Form 3160-3 (June 2015)				FORM AI OMB No. Expires: Janu	1004-0137			
UNITED STATES DEPARTMENT OF THE IN BUREAU OF LAND MANA	NTERIOR			5. Lease Serial No. NMNM12559				
APPLICATION FOR PERMIT TO D	RILL OR	REENTER		6. If Indian, Allotee or Tribe Name				
la. Type of work:	EENTER			7. If Unit or CA Agreement, Name and No.				
	ther			8. Lease Name and We	ell No.			
1c. Type of Completion: Hydraulic Fracturing	ngle Zone	✔ Multiple Zone		GOLDEN GRAHAM	1 FED COM			
				506H				
2. Name of Operator EOG RESOURCES INCORPORATED				9. API Well No. 30-015-56937	,			
3a. Address1111 BAGBY SKY LOBBY 2, HOUSTON, TX 77002	3b. Phone N (713) 651-7	No. <i>(include area cod</i> 7000	e)	10. Field and Pool, or RED BLUFF/BONE				
4. Location of Well (<i>Report location clearly and in accordance</i> w	. ,				lk. and Survey or Area			
At surface TR O / 693 FSL / 1375 FEL / LAT 32.06627		1		SEC 1/T26S/R28E/N	•			
At proposed prod. zone TR A / 100 FNL / 330 FEL / LAT	32.093315	/ LONG -104.0331	98					
14. Distance in miles and direction from nearest town or post offi	ice*			12. County or Parish EDDY	13. State NM			
15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)	16. No of a	cres in lease	17. Spacin 640.0	ng Unit dedicated to this well				
 Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 33 feet 	Distance from proposed location* 19. Proposed Depth 20. I				LM/BIA Bond No. in file NM2308			
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 2915 feet	22. Approx	imate date work will	start*	23. Estimated duration25 days				
	24. Attac	chments		1				
The following, completed in accordance with the requirements of (as applicable)	f Onshore Oil	and Gas Order No.	I, and the H	Iydraulic Fracturing rule	e per 43 CFR 3162.3-3			
 Well plat certified by a registered surveyor. A Drilling Plan. 		Item 20 above).	*	s unless covered by an e	xisting bond on file (see			
3. A Surface Use Plan (if the location is on National Forest Syster SUPO must be filed with the appropriate Forest Service Office)		5. Operator certific 6. Such other site sp BLM.		mation and/or plans as m	ay be requested by the			
25. Signature (Electronic Submission)		e (Printed/Typed) R HARRELL / Ph: (713) 651-		Date 95/14/2025			
Title Regulatory Specialist								
Approved by (Signature)	Name	e (Printed/Typed)		E	Date			
(Electronic Submission)		Y LAYTON / Ph: (5	75) 234-59	959 0	6/27/2025			
Title Assistant Field Manager Lands & Minerals	Office Carls	e bad Field Office						
Application approval does not warrant or certify that the applican applicant to conduct operations thereon. Conditions of approval, if any, are attached.	t holds legal	or equitable title to the	nose rights	in the subject lease which	ch would entitle the			
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, m of the United States any false, fictitious or fraudulent statements of					department or agency			

(Continued on page 2)

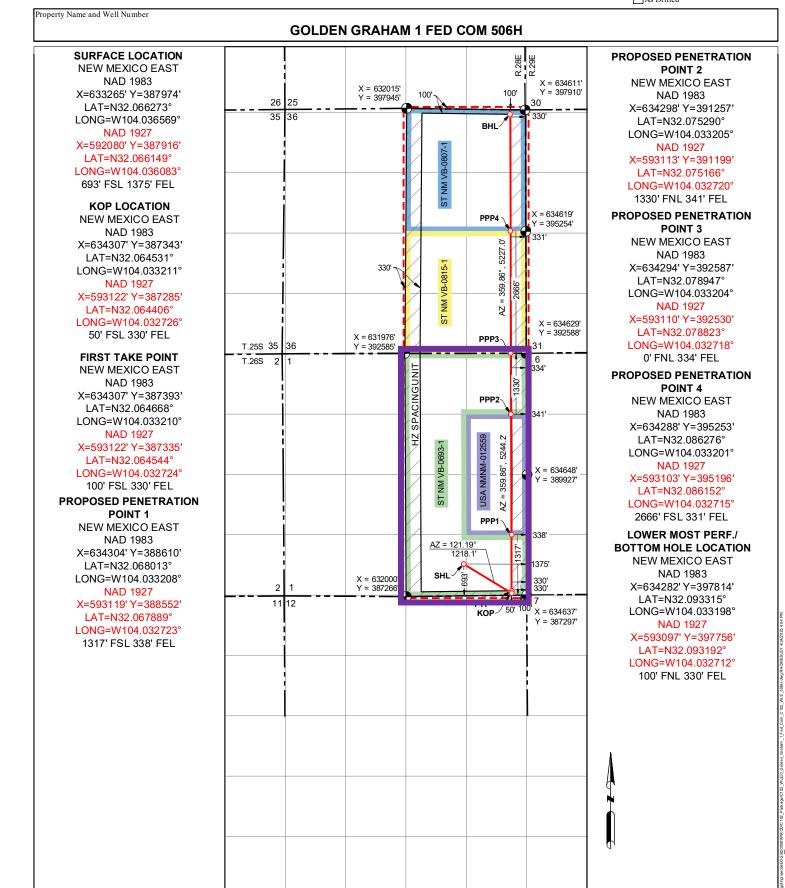
.

Received by OCD: 6/30/2025 12:51:52 PM

<u>C-102</u>					State of N	lew Mexico				Revis	sed July 9, 2024
Submit Electroni	ally		Enero	v Min	erals & Nati		es Denartm	ent		Initial Submittal	
Via OCD Permitt			Lifeig	OIL CONSERVATION DIVISION					Submittal Type:	Amended Report	
									rype.	As Drilled	
Property Name and	erty Name and Well Number GOLDEN GRAHAM 1 FED COM 506H										
API Number		Pool C		CATI	ON AND A	Pool Name	DEDICAT	ION	PLAT		
30-015- <u>5</u>	6937	10010	51010				d Bluff; Bone	Sprin	g, South		
Property Code	0001	Proper	ty Name						-	Well Number	
330807				0	GOLDEN GR	AHAM 1 FE	D COM				06H
OGRID No.	377	Operat	or Name		EOG RES	SOURCES, I	NC			Ground Level Ele	915'
Surface Owner:		Tribal	Federal		LOOKE		: 🗙 State 🗌 Fee 🗌	Tribal 🗙	Federal	2.	010
	•				Surfa	ce Location			<u> </u>		
UL or Lot No.	Section	Townshi	Range	Lot	Feet from the N/S	Feet from the E/W	Latitud	e		Longitude	County
0	1	26 S	28 E		693 FSL	1375 FEL	N 32.066	6273°	W 10	04.036569°	EDDY
		r			Hole Locatio						
UL or Lot No.	Section	Township		Lot	Feet from the N/S	Feet from the E/W	Latitud			Longitude	County
A	36	25 S	28 E		100 FNL	330 FEL	330 FEL N 32.093315° W 1			04.033198°	EDDY
Dedicated Acres		-	Defining Well API			Overlapping Sp	bacing Unit (Y/N)		Consolidat		
320	INF	NFILL PENDING					Y			С	
Order Numbers	PEN	DING C	OM AGREE	MENT				Setbacks a	e under Commo	on Ownership: Ye	s No
UL or lot no.	Section	Township	Range	Lot		f Point (KOI Feet from the E/W	P) Latitude	,		Longitude	County
P	1	26 S	-	Lot	50 FSL	330 FEL				W 104.033211°	
	I	200	20 L			ce Point (FT)				4.000211	EDDY
UL or lot no.	Section	Township	Range	Lot		Feet from the E/W	Latitude	•		Longitude	County
Р	1	26 S	28 E		100 FSL	330 FEL	N 32.064	4668°	W 10	04.033210°	EDDY
					Last Tak	e Point (LTI	P)				<u>. </u>
UL or lot no.	Section	Township	Range	Lot	Feet from the N/S	Feet from the E/W	Latitude	•		Longitude	County
Α	36	25 S	28 E		100 FNL	330 FEL	N 32.093	3315°	W 10	04.033198°	EDDY
Unitized Area or A	rea of Uniform I	nterest		Spacing	Unity Type			Ground Flo	or Elevation		
(COM AGE	REEME	NT		Horn	zontal Vertical				2940'	
OPERATO	R CERTIE	FICATIO	N			SURVEY	YORS CERTIF	FICATI	ON		
OTENT	K CLKI II		1			BORVE		ICATI	011		
best of my kn	owledge and	belief; and	, if the well is	a vertical	and complete to th or directional we red mineral intere	11,		1L	L. McDO		
in the land in well at this lo	cluding the cation pursu	proposed be int to a ce	ottom hole location of the second s	on or has owner of c	a right to drill th a working interest	iis		HELL	MEL		
well at this location pursuant to a contract with an owner of a working interest or unleased mineral interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division.					<i>"Y</i>	MIN	ALL AN		E		
If this well is a horizontal well, I further certify that this organization has received The consent of at least one lessee or owner of a working interest or working interest or the test of					- h	P	(2	9821)	R		
unleased mineral interest in each tract (in the target pool or formation) in which any part of the well's completed interval will be located or obtained a compulsory pooling order from the division.							RO			2	
								CS SIC	9821) 128/2025 VAL SUR	\sim	
S.	1 11	лл						101	VAL SE		
Star .	L Har	rell	7/2/2	5			Seal of Professional S	Surveyor	Date		ad frame find
Star L Ha	roll		Date			notes of ac		le by me	or under my	his plat was plotte supervision, and	
Star L Hai							LL L. MCDO			S.	
star_harre	ell@eogre	sources	s.com			Certificate Nu	mber	Date of Su	rvev		
E-man Address	E-mail Address						29821 APRIL 25, 2025				

Note: No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

<u>C-102</u>

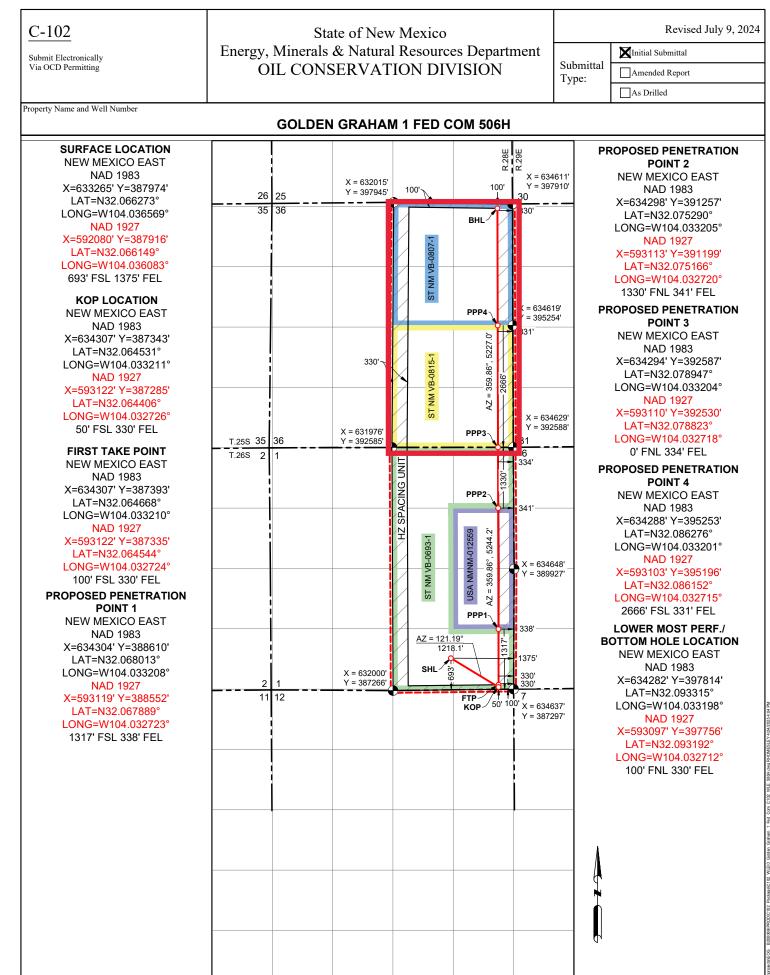

Submit Electronically Via OCD Permitting

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION

Revised July 9, 2024

Submittal Type:

As Drilled


Released on the New Mexico State Plane Coordinate System, East Zone, NAD 83-2011 (EPOCH 2010) framework, as derived by OPUS Solution. The elevations shown hereon are based on NAVD 88. Received by OCD: 6/30/2025 12:51:52 PM

