Form 3160-3 FORM APPROVED OMB No. 1004-0137 (June 2015) Expires: January 31, 2018 **UNITED STATES** DEPARTMENT OF THE INTERIOR 5. Lease Serial No. BUREAU OF LAND MANAGEMENT APPLICATION FOR PERMIT TO DRILL OR REENTER 6. If Indian, Allotee or Tribe Name 7. If Unit or CA Agreement, Name and No. DRILL REENTER 1a. Type of work: 1b. Type of Well: Oil Well Gas Well Other 8. Lease Name and Well No. 1c. Type of Completion: Hydraulic Fracturing Single Zone Multiple Zone 2. Name of Operator 9. API Well No. 30-005-64406 3a. Address 3b. Phone No. (include area code) 10. Field and Pool, or Exploratory 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec., T. R. M. or Blk. and Survey or Area At surface At proposed prod. zone 14. Distance in miles and direction from nearest town or post office* 12. County or Parish 13. State 15. Distance from proposed* 16. No of acres in lease 17. Spacing Unit dedicated to this well location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any) 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file to nearest well, drilling, completed, applied for, on this lease, ft. 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see 2. A Drilling Plan. Item 20 above). 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification. SUPO must be filed with the appropriate Forest Service Office). 6. Such other site specific information and/or plans as may be requested by the 25. Signature Name (Printed/Typed) Date Title Approved by (Signature) Name (Printed/Typed) Date Title Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction

(Continued on page 2)

*(Instructions on page 2)

<u>C-10</u>	V	<u> (1/2025 9:4)</u>	State of New Mexico						Page Revised July 9, 202		
-			E		linerals & Natural						
Submit Electronically Via OCD Permitting			OIL	CONSERVAT	ION DIVISIO	N		✓ Initial Subr	nittal		
Via O	via OCD i crimitanig							Submittal Type:	☐ Amended F	Report	
								Type.	☐ As Drilled	•	
			Ļ		WELL LOCATI	ON INFORMATI	ON		ļ		
	umber 5-64406		Pool Code	527 [°]	70	ool Name ound Tank; San	Andres				
Proper	rty Code		Property 1	Viama	JMMERSIDE FE		Aluics		Well Number	2H	
33727 OGRI		37	Operator I	Name	ACK ENERGY C		J		Ground Level	4049.1	
Surfac		State Fee			HCK LIVEROT C		:: □State □Fee □	Tribal ☑ Fed	Elevation eral		
* * * *	la :	T	T 5	T .	•	ce Location	T	1 -	5. 1		
UL L	Section 16	Township 15 S	Range 30 E	Lot	Ft. from N/S 1650 SOUTH	Ft. from E/W 707 WEST	Latitude 33.0132191°	_	gitude .9364433°W	County CHAVES	
					Bottom	Hole Location					
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Long	gitude	County	
	18	15 S	30 E	3	1650 SOUTH	1 WEST	33.0132437°	N 103	.9733321°W	CHAVES	
Dadio	ated Acres	Infill or Def	ining Wall	Defini	ng Well API	Overlanning Spe	acing Unit (Y/N)	Consolidati	on Code		
320	ated Acres	mini or Der	ming wen	Demin	ig weii Afi	Overlapping Spa	acing Omi (1/N)	Consolidati	on Code		
Order	Numbers.	u.				Well setbacks ar	re under Common (Ownership: [∃Yes □No		
					Kick Of	f Point (KOP)					
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Long	gitude	County	
L	16	15 S	30 E		1650 SOUTH	707 WEST	33.0132191°	N 103	.9364433°W	CHAVES	
		<u>.</u>			First Tal	ke Point (FTP)		l			
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude		gitude	County	
I	17	15 S	30 E		1650 SOUTH	100 EAST	33.0132403°	N 103	.9390754°W	CHAVES	
		1	1			e Point (LTP)					
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	_	gitude	County	
	18	15 S	30 E	3	1650 SOUTH	100 WEST	33.0132444°	N 103	.9730092°W	CHAVES	
Unitiz	ed Area or A	rea of Uniform	Interest	Spacin	g Unit Type ☑Horizo	ntal Vertical	Grou	nd Floor Elev	vation:		
OPER	ATOR CERT	TIFICATIONS				SURVEYOR CER	TIFICATIONS				
			ntained herein	is true and c	omplete to the best			un on this ul-	t was plotted from 4	ield notes of action	
ofmy k	nowledge and b	pelief, and, if the	well is a vertica	ıl or direction	nal well, that this terest in the land	I hereby certify that is surveys made by me of my belief.					
		d bottom hole loc contract with an			this well at this run leased mineral			N F JA	Pur s	~	
interes		tary pooling agre			ing order here to fore			OU HE			
emerea	i vy ine uivisi01	ι.				`			CHECK TH	7	

If this well is a horizontal well, I further certify that this organization has received the consent of at least one lessee or owner of a working interest or unleased mineral interest in each tract (in the target pool or formation) in which any part of the well's completed

interval with be tocated or obtained a comp					
Deana Weaver	11/4/2024				
Signature	Date				
Deana Weaver					
Printed Name					
dweaver@mec.com					

Signature and Seal of Professional Survey

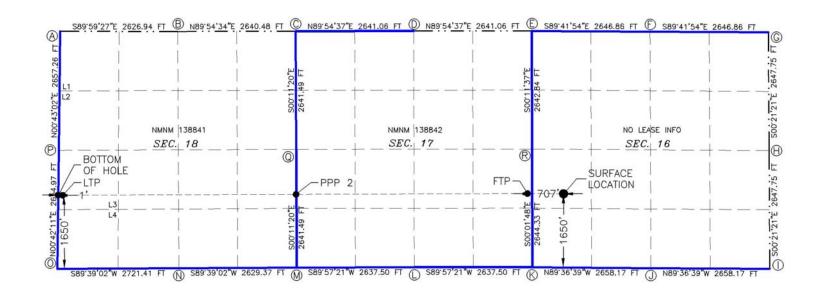
FILIMON F. JARAMILLO

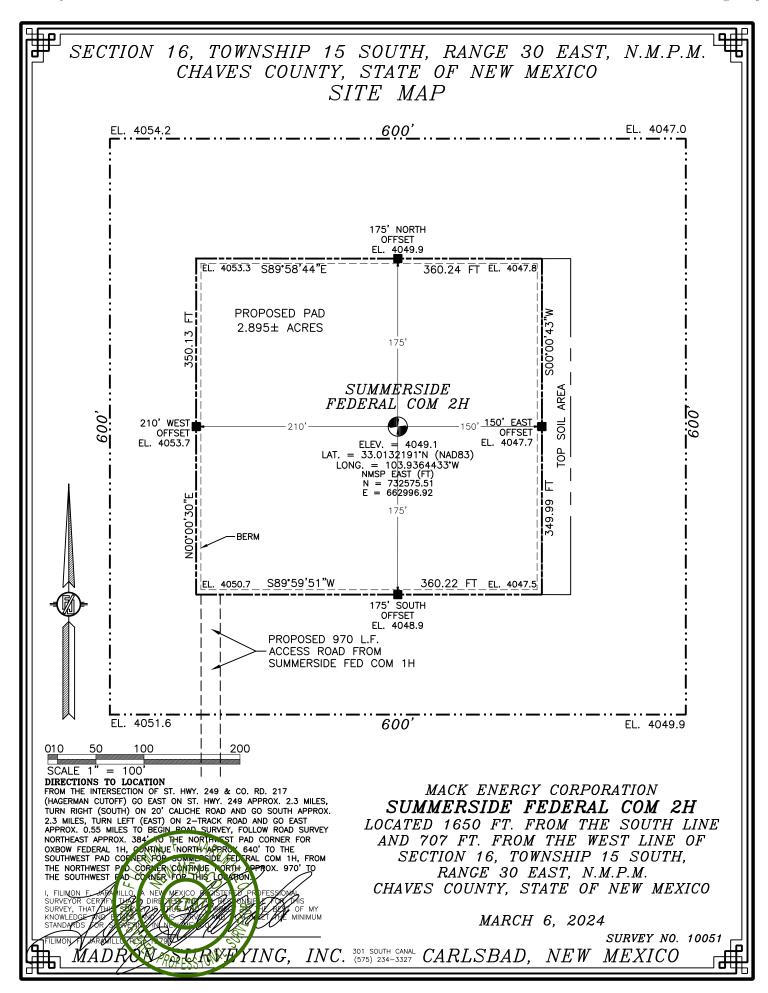
CertificateNumber Dateof Survey

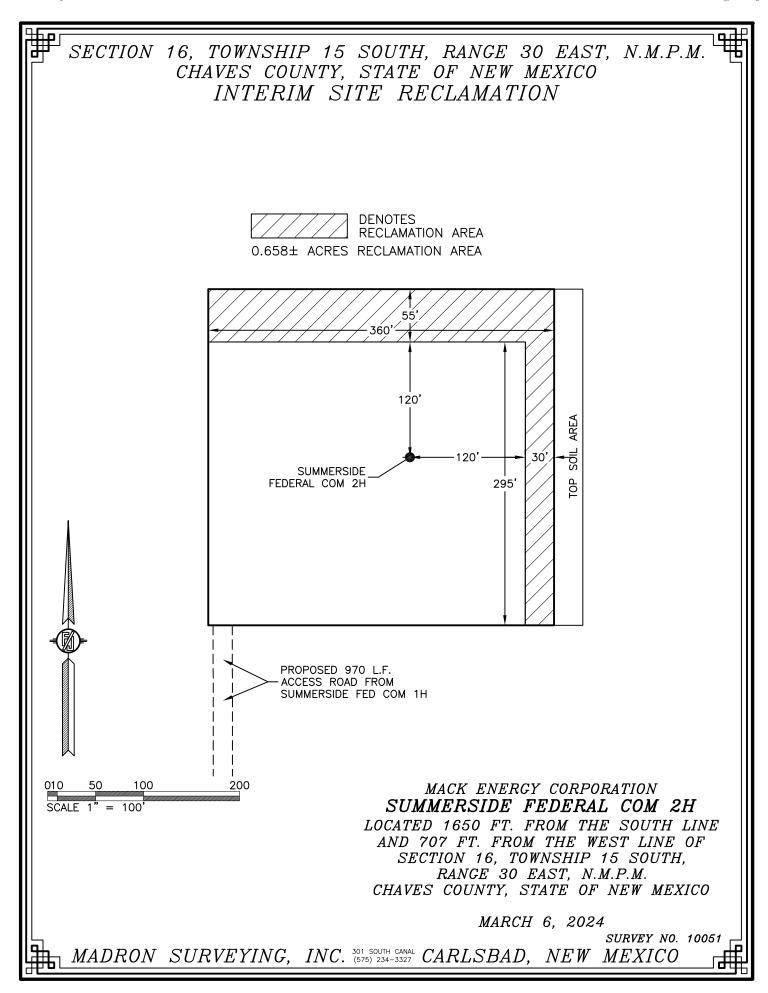
PLS 12797 MARCH 6, 2024

SURVEY NO. 10051

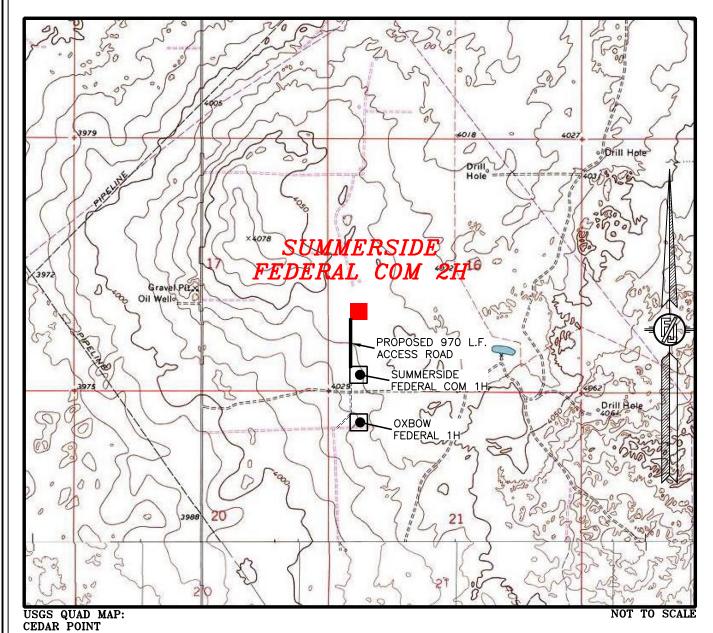
Note: No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.


Email Address


This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is closest to any outer boundary of the tract.


Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed, contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

SUMMERSIDE FEDERAL COM 2H EL. = 4049.1


```
CORNER COORDINATES TABLE
                                                                        NAD 83 NMSP EAST
  GEODETIC COORDINATES
                                                                          736204.45
                                                                                     E.= 651733.81
                                                                      N =
   NAD 83 NMSP EAST
                                     LAST TAKE POINT
                                                                          736204.03
                                                                      N.=
                                                                                      E.=
                                                                                          654360.07
    SURFACE LOCATION
                                   1650' FSL, 100' FWL
                                                                          736208.21
736212.34
                                                                 C
                                                                                          656999.86
                                                                      N.=
                                                                                      F.=
      N.= 732575.51
                                      N.= 732544.34
                                                                   - N.=
                                                                                      E.=
                                                                                          659640.23
      E.= 662996.92
                                      E.= 651788.21
                                                                      N.=
                                                                          736216.48
                                                                                      E.=
                                                                                          662280.61
  LAT. = 33.0132191*N
                                   LAT. = 33.0132444*N
                                                                   -N=
                                                                          736202.55
                                                                                          664926.74
                                                                                      E.=
                                                                 G
                                                                      N.=
                                                                          736188.61
                                                                                      E.=
                                                                                          667572.89
 LONG. = 103.9364433°W
                                 LONG. = 103.9730092°W
                                                                      N_{\cdot} =
                                                                          733541.59
                                                                                      E.=
                                                                                          667589.32
                                                                   - N.= 730894.59
                                                                                      E.=
                                                                                          667605.76
     KICK OFF POINT
                                     BOTTOM OF HOLE
                                                                   - N.=
                                                                          730912.64
                                                                                      E.=
                                                                                          664948.34
   1650' FSL, 707' FWL
                                    1650' FSL, 1' FWL
                                                                 K - N.=
                                                                          730930.68
                                                                                      F.=
                                                                                          662290.92
      N.= 732575.51
                                      N.= 732543.74
                                                                   - N.=
                                                                          730928.65
                                                                                      E.=
                                                                                          659654.10
      E.= 662996.92
                                                                 M
                                                                      N.=
                                                                           730926.62
                                                                                      E.=
                                                                                          657017.28
                                      E.= 651689.23
                                                                   - N.=
                                                                          730910.60
                                                                 N
                                                                                          654388.64
                                                                                      E.=
   LAT. =
          33.0132191°N
                                   LAT. =
                                           33.0132437'N
                                                                 0
                                                                   - N.=
                                                                          730894.01
                                                                                          651667.99
 LONG. = 103.9364433°W
                                                                                      F.=
                                 LONG. = 103.9733321°W
                                                                          733548.09
733567.42
                                                                   - N.=
                                                                                          651700.55
                                                                                      E.=
                                                                 Q
                                                                     N.=
                                                                                      E.=
                                                                                          657008.57
FIRST TAKE POINT (PPP 1)
1650' FSL, 100' FEL
                                          PPP 2
                                                                      N.=
                                                                          733574.33
                                                                                      E.=
                                                                                          662289.53
                                    1636
                                           FSL. O' FWL
                                           732562.34
      N.= 732580.17
                                      N.=
                                                                              LEGEND
      E.= 662190.08
                                      E.= 657011.89
                                                                                     SECTION LINE
   LAT. = 33.0132403°N
                                   LAT. = 33.0132435*N
                                                                                     QUARTER LINE
                                 LONG. = 103.9559681°W
 LONG. = 103.9390754°W
                                                                                     LEASE LINE
                                                                                     WELL PATH
```


SECTION 16, TOWNSHIP 15 SOUTH, RANGE 30 EAST, N.M.P.M. CHAVES COUNTY, STATE OF NEW MEXICO LOCATION VERIFICATION MAP

MACK ENERGY CORPORATION
SUMMERSIDE FEDERAL COM 2H
LOCATED 1650 FT. FROM THE SOUTH LINE
AND 707 FT. FROM THE WEST LINE OF
SECTION 16, TOWNSHIP 15 SOUTH,
RANGE 30 EAST, N.M.P.M.
CHAVES COUNTY, STATE OF NEW MEXICO

MARCH 6, 2024

SURVEY NO. 10051

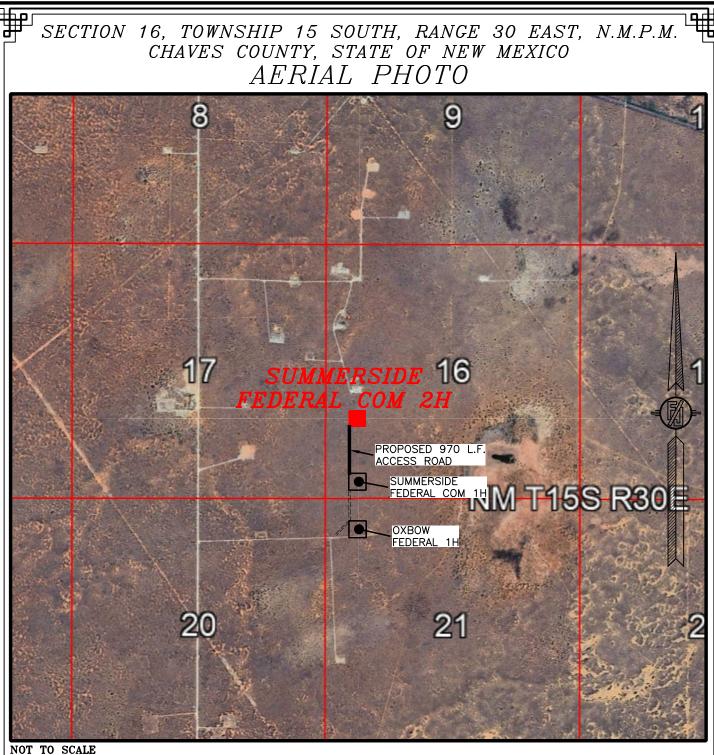
MADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO

SECTION 16, TOWNSHIP 15 SOUTH, RANGE 30 EAST, N.M.P.M. CHAVES COUNTY, STATE OF NEW MEXICO VICINITY MAP ST. HWY. 249 (3) 2.3 MILES CO. RD. 217 (HAGERMAN CUTOFF) UMMERSIDE FEDERAL COM 2F 2.3 MILES 970 SUMMERSIDE FEDERAL COM 1H SULIMAR 640 OIL FIELD **OXBOW FEDERAL** 0.55 MILES SOUTH CAPPOR OIL FIEL CHAVES CO CHAVES CO EDDY CO EDDY CO NORTH SQUARE LAKE WEST ANDERSON OIL FIELD OIL FIELD

DISTANCES IN MILES

NOT TO SCALE

DIRECTIONS TO LOCATION


DIRECTIONS TO LOCATION
FROM THE INTERSECTION OF ST. HWY. 249 & CO. RD. 217
(HAGERMAN CUTOFF) GO EAST ON ST. HWY. 249 APPROX. 2.3 MILES,
TURN RIGHT (SOUTH) ON 20' CALICHE ROAD AND GO SOUTH APPROX.
2.3 MILES, TURN LEFT (EAST) ON 2-TRACK ROAD AND GO EAST
APPROX. 0.55 MILES TO BEGIN ROAD SURVEY, FOLLOW ROAD SURVEY
NORTHEAST APPROX. 384' TO THE NORTHWEST PAD CORNER FOR
OXBOW FEDERAL 1H, CONTINUE NORTH APPROX 640' TO THE
SOUTHWEST PAD CORNER FOR SUMMERSIDE FEDERAL COM 1H, FROM
THE NORTHWEST PAD CORNER CONTINUE NORTH APPROX 970' TO THE NORTHWEST PAD CORNER CONTINUE NORTH APPROX. 970' TO THE SOUTHWEST PAD CORNER FOR THIS LOCATION.

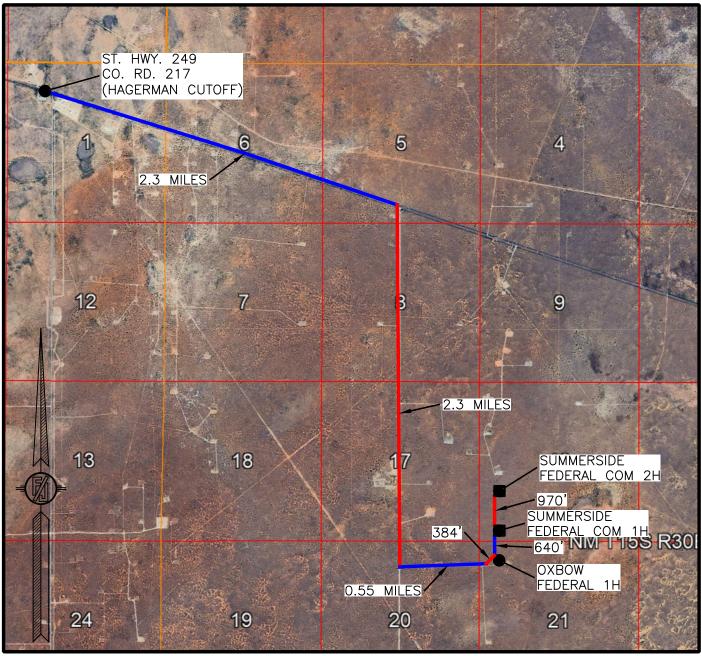
MACK ENERGY CORPORATION SUMMERSIDE FEDERAL COM 2H LOCATED 1650 FT. FROM THE SOUTH LINE AND 707 FT. FROM THE WEST LINE OF SECTION 16, TOWNSHIP 15 SOUTH, RANGE 30 EAST, N.M.P.M. CHAVES COUNTY, STATE OF NEW MEXICO

MARCH 6, 2024

SURVEY NO. 10051

MADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO

NOT TO SCALE AERIAL PHOTO: GOOGLE EARTH JUNE 2023


MACK ENERGY CORPORATION
SUMMERSIDE FEDERAL COM 2H
LOCATED 1650 FT. FROM THE SOUTH LINE
AND 707 FT. FROM THE WEST LINE OF
SECTION 16, TOWNSHIP 15 SOUTH,
RANGE 30 EAST, N.M.P.M.
CHAVES COUNTY, STATE OF NEW MEXICO

MARCH 6, 2024

SURVEY NO. 10051

 $MADRON \ \ SURVEYING, \ \ INC. \ {\tiny 5075} \ {\tiny 234-3327} \ \ CARLSBAD, \ \ NEW \ \ MEXICO$

SECTION 16, TOWNSHIP 15 SOUTH, RANGE 30 EAST, N.M.P.M. CHAVES COUNTY, STATE OF NEW MEXICO AERIAL ACCESS ROUTE MAP

NOT TO SCALE AERIAL PHOTO: GOOGLE EARTH JUNE 2023

MACK ENERGY CORPORATION

SUMMERSIDE FEDERAL COM 2H

LOCATED 1650 FT. FROM THE SOUTH LINE

AND 707 FT. FROM THE WEST LINE OF

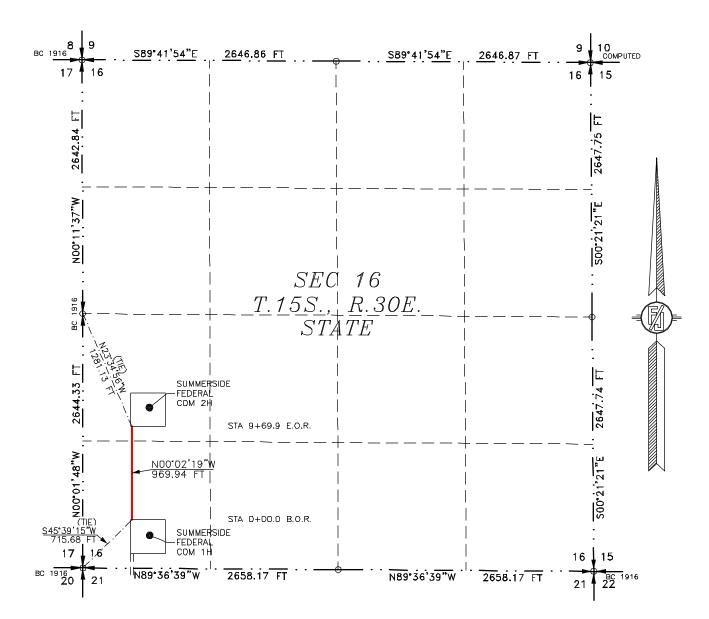
SECTION 16, TOWNSHIP 15 SOUTH,

RANGE 30 EAST, N.M.P.M.

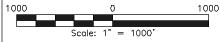
CHAVES COUNTY, STATE OF NEW MEXICO

MARCH 6, 2024

SURVEY NO. 10051


 $MADRON \quad SURVEYING, \quad INC. \quad {\tiny 505} \tiny 5034-3327 \quad CARLSBAD, \quad NEW \quad MEXICO$

ACCESS ROAD PLAT


ACCESS ROAD FOR SUMMERSIDE FEDERAL COM 2H

MACK ENERGY CORPORATION

CENTERLINE SURVEY OF AN ACCESS ROAD CROSSING SECTION 16, TOWNSHIP 15 SOUTH, RANGE 30 EAST, N.M.P.M. CHAVES COUNTY, STATE OF NEW MEXICO MARCH 6, 2024

SEE NEXT SHEET (2-2) FOR DESCRIPTION

GENERAL NOTES

- 1.) THE INTENT OF THIS ROUTE SURVEY IS TO ACQUIRE AN EASEMENT.
- 2.) BASIS OF BEARING AND DISTANCE IS NMSP EAST (NAD83) MODIFIED TO SURFACE COORDINATES. NAD 83 (FEET) AND NAVD 88 (FEET) COORDINATE SYSTEMS USED IN THE SURVÉY.

SHEET: 1-2

MADRON SURVEYING, INC. 301 S (575)

SURVEYOR CERTIFICATE

I, FILIMON F. JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO. 12797, HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND THAT THIS SURVEY AND PLAT MEET THE MINIMUM STANDARDS FOR LAND NEW MEXICO. SURVEYING IN

CERTIFICATE IS EXECUTED AT CARLSBAD, NEW M

MADRON SURVEYING, INC. 7301 SOUTH CANAL (CARLSBAD, NEW MEXICO 88220 Phone (575) 234-3327

SURVEY NO. 10051

Released to Imaging: 5/16/2025 2:01:43 PM

ACCESS ROAD PLAT

ACCESS ROAD FOR SUMMERSIDE FEDERAL COM 2H

MACK ENERGY CORPORATION

CENTERLINE SURVEY OF AN ACCESS ROAD CROSSING SECTION 16, TOWNSHIP 15 SOUTH, RANGE 30 EAST, N.M.P.M. CHAVES COUNTY, STATE OF NEW MEXICO MARCH 6, 2024

DESCRIPTION

A STRIP OF LAND 30 FEET WIDE CROSSING STATE OF NEW MEXICO LAND IN SECTION 16, TOWNSHIP 15 SOUTH, RANGE 30 EAST, N.M.P.M., CHAVES COUNTY, STATE OF NEW MEXICO AND BEING 15 FEET EACH SIDE OF THE FOLLOWING DESCRIBED CENTERLINE SURVEY:

BEGINNING AT A POINT WITHIN THE SW/4 SW/4 OF SAID SECTION 16, TOWNSHIP 15 SOUTH, RANGE 30 EAST, N.M.P.M., WHENCE THE SOUTHWEST CORNER OF SAID SECTION 16, TOWNSHIP 15 SOUTH, RANGE 30 EAST, N.M.P.M. BEARS S45'39'15"W, A DISTANCE OF 715.68 FEET;

THENCE NOO'02'19"W A DISTANCE OF 969.94 FEET THE TERMINUS OF THIS CENTERLINE SURVEY, WHENCE THE WEST QUARTER CORNER OF SAID SECTION 16, TOWNSHIP 15 SOUTH, RANGE 30 EAST, N.M.P.M. BEARS N23'34'56"W, A DISTANCE OF 1281.13 FEET;

SAID STRIP OF LAND BEING 969.94 FEET OR 58.78 RODS IN LENGTH, CONTAINING 0.668 ACRES MORE OR LESS AND BEING ALLOCATED BY FORTIES AS FOLLOWS:

SW/4 SW/4 818.59 L.F. 49.61 RODS 0.564 ACRES NW/4 SW/4 151.35 L.F. 9.17 RODS 0.104 ACRES

SURVEYOR CERTIFICATE

GENERAL NOTES

- 1.) THE INTENT OF THIS ROUTE SURVEY IS TO ACQUIRE AN EASEMENT.
- 2.) BASIS OF BEARING AND DISTANCE IS NMSP EAST (NAD83) MODIFIED TO SURFACE COORDINATES. NAD 83 (FEET) AND NAVD 88 (FEET) COORDINATE SYSTEMS USED IN THE SURVEY.

SHEET: 2-2

I, FILIMON F. JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO. 12797, HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND THAT THIS SURVEY AND PLAT MEET THE MINIMUM STANDARDS FOR LAND SURVEYING IN NEW MEXICO.

CERTIFICATE IS EXECUTED AT CARLSBAD,

MADRON SURVEYING, INC. 7301 SOUTH CANAL (CARLSBAD, NEW MEXICO 88220 Phone (575) 234-3327

SURVEY NO. 10051

MADRON SURVEYING, INC. 301 S. (575) *NEW MEXICO*

NEW M

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator:M	ack Energy Corp	oration	OGRID:	013837	Date:	5_/	8 / 2024
II. Type: ☒ Origi	nal 🗆 Amendmen	t due to □ 19.15.27.	9.D(6)(a) NMA	C □ 19.15.27.9.D((6)(b) NMAC □	Other.	
If Other, please de	scribe:						
		formation for each relation for connected to a c			wells proposed to	be dri	lled or proposed to
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D	P	Anticipated roduced Water BBL/D
Summerside Federal Co	m #2H	Unit L Sec 16 T15S R30E	1650 FSL 707 FWL	100	100	1,0	000
		e following informatingle well pad or con			ı Initial I	Flow	First Production Date
Summerside Federal Com #2H		12/1/2024	12/20/2024	02/28/20	25 02/2	8/2025	3/1/2025
VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture. VII. Operational Practices: Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC. VIII. Best Management Practices: Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.							

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in
				-

XI. Map. Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the
production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of
the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural	gas gathering system 🗆 v	vill □ will not have	capacity to gather	100% of the anticipated	natural gas
production volume from the well p	prior to the date of first pro	oduction.			

