Sante Fe Main Office Phone: (505) 476-3441 General Information Phone: (505) 629-6116

Phone: (505) 629-6116

Online Phone Directory
https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Form C-101 August 1, 2011

Permit 382058

APPLICATION FOR PERMIT TO DRILL, RE-ENTER, DEEPEN, PLUGBACK, OR ADD A ZONE

	<u> </u>	
Operator Name and Address		2. OGRID Number
EOG RESOURCES INC	7377	
5509 Champions Drive		3. API Number
Midland, TX 79706		30-025-54315
4. Property Code	5. Property Name	6. Well No.
336936	MAD ADDER 31 STATE COM	582H

7. Surface Location

		N/S Line	Feet From	E/W Line	County
O 31 24S 33E	1219	S	2075	E	Lea

8. Proposed Bottom Hole Location

UL - Lot	Section	Township	Range	Lot Idn	Feet From	N/S Line	Feet From	E/W Line	County
Α	30	24S	33E	Α	100	N	1130	E	Lea

9. Pool Information

43225C;LWR BONE SPRIN	97964

Additional Well Information

11. Work Type	12. Well Type	13. Cable/Rotary	14. Lease Type	15. Ground Level Elevation
New Well	OIL		State	3524
16. Multiple	17. Proposed Depth	18. Formation 19. Contractor 2		20. Spud Date
N	22227	Bone Spring		2/15/2025
Depth to Ground water		Distance from nearest fresh water well	Distance to nearest surface water	

⊠ We will be using a closed-loop system in lieu of lined pits

21. Proposed Casing and Cement Program

			Ziii iopooda dadiiiş	g and comoner regram		
Type	Hole Size	Casing Size	Casing Weight/ft	Setting Depth	Sacks of Cement	Estimated TOC
Surf	13	10.75	40.5	1000	330	0
Int1	9.875	8.625	32	5338	680	0
Prod	7.875	6	24.5	11443	2160	4838
Prod	6.75	5.5	20	22227	2160	4838

Casing/Cement Program: Additional Comments

22. Proposed Blowout Prevention Program

22. Proposed Blowout Prevention Program									
Туре	Working Pressure	Test Pressure	Manufacturer						
Double Ram	5000	3000							

knowledge and be	elief.	true and complete to the best of my NMAC ⊠ and/or 19.15.14.9 (B) NMAC		OIL CONSERVATIO	N DIVISION
Printed Name:	Electronically filed by Patricia Do	nald	Approved By:	Matthew Gomez	
Title:	Regulatory Specialist		Title:		
Email Address:	Patricia_Donald@eogresources	.com	Approved Date:	2/5/2025	Expiration Date: 2/5/2027
Date:	1/22/2025	Phone: 432-488-7684	Conditions of Appr	oval Attached	

<u>C-102</u>			Energy		State of Nev	v Mexico l Resources	Denartment		Revise	ed July 9, 2024
Submit Electronic Via OCD Permitt						ION DIVIS			X Initial Submittal	
						Submit			Submittal Amended Report	
								Type:	As Drilled	
		V	/ELL LC	CATIO	N AND AC	REAGE DE	DICATION	PLAT		
API Number 30-025-	54315	,	Pool Code	97964	Pool N	ame	G-07 S243225		ONE SPRIN	
Property Code Property Name MAD ADDER						31 STATE C	ОМ			582H
OGRID No.	7377		Operator Name		EOG RESO	URCES, INC			Ground Level Eleva	ation 3524'
Surface Owner:	State Fee	Tribal Federal				Mineral Owner:	State Fee Tribal	Federal		
					Surface	Location				
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the N/S	Feet from the E/W	Latitude		Longitude	County
0	31	24-S	33-E	-	1219' S	2075' E	N 32.17023	69 W 1	03.6095401	LEA
						le Location				
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the N/S		Latitude		Longitude	County
Α	30	24-S	33-E	-	100' N	1130' E	N 32.19564	18 W 1	03.6065132	LEA
	I. au - a					<u> </u>	aran	la ur		
Dedicated Acres 1274.56	DEFIN	ining Well Defin	ing Well API			Overlapping Spacing Unit (Y/N) Consolidated Code C				
Order Numbers	1	PENDIN	IG NSP				der Common Ownership	o: Yes N		
		. 2.12			Viola Off D	1				
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the N/S	Point (KOP) Feet from the E/W	Latitude	1	Longitude	County
Р	31	24-S	33-E	-	50' S	1130' E	N 32.16702	23 W 1	03.6064791	LEA
					First Take	Point (FTP)				
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the N/S	Feet from the E/W	Latitude		Longitude	County
Р	31	24-S	33-E	-	100' S	1130' E	N 32.16715	98 W 1	03.6064793	LEA
					Last Take	Point (LTP)				
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the N/S	Feet from the E/W	Latitude		Longitude	County
А	30	24-S	33-E	-	100' N	1130' E	N 32.19564	18 W 1	03.6065132	LEA
TT 22 1 A A	CIT :C I			le : II :	T		lo u	Floor Elevation		
Unitized Area or A		REEMENT		Spacing Unity		al Vertical	Ground r	loor Elevation	3549'	
							•			
OPERATO			ained herein	is true and	complete to the	I herebu certifu	S CERTIFICAT	ion shown on	this plat was pigtfe	i/from field
that this orga- in the land in well at this lo or unleased m	nization eithe ucluding the ocation pursu ineral interes	er owns a work proposed botton ant to a contro	cing interest n hole location act with an o intary pooling	or unleased n n or has a ri wner of a wo	directional well, mineral interest ght to drill this rrking interest or a compulsory	notes of actual surveys made by me or under my supervision, and that the same				May the same
If this well is received The c unleased mine	s a horizontal onsent of at cral interest in the well's com	well, I furthe least one lesses in each tract (pleted interval	r certify that or owner of in the target	a working i				X	24508 241:14 PM	William William
Kay	la Mc	Conne	ll	0	1/06/25			12/16/2024	2:41:14 PM	UR MILLION
Signature O	MCCONI	NELL	Date			Signature and Seal of	of Professional Surveyor	Date	e	
Print Name						Certificate Number	Date of			
KAYLA_I E-mail Address	MCCON	NELL@E	OGRESC	DURCES	S.COM			10/26/2024		

C-102 Submit Electronically Via OCD Permitting	Energ	Sta y, Minerals OIL CONS	& Natura		-	ment		Revised July 9, 2024
Via OCD (Crimtung		OIL CONS	DLKVAI	ION DIV	ISION		Submittal	
							Type:	As Drilled
Property Name and Well Number								LAS DIMO
		MAD AL	DDER 31	STATE CO	OM 582H			
SURFACE LOCATION (SHL) NEW MEXICO EAST NAD 1983 X=765292 Y=426420 LAT.: N 32.1702369 LONG.: W 103.6095401 NAD 1927 X=724107 Y=426362 LAT.: N 32.1701127 LONG.: W 103.6090642 1219' FSL 2075' FEL KICK OFF POINT (KOP) NEW MEXICO EAST NAD 1983 X=766247 Y=425257 LAT.: N 32.1670223 LONG.: W 103.6064791 NAD 1927 X=725062 Y=425199 LAT.: N 32.1668981 LONG.: W 103.6060034 50' FSL 1130' FEL UPPER MOST PERF. (UMP) NEW MEXICO EAST NAD 1983 X=766246 Y=425307 LAT.: N 32.1671598 LONG.: W 103.6064793 NAD 1927 X=725061 Y=425249 LAT.: N 32.1670355 LONG.: W 103.6060036 100' FSL 1130' FEL	X=762061.69 Y=433099.55 \ X=762077.05 Y=430462.25 25	19		PPP2:	1128 V V V V V V V V V V V V V V V V V V V	X=767295.23 Y=435777.20 20 29 29 32 X=767314.1 Y=433134.3 X=767334. Y=430493.1	PROID 32 BOTT	POSED PERF. POINT (PPP1) NEW MEXICO EAST NAD 1983 X=766206 Y=430487 LAT.: N 32.1813980 LONG.: W 103.6064963 NAD 1927 X=725021 Y=430429 LAT.: N 32.1812738 LONG.: W 103.6060197 0' FNL 1128' FEL POSED PERF. POINT (PPP2) NEW MEXICO EAST NAD 1983 X=766186 Y=433127 LAT.: N 32.1886547 LONG.: W 103.6065049 NAD 1927 X=725001 Y=433068 LAT.: N 32.1885306 LONG.: W 103.6060279 2640' FSL 1128' FEL DWER MOST PERF. (LMP) FOM HOLE LOCATION (BHL) NEW MEXICO EAST NAD 1983 X=766166 Y=435669 LAT.: N 32.1956418 LONG.: W 103.6065132 NAD 1927 X=724981 Y=435610 LAT.: N 32.1955178 LONG.: W 103.6060358 100' FNL 1130' FEL
LOT 1 - 39.07 ACRES LOT 2 - 39.15 ACRES LOT 3 - 39.21 ACRES LOT 4 - 39.29 ACRES	Y=425181.75 36		X=764738.05		1130-1/ 14-1130-1/ 14-KOP	32 5 ×-767977	made by same is 10/26/	
Released to Imaging: 2/5/2025 3:52	T-25-S. R-32-E	T-25-S, R-33-E	Y=425197.71		-	X=767377.2 Y=425214.4 I	Signature	and Seal of Professional Surveyor: DOM/NG/INITIAL

Sante Fe Main Office Phone: (505) 476-3441 General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Form APD Conditions

Permit 382058

PERMIT CONDITIONS OF APPROVAL

Operator Name and Address:	API Number:
EOG RESOURCES INC [7377]	30-025-54315
5509 Champions Drive	Well:
Midland, TX 79706	MAD ADDER 31 STATE COM #582H

OCD Reviewer	Condition
matthew.gomez	A [C-103] Sub. Drilling (C-103N) is required within (10) days of spud.
matthew.gomez	Notify the OCD 24 hours prior to casing & cement.
	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string.
	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.
matthew.gomez	Cement is required to circulate on both surface and intermediate1 strings of casing.
matthew.gomez	If cement does not circulate on any string, a Cement Bond Log (CBL) is required for that string of casing.
matthew.gomez	File As Drilled C-102 and a directional Survey with C-104 completion packet.
matthew.gomez	Administrative order required for non-standard spacing unit prior to production.
matthew.gomez	Operator is only approved for casing Design A. If Design B is needed or any other change, please submit form C-103A to make the changes.

EOG Batch Casing

Pad Name: Mad Adder 31 State Com

SHL: Section 31, Township 24-S, Range 33-E, LEA County, NM

EOG requests for the below wells to be approved for all designs listed in the Blanket Casing Design ('EOG BLM Variance 5a - Alternate Shallow Casing Designs.pdf' OR 'EOG BLM Variance 5b - Alternate Deep Casing Designs.pdf') document. The MDs and TVDs for all intervals are within the boundary conditions. The max inclination and DLS are also within the boundary conditions. The directional plans for the wells are attached separately.

Well Name	Well Name API #	Surface		Intermediate		Production	
wen Name	AFI#	MD	TVD	MD	TVD	MD	TVD
Mad Adder 31 State Com #101H	30-025-****	1,000	1,000	5,352	5,132	20,043	9,634
Mad Adder 31 State Com #201H	30-025-****	1,000	1,000	5,182	5,132	20,621	10,365
Mad Adder 31 State Com #202H	30-025-****	1,000	1,000	5,162	5,132	20,600	10,365
Mad Adder 31 State Com #211H	30-025-****	1,000	1,000	5,234	5,132	20,668	10,365
Mad Adder 31 State Com #301H	30-025-****	1,000	1,000	5,176	5,132	20,721	10,470
Mad Adder 31 State Com #302H	30-025-****	1,000	1,000	5,152	5,132	20,696	10,470
Mad Adder 31 State Com #401H	30-025-****	1,000	1,000	5,336	5,132	21,145	10,750
Mad Adder 31 State Com #581H	30-025-****	1,000	1,000	5,184	5,132	22,088	11,830
Mad Adder 31 State Com #582H	30-025-****	1,000	1,000	5,338	5,132	22,227	11,830
Mad Adder 31 State Com #583H	30-025-****	1,000	1,000	5,145	5,132	22,048	11,830

EOG Batch Casing

Variances

EOG requests the additional variance(s) in the attached document(s):

- EOG BLM Variance 2a Intermediate Bradenhead Cement
- EOG BLM Variance 3d Production Offline Cement
- EOG BLM Variance 3a_b BOP Break-test and Offline Intermediate Cement
- EOG BLM Variance 4a Salt Section Annular Clearance
- EOG BLM Variance 5a Alternate Shallow Casing Designs

EOG Batch Casing

GEOLOGIC NAME OF SURFACE FORMATION:

Permian

ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler 813) ·
Tamarisk Anhydrite 975	5'
Top of Salt 1,6	17'
Base of Salt 5,0	32'
Lamar 5,2	81'
Bell Canyon 5,3	12'
Cherry Canyon 6,3	21'
Brushy Canyon 7,8	56'
Bone Spring Lime 9,4	27'
Leonard (Avalon) Shale 9,4	58'
1st Bone Spring Sand 10,	418'
2nd Bone Spring Shale 10,	634'
2nd Bone Spring Sand 11,	033'
3rd Bone Spring Carb	454'
3rd Bone Spring Sand 12,	028'

ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

	, , , , , , , , , , , , , , , , , , , ,	
Upper Permian Sands	0-400'	Fresh Water
Bell Canyon	5,312'	Oil
Cherry Canyon	6,321'	Oil
Brushy Canyon	7,856'	Oil
Leonard (Avalon) Shale	9,458'	Oil
1st Bone Spring Sand	10,418'	Oil
2nd Bone Spring Shale	10,634'	Oil
2nd Bone Spring Sand	11,033'	Oil

No other Formations are expected to give up oil, gas or fresh water in measurable quantities. Surface fresh water sands will be protected by setting surface casing at 1,000' and circulating cement back to surface.

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator:EOG F	Resources, Inc	OGRII	D: 7377		Date:	1/21/2025	
II. Type: ⊠ Original Other.	I □ Amendm	ent due to □ 19.15	.27.9.D(6)(a) NM	MAC □ 19.15.27.	9.D(6)(b) N	ТМАС □	
If Other, please describe:	:						
III. Well(s): Provide the be recompleted from a si					wells propo	sed to be di	rilled or proposed to
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipa Gas MC		Anticipated Produced Water BBL/D
MAD ADDER 31 STATE COM 582H		O-31-24S-33E	1219' FSL & 2075' FEL	+/- 1000	+/- 3500	+/- 3	3000
V. Anticipated Schedu or proposed to be recom	lle: Provide th pleted from a	e following inform single well pad or c	ation for each ne	ew or recompleted entral delivery poi	well or set	of wells pro	oposed to be drilled
Well Name	API	Spud Date	TD Reached Date	Completion Commencement		nitial Flow Back Date	First Production Date
MAD ADDER 31 STATE COM 582H		01/30/25	03/26/25	04/1/25	05	/1/25	05/15/25
VI. Separation Equipm VII. Operational Pract Subsection A through For VIII. Best Management during active and planne	ices: ⊠ Attac of 19.15.27.8 t Practices: □	ch a complete descr NMAC. ⊠ Attach a comple	ription of the act	tions Operator wi	ll take to co	omply with	the requirements of

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

🗵 Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering	Available Maximum Daily Capacity
			Start Date	of System Segment Tie-in

XI. Map. Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the
production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of
the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system	\square will \square will not have capaci	city to gather 100% of the	anticipated natural gas
production volume from the well prior to the date of first	st production.		

XIII. Line Pressure. Operator \square does \square does not anticipate that its existing well(s) connected to the same segment, or po	rtion, of th	ıe
natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the no	ew well(s)).

☐ Attach Operator's plan	to manage production i	in response to the	increased line pressure

XIV. Confidentiality: \square Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information prov	vided in
Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information of the	rmation
for which confidentiality is asserted and the basis for such assertion.	

(h)

(i)

Section 3 - Certifications <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal: 🗵 Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or ☐ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. If Operator checks this box, Operator will select one of the following: Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or Venting and Flaring Plan.

Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including: power generation on lease; (a) **(b)** power generation for grid; (c) compression on lease; (d) liquids removal on lease; reinjection for underground storage; (e) **(f)** reinjection for temporary storage; **(g)** reinjection for enhanced oil recovery;

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

other alternative beneficial uses approved by the division.

fuel cell production; and

- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Kayla McConnell
Printed Name: KAYLA MCCONNELL
Title: Regulatory Specialist
E-mail Address: KAYLA_MCCONNELL@EOGRESOURCES.COM
Date: 01/21/2025
Phone: (432) 265-6804
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

Natural Gas Management Plan Items VI-VIII

VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture.

- Separation equipment will be sized to provide adequate separation for anticipated rates.
- Adequate separation relates to retention time for Liquid Liquid separation and velocity for Gas-Liquid separation.
- Collection systems are appropriately sized to handle facility production rates on all (3) phases.
- Ancillary equipment and metering is selected to be serviced without flow interruptions or the need to release
 gas from the well.

VII. Operational Practices: Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F 19.15.27.8 NMAC.

Drilling Operations

- All flare stacks will be properly sized. The flare stacks will be located at a minimum 100' from the nearest surface hole location on the pad.
- All natural gas produced during drilling operations will be flared, unless there is an equipment malfunction and/or to avoid risk of an immediate and substantial adverse impact on safety and the environment, at which point the gas will be vented.

Completions/Recompletions Operations

- New wells will not be flowed back until they are connected to a properly sized gathering system.
- The facility will be built/sized for maximum anticipated flowrates and pressures to minimize waste.
- For flowback operations, multiple stages of separation will be used as well as excess VRU and blowers to make sure waste is minimized off the storage tanks and facility.
- During initial flowback, the well stream will be routed to separation equipment.
- At an existing facility, when necessary, post separation natural gas will be flared until it meets pipeline specifications, at which point it will be turned into a collection system.
- At a new facility, post separation natural gas will be vented until storage tanks can safely function, at which point it will be flared until it meets pipeline spec.

Production Operations

- Weekly AVOs will be performed on all facilities.
- All flares will be equipped with auto-ignition systems and continuous pilot operations.
- After a well is stabilized from liquid unloading, the well will be turned back into the collection system.
- All plunger lift systems will be optimized to limit the amount of waste.
- All tanks will have automatic gauging equipment installed.
- Leaking thief hatches found during AVOs will be cleaned and properly re-sealed.

Performance Standards

- Production equipment will be designed to handle maximum anticipated rates and pressure.
- All flared gas will be combusted in a flare stack that is properly sized and designed to ensure proper combustion.
- Weekly AVOs will be performed on all wells and facilities that produce more than 60 Mcfd.

Measurement & Estimation

- All volume that is flared and vented that is not measured will be estimated.
- All measurement equipment for flared volumes will conform to API 14.10.
- No meter bypasses with be installed.

• When metering is not practical due to low pressure/low rate, the vented or flared volume will be estimated.

VIII. Best Management Practices: Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

- During downhole well maintenance, EOG will use best management practices to vent as minimally as possible.
- Prior to the commencement of any maintenance, the tank or vessel will be isolated from the rest of the facilities.
- All valves upstream of the equipment will be closed and isolated.
- After equipment has been isolated, the equipment will be blown down to as low a pressure as possible into the collection system.
- If the equipment being maintained cannot be relieved into the collection system, it shall be released to a tank where the vapor can either be captured or combusted if possible.
- After downhole well maintenance, natural gas will be flared until it reaches pipeline specification.

Midland

Lea County, NM (NAD 83 NME) Mad Adder 31 State Com #582H

OH

Plan: Plan #0.1 RT

Standard Planning Report

06 January, 2025

Database: PEDMB Company: Midland

Project: Lea County, NM (NAD 83 NME)
Site: Mad Adder 31 State Com

Well: #582H Wellbore: 0H

Design: Plan #0.1 RT

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well #582H

kb = 26' @ 3550.0usft kb = 26' @ 3550.0usft

Grid

Minimum Curvature

Project Lea County, NM (NAD 83 NME)

Map System:US State Plane 1983Geo Datum:North American Datum 1983Map Zone:New Mexico Eastern Zone

System Datum:

Mean Sea Level

Site Mad Adder 31 State Com

 Site Position:
 Northing:
 426,421.00 usft
 Latitude:
 32° 10' 12.858 N

 From:
 Map
 Easting:
 765,325.00 usft
 Longitude:
 103° 36' 33.958 W

Position Uncertainty: 0.0 usft Slot Radius: 13-3/16 "

Well #582H

Well Position +N/-S 0.0 usft Northing: 426,420.00 usft Latitude: 32° 10' 12.850 N +E/-W 0.0 usft Easting: 765,292.00 usft Longitude: 103° 36' 34.342 W **Position Uncertainty** 0.0 usft Wellhead Elevation: usft **Ground Level:** 3,524.0 usft

Grid Convergence: 0.39 $^{\circ}$

Wellbore OH

 Magnetics
 Model Name
 Sample Date
 Declination (°)
 Dip Angle (°)
 Field Strength (nT)

 IGRF2020
 1/6/2025
 6.14
 59.72
 47,086.39557890

Design Plan #0.1 RT

0.0

Audit Notes:

Version:Phase:PLANTie On Depth:0.0

 Vertical Section:
 Depth From (TVD) (usft)
 +N/-S +E/-W (usft)
 Direction (usft)

 0.0
 0.0
 0.0
 5.40

Plan Survey Tool Program Date 1/6/2025

22,227.3

Depth From Depth To
(usft) (usft) Survey (Wellbore)

 Survey (Wellbore)
 Tool Name
 Remarks

 Plan #0.1 RT (OH)
 EOG MWD+IFR1

MWD + IFR1

Database: PEDMB Company: Midland

Project: Lea County, NM (NAD 83 NME)
Site: Mad Adder 31 State Com

Well: #582H Wellbore: 0H

Design: Plan #0.1 RT

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #582H

kb = 26' @ 3550.0usft kb = 26' @ 3550.0usft

Grid

Plan Sections										
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,252.1	15.04	140.61	2,243.5	-75.9	62.3	2.00	2.00	0.00	140.61	
7,293.9	15.04	140.61	7,112.5	-1,087.1	892.7	0.00	0.00	0.00	0.00	
8,046.0	0.00	0.00	7,856.0	-1,163.0	955.0	2.00	-2.00	0.00	180.00	
11,542.5	0.00	0.00	11,352.5	-1,163.0	955.0	0.00	0.00	0.00	0.00	KOP(Mad Adder 31 S
11,762.9	26.46	358.85	11,565.2	-1,113.0	954.0	12.00	12.00	-0.52	358.85	FTP(Mad Adder 31 St
12,292.4	90.00	359.58	11,829.9	-685.6	949.2	12.00	12.00	0.14	0.81	
17,045.1	90.00	359.58	11,830.0	4,067.0	914.0	0.00	0.00	0.00	0.00	Fed Perf 1(Mad Adde
19,685.2	90.00	359.56	11,830.0	6,707.0	894.0	0.00	0.00	0.00	-84.16	Fed Perf 2(Mad Adde
22,227.3	90.00	359.54	11,830.0	9,249.0	874.0	0.00	0.00	0.00	-98.60	PBHL(Mad Adder 31

