Received by UCD: 3/5/2025 8:47:00 AM U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		Sundry Print Report 03/04/2025
Well Name: STEEL GUITAR 35-26 FED COM	Well Location: T26S / R29E / SEC 26 / NENW / 32.0185919 / -103.9566961	County or Parish/State: EDDY / NM
Well Number: 452H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM19609	Unit or CA Name:	Unit or CA Number:
US Well Number: 3001555822	Operator: WPX ENERGY PERMIAN LLC	

Notice of Intent

Sundry ID: 2837940

Type of Submission: Notice of Intent

Date Sundry Submitted: 02/20/2025

Date proposed operation will begin: 02/20/2025

Type of Action: APD Change Time Sundry Submitted: 02:40

Procedure Description: Devon Energy Production Co., L.P. (Devon) respectfully requests to add a 4 string casing design as contingency to the drill plan for the Steel Guitar 35-26 Fed Com 452H. Please see attachments.

NOI Attachments

Procedure Description

5.5_20lb_P110EC_DWC_C_IS_PLUS_20250220144003.pdf 8.625_32lb_P110EC_SPRINT_FJ_VST_20250220143948.pdf 10.75_45.5lb_J55_BTC_20250220143926.pdf 13.375_54.5lb_J55_20250220143910.pdf STEEL_GUITAR_35_26_FED_COM_452H_Combined_20250220143837.pdf

Received FED (by OCD: 3/5/2025 8:47:00 AM Name: STEEL GUITAR 35-26 COM	Well Location: T26S / R29E / SEC 26 / NENW / 32.0185919 / -103.9566961	County or Parish/State: EDBY 7 of 5
Well	Number: 452H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease	e Number: NMNM19609	Unit or CA Name:	Unit or CA Number:
US W	/ell Number: 3001555822	Operator: WPX ENERGY PERMIAN LLC	

Conditions of Approval

Specialist Review

Steel_Guitar_35_26_Fed_Com_452H_Sundry_ID_2837940_20250304103315.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: AMY BROWN
Name: WPX ENERGY PERMIAN LLC
Title: Regulatory Professional
Street Address: 333 WEST SHERIDAN AVENUE
City: OKLAHOMA CITY State: OK
Phone: (405) 552-6137
Email address: AMY.BROWN@DVN.COM

Field
Representative Name:
Street Address:

State:

City: Phone: Email address:

BLM Point of Contact

BLM POC Name: LONG VO BLM POC Phone: 5759885402 Disposition: Approved Signature: Long Vo Signed on: FEB 20, 2025 02:40 PM

BLM POC Title: Petroleum Engineer BLM POC Email Address: LVO@BLM.GOV Disposition Date: 03/04/2025

Zip:

				1 480 0 07
Form 3160-5 UNITED STATES (June 2019) DEPARTMENT OF THE INTERIOR		Ol Expi	DRM APPROVED MB No. 1004-0137 res: October 31, 2021	
E	BUREAU OF LAND MANAGEMENT		5. Lease Serial No. NI	MNM19609
Do not use t		ORTS ON WELLS to drill or to re-enter an APD) for such proposals.	6. If Indian, Allottee or Tribe N	lame
SUBMI	T IN TRIPLICATE - Other instr	uctions on page 2	7. If Unit of CA/Agreement, N	ame and/or No.
	Gas Well Other		8. Well Name and No. STEEL GUITAR 35-26 FED COM/452H	
2. Name of Operator WPX ENE	RGY PERMIAN LLC		9. API Well No. 3001555822	
3a. Address 3817 NW EXPRESSWAY STE 950, OKLAHOMA 3b. Phone No. (include area code) (405) 949-2221		10. Field and Pool or Exploratory Area PURPLE SAGE/WOLFCAMP		
4. Location of Well <i>(Footage, Sec</i> SEC 26/T26S/R29E/NMP	., T.,R.,M., or Survey Description,)	11. Country or Parish, State EDDY/NM	
12.	CHECK THE APPROPRIATE B	OX(ES) TO INDICATE NATURE (OF NOTICE, REPORT OR OTH	ER DATA
TYPE OF SUBMISSION		TYPI	E OF ACTION	
✓ Notice of Intent	Acidize	Deepen [Hydraulic Fracturing	Production (Start/Resume) Reclamation	Water Shut-Off Well Integrity
Subsequent Report	Casing Repair Change Plans	New Construction Image: Construction Plug and Abandon Image: Construction	Recomplete Temporarily Abandon	Other
Final Abandonment Notice	Convert to Injection	Plug Back	Water Disposal	
the proposal is to deepen dire- the Bond under which the wo completion of the involved op	ctionally or recomplete horizontal rk will be perfonned or provide th verations. If the operation results i	ly, give subsurface locations and me e Bond No. on file with BLM/BIA. 1 n a multiple completion or recomple	asured and true vertical depths o Required subsequent reports mus- tion in a new interval, a Form 31	k and approximate duration thereof. If f all pertinent markers and zones. Attach to be filed within 30 days following 60-4 must be filed once testing has been he operator has detennined that the site

Devon Energy Production Co., L.P. (Devon) respectfully requests to add a 4 string casing design as contingency to the drill plan for the Steel Guitar 35-26 Fed Com 452H. Please see attachments.

14. I hereby certify that the foregoing is true and correct. Name (<i>Printed/Typed</i>) AMY BROWN / Ph: (405) 552-6137	Regulatory Professional Title		
(Electronic Submission) Signature	Date 02/20/2025		
THE SPACE FOR FEDE	RAL OR STATE OFICE USE		
Approved by			
LONG VO / Ph: (575) 988-5402 / Approved	Petroleum Engineer Title	Date	03/04/2025
Conditions of approval, if any, are attached. Approval of this notice does not warrant certify that the applicant holds legal or equitable title to those rights in the subject lead which would entitle the applicant to conduct operations thereon.			
Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any false, fictitious or fraudulent statements or representations as to any matter within		e to any department	or agency of the United States

(Instructions on page 2)

is ready for final inspection.)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

Additional Information

Location of Well

0. SHL: NENW / 445 FNL / 2007 FWL / TWSP: 26S / RANGE: 29E / SECTION: 26 / LAT: 32.0185919 / LONG: -103.9566961 (TVD: 0 feet, MD: 0 feet) PPP: NENW / 100 FNL / 1580 FWL / TWSP: 26S / RANGE: 29E / SECTION: 26 / LAT: 32.0195538 / LONG: -103.9580179 (TVD: 9939 feet, MD: 9986 feet) PPP: NESW / 2478 FSL / 1614 FWL / TWSP: 26S / RANGE: 29E / SECTION: 26 / LAT: 32.011992 / LONG: -103.9583453 (TVD: 11200 feet, MD: 13800 feet) BHL: LOT 10 / 50 FSL / 1580 FWL / TWSP: 26S / RANGE: 29E / SECTION: 35 / LAT: 32.0002402 / LONG: -103.958858 (TVD: 11200 feet, MD: 18078 feet)

Connection Data Sheet

OD (in.)	WEIGHT (lbs./ft.)	WALL (in.)	GRADE	DRIFT (in.)	RBW%	CONNECTION
5.500	Nominal: 20.00 Plain End: 19.83	0.361	VST P110 EC	4.653	87.5	DWC/C-IS PLUS

PIPE PROPERTIES

Nominal OD	5.500	in.
Nominal ID	4.778	in.
Nominal Area	5.828	sq.in.
Grade Type	API 5CT; Vallourec Sourced Material Only	
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Tensile Strength	135	ksi
Yield Strength	729	klb
Ultimate Strength	787	klb
Min. Internal Yield	14,360	psi
High Collapse	12,090	psi

CONNECTION PROPERTIES

Semi-Premium T&C	
6.300	in.
4.778	in.
4.125	in.
9.250	in.
5.828	sq.in.
100.0%	of pipe
	6.300 4.778 4.125 9.250 5.828 100.0% 100.0%

