Sante Fe Main Office Phone: (505) 476-3441 General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Form C-101 August 1, 2011

Permit 384869

APPLICATION FOR PERMIT TO DRILL, RE-ENTER, DEEPEN, PLUGBACK, OR ADD A ZONE

1. Operator Nan	e and Address	2. OGRID Number	
Texa	s Standard Operating NM LLC	329818	
3300	North A Street	3. API Number	
Midla	nd, TX 79705		30-025-54460
4. Property Cod		5. Property Name	6. Well No.
3370	77	TXS Big Dog State Com	101H

7. Surface Location

UL - Lot	Section	Township	Range	Lot Idn	Feet From	N/S Line	Feet From	E/W Line	County
N	7	18S	36E		900	S	1330	W	Lea
				0 B	S-44 11-1- 1 4'-	_			

8. Proposed Bottom Hole Location

UL - Lot	Section	Township	Range	Lot Idn	Feet From	N/S Line	Feet From	E/W Line	County
С	6	18S	36E	3	50	N	1980	W	Lea

9. Pool Information

WC-025 G-09 S173615C;UPPE	ER PENN S	98333

Additional Well Information

11. Work Type New Well	12. Well Type OIL	13. Cable/Rotary	14. Lease Type State	15. Ground Level Elevation 3867
16. Multiple	17. Proposed Depth			20. Spud Date
N 21753 Depth to Ground water		Upper Pennsylvanian Undesignated Distance from nearest fresh water well		3/28/2025 Distance to nearest surface water
Sopar to Ground mater				

⊠ We will be using a closed-loop system in lieu of lined pits

21. Proposed Casing and Cement Program

2111 Topocou Guornig una Goment Trogram								
Type	Hole Size	Casing Size	Casing Weight/ft	Setting Depth	Sacks of Cement	Estimated TOC		
Surf 17.5 13.375 54.5			2000	1200	0			
Int1	12.25	9.625	43.5	10600	2000	0		
Prod	8.5	5.5	23	21753	2500	8300		

Casing/Cement Program: Additional Comments

Surface casing fluid is Fresh Water/Spud Mud; Intermediate casing fluid is Brine/Cut Brine. Casing grade for intermediate casing is HCP-110; casing grade for Production casing is HCP-110 CY. A Pilot Hole will be drilled to 12,000' and then plugged back to drill the lateral.

22. Proposed Blowout Prevention Program

Туре	Working Pressure	Test Pressure	Manufacturer						
Double Ram	5000	5000	Cameron						
Annular	5000	2500	Shafer						

23. I hereby certify that the information given above is true and complete to the best of my knowledge and belief. I further certify I have complied with 19.15.14.9 (A) NMAC ☒ and/or 19.15.14.9 (B) NMAC ☒, if applicable.				OIL CONSERVATION	DIVISION	
Signature:				M ## 0		
Printed Name:	Electronically filed by Craig E Yo	oung	Approved By:	Matthew Gomez		
Title:	VP Operations		Title:			
Email Address: craig@txsoil.com			Approved Date:	3/5/2025	Expiration Date: 3/5/2027	
Date: 3/4/2025 Phone: 432-693-6674			Conditions of Approval Attached			

C-102

API Number

Property Code

OGRID No.

UL

UL

UL

UL

UL

N

C

Ν

C

Dedicated Acres

320.22 Order Numbers.

N

Submit Electronically

Via OCD Permitting

30-025-54460

Surface Owner:

State □ Fee □ Tribal □ Federal

Township

Township

Township

Township

Township

18S

18S

18S

18S

Infill or Defining Well

18S

337077

329818

Section

Section

6

Section

Section

7

Section

6

7

7

Pool Code

Range

Range

Range

Range

Range

36E

36E

36E

36E

36E

Property Name

98333

Lot

Lot

Lot

Lot

Lot

3

3

Defining Well API

	2	
	1	
	Š	
		٠
	۰	١
	Ė	
- 3	4	Ĺ
	V	ľ
	ē	
	•	ì
- 1	-	
	-	١
ŧ	-	١
		į
	3	
	7	
- 3		
	\	
	3	
- 6		
	۳	i
	ľ	
		۱
	ì	١
Ì	ì	١
6	ì	
6		
6		
6		
6		
6		
6		
6		
6		
COC	. (1)	
000	. () () (
000	. () () (
000	. () () (
000	. (1)	
400	D11 (11)	
000	D11 (11)	
200		The second secon
200		The second secon
200		The second secon
200	. () () () () () () ()	The second secon
200	. () () () () () () ()	The second secon
11	.(1) (1) (n) pon	
	. (I) (III point	
	. (I) (III point	
	. () () () Doute	
	. () () () Doute	
	. () () () Doute	
	. () () () Doute	
	. (I) (III point	

Spacing Unit Type

☐ Horizontal ☐ Vertical Unitized Area or Area of Uniform Interest Ground Floor Elevation: **OPERATOR CERTIFICATIONS** SURVEYOR CERTIFICATIONS I hereby certify that the information contained herein is true and complete to the best of I hereby certify that the well location shown on this plat was plotted from field notes of actual my knowledge and belief, and, if the well is a vertical or directional well, that this surveys made by me under my supervision, and that the same is true and correct to the best of organization either owns a working interest or unleased mineral interest in the land my belief. including the proposed bottom hole location or has a right to drill this well at this Released to Imaging: 3/5/2025 9:37:07 AM location pursuant to a contract with an owner of a working interest or unleased mineral EN MET interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division. If this well is a horizontal well, I further certify that this organization has received the consent of at least one lessee or owner of a working interest or unleased mineral interest in each tract (in the target pool or formation) in which any part of the well's completed interval will be located or obtained a compulsory pooling order from the division. Signature Signature and Seal of Professional Surveyor Certificate Number Date of Survey 02/25/2025 14400 will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division

State of New Mexico

Energy, Minerals & Natural Resources Department

OIL CONSERVATION DIVISION

Operator Name
TEXAS STANDARD OPERATING NM LLC

Ft. from N/S

900 FSL

100 FSL

100 FNL

50 FNL

900 FSL

Surface Location

Bottom Hole Location

Kick Off Point (KOP)

First Take Point (FTP)

Last Take Point (LTP)

WELL LOCATION INFORMATION

Pool Name

TXS BIG DOG STATE COM

Ft. from E/W

1980 FWL

1980 FWL

1330 FWL

1330 FWL

1980 FWL

Revised July 9, 2024

101H

3867'

County

County

County

County

County

LEA

LEA

LEA

LEA

LEA

X Initial Submittal

☐ Amended Report

☐ As Drilled

Ground Level Elevation

103.3979386°W

103.3959147°W

103.3979386°W

|103.3958200°W

103.3959140°W

Well Number

Longitude

Longitude

Longitude

Longitude

Longitude

Submittal

Type:

WC-025 G-09 S173615C;UPPER PENN

Mineral Owner: X State ☐ Fee ☐ Tribal ☐ Federal

32.7572773°N

32.7837555°N

Well setbacks are under Common Ownership: ☐ Yes ☐ No

32.7572773°N

32.7550756°N

32.7836181°N

Overlapping Spacing Unit (Y/N) | Consolidation Code

Latitude

Latitude

Latitude

Latitude

Latitude

ACREAGE DEDICATION PLATS

This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is a directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is closest to any outer boundary of the tract.

Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed, contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

TXS BIG DOG STATE #101H

NAD 83 GRID - NM EAST

SURFACE LOCATION (SL) N: 640499.5 - E: 828895.5

LAT: 32.7572773° N LONG: 103.3979386° W

FIRST TAKE POINT (FTP) N: 639704.2 - E: 829554.0

> LAT: 32.7550756" N LON: 103.3958200° W

LAST TAKE POINT (LTP) N: 650088.7 - E: 829433.1

LAT: 32.7836181* N LON: 103.3959140* W

BOTTOM HOLE (BH) N: 650138.6 - E: 829432.4

> LAT: 32.7837555° N LONG: 103.3959147° W

CORNER DATA NAD 83 GRID - NM EAST

A: FOUND 1/2" REBAR N: 639590.6 - E: 827575.4

B: FOUND SPIKE NAIL N: 642234.1 - E: 827547.2

C: FOUND FENCE CORNER N: 644873.7 - E: 827522.0

FOUND SPIKE NAIL N: 650161.4 - E: 827452.3

CALCULATED CORNER N: 650233.1 - E: 832668.7

F: FOUND RAIL ROAD SPIKE N: 644906.1 - E: 832720.0

G: FOUND RAIL ROAD SPIKE N: 639626.5 - E: 832779.6

100 # 1005000400

Released to Imaging: 3/5/2025 9:37:07 AM

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116
Online Phone Directory
https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Form APD Conditions

Permit 384869

PERMIT CONDITIONS OF APPROVAL

Operator Name and Address:	API Number:		
Texas Standard Operating NM LLC [329818]	30-025-54460		
3300 North A Street	Well:		
Midland, TX 79705	TXS Big Dog State Com #101H		

OCD Reviewer	Condition
matthew.gomez	A [C-103] Sub. Drilling (C-103N) is required within (10) days of spud.
matthew.gomez	Notify the OCD 24 hours prior to casing & cement.
	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string.
	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.
matthew.gomez	Cement is required to circulate on both surface and intermediate1 strings of casing.
matthew.gomez	If cement does not circulate on any string, a Cement Bond Log (CBL) is required for that string of casing.
matthew.gomez	File As Drilled C-102 and a directional Survey with C-104 completion packet.

Page 5 of 20 Received by OCD: 3/4/2025 1:40:38 PM Company Name: Texas Standard Operating NM LLC. TXS Big Dog Exploratory Unit #102H Lea County New Mexico Rig: Created By: Shane Robbins TEXAS STANDARD OIL Date: 1/7/2025 Directional Drilling TXS Big Dog Exploratory Unit #102H **ANNOTATIONS** Lea County New Mexico Q250*** & WT-250*** MDAzi +N/-S **VSect Departure Annotation** Inc 2200.0 0.00 2200.0 0.0 Build 1.5°/100' 89.3 EOB @ 12.41° Inc / 222.67° Azm 12.41 222.67 3021.1 -680.8 -682.5 -741.3 -743.2 -741.3 -743.2 1004.5 Drop 1.5°/100' 222.67 7178.9 -738.6 7284.9 Design #1 1093.8 EOD @ Vert 1093.8 Build 10°/100' 8112.5 0.0008 -804.3 0.00 10827.0 -804.3 10939.5 -676.9 -180.7 1666.8 EOB @ 90° Inc / 6.45° Azm -653.0 289.6 2141.4 EOT @ 359.33° Azm -762.7 9651.3 11524.4 TD @ 21697' MD / 11400' TVD 6.45 11400.0 -235.0 11839.5 359.33 11400.0 12314.1 238.8 90.00 359.33 11400.0 9621.1 PROJECT DETAILS: Lea County New Mexico Geodetic System: US State Plane 1983 Datum: North American Datum 1983 Ellipsoid: GRS 1980 Zone: New Mexico Eastern Zone System Datum: Mean Sea Level TXS Big Dog Exploratory Unit #101H/Design #1 TD @ 21697' MD / 11400' TVD TXS Big Dog Exploratory Unit #102H WELL DETAILS: 3867.0 +E/-W Easting Latittude Longitude 828875.50 32° 45' 26.199 N 103° 23' 52.814 W 640499.40 9000-Azimuths to Grid North Correction: 5.54° Magnetic Field Strength: 47362.4nT Dip Angle: 60.47° Date: 2/28/2025 Model: HDGM2025 6200-EOB @ 12.41° Inc / 222.67° Azm 5400-5200 TXS Big Dog Exploratory Unit #101H/Design #1 5000 4800-TXS Big Dog Exploratory Unit #102H/Design #1 4400 4200 Dunkel 7 State #2H/Wellbore #2 4000-Dunkel 7 State #2H/Wellbore #1 Dunkel 7 State #1H/Wellbore 3400-3200-3000-2800-2600-2400-2200-2000-Drop 1.5°/100' 1800-1600-1400 1200-EOD @ Vert 1000-**EOT @ 359.33° Azm** 400-EOB @ 12 41° Inc / 222.67° Azm Build 1.5°/100' EOB @ 90° Inc / 6.45° Azm -200 **-**400-330' Hard Line **Drop 1.5°/100'** -800 Lease Line 10000 -1400 10400 11200-10600 11400-11600 Build 10°/100' 7400 11000-Vertical Section at 355.47° (200 usft/in) 11200-11400-EOT @ 359.33° Azm 11600-EOB @ 90° Inc / 6.45° Azm 2000 3200 3400 3600 -200 800 1000 1200 1400 1800 Vertical Section at 355.47° (200 usft/in) Released to Imaging: 3/5/2025 9:37:07 AM

Texas Standard Operating NM LLC.

Lea County New Mexico Sec 7, T18S, R36E TXS Big Dog Exploratory Unit #101H

Wellbore #1

Plan: Design #1

KLX Well Planning Report

01 March, 2025

Database: KLXDirectional-AD

Company: Texas Standard Operating NM LLC.

