Sante Fe Main Office Phone: (505) 476-3441 General Information Phone: (505) 629-6116

General Information
Phone: (505) 629-6116

Online Phone Directory
https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Form C-101 August 1, 2011

Permit 389349

APPLICATION FOR PERMIT TO DRILL, RE-ENTER, DEEPEN, PLUGBACK, OR ADD A ZONE

74 1 107 (10 (11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Operator Name and Address	2. OGRID Number						
EOG RESOURCES INC	7377						
5509 Champions Drive	3. API Number						
Midland, TX 79706		30-025-54652					
4. Property Code	5. Property Name	6. Well No.					
313188	OSPREY 10	113H					

7. Surface Location

UL - Lot	Section	Township	Range	Lot Idn	Feet From	N/S Line	Feet From	E/W Line	County
М	10	25S	34E		449	S	1137	W	Lea
							-		

8. Proposed Bottom Hole Location

UL - Lot	Section	Township	Range	Lot Idn	Feet From	N/S Line	Feet From	E/W Line	County
K	3	25S	34E	K	2538	S	2178	W	Lea

9. Pool Information

DED LILL O DONE	ODDINO FACT	07000
RED HILLS;BONE	SPRING, EAST	97369

Additional Well Information

11. Work Type	12. Well Type	13. Cable/Rotary	14. Lease Type	15. Ground Level Elevation
New Well	OIL		Private	3333
16. Multiple	17. Proposed Depth	18. Formation	19. Contractor	20. Spud Date
N	17192	Bone Spring		5/17/2025
Depth to Ground water		Distance from nearest fresh water well		Distance to nearest surface water

We will be using a closed-loop system in lieu of lined pits

21. Proposed Casing and Cement Program

			Ziii iopooda dadiiiş	g and comont i rogiam		
Type	Hole Size	Casing Size	Casing Weight/ft	Setting Depth	Sacks of Cement	Estimated TOC
Surf	13	10.75	40.5	985	320	0
Int1	9.875	8.625	32	5260	690	0
Prod	7.875	6	24.5	9108	610	4827
Prod	6.75	5.5	20	17192	950	9208

Casing/Cement Program: Additional Comments

EOG respectfully requests the option to use the casing and cement programs as described in Variance 5a. The NMOCD will be notified of EOG's election at spud.

22. Proposed Blowout Prevention Program

Туре	Working Pressure	Test Pressure	Manufacturer
Double Ram	5000	3000	

23. I hereby certify that the information given above is true and complete to the best of my knowledge and belief. I further certify I have complied with 19.15.14.9 (A) NMAC ☒ and/or 19.15.14.9 (B) NMAC ☒, if applicable.				OIL CONSERVATION	ON DIVISION
Signature:					
Printed Name: Electronically filed by Kristina Agee			Approved By:	Matthew Gomez	
Title:	Title: Senior Regulatory Administrator				
Email Address: Kristina_agee@eogresources.com			Approved Date:	5/16/2025	Expiration Date: 5/16/2027
Date: 5/14/2025 Phone: 432-686-6996			Conditions of Appr	oval Attached	

C-102	CD: 3/14/	2023 12.37	.12 1 111		State of Nev	v Mexico			n :	rage 2	
Submit Electronic	cally			, Minera	ıls & Natura	1 Resources			Revise	ed July 9, 2024	
Via OCD Permitting OIL CONSERVAT					Zinidai Suomid			X Initial Submittal			
							Submittal Type:			Amended Report	
									As Drilled		
L DY N		<u>V</u>		<u> CATIO</u>			EDICATION	PLAT			
API Number 30-025- 5	54652		Pool Code	97369	Pool N		HILLS; BC	NE SPF			
Property Code	HFHFÌ Ì		Property Name		OSPI	REY 10				113H	
OGRID No.	7377		Operator Name		EOG RESO	URCES, INC	i.		Ground Level Eleve	ation 3333'	
Surface Owner:	State X Fee	Tribal Federal				Mineral Owner:	State X Fee Tribal	Federal	-		
					Surface	Location					
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the N/S		Latitude		Longitude	County	
М	10	25-S	34-E	-	449' S	1137' W	N 32.13900	91 W 1	03.4626604	LEA	
			•		Bottom Ho	ole Location			<u>'</u>		
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the N/S	Feet from the E/W	Latitude		Longitude	County	
K	3	25-S	34-E	-	2538' S	2178' W	N 32.15926	42 W 1	03.4592766	LEA	
	Iv au - s					<u> </u>	XI 012 P	- la			
Dedicated Acres		ining Well Defin	-	:4		Overlapping Spacing	· , ,	Consolidat			
240.00	INF	LL 30	-025-4645	01			N		F		
Order Numbers			R-21865			Well Setbacks are un	der Common Ownership	: Yes XN	0		
					Kick Off P	Point (KOP)					
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the N/S	Feet from the E/W	Latitude		Longitude	County	
N	10	25-S	34-E	-	50' S	2178' W	N 32.13791	02 W 1	03.4592986	LEA	
					First Take	Point (FTP)					
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the N/S	Feet from the E/W	Latitude		Longitude	County	
N	10	25-S	34-E	-	100' S	2178' W	N 32.13804	77 W 1	03.4592984	LEA	
			<u> </u>		Last Take	Point (LTP)		I			
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the N/S		Latitude		Longitude	County	
K	3	25-S	34-E	-	2538' S	2178' W	N 32.15926	42 W 1	03.4592766	LEA	
	277.12						To to				
Unitized Area or A	rea of Uniform I			Spacing Unity	Y Type Horizont	al Vertical	Ground F	loor Elevation	3358'		
							 				
I hereby certi best of my kn	fy that the in www.ledge and	belief; and, ij	the well is a	vertical or	complete to the directional well,	I hereby certify notes of actual	RS CERTIFICAT that the well locat surveys made by m	ion shown on	this plat was profited	t from field hat the same	
in the land in well at this lo	ncluding the ocation pursu iineral intere heretofore ent	proposed bottor ant to a contr st, or to a volu- tered by the di	n hole location act with an o untary pooling vision.	n or has a ri wner of a wo agreement o	mineral interest ight to drill this orking interest or a compulsory	is true and cor	rect to the best of 1	my belief.	24508 24508 2001:18 AM		
received The cunleased mine	onsent of at eral interest he well's com	least one lesse in each tract (pleted interval	e or owner of in the target	a working i pool or form					The second second	Not in the second secon	
	la Mc	Conne		04/2	4/2025	Simulation 10	-CDu-Coul	4/15/2025 10:0	11:18 AM	<i>'</i> ,,	
Signature V	YLA MCC	ONNELL	Date			Signature and Seal	of Professional Surveyor	Date	: 		
Print Name KAYLA_I	MCCONN	IELL@EO	GRESOU	RCES.CC	DM	Certificate Number	Date of	Survey 04/04/2025			
E-mail Address											

Released to Imaging: 5/16/2025 9:3 FAM

<u>C-102</u>	State of New Mo			Revised July 9, 2024
Submit Electronically Via OCD Permitting	Energy, Minerals & Natural Re OIL CONSERVATION	*		
Via OCB 1 chinking	OIL CONSERVATION	N DIVISION	Submittal	▼ Initial Submittal
			Type:	Amended Report
Property Name and Well Number				As Drilled
	OSPREY 10	113H		
SURFACE LOCATION (SHL) NEW MEXICO EAST NAD 1983 X=810832 Y=415397 LAT.: N 32.1390091 LONG: W 103.4626604 NAD 1927 X=769646 Y=415339 LAT.: N 32.1388847 LONG: W 103.4621915 449' FSL 1137' FWL KICK OFF POINT (KOP) NEW MEXICO EAST NAD 1983 X=811876 Y=415005 LAT.: N 32.1379102 LONG: W 103.4592986 NAD 1927 X=770690 Y=414947 LAT.: N 32.1377857 LONG: W 103.4588300 50' FSL 2178' FWL	4 3 9 10 AZ = 110.55° 11114.8° 9 - 2178° 9 - 2178° 9 - 2178° 16 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	34 35 3 2 X=812276.96 Y=422877.05 58' 3 2 10 11 100' X=812334.51 Y=414958.34	SURV I here was made by same is 04/04/2 Date of Sur Signature a	

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116
Online Phone Directory
https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Form APD Conditions

Permit 389349

PERMIT CONDITIONS OF APPROVAL

Operator Name and Address:	API Number:
EOG RESOURCES INC [7377]	30-025-54652
5509 Champions Drive	Well:
Midland, TX 79706	OSPREY 10 #113H

OCD Reviewer	Condition						
matthew.gomez	A [C-103] Sub. Drilling (C-103N) is required within (10) days of spud.						
matthew.gomez	Notify the OCD 24 hours prior to casing & cement.						
	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string.						
	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.						
matthew.gomez	Cement is required to circulate on both surface and intermediate1 strings of casing.						
matthew.gomez	If cement does not circulate on any string, a Cement Bond Log (CBL) is required for that string of casing.						
matthew.gomez	File As Drilled C-102 and a directional Survey with C-104 completion packet.						

EOG Batch Casing

Pad Name: Osprey 10

SHL: Section 10, Township 25-S, Range 34-E, LEA County, NM

Well Name	API#	Sur	Surface		Intermediate		Production	
wen Name	Ari#	MD	TVD	MD	TVD	MD	TVD	
OSPREY 10 #1H	30-025-****	985	985	5,246	5,228	16,680	9,100	
OSPREY 10 #111H	30-025-****	985	985	5,285	5,228	17,151	9,490	
OSPREY 10 #112H	30-025-****	985	985	5,240	5,228	17,108	9,490	
OSPREY 10 #113H	30-025-****	985	985	5,327	5,228	17,192	9,490	
OSPREY 10 #510H (501H)	30-025-53056	985	985	5,290	5,228	18,863	11,240	
OSPREY 10 #511H (502H)	30-025-53057	985	985	5,230	5,228	18,805	11,240	
OSPREY 10 #512H	30-025-****	985	985	5,528	5,228	19,077	11,240	
OSPREY 10 #520H (101H)	30-025-53053	985	985	5,347	5,228	19,049	11,372	
OSPREY 10 #521H (102H)	30-025-53054	985	985	5,245	5,228	18,952	11,372	
OSPREY 10 #522H	30-025-****	985	985	5,707	5,228	19,354	11,372	
OSPREY 10 #523H	30-025-****	985	985	5,419	5,228	19,114	11,372	
OSPREY 10 #524H	30-025-****	985	985	5,445	5,228	19,138	11,372	
OSPREY 10 #581H	30-025-****	985	985	5,539	5,228	19,694	11,848	
OSPREY 10 #597H	30-025-****	985	985	5,427	5,228	19,655	11,904	
OSPREY 10 #613H	30-025-****	985	985	5,467	5,228	19,800	12,015	
OSPREY 10 #614H	30-025-****	985	985	5,473	5,228	19,806	12,015	

EOG Batch Casing

GEOLOGIC NAME OF SURFACE FORMATION:

Permian

ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler	875'
Tamarisk Anhydrite	960'
Top of Salt	1,255'
Base of Salt	5,061'
Lamar	5,323'
Bell Canyon	5,346'
Cherry Canyon	6,301'
Brushy Canyon	7,887'
Bone Spring Lime	9,255'
Leonard (Avalon) Shale	9,335'
1st Bone Spring Sand	10,317'
2nd Bone Spring Shale	10,533'
2nd Bone Spring Sand	10,317'
3rd Bone Spring Carb	11,372'
3rd Bone Spring Sand	11,904'

ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0- 400'	Fresh Water
Bell Canyon	5,346'	Oil
Cherry Canyon	6,301'	Oil
Brushy Canyon	7,887'	Oil
Leonard (Avalon) Shale	9,335'	Oil
1st Bone Spring Sand	10,317'	Oil
2nd Bone Spring Shale	10,533'	Oil
2nd Bone Spring Sand	10,317'	Oil

EOG BLANKET CASING DESIGN VARIANCE

EOG respectfully requests the drill plans in the attached document 'EOG BLM Variance 5a - Alternate Shallow Casing Designs' be added to the COA's for this well. These designs have been approved by the BLM down to the TVDs listed below and will allow EOG to run alternate casing designs for this well if necessary.

The designs and associated details listed are the "worst case scenario" boundaries for design safety factors. Location and lithology have NOT been accounted for in these designs. The specific well details will be based on the APD/Sundry package and the information listed in the COA.

The mud program will not change from the original design for this well. Summary of the mud programs for both shallow and deep targets are listed at the end of this document. If the target is changing, a sundry will be filed to update the casing design and mud/cement programs.

Cement volumes listed in this document are for reference only. The cement volumes for the specific well will be adjusted to ensure cement tops meet BLM requirements as listed in the COA and to allow bradenhead cementing when applicable.

This blanket document only applies to wells with three string designs outside of Potash and Capitan Reef boundaries.

Sh	Shallow Design Boundary Conditions											
	Deepest	Deepest	Max Inc	Max DLS								
	MD (ft)	TVD (ft)	(deg)	(°/100usft)								
Surface	2030	2030	0	0								
Intermediate	7793	5650	40	8								
Production	28578	12000	90	25								

Shallow Design A

4. CASING PROGRAM

Hole	Interval MD		Interva	Interval TVD				
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC
6-3/4"	0	29,353	0	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS

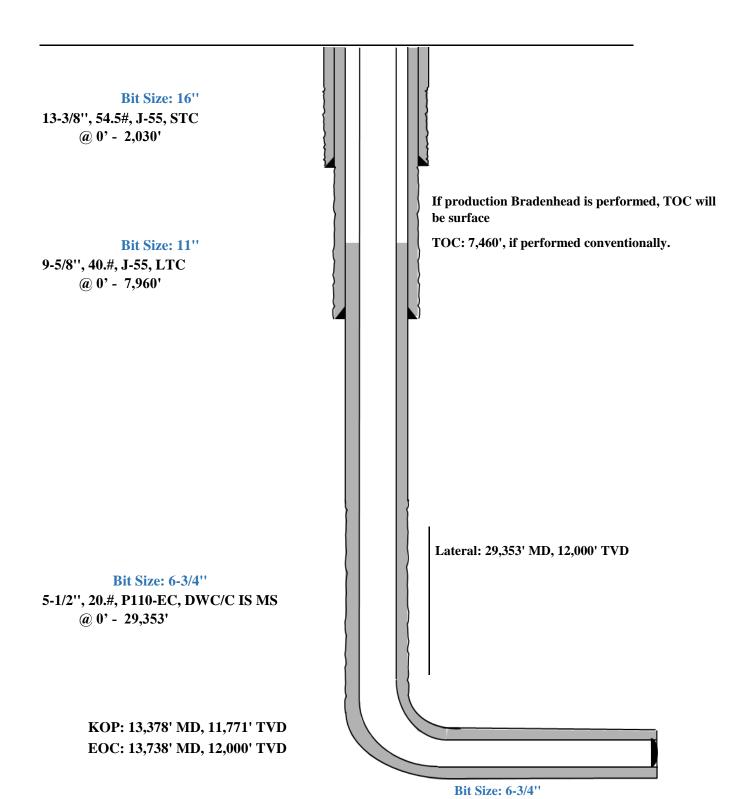
Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

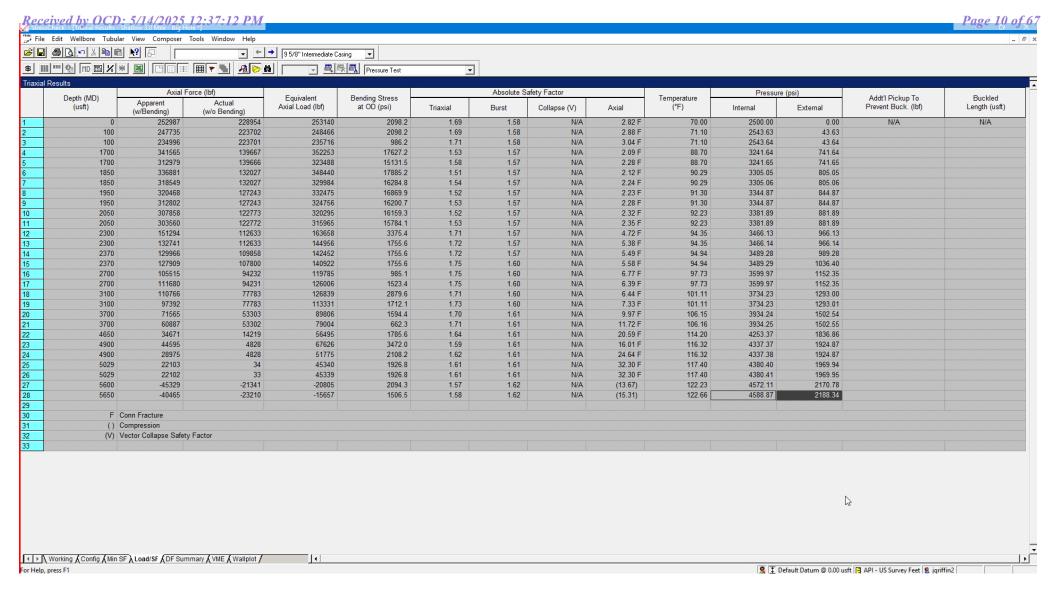
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

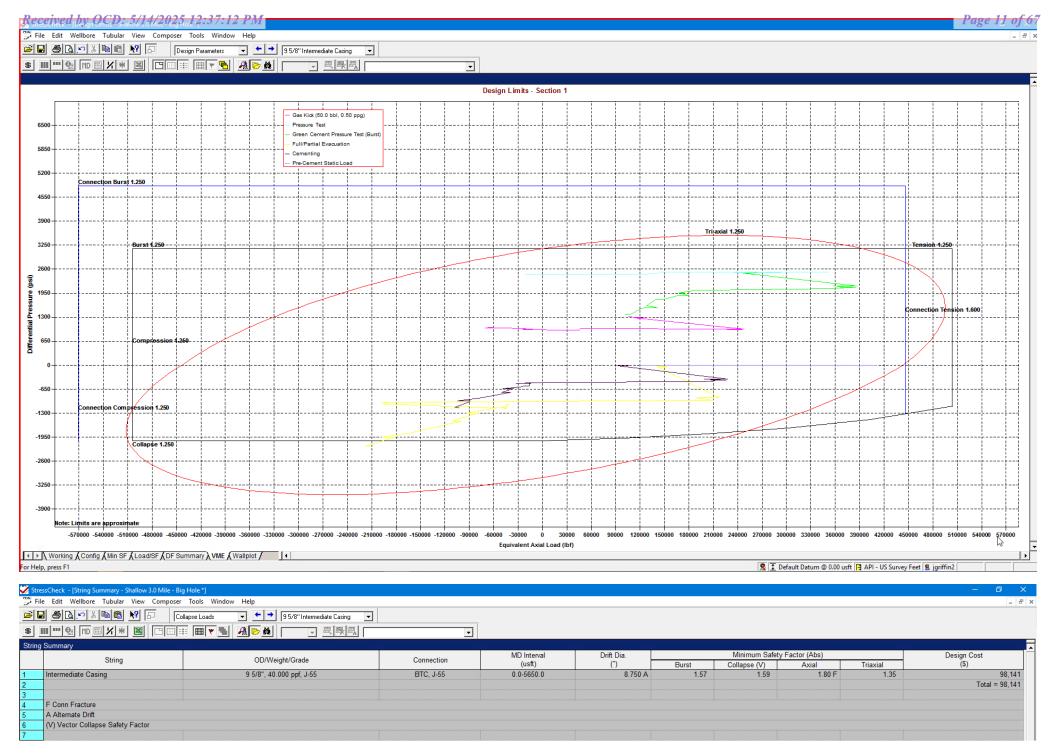
EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