XIII. Line Pressure. Operator \square does \square does not anticipate that its existing well(s) connected to the same segment, or portion,	of the
natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new we	ll(s).

A 1 .	O 1	, 1		1 4.	•	4 41 .	ased line pres	
 Attach (Inerator	'c nlan to	manage	nraduction	in rechange	to the incre	aced line nrec	CILTO

XIV. Confidentiality: \square Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the informa	non provided in
Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the spec	ific information
for which confidentiality is asserted and the basis for such assertion.	

(h)

(i)

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal: 🗖 Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system: or ☐ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. If Operator checks this box, Operator will select one of the following: Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or Venting and Flaring Plan.

Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including: power generation on lease; (a) **(b)** power generation for grid; compression on lease; (c) (d) liquids removal on lease; reinjection for underground storage; (e) **(f)** reinjection for temporary storage; **(g)** reinjection for enhanced oil recovery;

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

other alternative beneficial uses approved by the division.

fuel cell production; and

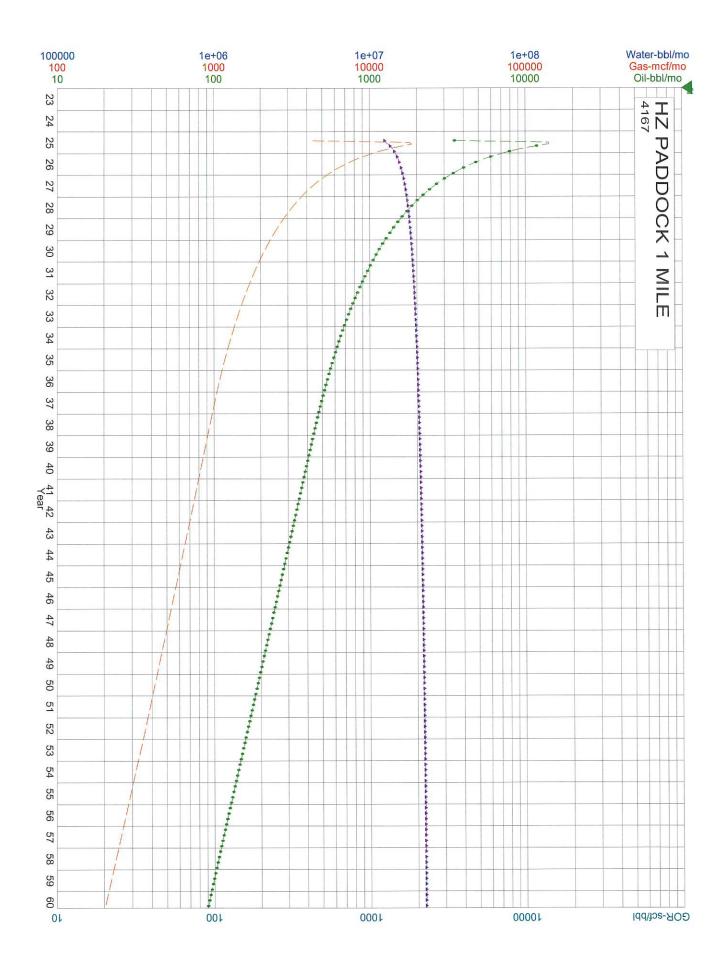
- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Deana Weaver
Printed Name: Deana Weaver
Title: Regulatory Technician II
E-mail Address: dweaver@mec.com
Date: 5/16/2024
Phone: 575-748-1288
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

VI. Separation Equipment:

Mack Energy Corporation(MEC) production facilities include separation equipment designed to efficiently separate gas from liquid phases to optimize gas capture based on projected and estimated volumes from the targeted pool of our completion project. MEC will utilize flowback separation equipment and production separation equipment designed and built to industry specifications after the completion to optimize gas capture and send gas to sales or flare based on analytical composition. MEC operates facilities that are typically multi-well facilities. Production separation equipment is upgraded prior to new wells being completed, if determined to be undersized or inadequate. This equipment is already on-site and tied into our sales gas lines prior to the new drill operations.


VII. Operational Practices:

- 1. Subsection (A) Venting and Flaring of Natural Gas. MEC understands the requirements of NMAC 19.15.27.8 which outlines that the venting and flaring of natural gas during drilling, completion or production operations that constitutes waste as defined in 19.15.2 are prohibited.
- 2. Subsection (B) Venting and Flaring during drilling operations. This gas capture plan isn't for a well being drilled.
- 3. Subsection (C) Venting and flaring during completion or recompletion. Flowlines will be routed for flowback fluids into a completion or storage tank and if feasible under well conditions, flare rather than vent and commence operation of a separator as soon as it is technically feasible for a separator to function.
 - At any point in the well life (completion, production, inactive) an audio, visual and olfactory inspection be performed at prescribed intervals (weekly or monthly) pursuant to Subsection D of 19.15.27.8 NMAC, to confirm that all production equipment is operating properly and there are no leaks or releases.
- 4. Subsection (D) Venting and flaring during production operations o At any point in the well life (completion, production, inactive) an audio, visual and olfactory inspection be performed at prescribed intervals (weekly or monthly) pursuant to Subsection D of 19.15.27.8 NMAC, to confirm that all production equipment is operating properly and there are no leaks or releases.
 - Monitor manual liquid unloading for wells on-site or in close proximity (<30 minutes' drive time), take reasonable actions to achieve a stabilized rate and pressure at the earliest practical time, and take reasonable actions to minimize venting to the maximum extent practicable.
 - MEC will not vent or flare except during the approved activities listed in NMAC 19.15.27.8 (D)
 14.
- 5. Subsection (E) Performance standards \circ All tanks and separation equipment are designed for maximum throughput and pressure to minimize waste.
 - If a flare is utilized during production operations it will have a continuous pilot and is located more than 100 feet from any known well or storage tanks.
 - At any point in the well life (completion, production, inactive) an audio, visual and olfactory inspection be performed at prescribed intervals (weekly or monthly) pursuant to Subsection D of 19.15.27.8 NMAC, to confirm that all production equipment is operating properly and there are no leaks or releases.

- 6. Subsection (F) Measurement or estimation of vented and flared natural gas o Measurement equipment is installed to measure the volume of natural gas flared from process piping.
 - When measurement isn't practicable, estimation of vented and flared natural gas will be completed as noted in 19.15.27.8 (F) 5-6.

VIII. Best Management Practices:

- 1. MEC has adequate storage and takeaway capacity for wells it chooses to complete as the flowlines at the sites are already in place and tied into a gathering system.
- 2. MEC will flare rather than vent vessel blowdown gas when technically feasible during active and/or planned maintenance to equipment on-site.
- 3. MEC combusts natural gas that would otherwise be vented or flared, when technically feasible.
- 4. MEC will shut in wells in the event of a takeaway disruption, emergency situation, or other operations where venting or flaring may occur due to equipment failures.
- 5. MEC has a gas gathering system in place(CTB-887)a with multiple purchaser's to limit venting or flaring, due to purchaser shut downs.

Month	Oil (BBL)	Gas (MCF)
1	7623.743	9617.177
2	14150	18313.726
3	12930.1	17261.991
4	10975.531	15047.588
5	9534.983	13366.994
6	8429.055	12044.559
7	7553.197	10974.749
8	6842.333	10090.153
9	6253.83	9345.605
10	5758.584	8709.657
11	5336.046	8159.707
12	4971.294	7679.081
13	4653.23	7255.193
14	4373.426	6878.361
15	4125.369	6541.008
16	3903.945	6237.117
17	3705.082	5961.847
18	3525.499	5711.255
19	3362.521	5482.102
20	3213.947	5271.693
21	3077.947	5077.773
22	2952.991	4898.44
23	2837.785	4732.074
24	2731.23	4577.291
25	2632.388	4432.896
26	2540.451	4297.858
27	2454.718	4171.278
28	2374.584	4052.37
29	2299.515	3940.442
30	2229.048	3834.885
31	2162.771	3735.161
32	2100.321	3640.788
33	2041.376	3551.339
34	1985.65	3466.431
35	1932.885	3385.719
36	1882.851	3308.894
37	1835.343	3235.677
38	1790.173	3165.813
39	1747.172	3099.074
40	1706.189	3035.25
41	1667.084	2974.15
42	1629.732	2915.6
43	1594.017	2859.441
44	1559.833	2805.527
45	1527.085	2753.722
46	1495.683	2703.903
47	1465.547	2655.956
48	1436.601	2609.775
49	1408.776	2565.262
50	1382.009	2522.327
51	1356.24	2480.886
52	1331.414	2440.861
53	1307.48	2402.178
54	1284.392	2364.771
55	1262.105	2328.575

56	1240.578	2293.532
57	1219.773	2259.587
58	1199.655	2226.688
59	1180.189	2194.785
60	1161.345	2163.835
61	1143.093	2133.793
62	1125.406	2104.62
63	1108.257	2076.278
64	1091.624	2048.731
65	1075.482	2021.946
66	1059.811	1995.89
67	1044.59	1970.534
68	1029.8	1945.85
69	1015.423	1921.81
70	1001.441	1898.389
71	987.84	1875.564
72	974.603	1853.31
73	961.716	1831.608
74	949.165	1810.435
75	936.938	1789.773
76	925.021	1769.603
77	913.404	1749.907
78	902.075	1730.668
79	891.024	1711.871
80	880.24	1693.5
81	869.714	1675.54
82	859.437	1657.978
83	849.4	1640.799
84		
	839.594	1623.993
85 86	830.012	1607.545
86	820.647	1591.446
87	811.49	1575.683
88	802.536	1560.246
89	793.777	1545.125
90	785.207	1530.309
91	776.82	1515.791
92	768.61	1501.56
93	760.572	1487.608
94	752.701	1473.927
95	744.991	1460.508
96	737.437	1447.345
97	730.034	1434.429
98	722.779	1421.754
99	715.667	1409.314
100	708.693	1397.1
101	701.854	1385.108
102	695.145	1373.331
103	688.564	1361.763
104	682.106	1350.398
105	675.768	1339.232
106	669.546	1328.258
107	663.438	1317.473
108	657.441	1306.87
109	651.551	1296.446
110	645.766	1286.196
111	640.082	1276.114

112	634.498	1266.198
113	629.01	1256.443
114	623.616	1246.846
115	618.314	1237.401
116	613.101	1228.106
117	607.976	1218.956
118	602.935	1209.95
119	597.978	1201.082
120	593.101	1192.35
121	588.303	1183.751
122	583.582	1175.282
123	578.937	1166.939
124	574.364	1158.72
125	569.864	1150.622
126	565.433	1142.642
127	561.071	1134.778
128	556.775	1127.027
129	552.545	1119.387
130	548.378	1111.855
131	544.274	1104.429
132	540.231	1097.107
133	536.247	1089.886
134	532.322	1082.764
135	528.454	1075.74
136	524.642	1068.811
137	520.884	1061.976
138	517.18	1055.232
139	513.527	1048.577
140		
	509.927	1042.01
141	506.376	1035.529
142	502.874	1029.133
143	499.421	1022.819
144	496.015	1016.586
145	492.654	1010.432
146	489.339	1004.357
147	486.069	998.357
148	482.841	992.433
149	479.657	986.582
150	476.514	980.803
151	473.412	975.095
152	470.35	969.457
153	467.327	963.887
154	464.343	958.383
155	461.397	952.946
156	458.488	947.573
157	455.615	942.263
158	452.779	937.015
159	449.977	931.829
160	447.21	926.702
161	444.476	921.635
162	441.776	916.625
163	439.108	911.671
164	436.46	906.75
165	433.829	901.851
166	431.213	896.975
167	428.613	892.122
*		

168	426.029	887.291
169	423.46	882.483
170	420.907	877.697
171	418.369	872.934
172	415.847	868.193
173	413.34	863.474
174	410.848	858.778
175	408.37	854.104
176	405.908	849.452
177	403.461	844.822
178	401.028	840.214
179	398.61	835.628
180	396.207	831.064
181	393.818	826.521
182	391.444	822.001
183	389.084	817.502
184	386.738	813.024
185	384.406	808.569
186	382.088	804.135
187	379.785	799.722
188	377.495	795.33
189	375.219	790.96
190	372.956	786.611
191	370.708	782.284
192	368.473	777.977
193	366.251	773.691
194	364.043	769.427
195	361.848	765.183
196	359.666	760.96
197	357.498	756.758
198	355.342	752.577
199	353.2	748.416
200	351.07	744.276
201	348.953	740.156
202	346.849	736.057
203	344.758	731.978
204	342.679	727.919
205	340.613	723.881
206	338.56	719.862
207	336.518	715.864
207	334.489	711.886
208	332.473	707.927
210	330.468	703.989
211	328.476	700.07
212	326.495	696.171
213	324.527	692.292
214	322.57	688.432
215	320.625	684.592
216	318.692	680.771
217	316.77	676.969
218	314.861	673.187
219	312.962	669.424
220	311.075	665.68
221	309.2	661.955
222	307.335	658.249
223	305.482	654.562
	·	

224	303.64	650.894
225	301.81	647.245
226	299.99	643.614
227	298.181	640.002
228	296.383	636.409
229	294.596	632.834
230	292.82	629.277
231	291.055	625.739
232	289.3	622.219
233	287.556	618.717
234	285.822	615.233
235	284.099	611.768
236	282.386	608.32
237	280.683	604.89
238	278.991	601.478
239	277.309	598.084
240	275.637	594.707
241	273.975	591.348
242	272.323	588.007
243	270.681	584.683
244	269.049	581.376
245	267.427	578.087
246	265.814	574.815
247		
248	264.212	571.56
_	262.619	568.322
249	261.035	565.101 561.807
250	259.461	561.897 559.71
251	257.897	558.71
252	256.342	555.54
253	254.797	552.387
254	253.26	549.25
255	251.733	546.13
256	250.215	543.026
257	248.707	539.939
258	247.207	536.868
259	245.717	533.813
260	244.235	530.775
261	242.763	527.753
262	241.299	524.747
263	239.844	521.756
264	238.398	518.782
265	236.961	515.824
266	235.532	512.881
267	234.112	509.955
268	232.7	507.043
269	231.297	504.148
270	229.903	501.268
271	228.517	498.403
272	227.139	495.554
273	225.769	492.72
274	224.408	489.901
275	223.055	487.098
276	221.71	484.309
277	220.373	481.536
278	219.045	478.778
279	217.724	476.034

280	216.411	473.305
281	215.107	470.591
282	213.81	467.892
283	212.521	465.208
284	211.239	462.537
285	209.966	459.882
286	208.7	457.241
287	207.441	454.614
288	206.191	452.001
289	204.947	449.403
290	203.712	446.818
291	202.483	444.248
292	201.263	441.692
293	200.049	439.15
294	198.843	436.621
295	197.644	434.107
296	196.452	431.606
297	195.268	429.119
298	194.091	426.645
299	192.92	424.185
300	191.757	421.739
301	190.601	419.306
302	189.452	416.886
303	188.31	414.48
303	187.174	412.086
305	186.046	409.706
306	184.924	407.339
307	183.809	404.985
308	182.701	402.644
309	181.599	400.316
310	180.504	398.001
311	179.416	395.699
312	178.334	393.409
313	177.259	391.132
314	176.19	388.867
315	175.128	386.615
316	174.072	384.376
317	173.022	382.149
318	171.979	379.934
319	170.942	377.732
320	169.912	375.541
321	168.887	373.363
322	167.869	371.197
323	166.857	369.043
324	165.851	366.901
325	164.851	364.771
326	163.857	362.653
327	162.869	360.546
328	161.887	358.452
329	160.911	356.369
330	159.941	354.297
331	158.976	352.237
332	158.018	350.189
333	157.065	348.152
334	156.118	346.127
335	155.177	344.112
000	100.177	V 1 7. 1 12

336	154.241	342.11
337	153.311	340.118
338	152.387	338.137
339	151.468	336.168
340	150.555	334.209
341	149.647	332.262
342	148.745	330.326
343	147.848	328.4
344	146.957	326.485
345	146.071	324.581
346	145.19	322.688
347	144.314	320.805
348	143.444	318.933
349	142.579	317.071
350	141.72	315.22
351	140.865	313.38
352	140.016	
353		311.549 309.73
	139.172	
354	138.333	307.92
355	137.499	306.12
356	136.67	304.331
357	135.846	302.552
358	135.027	300.783
359	134.212	299.024
360	133.403	297.275
361	132.599	295.535
362	131.799	293.806
363	131.005	292.086
364	130.215	290.376
365	129.43	288.676
366	128.649	286.986
367	127.874	285.305
368	127.103	283.633
369	126.336	281.971
370	125.575	280.319
371	124.818	278.676
372	124.065	277.042
373	123.317	275.418
374	122.573	273.803
375	121.834	272.196
376	121.1	270.6
377	120.37	269.012
378	119.644	267.433
379	118.923	265.863
380	118.206	264.303
381	117.493	262.751
382	116.784	261.208
383	116.08	259.674
384	115.38	258.148
385	114.685	256.631
386	113.993	255.123
387	113.306	253.624
388	112.623	252.133
389		
	111.944	250.651
390	111.269	249.177
391	110.598	247.711

392	109.931	246.254
393	109.268	244.806
394	108.61	243.365
395	107.955	241.933
396	107.304	240.509
397	106.657	239.093
398	106.014	237.686
399	105.375	236.286
400	104.739	234.895
401	104.108	233.511
402	103.48	232.136
403	102.856	230.768
404	102.236	229.408
405	101.62	228.056
406	101.007	226.712
407	100.398	225.376
408	99.793	224.047
408	99.191	222.726
410	98.593	221.412
411	97.998	220.106
411	97.408	
412	96.82	218.808 217.517
-		
414	96.236	216.233
415	95.656	214.957
416	95.079	213.688
417	94.506	212.427
418	93.936	211.173
419	93.37	209.926
420	92.807	208.686
421	92.248	207.454
422	91.691	206.228
423	91.139	205.01
424	90.589	203.799
425	90.043	202.594
426	89.5	201.397
427	88.96	200.207
428	88.424	199.023
429	87.891	197.847
430	87.361	196.677
431	86.834	195.514
432	86.311	194.357
433	85.79	193.208
434	85.273	192.065
435	84.759	190.928
436	84.248	189.799
437	83.74	188.676
438	83.235	187.559
439	82.733	186.449
440	82.234	185.345
441	81.738	184.248
442	81.246	183.157
443	80.756	182.072
444	80.269	180.994
445	79.785	179.922
446	79.304	178.856
447	78.826	177.796
	. 5.520	

440	70.05	170 740
448	78.35	176.743
449	77.878	175.696
450	77.408	174.654
451	76.942	173.619
452	76.478	172.59
453	76.017	171.567
454	75.558	170.55
455	75.103	169.538
456	74.65	168.533
457	74.2	167.534
458	73.753	166.54
459	73.308	165.552
460	72.866	164.57
461	72.427	163.593
462	71.99	162.623
463	71.556	161.658
464	71.124	160.698
465	70.696	159.744
466	70.269	158.796
467	69.846	157.854
468	69.425	156.916
469	69.006	155.985
470	68.59	155.058
471	68.176	154.138
472	67.765	153.222
473	67.357	152.312
474	66.951	151.407
475	66.547	150.508
476	66.146	149.613
477	65.747	148.724
477	65.35	147.841
478	64.956	146.962
	64.565	
480 481	64.176	146.088 145.22
	63.789	
482		144.357
483	63.404	143.499
484	63.022	142.645
485	62.642	141.797
486	62.264	140.954
487	61.889	140.116
488	61.515	139.282
489	61.145	138.454
490	60.776	137.63
491	60.41	136.811
492	60.045	135.997
493	59.683	135.188
494	59.323	134.384
495	58.966	133.584
496	58.61	132.789
497	58.257	131.999
498	57.906	131.213
499	57.556	130.432
500	57.209	129.655
501	56.864	128.883
502	56.522	128.116
503	56.181	127.353
-50	33.101	

