ibs
Released to Imaging: 2/5/2025 3:30:39 PM Maximum Make-Up Torque	-	-	6,500	5,650	ft-lbs

Need Help? Contact: <u>tech.support@vam-usa.com</u> Reference Drawing: 8136PP Rev.01 & 8136BP Rev.01 Date: 12/03/2019 Time: 06:19:27 PM

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages.

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234 VAM[®] USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

1. DWC connections are available with a seal ring (SR) option.

2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.

Connection performance properties are based on nominal pipe body and connection dimensions.
 DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
 DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.

6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.

7. Bending efficiency is equal to the compression efficiency.

8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.

9. Connection yield torque is not to be exceeded.

10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.

11. DWC connections will accommodate API standard drift diameters.

12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

Pipe: Body: and APSI 2 Connections Performance Data

10.750 40.50/0.350 J55

New Search » « Back to Previous List

USC 🔵 Metric

15	10:14:05 AM

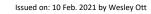
/8/2015 10:14:05 AM					
Mechanical Properties	Pipe	BTC	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Ptpe	BTC	LTC	STC	
Outside Diameter	10.750	11.750	-	11.750	in.
Wall Thickness	0.350		-	-	in.
Inside Diameter	10.050	10.050	-	10.050	in.
Standard Drift	9.894	9.894	-	9.894	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	40.50	-	-	-	lbs/ft
Plain End Weight	38.91	-	-	-	lbs/ft
Performance	Ptpe	BTC	LTC	STC	
Minimum Collapse Pressure	1,580	1,580	-	1,580	psi
Minimum Internal Yield Pressure	3,130	3,130	-	3,130	psi
Minimum Pipe Body Yield Strength	629.00	-	-	-	1000 lbs
Joint Strength	-	700	-	420	1000 lbs
Reference Length	-	11,522	-	6,915	ft
Make-Up Data	Ріре	BTC	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque	-		-	3,150	ft-Ibs
Released to Imaging: 2/5/2025 3:30:39 PM Maximum Make-Up Torque	-	-	-	5,250	• ft-lbs

API 5CT, 10th Ed. Connection Data Sheet

O.D. (in)	WEIGHT (•	WALL ((in)	GR	ADE	*API DRI	FT (in)	RBV	V %
8.625	Nominal: Plain End:	32.00 31.13	0.352	2	Jť	55	7.79	96	87	.5
Material Properties (PE)						F	Pipe Body	y Data (I	PE)	
	Pipe						Geo	metry		
Minimum Yi	ield Strength:	55	ksi		Nomin	al ID:			7.92 i	inch
Maximum Y	vield Strength:	80	ksi		Nomin	al Area	:		9.149	in ²
Minimum Te	ensile Strength:	75	ksi		*Speci	ial/Alt. [Drift:		7.875 i	inch
Coupling							Perfo	rmance		
Minimum Yi	ield Strength:	55	ksi		Pipe E	Body Yie	eld Streng	ith:	503 I	kips
Maximum Y	ield Strength:	80	ksi				istance:		2,530	psi
					Internal	Yield Pro	essure:		3,930	nci
Minimum Te	ensile Strength:	: 75	ksi		(API Hi	storical)			3,930	psi
	API Connectio	n Data	KSI		(API Hi		Pl Conneo	ction To		psi
		n Data 9.625"	KSI		(API Hi	AF	PI Connec STC Torc		orque	μοι
	API Connectio	n Data 0.625" ance			(API Hi	AF			orque	
	API Connectio Coupling OD: 9 STC Perform al Pressure:	n Data 9.625" ance 3,930				AF	STC Torc	que (ft-ll	rque os)	
STC Interna	API Connectio Coupling OD: 9 STC Perform al Pressure:	n Data 9.625" ance 3,930 372	psi			AF 2,793	STC Torc	q ue (ft-II 3,724	orque os) Max:	
STC Interna	API Connectio Coupling OD: 9 STC Perform al Pressure: Strength:	n Data 9.625" ance 3,930 372	psi kips			AF 2,793	STC Torc Opti:	q ue (ft-II 3,724	orque os) Max:	4,6
STC Interna	API Connectio Coupling OD: 9 STC Perform al Pressure: Strength: LTC Perform al Pressure:	n Data 0.625" ance 3,930 372 ance 3,930	psi kips		Min:	AF 2,793	STC Torc Opti: LTC Torc	que (ft-II 3,724 que (ft-II	orque os) Max: os)	4,6
STC Interna STC Joint S LTC Interna LTC Joint S	API Connectio Coupling OD: 9 STC Perform al Pressure: Strength: LTC Perform al Pressure:	n Data 0.625" ance 3,930 372 ance 3,930 417	psi kips psi kips		Min:	AF 2,793 3,130	STC Torc Opti: LTC Torc	que (ft-ll 3,724 que (ft-ll 4,174	orque DS) Max: DS) Max:	4,6
STC Interna STC Joint S LTC Interna LTC Joint S SC-BTC Pe	API Connection Coupling OD: 9 STC Perform al Pressure: Strength: LTC Perform al Pressure: Strength:	n Data 0.625" ance 3,930 372 ance 3,930 417	psi kips psi kips 9.125''		Min: Min:	AF 2,793 3,130	STC Torc Opti: LTC Torc Opti:	que (ft-II 3,724 que (ft-II 4,174 que (ft-II	orque DS) Max: DS) Max:	4,65 5,21

*Alt. Drift will be used unless API Drift is specified on order.

**If above API connections do not suit your needs, VAM® premium connections are available up to 100% of pipe body ratings.


ALL INFORMATION IS PROVIDED BY VALLOUREC OR ITS AFFILIATES AT USER'S SOLE RISK, WITHOUT LIABILITY FOR LOSS, DAMAGE OR INJURY RESULTING FROM THE USE THEREOF; AND ON AN "AS IS" BASIS WITHOUT WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR PURPOSE, ACCURACY OR COMPLETENESS. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND IS BASED ON ESTIMATES THAT HAVE NOT BEEN VERIFIED OR TESTED. IN NO EVENT SHALL VALLOUREC OR ITS AFFILIATES BE RESPONSIBLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, EXEMPLARY OR CONSEQUENTIAL LOSS OR DAMAGE (INCLUDING WITHOUT LIMITATION, LOSS OF USE, LOSS OF BARGAIN, LOSS OF REVENUE, PROFIT OR ANTICIPATED PROFIT) HOWEVER CAUSED OR ARISING, AND WHETHER SUCH LOSSES OR DAMAGES WERE FORESEEABLE OR VALLOUREC OR ITS AFFILIATES WERE ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 10/21/2022 15:24

Rev 3, 7/30/2021

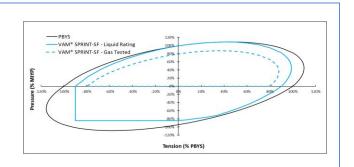
S S2L2 DA 7.875 W/O# SLN # PO# MADE IN USA FT LB

VALLOUREC STAR 8.625 32# J55

Released to Imaging: 2/5/2025 3:30:39 PM

OD	Weight (lb/ft)	Wall Th.	Grade	API Drift:	Connection
6 in.	Nominal: 24.50 Plain End: 23.95	0.400 in.	P110EC	5.075 in.	VAM [®] SPRINT-SF

PI PE PROPERTI ES		
Nominal OD	6.000	in.
Nominal ID	5.200	in.
Nominal Cross Section Area	7.037	sqin.
Grade Type	Hig	jh Yield
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Ultimate Tensile Strength	135	ksi


CONNECTION PROPERTIES		
Connection Type	Integral	Semi-Flush
Connection OD (nom):	6.277	in.
Connection ID (nom):	5.146	in.
Make-Up Loss	5.386	in.
Critical Cross Section	6.417	sqin.
Tension Efficiency	91.0	% of pipe
Compression Efficiency	91.0	% of pipe
Internal Pressure Efficiency	100	% of pipe
External Pressure Efficiency	100	% of pipe

CONNECTION PERFORMANC		
Tensile Yield Strength	801	klb
Compression Resistance	801	klb
Internal Yield Pressure	14,580	psi
Collapse Resistance	12,500	psi
Max. Structural Bending	83	°/100ft
Max. Bending with ISO/API Sealability	30	°/100ft

TORQUE VALUES		
Min. Make-up torque	21,750	ft.lb
Opt. Make-up torque	24,250	ft.lb
Max. Make-up torque	26,750	ft.lb
Max. Torque with Sealability (MTS)	53,000	ft.lb

* 87.5% RBW

VAM® SPRINT-SF is a semi-flush connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections and tight clearance requirements.

Do you need help on this product? - Remember no one knows VAM® like VAM®

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Connection Data Sheet

OD (in.)	WEIGHT (lbs./ft.)	WALL (in.)	GRADE	API DRIFT (in.)	RBW%	CONNECTION
6.000	Nominal: 22.30	0.360	VST P110EC	5.155	92.5	DWC/C-IS
	Plain End: 21 70			•	-	-

PIPE PROPE	RTIES	
Nominal OD	6.000	in.
Nominal ID	5.280	in.
Nominal Area	6.379	sq.in.
Grade Type	API 5CT	
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Tensile Strength	135	ksi
Yield Strength	797	klb
Ultimate Strength	861	klb
Min. Internal Yield Pressure	13,880	psi
Collapse Pressure	9,800	psi

CONNECTION PERFORMA	NCES	
Yield Strength	797	klb
Parting Load	861	klb
Compression Rating	797	klb
Min. Internal Yield	13,880	psi
External Pressure	9,800	psi
Maximum Uniaxial Bend Rating	47.7	°/100 ft
Reference String Length w 1.4 Design Factor	25,530	ft.