CONNECTION PERFORMANCES 729 klb Yield Strength Parting Load 787 klb **Compression Rating** 729 klb Min. Internal Yield 14,360 psi *High Collapse* 12,090 psi Maximum Uniaxial Bend Rating 104.2 °/100 ft Ref String Length w 1.4 Design Factor 26,040 ft

FIELD TORQUE VALUES		
Min. Make-up Torque	16,600	ft.lbs
Opti. Make-up Torque	17,850	ft.lbs
Max. Make-up Torque	19,100	ft.lbs
Min. Shoulder Torque	1,660	ft.lbs
Max. Shoulder Torque	13,280	ft.lbs
Max. Delta Turn	0.200	Turns
+Max Operational Torque	24,300	ft.lbs
+Maximum Torsional Value (MTV)	26,730	ft.lbs

+Maximum Operational Torque and Maximum Torsional Value Only Valid with Vallourec P110EC Material

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

05/23/2023 4:11 PM

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234 VAM USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support E-mail: <u>tech.support@vam-usa.com</u>

DWC Connection Data Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- 2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- 8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torque is not to be exceeded.
- Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- 11. DWC connections will accommodate API standard drift diameters.
- 12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

05/23/2023 4:11 PM

ł

Nominal OD Nominal ID Nominal ID Nominal Cross See Grade Type Min. Yield Strength Max. Yield Strength Min. Ultimate Tens

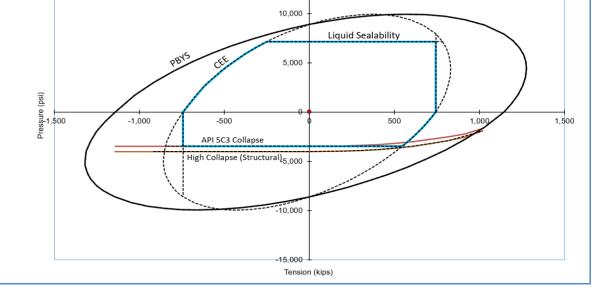
Issued on: 16 Dec. 2020 by Logan Van Gorp

Connection Data Sheet

OD	Weight (lb/ft)	Wall Th.	Grade	Alt. Drift:	Connection
8 5/8 in.	Nominal: 32.00	0.352 in.	P110EC	7.875 in.	VAM [®] SPRINT-FJ
	Plain End: 31.13				

PIPE PROPERTIES				
Nominal OD	8.625	in.		
Nominal ID	7.921	in.		
Nominal Cross Section Area	9.149	sqin.		
Grade Type	Hig	h Yield		
Min. Yield Strength	125	ksi		
Max. Yield Strength	140	ksi		
Min. Ultimate Tensile Strength	135	ksi		

CONNECTION PRO	PERTIES	
Connection Type	Semi-Premium Inte	egral Flush
Connection OD (nom):	8.665	in.
Connection ID (nom):	7.954	in.
Make-Up Loss	2.614	in.
Critical Cross Section	6.038	sqin.
Tension Efficiency	65.0	% of pipe
Compression Efficiency	65.0	% of pipe
Internal Pressure Efficiency	80.0	% of pipe
External Pressure Efficiency	100	% of pipe


CONNECTION PERFORMANCES				
Tensile Yield Strength	744	klb		
Compression Resistance	744	klb		
Max. Internal Pressure	7,150	psi		
Structural Collapse Resistance	4,000	psi		
Max. Bending with Sealability	41	°/100ft		
Max. Bending with Sealability	10	°/100ft		

TORQUE VALUES		
Min. Make-up torque	15,000	ft.lb
Opt. Make-up torque	16,500	ft.lb
Max. Make-up torque	18,000	ft.lb
Max. Torque with Sealability (MTS)	TBD	ft.lb

* 87.5% RBW

VAM® SPRINT-FJ is a semi-premium flush connection designed for shale applications, where maximum clearance and high tension

capacity are required for intermediate casing strings.

15,000

Do you need help on this product? - Remember no one knows VAM^{\circledast} like VAM^{\circledast}

- canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com
- uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

<u>10-3/4"</u>	<u>45.50#</u>	<u>0.400"</u>	<u>J-55</u>					
Dimensions (Nominal)								
Outside Diameter Wall Inside Diameter Drift			10.750 0.400 9.950 9.875	in. in. in. in.				
Weight, T&C Weight, PE			45.500 44.260	lbs/ft lbs/ft				
Performance	Properties							
Collapse			2090	psi				
Internal Yield Pres	sure at Minimum Yield							
	PE		3580	psi				
	STC		3580	psi				
	BTC		3580	psi				
Yield Strength, Pip	e Body		715	1000 lbs				
Joint Strength								
	STC		493	1000 lbs				
	BTC		796	1000 lbs				
	BTC Special Clearance	(11.25" OD Cplg)	506	1000 lbs				

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

<u>13-3/8"</u> <u>54.50#</u> <u>.380</u> <u>J-55</u>

Dimensions (Nominal)

Outside Diameter	13.375	in.
Wall	0.380	in.
Inside Diameter	12.615	in.
Drift	12.459	in.
Weight, T&C	54.500	lbs/ft
Weight, PE	52.790	lbs/ft

Performance Ratings, Minimum

Collapse, PE	1130	psi
Internal Yields Pressure		
PE	2730	psi
STC	2730	PSI
BTC	2730	psi
Yield Strength, Pipe Body	853	1000 lbs
Joint Strength, STC	514	1000 lbs
Joint Strength, BTC	909	1000 lbs

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

1. Geologic Formations

TVD of target	11200	Pilot hole depth	14050
MD at TD:	18078	Deepest expected fresh water	

Basin

Dubin			
	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	386		
Salt	1261		
Base of Salt	2967		
Delaware	2967		
Cherry Canyon	3981		
Brushy Canyon	5070		
1st Bone Spring Lime	6701		
Bone Spring 1st	7601		
Bone Spring 2nd	8224		
3rd Bone Spring Lime	8687		
Bone Spring 3rd	9527		
Wolfcamp	9939		

*H2S, water flows, loss of circulation, abnormal pressures, etc.

		Wt	Grade Conn		Casing	Interval	Casing	Interval
Hole Size	Csg. Size	(PPF)			From (MD)	To (MD)	From (TVD)	To (TVD)
14 3/4	10 3/4	45 1/2	J-55	BTC	0	411	0	411
9 7/8	8 5/8	32	P110	Sprint FJ	0	10574	0	10574
7 7/8	5 1/2	20	P110	DWC / C-IS+	0	18078	0	11200

2. Casing Program (Primary Design)

•All casing strings will be tested in accordance with 43 CFR 3172. Must have table for contingency casing.

3. Cementing Program

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures.

Casing	# Sks	тос	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	262	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	361	Surf	13.0	2.3	2nd State: Bradenhead Squeeze - Lead: Class C Cement + additives
Int I	632	5112	13.2	1.44	Tail: Class H / C + additives
Production	117	8674	9	3.27	Lead: Class H /C + additives
Production	980	10674	13.2	1.44	Tail: Class H / C + additives

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Prod	10%

2. Casing	Program	(Secondary	Design)
- Cubing	1 I USI um	(Decondury	Design)

Hole Size	Csg. Size	Wt (PPF)	Grade	Conn	Top (MD)	Bottom (MD)	Top (TVD)	Bottom (TVD)
17 1/2	13 3/8	54.5	J-55	BTC	0.0	800 MD	0	800 TVD
12 1/4	10 3/4	45.5	J-55	BTC SCC	0.0	3150 MD	0	3150 TVD
9 7/8	8 5/8	32.0	P110	Sprint FJ	0	10574 MD	0	10574 TVD
7 7/8	5 1/2	20.0	P110	DWC / C-IS+	0	18078 MD	0	11200 TVD

•All casing strings will be tested in accordance with 43 CFR 3172. Must have table for contingency casing.

