Form 3160-3 (June 2015)		FORM APPROVED OMB No. 1004-0137 Expires: January 31, 2018	
UNITED STATES			
DEPARTMENT OF THE IN		5. Lease Serial No.	
BUREAU OF LAND MANA APPLICATION FOR PERMIT TO DE		6. If Indian, Allotee or Tribe Name	
AFFLICATION FOR FERMIT TO DE		o. If Indian, Anotee of Thoe Wante	
		7. If Unit or CA Agreement, Name and N	No.
	ENTER		
1b. Type of Well: Oil Well Gas Well Oth		8. Lease Name and Well No.	
1c. Type of Completion: Hydraulic Fracturing Sin	gle Zone Multiple Zone		
2. Name of Operator		9. API Well No. 30-039-31490	
3a. Address	Bb. Phone No. (include area code)	10. Field and Pool, or Exploratory	
4. Location of Well (<i>Report location clearly and in accordance w</i>	ith any State requirements.*)	11. Sec., T. R. M. or Blk. and Survey or A	Area
At surface			
At proposed prod. zone			
14. Distance in miles and direction from nearest town or post offic	e*	12. County or Parish 13. State	
15. Distance from proposed*	16. No of acres in lease 17. Space	ing Unit dedicated to this well	
location to nearest property or lease line, ft.		·	
(Also to nearest drig. unit line, if any)			
 Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 	19. Proposed Depth 20. BLM	/BIA Bond No. in file	
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	22. Approximate date work will start*	23. Estimated duration	
	24. Attachments		
The following, completed in accordance with the requirements of (as applicable)	Onshore Oil and Gas Order No. 1, and the	Hydraulic Fracturing rule per 43 CFR 3162	2.3-3
1. Well plat certified by a registered surveyor.	4. Bond to cover the operation	ns unless covered by an existing bond on file	e (see
2. A Drilling Plan.	Item 20 above).		
3. A Surface Use Plan (if the location is on National Forest System SUPO must be filed with the appropriate Forest Service Office).		rmation and/or plans as may be requested by	the
25. Signature	Name (Printed/Typed)	Date	
Title			
Approved by (Signature)	Name (Printed/Typed)	Date	
Title	Office	I	
Application approval does not warrant or certify that the applicant applicant to conduct operations thereon. Conditions of approval, if any, are attached.	holds legal or equitable title to those rights	in the subject lease which would entitle th	ie
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, ma			gency
of the United States any false, fictitious or fraudulent statements or	representations as to any matter within its	jurisdiction.	

*(Instructions on page 2)

.

(Continued on page 2)

Additional Operator Remarks

Location of Well

0. SHL: LOT 8 / 216 FNL / 330 FWL / TWSP: 23N / RANGE: 7W / SECTION: 5 / LAT: 36.26292 / LONG: -107.605157 (TVD: 0 feet, MD: 0 feet) PPP: LOT 3 / 754 FNL / 2650 FWL / TWSP: 23N / RANGE: 8W / SECTION: 1 / LAT: 36.261476 / LONG: -107.607394 (TVD: 5675 feet, MD: 15162 feet) PPP: LOT 1 / 755 FNL / 100 FEL / TWSP: 23N / RANGE: 7W / SECTION: 6 / LAT: 36.261477 / LONG: -107.606614 (TVD: 5675 feet, MD: 6087 feet) PPP: LOT 1 / 754 FNL / 0 FEL / TWSP: 23N / RANGE: 8W / SECTION: 1 / LAT: 36.261476 / LONG: -107.607394 (TVD: 5675 feet, MD: 6087 feet) BHL: LOT 3 / 755 FNL / 1661 FWL / TWSP: 23N / RANGE: 8W / SECTION: 1 / LAT: 36.261476 / LONG: -107.606613 (TVD: 5675 feet, MD: 15162 feet)

Received by OCD: 4/9/2025 2:44	:24 PM		Page 3 of 4
<u>C-102</u>	State of New Mexico		Revised July 9, 2024
Submit Electronically	Energy, Minerals & Natural Resources Department		🗌 Initial Submittal
Via OCD Permitting	OIL CONSERVATION DIVISION	Submittal Type	🛛 Amended Report
		·) ==	

WELL LOCATION INFORMATION

Page 3 of 43

🗌 As Drilled

API Number 30-03	API Number 30-039-31490		Pool Code 42289		LYBROOK GALLUP
Property Code	321248	Property Name	MC-7 COM		Well Number 655H
OGRID No.	OGRID No. 372286		ENDURING RESOURCES, LLC		Ground Level Elevation 7032 '
Surface Owner:	🗌 State 🗌 Fee 🗌 T	ribal 🛛 Federal	Mineral Owner	: 🗆 State 🗌 Fee 🗌] Tribal 🛛 Federal

	Surface Location										
UL	Section	Township	Range	Lot	Feet from N/S Line		Feet from E/W	N Line	Latitude	Longitude	County
D	5	23N	7W	8	216' NOR	ТΗ	330 '	WEST	36.262920 °N	-107.605157 °W	RIO ARRIBA

Bottom Hole Location											
UL	Section	Township	Range	Lot	Feet from N/S Line		Feet from E/W	Line	Latitude	Longitude	County
С	1	23N	8W	3	755' NORTH		1661'	WEST	36.261459 °N	-107.636613°W	SAN JUAN

Dedicated Acres 321.56	Penetrated Spacing Unit: Lot 1, Lot 2, Lot 3, Lot 4 Lot 5, SE/4 NW/4, S/2 NE/4 Section 6, T23N, R7W	Infill or Defining Well	Defining Well API	Overlapping S	Spacing Unit	Consolidation Code
Order Numbers		Well setba	acks are under Common Ow	nership: 🛛 🛛] Yes [] No

	Kick Off Point (KOP)										
UL	Section	Township	Range	Lot	Feet from N/S	5 Line	Feet from E/V	/ Line	Latitude	Longitude	County
D	5	23N	7W	8	216 '	NORTH	330 '	WEST	36.262920 °N	-107.605157 °W	RIO ARRIBA

	First Take Point (FTP)										
UL	UL Section Township Range Lot Feet from N/S Line Feet from E/W Line Latitude Longitude County County										
А	A 6 23N 7W 1 755' NORTH 100' EAST 36.261477 N -107.606614 W RIO ARRIBA										
	lest Take Doint (TD)										

Last lake Point (LTP)											
UL	Section	Township	Range	Lot	Feet from N/S Line	Feet from E/W Line	Latitude	Longitude	County		
С	1	23N	8W	3	755' NORTH	1661' WEST	36.261459 °N	-107.636613°W	SAN JUAN		

Unitized Area or Area of Uniform Interest	Spacing Unit Type 🛛 Horizontal	🗌 Vertical	Directional	Ground Floor Elevation

OPERATOR CERTIFICATION I hereby certify that the information contained herein is tru of my knowledge and belief, and, if the well is a vertical or organization either owns a working interest or unleased miner including the proposed bottom hole location or has a right to location pursuant to a contract with an owner of a working in interest, or to a voluntary pooling agreement or a compulsory entered by the division. If this well is a horizontal well, I further certify that this the consent of at least one lessee or owner of a working int interest in each tract (in the target pool or formation) in w completed interval will be located or obtained a compulsory p	e and complete to the best directional well, that this al interest in the land of drill this well at this pooling order heretofore s organization has received erest or unleased mineral hich any part of the well's	I hereby certify that the well . field notes of actual surveys me the same is true and correct to	C. EDWARDS	plat was plotted from supervision, and that
Shaw-Maris Ford Signature Shaw-Marie Ford Printed Name	4/3/2025 Date	Jason	4/3/2025 BOFESSIONAL C. EDWAR	DS
sford@enduringresources.com		Signature and Se	eal of Professional	Surveyor
E-mail Address		Certificate Number 15269	Date of Survey	OCTOBER 4, 2018

Note: No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division. Released to Imaging: 6/5/2025 3:14:07 PM

MC-7 COM #655H

Received by OCD: 4/9/2025 2:44:2	24 PM		Page 5 of 43
<u>C-102</u>	State of New Mexico		Revised July 9, 2024
Submit Electronically	Energy, Minerals & Natural Resources Department		🗌 Initial Submittal
Via OCD Permitting	OIL CONSERVATION DIVISION	Submittal Type	🛛 Amended Report
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	🗆 As Drilled

WELL LOCATION INFORMATION

API Number		Pool Code	97232	Pool Name BASIN MANCOS		
Property Code	321248	Property Name	MC-7 COM		Well Number 655H	
OGRID No.	372286	Operator Name	ENDURING RESOURCES, L	LC	Ground Level Elevation 7032'	
Surface Owner:	🗌 State 🗌 Fee 🗌 T	ribal 🛛 Federal	Mineral Owne	r: 🗌 State 🗌 Fee 🛛	1 Tribal 🛛 Federal	

						Surface	Location			
UL	Section	Township	Range	Lot	Feet from N/S Line	Feet from E	/W Line	Latitude	Longitude	County
D	5	23N	7W	8	216' NORT	330 '	WEST	36.262920 °N	-107.605157 °W	RIO ARRIBA

	Bottom Hole Location										
UL	Section	Township	Range	Lot	Feet from N/S Line		Feet from E/V	N Line	Latitude	Longitude	County
С	1	23N	8W	3	755' NOF	TH	1661'	WEST	36.261459 °N	-107.636613°W	SAN JUAN

240.36	SE/4 NW/4, S/2 NE/4 Section 1, T23N, R8W	Well sett	acks are under Common Ow	// Yes No	Communitization
Dedicated Acres	Penetrated Spacing Unit: Lot 1, Lot 2, Lot 3	Infill or Defining Well	Defining Well API	Overlapping Spacing Unit	Consolidation Code

	Kick Off Point (KOP)										
UL	Section	Township	Range	Lot	Feet from N/S	5 Line	Feet from E/W	N Line	Latitude	Longitude	County
D	5	23N	7W	8	216 '	NORTH	330 '	WEST	36.262920 °N	-107.605157 °W	RIO ARRIBA

	First Take Point (FTP)										
UL	Section	Township	Range	Lot	Feet from N/S Line	e	Feet from E/	W Line	Latitude	Longitude	County
A	A 6 23N 7W 1 755' NORTH 100' EAST 36.261477 °N -107.606614 °W RIO ARRIBA						RIO ARRIBA				
	Last Take Point (LTP)										

Last Take Point (LTP)											
UL	Section	Township	Range	Lot	Feet from N/S Line	Feet from E/W Line	Latitude	Longitude	County		
С	1	23N	8W	3	755' NORTH	1661' WEST	36.261459 °N	-107.636613°W	SAN JUAN		

Unitized Area or Area of Uniform Interest	Spacing Unit Type			Ground Floor Elevation
	🛛 Horizontal	🗌 Vertical	🗌 Directional	

OPERATOR CERTIFICATION I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief, and, if the well is a vertical or directional well, that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill this well at this	SURVEYOR CERTIFICATION I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made by me or under my supervision, and that the same is true and correct to the best of my belief.
location pursuant to a contract with an owner of a working interest or unleased mineral interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division.	SON C. EDWARD
If this well is a horizontal well, I further certify that this organization has received the consent of at least one lessee or owner of a working interest or unleased mineral interest in each tract (in the target pool or formation) in which any part of the well's completed interval will be located or obtained a compulsory pooling order from the division.	THE SEA MET OF
Shaw-Marie Ford 4/2/2025	4/2/2025 63 400-ESSIONAL
Signature Date	ALESSIG
Shaw-Marie Ford	Jason C. Edwards
Printed Name	
eferd@enduringroseurose.com	Signature and Seal of Professional Surveyor
sford@enduringresources.com E-mail Address	Certificate Number 15269 Date of Survey OCTOBER 4, 2018

Note: No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division. *Released to Imaging: 6/5/2025 3:14:07 PM*

MC-7 COM #655H

Page 6 of 43

	Eı	State nergy, Minerals an	of New Mez d Natural Res		Department		nit Electronically E-permitting
		1220 So	nservation Di buth St. Fran a Fe, NM 87	cis Dr.			
	N	ATURAL GA	S MANA	GEMI	ENT PLAN		
This Natural Gas Manageme	nt Plan mi	ust be submitted with	h each Applica	tion for F	Permit to Drill (A	PD) for a new or	recompleted well
			<u>l – Plan D</u> ective May 25.		<u>tion</u>		
• Operator:Enduring Re	esources, l	LLC	OGRID:	_372286		Date: _04_	_/_09_/_2025_
I. Type: 🛛 Original 🗆 An	nendment	due to □ 19.15.27.9	9.D(6)(a) NMA	C □ 19.	15.27.9.D(6)(b) N	MAC \Box Other.	
f Other, please describe:							
II. Well(s): Provide the foll be recompleted from a single					or set of wells pr	oposed to be dri	lled or proposed to
Well Name	API	ULSTR	Footag	es	Anticipated Oil BBL/D	Anticipated Gas MCF/D	Anticipated Produced Water BBL/D
MC 7 COM 655H	TBD	D-5-23N-7W Lot 8	216 FNL x 33		542	555	108
MC 7 COM 659H	TBD	D-5-23N-7W Lot 8	215 FNL x 37	0 FWL	549	562	110
					3-year Decline	3-year Decline	3-year Decline
MC 7 COM 655H	TBD	D-5-23N-7W Lot 8	216 FNL x 33		88	263	18
MC 7 COM 659H	TBD	D-5-23N-7W Lot 8	215 FNL x 37	OFWL	89	267	18
V. Central Delivery Point	Name:	MC 7 CON	1 CDP		[Sec	e 19.15.27.9(D)(1) NMAC]
7. Anticipated Schedule: Proposed to be recompleted f	ovide the	following informati	on for each nev		mpleted well or s		-
Well Name	API	Spud Date	TD Reached Date		ompletion encement Date	Initial Flow Back Date	First Production Date
MC 7 COM 655H	TBD	Q3 2025	Q3 2025		Q3 2025	Q3 2025	Q3 2025
MC 7 COM 659H	TBD	Q3 2025	Q3 2025		Q3 2025	Q3 2025	Q3 2025
VI. Separation Equipment: VII. Operational Practices:			-		-		
Subsection A through F of 19	9.15.27.8	NMAC.		-			

VIII. Best Management Practices: 🖂 Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \Box Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \Box will \Box will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \Box does \Box does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

□ Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: \Box Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

<u>Section 3 - Certifications</u> <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 \boxtimes Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \Box Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In. \Box Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. \Box Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature:

Printed Name: Shaw-Marie Ford

Title: Regulatory Specialist

E-mail Address: sford@enduringresources.com

Date: 4/3/2025

Phone: 505-716-3297

OIL CONSERVATION DIVISION

(Only applicable when submitted as a standalone form)

Approved By:

Title:

Approval Date:

Conditions of Approval:

SEPARATION EQUIPMENT

Enduring Resources, LLC (Enduring) has pulled representative pressurized samples from wells in the same producing formation. Enduring has utilized these samples in process simulations to determine the amount of gas anticipated in each stage of the process and utilized this information with a safety factor to size the equipment listed below:

Separation equipment will be set as follows:

- Individual 3 phase separator will be set for the individual well.
- The separator will be sized based on the anticipated volume of the well and the pressure of the lines utilized for oil, gas, and water takeaway.
- The 3 phase production separator will be equipped with a 0.75 MMBtu/hr indirect fired heater.

Heater treaters will be set as follows:

- Individual heater treaters will be set for the individual well.
- The heater treaters are sized based on the anticipated combined volume of oil and produced water predicted to come from the initial 3 phase separator.
- Oil will be separated from the produced water and the oil/produced water will be sent to its respective tanks.
- The combined oil and natural gas stream is routed to the Vapor Recovery Tower.

Vapor Recovery Equipment will be set as follows:

- The Vapor Recovery Tower has been sized, based on the anticipated volume of gas from the heater treater and oil and water tanks.
- The Vapor Recovery Unit has been sized, based on the anticipated volume of gas from the heater treater and oil and water tanks. The Vapor Recovery Unit is utilized to push the recovered gas into the sales pipeline.

Production storage tanks will be set as follows:

- The oil and produced water tanks utilize a closed vent capture system to ensure all breathing, working, and flashing losses are routed to the Vapor Recovery Tower and Vapor Recovery Unit.
- Each of the production storage tanks will be equipped with a 0.5 MMBtu/hr indirect heater.

VENTING and FLARING

Enduring has a natural gas system available prior to startup of completion operations. Enduring utilizes a Vapor Recovery Unit System and sells all natural gas except during periods of startup, shutdown, maintenance, or malfunction for the gas capturing equipment, including the vapor recovery tower, vapor recovery unit, storage tanks, and pipelines.

Currently, Enduring utilizes the following from list A-I of Section 3 for its operations to minimize flaring:

- a) Enduring utilizes natural gas-powered generators to power its leases where grid power isn't available.
- b) When electrical grid power is unavailable, natural gas generators will be used for major equipment onsite.
- c) Enduring's in service compression will be natural gas powered.
- d) Should liquids removal, such as dehydration be required, units will be powered by natural gas.

Enduring will only flare gas during the following times:

- Scheduled maintenance for gas capturing equipment including:
 - Vapor Recovery Tower
 - Vapor Recovery Unit
 - Storage tanks
 - Pipelines
 - o Emergency flaring

OPERATIONAL PRACTICES

19.15.27.8 A. Venting and Flaring of Natural Gas

Enduring understands the requirements of NMAC 19.15.27.8 which states that the venting and flaring of natural gas during drilling, completion or production that constitutes waste as defined in 19.15.2 are prohibited.

19.15.27.8 B. Venting and flaring during drilling operations

- Enduring shall capture or combust natural gas if technically feasible during drilling operations using best industry practices.
- A flare stack with a 100% capacity for expected volumes will be set on location of the facility at least 100 feet from the nearest surface hole location, well heads, and storage tanks.
- In the event of an emergency, Enduring will vent natural gas in order to avoid substantial impact. Enduring shall report the vented or flared gas to the NMOCD.