CONNECTION PRO	PERTIES	
Connection Type	Semi-Prem	nium T&C
Connection OD (nom)	6.650	in.
Connection ID (nom)	5.280	in.
Make-Up Loss	4.313	in.
Coupling Length	9.625	in.
Critical Cross Section	6.379	sq.in.
Tension Efficiency	100.0%	of pipe
Compression Efficiency	100.0%	of pipe
Internal Pressure Efficiency	100.0%	of pipe
External Pressure Efficiency	100.0%	of pipe

FIELD END TORQUE VA	LUES	
Min. Make-up torque	17,000	ft.lb
Opti. Make-up torque	18,250	ft.lb
Max. Make-up torque	19,500	ft.lb
Min. Shoulder Torque	1,700	ft.lb
Max. Shoulder Torque	13,600	ft.lb
Min. Delta Turn	-	Turns
Max. Delta Turn	0.200	Turns
Maximum Operational Torque	24,200	ft.lb
Maximum Torsional Value (MTV)	26,620	ft.lb

Need Help? Contact: <u>tech.support@vam-usa.com</u> Reference Drawing: 8135PP Rev.02 & 8135BP Rev.02 Date: 07/30/2020

Time: 07:50:47 PM

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234 VAM[®] USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

1. DWC connections are available with a seal ring (SR) option.

2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.

3. Connection performance properties are based on nominal pipe body and connection dimensions.

4. DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.

5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.

6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.

7. Bending efficiency is equal to the compression efficiency.

8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.

9. Connection yield torque is not to be exceeded.

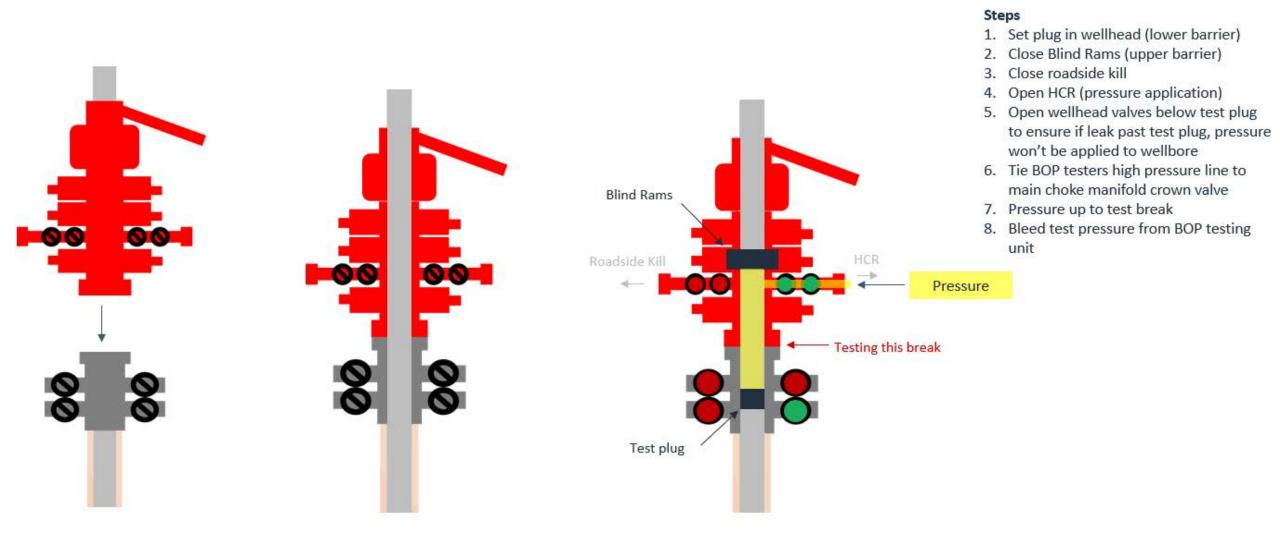
10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.

11. DWC connections will accommodate API standard drift diameters.

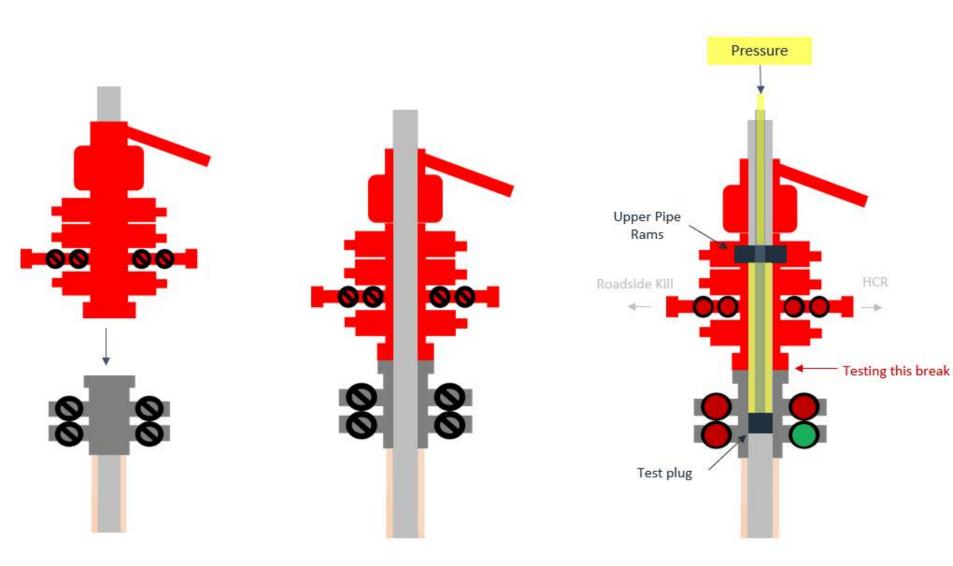
12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.



Break-test BOP & Offline Cementing:


EOG Resources Inc. (EOG) respectfully requests a variance from the minimum standards for well control equipment testing of ECFR Title 43 Part 3172.6(b)(9)(iv) to allow a testing schedule of the blow out preventer (BOP) and blow out prevention equipment (BOPE) along with Batch Drilling & Offline cement operations to include the following:

- Full BOPE test at first installation on the pad.
- Full BOPE test every 30 days.
- This test will be conducted for 5M rated hole intervals only.
- Each rig requesting the break-test variance is capable of picking up the BOP without damaging components using winches, following API Standard 53, Well Control Equipment Systems for Drilling Wells (Fifth edition, December 2018, Annex C. Table C.4) which recognizes break testing as an acceptable practice.
- Function tests will be performed on the following BOP elements:
 - Annular **à** during each full BOPE test
 - Upper Pipe Rams **à** On trip ins where FIT required
 - Blind Rams **à** Every trip
 - Lower Pipe Rams à during each full BOPE test
- Break testing BOP and BOPE coupled with batch drilling operations and option to offline cement and/or remediate (if needed) any surface or intermediate sections, according to attached offline cementing support documentation.
- After the well section is secured, the BOP will be disconnected from the wellhead and walked with the rig to another well on the pad.
- TA cap will also be installed per Wellhead vendor procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

Break Test Diagram (HCR valve)

Break Test Diagram (Test Joint)

Steps

- 1. Set plug in with test joint wellhead (lower barrier)
- 2. Close Upper Pipe Rams (upper barrier)
- 3. Close roadside kill
- 4. Close HCR
- Open wellhead valves below test plug to ensure if leak past test plug, pressure won't be applied to wellbore
- 6. Tie BOP testers high pressure line to top of test joint
- 7. Pressure up to test break
- 8. Bleed test pressure from BOP testing unit

Re	ceived b	by OCL): 1/22	/2025 2	:50:22 PM
----	----------	--------	---------	---------	-----------

State of New Mexico	
Energy, Minerals and Natural Resources	Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator: ____EOG Resources, Inc. ____OGRID: ____7377_____Date: 1/21/2025

II. . Other. **Type:** ⊠ Original □ Amendment due to □ 19.15.27.9.D(6)(a) NMAC □ 19.15.27.9.D(6)(b) NMAC □

If Other, please describe:

III. Well(s): Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D	Anticipated Produced Water BBL/D
MAD ADDER 31 STATE COM 581H		P-31-24S-33E	747' FSL & 749' FEL	+/- 1000	+/- 3500	+/- 3000

IV. Central Delivery Point Name: MAD ADDER 31 STATE COM CTB [See 19.15.27.9(D)(1) NMAC]

V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	Spud Date	TD Reached Date	Completion Commencement Date	Initial Flow Back Date	First Production Date
MAD ADDER 31 STATE COM 581H		01/30/25	03/26/25	04/1/25	05/1/25	05/15/25

VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture.

VII. Operational Practices: 🛛 Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.

VIII. Best Management Practices: Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

S Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF	

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \Box Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \Box will \Box will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \Box does \Box does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

□ Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: \Box Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

<u>Section 3 - Certifications</u> <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 \boxtimes Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \Box Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In. \Box Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. \Box Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (**h**) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Kayla McConnell						
Printed Name: KAYLA MCCONNELL						
Title: Regulatory Specialist						
E-mail Address: KAYLA_MCCONNELL@EOGRESOURCES.COM						
Date: 01/21/2025						
Phone: (432) 265-6804						
OIL CONSERVATION DIVISION						
(Only applicable when submitted as a standalone form)						
Approved By:						
Title:						
Approval Date:						
Conditions of Approval:						

Natural Gas Management Plan Items VI-VIII

VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture.