• The Rustler top will be validated via drilling parameters (i.e. reduction in ROP), and the surface casing setting depth will be revised accordingly. In addition, surface casing will be set a minimum of 25' above the top of the salt.

3. Cementing Program (Secondary Design)

Casing	# Sks	TOC	Wt. (lb/gal)	Yld (ft3/sack)	Slurry Description
Surface	617	Surf	13.2	1.44	Lead: Class C Cement + additives
Int	200	Surf	9	3.27	Lead: Class C Cement + additives
Int	101	2650	13.2	1.44	Tail: Class H / C + additives
Int 1	205	Surf	9	3.27	Lead: Class C Cement + additives
Int I	637	5070	13.2	1.44	Tail: Class H / C + additives
Int 1	466	Surf	9	1.44	Squeeze Lead: Class C Cement + additives
Intermediate	205	Surf	9	3.27	Lead: Class C Cement + additives
Squeeze	637	5070	13.2	1.44	Tail: Class H / C + additives
Production	117	8674	9	3.27	Lead: Class H /C + additives
FIGULEUOI	980	10674	13.2	1.44	Tail: Class H / C + additives

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures

Casing String	% Excess
Surface	50%
Intermediate and Intermediate 1	30%
Intermediate 1 (Two Stage)	25%
Prod	10%

.

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	T	уре	~	Tested to:																																								
			Anı	nular	X	50% of rated working pressure																																								
Int 1	13-5/8"	5M		d Ram	Х																																									
	15 5/0	5101	-	Ram		5M																																								
			Doub	le Ram	X	5111																																								
			Other*																																											
			Annul	ar (5M)	Х	50% of rated working pressure																																								
Production	13-5/8"	5M		d Ram	Х																																									
Troduction		13-3/8	13-3/8	15-5/0	13-3/8	15-5/6 51	15-5/8	13-3/0	JIVI	5/6 5111	1 <i>3-3/</i> 8 <i>3</i> 11	5111	5101	5101	5111	5101	5101	5111	5101	5101	5101	5101	5101	5101	5101	5101	5101	5101	5101	5101	5101	5101	5101	5101	5101	5111	5101	5101	5101	5101	5111	5101	5111	1	Ram	
				le Ram	X	5111																																								
			Other*																																											
			Annul	ar (5M)																																										
			Blind	d Ram																																										
			Pipe	e Ram																																										
			Doub	le Ram																																										
			Other*																																											
	A variance is requested for the use of a diverter on the surface casing. See attached for schematic.																																													
Y A variance is requested to r	A variance is requested to run a 5 M annular on a 10M system																																													

4. Pressure Control Equipment (Three String Design)

.

BOP installed and tested before drilling which hole?	Size?	Min. Require d WP	T	ype	~	Tested to:																																			
			Anı	nular	Х	50% of rated working pressure																																			
Int	13-5/8"	5M	Blind	l Ram	Х																																				
Int	15-5/8	JIVI	Pipe	Ram		5M																																			
			Doub	le Ram	Х	JIVI																																			
			Other*																																						
			Annul	ar (5M)	X	100% of rated working pressure																																			
Int 1	13-5/8"	13-5/8" 5M	13-5/8"	5) (Blind	l Ram	Х																																		
Int I				13-3/8	13-3/8	15-5/8 SIM	13-3/6 3141	5101	5111	5101	JIVI	JIVI	JIVI	5111	5111	JIVI	JIVI	5111	5111	5111	5111	5111	5111	5111	JIVI	5111	5111	5111	5111	5111	5111	5111	5111	5101	0 5101	// 0 51 v 1	5111	Pipe	Ram		5M
											Double Ra	le Ram	Х	5111																											
																										Other*															
			Annul	ar (5M)	X	100% of rated working pressure																																			
Production	13-5/8"	5M	Bline	l Ram	Х																																				
ributetion	13-5/8	13-3/8	13-3/0 3IVI	.J-J/O JIVI	13-5/6 5IVI	Pipe	Ram		5M																																
			Doub	le Ram	Х	JIVI																																			
			Other*			[
N A variance is requested to	A variance is requested to run a 5 M annular on a 10M system																																								

4. Pressure Control Equipment (Four String Design)

5. Mud Program

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging, Coring and Testing				
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the			
Х	Completion Rpeort and sbumitted to the BLM.			
	No logs are planned based on well control or offset log information.			
	Drill stem test? If yes, explain.			
	Coring? If yes, explain.			

Additiona	al logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
Х	CBL	Production casing
Х	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?		
BH pressure at deepest TVD	6115		
Abnormal temperature	No		
Midiantian manager for the angular divisor Describe Least simulation material/manage/mud assessments			

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

 Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of 43 CFR 3176. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

 N
 H2S is present

Y H2S plan attached.

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (43 CFR 3172, all COAs and NMOCD regulations).

 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.

- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments

X Directional Plan Other, describe

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		Sundry Print Repor
Well Name: STEEL GUITAR 35-26 FED COM	Well Location: T26S / R29E / SEC 26 / NENW / 32.0185919 / -103.9566961	County or Parish/State: EDDY / NM
Well Number: 452H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM19609	Unit or CA Name:	Unit or CA Number:
US Well Number: 3001555822	Operator: WPX ENERGY PERMIAN LLC	

Notice of Intent

Sundry ID: 2837940

1400

Type of Submission: Notice of Intent

Date Sundry Submitted: 02/20/2025

Date proposed operation will begin: 02/20/2025

Type of Action: APD Change Time Sundry Submitted: 02:40

Procedure Description: Devon Energy Production Co., L.P. (Devon) respectfully requests to add a 4 string casing design as contingency to the drill plan for the Steel Guitar 35-26 Fed Com 452H. Please see attachments.

LONG VO Date: 2025.03.04 11:32:10 -06'00'

NOI Attachments

Procedure Description

5.5_20lb_P110EC_DWC_C_IS_PLUS_20250220144003.pdf

8.625_32lb_P110EC_SPRINT_FJ_VST_20250220143948.pdf

10.75_45.5lb_J55_BTC_20250220143926.pdf

13.375_54.5lb_J55_20250220143910.pdf

STEEL_GUITAR_35_26_FED_COM_452H_Combined_20250220143837.pdf

Received by OCD: 3/5/2025 8:47:00 AM Well Name: STEEL GUITAR 35-26 FED COM	Well Location: T26S / R29E / SEC 26 / NENW / 32.0185919 / -103.9566961	County or Parish/State: EBB ¹⁹ of NM
Well Number: 452H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM19609	Unit or CA Name:	Unit or CA Number:
US Well Number: 3001555822	Operator: WPX ENERGY PERMIAN LLC	
l		

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: AMY BROWN

Name: WPX ENERGY PERMIAN LLC

Title: Regulatory Professional

Street Address: 333 WEST SHERIDAN AVENUE

State: OK

State:

City: OKLAHOMA CITY

Phone: (405) 552-6137

Email address: AMY.BROWN@DVN.COM

Field

Representative Name: Street Address: City: Phone: Email address:

Zip:

Signed on: FEB 20, 2025 02:40 PM

APPROVED by Long Vo Petroleum Engineer Carlsbad Field Office 575-988-50402 LVO@BLM.GOV

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	WPX Energy Permian LLC	•
LOCATION:	Section 26, T.26 S., R.29 E., NMPM	
COUNTY:	Eddy County, New Mexico	-
WELL NAME & NO.:	Steel Guitar 35-26 Fed Com 452H	
ATS/API ID:	3001555822	
APD ID:	10400098049	

