U.S. Department of the Interior BUREAU OF LAND MANAGEMENT Well Name: POKER LAKE UNIT 25 BD Well Location: T25S / R30E / SEC 25 / SENW / 32.103899 / -103.836943 County or Parish/State: EDDY / NM Well Number: 406H Type of Well: OIL WELL Allottee or Tribe Name: Lease Number: NMLC063079A Unit or CA Name: POKER LAKE UNIT Unit or CA Number: NMNM71016X **US Well Number:** Operator: XTO PERMIAN OPERATING LLC ### **Notice of Intent** Sundry ID: 2833270 Type of Submission: Notice of Intent Type of Action: APD Change Date Sundry Submitted: 01/22/2025 Time Sundry Submitted: 12:21 Date proposed operation will begin: 02/05/2025 Procedure Description: Poker Lake Unit 25 BD 406H SUNDRY LANGUAGE XTO Permian Operating, LLC. respectfully requests approval to make the following changes to the approved APD. Changes to include KOP, FTP, LTP, BHL, Proposed Total Depth, and Pool. There is a dedicated acreage change. There is no new surface disturbance. FROM: TO: KOP: 1680' FNL & 1959' FWL OF SECTION 25-T25S-R30E 2046' FNL & 2130' FWL OF SECTION 25-T25S-R30E 2046' FNL & 2130' FWL OF SECTION 25-T25S-R30E 2558' FSL & 2135' FWL OF SECTION 25-T25S-R30E LTP: 2435' FNL & 2530' FWL OF SECTION 25-T25S-R30E 100' FSL & 2135' FWL OF SECTION 36-T25S-R30E BHL: 2560' FNL & 2530' FWL OF SECTION 12-T26S-R30E 100' FSL & 2135' FWL OF SECTION 36-T25S-R30E BHL: 2560' FNL & 2530' FWL OF SECTION 12-T26S-R30E 10' FSL & 2135' FWL OF SECTION 36-T25S-R30E The proposed total depth is changing from 27171' MD; 10736' TVD to 18271' MD; 9977' TVD. Pool Code is changing FROM 97975 / WC-015 G-06 S243119C; Bone Spring TO 97814 / Wildcat G-015 S263001O; Bone Spring & 13354 / Corral Canyon; Bone Spring, South A saturated salt brine will be utilized while drilling through the salt formations. ### **NOI Attachments** ### **Procedure Description** PLU_25_BD_406H_Sundry_Attachments_20250122121840.pdf Received by OCD: WENDOME OF ORGER LAND UNIT 25 BD Well Location: T25S / R30E / SEC 25 / SENW / 32.103899 / -103.836943 County or Parish/State: EDDY / Page 2 of 54 Well Number: 406H Type of Well: OIL WELL Allottee or Tribe Name: Lease Number: NMLC063079A Unit or CA Name: POKER LAKE UNIT **Unit or CA Number:** NMNM71016X **US Well Number:** Operator: XTO PERMIAN OPERATING LLC ### **Conditions of Approval** ### Additional Poker_Lake_Unit_25_BD_406H_COA_20250303080121.pdf ### **Operator** I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a Operator Electronic Signature: SAMANTHA WEIS Signed on: FEB 25, 2025 09:36 AM Name: XTO PERMIAN OPERATING LLC Title: Permitting Advisor Street Address: 22777 SPRINGWOODS VILLAGE PARKWAY City: SPRING State: TX Phone: (832) 625-7361 Email address: SAMANTHA.R.BARTNIK@EXXONMOBIL.COM ### **Field** Representative Name: **Street Address:** City: State: Zip: Phone: **Email address:** ### **BLM Point of Contact** **BLM POC Name: CHRISTOPHER WALLS BLM POC Title:** Petroleum Engineer **BLM POC Phone:** 5752342234 BLM POC Email Address: cwalls@blm.gov Disposition: Approved Disposition Date: 03/06/2025 Signature: Chris Walls Form 3160-5 (June 2019) # UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT | FORM APPROVED | |---------------------------| | OMB No. 1004-0137 | | Expires: October 31, 2021 | | DEP. | ARTMENT OF THE INTERIOR | Expires: October 31, 2021 | | | | |---|--|---------------------------------------|---|--|--| | BURE | EAU OF LAND MANAGEMENT | 5. Lease Serial No. NMLC063079A | | | | | SUNDRY N | OTICES AND REPORTS ON W | 'ELLS | 6. If Indian, Allottee or Tribe | Name | | | | orm for proposals to drill or to
Jse Form 3160-3 (APD) for suc | | | | | | SUBMIT IN 1 | TRIPLICATE - Other instructions on page | e 2 | 7. If Unit of CA/Agreement, 1 POKER LAKE UNIT/NMNM71016 | | | | . Type of Well | | | 8. Well Name and No. | ` | | | ✓ Oil Well Gas W | Vell Other | | POKER LAKE UNIT 25 BD/406H | | | | 2. Name of Operator XTO PERMIAN | OPERATING LLC | | 9. API Well No. | | | | a. Address 6401 HOLIDAY HILL RO | OAD BLDG 5, MIDLAND, 3b. Phone No. | (include area code) | 10. Field and Pool or Explora | • | | | | (432) 683-227 | 77 | WC-015 G-06 S243119C/Bone Sp | ring | | | Location of Well (Footage, Sec., T.,R
SEC 25/T25S/R30E/NMP | .,M., or Survey Description) | | 11. Country or Parish, State EDDY/NM | | | | 12. CHEC | CK THE APPROPRIATE BOX(ES) TO INI | DICATE NATURE (| OF NOTICE, REPORT OR OT | HER DATA | | | TYPE OF SUBMISSION | | TYPE | E OF ACTION | | | | ✓ Notice of Intent | Acidize Deep | en [| Production (Start/Resume) | Water Shut-Off | | | Notice of Intent | Alter Casing Hydr | aulic Fracturing [| Reclamation | Well Integrity | | | Subsequent Report | Casing Repair New | Construction [| Recomplete | Other | | | | ✓ Change Plans Plug | and Abandon | Temporarily Abandon | | | | Final Abandonment Notice | Convert to Injection Plug | Back [| Water Disposal | | | | completed. Final Abandonment Not is ready for final inspection.) Poker Lake Unit 25 BD 406H SUNDRY LANGUAGE XTO Permian Operating, LLC. FTP, LTP, BHL, Proposed Total FROM: TO: KOP: 1680' FNL & 1959' FWL | ons. If the operation results in a multiple complete must be filed only after all requirements respectfully requests approval to make all Depth, and Pool. There is a dedicated OF SECTION 25-T25S-R30E 2046 FNL | the following chan
acreage change. | tion, have been completed and ges to the approved APD. C There is no new surface dist | the operator has detennined that the site hanges to include KOP, | | | | OF SECTION 25-T25S-R30E 2558' FSL | | | | | | | OF SECTION 12-T26S-R30E 100' FSL 8 | | | | | | Continued on page 3 additional | OF SECTION 12-T26S-R30E 10' FSL & | 2135 FWL OF St | ECTION 36-1255-R30E | | | | <u> </u> | true and correct. Name (Printed/Typed) | | | | | | SAMANTHA WEIS / Ph: (832) 625- | · · · · · · · · · · · · · · · · · · · | Permitting A | Advisor | | | | (Electronic Submissio | n) | 02/25/2 | 2025 | | | | | THE SPACE FOR FEDI | ERAL OR STA | TE OFICE USE | | | | approved by | | | | | | | CHRISTOPHER WALLS / Ph: (575 | 5) 234-2234 / Approved | Petrole
Title | eum Engineer | 03/06/2025
Date | | | | ned. Approval of this notice does not warrant
quitable title to those rights in the subject led
duct operations thereon. | | LSBAD | | | Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. (Instructions on page 2) ### **GENERAL INSTRUCTIONS** This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office. ### SPECIFIC INSTRUCTIONS *Item 4* - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions. Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices. ### **NOTICES** The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application. AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160. PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource
lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used. ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government. EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-4. The Paperwork Reduction Act of 1995 requires us to inform you that: The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases. Response to this request is mandatory. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number. **BURDEN HOURS STATEMENT:** Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240 (Form 3160-5, page 2) ### **Additional Information** ### **Additional Remarks** The proposed total depth is changing from 27171 MD; 10736 TVD to 18271 MD; 9977 TVD. Pool Code is changing FROM 97975 / WC-015 G-06 S243119C; Bone Spring TO 97814 / Wildcat G-015 S263001O; Bone Spring & 13354 / Corral Canyon; Bone Spring, South A saturated salt brine will be utilized while drilling through the salt formations. ### **Location of Well** 0. SHL: SENW / 1680 FNL / 1959 FWL / TWSP: 25S / RANGE: 30E / SECTION: 25 / LAT: 32.103899 / LONG: -103.836943 (TVD: 0 feet, MD: 0 feet) PPP: NENW / 0 FNL / 2546 FWL / TWSP: 26S / RANGE: 30E / SECTION: 1 / LAT: 32.079268 / LONG: -103.835128 (TVD: 10736 feet, MD: 19100 feet) PPP: SENW / 2435 FNL / 2530 FWL / TWSP: 25S / RANGE: 30E / SECTION: 25 / LAT: 32.101824 / LONG: -103.835116 (TVD: 10736 feet, MD: 11100 feet) BHL: SENW / 2560 FNL / 2530 FWL / TWSP: 26S / RANGE: 30E / SECTION: 12 / LAT: 32.0576 / LONG: -103.83514 (TVD: 10736 feet, MD: 27171 feet) # PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL OPERATOR'S NAME: XTO LEASE NO.: NMLC063079A LOCATION: Sec. 25, T.25 S, R 30 E COUNTY: Eddy County, New Mexico WELL NAME & NO.: Poker Lake Unit 25 BD 406 H SURFACE HOLE FOOTAGE: 1680'/N & 1959'/W BOTTOM HOLE FOOTAGE: 10'/S & 2135'/W COA | H ₂ S | • | No | c | Yes | |------------------|----------------------|----------------------------|-----------------|----------------------------| | Potash / | None | Secretary | © R-111-Q | Open Annulus | | WIPP | Choose | e an option (including bla | nk option.) | ☐ WIPP | | Cave / Karst | C Low | Medium | 🖰 High | Critical | | Wellhead | Conventional | Multibowl | O Both | Diverter | | Cementing | Primary Squeeze | Cont. Squeeze | EchoMeter | DV Tool | | Special Req | Capitan Reef | Water Disposal | COM | Unit | | Waste Prev. | C Self-Certification | C Waste Min. Plan | APD Submitted p | prior to 06/10/2024 | | Additional | Flex Hose | Casing Clearance | Pilot Hole | Break Testing | | Language | Four-String | Offline Cementing | Fluid-Filled | | Changes approved through engineering via **Sundry 283370**_ on 3-3-2025_. Any previous COAs not addressed within the updated COAs still apply. ### A. HYDROGEN SULFIDE Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet 43 CFR 3176 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM. ### **B. CASING** - 1. The 9-5/8 inch surface casing shall be set at approximately 1150 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface. - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of - the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job. - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8 hours** or **500 pounds compressive strength**, whichever is greater. (This is to include the lead cement) - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater. - d. If cement falls back, remedial cementing will be done prior to drilling out that string. - 2. The minimum required fill of cement behind the **7-5/8** inch intermediate casing is: Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface. - a. First stage: Operator will cement with intent to reach the top of the Brushy Canyon at 6588'. - b. **Second stage:** Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified. **Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst.** - ❖ In Medium Cave/Karst Areas if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface. Operator has proposed to pump down Surface X Intermediate 1 annulus after primary cementing stage. Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus OR operator shall run a CBL from TD of the Surface casing to tieback requirements listed above after the second stage BH to verify TOC. Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out. Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures. If cement does not reach surface, the next casing string must come to surface. - 3. The minimum required fill of cement behind the 5-1/2 inch production casing is: - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification. ### C. PRESSURE CONTROL - 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends). - 2. Operator has proposed a multi-bowl wellhead assembly. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi. - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry. - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal. - c. Manufacturer representative shall install the test plug for the initial BOP test. - d. If the cement does not circulate and one-inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed. - e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172 must be followed. ### D. SPECIAL REQUIREMENT (S) ### **Unit Wells** The well sign for a unit well shall include the unit number in addition to the surface and bottom hole lease numbers. This also applies to participating area numbers. If a participating area has not been established, the operator can use the general unit designation, but will replace the unit number with the participating area number when the sign is replaced. ### **Commercial Well Determination** A commercial well determination shall be submitted after production has been established for at least six months. (This is not necessary for secondary recovery unit wells) ### **BOPE Break Testing Variance** - BOPE Break Testing is ONLY permitted for intervals utilizing a 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP.) - BOPE Break Testing is NOT permitted to drilling the production hole section. - Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation. - While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle - Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations. - A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a