504 55.842 126.594 505 55.505 125.84 506 55.171 125.091 507 54.838 124.346 508 54.507 123.605 509 54.179 122.869 510 53.852 122.137 511 53.527 121.409 512 53.205 120.685 513 52.884 119.966 514 52.565 119.251 515 52.248 118.54 516 51.933 117.834 517 51.62 117.131 518 51.309 116.433 519 50.999 115.739 520 50.692 115.049 521 50.386 114.363 522 50.083 113.681 523 49.781 113.003 524 49.48 112.329 525 49.182 111.659 526 48.886 110.993			
506 55.171 125.091 507 54.838 124.346 508 54.507 123.605 509 54.179 122.869 510 53.852 122.137 511 53.527 121.409 512 53.205 120.685 513 52.884 119.966 514 52.565 119.251 515 52.248 118.54 516 51.933 117.834 517 51.62 117.131 518 51.309 116.433 519 50.999 115.739 520 50.692 115.049 521 50.386 114.363 522 50.083 113.681 523 49.781 113.003 524 49.48 112.329 525 49.182 111.659 526 48.886 110.993 527 48.591 110.331 528 48.298 109.673	504	55.842	
507 54.838 124.346 508 54.507 123.605 509 54.179 122.869 510 53.852 122.137 511 53.527 121.409 512 53.205 120.685 513 52.884 119.966 514 52.565 119.251 515 52.248 118.54 516 51.933 117.834 517 51.62 117.131 518 51.309 116.433 519 50.999 115.739 520 50.692 115.049 521 50.386 114.363 522 50.083 113.681 523 49.781 113.003 524 49.48 112.329 525 49.182 111.659 526 48.886 110.993 527 48.591 110.331 528 48.298 109.673 529 48.007 109.019	505	55.505	125.84
508 54.507 123.605 509 54.179 122.869 510 53.852 122.137 511 53.527 121.409 512 53.205 120.685 513 52.884 119.966 514 52.565 119.251 515 52.248 118.54 516 51.933 117.834 517 51.62 117.131 518 51.309 116.433 519 50.999 115.739 520 50.692 115.049 521 50.386 114.363 522 50.083 113.681 523 49.781 113.003 524 49.48 112.329 525 49.182 111.659 526 48.886 110.993 527 48.591 110.331 528 48.298 109.673 529 48.007 109.019 530 47.17 108.368		55.171	
509 54.179 122.869 510 53.852 122.137 511 53.527 121.409 512 53.205 120.685 513 52.884 119.966 514 52.565 119.251 515 52.248 118.54 516 51.933 117.834 517 51.62 117.131 518 51.309 116.433 519 50.999 115.739 520 50.692 115.049 521 50.386 114.363 522 50.083 113.681 523 49.781 113.003 524 49.48 112.329 525 49.182 111.659 526 48.886 110.993 527 48.591 110.331 528 48.298 109.673 529 48.007 109.019 530 47.717 108.368 531 47.429 107.722	507	54.838	124.346
510 53.852 122.137 511 53.527 121.409 512 53.205 120.685 513 52.884 119.966 514 52.565 119.251 515 52.248 118.54 516 51.933 117.834 517 51.62 117.131 518 51.309 116.433 519 50.999 115.739 520 50.692 115.049 521 50.386 114.363 522 50.083 113.681 523 49.781 113.003 524 49.48 112.329 525 49.182 111.659 526 48.886 110.993 527 48.591 110.331 528 48.298 109.673 529 48.007 109.019 530 47.717 108.368 531 47.429 107.722 532 47.144 107.079	508	54.507	123.605
511 53.527 121.409 512 53.205 120.685 513 52.884 119.966 514 52.565 119.251 515 52.248 118.54 516 51.933 117.834 517 51.62 117.131 518 51.309 116.433 519 50.999 115.739 520 50.692 115.049 521 50.386 114.363 522 50.083 113.681 523 49.781 113.003 524 49.48 112.329 525 49.182 111.659 526 48.886 110.993 527 48.591 110.331 528 48.298 109.673 529 48.007 109.019 530 47.717 108.368 531 47.429 107.722 532 47.144 107.079 533 46.859 106.44	509	54.179	122.869
512 53.205 120.685 513 52.884 119.966 514 52.565 119.251 515 52.248 118.54 516 51.933 117.834 517 51.62 117.131 518 51.309 116.433 519 50.999 115.739 520 50.692 115.049 521 50.386 114.363 522 50.083 113.681 523 49.781 113.003 524 49.48 112.329 525 49.182 111.659 526 48.886 110.993 527 48.591 110.331 528 48.298 109.673 529 48.007 109.019 530 47.717 108.368 531 47.429 107.722 532 47.144 107.079 533 46.859 106.44 534 46.577 105.805	510	53.852	122.137
513 52.884 119.966 514 52.565 119.251 515 52.248 118.54 516 51.933 117.834 517 51.62 117.131 518 51.309 116.433 519 50.999 115.739 520 50.692 115.049 521 50.386 114.363 522 50.083 113.681 523 49.781 113.003 524 49.48 112.329 525 49.182 111.659 526 48.886 110.993 527 48.591 110.331 528 48.298 109.673 529 48.007 109.019 530 47.717 108.368 531 47.429 107.722 532 47.144 107.079 533 46.859 106.44 534 46.577 105.805 535 46.296 105.173	511	53.527	121.409
514 52.565 119.251 515 52.248 118.54 516 51.933 117.834 517 51.62 117.131 518 51.309 116.433 519 50.999 115.739 520 50.692 115.049 521 50.386 114.363 522 50.083 113.681 523 49.781 113.003 524 49.48 112.329 525 49.182 111.659 526 48.886 110.993 527 48.591 110.331 528 48.298 109.673 529 48.007 109.019 530 47.717 108.368 531 47.429 107.722 532 47.144 107.079 533 46.859 106.44 534 46.577 105.805 535 46.296 105.173 536 46.017 104.545	512	53.205	120.685
515 52.248 118.54 516 51.933 117.834 517 51.62 117.131 518 51.309 116.433 519 50.999 115.739 520 50.692 115.049 521 50.386 114.363 522 50.083 113.681 523 49.781 113.003 524 49.48 112.329 525 49.182 111.659 526 48.886 110.993 527 48.591 110.331 528 48.298 109.673 529 48.007 109.019 530 47.717 108.368 531 47.429 107.722 532 47.144 107.079 533 46.859 106.44 534 46.577 105.805 535 46.296 105.173 536 46.017 104.545 537 45.739 103.921	513	52.884	119.966
516 51.933 117.834 517 51.62 117.131 518 51.309 116.433 519 50.999 115.739 520 50.692 115.049 521 50.386 114.363 522 50.083 113.681 523 49.781 113.003 524 49.48 112.329 525 49.182 111.659 526 48.886 110.993 527 48.591 110.331 528 48.298 109.673 529 48.007 109.019 530 47.717 108.368 531 47.429 107.722 532 47.144 107.079 533 46.859 106.44 534 46.577 105.805 535 46.296 105.173 536 46.017 104.545 537 45.739 103.921 538 45.464 103.301	514	52.565	119.251
517 51.62 117.131 518 51.309 116.433 519 50.999 115.739 520 50.692 115.049 521 50.386 114.363 522 50.083 113.681 523 49.781 113.003 524 49.48 112.329 525 49.182 111.659 526 48.886 110.993 527 48.591 110.331 528 48.298 109.673 529 48.007 109.019 530 47.717 108.368 531 47.429 107.722 532 47.144 107.079 533 46.859 106.44 534 46.577 105.805 535 46.296 105.173 536 46.017 104.545 537 45.739 103.921 538 45.464 103.301 539 45.189 102.684	515	52.248	118.54
518 51.309 116.433 519 50.999 115.739 520 50.692 115.049 521 50.386 114.363 522 50.083 113.681 523 49.781 113.003 524 49.48 112.329 525 49.182 111.659 526 48.886 110.993 527 48.591 110.331 528 48.298 109.673 529 48.007 109.019 530 47.717 108.368 531 47.429 107.722 532 47.144 107.079 533 46.859 106.44 534 46.577 105.805 535 46.296 105.173 536 46.017 104.545 537 45.739 103.921 538 45.464 103.301 539 45.189 102.684 540 44.917 102.071	516	51.933	117.834
519 50.999 115.739 520 50.692 115.049 521 50.386 114.363 522 50.083 113.681 523 49.781 113.003 524 49.48 112.329 525 49.182 111.659 526 48.886 110.993 527 48.591 110.331 528 48.298 109.673 529 48.007 109.019 530 47.717 108.368 531 47.429 107.722 532 47.144 107.079 533 46.859 106.44 534 46.577 105.805 535 46.296 105.173 536 46.017 104.545 537 45.739 103.921 538 45.464 103.301 539 45.189 102.684 540 44.917 102.071 541 44.646 101.462	517	51.62	117.131
520 50.692 115.049 521 50.386 114.363 522 50.083 113.681 523 49.781 113.003 524 49.48 112.329 525 49.182 111.659 526 48.886 110.993 527 48.591 110.331 528 48.298 109.673 529 48.007 109.019 530 47.717 108.368 531 47.429 107.722 532 47.144 107.079 533 46.859 106.44 534 46.577 105.805 535 46.296 105.173 536 46.017 104.545 537 45.739 103.921 538 45.464 103.301 539 45.189 102.684 540 44.917 102.071 541 44.646 101.462 542 44.377 100.856	518	51.309	116.433
521 50.386 114.363 522 50.083 113.681 523 49.781 113.003 524 49.48 112.329 525 49.182 111.659 526 48.886 110.993 527 48.591 110.331 528 48.298 109.673 529 48.007 109.019 530 47.717 108.368 531 47.429 107.722 532 47.144 107.079 533 46.859 106.44 534 46.577 105.805 535 46.296 105.173 536 46.017 104.545 537 45.739 103.921 538 45.464 103.301 539 45.189 102.684 540 44.917 102.071 541 44.646 101.462 542 44.377 100.856 543 44.109 100.254	519	50.999	115.739
522 50.083 113.681 523 49.781 113.003 524 49.48 112.329 525 49.182 111.659 526 48.886 110.993 527 48.591 110.331 528 48.298 109.673 529 48.007 109.019 530 47.717 108.368 531 47.429 107.722 532 47.144 107.079 533 46.859 106.44 534 46.577 105.805 535 46.296 105.173 536 46.017 104.545 537 45.739 103.921 538 45.464 103.301 539 45.189 102.684 540 44.917 102.071 541 44.646 101.462 542 44.377 100.856 543 44.109 100.254 544 43.843 99.655	520	50.692	115.049
523 49.781 113.003 524 49.48 112.329 525 49.182 111.659 526 48.886 110.993 527 48.591 110.331 528 48.298 109.673 529 48.007 109.019 530 47.717 108.368 531 47.429 107.722 532 47.144 107.079 533 46.859 106.44 534 46.577 105.805 535 46.296 105.173 536 46.017 104.545 537 45.739 103.921 538 45.464 103.301 539 45.189 102.684 540 44.917 102.071 541 44.646 101.462 542 44.377 100.856 543 44.109 100.254 544 43.843 99.655 545 43.316 98.469	521	50.386	114.363
524 49.48 112.329 525 49.182 111.659 526 48.886 110.993 527 48.591 110.331 528 48.298 109.673 529 48.007 109.019 530 47.717 108.368 531 47.429 107.722 532 47.144 107.079 533 46.859 106.44 534 46.577 105.805 335 46.296 105.173 536 46.017 104.545 537 45.739 103.921 538 45.464 103.301 539 45.189 102.684 540 44.917 102.071 541 44.646 101.462 542 44.377 100.856 543 44.109 100.254 544 43.843 99.655 545 43.579 99.06 546 43.316 98.469	522	50.083	113.681
525 49.182 111.659 526 48.886 110.993 527 48.591 110.331 528 48.298 109.673 529 48.007 109.019 530 47.717 108.368 531 47.429 107.722 532 47.144 107.079 533 46.859 106.44 534 46.577 105.805 535 46.296 105.173 536 46.017 104.545 537 45.739 103.921 538 45.464 103.301 539 45.189 102.684 540 44.917 102.071 541 44.646 101.462 542 44.377 100.856 543 44.109 100.254 544 43.843 99.655 545 43.579 99.06 546 43.316 98.469 547 43.055 97.881	523	49.781	113.003
526 48.886 110.993 527 48.591 110.331 528 48.298 109.673 529 48.007 109.019 530 47.717 108.368 531 47.429 107.722 532 47.144 107.079 533 46.859 106.44 534 46.577 105.805 535 46.296 105.173 536 46.017 104.545 537 45.739 103.921 538 45.464 103.301 539 45.189 102.684 540 44.917 102.071 541 44.646 101.462 542 44.377 100.856 543 44.109 100.254 544 43.843 99.655 545 43.579 99.06 546 43.316 98.469 547 43.055 97.881 548 42.796 97.296 549 42.538 96.715 550 42.281	524	49.48	112.329
527 48.591 110.331 528 48.298 109.673 529 48.007 109.019 530 47.717 108.368 531 47.429 107.722 532 47.144 107.079 533 46.859 106.44 534 46.577 105.805 535 46.296 105.173 536 46.017 104.545 537 45.739 103.921 538 45.464 103.301 539 45.189 102.684 540 44.917 102.071 541 44.646 101.462 542 44.377 100.856 543 44.109 100.254 544 43.843 99.655 545 43.579 99.06 546 43.316 98.469 547 43.055 97.881 548 42.796 97.296 549 42.538 96.715 550 42.281 96.137 551 42.026	525	49.182	111.659
528 48.298 109.673 529 48.007 109.019 530 47.717 108.368 531 47.429 107.722 532 47.144 107.079 533 46.859 106.44 534 46.577 105.805 535 46.296 105.173 536 46.017 104.545 537 45.739 103.921 538 45.464 103.301 539 45.189 102.684 540 44.917 102.071 541 44.646 101.462 542 44.377 100.856 543 44.109 100.254 544 43.843 99.655 545 43.579 99.06 546 43.316 98.469 547 43.055 97.881 548 42.796 97.296 549 42.538 96.715 550 42.281 96.137 551 42.026 95.563 552 41.773	526	48.886	110.993
529 48.007 109.019 530 47.717 108.368 531 47.429 107.722 532 47.144 107.079 533 46.859 106.44 534 46.577 105.805 535 46.296 105.173 536 46.017 104.545 537 45.739 103.921 538 45.464 103.301 539 45.189 102.684 540 44.917 102.071 541 44.646 101.462 542 44.377 100.856 543 44.109 100.254 544 43.843 99.655 545 43.579 99.06 546 43.316 98.469 547 43.055 97.881 548 42.796 97.296 549 42.538 96.715 550 42.281 96.137 551 42.026 95.563 552 41.773 94.992 553 41.521	527	48.591	110.331
530 47.717 108.368 531 47.429 107.722 532 47.144 107.079 533 46.859 106.44 534 46.577 105.805 535 46.296 105.173 536 46.017 104.545 537 45.739 103.921 538 45.464 103.301 539 45.189 102.684 540 44.917 102.071 541 44.646 101.462 542 44.377 100.856 543 44.109 100.254 544 43.843 99.655 545 43.579 99.06 546 43.316 98.469 547 43.055 97.881 548 42.796 97.296 549 42.538 96.715 550 42.281 96.137 551 42.026 95.563 552 41.773 94.992 553 41.521 94.424 554 41.022	528	48.298	109.673
531 47.429 107.722 532 47.144 107.079 533 46.859 106.44 534 46.577 105.805 535 46.296 105.173 536 46.017 104.545 537 45.739 103.921 538 45.464 103.301 539 45.189 102.684 540 44.917 102.071 541 44.646 101.462 542 44.377 100.856 543 44.109 100.254 544 43.843 99.655 545 43.579 99.06 546 43.316 98.469 547 43.055 97.881 548 42.796 97.296 549 42.538 96.715 550 42.281 96.137 551 42.026 95.563 552 41.773 94.992 553 41.521 94.424 554 41.022 93.299 556 40.774	529	48.007	109.019
532 47.144 107.079 533 46.859 106.44 534 46.577 105.805 535 46.296 105.173 536 46.017 104.545 537 45.739 103.921 538 45.464 103.301 539 45.189 102.684 540 44.917 102.071 541 44.646 101.462 542 44.377 100.856 543 44.109 100.254 544 43.843 99.655 545 43.579 99.06 546 43.316 98.469 547 43.055 97.881 548 42.796 97.296 549 42.538 96.715 550 42.281 96.137 551 42.026 95.563 552 41.773 94.992 553 41.521 94.424 554 41.022 93.299 555 40.774 92.742 557 40.529			
533 46.859 106.44 534 46.577 105.805 535 46.296 105.173 536 46.017 104.545 537 45.739 103.921 538 45.464 103.301 539 45.189 102.684 540 44.917 102.071 541 44.646 101.462 542 44.377 100.856 543 44.109 100.254 544 43.843 99.655 545 43.579 99.06 546 43.316 98.469 547 43.055 97.881 548 42.796 97.296 549 42.538 96.715 550 42.281 96.137 551 42.026 95.563 552 41.773 94.992 553 41.521 94.424 554 41.271 93.86 555 40.774 92.742 557 40.529 92.188 558 40.284 <t< td=""><td>531</td><td>47.429</td><td>107.722</td></t<>	531	47.429	107.722
533 46.859 106.44 534 46.577 105.805 535 46.296 105.173 536 46.017 104.545 537 45.739 103.921 538 45.464 103.301 539 45.189 102.684 540 44.917 102.071 541 44.646 101.462 542 44.377 100.856 543 44.109 100.254 544 43.843 99.655 545 43.579 99.06 546 43.316 98.469 547 43.055 97.881 548 42.796 97.296 549 42.538 96.715 550 42.281 96.137 551 42.026 95.563 552 41.773 94.992 553 41.521 94.424 554 41.271 93.86 555 40.774 92.742 557 40.529 92.188 558 40.284 <t< td=""><td>532</td><td>47.144</td><td>107.079</td></t<>	532	47.144	107.079
535 46.296 105.173 536 46.017 104.545 537 45.739 103.921 538 45.464 103.301 539 45.189 102.684 540 44.917 102.071 541 44.646 101.462 542 44.377 100.856 543 44.109 100.254 544 43.843 99.655 545 43.579 99.06 546 43.316 98.469 547 43.055 97.881 548 42.796 97.296 549 42.538 96.715 550 42.281 96.137 551 42.026 95.563 552 41.773 94.992 553 41.521 94.424 554 41.271 93.86 555 41.022 93.299 556 40.774 92.742 557 40.529 92.188 558 40.284 91.637	533		106.44
535 46.296 105.173 536 46.017 104.545 537 45.739 103.921 538 45.464 103.301 539 45.189 102.684 540 44.917 102.071 541 44.646 101.462 542 44.377 100.856 543 44.109 100.254 544 43.843 99.655 545 43.579 99.06 546 43.316 98.469 547 43.055 97.881 548 42.796 97.296 549 42.538 96.715 550 42.281 96.137 551 42.026 95.563 552 41.773 94.992 553 41.521 94.424 554 41.271 93.86 555 41.022 93.299 556 40.774 92.742 557 40.529 92.188 558 40.284 91.637			
536 46.017 104.545 537 45.739 103.921 538 45.464 103.301 539 45.189 102.684 540 44.917 102.071 541 44.646 101.462 542 44.377 100.856 543 44.109 100.254 544 43.843 99.655 545 43.579 99.06 546 43.316 98.469 547 43.055 97.881 548 42.796 97.296 549 42.538 96.715 550 42.281 96.137 551 42.026 95.563 552 41.773 94.992 553 41.521 94.424 554 41.271 93.86 555 41.022 93.299 556 40.774 92.742 557 40.529 92.188 558 40.284 91.637		46.296	105.173
537 45.739 103.921 538 45.464 103.301 539 45.189 102.684 540 44.917 102.071 541 44.646 101.462 542 44.377 100.856 543 44.109 100.254 544 43.843 99.655 545 43.579 99.06 546 43.316 98.469 547 43.055 97.881 548 42.796 97.296 549 42.538 96.715 550 42.281 96.137 551 42.026 95.563 552 41.773 94.992 553 41.521 94.424 554 41.271 93.86 555 41.022 93.299 556 40.774 92.742 557 40.529 92.188 558 40.284 91.637		46.017	104.545
539 45.189 102.684 540 44.917 102.071 541 44.646 101.462 542 44.377 100.856 543 44.109 100.254 544 43.843 99.655 545 43.579 99.06 546 43.316 98.469 547 43.055 97.881 548 42.796 97.296 549 42.538 96.715 550 42.281 96.137 551 42.026 95.563 552 41.773 94.992 553 41.521 94.424 554 41.271 93.86 555 41.022 93.299 556 40.774 92.742 557 40.529 92.188 558 40.284 91.637			
539 45.189 102.684 540 44.917 102.071 541 44.646 101.462 542 44.377 100.856 543 44.109 100.254 544 43.843 99.655 545 43.579 99.06 546 43.316 98.469 547 43.055 97.881 548 42.796 97.296 549 42.538 96.715 550 42.281 96.137 551 42.026 95.563 552 41.773 94.992 553 41.521 94.424 554 41.271 93.86 555 41.022 93.299 556 40.774 92.742 557 40.529 92.188 558 40.284 91.637			103.301
540 44.917 102.071 541 44.646 101.462 542 44.377 100.856 543 44.109 100.254 544 43.843 99.655 545 43.579 99.06 546 43.316 98.469 547 43.055 97.881 548 42.796 97.296 549 42.538 96.715 550 42.281 96.137 551 42.026 95.563 552 41.773 94.992 553 41.521 94.424 554 41.271 93.86 555 41.022 93.299 556 40.774 92.742 557 40.529 92.188 558 40.284 91.637			
541 44.646 101.462 542 44.377 100.856 543 44.109 100.254 544 43.843 99.655 545 43.579 99.06 546 43.316 98.469 547 43.055 97.881 548 42.796 97.296 549 42.538 96.715 550 42.281 96.137 551 42.026 95.563 552 41.773 94.992 553 41.521 94.424 554 41.271 93.86 555 41.022 93.299 556 40.774 92.742 557 40.529 92.188 558 40.284 91.637			
543 44.109 100.254 544 43.843 99.655 545 43.579 99.06 546 43.316 98.469 547 43.055 97.881 548 42.796 97.296 549 42.538 96.715 550 42.281 96.137 551 42.026 95.563 552 41.773 94.992 553 41.521 94.424 554 41.271 93.86 555 41.022 93.299 556 40.774 92.742 557 40.529 92.188 558 40.284 91.637	541		
543 44.109 100.254 544 43.843 99.655 545 43.579 99.06 546 43.316 98.469 547 43.055 97.881 548 42.796 97.296 549 42.538 96.715 550 42.281 96.137 551 42.026 95.563 552 41.773 94.992 553 41.521 94.424 554 41.271 93.86 555 41.022 93.299 556 40.774 92.742 557 40.529 92.188 558 40.284 91.637	542		
544 43.843 99.655 545 43.579 99.06 546 43.316 98.469 547 43.055 97.881 548 42.796 97.296 549 42.538 96.715 550 42.281 96.137 551 42.026 95.563 552 41.773 94.992 553 41.521 94.424 554 41.271 93.86 555 41.022 93.299 556 40.774 92.742 557 40.529 92.188 558 40.284 91.637			
545 43.579 99.06 546 43.316 98.469 547 43.055 97.881 548 42.796 97.296 549 42.538 96.715 550 42.281 96.137 551 42.026 95.563 552 41.773 94.992 553 41.521 94.424 554 41.271 93.86 555 41.022 93.299 556 40.774 92.742 557 40.529 92.188 558 40.284 91.637			
546 43.316 98.469 547 43.055 97.881 548 42.796 97.296 549 42.538 96.715 550 42.281 96.137 551 42.026 95.563 552 41.773 94.992 553 41.521 94.424 554 41.271 93.86 555 41.022 93.299 556 40.774 92.742 557 40.529 92.188 558 40.284 91.637			
547 43.055 97.881 548 42.796 97.296 549 42.538 96.715 550 42.281 96.137 551 42.026 95.563 552 41.773 94.992 553 41.521 94.424 554 41.271 93.86 555 41.022 93.299 556 40.774 92.742 557 40.529 92.188 558 40.284 91.637			
548 42.796 97.296 549 42.538 96.715 550 42.281 96.137 551 42.026 95.563 552 41.773 94.992 553 41.521 94.424 554 41.271 93.86 555 41.022 93.299 556 40.774 92.742 557 40.529 92.188 558 40.284 91.637			
549 42.538 96.715 550 42.281 96.137 551 42.026 95.563 552 41.773 94.992 553 41.521 94.424 554 41.271 93.86 555 41.022 93.299 556 40.774 92.742 557 40.529 92.188 558 40.284 91.637			
550 42.281 96.137 551 42.026 95.563 552 41.773 94.992 553 41.521 94.424 554 41.271 93.86 555 41.022 93.299 556 40.774 92.742 557 40.529 92.188 558 40.284 91.637			
551 42.026 95.563 552 41.773 94.992 553 41.521 94.424 554 41.271 93.86 555 41.022 93.299 556 40.774 92.742 557 40.529 92.188 558 40.284 91.637			
552 41.773 94.992 553 41.521 94.424 554 41.271 93.86 555 41.022 93.299 556 40.774 92.742 557 40.529 92.188 558 40.284 91.637			
553 41.521 94.424 554 41.271 93.86 555 41.022 93.299 556 40.774 92.742 557 40.529 92.188 558 40.284 91.637			
554 41.271 93.86 555 41.022 93.299 556 40.774 92.742 557 40.529 92.188 558 40.284 91.637			
555 41.022 93.299 556 40.774 92.742 557 40.529 92.188 558 40.284 91.637			
556 40.774 92.742 557 40.529 92.188 558 40.284 91.637			
557 40.529 92.188 558 40.284 91.637			
558 40.284 91.637			
91.003			
	003	TU.U4 I	J 1.003

560 39.8 90.545 561 39.56 90.003 562 39.321 89.465 563 39.084 88.931 564 38.849 88.399 565 38.614 87.87 566 38.382 87.345 567 38.15 86.823 568 37.92 86.304 569 37.692 85.788 570 37.464 85.275 571 37.238 84.765 572 37.014 84.258 573 36.791 83.754 574 36.569 83.253 575 36.348 82.755 576 36.129 82.26 577 35.911 81.768 578 35.695 81.279 579 35.48 80.792 580 35.266 80.309 581 35.053 79.829 582 34.842 79.351 583 <th></th> <th></th> <th></th>			
562 39.321 89.465 563 39.084 88.931 564 38.849 88.399 565 38.614 87.87 566 38.382 87.345 567 38.15 36.823 568 37.92 86.304 569 37.692 85.788 570 37.464 85.275 571 37.238 84.765 572 37.014 84.258 573 36.791 83.754 574 36.569 83.253 575 36.348 82.755 576 36.129 82.26 577 35.911 81.768 578 35.695 81.279 579 35.48 80.792 580 35.053 79.829 582 34.842 79.351 583 34.632 78.876 584 34.423 78.404 585 34.215 77.935 586<	560	39.8	90.545
563 39.084 88.931 564 38.849 88.399 565 38.614 87.87 566 38.382 87.345 567 38.15 86.823 568 37.92 86.304 569 37.692 85.788 570 37.464 85.275 571 37.238 84.765 572 37.014 84.258 573 36.591 83.253 574 36.569 83.253 575 36.348 82.755 576 36.129 82.26 577 35.911 81.768 578 35.695 81.279 579 35.48 80.792 580 35.266 80.309 581 35.053 79.829 582 34.842 79.351 583 34.632 78.876 584 34.215 77.935 586 34.215 77.935 587<	561	39.56	90.003
564 38.849 88.399 565 38.614 87.87 566 38.382 87.345 567 38.15 86.823 568 37.92 86.304 569 37.692 85.788 570 37.464 85.275 571 37.238 84.765 572 37.014 84.258 573 36.791 83.754 574 36.569 83.253 575 36.348 82.755 576 36.129 82.26 577 35.911 81.768 578 35.695 81.279 579 35.48 80.792 580 35.266 80.309 581 35.053 79.829 582 34.842 79.351 583 34.632 78.876 584 34.423 78.404 585 34.215 77.935 586 34.009 77.469 587<	562	39.321	89.465
565 38.614 87.87 566 38.382 87.345 567 38.15 86.823 568 37.92 86.304 569 37.692 85.788 570 37.464 85.275 571 37.238 84.765 572 37.014 84.258 573 36.791 83.754 574 36.569 83.253 575 36.348 82.755 576 36.129 82.26 577 35.911 81.768 578 35.695 81.279 579 35.48 80.792 580 35.266 80.309 581 35.053 79.829 582 34.842 79.351 583 34.632 78.876 584 34.423 78.404 585 34.215 77.935 586 34.009 77.469 587 33.804 77.005 588<	563	39.084	88.931
566 38.382 87.345 567 38.15 86.823 568 37.92 86.304 569 37.692 85.788 570 37.464 85.275 571 37.238 84.765 572 37.014 84.258 573 36.791 83.754 574 36.569 83.253 575 36.348 82.755 576 36.129 82.26 577 35.911 81.768 578 35.695 81.279 579 35.48 80.792 580 35.266 80.309 581 35.053 79.829 582 34.842 79.351 583 34.632 78.876 584 34.423 78.404 585 34.215 77.935 586 34.009 77.469 587 33.804 77.005 588 33.6 76.544 589 </td <td>564</td> <td>38.849</td> <td>88.399</td>	564	38.849	88.399
566 38.382 87.345 567 38.15 86.823 568 37.92 86.304 569 37.692 85.788 570 37.464 85.275 571 37.238 84.765 572 37.014 84.258 573 36.791 83.754 574 36.569 83.253 575 36.348 82.755 576 36.129 82.26 577 35.911 81.768 578 35.695 81.279 579 35.48 80.792 580 35.266 80.309 581 35.053 79.829 582 34.842 79.351 583 34.632 78.876 584 34.423 78.404 585 34.215 77.935 586 34.009 77.469 587 33.804 77.005 588 33.6 76.544 589 </td <td>565</td> <td>38.614</td> <td>87.87</td>	565	38.614	87.87
567 38.15 86.823 568 37.92 86.304 569 37.692 85.788 570 37.464 85.275 571 37.238 84.765 572 37.014 84.258 573 36.791 83.754 574 36.569 83.253 575 36.348 82.755 576 36.129 82.26 577 35.911 81.768 578 35.695 81.279 579 35.48 80.792 580 35.266 80.309 581 35.053 79.829 582 34.842 79.351 583 34.632 78.876 584 34.423 78.404 585 34.215 77.935 586 34.009 77.469 587 33.804 77.005 588 33.6 76.544 589 33.196 75.63 591 <td></td> <td>38.382</td> <td></td>		38.382	
568 37.92 86.304 569 37.692 85.788 570 37.464 85.275 571 37.238 84.765 572 37.014 84.258 573 36.791 83.754 574 36.569 83.253 575 36.348 82.755 576 36.129 82.26 577 35.911 81.768 578 35.695 81.279 579 35.48 80.792 580 35.266 80.309 581 35.053 79.829 582 34.842 79.351 583 34.632 78.876 584 34.423 78.404 585 34.215 77.935 586 34.009 77.469 587 33.804 77.005 588 33.6 76.544 589 33.398 76.086 590 33.196 75.63 591 </td <td></td> <td></td> <td></td>			
569 37.692 85.788 570 37.464 85.275 571 37.238 84.765 572 37.014 84.258 573 36.791 83.754 574 36.569 83.253 575 36.348 82.755 576 36.129 82.26 577 35.911 81.768 578 35.695 81.279 579 35.48 80.792 580 35.266 80.309 581 35.053 79.829 582 34.842 79.351 583 34.632 78.876 584 34.423 78.404 585 34.215 77.935 586 34.009 77.469 587 33.804 77.005 588 33.6 76.544 589 33.398 76.086 590 33.196 75.63 591 32.996 75.178 592<			
570 37.464 85.275 571 37.238 84.765 572 37.014 84.258 573 36.791 83.754 574 36.569 83.253 575 36.348 82.755 576 36.129 82.26 577 35.911 81.768 578 35.695 81.279 579 35.48 80.792 580 35.266 80.309 581 35.053 79.829 582 34.842 79.351 583 34.632 78.876 584 34.423 78.404 585 34.215 77.935 586 34.009 77.469 587 33.804 77.005 588 33.6 76.544 589 33.398 76.086 590 33.196 75.63 591 32.996 75.178 592 32.797 74.728 593<			
571 37.238 84.765 572 37.014 84.258 573 36.791 83.754 574 36.569 83.253 575 36.348 82.755 576 36.129 82.26 577 35.911 81.768 578 35.695 81.279 579 35.48 80.792 580 35.266 80.309 581 35.053 79.829 582 34.842 79.351 583 34.632 78.876 584 34.423 78.404 585 34.215 77.935 586 34.009 77.469 587 33.804 77.005 588 33.6 76.544 589 33.398 76.086 590 33.196 75.63 591 32.996 75.178 592 32.797 74.728 593 32.208 73.394 596<			
572 37.014 84.258 573 36.791 83.754 574 36.569 83.253 575 36.348 82.755 576 36.129 82.26 577 35.911 81.768 578 35.695 81.279 579 35.48 80.792 580 35.266 80.309 581 35.053 79.829 582 34.842 79.351 583 34.632 78.876 584 34.423 78.404 585 34.215 77.935 586 34.009 77.469 587 33.804 77.005 588 33.6 76.544 589 33.398 76.086 590 33.196 75.63 591 32.996 75.178 592 32.797 74.728 593 32.208 73.394 596 32.013 72.954 597<			
573 36.791 83.754 574 36.569 83.253 575 36.348 82.755 576 36.129 82.26 577 35.911 81.768 578 35.695 81.279 579 35.48 80.792 580 35.266 80.309 581 35.053 79.829 582 34.842 79.351 583 34.632 78.876 584 34.423 78.404 585 34.215 77.935 586 34.009 77.469 587 33.804 77.005 588 33.6 76.544 589 33.398 76.086 590 33.196 75.63 591 32.996 75.178 592 32.797 74.728 593 32.208 73.394 596 32.013 72.954 597 31.82 72.517 598 </td <td></td> <td></td> <td></td>			
574 36.569 83.253 575 36.348 82.755 576 36.129 82.26 577 35.911 81.768 578 35.695 81.279 579 35.48 80.792 580 35.266 80.309 581 35.053 79.829 582 34.842 79.351 583 34.632 78.876 584 34.423 78.404 585 34.215 77.935 586 34.009 77.469 587 33.804 77.005 588 33.6 76.544 589 33.398 76.086 590 33.196 75.63 591 32.996 75.178 592 32.797 74.728 593 32.208 73.394 596 32.013 72.954 597 31.82 72.517 598 31.628 72.083 599 </td <td></td> <td></td> <td></td>			
575 36.348 82.755 576 36.129 82.26 577 35.911 81.768 578 35.695 81.279 579 35.48 80.792 580 35.266 80.309 581 35.053 79.829 582 34.842 79.351 583 34.632 78.876 584 34.423 78.404 585 34.215 77.935 586 34.009 77.469 587 33.804 77.005 588 33.6 76.544 589 33.398 76.086 590 33.196 75.63 591 32.996 75.178 592 32.797 74.728 593 32.599 74.28 594 32.403 73.836 595 32.208 73.394 596 32.013 72.954 597 31.82 72.517 598 <td></td> <td></td> <td></td>			
576 36.129 82.26 577 35.911 81.768 578 35.695 81.279 579 35.48 80.792 580 35.266 80.309 581 35.053 79.829 582 34.842 79.351 583 34.632 78.876 584 34.423 78.404 585 34.215 77.935 586 34.009 77.469 587 33.804 77.005 588 33.6 76.544 589 33.398 76.086 590 33.196 75.63 591 32.996 75.178 592 32.797 74.728 593 32.298 73.394 594 32.403 73.836 595 32.208 73.394 596 32.013 72.954 597 31.82 72.517 598 31.628 72.083 599 </td <td></td> <td></td> <td></td>			
577 35.911 81.768 578 35.695 81.279 579 35.48 80.792 580 35.266 80.309 581 35.053 79.829 582 34.842 79.351 583 34.632 78.876 584 34.423 78.404 585 34.215 77.935 586 34.009 77.469 587 33.804 77.005 588 33.6 76.544 589 33.398 76.086 590 33.196 75.63 591 32.996 75.178 592 32.797 74.728 593 32.299 74.28 594 32.403 73.836 595 32.208 73.394 596 32.013 72.954 597 31.82 72.517 598 31.628 72.083 599 31.438 71.652 600 </td <td></td> <td></td> <td></td>			
578 35.695 81.279 579 35.48 80.792 580 35.266 80.309 581 35.053 79.829 582 34.842 79.351 583 34.632 78.876 584 34.423 78.404 585 34.215 77.935 586 34.009 77.469 587 33.804 77.005 588 33.6 76.544 589 33.398 76.086 590 33.196 75.63 591 32.996 75.178 592 32.797 74.728 593 32.599 74.28 594 32.403 73.836 595 32.208 73.394 596 32.013 72.954 597 31.82 72.517 598 31.628 72.083 599 31.438 71.652 600 31.248 71.223 601 </td <td></td> <td></td> <td></td>			
579 35.48 80.792 580 35.266 80.309 581 35.053 79.829 582 34.842 79.351 583 34.632 78.876 584 34.423 78.404 585 34.215 77.935 586 34.009 77.469 587 33.804 77.005 588 33.6 76.544 589 33.398 76.086 590 33.196 75.63 591 32.996 75.178 592 32.797 74.728 593 32.599 74.28 594 32.403 73.836 595 32.208 73.394 596 32.013 72.954 597 31.82 72.517 598 31.628 72.083 599 31.438 71.652 600 31.248 71.223 601 31.06 70.796 602 <td></td> <td></td> <td></td>			
580 35.266 80.309 581 35.053 79.829 582 34.842 79.351 583 34.632 78.876 584 34.423 78.404 585 34.215 77.935 586 34.009 77.469 587 33.804 77.005 588 33.6 76.544 589 33.398 76.086 590 33.196 75.63 591 32.996 75.178 592 32.797 74.728 593 32.599 74.28 594 32.403 73.836 595 32.208 73.394 596 32.013 72.954 597 31.82 72.517 598 31.628 72.083 599 31.438 71.652 600 31.248 71.223 601 31.06 70.796 602 30.873 70.372 603 </td <td></td> <td></td> <td></td>			
581 35.053 79.829 582 34.842 79.351 583 34.632 78.876 584 34.423 78.404 585 34.215 77.935 586 34.009 77.469 587 33.804 77.005 588 33.6 76.544 589 33.398 76.086 590 33.196 75.63 591 32.996 75.178 592 32.797 74.728 593 32.599 74.28 594 32.403 73.836 595 32.208 73.394 596 32.013 72.954 597 31.82 72.517 598 31.628 72.083 599 31.438 71.652 600 31.248 71.223 601 31.06 70.796 602 30.873 70.372 603 30.686 69.951 604 30.501 69.532 605 30.317 69.115			
582 34.842 79.351 583 34.632 78.876 584 34.423 78.404 585 34.215 77.935 586 34.009 77.469 587 33.804 77.005 588 33.6 76.544 589 33.398 76.086 590 33.196 75.63 591 32.996 75.178 592 32.797 74.728 593 32.599 74.28 594 32.403 73.836 595 32.208 73.394 596 32.013 72.954 597 31.82 72.517 598 31.628 72.083 599 31.438 71.652 600 31.248 71.223 601 31.06 70.796 602 30.873 70.372 603 30.686 69.951 604 30.501 69.532 605 30.317 69.115 606 30.135 68.701			
583 34.632 78.876 584 34.423 78.404 585 34.215 77.935 586 34.009 77.469 587 33.804 77.005 588 33.6 76.544 589 33.398 76.086 590 33.196 75.63 591 32.996 75.178 592 32.797 74.728 593 32.599 74.28 594 32.403 73.836 595 32.208 73.394 596 32.013 72.954 597 31.82 72.083 599 31.438 71.652 600 31.248 71.223 601 31.06 70.796 602 30.873 70.372 603 30.686 69.951 604 30.501 69.532 605 30.317 69.115 606 30.135 68.701 607 </td <td></td> <td></td> <td></td>			
584 34.423 78.404 585 34.215 77.935 586 34.009 77.469 587 33.804 77.005 588 33.6 76.544 589 33.398 76.086 590 33.196 75.63 591 32.996 75.178 592 32.797 74.728 593 32.599 74.28 594 32.403 73.836 595 32.208 73.394 596 32.013 72.954 597 31.82 72.083 599 31.438 71.652 600 31.248 71.223 601 31.06 70.796 602 30.873 70.372 603 30.686 69.951 604 30.501 69.532 605 30.317 69.115 606 30.135 68.701 607 29.953 67.474 610 </td <td></td> <td></td> <td></td>			
585 34.215 77.935 586 34.009 77.469 587 33.804 77.005 588 33.6 76.544 589 33.398 76.086 590 33.196 75.63 591 32.996 75.178 592 32.797 74.728 593 32.599 74.28 594 32.403 73.836 595 32.208 73.394 596 32.013 72.954 597 31.82 72.517 598 31.628 72.083 599 31.438 71.652 600 31.248 71.223 601 31.06 70.796 602 30.873 70.372 603 30.686 69.951 604 30.501 69.532 605 30.317 69.115 606 30.135 68.701 607 29.953 67.474 610 </td <td>583</td> <td>34.632</td> <td></td>	583	34.632	
586 34.009 77.469 587 33.804 77.005 588 33.6 76.544 589 33.398 76.086 590 33.196 75.63 591 32.996 75.178 592 32.797 74.728 593 32.599 74.28 594 32.403 73.836 595 32.208 73.394 596 32.013 72.954 597 31.82 72.517 598 31.628 72.083 599 31.438 71.652 600 31.248 71.223 601 31.06 70.796 602 30.873 70.372 603 30.686 69.951 604 30.501 69.532 605 30.317 69.115 606 30.135 68.701 607 29.953 67.474 610 29.414 67.07 611 29.237 66.668 612 29.061 66.269	584	34.423	78.404
587 33.804 77.005 588 33.6 76.544 589 33.398 76.086 590 33.196 75.63 591 32.996 75.178 592 32.797 74.728 593 32.599 74.28 594 32.403 73.836 595 32.208 73.394 596 32.013 72.954 597 31.82 72.517 598 31.628 72.083 599 31.438 71.652 600 31.248 71.223 601 31.06 70.796 602 30.873 70.372 603 30.686 69.951 604 30.501 69.532 605 30.317 69.115 606 30.135 68.701 607 29.953 67.474 610 29.414 67.07 611 29.237 66.668 612 29.061 66.269 613 28.886 65.872		34.215	77.935
588 33.6 76.544 589 33.398 76.086 590 33.196 75.63 591 32.996 75.178 592 32.797 74.728 593 32.599 74.28 594 32.403 73.836 595 32.208 73.394 596 32.013 72.954 597 31.82 72.517 598 31.628 72.083 599 31.438 71.652 600 31.248 71.223 601 31.06 70.796 602 30.873 70.372 603 30.686 69.951 604 30.501 69.532 605 30.317 69.115 606 30.135 68.701 607 29.953 67.474 610 29.414 67.07 611 29.237 66.668 612 29.061 66.269 613 <td>586</td> <td>34.009</td> <td>77.469</td>	586	34.009	77.469
589 33.398 76.086 590 33.196 75.63 591 32.996 75.178 592 32.797 74.728 593 32.599 74.28 594 32.403 73.836 595 32.208 73.394 596 32.013 72.954 597 31.82 72.517 598 31.628 72.083 599 31.438 71.652 600 31.248 71.223 601 31.06 70.796 602 30.873 70.372 603 30.686 69.951 604 30.501 69.532 605 30.317 69.115 606 30.135 68.701 607 29.953 68.29 608 29.772 67.881 609 29.593 67.474 610 29.414 67.07 611 29.237 66.668 612 </td <td>587</td> <td>33.804</td> <td>77.005</td>	587	33.804	77.005
590 33.196 75.63 591 32.996 75.178 592 32.797 74.728 593 32.599 74.28 594 32.403 73.836 595 32.208 73.394 596 32.013 72.954 597 31.82 72.517 598 31.628 72.083 599 31.438 71.652 600 31.248 71.223 601 31.06 70.796 602 30.873 70.372 603 30.686 69.951 604 30.501 69.532 605 30.317 69.115 606 30.135 68.701 607 29.953 68.29 608 29.772 67.881 609 29.593 67.474 610 29.414 67.07 611 29.237 66.668 612 29.061 66.269 613 </td <td>588</td> <td>33.6</td> <td>76.544</td>	588	33.6	76.544
591 32.996 75.178 592 32.797 74.728 593 32.599 74.28 594 32.403 73.836 595 32.208 73.394 596 32.013 72.954 597 31.82 72.517 598 31.628 72.083 599 31.438 71.652 600 31.248 71.223 601 31.06 70.796 602 30.873 70.372 603 30.686 69.951 604 30.501 69.532 605 30.317 69.115 606 30.135 68.701 607 29.953 68.29 608 29.772 67.881 609 29.593 67.474 610 29.414 67.07 611 29.237 66.668 612 29.061 66.269 613 28.886 65.872 614<	589	33.398	76.086
592 32.797 74.728 593 32.599 74.28 594 32.403 73.836 595 32.208 73.394 596 32.013 72.954 597 31.82 72.517 598 31.628 72.083 599 31.438 71.652 600 31.248 71.223 601 31.06 70.796 602 30.873 70.372 603 30.686 69.951 604 30.501 69.532 605 30.317 69.115 606 30.135 68.701 607 29.953 68.29 608 29.772 67.881 609 29.593 67.474 610 29.414 67.07 611 29.237 66.668 612 29.061 66.269 613 28.886 65.872 614 28.711 65.477	590	33.196	75.63
593 32.599 74.28 594 32.403 73.836 595 32.208 73.394 596 32.013 72.954 597 31.82 72.517 598 31.628 72.083 599 31.438 71.652 600 31.248 71.223 601 31.06 70.796 602 30.873 70.372 603 30.686 69.951 604 30.501 69.532 605 30.317 69.115 606 30.135 68.701 607 29.953 68.29 608 29.772 67.881 609 29.593 67.474 610 29.414 67.07 611 29.237 66.668 612 29.061 66.269 613 28.886 65.872 614 28.711 65.477	591	32.996	75.178
594 32.403 73.836 595 32.208 73.394 596 32.013 72.954 597 31.82 72.517 598 31.628 72.083 599 31.438 71.652 600 31.248 71.223 601 31.06 70.796 602 30.873 70.372 603 30.686 69.951 604 30.501 69.532 605 30.317 69.115 606 30.135 68.701 607 29.953 68.29 608 29.772 67.881 609 29.593 67.474 610 29.414 67.07 611 29.237 66.668 612 29.061 66.269 613 28.886 65.872 614 28.711 65.477	592	32.797	74.728
595 32.208 73.394 596 32.013 72.954 597 31.82 72.517 598 31.628 72.083 599 31.438 71.652 600 31.248 71.223 601 31.06 70.796 602 30.873 70.372 603 30.686 69.951 604 30.501 69.532 605 30.317 69.115 606 30.135 68.701 607 29.953 68.29 608 29.772 67.881 609 29.593 67.474 610 29.414 67.07 611 29.237 66.668 612 29.061 66.269 613 28.886 65.872 614 28.711 65.477	593	32.599	74.28
596 32.013 72.954 597 31.82 72.517 598 31.628 72.083 599 31.438 71.652 600 31.248 71.223 601 31.06 70.796 602 30.873 70.372 603 30.686 69.951 604 30.501 69.532 605 30.317 69.115 606 30.135 68.701 607 29.953 68.29 608 29.772 67.881 609 29.593 67.474 610 29.414 67.07 611 29.237 66.668 612 29.061 66.269 613 28.886 65.872 614 28.711 65.477	594	32.403	73.836
597 31.82 72.517 598 31.628 72.083 599 31.438 71.652 600 31.248 71.223 601 31.06 70.796 602 30.873 70.372 603 30.686 69.951 604 30.501 69.532 605 30.317 69.115 606 30.135 68.701 607 29.953 68.29 608 29.772 67.881 609 29.593 67.474 610 29.414 67.07 611 29.237 66.668 612 29.061 66.269 613 28.886 65.872 614 28.711 65.477	595	32.208	73.394
598 31.628 72.083 599 31.438 71.652 600 31.248 71.223 601 31.06 70.796 602 30.873 70.372 603 30.686 69.951 604 30.501 69.532 605 30.317 69.115 606 30.135 68.701 607 29.953 68.29 608 29.772 67.881 609 29.593 67.474 610 29.414 67.07 611 29.237 66.668 612 29.061 66.269 613 28.886 65.872 614 28.711 65.477	596	32.013	72.954
599 31.438 71.652 600 31.248 71.223 601 31.06 70.796 602 30.873 70.372 603 30.686 69.951 604 30.501 69.532 605 30.317 69.115 606 30.135 68.701 607 29.953 68.29 608 29.772 67.881 609 29.593 67.474 610 29.414 67.07 611 29.237 66.668 612 29.061 66.269 613 28.886 65.872 614 28.711 65.477	597	31.82	72.517
599 31.438 71.652 600 31.248 71.223 601 31.06 70.796 602 30.873 70.372 603 30.686 69.951 604 30.501 69.532 605 30.317 69.115 606 30.135 68.701 607 29.953 68.29 608 29.772 67.881 609 29.593 67.474 610 29.414 67.07 611 29.237 66.668 612 29.061 66.269 613 28.886 65.872 614 28.711 65.477	598	31.628	72.083
600 31.248 71.223 601 31.06 70.796 602 30.873 70.372 603 30.686 69.951 604 30.501 69.532 605 30.317 69.115 606 30.135 68.701 607 29.953 68.29 608 29.772 67.881 609 29.593 67.474 610 29.414 67.07 611 29.237 66.668 612 29.061 66.269 613 28.886 65.872 614 28.711 65.477			
601 31.06 70.796 602 30.873 70.372 603 30.686 69.951 604 30.501 69.532 605 30.317 69.115 606 30.135 68.701 607 29.953 68.29 608 29.772 67.881 609 29.593 67.474 610 29.414 67.07 611 29.237 66.668 612 29.061 66.269 613 28.886 65.872 614 28.711 65.477		31.248	
602 30.873 70.372 603 30.686 69.951 604 30.501 69.532 605 30.317 69.115 606 30.135 68.701 607 29.953 68.29 608 29.772 67.881 609 29.593 67.474 610 29.414 67.07 611 29.237 66.668 612 29.061 66.269 613 28.886 65.872 614 28.711 65.477			
603 30.686 69.951 604 30.501 69.532 605 30.317 69.115 606 30.135 68.701 607 29.953 68.29 608 29.772 67.881 609 29.593 67.474 610 29.414 67.07 611 29.237 66.668 612 29.061 66.269 613 28.886 65.872 614 28.711 65.477			
604 30.501 69.532 605 30.317 69.115 606 30.135 68.701 607 29.953 68.29 608 29.772 67.881 609 29.593 67.474 610 29.414 67.07 611 29.237 66.668 612 29.061 66.269 613 28.886 65.872 614 28.711 65.477			
605 30.317 69.115 606 30.135 68.701 607 29.953 68.29 608 29.772 67.881 609 29.593 67.474 610 29.414 67.07 611 29.237 66.668 612 29.061 66.269 613 28.886 65.872 614 28.711 65.477			
606 30.135 68.701 607 29.953 68.29 608 29.772 67.881 609 29.593 67.474 610 29.414 67.07 611 29.237 66.668 612 29.061 66.269 613 28.886 65.872 614 28.711 65.477			
607 29.953 68.29 608 29.772 67.881 609 29.593 67.474 610 29.414 67.07 611 29.237 66.668 612 29.061 66.269 613 28.886 65.872 614 28.711 65.477			
608 29.772 67.881 609 29.593 67.474 610 29.414 67.07 611 29.237 66.668 612 29.061 66.269 613 28.886 65.872 614 28.711 65.477			
609 29.593 67.474 610 29.414 67.07 611 29.237 66.668 612 29.061 66.269 613 28.886 65.872 614 28.711 65.477			
610 29.414 67.07 611 29.237 66.668 612 29.061 66.269 613 28.886 65.872 614 28.711 65.477			
611 29.237 66.668 612 29.061 66.269 613 28.886 65.872 614 28.711 65.477			
612 29.061 66.269 613 28.886 65.872 614 28.711 65.477			
613 28.886 65.872 614 28.711 65.477			
614 28.711 65.477			
615 28.538 65.085			
	615	28.538	65.085