Database: PEDMB Company: Midland

Project: Lea County, NM (NAD 83 NME)
Site: Mad Adder 31 State Com

 Well:
 #582H

 Wellbore:
 OH

 Design:
 Plan #0.1 RT

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #582H

kb = 26' @ 3550.0usft kb = 26' @ 3550.0usft

Grid

Measured	Design:	Plan #0.1 RT									
Measured Depth Inclination Azimuth Depth Uusth U	Planned Survey										
100.0	Measured Depth			Depth			Section	Rate	Rate	Rate	
200.0 0.00 0.00 0.00 200.0 0.0 0.0 0.0 0											
300.0											
400.0											
\$60.0											
600.0	400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00	
600.0	500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00	
TOOL COLOR TOOL COLOR TOOL COLOR TOOL COLOR TOOL COLOR TOOL COLOR TOOL T											
800.0											
900.0											
1,100.0	900.0	0.00		900.0			0.0				
1,100.0	1 000 0	0.00	0.00	1 000 0	0.0	0.0	0.0	0.00	0.00	0.00	
1,200.0											
1,300.0	· ·										
1,400.0	· ·										
1,500.0 0.00 0.00 1,500.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.0	· ·										
1,600.0 2.00 140.61 1,600.0 -1.3 1.1 -1.2 2.00 2.00 0.00 1,700.0 4.00 140.61 1,699.8 -5.4 4.4 -5.0 2.00 2.00 0.00 1,800.0 6.00 140.61 1,799.5 -12.1 10.0 -11.1 2.00 2.00 0.00 2,000.0 10.00 140.61 1,898.7 -21.5 17.7 -19.8 2.00 2.00 0.00 2,000.0 10.00 140.61 2,995.6 -48.4 39.7 -44.4 2.00 2.00 0.00 2,200.0 14.00 140.61 2,193.1 -65.8 54.0 -60.4 2.00 2.00 0.00 2,252.1 15.04 140.61 2,243.5 -75.9 62.3 -69.7 2.00 2.00 0.00 2,400.0 15.04 140.61 2,386.3 -105.5 86.7 -96.9 0.00 0.00 0.00 2,500.0 15.04<											
1,700.0											
1,800.0 6.00 140.61 1,799.5 -12.1 10.0 -11.1 2.00 2.00 0.00 1,900.0 8.00 140.61 1,898.7 -21.5 17.7 -19.8 2.00 2.00 0.00 2,000.0 10.00 140.61 2,995.6 -48.4 39.7 -44.4 2.00 2.00 0.00 2,200.0 14.00 140.61 2,193.1 -65.8 54.0 -60.4 2.00 2.00 0.00 2,252.1 15.04 140.61 2,289.7 -85.5 70.2 -78.5 0.00 0.00 2,400.0 15.04 140.61 2,289.7 -85.5 70.2 -78.5 0.00 0.00 0.00 2,500.0 15.04 140.61 2,386.3 -105.5 86.7 -96.9 0.00 0.00 0.00 2,500.0 15.04 140.61 2,482.9 -125.6 103.1 -115.3 0.00 0.00 0.00 2,600.0 15.04 140.61 2,579.5 -145.6 119.6 -133.7 0.00 0.00 <td< th=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
1,900.0 8.00 140.61 1,898.7 -21.5 17.7 -19.8 2.00 2.00 0.00 2,000.0 10.00 140.61 1,997.5 -33.6 27.6 -30.9 2.00 2.00 0.00 2,100.0 12.00 140.61 2,095.6 -48.4 39.7 -44.4 2.00 2.00 0.00 2,200.0 14.00 140.61 2,193.1 -65.8 54.0 -60.4 2.00 2.00 0.00 2,252.1 15.04 140.61 2,283.5 -75.9 62.3 -69.7 2.00 2.00 0.00 2,300.0 15.04 140.61 2,286.3 -105.5 86.7 -96.9 0.00 0.00 0.00 2,500.0 15.04 140.61 2,386.3 -105.5 86.7 -96.9 0.00 0.00 0.00 2,500.0 15.04 140.61 2,482.9 -12.56 103.1 -115.3 0.00 0.00 0.00 2,500.0											
2,100.0 12.00 140.61 2,095.6 -48.4 39.7 -44.4 2.00 2.00 0.00 2,200.0 14.00 140.61 2,193.1 -65.8 54.0 -60.4 2.00 2.00 0.00 2,252.1 15.04 140.61 2,249.5 -75.9 62.3 -69.7 2.00 2.00 0.00 2,300.0 15.04 140.61 2,289.7 -85.5 70.2 -78.5 0.00 0.00 0.00 2,400.0 15.04 140.61 2,386.3 -105.5 86.7 -96.9 0.00 0.00 0.00 2,500.0 15.04 140.61 2,482.9 -125.6 103.1 -115.3 0.00 0.00 0.00 2,600.0 15.04 140.61 2,579.5 -145.6 119.6 -133.7 0.00 0.00 0.00 2,800.0 15.04 140.61 2,676.0 -165.7 136.1 -152.2 0.00 0.00 0.00 3,900.0				,							
2,100.0 12.00 140.61 2,095.6 -48.4 39.7 -44.4 2.00 2.00 0.00 2,200.0 14.00 140.61 2,193.1 -65.8 54.0 -60.4 2.00 2.00 0.00 2,252.1 15.04 140.61 2,249.5 -75.9 62.3 -69.7 2.00 2.00 0.00 2,300.0 15.04 140.61 2,289.7 -85.5 70.2 -78.5 0.00 0.00 0.00 2,400.0 15.04 140.61 2,386.3 -105.5 86.7 -96.9 0.00 0.00 0.00 2,500.0 15.04 140.61 2,482.9 -125.6 103.1 -115.3 0.00 0.00 0.00 2,600.0 15.04 140.61 2,579.5 -145.6 119.6 -133.7 0.00 0.00 0.00 2,800.0 15.04 140.61 2,676.0 -165.7 136.1 -152.2 0.00 0.00 0.00 3,900.0	2.000.0	10.00	140.61	1.997.5	-33.6	27.6	-30.9	2.00	2.00	0.00	
2,200.0 14.00 140.61 2,193.1 -65.8 54.0 -60.4 2.00 2.00 0.00 2,252.1 15.04 140.61 2,243.5 -75.9 62.3 -69.7 2.00 2.00 0.00 2,300.0 15.04 140.61 2,289.7 -85.5 70.2 -78.5 0.00 0.00 0.00 2,400.0 15.04 140.61 2,386.3 -105.5 86.7 -96.9 0.00 0.00 0.00 2,500.0 15.04 140.61 2,579.5 -145.6 119.6 -133.7 0.00 0.00 0.00 2,600.0 15.04 140.61 2,579.5 -145.6 119.6 -133.7 0.00 0.00 0.00 2,800.0 15.04 140.61 2,579.5 -145.8 152.5 -170.6 0.00 0.00 0.00 2,900.0 15.04 140.61 2,869.2 -205.8 169.0 -189.0 0.00 0.00 0.00 3,000.0 <td></td>											
2,252.1 15.04 140.61 2,243.5 -75.9 62.3 -69.7 2.00 2.00 0.00 2,300.0 15.04 140.61 2,289.7 -85.5 70.2 -78.5 0.00 0.00 0.00 2,400.0 15.04 140.61 2,386.3 -105.5 86.7 -96.9 0.00 0.00 0.00 2,500.0 15.04 140.61 2,482.9 -125.6 103.1 -115.3 0.00 0.00 0.00 2,600.0 15.04 140.61 2,676.0 -165.7 136.1 -152.2 0.00 0.00 0.00 2,700.0 15.04 140.61 2,676.0 -165.7 136.1 -152.2 0.00 0.00 0.00 2,900.0 15.04 140.61 2,676.0 -185.8 152.5 -170.6 0.00 0.00 0.00 3,000.0 15.04 140.61 2,869.2 -205.8 169.0 -189.0 0.00 0.00 0.00 3,100.0											
2,400.0 15.04 140.61 2,386.3 -105.5 86.7 -96.9 0.00 0.00 0.00 2,500.0 15.04 140.61 2,482.9 -125.6 103.1 -115.3 0.00 0.00 0.00 2,600.0 15.04 140.61 2,579.5 -145.6 119.6 -133.7 0.00 0.00 0.00 2,700.0 15.04 140.61 2,676.0 -165.7 136.1 -152.2 0.00 0.00 0.00 2,800.0 15.04 140.61 2,772.6 -185.8 152.5 -170.6 0.00 0.00 0.00 2,900.0 15.04 140.61 2,869.2 -205.8 169.0 -189.0 0.00 0.00 0.00 3,000.0 15.04 140.61 2,965.8 -225.9 185.5 -207.4 0.00 0.00 0.00 3,200.0 15.04 140.61 3,062.3 -245.9 201.9 -225.8 0.00 0.00 0.00 3			140.61				-69.7				
2,500.0 15.04 140.61 2,482.9 -125.6 103.1 -115.3 0.00 0.00 0.00 2,600.0 15.04 140.61 2,579.5 -145.6 119.6 -133.7 0.00 0.00 0.00 2,700.0 15.04 140.61 2,676.0 -165.7 136.1 -152.2 0.00 0.00 0.00 2,800.0 15.04 140.61 2,772.6 -185.8 152.5 -170.6 0.00 0.00 0.00 2,900.0 15.04 140.61 2,869.2 -205.8 169.0 -189.0 0.00 0.00 0.00 3,000.0 15.04 140.61 2,965.8 -225.9 185.5 -207.4 0.00 0.00 0.00 3,100.0 15.04 140.61 3,062.3 -245.9 201.9 -225.8 0.00 0.00 0.00 3,200.0 15.04 140.61 3,158.9 -266.0 218.4 -244.3 0.00 0.00 0.00 <td< th=""><td>2,300.0</td><td>15.04</td><td>140.61</td><td>2,289.7</td><td>-85.5</td><td>70.2</td><td>-78.5</td><td>0.00</td><td>0.00</td><td>0.00</td><td></td></td<>	2,300.0	15.04	140.61	2,289.7	-85.5	70.2	-78.5	0.00	0.00	0.00	
2,600.0 15.04 140.61 2,579.5 -145.6 119.6 -133.7 0.00 0.00 0.00 2,700.0 15.04 140.61 2,676.0 -165.7 136.1 -152.2 0.00 0.00 0.00 2,800.0 15.04 140.61 2,772.6 -185.8 152.5 -170.6 0.00 0.00 0.00 2,900.0 15.04 140.61 2,869.2 -205.8 169.0 -189.0 0.00 0.00 0.00 3,000.0 15.04 140.61 2,965.8 -225.9 185.5 -207.4 0.00 0.00 0.00 3,100.0 15.04 140.61 3,062.3 -245.9 201.9 -225.8 0.00 0.00 0.00 3,200.0 15.04 140.61 3,158.9 -266.0 218.4 -244.3 0.00 0.00 0.00 3,300.0 15.04 140.61 3,355.5 -286.0 234.9 -262.7 0.00 0.00 0.00 3,600.0 15.04 140.61 3,545.2 -346.2 284.3 -317.9 <											
2,700.0 15.04 140.61 2,676.0 -165.7 136.1 -152.2 0.00 0.00 0.00 2,800.0 15.04 140.61 2,772.6 -185.8 152.5 -170.6 0.00 0.00 0.00 2,900.0 15.04 140.61 2,869.2 -205.8 169.0 -189.0 0.00 0.00 0.00 3,000.0 15.04 140.61 2,965.8 -225.9 185.5 -207.4 0.00 0.00 0.00 3,100.0 15.04 140.61 3,062.3 -245.9 201.9 -225.8 0.00 0.00 0.00 3,200.0 15.04 140.61 3,158.9 -266.0 218.4 -244.3 0.00 0.00 0.00 3,300.0 15.04 140.61 3,255.5 -286.0 234.9 -262.7 0.00 0.00 0.00 3,400.0 15.04 140.61 3,352.1 -306.1 251.4 -281.1 0.00 0.00 0.00 <td< th=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
2,800.0 15.04 140.61 2,772.6 -185.8 152.5 -170.6 0.00 0.00 0.00 2,900.0 15.04 140.61 2,869.2 -205.8 169.0 -189.0 0.00 0.00 0.00 3,000.0 15.04 140.61 2,965.8 -225.9 185.5 -207.4 0.00 0.00 0.00 3,100.0 15.04 140.61 3,062.3 -245.9 201.9 -225.8 0.00 0.00 0.00 3,200.0 15.04 140.61 3,158.9 -266.0 218.4 -244.3 0.00 0.00 0.00 3,300.0 15.04 140.61 3,255.5 -286.0 234.9 -262.7 0.00 0.00 0.00 3,400.0 15.04 140.61 3,352.1 -306.1 251.4 -281.1 0.00 0.00 0.00 3,500.0 15.04 140.61 3,448.6 -326.2 267.8 -299.5 0.00 0.00 0.00 <td< th=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
2,900.0 15.04 140.61 2,869.2 -205.8 169.0 -189.0 0.00 0.00 0.00 3,000.0 15.04 140.61 2,965.8 -225.9 185.5 -207.4 0.00 0.00 0.00 3,100.0 15.04 140.61 3,062.3 -245.9 201.9 -225.8 0.00 0.00 0.00 3,200.0 15.04 140.61 3,158.9 -266.0 218.4 -244.3 0.00 0.00 0.00 3,300.0 15.04 140.61 3,255.5 -286.0 234.9 -262.7 0.00 0.00 0.00 3,400.0 15.04 140.61 3,352.1 -306.1 251.4 -281.1 0.00 0.00 0.00 3,500.0 15.04 140.61 3,448.6 -326.2 267.8 -299.5 0.00 0.00 0.00 3,600.0 15.04 140.61 3,641.8 -366.3 300.8 -336.4 0.00 0.00 0.00 3,800.0 15.04 140.61 3,834.9 -406.4 333.7 -373.2 <											
3,000.0 15.04 140.61 2,965.8 -225.9 185.5 -207.4 0.00 0.00 0.00 3,100.0 15.04 140.61 3,062.3 -245.9 201.9 -225.8 0.00 0.00 0.00 3,200.0 15.04 140.61 3,158.9 -266.0 218.4 -244.3 0.00 0.00 0.00 3,300.0 15.04 140.61 3,255.5 -286.0 234.9 -262.7 0.00 0.00 0.00 3,400.0 15.04 140.61 3,352.1 -306.1 251.4 -281.1 0.00 0.00 0.00 3,500.0 15.04 140.61 3,448.6 -326.2 267.8 -299.5 0.00 0.00 0.00 3,600.0 15.04 140.61 3,545.2 -346.2 284.3 -317.9 0.00 0.00 0.00 3,700.0 15.04 140.61 3,641.8 -366.3 300.8 -336.4 0.00 0.00 0.00 3,800.0 15.04 140.61 3,834.9 -406.4 333.7 -373.2 <											
3,100.0 15.04 140.61 3,062.3 -245.9 201.9 -225.8 0.00 0.00 0.00 3,200.0 15.04 140.61 3,158.9 -266.0 218.4 -244.3 0.00 0.00 0.00 3,300.0 15.04 140.61 3,255.5 -286.0 234.9 -262.7 0.00 0.00 0.00 3,400.0 15.04 140.61 3,352.1 -306.1 251.4 -281.1 0.00 0.00 0.00 3,500.0 15.04 140.61 3,448.6 -326.2 267.8 -299.5 0.00 0.00 0.00 3,600.0 15.04 140.61 3,545.2 -346.2 284.3 -317.9 0.00 0.00 0.00 3,700.0 15.04 140.61 3,641.8 -366.3 300.8 -336.4 0.00 0.00 0.00 3,800.0 15.04 140.61 3,834.9 -406.4 333.7 -373.2 0.00 0.00 0.00 4,000.0 15.04 140.61 3,931.5 -426.5 350.2 -391.6 <											
3,200.0 15.04 140.61 3,158.9 -266.0 218.4 -244.3 0.00 0.00 0.00 3,300.0 15.04 140.61 3,255.5 -286.0 234.9 -262.7 0.00 0.00 0.00 3,400.0 15.04 140.61 3,352.1 -306.1 251.4 -281.1 0.00 0.00 0.00 3,500.0 15.04 140.61 3,448.6 -326.2 267.8 -299.5 0.00 0.00 0.00 3,600.0 15.04 140.61 3,545.2 -346.2 284.3 -317.9 0.00 0.00 0.00 3,700.0 15.04 140.61 3,641.8 -366.3 300.8 -336.4 0.00 0.00 0.00 3,800.0 15.04 140.61 3,738.3 -386.3 317.2 -354.8 0.00 0.00 0.00 4,000.0 15.04 140.61 3,834.9 -406.4 333.7 -373.2 0.00 0.00 0.00 4,000.0 15.04 140.61 4,028.1 -446.5 366.7 -410.0 <											
3,300.0 15.04 140.61 3,255.5 -286.0 234.9 -262.7 0.00 0.00 0.00 3,400.0 15.04 140.61 3,352.1 -306.1 251.4 -281.1 0.00 0.00 0.00 3,500.0 15.04 140.61 3,448.6 -326.2 267.8 -299.5 0.00 0.00 0.00 3,600.0 15.04 140.61 3,545.2 -346.2 284.3 -317.9 0.00 0.00 0.00 3,700.0 15.04 140.61 3,641.8 -366.3 300.8 -336.4 0.00 0.00 0.00 3,800.0 15.04 140.61 3,738.3 -386.3 317.2 -354.8 0.00 0.00 0.00 3,900.0 15.04 140.61 3,834.9 -406.4 333.7 -373.2 0.00 0.00 0.00 4,000.0 15.04 140.61 3,931.5 -426.5 350.2 -391.6 0.00 0.00 0.00 4,100.0 15.04 140.61 4,028.1 -446.5 366.7 -410.0 <	· ·										
3,400.0 15.04 140.61 3,352.1 -306.1 251.4 -281.1 0.00 0.00 0.00 3,500.0 15.04 140.61 3,448.6 -326.2 267.8 -299.5 0.00 0.00 0.00 3,600.0 15.04 140.61 3,545.2 -346.2 284.3 -317.9 0.00 0.00 0.00 3,700.0 15.04 140.61 3,641.8 -366.3 300.8 -336.4 0.00 0.00 0.00 3,800.0 15.04 140.61 3,738.3 -386.3 317.2 -354.8 0.00 0.00 0.00 3,900.0 15.04 140.61 3,834.9 -406.4 333.7 -373.2 0.00 0.00 0.00 4,000.0 15.04 140.61 3,931.5 -426.5 350.2 -391.6 0.00 0.00 0.00 4,100.0 15.04 140.61 4,028.1 -446.5 366.7 -410.0 0.00 0.00 0.00 4,200.0 15.04 140.61 4,124.6 -466.6 383.1 -428.5 0.00 0.00 0.00	· ·										
3,500.0 15.04 140.61 3,448.6 -326.2 267.8 -299.5 0.00 0.00 0.00 3,600.0 15.04 140.61 3,545.2 -346.2 284.3 -317.9 0.00 0.00 0.00 3,700.0 15.04 140.61 3,641.8 -366.3 300.8 -336.4 0.00 0.00 0.00 3,800.0 15.04 140.61 3,738.3 -386.3 317.2 -354.8 0.00 0.00 0.00 4,000.0 15.04 140.61 3,834.9 -406.4 333.7 -373.2 0.00 0.00 0.00 4,000.0 15.04 140.61 3,931.5 -426.5 350.2 -391.6 0.00 0.00 0.00 4,100.0 15.04 140.61 4,028.1 -446.5 366.7 -410.0 0.00 0.00 0.00 4,200.0 15.04 140.61 4,124.6 -466.6 383.1 -428.5 0.00 0.00 0.00											
3,600.0 15.04 140.61 3,545.2 -346.2 284.3 -317.9 0.00 0.00 0.00 3,700.0 15.04 140.61 3,641.8 -366.3 300.8 -336.4 0.00 0.00 0.00 3,800.0 15.04 140.61 3,738.3 -386.3 317.2 -354.8 0.00 0.00 0.00 3,900.0 15.04 140.61 3,834.9 -406.4 333.7 -373.2 0.00 0.00 0.00 4,000.0 15.04 140.61 3,931.5 -426.5 350.2 -391.6 0.00 0.00 0.00 4,100.0 15.04 140.61 4,028.1 -446.5 366.7 -410.0 0.00 0.00 0.00 4,200.0 15.04 140.61 4,124.6 -466.6 383.1 -428.5 0.00 0.00 0.00	· ·										
3,700.0 15.04 140.61 3,641.8 -366.3 300.8 -336.4 0.00 0.00 0.00 3,800.0 15.04 140.61 3,738.3 -386.3 317.2 -354.8 0.00 0.00 0.00 3,900.0 15.04 140.61 3,834.9 -406.4 333.7 -373.2 0.00 0.00 0.00 4,000.0 15.04 140.61 3,931.5 -426.5 350.2 -391.6 0.00 0.00 0.00 4,100.0 15.04 140.61 4,028.1 -446.5 366.7 -410.0 0.00 0.00 0.00 4,200.0 15.04 140.61 4,124.6 -466.6 383.1 -428.5 0.00 0.00 0.00	· ·			,							
3,800.0 15.04 140.61 3,738.3 -386.3 317.2 -354.8 0.00 0.00 0.00 3,900.0 15.04 140.61 3,834.9 -406.4 333.7 -373.2 0.00 0.00 0.00 4,000.0 15.04 140.61 3,931.5 -426.5 350.2 -391.6 0.00 0.00 0.00 4,100.0 15.04 140.61 4,028.1 -446.5 366.7 -410.0 0.00 0.00 0.00 4,200.0 15.04 140.61 4,124.6 -466.6 383.1 -428.5 0.00 0.00 0.00											
3,900.0 15.04 140.61 3,834.9 -406.4 333.7 -373.2 0.00 0.00 0.00 4,000.0 15.04 140.61 3,931.5 -426.5 350.2 -391.6 0.00 0.00 0.00 4,100.0 15.04 140.61 4,028.1 -446.5 366.7 -410.0 0.00 0.00 0.00 4,200.0 15.04 140.61 4,124.6 -466.6 383.1 -428.5 0.00 0.00 0.00											
4,000.0 15.04 140.61 3,931.5 -426.5 350.2 -391.6 0.00 0.00 0.00 4,100.0 15.04 140.61 4,028.1 -446.5 366.7 -410.0 0.00 0.00 0.00 4,200.0 15.04 140.61 4,124.6 -466.6 383.1 -428.5 0.00 0.00 0.00											
4,100.0 15.04 140.61 4,028.1 -446.5 366.7 -410.0 0.00 0.00 0.00 4,200.0 15.04 140.61 4,124.6 -466.6 383.1 -428.5 0.00 0.00 0.00	,										
4,200.0 15.04 140.61 4,124.6 -466.6 383.1 -428.5 0.00 0.00 0.00											
	· ·										
4.300.0 15.04 140.61 4.221.2 -486.6 399.6 -446.9 0.00 0.00 0.00	· ·										
1,521.0 0.00 0.00 0.00 0.00	4,300.0	15.04	140.61	4,221.2	-486.6	399.6	-446.9	0.00	0.00	0.00	
4,400.0 15.04 140.61 4,317.8 -506.7 416.1 -465.3 0.00 0.00 0.00											
4,500.0 15.04 140.61 4,414.4 -526.7 432.5 -483.7 0.00 0.00 0.00											
4,600.0 15.04 140.61 4,510.9 -546.8 449.0 -502.1 0.00 0.00 0.00											
4,700.0 15.04 140.61 4,607.5 -566.9 465.5 -520.6 0.00 0.00 0.00											
4,800.0 15.04 140.61 4,704.1 -586.9 481.9 -539.0 0.00 0.00 0.00	4,800.0	15.04	140.61		-586.9	481.9	-539.0	0.00	0.00	0.00	
4,900.0 15.04 140.61 4,800.7 -607.0 498.4 -557.4 0.00 0.00 0.00	4,900.0	15.04	140.61	4,800.7	-607.0	498.4	-557.4	0.00	0.00	0.00	
5,000.0 15.04 140.61 4,897.2 -627.0 514.9 -575.8 0.00 0.00 0.00	· ·										
5,100.0 15.04 140.61 4,993.8 -647.1 531.4 -594.2 0.00 0.00 0.00	· ·										
5,200.0 15.04 140.61 5,090.4 -667.1 547.8 -612.7 0.00 0.00 0.00	5,200.0	15.04	140.61	5,090.4	-667.1	547.8	-612.7	0.00	0.00	0.00	