Project: Lea County New Mexico Site: Sec 7, T18S, R36E

Well: TXS Big Dog Exploratory Unit #101H

Wellbore: Wellbore #1
Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well TXS Big Dog Exploratory Unit #101H

WELL @ 3892.0usft WELL @ 3892.0usft

3.19

Grid

Minimum Curvature

Project Lea County New Mexico

Map System: US State Plane 1983 System Datum: Mean Sea Level

Geo Datum: North American Datum 1983
Map Zone: New Mexico Eastern Zone

Site Sec 7, T18S, R36E

Site Position: Northing: 640,499.50 usft Latitude: 32° 45' 26.198 N From: Мар Easting: 828,895.50 usft Longitude: 103° 23' 52.580 W Slot Radius: **Position Uncertainty:** 0.0 usft 13-3/16 " **Grid Convergence:** 0.51°

Well TXS Big Dog Exploratory Unit #101H

 Well Position
 +N/-S
 0.0 usft
 Northing:
 640,499.50 usft
 Latitude:
 32° 45' 26.198 N

 +E/-W
 0.0 usft
 Easting:
 828,895.50 usft
 Longitude:
 103° 23' 52.580 W

Position Uncertainty 0.0 usft Wellhead Elevation: Ground Level: 3,867.0 usft

Wellbore #1

 Magnetics
 Model Name
 Sample Date (°)
 Declination (°)
 Dip Angle (°)
 Field Strength (nT)

 HDGM2025
 2/28/2025
 6.05
 60.47
 47,362.40000000

Design Design #1

Audit Notes:

Version: Phase: PLAN Tie On Depth: 0.0

Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°)

0.0

Plan Sections	s									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,200.0	0.00	0.00	2,200.0	0.0	0.0	0.00	0.00	0.00	0.00	
3,123.2	13.85	131.47	3,114.2	-73.5	83.2	1.50	1.50	0.00	131.47	
7,213.6	13.85	131.47	7,085.8	-721.8	816.8	0.00	0.00	0.00	0.00	
8,136.8	0.00	0.00	8,000.0	-795.3	900.0	1.50	-1.50	0.00	180.00	VP TXS Big Dog Ex
10,963.8	0.00	0.00	10,827.0	-795.3	900.0	0.00	0.00	0.00	0.00	
11,863.8	90.00	345.75	11,400.0	-240.0	759.0	10.00	10.00	0.00	345.75	
12,769.3	90.00	359.33	11,400.0	655.7	641.7	1.50	0.00	1.50	90.00	
21,753.3	90.00	359.33	11,400.0	9,639.1	536.9	0.00	0.00	0.00	0.00	PBHL Big Dog 101l

0.0

0.0

KLXDirectional-AD Database:

Texas Standard Operating NM LLC.

Company: Project: Lea County New Mexico Sec 7, T18S, R36E Site:

TXS Big Dog Exploratory Unit #101H Well:

Wellbore: Wellbore #1 Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well TXS Big Dog Exploratory Unit #101H

WELL @ 3892.0usft WELL @ 3892.0usft

Planned Survey									
Flaimed Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
Build 1.5°/									
2,200.0	0.00	0.00	2,200.0	0.0	0.0	0.0	0.00	0.00	0.00
2,300.0	1.50	131.47	2,300.0	-0.9	1.0	-0.8	1.50	1.50	0.00
2,400.0	3.00	131.47	2,399.9	-3.5	3.9	-3.2	1.50	1.50	0.00
2,500.0	4.50	131.47	2,499.7	-7.8	8.8	-7.3	1.50	1.50	0.00
2,600.0	6.00	131.47	2,599.3	-13.9	15.7	-13.0	1.50	1.50	0.00
2,700.0	7.50	131.47	2,698.6	-21.6	24.5	-20.2	1.50	1.50	0.00
2,800.0	9.00	131.47	2,797.5	-31.1	35.2	-29.1	1.50	1.50	0.00
2,900.0	10.50	131.47	2,896.1	-42.4	47.9	-39.6	1.50	1.50	0.00
3,000.0	12.00	131.47	2,994.2	-55.3	62.5	-51.7	1.50	1.50	0.00
3,100.0	13.50	131.47	3,091.7	-69.9	79.1	-65.4	1.50	1.50	0.00
	.85° Inc / 131.4								
3,123.2	13.85	131.47	3,114.2	-73.5	83.2	-68.8	1.50	1.50	0.00
3,200.0	13.85	131.47	3,188.8	-85.7	97.0	-80.2	0.00	0.00	0.00
3,300.0	13.85	131.47	3,285.9	-101.5	114.9	-95.0	0.00	0.00	0.00
3,400.0	13.85	131.47	3,383.0	-117.4	132.8	-109.8	0.00	0.00	0.00
3,500.0	13.85	131.47	3,480.1	-133.2	150.8	-124.6	0.00	0.00	0.00
3,600.0	13.85	131.47	3,577.2	-149.1	168.7	-139.5	0.00	0.00	0.00
3,700.0	13.85	131.47	3,674.3	-164.9	186.6	-154.3	0.00	0.00	0.00
3,800.0	13.85	131.47	3,771.4	-180.8	204.6	-169.1	0.00	0.00	0.00
3,900.0	13.85	131.47	3,868.5	-196.6	222.5	-183.9	0.00	0.00	0.00
4,000.0	13.85	131.47	3,965.6	-212.5	240.4	-198.8	0.00	0.00	0.00
4,100.0	13.85	131.47	4,062.6	-228.3	258.4	-213.6	0.00	0.00	0.00
4,200.0	13.85	131.47	4,159.7	-244.2	276.3	-228.4	0.00	0.00	0.00
4,300.0	13.85	131.47	4,256.8	-260.0	294.3	-243.3	0.00	0.00	0.00
4,400.0	13.85	131.47	4,353.9	-275.9	312.2	-258.1	0.00	0.00	0.00
4,500.0	13.85	131.47	4,451.0	-291.7	330.1	-272.9	0.00	0.00	0.00
4,600.0	13.85	131.47	4,548.1	-307.6	348.1	-287.7	0.00	0.00	0.00
4,700.0	13.85	131.47	4,645.2	-323.4	366.0	-302.6	0.00	0.00	0.00
4,800.0	13.85	131.47	4,742.3	-339.3	383.9	-317.4	0.00	0.00	0.00
4,900.0	13.85	131.47	4,839.4	-355.1	401.9	-332.2	0.00	0.00	0.00
5,000.0	13.85	131.47	4,936.5	-371.0	419.8	-347.0	0.00	0.00	0.00

KLXDirectional-AD Database:

Texas Standard Operating NM LLC.