616	28.366	64.695
617	28.195	64.307
618	28.025	63.922
619	27.856	63.539
620	27.688	63.158
621	27.521	62.779
622	27.355	62.403
623	27.191	62.029
624	27.027	61.657
625	26.864	61.288
626	26.702	60.92
627	26.541	60.555
628	26.381	60.192
629	26.222	59.831
630	26.064	59.473
631	25.906	59.116
632	25.75	58.762
633	25.595	58.409
634	25.441	58.059
635	25.287	57.711
636	25.135	57.365
637	24.983	57.021
638	24.833	56.679
639	24.683	56.339
640	24.534	56.001
641	24.386	55.665
642	24.239	55.331
643	24.093	55
644	23.948	54.67
645	23.803	54.342
646	23.66	54.016
647	23.517	53.692
648 649	23.375 23.234	53.37 53.05
650	23.094	52.731
651	22.955	52.415
652	22.817	52.101
653	22.679	51.788
654	22.542	51.477
655	22.406	51.168
656	22.271	50.861
657	22.137	50.556
658	22.004	50.253
659	21.871	49.951
660	21.739	49.652
661	21.608	49.354
662	21.478	49.057
663	21.348	48.763
664	21.219	48.47
665	21.092	48.18
666	20.964	47.89
667	20.838	47.603
668	20.712	47.317
669	20.587	47.033
670	20.463	46.751
671	20.34	46.47

673 20.095 45. 674 19.974 45. 675 19.854 45. 676 19.734 45. 677 19.615 44. 678 19.497 44. 679 19.379 44.	191 914 638 364 092 821 552 285
674 19.974 45. 675 19.854 45. 676 19.734 45. 677 19.615 44. 678 19.497 44. 679 19.379 44.	638 364 092 821 552
675 19.854 45. 676 19.734 45. 677 19.615 44. 678 19.497 44. 679 19.379 44.	364 092 821 552
676 19.734 45. 677 19.615 44. 678 19.497 44. 679 19.379 44.	092 821 552
677 19.615 44. 678 19.497 44. 679 19.379 44.	821 552
678 19.497 44. 679 19.379 44.	.552
679 19.379 44.	
	.285
	.019
681 19.146 43.	.755
682 19.031 43.	.492
683 18.916 43.	.231
684 18.802 42.	.971
685 18.689 42.	.713
686 18.576 42.	.457
687 18.464 42.	.202
688 18.353 41.	.948
689 18.242 41.	.696
690 18.132 41.	.446
	.197
692 17.914 40.	
	.704
	459
	216
	.975
	.735
	496
	.259
	.023
	.788 .555
	.324
	_
	.094
	.865
	.637
	.411
	.186
	963
	.741
	.52
	.301
	.083
	.866
715 15.588 35.	
	436
717 15.4 35.	.223
718 15.308 35.	.011
719 15.215 34.	.801
720 15.124 34.	.592
721 15.032 34.	.384
	.177
	.972
	.768
	.565
	.363
	.163
111107	

729 14.322 32.765 730 14.236 32.568 731 14.15 32.372 732 14.065 32.178 733 13.98 31.984 734 13.896 31.792 735 13.812 31.601 736 13.729 31.411 737 13.646 31.222 738 13.564 31.035 739 13.482 30.848 740 13.401 30.663 741 13.32 30.478 742 13.24 30.295 743 13.16 30.113 744 13.08 29.932 745 13.002 29.752 746 12.923 29.573 747 12.845 29.395 748 12.768 29.218 749 12.691 29.043 750 12.614 28.868 751 12.538 28.695 752 </th <th></th> <th></th> <th></th>			
730 14.236 32.568 731 14.15 32.372 732 14.065 32.178 733 13.98 31.984 734 13.896 31.792 735 13.812 31.601 736 13.729 31.411 737 13.646 31.222 738 13.564 31.035 739 13.482 30.848 740 13.401 30.663 741 13.32 30.478 742 13.24 30.295 743 13.16 30.113 744 13.08 29.932 745 13.002 29.752 746 12.923 29.573 747 12.845 29.395 748 12.768 29.218 749 12.691 29.043 750 12.614 28.868 751 12.538 28.695 752 12.463 28.522 753 </td <td>728</td> <td>14.409</td> <td>32.963</td>	728	14.409	32.963
731 14.15 32.372 732 14.065 32.178 733 13.98 31.984 734 13.896 31.792 735 13.812 31.601 736 13.729 31.411 737 13.646 31.222 738 13.564 31.035 739 13.482 30.848 740 13.401 30.663 741 13.32 30.478 742 13.24 30.295 743 13.16 30.113 744 13.08 29.932 745 13.002 29.752 746 12.923 29.573 747 12.845 29.395 748 12.768 29.218 749 12.691 29.043 750 12.614 28.868 751 12.538 28.695 752 12.463 28.522 753 12.387 28.35 754 <td>729</td> <td>14.322</td> <td>32.765</td>	729	14.322	32.765
732 14.065 32.178 733 13.98 31.984 734 13.896 31.792 735 13.812 31.601 736 13.729 31.411 737 13.646 31.222 738 13.564 31.035 739 13.482 30.848 740 13.401 30.663 741 13.32 30.478 742 13.24 30.295 743 13.16 30.113 744 13.08 29.932 745 13.002 29.752 746 12.923 29.573 747 12.845 29.395 748 12.768 29.218 749 12.691 29.043 750 12.614 28.868 751 12.538 28.695 752 12.463 28.522 753 12.387 28.35 754 12.313 28.18 755 <td>730</td> <td>14.236</td> <td>32.568</td>	730	14.236	32.568
733 13.98 31.984 734 13.896 31.792 735 13.812 31.601 736 13.729 31.411 737 13.646 31.222 738 13.564 31.035 739 13.482 30.848 740 13.401 30.663 741 13.32 30.478 742 13.24 30.295 743 13.16 30.113 744 13.08 29.932 745 13.002 29.752 746 12.923 29.573 747 12.845 29.395 748 12.768 29.218 749 12.691 29.043 750 12.614 28.868 751 12.538 28.695 752 12.463 28.522 753 12.387 28.35 754 12.313 28.18 755 12.291 27.508 758 <td>731</td> <td>14.15</td> <td>32.372</td>	731	14.15	32.372
734 13.896 31.792 735 13.812 31.601 736 13.729 31.411 737 13.646 31.222 738 13.564 31.035 739 13.482 30.848 740 13.401 30.663 741 13.32 30.478 742 13.24 30.295 743 13.16 30.113 744 13.08 29.932 745 13.002 29.752 746 12.923 29.573 747 12.845 29.395 748 12.768 29.218 749 12.691 29.043 750 12.614 28.868 751 12.538 28.695 752 12.463 28.522 753 12.387 28.35 754 12.313 28.18 755 12.299 28.011 756 12.165 27.842 757 </td <td>732</td> <td>14.065</td> <td>32.178</td>	732	14.065	32.178
735 13.812 31.601 736 13.729 31.411 737 13.646 31.222 738 13.564 31.035 739 13.482 30.848 740 13.401 30.663 741 13.32 30.478 742 13.24 30.295 743 13.16 30.113 744 13.08 29.932 745 13.002 29.752 746 12.923 29.573 747 12.845 29.395 748 12.768 29.218 749 12.691 29.043 750 12.614 28.868 751 12.538 28.695 752 12.463 28.522 753 12.387 28.35 754 12.313 28.18 755 12.263 28.011 756 12.165 27.842 757 12.091 27.675 758 </td <td>733</td> <td>13.98</td> <td>31.984</td>	733	13.98	31.984
736 13.729 31.411 737 13.646 31.222 738 13.564 31.035 739 13.482 30.848 740 13.401 30.663 741 13.32 30.478 742 13.24 30.295 743 13.16 30.113 744 13.08 29.932 745 13.002 29.752 746 12.923 29.573 747 12.845 29.395 748 12.768 29.218 749 12.691 29.043 750 12.614 28.868 751 12.538 28.695 752 12.463 28.522 753 12.387 28.35 754 12.313 28.18 755 12.263 28.011 756 12.165 27.842 757 12.091 27.675 758 12.019 27.508 759 </td <td>734</td> <td>13.896</td> <td>31.792</td>	734	13.896	31.792
737 13.646 31.222 738 13.564 31.035 739 13.482 30.848 740 13.401 30.663 741 13.32 30.478 742 13.24 30.295 743 13.16 30.113 744 13.08 29.932 745 13.002 29.752 746 12.923 29.573 747 12.845 29.395 748 12.768 29.218 749 12.691 29.043 750 12.614 28.868 751 12.538 28.695 752 12.463 28.522 753 12.387 28.35 754 12.313 28.18 755 12.239 28.011 756 12.165 27.842 757 12.091 27.675 758 12.019 27.508 759 11.946 27.343 760 </td <td>735</td> <td>13.812</td> <td>31.601</td>	735	13.812	31.601
738 13.564 31.035 739 13.482 30.848 740 13.401 30.663 741 13.32 30.478 742 13.24 30.295 743 13.16 30.113 744 13.08 29.932 745 13.002 29.752 746 12.923 29.573 747 12.845 29.395 748 12.768 29.218 749 12.691 29.043 750 12.614 28.868 751 12.538 28.695 752 12.463 28.522 753 12.387 28.35 754 12.313 28.18 755 12.239 28.011 756 12.165 27.842 757 12.091 27.675 758 12.019 27.508 759 11.946 27.343 760 11.874 27.178 761 </td <td>736</td> <td>13.729</td> <td>31.411</td>	736	13.729	31.411
739 13.482 30.848 740 13.401 30.663 741 13.32 30.478 742 13.24 30.295 743 13.16 30.113 744 13.08 29.932 745 13.002 29.752 746 12.923 29.573 747 12.845 29.395 748 12.768 29.218 749 12.691 29.043 750 12.614 28.868 751 12.538 28.695 752 12.463 28.522 753 12.387 28.35 754 12.313 28.18 755 12.239 28.011 756 12.165 27.842 757 12.091 27.675 758 12.019 27.508 759 11.946 27.343 760 11.874 27.178 761 11.802 27.015 762 </td <td>737</td> <td>13.646</td> <td>31.222</td>	737	13.646	31.222
740 13.401 30.663 741 13.32 30.478 742 13.24 30.295 743 13.16 30.113 744 13.08 29.932 745 13.002 29.752 746 12.923 29.573 747 12.845 29.395 748 12.768 29.218 749 12.691 29.043 750 12.614 28.868 751 12.538 28.695 752 12.463 28.522 753 12.387 28.35 754 12.313 28.18 755 12.239 28.011 756 12.165 27.842 757 12.091 27.675 758 12.019 27.508 759 11.946 27.343 760 11.874 27.178 761 11.802 27.015 762 11.731 26.853 763 </td <td>738</td> <td>13.564</td> <td>31.035</td>	738	13.564	31.035
740 13.401 30.663 741 13.32 30.478 742 13.24 30.295 743 13.16 30.113 744 13.08 29.932 745 13.002 29.752 746 12.923 29.573 747 12.845 29.395 748 12.768 29.218 749 12.691 29.043 750 12.614 28.868 751 12.538 28.695 752 12.463 28.522 753 12.387 28.35 754 12.313 28.18 755 12.239 28.011 756 12.165 27.842 757 12.091 27.675 758 12.019 27.508 759 11.946 27.343 760 11.874 27.178 761 11.802 27.015 762 11.731 26.853 763 </td <td>739</td> <td>13.482</td> <td>30.848</td>	739	13.482	30.848
741 13.32 30.478 742 13.24 30.295 743 13.16 30.113 744 13.08 29.932 745 13.002 29.752 746 12.923 29.573 747 12.845 29.395 748 12.768 29.218 749 12.691 29.043 750 12.614 28.868 751 12.538 28.695 752 12.463 28.522 753 12.387 28.35 752 12.463 28.522 753 12.239 28.011 756 12.165 27.842 757 12.239 28.011 756 12.165 27.842 757 12.091 27.508 759 11.946 27.343 760 11.874 27.178 761 11.802 27.015 762 11.731 26.853 763<	740	13.401	30.663
742 13.24 30.295 743 13.16 30.113 744 13.08 29.932 745 13.002 29.752 746 12.923 29.573 747 12.845 29.395 748 12.768 29.218 749 12.691 29.043 750 12.614 28.868 751 12.538 28.695 752 12.463 28.522 753 12.387 28.35 754 12.313 28.18 755 12.239 28.011 756 12.165 27.842 757 12.091 27.675 758 12.019 27.508 759 11.946 27.343 760 11.874 27.178 761 11.802 27.015 762 11.731 26.853 763 11.661 26.691 764 11.59 26.53 765 <td></td> <td></td> <td></td>			
743 13.16 30.113 744 13.08 29.932 745 13.002 29.752 746 12.923 29.573 747 12.845 29.395 748 12.768 29.218 749 12.691 29.043 750 12.614 28.868 751 12.538 28.695 752 12.463 28.522 753 12.387 28.35 754 12.313 28.18 755 12.239 28.011 756 12.165 27.842 757 12.091 27.675 758 12.019 27.508 759 11.946 27.343 760 11.874 27.178 761 11.802 27.015 762 11.731 26.853 763 11.661 26.691 764 11.59 26.53 765 11.32 26.53 766 <td></td> <td></td> <td></td>			
744 13.08 29.932 745 13.002 29.752 746 12.923 29.573 747 12.845 29.395 748 12.768 29.218 749 12.691 29.043 750 12.614 28.868 751 12.538 28.695 752 12.463 28.522 753 12.387 28.35 754 12.313 28.18 755 12.239 28.011 756 12.165 27.842 757 12.091 27.675 758 12.019 27.508 759 11.946 27.343 760 11.874 27.178 761 11.802 27.015 762 11.731 26.853 763 11.661 26.691 764 11.59 26.53 765 11.382 26.055 768 11.313 25.898 769<			
745 13.002 29.752 746 12.923 29.573 747 12.845 29.395 748 12.768 29.218 749 12.691 29.043 750 12.614 28.868 751 12.538 28.695 752 12.463 28.522 753 12.387 28.35 754 12.313 28.18 755 12.239 28.011 756 12.165 27.842 757 12.091 27.675 758 12.019 27.508 759 11.946 27.343 760 11.874 27.178 761 11.802 27.015 762 11.731 26.853 763 11.661 26.691 764 11.59 26.53 765 11.382 26.055 768 11.313 25.898 769 11.177 25.587 771	_		
746 12.923 29.573 747 12.845 29.395 748 12.768 29.218 749 12.691 29.043 750 12.614 28.868 751 12.538 28.695 752 12.463 28.522 753 12.387 28.35 754 12.313 28.18 755 12.239 28.011 756 12.165 27.842 757 12.091 27.675 758 12.019 27.508 759 11.946 27.343 760 11.874 27.178 761 11.802 27.015 762 11.731 26.853 763 11.661 26.691 764 11.59 26.53 765 11.451 26.212 767 11.382 26.055 768 11.313 25.898 769 11.177 25.587 771			
747 12.845 29.395 748 12.768 29.218 749 12.691 29.043 750 12.614 28.868 751 12.538 28.695 752 12.463 28.522 753 12.387 28.35 754 12.313 28.18 755 12.239 28.011 756 12.165 27.842 757 12.091 27.675 758 12.019 27.508 759 11.946 27.343 760 11.874 27.178 761 11.802 27.015 762 11.731 26.853 763 11.661 26.691 764 11.59 26.53 765 11.382 26.055 768 11.313 25.898 769 11.177 25.587 771 11.11 25.433 772 11.043 25.28 773 </td <td></td> <td></td> <td></td>			
748 12.768 29.218 749 12.691 29.043 750 12.614 28.868 751 12.538 28.695 752 12.463 28.522 753 12.387 28.35 754 12.313 28.18 755 12.239 28.011 756 12.165 27.842 757 12.091 27.675 758 12.019 27.508 759 11.946 27.343 760 11.874 27.178 761 11.802 27.015 762 11.731 26.853 763 11.661 26.691 764 11.59 26.53 765 11.382 26.055 768 11.313 25.898 769 11.245 25.742 770 11.177 25.587 771 11.11 25.433 772 11.043 25.28 773 </td <td></td> <td></td> <td></td>			
749 12.691 29.043 750 12.614 28.868 751 12.538 28.695 752 12.463 28.522 753 12.387 28.35 754 12.313 28.18 755 12.239 28.011 756 12.165 27.842 757 12.091 27.675 758 12.019 27.508 759 11.946 27.343 760 11.874 27.178 761 11.802 27.015 762 11.731 26.853 763 11.661 26.691 764 11.59 26.53 765 11.52 26.371 766 11.451 26.212 767 11.382 26.055 768 11.313 25.898 769 11.245 25.742 770 11.177 25.587 771 11.11 25.433 772 </td <td></td> <td></td> <td></td>			
750 12.614 28.868 751 12.538 28.695 752 12.463 28.522 753 12.387 28.35 754 12.313 28.18 755 12.239 28.011 756 12.165 27.842 757 12.091 27.675 758 12.019 27.508 759 11.946 27.343 760 11.874 27.178 761 11.802 27.015 762 11.731 26.853 763 11.661 26.691 764 11.59 26.53 765 11.52 26.371 766 11.451 26.212 767 11.382 26.055 768 11.313 25.898 769 11.245 25.742 770 11.177 25.587 771 11.11 25.433 772 11.043 25.28 773 <td></td> <td></td> <td></td>			
751 12.538 28.695 752 12.463 28.522 753 12.387 28.35 754 12.313 28.18 755 12.239 28.011 756 12.165 27.842 757 12.091 27.675 758 12.019 27.508 759 11.946 27.343 760 11.874 27.178 761 11.802 27.015 762 11.731 26.853 763 11.661 26.691 764 11.59 26.53 765 11.382 26.055 768 11.313 25.898 769 11.245 25.742 770 11.177 25.587 771 11.11 25.433 772 11.043 25.28 773 10.976 25.128 774 10.91 24.977 775 10.844 24.827 776 <td></td> <td></td> <td></td>			
752 12.463 28.522 753 12.387 28.35 754 12.313 28.18 755 12.239 28.011 756 12.165 27.842 757 12.091 27.675 758 12.019 27.508 759 11.946 27.343 760 11.874 27.178 761 11.802 27.015 762 11.731 26.853 763 11.661 26.691 764 11.59 26.53 765 11.52 26.371 766 11.451 26.212 767 11.382 26.055 768 11.313 25.898 769 11.245 25.742 770 11.177 25.587 771 11.11 25.433 772 11.043 25.28 773 10.976 25.128 774 10.91 24.977 775 <td></td> <td></td> <td></td>			
753 12.387 28.35 754 12.313 28.18 755 12.239 28.011 756 12.165 27.842 757 12.091 27.675 758 12.019 27.508 759 11.946 27.343 760 11.874 27.178 761 11.802 27.015 762 11.731 26.853 763 11.661 26.691 764 11.59 26.53 765 11.52 26.371 766 11.451 26.212 767 11.382 26.055 768 11.313 25.898 769 11.245 25.742 770 11.177 25.587 771 11.11 25.433 772 11.043 25.28 773 10.976 25.128 774 10.91 24.977 775 10.844 24.827 776 <td></td> <td></td> <td></td>			
754 12.313 28.18 755 12.239 28.011 756 12.165 27.842 757 12.091 27.675 758 12.019 27.508 759 11.946 27.343 760 11.874 27.178 761 11.802 27.015 762 11.731 26.853 763 11.661 26.691 764 11.59 26.53 765 11.52 26.371 766 11.451 26.212 767 11.382 26.055 768 11.313 25.898 769 11.245 25.742 770 11.177 25.587 771 11.11 25.433 772 11.043 25.28 773 10.976 25.128 774 10.91 24.977 775 10.844 24.827 776 10.714 24.529 778 <td></td> <td></td> <td></td>			
755 12.239 28.011 756 12.165 27.842 757 12.091 27.675 758 12.019 27.508 759 11.946 27.343 760 11.874 27.178 761 11.802 27.015 762 11.731 26.853 763 11.661 26.691 764 11.59 26.53 765 11.52 26.371 766 11.451 26.212 767 11.382 26.055 768 11.313 25.898 769 11.245 25.742 770 11.177 25.587 771 11.11 25.433 772 11.043 25.28 773 10.976 25.128 774 10.91 24.977 775 10.844 24.827 776 10.779 24.678 777 10.714 24.529 778 </td <td></td> <td></td> <td></td>			
756 12.165 27.842 757 12.091 27.675 758 12.019 27.508 759 11.946 27.343 760 11.874 27.178 761 11.802 27.015 762 11.731 26.853 763 11.661 26.691 764 11.59 26.53 765 11.52 26.371 766 11.451 26.212 767 11.382 26.055 768 11.313 25.898 769 11.245 25.742 770 11.177 25.587 771 11.11 25.433 772 11.043 25.28 773 10.976 25.128 774 10.91 24.977 775 10.844 24.827 776 10.779 24.678 777 10.714 24.529 778 10.649 24.382 779 </td <td></td> <td></td> <td></td>			
757 12.091 27.675 758 12.019 27.508 759 11.946 27.343 760 11.874 27.178 761 11.802 27.015 762 11.731 26.853 763 11.661 26.691 764 11.59 26.53 765 11.52 26.371 766 11.451 26.212 767 11.382 26.055 768 11.313 25.898 769 11.245 25.742 770 11.177 25.587 771 11.11 25.433 772 11.043 25.28 773 10.976 25.128 774 10.91 24.977 775 10.844 24.827 776 10.779 24.678 777 10.714 24.529 778 10.649 24.382 779 10.585 24.235 780 </td <td></td> <td></td> <td></td>			
758 12.019 27.508 759 11.946 27.343 760 11.874 27.178 761 11.802 27.015 762 11.731 26.853 763 11.661 26.691 764 11.59 26.53 765 11.52 26.371 766 11.451 26.212 767 11.382 26.055 768 11.313 25.898 769 11.245 25.742 770 11.177 25.587 771 11.11 25.433 772 11.043 25.28 773 10.976 25.128 774 10.91 24.977 775 10.844 24.827 776 10.779 24.678 777 10.714 24.529 778 10.649 24.382 779 10.585 24.235 780 10.521 24.089 781 </td <td></td> <td></td> <td></td>			
759 11.946 27.343 760 11.874 27.178 761 11.802 27.015 762 11.731 26.853 763 11.661 26.691 764 11.59 26.53 765 11.52 26.371 766 11.451 26.212 767 11.382 26.055 768 11.313 25.898 769 11.245 25.742 770 11.177 25.587 771 11.11 25.433 772 11.043 25.28 773 10.976 25.128 774 10.91 24.977 775 10.844 24.827 776 10.779 24.678 777 10.714 24.529 778 10.649 24.382 779 10.585 24.235 780 10.521 24.089 781 10.458 23.944 782 </td <td></td> <td></td> <td></td>			
760 11.874 27.178 761 11.802 27.015 762 11.731 26.853 763 11.661 26.691 764 11.59 26.53 765 11.52 26.371 766 11.451 26.212 767 11.382 26.055 768 11.313 25.898 769 11.245 25.742 770 11.177 25.587 771 11.11 25.433 772 11.043 25.28 773 10.976 25.128 774 10.91 24.977 775 10.844 24.827 776 10.779 24.678 777 10.714 24.529 778 10.649 24.382 779 10.585 24.235 780 10.521 24.089 781 10.458 23.944 782 10.395 23.8			
761 11.802 27.015 762 11.731 26.853 763 11.661 26.691 764 11.59 26.53 765 11.52 26.371 766 11.451 26.212 767 11.382 26.055 768 11.313 25.898 769 11.245 25.742 770 11.177 25.587 771 11.11 25.433 772 11.043 25.28 773 10.976 25.128 774 10.91 24.977 775 10.844 24.827 776 10.779 24.678 777 10.714 24.529 778 10.649 24.382 779 10.585 24.235 780 10.521 24.089 781 10.458 23.944 782 10.395 23.8			
762 11.731 26.853 763 11.661 26.691 764 11.59 26.53 765 11.52 26.371 766 11.451 26.212 767 11.382 26.055 768 11.313 25.898 769 11.245 25.742 770 11.177 25.587 771 11.11 25.433 772 11.043 25.28 773 10.976 25.128 774 10.91 24.977 775 10.844 24.827 776 10.779 24.678 777 10.714 24.529 778 10.649 24.382 779 10.585 24.235 780 10.521 24.089 781 10.458 23.944 782 10.395 23.8			
763 11.661 26.691 764 11.59 26.53 765 11.52 26.371 766 11.451 26.212 767 11.382 26.055 768 11.313 25.898 769 11.245 25.742 770 11.177 25.587 771 11.11 25.433 772 11.043 25.28 773 10.976 25.128 774 10.91 24.977 775 10.844 24.827 776 10.779 24.678 777 10.714 24.529 778 10.649 24.382 779 10.585 24.235 780 10.521 24.089 781 10.458 23.944 782 10.395 23.8			
764 11.59 26.53 765 11.52 26.371 766 11.451 26.212 767 11.382 26.055 768 11.313 25.898 769 11.245 25.742 770 11.177 25.587 771 11.11 25.433 772 11.043 25.28 773 10.976 25.128 774 10.91 24.977 775 10.844 24.827 776 10.779 24.678 777 10.714 24.529 778 10.649 24.382 779 10.585 24.235 780 10.521 24.089 781 10.458 23.944 782 10.395 23.8			
765 11.52 26.371 766 11.451 26.212 767 11.382 26.055 768 11.313 25.898 769 11.245 25.742 770 11.177 25.587 771 11.11 25.433 772 11.043 25.28 773 10.976 25.128 774 10.91 24.977 775 10.844 24.827 776 10.779 24.678 777 10.714 24.529 778 10.649 24.382 779 10.585 24.235 780 10.521 24.089 781 10.458 23.944 782 10.395 23.8	763		
766 11.451 26.212 767 11.382 26.055 768 11.313 25.898 769 11.245 25.742 770 11.177 25.587 771 11.11 25.433 772 11.043 25.28 773 10.976 25.128 774 10.91 24.977 775 10.844 24.827 776 10.779 24.678 777 10.714 24.529 778 10.649 24.382 779 10.585 24.235 780 10.521 24.089 781 10.458 23.944 782 10.395 23.8	764		
767 11.382 26.055 768 11.313 25.898 769 11.245 25.742 770 11.177 25.587 771 11.11 25.433 772 11.043 25.28 773 10.976 25.128 774 10.91 24.977 775 10.844 24.827 776 10.779 24.678 777 10.714 24.529 778 10.649 24.382 779 10.585 24.235 780 10.521 24.089 781 10.458 23.944 782 10.395 23.8			
768 11.313 25.898 769 11.245 25.742 770 11.177 25.587 771 11.11 25.433 772 11.043 25.28 773 10.976 25.128 774 10.91 24.977 775 10.844 24.827 776 10.779 24.678 777 10.714 24.529 778 10.649 24.382 779 10.585 24.235 780 10.521 24.089 781 10.458 23.944 782 10.395 23.8			26.212
769 11.245 25.742 770 11.177 25.587 771 11.11 25.433 772 11.043 25.28 773 10.976 25.128 774 10.91 24.977 775 10.844 24.827 776 10.779 24.678 777 10.714 24.529 778 10.649 24.382 779 10.585 24.235 780 10.521 24.089 781 10.458 23.944 782 10.395 23.8		11.382	26.055
770 11.177 25.587 771 11.11 25.433 772 11.043 25.28 773 10.976 25.128 774 10.91 24.977 775 10.844 24.827 776 10.779 24.678 777 10.714 24.529 778 10.649 24.382 779 10.585 24.235 780 10.521 24.089 781 10.458 23.944 782 10.395 23.8	768		25.898
771 11.11 25.433 772 11.043 25.28 773 10.976 25.128 774 10.91 24.977 775 10.844 24.827 776 10.779 24.678 777 10.714 24.529 778 10.649 24.382 779 10.585 24.235 780 10.521 24.089 781 10.458 23.944 782 10.395 23.8	769	11.245	25.742
772 11.043 25.28 773 10.976 25.128 774 10.91 24.977 775 10.844 24.827 776 10.779 24.678 777 10.714 24.529 778 10.649 24.382 779 10.585 24.235 780 10.521 24.089 781 10.458 23.944 782 10.395 23.8	770	11.177	25.587
773 10.976 25.128 774 10.91 24.977 775 10.844 24.827 776 10.779 24.678 777 10.714 24.529 778 10.649 24.382 779 10.585 24.235 780 10.521 24.089 781 10.458 23.944 782 10.395 23.8	771	11.11	25.433
774 10.91 24.977 775 10.844 24.827 776 10.779 24.678 777 10.714 24.529 778 10.649 24.382 779 10.585 24.235 780 10.521 24.089 781 10.458 23.944 782 10.395 23.8	772	11.043	25.28
775 10.844 24.827 776 10.779 24.678 777 10.714 24.529 778 10.649 24.382 779 10.585 24.235 780 10.521 24.089 781 10.458 23.944 782 10.395 23.8	773	10.976	25.128
776 10.779 24.678 777 10.714 24.529 778 10.649 24.382 779 10.585 24.235 780 10.521 24.089 781 10.458 23.944 782 10.395 23.8	774	10.91	24.977
777 10.714 24.529 778 10.649 24.382 779 10.585 24.235 780 10.521 24.089 781 10.458 23.944 782 10.395 23.8	775	10.844	24.827
778 10.649 24.382 779 10.585 24.235 780 10.521 24.089 781 10.458 23.944 782 10.395 23.8	776	10.779	24.678
778 10.649 24.382 779 10.585 24.235 780 10.521 24.089 781 10.458 23.944 782 10.395 23.8	777	10.714	24.529
779 10.585 24.235 780 10.521 24.089 781 10.458 23.944 782 10.395 23.8		10.649	24.382
780 10.521 24.089 781 10.458 23.944 782 10.395 23.8	779		
781 10.458 23.944 782 10.395 23.8	780		
782 10.395 23.8			
700 10.002 20.007			
	, 50	10.002	20.007