19.15.27.8 E. Venting and flaring during completion or recompletion operations

During Completion Operations, Enduring utilizes the following:

- Enduring facilities are built and ready from day 1 of Flowback.
- Individual well test separators will be set to properly separate gas and liquids. Temporary test separator will be utilized initially to process volumes. In addition, separators will be tied into flowback tanks which will be tied into the gas processing equipment for sales down a pipeline. See Separation Equipment for details.
- Should the facility not yet be capable of processing gas, or the gas does not meet quality standards, then storage tanks will be set that are tied into gas busters or temporary flare to manage natural gas. This flare would meet the following requirements:
 - 1) An appropriately sized flare stack with an automatic igniter.
 - 2) Enduring analyzes the natural gas samples twice per week.
 - 3) Enduring routes the natural gas into a gathering pipeline as soon as the pipeline specifications are met.
 - 4) Enduring provides the NMOCD with pipeline specifications and natural gas data.

19.15.27.8 D. Venting and flaring during production operations

During Production Operations Enduring will not vent or flare natural gas except under the following circumstances:

- 1. During an emergency or malfunction
- 2. To unload or clean-up liquid holdup in a well to atmospheric pressure, provided:
 - a. Enduring does not vent after the well achieves a stabilized rate and pressure.
 - b. Enduring will remain present on-site during liquids unloading by manual purging and tall all reasonable actions to achieve a stabilized rate and pressure at the earliest practical time.
 - c. Enduring will optimize the system to minimize natural gas venting on any well equipped with a plunger lift or auto control system.
 - d. Best Management Practices will be used during downhole well maintenance.
- 3. During the first year of production from an exploratory well provided:
 - a. Enduring receives approval from the NMOCD.
 - b. Enduring remains in compliance with the NM gas capture requirements.
 - c. Enduring submits an updated C-129 form to the NMOCD.
- 4. During the following activities unless prohibited:
 - a. Gauging or sampling a storage tank or low-pressure production vessel.
 - b. Loading out liquids from a storage tank.
 - c. Repair and maintenance.
 - d. Normal operation of gas activated pneumatic controller or pump.
 - e. Normal operation of a storage tank but not including venting from a thief hatch.
 - f. Normal operation of dehydration units.
 - g. Normal operations of compressors, compressor engines, turbines, valves, flanges, and connectors.
 - h. During a bradenhead, packer leakage test, or production test lasting less than 24-hours.
 - i. When natural gas does not meet the gathering pipeline specifications.
 - j. Commissioning of pipelines, equipment, or facilities only for as long as necessary to purge introduced impurities.

19.15.27.8 E. Performance standards

- 1. Enduring has utilized process simulations with a safety factor to design all separation and storage equipment. The equipment is routed to a Vapor Recovery System and utilizes a flare as back up for periods of startup, shutdown, maintenance, or malfunction of the VRU System.
- 2. Enduring will install a flare that designed to handle the full volume of vapors from the facility in case of the VRU failure and it its designed with an auto ignition system.
- 3. Flare stacks will appropriately sized and designed to ensure proper combustion efficiency.
 - a. Flare stacks installed or replaced will be equipped with an automatic ignitor or continuous pilot.

- b. Previously installed flare stacks will be retrofitted with an automatic ignitor, continuous pilot, or technology that alerts ENDURING of flare malfunction within 18 months after May 25, 2021.
- c. Flare stacks replaced after May 25, 2021, will be equipped with an automatic ignitor or continuous pilot if located at a well or facility with average daily production of 60,000 cubic feet of natural gas or less.
- d. Flare stacks will be located at least 100 feet from the well and storage tanks and securely anchored.
- 4. Enduring will conduct an AVO inspection on all components for leaks and defects on a weekly basis.
- 5. Enduring will make and keep records of AVO inspections which will be available to the NMOCD for at least 5 years.
- 6. Enduring may use a remote or automated monitoring technology to detect leaks and releases in lieu of AVO inspections with prior NMOCD approval.
- 7. Facilities will be designed to minimize waste.
- 8. Enduring will resolve emergencies as promptly as possible.

19.15.27.8 F. Measurement or estimation of vented and flared natural gas

- 1. Enduring will have meters on both the low- and high-pressure sides of the flares and the volumes will be recorded in ENDURING's SCADA system.
- 2. Enduring will install equipment to measure the volume of flared natural gas that has an average daily production of 60,000 cubic feet or greater of natural gas.
- 3. Enduring's measuring equipment will conform to the industry standards.
- 4. The measurement system is designed such that it cannot be bypassed except for inspections and servicing meters.
- 5. Enduring will estimate the volume of vented or flared natural gas using a methodology that can be independently verified if metering is not practicable due to low flow rate or pressure.
- 6. Enduring will estimate the volume of flared and vented natural gas based on the results of an annual GOR test for wells that do not require measuring equipment reported on Form C-116.
- 7. Enduring will install measuring equipment whenever the NMOCD determines that metering is necessary.

BEST MANAGEMENT PRACTICES

Enduring utilizes the following Best Management Practices to minimize venting during active and planned maintenance.

Enduring has a closed vent capture system to route emissions from the heater treater, tanks, and vapor recovery to the vapor recovery unit with an enclosed combustion device (ECD) for backup. The system is designed such that if the vapor recovery unit is taken out of service for any reason, the vapors will be routed to the ECD for combustion.

Enduring will isolate and attempt to route all vapors to the vapor recovery unit or ECD prior to opening any lines for maintenance to minimize venting from the equipment.

Enduring shall notify the NMOCD of venting or flaring that exceeds 50 MCF but less than 500 MCF in volume that either resulted from an emergency or malfunction, or an event lasting over eight hours or more cumulatively within any 24-hour period from a single event by filing a form C-129 no later than 15 days following the discovery or commencement of venting or flaring.

Enduring shall notify the NMOCD verbally or by e-mail within 24-hours following discovery or commencement of venting or flaring that exceeds 500 MCF in volume or otherwise qualifies as a major release as defined in 19.15.29.7 NMAC from a single event and provide the information required in form C-129 to the NMOCD no later than 15 days that verifies, updates, or corrects the verbal or e-mail notification.

Enduring will install measuring equipment to conform to industry standards such as American Petroleum Institute (API) Manual of Petroleum Measurement Standards (MPMS) Chapter 14.10 Measurement of Flow to Flares.

Enduring's measuring equipment shall not be designed or equipped with a manifold that allows the diversion of natural gas around the metering element except for the sole purpose of inspecting and servicing the measurement equipment.

Enduring shall report the volume of vented and flared natural gas for each well or facility at which venting or flaring occurred on a monthly basis.

ENDURING RESOURCES IV, LLC 6300 S SYRACUSE WAY, SUITE 525 CENTENNIAL, COLORADO 80211

DRILLING PLAN: Drill, complete, and equip single lateral in the Mancos-I formation

WELL INFORMATIO	N:			
Name:	MC-7 COM 655H			
API Number:	not yet assigned			
State:	New Mexico			
County:	Rio Arriba			
Surface Elevation:	7,032 ft ASL (GL)	7,060 ft ASL (KB)		
Surface Location:	5-23N-07W Sec-Twn-Rng	216 ft FNL	330 ft FWL	
	36.262920 $^\circ$ N latitude	107.605157 $^\circ$ W longitude	(NAD 83)	
LTP Location:	1-23N-08W Sec-Twn-Rng	755 ft FNL	1,661 ft FWL	
	36.261459 [°] N latitude	107.636613 $^\circ$ W longitude	(NAD 83)	
Driving Directions:	FROM THE INTERSECTION OF	US HWY 550 & US HWY 64 IN	BLOOMFIELD, NEW MEXICO: Se	outh on US HWY 550 for
	43.5 mile to MM 108.3; Left (North) on CR #7998 for 0.3 mi	les to fork; Right (Northeast) fo	r 0.3 miles to fork; Right
	(East) for 1.2 miles to fork; Rig	ght (South) for 0.2 miles to 4-۱	way intersection; Left (East) for	0.3 miles to 4-way
	intersection; Straight (East) for	or 0.1 miles; Left on access roa	d to MC-7 COM 655H Pad.	

GEOLOGIC AND RESERVOIR INFORMATION:

ognosis:	Formation Tops	TVD (ft ASL)	TVD (ft KB)	MD (ft KB)	O/G/W	Pressure
	Ojo Alamo	5,680	1,380	1,380	W	normal
	Kirtland	5,540	1,520	1,520	W	normal
	Fruitland	5,290	1,770	1,771	G, W	sub
	Pictured Cliffs	5,000	2,060	2,066	G, W	sub
	Lewis	4,895	2,165	2,173	G, W	normal
	Chacra	4,575	2,485	2,498	G <i>,</i> W	normal
	Cliff House	3,480	3,580	3,613	G <i>,</i> W	sub
	Menefee	3,470	3,590	3,623	G <i>,</i> W	normal
	Point Lookout	2,650	4,410	4,457	G, W	normal
	Mancos	2,420	4,640	4,690	0,G	sub (~0.38
	Gallup (MNCS_A)	2,065	4,995	5,046	0,G	sub (~0.38
	MNCS_B	1,980	5,080	5,131	0,G	sub (~0.38
	MNCS_C	1,870	5,190	5,241	0,G	sub (~0.38
	MNCS_Cms	1,810	5,250	5,304	0,G	sub (~0.38
	MNCS_D	1,710	5,350	5,413	0,G	sub (~0.38
	MNCS_E	1,610	5,450	5,535	0,G	sub (~0.38
	MNCS_F	1,550	5,510	5,621	0,G	sub (~0.38
	MNCS_G	1,490	5,570	5,726	0,G	sub (~0.38
	MNCS_H	1,447	5,613	5,814	0,G	sub (~0.38
	MNCS_I	1,395	5,665	5,975	0,G	sub (~0.38
	FTP TARGET	1,385	5,675	6,087	O,G	sub (~0.38
	LTP TARGET	1,460	5,600	15,162	O,G	sub (~0.38)

Surface: Nacimiento

Oil & Gas Zones: Several gas bearing zones will be encountered; target formation is the Gallup

Pressure:	Normal (0.43 psi/ft) or sub-no	rmal pressu	are gradients	anticipated in all formations			
	Max. pressure gradient:	0.43	psi/ft	Evacuated hole gradient:	0.22	psi/ft	
	Maximum anticipated BH pre	ssure, assu	ming maxim	um pressure gradient:	2,450	psi	
	Maximum anticipated surface	pressure,	assuming pa	artially evacuated hole:	1,210	psi	
	Mandau and the start DUT is						

Temperature: Maximum anticipated BHT is 135° F or less

H₂S INFORMATION:

*H*₂*S Zones:* Encountering hydrogen-sulfide bearing zones is **NOT** anticipated.
 Safety: Sensors and alarms will be placed in the substructure, on the rig floor, above the pits, and at the shakers.

LOGGING, CORING, AND TESTING:

 Mud Logs:
 None planned; remote geo-steering from drill out of 9-5/8" casing to TD; gas detection from drillout of 13-3/8" casing to TD.

 MWD / LWD:
 Gamma Ray from drillout of 13-3/8" casing to TD

 Open Hole Logs:
 None planned

- *Testing:* None planned *Coring:* None planned
- *Cased Hole Logs:* CBL on 5-1/2" casing from deepest free-fall depth to surface

DRILLING RIG INFORMATION:

Contractor:	Ensign
Rig No.:	773
Draw Works:	Pacific Rim 1500AC
Mast:	ADR 1500S Cantilever Triple (142 ft, 800,000 lbs, 12 lines)
Top Drive:	Tesco 500-ESI-1350 (500 ton, 1,350 hp)
Prime Movers:	3 - CAT 3512 (1,475 hp)
Pumps:	3 - Gardner-Denver PZ11 (7,500 psi)
BOPE 1:	Cameron single gate ram (pipe) & double gate ram (pipe & blind) (13-5/8", 10,000 psi)
BOPE 2:	Cameron annular (13-5/8", 5,000 psi)
Choke	3", 10,000 psi
KB_CL (ft)	28

KB-GL (ft): 28

NOTE: A different rig may be used to drill the well depending on rig availability

BOPE REQUIREMENTS:

See attached diagram for details regarding BOPE specifications and configuration.

- 1) Rig will be equipped with upper and lower kelly cocks with handles available.
- 2) Inside BOP and TIW valves will be available to use on all sizes and threads of drill pipe used while drilling the well.
- **3)** BOP accumulator will have enough capacity to open the HCR valve, close all rams and annular preventer, and retain minimum of 200 psi above precharge on the closing manifold without the use of closing pumps. The fluid reservoir capacity shall be at least double the usable fluid volume of the accumulator system capacity, and the fluid level shall be maintained at manufacturer's recommendation. There will be two additional sources of power for the closing pumps (electric and air). Sufficient nitrogen bottles will be available and will be recharged when pressure falls below manufacturer's recommended minimum.
- 4) BOP testing shall be conducted (a) when initially installed, (b) whenever any seal is broken or repaired, (c) if the time since the previous test exceeds 30 days. Tests will be conducted using a test plug. BOP ram preventers will be tested to 3,000 psig for 10 minutes, and the annular preventer will be tested to 2,500 psi for 10 minutes. Ram and annular preventers will be tested to 250 psi for 5 minutes. Additionally, BOP and casing strings will be tested to .22 psi/ft or 1,500 psi, whichever is greater but not exceeding 70% of yield strength of the casing, for 30 minutes, prior to drilling out 13-3/8" and 9-5/8" casing. Rams and hydraulically operated remote choke line valve will be function tested daily at a minimum.
- 5) Remote valve for BOP rams, HCR, and choke shall be placed in a location that is readily available to the driller. The remote BOP valve shall be capable of closing and opening the rams.
- 6) Manual locking devices (hand wheels) shall be installed on rams. A valve will be installed on the annular preventer's closing line as close as possible to the preventer to act as a locking device. The valve will be maintained in the open position and shall only be closed when the there is no power to the accumulator.

FLUIDS AND SOLIDS CONTROL PROGRAM:

- *Fluid Measurement:* Pumps shall be equipped with stroke counters with displays in the dog-house. Slow pump speed shall be recorded daily and after mudding up, at a minimum, on the drilling report. A Pit Volume Totalizer will be installed and the readout will be displayed in the dog-house. Gas-detecting equipment will be installed at the shakers, and readouts will be available in the dog-house and the in the geologist's work-station (if geologist or mud-logger is on-site).
- Closed-Loop System: A fully, closed-loop system will be utilized. The system will consist of above-ground piping and above-ground storage tanks and bins. The system will not entail any earthen pits, below-grade storage, or drying pads. All equipment will be disassembled and removed from the site when drilling operations cease. The system will be capable of storing all fluids and generated cuttings and of preventing uncontrolled releases of the same. The system will be operated in an efficient manner to allow the recycling and reuse of as much fluid as possible and to minimimize the amount of fluids and solids that require disposal.
 - *Fluid Disposal* : Fluids that cannot be reused, recycled, or returned to the supplier will be hauled to and disposed of at an approved disposal site (Industrial Ecosystem, Inc. or Envirotech, Inc.).
 - Solids Disposal : Drilling solids will be stored (until haul-off) on-site in separate containers with no other waste, debris, or garbage products. Waste solids will be hauled to and disposed of at an approved disposal site (Industrial Ecosystem, Inc. or Envirotech, Inc.).
 - *Fluid Program:* See "Detailed Drilling Plan" section for specifics. Sufficient weighting agent will be on location to increase the weight of the mud system to balance the maximum anticipated pressure gradient.

DETAILED DRILLING PLAN:

SURFACE: Drill vertically to casing setting depth (plus necessary rathole), run casing, cement casing to surface.

	0 ft (MD)	to	350 ft (MD)	Hole Section Length:	350 ft
	0 ft (TVD)	to	350 ft (TVD)	Casing Required:	350 ft
Note:	Surface hole may be d	rilled, cased, and	l cemented with a smaller ri	g in advance of the drilling rig.	