•

]	
<u>C-102</u>					State of N	lew Mexico			Revis	sed July 9, 2024	
Submit Electroni			Energ	y, Mine			es Department		XInitial Submittal		
Via OCD Permit	ting				ONSERV A		1	Submittal Type:	Amended Report	t	
									As Drilled		
Property Name and	l Well Number			COL							
API Number		Pool		CATI	JN AND A	Pool Name	DEDICATIC	ON PLAT			
30-015-5	6037		5277	5		1 oor runie	Rock Spur; Bor	e Spring			
Property Code	0001	Prope	rty Name	-			• •		Well Number		
330807				G	OLDEN GR	AHAM 1 FE	D COM			06H	
OGRID No.	377	Opera	tor Name			OURCES, I			Ground Level El		
Surface Owner:		Tribal	Federal		EUG KES		: XState Fee Trib	al 🗙 Federal		915'	
			Ji edelui		Surfa	ce Location					
UL or Lot No.	Section	Townshi	p Range	Lot	Feet from the N/S		Latitude		Longitude	County	
0	1	26 5	28 E		693 FSL	1375 FEL	N 32.066273	3° W 10	04.036569°	EDDY	
]	Bottom	Hole Locatio	n If Differen	t From Surface	I			
UL or Lot No.	Section	Townshi	p Range	Lot	Feet from the N/S	Feet from the E/W	Latitude		Longitude	County	
A	36	25 \$	5 28 E		100 FNL	330 FEL	N 32.093315	5° W 10	04.033198°	EDDY	
Dedicated Acres	Infill or Defi	ning Well	Defining Well API			Overlapping Sp	pacing Unit (Y/N)	Consolidat	ed Code		
320	INFI	LL		PENDI	IG Y				С		
Order Numbers	PEN	DING C	OM AGREE	EMENT			Well Setba	cks are under Comm	on Ownership: Ye	s 🗌 No	
		-				f Point (KOI	<u> </u>				
UL or lot no.	Section	Townshi		Lot	Feet from the N/S		Latitude N 32.064531° W 1		Longitude	County	
P	1	26 5	8 28 E					1° W 10	EDDY		
UL or lot no.	Section	Townshi	p Range	Lot		ke Point (FT) Feet from the E/W	P) Latitude		Longitude	County	
Р	1	26 5	, U		100 FSL	330 FEL	N 32.064668	8° W 10)4.033210°	EDDY	
•	•	200	202			ce Point (LTI			1.000210	2001	
UL or lot no.	Section	Townshi	p Range	Lot		Feet from the E/W	Latitude		Longitude	County	
A	36	25 5	28 E		100 FNL	330 FEL	N 32.093315	5° W 10	04.033198°	EDDY	
Unitized Area or A	rea of Uniform I	nterest	•	Specing	Unity Type 🔔		Group	d Floor Elevation		·	
	COM AGF		NT	Spacing	Hori	zontal Vertical	Groun		2940'		
								- Trans			
OPERATO	OR CERTII	TCATI	DN			SURVEY	YORS CERTIFICA	ATION		2010-1- 10-10-10-10-10-10-10-10-10-10-10-10-10-1	
I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief, and, if the well is a vertical or directional well, that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with an owner of a working interest or unleased mineral interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division. If this well is a horizontal well, I further certify that this organization has received The consent of at least one lessee or owner of a working interest or unleased mineral interest in each tract (in the target pool or formation) in which any part of the well's completed interval will be located or obtained a compulsory pooling order from the division.						ll, ist tris t ch	CHELL L. MCDON MELCON DE 29821 CONSTORED				
<u>Star L Harrell</u> Signature Date Star L Harrell						I hereby ce notes of ac is true and	Seal of Professional Survey ertify that the well loc tual surveys made by a correct to the best o	or Date ation shown on me or under m f my belief.	this plat was plott y supervision, and		
Print Name star_hari	ell@eog	resour	ces.com				LL L. MCDONA		L.S.	teoretEOG	
E-mail Address	2 0					Certificate Nu	Certificate Number 29821 Date of Survey APRIL 25, 2025				

Note: No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Received by OCD: 6/30/2025 12:51:52 PM

Released on the New Mexico State Plane Coordinate System, East Zone, NAD 83-2011 (EPOCH 2010) framework, as derived by OPUS Solution. The elevations shown hereon are based on NAVD 88.

		-				
Received	hv	OCD-	6/30/	2025	12.51.52	PM

	E	nergy, Minerals a Oil Co 1220 S	te of New Mey and Natural Res onservation Di South St. Frand ta Fe, NM 87	ources Departme vision cis Dr.	ent		Subn Via F	nit Electronically E-permitting
	N	ATURAL G	AS MANA	GEMENT P	LAN			
This Natural Gas Manage	ement Plan n	nust be submitted w	ith each Applica	tion for Permit to I	Drill (A	PD) for a r	new or	recompleted well.
			<u>1 – Plan D</u> ffective May 25,					
. Operator:EOG R	Resources, In	c OGRI	D: 7377		Da	ate: 6/30/	2025	
I. Type: 🛛 Original	□ Amendm	the formula to \Box 19.15	5.27.9.D(6)(a) NI	MAC 🗆 19.15.27.	9.D(6)(b) NMAC	□ Otł	ner.
Other, please describe:								
I. Well(s): Provide the e recompleted from a signal.					wells p	roposed to	be dri	lled or proposed to
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D		icipated MCF/D	P	Anticipated roduced Water BBL/D
LDEN GRAHAM 1 FED COM 506H		O-1-26S-28E	693' FSL & 1375' FEL	+/- 1000	+/- 3:	500	+/- 30	000
V. Central Delivery Po Anticipated Schedu proposed to be recomp	le: Provide th	ne following inform	nation for each ne	ew or recompleted	well or			., _
Well Name	API	Spud Date	TD Reached Date	Completion Commencement		Initial F Back D		First Production Date
LDEN GRAHAM 1 FED COM 506H		8/10/25	8/25/25	11/01/25		12/01/25		2/01/26
7 I. Separation Equipm 7 II. Operational Pract Subsection A through F of 7 III. Best Management furing active and planned	ices: ⊠ Atta of 19.15.27.8 t Practices:	ch a complete desc NMAC.	ription of the ac	tions Operator wil	ll take t	to comply	with t	he requirements of

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

 \overline{X} Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \Box Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \Box will \Box will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \Box does \Box does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

□ Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: \Box Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

<u>Section 3 - Certifications</u> <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 \boxtimes Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \Box Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In. \Box Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. \Box Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (**h**) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Star L Harrell Printed Name: Star L Harrell Title: Regulatory Advisor E-mail Address: Star_Harrell@eogresources.com Date: 6/30/2025 Phone: (432) 848-9161 **OIL CONSERVATION DIVISION** (Only applicable when submitted as a standalone form) Approved By: Title: Approval Date: Conditions of Approval:

Natural Gas Management Plan Items VI-VIII

VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture.

- Separation equipment will be sized to provide adequate separation for anticipated rates.
- Adequate separation relates to retention time for Liquid Liquid separation and velocity for Gas-Liquid separation.
- Collection systems are appropriately sized to handle facility production rates on all (3) phases.
- Ancillary equipment and metering is selected to be serviced without flow interruptions or the need to release gas from the well.

VII. Operational Practices: Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F 19.15.27.8 NMAC.

Drilling Operations

- All flare stacks will be properly sized. The flare stacks will be located at a minimum 100' from the nearest surface hole location on the pad.
- All natural gas produced during drilling operations will be flared, unless there is an equipment malfunction and/or to avoid risk of an immediate and substantial adverse impact on safety and the environment, at which point the gas will be vented.

Completions/Recompletions Operations

- New wells will not be flowed back until they are connected to a properly sized gathering system.
- The facility will be built/sized for maximum anticipated flowrates and pressures to minimize waste.
- For flowback operations, multiple stages of separation will be used as well as excess VRU and blowers to make sure waste is minimized off the storage tanks and facility.
- During initial flowback, the well stream will be routed to separation equipment.
- At an existing facility, when necessary, post separation natural gas will be flared until it meets pipeline specifications, at which point it will be turned into a collection system.
- At a new facility, post separation natural gas will be vented until storage tanks can safely function, at which point it will be flared until it meets pipeline spec.

Production Operations

- Weekly AVOs will be performed on all facilities.
- All flares will be equipped with auto-ignition systems and continuous pilot operations.
- After a well is stabilized from liquid unloading, the well will be turned back into the collection system.
- All plunger lift systems will be optimized to limit the amount of waste.
- All tanks will have automatic gauging equipment installed.
- Leaking thief hatches found during AVOs will be cleaned and properly re-sealed.

Performance Standards

- Production equipment will be designed to handle maximum anticipated rates and pressure.
- All flared gas will be combusted in a flare stack that is properly sized and designed to ensure proper combustion.
- Weekly AVOs will be performed on all wells and facilities that produce more than 60 Mcfd.

Measurement & Estimation

- All volume that is flared and vented that is not measured will be estimated.
- All measurement equipment for flared volumes will conform to API 14.10.
- No meter bypasses with be installed.

• When metering is not practical due to low pressure/low rate, the vented or flared volume will be estimated.

<u>VIII. Best Management Practices: Attach a complete description of Operator's best management practices to minimize</u> venting during active and planned maintenance.

- During downhole well maintenance, EOG will use best management practices to vent as minimally as possible.
- Prior to the commencement of any maintenance, the tank or vessel will be isolated from the rest of the facilities.
 All valves upstream of the equipment will be closed and isolated.
- After equipment has been isolated, the equipment will be blown down to as low a pressure as possible into the collection system.
- If the equipment being maintained cannot be relieved into the collection system, it shall be released to a tank where the vapor can either be captured or combusted if possible.
- After downhole well maintenance, natural gas will be flared until it reaches pipeline specification.

Seog resources

1. GEOLOGIC NAME OF SURFACE FORMATION:

Permian

2. ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Castile	981'
Base of Salt	2,227'
Lamar	2,722'
Bell Canyon	2,743'
Cherry Canyon	3,595'
Brushy Canyon	5,185'
Bone Spring Lime	6,429'
Leonard (Avalon) Shale	6,509'
1st Bone Spring Sand	7,342'
2nd Bone Spring Shale	7,578'
2nd Bone Spring Sand	8,033'
3rd Bone Spring Carb	8,534'
3rd Bone Spring Sand	9,125'
TD	8,433'

3. ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Lamar2,722'OilCherry Canyon3,595'OilBrushy Canyon5,185'OilBone Spring Lime6,429'OilLeamard (Auslam) Shala(500)Oil
Brushy Canyon5,185'OilBone Spring Lime6,429'Oil
Bone Spring Lime6,429'Oil
Learnerd (Asseler) Shele
Leonard (Avalon) Shale 6,509' Oil
1st Bone Spring Sand7,342'Oil
2nd Bone Spring Shale7,578'Oil
2nd Bone Spring Sand8,033'Oil

No other Formations are expected to give up oil, gas or fresh water in measurable quantities. Surface fresh water sands will be protected by setting 10-3/4" casing at 200' and circulating cement back to surface.

Page 12 of 88

1

CASING PROGRAM

& eog resources

Golden Graham 1 Fed Com #506H

Hole	Interv	al MD	Interva	l TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13"	0	200	0	200	10-3/4"	40.5#	J-55	STC
9-7/8"	0	2,997	0	2,772	8-5/8"	32#	J-55	BTC-SC
7-7/8"	0	8,048	0	7,856	6"	24.5#	P110-EC	VAM Sprint-TC
6-3/4"	8,048	18,892	7,856	8,433	5-1/2"	20#	P110-EC	VAM Sprint SF

**For highlighted rows above, variance is requested to run entire string of either 6" or 5-1/2" casing string above due to availablility.

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized in the cement slurry for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422'' annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.

- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

	No.	Wt.	Yld	Slurry Description
Depth	Sacks	ppg	Ft3/sk	Sturry Description
200'	130	13.5	1.73	Lead: Class C/H + additives (TOC @ Surface)
10-3/4"				
	30	14.8	1.34	Tail: Class C/H + additives (TOC @ 0')
2,330'	190	12.7	2.22	Lead: Class C/H + additives + expansive additives (TOC @ Surface)
8-5/8"				
	90	14.8	1.32	Tail: Class C/H + additives + expansive additives (TOC @ 2438')
18,892'	1000	14.8	1.32	Bradenhead squeeze: Class C/H + additives + expansive additives (TOC
6"				@ surface)
	1620	13.2	1.52	Tail: Class C/H + additives (TOC @ 5190')

5. CEMENTING PROGRAM:

Coldon	Graham	1	Fod	Com	#506U
Guluell	Granam	1	reu	COM	#30011

Additive	Purpose
Bentonite Gel	Lightweight/Lost circulation prevention
Calcium Chloride	Accelerator
Cello-flake	Lost circulation prevention
Sodium Metasilicate	Accelerator
MagOx	Expansive agent
Pre-Mag-M	Expansive agent
Sodium Chloride	Accelerator
FL-62	Fluid loss control
Halad-344	Fluid loss control
Halad-9	Fluid loss control
HR-601	Retarder
Microbond	Expansive Agent

Cement integrity tests will be performed immediately following plug bump.

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

EOG requests variance from minimum standards to pump a two stage cement job on the 6" and 5-1/2" production casing strings with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon (5,185') and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of Class C/H cement + additives (1.32 yld, 14.8 ppg) will be executed as a contingency. Top will be verified by Echo-meter.

Bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.

Seog resources

Golden Graham 1 Fed Com #506H

6. MINIMUM SPECIFICATIONS FOR PRESSURE CONTROL:

Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).

The minimum blowout preventer equipment (BOPE) shown in Exhibit #1 will consist of a single ram, mud cross and double ram-type (10,000 psi WP) preventer and an annular preventer (5,000-psi WP). Both units will be hydraulically operated and the ram-type will be equipped with blind rams on bottom and drill pipe rams on top. All BOPE will be tested in accordance with Onshore Oil & Gas order No. 2.

EOG will utilize wing unions on BOPE connections that can be isolated from wellbore pressure through means of a choke. All wing unions will be rated to a pressure that meets or exceeds the pressure rating of the BOPE system.

Variance is requested to use a 5,000 psi annular BOP with the 10,000 psi BOP stack.

Before drilling out of the surface casing, the ram-type BOP and accessory equipment will be tested to 10,000/250 psig and the annular preventer to 5,000/250 psig.

Pipe rams and blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe.

