U.S. Department of the Interior BUREAU OF LAND MANAGEMENT Sundry Print Reports 01/22/2025 Well Name: STEEL GUITAR 35-26 FED COM Well Location: T26S / R29E / SEC 26 / NENE / 32.0184939 / -103.9493558 Well Number: 410H Type of Well: OIL WELL County or Parish/State: EDDY / M Allottee or Tribe Name: Lease Number: NMNM19609 **Unit or CA Name:** **Unit or CA Number:** **US Well Number: 3001555940** Operator: WPX ENERGY PERMIAN LLC ### **Notice of Intent** **Sundry ID: 2832814** Type of Submission: Notice of Intent Type of Action: APD Change Date Sundry Submitted: 01/20/2025 Time Sundry Submitted: 01:16 Date proposed operation will begin: 01/20/2025 **Procedure Description:** Devon Energy Production Co., L.P. (Devon) respectfully requests a drilling plan change for the subject well. This includes a change to the intermediate casing set depth from 10189 to 9653. Devon also requests break test and offline cementing variances. Updated drill plan and variance attachments included. # **NOI Attachments** ## **Procedure Description** break\_test\_variance\_BOP\_1\_15\_24\_20250120131528.pdf Offline\_Cementing\_\_\_Variance\_Request\_20250120131514.pdf STEEL\_GUITAR\_35\_26\_FED\_COM\_410H\_REV1\_20250120131500.pdf eived by OCD: 1/22/2025 12:09:42 PM Well Name: STEEL GUITAR 35-26 FED COM Well Location: T26S / R29E / SEC 26 / NENE / 32.0184939 / -103.9493558 County or Parish/State: EDDY 7 of Well Number: 410H Type of Well: OIL WELL **Allottee or Tribe Name:** Lease Number: NMNM19609 **Unit or CA Name:** **Unit or CA Number:** **US Well Number: 3001555940** **Operator: WPX ENERGY PERMIAN** # **Conditions of Approval** ### **Specialist Review** Break\_Test\_COA\_Variance\_20250122091559.pdf 26\_26\_29\_A\_Sundry\_ID\_2832814\_Steel\_Guitar\_35\_26\_Fed\_Com\_410H\_20250122091559.pdf Offline\_Cementing\_COA\_Variance\_20250122091559.pdf # **Operator** I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a **Operator Electronic Signature: AMY BROWN** Signed on: JAN 20, 2025 01:16 PM Name: WPX ENERGY PERMIAN LLC Title: Regulatory Professional Street Address: 333 WEST SHERIDAN AVENUE City: OKLAHOMA CITY State: OK Phone: (405) 552-6137 Email address: AMY.BROWN@DVN.COM ### **Field** **Representative Name:** **Street Address:** City: State: Zip: Phone: **Email address:** # **BLM Point of Contact** **BLM POC Name: LONG VO** **BLM POC Phone:** 5759885402 **Disposition:** Approved Signature: Long Vo **BLM POC Title:** Petroleum Engineer BLM POC Email Address: LVO@BLM.GOV Disposition Date: 01/22/2025 Page 2 of 2 Form 3160-5 (June 2019) # UNITED STATES DEPARTMENT OF THE INTERIOR | FORM APPROVED | |--------------------------| | OMB No. 1004-0137 | | Expires: October 31, 202 | | BUREAU OF LAND MANAGEMENT | | | 5. Lease Serial No. | | | | |----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------|---------------------|---------------------------------------|-------------------------------------------|--| | Do not use this t | OTICES AND REPO<br>form for proposals to<br>Use Form 3160-3 (AF | drill or to re- | enter an | 6. If Indian, Allottee or Tribe Name | | | | SUBMIT IN | TRIPLICATE - Other instruc | ctions on page 2 | | 7. If Unit of CA/Agreement, | Name and/or No. | | | 1. Type of Well Oil Well Gas V | Vell Other | | | 8. Well Name and No. | | | | 2. Name of Operator | | | | 9. API Well No. | | | | 3a. Address | í | 3b. Phone No. (include | de area code) | 10. Field and Pool or Explora | atory Area | | | 4. Location of Well (Footage, Sec., T., F | R.,M., or Survey Description) | | | 11. Country or Parish, State | | | | 12. CHE | CK THE APPROPRIATE BO | X(ES) TO INDICAT | E NATURE ( | OF NOTICE, REPORT OR OT | | | | TYPE OF SUBMISSION | | | TYPI | E OF ACTION | | | | Notice of Intent | Acidize Alter Casing | Deepen Hydraulic F | Fracturing | Production (Start/Resume) Reclamation | ) Water Shut-Off Well Integrity | | | Subsequent Report | Casing Repair | New Constr | | Recomplete | Other | | | | Change Plans | Plug and Al | bandon | Temporarily Abandon | | | | Final Abandonment Notice | Convert to Injection | Plug Back | | Water Disposal | work and approximate duration thereof. If | | | completed. Final Abandonment No is ready for final inspection.) 