full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable). - The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests. - As a minimum, a full BOPE test shall be performed at 21-day intervals. - In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR 3172. - If in the event break testing is not utilized, then a full BOPE test would be conducted. ### **Offline Cementing** Contact the BLM prior to the commencement of any offline cementing procedure. Engineer may elect to vary this language. Speak with Chris about implementing changes and whether that change seems reasonable. ### **Casing Clearance** String does not meet 0.422" clearance requirement per 43 CFR 3172. Cement tieback requirement increased 100' for Production casing tieback. Operator may contact approving engineer to discuss changing casing set depth or grade to meet clearance requirement. ### **GENERAL REQUIREMENTS** The BLM is to be notified in advance for a representative to witness: - a. Spudding well (minimum of 24 hours) - b. Setting and/or Cementing of all casing strings (minimum of 4 hours) - c. BOPE tests (minimum of 4 hours) ### **Contact Eddy County Petroleum Engineering Inspection Staff:** Email or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220; **BLM NM CFO DrillingNotifications@BLM.GOV**; (575) 361-2822 - 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s). - b. When the operator proposes to set surface casing with Spudder Rig - i. Notify the BLM when moving in and removing the Spudder Rig. - ii. Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location. - iii. BOP/BOPE test to be conducted per **43 CFR 3172** as soon as 2nd Rig is rigged up on well. - 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area. - 3. For intervals in which cement to surface is required, cement to surface should be verified with a visual check and density or pH check to differentiate cement from spacer and drilling mud. The results should be documented in the driller's log and daily reports. ### A. CASING 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed. - 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug. - 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug. - 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string. - 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer. - 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole. - 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations. - 8. Whenever a casing string is cemented in the R-111-Q potash area, the NMOCD requirements shall be followed. ### **B. PRESSURE CONTROL** - 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR 3172. - 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's - requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. - 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure. - 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met: - i. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry. - ii. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal. - iii. Manufacturer representative shall install the test plug for the initial BOP test. - iv. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed. - v. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed. - 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests. - i. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified). - ii. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve - open. (only applies to single stage cement jobs, prior to the cement setting up.) - iii. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to **43 CFR 3172** with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item). - iv. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or
twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock. - v. The results of the test shall be reported to the appropriate BLM office. - vi. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office. - vii. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure. - viii. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR 3172. ### C. DRILLING MUD Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented. ### D. WASTE MATERIAL AND FLUIDS All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations. **Approved by Zota Stevens on 3/3/2025** 575-234-5998 / zstevens@blm.gov | <u>C-102</u> | | | | | Sta | te of Ne | ew Mexico | | | | | Revised July 9, 20 | |--|--|---|---|--|--------------------------------------|-----------------|---|-----------------------|---|---------------------|-----------------|--------------------| | Submit Elect | tronically | | Energy, Minerals & Natural Resources Department | | | | | | | Initial Submittal | | | | Via OCD Per | - | | OIL CONSERVATION DIVISION | | | | | | | Submitta | . – | Amended Report | | | | | | | | | | | | Type: | | As Drilled | WELL LO | | INFORMATION | | | | | | | API Numb
30-015 | | | Pool Code
13354 | | | Pool Name
CO | RRAL CANYON; BO | ONE SPRII | NG, SOUTH | 1 | | | | Property C | Code | | Property Name | POKE | ER LAKE UN | NIT 25 BD | | | | | Well Ni
406H | | | ORGID N
373075 | | | Operator Name | XTO | PERMIAN C | PERATIN | G, LLC. | | | | Ground
3,344 | Level Elevation | | Surface O |)wner: 🔲 5 | State Fe | ee 🗌 Tribal 🛚 | Federal | | | Mineral Owner: X | State F | ee 🗌 Tribal | X Fede | ral | | | | | | | | | Surface I | | | | | | 1 | | UL S | Section
25 | Township
25 S | . | Lot | Ft. from N/
1,680 | /S
0' FNL | Ft. from E/W
1,959 FWL | 22.1038 | | ngitude
103.836 | 943 | County
EDDY | | | | | | | | | le Location | 1 | | | | 1_ | | UL : | Section
36 | Township
25 S | Range
30 E | Lot | Ft. from N/
10' FS | | Ft. from E/W
2,135' FWL | 22.0792 | | ngitude
103.836 | 456 | County
EDDY | | Dedicated | 1 Acres | Infill or Do | efining Well | Definin | g Well API | | Overlapping Spacing U | Jnit (Y/N) | Consolidat | ion Code | | | | 160 | | DEI | FINING | | | | Y | | U | | | | | Order Nur | mbers. | | | | | | Well setbacks are unde | er Common (| Ownership: [| ▼ Yes [|] No | | | | | | | | ŀ | Kick Off F | Point (KOP) | | | | | | | UL : | Section
25 | Township
25 S | Range
30 E | Lot | Ft. from N/ | /S
6' FNL | Ft. from E/W
2,130' FWL | Latitude
32,1028 | | ngitude
103.836 | 399 | County
EDDY | | | | | | | F | irst Take | Point (FTP) | | | | | | | UL : | Section
25 | Township
25 S | Range
30 E | Lot | Ft. from N/
2,558 | /S
3' FSL | Ft. from E/W
2,135' FWL | Latitude
32.1009 | | ngitude
103.836 | 399 | County
EDDY | | | | | | | L | ast Take I | Point (LTP) | | | | | | | UL S | Section
36 | Township
25 S | Range
30 E | Lot | Ft. from N/
100' F | | Ft. from E/W
2,135' FWL | Latitude
32.0795 | | ngitude
103.836 | 456 | County
EDDY | | Unitized / | Area or Are | a of Uniform | m Interest | Spacin | g Unit Type [|
✓ Horizont | al Vertical | Gr | ound Floor E | levation: | 3,344' | | | | N | <u>MNM-07</u> | '1016X | | | | | | | | 3,344 | | | OPER A | ATOR C | ERTIFIC | ATIONS | | | | SURVEYOR C | ERTIFIC | ATIONS | | | | | I hereby c | ertify that t | he informatı | ion contained her | rein is true | e and complete | e to the | I hereby certify that | the well loo | ation shown | on this p | at was j | plotted from field | | best of my | v knowledge | and belief, | and that this org
rest in the land in | anization | either owns a | working | notes of actual surv
is true and correct t | | | r my supe | rvision, | and that the same | | | of such a m | ineral or wo | s well at this loce
orking interest, o | r to a volu | intary pooling | | I, TIM C. PAPPAS, NEW
21209, DO HEREBY CER
ACTUAL SURVEY ON THE | TIFY THAT THE | S SURVEY PLAT
ON WHICH IT IS | AND THE | | C. PAPA | | | a or a comp | utsory pooti | ng oraer neretoj | | - | | WERE PERFORMED BY M THAT I AM RESPONSIBLE MEETS THE MINIMUM STA MEXICO, AND THAT IS TO | FOR THIS SUNDARDS FOR | IRVEY, THAT TH
SURVEYING IN | IIS SURVEY
NEW / | | M MEXIC S | | agreement | - | ntal well. I | further certify th | at this ore | | | eral MY KNOWLEDGE AND BELIEF. | | | | 21209 | | | agreement
If this well
the consen | ll is a horizo
nt of at least | t one lessee | further certify the
or owner of a wo
et pool or formati | orking inte | | | MY KNOWLEDGE AND BEI | | an 20 | 25 | 1 1 | | | agreement If this well the consen interest in | ll is a horizo
nt of at least
1 each tract | t one lessee
(in the targe | or owner of a wo | orking inte
ion) in wh | ich any part o | f the well's | TIM C PAPPAS | | | | | | | agreement
If this well
the consen
interest in
completed
division. | ll is a horizo
nt of at leas
n each tract
d interval wi | t one lessee
(in the targe
ill be located | or owner of a wo
et pool or formati
d or obtained a c | orking inte
ion) in wh
compulsory | ich any part og
y pooling form | f the well's | TIM C. PAPPAS REGISTERED PROFESSION STATE OF NEW MEXICO | | | | PROFESS | | | agreement
If this well
the consen
interest in
completed
division. | ll is a horizo
nt of at least
n each tract
1 interval wi | t one lessee
(in the targe | or owner of a wo
et pool or format
d or obtained a c | orking inte
ion) in wh | ich any part og
y pooling form | f the well's | TIM C PAPPAS | 2 J | veyor | | PROFESS | NONAL SURVEY | | agreement If this well the consent in completed division. Signature | ll is a horizo
nt of at leasi
n each tract
d interval wi | t one lessee
(in the targe
ill be located | or owner of a wo
et pool or format
d or obtained a c | orking inte
ion) in wh.
ompulsory | ich any part og
y pooling form | f the well's | TIM C. PAPPAS REGISTERED PROFESSION STATE OF NEW MEXICO | 2 J | veyor | | BROFFES | | | agreement If this well the consent in completed division. Signature | ll is a horizon to fat leass in each tract of the interval with the interval with anthum the interval with
anthum the interval with a Weis | t one lessee
(in the targe
ill be located | or owner of a wo
et pool or format
d or obtained a c | orking inte
ion) in wh.
ompulsory | ich any part og
y pooling form | f the well's | TIM C. PAPPAS REGISTERED PROFESSION STATE OF NEW MEXICO | 2 J | veyor | | POLICIS | | | agreement If this well the consensinterest in completed division. Signature Samanth Printed Na | ll is a horizont of at least not of at least not | t one lessee (in the targe iill be located | or owner of a wo
et pool or format
d or obtained a c | orking inte
ion) in wh.
ompulsory
1/22/ | ich any part og
y pooling form | f the well's | TIM C. PAPPAS REGISTERED PROFESSION STATE OF NEW MEXICO | 2 J J | veyor