Company: Project: Lea County New Mexico Sec 7, T18S, R36E Site:

TXS Big Dog Exploratory Unit #101H Well:

Wellbore: Wellbore #1 Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well TXS Big Dog Exploratory Unit #101H

WELL @ 3892.0usft WELL @ 3892.0usft

Design:	Design #1								
Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,100.0 5,200.0 5,300.0	13.85	131.47 131.47 131.47	5,033.6 5,130.7 5,227.8	-386.8 -402.7 -418.5	437.7 455.7 473.6	-361.9 -376.7 -391.5	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
5,400.0 5,500.0 5,600.0 5,700.0 5,800.0	13.85 13.85 13.85	131.47 131.47 131.47 131.47 131.47	5,324.9 5,422.0 5,519.1 5,616.1 5,713.2	-434.4 -450.2 -466.1 -481.9 -497.7	491.5 509.5 527.4 545.3 563.3	-406.3 -421.2 -436.0 -450.8 -465.7	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
5,900.0 6,000.0 6,100.0 6,200.0 6,300.0	13.85 13.85 13.85	131.47 131.47 131.47 131.47 131.47	5,810.3 5,907.4 6,004.5 6,101.6 6,198.7	-513.6 -529.4 -545.3 -561.1 -577.0	581.2 599.1 617.1 635.0 653.0	-480.5 -495.3 -510.1 -525.0 -539.8	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
6,400.0 6,500.0 6,600.0 6,700.0 6,800.0	13.85 13.85 13.85 13.85	131.47 131.47 131.47 131.47 131.47	6,295.8 6,392.9 6,490.0 6,587.1 6,684.2	-592.8 -608.7 -624.5 -640.4 -656.2	670.9 688.8 706.8 724.7 742.6	-554.6 -569.4 -584.3 -599.1 -613.9	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
6,900.0 7,000.0 7,100.0 7,200.0 Drop 1.5	13.85 13.85 13.85	131.47 131.47 131.47 131.47	6,781.3 6,878.4 6,975.5 7,072.5	-672.1 -687.9 -703.8 -719.6	760.6 778.5 796.4 814.4	-628.7 -643.6 -658.4 -673.2	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
7,213.6		131.47	7,085.8	-721.8	816.8	-675.2	0.00	0.00	0.00
7,300.0 7,400.0 7,500.0 7,600.0 7,700.0) 11.05) 9.55) 8.05	131.47 131.47 131.47 131.47 131.47	7,169.9 7,267.8 7,366.1 7,465.0 7,564.1	-734.8 -748.4 -760.2 -770.4 -778.8	831.6 846.9 860.3 871.8 881.3	-687.5 -700.1 -711.2 -720.7 -728.6	1.50 1.50 1.50 1.50 1.50	-1.50 -1.50 -1.50 -1.50 -1.50	0.00 0.00 0.00 0.00 0.00
7,800.0 7,900.0 8,000.0 8,100.0 EOD @ N	3.55 2.05 0.55	131.47 131.47 131.47 131.47	7,663.6 7,763.3 7,863.2 7,963.2	-785.5 -790.4 -793.7 -795.2	888.9 894.5 898.2 899.9	-734.8 -739.5 -742.5 -743.9	1.50 1.50 1.50 1.50	-1.50 -1.50 -1.50 -1.50	0.00 0.00 0.00 0.00
8,136.8		0.00	8,000.0	-795.3	900.0	-744.0	1.50	-1.50	0.00
8,200.0 8,300.0 8,400.0 8,500.0 8,600.0	0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	8,063.2 8,163.2 8,263.2 8,363.2 8,463.2	-795.3 -795.3 -795.3 -795.3 -795.3	900.0 900.0 900.0 900.0 900.0	-744.0 -744.0 -744.0 -744.0 -744.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
8,700.0 8,800.0 8,900.0 9,000.0 9,100.0	0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	8,563.2 8,663.2 8,763.2 8,863.2 8,963.2	-795.3 -795.3 -795.3 -795.3 -795.3	900.0 900.0 900.0 900.0 900.0	-744.0 -744.0 -744.0 -744.0 -744.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
9,200.0 9,300.0 9,400.0 9,500.0 9,600.0	0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	9,063.2 9,163.2 9,263.2 9,363.2 9,463.2	-795.3 -795.3 -795.3 -795.3 -795.3	900.0 900.0 900.0 900.0 900.0	-744.0 -744.0 -744.0 -744.0 -744.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
9,700.0 9,800.0 9,900.0 10,000.0	0.00	0.00 0.00 0.00 0.00	9,563.2 9,663.2 9,763.2 9,863.2	-795.3 -795.3 -795.3 -795.3	900.0 900.0 900.0 900.0	-744.0 -744.0 -744.0 -744.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00

KLXDirectional-AD Database:

Texas Standard Operating NM LLC.

Company: Project: Lea County New Mexico Sec 7, T18S, R36E Site:

TXS Big Dog Exploratory Unit #101H Well:

Wellbore: Wellbore #1 Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well TXS Big Dog Exploratory Unit #101H