14. I hereby certify that the foregoing is | | | uding reciama | tion, nave been completed and | the operator has detennined that the site | | | 14. I hereby certify that the foregoing is | true and correct. Ivame (Frin | Title | | | | | | Signature | | Date | | | | | | | THE SPACE | FOR FEDERA | L OR STA | TE OFICE USE | | | | Approved by | | | | | | | | | | | Title | | Date | | | Conditions of approval, if any, are attact<br>certify that the applicant holds legal or of<br>which would entitle the applicant to cor | equitable title to those rights in | | Office | | | | | Title 18 U.S.C Section 1001 and Title 4. | 3 U.S.C Section 1212, make it | t a crime for any pers | son knowingly | and willfully to make to any o | department or agency of the United States | | any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. (Instructions on page 2) ### **GENERAL INSTRUCTIONS** This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office. ### SPECIFIC INSTRUCTIONS *Item 4* - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions. Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices. ### **NOTICES** The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application. AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160. PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used. ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government. EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4. The Paperwork Reduction Act of 1995 requires us to inform you that: The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases. Response to this request is mandatory. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number. **BURDEN HOURS STATEMENT:** Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240 ### **Additional Information** ### **Location of Well** 0. SHL: NENE / 455 FNL / 1120 FEL / TWSP: 26S / RANGE: 29E / SECTION: 26 / LAT: 32.0184939 / LONG: -103.9493558 ( TVD: 0 feet, MD: 0 feet ) PPP: NWNE / 100 FNL / 2410 FEL / TWSP: 26S / RANGE: 29E / SECTION: 26 / LAT: 32.0195092 / LONG: -103.9534548 ( TVD: 9839 feet, MD: 10036 feet ) PPP: NWSE / 2504 FSL / 2417 FEL / TWSP: 26S / RANGE: 29E / SECTION: 26 / LAT: 32.0120284 / LONG: -103.9539931 ( TVD: 10675 feet, MD: 13400 feet ) PPP: NWNE / 193 FNL / 2412 FEL / TWSP: 26S / RANGE: 29E / SECTION: 35 / LAT: 32.0046199 / LONG: -103.954822 ( TVD: 10675 feet, MD: 16100 feet ) BHL: LOT 11 / 1787 FNL / 2410 FEL / TWSP: 26S / RANGE: 29E / SECTION: 35 / LAT: 32.0002412 / LONG: -103.9548346 ( TVD: 10675 feet, MD: 17696 feet ) ### **Section 2 - Blowout Preventer Testing Procedure** Variance Request Devon Energy requests to only test BOP connection breaks after drilling out of surface casing and while skidding between wells which conforms to API Standard 53 and industry standards. This test will include the Top Pipe Rams, HCR, Kill Line Check Valve, QDC (quick disconnect to wellhead) and Shell of the 10M BOPE to 5M for 10 minutes. If a break to the flex hose that runs to the choke manifold is required due to repositioning from a skid, the HCR will remain open during the shell test to include that additional break. The variance only pertains to intermediate hole-sections and no deeper than the Bone Springs Formation where 5M BOP tests are required. The initial BOP test will follow 43 CFR 3172, and subsequent tests following a skid will only test connections that are broken. The annular preventer will be tested to 100% working pressure. This variance will meet or exceed 43 CFR 3172 per the following: Devon Energy will perform a full BOP test per 43 CFR 3172 before drilling out of the intermediate casing string(s) and starting the production hole, before starting any hole section that requires a 10M test, before the expiration of the allotted 14-days for 5M intermediate batch drilling or when the drilling rig is fully mobilized to a new well pad, whichever is sooner. We will utilize a 200' TVD tolerance between intermediate shoes as the cutoff for a full BOP test. The BLM will be contacted 4hrs prior to a BOPE test. The BLM will be notified if and when a well control event is encountered. Break test will be a 14 day interval and not a 30 day full BOPE test interval. If in the event break testing is not utilized, then a full BOPE test would be conducted. - 1. Well Control Response: - 1. Primary barrier remains fluid - 2. In the event of an influx due to being underbalanced and after a realized gain or flow, the order of closing BOPE is as follows: - a) Annular first - b) If annular were to not hold, Upper pipe rams second (which were tested on the skid BOP test) - c) If the Upper Pipe Rams were to not hold, Lower Pipe Rams would be third ### **Offline Cementing** Variance Request Devon Energy requests to offline cement on intermediate strings that are set in formations shallower than the Wolfcamp. Prior to commencing offline cementing operations, the well will be monitored for any abnormal pressures and confirmed to be static. A dual manifold system (equipped with chokes) for the returns will also be utilized as a redundancy. All equipment