COA

•

Primary Desig	gn:		
H2S	Yes 💌		
Potash	None	None	
Cave/Karst Potential	High		
Cave/Karst Potential			
Variance	None	• Flex Hose	Other
Wellhead	Conventional and Multibov	vl 🔽	
Other	4 String 5 String	Capitan Reef	WIPP
		None 🔻	
Other	Pilot Hole	🗌 Open Annulus	
	None 🔻		
Cementing	Contingency Squeeze	Echo-Meter	Primary Cement
	None 🔻	Int 1 🔻	Squeeze
			None 🔫
Special	□ Water	COM	Unit Unit
Requirements	Disposal/Injection		
Special	Batch Sundry	Waste Prevention	
Requirements		None 🔽	
Special	BOPE Break Testing	□ Offline	Casing
Requirements Variance	□ Offline BOPE Testing	Cementing	Clearance

•

Alternate Design:

Potash	None 💌	None	
Cave/Karst Potential	High 🔽		
Cave/Karst Potential			
Other	✓4 String □5 String	Capitan Reef None	WIPP
Other	Pilot Hole None	Open Annulus	
Cementing	Contingency Squeeze	Echo-Meter Int 2	Primary Cement Squeeze None

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Delaware** formation. As a result, the Hydrogen Sulfide area must meet **43 CFR part 3170 Subpart 3176** requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

Primary Design

B. CASING

- 1. The 10-3/4 inch surface casing shall be set at approximately 411 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt when present, and below usable fresh water) and cemented to the surface. The surface hole shall be 14 3/4 inch in diameter.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

2. The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Option 2:

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

- a. First stage: Operator will cement with intent to reach the top of the **Brushy** Canyon at 5070'.
- b. Second stage:
 - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified. (Squeeze 361 sxs Class C)
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Operator has proposed to pump down **10-3/4**" X **8-5/8**" annulus after primary cementing stage. <u>Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus Or operator shall run a CBL from TD of the **8-5/8**" casing to surface after the second stage <u>BH to verify TOC.</u></u>

Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out. Operator must run one CBL per Well Pad. Operator may conduct a negative and positive pressure test during completion to remediate sustained casing pressure.

If cement does not reach surface, the next casing string must come to surface.

Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures.

- In <u>High Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Alternate Design

C. CASING

- 4. The 13-3/8 inch surface casing shall be set at approximately 411 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt when present, and below usable fresh water) and cemented to the surface. The surface hole shall be 17 1/2 inch in diameter.
 - e. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - f. Wait on cement (WOC) time for a primary cement job will be a minimum of $\underline{8}$ <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - g. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - h. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 5. The minimum required fill of cement behind the 10-3/4 inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

6. The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Option 2:

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

- c. First stage: Operator will cement with intent to reach the top of the **Brushy** Canyon at 5070'.
- d. Second stage:
 - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified. (Squeeze 466 sxs Class C)
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Operator has proposed to pump down **10-3/4**" X **8-5/8**" annulus after primary cementing stage. <u>Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus Or operator shall run a CBL from TD of the **8-5/8**" casing to surface after the second stage <u>BH to verify TOC.</u></u>

Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out. Operator must run one CBL per Well Pad. Operator may conduct a negative and positive pressure test during completion to remediate sustained casing pressure.

If cement does not reach surface, the next casing string must come to surface.

Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures.

- In <u>High Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 7. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

D. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the **10-3/4** surface casing shoe shall be **5000 (5M)** psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the **8-5/8** intermediate casing shoe shall be **5000 (5M)** psi.

Option 2:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the **13-3/8** surface casing shoe shall be **3000 (3M)** psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the **10-3/4** intermediate casing shoe shall be **5000 (5M)** psi.
- c. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the **8-5/8** inch intermediate casing shoe shall be **5000 (5M)** psi.

Option 3:

- a. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.

E. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR part 3170 Subpart 3171
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Eddy County

EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220,

BLM_NM_CFO_DrillingNotifications@BLM.GOV (575) 361-2822

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or

if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL
- All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.

- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been

done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)

- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170
 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Long Vo (LVO) 3/4/2025

(eceived by OCD: 5/5/2025 8:47:00 AM				ruge 34 0J.
Form 3160-5 UNITED STATES (June 2019) DEPARTMENT OF THE INTERIOR			FORM APPROVED OMB No. 1004-0137 Expires: October 31, 2021	
BUREAU OF LAND MANAGEMENT			5. Lease Serial No. NN	INM19609
Do not use th		ORTS ON WELLS to drill or to re-enter an APD) for such proposals.	6. If Indian, Allottee or Tribe Na	ame
SUBMIT IN TRIPLICATE - Other instructions on page 2			7. If Unit of CA/Agreement, Na	me and/or No.
1. Type of Well Image: Oil Well <tr< td=""><td colspan="2">8. Well Name and No. Steel guitar 35-26 Fed Com/452H</td></tr<>			8. Well Name and No. Steel guitar 35-26 Fed Com/452H	
2. Name of Operator WPX ENERGY PERMIAN LLC			9. API Well No. 3001555822	
3a. Address 3817 NW EXPRESSWAY STE 950, OKLAHOMA CITY, OK 73112		3b. Phone No. <i>(include area code)</i> (405) 949-2221	10. Field and Pool or Exploratory Area PURPLE SAGE/WOLFCAMP	
4. Location of Well (Footage, Sec., T.,R.,M., or Survey Description) SEC 26/T26S/R29E/NMP			11. Country or Parish, State EDDY/NM	
12. 0	HECK THE APPROPRIATE E	BOX(ES) TO INDICATE NATURE (OF NOTICE, REPORT OR OTHE	ER DATA
TYPE OF SUBMISSION		TYPE	E OF ACTION	
V Notice of Intent	Acidize	Deepen [Hydraulic Fracturing	Production (Start/Resume) Reclamation	Water Shut-Off Well Integrity
Subsequent Report	Casing Repair	New Construction	Recomplete Temporarily Abandon	Other
Final Abandonment Notice	Convert to Injection	n Plug Back	Water Disposal	
the proposal is to deepen direct the Bond under which the work completion of the involved ope	onally or recomplete horizontal will be perfonned or provide the ations. If the operation results in	lly, give subsurface locations and me ne Bond No. on file with BLM/BIA. I in a multiple completion or recomple	asured and true vertical depths of Required subsequent reports must tion in a new interval, a Form 316	and approximate duration thereof. If all pertinent markers and zones. Attach be filed within 30 days following 50-4 must be filed once testing has been e operator has detennined that the site

Devon Energy Production Co., L.P. (Devon) respectfully requests to add a 4 string casing design as contingency to the drill plan for the Steel Guitar 35-26 Fed Com 452H. Please see attachments.

14. I hereby certify that the foregoing is true and correct. Name (<i>Printed/Typed</i>) AMY BROWN / Ph: (405) 552-6137	Regulatory Professional Title					
(Electronic Submission)	Date	02/20/2025				
THE SPACE FOR FEDERAL OR STATE OFICE USE						
Approved by						
	Title	Date				
Conditions of approval, if any, are attached. Approval of this notice does not warran certify that the applicant holds legal or equitable title to those rights in the subject lewhich would entitle the applicant to conduct operations thereon.						
Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for ar any false, fictitious or fraudulent statements or representations as to any matter with		fully to make to any department or agency of the United States				

(Instructions on page 2)

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

Additional Information

Location of Well

0. SHL: NENW / 445 FNL / 2007 FWL / TWSP: 26S / RANGE: 29E / SECTION: 26 / LAT: 32.0185919 / LONG: -103.9566961 (TVD: 0 feet, MD: 0 feet) PPP: NENW / 100 FNL / 1580 FWL / TWSP: 26S / RANGE: 29E / SECTION: 26 / LAT: 32.0195538 / LONG: -103.9580179 (TVD: 9939 feet, MD: 9986 feet) PPP: NESW / 2478 FSL / 1614 FWL / TWSP: 26S / RANGE: 29E / SECTION: 26 / LAT: 32.011992 / LONG: -103.9583453 (TVD: 11200 feet, MD: 13800 feet) BHL: LOT 10 / 50 FSL / 1580 FWL / TWSP: 26S / RANGE: 29E / SECTION: 35 / LAT: 32.0002402 / LONG: -103.958858 (TVD: 11200 feet, MD: 18078 feet)