- Separation equipment will be sized to provide adequate separation for anticipated rates.
- Adequate separation relates to retention time for Liquid Liquid separation and velocity for Gas-Liquid separation.
- Collection systems are appropriately sized to handle facility production rates on all (3) phases.
- Ancillary equipment and metering is selected to be serviced without flow interruptions or the need to release gas from the well.

VII. Operational Practices: Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F 19.15.27.8 NMAC.

Drilling Operations

- All flare stacks will be properly sized. The flare stacks will be located at a minimum 100' from the nearest surface hole location on the pad.
- All natural gas produced during drilling operations will be flared, unless there is an equipment malfunction and/or to avoid risk of an immediate and substantial adverse impact on safety and the environment, at which point the gas will be vented.

Completions/Recompletions Operations

- New wells will not be flowed back until they are connected to a properly sized gathering system.
- The facility will be built/sized for maximum anticipated flowrates and pressures to minimize waste.
- For flowback operations, multiple stages of separation will be used as well as excess VRU and blowers to make sure waste is minimized off the storage tanks and facility.
- During initial flowback, the well stream will be routed to separation equipment.
- At an existing facility, when necessary, post separation natural gas will be flared until it meets pipeline specifications, at which point it will be turned into a collection system.
- At a new facility, post separation natural gas will be vented until storage tanks can safely function, at which point it will be flared until it meets pipeline spec.

Production Operations

- Weekly AVOs will be performed on all facilities.
- All flares will be equipped with auto-ignition systems and continuous pilot operations.
- After a well is stabilized from liquid unloading, the well will be turned back into the collection system.
- All plunger lift systems will be optimized to limit the amount of waste.
- All tanks will have automatic gauging equipment installed.
- Leaking thief hatches found during AVOs will be cleaned and properly re-sealed.

Performance Standards

- Production equipment will be designed to handle maximum anticipated rates and pressure.
- All flared gas will be combusted in a flare stack that is properly sized and designed to ensure proper combustion.
- Weekly AVOs will be performed on all wells and facilities that produce more than 60 Mcfd.

Measurement & Estimation

- All volume that is flared and vented that is not measured will be estimated.
- All measurement equipment for flared volumes will conform to API 14.10.
- No meter bypasses with be installed.

• When metering is not practical due to low pressure/low rate, the vented or flared volume will be estimated.

VIII. Best Management Practices: Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

- During downhole well maintenance, EOG will use best management practices to vent as minimally as possible.
- Prior to the commencement of any maintenance, the tank or vessel will be isolated from the rest of the facilities.
 All valves upstream of the equipment will be closed and isolated.
- After equipment has been isolated, the equipment will be blown down to as low a pressure as possible into the collection system.
- If the equipment being maintained cannot be relieved into the collection system, it shall be released to a tank where the vapor can either be captured or combusted if possible.
- After downhole well maintenance, natural gas will be flared until it reaches pipeline specification.

Midland

Lea County, NM (NAD 83 NME) Mad Adder 31 State Com #581H

OH

Plan: Plan #0.1 RT

Standard Planning Report

06 January, 2025

Planning Report

Sebare	eeun ee						
Database: Company: Project: Site: Well: Wellbore: Design:	PEDMB Midland Lea County, N Mad Adder 31 #581H OH Plan #0.1 RT	•	ME)	Local Co-ordin TVD Reference MD Reference North Reference Survey Calcula	:e:	Well #581H kb = 26' @ 3532 kb = 26' @ 3532 Grid Minimum Curva	2.0usft
Project	Lea County, N	M (NAD 83 NN	ΛE)				
Map System: Geo Datum: Map Zone:	US State Plane North American I New Mexico Eas	Datum 1983		System Datum:		Mean Sea Level	
Site	Mad Adder 31	State Com					
Site Position: From: Position Uncertainty:	Мар	0.0 usft	Northing: Easting: Slot Radius:	426,421.0 765,325.0 13-3/1	0 usft Longitud		32° 10' 12.858 N 103° 36' 33.958 W
Well	#581H						
Well Position Position Uncertainty	+N/-S +E/-W	0.0 usft 0.0 usft 0.0 usft	Northing: Easting: Wellhead Elev	76	5,956.00 usft 6,622.00 usft usft	Latitude: Longitude: Ground Level:	32° 10' 8.170 N 103° 36' 18.906 W 3,506.0 usf
Grid Convergence:		0.39 °					
Wellbore	OH						
Magnetics	Model Nan	ne	Sample Date	Declination (°)	I	Dip Angle (°)	Field Strength (nT)
	IGR	F2020	1/6/2025		6.14	59.72	47,086.17606481
Design	Plan #0.1 RT						
Audit Notes:							
Version:			Phase:	PLAN	Tie On Depti	1:	0.0
Vertical Section:		(L	rom (TVD) usft)	+N/-S (usft)	+E/-W (usft)		ection (°)
		(0.0	0.0	0.0		1.73
Plan Survey Tool Pro	gram	Date 1/6/20	025				
Depth From (usft)	Depth To (usft) 5	Survey (Wellb	ore)	Tool Name	Remar	ks	
1 0.0	22,088.0 F	Plan #0.1 RT (OH)	EOG MWD+IFR1 MWD + IFR1			

Database:	PEDMB	Local Co-ordinate Reference:	Well #581H
Company:	Midland	TVD Reference:	kb = 26' @ 3532.0usft
Project:	Lea County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3532.0usft
Site:	Mad Adder 31 State Com	North Reference:	Grid
Well:	#581H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan #0.1 RT		

Plan Sections

Target	TFO (°)	Turn Rate (°/100usft)	Build Rate (°/100usft)	Dogleg Rate (°/100usft)	+E/-W (usft)	+N/-S (usft)	Vertical Depth (usft)	Azimuth (°)	Inclination (°)	Measured Depth (usft)
	0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.0
	0.00	0.00	0.00	0.00	0.0	0.0	1,500.0	0.00	0.00	1,500.0
	151.62	0.00	2.00	2.00	11.7	-21.6	1,874.7	151.62	7.51	1,875.7
	0.00	0.00	0.00	0.00	363.3	-672.4	7,481.3	151.62	7.51	7,531.0
	180.00	0.00	-2.00	2.00	375.0	-694.0	7,856.0	0.00	0.00	7,906.7
KOP(Mad Adder 31 S	0.00	0.00	0.00	0.00	375.0	-694.0	11,352.5	0.00	0.00	11,403.2
FTP(Mad Adder 31 St	358.85	-0.52	12.00	12.00	374.0	-644.0	11,565.2	358.85	26.46	11,623.7
	0.81	0.14	12.00	12.00	369.2	-216.6	11,829.9	359.58	90.00	12,153.2
Fed Perf 1(Mad Adde	0.00	0.00	0.00	0.00	334.0	4,535.0	11,830.0	359.58	90.00	16,904.9
Fed Perf 2(Mad Adde	-84.01	0.00	0.00	0.00	314.0	7,176.0	11,830.0	359.56	90.00	19,546.0
PBHL(Mad Adder 31	-98.11	0.00	0.00	0.00	294.0	9,718.0	11,830.0	359.54	90.00	22,088.0

Da	atabase:	PEDMB	Local Co-ordinate Reference:	Well #581H
C	ompany:	Midland	TVD Reference:	kb = 26' @ 3532.0usft
Pr	roject:	Lea County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3532.0usft
Si	ite:	Mad Adder 31 State Com	North Reference:	Grid
w	/ell:	#581H	Survey Calculation Method:	Minimum Curvature
w	ellbore:	OH		
De	esign:	Plan #0.1 RT		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00 0.00	0.00	500.0 600.0	0.0 0.0	0.0	0.0 0.0	0.00 0.00	0.00 0.00	0.00 0.00
600.0		0.00			0.0				
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	2.00	151.62	1,600.0	-1.5	0.8	-1.5	2.00	2.00	0.00
1,700.0	4.00	151.62	1,699.8	-6.1	3.3	-6.0	2.00	2.00	0.00
1,800.0	6.00	151.62	1,799.5	-13.8	7.5	-13.6	2.00	2.00	0.00
1,875.7	7.51	151.62	1,874.7	-21.6	11.7	-21.3	2.00	2.00	0.00
1,900.0	7.51	151.62	1,898.7	-24.4	13.2	-24.0	0.00	0.00	0.00
2,000.0	7.51	151.62	1,997.9	-35.9	19.4	-35.3	0.00	0.00	0.00
2,100.0	7.51	151.62	2,097.0	-47.5	25.6	-46.7	0.00	0.00	0.00
2,200.0	7.51	151.62	2,196.1	-59.0	31.9	-58.0	0.00	0.00	0.00
2,300.0	7.51	151.62	2,295.3	-70.5	38.1	-69.3	0.00	0.00	0.00
2,400.0	7.51	151.62	2,394.4	-82.0	44.3	-80.6	0.00	0.00	0.00
2,500.0	7.51	151.62	2,493.6	-93.5	50.5	-91.9	0.00	0.00	0.00
2,600.0	7.51	151.62	2,592.7	-105.0	56.7	-103.2	0.00	0.00	0.00
2,700.0	7.51	151.62	2,691.8	-116.5	62.9	-114.5	0.00	0.00	0.00
2,800.0	7.51	151.62	2,791.0	-128.0	69.2	-125.8	0.00	0.00	0.00
2,900.0	7.51	151.62	2,890.1	-139.5	75.4	-137.2	0.00	0.00	0.00
3,000.0	7.51	151.62	2,989.3	-151.0	81.6	-148.5	0.00	0.00	0.00
3,100.0	7.51	151.62	3,088.4	-162.5	87.8	-159.8	0.00	0.00	0.00
3,200.0	7.51	151.62	3,187.5	-174.0	94.0	-171.1	0.00	0.00	0.00
3,300.0	7.51	151.62	3,286.7	-185.5	100.2	-182.4	0.00	0.00	0.00
3,400.0	7.51	151.62	3,385.8	-197.0	106.5	-193.7	0.00	0.00	0.00
3,500.0	7.51	151.62	3,485.0	-208.5	112.7	-205.0	0.00	0.00	0.00
3,600.0	7.51	151.62	3,584.1	-220.0	118.9	-216.3	0.00	0.00	0.00
3,700.0	7.51	151.62	3,683.3	-231.6	125.1	-227.7	0.00	0.00	0.00
3,800.0	7.51	151.62	3,782.4	-243.1	131.3	-239.0	0.00	0.00	0.00
3,900.0	7.51	151.62	3,881.5	-254.6	137.6	-250.3	0.00	0.00	0.00
4,000.0	7.51	151.62	3,980.7	-266.1	143.8	-261.6	0.00	0.00	0.00
4,100.0	7.51	151.62	4,079.8	-277.6	150.0	-272.9	0.00	0.00	0.00
4,200.0	7.51	151.62	4,179.0	-289.1	156.2	-284.2	0.00	0.00	0.00
4,300.0	7.51	151.62	4,278.1	-300.6	162.4	-295.5	0.00	0.00	0.00
4,400.0	7.51	151.62	4,377.2	-312.1	168.6	-306.9	0.00	0.00	0.00
4,500.0	7.51	151.62	4,476.4	-323.6	174.9	-318.2	0.00	0.00	0.00
4,600.0	7.51	151.62	4,575.5	-335.1	181.1	-329.5	0.00	0.00	0.00
4,700.0	7.51	151.62	4,674.7	-346.6	187.3	-340.8	0.00	0.00	0.00
4,800.0	7.51	151.62	4,773.8	-358.1	193.5	-352.1	0.00	0.00	0.00
4,900.0	7.51	151.62	4,872.9	-369.6	199.7	-363.4	0.00	0.00	0.00
5,000.0	7.51	151.62	4,972.1	-381.1	205.9	-374.7	0.00	0.00	0.00
5,100.0	7.51	151.62	5,071.2	-392.6	212.2	-386.0	0.00	0.00	0.00
5,200.0	7.51	151.62	5,170.4	-404.1	218.4	-397.4	0.00	0.00	0.00