7. TYPES AND CHARACTERISTICS OF THE PROPOSED MUD SYSTEM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal.

The applicable depths and properties of the drilling fluid systems are as follows:

Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0 – 200'	Fresh - Gel	8.6-8.8	28-34	N/c
200'-2,772'	Brine	9.8-10.8	28-34	N/c
2,772' – 18,892'	Oil Base	8.8-9.5	58-68	N/c - 6
Lateral				

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

Golden Graham 1 Fed Com #506H

8. AUXILIARY WELL CONTROL AND MONITORING EQUIPMENT:

(A) A kelly cock will be kept in the drill string at all times.

(B) A full opening drill pipe-stabbing valve (inside BOP) with proper drill pipe connections will be on the rig floor at all times.

(C) H2S monitoring and detection equipment will be utilized from surface casing point to TD.

9. LOGGING, TESTING AND CORING PROGRAM:

- (A) Open-hole logs are not planned for this well.
- (B) GR-CCL will be run in cased hole during completions phase of operations.

10. ABNORMAL CONDITIONS, PRESSURES, TEMPERATURES AND POTENTIAL HAZARDS:

The estimated bottom-hole temperature (BHT) at TD is 154 degrees F with an estimated maximum bottom-hole pressure (BHP) at TD of 3,947 psig and a maximum anticipated surface pressure of 2,091 psig (based on 9.0 ppg MW). No hydrogen sulfide or other hazardous gases or fluids have been encountered, reported or are known to exist at this depth in this area. Severe loss circulation is expected from 5,185' to intermediate casing point.

11. ANTICIPATED STARTING DATE AND DURATION OF OPERATIONS:

The drilling operation should be finished in approximately one month. If the well is productive, an additional 60-90 days will be required for completion and testing before a decision is made to install permanent facilities.

EOG Resources requests the option to contract a Surface Rig to drill, set surface casing, and Cement on the subject well. After WOC 8 hours or 500 psi compressive strength (whichever is greater), the Surface Rig will move off so the wellhead can be installed. A welder will cut the casing to the proper height and weld on the wellhead (both "A" and "B" sections). The weld will be tested to 1,500 psi. All valves will be closed and a wellhead cap will be installed (diagram attached). If the timing between rigs is such that EOG Resources would not be able to preset the surface, the Primary Rig will MIRU and drill the well in its entirety per the APD.

Seog resources

Golden Graham 1 Fed Com #506H

12. WELLHEAD:

A multi-bowl wellhead system will be utilized.

After running the surface casing, a BOP/BOPE system with a minimum working pressure of 10,000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 10,000 psi pressure test. This pressure test will be repeated at least every 30 days, as per Title 43 CFR Part 3170.

The minimum working pressure of the BOP and related BOPE required for drilling below the surface casing shoe shall be 10,000 psi.

The multi-bowl wellhead will be installed by vendor's representative(s). A copy of the installation instructions for the Cactus Multi-Bowl WH system has been sent to the NM BLM office in Carlsbad, NM.

The wellhead will be installed by a third party welder while being monitored by WH vendor's representative.

All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type. EOG Resources reserves the option to conduct BOPE testing during wait on cement periods provided a test plug is utilized.

A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 5000 psi.

Casing strings will be tested as per Title 43 CFR Part 3170 to at least 0.22 psi/ft or 1,500 psi, whichever is greater.

13. VARIANCE REQUESTS:

EOG requests the additional variance(s) in the attached document(s):

- EOG BLM Variance 3e BOP Break-test and Offline Surface and Intermediate Cement
- EOG BLM Variance 3d Production Offline Cement
- EOG BLM Variance 4a Salt Section Annular Clearance
- EOG BLM Variance 5a Alternate Shallow Casing Designs

Seog resources

Golden Graham 1 Fed Com #506H

14. TUBING REQUIREMENTS:

EOG respectively requests an exception to the following NMOCD rule:

19.15.16.10 Casing AND TUBING RQUIREMENTS:

• J (3): "The operator shall set tubing as near the bottom as practical and tubing perforations shall not be more than 250 feet above top of pay zone."

With horizontal flowing and gas lifted wells an end of tubing depth placed at or slightly above KOP is a conservative way to ensure the tubing stays clean from debris, plugging, and allows for fewer well interventions post offset completion. The deeper the tubulars are run into the curve, the higher the probability is that the tubing will become stuck in sand and or well debris as the well produces over time. An additional consideration for EOT placement during artificial lift installations is avoiding the high dog leg severity and inclinations found in the curve section of the wellbore to help improve reliability and performance. Dog leg severity and inclinations tend not to hamper gas lifted or flowing wells, but they do effect other forms of artificial lift like rod pump or ESP (electric submersible pump). Keeping the EOT above KOP is an industry best practice for those respective forms of artificial lift.

693' FSL 1375' FEL	Proposed Wellbore	KB: 2940' GL: 2915'
Section 1 T-26-S, R-28-E	API: 30-025-****	
Bit Size: 13'' 10-3/4'', 40.5#, J-55, STC @ 0' - 200' MD @ 0' - 200' TVD		duction Bradenhead is performed, TOC will
Bit Size: 9-7/8'' 8-5/8'', 32.#, J-55, BTC-SC @ 0' - 2,997' MD @ 0' - 2,772' TVD	be at s	aurface @ 2,547', if performed conventionally.
		al: 18,892' MD, 8,433' TVD
Bit Size: 7-7/8'' Bit Size: 6-3/4'' 6'', 24.5#, P110-EC, VAM Sprint-TC @ 0' - 8,048' MD @ 0' - 7,856' TVD	100 Lowe 100 BH L	r Most Perf: ' FSL & 330' FEL Sec. 1 r Most Perf: ' FNL & 330' FEL Sec. 36 ocation: 100' FNL & 330' FEL . 36, T-25-S, R-28-E
5-1/2", 20.#, P110-EC, VAM Sprint SF @ 8,048' - 18,892' MD @ 7,856' - 8,433' TVD		
KOP: 8,148' MD, 7,956' TVD EOC: 8,898' MD, 8,433' TVD		

.

Midland

Eddy County, NM (NAD 83 NME) Golden Graham 1 Fed Com #506H

OH

Plan: Plan #0.1 RT

Standard Planning Report

12 May, 2025

Ceogre								
Database: Company: Project: Site: Well: Wellbore: Design:	PEDMB Midland Eddy County, N Golden Grahan #506H OH Plan #0.1 RT	•	•	TVD Referen MD Referen North Refer	ce:	Well #506H kb = 26' @ 294 kb = 26' @ 294 Grid Minimum Curv	41.0usft	
Project	Eddy County, N	M (NAD 83 N	ME)					
Geo Datum:	US State Plane 1 North American D New Mexico East	atum 1983		System Datu	m:	Mean Sea Level		
Site	Golden Graham	1 Fed Com						
Site Position: From: Position Uncertainty:	Мар	0.0 usft	Northing: Easting: Slot Radius:	633,37	4.00 usft Latitud 3.00 usft Longitu 3/16 "			32° 3' 57.095 N 104° 2' 10.396 W
Well	#506H							
Well Position Position Uncertainty Grid Convergence:	+N/-S +E/-W	0.0 usft 0.0 usft 0.0 usft 0.16 °	Northing: Easting: Wellhead Elev	vation:	387,974.00 usft 633,265.00 usft usft	Latitude: Longitude: Ground Level:		32° 3' 58.582 N 104° 2' 11.647 W 2,915.0 usft
Wellbore	ОН							
Magnetics	Model Nam	e	Sample Date	Declinatio (°)	on	Dip Angle (°)	Field Streng (nT)	th
	IGRF	2025	5/12/2025		6.46	59.55	46,900.02	912819
Design	Plan #0.1 RT							
Audit Notes: Version:			Phase:	PLAN	Tie On Dep	oth:	0.0	
Vertical Section:		(u	rom (TVD) Isft)	+N/-S (usft)	+E/-W (usft)	Di	irection (°)	
		(0.0	0.0	0.0		5.90	
Plan Survey Tool Pro	gram	Date 5/12/2	2025					
Depth From (usft)	Depth To (usft) Si	urvey (Wellb	ore)	Tool Name	Rema	arks		
1 0.0	18,891.6 P	lan #0.1 RT (OH)	EOG MWD+IFR MWD + IFR1	1			

Data	abase:	PEDMB	Local Co-ordinate Reference:	Well #506H
Con	npany:	Midland	TVD Reference:	kb = 26' @ 2941.0usft
Pro	ject:	Eddy County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 2941.0usft
Site	:	Golden Graham 1 Fed Com	North Reference:	Grid
Wel	I:	#506H	Survey Calculation Method:	Minimum Curvature
Wel	lbore:	OH		
Des	sign:	Plan #0.1 RT		

Plan Sections

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
800.0	0.00	0.00	800.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,789.5	19.79	121.20	1,769.9	-87.6	144.7	2.00	2.00	0.00	121.20	
4,388.1	19.79	121.20	4,215.1	-543.4	897.3	0.00	0.00	0.00	0.00	
5,377.6	0.00	0.00	5,185.0	-631.0	1,042.0	2.00	-2.00	0.00	180.00	
8,148.1	0.00	0.00	7,955.5	-631.0	1,042.0	0.00	0.00	0.00	0.00	KOP(Golden Grahan
8,368.5	26.46	0.00	8,168.2	-581.0	1,042.0	12.00	12.00	0.00	0.00	FTP(Golden Graham
8,898.0	90.00	359.84	8,432.9	-153.6	1,041.2	12.00	12.00	-0.03	-0.18	
9,687.6	90.00	359.84	8,433.0	636.0	1,039.0	0.00	0.00	0.00	0.00	Fed Perf 1(Golden G
12,334.6	90.00	359.90	8,433.0	3,283.0	1,033.0	0.00	0.00	0.00	81.64	Fed Perf 2(Golden G
13,664.6	90.00	359.76	8,433.0	4,613.0	1,029.0	0.01	0.00	-0.01	-93.38	Fed Perf 3(Golden G
16,330.6	90.00	359.99	8,433.0	7,279.0	1,023.0	0.01	0.00	0.01	87.90	Fed Perf 4(Golden G
18,891.6	90.00	359.75	8,433.0	9,840.0	1,017.0	0.01	0.00	-0.01	-92.01	PBHL(Golden Graha

Database:	PEDMB	Local Co-ordinate Reference:	Well #506H
Company:	Midland	TVD Reference:	kb = 26' @ 2941.0usft
Project:	Eddy County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 2941.0usft
Site:	Golden Graham 1 Fed Com	North Reference:	Grid
Well:	#506H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OH		
Design:	Plan #0.1 RT		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
				0.0	0.0				0.00
500.0 600.0	0.00 0.00	0.00 0.00	500.0 600.0	0.0	0.0	0.0 0.0	0.00 0.00	0.00 0.00	0.00
	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0									
800.0	0.00	0.00	800.0 900.0	0.0 -0.9	0.0 1.5	0.0	0.00	0.00	0.00 0.00
900.0	2.00	121.20				-0.7	2.00	2.00	
1,000.0	4.00	121.20	999.8	-3.6	6.0	-3.0	2.00	2.00	0.00
1,100.0	6.00	121.20	1,099.5	-8.1	13.4	-6.7	2.00	2.00	0.00
1,200.0	8.00	121.20	1,198.7	-14.4	23.8	-11.9	2.00	2.00	0.00
1,300.0	10.00	121.20	1,297.5	-22.5	37.2	-18.6	2.00	2.00	0.00
1,400.0	12.00	121.20	1,395.6	-32.4	53.5	-26.8	2.00	2.00	0.00
1,500.0	14.00	121.20	1,493.1	-44.1	72.8	-36.4	2.00	2.00	0.00
1,600.0	16.00	121.20	1,589.6	-57.5	94.9	-47.4	2.00	2.00	0.00
1,700.0	18.00	121.20	1,685.3	-72.6	119.9	-59.9	2.00	2.00	0.00
1,789.5	19.79	121.20	1,769.9	-87.6	144.7	-72.3	2.00	2.00	0.00
1,800.0	19.79	121.20	1,779.8	-89.5	147.8	-73.8	0.00	0.00	0.00
1,900.0	19.79	121.20	1,873.9	-107.0	176.7	-88.3	0.00	0.00	0.00
2,000.0	19.79	121.20	1,968.0	-124.6	205.7	-102.8	0.00	0.00	0.00
2,100.0	19.79	121.20	2,062.1	-142.1	234.6	-117.2	0.00	0.00	0.00
2,200.0	19.79	121.20	2,156.2	-159.6	263.6	-131.7	0.00	0.00	0.00
2,300.0	19.79	121.20	2,250.3	-177.2	292.6	-146.2	0.00	0.00	0.00
2,400.0	19.79	121.20	2,344.4	-194.7	321.5	-160.6	0.00	0.00	0.00
2,500.0	19.79	121.20	2,438.5	-212.2	350.5	-175.1	0.00	0.00	0.00
2,600.0	19.79	121.20	2,532.6	-229.8	379.4	-189.6	0.00	0.00	0.00
2,700.0	19.79	121.20	2,626.7	-247.3	408.4	-204.0	0.00	0.00	0.00
2,800.0	19.79	121.20	2,720.8	-264.9	437.4	-218.5	0.00	0.00	0.00
2,900.0	19.79	121.20	2,814.9	-282.4	466.3	-233.0	0.00	0.00	0.00
3,000.0	19.79	121.20	2,909.0	-299.9	495.3	-247.4	0.00	0.00	0.00
3,100.0	19.79	121.20	3,003.1	-317.5	524.2	-261.9	0.00	0.00	0.00
3,200.0	19.79	121.20	3,097.1	-335.0	553.2	-276.4	0.00	0.00	0.00
3,300.0	19.79	121.20	3,191.2	-352.5	582.2	-290.8	0.00	0.00	0.00
3,400.0	19.79	121.20	3,285.3	-370.1	611.1	-305.3	0.00	0.00	0.00
3,500.0	19.79	121.20	3,379.4	-387.6	640.1	-319.8	0.00	0.00	0.00
3,600.0	19.79	121.20	3,473.5	-405.2	669.0	-334.2	0.00	0.00	0.00
3,700.0	19.79	121.20	3,567.6	-422.7	698.0	-348.7	0.00	0.00	0.00
3,800.0	19.79	121.20	3,661.7	-440.2	727.0	-363.2	0.00	0.00	0.00
3,900.0	19.79	121.20	3,755.8	-457.8	755.9	-377.6	0.00	0.00	0.00
4,000.0	19.79	121.20	3,849.9	-475.3	784.9	-392.1	0.00	0.00	0.00
4,100.0	19.79	121.20	3,944.0	-492.8	813.8	-406.6	0.00	0.00	0.00
4,200.0	19.79	121.20	4,038.1	-510.4	842.8	-421.0	0.00	0.00	0.00
4,300.0	19.79	121.20	4,132.2	-527.9	871.8	-435.5	0.00	0.00	0.00
4,388.1	19.79	121.20	4,215.1	-543.4	897.3	-448.2	0.00	0.00	0.00
4,400.0	19.55	121.20	4,226.3	-545.4	900.7	-449.9	2.00	-2.00	0.00
4,500.0	17.55	121.20	4,321.1	-561.9	927.9	-463.5	2.00	-2.00	0.00
4,600.0	15.55	121.20	4,416.9	-576.7	952.3	-475.7	2.00	-2.00	0.00
4,700.0	13.55	121.20	4,513.7	-589.7	973.8	-486.5	2.00	-2.00	0.00
4,800.0	11.55	121.20	4,611.3	-600.9	992.4	-495.7	2.00	-2.00	0.00
4,800.0	9.55	121.20	4,709.6	-610.4	992.4 1,008.0	-495.7	2.00	-2.00	0.00
5,000.0	7.55	121.20	4,808.5	-618.1	1,000.0	-509.9	2.00	-2.00	0.00
5,100.0	5.55	121.20	4,907.9	-624.0	1,020.7	-509.9	2.00	-2.00	0.00
5,100.0	0.00	121.20	7,301.3	-024.0	1,000.0	-517.0	2.00	-2.00	0.00