Connection Data Sheet

OD (in.)	WEIGHT (lbs./ft.)	WALL (in.)	GRADE	DRIFT (in.)	RBW%	CONNECTION
5.500	Nominal: 20.00 Plain End: 19.83	0.361	VST P110 EC	4.653	87.5	DWC/C-IS PLUS

PIPE PROPERTIES

Nominal OD	5.500	in.
Nominal ID	4.778	in.
Nominal Area	5.828	sq.in.
Grade Type	API 5CT; Vallourec Sourced Material Only	
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Tensile Strength	135	ksi
Yield Strength	729	klb
Ultimate Strength	787	klb
Min. Internal Yield	14,360	psi
High Collapse	12,090	psi

CONNECTION PROPERTIES

Semi-Premium T&C	
6.300	in.
4.778	in.
4.125	in.
9.250	in.
5.828	sq.in.
100.0%	of pipe
	6.300 4.778 4.125 9.250 5.828 100.0% 100.0%

CONNECTION PERFORMANCES 729 klb Yield Strength Parting Load 787 klb **Compression Rating** 729 klb Min. Internal Yield 14,360 psi *High Collapse* 12,090 psi Maximum Uniaxial Bend Rating 104.2 °/100 ft Ref String Length w 1.4 Design Factor 26,040 ft

FIELD TORQUE VALUES		
Min. Make-up Torque	16,600	ft.lbs
Opti. Make-up Torque	17,850	ft.lbs
Max. Make-up Torque	19,100	ft.lbs
Min. Shoulder Torque	1,660	ft.lbs
Max. Shoulder Torque	13,280	ft.lbs
Max. Delta Turn	0.200	Turns
+Max Operational Torque	24,300	ft.lbs
+Maximum Torsional Value (MTV)	26,730	ft.lbs

+Maximum Operational Torque and Maximum Torsional Value Only Valid with Vallourec P110EC Material

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

05/23/2023 4:11 PM

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234 VAM USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support E-mail: <u>tech.support@vam-usa.com</u>

DWC Connection Data Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- 2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- 4. DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- 8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torque is not to be exceeded.
- Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- 11. DWC connections will accommodate API standard drift diameters.
- 12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

05/23/2023 4:11 PM

ł

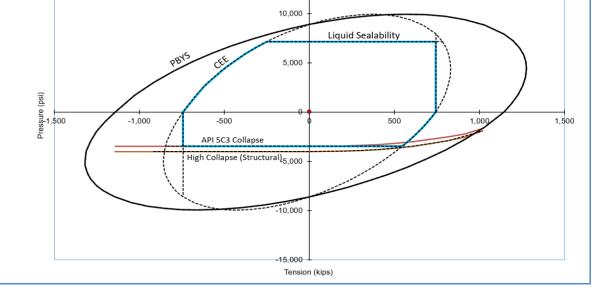
Issued on: 16 Dec. 2020 by Logan Van Gorp

Connection Data Sheet

OD	Weight (lb/ft)	Wall Th.	Grade	Alt. Drift:	Connection
8 5/8 in.	Nominal: 32.00	0.352 in.	P110EC	7.875 in.	VAM [®] SPRINT-FJ
	Plain End: 31.13		'	'	

PIPE PROPERTIES		
Nominal OD	8.625	in.
Nominal ID	7.921	in.
Nominal Cross Section Area	9.149	sqin.
Grade Type	Hig	h Yield
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Ultimate Tensile Strength	135	ksi

CONNECTION PRO	PERTIES	
Connection Type	Semi-Premium Inte	egral Flush
Connection OD (nom):	8.665	in.
Connection ID (nom):	7.954	in.
Make-Up Loss	2.614	in.
Critical Cross Section	6.038	sqin.
Tension Efficiency	65.0	% of pipe
Compression Efficiency	65.0	% of pipe
Internal Pressure Efficiency	80.0	% of pipe
External Pressure Efficiency	100	% of pipe


	CONNECTION PERFORMANCES		
-	Tensile Yield Strength	744	klb
	Compression Resistance	744	klb
	Max. Internal Pressure	7,150	psi
:	Structural Collapse Resistance	4,000	psi
	Max. Bending with Sealability	41	°/100ft
	Max. Bending with Sealability	10	°/100ft

TORQUE VALUES		
Min. Make-up torque	15,000	ft.lb
Opt. Make-up torque	16,500	ft.lb
Max. Make-up torque	18,000	ft.lb
Max. Torque with Sealability (MTS)	TBD	ft.lb

* 87.5% RBW

VAM® SPRINT-FJ is a semi-premium flush connection designed for shale applications, where maximum clearance and high tension

capacity are required for intermediate casing strings.

15,000

Do you need help on this product? - Remember no one knows VAM^{\circledast} like VAM^{\circledast}

- canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com
- uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

<u>10-3/4"</u>	<u>45.50#</u>	<u>0.400"</u>	<u>J-55</u>	
Dimensions ((Nominal)			
Outside Diameter Wall Inside Diameter			10.750 0.400 9.950	in. in. in.
Drift			9.875	in.
Weight, T&C Weight, PE			45.500 44.260	lbs/ft lbs/ft
<u>Performance</u>	e Properties			
Collapse			2090	psi
Internal Yield Pres	sure at Minimum Yield			
	PE		3580	psi
	STC		3580	psi
	BTC		3580	psi
Yield Strength, Pip	e Body		715	1000 lbs
Joint Strength				
	STC		493	1000 lbs
	BTC		796	1000 lbs
	BTC Special Clearance (11.25" OD Cplg)	506	1000 lbs

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

<u>13-3/8"</u> <u>54.50#</u> <u>.380</u> <u>J-55</u>

Dimensions (Nominal)

Outside Diameter Wall	13.375 0.380	in. in.
Inside Diameter	12.615	in.
Drift	12.459	in.
Weight, T&C	54.500	lbs/ft
Weight, PE	52.790	lbs/ft

Performance Ratings, Minimum

Collapse, PE	1130	psi
Internal Yields Pressure		
PE	2730	psi
STC	2730	PSI
BTC	2730	psi
Yield Strength, Pipe Body	853	1000 lbs
Joint Strength, STC	514	1000 lbs
Joint Strength, BTC	909	1000 lbs

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

1. Geologic Formations

TVD of target	11200	Pilot hole depth	14050
MD at TD:	18078	Deepest expected fresh water	

Basin

Dubin			
	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	386		
Salt	1261		
Base of Salt	2967		
Delaware	2967		
Cherry Canyon	3981		
Brushy Canyon	5070		
1st Bone Spring Lime	6701		
Bone Spring 1st	7601		
Bone Spring 2nd	8224		
3rd Bone Spring Lime	8687		
Bone Spring 3rd	9527		
Wolfcamp	9939		

*H2S, water flows, loss of circulation, abnormal pressures, etc.

		Wt			Casing	Interval	Casing Interval	
Hole Size	Csg. Size	(PPF)	Grade	Conn	From (MD)	To (MD)	From (TVD)	To (TVD)
14 3/4	10 3/4	45 1/2	J-55	BTC	0	411	0	411
9 7/8	8 5/8	32	P110	Sprint FJ	0	10574	0	10574
7 7/8	5 1/2	20	P110	DWC / C-IS+	0	18078	0	11200

2. Casing Program (Primary Design)

•All casing strings will be tested in accordance with 43 CFR 3172. Must have table for contingency casing.

3. Cementing Program

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures.