1/6/2025 3:43:40PM

COMPASS 5000.16 Build 100

Page 75 of 86

Database:	PEDMB	Local Co-ordinate Reference:	Well #581H
Company:	Midland	TVD Reference:	kb = 26' @ 3532.0usft
Project:	Lea County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3532.0usft
Site:	Mad Adder 31 State Com	North Reference:	Grid
Well:	#581H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan #0.1 RT		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,300.0	7.51	151.62	5,269.5	-415.7	224.6	-408.7	0.00	0.00	0.00
5,400.0	7.51	151.62	5,368.7	-427.2	230.8	-420.0	0.00	0.00	0.00
5,500.0	7.51	151.62	5,467.8	-438.7	237.0	-431.3	0.00	0.00	0.00
5,600.0	7.51	151.62	5,566.9	-450.2	243.2	-442.6	0.00	0.00	0.00
	7.51	151.62		-461.7	249.5	-442.0	0.00	0.00	
5,700.0			5,666.1						0.00
5,800.0	7.51	151.62	5,765.2	-473.2	255.7	-465.2	0.00	0.00	0.00
5,900.0	7.51	151.62	5,864.4	-484.7	261.9	-476.5	0.00	0.00	0.00
6,000.0	7.51	151.62	5,963.5	-496.2	268.1	-487.9	0.00	0.00	0.00
6,100.0	7.51	151.62	6,062.6	-507.7	274.3	-499.2	0.00	0.00	0.00
6,200.0	7.51	151.62	6,161.8	-519.2	280.6	-510.5	0.00	0.00	0.00
6,300.0	7.51	151.62	6,260.9	-530.7	286.8	-521.8	0.00	0.00	0.00
0,300.0	7.51	151.02	0,200.9	-550.7	200.0	-521.0	0.00	0.00	0.00
6,400.0	7.51	151.62	6,360.1	-542.2	293.0	-533.1	0.00	0.00	0.00
6,500.0	7.51	151.62	6,459.2	-553.7	299.2	-544.4	0.00	0.00	0.00
6,600.0	7.51	151.62	6,558.3	-565.2	305.4	-555.7	0.00	0.00	0.00
6,700.0	7.51	151.62	6,657.5	-576.7	311.6	-567.1	0.00	0.00	0.00
6,800.0	7.51	151.62	6,756.6	-588.2	317.9	-578.4	0.00	0.00	0.00
6,900.0	7.51	151.62	6,855.8	-599.7	324.1	-589.7	0.00	0.00	0.00
7,000.0	7.51	151.62	6,954.9	-611.3	330.3	-601.0	0.00	0.00	0.00
7,100.0	7.51	151.62	7,054.1	-622.8	336.5	-612.3	0.00	0.00	0.00
7,200.0	7.51	151.62	7,153.2	-634.3	342.7	-623.6	0.00	0.00	0.00
7,300.0	7.51	151.62	7,252.3	-645.8	348.9	-634.9	0.00	0.00	0.00
		101.02							
7,400.0	7.51	151.62	7,351.5	-657.3	355.2	-646.2	0.00	0.00	0.00
7,500.0	7.51	151.62	7,450.6	-668.8	361.4	-657.6	0.00	0.00	0.00
7,531.0	7.51	151.62	7,481.3	-672.4	363.3	-661.1	0.00	0.00	0.00
7,600.0	6.13	151.62	7,549.9	-679.6	367.2	-668.2	2.00	-2.00	0.00
7,700.0	4.13	151.62	7,649.5	-687.4	371.5	-675.9	2.00	-2.00	0.00
7,800.0	2.13	151.62	7,749.3	-692.3	374.1	-680.6	2.00	-2.00	0.00
7,906.7	0.00	0.00	7,856.0	-694.0	375.0	-682.3	2.00	-2.00	0.00
8,000.0	0.00	0.00	7,949.3	-694.0	375.0	-682.3	0.00	0.00	0.00
8,100.0	0.00	0.00	8,049.3	-694.0	375.0	-682.3	0.00	0.00	0.00
8,200.0	0.00	0.00	8,149.3	-694.0	375.0	-682.3	0.00	0.00	0.00
8,300.0	0.00	0.00	8,249.3	-694.0	375.0	-682.3	0.00	0.00	0.00
8,400.0	0.00	0.00	8,349.3	-694.0	375.0	-682.3	0.00	0.00	0.00
8,500.0	0.00	0.00	8,449.3	-694.0	375.0	-682.3	0.00	0.00	0.00
8,600.0	0.00	0.00	8,549.3	-694.0	375.0	-682.3	0.00	0.00	0.00
8,700.0	0.00	0.00	8,649.3	-694.0	375.0	-682.3	0.00	0.00	0.00
8,800.0	0.00	0.00	8,749.3	-694.0	375.0	-682.3	0.00	0.00	0.00
							0.00		
8,900.0	0.00	0.00	8,849.3	-694.0	375.0	-682.3		0.00	0.00
9,000.0	0.00	0.00	8,949.3	-694.0	375.0	-682.3	0.00	0.00	0.00
9,100.0	0.00	0.00	9,049.3	-694.0	375.0	-682.3	0.00	0.00	0.00
9,200.0	0.00	0.00	9,149.3	-694.0	375.0	-682.3	0.00	0.00	0.00
9,300.0	0.00	0.00	9,249.3	-694.0	375.0	-682.3	0.00	0.00	0.00
9,400.0	0.00	0.00	9,349.3	-694.0	375.0	-682.3	0.00	0.00	0.00
9,500.0	0.00	0.00	9,349.3 9,449.3	-694.0	375.0	-682.3	0.00	0.00	0.00
9,600.0	0.00	0.00	9,549.3	-694.0	375.0	-682.3	0.00	0.00	0.00
9,700.0	0.00	0.00	9,649.3	-694.0	375.0	-682.3	0.00	0.00	0.00
9,800.0	0.00	0.00	9,749.3	-694.0	375.0	-682.3	0.00	0.00	0.00
9,900.0	0.00	0.00	9,849.3	-694.0	375.0	-682.3	0.00	0.00	0.00
10,000.0	0.00	0.00	9,949.3	-694.0	375.0	-682.3	0.00	0.00	0.00
10,000.0	0.00		9,949.3 10,049.3	-694.0	375.0	-682.3	0.00	0.00	0.00
		0.00							
10,200.0	0.00	0.00	10,149.3	-694.0	375.0	-682.3	0.00	0.00	0.00
10,300.0	0.00	0.00	10,249.3	-694.0	375.0	-682.3	0.00	0.00	0.00
10,400.0	0.00	0.00	10,349.3	-694.0	375.0	-682.3	0.00	0.00	0.00