Database: PEDMB Company: Midland

Project: Lea County, NM (NAD 83 NME)
Site: Mad Adder 31 State Com

 Well:
 #582H

 Wellbore:
 OH

 Design:
 Plan #0.1 RT

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:
Survey Calculation Method:

Well #582H kb = 26' @ 3550.0usft kb = 26' @ 3550.0usft

Grid

Design:	Plan #0.1 R1								
Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,300.0	15.04	140.61	5,186.9	-687.2	564.3	-631.1	0.00	0.00	0.00
5,400.0	15.04	140.61	5,283.5	-707.3	580.8	-649.5	0.00	0.00	0.00
5,500.0	15.04	140.61	5,380.1	-727.3	597.2	-667.9	0.00	0.00	0.00
5,600.0	15.04	140.61	5,476.7	-747.4	613.7	-686.3	0.00	0.00	0.00
5,700.0	15.04	140.61	5,573.2	-767.4	630.2	-704.7	0.00	0.00	0.00
5,800.0	15.04	140.61	5,669.8	-787.5	646.7	-723.2	0.00	0.00	0.00
5,900.0	15.04	140.61	5,766.4	-807.6	663.1	-741.6	0.00	0.00	0.00
6,000.0	15.04	140.61	5,863.0	-827.6	679.6	-760.0	0.00	0.00	0.00
6,100.0	15.04	140.61	5,959.5	-847.7	696.1	-778.4	0.00	0.00	0.00
6,200.0	15.04	140.61	6,056.1	-867.7	712.5	-796.8	0.00	0.00	0.00
6,300.0	15.04	140.61	6,152.7	-887.8	729.0	-815.3	0.00	0.00	0.00
6,400.0	15.04	140.61	6,249.3	-907.8	745.5	-833.7	0.00	0.00	0.00
6,500.0	15.04	140.61	6,345.8	-927.9	761.9	-852.1	0.00	0.00	0.00
6,600.0	15.04	140.61	6,442.4	-948.0	778.4	-870.5	0.00	0.00	0.00
6,700.0	15.04	140.61	6,539.0	-968.0	794.9	-888.9	0.00	0.00	0.00
6,800.0	15.04	140.61	6,635.5	-988.1	811.4	-907.4	0.00	0.00	0.00
6,900.0	15.04	140.61	6,732.1	-1,008.1	827.8	-925.8	0.00	0.00	0.00
7,000.0	15.04	140.61	6,828.7	-1,008.1	844.3	-944.2	0.00	0.00	0.00
7,100.0	15.04	140.61	6,925.3	-1,048.2	860.8	-962.6	0.00	0.00	0.00
7,200.0	15.04	140.61	7,021.8	-1,068.3	877.2	-981.0	0.00	0.00	0.00
7,293.9	15.04	140.61	7,112.5	-1,087.1	892.7	-998.3	0.00	0.00	0.00
7,300.0	14.92	140.61	7,118.4	-1,088.4	893.7	-999.5	2.00	-2.00	0.00
7,400.0 7,500.0	12.92 10.92	140.61 140.61	7,215.5 7,313.3	-1,107.0	909.0	-1,016.5	2.00	-2.00 -2.00	0.00
7,500.0	8.92	140.61	7,313.3 7,411.8	-1,122.9 -1,136.2	922.1 933.0	-1,031.2 -1,043.4	2.00 2.00	-2.00 -2.00	0.00 0.00
7,700.0	6.92	140.61	7,510.9	-1,136.2	941.8	-1,043.4	2.00	-2.00 -2.00	0.00
7,800.0	4.92	140.61	7,610.3	-1,154.8	948.3	-1,060.5	2.00	-2.00	0.00
7,900.0	2.92	140.61	7,710.1	-1,160.1	952.6	-1,065.4	2.00	-2.00	0.00
8,000.0	0.92	140.61	7,810.0	-1,162.7	954.8	-1,067.7	2.00	-2.00	0.00
8,046.0 8,100.0	0.00 0.00	0.00 0.00	7,856.0 7,910.0	-1,163.0 -1,163.0	955.0 955.0	-1,068.0 -1,068.0	2.00 0.00	-2.00 0.00	0.00 0.00
						-1,000.0			
8,200.0	0.00	0.00	8,010.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
8,300.0	0.00	0.00	8,110.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
8,400.0	0.00	0.00	8,210.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
8,500.0	0.00	0.00	8,310.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
8,600.0	0.00	0.00	8,410.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
8,700.0	0.00	0.00	8,510.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
8,800.0	0.00	0.00	8,610.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
8,900.0	0.00	0.00	8,710.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
9,000.0	0.00	0.00	8,810.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
9,100.0	0.00	0.00	8,910.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
9,200.0	0.00	0.00	9,010.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
9,300.0	0.00	0.00	9,110.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
9,400.0	0.00	0.00	9,210.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
9,500.0	0.00	0.00	9,310.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
9,600.0	0.00	0.00	9,410.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
9,700.0	0.00	0.00	9,510.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
9,800.0	0.00	0.00	9,610.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
9,900.0	0.00	0.00	9,710.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
10,000.0	0.00	0.00	9,810.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
10,100.0	0.00	0.00	9,910.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
10,200.0	0.00	0.00	10,010.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
10,300.0	0.00	0.00	10,110.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
10,400.0									

Database: PEDMB Company: Midland

Project: Lea County, NM (NAD 83 NME)
Site: Mad Adder 31 State Com

Well: #582H

Wellbore: OH
Design: Plan #0.1 RT

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well #582H

kb = 26' @ 3550.0usft kb = 26' @ 3550.0usft

Grid

esign:	Flail #U. I Ki								
lanned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,500.0	0.00	0.00	10,310.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
10,600.0	0.00	0.00	10,410.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
10,700.0	0.00	0.00	10,510.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
10,800.0	0.00	0.00	10,610.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
10,900.0	0.00	0.00	10,710.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
11,000.0	0.00	0.00	10,810.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
11,100.0	0.00	0.00	10,910.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
11,200.0	0.00	0.00	11,010.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
11,300.0	0.00	0.00	11,110.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
11,400.0	0.00	0.00	11,210.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
11,500.0	0.00	0.00	11,310.0	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
11,542.5	0.00	0.00	11,352.5	-1,163.0	955.0	-1,068.0	0.00	0.00	0.00
11,550.0	0.90	358.85	11,360.0	-1,162.9	955.0	-1,067.9	12.00	12.00	0.00
11,575.0	3.90	358.85	11,385.0	-1,161.9	955.0	-1,066.9	12.00	12.00	0.00
11,600.0	6.90	358.85	11,409.9	-1,159.5	954.9	-1,064.6	12.00	12.00	0.00
11,625.0	9.90	358.85	11,434.6	-1,155.9	954.9	-1,060.9	12.00	12.00	0.00
11,650.0	12.91	358.85	11,459.1	-1,150.9	954.8	-1,056.0	12.00	12.00	0.00
11,675.0	15.91	358.85	11,483.3	-1,144.7	954.6	-1,049.8	12.00	12.00	0.00
11,700.0	18.91	358.85	11,507.2	-1,137.3	954.5	-1,042.4	12.00	12.00	0.00
11,725.0	21.91	358.85	11,530.6	-1,128.5	954.3	-1,033.8	12.00	12.00	0.00
11,750.0	24.91	358.85	11,553.5	-1,118.6	954.1	-1,023.9	12.00	12.00	0.00
11,762.9	26.46	358.85	11,565.2	-1,113.0	954.0	-1,018.3	12.00	12.00	0.00
11,775.0	27.91	358.90	11,575.9	-1,107.5	953.9	-1,012.8	12.00	12.00	0.36
11,800.0	30.91	358.98	11,597.7	-1,095.2	953.7	-1,000.6	12.00	12.00	0.31
11,825.0	33.91	359.04	11,618.8	-1,081.8	953.4	-987.3	12.00	12.00	0.26
11,850.0	36.91	359.10	11,639.2	-1,067.3	953.2	-972.9	12.00	12.00	0.22
11,875.0	39.91	359.15	11,658.8	-1,051.8	953.0	-957.5	12.00	12.00	0.20
11,900.0	42.91	359.19	11,677.5	-1,035.3	952.7	-941.1	12.00	12.00	0.17
11,925.0	45.91	359.23	11,695.4	-1,017.8	952.5	-923.7	12.00	12.00	0.15
11,950.0	48.91	359.26	11,712.3	-999.4	952.2	-905.4	12.00	12.00	0.14
11,975.0	51.91	359.29	11,728.2	-980.1	952.0	-886.2	12.00	12.00	0.13
12,000.0	54.91	359.32	11,743.1	-960.1	951.8	-866.3	12.00	12.00	0.12
12,025.0	57.91	359.35	11,757.0	-939.2	951.5	-845.6	12.00	12.00	0.11
12,050.0	60.91	359.38	11,769.7	-917.7	951.3	-824.2	12.00	12.00	0.10
12,075.0	63.91	359.40	11,781.3	-895.6	951.0	-802.1	12.00	12.00	0.10
12,100.0	66.91	359.42	11,791.7	-872.8	950.8	-779.5	12.00	12.00	0.09
12,125.0	69.91	359.44	11,800.9	-849.6	950.6	-756.4	12.00	12.00	0.09
12,150.0	72.91	359.47	11,808.8	-825.9	950.3	-732.8	12.00	12.00	0.08
12,175.0	75.91	359.49	11,815.5	-801.8	950.1	-708.9	12.00	12.00	80.0
12,200.0	78.91	359.51	11,821.0	-777.4	949.9	-684.6	12.00	12.00	0.08
12,225.0	81.91	359.52	11,825.2	-752.8	949.7	-660.1	12.00	12.00	0.08
12,250.0	84.91	359.54	11,828.0	-728.0	949.5	-635.4	12.00	12.00	0.08
12,275.0	87.91	359.56	11,829.6	-703.0	949.3	-610.6	12.00	12.00	0.08
12,292.4	90.00	359.58	11,829.9	-685.6	949.2	-593.2	12.00	12.00	0.08
12,300.0	90.00	359.58	11,829.9	-678.0	949.1	-585.7	0.00	0.00	0.00
12,400.0	90.00	359.58	11,829.9	-578.0	948.4	-486.2	0.00	0.00	0.00
12,500.0	90.00	359.58	11,829.9	-478.0	947.6	-386.8	0.00	0.00	0.00
12,600.0	90.00	359.58	11,829.9	-378.0	946.9	-287.3	0.00	0.00	0.00
12,700.0	90.00	359.58	11,829.9	-278.0	946.2	-187.8	0.00	0.00	0.00
12,800.0	90.00	359.58	11,829.9	-178.0	945.4	-88.3	0.00	0.00	0.00
12,900.0	90.00	359.58	11,829.9	-78.0	944.7	11.2	0.00	0.00	0.00
13,000.0	90.00	359.58	11,829.9	22.0	943.9	110.7	0.00	0.00	0.00
13,100.0	90.00	359.58	11,829.9	122.0	943.2	210.2	0.00	0.00	0.00
13,200.0	90.00	359.58	11,829.9	222.0	942.5	309.6	0.00	0.00	0.00

Database: PEDMB Company: Midland

Project: Lea County, NM (NAD 83 NME)
Site: Mad Adder 31 State Com

 Well:
 #582H

 Wellbore:
 OH

 Design:
 Plan #0.1 RT

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #582H

kb = 26' @ 3550.0usft kb = 26' @ 3550.0usft

Grid

Design:	Plan #0.1 R1								
Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
13,300.0	90.00	359.58	11,829.9	322.0	941.7	409.1	0.00	0.00	0.00
13,400.0	90.00	359.58	11,829.9	422.0	941.0	508.6	0.00	0.00	0.00
13,500.0	90.00	359.58	11,829.9	521.9	940.2	608.1	0.00	0.00	0.00
13,600.0	90.00	359.58	11,829.9	621.9	939.5	707.6	0.00	0.00	0.00
13,700.0	90.00	359.58	11,829.9	721.9	938.8	807.1	0.00	0.00	0.00
13,800.0	90.00	359.58	11,829.9	821.9	938.0	906.5	0.00	0.00	0.00
13,900.0	90.00	359.58	11,829.9	921.9	937.3	1,006.0	0.00	0.00	0.00
14,000.0	90.00	359.58	11,829.9	1,021.9	936.5	1,105.5	0.00	0.00	0.00
14,100.0	90.00	359.58	11,829.9	1,121.9	935.8	1,205.0	0.00	0.00	0.00
14,200.0	90.00	359.58	11,829.9	1,221.9	935.1	1,304.5	0.00	0.00	0.00
14,300.0	90.00	359.58	11,830.0	1,321.9	934.3	1,404.0	0.00	0.00	0.00
14,400.0	90.00	359.58	11,830.0	1,421.9	933.6	1,503.4	0.00	0.00	0.00
14,500.0	90.00	359.58	11,830.0	1,521.9	932.8	1,602.9	0.00	0.00	0.00
14,600.0	90.00	359.58	11,830.0	1,621.9	932.1	1,702.4	0.00	0.00	0.00
14,700.0	90.00	359.58	11,830.0	1,721.9	931.4	1,801.9	0.00	0.00	0.00
14,800.0	90.00	359.58	11,830.0	1,821.9	930.6	1,901.4	0.00	0.00	0.00
14,900.0	90.00	359.58	11,830.0	1,921.9	929.9	2,000.9	0.00	0.00	0.00
15,000.0	90.00	359.58	11,830.0	2,021.9	929.1	2,100.4	0.00	0.00	0.00
15,100.0	90.00	359.58	11,830.0	2,121.9	928.4	2,199.8	0.00	0.00	0.00
15,200.0	90.00	359.58	11,830.0	2,221.9	927.7	2,299.3	0.00	0.00	0.00
15,300.0	90.00	359.58	11,830.0	2,321.9	926.9	2,398.8	0.00	0.00	0.00
15,400.0	90.00	359.58	11,830.0	2,421.9	926.2	2,498.3	0.00	0.00	0.00
15,500.0	90.00	359.58	11,830.0	2,521.9	925.4	2,597.8	0.00	0.00	0.00
15,600.0	90.00	359.58	11,830.0	2,621.9	924.7	2,697.3	0.00	0.00	0.00
15,700.0	90.00	359.58	11,830.0	2,721.9	924.0	2,796.7	0.00	0.00	0.00
15,800.0	90.00	359.58	11,830.0	2,821.9	923.2	2,896.2	0.00	0.00	0.00
15,900.0	90.00	359.58	11,830.0	2,921.9	922.5	2,995.7	0.00	0.00	0.00
16,000.0	90.00	359.58	11,830.0	3,021.9	921.7	3,095.2	0.00	0.00	0.00
16,100.0	90.00	359.58	11,830.0	3,121.9	921.0	3,194.7	0.00	0.00	0.00
16,200.0	90.00	359.58	11,830.0	3,221.9	920.3	3,294.2	0.00	0.00	0.00
16,300.0	90.00	359.58	11,830.0	3,321.9	919.5	3,393.6	0.00	0.00	0.00
16,400.0	90.00	359.58	11,830.0	3,421.9	918.8	3,493.1	0.00	0.00	0.00
16,500.0	90.00	359.58	11,830.0	3,521.9	918.0	3,592.6	0.00	0.00	0.00
16,600.0	90.00	359.58	11,830.0	3,621.9	917.3	3,692.1	0.00	0.00	0.00
16,700.0	90.00	359.58	11,830.0	3,721.9	916.6	3,791.6	0.00	0.00	0.00
16,800.0	90.00	359.58	11,830.0	3,821.9	915.8	3,891.1	0.00	0.00	0.00
16,900.0	90.00	359.58	11,830.0	3,921.9	915.1	3,990.5	0.00	0.00	0.00
17,000.0	90.00	359.58	11,830.0	4,021.9	914.3	4,090.0	0.00	0.00	0.00
17,045.1	90.00	359.58	11,830.0	4,067.0	914.0	4,134.9	0.00	0.00	0.00
17,100.0	90.00	359.58	11,830.0	4,121.8	913.6	4,189.5	0.00	0.00	0.00
17,200.0	90.00	359.57	11,830.0	4,221.8	912.9	4,289.0	0.00	0.00	0.00
17,300.0	90.00	359.57	11,830.0	4,321.8	912.1	4,388.5	0.00	0.00	0.00
17,400.0	90.00	359.57	11,830.0	4,421.8	911.4	4,488.0	0.00	0.00	0.00
17,500.0	90.00	359.57	11,830.0	4,521.8	910.6	4,587.5	0.00	0.00	0.00
17,600.0	90.00	359.57	11,830.0	4,621.8	909.9	4,686.9	0.00	0.00	0.00
17,700.0	90.00	359.57	11,830.0	4,721.8	909.1	4,786.4	0.00	0.00	0.00
17,800.0 17,900.0	90.00 90.00	359.57 359.57	11,830.0 11,830.0	4,821.8 4,921.8	908.4 907.6	4,885.9 4,985.4	0.00 0.00	0.00 0.00	0.00 0.00
18,000.0	90.00	359.57	11,830.0	5,021.8	906.9	5,084.9	0.00	0.00	0.00
18,100.0	90.00	359.57	11,830.0	5,121.8	906.1	5,184.4	0.00	0.00	0.00
18,200.0	90.00	359.57	11,830.0	5,221.8	905.4	5,283.8	0.00	0.00	0.00
18,300.0 18,400.0	90.00 90.00	359.57 359.57	11,830.0 11,830.0	5,321.8 5,421.8	904.6 903.9	5,383.3 5,482.8	0.00 0.00	0.00 0.00	0.00 0.00
18,500.0	90.00	359.56	11,830.0	5,521.8	903.1	5,582.3	0.00	0.00	0.00

Database: PEDMB Company: Midland

Project: Lea County, NM (NAD 83 NME)
Site: Mad Adder 31 State Com

 Well:
 #582H

 Wellbore:
 OH

 Design:
 Plan #0.1 RT

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #582H

kb = 26' @ 3550.0usft kb = 26' @ 3550.0usft

Grid

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
18,600.0	90.00	359.56	11,830.0	5,621.8	902.3	5,681.8	0.00	0.00	0.00
18,700.0	90.00	359.56	11,830.0	5,721.8	901.6	5,781.2	0.00	0.00	0.00
18,800.0	90.00	359.56	11,830.0	5,821.8	900.8	5,880.7	0.00	0.00	0.00
18,900.0	90.00	359.56	11,830.0	5,921.8	900.0	5,980.2	0.00	0.00	0.00
19,000.0	90.00	359.56	11,830.0	6,021.8	899.3	6,079.7	0.00	0.00	0.00
19,100.0	90.00	359.56	11,830.0	6,121.8	898.5	6,179.2	0.00	0.00	0.00
19,200.0	90.00	359.56	11,830.0	6,221.8	897.7	6,278.7	0.00	0.00	0.00
19,300.0	90.00	359.56	11,830.0	6,321.8	897.0	6,378.1	0.00	0.00	0.00
19,400.0	90.00	359.56	11,830.0	6,421.8	896.2	6,477.6	0.00	0.00	0.00
19,500.0	90.00	359.56	11,830.0	6,521.8	895.4	6,577.1	0.00	0.00 0.00	0.00
19,600.0	90.00	359.56	11,830.0	6,621.8	894.7	6,676.6	0.00		0.00
19,685.2 19,700.0	90.00 90.00	359.56 359.56	11,830.0 11,830.0	6,707.0	894.0 893.9	6,761.4	0.00	0.00	0.00
,			,	6,721.8		6,776.1	0.00	0.00	0.00
19,800.0	90.00	359.56	11,830.0	6,821.8	893.1	6,875.5	0.00	0.00	0.00
19,900.0	90.00	359.55	11,830.0	6,921.8	892.3	6,975.0	0.00	0.00	0.00
20,000.0	90.00	359.55	11,830.0	7,021.8	891.6	7,074.5	0.00	0.00	0.00
20,100.0	90.00	359.55	11,830.0	7,121.8	890.8	7,174.0	0.00	0.00	0.00
20,200.0	90.00	359.55	11,830.0	7,221.8	890.0	7,273.5	0.00	0.00	0.00
20,300.0	90.00	359.55	11,830.0	7,321.8	889.2	7,372.9	0.00	0.00	0.00
20,400.0	90.00	359.55	11,830.0	7,421.8	888.4	7,472.4	0.00	0.00	0.00
20,500.0	90.00	359.55	11,830.0	7,521.8	887.7	7,571.9	0.00	0.00	0.00
20,600.0	90.00	359.55	11,830.0	7,621.7	886.9	7,671.4	0.00	0.00	0.00
20,700.0	90.00	359.55	11,830.0	7,721.7	886.1	7,770.9	0.00	0.00	0.00
20,800.0	90.00	359.55	11,830.0	7,821.7	885.3	7,870.3	0.00	0.00	0.00
20,900.0	90.00	359.55	11,830.0	7,921.7	884.5	7,969.8	0.00	0.00	0.00
21,000.0	90.00	359.55	11,830.0	8,021.7	883.7	8,069.3	0.00	0.00	0.00
21,100.0	90.00	359.55	11,830.0	8,121.7	882.9	8,168.8	0.00	0.00	0.00
21,200.0	90.00	359.55	11,830.0	8,221.7	882.2	8,268.3	0.00	0.00	0.00
21,300.0	90.00	359.55	11,830.0	8,321.7	881.4	8,367.7	0.00	0.00	0.00
21,400.0	90.00	359.55	11,830.0	8,421.7	880.6	8,467.2	0.00	0.00	0.00
21,500.0	90.00	359.55	11,830.0	8,521.7	879.8	8,566.7	0.00	0.00	0.00
21,600.0	90.00	359.55	11,830.0	8,621.7	879.0	8,666.2	0.00	0.00	0.00
21,700.0	90.00	359.55	11,830.0	8,721.7	878.2	8,765.7	0.00	0.00	0.00
21,800.0	90.00	359.54	11,830.0	8,821.7	877.4	8,865.1	0.00	0.00	0.00
21,900.0	90.00	359.54	11,830.0	8,921.7	876.6	8,964.6	0.00	0.00	0.00
22,000.0	90.00	359.54	11,830.0	9,021.7	875.8	9,064.1	0.00	0.00	0.00
22,100.0	90.00	359.54	11,830.0	9,121.7	875.0	9,163.6	0.00	0.00	0.00
22,200.0	90.00	359.54	11,830.0	9,221.7	874.2	9,263.0	0.00	0.00	0.00
22,227.3	90.00	359.54	11,830.0	9,249.0	874.0	9,290.2	0.00	0.00	0.00

eog resources

Planning Report

Database: PEDMB Company: Midland

Project: Lea County, NM (NAD 83 NME)
Site: Mad Adder 31 State Com

Well: #582H Wellbore: OH

Design: Plan #0.1 RT

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #582H

kb = 26' @ 3550.0usft kb = 26' @ 3550.0usft

Grid

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
KOP(Mad Adder 31 Stat - plan hits target cent - Point	0.00 er	0.00	11,352.5	-1,163.0	955.0	425,257.00	766,247.00	32° 10' 1.278 N	103° 36' 23.323 W
FTP(Mad Adder 31 State - plan hits target cent - Point	0.00 er	0.00	11,565.2	-1,113.0	954.0	425,307.00	766,246.00	32° 10' 1.773 N	103° 36' 23.331 W
Fed Perf 2(Mad Adder 3 - plan hits target cent - Point	0.00 er	0.00	11,830.0	6,707.0	894.0	433,127.00	766,186.00	32° 11' 19.158 N	103° 36' 23.414 W
PBHL(Mad Adder 31 Sta - plan hits target cent - Point	0.00 er	0.00	11,830.0	9,249.0	874.0	435,669.00	766,166.00	32° 11' 44.313 N	103° 36' 23.447 W
Fed Perf 1(Mad Adder 3 - plan hits target cent - Point	0.00 er	0.00	11,830.0	4,067.0	914.0	430,487.00	766,206.00	32° 10′ 53.033 N	103° 36' 23.389 W

eog resources

Azimuths to Grid North True North: -0.39° Magnetic North: 5.75° **Magnetic Field** Strength: 47086.4nT Dip Angle: 59.72° Date: 1/6/2025 Model: IGRF2020