784	10.27	23.515
785	10.208	23.373
786	10.146	23.233
787	10.085	23.093
788	10.024	22.954
789	9.964	22.816
790	9.904	22.679
791	9.844	22.542
792	9.785	22.407
793	9.726	22.272
794	9.667	22.138
795	9.609	22.005
796	9.551	21.872
797	9.493	21.741
798	9.436	21.61
799	9.379	21.48
800	9.323	21.351
801	9.266	21.222
802	9.211	21.094
803	9.155	20.967
804	9.1	20.841
805	9.045	20.716
806	8.99	20.591
807	8.936	20.467
808	8.882	20.344
809	8.829	20.222
810	8.776	20.222
811	8.773	19.979
812	8.67	19.859
813	8.618	19.739
814	8.566	19.739
815	8.514	19.502
816 817	8.463 8.412	19.385 19.268
818	8.361	19.152
819	8.311	19.037
820	8.261	18.923
821	8.211	18.809
822	8.161	18.695
823	8.112	18.583
824	8.063	18.471
825	8.015	18.36
826	7.966	18.249
827	7.918	18.14
828	7.87	18.03
829	7.823	17.922
830	7.776	17.814
831	7.729	17.707
832	7.682	17.6
833	7.636	17.494
834	7.59	17.389
835	7.544	17.284
836	7.499	17.18
837	7.454	17.077
838	7.409	16.974
839	7.364	16.872

840	7.32	16.77
841	7.275	16.669

APD ID: 10400098540

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

Submission Date: 07/02/2024

Operator Name: MACK ENERGY CORPORATION

Well Name: SUMMERSIDE FEDERAL COM Well Number: 2H

Well Type: OIL WELL Well Work Type: Drill Show Final Text

Highlighted data reflects the most recent changes

"

Section 1 - Geologic Formations

Formation ID	Formation Name	True Vertical Measured Depth Litholog		Lithologies	Mineral Resources	Producing Formatio	
15317058	RUSTLER	4049	600	600	ALLUVIUM	NONE	N
15317059	TOP OF SALT	3299	750	750	SALT	NONE	N
15317060	BASE OF SALT	2689	1360	50 1360 SALT		NONE	N
15317061	YATES	2539	1510	1510	ANHYDRITE, SILTSTONE	NATURAL GAS, OIL	N
15317062	SEVEN RIVERS	2299	1750	1750	ANHYDRITE, SILTSTONE	NATURAL GAS, OIL	N
15317063	QUEEN	1804	2245	2245	ANHYDRITE, SILTSTONE	NATURAL GAS, OIL	N
15317064	GRAYBURG	1419	2630	2630	ANHYDRITE, DOLOMITE, SILTSTONE	NATURAL GAS, OIL	N
15317065	SAN ANDRES	1099	2950	2952	ANHYDRITE, DOLOMITE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 3M Rating Depth: 14706

Equipment: Rotating Head, Mud Gas Separator

Requesting Variance? NO

Variance request:

Testing Procedure: The BOP/BOPE test shall include a low pressure test from 250 to 300psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. The estimated Bottom Hole at TD is 120 degrees and estimated maximum bottom hole pressure is 1710 psig (0.052*3574'*9.2) less than 2900 bottom hole pressure.

Choke Diagram Attachment:

NEW_Choke_Manifold_3M_20240517085909.pdf

BOP Diagram Attachment:

NEW_BOP_3M_20240517085923.pdf

Operator Name: MACK ENERGY CORPORATION

Well Name: SUMMERSIDE FEDERAL COM Well Number: 2H

NEW_Choke_Manifold_3M_20240517085909.pdf

NEW_BOP_3M_20240517085923.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	625	0	625	4049	3424	625	J-55	48	ST&C	2.37 2	4.62	BUOY	16.9 18	BUOY	4.74
2	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	1500	0	1500	4049	2549	1500	J-55	36	ST&C	2.56 4	7.15 2	BUOY	8.63	BUOY	7.04
3	PRODUCTI ON	8.75	7.0	NEW	API	N	0	3850	0	3647	4049	402	l	HCP -110	17	BUTT	3.64	3.31 7	BUOY	3.53 8	BUOY	3.31 7
4	PRODUCTI ON	8.75	5.5	NEW	API	N	0	14706	0	3574	4049	475	14706	HCP -110	17	BUTT	4.42 4	3.54 7	BUOY	3.63 4	BUOY	3.54 7

Casing Attachments

Casing ID: 1 String SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Surface_Csg_20240517091050.pdf

Well Name: SUMMERSIDE FEDERAL COM Well Number: 2H

Casing A	Attachments
----------	--------------------

Casing ID: 2

String

INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Interm_csg_20240517091322.pdf

Casing ID: 3

String

PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Production_Csg_20240517091609.pdf

Casing ID: 4

String

PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Section 4 - Cement

Well Name: SUMMERSIDE FEDERAL COM Well Number: 2H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	625	325	2.31	13.5	435	100	RFC+12%PF53+ 2%PF1+5PPS PF42+.125PPS PF29	20BBLS GELLED WATER 50SX OF 11# SCAVENGER CEMENT
SURFACE	Tail		0	625	200	1.32	14.8	435	100	CLASS C + 1%PF1	20BBLS GELLED WATER 50SX OF 11# SCAVENGER CEMENT
INTERMEDIATE	Lead		0	1500	300	1.73	14.8	470	50		20BBLS GELLED WATER 50SX OF 11# SCAVENGER CEMENT
INTERMEDIATE	Tail		0	1500	200	1.34	14.8	470	100	CLASS C+1%PF	20BBLS GELLED WATER 50SX OF 11# SCAVENGER CEMENT
PRODUCTION	Lead		0	1470 6	350	2.82	11.5	3322	35	50/50 POZ/C+10% PF 20+5%PF 44+.5% PF79+3PPS PF42+.4PPS PF45+.125 PPS	20BBLS GELLED WATER 20BBLS CHEMICAL WASH 50SX OF 11#SCAVENGER CEMENT
PRODUCTION	Tail		0	1470 6	2950	1.34	14.2	3322	35	50/50 POZ/C 5%PF 44+.2%PF20+.2 %PF 13+.2% PF 65+.2%PF 606+.4PPS PF 45	20BBLS GELLED WATER 20BBLS CHEMICAL WASH 50SX OF 11# SCAVENGER CEMENT

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with 43 CFR 3172:

Diagram of the equipment for the circulating system in accordance with 43 CFR 3172:

Describe what will be on location to control well or mitigate other conditions: BOPE Brine Water

Describe the mud monitoring system utilized: Parson PVT with Pit Volume Recorder

Circulating Medium Table

Well Name: SUMMERSIDE FEDERAL COM Well Number: 2H

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	1500	LSND/GEL	8.3	9.2	74.8	0.1	11		160000	15	
0	1470 6	LSND/GEL	8.3	9.2	74.8	0.1	11		160000	15	The estimated bottom hole at TD is 120 degrees and estimated maximum bottom hole pressure is 1710psig less than 2900 bottom hole pressure
0	625	SPUD MUD	9.6	10	74.8	0.1	11		160000	15	

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

None

List of open and cased hole logs run in the well:

CNL/FDC,COMPENSATED DENSILOG,GAMMA RAY LOG,DUAL LATERAL LOG/MICRO-SPHERICALLY FOCUSED,

Coring operation description for the well:

None

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 1710

Anticipated Surface Pressure: 889

Anticipated Bottom Hole Temperature(F): 95

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards

Hydrogen Sulfide drilling operations plan required? NO

Hydrogen sulfide drilling operations

Well Name: SUMMERSIDE FEDERAL COM Well Number: 2H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Escape_Route_20240517122024.pdf

Summerside_Federal_Com__2H_Preliminary_Horizontal_Well_Plan_1_20240517122056.pdf

H2S Contingency Plan 20240529122621.pdf

Natural_Gas_Management_Plan_20250227081824.pdf

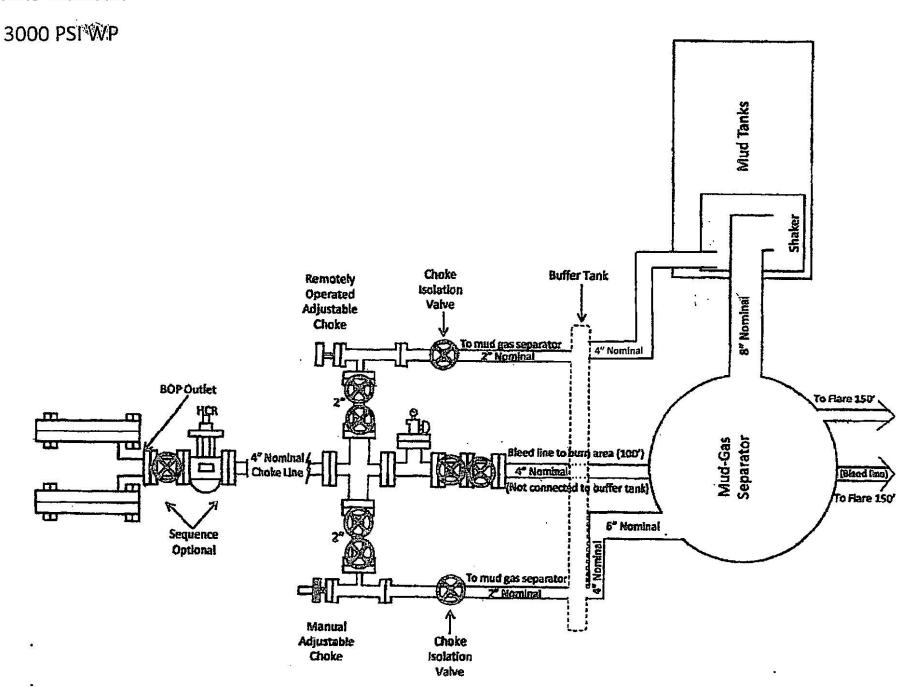
drill plan 20250306074623.pdf

H2S_Plan_20250306074816.pdf

Other proposed operations facets description:

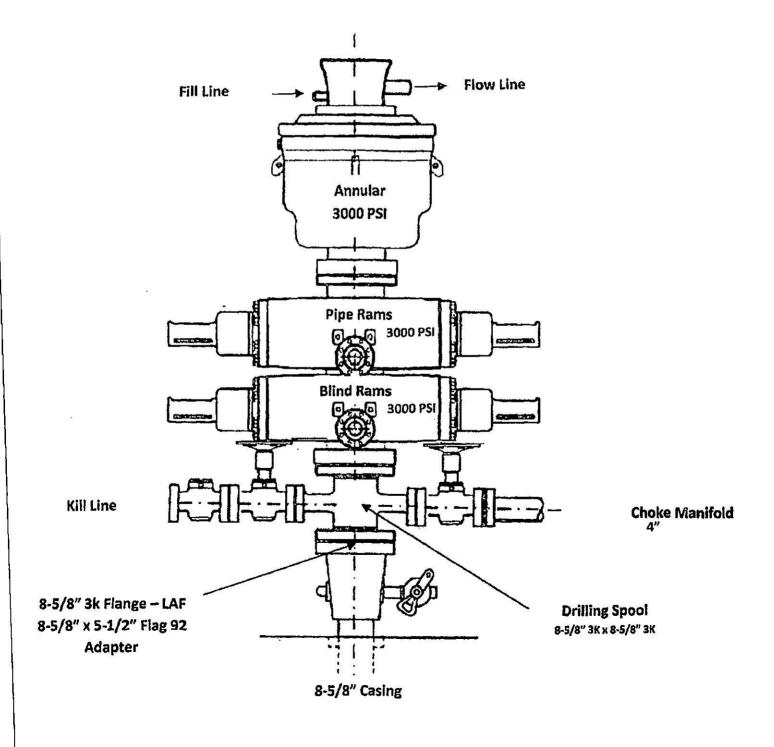
Perforations 4,183-14,600 MD

Mack Energy Corporation request the option to run a DV Tool @ 1400+/- if an air pocket is encountered. Cmt Stage1 - 2050sx 50/50 POZ/C +5% (BWOW) PF44+2%PF20+0.2%PF13+0.2% PF606+0.1%PF 153+0.4pps PF45, yld 1.34, density 14.2, mix H2O gals/sx 6.085, 50% excess, slurry top 1150' Cmt Stage 2 -200sx C + 2% PF 1, yld 1.34, density 14.8, 0% excess, Slurry Top Surface. 2,205.1 Cu/Ft. per Line/Ft


Other proposed operations facets attachment:

Other Variance attachment:

Variance_request_20240517122116.pdf Cactus_Wellhead_installation_Procedure_20240517122211.pdf Hose_Certs_Reliance_20241107104201.pdf


hose_cert_rig_3_20241212110314.pdf

Choke Manifold

BOP Diagram

Dual Ram BOP 3000 PSI WP

Casing Design Well: Sumerside Federal Com #2H

String Size & Function: 13 3/8 in surface x intermediate

Total Depth: 625 ft

Pressure Gradient for Calculations (While drilling)

Mud weight, collapse: 9.6 #/gal Safety Factor Collapse: 1.125

Mud weight, <u>burst</u>: 9.6 #/gal Safety Factor Burst: 1.25

Mud weight for joint strength: 9.6 #/gal Safety Factor Joint Strength 1.8

BHP @ TD for: collapse: <u>312</u> psi Burst: <u>312</u> psi, joint strength: <u>312</u> psi

Partially evacuated hole? Pressure gradient remaining: 10 #/gal

Max. Shut in surface pressure: 500 psi

1st segment	625 ft to	(0 ft	Mak	e up Torqu	e ft-lbs	Total ft =	625
O.D.	Weight	Grade	Threads	opt.	min.	mx.		-
13.375 inches	48 #/ft	J-55	ST&C	3,220	2,420	4,030		
Collapse Resistance	Internal Yield	Joint S	Strength	Body	Yield	Drift		
740	2,370 psi	43	3 ,000 #	744	,000 #	12.559		

2nd segment	0 ft to		0 ft		Make up Tord	Total ft =		
O.D.	Weight	Grade	Threads	opt.	min.	mx.		
inches	#/ft							
Collapse Resistance	Internal Yield	Joint S	Strength	В	ody Yield	Drift		
psi	psi		,000 #		,000 #			

3rd segment	0 ft to	0 ft	Make up Torq	ue ft-lbs
O.D.	Weight	Grade Threads	opt. min.	mx.
inches	#/ft			
Collapse Resistance	Internal Yield	Joint Strength	Body Yield	Drift
psi	psi	,000 #	,000 #	

4th segment	0 ft to	() ft	ı	Make up Torq	ue ft-lbs	Total ft =
O.D.	Weight	Grade	Threads	opt.	min.	mx.	
inches	#/ft						
Collapse Resistance	Internal Yield	Joint S	trength	В	ody Yield	Drift	
psi	psi		,000 #		,000 #		

5th segment	0 ft to	0 ft	Make up Torq	Total ft =	
O.D.	Weight	Grade Threads	opt. min.	mx.	
inches	#/ft				Annual Control of the
Collapse Resistance	Internal Yield	Joint Strength	Body Yield	Drift	
psi	psi	,000 #	,000 #		

6th segment	0 ft to	0 ft	Make up Torq	ue ft-lbs
O.D.	Weight	Grade Threads	opt. min.	mx.
inches	#/ft			
Collapse Resistance	Internal Yield	Joint Strength	Body Yield	Drift
psi	psi	,000 #	,000 #	

Select 1st segment	bottom	625 S.F .	Actual		Desire
		collapse	2.371795	>=	1.125
625 ft to	0 ft	burst-b	4.619883	>=	1.25
13.375 0 J	-55 ST&C	burst-t	4.74		
T	op of segment 1 (ft)	0 S.F.	Actual		Desire
Select 2nd segment	from bottom	collapse	#DIV/0!	>=	1.125
		burst-b	0	>=	1.25
0 ft to	0 ft	burst-t	0		
0 0	0 0	jnt strng	th 16.91829	>=	1.8

		Top of s	segment	2 (ft)	S.F.	Actual		Desire
Select	3rd segm	nent from b	ottom		collapse	#DIV/0!	>=	1.125
					burst-b	0	>=	1.25
	0 ft to		0 ft		burst-t	0		
	0	0	0	0	jnt strngth	0	>=	1.8
		Top of s	segment	3 (ft)	S.F.	Actual		Desire
Select	4th segm	ent from b	ottom		 collapse	#DIV/0!	>=	1.125
					burst-b	0	>=	1.25
	0 ft to		0 ft		burst-t	0		
	0	0	0	0	jnt strngth	0	>=	1.8
		Top of s	segment	4 (ft)	S.F.	Actual		Desire
Select	5th segm	nent from b	ottom		 collapse	#DIV/0!	>=	1.125
					burst-b	0	>=	1.25
	0 ft to		ft		burst-t	0		
	0	0	0	0	jnt strngth	0	>=	1.8
		Top of s	segment	5 (ft)	S.F.	Actual		Desire
Select	6th segm	nent from b	ottom		 collapse	#DIV/0!	>=	1.125
					burst-b	0	>=	1.25
	0 ft to		ft		burst-t	0		
	0	0	0	0	jnt strngth	0	>=	1.8
		Top of s	segment	6 (ft)	jnt strngth		>=	1.8

use in colapse calculations across different pressured formations

use in cola	pse calculat	10115 ac1055	umerent pre	essured format	10115			
Three grad	lient press	ure function						
Depth of e	evaluation:	1,200 f	ft		516	psi @	1,200 ft	•
To	p of salt:	2,400 f	ft fx #1	516				
Bas	se of salt:	3,700 f	ft fx #2	900				
TD of inte	ermediate:	4,600 f	ft fx #3	540				
Pressure g	radient to be	e used above	e each top t	o be used as a	function	of depth.	ex. psi/ft	
fx #1	fx #2	fx #3						
0.43	0.75	0.45						
		-						

- 1) Calculate neutral point for buckling with temperature affects computed also
- 2) Surface burst calculations & kick tolerance in surface pressure for burst
- 3) Do a comparison test to determine which value is lower joint strength or body yield to use in tensile strength calculations
- 4) Raise joint strength safety factor up to next level on page #2
- 5) Sour service what pipe can be used with proper degrading of strength factors and as function of temp

Adjust for best combination of safety factors

	Secondary
S.F. Collapse bottom of segment:	
S.F. Collapse top of segment:	#DIV/0!
S.F. Burst bottom of segment:	
S.F. Burst top of segment	
S.F. Joint strength bottom of segment:	214.782
S.F. Joint strength top of segment:	
S.F. Body yield strength bottom of segment:	369.048
S.F. Body yield strength top of segment:	29.0698

Collapse calculations for 1st segment - casing evacuated

Buoyancy factor collapse:	0.85312	
calculations for bottom of segment @	625 ft	
hydrostatic pressure collapse - backside:	312 psi	
Axial load @ bottom of section	0 lbs	previous segments
Axial load factor:	0	load/(pipe body yield strength)
Collapse strength reduction factor:	1	Messrs, Westcott, Dunlop, Kemler, 1940
Adjusted collapse rating of segment:	740 psi	
Actual safety factor	2.37179	adjusted casing rating / actual pressure

calculations for top of segment @ 0 ft hydrostatic pressure collapse - backside: 0 psi 25593.6 lbs Axial load @ top of section previous segments + (this segment x BF) 0.0344 load/(pipe body yield strength) Axial load factor: Collapse strength reduction factor: 0.9905 Messrs, Westcott, Dunlop, Kemler, 1940 732.973 psi Adjusted collapse rating of segment: #DIV/0! Actual safety factor adjusted casing rating / actual pressure

Burst calculations for 1st segment - Completion fracture treatment

625 ft calculations for bottom of segment @ 513 psi Differential burst pressure (frac. pres.-mud pres.) + max. surf. pres. 2370 psi Burst rating of segment Actual safety factor 4.61988 casing rating / differential burst pressure calculations for top of segment @ 0 ft 500 psi Differential burst pressure (frac. pres.-mud pres.) + max. surf. pres. Burst rating of segment 2370 psi 4.74 Actual safety factor casing rating / differential burst pressure

Joint strength calculations for 1st segment

0.85312 Buoyancy factor for joint strength calc.: calculations for bottom of segment @ 625 ft 2016 lbs Axial load @ bottom of section weight of previous segments 433000 lbs Joint Strength of segment 744000 lbs Body Yield Strength of segment Actual safety factor joint strength 214.782 csg joint strength / axial load Actual safety factor body yield 369.048 csg body yield strength / axial load calculations for top of segment @ 0 ft Axial load @ top of section 25593.6 lbs weight of previous segments + (this segment x BF) Joint Strength of segment 433000 lbs 744000 lbs Body Yield Strenath of seament 16.9183 csg joint strength / axial load Actual safety factor joint strength Actual safety factor body yield 29.0698 csg body yield strength / axial load

Adjust for best combination of safety factors

Secondary

Messrs, Westcott, Dunlop, Kemler, 1940

adjusted casing rating / actual pressure

S.F. Collapse bottom of segment:

S.F. Collapse top of segment: #DIV/0!