1/6/2025 3:43:40PM

Page 5

COMPASS 5000.16 Build 100

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,600.0	0.00	0.00	10,549.3	-694.0	375.0	-682.3	0.00	0.00	0.00
10,700.0	0.00	0.00	10,649.3	-694.0	375.0	-682.3	0.00	0.00	0.00
10,800.0	0.00	0.00	10,749.3	-694.0	375.0	-682.3	0.00	0.00	0.00
10,900.0	0.00	0.00	10,849.3	-694.0	375.0	-682.3	0.00	0.00	0.00
11,000.0	0.00	0.00	10,949.3	-694.0	375.0	-682.3	0.00	0.00	0.00
11,100.0	0.00	0.00	11,049.3	-694.0	375.0	-682.3	0.00	0.00	0.00
11,200.0	0.00	0.00	11,149.3	-694.0	375.0	-682.3	0.00	0.00	0.00
11,300.0	0.00	0.00	11,249.3	-694.0	375.0	-682.3	0.00	0.00	0.00
11,403.2	0.00	0.00	11,352.5	-694.0	375.0	-682.3	0.00	0.00	0.00
11,425.0	2.61	358.85	11,374.3	-693.5	375.0	-681.8	12.00	12.00	0.00
11,450.0	5.61	358.85	11,399.2	-691.7	375.0	-680.1	12.00	12.00	0.00
11,475.0	8.62	358.85	11,424.0	-688.6	374.9	-677.0	12.00	12.00	0.00
11,500.0	11.62	358.85	11,448.6	-684.2	374.8	-672.6	12.00	12.00	0.00
11,525.0	14.62	358.85	11,473.0	-004.2 -678.6	374.8	-666.9	12.00	12.00	0.00
11,550.0	14.02	358.85	11,497.0	-671.6	374.7	-660.0	12.00	12.00	0.00
11,575.0	20.62	358.85	11,520.6	-663.4	374.0	-651.8	12.00	12.00	0.00
11,600.0	20.02	358.85	11,520.0	-003.4 -654.0	374.4	-642.4	12.00	12.00	0.00
11,623.7	26.46	358.85	11,565.2	-644.0	374.0	-632.4	12.00	12.00	0.00
11,625.0	26.62	358.86	11,566.4	-643.4	374.0	-631.8	12.00	12.00	0.38
11,650.0	29.62	358.94	11,588.4	-631.6	373.8	-620.0	12.00	12.00	0.34
11,675.0	32.62	359.01	11,609.8	-618.7	373.5	-607.1	12.00	12.00	0.28
11,700.0	35.62	359.07	11,630.5	-604.7	373.3	-593.1	12.00	12.00	0.24
11,725.0	38.62	359.13	11,650.5	-589.6	373.1	-578.1	12.00	12.00	0.21
11,750.0	41.62	359.17	11,669.6	-573.5	372.8	-562.0	12.00	12.00	0.18
11,775.0	44.62	359.21	11,687.8	-556.4	372.6	-544.9	12.00	12.00	0.16
11,800.0	47.62	359.25	11,705.1	-538.4	372.3	-526.9	12.00	12.00	0.14
11,825.0	50.62	359.28	11,721.5	-519.5	372.1	-508.0	12.00	12.00	0.13
11,850.0	53.62 56.62	359.31 359.34	11,736.8	-499.8 -479.3	371.9 371.6	-488.3 -467.8	12.00 12.00	12.00 12.00	0.12 0.11
11,875.0	56.62 59.62	359.34 359.37	11,751.1 11 764 3	-479.3 -458.0	371.6	-467.8 -446.6		12.00	0.10
11,900.0 11,925.0	59.62 62.62	359.37 359.39	11,764.3 11,776.4	-458.0 -436.2	371.4	-446.6 -424.7	12.00 12.00	12.00	0.10
11,925.0	65.62	359.39 359.41	11,7787.3	-430.2 -413.7	371.1	-424.7 -402.3	12.00	12.00	0.09
11,975.0	68.62	359.44	11,797.1	-390.6	370.7	-379.3	12.00	12.00	0.09
12,000.0	71.62	359.46	11,805.6	-367.1	370.4	-355.8	12.00	12.00	0.09
12,025.0	74.62	359.48	11,812.8	-343.2	370.2	-331.9	12.00	12.00	0.08
12,050.0	77.62	359.50	11,818.8	-319.0	370.0	-307.6	12.00	12.00	0.08
12,075.0	80.62	359.52	11,823.5	-294.4	369.8	-283.1	12.00	12.00	0.08
12,100.0	83.62	359.54	11,827.0	-269.6	369.6	-258.3	12.00	12.00	0.08
12,125.0	86.62	359.55	11,829.1	-244.7	369.4	-233.5	12.00	12.00	0.08
12,150.0	89.62	359.57	11,829.9	-219.8	369.2	-208.5	12.00	12.00	0.08
12,153.2	90.00	359.58	11,829.9	-216.6	369.2	-205.3	12.00	12.00	0.08
12,200.0	90.00	359.58	11,829.9	-169.8	368.8	-158.5	0.00	0.00	0.00
							0.00		0.00
12,300.0 12,400.0	90.00 90.00	359.58 359.58	11,829.9 11,829.9	-69.8 30.2	368.1 367.3	-58.6 41.3		0.00 0.00	
12,400.0		359.58 359.58			367.3	41.3 141.3	0.00 0.00	0.00	0.00 0.00
12,600.0	90.00 90.00	359.58 359.58	11,829.9 11,829.9	130.2 230.2	365.9	241.2	0.00	0.00	0.00
12,600.0	90.00 90.00	359.58 359.58	11,829.9	230.2 330.2	365.9 365.1	241.2 341.1	0.00	0.00	0.00
12,800.0	90.00	359.58	11,829.9	430.2	364.4	441.0	0.00	0.00	0.00
12,900.0	90.00	359.58	11,829.9	530.2	363.6	541.0	0.00	0.00	0.00
13,000.0	90.00	359.58	11,829.9	630.2	362.9	640.9	0.00	0.00	0.00
13,100.0	90.00	359.58	11,829.9	730.2	362.2	740.8	0.00	0.00	0.00
13,200.0	90.00	359.58	11,829.9	830.2	361.4	840.8	0.00	0.00	0.00
13,300.0	90.00	359.58	11,829.9	930.2	360.7	940.7	0.00	0.00	0.00
13,400.0	90.00	359.58	11,829.9	1,030.2	359.9	1,040.6	0.00	0.00	0.00

1/6/2025 3:43:40PM

COMPASS 5000.16 Build 100

Database:	PEDMB	Local Co-ordinate Reference:	Well #581H
Company:	Midland	TVD Reference:	kb = 26' @ 3532.0usft
Project:	Lea County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3532.0usft
Site:	Mad Adder 31 State Com	North Reference:	Grid
Well:	#581H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan #0.1 RT		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
13,500.0	90.00	359.58	11,829.9	1,130.2	359.2	1,140.6	0.00	0.00	0.00
13,600.0	90.00	359.58	11,829.9	1,230.2	358.5	1,240.5	0.00	0.00	0.00
13,700.0	90.00	359.58	11,829.9	1,330.2	357.7	1,340.4	0.00	0.00	0.00
13,800.0	90.00	359.58	11,829.9	1,430.2	357.0	1,440.3	0.00	0.00	0.00
13,900.0	90.00	359.58	11,829.9	1,530.2	356.2	1,540.3	0.00	0.00	0.00
14,000.0	90.00	359.58	11,829.9	1,630.2	355.5	1,640.2	0.00	0.00	0.00
14,100.0	90.00	359.58	11,829.9	1,730.2	354.8	1,740.1	0.00	0.00	0.00
14,200.0	90.00	359.58	11,830.0	1,830.2	354.0	1,840.1	0.00	0.00	0.00
14,300.0	90.00	359.58	11,830.0	1,930.2	353.3	1,940.0	0.00	0.00	0.00
14,400.0	90.00	359.58	11,830.0	2,030.2	352.5	2,039.9	0.00	0.00	0.00
14,500.0	90.00	359.58	11,830.0	2,130.2	351.8	2,139.8	0.00	0.00	0.00
14,600.0	90.00	359.58	11,830.0	2,230.2	351.1	2,239.8	0.00	0.00	0.00
14,700.0	90.00	359.58	11,830.0	2,330.2	350.3	2,339.7	0.00	0.00	0.00
14,800.0	90.00	359.58	11,830.0	2,430.2	349.6	2,439.6	0.00	0.00	0.00
14,900.0	90.00	359.58	11,830.0	2,530.2	348.8	2,539.6	0.00	0.00	0.00
15,000.0	90.00	359.58	11,830.0	2,630.2	348.1	2,639.5	0.00	0.00	0.00
15,100.0	90.00	359.58	11,830.0	2,730.2	347.4	2,739.4	0.00	0.00	0.00
15,200.0	90.00	359.58	11,830.0	2,830.2	346.6	2,839.3	0.00	0.00	0.00
15,300.0	90.00	359.58	11,830.0	2,930.2	345.9	2,939.3	0.00	0.00	0.00
15,400.0	90.00	359.58	11,830.0	3,030.2	345.1	3,039.2	0.00	0.00	0.00
15,500.0	90.00	359.58	11,830.0	3,130.2	344.4	3,139.1	0.00	0.00	0.00
15,600.0	90.00	359.58	11,830.0	3,230.1	343.7	3,239.1	0.00	0.00	0.00
15,700.0	90.00	359.58	11,830.0	3,330.1	342.9	3,339.0	0.00	0.00	0.00
15,800.0	90.00	359.58	11,830.0	3,430.1	342.2	3,438.9	0.00	0.00	0.00
15,900.0	90.00	359.58	11,830.0	3,530.1	341.4	3,538.8	0.00	0.00	0.00
16,000.0	90.00	359.58	11,830.0	3,630.1	340.7	3,638.8	0.00	0.00	0.00
16,100.0	90.00	359.58	11,830.0	3,730.1	340.0	3,738.7	0.00	0.00	0.00
16,200.0	90.00	359.58	11,830.0	3,830.1	339.2	3,838.6	0.00	0.00	0.00
16,300.0	90.00	359.58	11,830.0	3,930.1	338.5	3,938.6	0.00	0.00	0.00
16,400.0	90.00	359.58	11,830.0	4,030.1	337.7	4,038.5	0.00	0.00	0.00
16,500.0	90.00	359.58	11,830.0	4,130.1	337.0	4,138.4	0.00	0.00	0.00
16,600.0	90.00	359.58	11,830.0	4,230.1	336.3	4,238.4	0.00	0.00	0.00
16,700.0	90.00	359.58	11,830.0	4,330.1	335.5	4,338.3	0.00	0.00	0.00
16,800.0	90.00	359.58	11,830.0	4,430.1	334.8	4,438.2	0.00	0.00	0.00
16,904.9	90.00	359.58	11,830.0	4,535.0	334.0	4,543.0	0.00	0.00	0.00
17,000.0	90.00	359.58	11,830.0	4,630.1	333.3	4,638.1	0.00	0.00	0.00
17,100.0	90.00	359.57	11,830.0	4,730.1	332.6	4,738.0	0.00	0.00	0.00
17,200.0	90.00	359.57	11,830.0	4,830.1	331.8	4,837.9	0.00	0.00	0.00
17,300.0	90.00	359.57	11,830.0	4,930.1	331.1	4,937.9	0.00	0.00	0.00
17,400.0	90.00	359.57	11,830.0	5,030.1	330.3	5,037.8	0.00	0.00	0.00
17,500.0	90.00	359.57	11,830.0	5,130.1	329.6	5,137.7	0.00	0.00	0.00
17,600.0	90.00	359.57	11,830.0	5,230.1	328.8	5,237.6	0.00	0.00	0.00
17,700.0	90.00	359.57	11,830.0	5,330.1	328.1	5,337.6	0.00	0.00	0.00
17,800.0	90.00	359.57	11,830.0	5,430.1	327.3	5,437.5	0.00	0.00	0.00
17,900.0	90.00	359.57	11,830.0	5,530.1	326.6	5,537.4	0.00	0.00	0.00
18,000.0	90.00	359.57	11,830.0	5,630.1	325.8	5,637.4	0.00	0.00	0.00
18,100.0	90.00	359.57	11,830.0	5,730.1	325.1	5,737.3	0.00	0.00	0.00
18,200.0	90.00	359.57	11,830.0	5,830.1	324.3	5,837.2	0.00	0.00	0.00
18,300.0	90.00	359.57	11,830.0	5,930.1	323.5	5,937.1	0.00	0.00	0.00
18,400.0	90.00	359.56	11,830.0	6,030.1	322.8	6,037.1	0.00	0.00	0.00
18,500.0	90.00	359.56	11,830.0	6,130.1	322.0	6,137.0	0.00	0.00	0.00
18,600.0	90.00	359.56	11,830.0	6,230.1	321.3	6,236.9	0.00	0.00	0.00
18,700.0	90.00	359.56	11,830.0	6,330.1	320.5	6,336.9	0.00	0.00	0.00