2000-

2800

8800

10000

10400

10800

12000

+++++-

-|-|-|-|-|-|-|-

1600

2000

2400

To convert a Magnetic Direction to a Grid Direction, Add 5.75° To convert a Magnetic Direction to a True Direction, Add 6.14° East To convert a True Direction to a Grid Direction, Subtract 0.39°

Lea County, NM (NAD 83 NME)

Mad Adder 31 State Com #582H

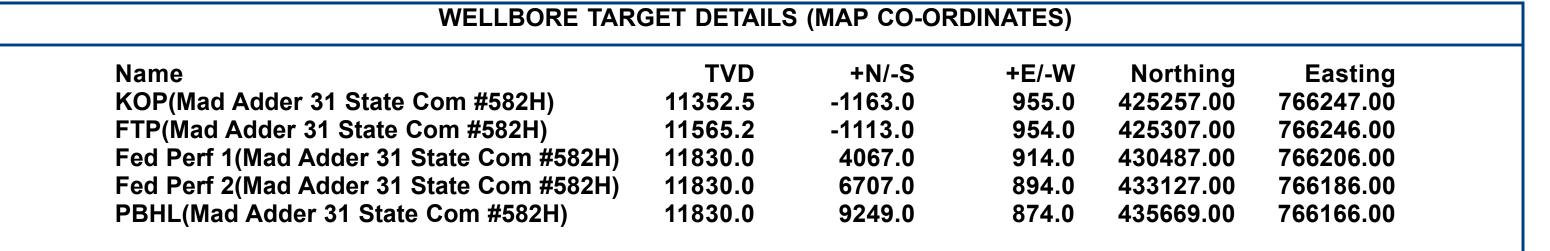
Plan #0.1 RT

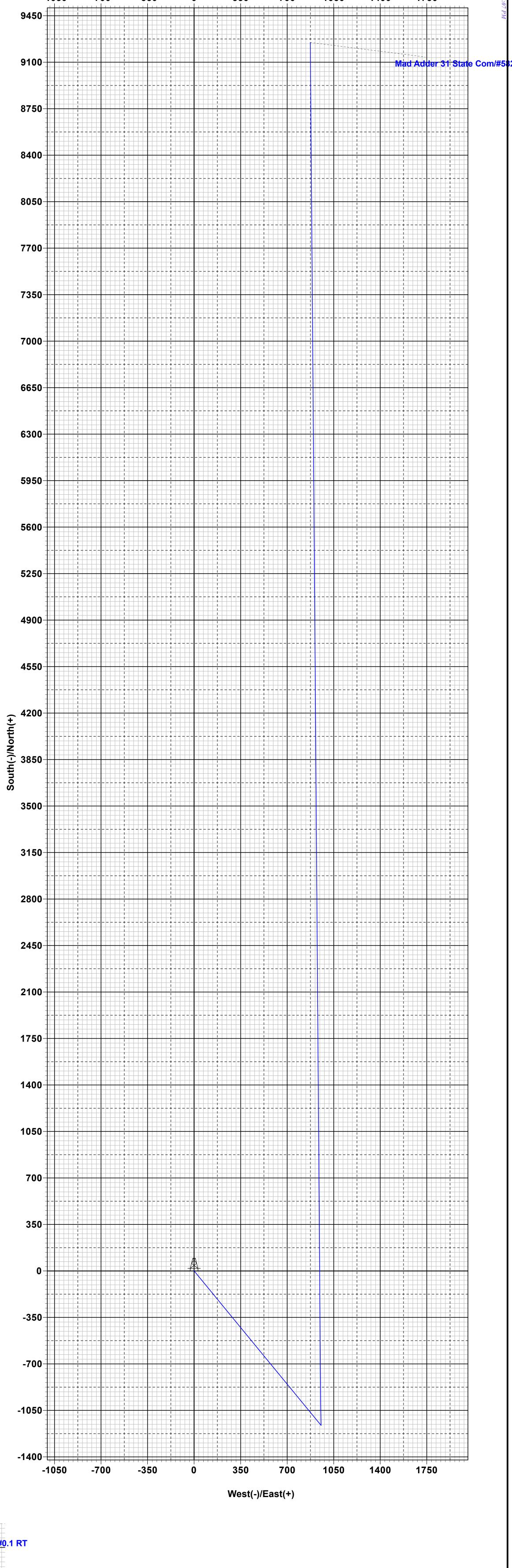
PROJECT DETAILS: Lea County, NM (NAD 83 NME)

Geodetic System: US State Plane 1983 Datum: North American Datum 1983 Ellipsoid: GRS 1980 Zone: New Mexico Eastern Zone

System Datum: Mean Sea Level

WELL DETAILS: #582H


3524.0


kb = 26' @ 3550.0usft Northing 426420.00

Easting **765292.00** Latittude 32° 10' 12.850 N

Longitude 103° 36' 34.342 W

- 4								SECTIO	ON DETAIL	_S	
	Sec	MD	Inc	Azi	TVD	+N/-S	+E/-W	Dleg	TFace	VSect	Target
- +	1	0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.0	
	2	1500.0	0.00	0.00	1500.0	0.0	0.0	0.00	0.00	0.0	
1	3	2252.1	15.04	140.61	2243.5	-75.9	62.3	2.00	140.61	-69.7	
- +	4	7293.9	15.04	140.61	7112.5	-1087.1	892.7	0.00	0.00	-998.3	
1	5	8046.0	0.00	0.00	7856.0	-1163.0	955.0	2.00	180.00	-1068.0	
	6	11542.5	0.00	0.00	11352.5	-1163.0	955.0	0.00	0.00	-1068.0	KOP(Mad Adder 31 State Com #582H)
- +	7	11762.9	26.46	358.85	11565.2	-1113.0	954.0	12.00	358.85	-1018.3	FTP(Mad Adder 31 State Com #582H)
	8	12292.4	90.00	359.58	11829.9	-685.6	949.2	12.00	0.81	-593.2	
	9	17045.1	90.00	359.58	11830.0	4067.0	914.0	0.00	0.00	4134.9	Fed Perf 1(Mad Adder 31 State Com #582H)
	10	19685.2	90.00	359.56	11830.0	6707.0	894.0	0.00	-84.16	6761.4	Fed Perf 2(Mad Adder 31 State Com #582H)
	11	22227.3	90.00	359.54	11830.0	9249.0	874.0	0.00	-98.60	9290.2	PBHL(Mad Adder 31 State Com #582H)

West(-)/East(+)

5600

3600

3200

4000

|-|-|-|-|-|-

Mad Adder 31 State Com 582H API #: 30-025-**** Variances

EOG respectfully requests the below variances to be applied to the above well:

- Variance is requested to waive the centralizer requirements for the intermediate casing in the intermediate hole. An expansion additive will be utilized, in the cement slurry, for the entire length of the intermediate interval to maximize cement bond and zonal isolation.
- Variance is also requested to waive the centralizer requirements for the production casing in the production hole. An expansion additive will be utilized, in the cement slurry, for the entire length of the production interval to maximize cement bond and zonal isolation.
- Bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.
- Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).
 - Variance is requested to use a 5,000 psi annular BOP with the 10,000 psi BOP stack.
- EOG Resources requests the option to contract a Surface Rig to drill, set surface casing, and Cement on the subject well. After WOC 8 hours or 500 psi compressive strength (whichever is greater), the Surface Rig will move off so the wellhead can be installed. A welder will cut the casing to the proper height and weld on the wellhead (both "A" and "B" sections). The weld will be tested to 1,500 psi. All valves will be closed and a wellhead cap will be installed (diagram attached). If the timing between rigs is such that EOG Resources would not be able to preset the surface, the Primary Rig will MIRU and drill the well in its entirety per the APD.

EOG requests the additional variance(s) in the attached document(s):

- EOG BLM Variance 3a b BOP Break-test and Offline Intermediate Cement
- EOG BLM Variance 3c Shallow Target Production Offline Bradenhead Cement
- EOG BLM Variance 3d Production Offline Cement
- EOG BLM Variance 4a Salt Section Annular Clearance
- EOG BLM Variance 5a Alternate Shallow Casing Designs

Intermediate Bradenhead Cement:

EOG requests variance from minimum standards to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as 1000 sack bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (2.30 yld, 12.91 ppg) will be executed as a contingency. Top of cement will be verified by Echo-meter.

EOG will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program.

EOG will report to the BLM the volume of fluid (limited to 5 bbls) used to flush intermediate casing valves following backside cementing procedures.

Shallow Target Offline Bradenhead:

EOG Resources Inc. (EOG) respectfully requests a variance from the minimum standards to allow for offline bradenhead cementing of the production string after primary cementing operations have been completed. The primary cement job will be pumped conventionally (online) to top of the Brushy Canyon and will cover the target production intervals, and after production pack-off is set and tested, bradenhead will be pumped through casing valves between the production and intermediate casings (offline). For the bradenhead stage of production cementing, the barriers remain the same for offline cementing compared to performing it online.

The bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.

Received by OCD: 1/22/2025 2:55:07 PM

Page 27 of 86

Salt Section Annular Clearance Variance Request

Daniel Moose

Current Design (Salt Strings)

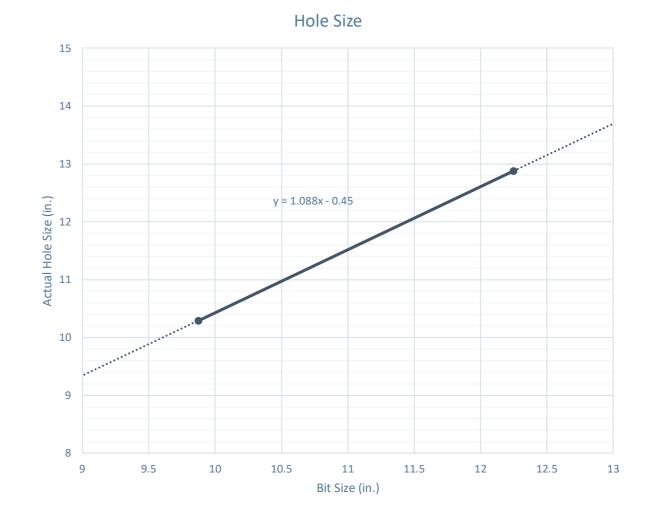
0.422" Annular clearance requirement

- Casing collars shall have a minimum clearance of 0.422 inches on all sides in the hole/casing annulus, with recognition that variances can be granted for justified exceptions.
- 12.25" Hole x 9.625"40# J55/HCK55 LTC Casing
 - 1.3125" Clearance to casing OD
 - 0.8125" Clearance to coupling OD
- 9.875" Hole x 8.75" 38.5# P110 Sprint-SF Casing
 - 0.5625" Clearance to casing OD
 - 0.433" Clearance to coupling OD

Annular Clearance Variance Request

EOG request permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Onshore Order #2 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues

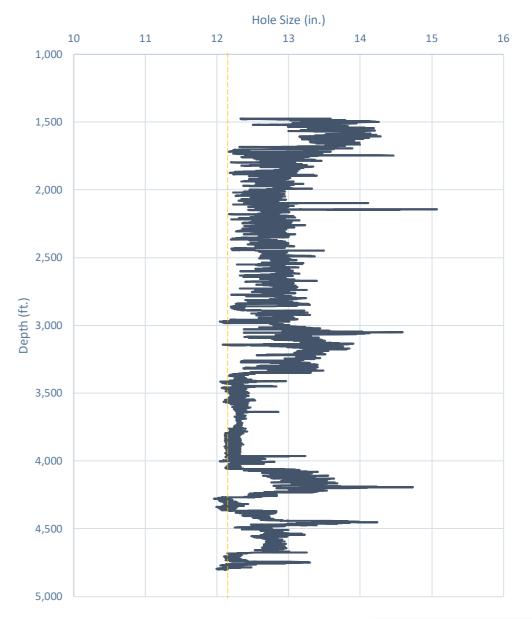

Volumetric Hole Size Calculation

Hole Size Calculations Off Cement Volumes

- Known volume of cement pumped
- Known volume of cement returned to surface
- Must not have had any losses
- Must have bumped plug

Average Hole Size

- 12.25" Hole
 - 12.88" Hole
 - 5.13% diameter increase
 - 10.52% area increase
 - 0.63" Average enlargement
 - 0.58" Median enlargement
 - 179 Well Count
- 9.875" Hole
 - 10.30" Hole
 - 4.24% diameter increase
 - 9.64% area increase
 - 0.42" Average enlargement
 - 0.46" Median enlargement
 - 11 Well Count

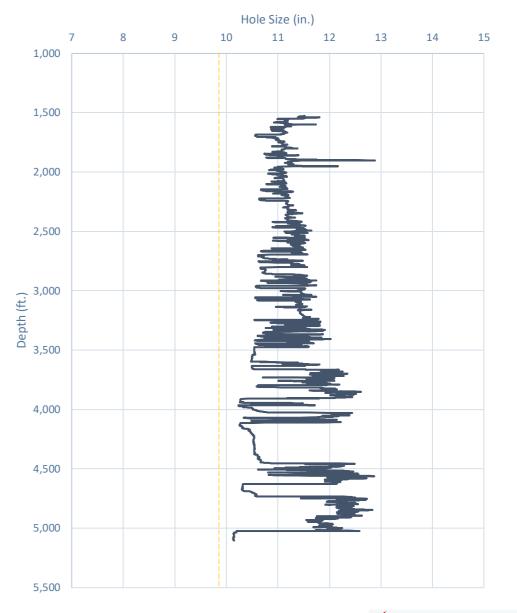


Modelo 10 Fed Com #501H

Caliper Hole Size (12.25")

Average Hole Size

- 12.25" Bit
 - 12.76" Hole
 - 4.14% diameter increase
 - 8.44% area increase
 - 0.51" Average enlargement
 - 0.52" Median enlargement
 - Brine



Caliper Hole Size (9.875")

Average Hole Size

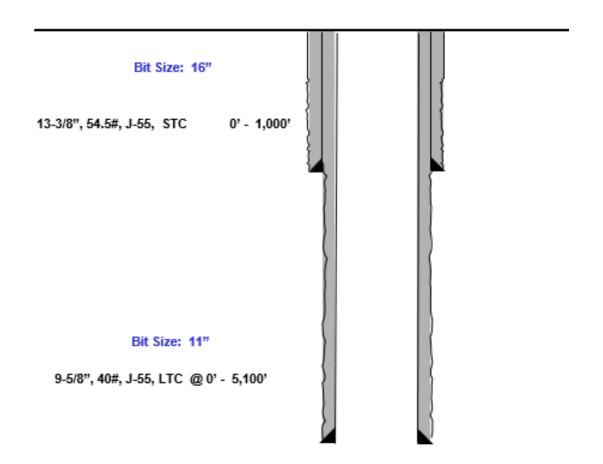
- 9.875" Hole
 - 11.21" Hole
 - 13.54% diameter increase
 - 28.92% area increase
 - 1.33" Average enlargement
 - 1.30" Median enlargement
 - EnerLite

Whirling Wind 11 Fed Com #744H

Design A

Proposed 11" Hole with 9.625" 40# J55/HCK55 LTC Casing

- 11" Bit + 0.52" Average hole enlargement = 11.52" Hole Size
 - 0.9475" Clearance to casing OD


$$=\frac{11.52-9.625}{2}$$

• 0.4475" Clearance to coupling OD

$$=\frac{11.52-10.625}{2}$$

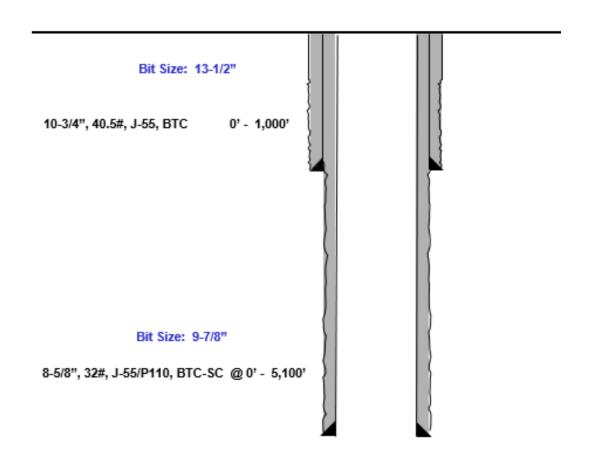
- Previous Shoe 13.375" 54.5# J55 STC
 - 0.995" Clearance to coupling OD (~1,200' overlap)

$$=\frac{12.615-10.625}{2}$$

Design B

Proposed 9.875" Hole with 8.625" 32# J55/P110 BTC-SC Casing

- 9.875" Bit + 0.42" Average hole enlargement = 10.295" Hole Size
 - 0.835" Clearance to casing OD


$$=\frac{10.295-8.625}{2}$$

• 0.585" Clearance to coupling OD

$$=\frac{10.295-9.125}{2}$$

- Previous Shoe 10.75" 40.5# J55 STC
 - 0.4625" Clearance to coupling OD (~1,200' overlap)

$$=\frac{10.05-9.125}{2}$$

Received by OCD: 1/22/2025 2:55:07 PM

Page 35 of 86

Index

Released to Imaging: 2/5/2025 3:52:54 PM

Received by OCD: 1/22/2025 2:55:07 PM

Casing Spec Sheets

PERFORMANCE DATA

API LTC 9.625 in K55 HC 40.00 lbs/ft **Technical Data Sheet**

Tubular Parameters					
Size	9.625	in	Minimum Yield	55	ksi
Nominal Weight	40.00	lbs/ft	Minimum Tensile	95	ksi
Grade	K55 HC		Yield Load	629	kips
PE Weight	38.94	lbs/ft	Tensile Load	1088	kips
Wall Thickness	0.395	in	Min. Internal Yield Pressure	3,950	psi
Nominal ID	8.835	in	Collapse Pressure	3600	psi
Drift Diameter	8.750	in			1

in²

Connection Parameters		
Connection OD	10.625	in
Coupling Length	10.500	in
Threads Per Inch	8	tpi
Standoff Thread Turns	3.50	turns
Make-Up Loss	4.750	in
Min. Internal Yield Pressure	3,950	psi

11.454

Pipe Body and API Connections Performance Data

13.375 54.50/0.380 J55 PDF

New Search »

USC	Metric

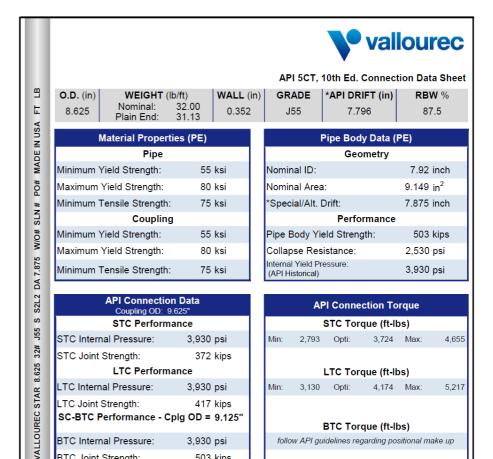
« Back to Previous List

6/8/2015 10:04:37 AM					
Mechanical Properties	Ptpe	втс	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Ptpe	втс	LTC	STC	
Outside Diameter	13.375	14.375	-	14.375	in.
Wall Thickness	0.380	-	-	-	in.
Inside Diameter	12.615	12.615	-	12.615	in.
Standard Drift	12.459	12.459	-	12.459	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	54.50	-	-	-	lbs/ft
Plain End Weight	52.79	-	-	-	lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	1,130	1,130	-	1,130	psi
Minimum Internal Yield Pressure	2,740	2,740	-	2,740	psi
Minimum Pipe Body Yield Strength	853.00	-	-	-	1000 lbs
Joint Strength	-	909	-	514	1000 lbs
Reference Length	-	11,125	-	6,290	ft
Make-Up Data	Ptpe	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque	-	-	-	3,860	ft-lbs
Maximum Make-Up Torque	-	-	-	6,430	ft-lbs

Nom. Pipe Body Area

Received by OCD: 1/22/2025 2:55:07 PM Page 37 of 86

5,250


ft-lbs

Casing Spec Sheets

Pipe Body and API Connections Performance Data

10.750 40.50/0.350 J55 PDF

New Search » « Back to Previous List USC Metric 6/8/2015 10:14:05 AM BTC LTC Ptpe STC **Mechanical Properties** Minimum Yield Strength 55,000 psi Maximum Yield Strengtl 80,000 Minimum Tensile Strength 75,000 psi BTC LTC Pipe STC 11.750 Outside Diamete 10.750 11.750 in. Wall Thickness 0.350 Inside Diameter 10.050 10.050 10.050 Standard Drift 9.894 9.894 in. Alternate Drift in. 40.50 Nominal Linear Weight, T&C lbs/ft 38.91 lbs/ft Plain End Weight Performance Ptpe BTC LTC STC 1.580 1,580 1,580 Minimum Collapse Pressure psi 3,130 Minimum Internal Yield Pressure 3.130 3.130 629.00 Minimum Pipe Body Yield Strength 1000 lbs 700 Joint Strength 420 1000 lbs Reference Length 11,522 6,915 BTC Make-Up Data Ptpe STC 4.81 Make-Up Loss 3.50 in. Minimum Make-Up Torque 3,150 ft-lbs

*Alt. Drift will be used unless API Drift is specified on order.

**If above API connections do not suit your needs, VAM® premium connections are available up to 100% of pipe body ratings.

3,930 psi

503 kips

BTC Internal Pressure:

BTC Joint Strength:

ALL INFORMATION IS PROVIDED BY VALLOUREC OR ITS AFFILIATES AT USER'S SOLE RISK, WITHOUT LIABILITY FOR LOSS, DAMAGE OR INJURY RESULTING FROM THE USE THEREOF; AND ON AN "AS IS" BASIS WITHOUT WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY FITNESS FOR PURPOSE ACCURACY OR COMPLETENESS. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES. ONLY AND IS BASED ON ESTIMATES THAT HAVE NOT BEEN VERIFIED OR TESTED. IN NO EVENT SHALL VALIDITIES OR DESPONSIBLE FOR ANY INDIRECT. SPECIAL INCIDENTAL, PUNITIVE, EXEMPLARY OR CONSEQUENTIAL LOSS OR DAMAGE (INCLUDING WITHOUT LIMITATION, LOSS OF USE, LOSS OF BARGAIN, LOSS OF REVENUE, PROFIT OR ANTICIPATED PROFIT) HOWEVER CAUSED OR ARISING, AND WHETHER SUCH LOSSES OR DAMAGES WERE FORESEEABLE OR VALLOUREC OR ITS AFFILIATES WERE ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

follow API guidelines regarding positional make up

Maximum Make-Up Torque

EOG BLANKET CASING DESIGN VARIANCE

EOG respectfully requests the drill plans in the attached document 'EOG Alternate Casing Designs – BLM APPROVED' be added to the COA's for this well. These designs have been approved by the BLM down to the TVDs listed below and will allow EOG to run alternate casing designs for this well if necessary.

The designs and associated details listed are the "worst case scenario" boundaries for design safety factors. Location and lithology have NOT been accounted for in these designs. The specific well details will be based on the APD/Sundry package and the information listed in the COA.