WELL @ 3892.0usft WELL @ 3892.0usft

Jesign:	Design #1								
Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,100.0	0.00	0.00	9,963.2	-795.3	900.0	-744.0	0.00	0.00	0.00
10,200.0	0.00	0.00	10,063.2	-795.3	900.0	-744.0	0.00	0.00	0.00
10,300.0	0.00	0.00	10,163.2	-795.3	900.0	-744.0	0.00	0.00	0.00
10,400.0	0.00	0.00	10,263.2	-795.3	900.0	-744.0	0.00	0.00	0.00
10,500.0	0.00	0.00	10,363.2	-795.3	900.0	-744.0	0.00	0.00	0.00
10,600.0	0.00	0.00	10,463.2	-795.3	900.0	-744.0	0.00	0.00	0.00
10,700.0	0.00	0.00	10,563.2	-795.3	900.0	-744.0	0.00	0.00	0.00
10,800.0	0.00	0.00	10,663.2	-795.3	900.0	-744.0	0.00	0.00	0.00
10,900.0	0.00	0.00	10,763.2	-795.3	900.0	-744.0	0.00	0.00	0.00
Build 10°/1 10,963.8 11,000.0	0.00 3.62	0.00 345.75	10,827.0 10,863.2	-795.3 -794.2	900.0 899.7	-744.0 -742.9	0.00 10.00	0.00 10.00	0.00 0.00
11,050.0	8.62	345.75	10,912.9	-789.0	898.4	-737.8	10.00	10.00	0.00
11,100.0	13.62	345.75	10,961.9	-779.7	896.0	-728.6	10.00	10.00	0.00
11,150.0	18.62	345.75	11,009.9	-766.2	892.6	-715.4	10.00	10.00	0.00
11,200.0	23.62	345.75	11,056.6	-748.8	888.2	-698.2	10.00	10.00	0.00
11,250.0	28.62	345.75	11,101.4	-727.5	882.8	-677.2	10.00	10.00	0.00
11,300.0	33.62	345.75	11,144.2	-702.4	876.4	-652.6	10.00	10.00	0.00
11,350.0	38.62	345.75	11,184.6	-673.9	869.2	-624.5	10.00	10.00	0.00
11,400.0	43.62	345.75	11,222.3	-642.0	861.1	-593.1	10.00	10.00	0.00
11,450.0	48.62	345.75	11,256.9	-607.1	852.2	-558.7	10.00	10.00	0.00
11,500.0	53.62	345.75	11,288.3	-569.4	842.6	-521.6	10.00	10.00	0.00
11,550.0	58.62	345.75	11,316.1	-529.1	832.4	-482.0	10.00	10.00	0.00
11,600.0	63.62	345.75	11,340.3	-486.7	821.6	-440.3	10.00	10.00	0.00
11,650.0	68.62	345.75	11,360.5	-442.4	810.4	-396.7	10.00	10.00	0.00
11,700.0	73.62	345.75	11,376.7	-396.6	798.7	-351.6	10.00	10.00	0.00
11,750.0	78.62	345.75	11,388.7	-349.6	786.8	-305.3	10.00	10.00	0.00
11,800.0	83.62	345.75	11,396.4	-301.7	774.6	-258.1	10.00	10.00	0.00
11,850.0	88.62	345.75	11,399.8	-253.4	762.4	-210.6	10.00	10.00	0.00
	Inc / 345.75° /			242.2			40.00	40.00	0.00
11,863.8	90.00	345.75	11,400.0	-240.0	759.0	-197.4	10.00	10.00	0.00
11,900.0	90.00	346.29	11,400.0	-204.9	750.2	-162.8	1.50	0.00	1.50
12,000.0	90.00	347.79	11,400.0	-107.4	727.8	-66.8	1.50	0.00	1.50
12,100.0	90.00	349.29	11,400.0	-9.4	707.9	30.0	1.50	0.00	1.50
12,200.0	90.00	350.79	11,400.0	89.1	690.6	127.4	1.50	0.00	1.50
12,300.0	90.00	352.29	11,400.0	188.0	675.9	225.3	1.50	0.00	1.50
12,400.0	90.00	353.79	11,400.0	287.3	663.8	323.7	1.50	0.00	1.50
12,500.0	90.00	355.29	11,400.0	386.8	654.3	422.6	1.50	0.00	1.50
12,600.0	90.00	356.79	11,400.0	486.6	647.4	521.8	1.50	0.00	1.50
12,700.0	90.00	358.29	11,400.0	586.5	643.1	621.3	1.50	0.00	1.50
EOT @ 359		050.00	44 400 0	055.7	044 7	000.4	4.50	0.00	4.50
12,769.3	90.00	359.33	11,400.0	655.7	641.7	690.4	1.50	0.00	1.50
12,800.0	90.00	359.33	11,400.0	686.5	641.3	721.1	0.00	0.00	0.00
12,900.0	90.00	359.33	11,400.0	786.4	640.2	820.8	0.00	0.00	0.00
13,000.0	90.00	359.33	11,400.0	886.4	639.0	920.6	0.00	0.00	0.00
13,100.0	90.00	359.33	11,400.0	986.4	637.8	1,020.4	0.00	0.00	0.00
13,200.0	90.00	359.33	11,400.0	1,086.4	636.7	1,120.2	0.00	0.00	0.00
13,300.0	90.00	359.33	11,400.0	1,186.4	635.5	1,219.9	0.00	0.00	0.00
13,400.0	90.00	359.33	11,400.0	1,286.4	634.3	1,319.7	0.00	0.00	0.00
13,500.0	90.00	359.33	11,400.0	1,386.4	633.2	1,419.5	0.00	0.00	0.00
13,600.0	90.00	359.33	11,400.0	1,486.4	632.0	1,519.2	0.00	0.00	0.00
13,700.0	90.00	359.33	11,400.0	1,586.4	630.8	1,619.0	0.00	0.00	0.00
13,800.0	90.00	359.33	11,400.0	1,686.4	629.7	1,718.8	0.00	0.00	0.00

KLXDirectional-AD Database: Company:

Texas Standard Operating NM LLC.

Project: Lea County New Mexico Sec 7, T18S, R36E Site:

TXS Big Dog Exploratory Unit #101H Well:

Wellbore: Wellbore #1 Design #1 Design:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well TXS Big Dog Exploratory Unit #101H