5/12/2025 9:53:25AM

COMPASS 5000.16 Build 100

Database:	PEDMB	Local Co-ordinate Reference:	Well #506H
Company:	Midland	TVD Reference:	kb = 26' @ 2941.0usft
Project:	Eddy County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 2941.0usft
Site:	Golden Graham 1 Fed Com	North Reference:	Grid
Well:	#506H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OH		
Design:	Plan #0.1 RT		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,200.0	3.55	121.20	5,007.5	-628.2	1,037.3	-518.2	2.00	-2.00	0.00
5,300.0	1.55	121.20	5,107.4	-630.5	1,041.1	-520.1	2.00	-2.00	0.00
5,377.6	0.00	0.00	5,185.0	-631.0	1,042.0	-520.5	2.00	-2.00	0.00
5,400.0	0.00	0.00	5,207.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
5,500.0	0.00	0.00	5,307.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
5,600.0	0.00	0.00	5,407.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
5,700.0	0.00	0.00	5,507.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
5,800.0	0.00	0.00	5,607.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
5,900.0	0.00	0.00	5,707.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
6,000.0	0.00	0.00	5,807.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
6,100.0	0.00	0.00	5,907.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
6,200.0	0.00	0.00	6,007.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
6,300.0	0.00	0.00	6,107.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
6,400.0	0.00	0.00	6,207.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
6,500.0	0.00	0.00	6,307.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
6,600.0	0.00	0.00	6,407.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
6,700.0	0.00	0.00	6,507.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
6,800.0	0.00	0.00	6,607.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
6,900.0	0.00	0.00	6,707.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
7,000.0	0.00	0.00	6,807.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
7,100.0	0.00	0.00	6,907.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
7,200.0	0.00	0.00	7,007.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
7,300.0	0.00	0.00	7,107.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
7,400.0	0.00	0.00	7,207.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
7,500.0	0.00	0.00	7,307.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
7,600.0	0.00	0.00	7,407.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
7,700.0	0.00	0.00	7,507.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
7,800.0	0.00	0.00	7,607.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
7,900.0	0.00	0.00	7,707.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
8,000.0	0.00	0.00	7,807.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
8,100.0	0.00	0.00	7,907.4	-631.0	1,042.0	-520.5	0.00	0.00	0.00
8,148.1	0.00	0.00	7,955.5	-631.0	1,042.0	-520.5	0.00	0.00	0.00
8,150.0	0.23	0.00	7,957.4	-631.0	1,042.0	-520.5	12.00	12.00	0.00
8,175.0	3.23	0.00	7,982.4	-630.2	1,042.0	-519.8	12.00	12.00	0.00
8,200.0	6.23	0.00	8,007.3	-628.2	1,042.0	-517.7	12.00	12.00	0.00
8,225.0	9.23	0.00	8,032.1	-624.8	1,042.0	-514.4	12.00	12.00	0.00
8,250.0	12.23	0.00	8,056.7	-620.2	1,042.0	-509.8	12.00	12.00	0.00
8,275.0	15.23	0.00	8,080.9	-614.2	1,042.0	-503.8	12.00	12.00	0.00
8,300.0	18.23	0.00	8,104.9	-607.0	1,042.0	-496.7	12.00	12.00	0.00
8,325.0 8,350.0	21.23 24.23	0.00	8,128.4 8,151.5	-598.6 -588.9	1,042.0 1,042.0	-488.3 -478.7	12.00 12.00	12.00 12.00	0.00 0.00
		0.00	,						
8,368.5	26.46	0.00	8,168.2	-581.0	1,042.0	-470.8	12.00	12.00	0.00
8,375.0	27.23	359.99	8,174.0	-578.1	1,042.0	-467.9	12.00	12.00	-0.08
8,400.0	30.23	359.98	8,195.9	-566.1	1,042.0	-455.9	12.00	12.00	-0.07
8,425.0	33.23	359.96	8,217.2	-552.9	1,042.0	-442.9	12.00	12.00	-0.06
8,450.0	36.23	359.95	8,237.7	-538.7	1,042.0	-428.7	12.00	12.00	-0.05
8,475.0	39.23	359.94	8,257.5	-523.4	1,042.0	-413.5	12.00	12.00	-0.04
8,500.0	42.23	359.93	8,276.4	-507.1	1,041.9	-397.3	12.00	12.00	-0.04
8,525.0	45.23	359.92	8,294.5	-489.8	1,041.9	-380.1	12.00	12.00	-0.03
8,550.0	48.23	359.91	8,311.6	-471.6	1,041.9	-362.0	12.00	12.00	-0.03
8,575.0	51.23	359.90	8,327.8	-452.5	1,041.9	-343.0	12.00	12.00	-0.03
8,600.0	54.23	359.90	8,342.9	-432.6	1,041.8	-323.2	12.00	12.00	-0.03
8,625.0	57.23	359.89	8,357.0	-412.0	1,041.8	-302.7	12.00	12.00	-0.02
8,650.0	60.23	359.89	8,369.9	-390.6	1,041.8	-281.4	12.00	12.00	-0.02

5/12/2025 9:53:25AM

Released to Imaging: 7/3/2025 9:34:19 AM

Page 5

COMPASS 5000.16 Build 100

.

Database:	PEDMB	Local Co-ordinate Reference:	Well #506H
Company:	Midland	TVD Reference:	kb = 26' @ 2941.0usft
Project:	Eddy County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 2941.0usft
Site:	Golden Graham 1 Fed Com	North Reference:	Grid
Well:	#506H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН	-	
Design:	Plan #0.1 RT		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
8,675.0	63.23	359.88	8,381.8	-368.6	1,041.7	-259.5	12.00	12.00	-0.02
8,700.0	66.23	359.88	8,392.5	-346.0	1,041.7	-237.0	12.00	12.00	-0.02
0 705 0	<u> </u>	250.07	0.404.0		1 0 1 1 0	044.0	40.00	10.00	0.00
8,725.0	69.23	359.87	8,401.9	-322.8	1,041.6	-214.0	12.00	12.00	-0.02
8,750.0	72.23	359.87	8,410.2	-299.2	1,041.6	-190.6	12.00	12.00	-0.02
8,775.0	75.23	359.86	8,417.2	-275.2	1,041.5	-166.7	12.00	12.00	-0.02
8,800.0	78.23	359.86	8,422.9	-250.9	1,041.4	-142.5	12.00	12.00	-0.02
8,825.0	81.23	359.85	8,427.4	-226.3	1,041.4	-118.0	12.00	12.00	-0.02
8,850.0	84.23	359.85	8,430.5	-201.5	1,041.3	-93.4	12.00	12.00	-0.02
8,875.0	87.23	359.85	8,432.4	-176.6	1,041.2	-68.6	12.00	12.00	-0.02
8,898.0	90.00	359.84	8,432.9	-153.6	1,041.2	-45.7	12.00	12.00	-0.02
8,900.0	90.00	359.84	8,432.9	-151.6	1,041.2	-43.8	0.00	0.00	0.00
9,000.0	90.00	359.84	8,432.9	-51.6	1,040.9	55.7	0.00	0.00	0.00
9,100.0	90.00	359.84	8,433.0	48.4	1,040.6	155.1	0.00	0.00	0.00
9,200.0	90.00	359.84	8,433.0	148.4	1,040.3	254.6	0.00	0.00	0.00
9,300.0	90.00	359.84	8,433.0	248.4	1,040.1	354.0	0.00	0.00	0.00
9,400.0	90.00	359.84	8,433.0	348.4	1,039.8	453.5	0.00	0.00	0.00
9,500.0	90.00	359.84	8,433.0	448.4	1,039.5	552.9	0.00	0.00	0.00
9.600.0	90.00	359.84	8,433.0	548.4	1,039.2	652.3	0.00	0.00	0.00
9,687.6	90.00	359.84	8,433.0	636.0	1,039.0	739.4	0.00	0.00	0.00
9,700.0	90.00	359.84	8,433.0	648.4	1,039.0	751.8	0.00	0.00	0.00
9,800.0	90.00	359.84	8,433.0	748.4	1,038.7	851.2	0.00	0.00	0.00
9,900.0	90.00	359.85	8,433.0	848.4	1,038.4	950.7	0.00	0.00	0.00
9,900.0	90.00	559.05	0,433.0	040.4	1,030.4			0.00	
10,000.0	90.00	359.85	8,433.0	948.4	1,038.2	1,050.1	0.00	0.00	0.00
10,100.0	90.00	359.85	8,433.0	1,048.4	1,037.9	1,149.5	0.00	0.00	0.00
10,200.0	90.00	359.85	8,433.0	1,148.4	1,037.6	1,249.0	0.00	0.00	0.00
10,300.0	90.00	359.85	8,433.0	1,248.4	1,037.4	1,348.4	0.00	0.00	0.00
10,400.0	90.00	359.86	8,433.0	1,348.4	1,037.1	1,447.9	0.00	0.00	0.00
10,500.0	90.00	359.86	8,433.0	1,448.4	1,036.9	1,547.3	0.00	0.00	0.00
10,600.0	90.00	359.86	8,433.0	1,548.4	1,036.6	1,646.8	0.00	0.00	0.00
10,700.0	90.00	359.86	8,433.0	1,648.4	1,036.4	1,746.2	0.00	0.00	0.00
10,800.0	90.00	359.87	8,433.0	1,748.4	1,036.2	1,845.7	0.00	0.00	0.00
10,900.0	90.00	359.87	8,433.0	1,848.4	1,035.9	1,945.1	0.00	0.00	0.00
10,900.0	90.00	559.07	0,433.0		1,055.9				
11,000.0	90.00	359.87	8,433.0	1,948.4	1,035.7	2,044.6	0.00	0.00	0.00
11,100.0	90.00	359.87	8,433.0	2,048.4	1,035.5	2,144.0	0.00	0.00	0.00
11,200.0	90.00	359.87	8,433.0	2,148.4	1,035.2	2,243.4	0.00	0.00	0.00
11,300.0	90.00	359.88	8,433.0	2,248.4	1,035.0	2,342.9	0.00	0.00	0.00
11,400.0	90.00	359.88	8,433.0	2,348.4	1,034.8	2,442.3	0.00	0.00	0.00
11,500.0	90.00	359.88	8,433.0	2,448.4	1,034.6	2,541.8	0.00	0.00	0.00
11,600.0	90.00	359.88 359.88	8,433.0 8,433.0	2,446.4 2,548.4	1,034.6	2,541.6	0.00	0.00	0.00
11,700.0	90.00	359.88 359.88	8,433.0 8,433.0	2,546.4 2,648.4	1,034.4	2,041.2	0.00	0.00	0.00
11,800.0	90.00	359.88 359.89	8,433.0 8,433.0	2,048.4 2,748.4	1,034.2	2,740.7 2,840.1	0.00	0.00	0.00
	90.00	359.89 359.89		2,746.4 2,848.4			0.00	0.00	0.00
11,900.0	90.00	309.09	8,433.0		1,033.8	2,939.6			
12,000.0	90.00	359.89	8,433.0	2,948.4	1,033.6	3,039.0	0.00	0.00	0.00
12,100.0	90.00	359.89	8,433.0	3,048.4	1,033.4	3,138.5	0.00	0.00	0.00
12,200.0	90.00	359.90	8,433.0	3,148.4	1,033.2	3,237.9	0.00	0.00	0.00
12,300.0	90.00	359.90	8,433.0	3,248.4	1,033.1	3,337.4	0.00	0.00	0.00
12,334.6	90.00	359.90	8,433.0	3,283.0	1,033.0	3,371.8	0.00	0.00	0.00
12,400.0	90.00	359.89	8,433.0	3,348.4	1,032.9	3,436.8	0.01	0.00	-0.01
12,400.0	90.00	359.89 359.88	8,433.0 8,433.0	3,348.4 3,448.4	1,032.9	3,436.8 3,536.3	0.01	0.00	-0.01 -0.01
12,500.0	90.00	359.88 359.87	8,433.0 8,433.0	3,448.4 3,548.4	1,032.7	3,536.3 3,635.7	0.01	0.00	-0.01 -0.01
12,600.0						3,635.7 3,735.2			
,	90.00	359.86	8,433.0 8,433.0	3,648.4	1,032.2		0.01	0.00	-0.01
12,800.0	90.00	359.85	8,433.0	3,748.4	1,032.0	3,834.6	0.01	0.00	-0.01
12,900.0	90.00	359.84	8,433.0	3,848.4	1,031.7	3,934.1	0.01	0.00	-0.01
13,000.0	90.00	359.83	8,433.0	3,948.4	1,031.4	4,033.5	0.01	0.00	-0.01

5/12/2025 9:53:25AM

Page 6

COMPASS 5000.16 Build 100

.