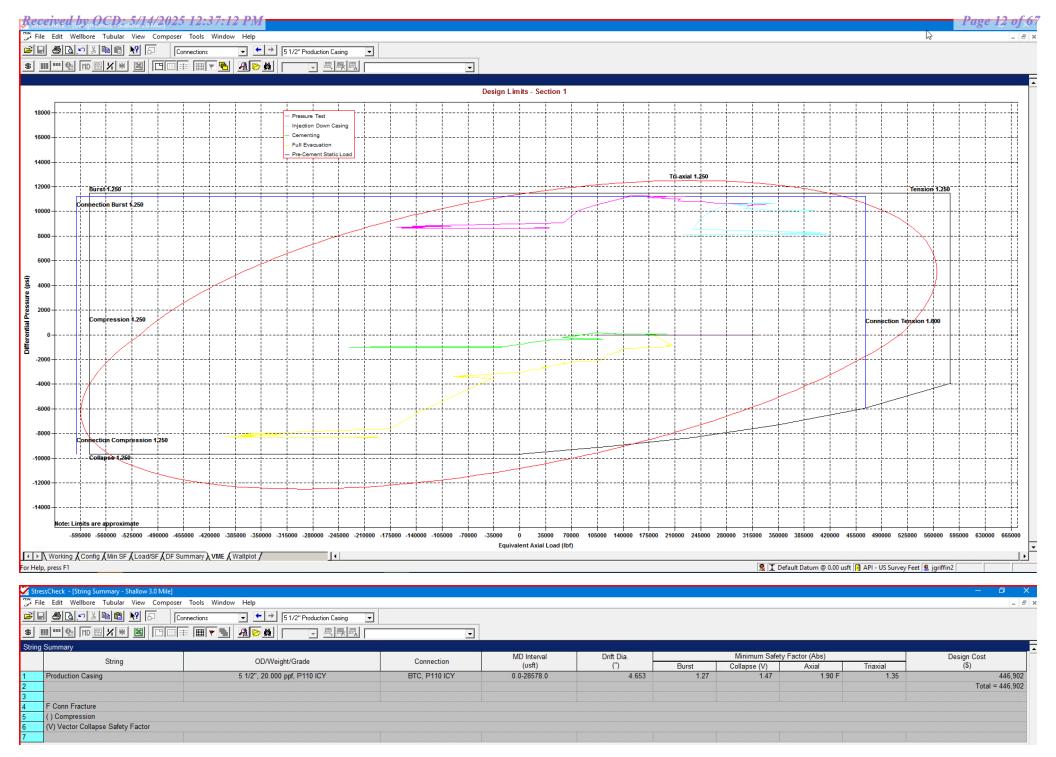

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidily Description
2,030' 13-3/8''	570	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' 9-5/8"	760	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	250	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353 ['] 5-1/2"	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	1480	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)



Shallow Design A


Proposed Wellbore

KB: 3558' GL: 3533'



Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi

^{*}Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Page 6 of 31

Shallow Design B

4. CASING PROGRAM

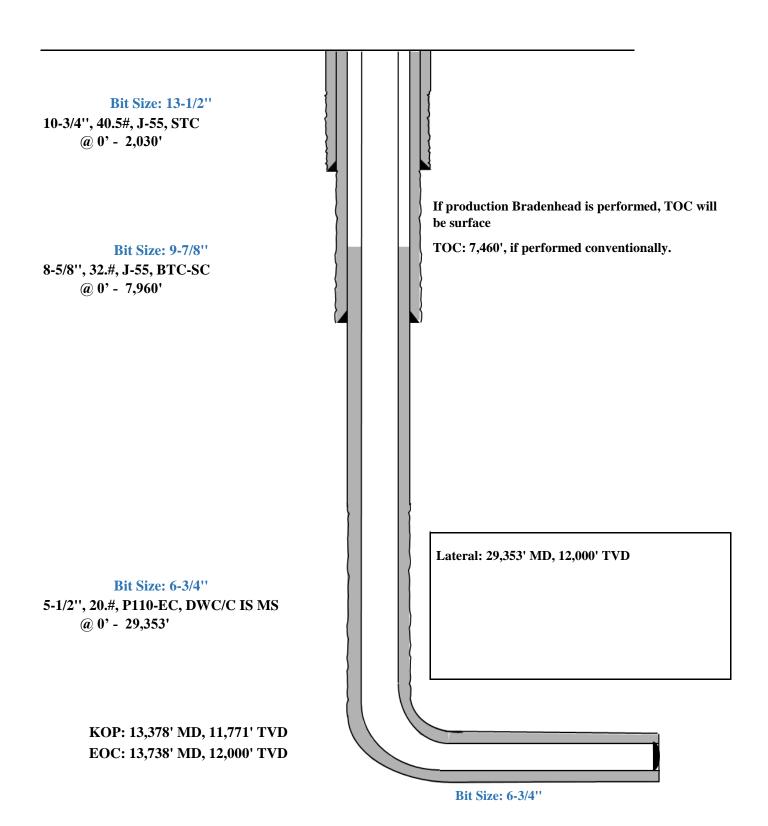
Hole	Interval MD		Interva	Interval TVD				
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13-1/2"	0	2,161	0	2,030	10-3/4"	40.5#	J-55	STC
9-7/8"	0	7,951	0	5,650	8-5/8"	32#	J-55	BTC-SC
6-3/4"	0	29,353	0	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS

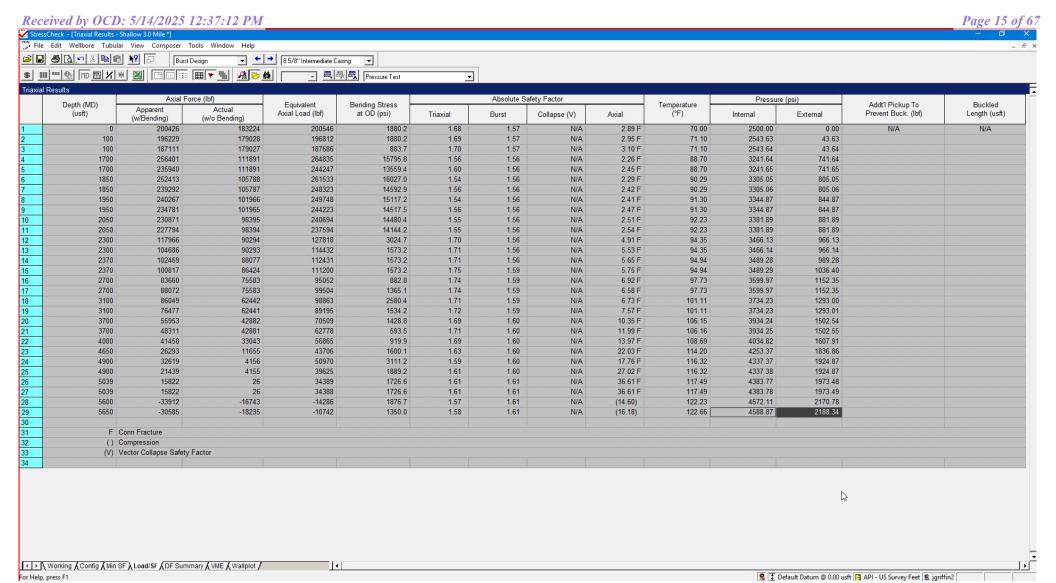
Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

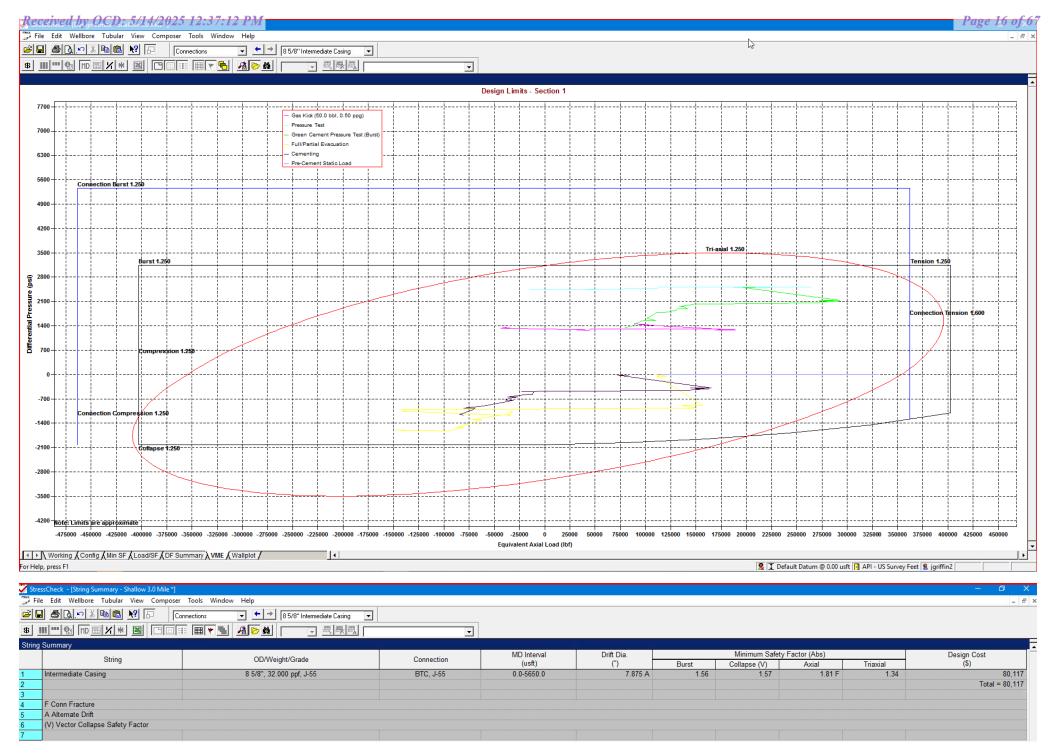
Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

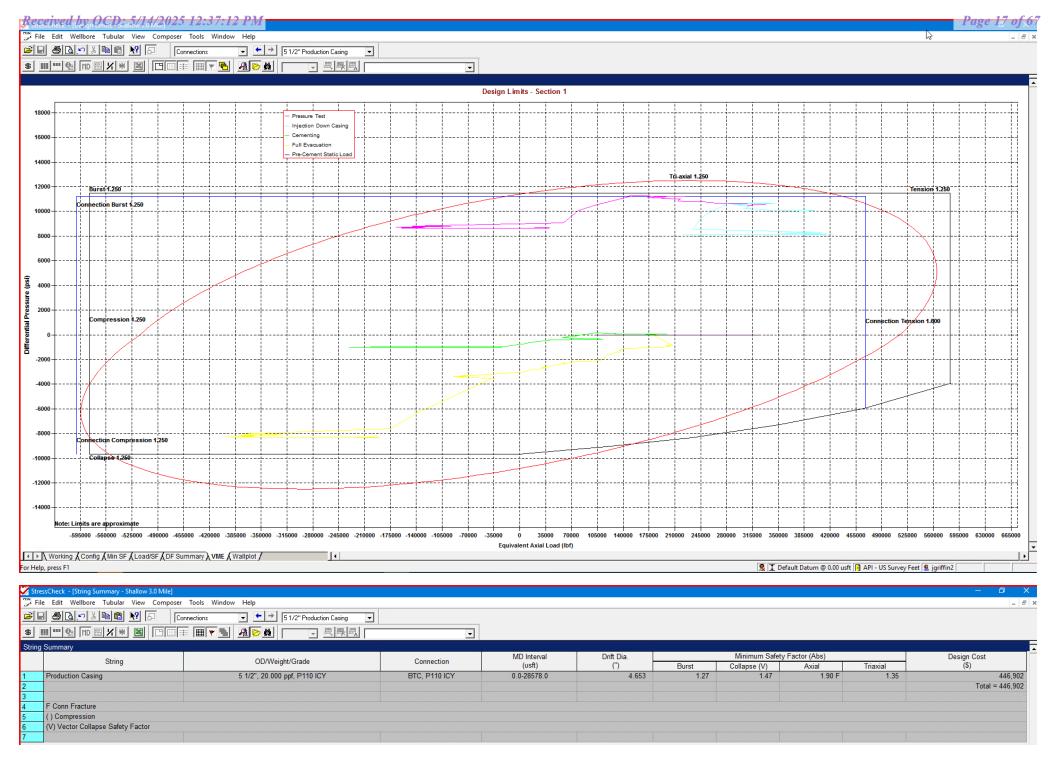

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.


		Wt.	Yld	Slurry Description					
Depth	No. Sacks	ppg	Ft3/sk	Siurry Description					
2,030' 10-3/4''	530	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)					
	140	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')					
8,050' 8-5/8"	470	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)					
	210	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')					
29,353' 5-1/2"	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)					
	1480	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)					

Shallow Casing Design B


Proposed Wellbore

KB: 3558' GL: 3533'



Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi

^{*}Modelling done with 8-5/8" 32# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Page 11 of 31

Shallow Design C

4. CASING PROGRAM

Hole	Interval MD		Interva	Interval TVD				
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC
7-7/8"	0	29,353	0	12,000	6"	24.5#	P110-EC	VAM Sprint-SF

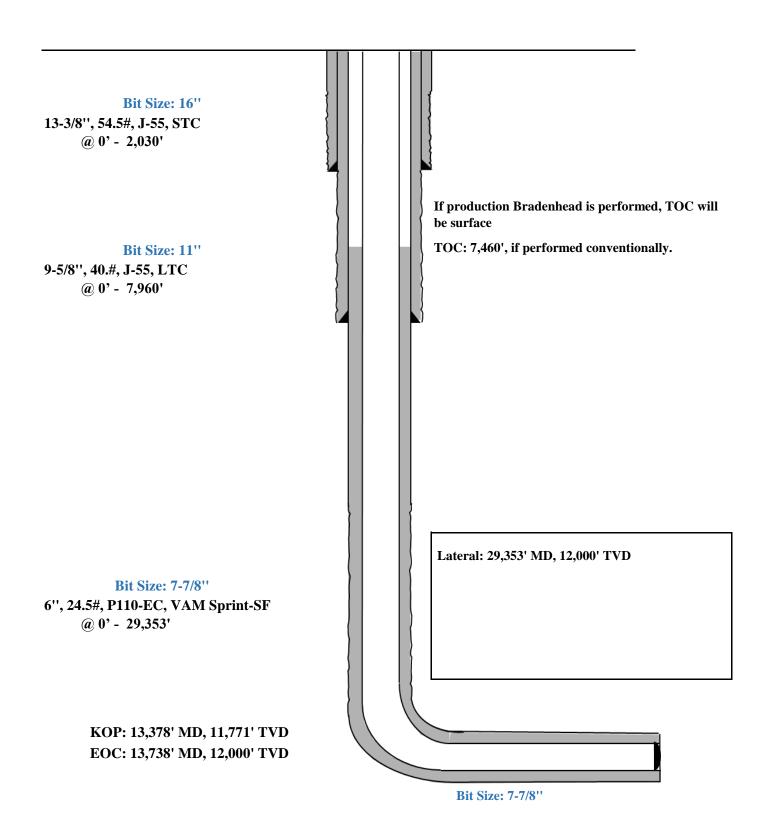
Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

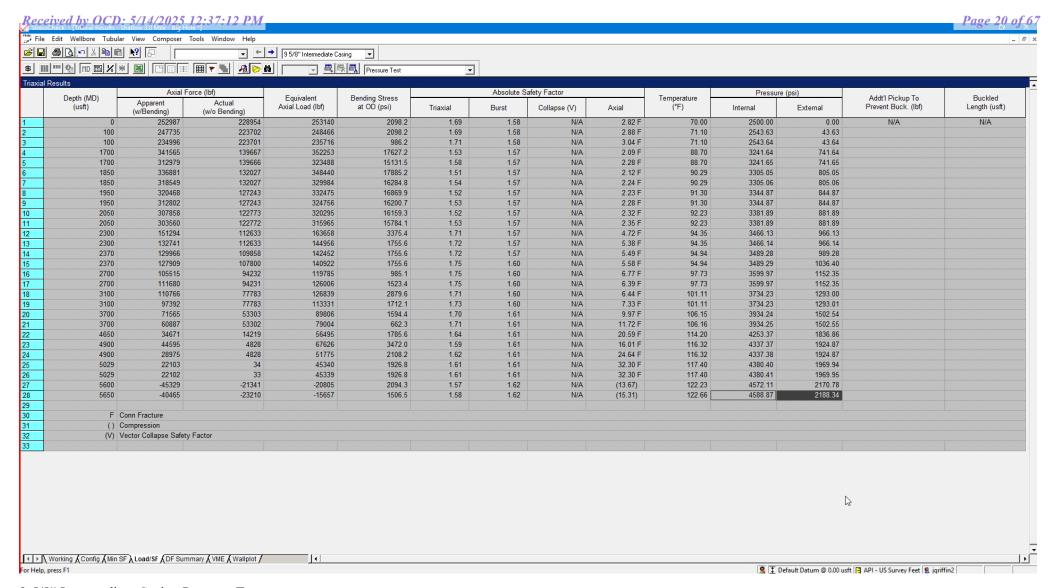
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" casing in the 7-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 7-7/8" hole interval to maximize cement bond and zonal isolation.

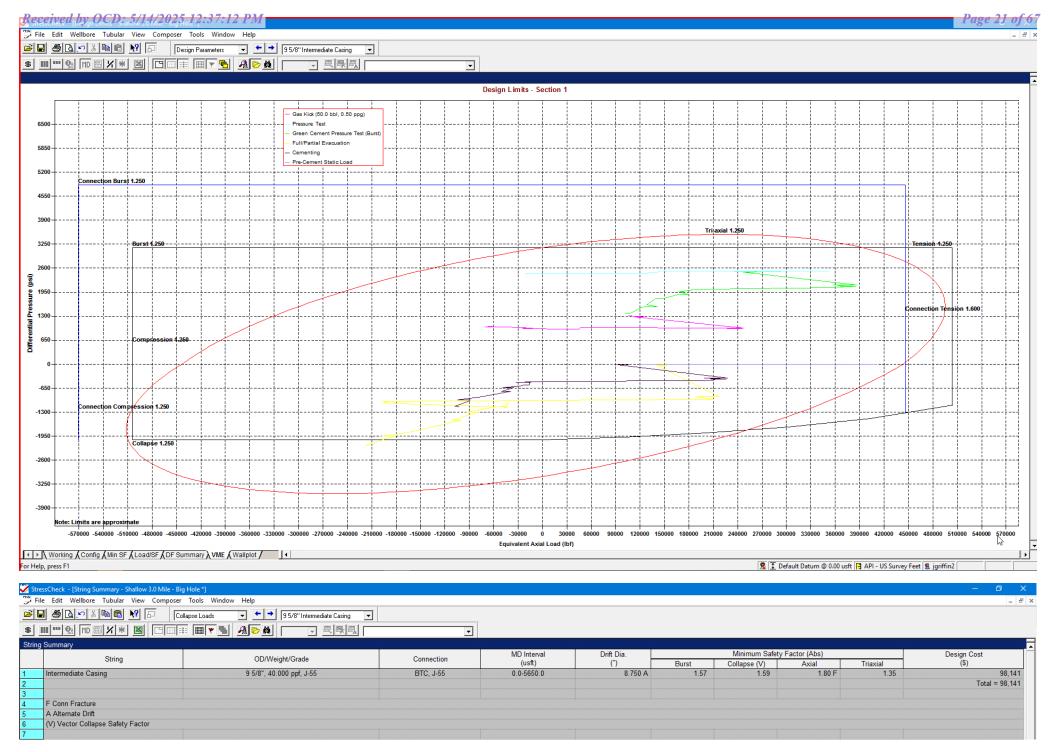
EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.