1/6/2025 3:43:40PM

COMPASS 5000.16 Build 100

.

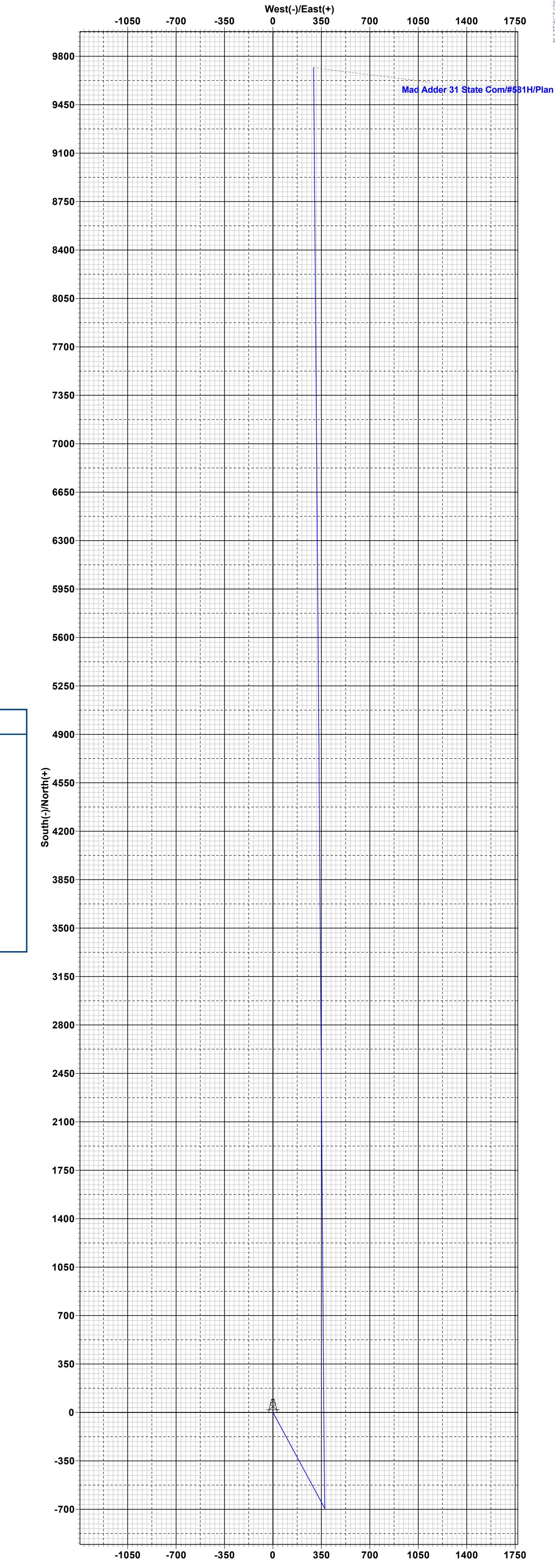
Database:	PEDMB	Local Co-ordinate Reference:	Well #581H
Company:	Midland	TVD Reference:	kb = 26' @ 3532.0usft
Project:	Lea County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3532.0usft
Site:	Mad Adder 31 State Com	North Reference:	Grid
Well:	#581H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OH		
Design:	Plan #0.1 RT		

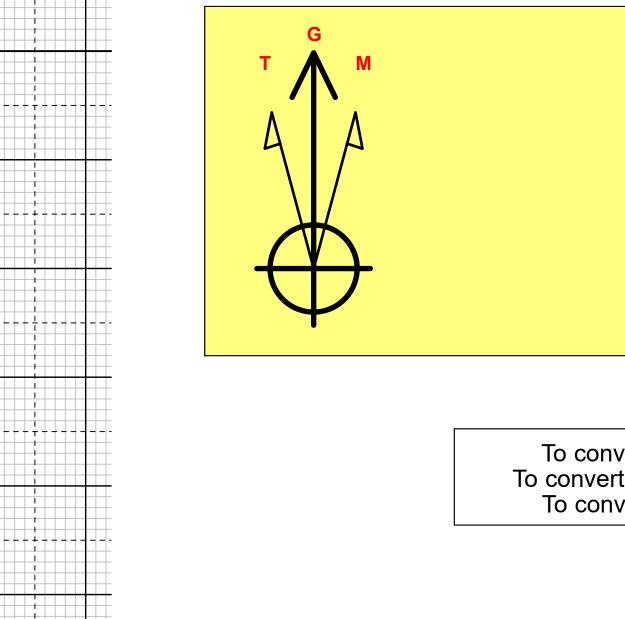
Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
18,900.0 19,000.0 19,100.0 19,200.0	90.00 90.00 90.00 90.00	359.56 359.56 359.56 359.56	11,830.0 11,830.0 11,830.0 11,830.0	6,530.1 6,630.1 6,730.0 6,830.0	319.0 318.2 317.4 316.7	6,536.7 6,636.6 6,736.6 6,836.5	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
19,300.0 19,400.0 19,500.0 19,546.0 19,600.0	90.00 90.00 90.00 90.00 90.00	359.56 359.56 359.56 359.56 359.56 359.56	11,830.0 11,830.0 11,830.0 11,830.0 11,830.0 11,830.0	6,930.0 7,030.0 7,130.0 7,176.0 7,230.0	315.9 315.1 314.4 314.0 313.6	6,936.4 7,036.4 7,136.3 7,182.2 7,236.2	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
19,700.0 19,800.0 19,900.0 20,000.0 20,100.0	90.00 90.00 90.00 90.00 90.00	359.56 359.55 359.55 359.55 359.55 359.55	11,830.0 11,830.0 11,830.0 11,830.0 11,830.0 11,830.0	7,330.0 7,430.0 7,530.0 7,630.0 7,730.0	312.8 312.0 311.3 310.5 309.7	7,336.1 7,436.1 7,536.0 7,635.9 7,735.8	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
20,200.0 20,300.0 20,400.0 20,500.0 20,600.0	90.00 90.00 90.00 90.00 90.00	359.55 359.55 359.55 359.55 359.55 359.55	11,830.0 11,830.0 11,830.0 11,830.0 11,830.0 11,830.0	7,830.0 7,930.0 8,030.0 8,130.0 8,230.0	308.9 308.1 307.4 306.6 305.8	7,835.8 7,935.7 8,035.6 8,135.6 8,235.5	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
20,700.0 20,800.0 20,900.0 21,000.0 21,100.0	90.00 90.00 90.00 90.00 90.00	359.55 359.55 359.55 359.55 359.55 359.55	11,830.0 11,830.0 11,830.0 11,830.0 11,830.0 11,830.0	8,330.0 8,430.0 8,530.0 8,630.0 8,730.0	305.0 304.2 303.4 302.6 301.8	8,335.4 8,435.3 8,535.3 8,635.2 8,735.1	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
21,200.0 21,300.0 21,400.0 21,500.0 21,600.0	90.00 90.00 90.00 90.00 90.00	359.55 359.55 359.55 359.55 359.55 359.54	11,830.0 11,830.0 11,830.0 11,830.0 11,830.0 11,830.0	8,830.0 8,930.0 9,030.0 9,130.0 9,230.0	301.1 300.3 299.5 298.7 297.9	8,835.1 8,935.0 9,034.9 9,134.8 9,234.8	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
21,700.0 21,800.0 21,900.0 22,000.0 22,088.0	90.00 90.00 90.00 90.00 90.00	359.54 359.54 359.54 359.54 359.54 359.54	11,830.0 11,830.0 11,830.0 11,830.0 11,830.0 11,830.0	9,330.0 9,430.0 9,530.0 9,630.0 9,718.0	297.1 296.3 295.5 294.7 294.0	9,334.7 9,434.6 9,534.5 9,634.5 9,722.4	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00