S.F. Burst bottom of segment:

S.F. Burst top of segment

Buovancy factor collapse:

S.F. Joint strength bottom of segment:

S.F. Joint strength top of segment:

S.F. Body yield strength bottom of segment:

S.F. Body yield strength top of segment:

0

S.F. Body yield strength top of segment:

0

0.85312

Collapse calculations for 2nd segment - casing evacuated

calculations for bottom of segment @ 0 ft 0 psi hydrostatic pressure collapse - backside: 25593.6 lbs Axial load @ bottom of section load @ top of last segment #DIV/0! Axial load factor: load/(pipe body yield strength) Collapse strength reduction factor: #DIV/0! Messrs, Westcott, Dunlop, Kemler, 1940 #DIV/0! psi Adjusted collapse rating of segment: #DIV/0! Actual safety factor adjusted casing rating / actual pressure 0 ft calculations for top of segment @ 0 psi hydrostatic pressure collapse - backside: 25593.6 lbs Axial load @ top of section previous segments + (this segment x BF) Axial load factor #DIV/0! load/(pipe body yield strength)

#DIV/0!

#DIV/0!

#DIV/0! psi

Burst calculations for 2nd segment - Completion fracture treatment

 calculations for bottom of segment @
 0 ft

 Differential burst pressure
 500 psi
 (frac. pres.-mud pres.) + max. surf. pres.

 Burst rating of segment
 0 psi

 Actual safety factor
 0 casing rating / differential burst pressure

 calculations for top of segment @
 0 ft

Collapse strength reduction factor:

Actual safety factor

Adjusted collapse rating of segment:

Buoyancy factor for joint strength calc.:

Differential burst pressure	500 psi	(frac. presmud pres.) + max. surf. pres.
Burst rating of segment	0 psi	
Actual safety factor	0	casing rating / differential burst pressure

Joint strength calculations for 2nd segment

calculations for bottom of segment @	0 ft	
Axial load @ bottom of section	25593.6 lbs	weight of previous segments
Joint Strength of segment	0 lbs	

0.85312

Body Yield Strength of segment 0 lbs Actual safety factor joint strength 0 csg joint strength / axial load

0 Actual safety factor body yield csg body yield strength / axial load

calculations for top of segment @ 0 ft 25593.6 lbs weight of previous segments + (this segment x BF) Axial load @ top of section Joint Strength of segment 0 lbs Body Yield Strength of segment 0 lbs

0 csg joint strength / axial load Actual safety factor joint strength 0 csg body yield strength / axial load Actual safety factor body yield

Adjust for best combination of safety factors

Secondary

S.F. Collapse bottom of segment: #DIV/0! S.F. Collapse top of segment:

S.F. Burst bottom of segment: S.F. Burst top of segment

Buoyancy factor collapse:

S.F. Joint strength bottom of segment: 0 S.F. Joint strength top of segment: S.F. Body yield strength bottom of segment: 0 S.F. Body yield strength top of segment: 0

0.85312

Collapse calculations for 3rd segment - casing evacuated

calculations for bottom of segment @ 0 ft hydrostatic pressure collapse - backside: 0 psi Axial load @ bottom of section 25593.6 lbs load @ top of last segment #DIV/0! Axial load factor: load/(pipe body yield strength) #DIV/0!

Collapse strength reduction factor: Messrs, Westcott, Dunlop, Kemler, 1940 #DIV/0! psi

Adjusted collapse rating of segment:

Actual safety factor #DIV/0! adjusted casing rating / actual pressure

calculations for top of segment @ 0 ft hydrostatic pressure collapse - backside: 0 psi 25593.6 lbs previous segments + (this segment x BF) Axial load @ top of section Axial load factor: #DIV/0! load/(pipe body yield strength) #DIV/0! Messrs, Westcott, Dunlop, Kemler,1940 Collapse strength reduction factor: Adjusted collapse rating of segment: #DIV/0! psi

#DIV/0! Actual safety factor adjusted casing rating / actual pressure

Burst calculations for 3rd segment - Completion fracture treatment

calculations for bottom of segment @ 0 ft Differential burst pressure 500 psi (frac. pres.-mud pres.) + max. surf. pres. Burst rating of segment 0 psi casing rating / differential burst pressure Actual safety factor 0 0 ft calculations for top of segment @ 500 psi (frac. pres.-mud pres.) + max. surf. pres. Differential burst pressure Burst rating of segment 0 psi Actual safety factor 0 casing rating / differential burst pressure

Joint strength calculations for 3rd segment

Buoyancy factor for joint strength calc.:

0 ft	
25593.6 lbs	load @ top of last segment
0 lbs	
0 lbs	
0	csg joint strength / axial load
0	csg body yield strength / axial load
0 ft	
25593.6 lbs	weight of previous segments + (this segment x BF)
	25593.6 lbs 0 lbs 0 lbs 0 0

Joint Strength of segment 0 lbs Body Yield Strength of segment 0 lbs Actual safety factor joint strength 0 csg joint strength / axial load Actual safety factor body yield 0 csg body yield strength / axial load Adjust for best combination of safety factors Secondary

S.F. Collapse bottom of segment:

S.F. Collapse top of segment: #DIV/0!

S.F. Burst bottom of segment:

S.F. Burst top of segment

Buoyancy factor collapse:

S.F. Joint strength bottom of segment: 0

S.F. Joint strength top of segment:

S.F. Body yield strength bottom of segment: 0 0

0.85312

S.F. Body yield strength top of segment:

Collapse calculations for 4th segment - casing evacuated

calculations for bottom of segment @ 0 ft 0 psi hydrostatic pressure collapse - backside: 25593.6 lbs Axial load @ bottom of section load @ top of last segment #DIV/0! load/(pipe body yield strength) Axial load factor: Collapse strength reduction factor: #DIV/0! Messrs, Westcott, Dunlop, Kemler,1940 Adjusted collapse rating of segment: #DIV/0! psi #DIV/0! Actual safety factor adjusted casing rating / actual pressure 0 ft calculations for top of segment @ hydrostatic pressure collapse - backside: 0 psi 25593.6 lbs previous segments + (this segment x BF) Axial load @ top of section Axial load factor: #DIV/0! load/(pipe body yield strength) #DIV/0!

Messrs, Westcott, Dunlop, Kemler,1940 Collapse strength reduction factor: Adjusted collapse rating of segment: #DIV/0! psi

Actual safety factor #DIV/0! adjusted casing rating / actual pressure

Burst calculations for 4th segment - Completion fracture treatment

calculations for bottom of segment @ Differential burst pressure Burst rating of segment	0 ft 500 psi 0 psi	(frac. presmud pres.) + max. surf. pres.
Actual safety factor	0	casing rating / differential burst pressure
calculations for top of segment @	0 ft	
Differential burst pressure	500 psi	(frac. presmud pres.) + max. surf. pres.
Burst rating of segment	0 psi	
Actual safety factor	0	casing rating / differential burst pressure

Joint strength calculations for 4th segment

Buoyancy factor for joint strength calc.: 0.85312 calculations for bottom of segment @ 0 ft Axial load @ bottom of section 25593.6 lbs load @ top of last segment Joint Strength of segment 0 lbs Body Yield Strength of segment 0 lbs Actual safety factor joint strength 0 csg joint strength / axial load Actual safety factor body yield 0 csg body yield strength / axial load calculations for top of segment @ 0 ft 25593.6 lbs weight of previous segments + (this segment x BF) Axial load @ top of section 0 lbs Joint Strength of segment Body Yield Strength of segment 0 lbs Actual safety factor joint strength U csg joint strength / axial load Actual safety factor body yield 0 csg body yield strength / axial load

Adjust for best combination of safety factors

Secondary

S.F. Collapse bottom of segment:

#DIV/0! S.F. Collapse top of segment:

S.F. Burst bottom of segment:

S.F. Burst top of segment

0 S.F. Joint strength bottom of segment:

S.F. Joint strength top of segment:

S.F. Body yield strength bottom of segment: 0 0

S.F. Body yield strength top of segment:

Collapse calculations for 5th segment - casing evacuated

Buoyancy factor collapse:	0.85312	
calculations for bottom of segment @	0 ft	
hydrostatic pressure collapse - backside:	0 psi	
Axial load @ bottom of section	25593.6 lbs	load @ top of last segment
Axial load factor:	#DIV/0!	load/(pipe body yield strength)
Collapse strength reduction factor:	#DIV/0!	Messrs, Westcott, Dunlop, Kemler,1940
Adjusted collapse rating of segment:	#DIV/0! psi	
Actual safety factor	#DIV/0!	adjusted casing rating / actual pressure
calculations for top of segment @	0 ft	
hydrostatic pressure collapse - backside:	0 psi	
Axial load @ top of section	25593.6 lbs	previous segments + (this segment x BF)
Axial load factor:	#DIV/0!	load/(pipe body yield strength)
Collapse strength reduction factor:	#DIV/0!	Messrs, Westcott, Dunlop, Kemler,1940
Adjusted collapse rating of segment:	#DIV/0! psi	
Actual safety factor	#DIV/0!	adjusted casing rating / actual pressure

Burst calculations for 5th segment - Completion fracture treatment

calculations for bottom of segment @	0 ft	
Differential burst pressure	500 psi	(frac. presmud pres.) + max. surf. pres.
Burst rating of segment	0 psi	
Actual safety factor	0	casing rating / differential burst pressure
calculations for top of segment @	0 ft	
Differential burst pressure	500 psi	(frac. presmud pres.) + max. surf. pres.
Burst rating of segment	0 psi	
Actual safety factor	0	casing rating / differential burst pressure

Joint strength calculations for 5th segment

Buoyancy factor for joint strength calc.:	0.85312	
calculations for bottom of segment @	0 ft	
Axial load @ bottom of section	25593.6 lbs	load @ top of last segment
Joint Strength of segment	0 lbs	
Body Yield Strength of segment	0 lbs	
Actual safety factor joint strength	0	csg joint strength / axial load
Actual safety factor body yield	0	csg body yield strength / axial load
calculations for top of segment @	0 ft	
Axial load @ top of section	25593.6 lbs	weight of previous segments + (this segment x BF)
Joint Strength of segment	0 lbs	
Body Yield Strength of segment	0 lbs	
Actual safety factor joint strength	0	csg joint strength / axial load
Actual safety factor body yield	0	csg body yield strength / axial load

Adjust for best combination of safety factors

9000	٠,	an,
Seco	nda	arv

0.5.0-11	2000.naa.y
S.F. Collapse bottom of segment: S.F. Collapse top of segment:	#DIV/0!
S.F. Burst bottom of segment:	
S.F. Burst top of segment	
S.F. Joint strength bottom of segment:	0
S.F. Joint strength top of segment:	
S.F. Body yield strength bottom of segment:	0
S.F. Body yield strength top of segment:	0

Collapse calculations for 6th segment - casing evacuated

Buoyancy factor collapse:	0.85312	
calculations for bottom of segment @	0 ft	
hydrostatic pressure collapse - backside:	0 psi	
Axial load @ bottom of section	25593.6 lbs	load @ top of last segment
Axial load factor:	#DIV/0!	load/(pipe body yield strength)
Collapse strength reduction factor:	#DIV/0!	Messrs, Westcott, Dunlop, Kemler,1940
Adjusted collapse rating of segment:	#DIV/0! psi	
Actual safety factor	#DIV/0!	adjusted casing rating / actual pressure
calculations for top of segment @	0 ft	
hydrostatic pressure collapse - backside:	0 psi	
Axial load @ top of section	25593.6 lbs	previous segments + (this segment x BF)
Axial load factor:	#DIV/0!	load/(pipe body yield strength)
Collapse strength reduction factor:	#DIV/0!	Messrs, Westcott, Dunlop, Kemler, 1940
Adjusted collapse rating of segment:	#DIV/0! psi	, , , , , , , , , , , , , , , , , , , ,
Actual safety factor	#DIV/0!	adjusted casing rating / actual pressure

Burst calculations for 6th segment - Completion fracture treatment

calculations for bottom of segment @	0 ft	
Differential burst pressure	500 psi	(frac. presmud pres.) + max. surf. pres.
Burst rating of segment	0 psi	
Actual safety factor	0	casing rating / differential burst pressure
calculations for top of segment @	0 ft	
Differential burst pressure	500 psi	(frac. presmud pres.) + max. surf. pres.
Burst rating of segment	0 psi	
Actual safety factor	0	casing rating / differential burst pressure

Joint strength calculations for 6th segment

Buoyancy factor for joint strength calc.:	0.85312	
calculations for bottom of segment @	0 ft	
Axial load @ bottom of section	25593.6 lbs	load @ top of last segment
Joint Strength of segment	0 lbs	
Body Yield Strength of segment	0 lbs	
Actual safety factor joint strength	0	csg joint strength / axial load
Actual safety factor body yield	0	csg body yield strength / axial load
calculations for top of segment @	0 ft	
Axial load @ top of section	25593.6 lbs	weight of previous segments + (this segment x BF)
Joint Strength of segment	0 lbs	
Body Yield Strength of segment	0 lbs	
Actual safety factor joint strength	0	csg joint strength / axial load
Actual safety factor body yield	0	csg body yield strength / axial load

Casing Design Well: Summerside Federal Com #2H

String Size & Function: 7 x 5.5 in Production x

 Total Depth:
 14706 ft
 TVD:
 3730 ft

Pressure Gradient for Calculations (While drilling)

Mud weight, collapse: 10 #/gal Safety Factor Collapse: 1.125

Mud weight, <u>burst</u>: 10 #/gal Safety Factor Burst: 1.25

Mud weight for joint strength: 10 #/gal Safety Factor Joint Strength 1.8

BHP @ TD for: collapse: 1939.6 psi Burst: 1939.6 psi, joint strength: 1939.6 psi

Partially evacuated hole? Pressure gradient remaining: 10 #/gal

Max. Shut in surface pressure: 3000 psi

1st segment	14706 ft to	3850	ft	Make	up Torque	e ft-lbs	Total ft =	10856
O.D.	Weight	Grade	Threads	opt.	min.	mx.		-
5.5 inches	17 #/ft	HCP-110	Buttress	4,620	3,470	5,780	new control of the co	
Collapse Resistance	Internal Yield	Joint St	rength	Body \	/ield	Drift		
8,580 psi	10,640 psi-lrcr	568	,000 #	546	,000 #	4.767		

2nd segment	3850 ft to	0	ft	Make up Torque ft-lbs			Total ft =	3850
O.D.	Weight	Grade	Threads	opt.	min.	mx.		
7 inches	26 #/ft	HCP-110	Buttress	6,930	5,200	8,660		
Collapse Resistance	Internal Yield	Joint St	rength	Body	Yield	Drift		
7,800 psi	9,950 psi-lrcr	853	,000#	830	,000 #	6.151		

3rd segment	0 ft to	0 ft	Make up Tor	que ft-lbs
O.D.	Weight	Grade Threads	opt. min.	mx.
inches	#/ft			
Collapse Resistance	Internal Yield	Joint Strength	Body Yield	Drift
psi	psi	,000 #	,000 #	

4th segment	0 ft to		0 ft	1	Make up Torc	ue ft-lbs	Total ft =
O.D.	Weight	Grade	Threads	opt.	min.	mx.	
inches	#/ft						
Collapse Resistance	Internal Yield	Joint S	Strength	В	ody Yield	Drift	
psi	psi		,000 #		,000 #		

5th segment	0 ft to	0 ft		M	lake up Tord	que ft-lbs	Total ft =
O.D.	Weight	Grade	Threads	opt.	min.	mx.	
inches	#/ft						
Collapse Resistance	Internal Yield	Joint Stre	ngth	Во	ody Yield	Drift	
psi	psi	,0	000#		,000 #		

6th segment	0 ft to	0 ft	Make up Torq	ue ft-lbs
O.D.	Weight	Grade Threads	opt. min.	mx.
inches	#/ft			
Collapse Resistance	Internal Yield	Joint Strength	Body Yield	Drift
psi	psi	,000 #	,000 #	

Select 1st segment bottom	14770	S.F.	Actual		Desire
		collapse	4.423592	>=	1.125
14706 ft to 3850 ft		burst-b	3.546667	>=	1.25
5.5 17 HCP-110 Buttress		burst-t	3.546667		
Top of segment 1 (ft)	3850	S.F.	Actual		Desire
Select 2nd segment from bottom		collapse	3.64036	>=	1.125
		burst-b	3.316667	>=	1.25
3850 ft to 0 ft		burst-t	3.316667		
7 26 HCP-110 Buttress		jnt strngth	3.633676	>=	1.8

	Top of se	gment 2 (ft)	0	S.F.	Actual		Desire
Select	3rd segment from bot	ttom		collapse	#DIV/0!	>=	1.125
	•			burst-b	0	>=	1.25
	0 ft to	O ft		burst-t	0		
	0 0	0 0		jnt strngth	3.537947	>=	1.8
	Top of se	gment 3 (ft)		S.F.	Actual		Desire
Select	4th segment from bot	tom		collapse	#DIV/0!	>=	1.125
				burst-b	0	>=	1.25
	0 ft to 0) ft		burst-t	0		
	0 0 0	0 0		jnt strngth	0	>=	1.8
	Top of se	gment 4 (ft)		S.F.	Actual		Desire
Select	5th segment from bot	tom		collapse	#DIV/0!	>=	1.125
				burst-b	0	>=	1.25
	0 ft to	ft		burst-t	0		
	0 0 0	0 0		jnt strngth	0	>=	1.8
	Top of se	gment 5 (ft)		S.F.	Actual		Desire
Select	6th segment from bot	tom		collapse	#DIV/0!	>=	1.125
				burst-b	0	>=	1.25
	0 ft to	ft		burst-t	0		
	0 0 0	0 0		jnt strngth	0	>=	1.8
	Top of se	gment 6 (ft)		jnt strngth		>=	1.8

use in colapse calculations across different pressured formations

use in cola	pse calculat	10115 ac1055	umerent pre	essured format	10115			
Three grad	lient press	ure function						
Depth of e	evaluation:	1,200 f	ft		516	psi @	1,200 ft	•
To	p of salt:	2,400 f	ft fx #1	516				
Bas	se of salt:	3,700 f	ft fx #2	900				
TD of inte	ermediate:	4,600 f	ft fx #3	540				
Pressure g	radient to be	e used above	e each top t	o be used as a	function	of depth.	ex. psi/ft	
fx #1	fx #2	fx #3						
0.43	0.75	0.45						

- 1) Calculate neutral point for buckling with temperature affects computed also
- 2) Surface burst calculations & kick tolerance in surface pressure for burst
- 3) Do a comparison test to determine which value is lower joint strength or body yield to use in tensile strength calculations
- 4) Raise joint strength safety factor up to next level on page #2
- 5) Sour service what pipe can be used with proper degrading of strength factors and as function of temp

Adjust for best combination of safety factors

	Secondary
S.F. Collapse bottom of segment:	
S.F. Collapse top of segment:	3.79969
S.F. Burst bottom of segment:	
S.F. Burst top of segment	
S.F. Joint strength bottom of segment:	795.518
S.F. Joint strength top of segment:	
S.F. Body yield strength bottom of segment:	764.706
S.F. Body yield strength top of segment:	3.49293

Collapse calculations for 1st segment - casing evacuated

Buoyancy factor collapse:	0.847	
calculations for bottom of segment @	3730 ft	
hydrostatic pressure collapse - backside:	1939.6 psi	
Axial load @ bottom of section	0 lbs	previous segments
Axial load factor:	0	load/(pipe body yield strength)
Collapse strength reduction factor:	1	Messrs, Westcott, Dunlop, Kemler,1940
Adjusted collapse rating of segment:	8580 psi	
Actual safety factor	4.42359	adjusted casing rating / actual pressure

Summerside Federal Com #2H Casing Design Well: String Size & Function: 9 5/8 in surface intermediate x 1500 ft 1500 ft **Total Depth:** TVD: **Pressure Gradient for Calculations** (While drilling) Mud weight, collapse: 10.1 #/gal Safety Factor Collapse: 1.125 Mud weight, burst: 10.1 #/gal Safety Factor Burst: 1.25 10.1_ #/gal Safety Factor Joint Strength 1.8 Mud weight for joint strength: 787.8 psi 787.8 psi, joint strength: 787.8 psi BHP @ TD for: collapse: Burst: 10_#/gal Partially evacuated hole? Pressure gradient remaining: 500 psi Max. Shut in surface pressure: 1500 ft 0 ft Make up Torque ft-lbs Total ft = 1500 1st segment O.D. Weight Grade Threads opt. min. mx. ST&C 2,960 4,930 9.625 inches **36** #/ft J-55 3,940 Body Yield Collapse Resistance Internal Yield Joint Strength Drift **2,020** psi **3,520** psi 394,000# **564** ,000 # 8.765 2nd segment ft to ft Make up Torque ft-lbs Total ft = 0 O.D. Weight Grade Threads opt. min inches #/ft Collapse Resistance Internal Yield Joint Strength Body Yield Drift ,000 # ,000 # psi psi Make up Torque ft-lbs Total ft = 0 3rd segment 0 ft to 0 ft O.D. Weight Grade Threads opt. min. inches #/ft Collapse Resistance Internal Yield Joint Strength Body Yield Drift psi psi .000 # .000 # 4th segment 0 ft to 0 ft Make up Torque ft-lbs Total ft = 0 O.D. Weight Grade Threads min. mx. opt. inches #/ft Collapse Resistance Internal Yield Joint Strength Body Yield Drift ,000 # psi psi ,000 # 0 ft Make up Torque ft-lbs Total ft = 5th segment 0 ft O.D. Grade Threads Weight opt. min. mx. inches #/ft Collapse Resistance Internal Yield Joint Strength Drift Body Yield ,000 # .000 # psi psi Total ft = 6th segment 0 ft to 0 ft Make up Torque ft-lbs 0 O.D. Weight Grade Threads min. mx. #/ft Internal Yield Body Yield Collapse Resistance Drift Joint Strenath psi psi ,000 # ,000 # 1500 Select S.F. Actual Desire 1st segment bottom collapse 2.564103 >= 1.125 1500 ft to 0 ft burst-b 7.151564 1.25 0 J-55 9.625 ST&C 7.04 burst-t Top of segment 1 (ft) S.F. Actual Desire 2nd segment from bottom #DIV/0! 1.125 Select collapse 1.25 0 burst-b 0 ft 0 ft burst-t 0

8.62987

jnt strngth

1.8

0

Summerside Federal Com #2H NMNM-138842

SHL: 1650 FSL & 707 FWL, NWSW, Sec. 16 T15S R30E BHL: 1650 FSL & 1 FWL, Lot 3, Sec. 18 T15S R30E

Chaves County, NM

DRILLING PROGRAM

1. Geologic Name of Surface Formation

Quaternary

2. Estimated Tops of Important Geologic Markers:

Rustler	600'
Top Salt	750'
Base of Salt	1,360'
Yates	1,510'
Seven Rivers	1,750'
Queen	2,245
Grayburg	2,630'
San Andres	2,952'

3. Estimated Depths of Anticipated Fresh Water, Oil and Gas:

Water Sand	150'	Fresh Water
Yates	1,510'	Oil/Gas
Seven Rivers	1,750'	Oil/Gas
Queen	2,245'	Oil/Gas
Grayburg	2,630'	Oil/Gas
San Andres	2,952'	Oil/Gas

No other formations are expected to give up oil, gas or fresh water in measurable quantities. Setting 13 3/8" casing to 625' and circulating cement back to surface will protect the surface fresh water sand. Salt section and shallower zones above TD, which contain commercial quantities of oil and/or gas, will have cement circulated across them by cementing 5 ½" production casing, sufficient cement will be pumped to circulate back to surface.

4. Casing Program:

Hole Size	Interval	OD Casing	Wt, Grade, Jt, cond, collapse/burst/tension
17 1/2"	0-625'	13 3/8"	48#, J-55, ST&C, New, 2.371795/4.6198863/4.74
12 1/4"	0-1,500'	9 5/8"	36#, J-55, ST&C, New, 2.564103/7.151564/7.04
8 3/4"	0-3,850'	7"	26#, HCP-110, Buttress, New, 3.640034/3.316667/3.316667
8 3/4"	3,850-14,70	6' 5 ½"	17#, HCP-110 Buttress, New, 4.423592/3.546667/3.546667

Variance request: A variance is requested to ise a Multi Bowl System and Flex Hose as the choke like from the BOP to the Choke Manifold. If this hose is used, a copy of the manufacturer's certification and pressure test will be kept on the rig.

5. Cement Program:

Summerside Federal Com #2H NMNM-138842

SHL: 1650 FSL & 707 FWL, NWSW, Sec. 16 T15S R30E BHL: 1650 FSL & 1 FWL, Lot 3, Sec. 18 T15S R30E

Chaves County, NM

13 3/8" Surface Casing: Lead 325sx, RFC+12%PF53+2%PF1+5ppsPF42+.125ppsPF29, yld 2.31, wt 13.5 ppg, 7.357gals/sx, excess 100%. Tail: 200sx, Class C+1% PF1, yld 1.32, wt 14.8 ppg, 6.323 gals/sx, excess 100%

9 5/8" Intermediate Casing: Lead 300sx Class C + 4% PF20+.4ppsPF44+.125pps PF29, yld 1.73, wt 13.5 ppg, 6.323gal/sx, excess 50%, Slurry Top Surface. Tail 200sx Class C+1%PF1, yld 1.34, wt 14.8 ppg, 6.323gal/sx, excess 100%, Slurry Top 1000'

7" & 5 ½" Production Casing: Lead 350sx 50/50 Poz/C +10% PF20+5% PF44+.5% PF79+3pps PF42+.4pps PF 45+.125pps PF 29, yld 2.82, wt 11.5 ppg, 16.421gals/sx, excess 35%, Slurry Top Surface. Tail 2,950sx, 50/50 Poz/C 5% PF44+2%PF20+.2%PF13+.2%PF65+.2%PF606+.4pps PF45, yld 1.34, wt 14.2, 6.091gals/sx, 35% excess, Slurry top 2,800'.

Perforations – 4,171'-14,600' MD

Option #2 With Packer Stage Tool- Run a DV tool @ 1400+/- if an air pocket is encountered. Cmt Stage 1- 2050sx 50/50 POZ/C + 5% (BWOW) PF44 + 2% PF20 + 0.2%PF13 + 0.2% PF606 + 0.1% PF 153 + 0.4 PF45, yld 1.34, density 14.2, density 14.2, mix H2O gals/sx 6.085, 50% excess, Slurry Top 1400°. Cmt Stage 2- 200sx C + 2% PF1, yld 1.34, density 14.8, 0% excess, Slurry Top Surface. 2,205.1 Cu/Ft per line/Ft

6. Minimum Specifications for Pressure Control:

The blowout preventer equipment (BOP) shown in Exhibit #10 will consist of a double ram-type (3000 psi WP) minimum preventer. This unit will be hydraulically operated and the ram type preventer will be equipped with blind rams on top of 4 1/2" drill pipe rams on bottom. The 11" BOP will be nippled up on the 8 5/8" surface casing and tested by a 3rd party to 2000 psi used continuously until TD is reached. All BOP's and accessory equipment will be tested to 2000 psi before drilling out of intermediate casing. Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment (Exhibit #10) will include a Kelly cock and floor safety valve and choke lines and choke manifold (Exhibit #11) with a minimum 3000 psi WP rating

7. Types and Characteristics of the Proposed Mud System:

The well will be drilled to TD with a combination of fresh and cut brine mud system. The applicable depths and properties of this system are as follows:

DEPTH	TYPE	WEIGHT	VISCOSITY	WATERLOSS
0-625'	Fresh Water	8.5	28	N.C.
625-1500'	Cut Brine	9.1	29	N.C.
1500'-TD'	Cut Brine	9.1	29	N.C.

Summerside Federal Com #2H NMNM-138842

SHL: 1650 FSL & 707 FWL, NWSW, Sec. 16 T15S R30E BHL: 1650 FSL & 1 FWL, Lot 3, Sec. 18 T15S R30E

Chaves County, NM

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the well site at all times.

8. Auxiliary Well Control and Monitoring Equipment:

- A. Kelly cock will be kept in the drill string at all times.
- B. A full opening drill pipe-stabbing valve with proper drill pipe connections will be on the rig floor at all times.

9. Logging, Testing and Coring Program:

- A. The electric logging program will consist of GR-Dual Laterolog, Spectral Density, Dual Spaced Neutron, CSNG Log from T.D. to 8 5/8 casing shoe.
- B. Drill Stem test is not anticipated.
- C. No conventional coring is anticipated.
- D. Further testing procedures will be determined at TD.

10. Abnormal Conditions, Pressures, Temperatures and Potential Hazards:

No abnormal pressures or temperatures are anticipated. The estimated bottom hole at TD is 120 degrees and estimated maximum bottom hole pressure is 1710 psig (0.052*3,574'TVD*9.2). Low levels of Hydrogen sulfide have been monitors in producing wells in the area, so H2S may be present while drilling of the well; a plan is attached to the Drilling program. No major loss of circulation zones has been reported in offsetting wells.

11. Anticipated Starting Date and Duration of Operations:

Road and location work will not begin until approval has been received from the BLM. The anticipated spud date is December 1, 2024. Once commenced, the drilling operation should be finished in approximately 20 days. If the well is productive, an additional 30 days will be required for completion and testing before a decision is made to install permanent facilities.

Attachment to Exhibit #10 NOTES REGARDING THE BLOWOUT PREVENTERS Summerside Federal Com #2H

Chaves County, New Mexico

- 1. Drilling nipple to be so constructed that it can be removed without use of a welder through rotary table opening, with minimum I.D. equal to preventer bore.
- 2. Wear ring to be properly installed in head.
- 3. Blow out preventer and all fittings must be in good condition, 2000 psi WP minimum.
- 4. All fittings to be flanged.