		Wt.	Yld	Slurry Description				
Depth	No. Sacks	ppg	Ft3/sk	Siurry Description				
2,030' 13-3/8"	570	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)				
	160	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')				
8,050' 9-5/8"	760	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)				
	250	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')				
29,353' 6"	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)				
	2500	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)				



Shallow Design C


Proposed Wellbore

KB: 3558' GL: 3533'

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi

^{*}Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Shallow Design D

4. CASING PROGRAM

Hole	Interval MD		Interva	Interval TVD				
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC
7-7/8"	0	13,278	0	11,671	6"	22.3#	P110-EC	DWC/C IS
6-3/4"	13,278	29,353	11,671	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS

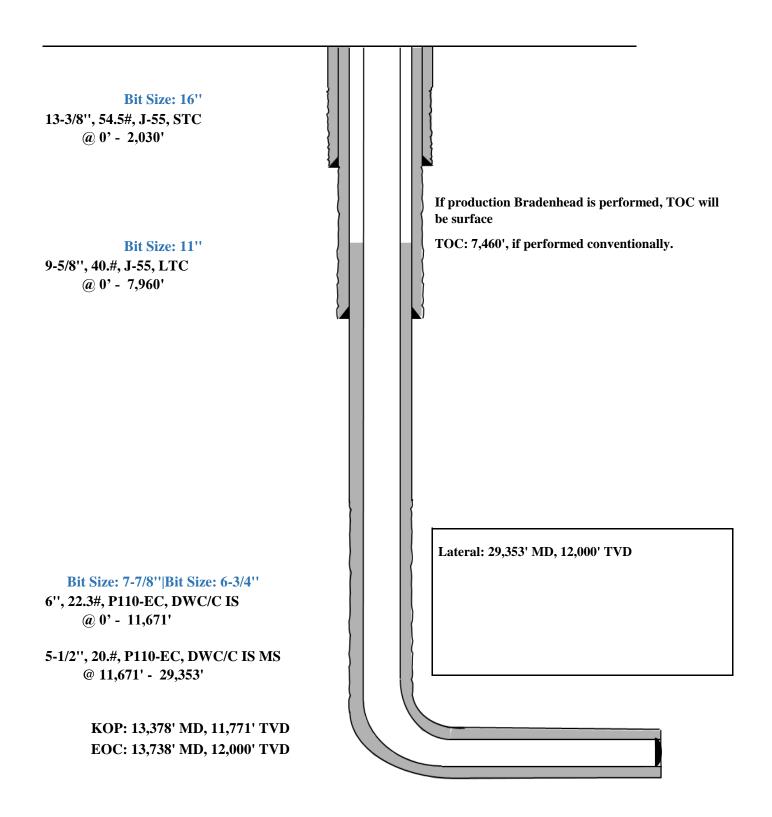
Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

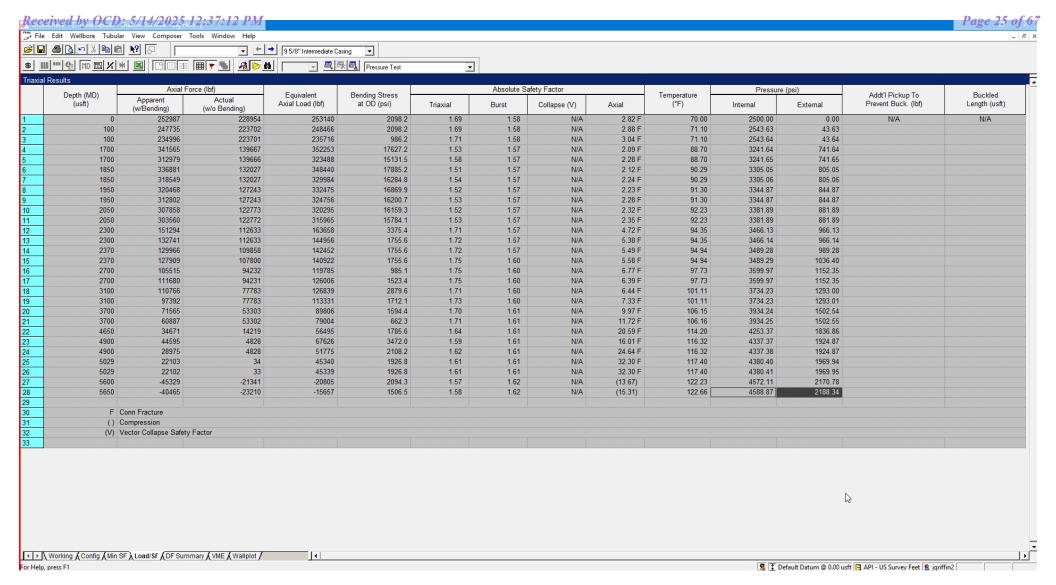
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized in the cement slurry for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

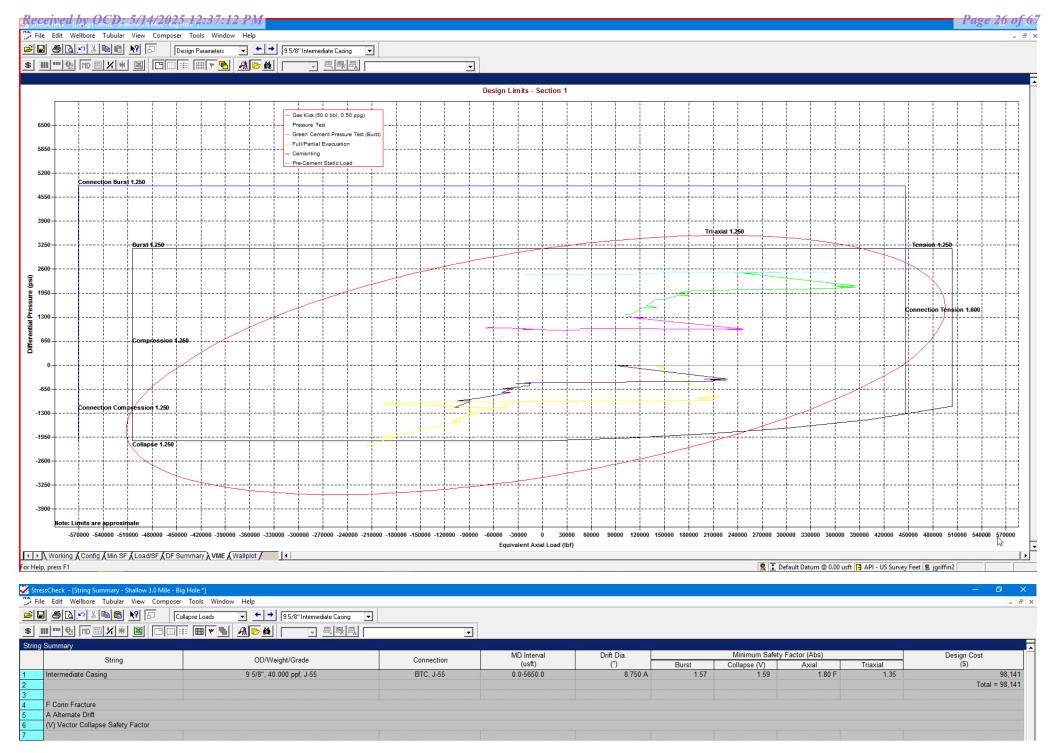
EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

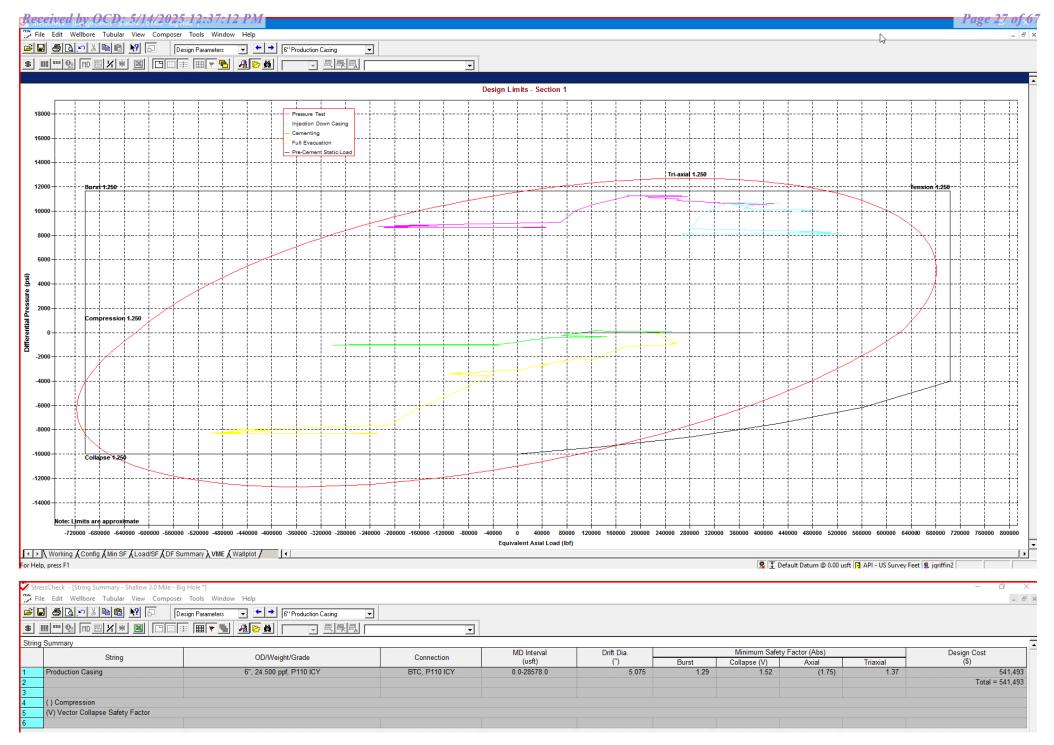

		Wt.	Yld	Slurry Description				
Depth	No. Sacks	ppg	Ft3/sk	Siurry Description				
2,030' 13-3/8"	570	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)				
	160	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')				
8,050' 9-5/8"	760	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)				
	250	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')				
29,353' 6"	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)				
	2500	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)				

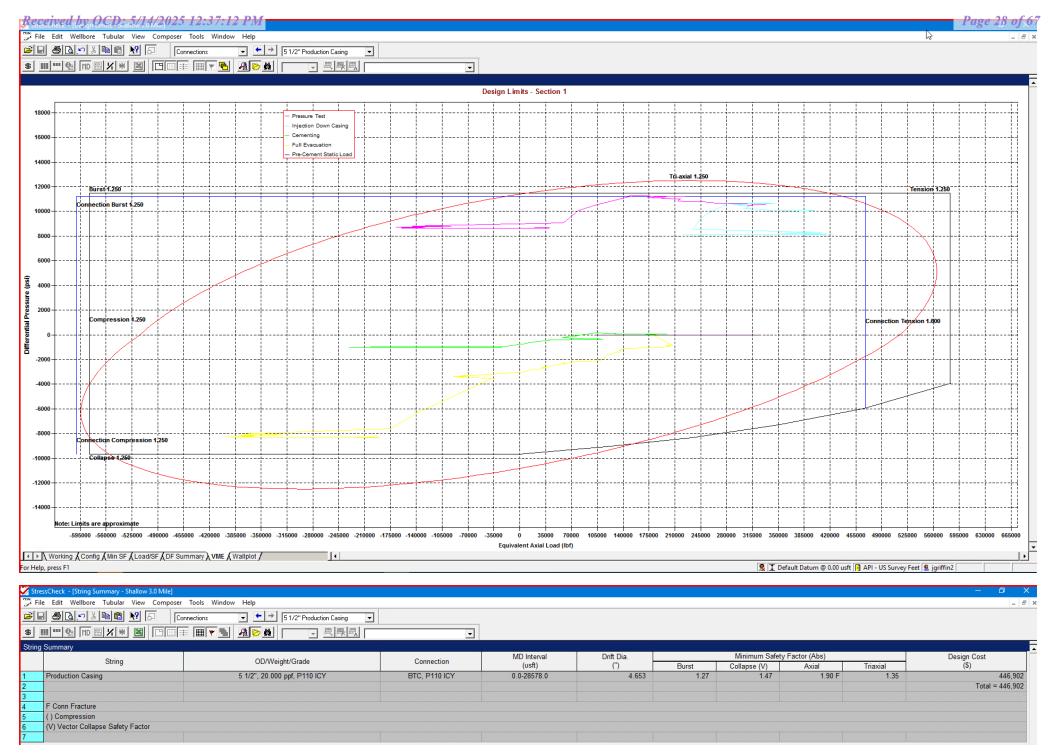


Shallow Design D


Proposed Wellbore

KB: 3558' GL: 3533'




Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi

^{*}Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Page 22 of 31

Released to Imaging: 5/16/2025 9:37:40 AM

Shallow Casing Design E

1. CASING PROGRAM

Hole	Interval MD		Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13"	0	2,025	0	2,025	10-3/4"	40.5#	J-55	STC
9-7/8"	0	7,793	0	5,645	8-5/8"	32#	J-55	BTC-SC
7-7/8"	0	12,626	0	10,896	6"	24.5#	P110-EC	VAM Sprint-TC
6-3/4"	12,626	28,578	10,896	11,225	5-1/2"	20#	P110-EC	VAM Sprint SF

^{**}For highlighted rows above, variance is requested to run entire string of either 6" or 5-1/2" casing string above due to availablility.

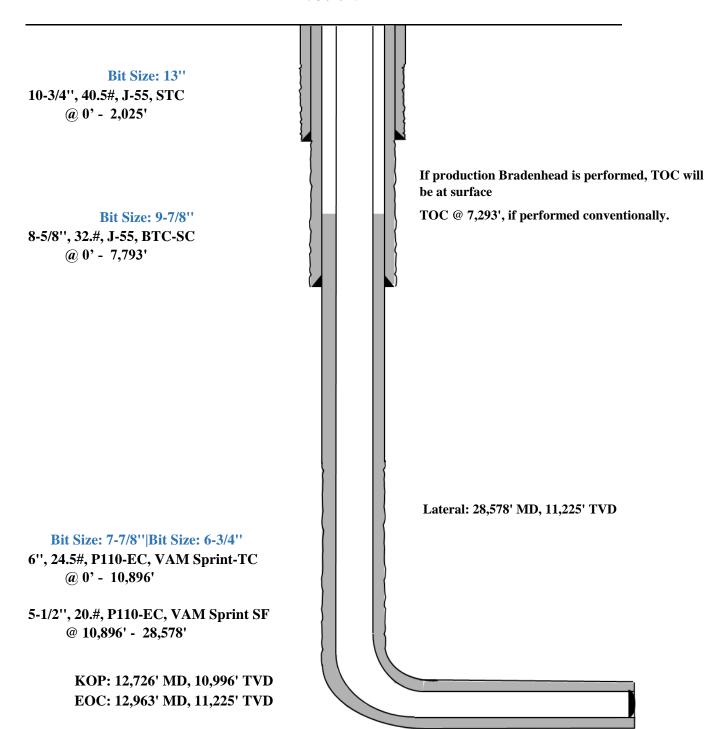
Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

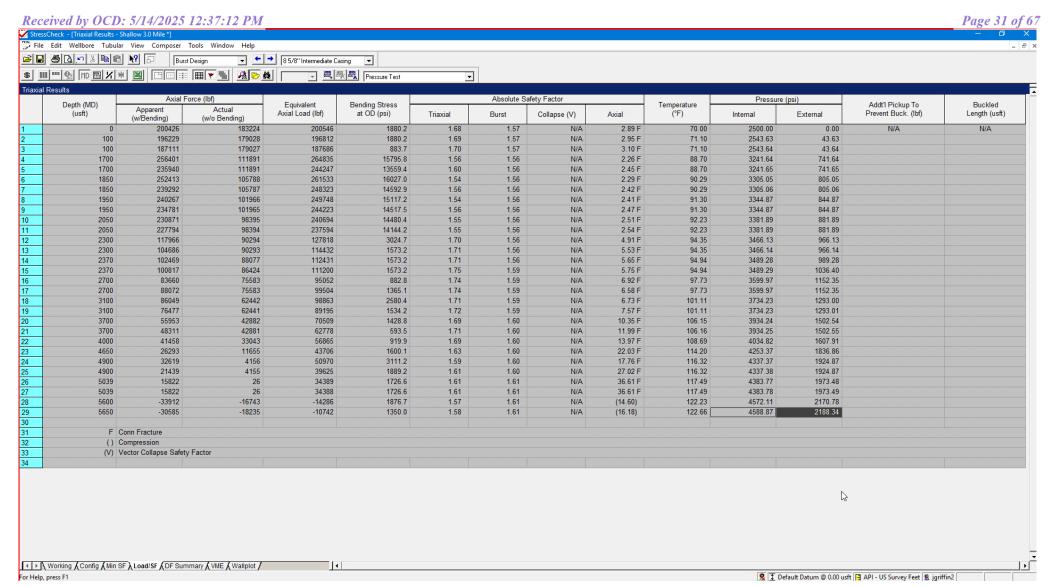
Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized in the cement slurry for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