used for offline cementing will have a minimum 5M rating to match intermediate sections' 5M BOPE requirements. ### STEEL GUITAR 35-26 FED COM 410H ## 1. Geologic Formations | TVD of target | 10122 | Pilot hole depth | N/A | |---------------|-------|------------------------------|-----| | MD at TD: | 17155 | Deepest expected fresh water | | ### Basin | | Depth | Water/Mineral | | |----------------------|---------|----------------|----------| | Formation | (TVD) | Bearing/Target | Hazards* | | | from KB | Zone? | | | Rustler | 427 | | | | Salt | 873 | | | | Base of Salt | 3010 | | | | Delaware | 3010 | | | | Cherry Canyon | 3912 | | | | Brushy Canyon | 5146 | | | | 1st Bone Spring Lime | 6786 | | | | Bone Spring 1st | 7732 | | | | Bone Spring 2nd | 8344 | | | | 3rd Bone Spring Lime | 8810 | | | | Bone Spring 3rd | 9609 | | | | Wolfcamp | 9954 | | | | | | | | | | | | | | _ | | | | | _ | | | | | | | | | | _ | | | | <sup>\*</sup>H2S, water flows, loss of circulation, abnormal pressures, etc. 2. Casing Program | | | Wt | | | | | | Casing Interval | | Casing Interval | | |-----------|-----------|--------|-------|-------------|-----------|---------|------------|-----------------|--|-----------------|--| | Hole Size | Csg. Size | (PPF) | Grade | Conn | From (MD) | To (MD) | From (TVD) | To (TVD) | | | | | 14 3/4 | 10 3/4 | 45 1/2 | J-55 | ВТС | 0 | 452 | 0 | 452 | | | | | 9 7/8 | 8 5/8 | 32 | P110 | Sprint FJ | 0 | 9653 | 0 | 9653 | | | | | 7 7/8 | 5 1/2 | 20 | P110 | DWC / C-IS+ | 0 | 17155 | 0 | 10122 | | | | <sup>•</sup>All casing strings will be tested in accordance with 43 CFR 3172. Must have table for contingency casing. ### 3. Cementing Program | Casing | # Sks | TOC | Wt. | Yld<br>(ft3/sack) | Slurry Description | |--------------------|-------|----------------|------|-------------------|------------------------------------------| | Surface | 286 | Surf 13.2 1.44 | | 1.44 | Lead: Class C Cement + additives | | Int 1 | 255 | 255 Surf 9 | | 3.27 | Lead: Class C Cement + additives | | Int 1 | 523 | 5146 | 13.2 | 1.44 | Tail: Class H / C + additives | | Int 1 Intermediate | 580 | Surf | 13.2 | 1.44 | Squeeze Lead: Class C Cement + additives | | | 255 | Surf | 9 | 3.27 | Lead: Class C Cement + additives | | Squeeze | 523 | 5146 | 13.2 | 1.44 | Tail: Class H / C + additives | | Production | 117 | 7753 | 9 | 3.27 | Lead: Class H /C + additives | | | 980 | 9753 | 13.2 | 1.44 | Tail: Class H / C + additives | Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures. Devon Energy requests to offline cement on intermediate strings that are set in formations shallower than the Wolfcamp. Prior to commencing offline cementing operations, the well will be monitored for any abnormal pressures and confirmed to be static. A dual manifold system (equipped with chokes) for the returns will also be utilized as a redundancy. All equipment used for offline cementing will have a minimum 5M rating to match intermediate sections' 5M BOPE requirements. | Casing String | % Excess | |----------------------------|----------| | Surface | 50% | | Intermediate 1 | 30% | | Intermediate 1 (Two Stage) | 25% | | Prod | 10% | 4. Pressure Control Equipment (Three String Design) | BOP installed and tested before drilling which hole? | Size? | Min.<br>Required<br>WP | Туре | | <b>✓</b> | Tested to: | | |------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------|--------------|---------|----------|-------------------------------|--| | | | | Anı | nular | X | 50% of rated working pressure | | | Int 1 | 13-5/8" | 5M | Blind | d Ram | X | | | | IIIL I | 13-3/6 | JIVI | Pipe | Ram | | 5M | | | | | | Doub | le Ram | X | 31VI | | | | | | Other* | | | | | | | 13-5/8" | 5), | Annular (5M) | | X | 50% of rated working pressure | | | D 1 4 | | | Blind Ram | | X | - 5M | | | Production | | 5M | Pipe Ram | | | | | | | | | Doub | le Ram | X | 5M | | | | | | Other* | | | | | | | | | Annul | ar (5M) | | | | | | | | Bline | d Ram | | | | | | | | Pipe Ram | | | | | | | | | Double Ram | | | | | | | | | Other* | | | | | | | A variance is requested for the use of a diverter on the surface casing. See attached for schematic. | | | | | | | | Y A variance is requested to r | A variance is requested to run a 5 M annular on a 10M system | | | | | | | **5. Mud Program (Three String Design)** | Section | Туре | Weight<br>(ppg) | |--------------|-----------------|-----------------| | Surface | FW Gel | 8.5-9 | | Intermediate | DBE / Cut Brine | 10-10.5 | | Production | OBM | 10-10.5 | Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. | What will be used to monitor the loss or gain of fluid? | PVT/Pason/Visual