Database: Company: Project: Site: Well: Wellbore: Design:	PEDMB Midland Lea County, NM (NAD 83 NME) Mad Adder 31 State Com #581H OH Plan #0.1 RT				TVD Refere MD Referen North Refer	ice:	kb = 26' (kb = 26' (Grid	Well #581H kb = 26' @ 3532.0usft kb = 26' @ 3532.0usft Grid Minimum Curvature		
Design Targets Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude	
KOP(Mad Adder 31 Sta - plan hits target ce - Point		0.00	11,352.5	-694.0	375.0	425,262.00	766,997.00	32° 10' 1.277 N	103° 36' 14.598 W	
FTP(Mad Adder 31 Sta - plan hits target ce - Point		0.00	11,565.2	-644.0	374.0	425,312.00	766,996.00	32° 10' 1.772 N	103° 36' 14.605 W	
Fed Perf 2(Mad Adder 3 - plan hits target ce - Point		0.00	11,830.0	7,176.0	314.0	433,132.00	766,936.00	32° 11' 19.157 N	103° 36' 14.687 W	
PBHL(Mad Adder 31 St - plan hits target ce - Point		0.00	11,830.0	9,718.0	294.0	435,674.00	766,916.00	32° 11' 44.313 N	103° 36' 14.719 W	
Fed Perf 1(Mad Adder 3 - plan hits target ce - Point		0.00	11,830.0	4,535.0	334.0	430,491.00	766,956.00	32° 10' 53.023 N	103° 36' 14.662 W	

leog resources


Lea County, NM (NAD 83 NME)


Mad Adder 31 State Com #581H

Plan #0.1 RT

PROJECT DETAILS: Lea County, NM (NAD 83 NME)

Geodetic System: US State Plane 1983 Datum: North American Datum 1983 Ellipsoid: GRS 1980 Zone: New Mexico Eastern Zone System Datum: Mean Sea Level

1

- - - -

- - - -

- - - - -

- - - -

- - - - - - -

- + -

+++

. _ _ _ _ _ _ _

400-

800-

1200-

1600-

2000-

2400-

2800-

3200-

3600-

4000-

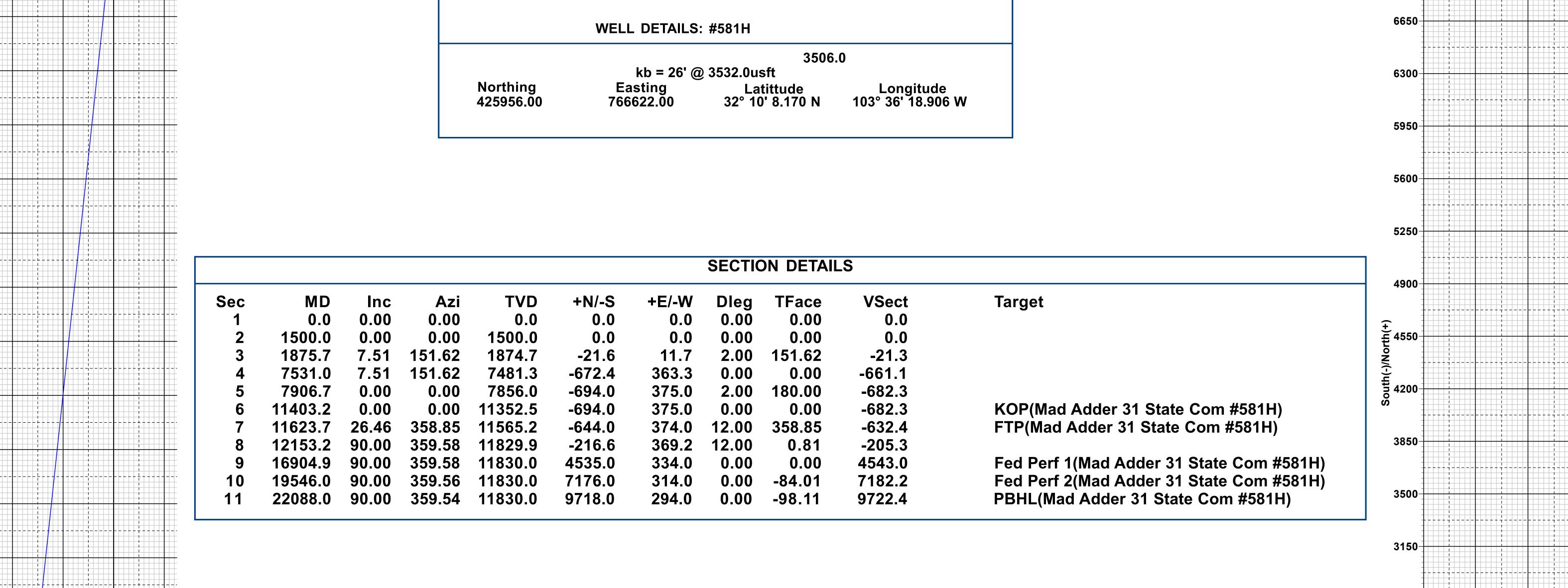
4400-

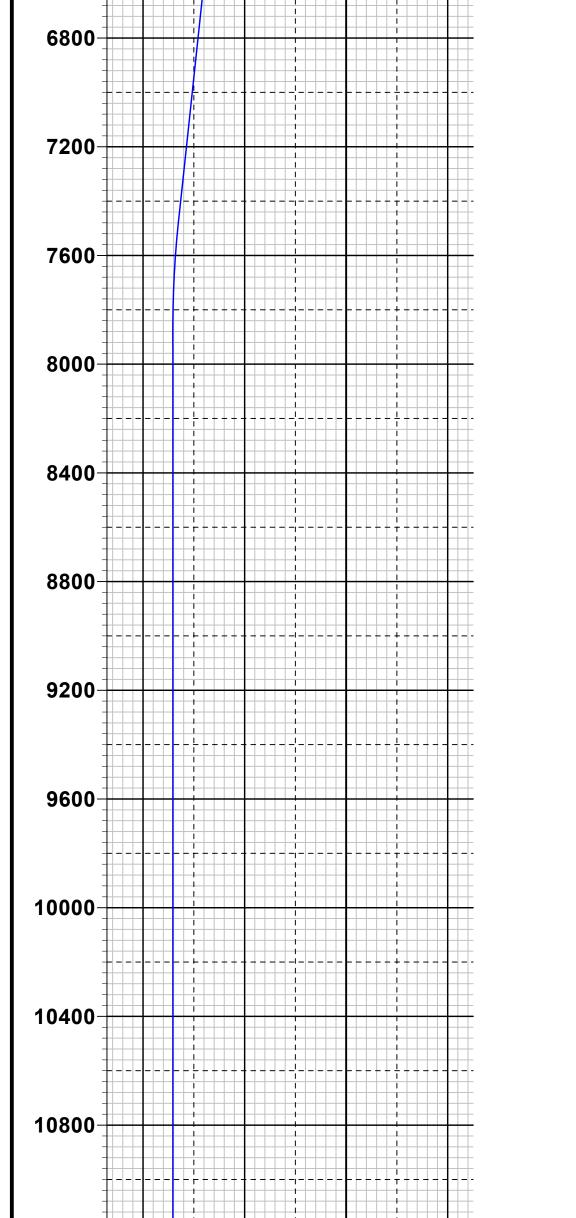
4800-

5200-

5600-

6000-

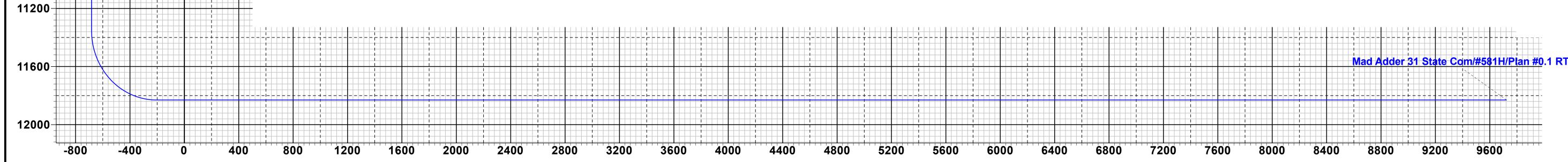

6400-

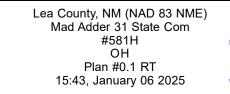

pt

Azimuths to Grid North True North: -0.39° Magnetic North: 5.75°

Magnetic Field Strength: 47086.2nT Dip Angle: 59.72° Date: 1/6/2025 Model: IGRF2020