Database:	PEDMB	Local Co-ordinate Reference:	Well #506H
Company:	Midland	TVD Reference:	kb = 26' @ 2941.0usft
Project:	Eddy County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 2941.0usft
Site:	Golden Graham 1 Fed Com	North Reference:	Grid
Well:	#506H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OH		
Design:	Plan #0.1 RT		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
13,100.0	90.00	359.82	8,433.0	4,048.4	1,031.1	4,132.9	0.01	0.00	-0.01
13,200.0	90.00	359.81	8,433.0	4,148.4	1,030.8	4,232.4	0.01	0.00	-0.01
13,300.0	90.00	359.80	8,433.0	4,248.4	1,030.4	4,331.8	0.01	0.00	-0.01
13,400.0	90.00	359.78	8,433.0	4,348.4	1,030.1	4,431.2	0.01	0.00	-0.01
13,500.0	90.00	359.77	8,433.0	4,448.4	1,029.7	4,530.7	0.01	0.00	-0.01
13,600.0	90.00	359.76	8,433.0	4,548.4	1,029.3	4,630.1	0.01	0.00	-0.01
13,664.6	90.00	359.76	8,433.0	4,613.0	1,029.0	4,694.3	0.01	0.00	-0.01
13,700.0	90.00	359.76	8,433.0	4,648.4	1,028.9	4,729.5	0.01	0.00	0.01
13,800.0	90.00	359.77	8,433.0	4,748.4	1,028.4	4,829.0	0.01	0.00	0.01
13,900.0	90.00	359.78	8,433.0	4,848.4	1,028.0	4,928.4	0.01	0.00	0.01
14,000.0	90.00	359.79	8,433.0	4,948.4	1,027.7	5,027.8	0.01	0.00	0.01
14,100.0	90.00	359.79	8,433.0	5,048.4	1,027.3	5,127.2	0.01	0.00	0.01
14,200.0	90.00	359.80	8,433.0	5,148.4	1,026.9	5,226.7	0.01	0.00	0.01
14,300.0	90.00	359.81	8,433.0	5,248.4	1,026.6	5,326.1	0.01	0.00	0.01
14,400.0	90.00	359.82	8,433.0	5,348.4	1,026.3	5,425.6	0.01	0.00	0.01
14,500.0	90.00	359.83	8,433.0	5,448.4	1,026.0	5,525.0	0.01	0.00	0.01
14,600.0	90.00	359.84	8,433.0	5,548.4	1,025.7	5,624.4	0.01	0.00	0.01
14,700.0	90.00	359.85	8,433.0	5,648.4	1,025.4	5,723.9	0.01	0.00	0.01
14,800.0	90.00	359.85	8,433.0	5,748.4	1,025.1	5,823.3	0.01	0.00	0.01
14,900.0	90.00	359.86	8,433.0	5,848.4	1,024.9	5,922.8	0.01	0.00	0.01
15,000.0	90.00	359.87	8,433.0	5,948.4	1,024.7	6,022.2	0.01	0.00	0.01
15,100.0	90.00	359.88	8,433.0	6,048.4	1,024.4	6,121.7	0.01	0.00	0.01
15,200.0	90.00	359.89	8,433.0	6,148.4	1,024.2	6,221.1	0.01	0.00	0.01
15,300.0	90.00	359.90	8,433.0	6,248.4	1,024.1	6,320.6	0.01	0.00	0.01
15,400.0	90.00	359.91	8,433.0	6,348.4	1,023.9	6,420.0	0.01	0.00	0.01
15,500.0	90.00	359.91	8,433.0	6,448.4	1,023.7	6,519.5	0.01	0.00	0.01
15,600.0	90.00	359.92	8,433.0	6,548.4	1,023.6	6,618.9	0.01	0.00	0.01
15,700.0	90.00	359.93	8,433.0	6,648.4	1,023.5	6,718.4	0.01	0.00	0.01
15,800.0	90.00	359.94	8,433.0	6,748.4	1,023.3	6,817.8	0.01	0.00	0.01
15,900.0	90.00	359.95	8,433.0	6,848.4	1,023.2	6,917.3	0.01	0.00	0.01
16,000.0	90.00	359.96	8,433.0	6,948.4	1,023.2	7,016.8	0.01	0.00	0.01
16,100.0	90.00	359.97	8,433.0	7,048.4	1,023.1	7,116.2	0.01	0.00	0.01
16,200.0	90.00	359.97	8,433.0	7,148.4	1,023.0	7,215.7	0.01	0.00	0.01
16,300.0	90.00	359.98	8,433.0	7,248.4	1,023.0	7,315.1	0.01	0.00	0.01
16,330.6	90.00	359.99	8,433.0	7,279.0	1,023.0	7,345.6	0.01	0.00	0.01
16,400.0	90.00	359.98	8,433.0	7,348.4	1,023.0	7,414.6	0.01	0.00	-0.01
16,500.0	90.00	359.97	8,433.0	7,448.4	1,022.9	7,514.1	0.01	0.00	-0.01
16,600.0	90.00	359.96	8,433.0	7,548.4	1,022.9	7,613.5	0.01	0.00	-0.01
16,700.0	90.00	359.95	8,433.0	7,648.4	1,022.8	7,713.0	0.01	0.00	-0.01
16,800.0	90.00	359.94	8,433.0	7,748.4	1,022.7	7,812.5	0.01	0.00	-0.01
16,900.0	90.00	359.93	8,433.0	7,848.4	1,022.6	7,911.9	0.01	0.00	-0.01
17,000.0	90.00	359.92	8,433.0	7,948.4	1,022.5	8,011.4	0.01	0.00	-0.01
17,100.0	90.00	359.91	8,433.0	8,048.4	1,022.3	8,110.8	0.01	0.00	-0.01
17,200.0	90.00	359.90	8,433.0	8,148.4	1,022.2	8,210.3	0.01	0.00	-0.01
17,300.0	90.00	359.89	8,433.0	8,248.4	1,022.0	8,309.7	0.01	0.00	-0.01
17,400.0	90.00	359.89	8,433.0	8,348.4	1,021.8	8,409.2	0.01	0.00	-0.01
17,500.0	90.00	359.88	8,433.0	8,448.4	1,021.6	8,508.6	0.01	0.00	-0.01
17,600.0	90.00	359.87	8,433.0	8,548.4	1,021.4	8,608.1	0.01	0.00	-0.01
17,700.0	90.00	359.86	8,433.0	8,648.4	1,021.1	8,707.5	0.01	0.00	-0.01
17,800.0	90.00	359.85	8,433.0	8,748.4	1,020.9	8,807.0	0.01	0.00	-0.01
17,900.0	90.00	359.84	8,433.0	8,848.4	1,020.6	8,906.4	0.01	0.00	-0.01
18,000.0	90.00	359.83	8,433.0	8,948.4	1,020.3	9,005.9	0.01	0.00	-0.01
18,100.0	90.00	359.82	8,433.0	9,048.4	1,020.0	9,105.3	0.01	0.00	-0.01

Database:	PEDMB	Local Co-ordinate Reference:	Well #506H
Company:	Midland	TVD Reference:	kb = 26' @ 2941.0usft
Project:	Eddy County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 2941.0usft
Site:	Golden Graham 1 Fed Com	North Reference:	Grid
Well:	#506H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OH		
Design:	Plan #0.1 RT		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
18,300.0	90.00	359.80	8,433.0	9,248.4	1,019.3	9,304.2	0.01	0.00	-0.01
18,400.0	90.00	359.79	8,433.0	9,348.4	1,019.0	9,403.6	0.01	0.00	-0.01
18,500.0	90.00	359.78	8,433.0	9,448.4	1,018.6	9,503.0	0.01	0.00	-0.01
18,600.0	90.00	359.77	8,433.0	9,548.4	1,018.2	9,602.5	0.01	0.00	-0.01
18,700.0	90.00	359.76	8,433.0	9,648.4	1,017.8	9,701.9	0.01	0.00	-0.01
18,800.0	90.00	359.75	8,433.0	9,748.4	1,017.4	9,801.3	0.01	0.00	-0.01
18,891.6	90.00	359.75	8,433.0	9,840.0	1,017.0	9,892.4	0.01	0.00	-0.01

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
KOP(Golden Graham 1 - plan hits target cente - Point	0.00 er	0.00	7,955.5	-631.0	1,042.0	387,343.00	634,307.00	32° 3' 52.309 N	104° 1' 59.557 W
FTP(Golden Graham 1 F - plan hits target cente - Point	0.00 er	0.00	8,168.2	-581.0	1,042.0	387,393.00	634,307.00	32° 3' 52.804 N	104° 1' 59.556 W
Fed Perf 4(Golden Grah - plan hits target cente - Point	0.00 er	0.00	8,433.0	7,279.0	1,023.0	395,253.00	634,288.00	32° 5' 10.588 N	104° 1' 59.522 W
PBHL(Golden Graham 1 - plan hits target cente - Point	0.00 er	0.00	8,433.0	9,840.0	1,017.0	397,814.00	634,282.00	32° 5' 35.933 N	104° 1' 59.509 W
Fed Perf 3(Golden Grah - plan hits target cente - Point	0.00 er	0.00	8,433.0	4,613.0	1,029.0	392,587.00	634,294.00	32° 4' 44.205 N	104° 1' 59.539 W
Fed Perf 2(Golden Grah - plan hits target cente - Point	0.00 er	0.00	8,433.0	3,283.0	1,033.0	391,257.00	634,298.00	32° 4' 31.043 N	104° 1' 59.535 W
Fed Perf 1(Golden Grah - plan hits target cente - Point	0.00 er	0.00	8,433.0	636.0	1,039.0	388,610.00	634,304.00	32° 4' 4.848 N	104° 1' 59.551 W

Released to Imaging: 7/3/2025 9:34:19 AM

eogresources

Eddy County, NM (NAD 83 NME)

Golden Graham 1 Fed Com #506H

Plan #0.1 RT

PROJECT DETAILS: Eddy County, NM (NAD 83 NME)

Geodetic System: US State Plane 1983 Datum: North American Datum 1983 Ellipsoid: GRS 1980 Zone: New Mexico Eastern Zone System Datum: Mean Sea Level

-1050	-700	-350	0	West(-) 350	/East(+) 700	1050	1400	1750	21
		+ + + + + + + + + + + + + + + + + + + +			· <mark>·</mark>	·¦			
9800									
								Golden	Grahar
						· ·¦	· -		
9450									
					I I I I I I I I I I I I				
9100									
					I				
							·		
8750									
					· · ·				
8400									
				· · · · · · · · · · · · · · · · · · ·	• • •				
9050									
8050									
							· = = = + + + + + + = = . 		
7700									
		I			I I	1 - - - 1 1 - - - - 1 1 - - - - 1			
7000									