Monitoring | |---------------------------------------------------------|-----------------------------| 6. Logging and Testing Procedures | | Logging, Coring and Testing | | | | | | | | | |---|-----------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--| | ſ | | Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the | | | | | | | | | L | X | Completion Report and shumitted to the BLM. | | | | | | | | | I | | No logs are planned based on well control or offset log information. | | | | | | | | | I | | Drill stem test? If yes, explain. | | | | | | | | | I | | Coring? If yes, explain. | | | | | | | | | Additional | logs planned | Interval | |------------|--------------|-------------------------| | | Resistivity | Int. shoe to KOP | | | Density | Int. shoe to KOP | | X | CBL | Production casing | | X | Mud log | Intermediate shoe to TD | | | PEX | | 7. Drilling Conditions | Condition | Specfiy what type and where? | |----------------------------|------------------------------| | BH pressure at deepest TVD | 5526 | | Abnormal temperature | No | Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers. Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM. | N | H2S is present | |---|--------------------| | Y | H2S plan attached. | ### STEEL GUITAR 35-26 FED COM 410H ### 8. Other facets of operation Is this a walking operation? Potentially - 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad. - 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well. - 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions. NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented. #### Will be pre-setting casing? Potentially - 1 Spudder rig will move in and batch drill surface hole. - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis., - 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations). - $^{3}$ The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached. - 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead. - 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa. - 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations. - 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well. - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing. | Attachments | | |-------------|------------------| | X | Directional Plan | | | Other, describe | # PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL All Previous COAs Still Apply. Variance request procedure is approved as written, please see below general conditions for variance. ### A. PRESSURE CONTROL ### **BOPE Break Testing Variance** - BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP) - BOPE Break Testing is NOT permitted to drilling the production hole section. - Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation. - While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle. - Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations. - A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable). - The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests - As a minimum, a full BOPE test shall be performed at 21-day intervals. - In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR part 3170 Subpart 3172. - If in the event break testing is not utilized, then a full BOPE test would be conducted. # **GENERAL REQUIREMENTS** The BLM is to be notified in advance for a representative to witness: - a. Spudding well (minimum of 24 hours) - b. Setting and/or Cementing of all casing strings (minimum of 4 hours) - c. BOPE tests (minimum of 4 hours) - Eddy County EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, BLM\_NM\_CFO\_DrillingNotifications@BLM.GOV (575) 361-2822 - Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981 - 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s). - b. When the operator proposes to set surface casing with Spudder Rig - Notify the BLM when moving in and removing the Spudder Rig. - Notify the BLM when moving in the 2<sup>nd</sup> Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location. - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well. - 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area. - 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report. ### A. CASING - 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed. - 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug. - 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug. - 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string. - 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer. - 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole. - 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations. - 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed. - B. PRESSURE CONTROL - 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3. - 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. - 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure. - 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met: - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry. - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal. - c. Manufacturer representative shall install the test plug for the initial BOP test. - d. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed. - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed. - 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests. - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified). - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.) - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item). - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock. - e. The results of the test shall be reported to the appropriate BLM office. - f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office. - g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure. - h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR # part 3170 Subpart 3172. ### C. DRILLING MUD Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented. ### D. WASTE MATERIAL AND FLUIDS All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations. ### Steel Guitar 35-26 Fed Com 410H | 10 3/4 | | surface csg in a | 14 3/4 | inch hole. | | Design | Factors | | | Surface | | | |---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|--------------|--------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------| | Segment | #/ft | Grade | | Coupling | Body | Collapse | Burst | Length | B@s | a-B | a-C | Weigh | | "A" | 45.50 | | j 55 | btc | 38.25 | 10.88 | 0.68 | 411 | 20 | 1.14 | 20.54 | 18,70 | | "B" | | | • | btc | | | | 0 | | | | 0 | | | | v/8.4#/g mud, 30min Sfc Csg Tes | st nsig: 1 500 | Tail Cmt | does not | circ to sfc. | Totals: | 411 | | | | 18,70 | | omnarison o | | to Minimum Required Cen | | | | 00 10 0.0. | 1014101 | | | | | | | Hole | Annular | 1 Stage | 1 Stage | Min | 1 Stage | Drilling | Calc | Req'd | | | | Min Di | | Size | Volume | Cmt Sx | CuFt Cmt | Cu Ft | % Excess | Mud Wt | MASP | BOPE | | | | Hole-Cr | | 14 3/4 | 0.5563 | 286 | 412 | 229 | | | 3142 | 5M | | | | 1.50 | | 14 3/4 | 0.5563 | 286 | 412 | 229 | 80 | 9.00 | 3142 | SIVI | | | | 1.50 | | Burst Frac Grad | ient(s) for S | egment(s) A, B = , b All > 0 | 0.70, OK. | | | | | | | | | | | 8 5/8 | | casing inside the | 10 3/4 | | | Design | Factors | | | Int 1 | | | | Segment | #/ft | Grade | 10 3/4 | Coupling | Joint | Collapse | Burst | Length | B@s | a-B | a-C | Weigh | | "A" | 32.00 | Grade | n 110 | | | 0.76 | 1.3 | • | 1 | 2.17 | 1.27 | • | | "B" | 32.00 | | p 110 | vam sprint fj | 2.41 | 0.76 | 1.3 | 9,653 | 1 | 2.17 | 1.27 | 308,89 | | B | | | 700 | | | | m · ' | 0 | | | | 0 | | | ٧ | v/8.4#/g mud, 30min Sfc Csg Tes | | | | | Totals: | 9,653 | | | | 308,89 | | | | | | led to achieve a top of | 0 | ft from su | | 411 | | | | overlap. | | Hole | Annular | 1 Stage | 1 Stage | Min | 1 Stage | Drilling | Calc | Req'd | | | | Min Di | | Size | Volume | Cmt Sx | CuFt Cmt | Cu Ft | % Excess | Mud Wt | MASP | BOPE | | | | Hole-Cp | | 9 7/8 | 0.1261 | 778 | 1587 | 1221 | 30 | 10.50 | 3294 | 5M | | | | 0.61 | | D V Tool(s): | | | 5070 | | | | sum of sx | Σ CuFt | | | | Σ%exce | | | | | | | | | | | | | | | | | t yld > 1.35 | 175 | 30 | | | | 1358 | 2422 | | | | 98 | | Class 'C' tail cm | t yld > 1.35 | | | | | | 1358 | 2422 | | Dural 4 | | 98 | | Tail cmt | | casing inside the | 30<br>8 5/8 | Coupling | loint | Design Fa | 1358 | | B@c | Prod 1 | 2.0 | | | Tail cmt 5 1/2 Segment | #/ft | | 8 5/8 | Coupling | Joint | Collapse | 1358 ctors Burst | Length | B@s | а-В | a-C | Weigh | | Tail cmt 5 1/2 Segment "A" | | casing inside the | | Coupling<br>dwc/c is+ | <b>Joint</b> 3.60 | | 1358 | <b>Length</b> 17,155 | <b>B@s</b> 3 | | <b>a-C</b> 3.67 | <b>Weigh</b> 343,10 | | Tail cmt 5 1/2 Segment "A" "B" | #/ft | casing inside the | 8 5/8 | | | Collapse | 1358 ctors Burst | Length<br>17,155<br>0 | | а-В | | Weigh<br>343,10 | | Tail cmt 5 1/2 Segment "A" "B" "C" | #/ft | casing inside the | 8 5/8 | | | Collapse | 1358 ctors Burst | Length<br>17,155<br>0 | | а-В | | Weigh<br>343,10<br>0<br>0 | | Tail cmt 5 1/2 Segment "A" "B" | #/ft<br>20.00 | casing inside the<br>Grade | 8 5/8<br>p 110 | | | Collapse | ctors<br>Burst<br>2.6 | Length 17,155 0 0 | | а-В | | Weigl<br>343,10<br>0<br>0 | | Tail cmt 5 1/2 Segment "A" "B" "C" | #/ft<br>20.00 | casing inside the<br>Grade | 8 5/8<br>p 110<br>st psig: 