			FL		YP		
Fluid:	Туре	MW (ppg)	(mL/30 min)	PV (cp)	(lb/100 sqft)	рН	Comments
	Fresh Water	8.4	N/C	2 - 8	2 - 12	9.0	Spud mud
	1 = 1 /01						

Hole Size: 17-1/2"

Bit / Motor: Mill Tooth or PDC, no motor

MWD / Survey: No MWD, deviation survey

Logging: None

	None										
		\A/+ (11- /f+)	Crede	Com	Collense (nei)	Durat (mai)	Tens. Body	Tens. Conn			
Casing Specs:		Wt (lb/ft)	Grade	Conn.	Collapse (psi)	Burst (psi) 2,730	(lbs) 853,000	(lbs)			
Specs	13.375	54.5	J-55	BTC	1,130	909,000					
Loading					153	795	116,634	116,634			
Min. S.F.					7.39	3.43	7.31	7.79			
	Assumptions:	Collapse: fully	evacuated cas	ing with 8.4 p	og equivalent ex	ternal pressur	e gradient				
		Burst: maximu	m anticipated	surface pressu	ire with 9.5 ppg	fluid inside ca	sing while drill	ing			
		intermediate h	ole and 8.4 pp	g equivalent e	external pressure	e gradient					
		Tension: buoye	ed weight in 8.	4 ppg fluid wit	h 100,000 lbs o	ver-pull					
MU Torque (ft lbs):	Minumum:	N/A	Optimum:	N/A	Maximum:	N/A					
	Make-up as p	er API Buttress	Connection rur	nning procedu	re.						
Casing Summary:	Float shoe, 1 j	t casing, float c	ollar, casing to	surface							
Centralizers:	2 centralizers	per jt stop-ban	ded 10' from e	ach collar on l	oottom 3 jts, 1 c	entralizer per	2 jts to surface				
			Yield	Water	Hole Cap.		Planned TOC	Total Cmt			
Cement:	Туре	Weight (ppg)	(cuft/sk)	(gal/sk)	(cuft/ft)	% Excess	(ft MD)	(sx)			
	Type III	14.6	1.39	6.686	0.6946	100%	0	350			
	Type III 14.6 1.39 6.686 0.6946 100% 0 350 Calculated cement volumes assume gauge hole and the excess noted in table										
	Drake Energy Services surface cementing blend										
	Drake Energy	Services surface	e cementing bl	end	ace. Cement mi		0 psi compress	ive strength			
	Drake Energy	Services surface D & BLM if cem	e cementing bl	end			0 psi compress	ive strength			
	Drake Energy Notify NMOC	Services surface D & BLM if cem	e cementing bl	end			0 psi compress	ive strength			
INTERMEDIATE:	Drake Energy Notify NMOC before drilling	Services surface D & BLM if cem g out.	e cementing bl nent is not circ	end ulated to surf	ace. Cement mi	ust achieve 50		ive strength			

	350	ft (TVD)	to	3,690	ft (TVD)	Cas	sing Required:	3,725 f
Fluid:	/	MW (ppg)	FL (mL/30 min)	PV (cp)	YP (lb/100 sqft)	рН	Comn	nents
	LSND (KCI)	8.8 - 9.5	20	8 - 14	8 - 14	9.0 - 9.5		
Hole Size:								
-	PDC w/mud m							
MWD / Survey:		with inclinatior	n and azimuth s	urvey (every 1	.00' at a minimu	um), GR optior	nal	
Logging:								
Pressure Test:	NU BOPE and	test (as noted	above); pressui	re test 13-3/8"	casing to	1,500	psi for 30 minu	
				_		- ())	Tens. Body	Tens. Conn
Casing Specs:		Wt (lb/ft)	Grade	Conn.	Collapse (psi)	Burst (psi)	(lbs)	(lbs)
Specs	9.625	36.0	J-55	LTC	2,020	3,520	564,000	453,000
Loading					1,612	1,421	216,942	216,942
Min. S.F.					1.25	2.48	2.60	2.09
	Assumptions:				og equivalent ex	-	-	
			-		re with 9.5 ppg	-	sing while drilli	ing
				-	ernal pressure <u>o</u>			
		-	-		h 100,000 lbs o			
U Torque (ft lbs):	Minumum:	3,400	Optimum:	4,530	Maximum:	5,660		
Casing Summary:								
Centralizers:					m 1 jt & 1 centr	-		nt, 1
	centralizer per	r jt (floating) in	directional hol	e; 1 centralize	r per 2 jts (float	ting) in vertical	l hole	
			Yield	Water		Planned TOC	Total Cmt	
Comont	Туре	Weight (ppg)	(cuft/sk)	(gal/sk)	% Excess	(ft MD)	(sx)	
cement:	IVDE					· /		
Cement: Lead		12.5			70%	0	775	
Lead	III:POZ Blend	12.5	2.140	12.05	70% 20%		775 136	
Lead Tail	III:POZ Blend Type III	12.5 14.6	2.140 1.38	12.05 6.64	20%	0 3,225	775 136	
Lead	III:POZ Blend Type III 0.3627	12.5 14.6 cuft/ft	2.140 1.38 9-5/8" casing >	12.05 6.64 < 13-3/8" casir	20% ng annulus			
Lead Tail	III:POZ Blend Type III 0.3627 0.3132	12.5 14.6 cuft/ft cuft/ft	2.140 1.38 9-5/8" casing > 9-5/8" casing >	12.05 6.64 < 13-3/8" casir < 12-1/4" hole	20% ng annulus annulus	3,225		
Lead Tail	III:POZ Blend Type III 0.3627 0.3132	12.5 14.6 cuft/ft cuft/ft	2.140 1.38 9-5/8" casing > 9-5/8" casing >	12.05 6.64 < 13-3/8" casir < 12-1/4" hole	20% ng annulus	3,225		
Lead Tail	III:POZ Blend Type III 0.3627 0.3132 Calculated cert	12.5 14.6 cuft/ft cuft/ft nent volumes o	2.140 1.38 9-5/8" casing > 9-5/8" casing >	12.05 6.64 < 13-3/8" casir < 12-1/4" hole hole and the ex	20% ng annulus annulus	3,225		
Lead Tail	III:POZ Blend Type III 0.3627 0.3132 Calculated cer Drake Energy	12.5 14.6 cuft/ft cuft/ft nent volumes o Services Intern	2.140 1.38 9-5/8" casing > 9-5/8" casing > assume gauge H nediate Cement	12.05 6.64 < 13-3/8" casin < 12-1/4" hole nole and the ex ing Program	20% ng annulus annulus kcess noted in ta	3,225 able	136	ive strength
Lead Tail	III:POZ Blend Type III 0.3627 0.3132 Calculated cert Drake Energy Notify NMOC	12.5 14.6 cuft/ft cuft/ft nent volumes of Services Interm D & BLM if cen	2.140 1.38 9-5/8" casing > 9-5/8" casing > assume gauge H nediate Cement	12.05 6.64 < 13-3/8" casin < 12-1/4" hole nole and the ex ing Program	20% ng annulus annulus	3,225 able	136	ive strength
Lead Tail	III:POZ Blend Type III 0.3627 0.3132 Calculated cer Drake Energy	12.5 14.6 cuft/ft cuft/ft nent volumes of Services Interm D & BLM if cen	2.140 1.38 9-5/8" casing > 9-5/8" casing > assume gauge H nediate Cement	12.05 6.64 < 13-3/8" casin < 12-1/4" hole nole and the ex ing Program	20% ng annulus annulus kcess noted in ta	3,225 able	136	ive strength
Lead Tail Annular Capacity	III:POZ Blend Type III 0.3627 0.3132 Calculated cerr Drake Energy Notify NMOCI before drilling	12.5 14.6 cuft/ft cuft/ft nent volumes of Services Intern D & BLM if cen ; out.	2.140 1.38 9-5/8" casing > 9-5/8" casing > assume gauge H nediate Cement nent is not circu	12.05 6.64 (13-3/8" casin (12-1/4" hole oole and the ex ing Program ulated to surfa	20% ag annulus annulus ccess noted in ta ace. Cement mu	3,225 able ust achieve 50	136	ive strength
Lead Tail	III:POZ Blend Type III 0.3627 0.3132 Calculated cert Drake Energy Notify NMOCI before drilling Drill to TD foll	12.5 14.6 cuft/ft cuft/ft nent volumes of Services Intern D & BLM if cen g out.	2.140 1.38 9-5/8" casing > 9-5/8" casing > assume gauge h nediate Cement nent is not circu	12.05 6.64 (13-3/8" casin (12-1/4" hole aole and the ex ing Program ulated to surfa	20% ag annulus annulus acess noted in ta ace. Cement mu casing to surfa	3,225 able ust achieve 50 ace.	136 O psi compress	
Lead Tail Annular Capacity	III:POZ Blend Type III 0.3627 0.3132 Calculated cerr Drake Energy Notify NMOCI before drilling Drill to TD foll 3,725	12.5 14.6 cuft/ft cuft/ft nent volumes of Services Interm D & BLM if cen s out. owing direction ft (MD)	2.140 1.38 9-5/8" casing > 9-5/8" casing > assume gauge h nediate Cement nent is not circu onal plan, run co to	12.05 6.64 (13-3/8" casin (12-1/4" hole toole and the ex ing Program ulated to surfa asing, cement 15,162	20% ag annulus annulus access noted in ta acce. Cement ma <u>casing to surfa</u> ft (MD)	3,225 able ust achieve 50 ace. Hole Sa	136 O psi compress ection Length:	11,437
Lead Tail Annular Capacity	III:POZ Blend Type III 0.3627 0.3132 Calculated cerr Drake Energy Notify NMOCI before drilling Drill to TD foll 3,725	12.5 14.6 cuft/ft cuft/ft nent volumes of Services Intern D & BLM if cen g out.	2.140 1.38 9-5/8" casing > 9-5/8" casing > assume gauge h nediate Cement nent is not circu	12.05 6.64 (13-3/8" casin (12-1/4" hole toole and the ex ing Program ulated to surfa asing, cement 15,162	20% ag annulus annulus acess noted in ta ace. Cement mu casing to surfa	3,225 able ust achieve 50 ace. Hole Sa	136 O psi compress	11,437
Lead Tail Annular Capacity	III:POZ Blend Type III 0.3627 0.3132 Calculated cerr Drake Energy Notify NMOCI before drilling Drill to TD foll 3,725	12.5 14.6 cuft/ft nent volumes of Services Interm D & BLM if cen s out. owing direction ft (MD) ft (TVD)	2.140 1.38 9-5/8" casing > 9-5/8" casing > possume gauge H mediate Cement ment is not circu pral plan, run co to to	12.05 6.64 (13-3/8" casin (12-1/4" hole hole and the ex ing Program ulated to surfa asing, cement 15,162 5,600	20% ang annulus annulus access noted in ta acce. Cement mu <u>casing to surfa</u> ft (MD) ft (TVD)	3,225 able ust achieve 50 nce. Hole So Cas	136 O psi compress ection Length: sing Required:	11,437
Lead Tail Annular Capacity	III:POZ Blend Type III 0.3627 0.3132 Calculated cer Drake Energy Notify NMOCI before drilling Drill to TD foll 3,725 3,690	12.5 14.6 cuft/ft nent volumes of Services Intern D & BLM if cen s out. owing direction ft (MD) ft (TVD)	2.140 1.38 9-5/8" casing > 9-5/8" casing > passume gauge H mediate Cement ment is not circu onal plan, run co to to	12.05 6.64 (13-3/8" casin (12-1/4" hole hole and the exing Program ulated to surfa asing, cement 15,162 5,600	20% ang annulus annulus access noted in ta acce. Cement mu accesing to surfa ft (MD) ft (MD)	3,225 able ust achieve 50 ace. Hole Sa Cas 5,072	136 O psi compress ection Length: sing Required: ft (TVD)	11,437
Lead Tail Annular Capacity	III:POZ Blend Type III 0.3627 0.3132 Calculated cer Drake Energy Notify NMOCI before drilling Drill to TD foll 3,725 3,690	12.5 14.6 cuft/ft nent volumes of Services Intern D & BLM if cen s out. dowing direction ft (MD) ft (TVD) Es imated Landin	2.140 1.38 9-5/8" casing > 9-5/8" casing > assume gauge h nediate Cement nent is not circu onal plan, run co to to to to g Point (FTP):	12.05 6.64 (13-3/8" casin (12-1/4" hole nole and the exing Program ulated to surfa asing, cement 15,162 5,600 5,123 6,087	20% ag annulus annulus acess noted in to ace. Cement mu casing to surfa ft (MD) ft (TVD) ft (MD) ft (MD)	3,225 able ust achieve 50 ace. Hole Sa Cas 5,072	136 O psi compress ection Length: sing Required:	11,437
Lead Tail Annular Capacity	III:POZ Blend Type III 0.3627 0.3132 Calculated cer Drake Energy Notify NMOCI before drilling Drill to TD foll 3,725 3,690	12.5 14.6 cuft/ft nent volumes of Services Intern D & BLM if cen s out. dowing direction ft (MD) ft (TVD) Es imated Landin	2.140 1.38 9-5/8" casing > 9-5/8" casing > passume gauge H mediate Cement ment is not circu onal plan, run co to to	12.05 6.64 (13-3/8" casin (12-1/4" hole nole and the exing Program ulated to surfa asing, cement 15,162 5,600 5,123 6,087	20% ang annulus annulus access noted in ta acce. Cement mu accesing to surfa ft (MD) ft (MD)	3,225 able ust achieve 50 ace. Hole Sa Cas 5,072	136 O psi compress ection Length: sing Required: ft (TVD)	11,437
Lead Tail Annular Capacity	III:POZ Blend Type III 0.3627 0.3132 Calculated cer Drake Energy Notify NMOCI before drilling Drill to TD foll 3,725 3,690	12.5 14.6 cuft/ft nent volumes of Services Intern D & BLM if cen s out. dowing direction ft (MD) ft (TVD) Es imated Landin	2.140 1.38 9-5/8" casing > 9-5/8" casing > assume gauge h nediate Cement nent is not circu onal plan, run co to to to to g Point (FTP):	12.05 6.64 (13-3/8" casin (12-1/4" hole nole and the exing Program ulated to surfa asing, cement 15,162 5,600 5,123 6,087	20% an annulus annulus access noted in ta ace. Cement mu casing to surfa ft (MD) ft (MD) ft (MD) ft (MD)	3,225 able ust achieve 50 ace. Hole Sa Cas 5,072	136 O psi compress ection Length: sing Required: ft (TVD)	11,437
Lead Tail Annular Capacity	III:POZ Blend Type III 0.3627 0.3132 Calculated cer Drake Energy Notify NMOCI before drilling Drill to TD foll 3,725 3,690	12.5 14.6 cuft/ft cuft/ft nent volumes of Services Interm D & BLM if cen g out. cowing direction ft (MD) ft (MD) ft (TVD) Es imated Landin Estimated Landin	2.140 1.38 9-5/8" casing > 9-5/8" casing > possume gauge H mediate Cement ment is not circu onal plan, run co to to to to timated KOP: g Point (FTP): ateral Length:	12.05 6.64 (13-3/8" casin (12-1/4" hole hole and the exing Program ulated to surfa asing, cement 15,162 5,600 5,123 6,087 9,075	20% an annulus annulus access noted in ta acce. Cement ma acce. Cement ma acce	3,225 able ust achieve 50 ace. Hole Sa Cas 5,072 5,675	136 0 psi compress ection Length: sing Required: ft (TVD) ft (TVD)	11,437
Lead Tail Annular Capacity	III:POZ Blend Type III 0.3627 0.3132 Calculated cer Drake Energy Notify NMOCI before drilling Drill to TD foll 3,725 3,690	12.5 14.6 cuft/ft cuft/ft nent volumes of Services Intern D & BLM if cen s out. owing direction ft (MD) ft (MD) ft (TVD) Estimated Landin Estimated Londin	2.140 1.38 9-5/8" casing > 9-5/8" casing > passume gauge H mediate Cement ment is not circu onal plan, run co to to to to to to to to to FL (mL/30')	12.05 6.64 (13-3/8" casin (12-1/4" hole hole and the ex- ing Program ulated to surfa asing, cement 15,162 5,600 5,123 6,087 9,075 PV (cp)	20% annulus annulus access noted in ta acce. Cement mu acce. C	3,225 able ust achieve 50 ace. Hole Sa Cas 5,072 5,675 ES	136 O psi compress ection Length: sing Required: ft (TVD) ft (TVD) OWR	11,437
Lead Tail Annular Capacity <u>PRODUCTION:</u> Fluid:	III:POZ Blend Type III 0.3627 0.3132 Calculated cer Drake Energy Notify NMOCI before drilling Drill to TD foll 3,725 3,690 Est OBM	12.5 14.6 cuft/ft cuft/ft nent volumes of Services Interm D & BLM if cen g out. cowing direction ft (MD) ft (MD) ft (TVD) Es imated Landin Estimated Landin	2.140 1.38 9-5/8" casing > 9-5/8" casing > possume gauge H mediate Cement ment is not circu onal plan, run co to to to to timated KOP: g Point (FTP): ateral Length:	12.05 6.64 (13-3/8" casin (12-1/4" hole hole and the exing Program ulated to surfa asing, cement 15,162 5,600 5,123 6,087 9,075	20% an annulus annulus access noted in ta acce. Cement ma acce. Cement ma acce	3,225 able ust achieve 50 ace. Hole Sa Cas 5,072 5,675	136 0 psi compress ection Length: sing Required: ft (TVD) ft (TVD)	11,437
Lead Tail Annular Capacity	III:POZ Blend Type III 0.3627 0.3132 Calculated cer Drake Energy Notify NMOCI before drilling Drill to TD foll 3,725 3,690 Est OBM	12.5 14.6 cuft/ft cuft/ft nent volumes of Services Intern D & BLM if cen s out. owing direction ft (MD) ft (MD) ft (TVD) Estimated Landin Estimated Londin	2.140 1.38 9-5/8" casing > 9-5/8" casing > passume gauge H mediate Cement ment is not circu onal plan, run co to to to to to to to to to FL (mL/30')	12.05 6.64 (13-3/8" casin (12-1/4" hole hole and the ex- ing Program ulated to surfa asing, cement 15,162 5,600 5,123 6,087 9,075 PV (cp)	20% annulus annulus access noted in ta acce. Cement mu acce. C	3,225 able ust achieve 50 ace. Hole Sa Cas 5,072 5,675 ES	136 O psi compress ection Length: sing Required: ft (TVD) ft (TVD) OWR	11,437
Lead Tail Annular Capacity <u>PRODUCTION:</u> Fluid: Hole Size:	III:POZ Blend Type III 0.3627 0.3132 Calculated cerr Drake Energy Notify NMOCI before drilling Drill to TD foll 3,725 3,690 Est OBM	12.5 14.6 cuft/ft cuft/ft ment volumes of Services Interm D & BLM if cen g out. Sowing direction ft (MD) ft (TVD) Es imated Landin Estimated Londin Estimated Londin 8.7 - 9.0	2.140 1.38 9-5/8" casing > 9-5/8" casing > passume gauge H mediate Cement ment is not circu onal plan, run co to to to to to to to to to FL (mL/30')	12.05 6.64 (13-3/8" casin (12-1/4" hole hole and the ex- ing Program ulated to surfa asing, cement 15,162 5,600 5,123 6,087 9,075 PV (cp)	20% annulus annulus access noted in ta acce. Cement mu acce. C	3,225 able ust achieve 50 ace. Hole Sa Cas 5,072 5,675 ES	136 O psi compress ection Length: sing Required: ft (TVD) ft (TVD) OWR	11,437
Lead Tail Annular Capacity <u>PRODUCTION:</u> Fluid: Hole Size:	III:POZ Blend Type III 0.3627 0.3132 Calculated cer Drake Energy Notify NMOCI before drilling Drill to TD foll 3,725 3,690 Est Type OBM 8-1/2" PDC w/mud m	12.5 14.6 cuft/ft cuft/ft nent volumes of Services Interm D & BLM if cen s out. fowing direction ft (MD) ft (TVD) Es imated Landin Estimated Londin 8.7 - 9.0	2.140 1.38 9-5/8" casing > 9-5/8" casing > assume gauge H mediate Cement ment is not circu onal plan, run co to to to to to Etimated KOP: g Point (FTP): ateral Length: FL (mL/30') 10 - 15	12.05 6.64 (13-3/8" casin (12-1/4" hole hole and the ex- ing Program ulated to surfa asing, cement 15,162 5,600 5,123 6,087 9,075 PV (cp) 10 - 20	20% an annulus annulus access noted in ta ace. Cement mu casing to surfa ft (MD) ft (MD) ft (MD) ft (MD) ft (MD) ft (MD) ft (MD) ft (MD) ft (MD) ft (MD)	3,225 able ust achieve 50 ace. Hole Sa Cas 5,072 5,675 ES 500+	136 O psi compress ection Length: sing Required: ft (TVD) ft (TVD) ft (TVD) 0WR 80:20	<u>11,437</u> 15,162
Lead Tail Annular Capacity <u>PRODUCTION:</u> Fluid: Hole Size: Bit / Motor:	III:POZ Blend Type III 0.3627 0.3132 Calculated cerr Drake Energy Notify NMOCI before drilling Drill to TD foll 3,725 3,690 Est Type OBM 8-1/2" PDC w/mud m MWD with GR	12.5 14.6 cuft/ft cuft/ft nent volumes of Services Interm D & BLM if cen g out. Cowing direction ft (MD) ft (MD) ft (TVD) Estimated Landin Estimated Landin Estimated Landin Estimated Landin Estimated Landin Estimated Landin Estimated Landin Estimated Landin Estimated Landin	2.140 1.38 9-5/8" casing > 9-5/8" casing > assume gauge H mediate Cement ment is not circu onal plan, run co to to to to to Etimated KOP: g Point (FTP): ateral Length: FL (mL/30') 10 - 15	12.05 6.64 (13-3/8" casin (12-1/4" hole hole and the ex- ing Program ulated to surfa asing, cement 15,162 5,600 5,123 6,087 9,075 PV (cp) 10 - 20	20% an annulus annulus access noted in ta ace. Cement mu casing to surfa ft (MD) ft (MD) ft (MD) ft (MD) ft (MD) ft (MD) ft (MD) ft (MD) ft (MD) ft (MD)	3,225 able ust achieve 50 ace. Hole Sa Cas 5,072 5,675 ES 500+	136 O psi compress ection Length: sing Required: ft (TVD) ft (TVD) ft (TVD) 0WR 80:20	<u>11,437</u> 15,162
Lead Tail Annular Capacity <u>PRODUCTION:</u> Fluid: Fluid: Hole Size: Bit / Motor: MWD / Survey:	III:POZ Blend Type III 0.3627 0.3132 Calculated cerr Drake Energy Notify NMOCI before drilling Drill to TD foll 3,725 3,690 Est Type OBM 8-1/2" PDC w/mud m MWD with GR minimum befor	12.5 14.6 cuft/ft cuft/ft nent volumes of Services Intern D & BLM if cen g out. Cowing direction ft (MD) ft (MD) ft (TVD) Estimated Landin Estimated Landin Estimated Landin Solution (ppg) 8.7 - 9.0	2.140 1.38 9-5/8" casing > 9-5/8" casing > passume gauge h mediate Cement ment is not circu onal plan, run co to to to to to to to FL (mL/30') 10 - 15 nd azimuth (sur ter Landing Poi	12.05 6.64 (13-3/8" casin (12-1/4" hole hole and the ex- ing Program ulated to surfa asing, cement 15,162 5,600 5,123 6,087 9,075 PV (cp) 10 - 20 Evey every join nt)	20% an annulus annulus access noted in ta ace. Cement mu casing to surfa ft (MD) ft (MD) ft (MD) ft (MD) ft (MD) ft (MD) ft (MD) ft (MD) ft (MD) ft (MD)	3,225 able ust achieve 50 ace. Hole Sa Cas 5,072 5,675 ES 500+	136 O psi compress ection Length: sing Required: ft (TVD) ft (TVD) ft (TVD) 0WR 80:20	<u>11,437</u> 15,162
Lead Tail Annular Capacity <u>PRODUCTION:</u> Fluid: Fluid: Bit / Motor: MWD / Survey: Logging:	III:POZ Blend Type III 0.3627 0.3132 Calculated cerr Drake Energy . Notify NMOCI before drilling Drill to TD foll 3,725 3,690 Est	12.5 14.6 cuft/ft cuft/ft nent volumes of Services Intern D & BLM if cen s out. dowing direction ft (MD) ft (MD) ft (TVD) Estimated Landin Estimated Landin	2.140 1.38 9-5/8" casing > 9-5/8" casing > passume gauge H mediate Cement ment is not circu onal plan, run co to to to to to to to to FL (mL/30') 10 - 15 nd azimuth (sur ter Landing Poi no mud-log or co	12.05 6.64 (13-3/8" casin (12-1/4" hole hole and the ex- ing Program ulated to surfa asing, cement 15,162 5,600 5,123 6,087 9,075 PV (cp) 10 - 20 Evey every join nt) cuttings sampl	20% an an ulus annulus access noted in ta acce. Cement ma acce. Cement ma acce	3,225 able ust achieve 50 ace. Hole So Cas 5,072 5,072 5,675 ES 500+	136 O psi compress ection Length: sing Required: ft (TVD) ft (TVD) MR 80:20	11,437 15,162
Lead Tail Annular Capacity <u>PRODUCTION:</u> Fluid: Fluid: Bit / Motor: MWD / Survey: Logging:	III:POZ Blend Type III 0.3627 0.3132 Calculated cerr Drake Energy Notify NMOCI before drilling Drill to TD foll 3,725 3,690 Est Type OBM 8-1/2" PDC w/mud m MWD with GR minimum befor	12.5 14.6 cuft/ft cuft/ft nent volumes of Services Intern D & BLM if cen s out. dowing direction ft (MD) ft (MD) ft (TVD) Estimated Landin Estimated Landin	2.140 1.38 9-5/8" casing > 9-5/8" casing > passume gauge H mediate Cement ment is not circu onal plan, run co to to to to to to to to FL (mL/30') 10 - 15 nd azimuth (sur ter Landing Poi no mud-log or co	12.05 6.64 (13-3/8" casin (12-1/4" hole hole and the ex- ing Program ulated to surfa asing, cement 15,162 5,600 5,123 6,087 9,075 PV (cp) 10 - 20 Evey every join nt) cuttings sampl	20% an an ulus annulus access noted in ta acce. Cement ma acce. Cement ma acce	3,225 able ust achieve 50 ace. Hole Sa Cas 5,072 5,675 ES 500+	136 0 psi compress ection Length: sing Required: ft (TVD) ft (TVD) 0WR 80:20 and survey even psi for 30 minu	11,437 15,162
Lead Tail Annular Capacity PRODUCTION: Fluid: Hole Size: Bit / Motor: MWD / Survey: Logging: Pressure Test:	III:POZ Blend Type III 0.3627 0.3132 Calculated cerr Drake Energy Notify NMOCI before drilling Drill to TD foll 3,725 3,690 Est Type OBM 8-1/2" PDC w/mud m MWD with GR minimum befor GR MWD for e NU BOPE and	12.5 14.6 cuft/ft cuft/ft <i>nent volumes of</i> <i>Services Interm</i> D & BLM if cen 3 out. <i>Towing direction</i> 5 out. <i>Towing direction</i> 6 t (MD) 7 ft (MD) 7 ft (TVD) <i>Ess</i> <i>imated Landin</i> <i>Estimated Landin</i>	2.140 1.38 9-5/8" casing > 9-5/8" casing > assume gauge H nediate Cement nent is not circu and plan, run co to to to to to FL (mL/30') 10 - 15 nd azimuth (sur ter Landing Poi no mud-log or co above); pressur	12.05 6.64 (13-3/8" casing (12-1/4" hole hole and the ex- ing Program ulated to surfa asing, cement 15,162 5,600 5,123 6,087 9,075 PV (cp) 10 - 20 Evey every join nt) cuttings sample re test 9-5/8" (compared)	20% an annulus annulus access noted in ta ace. Cement mu casing to surfa ft (MD) ft (MD) ft (MD) ft (MD) ft (MD) ft (MD) ft (MD) at from KOP to L ing, no OH WL I casing to	3,225 able ust achieve 50 ace. Hole So Cas 5,072 5,675 ES 500+ anding Point a ogs 1,500	136 O psi compress ection Length: sing Required: ft (TVD) ft (TVD) ft (TVD) oWR 80:20 and survey even psi for 30 minu Tens. Body	11,437 15,162 15,162 100' 100' 1tes. Tens. Conn
Lead Tail Annular Capacity <u>PRODUCTION:</u> Fluid: Fluid: Hole Size: Bit / Motor: MWD / Survey: Logging:	III:POZ Blend Type III 0.3627 0.3132 Calculated cerr Drake Energy Notify NMOCI before drilling Drill to TD foll 3,725 3,690 Est Type OBM 8-1/2" PDC w/mud m MWD with GR minimum befor GR MWD for e NU BOPE and Size (in)	12.5 14.6 cuft/ft cuft/ft nent volumes of Services Intern D & BLM if cen s out. dowing direction ft (MD) ft (MD) ft (TVD) Estimated Landin Estimated Landin	2.140 1.38 9-5/8" casing > 9-5/8" casing > passume gauge H mediate Cement ment is not circu onal plan, run co to to to to to to to to FL (mL/30') 10 - 15 nd azimuth (sur ter Landing Poi no mud-log or co	12.05 6.64 (13-3/8" casin (12-1/4" hole hole and the ex- ing Program ulated to surfa asing, cement 15,162 5,600 5,123 6,087 9,075 PV (cp) 10 - 20 Evey every join nt) cuttings sampl	20% an an ulus annulus access noted in ta acce. Cement ma acce. Cement ma acce	3,225 able ust achieve 50 ace. Hole So Cas 5,072 5,072 5,675 ES 500+	136 0 psi compress ection Length: sing Required: ft (TVD) ft (TVD) 0WR 80:20 and survey even psi for 30 minu	<u>11,437</u> <u>15,162</u> гу 100' utes.