_ _ + + - -

- - - -

_ _ _ _ _ _ _ _

3150-

--+--

- - - - - - - -

- 1 -

- - - -

- - -

· _ _ _ _ _ _ _ _

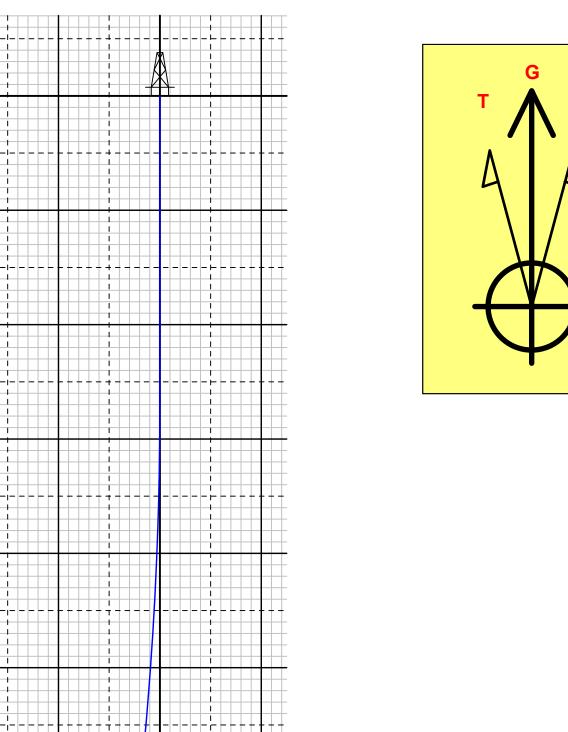
· | - | - | - - - -

1

1

- - - - - - -

_ _ + + -


- - - - - - -

- - - - - - - - -

- - - -

- |- !- |- + -

1

- |- ;- |- +

- _ _ _ _ _ _

- - - - - - - -

- - - - - - -

• + + + + +

• + + + + +

+ + + + + - -

· + + + + +

· + + + + + + + +

- - - - - - - -

. + + 4 + +

- - - - - - -

300-

600-

900-

1200-

1500-

1800

2100

2400-

2700

3000

3300-

3600

3900

Actic Actic Actic

4500

4800

5100

5400

5700

6000

6300

6600

6900

7500

7800

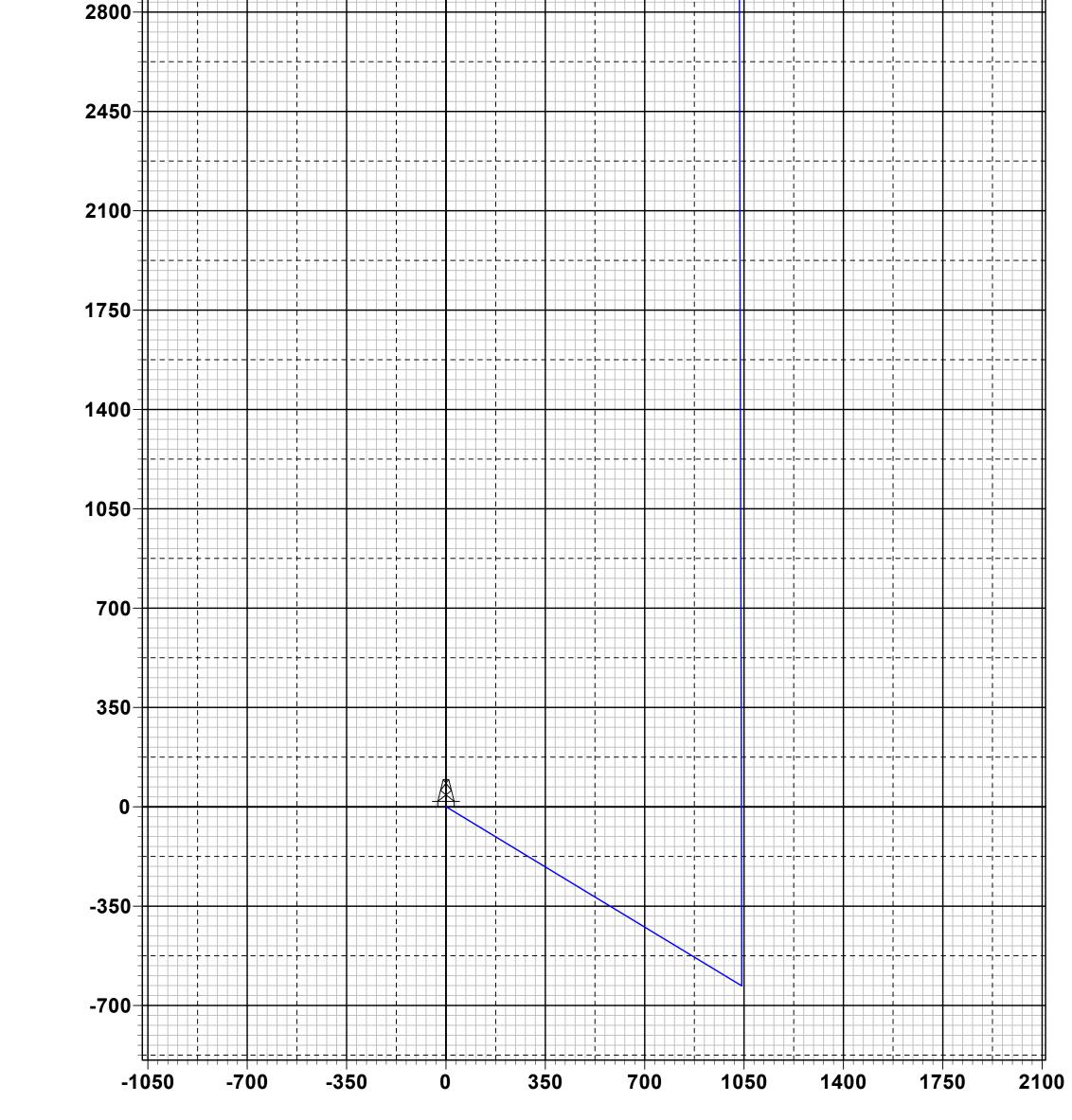
_ _ _ _ _ _

7200

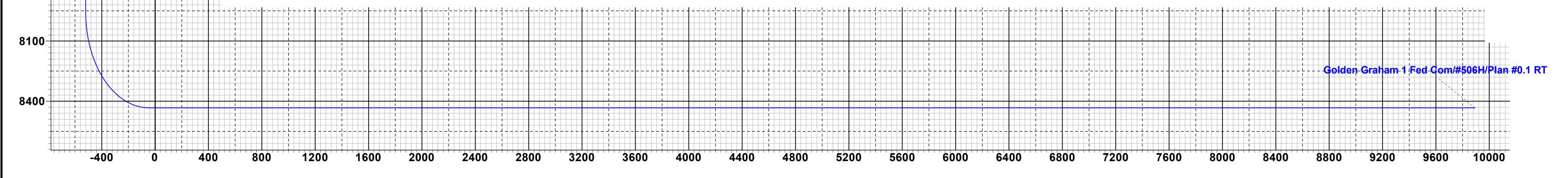
Depth

a

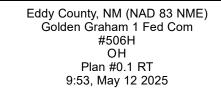
ue


Azimuths to Grid North True North: -0.16° Magnetic North: 6.30° Magnetic Field Strength: 46900.0nT

Dip Angle: 59.55° Date: 5/12/2025 Model: IGRF2025


To convert a Magnetic Direction to a Grid Direction, Add 6.30° To convert a Magnetic Direction to a True Direction, Add 6.46° East To convert a True Direction to a Grid Direction, Subtract 0.16° M (NAD 83 NME)

				6: #506H	LL DETAILS	WE					
		.0	2915 Isft	ଳ 20/1 ୦.	kb = 26' (
	1	Longitude 104° 2' 11.647 W	atittude 58.582 N	L	Easting 33265.00		Northing 387974.00				
		LS	ON DETAI	SECTI							
rget	Tar	VSect	TFace	Dleg	+E/-W	+N/-S	TVD	Azi	Inc	MD	Sec
		0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.0	1
		0.0	0.00	0.00	0.0	0.0	800.0	0.00	0.00	800.0	2
		-72.3	121.20	2.00	144.7	-87.6	1769.9	121.20	19.79	1789.5	3
					007 0		4215.1	101 00	19.79	4388.1	4
		-448.2	0.00	0.00	897.3	-543.4	4213.1	121.20	19.19		_
		-448.2 -520.5	0.00 180.00	0.00 2.00	897.3 1042.0	-543.4 -631.0	4215.1 5185.0	0.00	0.00	5377.6	5
0P(Golden Graham 1 Fed Com #506H)	KO										5 6
0P(Golden Graham 1 Fed Com #506H) P(Golden Graham 1 Fed Com #506H)		-520.5	180.00	2.00	1042.0	-631.0	5185.0	0.00	0.00	5377.6	5 6 7
		-520.5 -520.5	180.00 0.00	2.00 0.00	1042.0 1042.0	-631.0 -631.0	5185.0 7955.5	0.00 0.00	0.00 0.00	5377.6 8148.1	5 6 7 8
	FTF	-520.5 -520.5 -470.8	180.00 0.00 0.00	2.00 0.00 12.00	1042.0 1042.0 1042.0	-631.0 -631.0 -581.0	5185.0 7955.5 8168.2	0.00 0.00 0.00	0.00 0.00 26.46	5377.6 8148.1 8368.5	7
P(Golden Graham 1 Fed Com #506H)	FTF Fec	-520.5 -520.5 -470.8 -45.7	180.00 0.00 0.00 -0.18	2.00 0.00 12.00 12.00	1042.0 1042.0 1042.0 1041.2	-631.0 -631.0 -581.0 -153.6	5185.0 7955.5 8168.2 8432.9	0.00 0.00 0.00 359.84	0.00 0.00 26.46 90.00	5377.6 8148.1 8368.5 8898.0	7 8
P(Ġolden Graham 1 Fed Com #506H)́ d Perf 1(Golden Graham 1 Fed Com #506H)	FTF Fec Fec	-520.5 -520.5 -470.8 -45.7 739.4	180.00 0.00 0.00 -0.18 0.00	2.00 0.00 12.00 12.00 0.00	1042.0 1042.0 1042.0 1041.2 1039.0	-631.0 -631.0 -581.0 -153.6 636.0	5185.0 7955.5 8168.2 8432.9 8433.0	0.00 0.00 0.00 359.84 359.84	0.00 0.00 26.46 90.00 90.00	5377.6 8148.1 8368.5 8898.0 9687.6	7 8 9
P(Ġolden Graham 1 Fed Com #506H) d Perf 1(Golden Graham 1 Fed Com #506H) d Perf 2(Golden Graham 1 Fed Com #506H)	FTF Fec Fec Fec	-520.5 -520.5 -470.8 -45.7 739.4 3371.8	180.00 0.00 0.00 -0.18 0.00 81.64	2.00 0.00 12.00 12.00 0.00 0.00	1042.0 1042.0 1042.0 1041.2 1039.0 1033.0	-631.0 -631.0 -581.0 -153.6 636.0 3283.0	5185.0 7955.5 8168.2 8432.9 8433.0 8433.0	0.00 0.00 0.00 359.84 359.84 359.90	0.00 0.00 26.46 90.00 90.00 90.00	5377.6 8148.1 8368.5 8898.0 9687.6 12334.6	7 8 9 10


WELLBORE TARGET DETAILS (MAP CO-ORDINATES)										
Name	TVD	+N/-S	+E/-W	Northing	Easting					
KOP(Golden Graham 1 Fed Com #506H)	7955.5	-631.0	1042.0	387343.00	634307.00					
FTP(Golden Graham 1 Fed Com #506H)	8168.2	-581.0	1042.0	387393.00	634307.00					
Fed Perf 1(Golden Graham 1 Fed Com #506H)	8433.0	636.0	1039.0	388610.00	634304.00					
Fed Perf 2(Golden Graham 1 Fed Com #506H)	8433.0	3283.0	1033.0	391257.00	634298.00					
Fed Perf 3 Golden Graham 1 Fed Com #506H)	8433.0	4613.0	1029.0	392587.00	634294.00					
Fed Perf 4 Golden Graham 1 Fed Com #506H	8433.0	7279.0	1023.0	395253.00	634288.00					
PBHL(Golden Graham 1 Fed Com #506H)	8433.0	9840.0	1017.0	397814.00	634282.00					

West(-)/East(+)

Vertical Section at 5.90°

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: EOG Resources Incorporated WELL NAME & NO.: GOLDEN GRAHAM 1 FED COM 506H LOCATION: Section 1, T.26 S., R.28 E. COUNTY: Eddy County, New Mexico

COA

H2S	• Yes	O No	
Potash	• None	• Secretary	© R-111-P
Cave/Karst Potential	O Low	Medium	O High
Cave/Karst Potential	Critical		
Variance	○ None	• Flex Hose	O Other
Wellhead	Conventional	Multibowl	O Both
Wellhead Variance	O Diverter		
Other	□4 String	Capitan Reef	□ WIPP
Other	□ Fluid Filled	🗆 Pilot Hole	□ Open Annulus
Cementing	□ Contingency	EchoMeter	Primary Cement
	Cement Squeeze		Squeeze
Special Requirements	□ Water Disposal	COM	🗆 Unit
Special Requirements	□ Batch Sundry		
Special Requirements	Break Testing	✓ Offline	Casing
Variance		Cementing	Clearance

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated AT SPUD. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

The above well is approved for the primary design and 5 Designs listed in the "EOG BLM Variance 5a - Alternate Shallow Casing Designs" document. The casing set points and directional plans for the wells in the batch are within the boundary conditions reviewed in the blanket design. The COA is written for the deepest well on the pad. Operator is responsible to review the cement volumes based on the set points, design executed and to achieve the TOC requirements listed in the COA.

PLEASE REVIEW GEOLOG NOTE: The operator proposes to set surface casing at 200 feet, which will be too shallow and not adequately protect usable water zones. Instead, set casing below the shallow karst aquifer system at 350 feet. If salt is encountered, set casing at least 25 feet above the salt.