The mud program will not change from the original design for this well. Summary of the mud programs for both shallow and deep targets are listed at the end of this document. If the target is changing, a sundry will be filed to update the casing design and mud/cement programs.

Cement volumes listed in this document are for reference only. The cement volumes for the specific well will be adjusted to ensure cement tops meet BLM requirements as listed in the COA and to allow bradenhead cementing when applicable.

This blanket document only applies to wells with three string designs outside of Potash and Capitan Reef boundaries.

Shallow Design Boundary Conditions								
	Deepest	Deepest	Max Inc	Max DLS				
	MD (ft)	TVD (ft)	(deg)	(°/100usft)				
Surface	2030	2030	0	0				
Intermediate	7793	5650	40	8				
Production	28578	12000	90	25				

Shallow Design A

4. CASING PROGRAM

Hole	Interv	al MD	Interva	l TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC
6-3/4"	0	29,353	0	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS

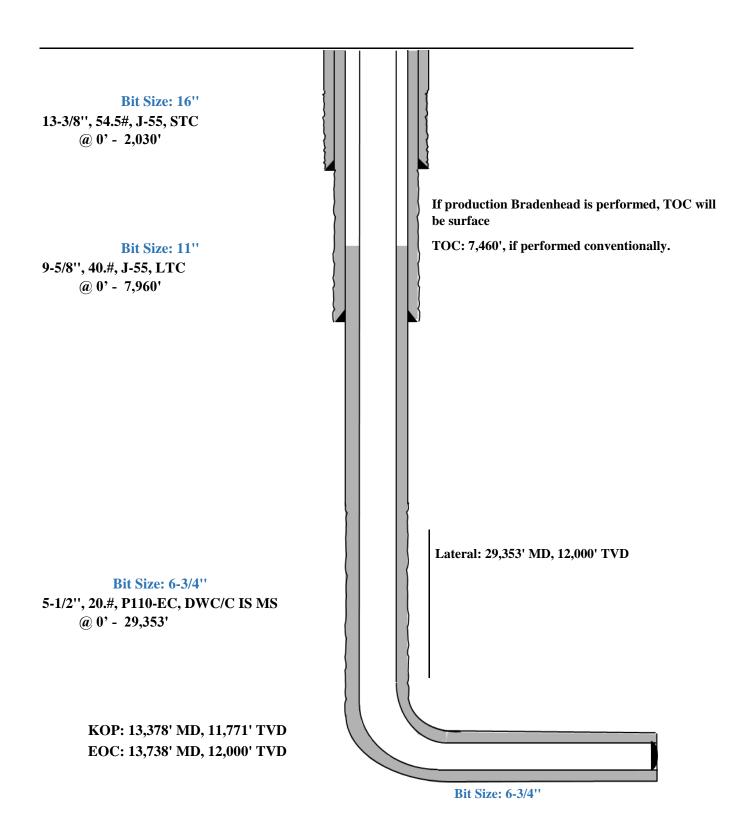
Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

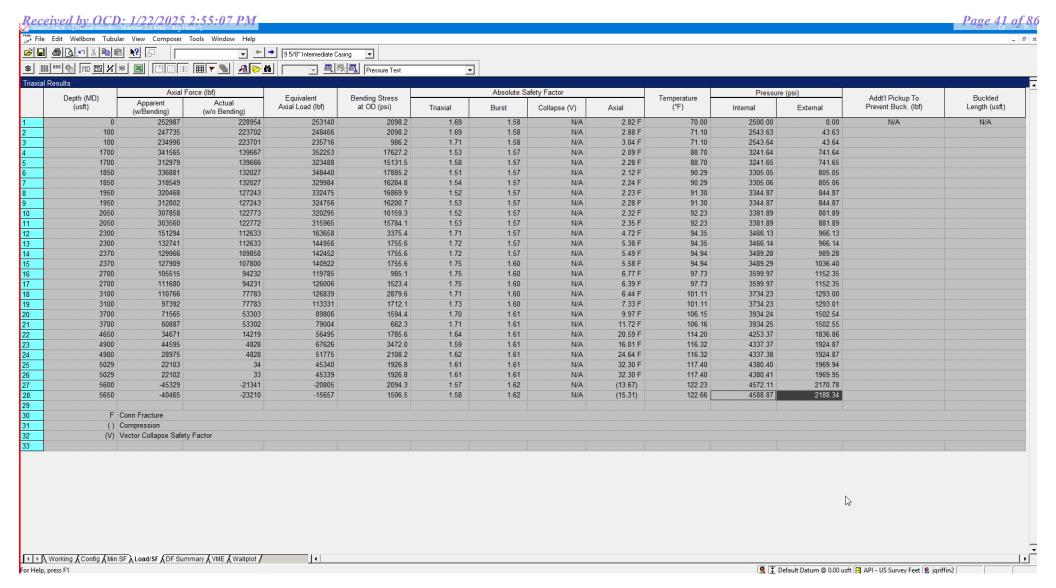
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

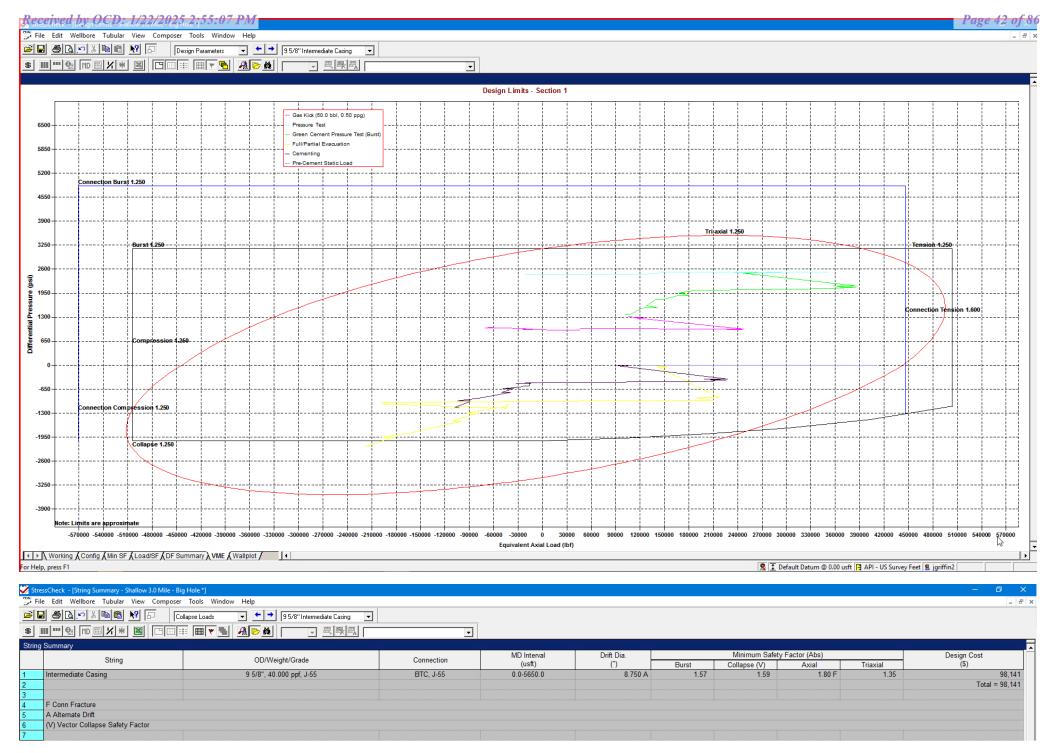
EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

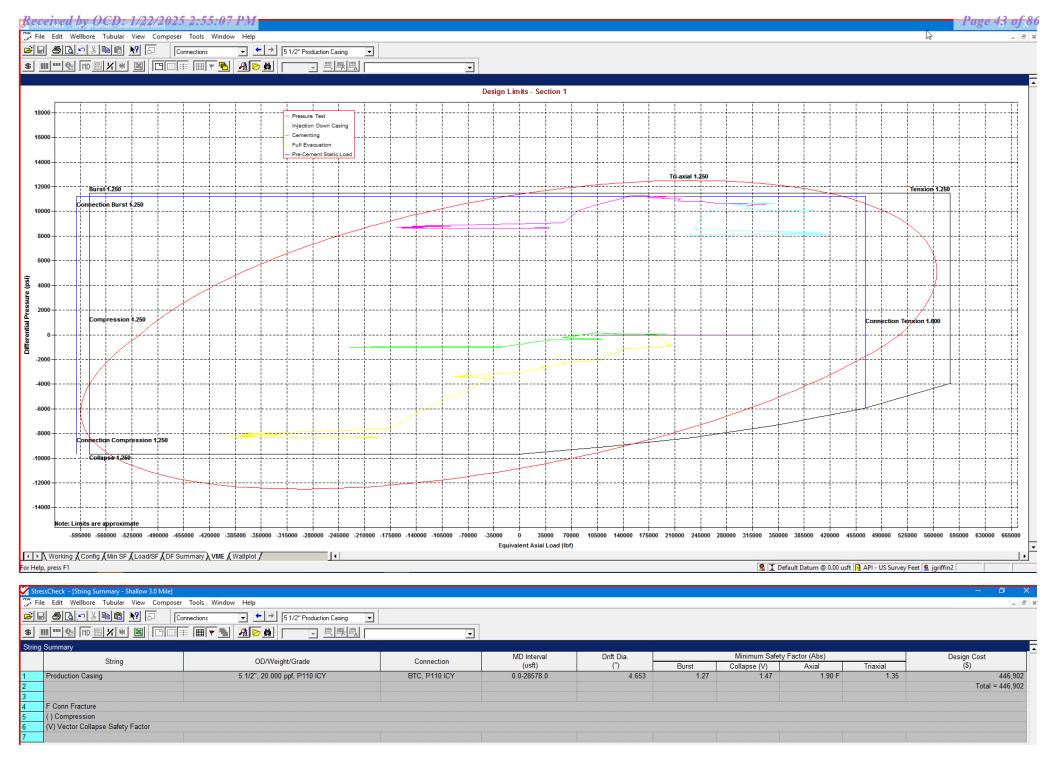

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidify Description
2,030' 13-3/8"	570	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' 9-5/8"	760	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	250	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' 5-1/2"	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	1480	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)



Shallow Design A


Proposed Wellbore

KB: 3558' GL: 3533'



Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi

^{*}Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Page 6 of 31

Shallow Design B

4. CASING PROGRAM

Hole	Interv	al MD	Interva	l TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13-1/2"	0	2,161	0	2,030	10-3/4"	40.5#	J-55	STC
9-7/8"	0	7,951	0	5,650	8-5/8"	32#	J-55	BTC-SC
6-3/4"	0	29,353	0	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS

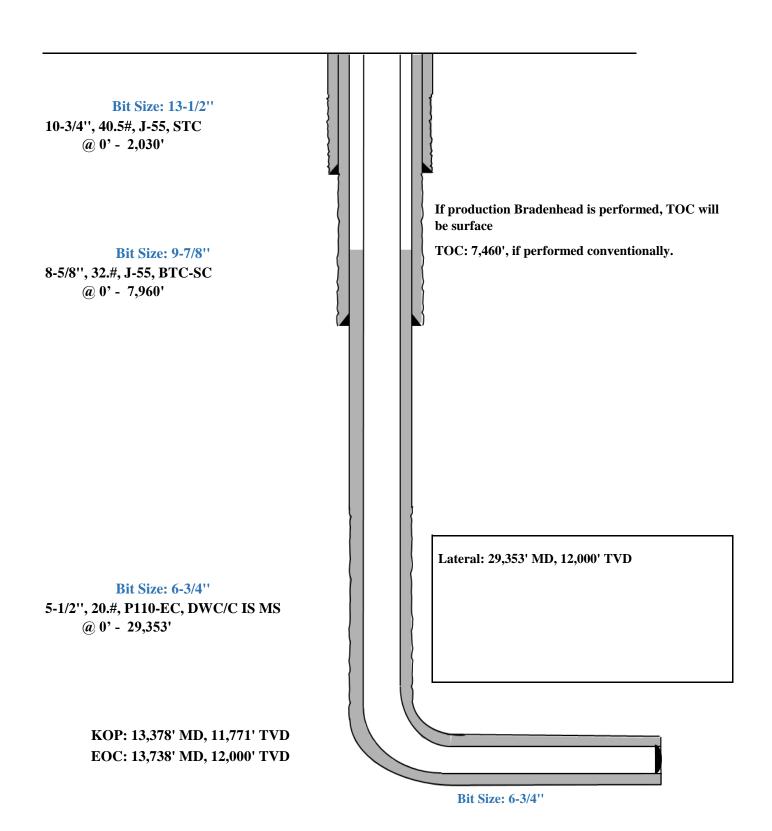
Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

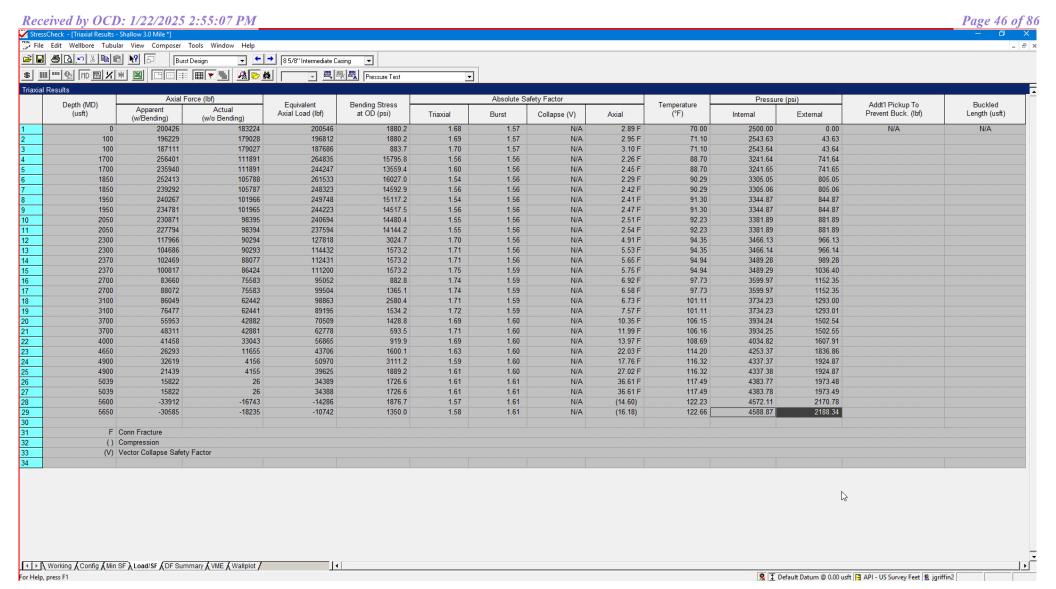
Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

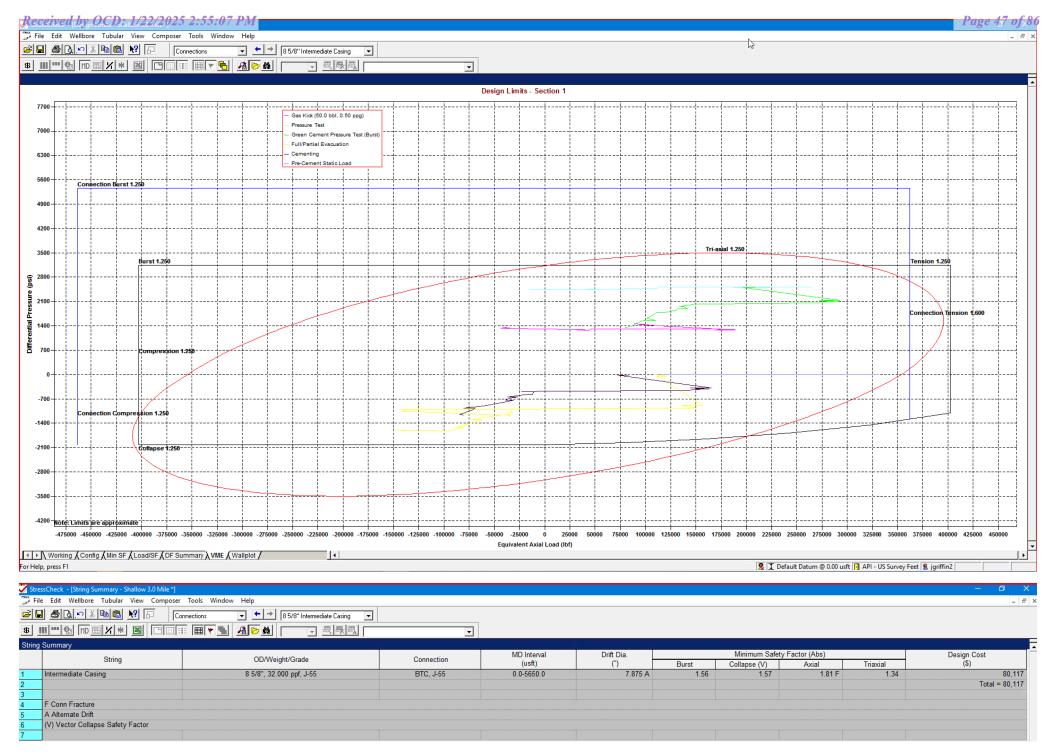
EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

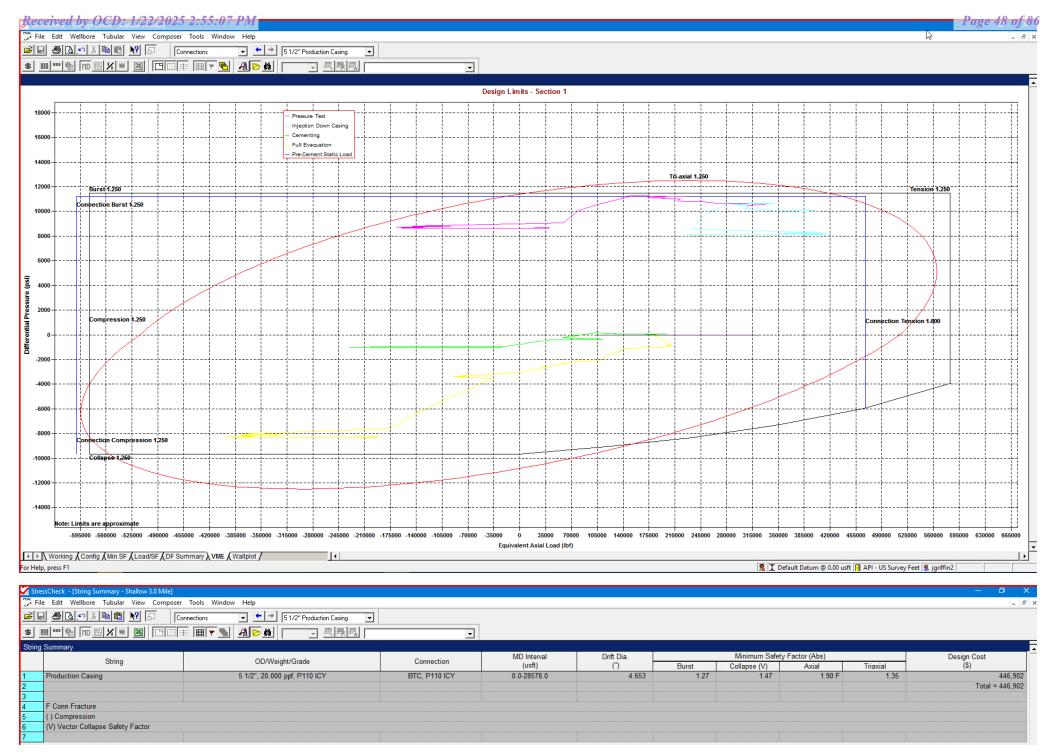

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidify Description
2,030' 10-3/4''	530	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
	140	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' 8-5/8"	470	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	210	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' 5-1/2"	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	1480	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)



Shallow Casing Design B


Proposed Wellbore

KB: 3558' GL: 3533'



Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi

^{*}Modelling done with 8-5/8" 32# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Page 11 of 31

Shallow Design C

4. CASING PROGRAM

Hole	Interv	al MD	Interva	ıl TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC
7-7/8"	0	29,353	0	12,000	6"	24.5#	P110-EC	VAM Sprint-SF

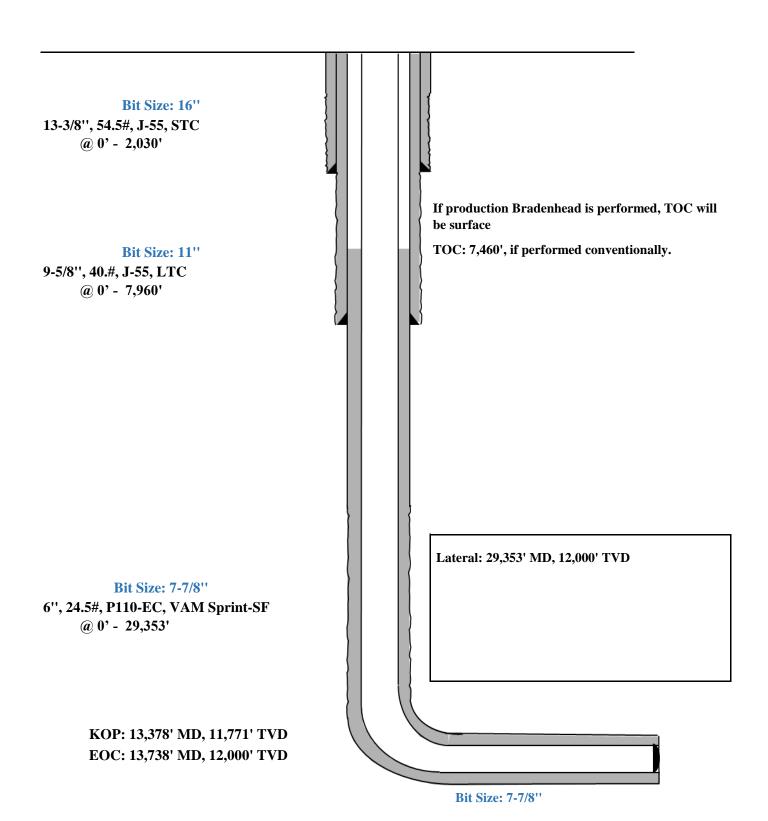
Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

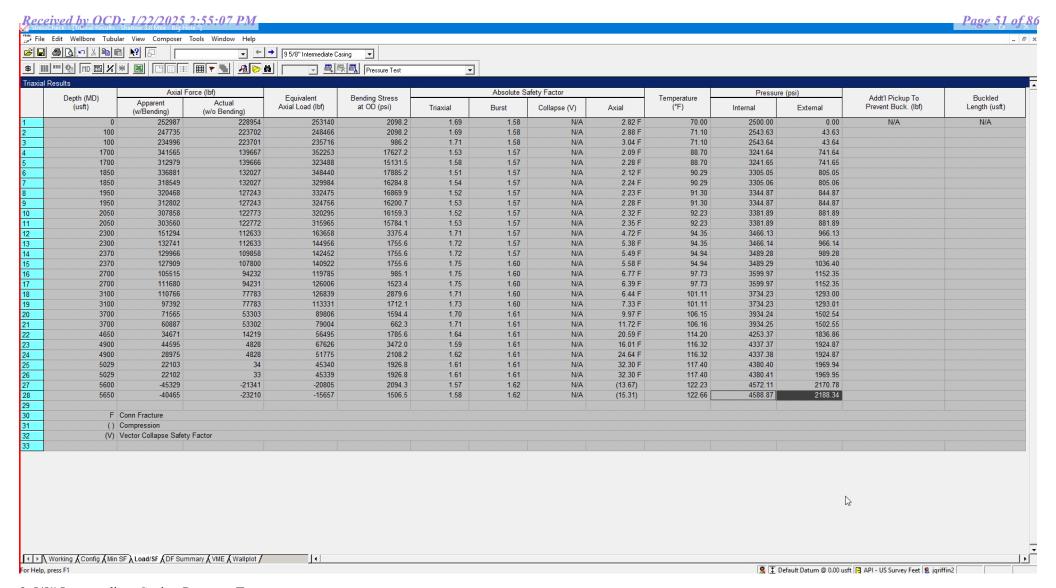
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" casing in the 7-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 7-7/8" hole interval to maximize cement bond and zonal isolation.