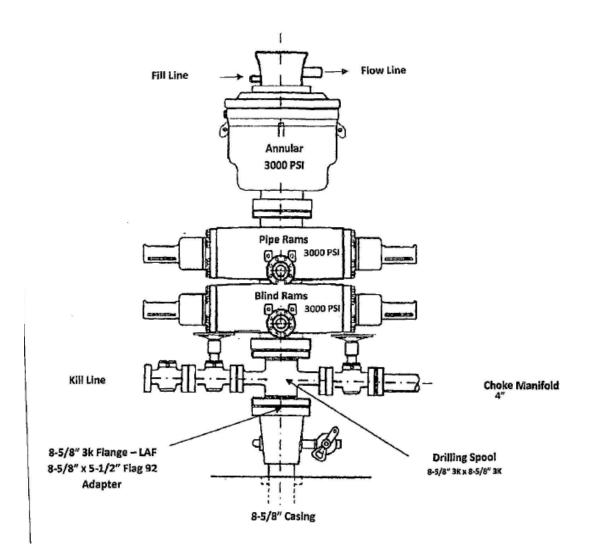

Summerside Federal Com #2H NMNM-138842

SHL: 1650 FSL & 707 FWL, NWSW, Sec. 16 T15S R30E BHL: 1650 FSL & 1 FWL, Lot 3, Sec. 18 T15S R30E

Chaves County, NM

- 5. Safety valve must be available on rig floor at all times with proper connections, valve to be full 2000 psi WP minimum.
- 6. All choke and fill lines to be securely anchored especially ends of choke lines.
- 7. Equipment through which bit must pass shall be at least as large as the diameter of the casing being drilled through.
- 8. Kelly cock on Kelly.
- 9. Extension wrenches and hands wheels to be properly installed.
- 10. Blow out preventer control to be located as close to driller's position as feasible.
- 11. Blow out preventer closing equipment to include minimum 40-gallon accumulator, two independent sources of pump power on each closing unit installation all API specifications.

Choke Manifold


Summerside Federal Com #2H NMNM-138842

SHL: 1650 FSL & 707 FWL, NWSW, Sec. 16 T15S R30E BHL: 1650 FSL & 1 FWL, Lot 3, Sec. 18 T15S R30E

Chaves County, NM

BOP Diagram

Dual Ram BOP 3000 PSI WP

Lat Long Ref

Surface Long

Surface Lat

Summerside Federal Com #2H, Plan 1

OperatorMack Energy CorpUnitsfeet, °/100ft09:05 Thursday, May 9, 2024 Page 1 of 7FieldCountyChavesVertical Section Azimuth269.8Well NameSummerside Federal Com #2HStateNew MexicoSurvey Calculation MethodMinimum Curvature

Map Zone UTM

Surface X 1966491.7

Surface Y 11985065.4

Plan 1 Country USA Database Access

Location SL: 1650 FSL & 707 FWL Sec 16-T15S-R30E BHL:

1650 FSL & 1 FWL Sec 18-T15S-R30E

Slot Name UWI Well Number 2H API

Number 2HAPISurface Z 4066.6Global Z Ref KBProjectMD/TVD Ref KBGround Level 4049.1Local North Ref Grid

BIREOTICIE												
MD*	INC*	AZI*	TVD*	N*	E*	DLS*	V. S.*	MapE*	MapN* \$	SysTVD*		
*** TIE (at MD	= 2825.00)	doa	**	ft	ft	°/100ff	**	**	++	**		
2825.00	0.00	0.0	2825.00	0.00	0.00		0.00	1966491.70	11985065.40	1241.60		
2850.00	0.00	0.0	2850.00	0.00	0.00	0.00	0.00	1966491.70	11985065.40	1216.60		
2900.00	0.00	0.0	2900.00	0.00	0.00	0.00	0.00	1966491.70	11985065.40	1166.60		
*** KOP 8 DEG	REE (at M	D = 2925.0	00)									
2925.00	0.00	0.0	2925.00	0.00	0.00	0.00	0.00	1966491.70	11985065.40	1141.60		
2950.00	2.00	269.8	2949.99	0.00	-0.44	8.00	0.44	1966491.26	11985065.40	1116.61		
3000.00	6.00	269.8	2999.86	-0.01	-3.92	8.00	3.92	1966487.78	11985065.39	1066.74		
3050.00	10.00	269.8	3049.37	-0.04	-10.88	8.00	10.88	1966480.82	11985065.36	1017.23		
3100.00	14.00	269.8	3098.26	-0.07	-21.27	8.00	21.27	1966470.43	11985065.33	968.34		
3150.00	18.00	269.8	3146.32	-0.12	-35.05	8.00	35.05	1966456.65	11985065.28	920.28		
3200.00	22.00	269.8	3193.29	-0.18	-52.15	8.00	52.15	1966439.55	11985065.22	873.31		
3250.00	26.00	269.8	3238.96	-0.25	-72.48	8.00	72.48	1966419.22	11985065.15	827.64		
3300.00	30.00	269.8	3283.10	-0.33	-95.95	8.00	95.95	1966395.75	11985065.07	783.50		
3350.00	34.00	269.8	3325.49	-0.43	-122.44	8.00	122.44	1966369.26	11985064.97	741.11		
3400.00	38.00	269.8	3365.94	-0.53	-151.83	8.00	151.83	1966339.87	11985064.87	700.66		
3450.00	42.00	269.8	3404.23	-0.64	-183.96	8.00	183.96	1966307.74	11985064.76	662.37		
3500.00	46.00	269.8	3440.19	-0.76	-218.68	8.00	218.68	1966273.02	11985064.64	626.41		
3550.00	50.00	269.8	3473.64	-0.89	-255.83	8.00	255.83	1966235.87	11985064.51	592.96		
3600.00	54.00	269.8	3504.42	-1.03	-295.23	8.00	295.23	1966196.47	11985064.37	562.18		
*** 55 DEGRE	E TANGEN		3612.50)									
3612.50	55.00	269.8	3511.67	-1.07	-305.40	8.00	305.40	1966186.30	11985064.33	554.93		
3650.00	55.00	269.8	3533.18	-1.17	-336.12	0.00	336.12	1966155.58	11985064.23	533.42		
3700.00	55.00	269.8	3561.86	-1.32	-377.08	0.00	377.08	1966114.62	11985064.08	504.74		
3750.00	55.00	269.8	3590.54	-1.46	-418.03	0.00	418.04	1966073.67	11985063.94	476.06		
3800.00	55.00	269.8	3619.22	-1.60	-458.99	0.00	458.99	1966032.71	11985063.80	447.38		
*** 10 DEGRE			-									
3812.50	55.00	269.8	3626.39	-1.64	-469.23	0.00	469.23	1966022.47	11985063.76	440.21		
3850.00	58.75	269.8	3646.88	-1.74	-500.63	10.00	500.63	1965991.07	11985063.66	419.72		
3900.00	63.75	269.9	3670.92	-1.86	-544.45	10.00	544.46	1965947.25	11985063.54	395.68		
3950.00	68.75	269.9	3691.05	-1.96	-590.20	10.00	590.21	1965901.50	11985063.44	375.55		
4000.00	73.75	269.9	3707.12	-2.04	-637.54	10.00	637.54	1965854.16	11985063.36	359.48		
4050.00	78.75	269.9	3719.00	-2.11	-686.09	10.00	686.09	1965805.61	11985063.29	347.60		
4100.00	83.75	270.0	3726.60	-2.15	-735.49	10.00	735.49	1965756.21	11985063.25	340.00		
4150.00	88.75	270.0	3729.87	-2.17	-785.37	10.00	785.37	1965706.33	11985063.23	336.73		
*** LANDING F	POINT (at N	/ID = 4171.	00)									
4171.00	90.85	270.0	3729.95	-2.17	-806.37	10.00	806.37	1965685.33	11985063.23	336.65		
4200.00	90.85	270.0	3729.52	-2.17	-835.36	0.00	835.36	1965656.34	11985063.23	337.08		
4250.00	90.85	270.0	3728.77	-2.17	-885.36	0.00	885.36	1965606.34	11985063.23	337.83		
Page 1 of 7										makinhole.com		

Lat Long Ref

Surface Long

Surface Lat

Summerside Federal Com #2H, Plan 1

OperatorMack Energy CorpUnitsfeet, °/100ft09:05 Thursday, May 9, 2024 Page 2 of 7FieldCountyChavesVertical Section Azimuth269.8Well NameSummerside Federal Com #2HStateNew MexicoSurvey Calculation MethodMinimum Curvature

Surface X 1966491.7

Surface Y 11985065.4

Plan 1 Country USA Database Access

Location SL: 1650 FSL & 707 FWL Sec 16-T15S-R30E BHL: Map Zone UTM

1650 FSL & 1 FWL Sec 18-T15S-R30E

Slot Name UWI Well Number 2H API

Number 2HAPISurface Z 4066.6Global Z Ref KBProjectMD/TVD Ref KBGround Level 4049.1Local North Ref Grid

MD*	INC*	AZI*	TVD*	N*	E*	DLS*	V. S.*	MapE*	MapN* S	SysTVD*
4300.00	90.85	270.0	3728.03	-2.17	-935.35	°/100ff 0.00	935.35	1965556.35	11985063.23	338.57
4350.00	90.85	270.0	3727.29	-2.17	-985.35	0.00	985.35	1965506.35	11985063.23	339.31
4400.00	90.85	270.0	3726.55	-2.17	-1035.34	0.00	1035.34	1965456.36	11985063.23	340.05
4450.00	90.85	270.0	3725.81	-2.17	-1085.33	0.00	1085.34	1965406.37	11985063.23	340.79
4500.00	90.85	270.0	3725.07	-2.17	-1135.33	0.00	1135.33	1965356.37	11985063.23	341.53
4550.00	90.85	270.0	3724.32	-2.17	-1185.32	0.00	1185.32	1965306.38	11985063.23	342.28
4600.00	90.85	270.0	3723.58	-2.17	-1235.32	0.00	1235.32	1965256.38	11985063.23	343.02
4650.00	90.85	270.0	3722.84	-2.17	-1285.31	0.00	1285.31	1965206.39	11985063.23	343.76
4700.00	90.85	270.0	3722.10	-2.17	-1335.31	0.00	1335.31	1965156.39	11985063.23	344.50
4750.00	90.85	270.0	3721.36	-2.17	-1385.30	0.00	1385.30	1965106.40	11985063.23	345.24
4800.00	90.85	270.0	3720.62	-2.17	-1435.30	0.00	1435.29	1965056.40	11985063.23	345.98
4850.00	90.85	270.0	3719.87	-2.17	-1485.29	0.00	1485.29	1965006.41	11985063.23	346.73
4900.00	90.85	270.0	3719.13	-2.17	-1535.28	0.00	1535.28	1964956.42	11985063.23	347.47
4950.00	90.85	270.0	3718.39	-2.17	-1585.28	0.00	1585.28	1964906.42	11985063.23	348.21
5000.00	90.85	270.0	3717.65	-2.17	-1635.27	0.00	1635.27	1964856.43	11985063.23	348.95
5050.00	90.85	270.0	3716.91	-2.17	-1685.27	0.00	1685.27	1964806.43	11985063.23	349.69
5100.00	90.85	270.0	3716.17	-2.17	-1735.26	0.00	1735.26	1964756.44	11985063.23	350.44
5150.00	90.85	270.0	3715.42	-2.17	-1785.26	0.00	1785.25	1964706.44	11985063.23	351.18
5200.00	90.85	270.0	3714.68	-2.17	-1835.25	0.00	1835.25	1964656.45	11985063.23	351.92
5250.00	90.85	270.0	3713.94	-2.17	-1885.25	0.00	1885.24	1964606.45	11985063.23	352.66
5300.00	90.85	270.0	3713.20	-2.17	-1935.24	0.00	1935.24	1964556.46	11985063.23	353.40
5350.00	90.85	270.0	3712.46	-2.17	-1985.24	0.00	1985.23	1964506.46	11985063.23	354.14
5400.00	90.85	270.0	3711.71	-2.17	-2035.23	0.00	2035.22	1964456.47	11985063.23	354.89
5450.00	90.85	270.0	3710.97	-2.17	-2085.22	0.00	2085.22	1964406.48	11985063.23	355.63
5500.00	90.85	270.0	3710.23	-2.17	-2135.22	0.00	2135.21	1964356.48	11985063.23	356.37
5550.00	90.85	270.0	3709.49	-2.17	-2185.21	0.00	2185.21	1964306.49	11985063.23	357.11
5600.00	90.85	270.0	3708.75	-2.17	-2235.21	0.00	2235.20	1964256.49	11985063.23	357.85
5650.00	90.85	270.0	3708.01	-2.17	-2285.20	0.00	2285.20	1964206.50	11985063.23	358.59
5700.00	90.85	270.0	3707.26	-2.17	-2335.20	0.00	2335.19	1964156.50	11985063.23	359.34
5750.00	90.85	270.0	3706.52	-2.17	-2385.19	0.00	2385.18	1964106.51	11985063.23	360.08
5800.00	90.85	270.0	3705.78	-2.17	-2435.19	0.00	2435.18	1964056.51	11985063.23	360.82
5850.00	90.85	270.0	3705.04	-2.17	-2485.18	0.00	2485.17	1964006.52	11985063.23	361.56
5900.00	90.85	270.0	3704.30	-2.17	-2535.17	0.00	2535.17	1963956.53	11985063.23	362.30
5950.00	90.85	270.0	3703.56	-2.17	-2585.17	0.00	2585.16	1963906.53	11985063.23	363.04
6000.00	90.85	270.0	3702.81	-2.17	-2635.16	0.00	2635.16	1963856.54	11985063.23	363.79
6050.00	90.85	270.0	3702.07	-2.17	-2685.16	0.00	2685.15	1963806.54	11985063.23	364.53
6100.00	90.85	270.0	3701.33	-2.17	-2735.15	0.00	2735.14	1963756.55	11985063.23	365.27
Page 2 of 7					SES v5	.79			1.WWW	makinhole.com

Summerside Federal Com #2H, Plan 1

OperatorMack Energy CorpUnitsfeet, °/100ft09:05 Thursday, May 9, 2024 Page 3 of 7FieldCountyChavesVertical Section Azimuth269.8Well NameSummerside Federal Com #2HStateNew MexicoSurvey Calculation MethodMinimum Curvature

Plan 1 Country USA Database Access

Location SL: 1650 FSL & 707 FWL Sec 16-T15S-R30E BHL:

1650 FSL & 1 FWL Sec 18-T15S-R30E

Slot Name UWI Well Number 2H API

Project MD/TVD Ref KB

Map Zone UTM

Surface X 1966491.7 **Surface Y** 11985065.4

Surface Z 4066.6 Ground Level 4049.1 Surface Long Surface Lat

Lat Long Ref

Global Z Ref KB Local North Ref Grid

DIRECTIONAL WELL PLAN

MD*	INC*	AZI*	TVD*	N*	E*	DLS*	V. S.*	MapE*	•	SysTVD*
6150.00	90.85	270.0	3700.59	-2.17	-2785.15	°/100 ft 0.00	2785.14	1963706.55	11985063.23	366.01
6200.00	90.85	270.0	3699.85	-2.17	-2835.14	0.00	2835.13	1963656.56	11985063.23	366.75
6250.00	90.85	270.0	3699.11	-2.17	-2885.14	0.00	2885.13	1963606.56	11985063.23	367.50
6300.00	90.85	270.0	3698.36	-2.17	-2935.13	0.00	2935.12	1963556.57	11985063.23	368.24
6350.00	90.85	270.0	3697.62	-2.17	-2985.13	0.00	2985.11	1963506.58	11985063.23	368.98
6400.00	90.85	270.0	3696.88	-2.17	-3035.12	0.00	3035.11	1963456.58	11985063.23	369.72
6450.00	90.85	270.0	3696.14	-2.17	-3085.11	0.00	3085.10	1963406.59	11985063.23	370.46
6500.00	90.85	270.0	3695.40	-2.17	-3135.11	0.00	3135.10	1963356.59	11985063.23	371.20
6550.00	90.85	270.0	3694.65	-2.17	-3185.10	0.00	3185.09	1963306.60	11985063.23	371.95
6600.00	90.85	270.0	3693.91	-2.17	-3235.10	0.00	3235.09	1963256.60	11985063.23	372.69
6650.00	90.85	270.0	3693.17	-2.17	-3285.09	0.00	3285.08	1963206.61	11985063.23	373.43
6700.00	90.85	270.0	3692.43	-2.17	-3335.09	0.00	3335.07	1963156.61	11985063.23	374.17
6750.00	90.85	270.0	3691.69	-2.17	-3385.08	0.00	3385.07	1963106.62	11985063.23	374.91
6800.00	90.85	270.0	3690.95	-2.17	-3435.08	0.00	3435.06	1963056.62	11985063.23	375.65
6850.00	90.85	270.0	3690.20	-2.17	-3485.07	0.00	3485.06	1963006.63	11985063.23	376.40
6900.00	90.85	270.0	3689.46	-2.17	-3535.06	0.00	3535.05	1962956.64	11985063.23	377.14
6950.00	90.85	270.0	3688.72	-2.17	-3585.06	0.00	3585.04	1962906.64	11985063.23	377.88
7000.00	90.85	270.0	3687.98	-2.17	-3635.05	0.00	3635.04	1962856.65	11985063.23	378.62
7050.00	90.85	270.0	3687.24	-2.17	-3685.05	0.00	3685.03	1962806.65	11985063.23	379.36
7100.00	90.85	270.0	3686.50	-2.17	-3735.04	0.00	3735.03	1962756.66	11985063.23	380.10
7150.00	90.85	270.0	3685.75	-2.17	-3785.04	0.00	3785.02	1962706.66	11985063.23	380.85
7200.00	90.85	270.0	3685.01	-2.17	-3835.03	0.00	3835.02	1962656.67	11985063.23	381.59
7250.00	90.85	270.0	3684.27	-2.17	-3885.03	0.00	3885.01	1962606.67	11985063.23	382.33
7300.00	90.85	270.0	3683.53	-2.17	-3935.02	0.00	3935.00	1962556.68	11985063.23	383.07
7350.00	90.85	270.0	3682.79	-2.17	-3985.02	0.00	3985.00	1962506.69	11985063.23	383.81
7400.00	90.85	270.0	3682.05	-2.17	-4035.01	0.00	4034.99	1962456.69	11985063.23	384.55
7450.00	90.85	270.0	3681.30	-2.17	-4085.00	0.00	4084.99	1962406.70	11985063.23	385.30
7500.00	90.85	270.0	3680.56	-2.17	-4135.00	0.00	4134.98	1962356.70	11985063.23	386.04
7550.00	90.85	270.0	3679.82	-2.17	-4184.99	0.00	4184.98	1962306.71	11985063.23	386.78
7600.00	90.85	270.0	3679.08	-2.17	-4234.99	0.00	4234.97	1962256.71	11985063.23	387.52
7650.00	90.85	270.0	3678.34	-2.17	-4284.98	0.00	4284.96	1962206.72	11985063.23	388.26
7700.00	90.85	270.0	3677.59	-2.17	-4334.98	0.00	4334.96	1962156.72	11985063.23	389.01
7750.00	90.85	270.0	3676.85	-2.17	-4384.97	0.00	4384.95	1962106.73	11985063.23	389.75
7800.00	90.85	270.0	3676.11	-2.17	-4434.97	0.00	4434.95	1962056.73	11985063.23	390.49
7850.00	90.85	270.0	3675.37	-2.17	-4484.96	0.00	4484.94	1962006.74	11985063.23	391.23
7900.00	90.85	270.0	3674.63	-2.17	-4534.95	0.00	4534.93	1961956.75	11985063.23	391.97
7950.00	90.85	270.0	3673.89	-2.17	-4584.95	0.00	4584.93	1961906.75	11985063.23	392.71
Page 3 of 7					SES V5	79			\A/\A/\A/	makinhole com

rage 3 01 / SES V3.79 www.maximole.co

Lat Long Ref

Summerside Federal Com #2H, Plan 1

OperatorMack Energy CorpUnitsfeet, °/100ft09:05 Thursday, May 9, 2024 Page 4 of 7FieldCountyChavesVertical Section Azimuth269.8Well NameSummerside Federal Com #2HStateNew MexicoSurvey Calculation MethodMinimum Curvature

Plan 1 Country USA Database Access

Location SL: 1650 FSL & 707 FWL Sec 16-T15S-R30E BHL: Map Zone UTM

1650 FSL & 1 FWL Sec 18-T15S-R30E

 Site
 Surface X 1966491.7
 Surface Long

 Slot Name
 UWI
 Surface Y 11985065.4
 Surface Lat

 Well Number 2H
 API
 Surface Z 4066.6
 Global Z Ref KB

 Project
 MD/TVD Ref KB
 Ground Level 4049.1
 Local North Ref Grid

DIRECTIONA MD*			T\/D*	NI+		DI C*	V C*	ManEt	MN+4	2voT\/D*
MD*	INC*	AZI*	TVD*	N*	E*	DLS*	V. S.*	MapE*	Mapn [∗] :	SysTVD*
8000.00	90.85	270.0	3673.14	-2.17	-4634.94	0.00	4634.92	1961856.76	11985063.23	393.46
8050.00	90.85	270.0	3672.40	-2.17	-4684.94	0.00	4684.92	1961806.76	11985063.23	394.20
8100.00	90.85	270.0	3671.66	-2.17	-4734.93	0.00	4734.91	1961756.77	11985063.23	394.94
8150.00	90.85	270.0	3670.92	-2.17	-4784.93	0.00	4784.91	1961706.77	11985063.23	395.68
8200.00	90.85	270.0	3670.18	-2.17	-4834.92	0.00	4834.90	1961656.78	11985063.23	396.42
8250.00	90.85	270.0	3669.44	-2.17	-4884.92	0.00	4884.89	1961606.78	11985063.23	397.16
8300.00	90.85	270.0	3668.69	-2.17	-4934.91	0.00	4934.89	1961556.79	11985063.23	397.91
8350.00	90.85	270.0	3667.95	-2.17	-4984.90	0.00	4984.88	1961506.80	11985063.23	398.65
8400.00	90.85	270.0	3667.21	-2.17	-5034.90	0.00	5034.88	1961456.80	11985063.23	399.39
8450.00	90.85	270.0	3666.47	-2.17	-5084.89	0.00	5084.87	1961406.81	11985063.23	400.13
8500.00	90.85	270.0	3665.73	-2.17	-5134.89	0.00	5134.86	1961356.81	11985063.23	400.87
8550.00	90.85	270.0	3664.99	-2.17	-5184.88	0.00	5184.86	1961306.82	11985063.23	401.61
8600.00	90.85	270.0	3664.24	-2.17	-5234.88	0.00	5234.85	1961256.82	11985063.23	402.36
8650.00	90.85	270.0	3663.50	-2.17	-5284.87	0.00	5284.85	1961206.83	11985063.23	403.10
8700.00	90.85	270.0	3662.76	-2.17	-5334.87	0.00	5334.84	1961156.83	11985063.23	403.84
8750.00	90.85	270.0	3662.02	-2.17	-5384.86	0.00	5384.84	1961106.84	11985063.23	404.58
8800.00	90.85	270.0	3661.28	-2.17	-5434.86	0.00	5434.83	1961056.84	11985063.23	405.32
8850.00	90.85	270.0	3660.53	-2.17	-5484.85	0.00	5484.82	1961006.85	11985063.23	406.07
8900.00	90.85	270.0	3659.79	-2.17	-5534.84	0.00	5534.82	1960956.86	11985063.23	406.81
8950.00	90.85	270.0	3659.05	-2.17	-5584.84	0.00	5584.81	1960906.86	11985063.23	407.55
9000.00	90.85	270.0	3658.31	-2.17	-5634.83	0.00	5634.81	1960856.87	11985063.23	408.29
9050.00	90.85	270.0	3657.57	-2.17	-5684.83	0.00	5684.80	1960806.87	11985063.23	409.03
9100.00	90.85	270.0	3656.83	-2.17	-5734.82	0.00	5734.80	1960756.88	11985063.23	409.77
9150.00	90.85	270.0	3656.08	-2.17	-5784.82	0.00	5784.79	1960706.88	11985063.23	410.52
9200.00	90.85	270.0	3655.34	-2.17	-5834.81	0.00	5834.78	1960656.89	11985063.23	411.26
9250.00	90.85	270.0	3654.60	-2.17	-5884.81	0.00	5884.78	1960606.89	11985063.23	412.00
9300.00	90.85	270.0	3653.86	-2.17	-5934.80	0.00	5934.77	1960556.90	11985063.23	412.74
9350.00	90.85	270.0	3653.12	-2.17	-5984.79	0.00	5984.77	1960506.91	11985063.23	413.48
9400.00	90.85	270.0	3652.38	-2.17	-6034.79	0.00	6034.76	1960456.91	11985063.23	414.22
9450.00	90.85	270.0	3651.63	-2.17	-6084.78	0.00	6084.75	1960406.92	11985063.23	414.97
9500.00	90.85	270.0	3650.89	-2.17	-6134.78	0.00	6134.75	1960356.92	11985063.23	415.71
9550.00	90.85	270.0	3650.15	-2.17	-6184.77	0.00	6184.74	1960306.93	11985063.23	416.45
9600.00	90.85	270.0	3649.41	-2.17	-6234.77	0.00	6234.74	1960256.93	11985063.23	417.19
9650.00	90.85	270.0	3648.67	-2.17	-6284.76	0.00	6284.73	1960206.94	11985063.23	417.93
9700.00	90.85	270.0	3647.93	-2.17	-6334.76	0.00	6334.73	1960156.94	11985063.23	418.67
9750.00	90.85	270.0	3647.18	-2.17	-6384.75	0.00	6384.72	1960106.95	11985063.23	419.42
9800.00	90.85	270.0	3646.44	-2.17	-6434.75	0.00	6434.71	1960056.95	11985063.23	420.16

Summerside Federal Com #2H, Plan 1

OperatorMack Energy CorpUnitsfeet, °/100ft09:05 Thursday, May 9, 2024 Page 5 of 7FieldCountyChavesVertical Section Azimuth269.8

Well Name Summerside Federal Com #2H State New Mexico Survey Calculation Method Minimum Curvature
Plan 1 Country USA Database Access

Location SL: 1650 FSL & 707 FWL Sec 16-T15S-R30E BHL: Map Zone UTM

1650 FSL & 1 FWL Sec 18-T15S-R30E

Slot Name UWI
Well Number 2H API
Project MD/TVD Ref KB

 Surface X
 1966491.7
 Surface Long

 Surface Y
 11985065.4
 Surface Lat

 Surface Z
 4066.6
 Global Z Ref
 KB

 Ground Level
 4049.1
 Local North Ref
 Grid

Lat Long Ref

MD*	INC*	AZI*	TVD*	N*	E*	DLS*	V. S.*	MapE*	MapN*	SysTVD*
9850.00	90.85	270.0	3645.70	-2.17	-6484.74	°/100ff 0.00	6484.71	1960006.96	11985063.23	420.90
9900.00	90.85	270.0	3644.96	-2.17	-6534.73	0.00	6534.70	1959956.97	11985063.23	421.64
9950.00	90.85	270.0	3644.22	-2.17	-6584.73	0.00	6584.70	1959906.97	11985063.23	422.38
10000.00	90.85	270.0	3643.47	-2.17	-6634.72	0.00	6634.69	1959856.98	11985063.23	423.13
10050.00	90.85	270.0	3642.73	-2.17	-6684.72	0.00	6684.68	1959806.98	11985063.23	423.87
10100.00	90.85	270.0	3641.99	-2.17	-6734.71	0.00	6734.68	1959756.99	11985063.23	424.61
10150.00	90.85	270.0	3641.25	-2.17	-6784.71	0.00	6784.67	1959706.99	11985063.23	425.35
10200.00	90.85	270.0	3640.51	-2.17	-6834.70	0.00	6834.67	1959657.00	11985063.23	426.09
10250.00	90.85	270.0	3639.77	-2.17	-6884.70	0.00	6884.66	1959607.00	11985063.23	426.83
10300.00	90.85	270.0	3639.02	-2.17	-6934.69	0.00	6934.66	1959557.01	11985063.23	427.58
10350.00	90.85	270.0	3638.28	-2.17	-6984.68	0.00	6984.65	1959507.02	11985063.23	428.32
10400.00	90.85	270.0	3637.54	-2.17	-7034.68	0.00	7034.64	1959457.02	11985063.23	429.06
10450.00	90.85	270.0	3636.80	-2.17	-7084.67	0.00	7084.64	1959407.03	11985063.23	429.80
10500.00	90.85	270.0	3636.06	-2.17	-7134.67	0.00	7134.63	1959357.03	11985063.23	430.54
10550.00	90.85	270.0	3635.32	-2.17	-7184.66	0.00	7184.63	1959307.04	11985063.23	431.28
10600.00	90.85	270.0	3634.57	-2.17	-7234.66	0.00	7234.62	1959257.04	11985063.23	432.03
10650.00	90.85	270.0	3633.83	-2.17	-7284.65	0.00	7284.62	1959207.05	11985063.23	432.77
10700.00	90.85	270.0	3633.09	-2.17	-7334.65	0.00	7334.61	1959157.05	11985063.23	433.51
10750.00	90.85	270.0	3632.35	-2.17	-7384.64	0.00	7384.60	1959107.06	11985063.23	434.25
10800.00	90.85	270.0	3631.61	-2.17	-7434.64	0.00	7434.60	1959057.06	11985063.23	434.99
10850.00	90.85	270.0	3630.87	-2.17	-7484.63	0.00	7484.59	1959007.07	11985063.23	435.73
10900.00	90.85	270.0	3630.12	-2.17	-7534.62	0.00	7534.59	1958957.08	11985063.23	436.48
10950.00	90.85	270.0	3629.38	-2.17	-7584.62	0.00	7584.58	1958907.08	11985063.23	437.22
11000.00	90.85	270.0	3628.64	-2.17	-7634.61	0.00	7634.57	1958857.09	11985063.23	437.96
11050.00	90.85	270.0	3627.90	-2.17	-7684.61	0.00	7684.57	1958807.09	11985063.23	438.70
11100.00	90.85	270.0	3627.16	-2.17	-7734.60	0.00	7734.56	1958757.10	11985063.23	439.44
11150.00	90.85	270.0	3626.41	-2.17	-7784.60	0.00	7784.56	1958707.10	11985063.23	440.19
11200.00	90.85	270.0	3625.67	-2.17	-7834.59	0.00	7834.55	1958657.11	11985063.23	440.93
11250.00	90.85	270.0	3624.93	-2.17	-7884.59	0.00	7884.55	1958607.11	11985063.23	441.67
11300.00	90.85	270.0	3624.19	-2.17	-7934.58	0.00	7934.54	1958557.12	11985063.23	442.41
11350.00	90.85	270.0	3623.45	-2.17	-7984.57	0.00	7984.53	1958507.13	11985063.23	443.15
11400.00	90.85	270.0	3622.71	-2.17	-8034.57	0.00	8034.53	1958457.13	11985063.23	443.89
11450.00	90.85	270.0	3621.96	-2.17	-8084.56	0.00	8084.52	1958407.14	11985063.23	444.64
11500.00	90.85	270.0	3621.22	-2.17	-8134.56	0.00	8134.52	1958357.14	11985063.23	445.38
11550.00	90.85	270.0	3620.48	-2.17	-8184.55	0.00	8184.51	1958307.15	11985063.23	446.12
11600.00	90.85	270.0	3619.74	-2.17	-8234.55	0.00	8234.50	1958257.15	11985063.23	446.86
11650.00	90.85	270.0	3619.00	-2.17	-8284.54	0.00	8284.50	1958207.16	11985063.23	447.60
Page 5 of 7					SFS v5	.79			www	makinhole com