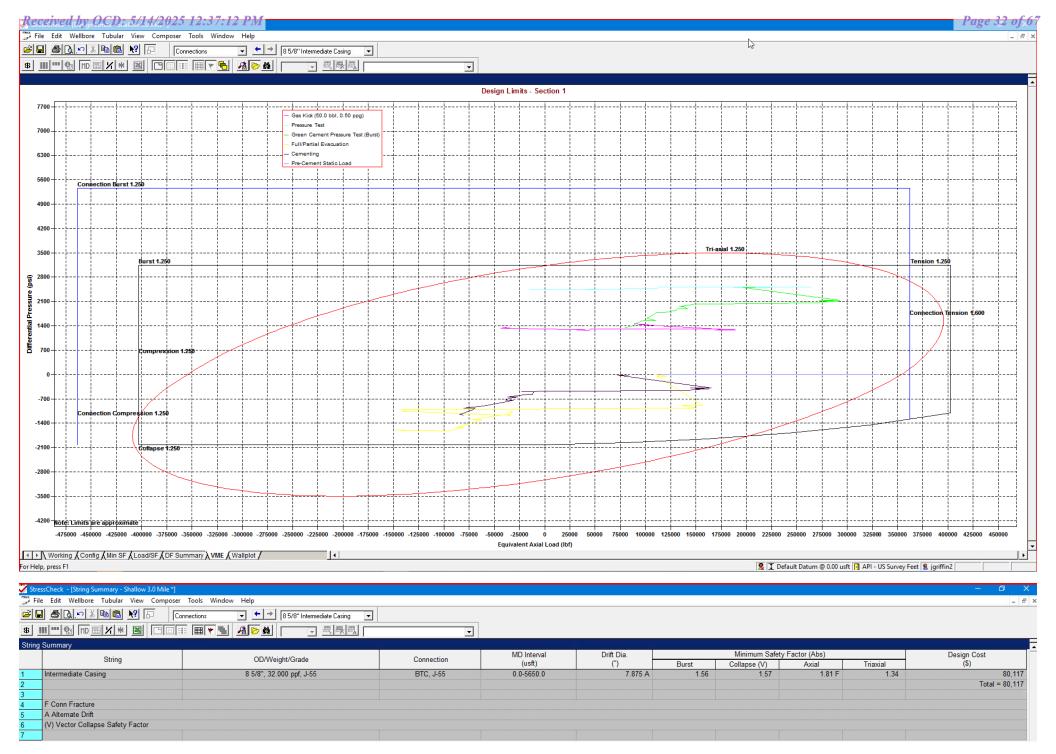
EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

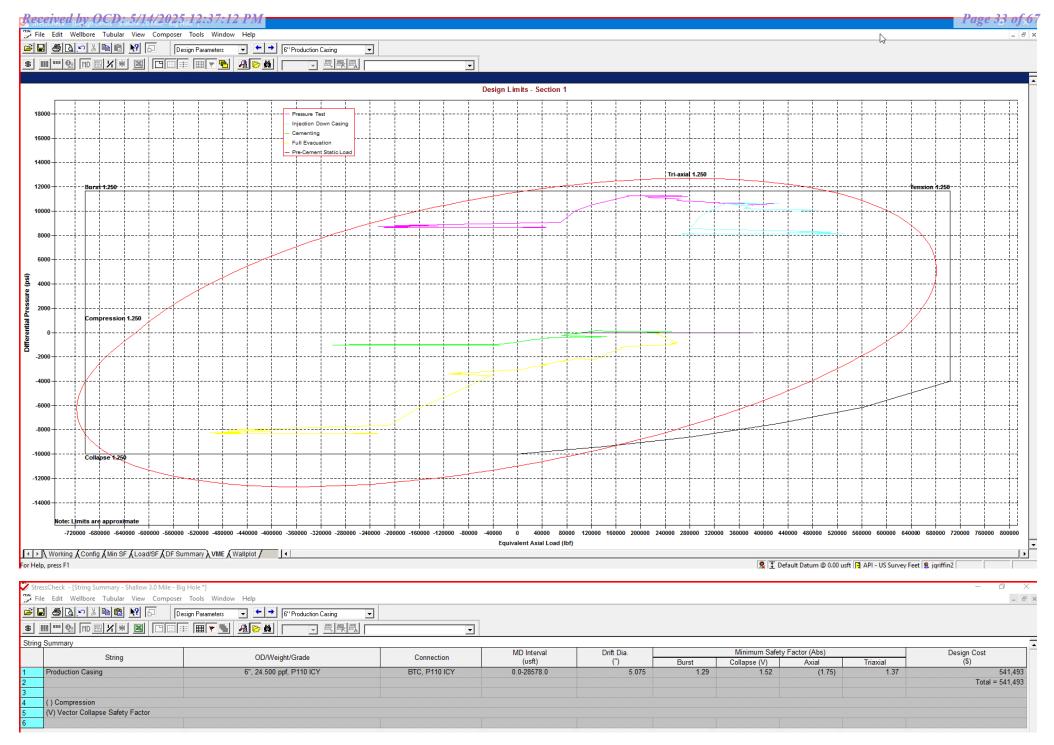

Depth	No. Sacks	Wt.	Yld Ft3/sk	Slurry Description	
2,030' 10-3/4"	450	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)	
	120	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')	
7,890' 8-5/8"	460	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)	
	210	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6234')	
28,578'	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)	
	2410	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ 8140')	

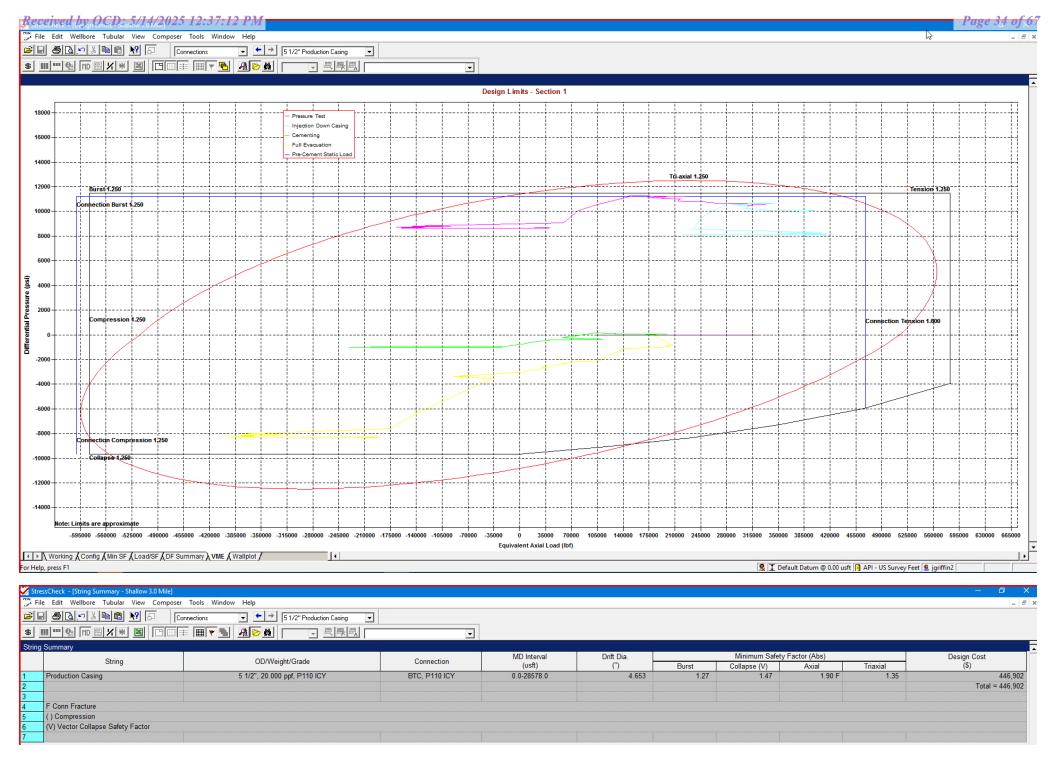

Shallow Casing Design E

Proposed Wellbore


KB: 3558' GL: 3533'

API: 30-025-****




Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi

^{*}Modelling done with 8-5/8" 32# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Page 28 of 31

Shallow Casing Design 501H

Additive	Purpose		
Bentonite Gel	Lightweight/Lost circulation prevention		
Calcium Chloride	Accelerator		
Cello-flake	Lost circulation prevention		
Sodium Metasilicate	Accelerator		
MagOx	Expansive agent		
Pre-Mag-M	Expansive agent		
Sodium Chloride	Accelerator		
FL-62	Fluid loss control		
Halad-344	Fluid loss control		
Halad-9	Fluid loss control		
HR-601	Retarder		
Microbond	Expansive Agent		

Cement integrity tests will be performed immediately following plug bump.

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

EOG requests variance from minimum standards to pump a two stage cement job on the production casing string with the first stage being pumped conventionally with the calculated top of cement at the top of the Brushy Canyon and the second stage performed as a 1000 sack bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of 400 sacks of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (1.32 yld, 14.8 ppg) will be executed as a contingency. Top will be verified by Echo-meter.

Bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.

MUD PROGRAM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal. The applicable depths and properties of the drilling fluid systems are as follows:

Measured Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0 – 2,030'	Fresh - Gel	8.6-8.8	28-34	N/c
2,030' – 7,793'	Brine	9-10.5	28-34	N/c
5,450' – 28,578' Lateral	Oil Base	8.8-9.5	58-68	N/c - 6

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

Appendix A - Spec Sheets

New Search »

« Back to Previous List

					USC Metric
6/8/2015 10:04:37 AM	S72	2	2	8	28
Mechanical Properties	Pipe	втс	LTC	STC	
Minimum Yield Strength	55,000	2.1	_	_	psi
Maximum Yield Strength	80,000	=		-	psi
Minimum Tensile Strength	75,000	2	_	_	psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	13.375	14.375		14.375	in.
Wall Thickness	0.380	=	=2	2 -3 2	in.
Inside Diameter	12.615	12.615		12.615	in.
Standard Drift	12.459	12.459		12.459	in.
Alternate Drift	_	=			in.
Nominal Linear Weight, T&C	54.50	-	i - i:	3-8	lbs/ft
Plain End Weight	52.79	-		-	lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	1,130	1,130		1,130	psi
Minimum Internal Yield Pressure	2,740	2,740		2,740	psi
Minimum Pipe Body Yield Strength	853.00		_	_	1000 lbs
Joint Strength	-	909	e = 0	514	1000 lbs
Reference Length	-	11,125	-	6,290	n
Make-Up Data	Pipe	втс	LTC	STC	
Make-Up Loss	-	4.81		3.50	in.
Minimum Make-Up Torque	-	-	 >	3,860	ft-lbs
Released to Imaging: 5/16/2025 9:37:40 AM Maximum Make-Up Torque	_	2:		6,430	ft-lbs

Released to Imaging: 5/16/2025 9:37:40 AM

Maximum Make-Up Torque

New Search »					« Back to Previous List
					USC Metric
6/8/2015 10:23:27 AM	· · · · · · · · · · · · · · · · · · ·		· ·		
Mechanical Properties	Pipe	втс	LTC	STC	
Minimum Yield Strength	55,000	_		-	psi
Maximum Yield Strength	80,000		= 1	: = ::	psi
Minimum Tensile Strength	75,000			_	psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	9.625	10.625	10.625	10.625	in.
Wall Thickness	0.395		77.0	1 111 11	in.
Inside Diameter	8.835	8.835	8.835	8.835	in.
Standard Drift	8.679	8.679	8.679	8.679	in.
Alternate Drift	8.750	8.750	8.750	8.750	in.
Nominal Linear Weight, T&C	40.00	-	=	, - 24	lbs/ft
Plain End Weight	38.97	=	-	_	lbs/ft
Performance	Ріре	втс	LTC	STC	
Minimum Collapse Pressure	2,570	2,570	2,570	2,570	psi
Minimum Internal Yield Pressure	3,950	3,950	3,950	3,950	psi
Minimum Pipe Body Yield Strength	630.00	-			1000 lbs
Joint Strength		714	520	452	1000 lbs
Reference Length	(- 	11,898	8,665	7,529	п
Make-Up Data	Ріре	втс	LTC	STC	

Make-Up Loss 4.81 4.75 3.38 in. Minimum Make-Up Torque

3,900

6,500

3,390

5,650

ft-lbs

ft-lbs

Collapse

Min. Internal Yield

Connection Data Sheet

OD (in.) WEIGHT (lbs./ft.) 5.500 Nominal: 20.00

WALL (in.) 0.361

GRADE VST P110EC

14,360

12,090

API DRIFT (in.) 4.653

RBW% 87.5

CONNECTION DWC/C-IS MS

Plain End: 19.83

PIP	PIPE PROPERTIES					
Outside Diameter	5.500	in.				
Inside Diameter	4.778	in.				
Nominal Area	5.828	sq.in.				
Grade Type	API 5CT					
Min. Yield Strength	125	ksi				
Max. Yield Strength	140	ksi				
Min. Tensile Strength	135	ksi				
Yield Strength	729	klb				
Ultimate Strength	787	klb				
Ultimate Strength	787	klb				

	CONNECTION PROPER	TIES	
in.	Connection Type	Semi-Prem	ium T&C
in.	Connection O.D. (nom)	6.115	in.
q.in.	Connection I.D. (nom)	4.778	in.
	Make-Up Loss	4.125	in.
ksi	Coupling Length	9.250	in.
ksi	Critical Cross Section	5.828	sq.in.
ksi	Tension Efficiency	100.0%	of pipe
klb	Compression Efficiency	100.0%	of pipe
klb	Internal Pressure Efficiency	100.0%	of pipe
psi	External Pressure Efficiency	100.0%	of pipe
psi			

CONNECTION PERFORMANCES					
Yield Strength	729	klb			
Parting Load	787	klb			
Compression Rating	729	klb			
Min. Internal Yield	14,360	psi			
External Pressure	12,090	psi			
Maximum Uniaxial Bend Rating	104.2	°/100 ft			
Reference String Length w 1.4 Design Factor	26,040	ft			

	FIELD END TORQUE VALUES						
ו	Min. Make-up torque	16,100	ft.lb				
)	Opti. Make-up torque	17,350	ft.lb				
)	Max. Make-up torque	18,600	ft.lb				
i	Min. Shoulder Torque	1,610	ft.lb				
i	Max. Shoulder Torque	12,880	ft.lb				
t	Min. Delta Turn	-	Turns				
t	Max. Delta Turn	0.200	Turns				
	Maximum Operational Torque	21,100	ft.lb				
	Maximum Torsional Value (MTV)	23,210	ft.lb				

Need Help? Contact: tech.support@vam-usa.com Reference Drawing: 8136PP Rev.01 & 8136BP Rev.01

Date: 12/03/2019 Time: 06:19:27 PM

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for ourpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042

Phone: 713-479-3200 Fax: 713-479-3234

VAM® USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- 2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- 4. DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- 8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torque is not to be exceeded.
- 10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- 11. DWC connections will accommodate API standard drift diameters.
- 12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

10.750 40.50/0.350 J55 PDF

New Search »

« Back to Previous List

USC Metric

6/8/2015 10:14:05 AM

Mechanical Properties	Pipe	втс	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Ptpe	втс	LTC	STC	
Outside Diameter	10.750	11.750	-	11.750	in.
Wall Thickness	0.350	-	-	-	in.
Inside Diameter	10.050	10.050	-	10.050	in.
Standard Drift	9.894	9.894	-	9.894	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	40.50	-	-	-	lbs/ft
Plain End Weight	38.91	-	-	-	lbs/ft
Performance	Ptpe	втс	LTC	STC	
Minimum Collapse Pressure	1,580	1,580	-	1,580	psi
Minimum Internal Yield Pressure	3,130	3,130		3,130	psi
Minimum Pipe Body Yield Strength	629.00	-	-	-	1000 lbs
Joint Strength	-	700	-	420	1000 lbs
Reference Length	-	11,522	-	6,915	ft
Make-Up Data	Pipe	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque		-	-	3,150	ft-lbs
Released to Imaging: 5/16/2025 9:37:40 AM Maximum Make-Up Torque		-	-	5,250	ft-lbs

API 5CT, 10th Ed. Connection Data Sheet

O.D. (in)	WEIGHT	(lb/ft)	WALL (in)	GRADE	*API DRIFT (in)	RBW %
8.625	Nominal: Plain End:	32.00 31.13	0.352	J55	7.796	87.5

Material Properties (PE)						
Pipe						
Minimum Yield Strength:	55 ksi					
Maximum Yield Strength:	80 ksi					
Minimum Tensile Strength:	75 ksi					
Coupling						
Minimum Yield Strength:	55 ksi					
Maximum Yield Strength:	80 ksi					
Minimum Tensile Strength:	75 ksi					

Pipe Body Data (PE)					
Geometry	у				
Nominal ID:	7.92 inch				
Nominal Area:	9.149 in ²				
*Special/Alt. Drift:	7.875 inch				
Performan	ce				
Pipe Body Yield Strength:	503 kips				
Collapse Resistance:	2,530 psi				
Internal Yield Pressure: (API Historical)	3,930 psi				

API Connection Coupling OD:					
STC Perform					
STC Internal Pressure:	3,930 psi				
STC Joint Strength:	372 kips				
LTC Perform	nance				
LTC Internal Pressure:	3,930 psi				
LTC Joint Strength:	417 kips				
SC-BTC Performance - Cplg OD = 9.125"					
BTC Internal Pressure:	3,930 psi				
BTC Joint Strength:	503 kips				

API Connection Torque						
	5	STC Tor	que (ft-lb	s)		
Min:	2,793	Opti:	3,724	Max:	4,655	
	L	TC Tor	que (ft-lb	s)		
Min:	3,130	Opti:	4,174	Max:	5,217	
		OTC Tor	aua /ft lh	· • \		
		516 101	que (ft-lk)5)		
follo	follow API guidelines regarding positional make up					

*Alt. Drift will be used unless API Drift is specified on order.

**If above API connections do not suit your needs, VAM® premium connections are available up to 100% of pipe body ratings.

ALL INFORMATION IS PROVIDED BY VALLOUREC OR ITS AFFILIATES AT USER'S SOLE RISK, WITHOUT LIABILITY FOR LOSS, DAMAGE OR INJURY RESULTING FROM THE USE THEREOF; AND ON AN "AS IS" BASIS WITHOUT WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR PURPOSE, ACCURACY OR COMPLETENESS. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND IS BASED ON ESTIMATES THAT HAVE NOT BEEN VERIFIED OR TESTED. IN NO EVENT SHALL VALLOUREC OR ITS AFFILIATES BE RESPONSIBLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, EXEMPLARY OR CONSEQUENTIAL LOSS OR DAMAGE (INCLUDING WITHOUT LIMITATION, LOSS OF USE, LOSS OF BARGAIN, LOSS OF REVENUE, PROFIT OR ANTICIPATED PROFIT) HOWEVER CAUSED OR ARISING, AND WHETHER SUCH LOSSES OR DAMAGES WERE FORESEEABLE OR VALLOUREC OR ITS AFFILIATES WERE ADVISED OF THE

Rev 3, 7/30/2021 POSSIBILITY OF SUCH DAMAGES. 10/21/2022 15:24

Issued on: 10 Feb. 2021 by Wesley Ott

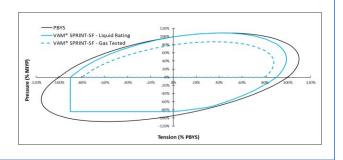
Connection Data Sheet

OD Weight (lb/ft) Wall Th. Grade API Drift: Connection

6 in. Nominal: 24.50 Plain End: 23.95

Wall Th. Grade API Drift: Connection

VAM® SPRINT-SF


DI DE DOODEDTIES		
PI PE PROPERTI ES		
Nominal OD	6.000	in.
Nominal ID	5.200	in.
Nominal Cross Section Area	7.037	sqin.
Grade Type	Hig	jh Yield
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Ultimate Tensile Strength	135	ksi

CONNECTION PROPERTIES		
Connection Type	Integral	Semi-Flush
Connection OD (nom):	6.277	in.
Connection ID (nom):	5.146	in.
Make-Up Loss	5.386	in.
Critical Cross Section	6.417	sqin.
Tension Efficiency	91.0	% of pipe
Compression Efficiency	91.0	% of pipe
Internal Pressure Efficiency	100	% of pipe
External Pressure Efficiency	100	% of pipe

CONNECTI ON PERFORMANC	ES	
Tensile Yield Strength	801	klb
Compression Resistance	801	klb
Internal Yield Pressure	14,580	psi
Collapse Resistance	12,500	psi
Max. Structural Bending	83	°/100ft
Max. Bending with ISO/API Sealability	30	°/100ft

TORQUE VALUES		
Min. Make-up torque	21,750	ft.lb
Opt. Make-up torque	24,250	ft.lb
Max. Make-up torque	26,750	ft.lb
Max. Torque with Sealability (MTS)	53,000	ft.lb

VAM® SPRINT-SF is a semi-flush connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections and tight clearance requirements.