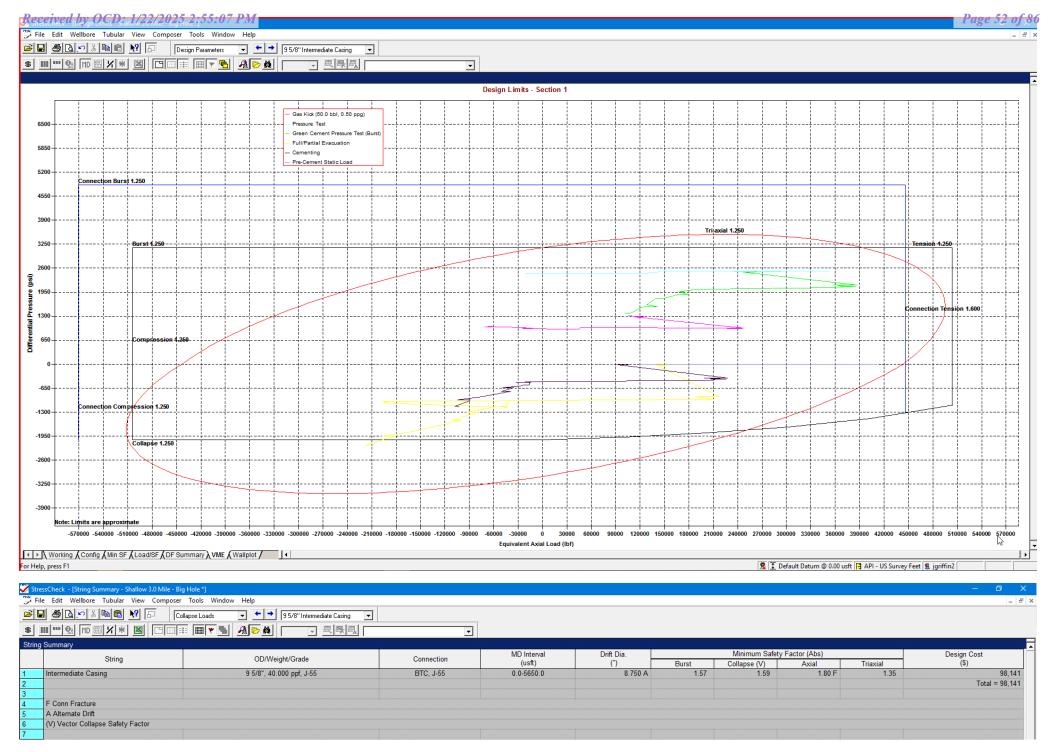
EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

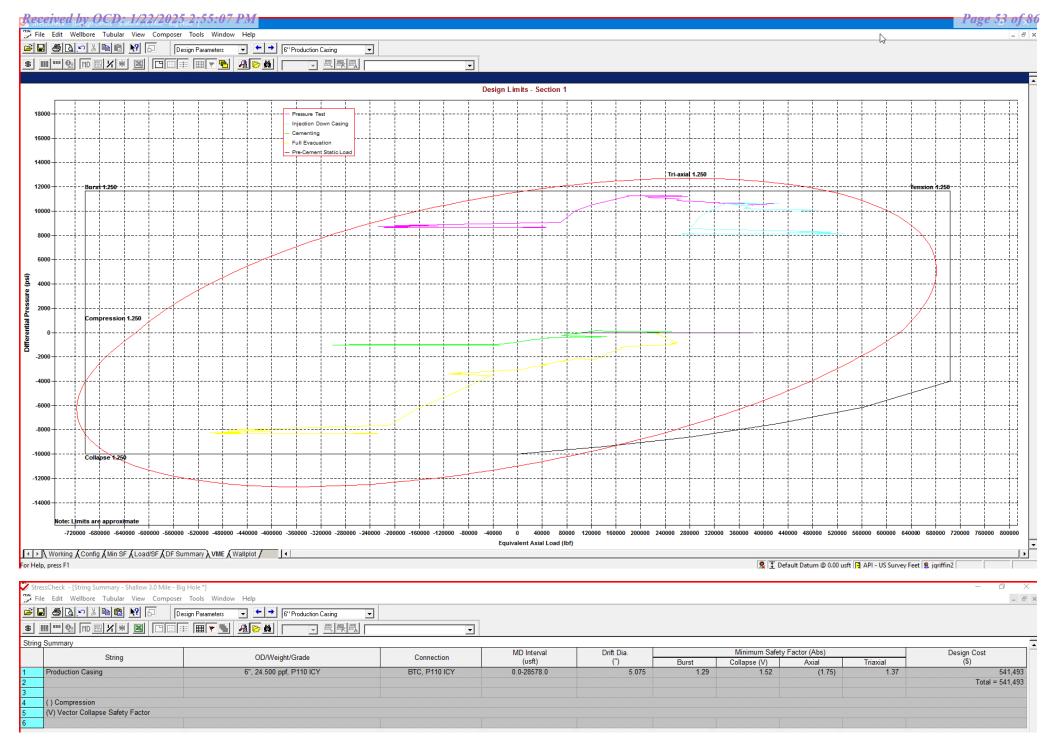

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidify Description
2,030' 13-3/8"	570	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' 9-5/8"	760	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	250	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' 6"	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	2500	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)



Shallow Design C


Proposed Wellbore

KB: 3558' GL: 3533'



Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi

^{*}Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Shallow Design D

4. CASING PROGRAM

Hole	Interv	al MD	Interva	ıl TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC
7-7/8"	0	13,278	0	11,671	6"	22.3#	P110-EC	DWC/C IS
6-3/4"	13,278	29,353	11,671	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS

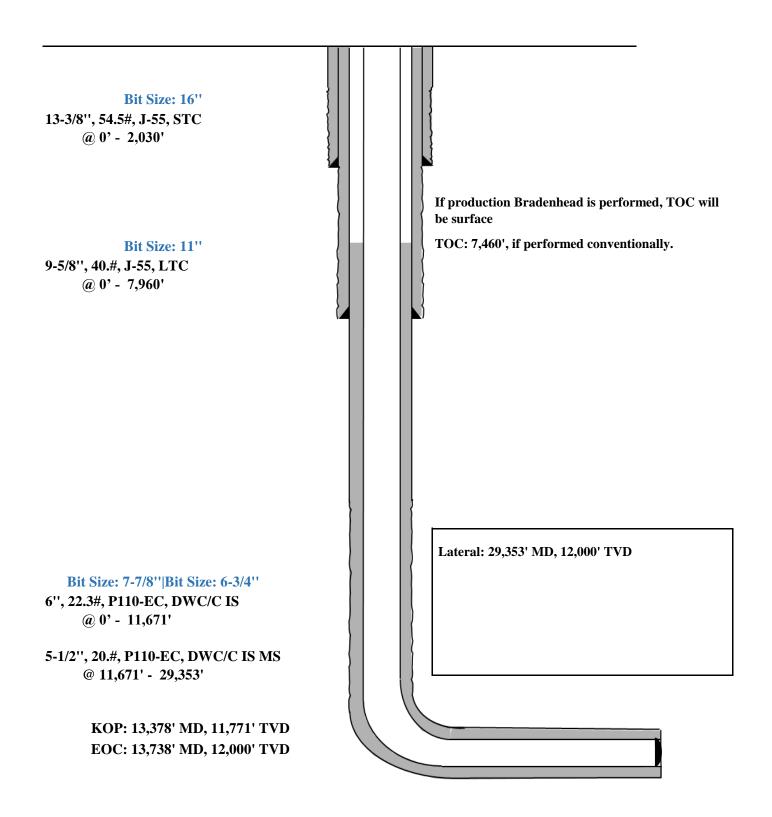
Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

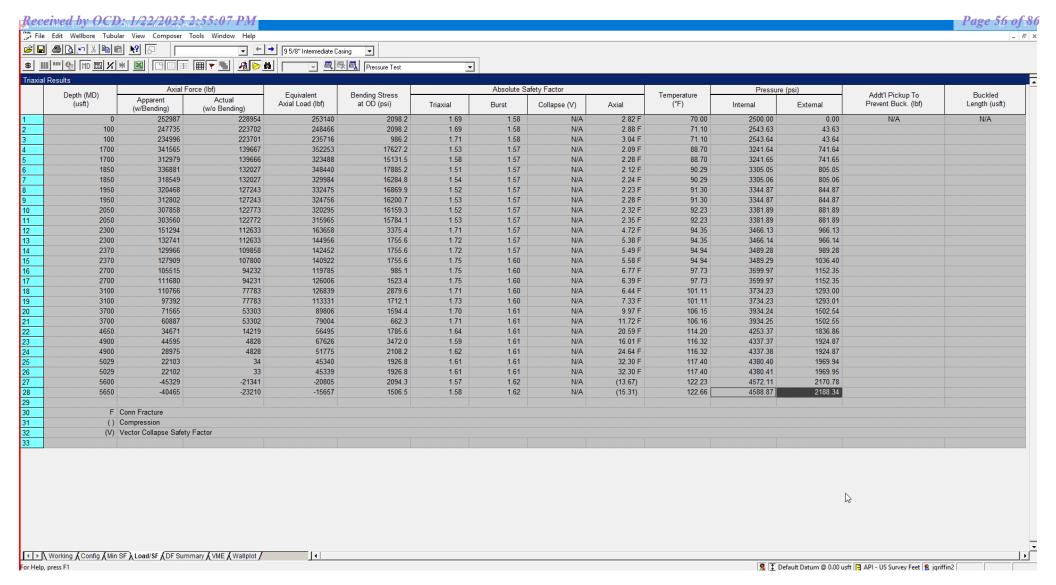
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized in the cement slurry for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

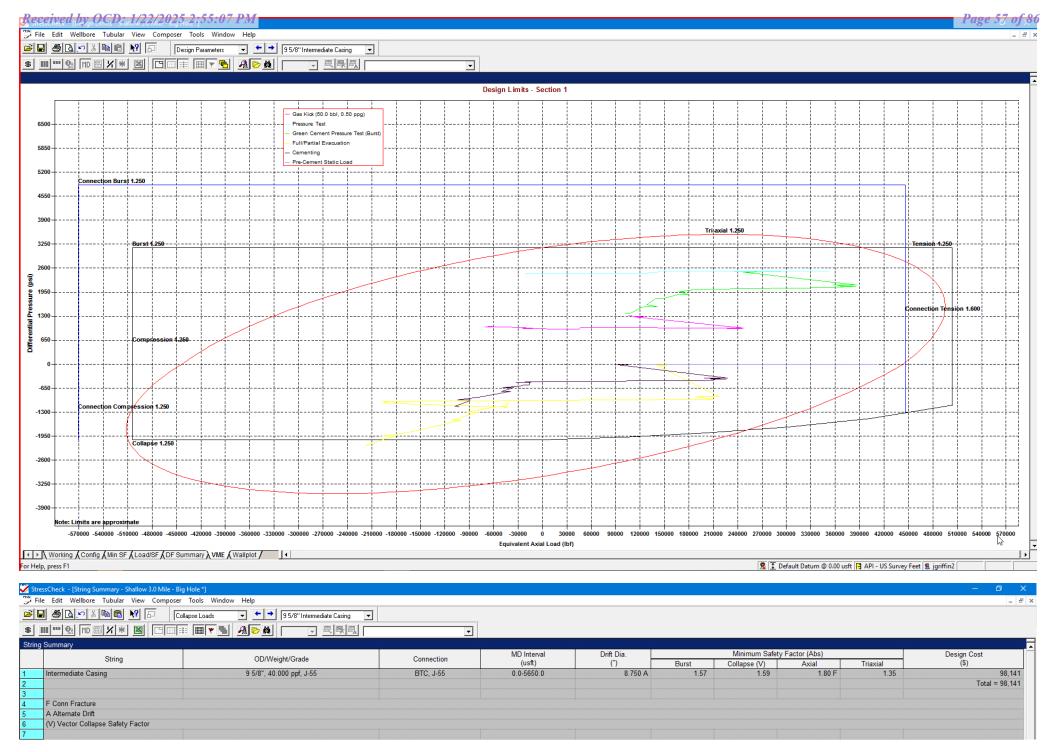
EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

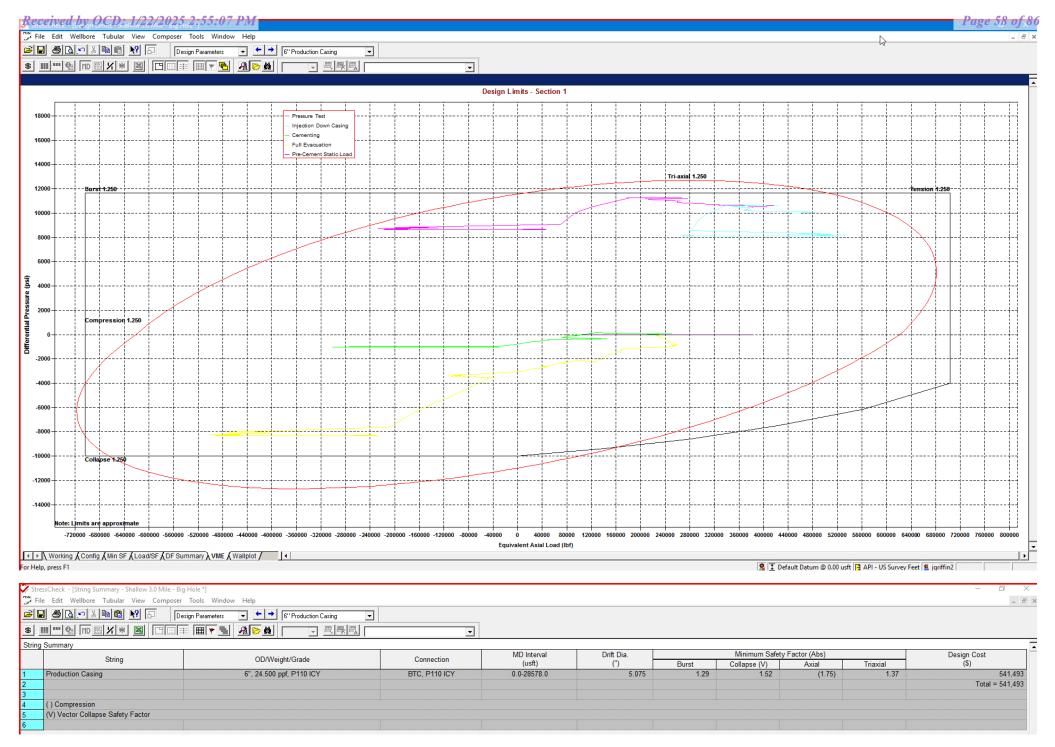

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidify Description
2,030' 13-3/8"	570	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' 9-5/8"	760	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	250	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' 6"	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	2500	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)

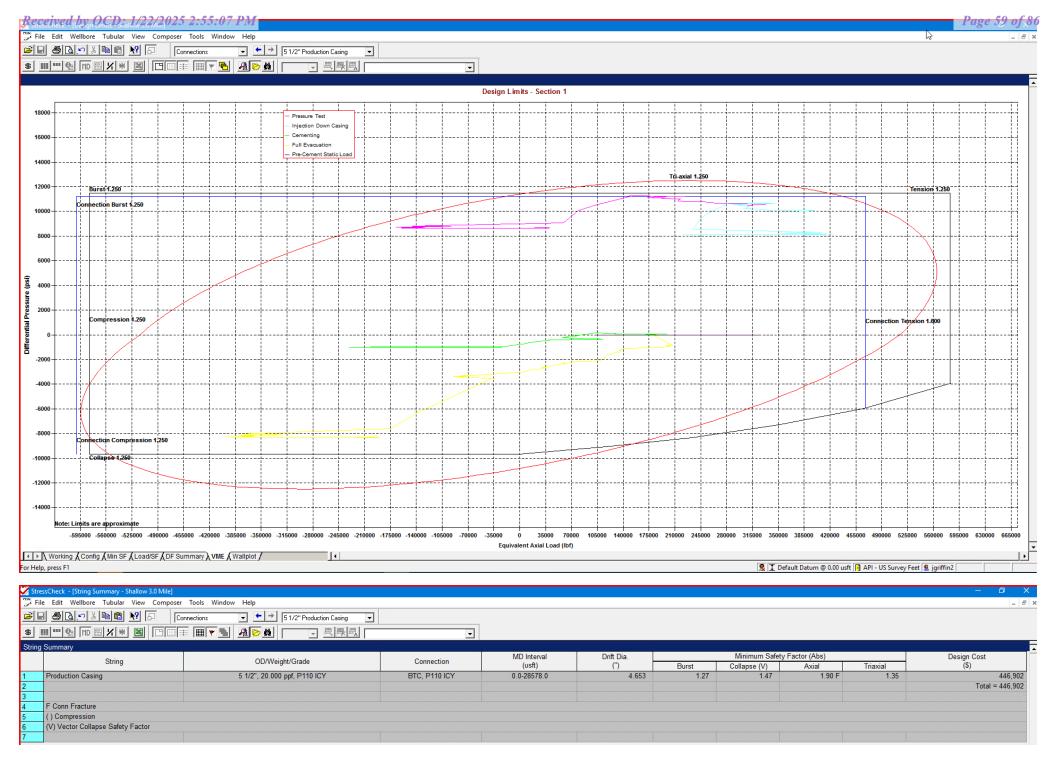


Shallow Design D


Proposed Wellbore

KB: 3558' GL: 3533'




Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi

^{*}Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Page 22 of 31

Shallow Casing Design E

1. CASING PROGRAM

Hole	Interv	al MD	Interva	l TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13"	0	2,025	0	2,025	10-3/4"	40.5#	J-55	STC
9-7/8"	0	7,793	0	5,645	8-5/8"	32#	J-55	BTC-SC
7-7/8"	0	12,626	0	10,896	6"	24.5#	P110-EC	VAM Sprint-TC
6-3/4"	12,626	28,578	10,896	11,225	5-1/2"	20#	P110-EC	VAM Sprint SF

^{**}For highlighted rows above, variance is requested to run entire string of either 6" or 5-1/2" casing string above due to availablility.

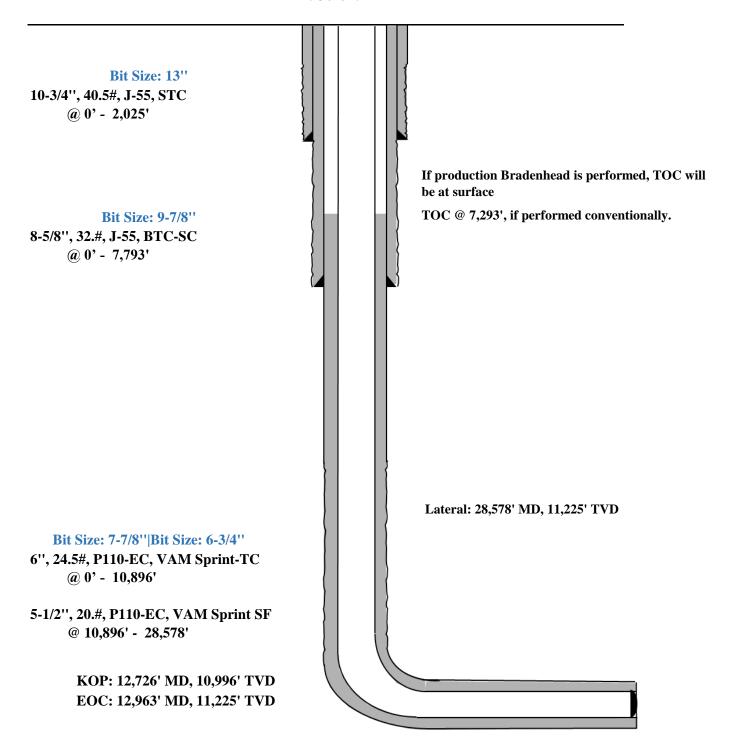
Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

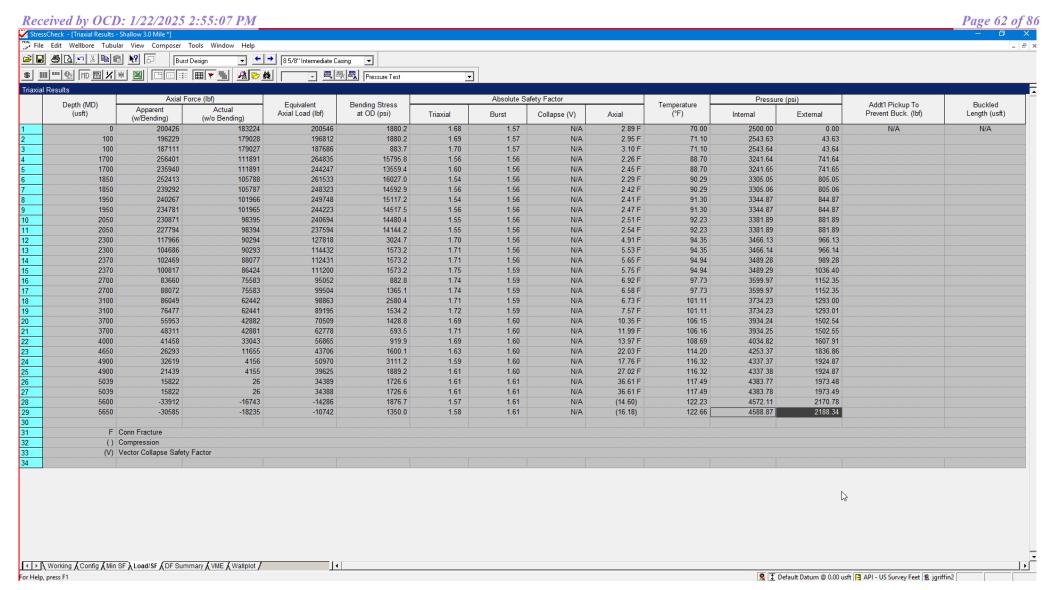
Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized in the cement slurry for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

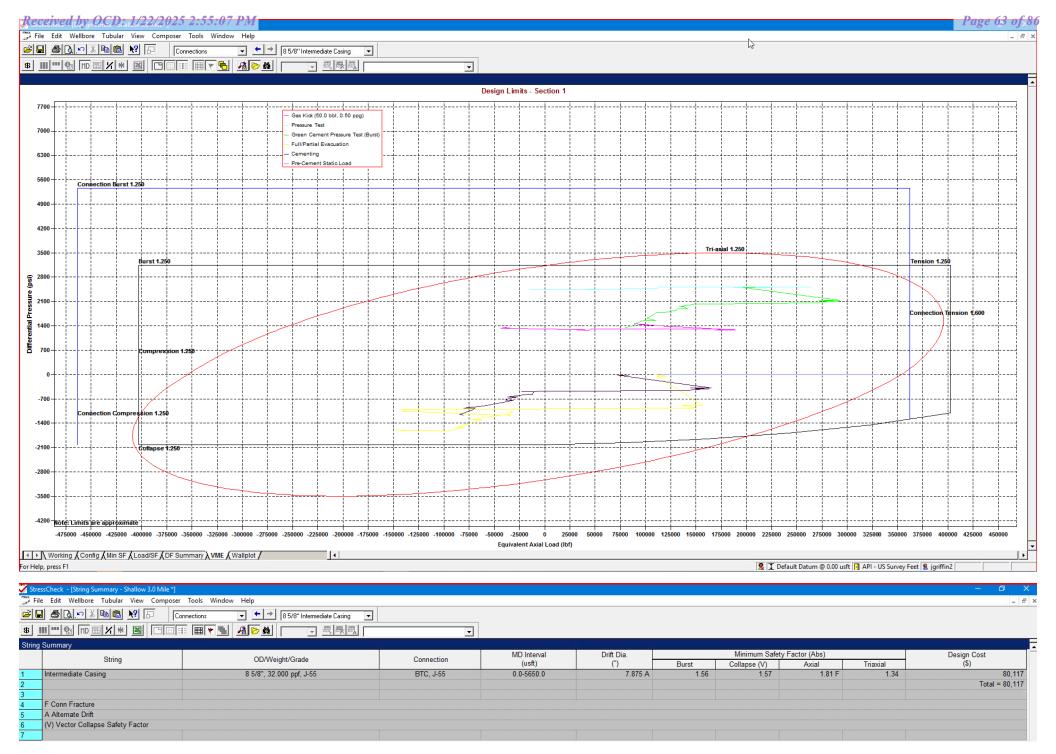
EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