al Surveyor | ey | PROFFES | | | agreement If this well the consent interest in completed division. Signature Samanth Printed Na saman demand Ado | Il is a horizont of at least in each tract if interval with the weight in i | t one lessee (in the targe (in the targe ill be located a Was | or owner of a wo | orking interiory in who ompulsory 1/22/: Date | ich any part o, y pooling form 2025 | f the well's | TIM C. PAPPAS REGISTERED PROFESSION STATE OF NEW MEXICO Signature and Seal of Certificate Number TIM C. PAPPAS | 2 J J | VEYOR Il Surveyor Date of Surv 01/21/2 | ey 2025 | | VONAL SURVE | | agreement If this well the consent interest in completed division. Signature Samanth Printed Na saman Email Ado | Il is a horizont of at least in each tract if interval with the weight in i | t one lessee (in the targe (in the targe (ii) the located a Was | or owner of a wo | orking interiory in who ompulsory 1/22/: Date | ich any part o, y pooling form 2025 | f the well's | TIM. C. PAPPAS REGISTERED PROFESSION STATE OF NEW MEXICO Signature and Seal of Certificate Number | 2 J J | VEYOR Il Surveyor Date of Surv 01/21/2 | ey 2025 | | VONAL SURVE | ### ACREAGE DEDICATION PLATS This grid represents a standard section. You may superimpose a non-standard section, or a larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is the closest to any outer boundary of the tract. Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed, contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable. | | LINE TABLE | | | | | | | | |------|-------------|-----------|--|--|--|--|--|--| | LINE | AZIMUTH | LENGTH | | | | | | | | L1 | 155° 02'15" | 403.17' | | | | | | | | L2 | 179° 45'09" | 716.25' | | | | | | | | L3 | 179° 51'50" | 7,869.41' | | | | | | | | CC | CORNER COORDINATES (NAD83 NME) | | | | | | | | | |---------|--------------------------------|------|----------|------------|---|--|--|--|--| | A - Y = | 400,909.6 | Ν | A - X = | 695,741.2 | Е | | | | | | B - Y = | 398,251.8 | Ν | B - X = | 695,734.4 | Е | | | | | | C - Y = | 395,593.9 | Ν | C - X = | 695,745.5 | Е | | | | | | D - Y = | 392,931.6 | Ν | D - X = | 695,756.7 | Е | | | | | | E - Y = | 400,902.9 | Ν | E - X = | 694,409.7 | Е | | | | | | F-Y= | 398,243.4 | Ν | F-X= | 694,403.4 | Е | | | | | | G-Y= | 395,583.2 | Ν | G-X= | 694,415.0 | Е | | | | | | H-Y= | 392,921.4 | Ν | H-X= | 694,426.7 | Е | | | | | | CC | RNER COO | RDII | NATES (I | NAD27 NME) | | | | | | | A - Y = | 400,851.7 | Ν | A - X = | 654,555.7 | Е | | | | | | B - Y = | 398,193.9 | Ν | B - X = | 654,548.8 | Е | | | | | | C - Y = | 395,536.1 | Ν | C - X = | 654,559.9 | Е | | | | | | D - Y = | 392,873.9 | Ν | D - X = | 654,571.0 | Е | | | | | | E - Y = | 400,845.0 | Ν | E - X = | 653,224.3 | Е | | | | | | F-Y= | 398,185.5 | Ν | F-X= | 653,217.9 | Е | | | | | | G-Y= | 395,525.4 | Ν | G-X= | 653,229.4 | Е | | | | | | H-Y= | 392,863.7 | N | H-X= | 653,241.0 | Е | | | | | | | С | OORDIN | IATE TAE | BLE | | |---------|---------------|--------|----------|----------------|----| | SH | IL (NAD 83 NN | ΛE) | F1 | TP (NAD 83 NMI | Ξ) | | Y = | 401,888.7 | N | Y = | 400,806.9 | N | | X = | 695,039.7 | E | X = | 695,213.0 | Е | | LAT. = | 32.103899 | °N | LAT. = | 32.100923 | °N | | LONG. = | 103.836943 | °W | LONG. = | 103.836399 | °W | | KO | P (NAD 83 NI | ΛE) | | | | | Y = | 401,523.2 | N | | | | | X = | 695,209.9 | E | | | | | LAT. = | 32.102892 | °N | | | | | LONG. = | 103.836399 | °W | | | | | LT | P (NAD 83 NN | IE) | ВІ | HL (NAD 83 NMI | E) | | Y = | 393,027.5 | N | Y = | 392,937.5 | N | | X = | 695,231.2 | E | X = | 695,231.7 | Е | | LAT. = | 32.079538 | °N | LAT. = | 32.079291 | °N | | LONG. = | 103.836456 | °W | LONG. = | 103.836456 | °W | | SH | IL (NAD 27 NN | ΛE) | F1 | TP (NAD 27 NMI | ≣) | | Y = | 401,830.7 | N | Y = | 400,749.0 | N | | X = | 653,854.3 | E | X = | 654,027.5 | E | | LAT. = | 32.103774 | °N | LAT. = | 32.100798 | °N | | LONG. = | 103.836463 | °W | LONG. = | 103.835920 | °W | | KO | P (NAD 27 NI | ΛE) | | | | | Y = | 401,465.2 | N | | | | | X = | 654,024.5 | E | | | | | LAT. = | 32.102767 | °N | | | | | LONG. = | 103.835919 | °W | | | | | LT | P (NAD 27 NN | IE) | ВІ | HL (NAD 27 NMI | E) | | Y = | 392,969.8 | N | Y = | 392,879.8 | N | | X = | 654,045.5 | E | X = | 654,046.0 | E | | LAT. = | 32.079413 | °N | LAT. = | 32.079166 | °N | | LONG. = | 103.835978 | °W | LONG. = | 103.835977 | °W | | <u>C-10</u> 2 | 2 | | | | State of New Mexico | | | | | | Revised July 9, 202 | | |------------------|----------------|------------------|---|--------------|---------------------|----------------|---|---|--|---------------------------------|---------------------|--------------------| | ubmit Ele | ectronically | | En | | | | ral Resources | nent | | Tπ | Initial Submittal | | | | Permitting | | | O | IL CON | SERVA | VATION DIVISION | | | Submittal M Amend | | Amended Report | | | | | | | | | | | Type: | | As Drilled | | | | | | | | | | | | | | | As Dillieu | | ADIN | | | P. J.C. J. | | WELL LO | | INFORMATION | J | | | | | | API Nui
30-0 | | | Pool Code
97814 | | | Pool Nam
WI | _{le}
LDCAT G-015 S26 | 3001O; BO | NE SPRING | 3 | | | | Property | Code | | Property Name | POK | ER LAKE UN | NIT 25 BD | | | | \ | Vell Nu
406H | ımber | | ORGID
3730 | | | Operator Name | хто | PERMIAN C | PERATIN | IG, LLC. | | | (| Ground
3,344 | Level Elevation | | Surface | Owner: 🔲 | State F | ee 🗌 Tribal 🛚 |] Federal | | | Mineral Owner: | X State I | Fee 🗌 Triba | l 🛚 Feder | al | | | | | | | | _ | Surface | Location | | | | | | | UL
F | Section
25 | Township
25 S | | Lot | Ft. from N/
1,68 | /S
0' FNL | Ft. from E/W
1,959 FWL | Latitude
32.103 | | ongitude
-103.8369 | 943 | County
EDDY | | UL | Section | Township | p Range | Lot | Ft. from N/ | | ole Location Ft. from E/W | Latitude | L | ongitude | | County | | N | 36 | 25 S | 30 E | Lot | 10' F | | 2,135' FWL | 32.079 | | -103.8364 | 156 | EDDY | | Dedicate | ed Acres | | efining Well | Definir | ng Well API | | Overlapping Spacing | Unit (Y/N) | Consolidat | tion Code | | | | Order N | umbers. | DEF | INING | | | | Well setbacks are un | der Common | | X Yes □ | No | | | | | | | | ī | Kick Off | Point (KOP) | | | | | | | UL | Section | Township | p Range | Lot | Ft. from N/ | /S | Ft. from E/W | Latitude | | ongitude | | County | | F | 25 | 25 S | 30 E | | | 6' FNL | 2,130' FWL | 32.102 | 392 - | -103.8363 | 99 | EDDY | | UL | Section | Township | p Range | Lot | Ft. from N/ | | Point (FTP) Ft. from E/W | Latitude | La | ongitude | | County | | K | 25 | 25 S | 30 E | | | B' FSL | 2,135' FWL | 32.100 | | -103.8363 | 99 | EDDY | | UL | Section | Township | p Range | Lot | Ft. from N/ | | Point (LTP) Ft. from E/W | Latitude | Lo | ongitude | | County | | N | 36 | 25 S | 30 E | | 100' F | | 2,135' FWL | 32.079 | | -103.8364 | 56 | EDDY | | Unitized | l Area or Are | a of Unifor | m Interest | Spacin | 12 Unit Type | M Horizon | ıtal Vertical | Gı | ound Floor E | Elevation: | | | | | | NMNM | -071016X | 1 | | | | | | | 3,344' | | | OPER | RATOR C | ERTIFIC | ATIONS | | | | SURVEYOR | CERTIFIC | ATIONS | | | | | I hereby | certify that t | he informat | ion contained he | erein is tru | e and complete | e to the | I hereby certify th | at the well lo | cation shown | on this pla | at was j | olotted from field | | best of n | ny knowledge | and belief, | and that this or
rest in the land i | ganization | either owns a | working | notes of actual sur
is true and correc | | | r my super | vision, | and that the same | | an owne | er of such a m | ineral or we | is well at this loo
orking interest, o | or to a voli | ıntary pooling | | I, TIM C. PAPPAS, NEV
21209, DO HEREBY C
ACTUAL SURVEY ON TI | ERTIFY THAT TH
HE GROUND UP | s survey plat
on which it is | T AND THE
S BASED | / | C. PAD | | _ | - | | ing order hereto | | • | | WERE PERFORMED BY
THAT I AM RESPONSIB
MEETS THE MINIMUM S | ME OR UNDER
BLE FOR THIS SI
STANDARDS FOR | MY DIRECT SU
JRVEY, THAT TH
SURVEYING IN | PERVISION;
IIS SURVEY
NEW | 1/W | W MEXICO | | the cons | ent of at leas | t one lessee | further certify to
or owner of a w
et pool or forma | orking inte | rest or unleas | sed mineral | MEXICO, AND THAT IS
MY KNOWLEDGE AND E | IKUL AND COR
BELIEF.
21 Ja | neci io the e | 25 OF | (* | 21200 | | | ed interval w | | d
or obtained a | | | | | | | - | | 21209 | | | nanth | ر ۱۱ م | ر 1/ | 22/2025 | | | TIM C. PAPPAS
REGISTERED PROFESSI
STATE OF NEW MEXICO | IONAL LAND SUF
O NO. 21209 | VEYOR | * | Oriss. | ONAL SURVEY | | Signatur | | u We | | Date | | | TIM. C. PAPPAS REGISTERED PROFESSIONAL LAND SURVEYOR STATE OF NEW MEXICO NO. 21209 Signature and Seal of Professional Surveyor | | | | | | | Samar | ntha Weis | | | | | | | | | | | | | Printed : | Name | | | | | | Certificate Number | г | Date of Surv | rey | | | | samar
Email A | | nik@exx | onmobil.cor | n | | | TIM C. PAPPA | S 21209 | 01/21/2 | 2025 | | | | | | lowable wil | l be assigned to | this com | letion until al | ll interests I | ave been consolidate | ed or a non-st | andard unit h | as been at | provea | by the division. | | | | | | , | | | | | | 7 | ### ACREAGE DEDICATION PLATS This grid represents a standard section. You may superimpose a non-standard section, or a larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is the closest to any outer boundary of the tract. Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed, contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable. | LINE TABLE | | | | | | | | |------------|-------------|-----------|--|--|--|--|--| | LINE | AZIMUTH | LENGTH | | | | | | | L1 | 155° 02'15" | 403.17' | | | | | | | L2 | 179° 45'09" | 716.25' | | | | | | | L3 | 179° 51'50" | 7,869.41' | | | | | | | CC | CORNER COORDINATES (NAD83 NME) | | | | | | | | | |---------|--------------------------------|------|----------|------------|---|--|--|--|--| | A - Y = | 400,909.6 | Z | A - X = | 695,741.2 | Е | | | | | | B - Y = | 398,251.8 | Z | B - X = | 695,734.4 | Е | | | | | | C - Y = | 395,593.9 | Ν | C - X = | 695,745.5 | Е | | | | | | D - Y = | 392,931.6 | Z | D - X = | 695,756.7 | Е | | | | | | E - Y = | 400,902.9 | Z | E - X = | 694,409.7 | Е | | | | | | F-Y= | 398,243.4 | Z | F-X= | 694,403.4 | Е | | | | | | G-Y= | 395,583.2 | Z | G-X= | 694,415.0 | Е | | | | | | H-Y= | 392,921.4 | Z | H-X= | 694,426.7 | Е | | | | | | CC | RNER COO | RDII | NATES (I | NAD27 NME) | | | | | | | A - Y = | 400,851.7 | Z | A - X = | 654,555.7 | Е | | | | | | B - Y = | 398,193.9 | Z | B - X = | 654,548.8 | Е | | | | | | C - Y = | 395,536.1 | Z | C - X = | 654,559.9 | Е | | | | | | D - Y = | 392,873.9 | Z | D - X = | 654,571.0 | Е | | | | | | E - Y = | 400,845.0 | Ν | E - X = | 653,224.3 | Е | | | | | | F-Y= | 398,185.5 | Z | F-X= | 653,217.9 | Е | | | | | | G-Y= | 395,525.4 | Z | G-X= | 653,229.4 | Е | | | | | | H-Y= | 392,863.7 | Ν | H - X = | 653,241.0 | Ε | | | | | | COORDINATE TABLE | | | | | | | | | |------------------|---------------|-----|---------|----------------|----|--|--|--| | SH | IL (NAD 83 NN | | | TP (NAD 83 NM | E) | | | | | Y = | 401,888.7 | N | Y = | 400,806.9 | N | | | | | X = | 695,039.7 | E | X = | 695,213.0 | Е | | | | | LAT. = | 32.103899 | °N | LAT. = | 32.100923 | °N | | | | | LONG. = | 103.836943 | °W | LONG. = | 103.836399 | °W | | | | | | P (NAD 83 NI | ΛE) | | | | | | | | Y = | 401,523.2 | N | | | | | | | | X = | 695,209.9 | Е | | | | | | | | LAT. = | 32.102892 | °N | | | | | | | | LONG. = | 103.836399 | °W | | | | | | | | | P (NAD 83 NN | IE) | В | HL (NAD 83 NM | E) | | | | | Y = | 393,027.5 | Ν | Y= | 392,937.5 | N | | | | | X = | 695,231.2 | Е | X = | 695,231.7 | Е | | | | | LAT. = | 32.079538 | °N | LAT. = | 32.079291 | °N | | | | | LONG. = | 103.836456 | °W | LONG. = | 103.836456 | °W | | | | | | IL (NAD 27 NN | ſΕ) | | ΓP (NAD 27 NM) | E) | | | | | Y = | 401,830.7 | N | Y = | 400,749.0 | N | | | | | X = | 653,854.3 | E | X = | 654,027.5 | E | | | | | LAT. = | 32.103774 | °N | LAT. = | 32.100798 | °N | | | | | LONG. = | 103.836463 | °W | LONG. = | 103.835920 | °W | | | | | KO | P (NAD 27 NI | ΛE) | | | | | | | | Y = | 401,465.2 | N | | | | | | | | X = | 654,024.5 | E | | | | | | | | LAT. = | 32.102767 | °N | | | | | | | | LONG. = | 103.835919 | °W | | | | | | | | | P (NAD 27 NN | | | HL (NAD 27 NM | E) | | | | | Y = | 392,969.8 | N | Y= | 392,879.8 | N | | | | | X = | 654,045.5 | E | X = | 654,046.0 | E | | | | | LAT. = | 32.079413 | °N | LAT. = | 32.079166 | °N | | | | | LONG. = | 103.835978 | °W | LONG. = | 103.835977 | °W | | | | # DRILLING PLAN: BLM COMPLIANCE (Supplement to BLM 3160-3) XTO Energy Inc. POKER LAKE UNIT 25 BD 406H Projected TD: 18270.7' MD / 9977' TVD SHL: 1680' FNL & 1959' FWL , Section 25, T25S, R30E BHL: 10' FSL & 2135' FWL , Section 36, T25S, R30E EDDY County, NM ### 1. Geologic Name of Surface Formation A. Quaternary ### 2. Estimated Tops of Geological Markers & Depths of Anticipated Fresh Water, Oil or Gas | Formation | Well Depth (TVD) | Water/Oil/Gas | |-------------------|------------------|---------------| | Rustler | 990' | Water | | Top of Salt | 1259' | Water | | Base of Salt | 3819' | Water | | Delaware | 4027' | Water | | Brushy Canyon | 6588' | Water/Oil/Gas | | Bone Spring | 7911' | Water | | Avalon | 8259' | Water/Oil/Gas | | 1st Bone Spring | 8647' | Water/Oil/Gas | | 2nd Bone Spring | 9126' | Water/Oil/Gas | | Target/Land Curve | 9977' | Water/Oil/Gas | | | | | ^{***} Hydrocarbons @ Brushy Canyon No other formations are expected to yield oil, gas or fresh water in measurable volumes. The surface fresh water sands will be protected by setting 9.625 inch casing @ 1090' (169' above the salt) and circulating cement back to surface. The intermediate will isolate from the top of salt down to the next casing seat by setting 7.625 inch casing at 9076.25' and cemented to surface. A 6.75 inch curve and 6.75 inch lateral hole will be drilled to 18270.7 MD/TD and 5.5 inch production casing will be set at TD and cemented back up in the intermediate shoe (estimated TOC 8776.25 feet). ### 3. Casing Design | Hole Size | Depth | OD Csg | Weight | Grade | Collar | New/Used | SF