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com Do you need help on this product? - Remember no one knows VAM® like VAM®

uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

^{* 87.5%} RBW

Connection Data Sheet

 OD (in.)
 WEIGHT (lbs./ft.)
 WALL (in.)
 GRADE
 API DRIFT (in.)
 RBW%
 CONNECTION

 6.000
 Nominal: 22.30
 0.360
 VST P110EC
 5.155
 92.5
 DWC/C-IS

 Plain End: 21.70

PIPE PROPERTIES		
Nominal OD	6.000	in.
Nominal ID	5.280	in.
Nominal Area	6.379	sq.in.
Grade Type	API 5CT	
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Tensile Strength	135	ksi
Yield Strength	797	klb
Ultimate Strength	861	klb
Min. Internal Yield Pressure	13,880	psi
Collapse Pressure	9,800	psi

CONNECTION PERFORMANCES		
Yield Strength	797	klb
Parting Load	861	klb
Compression Rating	797	klb
Min. Internal Yield	13,880	psi
External Pressure	9,800	psi
Maximum Uniaxial Bend Rating	47.7	°/100 ft
Reference String Length w 1.4 Design Factor	25,530	ft.

Need Help? Contact: <u>tech.support@vam-usa.com</u>
Reference Drawing: 8135PP Rev.02 & 8135BP Rev.02

Date: 07/30/2020 Time: 07:50:47 PM

CONNECTION PRO	OPERTIES	
Connection Type	Semi-Prem	nium T&C
Connection OD (nom)	6.650	in.
Connection ID (nom)	5.280	in.
Make-Up Loss	4.313	in.
Coupling Length	9.625	in.
Critical Cross Section	6.379	sq.in.
Tension Efficiency	100.0%	of pipe
Compression Efficiency	100.0%	of pipe
Internal Pressure Efficiency	100.0%	of pipe
External Pressure Efficiency	100.0%	of pipe

FIELD END TORQUE	VALUES	
Min. Make-up torque	17,000	ft.lb
Opti. Make-up torque	18,250	ft.lb
Max. Make-up torque	19,500	ft.lb
Min. Shoulder Torque	1,700	ft.lb
Max. Shoulder Torque	13,600	ft.lb
Min. Delta Turn	-	Turns
Max. Delta Turn	0.200	Turns
Maximum Operational Torque	24,200	ft.lb
Maximum Torsional Value (MTV)	26.620	ft.lb

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

VAM USA

2107 CityWest Boulevard Suite 1300

Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234

VAM® USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- 2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- 4. DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- 8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torque is not to be exceeded.
- 10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- 11. DWC connections will accommodate API standard drift diameters.
- 12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In one event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

KB: 3358'

OSPREY 10 #113H LEA County, New Mexico Proposed Wellbore

449' FSL 1137' FWL Section 10

T-25-S, R-34-E

API: 30-025-****

GL: 3333'

Bit Size: 13" 10-3/4", 40.5#, J-55, STC @ 0' - 985' MD @ 0' - 985' TVD If production Bradenhead is performed, **TOC** will be at surface TOC @ 4,827', if performed conventionally. Bit Size: 9-7/8" 8-5/8", 32.#, J-55, BTC-SC @ 0' - 5,260' MD @ 0' - 5,161' TVD Bit Size: 7-7/8"|Bit Size: 6-3/4" 6", 24.5#, P110-EC, VAM Sprint-TC @ 0' - 9,108' MD @ 0' - 9,012' TVD 5-1/2", 20.#, P110-EC, VAM Sprint SF @ 9,108' - 17,192' MD @ 9,012' - 9,490' TVD Lateral: 17,192' MD, 9,490' TVD BH Location: 2538' FSL & 2178' FWL Sec. 3 T-25-S R-34-E KOP: 9,208' MD, 9,112' TVD EOC: 9,801' MD, 9,490' TVD

Permit Information:

Well Name: OSPREY 10 113H

Location: SHL: 449' FSL & 1137' FWL, Section 10, T-25-S, R-34-E, LEA Co., N.M.

BHL: 2538' FSL & 2178' FWL, Section 3, T-25-S, R-34-E, LEA Co., N.M.

Casing Program:

Hole	Interv	al MD	Interva	l TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13"	0	985	0	985	10-3/4"	40.5#	J-55	STC
9-7/8"	0	5,260	0	5,161	8-5/8"	32#	J-55	BTC-SC
7-7/8"	0	9,108	0	9,012	6"	24.5#	P110-EC	VAM Sprint-TC
6-3/4"	9,108	17,192	9,012	9,490	5-1/2"	20#	P110-EC	VAM Sprint SF

^{**}For highlighted rows above, variance is requested to run entire string of either or casing string above due to availablility.

Cement Program:

Depth	No.	Wt.	Yld	Slurry Description
MD	Sacks	ppg	Ft3/sk	Sturry Description
985'	220	13.5	1.73	Class C/H + additives (TOC @ Surface)
903	100	14.8	1.34	Class C/H + additives
5 260'	440	12.7	1.11	Tail: Class C/H + additives + expansion additives (TOC @ 2000')
5,260' 250 14.8 1.		1.5	Lead: Class C/H + additives (TOC @ 4,182')	
	610	10.5	3.21	Lead: Class C/H + additives (TOC @ 4,827')
17,192'	950	13.2	1.52	Tail: Class C/H + additives (TOC @ 9,208')

Mud Program:

Section	Depth	Type	Weight (ppg)	Viscosity	Water Loss
Surface	0 – 990'	Fresh - Gel	8.6-9.2	28-34	N/c
Intermediate	990' – 5,160'	Brine	9.0-10.5	28-34	N/c
Production	5,160' – 17,192' Lateral	Oil Base	8.8-9.5	58-68	N/c - 6

TUBING REQUIREMENTS:

EOG respectively requests an exception to the following NMOCD rule:

19.15.16.10 Casing AND TUBING REQUIREMENTS:
 J (3): "The operator shall set tubing as near the bottom as practical and tubing perforations shall not be more than 250 feet above top of pay zone."

With horizontal flowing and gas lifted wells an end of tubing depth placed at or slightly above KOP is a conservative way to ensure the tubing stays clean from debris, plugging, and allows for fewer well interventions post offset completion. The deeper the tubulars are run into the curve, the higher the probability is that the tubing will become stuck in sand and or well debris as the well produces over time. An additional consideration for EOT placement during artificial lift installations is avoiding the high dog leg severity and inclinations found in the curve section of the wellbore to help improve reliability and performance. Dog leg severity and inclinations tend not to hamper gas lifted or flowing wells, but they do effect other forms of artificial lift like rod pump or ESP (electric submersible pump). Keeping the EOT above KOP is an industry best practice for those respective forms of artificial lift.

Hydrogen Sulfide Plan Summary

- A. All personnel shall receive proper H2S training in accordance with Onshore Order III.C.3.a.
- B. Briefing Area: two perpendicular areas will be designated by signs and readily accessible.
- C. Required Emergency Equipment:
 - Well control equipment
 - a. Flare line 150' from wellhead to be ignited by flare gun.
 - b. Choke manifold with a remotely operated choke.
 - c. Mud/gas separator
 - Protective equipment for essential personnel.

Breathing apparatus:

- a. Rescue Packs (SCBA) 1 unit shall be placed at each breathing area, 2 shall be stored in the safety trailer.
- b. Work/Escape packs —4 packs shall be stored on the rig floor with sufficient air hose not to restrict work activity.
- c. Emergency Escape Packs —4 packs shall be stored in the doghouse for emergency evacuation.

Auxiliary Rescue Equipment:

- a. Stretcher
- b. Two OSHA full body harness
- c. 100 ft 5/8 inch OSHA approved rope
- d. 1-20# class ABC fire extinguisher
- H2S detection and monitoring equipment:

The stationary detector with three sensors will be placed in the upper dog house if equipped, set to visually alarm @ 10 ppm and audible @ 14 ppm. Calibrate a minimum of every 30 days or as needed. The sensors will be placed in the following places: Rig floor / Bell nipple / End of flow line or where well bore fluid is being discharged.

(Gas sample tubes will be stored in the safety trailer)

- Visual warning systems.
 - a. One color code condition sign will be placed at the entrance to the site reflecting the possible conditions at the site.
- b. A colored condition flag will be on display, reflecting the current condition at the site at the time.
 - c. Two wind socks will be placed in strategic locations, visible from all angles.

■ Mud program:

The mud program has been designed to minimize the volume of H2S circulated to surface. The operator will have the necessary mud products to minimize hazards while drilling in H2S bearing zones.

■ Metallurgy:

All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.

■ Communication:

Communication will be via cell phones and land lines where available.

OSPREY 10 #113H Emergency Assistance Telephone List

PUBLIC SAFETY:	Ziner geney 118818 univ		911 or
Lea County Sheriff's	Department		(575) 396-3611
	Rod Coffman		
Fire Department:			
	Carlsbad		(575) 885-3125
	Artesia		(575) 746-5050
Hospitals:			
	Carlsbad		(575) 887-4121
	Artesia		(575) 748-3333
	Hobbs		(575) 392-1979
Dept. of Public Safet	y/Carlsbad		(575) 748-9718
Highway Department			(575) 885-3281
New Mexico Oil Con	servation		(575) 476-3440
NMOCD Inspection	Group - South		(575) 626-0830
U.S. Dept. of Labor			(575) 887-1174
EOG Resources, Inc			
EOG / Midland		Office	(432) 686-3600
Company Drilling C	Consultants:		
David Dominque		Cell	(985) 518-5839
Mike Vann		Cell	(817) 980-5507
Drilling Engineer			
Stephen Davis		Cell	(432) 235-9789
Matt Day		Cell	(432) 296-4456
Drilling Manager			
Branden Keener		Office	(432) 686-3752
		Cell	(210) 294-3729
Drilling Superintene	dent		
Steve Kelly		Office	(432) 686-3706
		Cell	(210) 416-7894
H&P Drilling			
H&P Drilling		Office	(432) 563-5757
H&P 651 Drilling Ri	9	Rig	(903) 509-7131
		_	
Tool Pusher:			
Johnathan Craig		Cell	(817) 760-6374
Brad Garrett			
Safety:			
Brian Chandler (HSE	Manager)	Office	(432) 686-3695
Zimii Cimilatei (HDL		Cell	(817) 239-0251
		Cell	(017) 237-0231

GEOLOGIC NAME OF SURFACE FORMATION:

Permian

ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler	875'
Tamarisk Anhydrite	960'
Top of Salt	1,255'
Base of Salt	5,061'
Lamar	5,323'
Bell Canyon	5,346'
Cherry Canyon	6,301'
Brushy Canyon	7,887'
Bone Spring Lime	9,255'
Leonard (Avalon) Shale	9,335'
1st Bone Spring Sand	10,317'
2nd Bone Spring Shale	10,533'
2nd Bone Spring Sand	10,317'
3rd Bone Spring Carb	11,372'
3rd Bone Spring Sand	11,904'
TD	9,490'

ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0 - 400' Fresh Water
Lamar	5,323' Oil
Cherry Canyon	6,301' Oil
Brushy Canyon	7,887' Oil
Bone Spring Lime	9,255' Oil
Leonard (Avalon) Shale	9,335' Oil
1st Bone Spring Sand	10,317' Oil
2nd Bone Spring Shale	10,533' Oil
2nd Bone Spring Sand	10,317' Oil

Midland

Lea County, NM (NAD 83 NME) Osprey 10 #113H

OH

Plan: Plan #0.1 RT

Standard Planning Report

14 May, 2025

Database: PEDMB Company: Midland

Project: Lea County, NM (NAD 83 NME)

 Site:
 Osprey 10

 Well:
 #113H

 Wellbore:
 OH

 Design:
 Plan #0.1 RT

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:
Survey Calculation Method:

Well #113H

kb = 26' @ 3359.0usft kb = 26' @ 3359.0usft

Grid

Minimum Curvature

Project Lea County, NM (NAD 83 NME)

Map System:US State Plane 1983Geo Datum:North American Datum 1983Map Zone:New Mexico Eastern Zone

System Datum:

Mean Sea Level

Site Osprey 10

 Site Position:
 Northing:
 415,148.00 usft
 Latitude:
 32° 8′ 18.063 N

 From:
 Map
 Easting:
 809,711.00 usft
 Longitude:
 103° 27′ 58.640 W

Position Uncertainty: 0.0 usft Slot Radius: 13-3/16 "

Well #113H

Well Position +N/-S 0.0 usft Northing: 415,397.00 usft Latitude: 32° 8' 20.438 N +E/-W 0.0 usft Easting: 810,832.00 usft Longitude: 103° 27' 45.580 W **Position Uncertainty** 0.0 usft Wellhead Elevation: usft **Ground Level:** 3,333.0 usft

Grid Convergence: 0.46 °

Wellbore OH

 Magnetics
 Model Name
 Sample Date
 Declination (°)
 Dip Angle (°)
 Field Strength (nT)

 IGRF2025
 4/21/2025
 6.21
 59.70
 47,004.77441311

Design Plan #0.1 RT

Audit Notes:

Version:Phase:PLANTie On Depth:0.0

 Vertical Section:
 Depth From (TVD) (usft)
 +N/-S +E/-W (usft)
 Direction (usft)

 0.0
 0.0
 0.0
 7.63

Plan Survey Tool Program Date 5/14/2025

Depth From Depth To

(usft) (usft) Survey (Wellbore) Tool Name Remarks

1 0.0 17,192.4 Plan #0.1 RT (OH) EOG MWD+IFR1

MWD + IFR1

Database: PEDMB Company: Midland

Project: Lea County, NM (NAD 83 NME)

 Site:
 Osprey 10

 Well:
 #113H

 Wellbore:
 OH

 Design:
 Plan #0.1 RT

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #113H kb = 26' @ 3359.0usft

kb = 26' @ 3359.0usft

Grid Minimum Curvature

Plan Sections										
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,085.0	0.00	0.00	1,085.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,587.0	10.04	110.58	1,584.4	-15.4	41.1	2.00	2.00	0.00	110.58	
7,480.4	10.04	110.58	7,387.6	-376.6	1,002.9	0.00	0.00	0.00	0.00	
7,982.4	0.00	0.00	7,887.0	-392.0	1,044.0	2.00	-2.00	0.00	180.00	
9,207.5	0.00	0.00	9,112.1	-392.0	1,044.0	0.00	0.00	0.00	0.00	KOP(Osprey 10 #113
9,404.1	29.80	0.00	9,300.0	-342.0	1,044.0	15.16	15.16	0.00	0.00	FTP(Osprey 10 #113H
9,801.0	90.00	359.58	9,490.0	-14.3	1,042.4	15.17	15.17	-0.11	-0.49	
17,192.4	90.00	359.58	9,490.0	7,377.0	988.0	0.00	0.00	0.00	0.00	PBHL(Osprey 10 #113

Database: PEDMB Company: Midland

Project: Lea County, NM (NAD 83 NME)

 Site:
 Osprey 10

 Well:
 #113H

 Wellbore:
 OH

 Design:
 Plan #0.1 RT

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #113H

kb = 26' @ 3359.0usft kb = 26' @ 3359.0usft

Grid

esign:	Plan #0.1 RT								
lanned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0									
	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,085.0	0.00	0.00	1,085.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.30	110.58	1,100.0	0.0	0.0	0.0	2.00	2.00	0.00
1,200.0	2.30	110.58	1,200.0	-0.8	2.2	-0.5	2.00	2.00	0.00
1,300.0	4.30	110.58	1,299.8	-2.8	7.5	-1.8	2.00	2.00	0.00
1,500.0	4.50	110.00	1,233.0	-2.0	1.5	-1.0	2.00	2.00	0.00
1,400.0	6.30	110.58	1,399.4	-6.1	16.2	-3.9	2.00	2.00	0.00
1,500.0	8.30	110.58	1,498.6	-10.5	28.1	-6.7	2.00	2.00	0.00
1,587.0	10.04	110.58	1,584.4	-15.4	41.1	-0.7 -9.8	2.00	2.00	0.00
1,600.0	10.04	110.58	1,597.2	-16.2	43.2	-10.3	0.00	0.00	0.00
1,700.0	10.04	110.58	1,695.7	-22.3	59.5	-14.2	0.00	0.00	0.00
1,800.0	10.04	110.58	1,794.2	-28.5	75.8	-18.2	0.00	0.00	0.00
1,900.0	10.04	110.58	1,892.6	-34.6	92.2	-22.1	0.00	0.00	0.00
2,000.0	10.04	110.58	1,991.1	-40.7	108.5	-26.0	0.00	0.00	0.00
2,100.0	10.04	110.58	2,089.6	-46.9	124.8	-29.9	0.00	0.00	0.00
2,200.0	10.04	110.58	2,188.0	-53.0	141.1	-33.8	0.00	0.00	0.00
2,300.0	10.04	110.58	2,286.5	-59.1	157.4	-37.7	0.00	0.00	0.00
2,400.0	10.04	110.58	2,385.0	-65.2	173.8	-41.6	0.00	0.00	0.00
2,500.0	10.04	110.58	2,483.5	-71.4	190.1	-45.5	0.00	0.00	0.00
2,600.0					206.4	-49.4			
	10.04	110.58	2,581.9	-77.5			0.00	0.00	0.00
2,700.0	10.04	110.58	2,680.4	-83.6	222.7	-53.3	0.00	0.00	0.00
2,800.0	10.04	110.58	2,778.9	-89.8	239.0	-57.2	0.00	0.00	0.00
2,900.0	10.04	110.58	2,877.3	-95.9	255.4	-61.1	0.00	0.00	0.00
3,000.0	10.04	110.58	2,975.8	-102.0	271.7	-65.0	0.00	0.00	0.00
3,100.0	10.04	110.58	3,074.3	-108.1	288.0	-69.0	0.00	0.00	0.00
3,200.0	10.04	110.58	3,172.7	-114.3	304.3	-72.9	0.00	0.00	0.00
2 222 2	40.01	410.55	0.074.0	400.4	202.5	70.6	2.25	2.25	2.22
3,300.0	10.04	110.58	3,271.2	-120.4	320.6	-76.8	0.00	0.00	0.00
3,400.0	10.04	110.58	3,369.7	-126.5	337.0	-80.7	0.00	0.00	0.00
3,500.0	10.04	110.58	3,468.1	-132.7	353.3	-84.6	0.00	0.00	0.00
3,600.0	10.04	110.58	3,566.6	-138.8	369.6	-88.5	0.00	0.00	0.00
3,700.0	10.04	110.58	3,665.1	-144.9	385.9	-92.4	0.00	0.00	0.00
		110.00		- 177.0	303.3				
3,800.0	10.04	110.58	3,763.5	-151.0	402.3	-96.3	0.00	0.00	0.00
3,900.0	10.04	110.58	3,862.0	-157.2	418.6	-100.2	0.00	0.00	0.00
4,000.0	10.04	110.58	3,960.5	-163.3	434.9	-100.2	0.00	0.00	0.00
4,100.0	10.04	110.58	4,059.0	-169.4	451.2	-108.0	0.00	0.00	0.00
4,200.0	10.04	110.58	4,157.4	-175.6	467.5	-111.9	0.00	0.00	0.00
4,300.0	10.04	110 E0	4,255.9	101 7	483.9	115.0	0.00	0.00	0.00
	10.04	110.58		-181.7		-115.8	0.00		
4,400.0	10.04	110.58	4,354.4	-187.8	500.2	-119.7	0.00	0.00	0.00
4,500.0	10.04	110.58	4,452.8	-193.9	516.5	-123.7	0.00	0.00	0.00
4,600.0	10.04	110.58	4,551.3	-200.1	532.8	-127.6	0.00	0.00	0.00
4,700.0	10.04	110.58	4,649.8	-206.2	549.1	-131.5	0.00	0.00	0.00
4,800.0	10.04	110.58	4,748.2	-212.3	565.5	-135.4	0.00	0.00	0.00
4,900.0	10.04	110.58	4,846.7	-218.4	581.8	-139.3	0.00	0.00	0.00
5,000.0	10.04	110.58	4,945.2	-224.6	598.1	-143.2	0.00	0.00	0.00
5,100.0	10.04	110.58	5,043.6	-230.7	614.4	-147.1	0.00	0.00	0.00