.

Loading					2,766	9,024	372,418	372,418
Min. S.F.					2.70	1.18	1.47	1.19
	Assumptions:	Collapse: fully	evacuated casi	ing with 9.5 pp	g fluid in the a	nnulus (floating	g casing during	running)
		Burst: 8,500 ps	si maximum su	rface treating	pressure with 2	10.2 ppg equiva	alent mud weig	ht sand
		laden fluid wit	h 8.4 ppg equiv	valent externa	pressure grad	ient		
		Tension: buoye	ed weight in 9.0	0 ppg fluid wit	h 150,000 lbs c	over-pull		
MU Torque (ft lbs):	Minumum:	3,470	Optimum:	4,620	Maximum:	5,780		
Casing Summary:								
				· · · · · · · · · · · · · · · · · · ·		sing to surface.		
				-	-	the azimuth of		
			nuth of the we	ll. Note: the LT	P is the maxim	um depth of th	ie toe sleeve ai	nd is noted on
	the Well Plan.							
Centralizers:				justed based o	n well conditio	ns and as-drille	ed surveys.	
		ralizer per join						
	-	shoe: 1 centra	· · · · ·					
	9-5/8" shoe to	o surface: 1 cer						I
	_		Yield	Water		Planned TOC	Total Cmt	
Cement:	Туре	Weight (ppg)	(cuft/sk)	(gal/sk)	% Excess	(ft MD)	(sx)	
Lead	Type III	12.4	2.360	13.40	65%	0	579	
Tail	G:POZ blend	13.3	1.560	7.70	10%	4,690	1,692	
Annular Capacity	0.2691	-	5-1/2" casing >					
		-	5-1/2" casing >	-				
		nent volumes a			cess noted in t	able		
		enting Liner &						
		D & BLM if cem						1.0.1
Note:						by NMAC19.15		
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ed interval shal		
			-			sured perpend		
		ed by NMAC 1				.7.B, are the la		
	DODUCE AS DELLO							

point will be the bottom toe-initiation sleeve, and the first take point will be the top perforation. Neither the toeinitiation sleeve nor the top perforation shall be closer to the unit boundary than 100' measured along the azimuth of the well or 330' measured perpendicular to the azimuth of the well.

FINISH WELL: ND BOP, cap well, RDMO.

COMPLETION AND PRODUCTION PLAN:

Frac: 40 plug-and-perf stages with 360,000 bbls slickwater fluid and 15,000,000 lbs of proppant (estimated)Flowback: Flow back through production tubing as pressures allow (ESP may be used for load recovery assitance)Production: Produce through production tubing via gas-lift into permanent production and storage facilities

ESTIMATED START DATES:

Drilling: TBD Completion: TBD Production: TBD

 Prepared by:
 Alec Bridge
 10/11/2019

 Updated by:
 Alec Bridge
 2/25/2022
 - updated directional plan to reflect new unit boundaries

 Greg Olson
 10/4/2023

CHOKE MANIFOLD

FROM HCR VALVE

•

					Tops TVD (ft KB) MD (ft KB)	Ojo Alamo 1,380 1,380	Kirtland 1,520 1,520	Fruitland 1,770 1,771	Pictured Cliffs 2,060 2,066	Lewis 2,165 2,173	Chacra 2,485 2,498	Cliff House 3,580 3,613	Menefee 3,590 3,623	Point Lookout 4,410 4,457	Mancos 4,640 4,690	Gallup (MNCS_A) 4,995 5,046	MNCS_B 5,080 5,131	MNCS_C 5,190 5,241	MNC5_Cms 5,250 5,304	MNCS_D 5,350 5,413		MNCS_E 5,450 5,535	MNCS_F 5,510 5,621	MNCS_G 5,570 5,726	MNCS_H 5,613 5,814
) ft		_		1															
QUICK REFERENCE	350 ft	3,725 ft	5,123 ft	5,072 ft	5,675 ft	$10^{\circ}/100$ ft	6,087 ft	15,162 ft	9,075 ft						Csg Bot (ft)	350	3,725	15,162			Total Variation	I OTAI (SX)	350	775	136
QUIC	Sur TD (MD)	Int TD (MD)	KOP (MD)	KOP (TVD)	Target (TVD)	Curve BUR	POE (MD)	(DM) TT	D Lat Len (ft)						Csg Top (ft)	0	0	0			TOC	(ft MD)	0	0	3,225
5					ft FWL	ft FWL	D, NEW	on CR #7998	for 1.2 miles to	fork; Right (South) for 0.2 miles to 4-way intersection; Left (East) for 0.3 miles to 4-way	וווובו גבניוטוו, אנו אוצווי (בפגו) וטי ט.ד ווווובי; בבוו טוו מננביג וטמע נט ואוכ-7 נטואו סאאר דמע.				Csg (conn)	BTC	LTC	LTC			0/ F	% EXCESS	100%	20%	20%
cos-I formati					330	1661	IN BLOOMFIEL	3; Left (North)	k; Right (East)	t (East) tor 0.3	nau in inic-7 c				Csg (grade)	J-55	J-55	P-110			-	(curt/rt)	0.6946	0.3627	0.3132
al in the Man				ft ASL (KB)	ft FNL	ft FNL	& US HWY 64	MEXICO: South on US HWY 550 for 43.5 mile to MM 108.3; Left (North) on CR #7998	0.3 miles to for	itersection; Lei	הון מנושאים				Csg (lb/ft)	54.5	36.0	17.0			~1~/1~~/~~	ra (curt/sk) wtr (gai/sk)	6.686	12.05	6.64
o single laters				7,060	216	755	F US HWY 550	550 for 43.5 mi	Vortheast) for (iles to 4-way ir					Csg (in)	13.375	9.625	5.500				ra (curt/sk)	1.39	2.14	1.38
655H te, and equi	ba			ft ASL (GL)	Sec-Twn- Rng	Sec-Twn- Rng	TERSECTION O	h on US HWY 5	o fork; Right (N	uth) tor 0.2 m	rraigni (Edst)			RY:	TD MD (ft)	350	3,725	15,162		Y:	12221 4141	wr (ppg)	14.6	12.5	14.6
MC-7 COM Drill, comple	not yet assign	New Mexico	Rio Arriba	7,032	5-23N-07W	1-23N-08W	FROM THE INT	MEXICO: Sout.	for 0.3 miles t	tork; Right (So				ION SUMMA	Hole (in)	17.500	12.250	8.500		TES SUMMAR		adyı	Type III	III:POZ Blend	Type III
WELL NAME: MC-7 COM 655H OBJECTIVE: Drill, complete, and equip single lateral in the Mancos-I formation	API Number:	State:	County:	Surface Elev.:	Surface Location:	BH Location:	Iriving Directions:							WELL CONSTRUCTION SUMMARY:		Surface	Intermediate	Production		CEMENT PROPERTIES SUMMARY:			Surface	Inter. (Lead)	Inter. (Tail)
Released to In	nag	rin,	g :	6/5	/2	02:	5 3	:14	4:0	71	PM	r		2						5		1			I

COMPLETION / PRODUCTION SUMMARY:

Flowback: Flow back through production tubing as pressures allow (ESP may be used for load recovery assitance) Frac: 40 plug-and-perf stages with 360,000 bbls slickwater fluid and 15,000,000 lbs of proppant (estimated) Production: Produce through production tubing via gas-lift into permanent production and storage facilities

15,162

5,975 6,087

5,570 5,613 5,665 5,675 5,600

> MNCS_H MNCS_I

FTP TARGET LTP TARGET

579 1,692

0

4,690

10%

70% 20% 65%

0.3132 0.2691 0.2291

13.4 6.64

> 2.360 1.560

12.4

Type III Type III

Prod. (Lead) Inter. (Tail)

13.3

Prod. (Tail) G:POZ blend

7.7

of 4

19/2025 2:44:24

Released to Imaging: 6/5/2025 3:14:07 PM

Database: Company: Project: Site: Well: Wellbore: Design:	DB_Feb1422L Enduring Res San Juan Cou MC-7 Com (63 MC-7 Com 65 Original Hole rev0	ources LLC unty, New Me 55, 657 & 659	xico NAD83 NM W 9)	Local Co-ordin TVD Reference MD Reference North Referen Survey Calcul	: ce:	Well MC-7 Com (RKB=7032+28 @ RKB=7032+28 @ Grid Minimum Curvate	⊉ 7060.00ft ⊉ 7060.00ft
Project	San Juan Cour	nty, New Mex	ico NAD83 NM W				
Geo Datum:	US State Plane North American New Mexico We	Datum 1983		System Datum:		Mean Sea Level	
Site	MC-7 Com (65	5, 657 & 659)				
Site Position: From: Position Uncertainty:	Lat/Long	0.00 ft	Northing: Easting: Slot Radius:	1,915,080.9 2,790,358.60 13-3/	62 usft Longitu		36.262920000 -107.605157000
Well	MC-7 Com 655	6H, Surf loc: 2	16 FNL 330 Fwl Sec	tion 05-T23N-R07W			
Well Position	+N/-S +E/-W	0.00 ft 0.00 ft	Northing: Easting:	,	5,080.920 usft),358.662 usft	Latitude: Longitude:	36.262920000 -107.605157000
Position Uncertainty Grid Convergence:		0.00 ft 0.13 °	Wellhead Elev	vation:	ft	Ground Level:	7,032.00 ft
Wellbore	Original Hole						
Magnetics	Model Nan	ne	Sample Date	Declination (°)		Dip Angle (°)	Field Strength (nT)
	IGR	RF2020	2/21/2022		8.68	62.79	49,274.34381723
Design	rev0						
Audit Notes:							
Version:			Phase:	PLAN	Tie On Dep	oth: (0.00
Vertical Section:		·	From (TVD) (ft)	+N/-S (ft)	+E/-W (ft)	(ction (°)
			0.00	0.00	0.00	269	0.831
Plan Survey Tool Pro Depth From (ft)	Depth To	Date 2/22 Survey (Well		Tool Name	Rema	arks	
1 0.00	15,161.65 r	rev0 (Original	Hole)	MWD OWSG MWD - Sta	n de ud		

.