Burst | SF
Collapse | SF
Tension | |-----------|------------------------|--------|--------|----------|---------------------------|----------|-------------|----------------|---------------| | 12.25 | 0' – 1090' | 9.625 | 40 | J-55 | втс | New | 1.45 | 5.78 | 14.45 | | 8.75 | 0' – 4000' | 7.625 | 29.7 | RY P-110 | Flush Joint | New | 3.74 | 2.57 | 2.07 | | 8.75 | 4000' –
9076.25' | 7.625 | 29.7 | HC L-80 | Flush Joint | | | 2.69 | | | 6.75 | 0' – 8976.25' | 5.5 | 20 | RY P-110 | Semi-Premium /
Freedom | New | 1.05 | 2.61 | 2.44 | | 6.75 | 8976.25' -
18270.7' | 5.5 | 20 | RY P-110 | Semi-Flush /
Talon | New | 1.05 | 2.35 | 2.44 | $[\]cdot$ XTO requests the option to utilize a spudder rig (Atlas Copco RD20 or Equivalent) to set and cement surface casing per this Sundry ^{***} Groundwater depth 40' (per NM State Engineers Office). ### Wellhead: XTO will use a 3 String Slim Hole Multi-Bowl System ### 4. Cement Program Surface Casing: 9.625, 40 New BTC, J-55 casing to be set at +/- 1090' Lead: 260 sxs EconoCem-HLTRRC (mixed at 10.5 ppg, 1.87 ft3/sx, 10.13 gal/sx water) Tail: 130 sxs Class C + 2% CaCl (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water) Top of Cement: Surface Compressives: 12-hr = 900 psi 24 hr = 1500 psi Intermediate Casing: 7.625, 29.7 New casing to be set at +/- 9076.25' <u>1st Stage</u> Optional Lead: 350 sxs Class C (mixed at 10.5 ppg, 2.77 ft3/sx, 15.59 gal/sx water) TOC: Surface Tail: 230 sxs Class C (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water) TOC: Brushy Canyon @ 6588 Compressives: 12-hr = 900 psi 24 hr = 1150 psi 2nd Stage Lead: 0 sxs Class C (mixed at 12.9 ppg, 2.16 ft3/sx, 9.61 gal/sx water) Tail: 740 sxs Class C (mixed at 14.8 ppg, 1.33 ft3/sx, 6.39 gal/sx water) Top of Cement: 0 Compressives: 12-hr = 900 psi 24 hr = 1150 psi XTO requests to pump a two stage cement job on the 7-5/8" intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brush Canyon (6588') and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. If cement is not visually confirmed to circulate to surface, the final cement top after the second stage job will be verified by Echo-meter. If necessary, a top out consisting of 1,500 sack of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (2.30 yld, 12.91 ppg) will be executed as a contingency. If cement is still unable to circulate to surface, another Echo-meter run will be performed for cement top verification. XTO will report to the BLM the volume of fluid (limited to 5 bbls) used to flush intermediate casing valves following backside cementing procedures. XTO requests to pump an Optional Lead if well conditions dictate in an attempt to bring cement inside the first intermediate casing. If cement reaches the desired height, the BLM will be notified and the second stage bradenhead squeeze and subsequent TOC verification will be negated. XTO requests the option to conduct the bradenhead squeeze and TOC verification offline as per standard approval from BLM when unplanned remediation is needed and batch drilling is approved. In the event the bradenhead is conducted, we will ensure the first stage cement job is cemented properly and the well is static with floats holding and no pressure on the csg annulus as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed per Cactus procedure and pressure inside the casing will be monitored via
the valve on the TA cap as per standard batch drilling ops. ### Production Casing: 5.5, 20 New Semi-Flush / Talon, RY P-110 casing to be set at +/- 18270.7' Lead: 20 sxs NeoCem (mixed at 11.5 ppg, 2.69 ft3/sx, 15.00 gal/sx water) Top of Cement: 8776.25 feet Tail: 640 sxs VersaCem (mixed at 13.2 ppg, 1.51 ft3/sx, 8.38 gal/sx water) Top of Cement: 9276.25 feet Compressives: 12-hr = 800 psi 24 hr = 1500 psi XTO requests the option to offline cement and remediate (if needed) surface and intermediate casing strings where batch drilling is approved and if unplanned remediation is needed. XTO will ensure well is static with no pressure on the csg annulus, as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed when applicable per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops. Offline cement operations will then be conducted after the rig is moved off the current well to the next well in the batch sequence. ### 5. Pressure Control Equipment Once the permanent WH is installed on the casing, the blow out preventer equipment (BOP) will consist of 5M Hydril and 10M 3-Ram BOP. All BOP testing will be done by an independent service company. Operator will test as per BLM CFR43-3172 A variance is requested to allow use of a flex hose as the choke line from the BOP to the Choke Manifold. . XTO requests a variance to be able to batch drill this well if necessary. In doing so, XTO will set casing and ensure that the well is cemented properly (unless approval is given for offline cementing) and the well is static. With floats holding, no pressure on the csg annulus, and the installation of a 10K TA cap as per Cactus recommendations, XTO will contact the BLM to skid the rig to drill the remaining wells on the pad. Once surface and both intermediate strings are all completed, XTO will begin drilling the production hole on each of the wells. A variance is requested to **ONLY** test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API standard 53 states, that for pad drilling operation, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken. We will request permission to **ONLY** retest broken pressure seals if the following conditions are met: 1. After a full BOP test is conducted on the first well on the pad 2. When skidding to drill an intermediate section that does not penetrate into the Wolfcamp. ### 6. Proposed Mud Circulation System | INTERVAL | Hole Size | Mud Type | MW | Viscosity | Fluid Loss | Additional | |------------------------|-----------|--|-----------|-----------|------------|--------------------------------| | INTERVAL | noie Size | Mud Type | (ppg) | (sec/qt) | (cc) | Comments | | 0' - 1090' | 12.25 | FW/Native | 8.4-8.9 | 35-40 | NC | Fresh water or
native water | | 1090' - 4027' | 8.75 | Saturated brine | 10 - 10.5 | 30-32 | NC | Fully saturated salt | | 4027' - 9076.25' | 8.75 | Brine
Direct
Emulsion /
Brine | 10-10.5 | 30-32 | NC | Depending on well conditions | | 9076.25' -
18270.7' | 6.75 | ОВМ | 9.1-9.6 | 50-60 | NC - 20 | N/A | The necessary mud products for weight addition and fluid loss control will be on location at all times. Spud with fresh water/native mud. Drill out from under surface casing with Saturated Salt. A saturated salt brine mud will be used while drilling through the salt formation. Use fibrous materials as needed to control seepage and lost circulation. Pump viscous sweeps as needed for hole cleaning. Pump speed will be recorded on a daily drilling report after mudding up. A Pason or Totco will be used to detect changes in loss or gain of mud volume. A mud test will be performed every 24 hours to determine: density, viscosity, strength, filtration and pH as necessary. Use available solids controls equipment to help keep mud weight down after mud up. Rig up solids control equipment to operate as a closed loop system. ### 7. Auxiliary Well Control and Monitoring Equipment - A. A Kelly cock will be in the drill string at all times. - B. A full opening drill pipe stabbing valve having appropriate connections will be on the rig floor at all times. - C. H2S monitors will be on location when drilling below the 9.625 casing. ### 8. Logging, Coring and Testing Program Open hole logging will not be done on this well. ### 9. Abnormal Pressures and Temperatures / Potential Hazards None Anticipated. BHT of 165 to 185 F is anticipated. No H2S is expected but monitors will be in place to detect any H2S occurrences. Should these circumstances be encountered the operator and drilling contractor are prepared to take all necessary steps to ensure safety of all personnel and environment. Lost circulation could occur but is not expected to be a serious problem in this area and hole seepage will be compensated for by additions of small amounts of LCM in the drilling fluid. ### 10. Anticipated Starting Date and Duration of Operations Anticipated spud date will be after BLM approval. Move in operations and drilling is expected to take 40 days. Semi-minor Semi-minor Semi-major Magnitude Vertical Latera TVD Highside Poker Lake Unit 25 BD 406H Position Uncertainty Measured Well Plan Report # Well Plan Report - Poker Lake Unit 25 BD 406H | eport - Poker Lake Unit 25 | h: 18270.17 ft | 9977.00 ft | | : New Mexico East - stem: NAD 27 | 401830.70 ft | 653854.30 ft | 3376.00 ft | : 3344.00 ft | nce: Grid | Angle: 0.26 Deg | |------------------------------------|-----------------|------------|----------|-----------------------------------|--------------|--------------|------------|---------------|------------------|--------------------| | 10/22/24, 3:25 PM Well Plan Report | Measured Depth: | TVD RKB: | Location | Cartographic
Reference System: | Northing: | Easting: | RKB: | Ground Level: | North Reference: | Convergence Angle: | | Plan Sections | Pok | Poker Lake Unit 25 BD 406H | 3D 406H | | | | | | | |---------------|-------------|----------------------------|---------|----------|----------|-------------|-------------|--------------------|-------| | Measured | | | ΟVΤ | | | Build | Turn | Dogleg | | | Depth | Inclination | Azimuth | RKB | Y Offset | X Offset | Rate | Rate | Rate | | | (ft) | (Deg) | (Deg) | (#) | (ff | (#) | (Deg/100ft) | (Deg/100ft) | (Deg/100ft) Target | arget | | 00:00 | 00.00 | 00.00 | 0.00 | 00.00 | 00.0 | 00.00 | 0.00 | 00.00 | | | 1100.00 | 00.00 | 00.00 | 1100.00 | 00.00 | 00.0 | 00.00 | 0.00 | 00.00 | | | 1322.64 | 4.45 | 155.04 | 1322.42 | -7.84 | 3.65 | 2.00 | 0.00 | 2.00 | | | 6292.81 | 4.45 | 155.04 | 6277.58 | -357.67 | 166.49 | 00.00 | 0.00 | 00.00 | | | 6515.45 | 00.00 | 00.00 | 00.0059 | -365.51 | 170.14 | -2.00 | 0.00 | 2.00 | | | 9276.25 | 00.00 | 00.00 | 9260.80 | -365.51 | 170.14 | 00.00 | 0.00 | 00.00 | | | 10401.25 | 90.00 | 179.76 | 9977.00 | -1081.70 | 173.20 | 8.00 | 0.00 | 8.00 F | FTP 6 | | 18180.17 | 00'06 | 179.76 | 9977.00 | -8860.54 | 206.46 | 00.00 | 0.00 | 0.00 | LTP 6 | | 18270.17 | 00.06 | 179.76 | 9977.00 | -8950.55 | 206.85 | 00:0 | 0.00 | 0.00 BI | BHL 6 | | | | | | | | | | | | | | 7.
0.00
0.00