Database: PEDMB Company: Midland

Project: Lea County, NM (NAD 83 NME)

 Site:
 Osprey 10

 Well:
 #113H

 Wellbore:
 OH

 Design:
 Plan #0.1 RT

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well #113H

kb = 26' @ 3359.0usft kb = 26' @ 3359.0usft

Grid

ign:	Flail #U. I KI								
nned Survey									
Measured Depth (usft)	Inclination	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,200.0	10.04	110.58	5,142.1	-236.8	630.7	-151.0	0.00	0.00	0.00
5,300.0	10.04	110.58	5,240.6	-243.0	647.1	-154.9	0.00	0.00	0.00
5,400.0	10.04	110.58	5,339.0	-249.1	663.4	-158.8	0.00	0.00	0.00
5,500.0	10.04	110.58	5,437.5	-255.2	679.7	-162.7	0.00	0.00	0.00
5,600.0	10.04	110.58	5,536.0	-261.3	696.0	-166.6	0.00	0.00	0.00
5,700.0	10.04	110.58	5,634.4	-267.5	712.4	-170.5	0.00	0.00	0.00
5,800.0	10.04	110.58	5,732.9	-273.6	728.7	-174.5	0.00	0.00	0.00
5,900.0	10.04	110.58	5,831.4	-279.7	745.0	-178.4	0.00	0.00	0.00
6,000.0	10.04	110.58	5,929.9	-285.9	761.3	-182.3	0.00	0.00	0.00
6,100.0	10.04	110.58	6,028.3	-292.0	777.6	-186.2	0.00	0.00	0.00
6,200.0	10.04	110.58	6,126.8	-298.1	794.0	-190.1	0.00	0.00	0.00
6,300.0	10.04	110.58	6,225.3	-304.2	810.3	-194.0	0.00	0.00	0.00
6,400.0	10.04	110.58	6,323.7	-310.4	826.6	-197.9	0.00	0.00	0.00
6,500.0	10.04	110.58	6,422.2	-316.5	842.9	-201.8	0.00	0.00	0.00
6,600.0	10.04	110.58	6,520.7	-322.6	859.2	-205.7	0.00	0.00	0.00
6,700.0	10.04	110.58	6,619.1	-328.8	875.6	-209.6	0.00	0.00	0.00
6,800.0 6,900.0	10.04 10.04	110.58 110.58	6,717.6 6,816.1	-334.9 -341.0	891.9 908.2	-213.5 -217.4	0.00	0.00 0.00	0.00
							0.00		0.00
7,000.0	10.04	110.58	6,914.5	-347.1	924.5	-221.3	0.00	0.00	0.00
7,100.0	10.04	110.58	7,013.0	-353.3	940.8	-225.2	0.00	0.00	0.00
7,200.0	10.04	110.58	7,111.5	-359.4	957.2	-229.2	0.00	0.00	0.00
7,300.0	10.04	110.58	7,209.9	-365.5	973.5	-233.1	0.00	0.00	0.00
7,400.0	10.04	110.58	7,308.4	-371.7	989.8	-237.0	0.00	0.00	0.00
7,480.4	10.04	110.58	7,387.6	-376.6	1,002.9	-240.1	0.00	0.00	0.00
7,500.0	9.65	110.58	7,406.9	-377.8	1,006.1	-240.9	2.00	-2.00	0.00
7,600.0	7.65	110.58	7,505.8	-383.0	1,020.1	-244.2	2.00	-2.00	0.00
7,700.0	5.65	110.58	7,605.1	-387.1	1,031.0	-246.8	2.00	-2.00	0.00
7,800.0	3.65	110.58	7,704.7	-390.0	1,038.6	-248.6	2.00	-2.00	0.00
7,900.0	1.65	110.58	7,804.6	-391.6	1,042.9	-249.7	2.00	-2.00	0.00
7,982.4	0.00	0.00	7,887.0	-392.0	1,044.0	-249.9	2.00	-2.00	0.00
8,000.0	0.00	0.00	7,904.6	-392.0	1,044.0	-249.9	0.00	0.00	0.00
8,100.0	0.00	0.00	8,004.6	-392.0	1,044.0	-249.9	0.00	0.00	0.00
8,200.0	0.00	0.00	8,104.6	-392.0	1,044.0	-249.9	0.00	0.00	0.00
8,300.0	0.00	0.00	8,204.6	-392.0	1,044.0	-249.9	0.00	0.00	0.00
8,400.0	0.00	0.00	8,304.6	-392.0	1,044.0	-249.9	0.00	0.00	0.00
8,500.0	0.00	0.00	8,404.6	-392.0	1,044.0	-249.9	0.00	0.00	0.00
8,600.0	0.00	0.00	8,504.6	-392.0	1,044.0	-249.9	0.00	0.00	0.00
8,700.0	0.00	0.00	8,604.6	-392.0	1,044.0	-249.9	0.00	0.00	0.00
8,800.0	0.00	0.00	8,704.6	-392.0	1,044.0	-249.9	0.00	0.00	0.00
8,900.0	0.00	0.00	8,804.6	-392.0	1,044.0	-249.9	0.00	0.00	0.00
9,000.0	0.00	0.00	8,904.6	-392.0	1,044.0	-249.9	0.00	0.00	0.00
9,100.0	0.00	0.00	9,004.6	-392.0	1,044.0	-249.9	0.00	0.00	0.00
9,207.5	0.00	0.00	9,112.1	-392.0	1,044.0	-249.9	0.00	0.00	0.00
9,225.0	2.66	0.00	9,129.6	-391.6	1,044.0	-249.5	15.16	15.16	0.00
9,250.0	6.44	0.00	9,154.5	-389.6	1,044.0	-247.6	15.16	15.16	0.00
9,275.0	10.23	0.00	9,179.3	-386.0	1,044.0	-244.0	15.16	15.16	0.00
9,300.0	14.02	0.00	9,203.7	-380.7	1,044.0	-238.8	15.16	15.16	0.00
9,325.0	17.81	0.00	9,227.7	-373.9	1,044.0	-232.0	15.16	15.16	0.00
9,350.0	21.60	0.00	9,251.3	-365.5	1,044.0	-223.6	15.16	15.16	0.00
9,375.0	25.39	0.00	9,274.2	-355.5	1,044.0	-213.8	15.16	15.16	0.00
9,400.0	29.18	0.00	9,296.4	-344.0	1,044.0	-202.4	15.16	15.16	0.00
9,404.1	29.80	0.00	9,300.0	-342.0	1,044.0	-200.4	15.16 15.17	15.16 15.17	0.00
9,425.0 9,450.0	32.97 36.76	359.95 359.90	9,317.8 9,338.3	-331.1 -316.8	1,044.0 1,044.0	-189.6 -175.5	15.17 15.17	15.17 15.17	-0.24 -0.20

Database: PEDMB Company: Midland

Project: Lea County, NM (NAD 83 NME)

 Site:
 Osprey 10

 Well:
 #113H

 Wellbore:
 OH

 Design:
 Plan #0.1 F

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:
Survey Calculation Method:

Well #113H kb = 26' @ 3359.0usft kb = 26' @ 3359.0usft

Grid

Design:	Plan #0.1 RT								
lanned Survey									
Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
9,475.0 9,500.0	40.55 44.35	359.86 359.83	9,357.8 9,376.3	-301.2 -284.4	1,043.9 1,043.9	-160.0 -143.3	15.17 15.17	15.17 15.17	-0.16 -0.14
9,525.0	48.14	359.79	9,393.6	-266.3	1,043.8	-125.4	15.17	15.17	-0.12
9,550.0	51.93	359.77	9,409.6	-247.1	1,043.8	-106.4	15.17	15.17	-0.11
9,575.0	55.72	359.74	9,424.4	-227.0	1,043.7	-86.4	15.17	15.17	-0.10
9,600.0	59.52	359.72	9,437.8	-205.9	1,043.6	-65.5	15.17	15.17	-0.09
9,625.0	63.31	359.70	9,449.7	-183.9	1,043.5	-43.8	15.17	15.17	-0.08
9,650.0	67.10	359.68	9,460.2	-161.2	1,043.3	-21.3	15.17	15.17	-0.08
9,675.0	70.89	359.66	9,469.2	-137.9	1,043.2	1.8	15.17	15.17	-0.07
9,700.0	74.69	359.64	9,476.6	-114.0	1,043.1	25.5	15.17	15.17	-0.07
9,725.0	78.48	359.63	9,482.4	-89.7	1,042.9	49.5	15.17	15.17	-0.07
9,750.0	82.27	359.61	9,486.5	-65.1	1,042.7	73.9	15.17	15.17	-0.07
9,775.0	86.06	359.60	9,489.1	-40.2	1,042.6	98.6	15.17	15.17	-0.06
9,801.0	90.00	359.58	9,490.0	-14.3	1,042.4	124.2	15.17	15.17	-0.06
9,900.0	90.00	359.58	9,490.0	84.8	1,041.7	222.3	0.00	0.00	0.00
10,000.0	90.00	359.58	9,490.0	184.8	1,040.9	321.3	0.00	0.00	0.00
10,100.0	90.00	359.58	9,490.0	284.8	1,040.2	420.3	0.00	0.00	0.00
10,200.0	90.00	359.58	9,490.0	384.8	1,039.5	519.4	0.00	0.00	0.00
10,300.0	90.00	359.58	9,490.0	484.8	1,038.7	618.4	0.00	0.00	0.00
10,400.0	90.00	359.58	9,490.0	584.8	1,038.0	717.4	0.00	0.00	0.00
10,500.0	90.00	359.58	9,490.0	684.8	1,037.2	816.4	0.00	0.00	0.00
10,600.0	90.00	359.58	9,490.0	784.8	1,036.5	915.4	0.00	0.00	0.00
10,700.0	90.00	359.58	9,490.0	884.8	1,035.8	1,014.4	0.00	0.00	0.00
10,800.0	90.00	359.58	9,490.0	984.8	1,035.0	1,113.4	0.00	0.00	0.00
10,900.0	90.00	359.58	9,490.0	1,084.8	1,034.3	1,212.5	0.00	0.00	0.00
11,000.0	90.00	359.58	9,490.0	1,184.8	1,033.6	1,311.5	0.00	0.00	0.00
11,100.0	90.00	359.58	9,490.0	1,284.7	1,032.8	1,410.5	0.00	0.00	0.00
11,200.0	90.00	359.58	9,490.0	1,384.7	1,032.1	1,509.5	0.00	0.00	0.00
11,300.0	90.00	359.58	9,490.0	1,484.7	1,031.4	1,608.5	0.00	0.00	0.00
11,400.0	90.00	359.58	9,490.0	1,584.7	1,030.6	1,707.5	0.00	0.00	0.00
11,500.0	90.00	359.58	9,490.0	1,684.7	1,029.9	1,806.5	0.00	0.00	0.00
11,600.0	90.00	359.58	9,490.0	1,784.7	1,029.2	1,905.6	0.00	0.00	0.00
11,700.0	90.00	359.58	9,490.0	1,884.7	1,028.4	2,004.6	0.00	0.00	0.00
11,800.0	90.00	359.58	9,490.0	1,984.7	1,027.7	2,103.6	0.00	0.00	0.00
11,900.0	90.00	359.58	9,490.0	2,084.7	1,026.9	2,202.6	0.00	0.00	0.00
12,000.0	90.00	359.58	9,490.0	2,184.7	1,026.2	2,301.6	0.00	0.00	0.00
12,100.0	90.00	359.58	9,490.0	2,284.7	1,025.5	2,400.6	0.00	0.00	0.00
12,200.0	90.00	359.58	9,490.0	2,384.7	1,024.7	2,499.6	0.00	0.00	0.00
12,300.0	90.00	359.58	9,490.0	2,484.7	1,024.0	2,598.7	0.00	0.00	0.00
12,400.0	90.00	359.58	9,490.0	2,584.7	1,023.3	2,697.7	0.00	0.00	0.00
12,500.0	90.00	359.58	9,490.0	2,684.7	1,022.5	2,796.7	0.00	0.00	0.00
12,600.0	90.00	359.58	9,490.0	2,784.7	1,021.8	2,895.7	0.00	0.00	0.00
12,700.0	90.00	359.58	9,490.0	2,884.7	1,021.1	2,994.7	0.00	0.00	0.00
12,800.0	90.00	359.58	9,490.0	2,984.7	1,020.3	3,093.7	0.00	0.00	0.00
12,900.0	90.00	359.58	9,490.0	3,084.7	1,019.6	3,192.7	0.00	0.00	0.00
13,000.0	90.00	359.58	9,490.0	3,184.7	1,018.8	3,291.8	0.00	0.00	0.00
13,100.0	90.00	359.58	9,490.0	3,284.7	1,018.1	3,390.8	0.00	0.00	0.00
13,200.0	90.00	359.58	9,490.0	3,384.7	1,017.4	3,489.8	0.00	0.00	0.00
13,300.0	90.00	359.58	9,490.0	3,484.7	1,016.6	3,588.8	0.00	0.00	0.00
13,400.0	90.00	359.58	9,490.0	3,584.7	1,015.9	3,687.8	0.00	0.00	0.00
13,500.0	90.00	359.58	9,490.0	3,684.7	1,015.9	3,786.8	0.00	0.00	0.00
13,600.0	90.00	359.58	9,490.0	3,784.7	1,013.2	3,885.8	0.00	0.00	0.00
13,700.0	90.00	359.58	9,490.0	3,884.7	1,013.7	3,984.9	0.00	0.00	0.00
13,800.0	90.00	359.58	9,490.0	3,984.7	1,013.0	4,083.9	0.00	0.00	0.00

eog resources

Planning Report

Database: PEDMB Company: Midland

Project: Lea County, NM (NAD 83 NME)