Database:	DB_Feb1422LT	Local Co-ordinate Reference:	Well MC-7 Com 655H
Company:	Enduring Resources LLC	TVD Reference:	RKB=7032+28 @ 7060.00ft
Project:	San Juan County, New Mexico NAD83 NM W	MD Reference:	RKB=7032+28 @ 7060.00ft
Site:	MC-7 Com (655, 657 & 659)	North Reference:	Grid
Well:	MC-7 Com 655H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Original Hole		
Design:	rev0		

Plan Sections

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)	TFO (°)	Target
0.00	0.00	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
1,500.00	0.00	0.000	1,500.00	0.00	0.00	0.00	0.00	0.00	0.00	
1,857.43	10.72	159.000	1,855.35	-31.13	11.95	3.00	3.00	0.00	159.00	
4,518.19	10.72	159.000	4,469.65	-493.32	189.37	0.00	0.00	0.00	0.00	
4,875.63	0.00	0.000	4,825.00	-524.45	201.32	3.00	-3.00	0.00	180.00	
5,122.69	0.00	0.000	5,072.06	-524.45	201.32	0.00	0.00	0.00	0.00	
5,722.69	60.00	269.831	5,568.26	-525.30	-85.16	10.00	10.00	0.00	269.83	
5,782.69	60.00	269.831	5,598.26	-525.45	-137.12	0.00	0.00	0.00	0.00	
6,087.42	90.47	269.831	5,675.00	-526.31	-428.33	10.00	10.00	0.00	0.00	
15,161.65	90.47	269.831	5,600.00	-553.01	-9,502.21	0.00	0.00	0.00	0.00	MC-7 655 PBHL 7

	Database: Company:	DB_Feb1422LT Enduring Resources LLC	Local Co-ordinate Reference: TVD Reference:	Well MC-7 Com 655H RKB=7032+28 @ 7060.00ft
P	Project:	San Juan County, New Mexico NAD83 NM W	MD Reference:	RKB=7032+28 @ 7060.00ft
S	Site:	MC-7 Com (655, 657 & 659)	North Reference:	Grid
v	Vell:	MC-7 Com 655H	Survey Calculation Method:	Minimum Curvature
v	Vellbore:	Original Hole		
D)esign:	rev0		

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
0.00	0.00	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	0.00	0.000	100.00	0.00	0.00	0.00	0.00	0.00	0.00
200.00	0.00	0.000	200.00	0.00	0.00	0.00	0.00	0.00	0.00
300.00	0.00	0.000	300.00	0.00	0.00	0.00	0.00	0.00	0.00
400.00	0.00	0.000	400.00	0.00	0.00	0.00	0.00	0.00	0.00
500.00 600.00	0.00 0.00	0.000 0.000	500.00 600.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
700.00	0.00	0.000	700.00	0.00	0.00	0.00	0.00	0.00	0.00
800.00	0.00	0.000	800.00	0.00	0.00	0.00	0.00	0.00	0.00
900.00	0.00	0.000	900.00	0.00	0.00	0.00	0.00	0.00	0.00
1,000.00	0.00	0.000	1,000.00	0.00	0.00	0.00	0.00	0.00	0.00
1,100.00	0.00	0.000	1,100.00	0.00	0.00	0.00	0.00	0.00	0.00
1,200.00	0.00	0.000	1,200.00	0.00	0.00	0.00	0.00	0.00	0.00
1,300.00	0.00	0.000	1,300.00	0.00	0.00	0.00	0.00	0.00	0.00
1,400.00	0.00	0.000	1,400.00	0.00	0.00	0.00	0.00	0.00	0.00
1,500.00	0.00	0.000	1,500.00	0.00	0.00	0.00	0.00	0.00	0.00
KOP Begin									
1,600.00	3.00	159.000	1,599.95	-2.44	0.94	-0.93	3.00	3.00	0.00
1,700.00	6.00	159.000	1,699.63	-9.77	3.75	-3.72	3.00	3.00	0.00
1,800.00	9.00	159.000	1,798.77	-21.95	8.43	-8.36	3.00	3.00	0.00
1,857.43	10.72	159.000	1,855.35	-31.13	11.95	-11.86	3.00	3.00	0.00
Begin 10.72	° tangent		,						
1,900.00	10.72	159.000	1,897.17	-38.53	14.79	-14.68	0.00	0.00	0.00
2,000.00	10.72	159.000	1,995.43	-55.90	21.46	-21.29	0.00	0.00	0.00
2,100.00	10.72	159.000	2.093.68	-73.27	28.13	-27.91	0.00	0.00	0.00
			,						
2,200.00	10.72	159.000	2,191.94	-90.64	34.79	-34.53	0.00	0.00	0.00
2,300.00	10.72	159.000	2,290.19	-108.01	41.46	-41.14	0.00	0.00	0.00
2,400.00	10.72	159.000	2,388.44	-125.38	48.13	-47.76	0.00	0.00	0.00
2,500.00	10.72	159.000	2,486.70	-142.75	54.80	-54.38	0.00	0.00	0.00
2,600.00	10.72	159.000	2,584.95	-160.12	61.47	-60.99	0.00	0.00	0.00
2,700.00	10.72	159.000	2,683.20	-177.49	68.13	-67.61	0.00	0.00	0.00
2,800.00	10.72	159.000	2,781.46	-194.86	74.80	-74.23	0.00	0.00	0.00
2,900.00	10.72	159.000	2,879.71	-212.23	81.47	-80.84	0.00	0.00	0.00
3,000.00	10.72	159.000	2,977.97	-229.60	88.14	-87.46	0.00	0.00	0.00
3,100.00	10.72	159.000	3,076.22	-246.97	94.80	-94.08	0.00	0.00	0.00
3,200.00	10.72	159.000	3,174.47	-264.34	101.47	-100.69	0.00	0.00	0.00
3,300.00	10.72	159.000	3,272.73	-281.71	108.14	-107.31	0.00	0.00	0.00
3,400.00	10.72	159.000	3,370.98	-299.08	114.81	-113.93	0.00	0.00	0.00
3,500.00	10.72	159.000	3,469.24	-316.45	121.48	-120.54	0.00	0.00	0.00
3,600.00	10.72	159.000	3,567.49	-333.82	128.14	-127.16	0.00	0.00	0.00
3,700.00	10.72	159.000	3,665.74	-351.19	134.81	-133.78	0.00	0.00	0.00
3,800.00	10.72	159.000	3,764.00	-368.56	141.48	-140.39	0.00	0.00	0.00
3,900.00	10.72	159.000	3,862.25	-385.93	148.15	-147.01	0.00	0.00	0.00
4,000.00	10.72	159.000	3,960.50	-403.30	154.82	-153.63	0.00	0.00	0.00
4,100.00	10.72	159.000	4,058.76	-420.67	161.48	-160.24	0.00	0.00	0.00
4,200.00	10.72	159.000	4,058.70	-438.04	168.15	-166.86	0.00	0.00	0.00
4,200.00	10.72	159.000	4,157.01 4,255.27	-430.04 -455.41	174.82	-173.48	0.00	0.00	0.00
4,400.00	10.72	159.000	4,353.52	-472.78	181.49	-180.09	0.00	0.00	0.00
4,500.00	10.72	159.000	4,451.77	-490.16	188.16	-186.71	0.00	0.00	0.00
4,518.19	10.72	159.000	4,469.65	-493.32	189.37	-187.91	0.00	0.00	0.00
Begin 3°/100 4,600.00)' drop 8.27	159.000	4,550.33	-505.91	194.20	-192.71	3.00	-3.00	0.00
4,700.00	5.27	159.000	4,649.62	-516.92	194.20	-196.90	3.00	-3.00	0.00
	0.21	100.000		010.02	100.70	100.00	0.00	-0.00	0.00

2/22/2022 7:57:33AM

Database:	DB_Feb1422LT	Local Co-ordinate Reference:	Well MC-7 Com 655H
Company:	Enduring Resources LLC	TVD Reference:	RKB=7032+28 @ 7060.00ft
Project:	San Juan County, New Mexico NAD83 NM W	MD Reference:	RKB=7032+28 @ 7060.00ft
Site:	MC-7 Com (655, 657 & 659)	North Reference:	Grid
Well:	MC-7 Com 655H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Original Hole		
Design:	rev0		

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
4,800.00	2.27	159.000	4,749.39	-523.05	200.78	-199.24	3.00	-3.00	0.00
4,875.63	0.00	0.000	4,825.00	-524.45	201.32	-199.77	3.00	-3.00	0.00
Begin vertic	al hold								
4,900.00	0.00	0.000	4,849.37	-524.45	201.32	-199.77	0.00	0.00	0.00
5,000.00	0.00	0.000	4,949.37	-524.45	201.32	-199.77	0.00	0.00	0.00
5,100.00	0.00	0.000	5,049.37	-524.45	201.32	-199.77	0.00	0.00	0.00
5,122.69	0.00	0.000	5,072.06	-524.45	201.32	-199.77	0.00	0.00	0.00
Begin 10°/10		0.000	0,072.00	021.10	201.02	100.11	0.00	0.00	0.00
5,150.00	2.73	269.831	5,099.36	-524.45	200.67	-199.12	10.00	10.00	0.00
5,200.00	7.73	269.831	5,149.14	-524.47	196.11	-194.56	10.00	10.00	0.00
5,250.00	12.73	269.831	5,198.33	-524.49	187.23	-185.69	10.00	10.00	0.00
5,300.00	17.73	269.831	5,246.56	-524.53	174.10	-172.55	10.00	10.00	0.00
5,350.00	22.73	269.831	5,293.46	-524.58	156.82	-155.27	10.00	10.00	0.00
5,400.00	27.73	269.831	5,338.67	-524.64	135.51	-133.96	10.00	10.00	0.00
5,450.00	32.73	269.831	5,381.86	-524.72	110.34	-108.80	10.00	10.00	0.00
5,500.00	37.73	269.831	5,422.69	-524.80	81.51	-79.96	10.00	10.00	0.00
5,550.00	42.73	269.831	5,460.85	-524.90	49.23	-47.68	10.00	10.00	0.00
5,600.00	47.73	269.831	5,496.05	-525.00	13.74	-12.19	10.00	10.00	0.00
5,650.00	52.73	269.831	5,528.02	-525.12	-24.68	26.23	10.00	10.00	0.00
5,700.00	57.73	269.831	5,556.53	-525.24	-65.74	67.29	10.00	10.00	0.00
5,722.69	60.00	269.831	5,568.26	-525.30	-85.16	86.71	10.00	10.00	0.00
Begin 60.00		200.001	0,000.20	020.00	55.15	56.11	10.00	10.00	0.00
5,782.69	60.00	269.831	5,598.26	-525.45	-137.12	138.67	0.00	0.00	0.00
Begin 10°/10			-,				0.00	0.00	0.00
-									
5,800.00	61.73	269.831	5,606.68	-525.49	-152.24	153.79	10.00	10.00	0.00
5,850.00	66.73	269.831	5,628.41	-525.63	-197.25	198.80	10.00	10.00	0.00
5,900.00	71.73	269.831	5,646.14	-525.76	-243.99	245.54	10.00	10.00	0.00
5,950.00	76.73	269.831	5,659.72	-525.91	-292.09	293.64	10.00	10.00	0.00
6,000.00	81.73	269.831	5,669.06	-526.05	-341.20	342.75	10.00	10.00	0.00
6,050.00	86.73	269.831	5,674.09	-526.20	-390.93	392.48	10.00	10.00	0.00
6,087.42	90.47	269.831	5,675.00	-526.31	-428.33	429.88	10.00	10.00	0.00
Begin 90.47									
6,100.00	90.47	269.831	5,674.89	-526.34	-440.91	442.46	0.00	0.00	0.00
6,200.00	90.47	269.831	5,674.07	-526.64	-540.90	542.46	0.00	0.00	0.00
6,300.00	90.47	269.831	5,673.24	-526.93	-640.90	642.45	0.00	0.00	0.00
6,400.00	90.47	269.831	5,672.41	-527.23	-740.90	742.45	0.00	0.00	0.00
6,500.00	90.47	269.831	5,671.59	-527.52	-840.89	842.45	0.00	0.00	0.00
6,600.00	90.47	269.831	5,670.76	-527.81	-940.89	942.44	0.00	0.00	0.00
6,700.00	90.47	269.831	5,669.94	-528.11	-1,040.89	1,042.44	0.00	0.00	0.00
6,800.00	90.47	269.831	5,669.11	-528.40	-1,140.88	1,142.44	0.00	0.00	0.00
6 000 00	90.47	269.831	5 669 29	-528.70	-1 2/0 89	1,242.43	0.00	0.00	0.00
6,900.00 7.000.00		269.831	5,668.28 5,667.46	-528.70 -528.99	-1,240.88 -1,340.87	1,242.43	0.00	0.00	0.00
7,000.00 7,100.00	90.47 90.47	269.831	5,666.63	-528.99 -529.29	-1,340.87 -1,440.87	1,342.43	0.00	0.00	0.00
7,100.00	90.47	269.831	5,665.80	-529.29 -529.58	-1,440.87 -1,540.87	1,442.42	0.00	0.00	0.00
7,200.00	90.47	269.831	5,664.98	-529.56	-1,640.86	1,642.42	0.00	0.00	0.00
7,400.00	90.47	269.831	5,664.15	-530.17	-1,740.86	1,742.41	0.00	0.00	0.00
7,500.00	90.47	269.831	5,663.32	-530.46	-1,840.85	1,842.41	0.00	0.00	0.00
7,600.00	90.47	269.831	5,662.50	-530.76	-1,940.85	1,942.41	0.00	0.00	0.00
7,700.00	90.47	269.831	5,661.67	-531.05	-2,040.85	2,042.40	0.00	0.00	0.00
7,800.00	90.47	269.831	5,660.84	-531.35	-2,140.84	2,142.40	0.00	0.00	0.00
7,900.00	90.47	269.831	5,660.02	-531.64	-2,240.84	2,242.40	0.00	0.00	0.00
8,000.00	90.47	269.831	5,659.19	-531.93	-2,340.84	2,342.39	0.00	0.00	0.00
8,100.00	90.47	269.831	5,658.36	-532.23	-2,440.83	2,442.39	0.00	0.00	0.00
8,200.00	90.47	269.831	5,657.54	-532.52	-2,540.83	2,542.39	0.00	0.00	0.00

2/22/2022 7:57:33AM

.