WELL @ 3892.0usft WELL @ 3892.0usft

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
13,900.0	90.00	359.33	11,400.0	1,786.4	628.5	1,818.6	0.00	0.00	0.00
14,000.0	90.00	359.33	11,400.0	1,886.4	627.3	1,918.3	0.00	0.00	0.00
14,100.0	90.00	359.33	11,400.0	1,986.4	626.2	2,018.1	0.00	0.00	0.00
14,200.0	90.00	359.33	11,400.0	2,086.4	625.0	2,117.9	0.00	0.00	0.00
14,300.0	90.00	359.33	11,400.0	2,186.4	623.8	2,217.7	0.00	0.00	0.00
14,400.0	90.00	359.33	11,400.0	2,286.3	622.7	2,317.4	0.00	0.00	0.00
14,500.0	90.00	359.33	11,400.0	2,386.3	621.5	2,417.2	0.00	0.00	0.00
14,600.0	90.00	359.33	11,400.0	2,486.3	620.3	2,517.0	0.00	0.00	0.00
14,700.0	90.00	359.33	11,400.0	2,586.3	619.2	2,616.8	0.00	0.00	0.00
14,800.0	90.00	359.33	11,400.0	2,686.3	618.0	2,716.5	0.00	0.00	0.00
14,900.0	90.00	359.33	11,400.0	2,786.3	616.8	2,816.3	0.00	0.00	0.00
15,000.0	90.00	359.33	11,400.0	2,886.3	615.7	2,916.1	0.00	0.00	0.00
15,100.0	90.00	359.33	11,400.0	2,986.3	614.5	3,015.9	0.00	0.00	0.00
15,200.0	90.00	359.33	11,400.0	3,086.3	613.3	3,115.6	0.00	0.00	0.00
15,300.0	90.00	359.33	11,400.0	3,186.3	612.2	3,215.4	0.00	0.00	0.00
15,400.0	90.00	359.33	11,400.0	3,286.3	611.0	3,315.2	0.00	0.00	0.00
15,500.0	90.00	359.33	11,400.0	3,386.3	609.8	3,414.9	0.00	0.00	0.00
15,600.0	90.00	359.33	11,400.0	3,486.3	608.7	3,514.7	0.00	0.00	0.00
15,700.0	90.00	359.33	11,400.0	3,586.3	607.5	3,614.5	0.00	0.00	0.00
15,800.0	90.00	359.33	11,400.0	3,686.3	606.3	3,714.3	0.00	0.00	0.00
15,900.0	90.00	359.33	11,400.0	3,786.2	605.2	3,814.0	0.00	0.00	0.00
16,000.0	90.00	359.33	11,400.0	3,886.2	604.0	3,913.8	0.00	0.00	0.00
16,100.0	90.00	359.33	11,400.0	3,986.2	602.8	4,013.6	0.00	0.00	0.00
16,200.0	90.00	359.33	11,400.0	4,086.2	601.7	4,113.4	0.00	0.00	0.00
16,300.0	90.00	359.33	11,400.0	4,186.2	600.5	4,213.1	0.00	0.00	0.00
16,400.0	90.00	359.33	11,400.0	4,286.2	599.3	4,312.9	0.00	0.00	0.00
16,500.0	90.00	359.33	11,400.0	4,386.2	598.2	4,412.7	0.00	0.00	0.00
16,600.0	90.00	359.33	11,400.0	4,486.2	597.0	4,512.5	0.00	0.00	0.00
16,700.0	90.00	359.33	11,400.0	4,586.2	595.8	4,612.2	0.00	0.00	0.00
16,800.0	90.00	359.33	11,400.0	4,686.2	594.7	4,712.0	0.00	0.00	0.00
16,900.0	90.00	359.33	11,400.0	4,786.2	593.5	4,811.8	0.00	0.00	0.00
17,000.0	90.00	359.33	11,400.0	4,886.2	592.3	4,911.6	0.00	0.00	0.00
17,100.0	90.00	359.33	11,400.0	4,986.2	591.2	5,011.3	0.00	0.00	0.00
17,200.0	90.00	359.33	11,400.0	5,086.2	590.0	5,111.1	0.00	0.00	0.00
17,300.0	90.00	359.33	11,400.0	5,186.1	588.8	5,210.9	0.00	0.00	0.00
17,400.0	90.00	359.33	11,400.0	5,286.1	587.7	5,310.6	0.00	0.00	0.00
17,500.0	90.00	359.33	11,400.0	5,386.1	586.5	5,410.4	0.00	0.00	0.00
17,600.0	90.00	359.33	11,400.0	5,486.1	585.3	5,510.2	0.00	0.00	0.00
17,700.0	90.00	359.33	11,400.0	5,586.1	584.2	5,610.0	0.00	0.00	0.00
17,800.0	90.00	359.33	11,400.0	5,686.1	583.0	5,709.7	0.00	0.00	0.00
17,900.0	90.00	359.33	11,400.0	5,786.1	581.8	5,809.5	0.00	0.00	0.00
18,000.0	90.00	359.33	11,400.0	5,886.1	580.7	5,909.3	0.00	0.00	0.00
18,100.0	90.00	359.33	11,400.0	5,986.1	579.5	6,009.1	0.00	0.00	0.00
18,200.0	90.00	359.33	11,400.0	6,086.1	578.3	6,108.8	0.00	0.00	0.00
18,300.0	90.00	359.33	11,400.0	6,186.1	577.2	6,208.6	0.00	0.00	0.00
18,400.0	90.00	359.33	11,400.0	6,286.1	576.0	6,308.4	0.00	0.00	0.00
18,500.0	90.00	359.33	11,400.0	6,386.1	574.8	6,408.2	0.00	0.00	0.00
18,600.0	90.00	359.33	11,400.0	6,486.1	573.7	6,507.9	0.00	0.00	0.00
18,700.0	90.00	359.33	11,400.0	6,586.1	572.5	6,607.7	0.00	0.00	0.00
18,800.0	90.00	359.33	11,400.0	6,686.0	571.3	6,707.5	0.00	0.00	0.00
18,900.0	90.00	359.33	11,400.0	6,786.0	570.2	6,807.2	0.00	0.00	0.00
19,000.0	90.00	359.33	11,400.0	6,886.0	569.0	6,907.0	0.00	0.00	0.00
19,100.0	90.00	359.33	11,400.0	6,986.0	567.8	7,006.8	0.00	0.00	0.00
19,200.0	90.00	359.33	11,400.0	7,086.0	566.7	7,106.6	0.00	0.00	0.00

Site:

Well Planning Report

KLXDirectional-AD Database: Company:

Texas Standard Operating NM LLC.

Project: Lea County New Mexico Sec 7, T18S, R36E

TXS Big Dog Exploratory Unit #101H Well:

Wellbore: Wellbore #1 Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well TXS Big Dog Exploratory Unit #101H

WELL @ 3892.0usft WELL @ 3892.0usft

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
19,300.0	90.00	359.33	11,400.0	7,186.0	565.5	7,206.3	0.00	0.00	0.00
19,400.0	90.00	359.33	11,400.0	7,286.0	564.3	7,306.1	0.00	0.00	0.00
19,500.0	90.00	359.33	11,400.0	7,386.0	563.2	7,405.9	0.00	0.00	0.00
19,600.0	90.00	359.33	11,400.0	7,486.0	562.0	7,505.7	0.00	0.00	0.00
19,700.0	90.00	359.33	11,400.0	7,586.0	560.9	7,605.4	0.00	0.00	0.00
19,800.0	90.00	359.33	11,400.0	7,686.0	559.7	7,705.2	0.00	0.00	0.00
19,900.0	90.00	359.33	11,400.0	7,786.0	558.5	7,805.0	0.00	0.00	0.00
20,000.0	90.00	359.33	11,400.0	7,886.0	557.4	7,904.8	0.00	0.00	0.00
20,100.0	90.00	359.33	11,400.0	7,986.0	556.2	8,004.5	0.00	0.00	0.00
20,200.0	90.00	359.33	11,400.0	8,086.0	555.0	8,104.3	0.00	0.00	0.00
20,300.0	90.00	359.33	11,400.0	8,185.9	553.9	8,204.1	0.00	0.00	0.00
20,400.0	90.00	359.33	11,400.0	8,285.9	552.7	8,303.9	0.00	0.00	0.00
20,500.0	90.00	359.33	11,400.0	8,385.9	551.5	8,403.6	0.00	0.00	0.00
20,600.0	90.00	359.33	11,400.0	8,485.9	550.4	8,503.4	0.00	0.00	0.00
20,700.0	90.00	359.33	11,400.0	8,585.9	549.2	8,603.2	0.00	0.00	0.00
20,800.0	90.00	359.33	11,400.0	8,685.9	548.0	8,702.9	0.00	0.00	0.00
20,900.0	90.00	359.33	11,400.0	8,785.9	546.9	8,802.7	0.00	0.00	0.00
21,000.0	90.00	359.33	11,400.0	8,885.9	545.7	8,902.5	0.00	0.00	0.00
21,100.0	90.00	359.33	11,400.0	8,985.9	544.5	9,002.3	0.00	0.00	0.00
21,200.0	90.00	359.33	11,400.0	9,085.9	543.4	9,102.0	0.00	0.00	0.00
21,300.0	90.00	359.33	11,400.0	9,185.9	542.2	9,201.8	0.00	0.00	0.00
21,400.0	90.00	359.33	11,400.0	9,285.9	541.0	9,301.6	0.00	0.00	0.00
21,500.0	90.00	359.33	11,400.0	9,385.9	539.9	9,401.4	0.00	0.00	0.00
21,600.0	90.00	359.33	11,400.0	9,485.9	538.7	9,501.1	0.00	0.00	0.00
21,700.0	90.00	359.33	11,400.0	9,585.9	537.5	9,600.9	0.00	0.00	0.00
TD @ 217 ! 21,753.3	53' MD / 11400' 90.00	TVD 359.33	11,400.0	9,639.1	536.9	9,654.0	0.00	0.00	0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
FTP BD 101H - plan misses targ - Point	0.00 et center by	0.00 1032.5usft	0.0 at 0.0usft N	-795.3 MD (0.0 TVD,	658.5 0.0 N, 0.0 E	639,704.20	829,554.00	32° 45′ 18.272 N	103° 23' 44.952 W
VP TXS Big Dog Expl - plan hits target c - Point		0.00	8,000.0	-795.3	900.0	639,704.20	829,795.50	32° 45′ 18.251 N	103° 23' 42.124 W
PBHL Big Dog 101H - plan hits target c - Point	0.00 enter	0.00	11,400.0	9,639.1	536.9	650,138.60	829,432.40	32° 47' 1.519 N	103° 23' 45.293 W