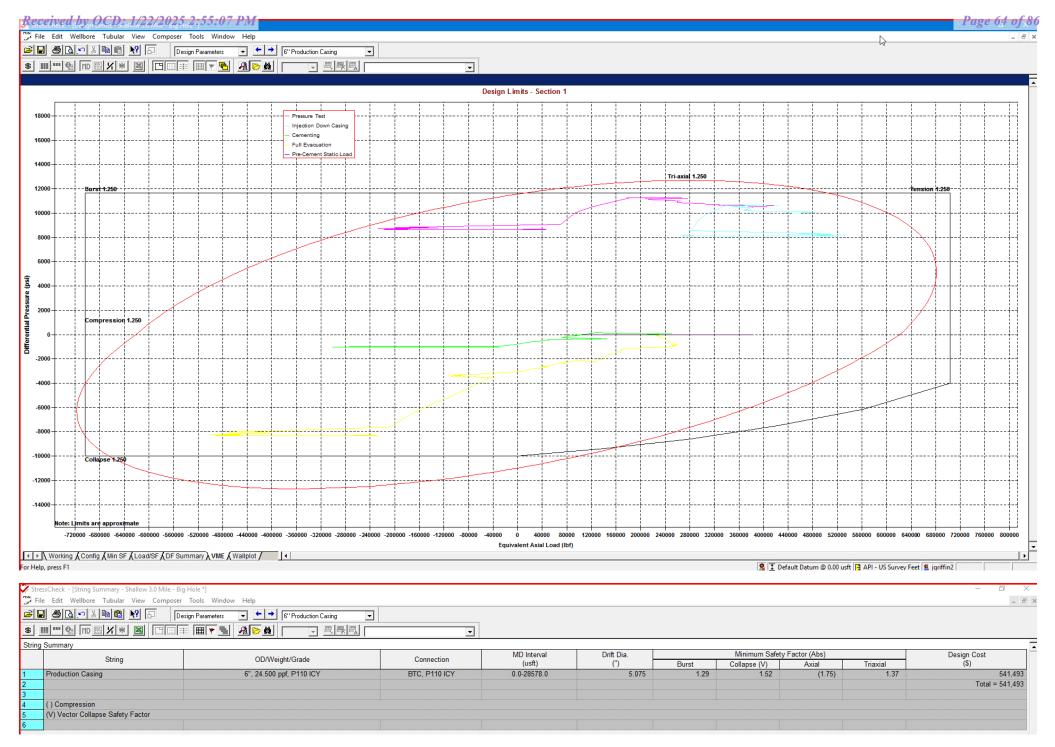

D 41-	No.	Wt.	Yld	Slurry Description
Depth	Sacks	ppg	Ft3/sk	I and Class C/II + 4.00/ Portonite C-1 + 0.50/ CoCl2 + 0.25 lb/cl-Colla
2,030'	450	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
10-3/4"				, , , , , , , , , , , , , , , , , , ,
	120	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium
				Metasilicate (TOC @ 1830')
7,890'	460	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @
8-5/8"				Surface)
	210	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6234')
28,578'	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6%
6"				Bentonite Gel (TOC @ surface)
	2410	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ 8140')

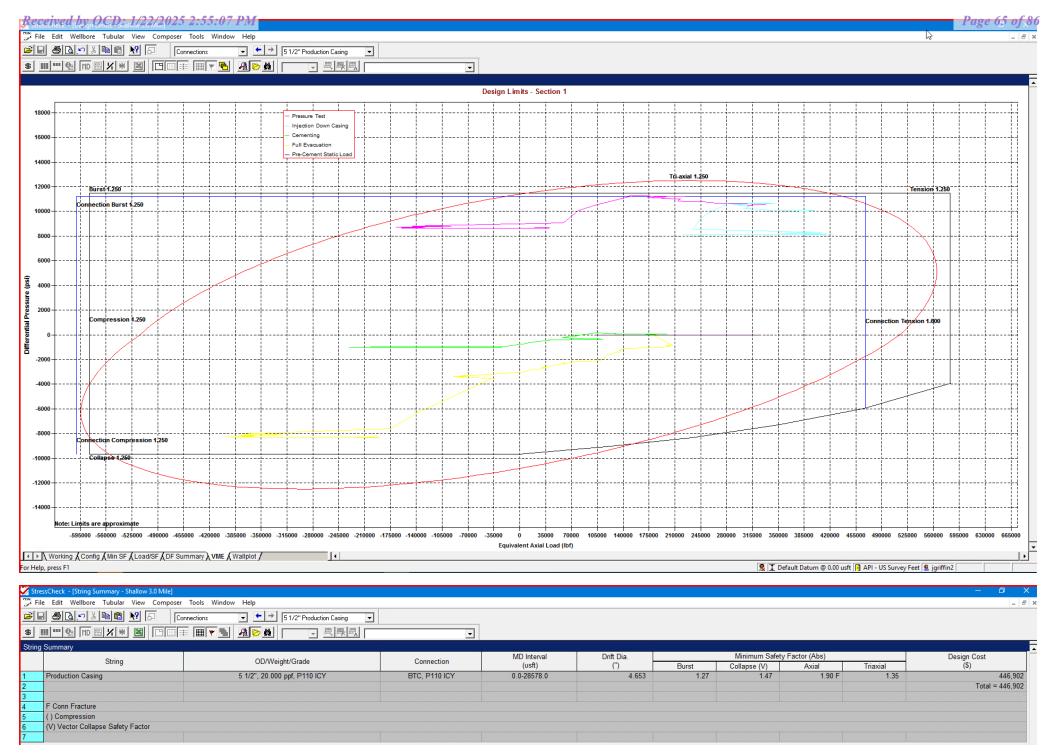

Shallow Casing Design E

Proposed Wellbore


KB: 3558' GL: 3533'

API: 30-025-****




Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi

^{*}Modelling done with 8-5/8" 32# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Page 28 of 31

Shallow Casing Design 501H

Additive	Purpose
Bentonite Gel	Lightweight/Lost circulation prevention
Calcium Chloride	Accelerator
Cello-flake	Lost circulation prevention
Sodium Metasilicate	Accelerator
MagOx	Expansive agent
Pre-Mag-M	Expansive agent
Sodium Chloride	Accelerator
FL-62	Fluid loss control
Halad-344	Fluid loss control
Halad-9	Fluid loss control
HR-601	Retarder
Microbond	Expansive Agent

Cement integrity tests will be performed immediately following plug bump.

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

EOG requests variance from minimum standards to pump a two stage cement job on the production casing string with the first stage being pumped conventionally with the calculated top of cement at the top of the Brushy Canyon and the second stage performed as a 1000 sack bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of 400 sacks of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (1.32 yld, 14.8 ppg) will be executed as a contingency. Top will be verified by Echo-meter.

Bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.

MUD PROGRAM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal. The applicable depths and properties of the drilling fluid systems are as follows:

Measured Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0 – 2,030'	Fresh - Gel	8.6-8.8	28-34	N/c
2,030' – 7,793'	Brine	9-10.5	28-34	N/c
5,450' – 28,578' Lateral	Oil Base	8.8-9.5	58-68	N/c - 6

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

Appendix A - Spec Sheets

New Search »					Back to Previous List
					USC Metric
6/8/2015 10:04:37 AM					
Mechanical Properties	Ptpe	втс	LTC	STC	
Minimum Yield Strength	55,000	= -	-	-	psi
Maximum Yield Strength	80,000	-		_	psi
Minimum Tensile Strength	75,000	= -	-	-	psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	13.375	14.375		14.375	in.
Wall Thickness	0.380	-		1 1	in.
Inside Diameter	12.615	12.615		12.615	in.
Standard Drift	12.459	12.459	-	12.459	in.
Alternate Drift	-	= .	= :	-	in.
Nominal Linear Weight, T&C	54.50	-		1-1	lbs/ft
Plain End Weight	52.79	-		-	lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	1,130	1,130		1,130	psi
Minimum Internal Yield Pressure	2,740	2,740	=	2,740	psi
Minimum Pipe Body Yield Strength	853.00		_	_	1000 lbs
Joint Strength	-	909		514	1000 lbs
Reference Length	-	11,125	<u> </u>	6,290	п
Make-Up Data	Pipe	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque	-		 3	3,860	ft-lbs
Released to Imaging: 2/5/2025 3:52:54 PM Maximum Make-Up Torque	-	-		6,430	ft-lbs

New Search //					Back to Previous List
<u>-</u>					USC Metric
6/8/2015 10:23:27 AM	<i>N</i> - ×	9 W	9	×	0.5
Mechanical Properties	Pipe	втс	LTC	STC	
Minimum Yield Strength	55,000	-		_	psi
Maximum Yield Strength	80,000	-	-	## T	psi
Minimum Tensile Strength	75,000			_	psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	9.625	10.625	10.625	10.625	in.
Wall Thickness	0.395	-		s = 5	in.
Inside Diameter	8.835	8.835	8.835	8.835	in.
Standard Drift	8.679	8.679	8.679	8.679	in.
Alternate Drift	8.750	8.750	8.750	8.750	in.
Nominal Linear Weight, T&C	40.00	-		; = 2	lbs/ft
Plain End Weight	38.97	=	-	-	lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	2,570	2,570	2,570	2,570	psi
Minimum Internal Yield Pressure	3,950	3,950	3,950	3,950	psi
Minimum Dine Rody Vield Strength	630.00		2.1		1000 lbs

Inside Diameter	8.835	8.835	8.835	8.835	in.
Standard Drift	8.679	8.679	8.679	8.679	in.
Alternate Drift	8.750	8.750	8.750	8.750	in.
Nominal Linear Weight, T&C	40.00	-	-	- 2	lbs/ft
Plain End Weight	38.97	=	-	-	lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	2,570	2,570	2,570	2,570	psi
Minimum Internal Yield Pressure	3,950	3,950	3,950	3,950	psi
Minimum Pipe Body Yield Strength	630.00	-			1000 lbs
Joint Strength	J	714	520	452	1000 lbs
Reference Length	(11,898	8,665	7,529	п
Make-Up Data	Pipe	втс	LTC	STC	
Make-Up Loss		4.81	4.75	3.38	in.
Minimum Make-Up Torque		=	3,900	3,390	ft-lbs
Released to Imaging: 2/5/2025 3:52:54 PM Maximum Make-Up Torque		_	6,500	5,650	ft-lbs

Connection Data Sheet

OD (in.) WEIGHT (lbs./ft.) 5.500 Nominal: 20.00 WALL (in.) 0.361 GRADE VST P110EC **API DRIFT** (in.) 4.653 **RBW**% 87.5

CONNECTION
DWC/C-IS MS

Nominal: 20.00 Plain End: 19.83

F	PIPE PROPERTIES	
Outside Diameter	5.500	in.
Inside Diameter	4.778	in.
Nominal Area	5.828	sq.in.
Grade Type	API 5CT	
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Tensile Strength	135	ksi
Yield Strength	729	klb
Ultimate Strength	787	klb
Min. Internal Yield	14,360	psi
Collapse	12.090	psi

	CONNECTION PROPERTIES				
۱.	Connection Type	Semi-Prem	ium T&C		
۱.	Connection O.D. (nom)	6.115	in.		
۱.	Connection I.D. (nom)	4.778	in.		
	Make-Up Loss	4.125	in.		
si	Coupling Length	9.250	in.		
i	Critical Cross Section	5.828	sq.in.		
si	Tension Efficiency	100.0%	of pipe		
b	Compression Efficiency	100.0%	of pipe		
b	Internal Pressure Efficiency	100.0%	of pipe		
si	External Pressure Efficiency	100.0%	of pipe		
si					

CONNECTION PERFORMANCES					
Yield Strength	729	klb			
Parting Load	787	klb			
Compression Rating	729	klb			
Min. Internal Yield	14,360	psi			
External Pressure	12,090	psi			
Maximum Uniaxial Bend Rating	104.2	°/100 ft			
Reference String Length w 1.4 Design Factor	26,040	ft			

	FIELD END TORQUE VALUES					
)	Min. Make-up torque	16,100	ft.lb			
)	Opti. Make-up torque	17,350	ft.lb			
)	Max. Make-up torque	18,600	ft.lb			
i	Min. Shoulder Torque	1,610	ft.lb			
i	Max. Shoulder Torque	12,880	ft.lb			
t	Min. Delta Turn	-	Turns			
t	Max. Delta Turn	0.200	Turns			
	Maximum Operational Torque	21,100	ft.lb			
	Maximum Torsional Value (MTV)	23,210	ft.lb			

Need Help? Contact: tech.support@vam-usa.com
Reference Drawing: 8136PP Rev.01 & 8136BP Rev.01

Date: 12/03/2019 Time: 06:19:27 PM

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042

Phone: 713-479-3200 Fax: 713-479-3234

VAM® USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- 2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- 4. DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- 8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torque is not to be exceeded.
- 10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- 11. DWC connections will accommodate API standard drift diameters.
- 12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

PDF

10.750 40.50/0.350 J55

New Search »

« Back to Previous List

USC Metric

6/8/2015 10:14:05 AM

Mechanical Properties	Ptpe	втс	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-		psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Ріре	втс	LTC	STC	
Outside Diameter	10.750	11.750	-	11.750	in.
Wall Thickness	0.350	-	-	-	in.
Inside Diameter	10.050	10.050	-	10.050	in.
Standard Drift	9.894	9.894	-	9.894	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	40.50			-	lbs/ft
Plain End Weight	38.91	-	-	-	lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	1,580	1,580	-	1,580	psi
Minimum Internal Yield Pressure	3,130	3,130	-	3,130	psi
Minimum Pipe Body Yield Strength	629.00	-	-	-	1000 lbs
Joint Strength		700	-	420	1000 lbs
Reference Length		11,522		6,915	ft
Make-Up Data	Ріре	втс	LTC	STC	
Make-Up Loss		4.81	-	3.50	in.
Minimum Make-Up Torque				3,150	ft-lbs
Released to Imaging: 2/5/2025 3:52:54 PM Maximum Make-Up Torque		-	-	5,250	ft-lbs

API 5CT, 10th Ed. Connection Data Sheet

O.D. (in)	WEIGHT	(lb/ft)	WALL (in)	GRADE	*API DRIFT (in)	RBW %
8.625	Nominal: Plain End:	32.00 31.13	0.352	J55	7.796	87.5

Material Properties (PE)			
Pipe			
Minimum Yield Strength:	55 ksi		
Maximum Yield Strength:	80 ksi		
Minimum Tensile Strength:	75 ksi		
Coupling			
Minimum Yield Strength:	55 ksi		
Maximum Yield Strength:	80 ksi		
Minimum Tensile Strength:	75 ksi		

Pipe Body Data (PE)		
Geometry	1	
Nominal ID:	7.92 inch	
Nominal Area:	9.149 in ²	
*Special/Alt. Drift:	7.875 inch	
Performan	ce	
Pipe Body Yield Strength:	503 kips	
Collapse Resistance:	2,530 psi	
Internal Yield Pressure: (API Historical)	3,930 psi	

API Connection Data Coupling OD: 9.625"			
STC Performan	се		
STC Internal Pressure:	3,930	psi	
STC Joint Strength:	372	kips	
LTC Performan	ce		
LTC Internal Pressure:	3,930	psi	
LTC Joint Strength:	417	kips	
SC-BTC Performance - Cplg OD = 9.125"			
BTC Internal Pressure:	3,930	psi	
BTC Joint Strength:	503	kips	

API Connection Torque					
	5	STC Tor	que (ft-lb	s)	
Min:	2,793	Opti:	3,724	Max:	4,655
	L	_TC Tor	que (ft-lb	s)	
Min:	3,130	Opti:	4,174	Max:	5,217
	_	OTO To:		\	
	BTC Torque (ft-lbs)				
follow API guidelines regarding positional make up					

*Alt. Drift will be used unless API Drift is specified on order.

**If above API connections do not suit your needs, VAM® premium connections are available up to 100% of pipe body ratings.

ALL INFORMATION IS PROVIDED BY VALLOUREC OR ITS AFFILIATES AT USER'S SOLE RISK, WITHOUT LIABILITY FOR LOSS, DAMAGE OR INJURY RESULTING FROM THE USE THEREOF; AND ON AN "AS IS" BASIS WITHOUT WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR PURPOSE, ACCURACY OR COMPLETENESS. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND IS BASED ON ESTIMATES THAT HAVE NOT BEEN VERIFIED OR TESTED. IN NO EVENT SHALL VALLOUREC OR ITS AFFILIATES BE RESPONSIBLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, EXEMPLARY OR CONSEQUENTIAL LOSS OR DAMAGE (INCLUDING WITHOUT LIMITATION, LOSS OF USE, LOSS OF BARGAIN, LOSS OF REVENUE, PROFIT OR ANTICIPATED PROFIT) HOWEVER CAUSED OR ARISING, AND WHETHER SUCH LOSSES OR DAMAGES WERE FORESEEABLE OR VALLOUREC OR ITS AFFILIATES WERE ADVISED OF THE

Rev 3, 7/30/2021 POSSIBILITY OF SUCH DAMAGES. 10/21/2022 15:24

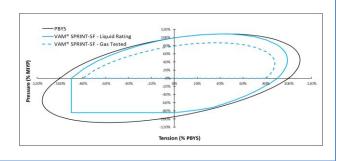
Issued on: 10 Feb. 2021 by Wesley Ott

OD Weight (lb/ft) Wall Th. Grade API Drift: Connection

Nominal: 24.50
Plain End: 23.95

Wall Th. Grade API Drift: Connection

VAM® SPRINT-SF


PI PE PROPERTI ES		
Nominal OD	6.000	in.
Nominal ID	5.200	in.
Nominal Cross Section Area	7.037	sqin.
Grade Type	Hig	h Yield
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Ultimate Tensile Strength	135	ksi

CONNECTION PROPERTIES		
Connection Type	Integral:	Semi-Flush
Connection OD (nom):	6.277	in.
Connection ID (nom):	5.146	in.
Make-Up Loss	5.386	in.
Critical Cross Section	6.417	sqin.
Tension Efficiency	91.0	% of pipe
Compression Efficiency	91.0	% of pipe
Internal Pressure Efficiency	100	% of pipe
External Pressure Efficiency	100	% of pipe

CONNECTI ON PERFORMANCES			
Tensile Yield Strength	801	klb	
Compression Resistance	801	klb	
Internal Yield Pressure	14,580	psi	
Collapse Resistance	12,500	psi	
Max. Structural Bending	83	°/100ft	
Max. Bending with ISO/API Sealability	30	°/100ft	

TORQUE VALUES		
Min. Make-up torque	21,750	ft.lb
Opt. Make-up torque	24,250	ft.lb
Max. Make-up torque	26,750	ft.lb
Max. Torque with Sealability (MTS)	53,000	ft.lb

VAM® SPRINT-SF is a semi-flush connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections and tight clearance requirements.

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com Do you need help on this product? - Remember no one knows VAM® like VAM®

uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

^{* 87.5%} RBW

Connection Data Sheet

 OD (in.)
 WEIGHT (lbs./ft.)
 WALL (in.)
 GRADE
 API DRIFT (in.)
 RBW%
 CONNECTION

 6.000
 Nominal: 22.30
 0.360
 VST P110EC
 5.155
 92.5
 DWC/C-IS

 Plain End: 21.70

PIPE PROPERTIES				
New trad OD				
Nominal OD	6.000	in.		
Nominal ID	5.280	in.		
Nominal Area	6.379	sq.in.		
Grade Type	API 5CT			
Min. Yield Strength	125	ksi		
Max. Yield Strength	140	ksi		
Min. Tensile Strength	135	ksi		
Yield Strength	797	klb		
Ultimate Strength	861	klb		
Min. Internal Yield Pressure	13,880	psi		
Collapse Pressure	9,800	psi		

CONNECTION PERFORMANCES				
Yield Strength	797	klb		
Parting Load	861	klb		
Compression Rating	797	klb		
Min. Internal Yield	13,880	psi		
External Pressure	9,800	psi		
Maximum Uniaxial Bend Rating	47.7	°/100 ft		
Reference String Length w 1.4 Design Factor	25,530	ft.		

Need Help? Contact: <u>tech.support@vam-usa.com</u>
Reference Drawing: 8135PP Rev.02 & 8135BP Rev.02

Date: 07/30/2020 Time: 07:50:47 PM

CONNECTION PRO	PERTIES	
Connection Type	Semi-Pren	nium T&C
Connection OD (nom)	6.650	in.
Connection ID (nom)	5.280	in.
Make-Up Loss	4.313	in.
Coupling Length	9.625	in.
Critical Cross Section	6.379	sq.in.
Tension Efficiency	100.0%	of pipe
Compression Efficiency	100.0%	of pipe
Internal Pressure Efficiency	100.0%	of pipe
External Pressure Efficiency	100.0%	of pipe

FIELD END TORQUE V	ALUES	
Min. Make-up torque	17,000	ft.lb
Opti. Make-up torque	18,250	ft.lb
Max. Make-up torque	19,500	ft.lb
Min. Shoulder Torque	1,700	ft.lb
Max. Shoulder Torque	13,600	ft.lb
Min. Delta Turn	-	Turns
Max. Delta Turn	0.200	Turns
Maximum Operational Torque	24,200	ft.lb
Maximum Torsional Value (MTV)	26.620	ft.lb

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

VAM USA

2107 CityWest Boulevard Suite 1300

Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234

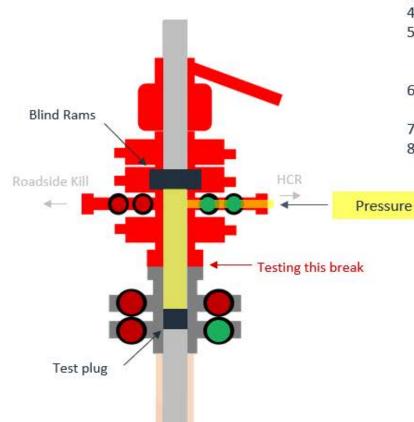
VAM® USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- 2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- 4. DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- 8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torque is not to be exceeded.
- 10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- 11. DWC connections will accommodate API standard drift diameters.
- 12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

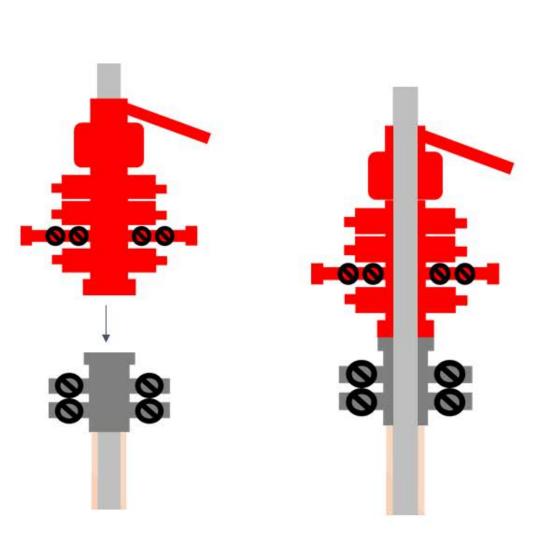
All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In one event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

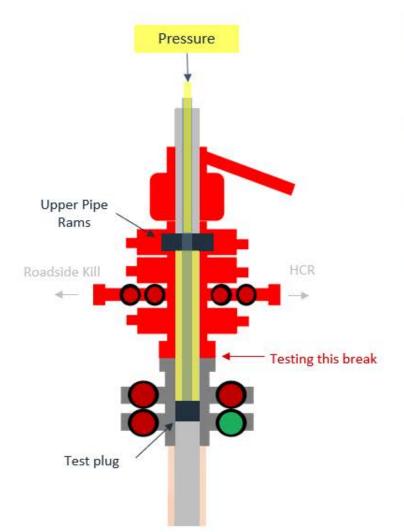


Break-test BOP & Offline Cementing:

EOG Resources Inc. (EOG) respectfully requests a variance from the minimum standards for well control equipment testing of ECFR Title 43 Part 3172.6(b)(9)(iv) to allow a testing schedule of the blow out preventer (BOP) and blow out prevention equipment (BOPE) along with Batch Drilling & Offline cement operations to include the following:

- Full BOPE test at first installation on the pad.
- Full BOPE test every 30 days.
- This test will be conducted for 5M rated hole intervals only.
- Each rig requesting the break-test variance is capable of picking up the BOP without damaging components using winches, following API Standard 53, Well Control Equipment Systems for Drilling Wells (Fifth edition, December 2018, Annex C. Table C.4) which recognizes break testing as an acceptable practice.
- Function tests will be performed on the following BOP elements:
 - Annular **à** during each full BOPE test
 - Upper Pipe Rams **à** On trip ins where FIT required
 - Blind Rams **à** Every trip
 - Lower Pipe Rams à during each full BOPE test
- Break testing BOP and BOPE coupled with batch drilling operations and option to offline cement and/or remediate (if needed) any surface or intermediate sections, according to attached offline cementing support documentation.
- After the well section is secured, the BOP will be disconnected from the wellhead and walked with the rig to another well on the pad.
- TA cap will also be installed per Wellhead vendor procedure and pressure inside the
 casing will be monitored via the valve on the TA cap as per standard batch drilling
 ops.