<u>The operator proposes to set intermediate casing at 2772 feet, which will be in the</u> <u>top of the Delaware Sands. Instead, set casing in the Lamar Limestone at 2675 feet.</u>

Medium cave karst. Please have contingencies in place for severe losses

Primary(Design E:)

- 1. The **10-3/4** inch surface casing shall be set at approximately **350** feet **TVD** (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The 8-5/8 inch intermediate casing shall be set at approximately 2675 feet TVD.
 - a. Mud weight could brine up to 10.2ppg. Reviewed and OK
 - b. Keep casing half full during run for collapse SF

The minimum required fill of cement behind the **8-5/8** inch intermediate casing is:

- Cement to surface. If cement does not circulate see B.1.a, c-d above.
- 3. The **6** inch **x 5.5** inch tapered production casing shall be set at approximately **18,892** feet. Operator has also proposed ONLY running **6** inch casing for the production string. Reviewed and is OK. The minimum required fill of cement behind the **5-1/2** inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Page 2 of 12

Shallow Design A:

- 1. The **13-3/8** inch surface casing shall be set at approximately **350** feet **TVD** (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The 9-5/8 inch intermediate casing shall be set at approximately 2675 feet TVD.
 - a. Mud weight could brine up to 10.2ppg. Reviewed and OK
 - b. Keep casing half full during run for collapse SF

The minimum required fill of cement behind the **9-5/8** inch intermediate casing is:

- Cement to surface. If cement does not circulate see B.1.a, c-d above.
- 3. The **5-1/2** inch production casing shall be set at approximately **18,892** feet. The minimum required fill of cement behind the **5-1/2** inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Shallow Design B:

1. The **10-3/4** inch surface casing shall be set at approximately **350** feet **TVD** (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.

a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature

Page 3 of 12

survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.

- b. Wait on cement (WOC) time for a primary cement job will be a minimum of $\underline{\mathbf{8}}$ <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.

If cement falls back, remedial cementing will be done prior to drilling out that string.

- 2. The **8-5/8** inch intermediate casing shall be set at approximately **2675** feet **TVD**.
 - a. Mud weight could brine up to 10.2ppg. Reviewed and OK
 - b. Keep casing half full during run for collapse SF

The minimum required fill of cement behind the **8-5/8** inch intermediate casing is:

- Cement to surface. If cement does not circulate see B.1.a, c-d above.
- 3. The **5-1**/2 inch production casing shall be set at approximately **18,892** feet. The minimum required fill of cement behind the **5-1**/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Shallow Design C:

- 1. The **13-3/8** inch surface casing shall be set at approximately **350** feet **TVD** (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8 hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling

out that string.

- 2. The 9-5/8 inch intermediate casing shall be set at approximately 2675 feet TVD.
 - c. Mud weight could brine up to 10.2ppg. Reviewed and OK
 - d. Keep casing half full during run for collapse SF

The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

- Cement to surface. If cement does not circulate see B.1.a, c-d above.
- 3. The **6** inch production casing shall be set at approximately **18,892** feet. The minimum required fill of cement behind the **6** inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Shallow Design D:

- 1. The **13-3/8** inch surface casing shall be set at approximately **350** feet **TVD** (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8 hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The 9-5/8 inch intermediate casing shall be set at approximately 2675 feet TVD.
 - e. Mud weight could brine up to 10.2ppg. Reviewed and OK
 - f. Keep casing half full during run for collapse SF

The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

- Cement to surface. If cement does not circulate see B.1.a, c-d above.
- 3. The **6** inch x **5.5** inch tapered production casing shall be set at approximately **18,892** feet. The minimum required fill of cement behind the **6** inch x **5.5** inch tapered production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the 13-3/8 inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 3500 (70% Working Pressure) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

• The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.

- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

(Note: For a minimum 5M BOPE or less (Utilizing a 10M BOPE system) BOPE Break Testing Variance

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (**575-706-2779**) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-689-5981 Lea County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per Onshore Oil and Gas Order No. 2.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Casing Clearance:

- Variance in place for production interval as long as the 500' overlap into the previous casing meets the requirement
- Variance in place for salt interval clearance based on caliper data study

Offline Cementing

Operator is approved for offline cementing for surface and intermediate intervals. Notify the BLM prior to the commencement of any offline cementing procedure.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Eddy County

EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220,

BLM_NM_CFO_DrillingNotifications@BLM.GOV (575) 361-2822

- Lea CountyCall the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43 CFR part 3170 Subpart 3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or

if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL
- All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.

- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in 43
 CFR part 3170 Subpart 3172 must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been

Approval Date: 06/27/2025

done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)

- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

Golden Graham 1 Fed Com #506H

Hydrogen Sulfide Plan Summary

- A. All personnel shall receive proper H2S training in accordance with Onshore Order III.C.3.a.
- **B.** Briefing Area: two perpendicular areas will be designated by signs and readily accessible.
- C. Required Emergency Equipment:

Well control equipment

- a. Flare line 150' from wellhead to be ignited by flare gun.
- b. Choke manifold with a remotely operated choke.
- c. Mud/gas separator

Protective equipment for essential personnel:

- a. Breathing Apparatus:
 - i. Rescue Packs (SCBA) 1 unit shall be placed at each breathing area, 2 shall be stored in the safety trailer.
 - ii. Work/Escape packs —4 packs shall be stored on the rig floor with sufficient air hose not to restrict work activity.
 - iii. Emergency Escape Packs —4 packs shall be stored in the doghouse for emergency evacuation.
- b. Auxiliary Rescue Equipment:
 - i. Stretcher
 - ii. Two OSHA full body harness
 - iii. 100 ft 5/8 inch OSHA approved rope
 - iv. 1-20# class ABC fire extinguisher

H2S Detection and Monitoring Equipment:

The stationary detector with three sensors will be placed in the upper dog house if equipped, set to visually alarm @ 10 ppm and audible @ 14 ppm. Calibrate a minimum of every 30 days or as needed. The sensors will be placed in the following places: Rig floor / Bell nipple / End of flow line or where well bore fluid is being discharged. (Gas sample tubes will be stored in the safety trailer)

Visual Warning System:

- a. One color code condition sign will be placed at the entrance to the site reflecting the possible conditions at the site.
- b. A colored condition flag will be on display, reflecting the current condition at the site at the time.
- c. Two wind socks will be placed in strategic locations, visible from all angles.

Golden Graham 1 Fed Com #506H

Mud Program:

The mud program has been designed to minimize the volume of H2S circulated to surface. The operator will have the necessary mud products to minimize hazards while drilling in H2S bearing zones.

Metallurgy:

All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.

Communication:

Communication will be via cell phones and land lines where available.

Golden Graham 1 Fed Com #506H

Emergency Assistance Telephone List

PUBLIC SAFETY:	911 or
Lea County Sheriff's Department	(575) 396-3611
Corey Helton	
Fire Department	
Carlsbad	(575) 885-3125
Artesia	(575) 746-5050
Hospitals	
Carlsbad	(575) 887-4121
Artesia	(575) 748-3333
Hobbs	(575) 392-1979
Dept. of Public Safety/Carlsbad	(575) 748-9718
Highway Department	(575) 885-3281
U.S. Department of Labor	(575) 887-1174
Bureau of Land Management - Hobbs (Lea Co)	(575) 393-3612
PET On Call - Hobbs	(575) 706-2779
Bureau of Land Management - Carlsbad (Eddy Co)	(575) 234-5972
PET On Call - Carlsbad	(575) 706-2779
New Mexico Oil Conservation Division - Artesia	(575) 748-1283
Inspection Group South - Gilbert Gordero	(575) 626-0830
EOG Resources, Inc.	
EOG Midland	(432) 686-3600
Company Drilling Consultants:	
Jett Dueitt	(432) 230-4840
Blake Burney	
Drilling Engineers	
Stephen Davis	(432) 235-9789
Matt Day	(210) 296-4456
Drilling Managers	
Branden Keener	(210) 294-3729
Drilling Superintendents	
Lance Hardy	(432) 215-8152
Ryan Reynolds	(432) 215-5978
Steve Kelly	(210) 416-7894
H&P Drilling	
H&P Drilling	(432) 563-5757
Nabors Drilling	
Nabors Drilling	(432) 363-8180
Patterson UTI	· · ·
Patterson UTI	(432) 561-9382
	× /
EOG Safety	

EOG BLANKET CASING DESIGN VARIANCE

EOG respectfully requests the drill plans in the attached document 'EOG BLM Variance 5a -Alternate Shallow Casing Designs' be added to the COA's for this well. These designs have been approved by the BLM down to the TVDs listed below and will allow EOG to run alternate casing designs for this well if necessary.

The designs and associated details listed are the "worst case scenario" boundaries for design safety factors. Location and lithology have NOT been accounted for in these designs. The specific well details will be based on the APD/Sundry package and the information listed in the COA.

The mud program will not change from the original design for this well. Summary of the mud programs for both shallow and deep targets are listed at the end of this document. If the target is changing, a sundry will be filed to update the casing design and mud/cement programs.

Cement volumes listed in this document are for reference only. The cement volumes for the specific well will be adjusted to ensure cement tops meet BLM requirements as listed in the COA and to allow bradenhead cementing when applicable.

This blanket document only applies to wells with three string designs outside of Potash and Capitan Reef boundaries.

SI	Shallow Design Boundary Conditions											
	Deepest	Deepest	Max Inc	Max DLS								
	MD (ft)	TVD (ft)	(deg)	(°/100usft)								
Surface	2030	2030	0	0								
Intermediate	7793	5650	40	8								
Production	28578	12000	90	25								

Shallow Design A

 (ROOMA						
Hole	Interv	al MD	Interva	Interval TVD				
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC
6-3/4"	0	29,353	0	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS

4. CASING PROGRAM

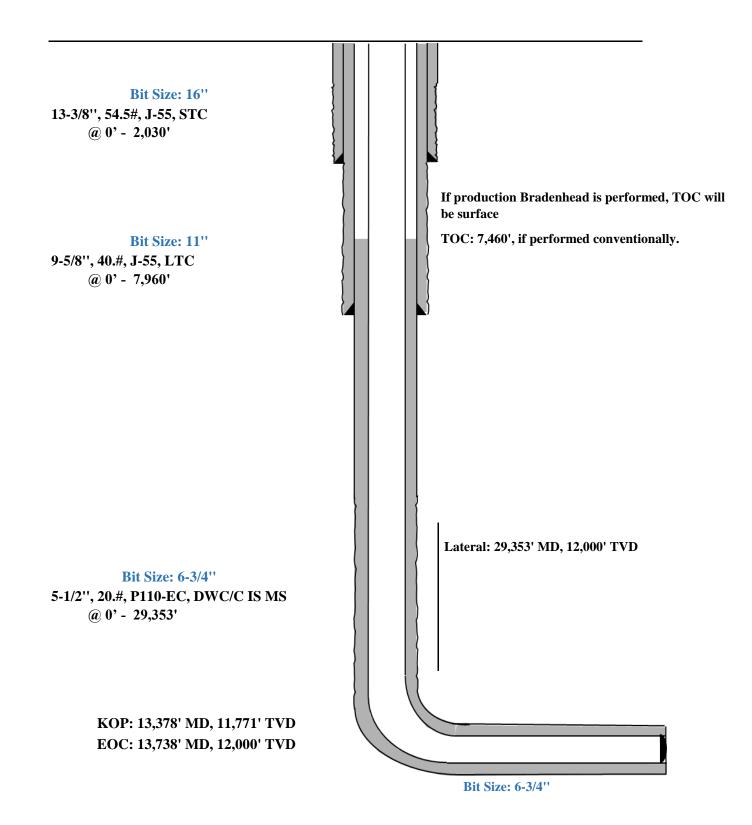
Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

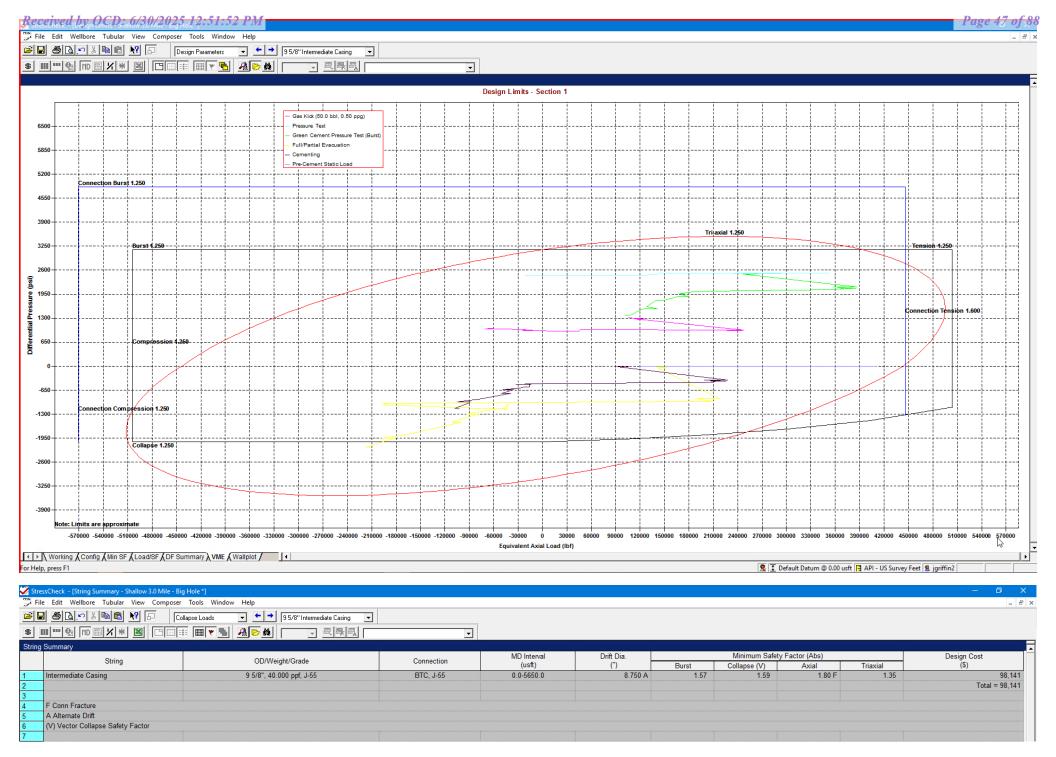

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidny Description
2,030' 13-3/8''	570	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' 9-5/8''	760	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	250	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' _{5-1/2''}	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	1480	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)