Casing	# Sks	тос	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	262	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	361	Surf	13.0	2.3	2nd State: Bradenhead Squeeze - Lead: Class C Cement + additives
Int I	632	5112	13.2	1.44	Tail: Class H / C + additives
Production	117	8674	9	3.27	Lead: Class H /C + additives
Production	980	10674	13.2	1.44	Tail: Class H / C + additives

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Prod	10%

2. Casing	Program	(Secondary	Design)
- Cubing	1 I USI um	(Decondary	Design)

Hole Size	Csg. Size	Wt (PPF)	Grade	Conn	Top (MD)	Bottom (MD)	Top (TVD)	Bottom (TVD)
17 1/2	13 3/8	54.5	J-55	BTC	0.0	800 MD	0	800 TVD
12 1/4	10 3/4	45.5	J-55	BTC SCC	0.0	3150 MD	0	3150 TVD
9 7/8	8 5/8	32.0	P110	Sprint FJ	0	10574 MD	0	10574 TVD
7 7/8	5 1/2	20.0	P110	DWC / C-IS+	0	18078 MD	0	11200 TVD

•All casing strings will be tested in accordance with 43 CFR 3172. Must have table for contingency casing.

• The Rustler top will be validated via drilling parameters (i.e. reduction in ROP), and the surface casing setting depth will be revised accordingly. In addition, surface casing will be set a minimum of 25' above the top of the salt.

3. Cementing Program (Secondary Design)

Casing	# Sks	TOC	Wt. (lb/gal)	Yld (ft3/sack)	Slurry Description
Surface	617	Surf	13.2	1.44	Lead: Class C Cement + additives
Int	200	Surf	9	3.27	Lead: Class C Cement + additives
Int	101	2650	13.2	1.44	Tail: Class H / C + additives
Int 1	205	Surf	9	3.27	Lead: Class C Cement + additives
Int I	637	5070	13.2	1.44	Tail: Class H / C + additives
Int 1	466	Surf	9	1.44	Squeeze Lead: Class C Cement + additives
Intermediate	205	Surf	9	3.27	Lead: Class C Cement + additives
Squeeze	637	5070	13.2	1.44	Tail: Class H / C + additives
Production	117	8674	9	3.27	Lead: Class H /C + additives
FIGULEUOI	980	10674	13.2	1.44	Tail: Class H / C + additives

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures

Casing String	% Excess
Surface	50%
Intermediate and Intermediate 1	30%
Intermediate 1 (Two Stage)	25%
Prod	10%

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		~	Tested to:	
			Anı	nular	X	50% of rated working pressure	
Int 1	13-5/8"	5M		d Ram	Х		
	15 5/0	5101	-	Ram		5M	
			Doub	le Ram	X	5111	
			Other*				
			Annular (5M)		Х	50% of rated working pressure	
Production	13-5/8"	5M	Blind Ram		Х		
Troduction	15-5/0	5101	1	Ram		- 5M	
				le Ram	X	5101	
			Other*				
			Annular (5M)				
			Blind Ram				
			Pipe Ram				
			Double Ram				
			Other*				
N A variance is requested for					attached for s	schematic.	
Y A variance is requested to r	un a 5 M a	nnular on a	10M system				

4. Pressure Control Equipment (Three String Design)

.

BOP installed and tested before drilling which hole?	Size?	Min. Require d WP	Туре		~	Tested to:				
			Anı	nular	Х	50% of rated working pressure				
Int	13-5/8"	5M	Blind	l Ram	Х					
Int	15-5/8	JIVI	Pipe	Ram		5M				
			Doub	le Ram	Х	JIVI				
			Other*							
	13-5/8"		Annul	ar (5M)	X	100% of rated working pressure				
Int 1		5M	Blind Ram		Х					
Int I		5111	JIVI	JIVI	JIVI	5111	5111	Pipe	Ram	
			Doub	le Ram	Х	5101				
			Other*							
			Annul	ar (5M)	X	100% of rated working pressure				
Production	13-5/8"	5M	Bline	l Ram	Х					
Troduction	15-5/8	JIVI	Pipe	Ram		5M				
			Doub	le Ram	Х	JIVI				
			Other*			[
N A variance is requested for the use of a diverter on the surface casing. See attached for schematic.										
N A variance is requested to	run a 5 M an	nular on a	10M system	1						

4. Pressure Control Equipment (Four String Design)

5. Mud Program

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging,	Coring and Testing
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the
Х	Completion Rpeort and sbumitted to the BLM.
	No logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain.
	Coring? If yes, explain.

Additiona	al logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
Х	CBL	Production casing
Х	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	6115
Abnormal temperature	No
\mathbf{M}^{\prime}	and Describe I act simulation material/among/and account account

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

 Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of 43 CFR 3176. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

 N
 H2S is present

Y H2S plan attached.

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (43 CFR 3172, all COAs and NMOCD regulations).

 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.

- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments

X Directional Plan Other, describe

Steel Guitar 35-26 Fed Com 452H

10 3/4	51	urface csg in a	14 3/4	inch hole.		Design	Factors			Surface		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	45.50		j 55	btc	38.25	10.88	0.62	411	20	1.04	20.54	18,701
"B"				btc				0				0
	w/8.4	4#/g mud, 30min Sfc Csg Test	t psig: 1,500	Tail Cmt	does not	circ to sfc.	Totals:	411				18,701
omparison o		Minimum Required Cem										
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd				Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cpl
14 3/4	0.5563	262	377	229	65	9.00	3441	5M				1.50
urst Frac Grad	ient(s) for Segn	nent(s) A, B = , b All > 0.	.70, OK.									
					· _ · _ · _ ·							• • • •
8 5/8		sing inside the	10 3/4	- -		Design			-	Int 1	-	
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weigh
"A"	32.00		p 110	vam sprint fj	2.20	0.69	1.17	10,574	1	1.96	1.16	,
"B"								0				0
	w/8.4	4#/g mud, 30min Sfc Csg Test					Totals:	10,574				338,36
				ded to achieve a top of	0	ft from su		411				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cp
9 7/8	0.1261	632	910	1337	-32	10.50	3645	5M				0.61
V Tool(s):			5070				sum of sx	<u>Σ</u> CuFt				Σ%exces
y stage % :		31	29				993	1740				30
	t yld > 1.35											
		sing inside the	8 5/8			Design Fa	<u>ctors</u>			Prod 1		
ass 'C' tail cm Tail cmt 5 1/2		sing inside the Grade	8 5/8	Coupling	Joint	<u>Design Fa</u> Collapse	<u>ctors</u> Burst	Length	B@s	Prod 1 a-B	a-C	Weigh
Tail cmt 5 1/2	ca	•	85/8 p 110	Coupling dwc/c is+	Joint 3.25			Length 18,078	B@s 2		a-C 3.32	
Tail cmt 5 1/2 Segment	ca: #/ft	•				Collapse	Burst	-		a-B		
Tail cmt 5 1/2 Segment "A"	ca: #/ft	•				Collapse	Burst	18,078		a-B		361,56
Tail cmt 5 1/2 Segment "A" "B"	ca: #/ft	•				Collapse	Burst	18,078 0		a-B		361,56 0
Tail cmt 5 1/2 Segment "B" "C"	ca: #/ft 20.00	•	p 110			Collapse	Burst	18,078 0 0		a-B		361,56 0 0 0
Tail cmt 5 1/2 Segment "B" "C"	ca: #/ft 20.00	Grade 4#/g mud, 30min Sfc Csg Test	p 110 : psig: 2,464			Collapse	Burst 2.35 Totals:	18,078 0 0 0		a-B	3.32	361,56 0 0 0
Tail cmt 5 1/2 Segment "B" "C"	ca: #/ft 20.00	Grade 4#/g mud, 30min Sfc Csg Test The cement V	p 110 p p 110 p psig: 2,464 volume(s) are inten	dwc/c is+	3.25	Collapse 1.98	Burst 2.35 Totals:	18,078 0 0 18,078 200		a-B	3.32	361,560 0 0 361,560 overlap.
Tail cmt 5 1/2 Segment "A" "B" "C" "D"	ca: #/ft 20.00 w/8.	Grade 4#/g mud, 30min Sfc Csg Test	p 110 : psig: 2,464	dwc/c is+	3.25	Collapse 1.98 ft from su	Burst 2.35 Totals: Inface or a	18,078 0 0 0 18,078		a-B	3.32	361,560 0 0 361,560 overlap. Min Dis
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8	ca: #/ft 20.00 w/8. Annular Volume 0.1733	Grade 4#/g mud, 30min Sfc Csg Test The cement v 1 Stage	p 110 p p 110 p p p 110 p p p p p p p p p p p p p p p p p p p	dwc/c is+ ded to achieve a top of Min	3.25 10374 1 Stage	Collapse 1.98 ft from su Drilling	Burst 2.35 Totals: Irface or a Calc	18,078 0 0 18,078 200 Req'd		a-B	3.32	361,560 0 0 361,560 overlap. Min Dis
Tail cmt Tail cmt 51/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 Hass 'C' tail cm	ca: #/ft 20.00 w/8. Annular Volume 0.1733	Grade 4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx	p 110 : psig: 2,464 volume(s) are inten 1 Stage CuFt Cmt	dwc/c is+ ded to achieve a top of Min Cu Ft	3.25 10374 1 Stage % Excess	Collapse 1.98 ft from su Drilling Mud Wt	Burst 2.35 Totals: Irface or a Calc	18,078 0 0 18,078 200 Req'd		a-B	3.32	0 0 361,560 overlap. Min Dis Hole-Cpl
Tail cmt Tail cmt 51/2 Segment "A" "B" "C" "D" Hole Size 7 7/8	ca: #/ft 20.00 w/8. Annular Volume 0.1733	Grade 4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx	p 110 psig: 2,464 volume(s) are inten 1 Stage CuFt Cmt 1794	dwc/c is+ ded to achieve a top of Min Cu Ft	3.25 10374 1 Stage % Excess	Collapse 1.98 ft from su Drilling Mud Wt 10.50	Burst 2.35 Totals: urface or a Calc MASP	18,078 0 0 18,078 200 Req'd	2	a-B 3.94	3.32	361,560 0 0 361,560 overlap. Min Dis Hole-Cpl
Tail cmt Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 lass 'C' tail cm #N/A 0	ca: #/ft 20.00 w/8. Annular Volume 0.1733 t yld > 1.35	Grade 4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx 1097	p 110 : psig: 2,464 volume(s) are inten 1 Stage CuFt Cmt	dwc/c is+ ded to achieve a top of Min Cu Ft 1336	3.25 10374 1 Stage % Excess 34	Collapse 1.98 ft from su Drilling Mud Wt 10.50 Design 1	Burst 2.35 Totals: Inface or a Calc MASP Factors	18,078 0 0 18,078 200 Req'd BOPE	2	a-B 3.94	3.32 ng>	361,56 0 0 361,56 overlap. Min Dis Hole-Cpl 0.79
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 lass 'C' tail cm #N/A 0 Segment	ca: #/ft 20.00 w/8. Annular Volume 0.1733	Grade 4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx	p 110 psig: 2,464 volume(s) are inten 1 Stage CuFt Cmt 1794	dwc/c is+ ded to achieve a top of Min Cu Ft 1336 Coupling	3.25 10374 1 Stage % Excess	Collapse 1.98 ft from su Drilling Mud Wt 10.50	Burst 2.35 Totals: urface or a Calc MASP	18,078 0 0 18,078 200 Req'd BOPE	2	a-B 3.94	3.32	361,56 0 0 361,56 overlap. Min Dis Hole-Cpl 0.79
Tail cmt Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 ass 'C' tail cm #N/A 0 Segment "A"	ca: #/ft 20.00 w/8. Annular Volume 0.1733 t yld > 1.35	Grade 4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx 1097	p 110 psig: 2,464 volume(s) are inten 1 Stage CuFt Cmt 1794	dwc/c is+ ded to achieve a top of Min Cu Ft 1336 Coupling 0.00	3.25 10374 1 Stage % Excess 34	Collapse 1.98 ft from su Drilling Mud Wt 10.50 Design 1	Burst 2.35 Totals: Inface or a Calc MASP Factors	18,078 0 0 18,078 200 Req'd BOPE	2	a-B 3.94	3.32 ng>	361,56 0 0 361,56 overlap. Min Dis Hole-Cp 0.79 Weigh 0
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 ass 'C' tail cm #N/A 0 Segment	ca: #/ft 20.00 w/8. Annular Volume 0.1733 tyld > 1.35 #/ft	Grade 4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx 1097 Grade	p 110 p 110 p p p p p p p p p p p p p p p p p p p	dwc/c is+ ded to achieve a top of Min Cu Ft 1336 Coupling	3.25 10374 1 Stage % Excess 34	Collapse 1.98 ft from su Drilling Mud Wt 10.50 Design 1	Burst 2.35 Inface or a Calc MASP Factors Burst	18,078 0 0 18,078 200 Req'd BOPE	2	a-B 3.94	3.32 ng>	361,56 0 0 361,56 overlap. Min Dis Hole-Cp 0.79 Weigh 0 0
Tail cmt Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 ass 'C' tail cm #N/A 0 Segment "A"	ca: #/ft 20.00 w/8. Annular Volume 0.1733 tyld > 1.35 #/ft	Grade 4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx 1097 Grade 4#/g mud, 30min Sfc Csg Test	p 110 p 110 p p 110 p p 110 p p 110 t psig: 2,464 volume(s) are inten 1 Stage CuFt Cmt 1794 5 1/2	dwc/c is+ ded to achieve a top of Min Cu Ft 1336 Coupling 0.00 0.00	3.25 10374 1 Stage % Excess 34 #N/A	Collapse 1.98 ft from su Drilling Mud Wt 10.50 <u>Design I</u> Collapse	Burst 2.35 Totals: Inface or a Calc MASP Factors Burst Totals:	18,078 0 0 18,078 200 Req'd BOPE	2	a-B 3.94	3.32 ng> a-C	361,56 0 0 361,56 overlap. Min Dis Hole-Cp 0.79 Weigh 0 0
Tail cmt Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 lass 'C' tail cm #N/A 0 Segment "A" "B"	ca: #/ft 20.00 w/8. Annular Volume 0.1733 tyld > 1.35 #/ft w/8.	Grade 4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx 1097 Grade 4#/g mud, 30min Sfc Csg Test Cmt vol ca	p 110 p 110 p p 110 p p 110 t psig: 2,464 volume(s) are inten 1 Stage CuFt Cmt 1794 5 1/2 t psig: alc below includes 1	dwc/c is+ ded to achieve a top of Min Cu Ft 1336 Coupling 0.00 0.00 this csg, TOC intended	3.25 10374 1 Stage % Excess 34 #N/A #N/A	Collapse 1.98 ft from su Drilling Mud Wt 10.50 <u>Design I</u> Collapse	Burst 2.35 Inface or a Calc MASP Factors Burst	18,078 0 0 18,078 200 Req'd BOPE	2	a-B 3.94	3.32 ng> a-C	361,56 0 0 361,56 overlap. Min Dis Hole-Cp 0.79 Weigh 0 0 0 0 overlap.
Tail cmt Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 lass 'C' tail cm #N/A 0 Segment "A" "B" Hole	ca: #/ft 20.00 w/8. Annular Volume 0.1733 tyld > 1.35 #/ft w/8. Annular	Grade 4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx 1097 Grade 4#/g mud, 30min Sfc Csg Test Cmt vol cc 1 Stage	p 110 p	dwc/c is+ ded to achieve a top of Min Cu Ft 1336 Coupling 0.00 0.00 this csg, TOC intended Min	3.25 10374 1 Stage % Excess 34 #N/A 1 Stage	Collapse 1.98 ft from su Drilling Mud Wt 10.50 <u>Design I</u> Collapse ft from su Drilling	Burst 2.35 Totals: Inface or a Calc MASP Factors Burst Totals: Inface or a Calc	18,078 0 0 18,078 200 Req'd BOPE Length 0 0 0 0 0 4 N/A Req'd	2	a-B 3.94	3.32 ng> a-C	361,56 0 0 361,56 overlap. Min Dis Hole-Cp 0.79 Weigh 0 0 0 overlap. Min Dis
Tail cmt Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 Iass 'C' tail cm #N/A 0 Segment "A" "B"	ca: #/ft 20.00 w/8. Annular Volume 0.1733 tyld > 1.35 #/ft w/8.	Grade 4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx 1097 Grade 4#/g mud, 30min Sfc Csg Test Cmt vol ca	p 110 p 110 p p 110 p p 110 t psig: 2,464 volume(s) are inten 1 Stage CuFt Cmt 1794 5 1/2 t psig: alc below includes 1	dwc/c is+ ded to achieve a top of Min Cu Ft 1336 Coupling 0.00 0.00 this csg, TOC intended	3.25 10374 1 Stage % Excess 34 #N/A #N/A	Collapse 1.98 ft from su Drilling Mud Wt 10.50 <u>Design I</u> Collapse	Burst 2.35 Inface or a Calc MASP Factors Burst	18,078 0 0 18,078 200 Req'd BOPE	2	a-B 3.94	3.32 ng> a-C	361,560 0 361,560 overlap. Min Dis Hole-Cpl 0.79 Weigh 0 0