2,227 | dwc/c is+ | 3.60 | Collapse<br>2.19 | ctors Burst 2.6 Totals: | Length 17,155 0 0 17,155 | | а-В | 3.67 | Weigh<br>343,10<br>0<br>0<br>0<br>343,10 | | Tail cmt 5 1/2 Segment "A" "B" "C" "D" | #/ft<br>20.00 | casing inside the<br>Grade<br>v/8.4#/g mud, 30min Sfc Csg Tes<br>The cement | 8 5/8 p 110 st psig: 2,227 volume(s) are intend | dwc/c is+ | 3.60<br>9453 | Collapse<br>2.19 | tors Burst 2.6 Totals: | Length 17,155 0 0 17,155 200 | | а-В | 3.67 | Weigh 343,10 0 0 0 343,10 overlap. | | Tail cmt 5 1/2 Segment "A" "B" "C" "D" | #/ft<br>20.00 | casing inside the<br>Grade | 8 5/8 p 110 st psig: 2,227 volume(s) are intended 1 Stage | dwc/c is+ | 3.60<br>9453<br>1 Stage | Collapse 2.19 ft from su Drilling | ctors Burst 2.6 Totals: | Length<br>17,155<br>0<br>0<br>0<br>17,155<br>200<br>Req'd | | а-В | 3.67 | Weigh 343,10 0 0 0 343,10 overlap. | | Tail cmt 5 1/2 Segment "A" "B" "C" "D" | #/ft<br>20.00 | casing inside the<br>Grade<br>v/8.4#/g mud, 30min Sfc Csg Tes<br>The cement | 8 5/8 p 110 st psig: 2,227 volume(s) are intend | dwc/c is+ | 3.60<br>9453 | Collapse<br>2.19 | tors Burst 2.6 Totals: | Length 17,155 0 0 17,155 200 | | а-В | 3.67 | Weigl<br>343,10<br>0<br>0<br>0<br>343,10<br>overlap. | | Tail cmt 5 1/2 Segment "A" "B" "C" "D" | #/ft<br>20.00<br>Annular | casing inside the<br>Grade<br>w/8.4#/g mud, 30min Sfc Csg Tes<br>The cement<br>1 Stage | 8 5/8 p 110 st psig: 2,227 volume(s) are intended 1 Stage | dwc/c is+ | 3.60<br>9453<br>1 Stage | Collapse 2.19 ft from su Drilling | ctors Burst 2.6 Totals: | Length<br>17,155<br>0<br>0<br>0<br>17,155<br>200<br>Req'd | | а-В | 3.67 | Weigl<br>343,10<br>0<br>0<br>343,10<br>overlap.<br>Min Di:<br>Hole-Cţ | | Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 | #/ft<br>20.00<br>Annular<br>Volume<br>0.1733 | casing inside the Grade w/8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx | 8 5/8 p 110 st psig: 2,227 volume(s) are intend 1 Stage CuFt Cmt | dwc/c is+ led to achieve a top of Min Cu Ft | 3.60<br>9453<br>1 Stage<br>% Excess | Collapse 2.19 ft from su Drilling Mud Wt | ctors Burst 2.6 Totals: | Length<br>17,155<br>0<br>0<br>0<br>17,155<br>200<br>Req'd | | а-В | 3.67 | Weigh<br>343,10<br>0<br>0<br>343,10<br>overlap.<br>Min Dis | | Tail cmt 51/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 Class 'C' tail cm | #/ft<br>20.00<br>Annular<br>Volume<br>0.1733 | casing inside the Grade w/8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx | 8 5/8 p 110 st psig: 2,227 volume(s) are intend 1 Stage CuFt Cmt | dwc/c is+ led to achieve a top of Min Cu Ft | 3.60<br>9453<br>1 Stage<br>% Excess | Collapse 2.19 ft from su Drilling Mud Wt | ctors Burst 2.6 Totals: | Length<br>17,155<br>0<br>0<br>0<br>17,155<br>200<br>Req'd | | а-В | 3.67 | Weigl<br>343,10<br>0<br>0<br>343,10<br>overlap.<br>Min Di:<br>Hole-Cţ | | Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 Class 'C' tail cm | #/ft<br>20.00<br>Annular<br>Volume<br>0.1733 | casing inside the Grade w/8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx | 8 5/8 p 110 st psig: 2,227 volume(s) are intend 1 Stage CuFt Cmt 1794 | dwc/c is+ led to achieve a top of Min Cu Ft | 3.60<br>9453<br>1 Stage<br>% Excess | ft from su<br>Drilling<br>Mud Wt<br>10.50 | Totals: urface or a Calc MASP | Length<br>17,155<br>0<br>0<br>0<br>17,155<br>200<br>Req'd | 3 | <b>a-B</b><br>4.36 | 3.67 | Weigh<br>343,10<br>0<br>0<br>0<br>343,10 | | Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 Class 'C' tail cm | #/ft<br>20.00<br>Annular<br>Volume<br>0.1733<br>t yld > 1.35 | casing inside the Grade W/8.4#/g mud, 30min Sfc Csg Ter The cement 1 Stage Cmt Sx 1097 | 8 5/8 p 110 st psig: 2,227 volume(s) are intend 1 Stage CuFt Cmt | dwc/c is+ | 3.60<br>9453<br>1 Stage<br>% Excess<br>34 | ft from su<br>Drilling<br>Mud Wt<br>10.50 | totals: Irface or a Calc MASP | Length<br>17,155<br>0<br>0<br>17,155<br>200<br>Req'd<br>BOPE | 3 | a-B<br>4.36 | 3.67 | Weigh<br>343,10<br>0<br>0<br>343,10<br>overlap.<br>Min Dis<br>Hole-Cp<br>0.79 | | Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 class 'C' tail cm #N/A 0 Segment | #/ft<br>20.00<br>Annular<br>Volume<br>0.1733 | casing inside the Grade w/8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx | 8 5/8 p 110 st psig: 2,227 volume(s) are intend 1 Stage CuFt Cmt 1794 | dwc/c is+ | 3.60<br>9453<br>1 Stage<br>% Excess | ft from su<br>Drilling<br>Mud Wt<br>10.50 | Totals: urface or a Calc MASP | Length<br>17,155<br>0<br>0<br>17,155<br>200<br>Req'd<br>BOPE | 3 | <b>a-B</b><br>4.36 | 3.67 | Weigl<br>343,10<br>0<br>0<br>343,10<br>overlap.