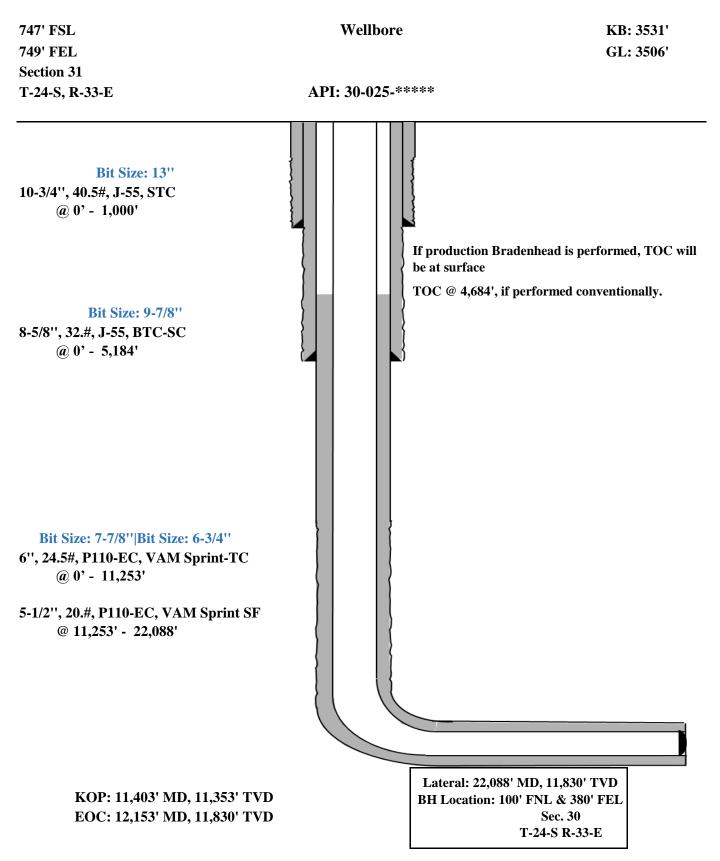
To convert a Magnetic Direction to a Grid Direction, Add 5.75° To convert a Magnetic Direction to a True Direction, Add 6.14° East To convert a True Direction to a Grid Direction, Subtract 0.39°





lame	TVD	+N/-S	+E/-W	Northing	Easting
(OP(Mad Adder 31 State Com #581H)	11352.5	-694.0	375.0	425262.00	766997.00
TP(Mad Adder 31 State Com #581H)	11565.2	-644.0	374.0	425312.00	766996.00
Fed Perf 1(Mad Adder 31 State Com #581H)	11830.0	4535.0	334.0	430491.00	766956.00
Fed Perf 2(Mad Adder 31 State Com #581H)	11830.0	7176.0	314.0	433132.00	766936.00
PBHL(Mad Adder 31 State Com #581H)	11830.0	9718.0	294.0	435674.00	766916.00

West(-)/East(+)



Vertical Section at 1.73°

Seog resources

Mad Adder 31 State Com 581H

éeog resources

Permit Information:

Well Name: Mad Adder 31 State Com 581H

Location: SHL: 747' FSL & 749' FEL, Section 31, T-24-S, R-33-E, LEA Co., N.M. BHL: 100' FNL & 380' FEL, Section 30, T-24-S, R-33-E, LEA Co., N.M.

Casing Program:

Hole	Interv	al MD	Interva	l TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13"	0	1,000	0	1,000	10-3/4"	40.5#	J-55	STC
9-7/8"	0	5,184	0	5,132	8-5/8"	32#	J-55	BTC-SC
7-7/8"	0	11,303	0	11,253	6"	24.5#	P110-EC	VAM Sprint-TC
6-3/4"	11,303	22,088	11,253	11,830	5-1/2"	20#	P110-EC	VAM Sprint SF

**For highlighted rows above, variance is requested to run entire string of either or casing string above due to availablility.

Cement Pro	ogram:					
	No.	Wt.	Yld	Slurry Description		
Depth	Sacks	ppg	Ft3/sk			
1 0001	230	13.5	1.73	Class C/H + additives (TOC @ Surface)		
1,000'	100	14.8	1.34	Class C/H + additives		
5,180'	430	12.7	1.11	Tail: Class C/H + additives + expansion additives (TOC @ Surface)		
5,180	250	14.8	1.5	Lead: Class C/H + additives (TOC @ 4,106')		
	890	10.5	3.21	Lead: Class C/H + additives (TOC @ 4,684')		
22,088'	1270	13.2	1.52	Tail: Class C/H + additives		

Mud Program:

Section	Depth	Туре	Weight (ppg)	Viscosity	Water Loss
Surface	0-1,000'	Fresh - Gel	8.6-9.2	28-34	N/c
Intermediate	1,000' - 5,130'	Brine	9.0-10.5	28-34	N/c
Production	5,130' – 22,088' Lateral	Oil Base	8.8-9.5	58-68	N/c - 6

Mad Adder 31 State Com 581H

TUBING REQUIREMENTS

EOG respectively requests an exception to the following NMOCD rule:

 19.15.16.10 Casing AND TUBING RQUIREMENTS: J (3): "The operator shall set tubing as near the bottom as practical and tubing perforations shall not be more than 250 feet above top of pay zone."

With horizontal flowing and gas lifted wells an end of tubing depth placed at or slightly above KOP is a conservative way to ensure the tubing stays clean from debris, plugging, and allows for fewer well interventions post offset completion. The deeper the tubulars are run into the curve, the higher the probability is that the tubing will become stuck in sand and or well debris as the well produces over time. An additional consideration for EOT placement during artificial lift installations is avoiding the high dog leg severity and inclinations found in the curve section of the wellbore to help improve reliability and performance. Dog leg severity and inclinations tend not to hamper gas lifted or flowing wells, but they do effect other forms of artificial lift like rod pump or ESP (electric submersible pump). Keeping the EOT above KOP is an industry best practice for those respective forms of artificial lift.

Mad Adder 31 State Com 581H

Hydrogen Sulfide Plan Summary

A. All personnel shall receive proper H2S training in accordance with Onshore Order III.C.3.a.

B. Briefing Area: two perpendicular areas will be designated by signs and readily accessible.

C. Required Emergency Equipment:

- Well control equipment
- a. Flare line 150' from wellhead to be ignited by flare gun.
- b. Choke manifold with a remotely operated choke.
- c. Mud/gas separator

■ Protective equipment for essential personnel.

Breathing apparatus:

- a. Rescue Packs (SCBA) 1 unit shall be placed at each breathing area, 2 shall be stored in the safety trailer.
- b. Work/Escape packs —4 packs shall be stored on the rig floor with sufficient air hose not to restrict work activity.
- c. Emergency Escape Packs —4 packs shall be stored in the doghouse for emergency evacuation.

Auxiliary Rescue Equipment:

- a. Stretcher
- b. Two OSHA full body harness
- c. 100 ft 5/8 inch OSHA approved rope
- d. 1-20# class ABC fire extinguisher

■ H2S detection and monitoring equipment:

The stationary detector with three sensors will be placed in the upper dog house if equipped, set to visually alarm @ 10 ppm and audible @ 14 ppm. Calibrate a minimum of every 30 days or as needed. The sensors will be placed in the following places: Rig floor / Bell nipple / End of flow line or where well bore fluid is being discharged.

(Gas sample tubes will be stored in the safety trailer)

- Visual warning systems.
 - a. One color code condition sign will be placed at the entrance to the site reflecting the possible conditions at the site.
 - b. A colored condition flag will be on display, reflecting the current condition

at

c. Two wind socks will be placed in strategic locations, visible from all angles.

■ Mud program:

The mud program has been designed to minimize the volume of H2S circulated to surface. The operator will have the necessary mud products to minimize hazards while drilling in H2S bearing zones.

■ Metallurgy:

All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.

■ Communication:

Communication will be via cell phones and land lines where available.

.

Mad Adder 31 State Com #581H Emergency Assistance Telephone List

PUBLIC SAFETY:		911 of
Lea County Sheriff's Department		(575) 396-3611
Rod Coffman		
Fire Department:		
Carlsbad		(575) 885-3125
Artesia		(575) 746-5050
Hospitals:		
Carlsbad		(575) 887-4121
Artesia		(575) 748-3333
Hobbs		(575) 392-1979
Dept. of Public Safety/Carlsbad		(575) 748-9718
Highway Department		(575) 885-3281
New Mexico Oil Conservation		(575) 476-3440
NMOCD Inspection Group - South		(575) 626-0830
U.S. Dept. of Labor		(575) 887-1174
EOG Resources, Inc.		
EOG / Midland	Office	(432) 686-3600
Company Drilling Consultants:		
David Dominque	Cell	(985) 518-5839
Mike Vann	Cell	(817) 980-5507
Drilling Engineer		
Stephen Davis	Cell	(432) 235-9789
Matt Day	Cell	(432) 296-4456
Drilling Manager		
Branden Keener	Office	(432) 686-3752
	Cell	(210) 294-3729
Drilling Superintendent		
Steve Kelly	Office	(432) 686-3706
	Cell	(210) 416-7894
H&P Drilling		
H&P Drilling	Office	(432) 563-5757
H&P 651 Drilling Rig	Rig	(903) 509-7131
	C	. ,
Tool Pusher:		
Johnathan Craig	Cell	(817) 760-6374
Brad Garrett		
Safety:		
Brian Chandler (HSE Manager)	Office	(432) 686-3695
-	Cell	(817) 239-0251