Database:	DB_Feb1422LT	Local Co-ordinate Reference:	Well MC-7 Com 655H
Company:	Enduring Resources LLC	TVD Reference:	RKB=7032+28 @ 7060.00ft
Project:	San Juan County, New Mexico NAD83 NM W	MD Reference:	RKB=7032+28 @ 7060.00ft
Site:	MC-7 Com (655, 657 & 659)	North Reference:	Grid
Well:	MC-7 Com 655H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Original Hole		
Design:	rev0		

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
8,300.00	90.47	269.831	5,656.71	-532.82	-2,640.82	2,642.38	0.00	0.00	0.00
8,400.00	90.47	269.831	5,655.88	-533.11	-2,740.82	2,742.38	0.00	0.00	0.00
	90.47		5,655.06		,		0.00	0.00	0.00
8,500.00		269.831	,	-533.41	-2,840.82	2,842.38			
8,600.00	90.47	269.831	5,654.23	-533.70	-2,940.81	2,942.37	0.00	0.00	0.00
8,700.00	90.47	269.831	5,653.41	-533.99	-3,040.81	3,042.37	0.00	0.00	0.00
8,800.00	90.47	269.831	5,652.58	-534.29	-3,140.80	3,142.37	0.00	0.00	0.00
8,900.00	90.47	269.831	5,651.75	-534.58	-3,240.80	3,242.36	0.00	0.00	0.00
9,000.00	90.47	269.831	5,650.93	-534.88	-3,340.80	3,342.36	0.00	0.00	0.00
9,100.00	90.47	269.831	5,650.10	-535.17	-3,440.79	3,442.36	0.00	0.00	0.00
9,200.00	90.47	269.831	5,649.27	-535.47	-3,540.79	3,542.35	0.00	0.00	0.00
9,300.00	90.47	269.831	5,648.45	-535.76	-3,640.79	3,642.35	0.00	0.00	0.00
9,400.00	90.47	269.831	5,647.62	-536.05	-3,740.78	3,742.35	0.00	0.00	0.00
9,500.00	90.47	269.831	5,646.79	-536.35	-3,840.78	3,842.34	0.00	0.00	0.00
9,600.00	90.47	269.831	5,645.97	-536.64	-3,940.77	3,942.34	0.00	0.00	0.00
9,700.00	90.47	269.831	5,645.14	-536.94	-4,040.77	4,042.34	0.00	0.00	0.00
9,800.00	90.47	269.831	5,644.31	-537.23	-4,140.77	4,142.33	0.00	0.00	0.00
9,900.00	90.47	269.831	5,643.49	-537.53	-4,240.76	4,242.33	0.00	0.00	0.00
10,000.00	90.47	269.831	5,642.66	-537.82	-4,340.76	4,342.33	0.00	0.00	0.00
10,100.00	90.47	269.831	5,641.83	-538.11	-4,440.75	4,442.32	0.00	0.00	0.00
10,200.00	90.47	269.831	5,641.01	-538.41	-4,540.75	4,542.32	0.00	0.00	0.00
10,300.00	90.47	269.831	5,640.18	-538.70	-4,640.75	4,642.32	0.00	0.00	0.00
10,400.00	90.47	269.831	5,639.36	-539.00	-4.740.74	4,742.31	0.00	0.00	0.00
10,500.00	90.47	269.831	5,638.53	-539.29	-4,840.74	4,842.31	0.00	0.00	0.00
10,600.00	90.47	269.831	5,637.70	-539.59	-4,940.74	4,942.31	0.00	0.00	0.00
							0.00		
10,700.00	90.47	269.831	5,636.88	-539.88	-5,040.73	5,042.30		0.00	0.00
10,800.00	90.47	269.831	5,636.05	-540.17	-5,140.73	5,142.30	0.00	0.00	0.00
10,900.00	90.47	269.831	5,635.22	-540.47	-5,240.72	5,242.30	0.00	0.00	0.00
11,000.00	90.47	269.831	5,634.40	-540.76	-5,340.72	5,342.29	0.00	0.00	0.00
11,100.00	90.47	269.831	5,633.57	-541.06	-5,440.72	5,442.29	0.00	0.00	0.00
11,200.00	90.47	269.831	5,632.74	-541.35	-5,540.71	5,542.28	0.00	0.00	0.00
11,300.00	90.47	269.831	5,631.92	-541.65	-5,640.71	5,642.28	0.00	0.00	0.00
11,400.00	90.47	269.831	5,631.09	-541.94	-5,740.70	5,742.28	0.00	0.00	0.00
11,500.00	90.47	269.831	5,630.26	-542.23	-5,840.70	5,842.27	0.00	0.00	0.00
	90.47	269.831	5,629.44	-542.53	-5,940.70	5,942.27	0.00	0.00	0.00
11,600.00							0.00		
11,700.00	90.47	269.831	5,628.61	-542.82	-6,040.69	6,042.27		0.00	0.00
11,800.00	90.47	269.831	5,627.78	-543.12	-6,140.69	6,142.26	0.00	0.00	0.00
11,900.00	90.47	269.831	5,626.96	-543.41	-6,240.69	6,242.26	0.00	0.00	0.00
12,000.00	90.47	269.831	5,626.13	-543.71	-6,340.68	6,342.26	0.00	0.00	0.00
12,100.00	90.47	269.831	5,625.30	-544.00	-6,440.68	6,442.25	0.00	0.00	0.00
12,200.00	90.47	269.831	5,624.48	-544.29	-6,540.67	6,542.25	0.00	0.00	0.00
12,300.00	90.47	269.831	5,623.65	-544.59	-6,640.67	6,642.25	0.00	0.00	0.00
12,400.00	90.47	269.831	5,622.83	-544.88	-6,740.67	6,742.24	0.00	0.00	0.00
12,500.00	90.47	269.831	5,622.00	-545.18	-6,840.66	6,842.24	0.00	0.00	0.00
					,				
12,600.00	90.47	269.831	5,621.17	-545.47	-6,940.66	6,942.24	0.00	0.00	0.00
12,700.00	90.47	269.831	5,620.35	-545.77	-7,040.65	7,042.23	0.00	0.00	0.00
12,800.00	90.47	269.831	5,619.52	-546.06	-7,140.65	7,142.23	0.00	0.00	0.00
12,900.00	90.47	269.831	5,618.69	-546.35	-7,240.65	7,242.23	0.00	0.00	0.00
13,000.00	90.47	269.831	5,617.87	-546.65	-7,340.64	7,342.22	0.00	0.00	0.00
13,100.00	90.47	269.831	5,617.04	-546.94	-7,440.64	7,442.22	0.00	0.00	0.00
13,200.00	90.47	269.831	5,616.21	-547.24	-7,540.64	7,542.22	0.00	0.00	0.00
13,300.00	90.47	269.831	5,615.39	-547.53	-7,640.63	7,642.21	0.00	0.00	0.00
			5,614.56			7,742.21	0.00		
13,400.00	90.47	269.831	,	-547.83	-7,740.63			0.00	0.00
13,500.00 13,600.00	90.47	269.831	5,613.73	-548.12	-7,840.62	7,842.21	0.00	0.00	0.00
1300000	90.47	269.831	5,612.91	-548.41	-7,940.62	7,942.20	0.00	0.00	0.00

2/22/2022 7:57:33AM

.

Database: Company:	DB_Feb1422LT Enduring Resources LLC	Local Co-ordinate Reference: TVD Reference:	Well MC-7 Com 655H RKB=7032+28 @ 7060.00ft
Project:	San Juan County, New Mexico NAD83 NM W	MD Reference:	RKB=7032+28 @ 7060.00ft
Site: Well:	MC-7 Com (655, 657 & 659) MC-7 Com 655H	North Reference: Survey Calculation Method:	Grid Minimum Curvature
Wellbore:	Original Hole	ourvey ourculation method.	
Design:	rev0		

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
13,700.00	90.47	269.831	5,612.08	-548.71	-8,040.62	8,042.20	0.00	0.00	0.00
13,800.00	90.47	269.831	5,611.25	-549.00	-8,140.61	8,142.20	0.00	0.00	0.00
13,900.00	90.47	269.831	5,610.43	-549.30	-8,240.61	8,242.19	0.00	0.00	0.00
14,000.00	90.47	269.831	5,609.60	-549.59	-8,340.60	8,342.19	0.00	0.00	0.00
14,100.00	90.47	269.831	5,608.77	-549.88	-8,440.60	8,442.19	0.00	0.00	0.00
14,200.00	90.47	269.831	5,607.95	-550.18	-8,540.60	8,542.18	0.00	0.00	0.00
14,300.00	90.47	269.831	5,607.12	-550.47	-8,640.59	8,642.18	0.00	0.00	0.00
14,400.00	90.47	269.831	5,606.30	-550.77	-8,740.59	8,742.18	0.00	0.00	0.00
14,500.00	90.47	269.831	5,605.47	-551.06	-8,840.59	8,842.17	0.00	0.00	0.00
14,600.00	90.47	269.831	5,604.64	-551.36	-8,940.58	8,942.17	0.00	0.00	0.00
14,700.00	90.47	269.831	5,603.82	-551.65	-9,040.58	9,042.17	0.00	0.00	0.00
14,800.00	90.47	269.831	5,602.99	-551.94	-9,140.57	9,142.16	0.00	0.00	0.00
14,900.00	90.47	269.831	5,602.16	-552.24	-9,240.57	9,242.16	0.00	0.00	0.00
15,000.00	90.47	269.831	5,601.34	-552.53	-9,340.57	9,342.16	0.00	0.00	0.00
15,100.00	90.47	269.831	5,600.51	-552.83	-9,440.56	9,442.15	0.00	0.00	0.00
15,161.65	90.47	269.831	5,600.00	-553.01	-9,502.21	9,503.80	0.00	0.00	0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (ft)	+N/-S (ft)	+E/-W (ft)	Northing (usft)	Easting (usft)	Latitude	Longitude
MC-7 655 PBHL 755 FN - plan hits target cent - Point	0.00 ter	0.000	5,600.00	-553.01	-9,502.21	1,914,527.912	2,780,856.467	36.261458000	-107.637393000
MC-7 655 FTP 755 FNL - plan misses target o - Point	0.00 center by 0.01	0.000 ft at 6087.39	5,675.00 9ft MD (5675	-526.30 .00 TVD, -526	-428.30 6.31 N, -428.3	1,914,554.624 0 E)	2,789,930.364	36.261477000	-107.606614000

Casing Points							
	Measured Depth (ft)	Vertical Depth (ft)		Name	Casing Diameter (")	Hole Diameter (")	
	350.00 3,724.69		13 3/8" Csg 9 5/8" Csg		13-3/8 9-5/8	17-1/2 12-1/4	

Database:	DB_Feb1422LT	Local Co-ordinate Reference:	Well MC-7 Com 655H
Company:	Enduring Resources LLC	TVD Reference:	RKB=7032+28 @ 7060.00ft
Project:	San Juan County, New Mexico NAD83 NM W	MD Reference:	RKB=7032+28 @ 7060.00ft
Site:	MC-7 Com (655, 657 & 659)	North Reference:	Grid
Well:	MC-7 Com 655H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Original Hole		
Design:	rev0		

Formations

Measured Depth (ft)	Vertical Depth (ft)	Name	Lithology	Dip (°)	Dip Direction (°)	
1,380.00	1,380.00	Ojo Alamo				
1,520.00	1,520.00	Kirtland				
1,770.91	1,770.00	Fruitland				
2,065.72	2,060.00	Pictured Cliffs				
2,172.59	2,165.00	Lewis				
2,498.27	2,485.00	Chacra				
3,612.73	3,580.00	Cliff House				
3,622.91	3,590.00	Menefee				
4,457.48	4,410.00	Point Lookout				
4,690.34	4,640.00	Mancos				
5,045.63	4,995.00	Gallup (MNCS_A)				
5,130.63	5,080.00	MNCS_B				
5,241.48	5,190.00	MNCS_C				
5,303.62	5,250.00	 MNCS_Cms				
5,412.88	5,350.00	 MNCS_D				
5,535.40	5,450.00					
5,621.18		MNCS_F				
5,726.18	5,570.00	MNCS_G				
5,813.64		MNCS_H				
5,975.39	5,665.00					

Plan Annotations

Measured	Vertical	Local Coor	dinates	
Depth (ft)	Depth (ft)	+N/-S (ft)	+E/-W (ft)	Comment
1,500.00	1,500.00	0.00	0.00	KOP Begin 3°/100' build
1,857.43	1,855.35	-31.13	11.95	Begin 10.72° tangent
4,518.19	4,469.65	-493.32	189.37	Begin 3°/100' drop
4,875.63	4,825.00	-524.45	201.32	Begin vertical hold
5,122.69	5,072.06	-524.45	201.32	Begin 10°/100' build
5,722.69	5,568.26	-525.30	-85.16	Begin 60.00° tangent
5,782.69	5,598.26	-525.45	-137.12	Begin 10°/100' build
6,087.42	5,675.00	-526.31	-428.33	Begin 90.47° lateral
15,161.65	5,600.00	-553.01	-9,502.21	PBHL/TD 15161.65 MD 5600.00 TVD

Database: Company: Project: Site: Well: Wellbore: Design:	San Juan Co	sources LLC ounty, New Me 655, 657 & 659 655H	xico NAD83 NM W 9)	TVD Reference MD Reference North Referen):):	Well MC-7 Com RKB=7032+28 RKB=7032+28 Grid Minimum Curva	@ 7060.00ft @ 7060.00ft
Project	San Juan Co	unty, New Mex	ico NAD83 NM W				
Geo Datum:	US State Plane North Americar New Mexico W	n Datum 1983		System Datum	:	Mean Sea Level	
Site	MC-7 Com (6	55, 657 & 659))				
Site Position: From: Position Uncertainty:	Lat/Long	0.00 ft	Northing: Easting: Slot Radius:	1,915,080.9 2,790,358.6 13-3,	62 usft Longit		36.26292000 -107.60515700
Well	MC-7 Com 65	5H, Surf loc: 2	16 FNL 330 Fwl Sec	tion 05-T23N-R07W			
Well Position	+N/-S +E/-W	0.00 ft 0.00 ft	Northing: Easting:		5,080.920 usft 0,358.662 usft	Latitude: Longitude:	36.2629200 -107.6051570
Position Uncertainty Grid Convergence:		0.00 ft 0.13 °	Wellhead Ele	vation:	ft	Ground Level:	7,032.00 ft
Wellbore	Original Hole						
Magnetics	Model Na	ime	Sample Date	Declinatior (°)	ı	Dip Angle (°)	Field Strength (nT)
	IG	RF2020	2/21/2022		8.68	62.79	49,274.34381723
Design	rev0						
Audit Notes: Version:			Phase:	PLAN	Tie On De	oth:	0.00
Vertical Section:		Depth	From (TVD) (ft)	+N/-S (ft)	+E/-W (ft)	Dir	ection (°)
			0.00	0.00	0.00	26	9.831
Plan Survey Tool Pro Depth From (ft)	gram Depth To (ft)	Date 2/22 Survey (Welli		Tool Name	Rem	arks	
1 0.00	15,161.65	rev0 (Original	Hole)	MWD OWSG MWD - St	andard		

Database:	DB_Feb1422LT	Local Co-ordinate Reference:	Well MC-7 Com 655H
Company:	Enduring Resources LLC	TVD Reference:	RKB=7032+28 @ 7060.00ft
Project:	San Juan County, New Mexico NAD83 NM W	MD Reference:	RKB=7032+28 @ 7060.00ft
Site:	MC-7 Com (655, 657 & 659)	North Reference:	Grid
Well:	MC-7 Com 655H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Original Hole		
Design:	rev0		

Plan Sections

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)	TFO (°)	Target
0.00	0.00	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
1,500.00	0.00	0.000	1,500.00	0.00	0.00	0.00	0.00	0.00	0.00	
1,857.43	10.72	159.000	1,855.35	-31.13	11.95	3.00	3.00	0.00	159.00	
4,518.19	10.72	159.000	4,469.65	-493.32	189.37	0.00	0.00	0.00	0.00	
4,875.63	0.00	0.000	4,825.00	-524.45	201.32	3.00	-3.00	0.00	180.00	
5,122.69	0.00	0.000	5,072.06	-524.45	201.32	0.00	0.00	0.00	0.00	
5,722.69	60.00	269.831	5,568.26	-525.30	-85.16	10.00	10.00	0.00	269.83	
5,782.69	60.00	269.831	5,598.26	-525.45	-137.12	0.00	0.00	0.00	0.00	
6,087.42	90.47	269.831	5,675.00	-526.31	-428.33	10.00	10.00	0.00	0.00	
15,161.65	90.47	269.831	5,600.00	-553.01	-9,502.21	0.00	0.00	0.00	0.00	MC-7 655 PBHL 75

Planning Report - Geographic

Database:	DB_Feb1422LT	Local Co-ordinate Reference:	Well MC-7 Com 655H
Company:	Enduring Resources LLC	TVD Reference:	RKB=7032+28 @ 7060.00ft
Project:	San Juan County, New Mexico NAD83 NM W	MD Reference:	RKB=7032+28 @ 7060.00ft
Site:	MC-7 Com (655, 657 & 659)	North Reference:	Grid
Well:	MC-7 Com 655H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Original Hole		
Design:	rev0		