0.00 | | | č | Well Plan Report | o c | 0 | XOM R2OWSG | |---------|----------------------------|--------------|---------------|-------------|------------------|--------|--------|---| | 7 | 4.453 155.039 1798.335 | 0 | | | 0000 | 6.308 | 6.129 | | | 4.453 1 | 155.039 1898.033 | 6.613 0.000 | 6.511 -0.000 | 3.159 0.000 | 0.000 | 6.654 | 6.476 | 91.168 XOM_KZOWSG
91.168 MWD+IFR1+MS | | 4.453 1 | 155.039 1997.731 | 6.961 0.000 | 000.0- 098.9 | 3.236 0.000 | 0000 | 7.002 | 6.825 | 91.412 XOM_R2OWSG
MWD+IFR1+MS | | 4 453 1 | 155.039 2097.430 | 7.311 0.000 | 7.211 -0.000 | 3.315 0.000 | 0.000 | 7.350 | 7.176 | 91.658 XOM_R2OWSG
MWD+IFR1+MS | | 4.453 1 | 155.039 2197.128 | 7.661 0.000 | 7.563 -0.000 | 3.396 0.000 | 0.000 | 7.700 | 7.528 | 91.904 XOM_R2OWSG
MWD+IFR1+MS | | • | 4.453 155.039 2296.826 | 8.013 0.000 | 7.916 -0.000 | 3.478 0.000 | 0.000 | 8.051 | 7.881 | 92.154 XOM_R2OWSG
MWD+IFR1+MS | | 4.453 | 155.039 2396.524 | 8.366 0.000 | 8.270 -0.000 | 3.562 0.000 | 0.000 | 8.403 | 8.234 | 92.406 XOM_R2OWSG
MWD+IFR1+MS | | 4.453 | 155.039 2496.222 | 8.720 0.000 | 8.625 -0.000 | 3.647 0.000 | 0.000 | 8.756 | 8.589 | 92.662 XOM_R2OWSG
MWD+IFR1+MS | | | 155.039 2595.920 | 9.074 0.000 | 8.981 -0.000 | 3.734 0.000 | 0.000 | 9.109 | 8.945 | 92.922 XOM_R2OWSG
MWD+IFR1+MS | | 4 453 | 155.039 2695.619 | 9.429 0.000 | 9.337 -0.000 | 3.822 0.000 | 0.000 | 9.464 | 9.301 | 93.186 XOM_R2OWSG
MWD+IFR1+MS | | | 4.453 155.039 2795.317 | 9.785 0.000 | 9.694 -0.000 | 3.912 0.000 | 0.000 | 9.818 | 9.658 | 93.456 XOM_R2OWSG
MWD+IFR1+MS | | 4.453 | 155.039 2895.015 | 10.141 0.000 | 10.052 -0.000 | 4.003 0.000 | 0.000 | 10.173 | 10.015 | 93.732 XOM_R2OWSG
MWD+IFR1+MS | | 4.453 | 155.039 2994.713 | 10.497 0.000 | 10.410 -0.000 | 4.096 0.000 | 0.000 | 10.529 | 10.373 | 94.013 XOM_R2OWSG
MWD+IFR1+MS | | | 155.039 3094.411 | 10.854 0.000 | 10.768 -0.000 | 4.190 0.000 | 0.000 | 10.885 | 10.731 | 94.301 XOM_R2OWSG
MWD+IFR1+MS | | 4.453 | 155.039 3194.109 | 11.211 0.000 | 11.127 -0.000 | 4.285 0.000 | 0.000 | 11.241 | 11.090 | 94.596 XOM_R2OWSG
MWD+IFR1+MS | | | 4.453 155.039 3293.808 | 11.569 0.000 | 11.486 -0.000 | 4.382 0.000 | 0.000 | 11.598 | 11.448 | 94.899 XOM_R2OWSG
MWD+IFR1+MS | | 4.453 | 155.039 3393.506 | 11.927 0.000 | 11.845 -0.000 | 4.480 0.000 | 0.000 | 11.955 | 11.808 | 95.209 XOM_R2OWSG
MWD+IFR1+MS | | | 155.039 3493.204 | 12.285 0.000 | 12.205 -0.000 | 4.579 0.000 | 0.000 | 12.312 | 12.167 | 95.527 XOM_R2OWSG
MWD+IFR1+MS | | 4.453 | 155.039 3592.902 | 12.644 0.000 |
12.565 -0.000 | 4.680 0.000 | 0.000 | 12.670 | 12.527 | 95.853 XOM_R2OWSG
MWD+IFR1+MS | | 4.453 | 155.039 3692.600 | 13.002 0.000 | 12.925 -0.000 | 4.782 0.000 | 0.000 | 13.028 | 12.887 | 96.189 XOM_R2OWSG
MWD+IFR1+MS | | 10/22/24, 3:25 PM | | | | | Well Pla | Well Plan Report | | | | | |-------------------|-------|------------------------|---------------------|-----------|-------------|------------------|--------|--------|------------|---------------------------| | 3800.000 | 4.453 | 4.453 155.039 3792.298 | 13.361 0.000 13.285 | 35 -0.000 | 4.886 0.000 | 0.000 | 13.386 | 13.247 | 96.534 XC | XOM_R2OWSG
MWD+IFR1+MS | | 3900.000 | 4.453 | 155.039 3891.997 | 13.720 0.000 13.646 | 000:0- 91 | 4.991 0.000 | 0.000 | 13.744 | 13.608 | 96.889 XC | XOM_R2OWSG
MWD+IFR1+MS | | 4000.000 | 4.453 | 155.039 3991.695 | 14.080 0.000 14.007 | 000.0- 20 | 5.098 0.000 | 0.000 | 14.103 | 13.968 | 97.254 XC | XOM_R2OWSG
MWD+IFR1+MS | | 4100.000 | 4.453 | 155.039 4091.393 | 14.439 0.000 14.367 | 900.0- 2 | 5.206 0.000 | 0.000 | 14.461 | 14.329 | 97.630 XC | XOM_R2OWSG
MWD+IFR1+MS | | 4200.000 | 4.453 | 155.039 4191.091 | 14.799 0.000 14.729 | 000.0- 69 | 5.315 0.000 | 0.000 | 14.820 | 14.690 | 98.017 XC | XOM_R2OWSG
MWD+IFR1+MS | | 4300.000 | 4.453 | 155.039 4290.789 | 15.158 0.000 15.090 | 000.0- 06 | 5.427 0.000 | 0.000 | 15.179 | 15.051 | 98.415 XC | XOM_R2OWSG
MWD+IFR1+MS | | 4400.000 | 4.453 | 155.039 4390.487 | 15.518 0.000 15.451 | 51 -0.000 | 5.540 0.000 | 0.000 | 15.538 | 15.412 | 98.826 XC | XOM_R2OWSG
MWD+IFR1+MS | | 4500.000 | 4.453 | 155.039 4490.185 | 15.878 0.000 15.813 | 13 -0.000 | 5.654 0.000 | 0.000 | 15.897 | 15.773 | 99.249 XC | XOM_R2OWSG
MWD+IFR1+MS | | 4600.000 | 4.453 | 155.039 4589.884 | 16.239 0.000 16.174 | 74 -0.000 | 5.770 0.000 | 0.000 | 16.257 | 16.135 | 99.685 XC | XOM_R2OWSG
MWD+IFR1+MS | | 4700.000 | 4.453 | 155.039 4689.582 | 16.599 0.000 16.536 | 98 -0.000 | 5.888 0.000 | 0.000 | 16.616 | 16.496 | 100.134 XC | XOM_R2OWSG
MWD+IFR1+MS | | 4800.000 | 4.453 | 155.039 4789.280 | 16.959 0.000 16.898 | 98 -0.000 | 0.008 0.000 | 0.000 | 16.976 | 16.858 | 100.597 XC | XOM_R2OWSG
MWD+IFR1+MS | | 4900.000 | 4.453 | 155.039 4888.978 | 17.320 0.000 17.260 | 000:0- 00 | 6.129 0.000 | 0.000 | 17.336 | 17.219 | 101.075 XC | XOM_R2OWSG
MWD+IFR1+MS | | 5000.000 | 4.453 | 155.039 4988.676 | 17.680 0.000 17.622 | 22 -0.000 | 6.253 0.000 | 0.000 | 17.696 | 17.581 | 101.567 XC | XOM_R2OWSG
MWD+IFR1+MS | | 5100.000 | 4.453 | 155.039 5088.374 | 18.041 0.000 17.984 | 34 -0.000 | 6.378 0.000 | 0.000 | 18.056 | 17.943 | 102.075 XC | XOM_R2OWSG
MWD+IFR1+MS | | 5200.000 | 4.453 | 155.039 5188.073 | 18.402 0.000 18.346 | 000:0- 91 | 6.505 0.000 | 0.000 | 18.416 | 18.305 | 102.599 XC | XOM_R2OWSG
MWD+IFR1+MS | | 5300.000 | 4.453 | 155.039 5287.771 | 18.762 0.000 18.708 | 000:0- 80 | 6.634 0.000 | 0.000 | 18.776 | 18.667 | 103.138 XC | XOM_R2OWSG
MWD+IFR1+MS | | 5400.000 | 4.453 | 155.039 5387.469 | 19.123 0.000 19.071 | 71 -0.000 | 6.765 0.000 | 0.000 | 19.136 | 19.029 | 103.694 XC | XOM_R2OWSG
MWD+IFR1+MS | | 5500.000 | 4.453 | 155.039 5487.167 | 19.484 0.000 19.433 | 33 -0.000 | 6.898 0.000 | 0.000 | 19.497 | 19.391 | 104.268 XC | XOM_R2OWSG
MWD+IFR1+MS | | 5600.000 | 4.453 | 155.039 5586.865 | 19.845 0.000 19.796 | 000.0- 96 | 7.033 0.000 | 0.000 | 19.857 | 19.753 | 104.858 XC | XOM_R2OWSG
MWD+IFR1+MS | | 5700.000 | 4.453 | 155.039 5686.563 | 20.206 0.000 20.158 | 99-0-09 | 7.170 0.000 | 0.000 | 20.217 | 20.115 | 105.466 XC | XOM_R2OWSG
MWD+IFR1+MS | | 0/22/24, 3:25 PM | | | | Well Pla | Well Plan Report | | | | |------------------|-------|------------------|----------------------------|-------------|------------------|--------|--------|-----------------------------------| | 5800.000 | 4.453 | 155.039 5786.262 | 20.567 0.000 20.521 -0.000 | 7.309 0.000 | 0.000 | 20.578 | 20.477 | 106.092 XOM_R2OWSG
MWD+IFR1+MS | | 5900.000 | 4.453 | 155.039 5885.960 | 20.928 0.000 20.884 -0.000 | 7.450 0.000 | 0.000 | 20.939 | 20.840 | 106.737 XOM_R2OWSG
MWD+IFR1+MS | | 000.0009 | 4.453 | 155.039 5985.658 | 21.290 0.000 21.246 -0.000 | 7.593 0.000 | 0.000 | 21.300 | 21.202 | 107.399 XOM_R2OWSG
MWD+IFR1+MS | | 6100.000 | 4.453 | 155.039 6085.356 | 21.651 0.000 21.609 -0.000 | 7.739 0.000 | 0.000 | 21.660 | 21.564 | 108.081 XOM_R2OWSG
MWD+IFR1+MS | | 6200.000 | 4.453 | 155.039 6185.054 | 22.012 0.000 21.972 -0.000 | 7.887 0.000 | 0.000 | 22.021 | 21.926 | 108.780 XOM_R2OWSG
MWD+IFR1+MS | | 6292.810 | 4.453 | 155.039 6277.584 | 22.348 0.000 22.309 -0.000 | 8.026 0.000 | 0.000 | 22.356 | 22.263 | 109.445 XOM_R2OWSG
MWD+IFR1+MS | | 6300.000 | 4.309 | 155.039 6284.753 | 22.374 0.000 22.335 -0.000 | 8.037 0.000 | 0.000 | 22.382 | 22.289 | 109.503 XOM_R2OWSG
MWD+IFR1+MS | | 6400.000 | 2.309 | 155.039 6384.581 | 22.730 0.000 22.696 -0.000 | 8.189 0.000 | 0.000 | 22.742 | 22.649 | 110.153 XOM_R2OWSG
MWD+IFR1+MS | | 6500.000 | 0.309 | 155.039 6484.550 | 23.058 0.000 23.053 -0.000 | 8.341 0.000 | 0.000 | 23.098 | 23.006 | 110.588 XOM_R2OWSG
MWD+IFR1+MS | | 6515.450 | 0.000 | 0.000 6500.000 | 23.140 0.000 23.070 0.000 | 8.365 0.000 | 0.000 | 23.151 | 23.059 | 110.563 XOM_R2OWSG
MWD+IFR1+MS | | 000.0099 | 0.000 | 0.000 6584.550 | 23.420 0.000 23.348 0.000 | 8.494 0.000 | 0.000 | 23.431 | 23.337 | 110.004 XOM_R2OWSG
MWD+IFR1+MS | | 6700.000 | 0.000 | 0.000 6684.550 | 23.753 0.000 23.677 0.000 | 8.649 0.000 | 0.000 | 23.763 | 23.667 | 109.389 XOM_R2OWSG
MWD+IFR1+MS | | 6800.000 | 0.000 | 0.000 6784.550 | 24.086 0.000 24.008 0.000 | 8.807 0.000 | 0.000 | 24.096 | 23.997 | 108.821 XOM_R2OWSG
MWD-IFR1+MS | | 000.0069 | 0.000 | 0.000 6884.550 | 24.420 0.000 24.339 0.000 | 8.967 0.000 | 0.000 | 24.430 | 24.329 | 108.293 XOM_R2OWSG
MWD-IFR1+MS | | 7000.000 | 0.000 | 0.000 6984.550 | 24.755 0.000 24.670 0.000 | 9.130 0.000 | 0.000 | 24.764 | 24.661 | 107.803 XOM_R2OWSG
MWD-IFR1+MS | | 7100.000 | 0.000 | 0.000 7084.550 | 25.090 0.000 25.003 0.000 | 9.295 0.000 | 0.000 | 25.099 | 24.993 | 107.347 XOM_R2OWSG
MWD+IFR1+MS | | 7200.000 | 0.000 | 0.000 7184.550 | 25.426 0.000 25.336 0.000 | 9.463 0.000 | 0.000 | 25.435 | 25.327 | 106.921 XOM_R2OWSG
MWD+IFR1+MS | | 7300.000 | 0.000 | 0.000 7284.550 | 25.762 0.000 25.670 0.000 | 9.633 0.000 | 0.000 | 25.771 | 25.661 | 106.523 XOM_R2OWSG
MWD+IFR1+MS | | 7400.000 | 0.000 | 0.000 7384.550 | 26.099 0.000 26.005 0.000 | 9.806 0.000 | 0.000 | 26.108 | 25.996 | 106.150 XOM_R2OWSG
MWD+IFR1+MS | | 7500.000 | 0.000 | 0.000 7484.550 | 26.437 0.000 26.340 0.000 | 9.982 0.000 | 0.000 | 26.446 | 26.331 | 105.800 XOM_R2OWSG
MWD+IFR1+MS | | | 105.471 XOM_R2OWSG
MWD+IFR1+MS | 105.162 XOM_R2OWSG
MWD+IFR1+MS | 104.870 XOM_R2OWSG
MWD+IFR1+MS | 104.595 XOM_R2OWSG
MWD+IFR1+MS | 104.334 XOM_R2OWSG
MWD+IFR1+MS | 104.087 XOM_R2OWSG
MWD+IFR1+MS | 103.854 XOM_R2OWSG
MWD+IFR1+MS | 103.632 XOM_R2OWSG
MWD+IFR1+MS | 103.421 XOM_R2OWSG
MWD+IFR1+MS | 103.220 XOM_R2OWSG
MWD+IFR1+MS | 103.029 XOM_R2OWSG
MWD+IFR1+MS | 102.847 XOM_R2OWSG
MWD+IFR1+MS | 102.673 XOM_R2OWSG
MWD+IFR1+MS | 102.506 XOM_R2OWSG
MWD+IFR1+MS | 102.347 XOM_R2OWSG
MWD+IFR1+MS | 102.195 XOM_R2OWSG
MWD+IFR1+MS | 102.049 XOM_R2OWSG
MWD+IFR1+MS | 101.942 XOM_R2OWSG
MWD+IFR1+MS | 101.930 XOM_R2OWSG
MWD+IFR1+MS | 102.082 XOM_R2OWSG
MWD+IFR1+MS | |-------------------|-----------------------------------| | | 26.667 | 27.004 | 27.341 | 27.678 | 28.017 | 28.355 | 28.694 | 29.034 | 29.374 | 29.714 | 30.055 | 30.397 | 30.738 | 31.080 | 31.423 | 31.765 | 32.109 | 32.370 | 32.453 | 32.807 | | | 26.784 | 27.122 | 27.461 | 27.801 | 28.141 | 28.482 | 28.823 | 29.164 | 29.506 | 29.848 | 30.190 | 30.533 | 30.877 | 31.220 | 31.564 | 31.909 | 32.253 | 32.516 | 32.599 | 32.951 | | Well Plan Report | 0.000 | | Well P | 10.160 0.000 | 10.342 0.000 | 10.525 0.000 | 10.712 0.000 | 10.901 0.000 | 11.094 0.000 | 11.288 0.000 | 11.486 0.000 | 11.687 0.000 | 11.890 0.000 | 12.096 0.000 | 12.305 0.000 | 12.517 0.000 | 12.732 0.000 | 12.950 0.000 | 13.170 0.000 | 13.394 0.000 | 13.566 0.000 | 13.620 0.000 | 13.848 0.000 | | | 0.000 | 0.000 | 00000 | 0.000 | 0.000 | 3 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 3 0.000 | 0.000 | 00000 | 00000 | 0.000 | 0.000 | 0.000 | 000:0- 6 | 3 -0.000 | | |) 26.676 | 27.012 | 27.349 | 27.686 | 28.024 | 28.363 | 28.702 | 29.041 | 29.381 | 29.721 | 30.062 | 30.403 | 30.745 | 31.087 | 31.429 | 31.772 | 32.115 | 32.377 | 32.459 | 32.813 | | | 5 0.000 | 4 0.000 | 3 0.000 | 3 0.000 | 3 0.000 | 4 0.000 | 5 0.000 | 7 0.000 | 0000 6 | 1 0.000 | 4 0.000 | 7 0.000 | 00000 | 4 0.000 | 8 0.000 | 2 0.000 | 7 0.000 | 0 0.000 | 4 0.000 | 1 0.000 | | | 26.775 | 27.114 | 27.453 | 27.793 | 28.133 | 28.474 | 28.815 | 29.157 | 29.499 | 29.841 | 30.184 | 30.527 | 30.870 | 31.214 | 31.558 | 31.902 | 32.247 | 32.510 | 32.614 | 32.731 | | | 0.000 7584.550 | 0.000 7684.550 | 0.000 7784.550 | 0.000 7884.550 | 0.000 7984.550 | 0.000 8084.550 | 0.000 8184.550 | 0.000 8284.550 | 0.000 8384.550 | 0.000 8484.550 | 0.000 8584.550 | 0.000 8684.550 | 0.000 8784.550 | 8884.550 | 0.000 8984.550 | 0.000
9084.550 | 9184.550 | 0.000 9260.803 | 9284.546 | 383.935 | | | 0.000 7 | 0.000 7 | 0.000 7 | 0.000 7 | 0.000 7 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 179.755 9 | 179.755 9383.935 | | | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.900 | 9.900 | | 10/22/24, 3:25 PM | 7600.000 | 000.0077 | 7800.000 | 7900.000 | 8000.000 | 8100.000 | 8200.000 | 8300.000 | 8400.000 | 8500.000 | 8600.000 | 8700.000 | 8800.000 | 8900.000 | 900.000 | 9100.000 | 9200.000 | 9276.253 | 9300.000 | 9400.000 | | Re | leased | to Ima | aging: | 4/2/20 | <i>25 10:</i> | 48:00 | AM | | | | | | | | | | | | | | | | 102.683 XOM_R2OWSG