.

Steel Guitar 35-26 Fed Com 452H

13 3/8	surf	face csg in a	17 1/2	inch hole.		Design I	-actors			Surface		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	54.50		j 55	btc	38.09	5.88	1.59	411	15	2.66	11.11	22,400
"B"				btc				0				0
	w/8.4#/	g mud, 30min Sfc Csg Test	psig: 1,500	Tail Cmt	does not	circ to sfc.	Totals:	411				22,400
Comparison of	f Proposed to Min	nimum Required Cem	ent Volumes									
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
17 1/2	0.6946	617	888	285	211	9.00	1025	2M				1.56
						. <u> </u>						
10 3/4	casin	ig inside the	13 3/8	_		Design I	-actors			Int 1		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
" Δ "	45 50		i 55	htc scc	3 53	1 2 2	0.62	2 150	2	1 0 4	2.04	1/3 325

"A"	45.50		J 55	DIC SCC	3.53	1.22	0.62	3,150	2	1.04	2.04	143,325
"B"								0				0
í	w/8.4#/	g mud, 30min Sfc Csg Test	psig: 1,131				Totals:	3,150				143,325
		The cement ve	olume(s) are intended	to achieve a top of	0	ft from s	urface or a	411				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
12 1/4	0.1882	301	799	613	30	10.50	3441	5M				0.50
r D V Tool(s):							sum of sx	<u>Σ</u> CuFt				Σ%excess
t by stage % :		#VALUE!	#VALUE!				301	799				30
Class 'C' tail cn	nt yld > 1.35											1

Burst Frac Gradient(s) for Segment(s): A, B, C, D = 1.14, b, c, d All > 0.70, OK.

8 5/8	casing	g inside the	10 3/4	_		Design Fa	<u>ctors</u>			Int 2		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	32.00		p 110	vam sprint fj	2.20	0.69	1.17	10,574	1	1.96	1.16	338,36
"B"								0				0
"C"								0				0
"D"								0				0
	w/8.4#/g	mud, 30min Sfc Csg Tes	t psig: 391				Totals:	10,574				338,36
		The cement	volume(s) are intend	ed to achieve a top of	0	ft from su	rface or a	3150				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cp
	0.1261	842	1588	1359	17	10.50	3645	5M				0.61
9 7/8	0.1201											
9 7/8		ng Depths for D V To	ol(s): 5070				sum of sx	<u>Σ</u> CuFt				<u>Σ%exce</u>
	Settin s cmt by stage:	ng Depths for D V To 129	ol(s): 5070 1				sum of sx 1308	<u>Σ CuFt</u> 2259				<u>Σ%exce</u> 66
% excess lass 'C' tail cmt Tail cmt	Settin s cmt by stage: t yld > 1.35	129	1				1308					66
% excess lass 'C' tail cmt Tail cmt 5 1/2	Settin s cmt by stage: t yld > 1.35 casing	129 g inside the	ol(s): 5070 1 8 5/8			Design I	1308	2259		Prod 1		66
% excess lass 'C' tail cmt Tail cmt 5 1/2 Segment	Settin s cmt by stage: t yld > 1.35 casing #/ft	129	1 8 5/8	Coupling	Joint	Collapse	1308 Factors Burst	2259 Length	B@s	a-B	a-C	Weigh
% excess lass 'C' tail cmt Tail cmt 5 1/2 Segment "A"	Settin s cmt by stage: t yld > 1.35 casing	129 g inside the	1	 Coupling dwc/c is+	Joint 3.25		1308	2259 Length 18,078	B@s 2		a-C 3.32	66 Weigh 361,56
% excess lass 'C' tail cmt Tail cmt 5 1/2 Segment	Settin s cmt by stage: t yld > 1.35 casing #/ft 20.00	129 g inside the Grade	1 8 5/8 p 110			Collapse	1308 Factors Burst 2.35	2259 Length 18,078 0	-	a-B		66 Weigh 361,56 0
% excess lass 'C' tail cmt Tail cmt 5 1/2 Segment "A"	Settin s cmt by stage: t yld > 1.35 casing #/ft 20.00	129 g inside the Grade mud, 30min Sfc Csg Tes	1 8 5/8 p 110 t psig: 2,464	dwc/c is+	3.25	Collapse 1.98	1308 Factors Burst 2.35 Totals:	2259 Length 18,078 0 18,078	-	a-B	3.32	66 Weigh 361,56 0 361,56
% excess lass 'C' tail cmt Tail cmt 5 1/2 Segment "A" "B"	Settin s cmt by stage: t yld > 1.35 casing #/ft 20.00 w/8.4#/g	129 g inside the Grade mud, 30min Sfc Csg Tes The cement	1 8 5/8 p 110 t psig: 2,464 volume(s) are intend	dwc/c is+	3.25 10374	Collapse 1.98 ft from su	1308 Factors Burst 2.35 Totals: rface or a	2259 Length 18,078 0 18,078 200	-	a-B	3.32	66 Weigh 361,56 0 361,56 overlap.
% excess lass 'C' tail cmt Tail cmt 5 1/2 Segment "A" "B" Hole	Settin s cmt by stage: t yld > 1.35 <i>casing</i> #/ft 20.00 w/8.4#/g Annular	129 g inside the Grade mud, 30min Sfc Csg Tes The cement 1 Stage	1 8 5/8 p 110 t psig: 2,464 volume(s) are intend 1 Stage	dwc/c is+ led to achieve a top of Min	3.25 10374 1 Stage	Collapse 1.98 ft from su Drilling	1308 Factors Burst 2.35 Totals: rface or a Calc	2259 Length 18,078 0 18,078 200 Req'd	-	a-B	3.32	66 Weigh 361,56 0 361,56 overlap. Min Dis
% excess lass 'C' tail cmt Tail cmt 5 1/2 Segment "A" "B"	Settin s cmt by stage: t yld > 1.35 casing #/ft 20.00 w/8.4#/g	129 g inside the Grade mud, 30min Sfc Csg Tes The cement	1 8 5/8 p 110 t psig: 2,464 volume(s) are intend	dwc/c is+	3.25 10374	Collapse 1.98 ft from su	1308 Factors Burst 2.35 Totals: rface or a	2259 Length 18,078 0 18,078 200	-	a-B	3.32	66 Weigh 361,56 0 361,56 overlap.

.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
WPX Energy Permian, LLC	246289
Devon Energy - Regulatory	Action Number:
Oklahoma City, OK 73102	439096
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By		Condition Date
matthew.gomez	Any previous COA's not addressed within the updated COA's still apply.	4/3/2025

Page 51 of 51