<br>Min Di:<br>Hole-Cp<br>0.79 | | Tail cmt 51/2 Segment "A" "B" "C" "D" Hole Size 77/8 class 'C' tail cm | #/ft<br>20.00<br>Annular<br>Volume<br>0.1733<br>t yld > 1.35 | casing inside the Grade W/8.4#/g mud, 30min Sfc Csg Ter The cement 1 Stage Cmt Sx 1097 | 8 5/8 p 110 st psig: 2,227 volume(s) are intend 1 Stage CuFt Cmt 1794 | dwc/c is+ | 3.60<br>9453<br>1 Stage<br>% Excess<br>34 | ft from su<br>Drilling<br>Mud Wt<br>10.50 | totals: Irface or a Calc MASP | Length<br>17,155<br>0<br>0<br>17,155<br>200<br>Req'd<br>BOPE | 3 | a-B<br>4.36 | 3.67 | Weigl<br>343,10<br>0<br>0<br>343,10<br>overlap.<br>Min Di<br>Hole-C <sub> </sub><br>0.79 | | Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 class 'C' tail cm #N/A 0 Segment | #/ft<br>20.00<br>Annular<br>Volume<br>0.1733<br>t yld > 1.35<br>#/ft | casing inside the Grade w/8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 1097 Grade | p 110 st psig: 2,227 volume(s) are intend 1 Stage CuFt Cmt 1794 | dwc/c is+ | 3.60<br>9453<br>1 Stage<br>% Excess<br>34 | ft from su<br>Drilling<br>Mud Wt<br>10.50 | Totals: urface or a Calc MASP | Length<br>17,155<br>0<br>0<br>17,155<br>200<br>Req'd<br>BOPE | 3 | a-B<br>4.36 | 3.67 | Weigl<br>343,10<br>0<br>0<br>343,10<br>overlap.<br>Min Di<br>Hole-C <sub>1</sub><br>0.79 | | Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 Class 'C' tail cm | #/ft<br>20.00<br>Annular<br>Volume<br>0.1733<br>t yld > 1.35<br>#/ft | casing inside the Grade v/8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 1097 Grade | p 110 st psig: 2,227 volume(s) are intend 1 Stage CuFt Cmt 1794 5 1/2 | dwc/c is+ | 3.60 9453 1 Stage % Excess 34 #N/A | ft from su<br>Drilling<br>Mud Wt<br>10.50 | Totals: Totals: MASP Factors Burst Totals: | Length 17,155 0 0 17,155 200 Req'd BOPE Length 0 0 | 3 | a-B<br>4.36 | 3.67 ng> a-C | Weig 343,11 0 0 0 343,11 overlap.i Min Di Hole-C, 0.79 Weig 0 0 0 | | Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 Class 'C' tail cm #N/A 0 Segment "A" "B" | #/ft<br>20.00<br>Annular<br>Volume<br>0.1733<br>t yld > 1.35 | casing inside the Grade v/8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 1097 Grade v/8.4#/g mud, 30min Sfc Csg Tes Cmt vol C | 8 5/8 p 110 st psig: 2,227 volume(s) are intend 1 Stage CuFt Cmt 1794 5 1/2 st psig: calc below includes t | led to achieve a top of Min Cu Ft 1335 Coupling 0.00 0.00 his csg, TOC intended | 3.60 9453 1 Stage % Excess 34 #N/A | ft from su Drilling Mud Wt 10.50 Design Collapse | Totals: urface or a Calc MASP Factors Burst Totals: | Length 17,155 0 0 17,155 200 Req'd BOPE Length 0 0 4N/A | 3 | a-B<br>4.36 | 3.67 ng> a-C | Weigi<br>343,10<br>0<br>0<br>343,110<br>overlap.<br>Min Di<br>Hole-C <sub>1</sub><br>0.79<br>Weigi<br>0<br>0<br>0<br>overlap. | | Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 Class 'C' tail cm #N/A 0 Segment "A" "B" | #/ft 20.00 Annular Volume 0.1733 tyld > 1.35 #/ft | casing inside the Grade W/8.4#/g mud, 30min Sfc Csg Ter The cement 1 Stage Cmt Sx 1097 Grade W/8.4#/g mud, 30min Sfc Csg Ter Cmt vol c 1 Stage | 8 5/8 p 110 st psig: 2,227 volume(s) are intend 1 Stage CuFt Cmt 1794 5 1/2 st psig: alc below includes ti 1 Stage | led to achieve a top of Min Cu Ft 1335 Coupling 0.00 0.00 his csg, TOC intended Min | 9453<br>1 Stage<br>% Excess<br>34<br>#N/A<br>1 Stage | ft from su Drilling Mud Wt 10.50 Design Collapse ft from su Drilling | Totals: Irface or a Calc MASP Totals: Irface or a Calc MASP | Length 17,155 0 0 17,155 200 Req'd BOPE Length 0 0 #N/A Req'd | 3 | a-B<br>4.36 | 3.67 ng> a-C | Weigi 343,10 0 0 343,10 overlap. Min Di Hole-C 0.79 Weigi 0 0 overlap. Min Di | | Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 Class 'C' tail cm #N/A 0 Segment "A" "B" | #/ft<br>20.00<br>Annular<br>Volume<br>0.1733<br>t yld > 1.35 | casing inside the Grade v/8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 1097 Grade v/8.4#/g mud, 30min Sfc Csg Tes Cmt vol C | 8 5/8 p 110 st psig: 2,227 volume(s) are intend 1 Stage CuFt Cmt 1794 5 1/2 st psig: calc below includes t | led to achieve a top of Min Cu Ft 1335 Coupling 0.00 0.00 his csg, TOC intended | 9453 1 Stage % Excess 34 #N/A #N/A 1 Stage % Excess | ft from su Drilling Mud Wt 10.50 Design Collapse | Totals: urface or a Calc MASP Factors Burst Totals: | Length 17,155 0 0 17,155 200 Req'd BOPE Length 0 0 4N/A | 3 | a-B<br>4.36 | 3.67 ng> a-C | Weigl 343,10 0 0 343,10 overlap. Min Di Hole-C 0.79 Weigl 0 0 overlap. Min Di | | 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 Class 'C' tail cm #N/A 0 Segment "A" "B" | #/ft 20.00 Annular Volume 0.1733 tyld > 1.35 #/ft | casing inside the Grade W/8.4#/g mud, 30min Sfc Csg Ter The cement 1 Stage Cmt Sx 1097 Grade W/8.4#/g mud, 30min Sfc Csg Ter Cmt vol c 1 Stage | 8 5/8 p 110 st psig: 2,227 volume(s) are intend 1 Stage CuFt Cmt 1794 5 1/2 st psig: alc below includes ti 1 Stage | led to achieve a top of Min Cu Ft 1335 Coupling 0.00 0.00 his csg, TOC intended Min | 9453<br>1 Stage<br>% Excess<br>34<br>#N/A<br>1 Stage | ft from su Drilling Mud Wt 10.50 Design Collapse ft from su Drilling | Totals: Irface or a Calc MASP Totals: Irface or a Calc MASP | Length 17,155 0 0 17,155 200 Req'd BOPE Length 0 0 #N/A Req'd | 3 | a-B<br>4.36 | 3.67 ng> a-C | Weigh<br>343,10<br>0<br>0<br>343,10<br>overlap.