MWD+IFR1+MS | 104.782 XOM_R2OWSG
MWD+IFR1+MS | 110.892 XOM_R2OWSG
MWD+IFR1+MS | 129.312 XOM_R2OWSG
MWD+IFR1+MS | -24.464 XOM_R2OWSG
-WWD+IFR1+MS | -13.653 XOM_R2OWSG
MWD+IFR1+MS | -9.637 XOM_R2OWSG
MWD+IFR1+MS | -7.832 XOM_R2OWSG
-7.832 MWD+IFR1+MS | -6.953 XOM_R2OWSG
MWD+IFR1+MS | -6.553 XOM_R2OWSG
-MWD+IFR1+MS | -6.316 XOM_R2OWSG
MWD+IFR1+MS | -6.069 XOM_R2OWSG
MWD+IFR1+MS | -5.831 XOM_R2OWSG | -5.605 XOM_R2OWSG
MWD+IFR1+MS | -5.391 XOM_R2OWSG
-5.391 MWD+IFR1+MS | -5.190 XOM_R2OWSG
-5.190 MWD+IFR1+MS | -5.002 XOM_R2OWSG
MWD+IFR1+MS | XOM_R2OWSG
4.826 MWD+IFR1+MS | 4.661 XOM_R2OWSG
MWD+IFR1+MS | 4.507 XOM_R2OWSG
MWD+IFR1+MS | |------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|------------------------------------|-----------------------------------|----------------------------------|---|----------------------------------|-----------------------------------|----------------------------------|----------------------------------|-------------------|----------------------------------|---|---|----------------------------------|---------------------------------|---------------------------------|---------------------------------| | | 33.162 | 33.513 | 33.853 | 34.169 | 34.428 | 34.623 | 34.767 | 34.864 | 34.919 | 34.942 | 34.949 | 34.957 | 34.966 | 34.975 | 34.985 | 34.996 | 35.008 | 35.020 | 35.033 | 35.047 | | | 33.301 | 33.637 | 33.950 | 34.241 | 34.534 | 34.827 | 35.103 | 35.358 | 35.587 | 35.789 | 35.977 | 36.184 | 36.405 | 36.640 | 36.890 | 37.154 | 37.431 | 37.722 | 38.026 | 38.343 | | Well Plan Report | 0.000 | | Well P | 14.071 0.000 | 14.283 0.000 | 14.483 0.000 | 14.671 0.000 | 14.850 0.000 | 15.026 0.000 | 15.206 0.000 | 15.397 0.000 | 15.602 0.000 | 15.827 0.000 | 16.073 0.000 | 16.354 0.000 | 16.669 0.000 | 17.013 0.000 | 17.386 0.000 | 17.786 0.000 | 18.211 0.000 | 18.660 0.000 | 19.130 0.000 | 19.620 0.000 | | | 33.169 -0.000 | 33.522 -0.000 | 33.866 -0.000 | 34.199 -0.000 | 34.516 -0.000 | 34.816 -0.000 | 35.094 -0.000 | 35.349 -0.000 | 35.578 -0.000 | 35.778 -0.000 | 35.966 -0.000 | 36.171 -0.000 | 36.391 -0.000 | 36.626 -0.000 | 36.875 -0.000 | 37.138 -0.000 | 37.415 -0.000 | 37.706 -0.000 | 38.009 -0.000 | 38.326 -0.000 | | | 32.326 0.000 | 31.411 0.000 | 30.018 0.000 | 28.197 0.000 | 26.028 0.000 | 23.620 0.000 | 21.132 0.000 | 18.788 0.000 | 16.899 0.000 | 15.827 0.000 | 16.073 0.000 | 16.354 0.000 | 16.669 0.000 | 17.013 0.000 | 17.386 0.000 | 17.786 0.000 | 18.211 0.000 | 18.660 0.000 | 19.130 0.000 | 19.620 0.000 | | | 179.755 9480.928 | 179.755 9573.637 | 179.755 9660.256 | 179.755 9739.101 | 179.755 9808.636 | 179.755 9867.508 | 179.755 9914.571 | 179.755 9948.909 | 179.755 9969.855 | 179.755 9977.000 | 179.755 9977.000 | 179.755 9977.000 | 179.755 9977.000 | 179.755 9977.000 | 179.755 9977.000 | 179.755 9977.000 | 179.755 9977.000 | 179.755 9977.000 | 179.755 9977.000 | 179.755 9977.000 | | | 17.900 | 25.900 | 33.900 | 41.900 | 49.900 | 57.900 | 65.900 | 73.900 | 81.900 | 000.06 | 000.06 | 000.06 | 000.06 | 000.06 | 000.06 | 000.06 | 000.06 | 000.06 | 000.06 | 000.06 | | /22/24, 3:25 PM | 9500.000 | 000.0096
to Ima | 9700.000 | 000.0086 | 000.0066 | 10000.000 | 10100.000 | 10200.000 | 10300.000 | 10401.253 | 10500.000 | 10600.000 | 10700.000 | 10800.000 | 10900.000 | 11000.000 | 11100.000 | 11200.000 | 11300.000 | 11400.000 | | Õ
Re | leased | to Ima | iging: | 4/2/20 | 25 10: | 48:00 . | AM | | | | | | | | | | | | | | | 10/22/24, 3:25 PM | | | | Well Plan Report | ר Report | | | | |-------------------|--------|-------------------------|----------------------------|------------------|----------|--------|--------|---| | 11500.000 | 90.000 | 179.755 9977.000 | 20.129 0.000 38.655 -0.000 | 20.129 0.000 | 0.000 | 38.672 | 35.061 | 4.362 XOM R2OWSG
MWD+IFR1+MS | | 11600.000 | 90.000 | 179.755 9977.000 | 20.655 0.000 38.996 -0.000 | 20.655 0.000 | 0.000 | 39.014 | 35.076 | 4.226 XOM R2OWSG
MWD+IFR1+MS | | 11700.000 | 90.000 | 179.755 9977.000 | 21.197 0.000 39.349 -0.000 | 21.197 0.000 | 0.000 | 39.367 | 35.092 | 4.099 XOM_R2OWSG
MWD+IFR1+MS | | 11800.000 | 90.000 | 179.755 9977.000 | 21.754 0.000 39.714 -0.000 | 21.754 0.000 | 0.000 | 39.732 | 35.108 | -3.979 XOM_R2OWSG
-MWD+IFR1+MS | | 11900.000 | 90.000 | 179.755 9977.000 | 22.325 0.000 40.090 -0.000 | 22.325 0.000 | 0.000 | 40.108 | 35.125 | -3.865 XOM_R2OWSG
MWD+IFR1+MS | | 12000.000 | 90.000 | 179.755 9977.000 | 22.908 0.000 40.477 -0.000 | 22.908 0.000 | 0.000 | 40.495 | 35.143 | -3.759 XOM_R2OWSG
-MWD+IFR1+MS | | 12100.000 | 90.000 | 179.755 9977.000 | 23.503 0.000 40.874 -0.000 | 23.503 0.000 | 0.000 | 40.893 | 35.162 | -3.658 XOM_R2OWSG
MWD+IFR1+MS | | 12200.000 | 90.000 | 179.755 9977.000 | 24.109 0.000 41.282 -0.000 | 24.109 0.000 | 0.000 | 41.301 | 35.181 | -3.563 XOM R2OWSG
-WND+IFR1+MS | | 12300.000 | 90.000 | 179.755 9977.000 | 24.725 0.000 41.700 -0.000 | 24.725 0.000 | 0.000 | 41.719 | 35.200 | -3.472 XOM_R2OWSG | | 12400.000 | 90.000 | 179.755 9977.000 | 25.350 0.000 42.128 -0.000 | 25.350 0.000 | 0.000 | 42.147 | 35.221 | -3.387 XOM_R2OWSG
-MWD+IFR1+MS | | 12500.000 | 90.000 | 90.000 179.755 9977.000 | 25.984 0.000 42.565 -0.000 | 25.984 0.000 | 0.000 | 42.584 | 35.241 | -3.305 XOM R2OWSG
MWD+IFR1+MS | | 12600.000 | 90.000 | 179.755 9977.000 | 26.626 0.000 43.011 -0.000 | 26.626 0.000 | 0.000 | 43.030 | 35.263 | -3.228 XOM_R2OWSG
MWD+IFR1+MS | | 12700.000 | 90.000 | 179.755 9977.000 | 27.276 0.000 43.466 -0.000 | 27.276 0.000 | 0.000 | 43.486 | 35.285 | -3.154 XOM R2OWSG
-3.154 MWD+IFR1+MS | | 12800.000 | 90.000 | 179.755 9977.000 | 27.932 0.000 43.930 -0.000 | 27.932 0.000 | 0.000 | 43.949 | 35.308 | -3.084 XOM_R2OWSG
-3.084 MWD+IFR1+MS | | 12900.000 | 90.000 | 179.755 9977.000 | 28.595 0.000 44.402 -0.000 | 28.595 0.000 | 0.000 | 44.421 | 35.332 | -3.017 XOM_R2OWSG
-3.017 MWD+IFR1+MS | | 13000.000 | 90.000 | 90.000 179.755 9977.000 | 29.264 0.000 44.882 -0.000 | 29.264 0.000 | 0.000 | 44.902 | 35.356 | -2.954 XOM_R2OWSG
MWD+IFR1+MS | | 13100.000 | 90.000 | 179.755 9977.000 | 29.939 0.000 45.370 -0.000 | 29.939 0.000 | 0.000 | 45.389 | 35.381 | -2.893 XOM_R2OWSG
MWD+IFR1+MS | | 13200.000 | 90.000 | 179.755 9977.000 | 30.618 0.000 45.866 -0.000 | 30.618 0.000 | 0.000 | 45.885 | 35.406 | -2.834 XOM_R2OWSG
MWD+IFR1+MS | | 13300.000 | 90.000 | 179.755 9977.000 | 31.303 0.000 46.369 -0.000 | 31.303 0.000 | 0.000 | 46.388 | 35.432 | -2.778 XOM_R2OWSG
MWD+IFR1+MS | | 13400.000 | 90.000 | 179.755 9977.000 | 31.992 0.000 46.879 -0.000 | 31.992 0.000 | 0.000 | 46.898 | 35.459 | -2.725 XOM_R2OWSG
MWD+IFR1+MS | | | S6 -2.673 XOM_R2OWSG MWD+IFR1+MS | 14 -2.624 XOM_R2OWSG
MWD+IFR1+MS | 43 -2.577 XOM_R2OWSG
MWD+IFR1+MS | XOM_R2OWSG 72 -2.531 MWD+IFR1+MS | 32 -2.487 XOM_R2OWSG
MWD+IFR1+MS | 32 -2.445 XOM_R2OWSG
MWD+IFR1+MS | S3 -2.405 XOM_R2OWSG
MWD+IFR1+MS | 35 XOM_R2OWSG YOWD-IFR1+MS | 27 -2.328 XOM_R2OWSG
MWD+IFR1+MS | SO -2.291 XOM_R2OWSG
MWD+IFR1+MS | 3 -2.256 XOM_R2OWSG MWD+IFR1+MS | 28 -2.222 XOM_R2OWSG
MWD+IFR1+MS | S2 -2.189 XOM_R2OWSG
MWD+IFR1+MS | 38 -2.157 XOM_R2OWSG MWD+IFR1+MS | 33 -2.126 XOM_R2OWSG
MWD+IFR1+MS | 70 -2.097 XOM_R2OWSG
MWD+IFR1+MS | XOM_R2OWSG XOM_R2OWSG MWD+IFR1+MS | 45 -2.040 XOM_R2OWSG
MWD+IFR1+MS | S3 -2.012 XOM_R2OWSG MWD+IFR1+MS | 22 -1.986 XOM_R2OWSG
MWD+IFR1+MS | |-------------------|----------------------------------|-------------------------------------|-------------------------------------|----------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------------|-------------------------------------|-------------------------------------|---------------------------------|-------------------------------------|-------------------------------------|----------------------------------|-------------------------------------|-------------------------------------|-----------------------------------|-------------------------------------|----------------------------------|-------------------------------------| | | 35.486 | 35.514 | 35.543 | 35.572 | 35.602 | 35.632 | 35.663 | 35.695 | 35.727 | 35.760 | 35.793 | 35.828 | 35.862 | 35.898 | 35.933 | 35.970 | 36.007 | 36.045 | 36.083 | 36.122 | | | 47.414 | 47.938 | 48.468 | 49.004 | 49.545 | 50.093 | 50.647 | 51.206 | 51.770 | 52.339 | 52.913 | 53.492 | 54.075 | 54.663 | 55.256 | 55.852 | 56.453 | 57.057 | 57.666 | 58.278 | | Well Plan Report | 0.000 | | Wel | 32.686 0.000 | 33.384 0.000 | 34.085 0.000 | 34.790 0.000 | 35.499 0.000 | 36.210 0.000 | 36.925 0.000 | 37.642 0.000 |
38.362 0.000 | 39.084 0.000 | 39.809 0.000 | 40.536 0.000 | 41.265 0.000 | 41.996 0.000 | 42.729 0.000 | 43.464 0.000 | 44.201 0.000 | 44.939 0.000 | 45.679 0.000 | 46.420 0.000 | | | 47.396 -0.000 | 47.919 -0.000 | 48.449 -0.000 | 48.985 -0.000 | 49.527 -0.000 | 50.075 -0.000 | 50.629 -0.000 | 51.188 -0.000 | 51.752 -0.000 | 52.321 -0.000 | 52.895 -0.000 | 53.474 -0.000 | 54.058 -0.000 | 54.646 -0.000 | 55.239 -0.000 | 55.835 -0.000 | 56.436 -0.000 | 57.040 -0.000 | 57.649 -0.000 | 58.261 -0.000 | | | 32.686 0.000 | 33.384 0.000 | 34.085 0.000 | 34.790 0.000 | 35.499 0.000 | 36.210 0.000 | 36.925 0.000 | 37.642 0.000 | 38.362 0.000 | 39.084 0.000 | 39.809 0.000 | 40.536 0.000 | 41.265 0.000 | 41.996 0.000 | 42.729 0.000 | 43.464 0.000 | 44.201 0.000 | 44.939 0.000 | 45.679 0.000 | 46.420 0.000 | | | 179.755 9977.000 | | | 90.000 | 90.000 | 000.06 | 000 06 | 000 06 | 000 06 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | | 10/22/24, 3:25 PM | 13500.000 | 13600.000 | 13700.000 | 13800.000 | 13900.000 | 14000.000 | 14100.000 | 14200.000 | 14300.000 | 14400.000 | 14500.000 | 14600.000 | 14700.000 | 14800.000 | 14900.000 | 15000.000 | 15100.000 | 15200.000 | 15300.000 | 15400.000 | | | -1.960 XOM R2OWSG
MWD+IFR1+MS | -1.936 XOM R2OWSG
MWD+IFR1+MS | -1.911 XOM_R2OWSG
-1.911 MWD+IFR1+MS | -1.888 XOM_R2OWSG
MWD+IFR1+MS | -1.865 XOM_R2OWSG
MWD+IFR1+MS | -1.843 XOM_R2OWSG
-1.843 MWD+IFR1+MS | -1.821 XOM R2OWSG
MWD+IFR1+MS | -1.800 XOM R2OWSG
MWD+IFR1+MS | -1.780 XOM R2OWSG
MWD+IFR1+MS | -1.760 XOM R2OWSG
MWD+IFR1+MS | -1.740 XOM R2OWSG
-1.740 MWD+IFR1+MS | -1.721 XOM R2OWSG
-1.721 MWD+IFR1+MS | -1.703 XOM R2OWSG
-1.703 MWD+IFR1+MS | -1.685 XOM R2OWSG
MWD+IFR1+MS | -1.667 XOM R2OWSG
MWD+IFR1+MS | -1.650 XOM R2OWSG
MWD+IFR1+MS | -1.633 XOM R2OWSG
MWD+IFR1+MS | -1.617 XOM R2OWSG
MWD+IFR1+MS | -1.601 XOM_R2OWSG
MWD+IFR1+MS | -1.585 XOM_R2OWSG
-1.585 MWD+IFR1+MS | |------------------|----------------------------------|----------------------------------|---|----------------------------------|----------------------------------|---|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---|---|---|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---| | | 36.161 | 36.201 | 36.242 | 36.283 | 36.325 | 36.367 | 36.410 | 36.454 | 36.498 | 36.542 | 36.587 | 36.633 | 36.680 | 36.726 | 36.774 | 36.822 | 36.870 | 36.920 | 36.969 | 37.019 | | | 58.893 | 59.512 | 60.134 | 092'09 | 61.389 | 62.021 | 62.655 | 63.293 | 63.934 | 64.577 | 65.223 | 65.871 | 66.522 | 67.175 | 67.830 | 68.488 | 69.148 | 69.810 | 70.475 | 71.141 | | Well Plan Report | 0.000 | | Well P | 47.163 0.000 | 47.907 0.000 | 48.652 0.000 | 49.398 0.000 | 50.146 0.000 | 50.895 0.000 | 51.645 0.000 | 52.395 0.000 | 53.147 0.000 | 53.900 0.000 | 54.654 0.000 | 55.408 0.000 | 56.164 0.000 | 56.920 0.000 | 57.677 0.000 | 58.435 0.000 | 59.193 0.000 | 59.952 0.000 | 60.712 0.000 | 61.472 0.000 | | | 47.163 0.000 58.877 -0.000 | 47.907 0.000 59.496 -0.000 | 48.652 0.000 60.118 -0.000 | 49.398 0.000 60.744 -0.000 | 50.146 0.000 61.373 -0.000 | 50.895 0.000 62.005 -0.000 | 51.645 0.000 62.640 -0.000 | 52.395 0.000 63.278 -0.000 | 53.147 0.000 63.918 -0.000 | 53.900 0.000 64.561 -0.000 | 54.654 0.000 65.207 -0.000 | 55.408 0.000 65.856 -0.000 | 56.164 0.000 66.507 -0.000 | 56.920 0.000 67.160 -0.000 | 57.677 0.000 67.816 -0.000 | 58.435 0.000 68.474 -0.000 | 59.193 0.000 69.134 -0.000 | 59.952 0.000 69.796 -0.000 | 60.712 0.000 70.460 -0.000 | 61.472 0.000 71.127 -0.000 | | | 179.755 9977.000 | | | 90.000 | | /22/24, 3:25 PM | 15500.000 | 15600.000 | 15700.000 | 15800.000 | 15900.000 | 000 ⁰ 0001 | 16100.000 | 16200.000 | 16300.000 | 16400.000 | 16500.000 | 16600.000 | 16700.000 | 16800.000 | 16900.000 | 17000.000 | 17100.000 | 17200.000 | 17300.000 | 17400.000 | | o