KLXDirectional-AD Database: Company:

Texas Standard Operating NM LLC.

Project: Lea County New Mexico Sec 7, T18S, R36E Site:

TXS Big Dog Exploratory Unit #101H Well:

Wellbore: Wellbore #1 Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well TXS Big Dog Exploratory Unit #101H

WELL @ 3892.0usft

WELL @ 3892.0usft

Plan Annotatio	ns				
N	leasured Depth (usft)	Vertical Depth (usft)	Local Coor +N/-S (usft)	dinates +E/-W (usft)	Comment
	2,200.0	2,200.0	0.0	0.0	Build 1.5°/100'
	3,123.2	3,114.2	-73.5	83.2	EOB @ 13.85° Inc / 131.47° Azm
	7,213.6	7,085.8	-721.8	816.8	Drop 1.5°/100'
	8,136.8	8,000.0	-795.3	900.0	EOD @ Vert
	10,963.8	10,827.0	-795.3	900.0	Build 10°/100'
	11,863.8	11,400.0	-240.0	759.0	EOB @ 90° Inc / 345.75° Azm
	12,769.3	11,400.0	655.7	641.7	EOT @ 359.33° Azm
	21,753.3	11,400.0	9,639.1	536.9	TD @ 21753' MD / 11400' TVD

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

		Section 1	l – l	Plan I e May 2	Description 5, 2021				
I. Operator: _Texas Standard Op	erating NM	LLC		OGR	D: <u>329818</u>			Date: _3	3_/_03_/_25
II. Type: ⊠ Original □ Amendm	nent due to	□ 19.15.27.9	.D(6)	(a) NM	AC □ 19.15.27.9	9.D(6)(b)	NMA	AC □ Other.	
If Other, please describe:			li .						
III. Well(s): Provide the following be recompleted from a single well p	bad or conn	ected to a cer	itral c	delivery	point.	of wells p	propo	sed to be dril	led or proposed
Well Name	API	ULSTR			Footages	Anticipa Oil BB		Anticipated Gas MCF/D	Anticipated Produced Water BBL/D
TXS Big Dog State Com #101H		N-7-18S-3			SL, 1330' FWL	1400		1500	1200
TXS Big Dog State Com #102H		N-7-18S-3	6E	900' F	SL, 1310' FWL	1400		1500	1200
IV. Central Delivery Point Name: V. Anticipated Schedule: Provide proposed to be recompleted from a	the following	ng informatio	n for	each ne	w or recompleted	d well or s			D)(1) NMAC] sed to be drilled o
Well Name	API	Spud Date	Re	TD eached Date	Complete			itial Flow ack Date	First Production Date
TXS Big Dog State Com #101H		3/28/25		0/25	7/10/25		9/19	9/25	9/19/25
TXS Big Dog State Com #102H		5/17/25	6/1	5/25	7/10/25		-	9/25	9/19/25
VI. Separation Equipment: Att VII. Operational Practices: Att Subsection A through F of 19.15.27.	tach a com	plete descript	tion c	of the ac	tions Operator v	vill take t	o cor	nply with the	e requirements o
VIII. Best Management Practices during active and planned maintenar	: ⊠ Attach ice.	a complete o	descri	iption o	f Operator's bes	managei	ment	practices to	minimize venting

		Section 2 – EFFECTIV	Enhanced Plan /E APRIL 1, 2022	
Beginning April 1, 2 reporting area must of	2022, an operator complete this section	that is not in compliance on.	with its statewide natural g	gas capture requirement for the applicable
supraire requirement	for the applicable i	eporting area.	ction because Operator is in	compliance with its statewide natural gas
IX. Anticipated Nat	ural Gas Product	ion:		
We	11	API	Anticipated Average Natural Gas Rate MCF/I	Anticipated Volume of Natural Gas for the First Year MCF
X. Natural Gas Gat	hering System (No	GGS):		
Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in
production operations	s to the existing or	planned interconnect of the	ocation of the well(s), the an he natural gas gathering syste which the well(s) will be con-	ticipated pipeline route(s) connecting the em(s), and the maximum daily capacity of nected.
XII. Line Capacity. production volume fr	The natural gas gaon the well prior to	thering system □ will □ o the date of first product	will not have capacity to gion.	ather 100% of the anticipated natural gas
XIII. Line Pressure. natural gas gathering	Operator □ does system(s) describe	☐ does not anticipate that d above will continue to	at its existing well(s) connect meet anticipated increases in	ed to the same segment, or portion, of the line pressure caused by the new well(s).
☐ Attach Operator's	plan to manage pro	oduction in response to the	ne increased line pressure.	
Section 2 as provided	in Paragraph (2) o	erts confidentiality pursu f Subsection D of 19.15.2 the basis for such asserti	27.9 NMAC, and attaches a f	SA 1978 for the information provided in full description of the specific information

Section 3 - Certifications

	Effective May 25, 2021
	Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:
	☑ Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or
	Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. <i>If Operator checks this box, Operator will select one of the following:</i>
	Well Shut-In. □ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or
	Venting and Flaring Plan. ☐ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:
١	(a) power generation on lease;
١	(b) power generation for grid;
ı	(c) compression on lease;
ı	(d) liquids removal on lease;(e) reinjection for underground storage;
l	(f) reinjection for underground storage; reinjection for temporary storage;
l	(g) reinjection for enhanced oil recovery;
l	(h) fuel cell production; and
	(i) other alternative beneficial uses approved by the division.
F	Section 4 - Notices
	1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
	(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19 15 27 9 NMAC; or

- Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature:
Printed Name: Craig E. Young
Title: Sr. VP Operations
E-mail Address: Craig@txsoil.com
Date: 3/4/25
Phone: 432-693-6674
OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

Attachment To Section 1 Of The Natural Gas Management Plan for Texas Standard Operating NM LLC TXS Big Dog State Com #101H & TXS Big Dog State Com #102H

Section VI. Separation Equipment

These two wells will be drilled on the same pad. The pad will have a single battery and metering equipment for each well. It will be a new build facility.