<br>Min Dis<br>Hole-Cp<br>0.79 | Carlsbad Field Office 1/22/2025 # PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL All Previous COAs Still Apply. Variance request procedure is approved as written, please see below general conditions for variance. ## **Offline Cementing** Operator has been (**Approved**) to pump the proposed cement program offline in the **Intermediate(s) interval**. Offline cementing should commence within 24 hours of landing the casing for the interval. Notify the BLM 4hrs prior to cementing offline at Eddy County: 575-361-2822. # **GENERAL REQUIREMENTS** The BLM is to be notified in advance for a representative to witness: - a. Spudding well (minimum of 24 hours) - b. Setting and/or Cementing of all casing strings (minimum of 4 hours) - c. BOPE tests (minimum of 4 hours) (575) 361-2822 - Eddy County EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, BLM NM CFO DrillingNotifications@BLM.GOV - ✓ Lea CountyCall the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981 - 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s). - b. When the operator proposes to set surface casing with Spudder Rig - Notify the BLM when moving in and removing the Spudder Rig. - Notify the BLM when moving in the 2<sup>nd</sup> Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location. - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well. - 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area. - 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report. ### A. CASING - 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed. - 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug. - 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug. - 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string. - 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer. - 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole. - 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations. - 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed. - B. PRESSURE CONTROL - 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3. - 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. - 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure. - 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met: - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry. - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal. - c. Manufacturer representative shall install the test plug for the initial BOP test. - d. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed. - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed. - 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests. - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified). - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.) - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item). - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock. - e. The results of the test shall be reported to the appropriate BLM office. - f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office. - g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure. - h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR ### part 3170 Subpart 3172. ### C. DRILLING MUD Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented. ### D. WASTE MATERIAL AND FLUIDS All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations. Sante Fe Main Office Phone: (505) 476-3441 General Information Phone: (505) 629-6116 Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us # State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505 CONDITIONS Action 423618 ### **CONDITIONS** | Operator: | OGRID: | |---------------------------|--------------------------------------| | WPX Energy Permian, LLC | 246289 | | Devon Energy - Regulatory | Action Number: | | Oklahoma City, OK 73102 | 423618 | | | Action Type: | | | [C-103] NOI Change of Plans (C-103A) | ### CONDITIONS | C | Created By | Condition | Condition<br>Date | |---|-------------|------------------------------------------------------------------------|-------------------| | | ward.rikala | Any previous COA's not addressed within the updated COA's still apply. | 4/2/2025 |