Re | leased | to Ima | iging: | 4/2/20 | <i>25 10:</i> | 48:00 . | AM | | | | | | | | | | | | | | | | (D. (O | (D. (O | (D. (O | (P. (O | (D. (O | (P. (O | (D. (O. | (P. (O | (P. (O | (D. (C | |------------------|---------------------------|---------------------------|---------------------------|----------------------------|---------------------------|----------------------------|---------------------------|----------------------------|---------------------------|---------------------------| | | XOM_R2OWSG
MWD+IFR1+MS | | XOM | XOM | | | | -1.570 | -1.555 | -1.541 | -1.526 | -1.512 | -1.499 | -1.485 | -1.475 | -1.472 | -1.463 | | | 37.070 | 37.121 | 37.173 | 37.226 | 37.279 | 37.332 | 37.386 | 37.430 | 37.440 | 37.479 | | | 71.809 | 72.479 | 73.151 | 73.825 | 74.500 | 75.178 | 75.857 | 76.402 | 76.536 | 77.014 | | Well Plan Report | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | Well PI | 62.233 0.000 | 62.995 0.000 | 63.757 0.000 | 0.000 | 65.282 0.000 | 0.000 | 66.810 0.000 | 67.423 0.000 | 67.575 0.000 | 68.112 0.000 | | | 62.233 | 62.995 | 63.757 | 64.519 0.000 | 65.282 | 66.046 0.000 | 66.810 | 67.423 | 67.575 | 68.112 | | | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | 0.000 | 0.000 | 0.000 | 0.000 | | | 71.795 -0.000 | 72.465 -0.000 | 73.137 -0.000 | 64.519 0.000 73.811 -0.000 | 74.487 -0.000 | 66.046 0.000 75.164 -0.000 | 75.843 -0.000 | 67.423 0.000 76.388 -0.000 | 76.523 -0.000 | 77.001 -0.000 | | | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | 62.233 0.000 | 62.995 0.000 | 63.757 0.000 | 64.519 | 65.282 | 66.046 | 66.810 0.000 | 67.423 | 67.575 0.000 | 68.112 0.000 | | | 977.000 | 977.000 | 977.000 | 977.000 | 977.000 | 977.000 | 977.000 | 977.000 | 977.000 | 977.000 | | | 179.755 9977.000 | 179.755 9977.000 | 179.755 9977.000 | 179.755 9977.000 | 179.755 9977.000 | 90.000 179.755 9977.000 | 179.755 9977.000 | 179.755 9977.000 | 179.755 9977.000 | 179.755 9977.000 | | | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | | /22/24, 3:25 PM | 17500.000 | 17600.000 | 17700.000 | 17800.000 | 17900.000 | 18000.000 | 18100.000 | 18180.168 | 18200.000 | 18270.172 | | ₽
Re | leased | to Ime | aging: | 4/2/20 | 25 10: | 48:00 . | AM | | | | | | TVD MSL Target Shape | (ft) | 6601.00 CIRCLE | 6601.00 CIRCLE | 6601.00 CIRCLE | |----------------------------|----------------------|-------------|----------------|----------------|----------------| | | Grid Easting | (44) | 654027.50 | 654045.50 | 654046.00 | | | Grid Northing | (ff) | 400749.00 | 392969.80 | 392879.80 | | Poker Lake Unit 25 BD 406H | Measured Depth | (ft) | 10401.17 | 18195.44 | 18285.32 | | Plan Targets | | Target Name | FTP 6 | LTP 6 | BHL 6 | 11/8/2023 1:08:50 PM ## **U. S. Steel Tubular Products** 5.500" 20.00lb/ft (0.361" Wall) P110 RY USS-FREEDOM HTQ® | MECHANICAL PROPERTIES | Pipe | USS-FREEDOM HTQ $^{\circledR}$ | | |----------------------------------|---------|--------------------------------|------------| | Minimum Yield Strength | 110,000 | | psi | | Maximum Yield Strength | 125,000 | | psi | | Minimum Tensile Strength | 125,000 | | psi | | DIMENSIONS | Pipe | USS-FREEDOM HTQ [®] | | | Outside Diameter | 5.500 | 6.300 | in. | | Wall Thickness | 0.361 | | in. | | Inside Diameter | 4.778 | 4.778 | in. | | Standard Drift | 4.653 | 4.653 | in. | | Alternate Drift | | | in. | | Nominal Linear Weight, T&C | 20.00 | | lb/ft | | Plain End Weight | 19.83 | | lb/ft | | SECTION AREA | Pipe | USS-FREEDOM HTQ [®] | | | Critical Area | 5.828 | 5.828 | sq. in. | | Joint Efficiency | | 100.0 | % | | ERFORMANCE | Pipe | USS-FREEDOM HTQ [®] | | | Minimum Collapse Pressure | 11,100 | 11,100 | psi | | Minimum Internal Yield Pressure | 12,640 | 12,640 | psi | | Minimum Pipe Body Yield Strength | 641,000 | | lb | | Joint Strength | | 641,000 | lb | | Compression Rating | | 641,000 | l b | | Reference Length [4] | | 21,370 | ft | | Maximum Uniaxial Bend Rating [2] | | 91.7 | deg/100 ft | | MAKE-UP DATA | Pipe | USS-FREEDOM HTQ [®] | | | Make-Up Loss | | 4.13 | in. | | Minimum Make-Up Torque [3] | | 15,000 | ft-lb | | Maximum Make-Up Torque [3] | | 21,000 | ft-Ib | | Maximum Operating Torque[3] | | 29,500 | ft-lb | | | | | | ### **Notes** - 1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness,
and Specified Minimum Yield Strength (SMYS). - 2. Uniaxial bending rating shown is structural only, and equal to compression efficiency. - 3. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.). - 4. Reference length is calculated by joint strength divided by plain end weight with 1.5 safety factor. ### Legal Notice All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application. > U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380 1-877-893-9461 connections@uss.com www.usstubular.com # U. S. Steel Tubular Products 5.500" 20.00lb/ft (0.361" Wall ### 5.500" 20.00lb/ft (0.361" Wall) P110 RY USS-TALON HTQ™ RD | MECHANICAL PROPERTIES | Pipe | USS-TALON HTQ™ RD | | [6] | |----------------------------------|---------|-------------------|------------|-----| | Minimum Yield Strength | 110,000 | | psi | | | Maximum Yield Strength | 125,000 | | psi | | | Minimum Tensile Strength | 125,000 | | psi | | | DIMENSIONS | Pipe | USS-TALON HTQ™ RD | | | | Outside Diameter | 5.500 | 5.900 | in. | _ | | Wall Thickness | 0.361 | | in. | | | Inside Diameter | 4.778 | 4.778 | in. | | | Standard Drift | 4.653 | 4.653 | in. | | | Alternate Drift | | | in. | | | Nominal Linear Weight, T&C | 20.00 | | lb/ft | | | Plain End Weight | 19.83 | | lb/ft | | | SECTION AREA | Pipe | USS-TALON HTQ™ RD | | | | Critical Area | 5.828 | 5.828 | sq. in. | | | Joint Efficiency | | 100.0 | % | [2] | | PERFORMANCE | Pipe | USS-TALON HTQ™ RD | | | | Minimum Collapse Pressure | 11,100 | 11,100 | psi | | | Minimum Internal Yield Pressure | 12,640 | 12,640 | psi | | | Minimum Pipe Body Yield Strength | 641,000 | | lb | | | Joint Strength | | 641,000 | l b | | | Compression Rating | | 641,000 | lb | | | Reference Length | | 21,370 | ft | [5] | | Maximum Uniaxial Bend Rating | | 91.7 | deg/100 ft | [3] | | MAKE-UP DATA | Pipe | USS-TALON HTQ™ RD | | | | Make-Up Loss | | 5.58 | in. | | | Minimum Make-Up Torque | | 17,000 | ft-lb | [4] | | Maximum Make-Up Torque | | 20,000 | ft-lb | [4] | | Maximum Operating Torque | | 39,500 | ft-lb | [4] | #### **Notes** - 1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS). - 2. Joint efficiencies are calculated by dividing the connection critical area by the pipe body area. - 3. Uniaxial bend rating shown is structural only. - 4. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.). - 5. Reference length is calculated by Joint Strength divided by Nominal Linear Weight, T&C with a 1.5 Safety factor. - 6. Coupling must meet minimum mechanical properties of the pipe. #### Legal Notice All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application. U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380 1-877-893-9461 connections@uss.com www.usstubular.com XTO respectfully requests approval to utilize a spudder rig to pre-set surface casing. #### Description of Operations: - Spudder rig will move in to drill the surface hole and pre-set surface casing on the well. - a. After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations). - The spudder rig will utilize fresh water-based mud to drill the surface hole to TD. Solids control will be handled entirely on a closed loop basis. No earth pits will be used. - 2. The wellhead will be installed and tested as soon as the surface casing is cut off and WOC time has been reached. - 3. A blind flange at the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wing valves. - a. A means for intervention will be maintained while the drilling rig is not over the well. - 4. Spudder rig operations are expected to take 2-3 days per well on the pad. - 5. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations. - 6. Drilling Operations will begin with a larger rig and a BOP stack equal to or greater than the pressure rating that was permitted will be nippled up and tested on the wellhead before drilling operations resume on each well. - a. The larger rig will move back onto the location within 90 days from the point at which the wells are secured and the spudder rig is moved off location. - b. The BLM will be notified 24 hours before the larger rig moves back on the pre-set locations - 7. XTO will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations. - 8. Once the rig is removed, XTO will secure the wellhead area by placing a guard rail around the cellar area. Subject: Request for a Variance Allowing break Testing of the Blowout Preventer Equipment (BOPE) XTO Energy requests a variance to ONLY test broken pressure seals on the BOPE and function test BOP when skidding a drilling rig between multiple wells on a pad. #### **Background** Onshore Oil and Gas Order CFR Title 43 Part 3170, Drilling Operations, Sections III.A.2.i.iv.B states that the BOP test must be performed whenever any seal subject to test pressure is broken. The current interpretation of the Bureau of Land Management (BLM) requires a complete BOP test and not just a test of the affected component. CFR Title 43 Part 3170 states, "Some situation may exist either on a well-by- well basis or field-wide basis whereby it is commonly accepted practice to vary a particular minimum standard(s) established in this order. This situation can be resolved by requesting a variance...". XTO Energy feels the break testing the BOPE is such a situation. Therefore, as per CFR Title 43 Part 3170, XTO Energy submits this request for the variance. #### **Supporting Documentation** CFR Title 43 Part 3170 became effective on December 19, 1988 and has remained the standard for regulating BLM onshore drilling operations for over 30 years. During this time there have been significant changes in drilling technology. BLM continues to use the variance request process to allow for the use of modern technology and acceptable engineering practices that have arisen since CFR Title 43 Part 3170 was originally released. The XTO Energy drilling rig fleet has many modern upgrades that allow the intact BOP stack to be moved between well slots on a multi-well pad, as well as, wellhead designs that incorporate quick connects facilitating release of the BOP from the wellhead without breaking any BOP stack components apart. These technologies have been used extensively offshore, and other regulators, API, and many operators around the world have endorsed break testing as safe and reliable. Figure 1: Winch System attached to BOP Stack Figure 2: BOP Winch System American Petroleum Institute (API) standards, specification and recommended practices are considered the industry standard and are consistently utilized and referenced by the industry. CFR Title 43 Part 3170recognizes API recommended Practices (RP) 53 in its original development. API Standard 53, *Well Control Equipment Systems for Drilling Wells* (Fifth Edition, December 2018, Annex C, Table C.4) recognizes break testing as an acceptable practice. Specifically, API Standard 53, Section 5.3.7.1 states "A pressure test of the pressure containing component shall be performed following the disconnection or repair, limited to the affected component." See Table C.4 below for reference. | Tal | ole C.4—Initial Pressure Te | esting, Surface BOP Stacks | | | |--|--|---|---|--| | | Pressure Test—Low | Pressure Test—High Pressureac | | | | Component to be Pressure
Tested | Pressure ^{ac}
psig (MPa) | Change Out of
Component, Elastomer,