- Separation equipment will be sized to provide adequate separation for anticipated rates.
- Separation equipment will allow for adequate retention time to allow gas and liquids to separate.
- Separation equipment will separate all three phases (Oil, Water, and Gas).
- Collection systems will be appropriately sized to handle facility production rates on all three phases.
- Ancillary equipment and metering is selected to be serviced without flow interruptions, or the need to release gas from the flow stream.

Section VII. Operational Practices as per 19.15.27.8 NMAC Subsections A through F

Subsection A: Texas Standard Operating NM LLC will maximize the recovery of natural gas and minimize the waste of natural gas by properly sizing and maintaining tanks, vessels, and related equipment including thief hatches, enardo valves, flares, and vapor recovery equipment. In all circumstances, Texas Standard shall flare rather than vent natural gas except when flaring is technically infeasible, or when flaring would result a risk to safe operations or personal safety.

Subsection B – Venting and flaring during drilling operations: Texas Standard will capture natural gas coming from the wellbore during drilling operations by routing any gas laden fluids through a mud gas separator with the gas then being routed to a flare stack located at least 100'from the wellbore. In addition, Texas Standard will be drilling the well with fluid sufficiently weighted to minimize the entry of natural gas into the wellbore. Any gas that is flared during the drilling operations will be reported pursuant to Paragraph (1) of Subsection G of 19.15.27.8 NMAC.

Subsection C – Venting and flaring during completion operations: After fracing, sand and the frac plugs will be cleaned out of the wellbore under controlled conditions (circulating 1 barrel in per 1 barrel out) that will reduce or eliminate the flow of gas to the atmosphere. After cleaning the well out, a packer with a rupture disk will be set by wireline. Tubing with gas lift valves will be installed. The rupture disk will then be burst and flowback will commence.

During the initial flowback after the frac job the fluids will go directly into storage tanks until there is sufficient pressure to function a separator at which point the fuids will go into a separator that will remove the gas from the fluid and send the metered gas to an on-site flare stack until it is feasible to route the gas to the inlet separator for this well at the battery.

As soon as it is practical, the produced fluids will be switched out of the flowback separator and into the flowline going directly to the inlet separator for this well and sale as soon as feasible.

Any gas flared during the completion operations will be reported pursuant to Paragraph (1) of Subsection G of 19.15.27.8 NMAC.

Once the well dies, or if the well will not flow, gas lift operations will begin utilizing gas from the Central Battery.

Subsection D – Venting and flaring during production operations: Texas Standard shall not vent or flare natural gas during production operations except as allowed in 19.15.27.8 1,2,& 4 NMAC. Any gas that is flared during production operations will be reported pursuant to Paragraph (1) of Subsection (G) of 19.15.28.8 NMAC.

- Weekly AVO's will be performed on all facilities.
- Leaking thief hatches and pressure safety valves found during AVO's will be cleaned and properly re-sealed.
- All flares will be equipped with auto-ignition systems and continuous pilot operations.
- After a well is stabilized from liquid unloading, the well will be turned back into a collection system.
- All gas lift systems will be optimized to limit the amount of waste.
- All tanks will have automatic gauging equipment installed.

Subsection E – Performance standards: The production facilities that will be utilized by this well have been designed to handle in excess of the anticipated maximum throughput and are rated for pressures grater than the anticipated pressures. In addition, the facilities have been designed to minimize waste of natural gas.

The production storage tanks will be equipped with automated tank gauging system that reduces the need to open thief hatches on the tanks.

Texas Standard will install an anchored flare stack 100' away from the wellbore and production tanks that has an automatic ignitor and a continuous pilot that will combust any natural gas routed to the flare stack and is capable of handling 3 MMCFGPD. Any gas routed through the flare stack will be metered and will be reported pursuant to Paragraph (1) of Subsection G of 19.15.27.8 NMAC. Natural gas will not be vented except as allowed in 19.15.27.8. 1, 2, &4 NMAC.

Low bleed pilots in Pneumatic calves will be installed if necessary.

Texas Standard will utilize SCADA to monitor production and equipment as well as to shut in the wellbore in case of emergency or other situation that could result in gas being released to the atmosphere.

Should the sales line pressure reach the desired maximum operating pressure, the SCADA system will close the Emergency Shut Down Valve on the wellhead and send an alarm to production personnel. In the event the ESD valve failed to close, gas would be routed to the flare stack with a continuous pilot. Any flared gas would be metered.

Texas Standard shall conduct weekly AVO inspections consisting of visual inspections, listening for leaks and smelling for odors to confirm that all production equipment is operating properly and that there are no leaks or releases of natural gas except as allowed in Section D of 19.15.27.9 NMAC. The AVO inspection shall include the inspection of all components to identify defects and leaks. Any leaks that

are found shall be immediately repaired. Texas Standard shall keep record of an AVO inspection for at least 5 years and shall make such record available for inspection by the Division upon request.

Subsection F – Measurement or estimation of vented and flared natural gas: Texas Standard shall measure or estimate the volume of natural gas that it vents, flares or beneficially uses during drilling, completion, and production operations.

Texas Standard will install equipment to measure the volume of natural gas flared from the separation equipment described in Section VI above as well as the process piping and vapor recovery equipment. Metering equipment will also be installed to measure the volume of natural gas delivered to the custody transfer point.

If metering is not practical due to circumstances such as low flare rate or low pressure venting or flaring, Texas Standard shall estimate the volume of vented or flared natural gas using a verifiable methodology,

VIII. Best Management Practices to minimize venting during active and planned maintenance:

Texas Standard Will install an emergency shut down valve on the wellhead to close the well in the event of an abnormal low or high pressure occurrence on the flowline or within the facility.

Swabbing operations, if necessary, will be performed through the separation equipment described in Section VI above in a closed system.

If the tubing is to be pulled, the well will be killed and pulled in an overbalanced condition to increase the safety of personnel and reduce gas emissions.

Should a production vessel need to be worked on, the vessel will be bled down into the system to as low a pressure as is practical and then the vessel will be isolated by valve at the vessel to minimize the volume of gas to be bled off the vessel with none from the associated piping.

After downhole well maintenance, natural gas will be flared until it reaches pipeline specification.

Texas Standard shall verbally notify the division as soon as possible for any venting or flaring event that will exceed 500 MCF or otherwise qualifies as a major release and shall follow up the verbal notification with the filing of a Form C-129. On venting or flaring events that are less than 500 MCF, Texas Standard shall notify the division in writing by filing a Form C-129 within 15 days of the event.