Planned Survey

(ft) (°) (°) (ft) (ft) (usft) (usft) Latitude	
	Longitude
0.00 0.00 0.00 0.00 0.00 1,915,080.920 2,790,358.662 36.262920000 100.00 0.00 100.00 0.00 0.00 1,915,080.920 2,790,358.662 36.262920000	-107.605157000 -107.605157000
100.00 0.00 0.00 100.00 0.00 0.00 1,915,080.920 2,790,358.662 36.262920000 200.00 0.00 0.00 0.00 0.00 1,915,080.920 2,790,358.662 36.262920000	-107.605157000
300.00 0.00 0.00 300.00 0.00 0.00 0.00	-107.605157000
400.00 0.00 0.00 400.00 0.00 0.00 0.00	-107.605157000
500.00 0.00 0.000 500.00 0.00 0.00 0.00	-107.605157000
600.00 0.00 0.000 600.00 0.00 0.00 1,915,080.920 2,790,358.662 36.262920000	-107.605157000
700.00 0.00 700.00 0.00 0.00 0.00 1,915,080.920 2,790,358.662 36.262920000	-107.605157000
800.00 0.00 800.00 0.00 0.00 0.00 1,915,080.920 2,790,358.662 36.262920000	-107.605157000
900.00 0.00 900.00 0.00 0.00 1,915,080.920 2,790,358.662 36.262920000	-107.605157000
1,000.00 0.00 1,000.00 0.00 0.00 0.00 1,915,080.920 2,790,358.662 36.262920000	-107.605157000
1,100.00 0.00 1,100.00 0.00 0.00 1,915,080.920 2,790,358.662 36.262920000	-107.605157000
1,200.00 0.00 0.000 1,200.00 0.00 0.00 1,915,080.920 2,790,358.662 36.262920000	-107.605157000
1,300.00 0.00 1,300.00 0.00 1,915,080.920 2,790,358.662 36.262920000	-107.605157000
1,400.00 0.00 0.000 1,400.00 0.00 0.00 1,915,080.920 2,790,358.662 36.262920000	-107.605157000
1,500.00 0.00 0.000 1,500.00 0.00 0.00 1,915,080.920 2,790,358.662 36.262920000	-107.605157000
KOP Begin 3°/100' build	
1,600.00 3.00 159.000 1,599.95 -2.44 0.94 1,915,078.476 2,790,359.600 36.262913281	-107.605153838
1,700.00 6.00 159.000 1,699.63 -9.77 3.75 1,915,071.152 2,790,362.412 36.262893144	-107.605144360
1,800.00 9.00 159.000 1,798.77 -21.95 8.43 1,915,058.968 2,790,367.089 36.262859643	-107.605128592
1,857.43 10.72 159.000 1,855.35 -31.13 11.95 1,915,049.785 2,790,370.614 36.262834394	-107.605116709
Begin 10.72° tangent	
1,900.00 10.72 159.000 1,897.17 -38.53 14.79 1,915,042.391 2,790,373.452 36.262814064	-107.605107140
2,000.00 10.72 159.000 1,995.43 -55.90 21.46 1,915,025.021 2,790,380.120 36.262766304	-107.605084661
2,100.00 10.72 159.000 2,093.68 -73.27 28.13 1,915,007.651 2,790,386.788 36.262718544	-107.605062182
2,200.00 10.72 159.000 2,191.94 -90.64 34.79 1,914,990.281 2,790,393.456 36.262670784	-107.605039703
2,300.00 10.72 159.000 2,290.19 -108.01 41.46 1,914,972.911 2,790,400.124 36.262623024	-107.605017224
2,400.00 10.72 159.000 2,388.44 -125.38 48.13 1,914,955.540 2,790,406.792 36.262575264	-107.604994745
2,500.00 10.72 159.000 2,486.70 -142.75 54.80 1,914,938.170 2,790,413.459 36.262527504	-107.604972266
2,600.00 10.72 159.000 2,584.95 -160.12 61.47 1,914,920.800 2,790,420.127 36.262479744	-107.604949787
2,700.00 10.72 159.000 2,683.20 -177.49 68.13 1,914,903.430 2,790,426.795 36.262431984	-107.604927308
2,800.00 10.72 159.000 2,781.46 -194.86 74.80 1,914,886.059 2,790,433.463 36.262384224	-107.604904829
2,900.00 10.72 159.000 2,879.71 -212.23 81.47 1,914,868.689 2,790,440.131 36.262336464	-107.604882350
3,000.00 10.72 159.000 2,977.97 -229.60 88.14 1,914,851.319 2,790,446.799 36.262288703	-107.604859871
3,100.00 10.72 159.000 3,076.22 -246.97 94.80 1,914,833.949 2,790,453.467 36.262240943 3,200.00 10.72 159.000 3,174.47 -264.34 101.47 1,914,816.579 2,790,460.135 36.262193183	-107.604837392
	-107.604814914
3,300.00 10.72 159.000 3,272.73 -281.71 108.14 1,914,799.208 2,790,466.803 36.262145423 3,400.00 10.72 159.000 3,370.98 -299.08 114.81 1,914,781.838 2,790,473.470 36.262097663	-107.604792435 -107.604769956
3,500.00 10.72 159.000 3,469.24 -316.45 121.48 1,914,764.468 2,790,480.138 36.262049903	-107.604747478
3,600.00 10.72 159.000 3,567.49 -333.82 128.14 1,914,747.098 2,790,486.806 36.262002143	-107.604724999
3,700.00 10.72 159.000 3,665.74 -351.19 134.81 1,914,729.727 2,790,493.474 36.261954382	-107.604702520
3,800.00 10.72 159.000 3,764.00 -368.56 141.48 1,914,712.357 2,790,500.142 36.261906622	-107.604680042
3,900.00 10.72 159.000 3,862.25 -385.93 148.15 1,914,694.987 2,790,506.810 36.261858862	-107.604657563
4,000.00 10.72 159.000 3,960.50 -403.30 154.82 1,914,677.617 2,790,513.478 36.261811102	-107.604635084
4,100.00 10.72 159.000 4,058.76 -420.67 161.48 1,914,660.247 2,790,520.146 36.261763342	-107.604612606
4,200.00 10.72 159.000 4,157.01 -438.04 168.15 1,914,642.876 2,790,526.814 36.261715582	-107.604590127
4,300.00 10.72 159.000 4,255.27 -455.41 174.82 1,914,625.506 2,790,533.481 36.261667821	-107.604567649
4,400.00 10.72 159.000 4,353.52 -472.78 181.49 1,914,608.136 2,790,540.149 36.261620061	-107.604545170
4,500.00 10.72 159.000 4,451.77 -490.16 188.16 1,914,590.766 2,790,546.817 36.261572301	-107.604522692
4,518.19 10.72 159.000 4,469.65 -493.32 189.37 1,914,587.605 2,790,548.030 36.261563611	-107.604518602
Begin 3°/100' drop	
4,600.00 8.27 159.000 4,550.33 -505.91 194.20 1,914,575.007 2,790,552.867 36.261528971	-107.604502299
4,700.00 5.27 159.000 4,649.62 -516.92 198.43 1,914,564.004 2,790,557.090 36.261498720	-107.604488061
4,800.00 2.27 159.000 4,749.39 -523.05 200.78 1,914,557.869 2,790,559.445 36.261481849	-107.604480121

2/22/2022 7:57:55AM

Planning Report - Geographic

	Database:	DB_Feb1422LT	Local Co-ordinate Reference:	Well MC-7 Com 655H
	Company:	Enduring Resources LLC	TVD Reference:	RKB=7032+28 @ 7060.00ft
	Project:	San Juan County, New Mexico NAD83 NM W	MD Reference:	RKB=7032+28 @ 7060.00ft
	Site:	MC-7 Com (655, 657 & 659)	North Reference:	Grid
	Well:	MC-7 Com 655H	Survey Calculation Method:	Minimum Curvature
	Wellbore:	Original Hole		
	Design:	rev0		
- 3				

Planned Survey

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
4,875.63	0.00	0.000	4,825.00	-524.45	201.32	1,914,556.471	2,790,559.982	36.261478006	-107.604478312
4,900.00	ertical hold 0.00	0.000	4,849.37	-524.45	201.32	1,914,556.471	2,790,559.982	36.261478006	-107.604478312
5,000.00	0.00	0.000	4,949.37	-524.45	201.32	1,914,556.471	2,790,559.982	36.261478006	-107.604478312
5,100.00	0.00	0.000	5,049.37	-524.45	201.32	1,914,556.471	2,790,559.982	36.261478006	-107.604478312
5,122.69		0.000	5,072.06	-524.45	201.32	1,914,556.471	2,790,559.982	36.261478006	-107.604478312
Begin 10)°/100' build								
5,150.00	2.73	269.831	5,099.36	-524.45	200.67	1,914,556.469	2,790,559.331	36.261478005	-107.604480520
5,200.00	7.73	269.831	5,149.14	-524.47	196.11	1,914,556.456	2,790,554.774	36.261477998	-107.604495978
5,250.00	12.73	269.831	5,198.33	-524.49	187.23	1,914,556.429	2,790,545.896	36.261477983	-107.604526093
5,300.00	17.73	269.831	5,246.56	-524.53	174.10	1,914,556.391	2,790,532.764	36.261477962	-107.604570636
5,350.00	22.73 27.73	269.831	5,293.46	-524.58	156.82	1,914,556.340	2,790,515.479	36.261477934	-107.604629267
5,400.00 5,450.00	32.73	269.831 269.831	5,338.67 5,381.86	-524.64 -524.72	135.51 110.34	1,914,556.277 1,914,556.203	2,790,494.172 2,790,469.006	36.261477900 36.261477859	-107.604701540 -107.604786906
5,500.00	37.73	269.831	5,422.69	-524.72	81.51	1,914,556.118	2,790,440.171	36.261477812	-107.604884713
5,550.00	42.73	269.831	5,460.85	-524.90	49.23	1,914,556.022	2,790,407.888	36.261477760	-107.604994219
5,600.00	47.73	269.831	5,496.05	-525.00	13.74	1,914,555.918	2,790,372.402	36.261477702	-107.605114590
5,650.00	52.73	269.831	5,528.02	-525.12	-24.68	1,914,555.804	2,790,333.983	36.261477639	-107.605244909
5,700.00	57.73	269.831	5,556.53	-525.24	-65.74	1,914,555.683	2,790,292.923	36.261477572	-107.605384185
5,722.69	60.00	269.831	5,568.26	-525.30	-85.16	1,914,555.626	2,790,273.505	36.261477540	-107.605450053
Begin 60	0.00° tangent								
5,782.69		269.831	5,598.26	-525.45	-137.12	1,914,555.473	2,790,221.544	36.261477455	-107.605626307
)°/100' build								
5,800.00	61.73	269.831	5,606.68	-525.49	-152.24	1,914,555.428	2,790,206.422	36.261477430	-107.605677599
5,850.00	66.73	269.831	5,628.41	-525.63	-197.25	1,914,555.295	2,790,161.409	36.261477356	-107.605830286
5,900.00 5,950.00	71.73 76.73	269.831 269.831	5,646.14	-525.76 -525.91	-243.99 -292.09	1,914,555.158	2,790,114.673	36.261477279	-107.605988815 -107.606151982
6,000.00	81.73	269.831	5,659.72 5,669.06	-526.05	-292.09	1,914,555.016 1,914,554.871	2,790,066.570 2,790,017.467	36.261477199 36.261477118	-107.606318543
6,050.00	86.73	269.831	5,674.09	-526.20	-390.93	1,914,554.725	2,789,967.736	36.261477036	-107.606487231
6,087.42	90.47	269.831	5,675.00	-526.31	-428.33	1,914,554.615	2,789,930.331	36.261476974	-107.606614110
Begin 90).47° lateral								
6,100.00	90.47	269.831	5,674.89	-526.34	-440.91	1,914,554.578	2,789,917.755	36.261476954	-107.606656770
6,200.00	90.47	269.831	5,674.07	-526.64	-540.90	1,914,554.283	2,789,817.759	36.261476788	-107.606995960
6,300.00	90.47	269.831	5,673.24	-526.93	-640.90	1,914,553.989	2,789,717.763	36.261476620	-107.607335150
6,400.00	90.47	269.831	5,672.41	-527.23	-740.90	1,914,553.695	2,789,617.766	36.261476452	-107.607674340
6,500.00	90.47	269.831	5,671.59	-527.52	-840.89	1,914,553.401	2,789,517.770	36.261476284	-107.608013530
6,600.00	90.47	269.831	5,670.76	-527.81	-940.89	1,914,553.106	2,789,417.774	36.261476114	-107.608352720
6,700.00 6,800.00	90.47 90.47	269.831 269.831	5,669.94 5,669.11	-528.11 -528.40	-1,040.89 -1,140.88	1,914,552.812 1,914,552.518	2,789,317.778 2,789,217.782	36.261475943 36.261475771	-107.608691910 -107.609031100
6,900.00	90.47	269.831	5,668.28	-528.70	-1,240.88	1,914,552.224	2,789,117.786	36.261475598	-107.609370290
7,000.00	90.47	269.831	5,667.46	-528.99	-1,340.87	1,914,551.929	2,789,017.790	36.261475424	-107.609709479
7,100.00		269.831	5,666.63	-529.29	-1,440.87	1,914,551.635	2,788,917.794	36.261475250	-107.610048669
7,200.00	90.47	269.831	5,665.80	-529.58	-1,540.87	1,914,551.341	2,788,817.798	36.261475074	-107.610387859
7,300.00	90.47	269.831	5,664.98	-529.87	-1,640.86	1,914,551.046	2,788,717.802	36.261474897	-107.610727049
7,400.00	90.47	269.831	5,664.15	-530.17	-1,740.86	1,914,550.752	2,788,617.806	36.261474720	-107.611066239
7,500.00	90.47	269.831	5,663.32	-530.46	-1,840.85	1,914,550.458	2,788,517.810	36.261474541	-107.611405429
7,600.00	90.47	269.831	5,662.50	-530.76	-1,940.85	1,914,550.164	2,788,417.815	36.261474362	-107.611744619
7,700.00	90.47	269.831	5,661.67	-531.05	-2,040.85	1,914,549.869	2,788,317.819	36.261474181	-107.612083809
7,800.00	90.47	269.831	5,660.84	-531.35	-2,140.84	1,914,549.575	2,788,217.823	36.261474000	-107.612422999
7,900.00	90.47	269.831	5,660.02	-531.64	-2,240.84	1,914,549.281	2,788,117.827	36.261473817	-107.612762189
8,000.00	90.47	269.831	5,659.19	-531.93	-2,340.84	1,914,548.987	2,788,017.831	36.261473634	-107.613101378
8,100.00 8,200.00	90.47 90.47	269.831 269.831	5,658.36 5,657.54	-532.23	-2,440.83 -2,540.83	1,914,548.692	2,787,917.835 2,787,817.839	36.261473449 36.261473264	-107.613440568 -107.613779758
8,200.00 8,300.00	90.47 90.47	269.831	5,657.54 5,656.71	-532.52 -532.82	-2,540.83 -2,640.82	1,914,548.398 1,914,548.104	2,787,717.843	36.261473078	-107.614118948
0,000.00	30.47	200.001	0,000.71	-002.02	-2,0-10.02	1,017,070.104	2,101,111.040	00.2017/00/0	-107.014110340

2/22/2022 7:57:55AM

Planning Report - Geographic

Database:	DB_Feb1422LT	Local Co-ordinate Reference:	Well MC-7 Com 655H
Company:	Enduring Resources LLC	TVD Reference:	RKB=7032+28 @ 7060.00ft
Project:	San Juan County, New Mexico NAD83 NM W	MD Reference:	RKB=7032+28 @ 7060.00ft
Site:	MC-7 Com (655, 657 & 659)	North Reference:	Grid
Well:	MC-7 Com 655H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Original Hole		
Design:	rev0		