 Site:
 Osprey 10

 Well:
 #113H

 Wellbore:
 OH

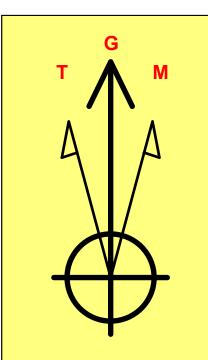
 Design:
 Plan #0.1 RT

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #113H


kb = 26' @ 3359.0usft kb = 26' @ 3359.0usft

Grid

13,900.0 90.00 359.58 9,490.0 4,084.7 1,012.2 4,182.9 0.00 0.00 14,000.0 90.00 359.58 9,490.0 4,184.7 1,011.5 4,281.9 0.00 0.00 14,100.0 90.00 359.58 9,490.0 4,284.7 1,010.0 4,479.9 0.00 0.00 14,200.0 90.00 359.58 9,490.0 4,484.7 1,010.0 4,479.9 0.00 0.00 14,300.0 90.00 359.58 9,490.0 4,584.7 1,009.3 4,579.0 0.00 0.00 14,500.0 90.00 359.58 9,490.0 4,684.7 1,007.1 4,678.0 0.00 0.00 14,600.0 90.00 359.58 9,490.0 4,884.7 1,006.3 4,975.0 0.00 0.00 14,700.0 90.00 359.58 9,490.0 4,884.7 1,006.3 4,975.0 0.00 0.00 14,800.0 90.00 359.58 9,490.0 4,884.6 1,006.3 4,975.0 0.00 0.00 15,000.0 90.00 359.58 </th <th>asured Depth I Jusft)</th> <th>nclination (°)</th> <th>Azimuth (°)</th> <th>Vertical Depth (usft)</th> <th>+N/-S (usft)</th> <th>+E/-W (usft)</th> <th>Vertical Section (usft)</th> <th>Dogleg Rate (°/100usft)</th> <th>Build Rate (°/100usft)</th> <th>Turn Rate (°/100usft)</th>	asured Depth I Jusft)	nclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
14,000.0 90.00 359.58 9,490.0 4,184.7 1,011.5 4,281.9 0.00 0.00 14,100.0 90.00 359.58 9,490.0 4,284.7 1,010.8 4,380.9 0.00 0.00 14,200.0 90.00 359.58 9,490.0 4,384.7 1,010.0 4,479.9 0.00 0.00 14,400.0 90.00 359.58 9,490.0 4,584.7 1,008.5 4,678.0 0.00 0.00 14,500.0 90.00 359.58 9,490.0 4,584.7 1,007.8 4,777.0 0.00 0.00 14,500.0 90.00 359.58 9,490.0 4,584.7 1,007.1 4,876.0 0.00 0.00 14,700.0 90.00 359.58 9,490.0 4,884.7 1,007.1 4,876.0 0.00 0.00 14,800.0 90.00 359.58 9,490.0 4,884.7 1,006.3 4,975.0 0.00 0.00 14,900.0 90.00 359.58 9,490.0 5,084.6 1,005.6 5,074.0 0.00 0.00 15,000.0 90.00 359.58 </td <td>13,900.0</td> <td>90.00</td> <td>359.58</td> <td>9,490.0</td> <td>4,084.7</td> <td>1,012.2</td> <td>4,182.9</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	13,900.0	90.00	359.58	9,490.0	4,084.7	1,012.2	4,182.9	0.00	0.00	0.00
14,200.0 90.00 359.58 9,490.0 4,384.7 1,010.0 4,479.9 0.00 0.00 14,300.0 90.00 359.58 9,490.0 4,584.7 1,008.5 4,678.0 0.00 0.00 14,500.0 90.00 359.58 9,490.0 4,684.7 1,007.8 4,777.0 0.00 0.00 14,500.0 90.00 359.58 9,490.0 4,684.7 1,007.8 4,777.0 0.00 0.00 14,600.0 90.00 359.58 9,490.0 4,684.7 1,007.1 4,876.0 0.00 0.00 14,700.0 90.00 359.58 9,490.0 4,884.7 1,006.3 4,975.0 0.00 0.00 14,800.0 90.00 359.58 9,490.0 5,084.6 1,004.9 5,173.0 0.00 0.00 15,000.0 90.00 359.58 9,490.0 5,184.6 1,004.9 5,774.0 0.00 0.00 15,200.0 90.00 359.58 9,490.0 5,284.6 1,004.1 5,272.1 0.00 0.00 15,200.0 90.00 359.58 </td <td>14,000.0</td> <td>90.00</td> <td>359.58</td> <td>9,490.0</td> <td></td> <td>1,011.5</td> <td>4,281.9</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	14,000.0	90.00	359.58	9,490.0		1,011.5	4,281.9	0.00	0.00	0.00
14,300.0 90.00 359.58 9,490.0 4,484.7 1,009.3 4,579.0 0.00 0.00 14,400.0 90.00 359.58 9,490.0 4,584.7 1,008.5 4,678.0 0.00 0.00 14,500.0 90.00 359.58 9,490.0 4,784.7 1,007.1 4,876.0 0.00 0.00 14,600.0 90.00 359.58 9,490.0 4,784.7 1,006.3 4,975.0 0.00 0.00 14,700.0 90.00 359.58 9,490.0 4,884.7 1,006.3 4,975.0 0.00 0.00 14,800.0 90.00 359.58 9,490.0 5,084.6 1,006.6 5,074.0 0.00 0.00 15,000.0 90.00 359.58 9,490.0 5,184.6 1,004.1 5,272.1 0.00 0.00 15,100.0 90.00 359.58 9,490.0 5,384.6 1,004.1 5,272.1 0.00 0.00 15,200.0 90.00 359.58 9,490.0 5,384.6 1,002.7	14,100.0	90.00	359.58	9,490.0	4,284.7	1,010.8	4,380.9	0.00	0.00	0.00
14,400.0 90.00 359.58 9,490.0 4,584.7 1,008.5 4,678.0 0.00 0.00 14,500.0 90.00 359.58 9,490.0 4,684.7 1,007.8 4,777.0 0.00 0.00 14,600.0 90.00 359.58 9,490.0 4,784.7 1,007.1 4,876.0 0.00 0.00 14,700.0 90.00 359.58 9,490.0 4,884.7 1,006.3 4,975.0 0.00 0.00 14,800.0 90.00 359.58 9,490.0 4,984.6 1,005.6 5,074.0 0.00 0.00 14,900.0 90.00 359.58 9,490.0 5,084.6 1,004.9 5,173.0 0.00 0.00 15,000.0 90.00 359.58 9,490.0 5,184.6 1,004.9 5,771.0 0.00 0.00 15,200.0 90.00 359.58 9,490.0 5,384.6 1,002.7 5,470.1 0.00 0.00 15,200.0 90.00 359.58 9,490.0 5,484.6 1,001.9	14,200.0			.,				0.00		0.00
14,500.0 90.00 359.58 9,490.0 4,684.7 1,007.8 4,777.0 0.00 0.00 14,600.0 90.00 359.58 9,490.0 4,784.7 1,007.1 4,876.0 0.00 0.00 14,700.0 90.00 359.58 9,490.0 4,884.7 1,006.3 4,975.0 0.00 0.00 14,800.0 90.00 359.58 9,490.0 5,084.6 1,004.9 5,173.0 0.00 0.00 15,000.0 90.00 359.58 9,490.0 5,184.6 1,004.9 5,173.0 0.00 0.00 15,000.0 90.00 359.58 9,490.0 5,184.6 1,004.1 5,272.1 0.00 0.00 15,200.0 90.00 359.58 9,490.0 5,384.6 1,002.7 5,470.1 0.00 0.00 15,200.0 90.00 359.58 9,490.0 5,384.6 1,001.2 5,668.1 0.00 0.00 15,500.0 90.00 359.58 9,490.0 5,684.6 1,001.2	,			,	,	,	,			0.00
14,600.0 90.00 359.58 9,490.0 4,784.7 1,007.1 4,876.0 0.00 0.00 14,700.0 90.00 359.58 9,490.0 4,884.7 1,006.3 4,975.0 0.00 0.00 14,800.0 90.00 359.58 9,490.0 5,084.6 1,004.9 5,173.0 0.00 0.00 15,000.0 90.00 359.58 9,490.0 5,084.6 1,004.9 5,173.0 0.00 0.00 15,100.0 90.00 359.58 9,490.0 5,184.6 1,004.1 5,272.1 0.00 0.00 15,100.0 90.00 359.58 9,490.0 5,384.6 1,003.4 5,371.1 0.00 0.00 15,200.0 90.00 359.58 9,490.0 5,384.6 1,002.7 5,470.1 0.00 0.00 15,200.0 90.00 359.58 9,490.0 5,884.6 1,001.2 5,668.1 0.00 0.00 15,500.0 90.00 359.58 9,490.0 5,884.6 1,001.2					,					0.00
14,700.0 90.00 359.58 9,490.0 4,884.7 1,006.3 4,975.0 0.00 0.00 14,800.0 90.00 359.58 9,490.0 4,984.6 1,005.6 5,074.0 0.00 0.00 14,900.0 90.00 359.58 9,490.0 5,084.6 1,004.9 5,173.0 0.00 0.00 15,000.0 90.00 359.58 9,490.0 5,184.6 1,004.1 5,272.1 0.00 0.00 15,100.0 90.00 359.58 9,490.0 5,284.6 1,003.4 5,371.1 0.00 0.00 15,200.0 90.00 359.58 9,490.0 5,384.6 1,002.7 5,470.1 0.00 0.00 15,300.0 90.00 359.58 9,490.0 5,484.6 1,001.9 5,569.1 0.00 0.00 15,500.0 90.00 359.58 9,490.0 5,684.6 1,001.2 5,668.1 0.00 0.00 15,700.0 90.00 359.58 9,490.0 5,884.6 999.7	,			,	,					0.00
14,800.0 90.00 359.58 9,490.0 4,984.6 1,005.6 5,074.0 0.00 0.00 14,900.0 90.00 359.58 9,490.0 5,084.6 1,004.9 5,173.0 0.00 0.00 15,000.0 90.00 359.58 9,490.0 5,184.6 1,004.1 5,272.1 0.00 0.00 15,100.0 90.00 359.58 9,490.0 5,284.6 1,003.4 5,371.1 0.00 0.00 15,200.0 90.00 359.58 9,490.0 5,384.6 1,002.7 5,470.1 0.00 0.00 15,300.0 90.00 359.58 9,490.0 5,384.6 1,001.9 5,569.1 0.00 0.00 15,400.0 90.00 359.58 9,490.0 5,584.6 1,001.2 5,668.1 0.00 0.00 15,500.0 90.00 359.58 9,490.0 5,684.6 1,000.5 5,767.1 0.00 0.00 15,700.0 90.00 359.58 9,490.0 5,884.6 999.7 5,866.1 0.00 0.00 15,700.0 90.00 359.58 <td>14,600.0</td> <td>90.00</td> <td>359.58</td> <td>9,490.0</td> <td>4,784.7</td> <td>1,007.1</td> <td>4,876.0</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	14,600.0	90.00	359.58	9,490.0	4,784.7	1,007.1	4,876.0	0.00	0.00	0.00
14,900.0 90.00 359.58 9,490.0 5,084.6 1,004.9 5,173.0 0.00 0.00 15,000.0 90.00 359.58 9,490.0 5,184.6 1,004.1 5,272.1 0.00 0.00 15,100.0 90.00 359.58 9,490.0 5,284.6 1,003.4 5,371.1 0.00 0.00 15,200.0 90.00 359.58 9,490.0 5,384.6 1,002.7 5,470.1 0.00 0.00 15,300.0 90.00 359.58 9,490.0 5,584.6 1,001.9 5,569.1 0.00 0.00 15,400.0 90.00 359.58 9,490.0 5,584.6 1,001.2 5,668.1 0.00 0.00 15,500.0 90.00 359.58 9,490.0 5,584.6 1,000.5 5,767.1 0.00 0.00 15,700.0 90.00 359.58 9,490.0 5,884.6 999.7 5,866.1 0.00 0.00 15,700.0 90.00 359.58 9,490.0 5,884.6 999.0										0.00
15,000.0 90.00 359.58 9,490.0 5,184.6 1,004.1 5,272.1 0.00 0.00 15,100.0 90.00 359.58 9,490.0 5,284.6 1,003.4 5,371.1 0.00 0.00 15,200.0 90.00 359.58 9,490.0 5,384.6 1,002.7 5,470.1 0.00 0.00 15,300.0 90.00 359.58 9,490.0 5,484.6 1,001.9 5,569.1 0.00 0.00 15,400.0 90.00 359.58 9,490.0 5,584.6 1,001.2 5,668.1 0.00 0.00 15,500.0 90.00 359.58 9,490.0 5,684.6 1,000.5 5,767.1 0.00 0.00 15,600.0 90.00 359.58 9,490.0 5,884.6 999.7 5,866.1 0.00 0.00 15,700.0 90.00 359.58 9,490.0 5,884.6 999.0 5,965.2 0.00 0.00 15,800.0 90.00 359.58 9,490.0 6,084.6 997.5	,			,	,					0.00
15,100.0 90.00 359.58 9,490.0 5,284.6 1,003.4 5,371.1 0.00 0.00 15,200.0 90.00 359.58 9,490.0 5,384.6 1,002.7 5,470.1 0.00 0.00 15,300.0 90.00 359.58 9,490.0 5,484.6 1,001.9 5,569.1 0.00 0.00 15,400.0 90.00 359.58 9,490.0 5,584.6 1,001.2 5,668.1 0.00 0.00 15,500.0 90.00 359.58 9,490.0 5,684.6 1,000.5 5,767.1 0.00 0.00 15,600.0 90.00 359.58 9,490.0 5,884.6 999.7 5,866.1 0.00 0.00 15,700.0 90.00 359.58 9,490.0 5,884.6 999.0 5,965.2 0.00 0.00 15,800.0 90.00 359.58 9,490.0 5,884.6 997.5 6,163.2 0.00 0.00 16,000.0 90.00 359.58 9,490.0 6,184.6 997.5	,			,						0.00
15,200.0 90.00 359.58 9,490.0 5,384.6 1,002.7 5,470.1 0.00 0.00 15,300.0 90.00 359.58 9,490.0 5,484.6 1,001.9 5,569.1 0.00 0.00 15,400.0 90.00 359.58 9,490.0 5,584.6 1,001.2 5,668.1 0.00 0.00 15,500.0 90.00 359.58 9,490.0 5,684.6 1,000.5 5,767.1 0.00 0.00 15,600.0 90.00 359.58 9,490.0 5,784.6 999.7 5,866.1 0.00 0.00 15,700.0 90.00 359.58 9,490.0 5,884.6 999.0 5,965.2 0.00 0.00 15,800.0 90.00 359.58 9,490.0 5,884.6 999.0 5,965.2 0.00 0.00 15,900.0 90.00 359.58 9,490.0 6,084.6 997.5 6,163.2 0.00 0.00 16,000.0 90.00 359.58 9,490.0 6,284.6 996.8 <	,			,	,					0.00
15,300.0 90.00 359.58 9,490.0 5,484.6 1,001.9 5,569.1 0.00 0.00 15,400.0 90.00 359.58 9,490.0 5,584.6 1,001.2 5,668.1 0.00 0.00 15,500.0 90.00 359.58 9,490.0 5,684.6 1,000.5 5,767.1 0.00 0.00 15,600.0 90.00 359.58 9,490.0 5,884.6 999.7 5,866.1 0.00 0.00 15,700.0 90.00 359.58 9,490.0 5,884.6 999.0 5,965.2 0.00 0.00 15,800.0 90.00 359.58 9,490.0 5,884.6 999.0 5,965.2 0.00 0.00 15,900.0 90.00 359.58 9,490.0 6,084.6 997.5 6,163.2 0.00 0.00 16,000.0 90.00 359.58 9,490.0 6,184.6 996.8 6,262.2 0.00 0.00 16,100.0 90.00 359.58 9,490.0 6,284.6 996.8 6,262.2 0.00 0.00 16,200.0 90.00 359.58 <t< td=""><td>15,100.0</td><td>90.00</td><td>359.58</td><td>9,490.0</td><td></td><td>1,003.4</td><td>5,371.1</td><td>0.00</td><td>0.00</td><td>0.00</td></t<>	15,100.0	90.00	359.58	9,490.0		1,003.4	5,371.1	0.00	0.00	0.00
15,400.0 90.00 359.58 9,490.0 5,584.6 1,001.2 5,668.1 0.00 0.00 15,500.0 90.00 359.58 9,490.0 5,684.6 1,000.5 5,767.1 0.00 0.00 15,600.0 90.00 359.58 9,490.0 5,784.6 999.7 5,866.1 0.00 0.00 15,700.0 90.00 359.58 9,490.0 5,884.6 999.0 5,965.2 0.00 0.00 15,800.0 90.00 359.58 9,490.0 5,984.6 998.2 6,064.2 0.00 0.00 15,900.0 90.00 359.58 9,490.0 6,084.6 997.5 6,163.2 0.00 0.00 16,000.0 90.00 359.58 9,490.0 6,184.6 996.8 6,262.2 0.00 0.00 16,100.0 90.00 359.58 9,490.0 6,284.6 996.0 6,361.2 0.00 0.00 16,200.0 90.00 359.58 9,490.0 6,384.6 995.3 6,460.2 0.00 0.00 16,300.0 90.00 359.58										0.00
15,500.0 90.00 359.58 9,490.0 5,684.6 1,000.5 5,767.1 0.00 0.00 15,600.0 90.00 359.58 9,490.0 5,784.6 999.7 5,866.1 0.00 0.00 15,700.0 90.00 359.58 9,490.0 5,884.6 999.0 5,965.2 0.00 0.00 15,800.0 90.00 359.58 9,490.0 5,984.6 998.2 6,064.2 0.00 0.00 15,900.0 90.00 359.58 9,490.0 6,084.6 997.5 6,163.2 0.00 0.00 16,000.0 90.00 359.58 9,490.0 6,184.6 996.8 6,262.2 0.00 0.00 16,100.0 90.00 359.58 9,490.0 6,284.6 996.8 6,262.2 0.00 0.00 16,200.0 90.00 359.58 9,490.0 6,384.6 995.3 6,460.2 0.00 0.00 16,300.0 90.00 359.58 9,490.0 6,584.6 993.8 6,6										0.00
15,600.0 90.00 359.58 9,490.0 5,784.6 999.7 5,866.1 0.00 0.00 15,700.0 90.00 359.58 9,490.0 5,884.6 999.0 5,965.2 0.00 0.00 15,800.0 90.00 359.58 9,490.0 5,984.6 998.2 6,064.2 0.00 0.00 15,900.0 90.00 359.58 9,490.0 6,084.6 997.5 6,163.2 0.00 0.00 16,000.0 90.00 359.58 9,490.0 6,184.6 996.8 6,262.2 0.00 0.00 16,100.0 90.00 359.58 9,490.0 6,284.6 996.0 6,361.2 0.00 0.00 16,200.0 90.00 359.58 9,490.0 6,384.6 995.3 6,460.2 0.00 0.00 16,300.0 90.00 359.58 9,490.0 6,484.6 994.6 6,559.2 0.00 0.00 16,400.0 90.00 359.58 9,490.0 6,584.6 993.8 6,658.3 0.00 0.00 16,500.0 90.00 359.58 9,49										0.00
15,700.0 90.00 359.58 9,490.0 5,884.6 999.0 5,965.2 0.00 0.00 15,800.0 90.00 359.58 9,490.0 5,984.6 998.2 6,064.2 0.00 0.00 15,900.0 90.00 359.58 9,490.0 6,084.6 997.5 6,163.2 0.00 0.00 16,000.0 90.00 359.58 9,490.0 6,184.6 996.8 6,262.2 0.00 0.00 16,200.0 90.00 359.58 9,490.0 6,384.6 995.3 6,460.2 0.00 0.00 16,300.0 90.00 359.58 9,490.0 6,484.6 995.3 6,460.2 0.00 0.00 16,300.0 90.00 359.58 9,490.0 6,584.6 994.6 6,559.2 0.00 0.00 16,400.0 90.00 359.58 9,490.0 6,584.6 993.8 6,658.3 0.00 0.00 16,500.0 90.00 359.58 9,490.0 6,684.6 993.1 6,757	,			,	,	,	,			0.00
15,800.0 90.00 359.58 9,490.0 5,984.6 998.2 6,064.2 0.00 0.00 15,900.0 90.00 359.58 9,490.0 6,084.6 997.5 6,163.2 0.00 0.00 16,000.0 90.00 359.58 9,490.0 6,184.6 996.8 6,262.2 0.00 0.00 16,100.0 90.00 359.58 9,490.0 6,284.6 996.0 6,361.2 0.00 0.00 16,200.0 90.00 359.58 9,490.0 6,384.6 995.3 6,460.2 0.00 0.00 16,300.0 90.00 359.58 9,490.0 6,484.6 994.6 6,559.2 0.00 0.00 16,400.0 90.00 359.58 9,490.0 6,584.6 993.8 6,658.3 0.00 0.00 16,500.0 90.00 359.58 9,490.0 6,684.6 993.1 6,757.3 0.00 0.00 16,600.0 90.00 359.58 9,490.0 6,784.6 992.4 6,856.3 0.00 0.00 16,700.0 90.00 359.58 9,49	15,600.0	90.00	359.58	9,490.0	5,784.6	999.7	5,866.1	0.00	0.00	0.00
15,900.0 90.00 359.58 9,490.0 6,084.6 997.5 6,163.2 0.00 0.00 16,000.0 90.00 359.58 9,490.0 6,184.6 996.8 6,262.2 0.00 0.00 16,100.0 90.00 359.58 9,490.0 6,284.6 996.0 6,361.2 0.00 0.00 16,200.0 90.00 359.58 9,490.0 6,384.6 995.3 6,460.2 0.00 0.00 16,300.0 90.00 359.58 9,490.0 6,484.6 994.6 6,559.2 0.00 0.00 16,400.0 90.00 359.58 9,490.0 6,584.6 993.8 6,658.3 0.00 0.00 16,500.0 90.00 359.58 9,490.0 6,684.6 993.1 6,757.3 0.00 0.00 16,600.0 90.00 359.58 9,490.0 6,784.6 992.4 6,856.3 0.00 0.00 16,700.0 90.00 359.58 9,490.0 6,884.6 991.6 6,955.3 0.00 0.00 16,800.0 90.00 359.58 9,49	15,700.0									0.00
16,000.0 90.00 359.58 9,490.0 6,184.6 996.8 6,262.2 0.00 0.00 16,100.0 90.00 359.58 9,490.0 6,284.6 996.0 6,361.2 0.00 0.00 16,200.0 90.00 359.58 9,490.0 6,384.6 995.3 6,460.2 0.00 0.00 16,300.0 90.00 359.58 9,490.0 6,484.6 994.6 6,559.2 0.00 0.00 16,400.0 90.00 359.58 9,490.0 6,584.6 993.8 6,658.3 0.00 0.00 16,500.0 90.00 359.58 9,490.0 6,684.6 993.1 6,757.3 0.00 0.00 16,600.0 90.00 359.58 9,490.0 6,784.6 992.4 6,856.3 0.00 0.00 16,700.0 90.00 359.58 9,490.0 6,884.6 991.6 6,955.3 0.00 0.00 16,800.0 90.00 359.58 9,490.0 6,884.6 991.6 6,955.3 0.00 0.00 16,800.0 90.00 359.58 9,49										0.00
16,100.0 90.00 359.58 9,490.0 6,284.6 996.0 6,361.2 0.00 0.00 16,200.0 90.00 359.58 9,490.0 6,384.6 995.3 6,460.2 0.00 0.00 16,300.0 90.00 359.58 9,490.0 6,484.6 994.6 6,559.2 0.00 0.00 16,400.0 90.00 359.58 9,490.0 6,584.6 993.8 6,658.3 0.00 0.00 16,500.0 90.00 359.58 9,490.0 6,684.6 993.1 6,757.3 0.00 0.00 16,600.0 90.00 359.58 9,490.0 6,784.6 992.4 6,856.3 0.00 0.00 16,700.0 90.00 359.58 9,490.0 6,884.6 991.6 6,955.3 0.00 0.00 16,800.0 90.00 359.58 9,490.0 6,884.6 991.6 6,955.3 0.00 0.00										0.00
16,200.0 90.00 359.58 9,490.0 6,384.6 995.3 6,460.2 0.00 0.00 16,300.0 90.00 359.58 9,490.0 6,484.6 994.6 6,559.2 0.00 0.00 16,400.0 90.00 359.58 9,490.0 6,584.6 993.8 6,658.3 0.00 0.00 16,500.0 90.00 359.58 9,490.0 6,684.6 993.1 6,757.3 0.00 0.00 16,600.0 90.00 359.58 9,490.0 6,784.6 992.4 6,856.3 0.00 0.00 16,700.0 90.00 359.58 9,490.0 6,884.6 991.6 6,955.3 0.00 0.00 16,800.0 90.00 359.58 9,490.0 6,984.6 990.9 7,054.3 0.00 0.00										0.00
16,300.0 90.00 359.58 9,490.0 6,484.6 994.6 6,559.2 0.00 0.00 16,400.0 90.00 359.58 9,490.0 6,584.6 993.8 6,658.3 0.00 0.00 16,500.0 90.00 359.58 9,490.0 6,684.6 993.1 6,757.3 0.00 0.00 16,600.0 90.00 359.58 9,490.0 6,784.6 992.4 6,856.3 0.00 0.00 16,700.0 90.00 359.58 9,490.0 6,884.6 991.6 6,955.3 0.00 0.00 16,800.0 90.00 359.58 9,490.0 6,984.6 990.9 7,054.3 0.00 0.00	16,100.0	90.00	359.58	9,490.0	6,284.6	996.0	6,361.2	0.00	0.00	0.00
16,400.0 90.00 359.58 9,490.0 6,584.6 993.8 6,658.3 0.00 0.00 16,500.0 90.00 359.58 9,490.0 6,684.6 993.1 6,757.3 0.00 0.00 16,600.0 90.00 359.58 9,490.0 6,784.6 992.4 6,856.3 0.00 0.00 16,700.0 90.00 359.58 9,490.0 6,884.6 991.6 6,955.3 0.00 0.00 16,800.0 90.00 359.58 9,490.0 6,984.6 990.9 7,054.3 0.00 0.00	,			.,			-,			0.00
16,500.0 90.00 359.58 9,490.0 6,684.6 993.1 6,757.3 0.00 0.00 16,600.0 90.00 359.58 9,490.0 6,784.6 992.4 6,856.3 0.00 0.00 16,700.0 90.00 359.58 9,490.0 6,884.6 991.6 6,955.3 0.00 0.00 16,800.0 90.00 359.58 9,490.0 6,984.6 990.9 7,054.3 0.00 0.00										0.00
16,600.0 90.00 359.58 9,490.0 6,784.6 992.4 6,856.3 0.00 0.00 16,700.0 90.00 359.58 9,490.0 6,884.6 991.6 6,955.3 0.00 0.00 16,800.0 90.00 359.58 9,490.0 6,984.6 990.9 7,054.3 0.00 0.00										0.00
16,700.0 90.00 359.58 9,490.0 6,884.6 991.6 6,955.3 0.00 0.00 16,800.0 90.00 359.58 9,490.0 6,984.6 990.9 7,054.3 0.00 0.00										0.00
16,800.0 90.00 359.58 9,490.0 6,984.6 990.9 7,054.3 0.00 0.00	16,600.0	90.00	359.58	9,490.0	6,784.6	992.4	6,856.3	0.00	0.00	0.00
	,				,					0.00
16 900 0 90 00 359 58 9 490 0 7 084 6 990 2 7 153 3 0 00 0 00	,									0.00
	16,900.0	90.00	359.58	9,490.0	7,084.6	990.2	7,153.3	0.00	0.00	0.00
17,000.0 90.00 359.58 9,490.0 7,184.6 989.4 7,252.3 0.00 0.00										0.00
17,100.0 90.00 359.58 9,490.0 7,284.6 988.7 7,351.4 0.00 0.00	17,100.0	90.00	359.58	9,490.0	7,284.6	988.7	7,351.4	0.00	0.00	0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
KOP(Osprey 10 #113H) - plan hits target cent - Point	0.00 ter	0.00	9,112.1	-392.0	1,044.0	415,005.00	811,876.00	32° 8′ 16.475 N	103° 27' 33.476 W
FTP(Osprey 10 #113H) - plan hits target cent - Point	0.00 ter	0.00	9,300.0	-342.0	1,044.0	415,055.00	811,876.00	32° 8′ 16.970 N	103° 27' 33.471 W
PBHL(Osprey 10 #113H - plan hits target cent - Point	0.00 ter	0.00	9,490.0	7,377.0	988.0	422,774.00	811,820.00	32° 9' 33.354 N	103° 27' 33.394 W