Break Test Diagram (HCR valve)

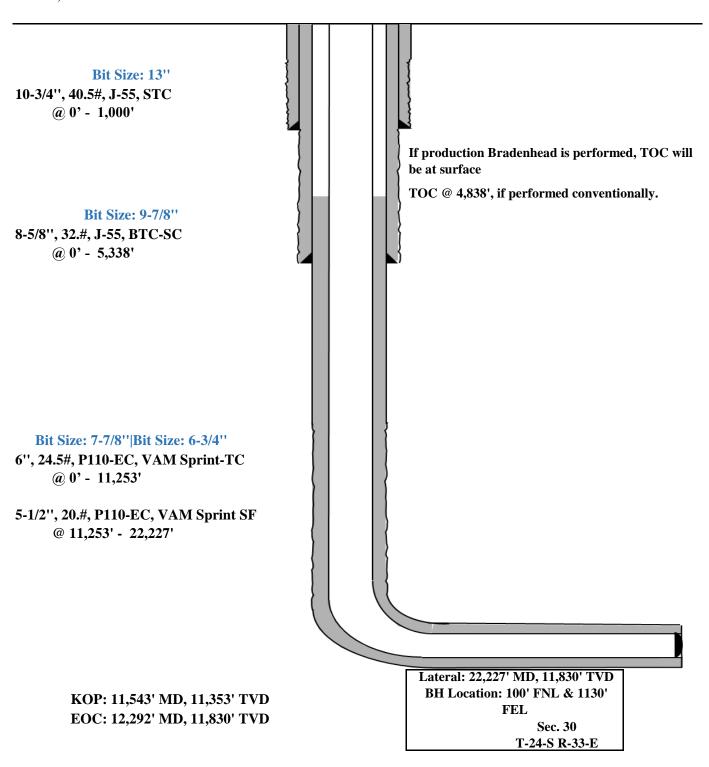


Steps

- 1. Set plug in wellhead (lower barrier)
- 2. Close Blind Rams (upper barrier)
- 3. Close roadside kill
- 4. Open HCR (pressure application)
- Open wellhead valves below test plug to ensure if leak past test plug, pressure won't be applied to wellbore
- Tie BOP testers high pressure line to main choke manifold crown valve
- 7. Pressure up to test break
- Bleed test pressure from BOP testing unit

Break Test Diagram (Test Joint)

Steps


- Set plug in with test joint wellhead (lower barrier)
- 2. Close Upper Pipe Rams (upper barrier)
- 3. Close roadside kill
- 4. Close HCR
- Open wellhead valves below test plug to ensure if leak past test plug, pressure won't be applied to wellbore
- Tie BOP testers high pressure line to top of test joint
- 7. Pressure up to test break
- Bleed test pressure from BOP testing unit

1219' FSL Wellbore KB: 3549'
2075' FEL GL: 3524'

Section 31

T-24-S, R-33-E API: 30-025-****

Permit Information:

Well Name: Mad Adder 31 State Com 582H

Location: SHL: 1219' FSL & 2075' FEL, Section 31, T-24-S, R-33-E, LEA Co., N.M.

BHL: 100' FNL & 1130' FEL, Section 30, T-24-S, R-33-E, LEA Co., N.M.

Casing Program:

Hole	Interv	al MD	Interva	al TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13"	0	1,000	0	1,000	10-3/4"	40.5#	J-55	STC
9-7/8"	0	5,338	0	5,132	8-5/8"	32#	J-55	BTC-SC
7-7/8"	0	11,443	0	11,253	6"	24.5#	P110-EC	VAM Sprint-TC
6-3/4"	11,443	22,227	11,253	11,830	5-1/2"	20#	P110-EC	VAM Sprint SF

^{**}For highlighted rows above, variance is requested to run entire string of either or casing string above due to availablility.

Cement Program:

	No.	Wt.	Yld	Shawe Description	
Depth Sacks		ppg	Ft3/sk	Slurry Description	
1 0001	230	13.5	1.73	Class C/H + additives (TOC @ Surface)	
1,000'	100	14.8	1.34	Class C/H + additives	
5 240!	430	12.7	1.11	Tail: Class C/H + additives + expansion additives (TOC @ Surface)	
5,340'	250	14.8	1.5	Lead: Class C/H + additives (TOC @ 4,106')	
	910	10.5	3.21	Lead: Class C/H + additives (TOC @ 4,838')	
22,227'	1270	13.2	1.52	Tail: Class C/H + additives	

Mud Program:

Section	Depth	Type	Weight (ppg)	Viscosity	Water Loss
Surface	0 – 1,000'	Fresh - Gel	8.6-9.2	28-34	N/c
Intermediate	1,000' – 5,130'	Brine	9.0-10.5	28-34	N/c
Production	5,130' – 22,227' Lateral	Oil Base	8.8-9.5	58-68	N/c - 6

TUBING REQUIREMENTS

EOG respectively requests an exception to the following NMOCD rule:

19.15.16.10 Casing AND TUBING RQUIREMENTS:
 J (3): "The operator shall set tubing as near the bottom as practical and tubing perforations shall not be more than 250 feet above top of pay zone."

With horizontal flowing and gas lifted wells an end of tubing depth placed at or slightly above KOP is a conservative way to ensure the tubing stays clean from debris, plugging, and allows for fewer well interventions post offset completion. The deeper the tubulars are run into the curve, the higher the probability is that the tubing will become stuck in sand and or well debris as the well produces over time. An additional consideration for EOT placement during artificial lift installations is avoiding the high dog leg severity and inclinations found in the curve section of the wellbore to help improve reliability and performance. Dog leg severity and inclinations tend not to hamper gas lifted or flowing wells, but they do effect other forms of artificial lift like rod pump or ESP (electric submersible pump). Keeping the EOT above KOP is an industry best practice for those respective forms of artificial lift.

Hydrogen Sulfide Plan Summary

- A. All personnel shall receive proper H2S training in accordance with Onshore Order III.C.3.a.
- B. Briefing Area: two perpendicular areas will be designated by signs and readily accessible.
- C. Required Emergency Equipment:
 - Well control equipment
 - a. Flare line 150' from wellhead to be ignited by flare gun.
 - b. Choke manifold with a remotely operated choke.
 - c. Mud/gas separator
 - Protective equipment for essential personnel.

Breathing apparatus:

- a. Rescue Packs (SCBA) 1 unit shall be placed at each breathing area, 2 shall be stored in the safety trailer.
- b. Work/Escape packs —4 packs shall be stored on the rig floor with sufficient air hose not to restrict work activity.
- c. Emergency Escape Packs —4 packs shall be stored in the doghouse for emergency evacuation.

Auxiliary Rescue Equipment:

- a. Stretcher
- b. Two OSHA full body harness
- c. 100 ft 5/8 inch OSHA approved rope
- d. 1-20# class ABC fire extinguisher
- H2S detection and monitoring equipment:

The stationary detector with three sensors will be placed in the upper dog house if equipped, set to visually alarm @ 10 ppm and audible @ 14 ppm. Calibrate a minimum of every 30 days or as needed. The sensors will be placed in the following places: Rig floor / Bell nipple / End of flow line or where well bore fluid is being discharged.

(Gas sample tubes will be stored in the safety trailer)

- Visual warning systems.
 - a. One color code condition sign will be placed at the entrance to the site reflecting the possible conditions at the site.
 - b. A colored condition flag will be on display, reflecting the current condition

at

c. Two wind socks will be placed in strategic locations, visible from all angles.

■ Mud program:

The mud program has been designed to minimize the volume of H2S circulated to surface. The operator will have the necessary mud products to minimize hazards while drilling in H2S bearing zones.

■ Metallurgy:

All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.

■ Communication:

Communication will be via cell phones and land lines where available.

Mad Adder 31 State Com #582H Emergency Assistance Telephone List

Carlsbad	PUBLIC SAFETY:		911 or
Fire Department:	Lea County Sheriff's Department		(575) 396-3611
Carlsbad Artesia (575) 885-3125 (575) 746-5050	Rod Coffman		
Artesia	Fire Department:		
Carlsbad	Carlsbad		(575) 885-3125
Carlsbad Artesia (575) 887-4121 Artesia (575) 748-3333 Hobbs (575) 748-3333 Dept. of Public Safety/Carlsbad (575) 748-9718 Highway Department (575) 885-3281 New Mexico Oil Conservation (575) 885-3281 NMOCD Inspection Group - South (575) 626-0830 U.S. Dept. of Labor (575) 887-1174 EOG Resources, Inc. FOR Resources, Inc. EOG / Midland Offfice (432) 686-3600 Company Drilling Consultants: David Dominque Cell (817) 980-5507 Drilling Engineer Stephen Davis Cell (432) 235-9789 Matt Day Cell (432) 296-4456 Drilling Manager Cell (432) 686-3752 Branden Keener Offfice (432) 686-3752 Cell (210) 294-3729 Drilling Superintendent Steve Kelly Office (432) 686-3706 Cell (210) 416-7894 H&P Drilling Office (432) 563-5757 H&P Drilling Rig	Artesia		(575) 746-5050
Artesia Hobbs (575) 748-3333 Hobbs (575) 392-1979 Dept. of Public Safety/Carlsbad (575) 392-1979 lighway Department (575) 885-3281 New Mexico Oil Conservation (575) 48-63440 NMOCD Inspection Group - South (575) 626-0830 U.S. Dept. of Labor (575) 887-1174 EOG Resources, Inc. EOG / Midland Office (432) 686-3600 Company Drilling Consultants: David Dominque Cell (985) 518-5839 Mike Vann Cell (817) 980-5507 Drilling Engineer Stephen Davis Cell (432) 235-9789 Matt Day Cell (432) 296-4456 Drilling Manager Branden Keener Office (432) 686-3706 Cell (210) 294-3729 Drilling Superintendent Steve Kelly Office (432) 686-3706 Cell (210) 416-7894 H&P Drilling H&P Drilling Rig Rig (903) 509-7131 Tool Pusher: Johnathan Craig Rig (903) 509-7131 Fool Pusher: Brian Chandler (HSE Manager) Office (432) 686-3695	Hospitals:		
Hobbs	Carlsbad		(575) 887-4121
Dept. of Public Safety/Carlsbad (575) 748-9718 Highway Department (575) 885-3281 New Mexico Oil Conservation (575) 476-3440 NMOCD Inspection Group - South (575) 626-0830 U.S. Dept. of Labor (575) 887-1174 EOG Resources, Inc. EOG / Midland Office (432) 686-3600 Company Drilling Consultants: David Dominque Cell (817) 980-5507 Drilling Engineer Stephen Davis Cell (432) 235-9789 Matt Day Cell (432) 296-4456 Drilling Manager Branden Keener Office (432) 686-3752 Cell (210) 294-3729 Drilling Superintendent Steve Kelly Office (432) 686-3752 Cell (210) 416-7894 H&P Drilling H&P Drilling Office (432) 563-5757 H&P Drilling Rig Rig (903) 509-7131 Tool Pusher: Johnathan Craig Cell (817) 760-6374	Artesia		(575) 748-3333
Highway Department	Hobbs		(575) 392-1979
New Mexico Oil Conservation (575) 476-3440 NMOCD Inspection Group - South (575) 626-0830 U.S. Dept. of Labor (575) 887-1174 EOG Resources, Inc. EOG / Midland Office (432) 686-3600 Company Drilling Consultants: David Dominque Cell (817) 980-5507 Drilling Engineer Stephen Davis Cell (432) 235-9789 Matt Day Cell (432) 296-4456 Drilling Manager Branden Keener Office (432) 686-3752 Cell (210) 294-3729 Drilling Superintendent Steve Kelly Office (432) 686-3706 Cell (210) 416-7894 H&P Drilling Office (432) 563-5757 H&P 651 Drilling Rig Rig (903) 509-7131 Tool Pusher: Johnathan Craig Cell (817) 760-6374 Brad Garrett Safety: Brian Chandler (HSE Manager) Office (432) 686-3695	Dept. of Public Safety/Carlsbad		(575) 748-9718
NMOCD Inspection Group - South (575) 626-0830 U.S. Dept. of Labor (575) 887-1174 EOG Resources, Inc. EOG / Midland Company Drilling Consultants: Cell David Dominque Cell (985) 518-5839 Mike Vann Cell (817) 980-5507 Drilling Engineer Stephen Davis Cell (432) 235-9789 Matt Day Cell (432) 296-4456 Drilling Manager Stender (432) 686-3752 Branden Keener Office (432) 686-3752 Cell (210) 294-3729 Drilling Superintendent Steve Kelly Office (432) 686-3706 Cell (210) 416-7894 H&P Drilling H&P Drilling Office (432) 563-5757 H&P 651 Drilling Rig Rig (903) 509-7131 Tool Pusher: Johnathan Craig Cell (817) 760-6374 Brad Garrett Safety: Brian Chandler (HSE Manager) Office (432) 686-3695	Highway Department		(575) 885-3281
U.S. Dept. of Labor (575) 887-1174 EOG Resources, Inc. EOG / Midland Office (432) 686-3600 Company Drilling Consultants: David Dominque Cell (985) 518-5839 Mike Vann Cell (817) 980-5507 Drilling Engineer Stephen Davis Cell (432) 235-9789 Matt Day Cell (432) 296-4456 Drilling Manager Branden Keener Office (432) 686-3752 Cell (210) 294-3729 Drilling Superintendent Steve Kelly Office (432) 686-3706 Cell (210) 416-7894 H&P Drilling H&P Drilling Rig Rig (903) 509-7131 Tool Pusher: Johnathan Craig Rig Cell (817) 760-6374 Brad Garrett Safety: Brian Chandler (HSE Manager) Office (432) 686-3695	New Mexico Oil Conservation		(575) 476-3440
EOG Resources, Inc. EOG / Midland Office (432) 686-3600 Cell (985) 518-5839 David Dominque Cell (817) 980-5507 Drilling Engineer Stephen Davis Cell (432) 235-9789 Matt Day Cell (432) 296-4456 Drilling Manager Branden Keener Office (432) 686-3752 Cell (210) 294-3729 Drilling Superintendent Steve Kelly Office (432) 686-3706 Cell (210) 416-7894 H&P Drilling Office (432) 563-5757 H&P Orilling Rig Rig (903) 509-7131 Tool Pusher: Johnathan Craig Cell (817) 760-6374 Brad Garrett Safety: Brian Chandler (HSE Manager) Office (432) 686-3695	NMOCD Inspection Group - South		(575) 626-0830
Company Drilling Consultants: David Dominque Cell (985) 518-5839 Mike Vann Cell (817) 980-5507	U.S. Dept. of Labor		(575) 887-1174
Company Drilling Consultants: David Dominque Cell (985) 518-5839 Mike Vann Cell (817) 980-5507	EOG Resources, Inc.		
David Dominque Cell (985) 518-5839 Mike Vann Cell (817) 980-5507	·	Office	(432) 686-3600
David Dominque Cell (985) 518-5839 Mike Vann Cell (817) 980-5507		011100	(10-) 000 0000
Mike Vann Cell (817) 980-5507 Drilling Engineer Stephen Davis Cell (432) 235-9789 Matt Day Cell (432) 296-4456 Drilling Manager Branden Keener Branden Keener Office (432) 686-3752 Cell (210) 294-3729 Drilling Superintendent Steve Kelly Office (432) 686-3706 Cell (210) 416-7894 H&P Drilling H&P Drilling Rig Office (432) 563-5757 H&P 651 Drilling Rig Rig (903) 509-7131 Tool Pusher: Johnathan Craig Cell (817) 760-6374 Brad Garrett Safety: Brian Chandler (HSE Manager) Office (432) 686-3695	Company Drilling Consultants:		
Drilling Engineer	David Dominque	Cell	(985) 518-5839
Stephen Davis Cell (432) 235-9789 Matt Day Cell (432) 296-4456 Drilling Manager Branden Keener Office (432) 686-3752 Cell (210) 294-3729 Drilling Superintendent Steve Kelly Office (432) 686-3706 Cell (210) 416-7894 H&P Drilling H&P Drilling Rig Office (432) 563-5757 H&P 651 Drilling Rig Rig (903) 509-7131 Tool Pusher: Johnathan Craig Cell (817) 760-6374 Brad Garrett Safety: Brian Chandler (HSE Manager) Office (432) 686-3695	Mike Vann	Cell	(817) 980-5507
Stephen Davis Cell (432) 235-9789 Matt Day Cell (432) 296-4456 Drilling Manager Branden Keener Office (432) 686-3752 Cell (210) 294-3729 Drilling Superintendent Steve Kelly Office (432) 686-3706 Cell (210) 416-7894 H&P Drilling H&P Drilling Rig Office (432) 563-5757 H&P 651 Drilling Rig Rig (903) 509-7131 Tool Pusher: Johnathan Craig Cell (817) 760-6374 Brad Garrett Safety: Brian Chandler (HSE Manager) Office (432) 686-3695	Drilling Engineer		
Drilling Manager Branden Keener Office (432) 686-3752 Cell (210) 294-3729 Drilling Superintendent Steve Kelly Office (432) 686-3706 Cell (210) 416-7894 H&P Drilling Office (432) 563-5757 H&P 651 Drilling Rig Tool Pusher: Image: Tool Pusher: Safety: Brian Chandler (HSE Manager) Office (432) 686-3695		Cell	(432) 235-9789
Branden Keener Office Cell (432) 686-3752 Cell (210) 294-3729 Drilling Superintendent Steve Kelly Office (432) 686-3706 Cell (210) 416-7894 H&P Drilling H&P Drilling Rig Office (432) 563-5757 Rig (903) 509-7131 Tool Pusher: Johnathan Craig Cell (817) 760-6374 Brad Garrett Safety: Brian Chandler (HSE Manager) Office (432) 686-3695	Matt Day	Cell	(432) 296-4456
Branden Keener Office Cell (432) 686-3752 Cell (210) 294-3729 Drilling Superintendent Steve Kelly Office (432) 686-3706 Cell (210) 416-7894 H&P Drilling H&P Drilling Rig Office (432) 563-5757 Rig (903) 509-7131 Tool Pusher: Johnathan Craig Cell (817) 760-6374 Brad Garrett Safety: Brian Chandler (HSE Manager) Office (432) 686-3695	•		` ,
Drilling Superintendent Steve Kelly Office (432) 686-3706 Cell (210) 416-7894 H&P Drilling Office (432) 563-5757 Rige (903) 509-7131 H&P 651 Drilling Rig Rig (903) 509-7131 Tool Pusher: Safety: Brian Chandler (HSE Manager) Office (432) 686-3695		Office	(432) 686-3752
Steve Kelly Office Cell (432) 686-3706 H&P Drilling Cell (210) 416-7894 H&P Drilling Office (432) 563-5757 H&P 651 Drilling Rig Rig (903) 509-7131 Tool Pusher: Johnathan Craig Cell (817) 760-6374 Brad Garrett Safety: Brian Chandler (HSE Manager) Office (432) 686-3695		Cell	(210) 294-3729
Steve Kelly Office Cell (432) 686-3706 H&P Drilling Cell (210) 416-7894 H&P Drilling Office (432) 563-5757 H&P 651 Drilling Rig Rig (903) 509-7131 Tool Pusher: Johnathan Craig Cell (817) 760-6374 Brad Garrett Safety: Brian Chandler (HSE Manager) Office (432) 686-3695	Drilling Superintendent		
H&P Drilling H&P Drilling Office (432) 563-5757 H&P 651 Drilling Rig Rig (903) 509-7131 Tool Pusher: Johnathan Craig Cell (817) 760-6374 Brad Garrett Safety: Brian Chandler (HSE Manager) Office (432) 686-3695	Steve Kelly	Office	(432) 686-3706
H&P Drilling Office (432) 563-5757 H&P 651 Drilling Rig Rig (903) 509-7131 Tool Pusher: Johnathan Craig Cell (817) 760-6374 Brad Garrett Safety: Brian Chandler (HSE Manager) Office (432) 686-3695	•	Cell	(210) 416-7894
H&P 651 Drilling Rig (903) 509-7131 Tool Pusher: Johnathan Craig Cell (817) 760-6374 Brad Garrett Safety: Brian Chandler (HSE Manager) Office (432) 686-3695	H&P Drilling		
Tool Pusher: Johnathan Craig Brad Garrett Safety: Brian Chandler (HSE Manager) Office (817) 760-6374 (817) 760-6374 (817) 760-6374	H&P Drilling	Office	(432) 563-5757
Tool Pusher: Johnathan Craig Brad Garrett Safety: Brian Chandler (HSE Manager) Office (432) 686-3695	H&P 651 Drilling Rig	Rig	(903) 509-7131
Johnathan Craig Brad Garrett Safety: Brian Chandler (HSE Manager) Cell (817) 760-6374 Office (432) 686-3695	g g	C	
Brad Garrett Safety: Brian Chandler (HSE Manager) Office (432) 686-3695	Tool Pusher:		
Safety: Brian Chandler (HSE Manager) Office (432) 686-3695	Johnathan Craig	Cell	(817) 760-6374
Brian Chandler (HSE Manager) Office (432) 686-3695	Brad Garrett		
· · · · · · · · · · · · · · · · · · ·	Safety:		
Cell (817) 239-0251	Brian Chandler (HSE Manager)	Office	(432) 686-3695
		Cell	(817) 239-0251