Lat Long Ref

Summerside Federal Com #2H, Plan 1

OperatorMack Energy CorpUnitsfeet, °/100ft09:05 Thursday, May 9, 2024 Page 6 of 7FieldCountyChavesVertical Section Azimuth269.8

Well Name Summerside Federal Com #2H State New Mexico Survey Calculation Method Minimum Curvature
Plan 1 Country USA Database Access

Location SL: 1650 FSL & 707 FWL Sec 16-T15S-R30E BHL: Map Zone UTM

1650 FSL & 1 FWL Sec 18-T15S-R30E

 Site
 Surface X 1966491.7
 Surface Long

 Slot Name
 UWI
 Surface Y 11985065.4
 Surface Lat

 Well Number 2H
 API
 Surface Z 4066.6
 Global Z Ref KB

 Project
 MD/TVD Ref KB
 Ground Level 4049.1
 Local North Ref Grid

DIRECTIONA	L WELL P	LAN								
MD*	INC*	AZI*	TVD*	N*	E*	DLS*	V. S.*	MapE*	-	SysTVD*
11700.00	90.85	270.0	3618.26	-2.17	-8334.54	0.00	8334.49	1958157.16	11985063.23	448.34
11750.00	90.85	270.0	3617.51	-2.17	-8384.53	0.00	8384.49	1958107.17	11985063.23	449.09
11800.00	90.85	270.0	3616.77	-2.17	-8434.53	0.00	8434.48	1958057.17	11985063.23	449.83
11850.00	90.85	270.0	3616.03	-2.17	-8484.52	0.00	8484.48	1958007.18	11985063.23	450.57
11900.00	90.85	270.0	3615.29	-2.17	-8534.51	0.00	8534.47	1957957.19	11985063.23	451.31
11950.00	90.85	270.0	3614.55	-2.17	-8584.51	0.00	8584.46	1957907.19	11985063.23	452.05
12000.00	90.85	270.0	3613.81	-2.17	-8634.50	0.00	8634.46	1957857.20	11985063.23	452.79
12050.00	90.85	270.0	3613.06	-2.17	-8684.50	0.00	8684.45	1957807.20	11985063.23	453.54
12100.00	90.85	270.0	3612.32	-2.17	-8734.49	0.00	8734.45	1957757.21	11985063.23	454.28
12150.00	90.85	270.0	3611.58	-2.17	-8784.49	0.00	8784.44	1957707.21	11985063.23	455.02
12200.00	90.85	270.0	3610.84	-2.17	-8834.48	0.00	8834.44	1957657.22	11985063.23	455.76
12250.00	90.85	270.0	3610.10	-2.17	-8884.48	0.00	8884.43	1957607.22	11985063.23	456.50
12300.00	90.85	270.0	3609.35	-2.17	-8934.47	0.00	8934.42	1957557.23	11985063.23	457.25
12350.00	90.85	270.0	3608.61	-2.17	-8984.46	0.00	8984.42	1957507.24	11985063.23	457.99
12400.00	90.85	270.0	3607.87	-2.17	-9034.46	0.00	9034.41	1957457.24	11985063.23	458.73
12450.00	90.85	270.0	3607.13	-2.17	-9084.45	0.00	9084.41	1957407.25	11985063.23	459.47
12500.00	90.85	270.0	3606.39	-2.17	-9134.45	0.00	9134.40	1957357.25	11985063.23	460.21
12550.00	90.85	270.0	3605.65	-2.17	-9184.44	0.00	9184.39	1957307.26	11985063.23	460.95
12600.00	90.85	270.0	3604.90	-2.17	-9234.44	0.00	9234.39	1957257.26	11985063.23	461.70
12650.00	90.85	270.0	3604.16	-2.17	-9284.43	0.00	9284.38	1957207.27	11985063.23	462.44
12700.00	90.85	270.0	3603.42	-2.17	-9334.43	0.00	9334.38	1957157.27	11985063.23	463.18
12750.00	90.85	270.0	3602.68	-2.17	-9384.42	0.00	9384.37	1957107.28	11985063.23	463.92
12800.00	90.85	270.0	3601.94	-2.17	-9434.42	0.00	9434.37	1957057.28	11985063.23	464.66
12850.00	90.85	270.0	3601.20	-2.17	-9484.41	0.00	9484.36	1957007.29	11985063.23	465.40
12900.00	90.85	270.0	3600.45	-2.17	-9534.40	0.00	9534.35	1956957.30	11985063.23	466.15
12950.00	90.85	270.0	3599.71	-2.17	-9584.40	0.00	9584.35	1956907.30	11985063.23	466.89
13000.00	90.85	270.0	3598.97	-2.17	-9634.39	0.00	9634.34	1956857.31	11985063.23	467.63
13050.00	90.85	270.0	3598.23	-2.17	-9684.39	0.00	9684.34	1956807.31	11985063.23	468.37
13100.00	90.85	270.0	3597.49	-2.17	-9734.38	0.00	9734.33	1956757.32	11985063.23	469.11
13150.00	90.85	270.0	3596.75	-2.17	-9784.38	0.00	9784.32	1956707.32	11985063.23	469.85
13200.00	90.85	270.0	3596.00	-2.17	-9834.37	0.00	9834.32	1956657.33	11985063.23	470.60
13250.00	90.85	270.0	3595.26	-2.17	-9884.37	0.00	9884.31	1956607.33	11985063.23	471.34
13300.00	90.85	270.0	3594.52	-2.17	-9934.36	0.00	9934.31	1956557.34	11985063.23	472.08
13350.00	90.85	270.0	3593.78	-2.17	-9984.35	0.00	9984.30	1956507.35	11985063.23	472.82
13400.00	90.85	270.0	3593.04	-2.17	-10034.35	0.00	10034.30	1956457.35	11985063.23	473.56
13450.00	90.85	270.0	3592.29	-2.17	-10084.34	0.00	10084.29	1956407.36	11985063.23	474.31
13500.00	90.85	270.0	3591.55	-2.17	-10134.34	0.00	10134.28	1956357.36	11985063.23	475.05

Summerside Federal Com #2H, Plan 1

Units feet, °/100ft 09:05 Thursday, May 9, 2024 Page 7 of 7 **Operator** Mack Energy Corp **County** Chaves Vertical Section Azimuth 269.8 **Field**

Well Name Summerside Federal Com #2H State New Mexico **Survey Calculation Method** Minimum Curvature Plan 1 **Country** USA **Database** Access

Location SL: 1650 FSL & 707 FWL Sec 16-T15S-R30E BHL: Map Zone UTM

1650 FSL & 1 FWL Sec 18-T15S-R30E

UWI **Slot Name** Well Number 2H **API**

> **Project** MD/TVD Ref KB

Surface X 1966491.7 **Surface Y** 11985065.4

Surface Lat Surface Z 4066.6 Global Z Ref KB Ground Level 4049.1 Local North Ref Grid

Lat Long Ref

Surface Long

MD*	INC*	AZI*	TVD*	N*		DLS*	V. S.*	MapE*	MapN* S	SysTVD*
42550 00	90.85	270.0	3590.81	0 47	-10184.33	°/100ff	40404 00	1956307.37	11985063.23	475.79
13550.00	90.85	270.0	3590.81	-2.17	-10184.33	0.00	10184.28	1950307.37	11985063.23	475.79
13600.00	90.85	270.0	3590.07	-2.17	-10234.33	0.00	10234.27	1956257.37	11985063.23	476.53
13650.00	90.85	270.0	3589.33	-2.17	-10284.32	0.00	10284.27	1956207.38	11985063.23	477.27
13700.00	90.85	270.0	3588.59	-2.17	-10334.32	0.00	10334.26	1956157.38	11985063.23	478.01
13750.00	90.85	270.0	3587.84	-2.17	-10384.31	0.00	10384.26	1956107.39	11985063.23	478.76
13800.00	90.85	270.0	3587.10	-2.17	-10434.31	0.00	10434.25	1956057.39	11985063.23	479.50
13850.00	90.85	270.0	3586.36	-2.17	-10484.30	0.00	10484.24	1956007.40	11985063.23	480.24
13900.00	90.85	270.0	3585.62	-2.17	-10534.29	0.00	10534.24	1955957.41	11985063.23	480.98
13950.00	90.85	270.0	3584.88	-2.17	-10584.29	0.00	10584.23	1955907.41	11985063.23	481.72
14000.00	90.85	270.0	3584.14	-2.17	-10634.28	0.00	10634.23	1955857.42	11985063.23	482.46
14050.00	90.85	270.0	3583.39	-2.17	-10684.28	0.00	10684.22	1955807.42	11985063.23	483.21
14100.00	90.85	270.0	3582.65		-10734.27	0.00	10734.21	1955757.43	11985063.23	483.95
14150.00	90.85	270.0	3581.91		-10784.27	0.00	10784.21	1955707.43	11985063.23	484.69
14200.00	90.85	270.0	3581.17		-10834.26	0.00	10834.20	1955657.44	11985063.23	485.43
14250.00	90.85	270.0	3580.43	-2.17	-10884.26	0.00	10884.20	1955607.44	11985063.23	486.17
14300.00	90.85	270.0	3579.69	-2.17	-10934.25	0.00	10934.19	1955557.45	11985063.23	486.91
4.4050.00	00.05	070.0	0570.04	0.47	1000101	0.00	1000110	1055507 10	44005000.00	407.00
14350.00	90.85	270.0	3578.94		-10984.24	0.00	10984.19	1955507.46	11985063.23	487.66
14400.00	90.85	270.0	3578.20		-11034.24	0.00	11034.18	1955457.46	11985063.23	488.40
14450.00	90.85	270.0	3577.46		-11084.23	0.00	11084.17	1955407.47	11985063.23	489.14
14500.00	90.85	270.0	3576.72		-11134.23	0.00	11134.17	1955357.47	11985063.23	489.88
14550.00	90.85	270.0	3575.98	-2.17	-11184.22	0.00	11184.16	1955307.48	11985063.23	490.62
14600.00	90.85	270.0	3575.23	_2 17	-11234.22	0.00	11234.16	1955257.48	11985063.23	491.37
14650.00	90.85	270.0	3574.49		-11234.22	0.00	11234.10	1955207.49	11985063.23	491.37
14700.00	90.85	270.0	3573.75		-11204.21	0.00	11334.14	1955157.49	11985063.23	492.11
*** TD (at MD			3313.13	-2.17	- i 1304.Z I	0.00	11334.14	1800101.48	1 1800003.23	492.00
14706.00	90.85	270.0	3573.66	-2 17	-11340.21	0.00	11340.15	1955151.49	11985063.23	492.94

PECOS DISTRICT DRILLING OPERATIONS CONDITIONS OF APPROVAL

OPERATOR'S NAME: | Mack Energy Corporation

LEASE NO.: | NMNM-138842

WELL NAME & NO.: Summerside Federal Com 2H SURFACE HOLE FOOTAGE: 1650' FSL & 0707' FWL

BOTTOM HOLE FOOTAGE | 1650' FSL & 0001' FWL Sec. 18, T. 15 S., R 30 E.

LOCATION: Section 16, T. 15 S., R 30 E., NMPM

COUNTY: | Chaves County, New Mexico

Communitization Agreement

- The operator will submit a Communitization Agreement to the Roswell Field Office, 2909 West 2nd Street Roswell, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- · If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

The Gamma Ray and Neutron well logs must be run from total depth to surface and e-mailed to McKitric Wier at mwier@blm.gov or hard copy mailed to 2909 West Second Street Roswell, NM 88201 to his attention.

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Chaves and Roosevelt Counties

Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201. During office hours call (575) 627-0272. After hours cll (575) 627-0205.

A. Hydrogen Sulfide

- 1. Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.
- 2. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. If the drilling rig is removed without approval an Incident of Non-Compliance will be written and will be a "Major" violation.
- 3. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works is located, this does not include the dog house or stairway area.
- 4. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

B. CASING

Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

Wait on cement (WOC) for Water Basin:

After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.

Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

Low Cave/Karst

Possibility of water flows in the Rustler, Queen, Salado and Artesia Group. Possibility of lost circulation in the Rustler, Artesia Group, and San Andres.

- 1. The 13-3/8 inch surface casing shall be set at approximately 625 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, set casing at least 25 feet above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the **8-5/8** inch intermediate casing, shall be set at approximately **1570** feet, is:
 - ⊠ Cement to surface. If cement does not circulate see B.1.a, c-d above.

Centralizers required on horizontal leg, must be type for horizontal service and a minimum of one every other joint.

3. The minimum required fill of cement behind the 7 X 5-1/2 inch production casing is:

Option #1:

Cement to surface. If cement does not circulate, contact the appropriate BLM office.

Option #2:

Operator has proposed DV tool at depth of 1400', but will adjust cement proportionately if moved. DV tool shall be set a minimum of 50' below previous shoe and a minimum of 200' above current shoe. Operator shall submit sundry if DV tool depth cannot be set in this range. If an ECP is used, it is to be set a minimum of 50' below the shoe to provide cement across the shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

- a. First stage to DV tool:
- □ Cement to circulate. If cement does not circulate, contact the appropriate
 □ BLM office before proceeding with second stage cement job. Operator should
 □ have plans as to how they will achieve circulation on the next stage.
- b. Second stage above DV tool:
- □ Cement to surface. If cement does not circulate, contact the appropriate BLM office. Excess calculates to 17% Additional cement maybe required.
- 4. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. If the BLM inspector questions the straightness of the hose, a BLM engineer will be contacted and will review in the field or via picture supplied by inspector to determine if changes are required (operator shall expect delays if this occurs).

- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 3000 (3M) psi (testing to 2,000 psi).
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Operator shall perform the intermediate casing integrity test to 70% of the casing burst. This will test the multi-bowl seals.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 3. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. The tests shall be done by an independent service company utilizing a test plug **not** a **cup** or **J-packer**.
 - c. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - d. The results of the test shall be reported to the appropriate BLM office.
 - e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.

f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.

D. DRILL STEM TEST

If drill stem tests are performed, Onshore Order 2.III.D shall be followed.

E. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JAM 03072025

Summerside Federal Com #2H NMNM-138842

SHL: 1650 FSL & 707 FWL, NWSW, Sec. 16 T15S R30E BHL: 1650 FSL & 1 FWL, Lot 3, Sec. 18 T15S R30E

Chaves County, NM

Mack Energy Corporation Onshore Order #6 Hydrogen Sulfide Drilling Operation Plan

I. HYDROGEN SULFIDE TRAINING

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- 1. The hazards an characteristics of hydrogen sulfide (H2S)
- 2. The proper use and maintenance of personal protective equipment and life support systems.
- 3. The proper use of H2S detectors alarms warning systems, briefing areas, evacuation procedures, and prevailing winds.
- 4. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- 1. The effects of H2S on metal components. If high tensile tubular are to be used, personnel well be trained in their special maintenance requirements.
- 2. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- 3. The contents and requirements of the H2S Drilling Operations Plan and Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H2S zone (within 3 days or 500 feet) and weekly H2S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H2S Drilling Operations Plan and the Public Protection Plan. The concentrations of H2S of wells in this area from surface to TD are low enough that a contingency plan is not required.

II. H2S SAFETY EQUIPMENT AND SYSTEMS

Note: All H2S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonable expected to contain H2S.

1. Well Control Equipment:

- A. Flare line.
- B. Choke manifold.
- C. Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit.
- D. Auxiliary equipment may include if applicable: annular preventer & rotating head.

Summerside Federal Com #2H NMNM-138842

SHL: 1650 FSL & 707 FWL, NWSW, Sec. 16 T15S R30E BHL: 1650 FSL & 1 FWL, Lot 3, Sec. 18 T15S R30E

Chaves County, NM

2. Protective equipment for essential personnel:

A. Mark II Survive air 30-minute units located in the doghouse and at briefing areas, as indicated on well site diagram.

3. H2S detection and monitoring equipment:

A. 1 portable H2S monitors positioned on location for best coverage and response. These units have warning lights and audible sirens when H2S levels of 20 PPM are reached.

4. Visual warning systems:

- A. Wind direction indicators as shown on well site diagram (Exhibit #8).
- B. Caution/Danger signs (Exhibit #7) shall be posted on roads providing direct access to location. Signs will be painted a high visibility yellow with black lettering of sufficient size to be readable at a reasonable distance from the immediate location. Bilingual signs will be used, when appropriate. See example attached.

5. Mud program:

A. The mud program has been designed to minimize the volume of H2S circulated to surface. Proper mud weight, safe drilling practices and the use of H2S scavengers will minimize hazards when penetrating H2S bearing zones.

6. Metallurgy:

- A. All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.
- B. All elastomers used for packing and seals shall be H2S trim.

7. Communication:

- A. Radio communications in company vehicles including cellular telephone and 2-way radio.
- B. Land line (telephone) communication at Office.

8. Well testing:

A. Drill stem testing will be performed with a minimum number of personnel in the immediate vicinity, which are necessary to safely and adequately conduct the test. The drill stem testing will be conducted during daylight hours and formation fluids will not be flowed to the surface. All drill-stem-testing operations conducted in an H2S environment will use the closed chamber method of testing.

Summerside Federal Com #2H NMNM-138842

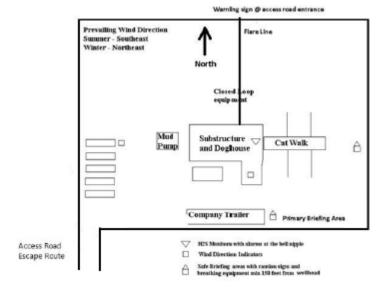
SHL: 1650 FSL & 707 FWL, NWSW, Sec. 16 T15S R30E BHL: 1650 FSL & 1 FWL, Lot 3, Sec. 18 T15S R30E

Chaves County, NM

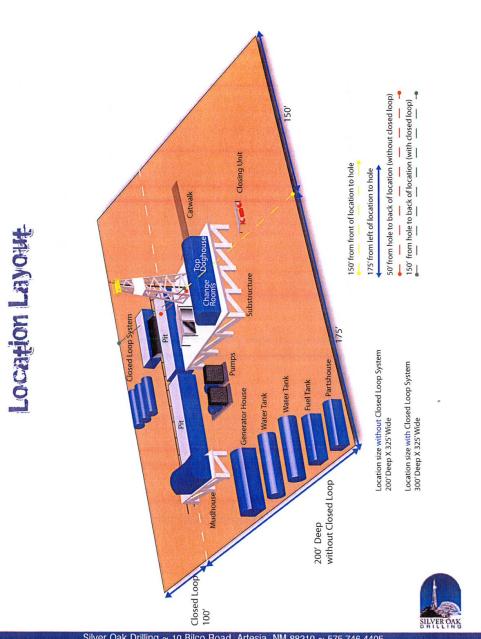
B. There will be no drill stem testing.

EXHIBIT #7

WARNING


YOU ARE ENTERING AN H2S

AUTHORIZED PERSONNEL ONLY


- 1. BEARDS OR CONTACT LENSES NOT ALLOWED
- 2. HARD HATS REQUIRED
- 3. SMOKING IN DESIGNATED AREAS ONLY
- 4. BE WIND CONSCIOUS AT ALL TIMES
- 5. CHECK WITH MACK ENERGY FOREMAN AT OFFICE

MACK ENERGY CORPORATION

1-575-748-1288

DRILLING LOCATION H2S SAFTY EQUIPMENT Exhibit # 8

Silver Oak Drilling ~ 10 Bilco Road, Artesia, NM 88210 ~ 575.746.4405 info@silveroakdrilling.com ~ www.silveroakdrilling.com

Mack Energy Corporation Call List, Chaves County

Artesia (575)	Cellular	Office	
Jim Krogman	432-934-1596	748-1288	
•	432-934-7586		

Agency Call List (575)

Roswell

State Police	622-7200
City Police	624-6770
Sheriff's Office	624-7590
Ambulance	624-7590
Fire Department	624-7590
LEPC (Local Emergency Planning Committee	624-6770
NMOCD	748-1283
Bureau of Land Management	627-0272

Emergency Services

sency services	
Boots & Coots IWC	1-800-256-9688 or (281)931-8884
Cudd pressure Control	(915)699-0139 or (915)563-3356
Halliburton	746-2757
Par Five	748-9539
Flight For Life-Lubbock, TX	(806)743-9911
Aerocare-Lubbock, TX	(806)747-8923
Med Flight Air Amb-Albuquerque	, NM(505)842-4433
Lifeguard Air Med Svc. Albuquero	que, NM(505)272-3115

Drilling Program Page 11

<u>C-10</u>		1/2025 9:41				l Resources Dep			Re			
	Electronical D Permitting			OIL CONSERVATION DIVISION						mittal		
via oc	Dieminung							Submittal	☐ Amended F			
								Type.	Type: ☐ Amended Report ☐ As Drilled			
			1		WELL LOCAT	ION INFORMATION	ON		ļ.			
API Nı	ımber		Pool Code	5277	70	Pool Name Jound Tank; San	Andres					
Propert	ty Code		Property N	ame SU	MMERSIDE FE	DERAL COM			Well Number	2H		
OGRII	O No. 138	37	Operator N	Tame MA	CK ENERGY (CORPORATION			Ground Level Elevation	4049.1		
Surface	e Owner: 🗷	State Fee T	ribal □Feder	al		Mineral Owner	: □State □Fee □	Tribal ☑ Fed	eral			
					Surfa	ce Location						
UL L	Section 16	Township 15 S	Range 30 E	Lot	Ft. from N/S 1650 SOUTH	Ft. from E/W 707 WEST	Latitude 33.0132191°		gitude .9364433°W	County CHAVES		
L	10	15.5	30 E				33.0132191	103	.930 14 33 W	CHAVES		
	ı		1	1		Hole Location				1		
UL	Section 18	Township 15 S	Range 30 E	Lot 3	Ft. from N/S 1650 SOUTH	Ft. from E/W 1 WEST	Latitude 33.0132437°		gitude .9733321°W	County CHAVES		
	ļ		Į.									
Dedica 320	ted Acres	Infill or Defi	ning Well	Definin	g Well API	Overlapping Spa	cing Unit (Y/N)	Consolidati	on Code			
Order l	Numbers.	1		· I		Well setbacks ar	e under Common	Ownership:	☐ Yes ☐No			
					Kick Of	f Point (KOP)						
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Long	gitude	County		
L	16	15 S	30 E		1650 SOUTH	707 WEST	33.01321919	N 103	.9364433°W	CHAVES		
	Į.	ļ.	Į.		First Ta	ke Point (FTP)		ļ.				
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	,	gitude	County		
I	17	15 S	30 E		1650 SOUTH	100 EAST	33.0132403°	N 103	.9390754°W	CHAVES		
					Last Ta	ke Point (LTP)						
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude		gitude	County		
	18	15 S	30 E	3	1650 SOUTH	100 WEST	33.0132444°	N 103	.9730092°W	CHAVES		
Unitize	Unitized Area or Area of Uniform Interest Spacing Unit Type ☑Hori.		Unit Type ☑Horizo	ontal Vertical	Grou	and Floor Elev	vation:					
OPER	ATOR CERT	TFICATIONS			I	SURVEYOR CERT	TIFICATIONS					
OPERATOR CERTIFICATIONS I hereby certify that the information contained herein is true and complete to the best				Line by the second		J: 1		Cald mater of a c				

of my knowledge and belief, and, if the well is a vertical or directional well, that this $organization\ either\ owns\ a\ working\ interest\ or\ unleased\ mineral\ interest\ in\ the\ land$ including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with an owner of a working interest run leased mineral interest, or to a voluntary pooling agreement or a compulsory pooling order here to fore entered by the division.

If this well is a horizontal well, I further certify that this organization has received the consent of at least one lessee or owner of a working interest or unleased mineral interest in each tract (in the target pool or formation) in which any part of the well's completed interval will be located or obtained a compulsory pooling order from the division.

Deana Weaver	11/4/2024
Signature	Date
Deana Weaver	
Printed Name	
dweaver@mec.com	

surveys made by me or under my supervision, and that the same is true and correct to the best of my belief.

Signature and Seal of Professional Survey

FILIMON F. JARAMILLO

CertificateNumber Dateof Survey

PLS 12797

MARCH 6, 2024 SURVEY NO. 10051

Note: No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Email Address

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report 03/31/2025

APD ID: 10400098540

Operator Name: MACK ENERGY CORPORATION

Well Name: SUMMERSIDE FEDERAL COM

Well Type: OIL WELL

Submission Date: 07/02/2024

Well Number: 2H

Highlighted data reflects the most recent changes

Show Final Text Well Work Type: Drill

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio
15317058	RUSTLER	4049	600	600	ALLUVIUM	NONE	N
15317059	TOP OF SALT	3299	750	750	SALT	NONE	N
15317060	BASE OF SALT	2689	1360	1360	SALT	NONE	N
15317061	YATES	2539	1510	1510	ANHYDRITE, SILTSTONE	NATURAL GAS, OIL	N
15317062	SEVEN RIVERS	2299	1750	1750	ANHYDRITE, SILTSTONE	NATURAL GAS, OIL	N
15317063	QUEEN	1804	2245	2245	ANHYDRITE, SILTSTONE	NATURAL GAS, OIL	N
15317064	GRAYBURG	1419	2630	2630	ANHYDRITE, DOLOMITE, SILTSTONE	NATURAL GAS, OIL	N
15317065	SAN ANDRES	1099	2950	2952	ANHYDRITE, DOLOMITE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

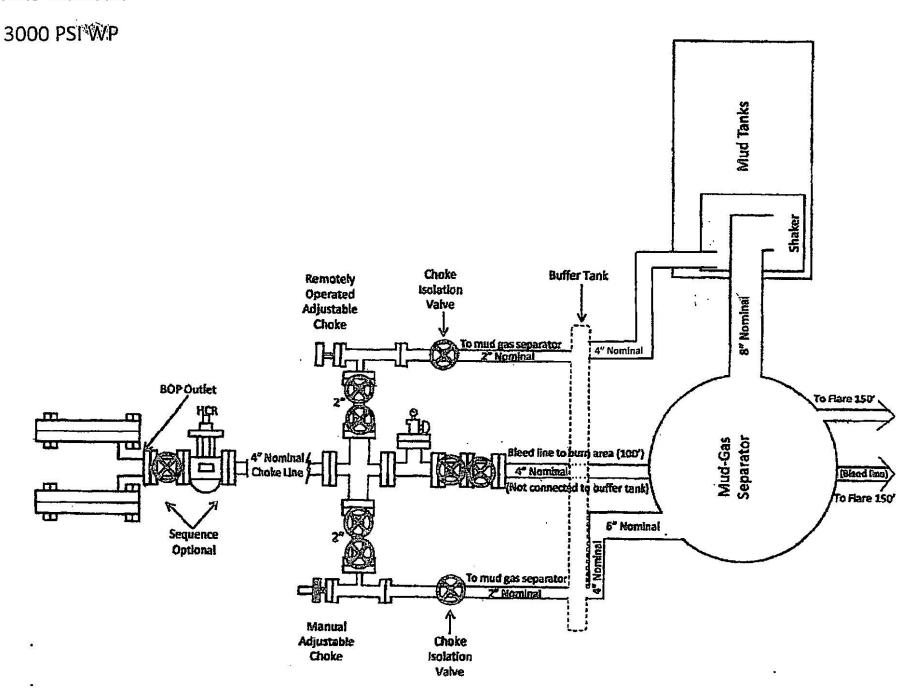
Pressure Rating (PSI): 3M Rating Depth: 14706

Equipment: Rotating Head, Mud Gas Separator

Requesting Variance? NO

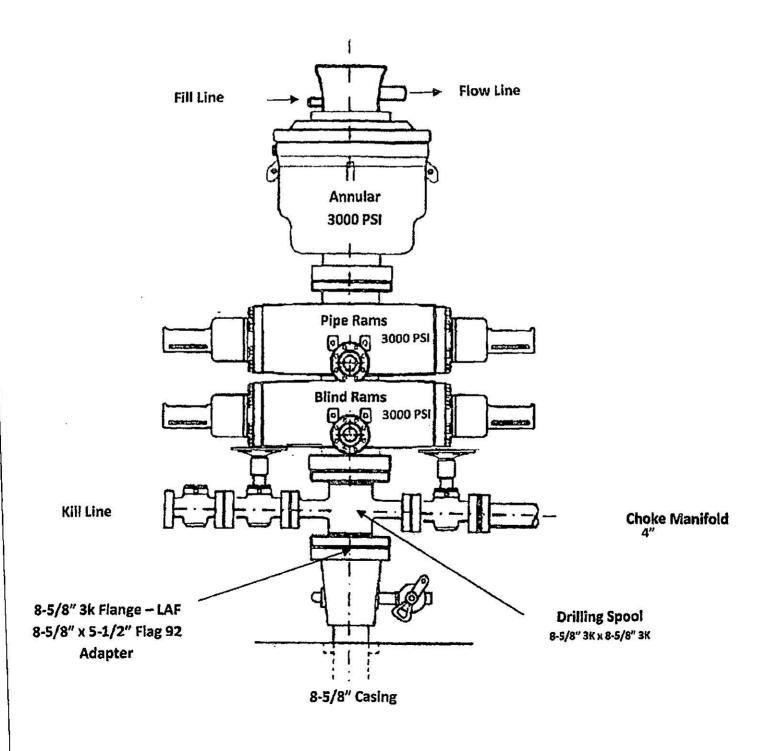
Variance request:

Testing Procedure: The BOP/BOPE test shall include a low pressure test from 250 to 300psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. The estimated Bottom Hole at TD is 120 degrees and estimated maximum bottom hole pressure is 1710 psig (0.052*3574'*9.2) less than 2900 bottom hole pressure.


Choke Diagram Attachment:

NEW_Choke_Manifold_3M_20240517085909.pdf

BOP Diagram Attachment:


NEW_BOP_3M_20240517085923.pdf

Choke Manifold

BOP Diagram

Dual Ram BOP 3000 PSI WP

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 447615

CONDITIONS

Operator:	OGRID:
MACK ENERGY CORP	13837
P.O. Box 960	Action Number:
Artesia, NM 882110960	447615
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
dweaver	Cement is required to circulate on both surface and intermediate1 strings of casing.	4/1/2025
dweaver	If cement does not circulate on any string, a Cement Bond Log (CBL) is required for that string of casing.	4/1/2025
ward.rikala	Notify the OCD 24 hours prior to casing & cement.	5/16/2025
ward.rikala	File As Drilled C-102 and a directional Survey with C-104 completion packet.	5/16/2025
ward.rikala	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string.	5/16/2025
ward.rikala	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.	5/16/2025