1800-

2400

ুঁ4800-

5100

6000

6900

7800

8100

8700

9300

9600

Azimuths to Grid North True North: -0.46° Magnetic North: 5.74°

> **Magnetic Field** Strength: 47004.8nT Dip Angle: 59.70° Date: 4/21/2025 Model: IGRF2025

To convert a Magnetic Direction to a Grid Direction, Add 5.74° To convert a Magnetic Direction to a True Direction, Add 6.21° East To convert a True Direction to a Grid Direction, Subtract 0.46°

Lea County, NM (NAD 83 NME)

#113H Osprey 10

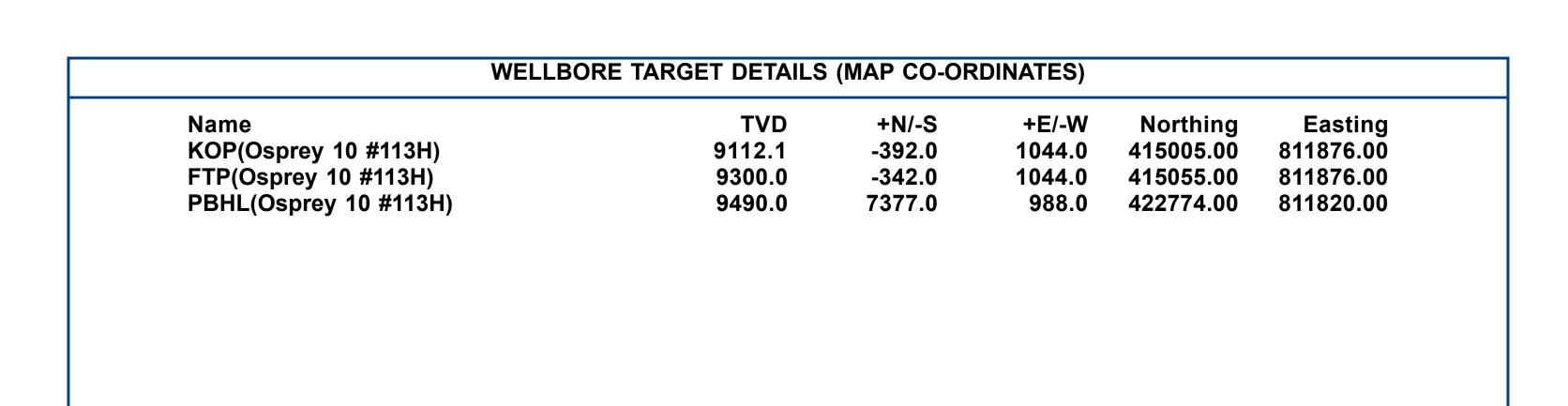
Plan #0.1 RT

PROJECT DETAILS: Lea County, NM (NAD 83 NME)

Geodetic System: US State Plane 1983 Datum: North American Datum 1983 Ellipsoid: GRS 1980 **Zone: New Mexico Eastern Zone**

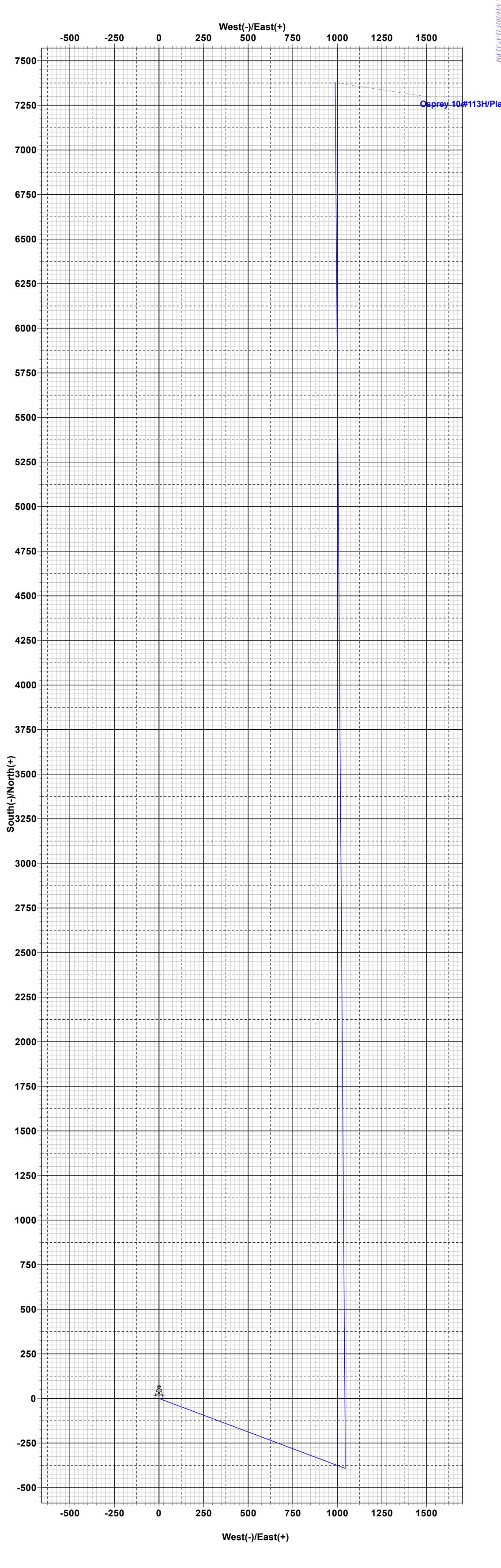
System Datum: Mean Sea Level

WELL DETAILS: #113H


3333.0

kb = 26' @ 3359.0usft Northing 415397.00 Easting 810832.00

Latittude 32° 8' 20.438 N


Longitude 103° 27' 45.580 W

SECTION DETAILS										
Sec	MD	Inc	Azi	TVD	+N/-S	+E/-W	Dleg	TFace	VSect	Target
1	0.0	0.00	0.00	0.0	0.0	0.0	$0.0\overline{0}$	0.00	0.0	
2	1085.0	0.00	0.00	1085.0	0.0	0.0	0.00	0.00	0.0	
3	1587.0	10.04	110.58	1584.4	-15.4	41.1	2.00	110.58	-9.8	
4	7480.4	10.04	110.58	7387.6	-376.6	1002.9	0.00	0.00	-240.1	
5	7982.4	0.00	0.00	7887.0	-392.0	1044.0	2.00	180.00	-249.9	
6	9207.5	0.00	0.00	9112.1	-392.0	1044.0	0.00	0.00	-249.9	KOP(Osprey 10 #113H)
7	9404.1	29.80	0.00	9300.0	-342.0	1044.0	15.16	0.00	-200.4	FTP(Osprey 10 #113H)
8	9801.0	90.00	359.58	9490.0	-14.3	1042.4	15.17	-0.49	124.2	
9	17192.4	90.00	359.58	9490.0	7377.0	988.0	0.00	0.00	7442.9	PBHL(Osprey 10 #113H)

. – – + – – –

3000

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator:EOG	Resources, Inc	OGRID	: 7377		Da	te: 04/2	4/2025	i
II. Type: ⊠ Origina Other.	l □ Amendm	ent due to □ 19.15.2	27.9.D(6)(a) NI	MAC □ 19.15.27.	9.D(6)(b) NMAC		
If Other, please describe	:							
III. Well(s): Provide the be recompleted from a s					wells pro	oposed to	be dri	lled or proposed to
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D		cipated MCF/D		Anticipated roduced Water BBL/D
OSPREY 10 113H		M-10-25S-34E	449' FSL & 1137' FWL	+/- 1000	+/- 35	00	+/- 30	000
V. Anticipated Schedu or proposed to be recom Well Name	ıle: Provide th	e following informa	tion for each ne	ew or recompleted	l well or nt.		lls prop	Posed to be drilled First Production Date
OSPREY 10 113H		05/26/25	06/26/25	09/1/25		10/1/25		10/15/25
VI. Separation Equipm VII. Operational Pract Subsection A through F VIII. Best Management during active and planne	tices: Attacof 19.15.27.8	ch a complete descri NMAC. ⊠ Attach a complet	iption of the ac	tions Operator wi	ll take to	comply	with the	he requirements of

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

🗵 Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering	Available Maximum Daily Capacity
			Start Date	of System Segment Tie-in

XI. Map. \square Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the
production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of
the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system	\square will \square will not have capacity to	o gather 100% of the anticip	pated natural gas
production volume from the well prior to the date of first	st production.		

VIII I in a Description On contain Distance Distance and continued that its conjection could be a second of the containing of the conjection of the conjecti	
XIII. Line Pressure. Operator \square does \square does not anticipate that its existing well(s) connected to	
natural gas gathering system(s) described above will continue to meet anticipated increases in line	e pressure caused by the new well(s)

llΔtt	ach Onerata	or's nlan to	manage prod	luction	in recoonce t	to the incress	ed line pressure

XIV. Confidentiality: Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information providentiality.	ed in
Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information of the	ation
for which confidentiality is asserted and the basis for such assertion.	

(h)

(i)

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, aft	er reasonable inquiry and based on the available information at the time of submittal:
one hundred percent of the	o connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport ne anticipated volume of natural gas produced from the well(s) commencing on the date of first production, arrent and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering
hundred percent of the an into account the current at	ble to connect to a natural gas gathering system in the general area with sufficient capacity to transport one ticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. ox, Operator will select one of the following:
Well Shut-In. ☐ Operato D of 19.15.27.9 NMAC;	r will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection or
Venting and Flaring Pla	n. □ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential
alternative beneficial uses	for the natural gas until a natural gas gathering system is available, including:
(a)	power generation on lease;
(b)	power generation for grid;
(c)	compression on lease;
(d)	liquids removal on lease;
(e)	reinjection for underground storage;
(f)	reinjection for temporary storage;
(g)	reinjection for enhanced oil recovery;

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

other alternative beneficial uses approved by the division.

fuel cell production; and

- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Kayla McConnell
Printed Name: KAYLA MCCONNELL
Title: Regulatory Specialist
E-mail Address: KAYLA_MCCONNELL@EOGRESOURCES.COM
Date: 04/24/2025
Phone: (432) 265-6804
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

Natural Gas Management Plan Items VI-VIII

VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture.

- Separation equipment will be sized to provide adequate separation for anticipated rates.
- Adequate separation relates to retention time for Liquid Liquid separation and velocity for Gas-Liquid separation.
- Collection systems are appropriately sized to handle facility production rates on all (3) phases.
- Ancillary equipment and metering is selected to be serviced without flow interruptions or the need to release
 gas from the well.

VII. Operational Practices: Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F 19.15.27.8 NMAC.

Drilling Operations

- All flare stacks will be properly sized. The flare stacks will be located at a minimum 100' from the nearest surface hole location on the pad.
- All natural gas produced during drilling operations will be flared, unless there is an equipment malfunction and/or to avoid risk of an immediate and substantial adverse impact on safety and the environment, at which point the gas will be vented.

Completions/Recompletions Operations

- New wells will not be flowed back until they are connected to a properly sized gathering system.
- The facility will be built/sized for maximum anticipated flowrates and pressures to minimize waste.
- For flowback operations, multiple stages of separation will be used as well as excess VRU and blowers to make sure waste is minimized off the storage tanks and facility.
- During initial flowback, the well stream will be routed to separation equipment.
- At an existing facility, when necessary, post separation natural gas will be flared until it meets pipeline specifications, at which point it will be turned into a collection system.
- At a new facility, post separation natural gas will be vented until storage tanks can safely function, at which point it will be flared until it meets pipeline spec.

Production Operations

- Weekly AVOs will be performed on all facilities.
- All flares will be equipped with auto-ignition systems and continuous pilot operations.
- After a well is stabilized from liquid unloading, the well will be turned back into the collection system.
- All plunger lift systems will be optimized to limit the amount of waste.
- All tanks will have automatic gauging equipment installed.
- Leaking thief hatches found during AVOs will be cleaned and properly re-sealed.

Performance Standards

- Production equipment will be designed to handle maximum anticipated rates and pressure.
- All flared gas will be combusted in a flare stack that is properly sized and designed to ensure proper combustion.
- Weekly AVOs will be performed on all wells and facilities that produce more than 60 Mcfd.

Measurement & Estimation

- All volume that is flared and vented that is not measured will be estimated.
- All measurement equipment for flared volumes will conform to API 14.10.
- No meter bypasses with be installed.

• When metering is not practical due to low pressure/low rate, the vented or flared volume will be estimated.

VIII. Best Management Practices: Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

- During downhole well maintenance, EOG will use best management practices to vent as minimally as possible.
- Prior to the commencement of any maintenance, the tank or vessel will be isolated from the rest of the facilities.
- All valves upstream of the equipment will be closed and isolated.
- After equipment has been isolated, the equipment will be blown down to as low a pressure as possible into the collection system.
- If the equipment being maintained cannot be relieved into the collection system, it shall be released to a tank where the vapor can either be captured or combusted if possible.
- After downhole well maintenance, natural gas will be flared until it reaches pipeline specification.