Planned Survey

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
8,400.00	90.47	269.831	5,655.88	-533.11	-2,740.82	1,914,547.810	2,787,617.847	36.261472891	-107.614458138
8,500.00	90.47	269.831	5,655.06	-533.41	-2,840.82	1,914,547.515	2,787,517.851	36.261472702	-107.614797328
8,600.00	90.47	269.831	5,654.23	-533.70	-2,940.81	1,914,547.221	2,787,417.855	36.261472513	-107.615136518
8,700.00	90.47	269.831	5,653.41	-533.99	-3,040.81	1,914,546.927	2,787,317.859	36.261472323	-107.615475708
8,800.00	90.47	269.831	5,652.58	-534.29	-3,140.80	1,914,546.632	2,787,217.863	36.261472132	-107.615814898
8,900.00	90.47	269.831	5,651.75	-534.58	-3,240.80	1,914,546.338	2,787,117.867	36.261471940	-107.616154088
9,000.00	90.47	269.831	5,650.93	-534.88	-3,340.80	1,914,546.044	2,787,017.871	36.261471747	-107.616493278
9,100.00	90.47	269.831	5,650.10	-535.17	-3,440.79	1,914,545.750	2,786,917.875	36.261471553	-107.616832468
9,200.00		269.831	5,649.27	-535.47	-3,540.79	1,914,545.455	2,786,817.879	36.261471358	-107.617171658
9,300.00		269.831	5,648.45	-535.76	-3,640.79	1,914,545.161	2,786,717.883	36.261471162	-107.617510848
9,400.00		269.831	5,647.62	-536.05	-3,740.78	1,914,544.867	2,786,617.888	36.261470965	-107.617850038
9,500.00		269.831	5,646.79	-536.35	-3,840.78	1,914,544.573	2,786,517.892	36.261470768	-107.618189228
9,600.00	90.47	269.831	5,645.97	-536.64	-3,940.77	1,914,544.278	2,786,417.896	36.261470569	-107.618528418
9,700.00		269.831	5,645.14	-536.94	-4,040.77	1,914,543.984	2,786,317.900	36.261470369	-107.618867609
9,800.00		269.831	5,644.31	-537.23	-4,140.77	1,914,543.690	2,786,217.904	36.261470168	-107.619206799
9,900.00	90.47	269.831	5,643.49	-537.53	-4,240.76	1,914,543.395	2,786,117.908	36.261469967	-107.619545989
10,000.00		269.831	5,642.66	-537.82	-4,340.76	1,914,543.101	2,786,017.912	36.261469764	-107.619885179
10,100.00	90.47	269.831	5,641.83	-538.11	-4,440.75	1,914,542.807	2,785,917.916	36.261469561	-107.620224369
10,200.00		269.831	5,641.01	-538.41	-4,540.75	1,914,542.513	2,785,817.920	36.261469356	-107.620563559
10,300.00		269.831	5,640.18	-538.70 -539.00	-4,640.75	1,914,542.218 1,914,541.924	2,785,717.924	36.261469151	-107.620902749
10,400.00 10,500.00	90.47 90.47	269.831 269.831	5,639.36 5,638.53	-539.00	-4,740.74 -4,840.74	, ,	2,785,617.928	36.261468944	-107.621241939 -107.621581129
10,600.00		269.831	5,637.70	-539.29	-4,840.74 -4,940.74	1,914,541.630	2,785,517.932 2,785,417.936	36.261468737 36.261468528	-107.621920319
10,700.00	90.47	269.831	5,636.88	-539.88	-4,940.74 -5,040.73	1,914,541.336 1,914,541.041	2,785,317.940	36.261468319	-107.622259509
10,800.00		269.831	5,636.05	-540.17	-5,140.73	1,914,540.747	2,785,217.944	36.261468109	-107.622598699
10,900.00		269.831	5,635.22	-540.47	-5,240.72	1,914,540.453	2,785,117.948	36.261467897	-107.622937889
11,000.00		269.831	5,634.40	-540.76	-5,340.72	1,914,540.158	2,785,017.952	36.261467685	-107.623277079
11,100.00		269.831	5,633.57	-541.06	-5,440.72	1,914,539.864	2,784,917.956	36.261467472	-107.623616269
11,200.00	90.47	269.831	5,632.74	-541.35	-5,540.71	1,914,539.570	2,784,817.960	36.261467258	-107.623955460
11,300.00		269.831	5,631.92	-541.65	-5,640.71	1,914,539.276	2,784,717.965	36.261467043	-107.624294650
11,400.00		269.831	5,631.09	-541.94	-5,740.70	1,914,538.981	2,784,617.969	36.261466827	-107.624633840
11,500.00	90.47	269.831	5,630.26	-542.23	-5,840.70	1,914,538.687	2,784,517.973	36.261466609	-107.624973030
11,600.00		269.831	5,629.44	-542.53	-5,940.70	1,914,538.393	2,784,417.977	36.261466391	-107.625312220
11,700.00	90.47	269.831	5,628.61	-542.82	-6,040.69	1,914,538.099	2,784,317.981	36.261466173	-107.625651410
11,800.00	90.47	269.831	5,627.78	-543.12	-6,140.69	1,914,537.804	2,784,217.985	36.261465953	-107.625990600
11,900.00	90.47	269.831	5,626.96	-543.41	-6,240.69	1,914,537.510	2,784,117.989	36.261465732	-107.626329790
12,000.00	90.47	269.831	5,626.13	-543.71	-6,340.68	1,914,537.216	2,784,017.993	36.261465510	-107.626668980
12,100.00	90.47	269.831	5,625.30	-544.00	-6,440.68	1,914,536.921	2,783,917.997	36.261465287	-107.627008171
12,200.00	90.47	269.831	5,624.48	-544.29	-6,540.67	1,914,536.627	2,783,818.001	36.261465063	-107.627347361
12,300.00	90.47	269.831	5,623.65	-544.59	-6,640.67	1,914,536.333	2,783,718.005	36.261464838	-107.627686551
12,400.00	90.47	269.831	5,622.83	-544.88	-6,740.67	1,914,536.039	2,783,618.009	36.261464613	-107.628025741
12,500.00	90.47	269.831	5,622.00	-545.18	-6,840.66	1,914,535.744	2,783,518.013	36.261464386	-107.628364931
12,600.00	90.47	269.831	5,621.17	-545.47	-6,940.66	1,914,535.450	2,783,418.017	36.261464158	-107.628704121
12,700.00	90.47	269.831	5,620.35	-545.77	-7,040.65	1,914,535.156	2,783,318.021	36.261463930	-107.629043311
12,800.00	90.47	269.831	5,619.52	-546.06	-7,140.65	1,914,534.862	2,783,218.025	36.261463700	-107.629382501
12,900.00		269.831	5,618.69	-546.35	-7,240.65	1,914,534.567	2,783,118.029	36.261463470	-107.629721692
13,000.00		269.831	5,617.87	-546.65	-7,340.64	1,914,534.273	2,783,018.033	36.261463238	-107.630060882
13,100.00	90.47	269.831	5,617.04	-546.94	-7,440.64	1,914,533.979	2,782,918.037	36.261463006	-107.630400072
13,200.00		269.831	5,616.21	-547.24	-7,540.64	1,914,533.685	2,782,818.042	36.261462773	-107.630739262
13,300.00	90.47	269.831	5,615.39	-547.53	-7,640.63	1,914,533.390	2,782,718.046	36.261462538	-107.631078452
13,400.00		269.831	5,614.56	-547.83	-7,740.63	1,914,533.096	2,782,618.050	36.261462303	-107.631417642
13,500.00		269.831	5,613.73	-548.12	-7,840.62	1,914,532.802	2,782,518.054	36.261462067	-107.631756832
13,600.00	90.47	269.831	5,612.91	-548.41	-7,940.62	1,914,532.507	2,782,418.058	36.261461829	-107.632096023
13,700.00	90.47 90.47	269.831 269.831	5,612.08	-548.71 -549.00	-8,040.62	1,914,532.213	2,782,318.062	36.261461591	-107.632435213
13,800.00	90.47	203.031	5,611.25	-049.00	-8,140.61	1,914,531.919	2,782,218.066	36.261461352	-107.632774403

2/22/2022 7:57:55AM

Planning Report - Geographic

Database:	DB_Feb1422LT	Local Co-ordinate Reference:	Well MC-7 Com 655H
Company:	Enduring Resources LLC	TVD Reference:	RKB=7032+28 @ 7060.00ft
Project:	San Juan County, New Mexico NAD83 NM W	MD Reference:	RKB=7032+28 @ 7060.00ft
Site:	MC-7 Com (655, 657 & 659)	North Reference:	Grid
Well:	MC-7 Com 655H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Original Hole		
Design:	rev0		

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
13,900.00	90.47	269.831	5,610.43	-549.30	-8,240.61	1,914,531.625	2,782,118.070	36.261461112	-107.633113593
14,000.00	90.47	269.831	5,609.60	-549.59	-8,340.60	1,914,531.330	2,782,018.074	36.261460871	-107.633452783
14,100.00	90.47	269.831	5,608.77	-549.88	-8,440.60	1,914,531.036	2,781,918.078	36.261460629	-107.633791973
14,200.00	90.47	269.831	5,607.95	-550.18	-8,540.60	1,914,530.742	2,781,818.082	36.261460386	-107.634131164
14,300.00	90.47	269.831	5,607.12	-550.47	-8,640.59	1,914,530.448	2,781,718.086	36.261460142	-107.634470354
14,400.00	90.47	269.831	5,606.30	-550.77	-8,740.59	1,914,530.153	2,781,618.090	36.261459897	-107.634809544
14,500.00	90.47	269.831	5,605.47	-551.06	-8,840.59	1,914,529.859	2,781,518.094	36.261459651	-107.635148734
14,600.00	90.47	269.831	5,604.64	-551.36	-8,940.58	1,914,529.565	2,781,418.098	36.261459404	-107.635487924
14,700.00	90.47	269.831	5,603.82	-551.65	-9,040.58	1,914,529.270	2,781,318.102	36.261459156	-107.635827114
14,800.00	90.47	269.831	5,602.99	-551.94	-9,140.57	1,914,528.976	2,781,218.106	36.261458907	-107.636166305
14,900.00	90.47	269.831	5,602.16	-552.24	-9,240.57	1,914,528.682	2,781,118.110	36.261458658	-107.636505495
15,000.00	90.47	269.831	5,601.34	-552.53	-9,340.57	1,914,528.388	2,781,018.114	36.261458407	-107.636844685
15,100.00	90.47	269.831	5,600.51	-552.83	-9,440.56	1,914,528.093	2,780,918.119	36.261458155	-107.637183875
15,161.65	90.47	269.831	5,600.00	-553.01	-9,502.21	1,914,527.912	2,780,856.467	36.261458000	-107.637393000
PBHL/TD	15161.65 MD	5600.00 TVE)						

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (ft)	+N/-S (ft)	+E/-W (ft)	Northing (usft)	Easting (usft)	Latitude	Longitude
MC-7 655 PBHL 755 FN - plan hits target cent - Point	0.00 ter	0.000	5,600.00	-553.01	-9,502.21	1,914,527.912	2,780,856.467	36.261458000	-107.637393000
MC-7 655 FTP 755 FNL - plan misses target o - Point	0.00 center by 0.01	0.000 ft at 6087.39	5,675.00 9ft MD (5675	-526.30 0.00 TVD, -526	-428.30 3.31 N, -428.3	1,914,554.624 0 E)	2,789,930.364	36.261477000	-107.606614000

Casing Points							
	Measured Depth (ft)	Vertical Depth (ft)		Name	Casing Diameter (")	Hole Diameter (")	
	350.00	350.00	13 3/8" Csg		13-3/8	17-1/2	
	3,724.69	3,690.00	9 5/8" Csg		9-5/8	12-1/4	

In Reply Refer To: 3162.3-1(NMF0110)

United States Department of the Interior

BUREAU OF LAND MANAGEMENT Farmington District Office 6251 College Blvd, Suite A Farmington, New Mexico 87402

* ENDURING RESOURCES LLC

#655H MC 7 COM

Lease: NMNM023050 Agreement: TBD SH: Lot 8 Section 5, T. 23 N., R. 7 W. San Juan County, New Mexico BH: Lot 3 Section 1, T. 23 N., R. 8 W. San Juan County, New Mexico *Above Data Required on Well Sign

<u>GENERAL REQUIREMENTS FOR</u> OIL AND GAS OPERATIONS ON FEDERAL AND INDIAN LEASES

The following special requirements apply and are effective when checked:

- A. \boxtimes Note all surface/drilling conditions of approval attached.
- B. The required wait on cement (WOC) time will be a minimum of 500 psi compressive strength at 60 degrees. Blowout preventor (BOP) nipple-up operations may then be initiated
- C. Test the surface casing to a minimum of _____ psi for 30 minutes.
- D. Test all casing strings below the surface casing to .22 psi/ft. of casing string length or 1500 psi, whichever is greater, but not to exceed 70% of the minimum internal yield burst) for a minimum of 30 minutes.
- E. Communitization Agreement covering the acreage dedicated to this well must be filed for approval with the Bureau of Land Management, New Mexico State Office, Reservoir Management Group, 301 Dinosaur Trail, Santa Fe, New Mexico 87508.
 The effective date of the agreement must be **prior** to any sales.
- F. The use of co-flex hose is authorized contingent upon the following: **1.** From the BOP to the choke manifold: the co-flex hose must be hobbled on both ends and saddle to prevent whip.
 - **2.** From the choke manifold to the discharge tank: the co-flex hoses must be as straight as practical, hobbled on both ends and anchored to prevent whip.
 - 3. The co-flex hose pressure rating must be at least commensurate with approved BOPE.

INTERIOR REGION 7 • UPPER COLORADO BASIN

COLORADO, NEW MEXICO, UTAH, WYOMING

I. <u>GENERAL</u>

- A. Full compliance with all applicable laws and regulations, with the approved Permit to drill, and with the approved Surface Use and Operations Plan is required. Lessees and/or operators are fully accountable for the actions of their contractors and subcontractors. Failure to comply with these requirements and the filing of required reports will result in strict enforcement pursuant to 43 CFR 3163.1 or 3163.2.
- B. Each well shall have a well sign in legible condition from spud date to final abandonment. The sign should show the operator's name, lease serial number, or unit name, well number, location of the well, and whether lease is Tribal or Allotted, (See 43 CFR 3162.6(b)).
- C. A complete copy of the approved Application for Permit to Drill, along with any conditions of approval, shall be available to authorized personnel at the drill site whenever active drilling operations are under way.
- D. For Wildcat wells only, a drilling operations progress report is to be submitted, to the BLM-Field Office, weekly from the spud date until the well is completed and the Well Completion Report is filed. The report should be on $8-1/2 \times 11$ inch paper, and each page should identify the well by; operator's name, well number, location and lease number.
- E. As soon as practical, notice is required of all blowouts, fires and accidents involving life-threatening injuries or loss of life. (See NTL-3A).
- F. BOP equipment (except the annular preventer) shall be tested utilizing a test plug to full working pressure for 10 minutes. No bleed-off of pressure is acceptable. (See 43 CFR 3172.6(b)(9)(ii)).
- G. The operator shall have sufficient weighting materials and lost circulation materials on location in the event of a pressure kick or in the event of lost circulation. (See 43 CFR 3172.8(a)).
- H. The flare line(s) discharge shall be located not less than 100 feet from the well head, having straight lines unless turns are targeted with running tees, and shall be positioned downwind of the prevailing wind direction and shall be anchored. The flare system shall have an effective method for ignition. Where noncombustible gas is likely or expected to be vented, the system shall be provided supplemental fuel for ignition and to maintain a continuous flare. (See 43 CFR 3172.8(b)(7)).
- I. Prior approval by the BLM-Authorized Office (Drilling and Production Section) is required for variance from the approved drilling program and before commencing plugging operations, plug back work, casing repair work, corrective cementing operations, or suspending drilling operations indefinitely. Emergency approval may be obtained orally, but such approval is contingent upon filing of a Notice of Intent sundry within three business days. Any changes to the approved plan or any questions regarding drilling operations should be directed to BLM during regular business hours at 505-564-7600. Emergency program changes after hours should be directed to Virgil Lucero at 505-793-1836.
- J. The Inspection and Enforcement Section (I&E), phone number (505-564-7750) is to be notified at least 24 hours in advance of BOP test, spudding, cementing, or plugging operations so that a BLM representative may witness the operations.
- K. Unless drilling operations are commenced within three years according to 43 CFR 3171.14, approval of the Application for Permit to Drill will expire. No extensions will be granted.

- L. From the time drilling operations are initiated and until drilling operations are completed, a member of the drilling crew or the tool pusher shall maintain rig surveillance at all times, unless the well is secured with blowout preventers or cement plugs.
- M. If for any reason, drilling operations are suspended for more than 90 days, a written notice must be provided to this office outlining your plans for this well.
- N. **Commingling**: No production (oil, gas, and water) from the subject well should start until Sundry Notices (if necessary) granting variances from applicable regulations as related to commingling and off-lease measurement are approved by this office. (See 43 CFR 3173.14)

II. <u>REPORTING REQUIREMENTS</u>

- A. For reporting purposes, all well Sundry notices, well completion and other well actions shall be referenced by the appropriate lease, communitization agreement and/or unit agreement numbers.
- B. The following reports shall be filed with the BLM-Authorized Officer online through AFMSS 2 within 30 days after the work is completed.
 - 1. Provide complete information concerning.
 - a. Setting of each string of casing. Show size and depth of hole, grade and weight of casing, depth set, depth of all cementing tools that are used, amount (in cubic feet) and types of cement used, whether cement circulated to surface and all cement tops in the casing annulus, casing test method and results, and the date work was done. Show spud date on first report submitted.
 - b. Intervals tested, perforated (include size, number and location of perforations), acidized, or fractured; and results obtained. Provide date work was done on well completion report and completion sundry notice.
 - c. Subsequent Report of Abandonment, show the way the well was plugged, including depths where casing was cut and pulled, intervals (by depths) where cement plugs were replaced, and dates of the operations.
 - 2. Well Completion Report will be submitted with 30 days after well has been completed.
 - a. Initial Bottom Hole Pressure (BHP) for the producing formations. Show the BHP on the completion report. The pressure may be: 1) measured with a bottom hole bomb, or; 2) calculated based on shut in surface pressures (minimum seven day buildup) and fluid level shot.
 - 3. Submit a cement evaluation log if cement is not circulated to surface.
- C. Production Startup Notification is required no later than the 5th business day after any well begins production on which royalty is due anywhere on a lease site or allocated to a lease site or resumes production in the case of a well which has been off production for more than 90 days. The operator shall notify the Authorized Officer by letter or Sundry Notice, Form 3160-5, or orally to be followed by a letter or Sundry Notice, of the date on which such production has begun or resumed. CFR 43 3162.4-1(c).

III. <u>DRILLER'S LOG</u>

The following shall be entered in the daily driller's log: 1) Blowout preventer pressures tests, including test pressures and results, 2) Blowout preventer tests for proper functioning, 3) Blowout prevention drills conducted, 4) Casing run, including size, grade, weight, and depth set, 5) How pipe was cemented, including amount of cement, type, whether cement circulated to surface, location of cementing tools, etc., 6) Waiting on cement time for each casing string, 7) Casing pressure tests after cementing, including test pressure and results, and 8) Estimated amounts of oil and gas recovered and/or produced during drill stem test.

IV. GAS FLARING

Gas produced from this well may not be vented or flared beyond an initial, authorized test period of *_Days, 20 MMCF following its (completion)(recompletion), or flowback has been routed to the production separator, whichever first occurs, without the prior, written approval of the authorized officer in accordance with 43 CFR 3179.81. Should gas be vented or flared without approval beyond the test period authorized above, you may be directed to shut-in the well until the gas can be captured or approval to continue venting or flaring as uneconomic is granted. You shall be required to compensate the lessor for the portion of the gas vented or flared without approval which is determined to have been avoidably lost.

*30 days, unless a longer test period is specifically approved by the authorized officer. The 30-day period will commence upon the beginning of flowback following completion or recompletion.

V. SAFETY

A. All rig heating stoves are to be of the explosion-proof type.

B. Rig safety lines are to be installed.

C. Hard hats and other Personal Protective Equipment (PPE) must be utilized.

VI. CHANGE OF PLANS OR ABANDONMENT

A. Any changes of plans required to mitigate unanticipated conditions encountered during drilling operations, will require approval as set forth in Section 1.I.

- B. If the well is dry, it is to be plugged in accordance with 43 CFR 3162.3-4, approval of the proposed plugging program is required as set forth in Section 1.I. The report should show the total depth reached, the reason for plugging, and the proposed intervals, by depths, where cement plugs are to be placed, type of plugging mud, etc. A Subsequent Report of Abandonment is required as set forth in Section II.B.1c.
- C. Unless a well has been properly cased and cemented, or properly plugged, the drilling rig must not be moved from the drill site without prior approval from the BLM-Authorized Officer.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
ENDURING RESOURCES, LLC	372286
6300 S Syracuse Way	Action Number:
Centennial, CO 80111	450506
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
sford	Cement is required to circulate on both surface and intermediate1 strings of casing.	4/9/2025
sford	If cement does not circulate on any string, a Cement Bond Log (CBL) is required for that string of casing.	4/9/2025
ward.rikala	Notify the OCD 24 hours prior to casing & cement.	6/5/2025
ward.rikala	File As Drilled C-102 and a directional Survey with C-104 completion packet.	6/5/2025
ward.rikala	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string.	6/5/2025
ward.rikala	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.	6/5/202

Action 450506