or Ring Gasket | No Change Out of
Component, Elastomer,
or Ring Gasket | | | Annular preventer ^b | 250 to 350 (1.72 to 2.41) | RWP of annular preventer | MASP or 70% annular
RWP, whichever is lower. | | | Fixed pipe, variable bore,
blind, and BSR preventers ^{bd} | 250 to 350 (1.72 to 2.41) | RWP of ram preventer or
wellhead system,
whichever is lower | ITP | | | Choke and kill line and BOP
side outlet valves below ram
preventers (both sides) | 250 to 350 (1.72 to 2.41)
 RWP of side outlet valve or
wellhead system,
whichever is lower | ITP | | | Choke manifold—upstream of chokese | 250 to 350 (1.72 to 2.41) | RWP of ram preventers or
wellhead system,
whichever is lower | ITP | | | Choke manifold—downstream of chokese | 250 to 350 (1.72 to 2.41) | RWP of valve(s), line(s), or M
whichever is lower | MASP for the well program, | | | Kelly, kelly valves, drill pipe
safety valves, IBOPs | 250 to 350 (1.72 to 2.41) | MASP for the well program | | | | | during the evaluation period. The p | pressure shall not decrease below the allest OD drill pipe to be used in well | | | | | from one wellhead to another within
when the integrity of a pressure se | n the 21 days, pressure testing is req | uired for pressure-containing an | | | For surface offshore operations, the | ne ram BOPs shall be pressure tes
land operations, the ram BOPs sha | ted with the ram locks engaged and
all be pressure tested with the ram lo | | | The Bureau of Safety and Environmental Enforcement (BSEE), Department of Interior, has also utilized the API standards, specification and best practices in the development of its offshore oil and gas regulations and incorporates them by reference within its regulations. Break testing has been approved by the BLM in the past with other operators based on the detailed information provided in this document. XTO Energy feels break testing and our current procedures meet the intent of CFR Title 43 Part 317 Oand often exceed it. There has been no evidence that break testing results in more components failing than seen on full BOP tests. XTO Energy's internal standards requires complete BOPE tests more often than that of CFR Title 43 Part 3170 (Every 21 days). In addition to function testing the annular, pipe rams and blind rams after each BOP nipple up, XTO Energy performs a choke drill with the rig crew prior to drilling out every casing shoe. This is additional training for the rig crew that exceeds the requirements of the CFR Title 43 Part 3170. #### **Procedures** - XTO Energy will use this document for our break testing plan for New Mexico Delaware basin. The summary below will be referenced in the APD or Sundry Notice and receive approval prior to implementing this variance. - 2. XTO Energy will perform BOP break testing on multi-wells pads where multiple intermediate sections can be drilled and cased within the 21-day BOP test window. - a. A full BOP test will be conducted on the first well on the pad. - b. The first intermediate hole section drilled on the pad will be the deepest. All of the remaining hole sections will be the same depth or shallower. - i. Our Lower WC targets set the intermediate casing shoe no deeper than the Wolfcamp B. - ii. Our Upper WC targets set the intermediate casing shoe shallower than the Wolfcamp B. - c. A Full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M. - d. A full BOP test will be required prior to drilling any production hole. - 3. After performing a complete BOP test on the first well, the intermediate hole section will be drilled and cased, two breaks would be made on the BOP equipment. - a. Between the HCV valve and choke line connection - b. Between the BOP quick connect and the wellhead - 4. The BOP is then lifted and removed from the wellhead by a hydraulic system. - 5. After skidding to the next well, the BOP is moved to the wellhead by the same hydraulic system and installed. - 6. The connections mentioned in 3a and 3b will then be reconnected. - 7. Install test plug into the wellhead using test joint or drill pipe. - 8. A shell test is performed against the upper pipe rams testing the two breaks. - 9. The shell test will consist of a 250 psi low test and a high test to the value submitted in the APD or Sundry (e.g. 5,000 psi or 10,000psi). - 10. Function test will be performed on the following components: lower pipe rams, blind rams, and annular. - 11. For a multi-well pad the same two breaks on the BOP would be made and on the next wells and steps 4 through 10 would be repeated. - 12. A second break test would only be done if the intermediate hole section being drilled could not be completed within the 21 day BOP test window. Note: Picture below highlights BOP components that will be tested during batch operations #### **Summary** A variance is requested to **ONLY** test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API Standard 53 states, that for pad drilling operation, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken. The BOP will be secured by a hydraulic carrier or cradle. The BLM will be contacted if a Well Control event occurs prior to the commencement of a BOPE Break Testing operation. Based on discussions with the BLM on February 27th 2020 and the supporting documentation submitted to the BLM, we will request permission to ONLY retest broken pressure seals if the following conditions are met: - 1. After a full BOP test is conducted on the first well on the pad. - 2. The first intermediate hole section drilled on the pad will be the deepest. All of the remaining hole sections will be the same depth or shallower. - 3. Full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M. - 4. Full BOP test will be required prior to drilling the production hole. #### **XTO Permian Operating, LLC Offline Cementing Variance Request** XTO requests the option to cement the surface and intermediate casing strings offline as a prudent batch drilling efficiency of acreage development. #### 1. Cement Program No changes to the cement program will take place for offline cementing. #### 2. Offline Cementing Procedure The operational sequence will be as follows. If a well control event occurs, the BLM will be contacted for approval prior to conducting offline cementing operations. - 1. Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment (float collar and shoe) - 2. Land casing with mandrel - 3. Fill pipe with kill weight fluid, do not circulate through floats and confirm well is static - 4. Set annular packoff shown below and pressure test to confirm integrity of the seal. Pressure ratings of wellhead components and valves is 5,000 psi. - 5. After confirmation of both annular barriers and internal barriers, nipple down BOP and install cap flange. - a. If any barrier fails to test, the BOP stack will not be nippled down until after the cement job is completed with cement 500ft above the highest formation capable of flow with kill weight mud above or after it has achieved 50-psi compressive strength if kill weight fluid cannot be verified. Annular packoff with both external and internal seals #### **XTO Permian Operating, LLC Offline Cementing Variance Request** Wellhead diagram during skidding operations - 6. Skid rig to next well on pad. - 7. Confirm well is static before removing cap flange, flange will not be removed and offline cementing operations will not commence until well is under control. If well is not static, casing outlet valves will provide access to both the casing ID and annulus. Rig or third party pump truck will kill well prior to cementing or nippling up for further remediation. - a. Well Control Plan - i. The Drillers Method will be the primary well control method to regain control of the wellbore prior to cementing, if wellbore conditions do not permit the drillers method other methods of well control may be used - ii. Rig pumps or a 3rd party pump will be tied into the upper casing valve to pump down the casing ID - iii. A high pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure - iv. Once influx is circulated out of the hole, kill weight mud will be circulated - v. Well will be confirmed static - vi. Once confirmed static, cap flange will be removed to allow for offline cementing operations to commence - 8. Install offline cement tool - 9. Rig up cement equipment #### XTO Permian Operating, LLC Offline Cementing Variance Request Wellhead diagram during offline cementing operations - 10. Circulate bottoms up with cement truck - a. If gas is present on bottoms up, well will be shut in and returns rerouted through gas buster to handle entrained gas - b. Max anticipated time before circulating with cement truck is 6 hrs - 11. Perform cement job taking returns from the annulus wellhead valve - 12. Confirm well is static and floats are holding after cement job - 13. Remove cement equipment, offline cement tools and install night cap with pressure gauge for monitoring. **GATES ENGINEERING & SERVICES NORTH AMERICA** 7603 Prairie Oak Dr. Houston, TX. 77086 PHONE: +1 (281) 602-4100 FAX: +1 (281) 602-4147 EMAIL: gesna.quality@gates.com WEB: www.gates.com/oilandgas NEW CHOKE HOSE INSTRUED 02-10-2024 # CERTIFICATE OF CONFORMANCE This is to verify that the items detailed below meet the requirements of the Customer's Purchase Order referenced herein, and are in Conformance with applicable specifications, and that Records of Required Tests are on file and subject to examination. The following items were inspected and hydrostatically tested at **Gates Engineering & Services North America** facilities in Houston, TX, USA. CUSTOMER: NABORS DRILLING TECHNOLOGIES USA DBA NABORS DRILLING USA CUSTOMER P.O.#: 15582803 (TAG NABORS PO #15582803 SN 74621 ASSET 66-1531) CUSTOMER P/N: IMR RETEST SN 74621 ASSET #66-1531 PART DESCRIPTION: RETEST OF CUSTOMER 3" X 45 FT 16C CHOKE & KILL HOSE ASSEMBLY C/W 4 1/16" 10K FLANGES SALES ORDER #: 529480 QUANTITY: 1 SERIAL #: 74621 H3-012524-1 SIGNATURE: # CUSTAGE TITLE: QUALITY ASSURANCE DATE: 1/25/2024 ## H3-15/16 # **TEST REPORT** **TEST
OBJECT** Nabors Industries Inc. Serial number: H3-012524-1 Lot number: Production description: 74621/66-1531 Description: 74621/66-1531 Sales order #: CUSTOMER Company: 529480 Customer reference: FG1213 Hose ID: 3" 16C CK Part number: **TEST INFORMATION** Test procedure: GTS-04-053 Fitting 1: Test pressure: 15000.00 psi Part number: 3.0 x 4-1/16 10K Test pressure hold: 3600.00 sec Description: Work pressure: Work pressure hold: 10000.00 psi Fitting 2: 3.0 x 4-1/16 10K Length difference: Length difference: 900.00 0.00 0.00 sec % inch Part number: Description: Visual check: Pressure test result: PASS Length measurement result: Length: 45 feet D. ... 15 Test operator: Travis H3-15/16 1/25/2024 11:48:06 AM # **TEST REPORT** #### **GAUGE TRACEABILITY** | 2024-06-06
2024-05-16 | |--------------------------| | 2024-05-16 | | | | | | | | | | | | | | | | | Released to Imaging: 4/2/2025 10:48:00 AM Released to Imaging: 4/2/2025 10:48:00 AM Sante Fe Main Office Phone: (505) 476-3441 General Information Phone: (505) 629-6116 Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us # State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505 CONDITIONS Action 440305 #### **CONDITIONS** | Operator: | OGRID: | |----------------------------|--------------------------------------| | XTO PERMIAN OPERATING LLC. | 373075 | | 6401 HOLIDAY HILL ROAD | Action Number: | | MIDLAND, TX 79707 | 440305 | | | Action Type: | | | [C-103] NOI Change of Plans (C-103A) | #### CONDITIONS | Created By | Condition | Condition
Date | |-------------|--|-------------------| | ward.rikala | Any previous COA's not addressed within the updated COA's still apply. | 4/2/2025 | | ward.rikala | The pool(s) were not changed as the Corral Canyon; Bone Spring pool (13354) is approximately 3 miles removed from this well and all of the other pools surrounding this well are the Wildcat G-015 S263001); Bone Spring (97814) pool. | 4/2/2025 |