5. CEMENTING PROGRAM:

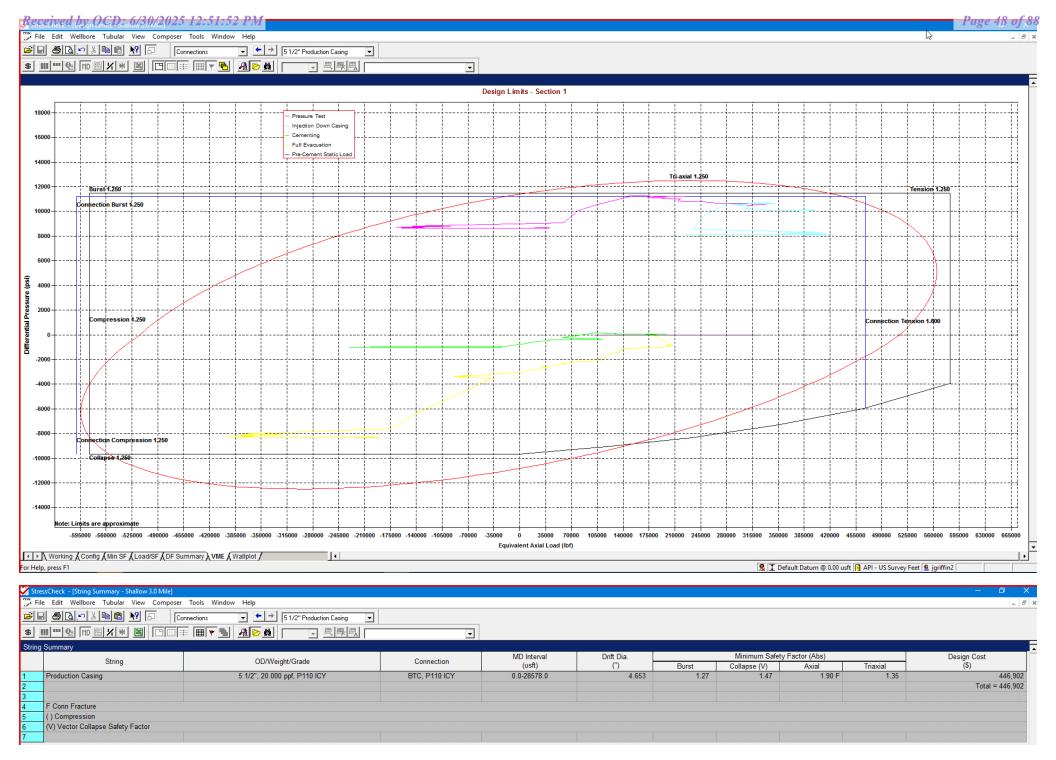
Shallow Design A

Proposed Wellbore

KB: 3558' GL: 3533'


D (1.400)	Axial F	orce (lbf)	E 1 I I			Absolute Sa	afety Factor		T .	Pressure	e (psi)		
Depth (MD) (usft)	Apparent (w/Bending)	Actual (w/o Bending)	Equivalent Axial Load (Ibf)	Bending Stress at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	Temperature (°F)	Internal	External	Addt'l Pickup To Prevent Buck. (lbf)	Buckled Length (usft
0	252987	228954	253140	2098.2	1.69	1.58	N/A	2.82 F	70.00	2500.00	0.00	N/A	N/A
100	247735	223702	248466	2098.2	1.69	1.58	N/A	2.88 F	71.10	2543.63	43.63		
100	234996	223701	235716	986.2	1.71	1.58	N/A	3.04 F	71.10	2543.64	43.64		
1700	341565	139667	352253	17627.2	1.53	1.57	N/A	2.09 F	88.70	3241.64	741.64		
1700	312979	139666	323488	15131.5	1.58	1.57	N/A	2.28 F	88.70	3241.65	741.65		
1850	336881	132027	348440	17885.2	1.51	1.57	N/A	2.12 F	90.29	3305.05	805.05		
1850	318549	132027	329984	16284.8	1.54	1.57	N/A	2.24 F	90.29	3305.06	805.06		
1950	320468	127243	332475	16869.9	1.52	1.57	N/A	2.23 F	91.30	3344.87	844.87		
1950	312802	127243	324756	16200.7	1.53	1.57	N/A	2.28 F	91.30	3344.87	844.87		
2050	307858	122773	320295	16159.3	1.52	1.57	N/A	2.32 F	92.23	3381.89	881.89		
2050	303560	122772	315965	15784.1	1.53	1.57	N/A	2.35 F	92.23	3381.89	881.89		
2300	151294	112633	163658	3375.4	1.71	1.57	N/A	4.72 F	94.35	3466.13	966.13		
2300	132741	112633	144956	1755.6	1.72	1.57	N/A	5.38 F	94.35	3466.14	966.14		
2370	129966	109858	142452	1755.6	1.72	1.57	N/A	5.49 F	94.94	3489.28	989.28		
2370	127909	107800	140922	1755.6	1.75	1.60	N/A	5.58 F	94.94	3489.29	1036.40		
2700	105515	94232	119785	985.1	1.75	1.60	N/A	6.77 F	97.73	3599.97	1152.35		
2700	111680	94231	126006	1523.4	1.75	1.60	N/A	6.39 F	97.73	3599.97	1152.35		
3100	110766	77783	126839	2879.6	1.71	1.60	N/A	6.44 F	101.11	3734.23	1293.00		
3100	97392	77783	113331	1712.1	1.73	1.60	N/A	7.33 F	101.11	3734.23	1293.01		
3700	71565	53303	89806	1594.4	1.70	1.61	N/A	9.97 F	106.15	3934.24	1502.54		
3700	60887	53302	79004	662.3	1.71	1.61	N/A	11.72 F	106.16	3934.25	1502.55		
4650	34671	14219	56495	1785.6	1.64	1.61	N/A	20.59 F	114.20	4253.37	1836.86		
4900	44595	4828	67626	3472.0	1.59	1.61	N/A	16.01 F	116.32	4337.37	1924.87		
4900	28975	4828	51775	2108.2	1.62	1.61	N/A	24.64 F	116.32	4337.38	1924.87		
5029	22103	34	45340	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.40	1969.94		
5029	22102	33	45339	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.41	1969.95		
5600	-45329	-21341	-20805	2094.3	1.57	1.62	N/A	(13.67)	122.23	4572.11	2170.78		
5650	-40465	-23210	-15657	1506.5	1.58	1.62	N/A	(15.31)	122.66	4588.87	2188.34		
										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
F	Conn Fracture												
()	Compression												
(V)	Vector Collapse Safety	Factor											

Working (Config (Min SF) Load/SF (DF Summary (VME (Wallplot) For Help, press F1


🤶 🛨 Default Datum @ 0.00 usft 📑 API - US Survey Feet 😫 jgriffin2

9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi

*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 7/3/2025 9:34:19 AM

Page 6 of 31

Shallow Design B

 . C		NOUNA						
Hole	Interv	al MD	Interva	Interval TVD				
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13-1/2"	0	2,161	0	2,030	10-3/4"	40.5#	J-55	STC
9-7/8"	0	7,951	0	5,650	8-5/8"	32#	J-55	BTC-SC
6-3/4"	0	29,353	0	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS

4. CASING PROGRAM

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

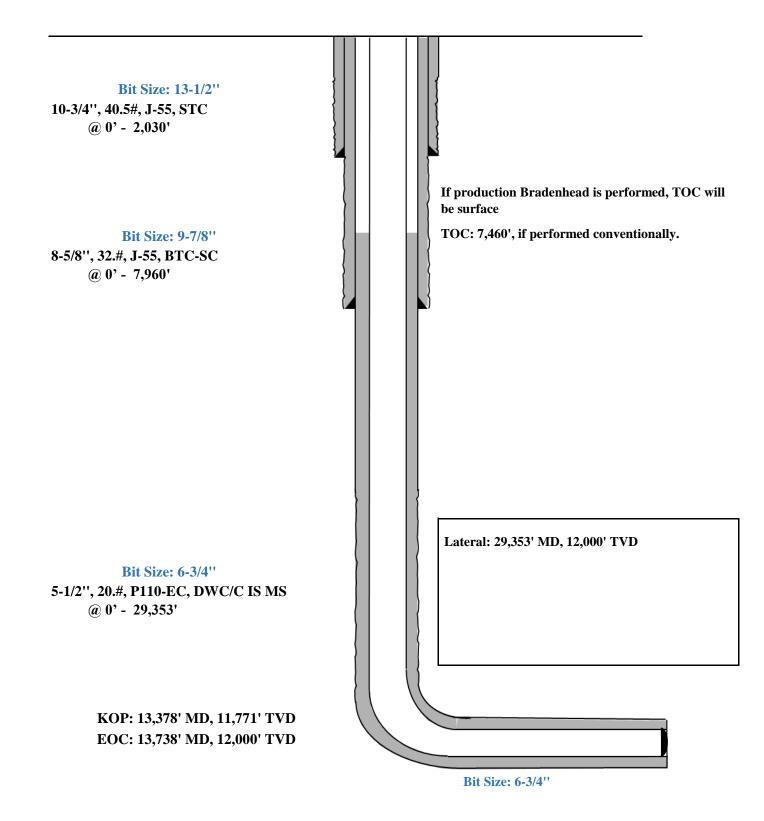
Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

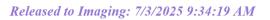
Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidny Description
2,030' 10-3/4''	530	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
	140	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' _{8-5/8''}	470	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	210	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' _{5-1/2''}	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	1480	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)


5. CEMENTING PROGRAM:



Shallow Casing Design B

Proposed Wellbore KB: 3558'

GL: 3533'

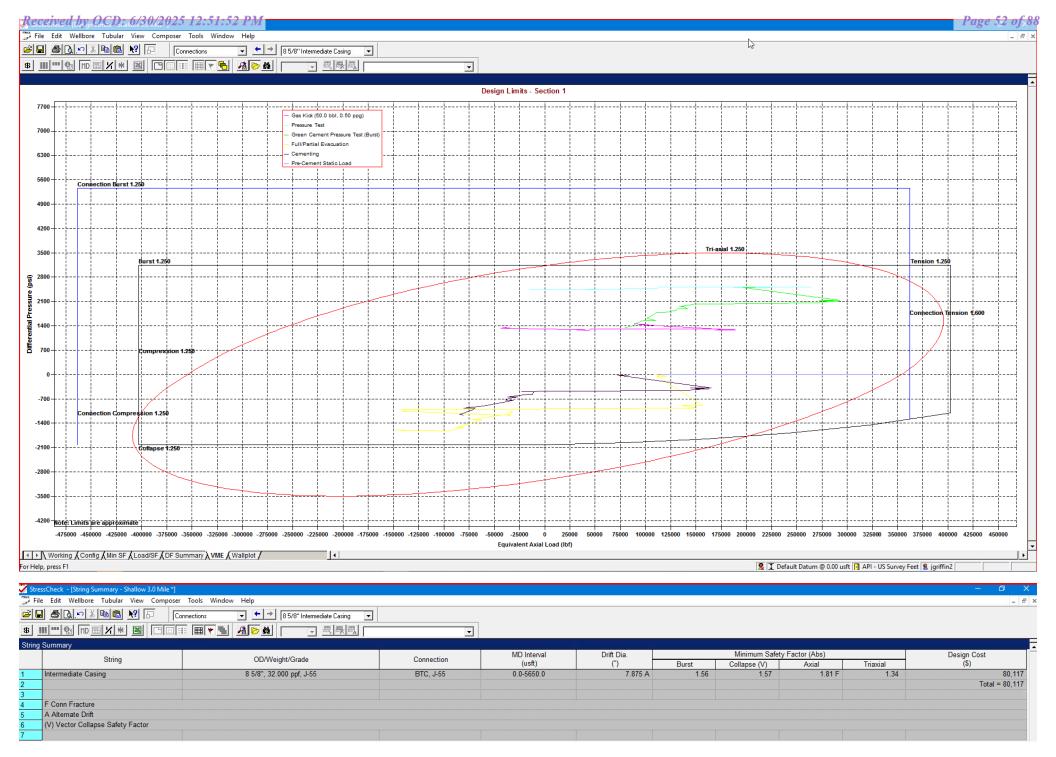
StressCheck - [Triaxial Results - Shallow 3.0 Mile *]

Image: Image

			Force (lbf)	Equivalent	Bending Stress		Absolute S	afety Factor		Temperature	Pressure	(psi)	Addt'l Pickup To	Buckled
	(usft)	Apparent (w/Bending)	Actual (w/o Bending)	Axial Load (lbf)	at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	(°F)	Internal	External	Prevent Buck. (lbf)	Length (usft
	0	200426	183224	200546	1880.2	1.68	1.57	N/A	2.89 F	70.00	2500.00	0.00	N/A	N/A
	100	196229	179028	196812	1880.2	1.69	1.57	N/A	2.95 F	71.10	2543.63	43.63		
	100	187111	179027	187686	883.7	1.70	1.57	N/A	3.10 F	71.10	2543.64	43.64		
	1700	256401	111891	264835	15795.8	1.56	1.56	N/A	2.26 F	88.70	3241.64	741.64		
	1700	235940	111891	244247	13559.4	1.60	1.56	N/A	2.45 F	88.70	3241.65	741.65		
	1850	252413	105788	261533	16027.0	1.54	1.56	N/A	2.29 F	90.29	3305.05	805.05		
	1850	239292	105787	248323	14592.9	1.56	1.56	N/A	2.42 F	90.29	3305.06	805.06		
	1950	240267	101966	249748	15117.2	1.54	1.56	N/A	2.41 F	91.30	3344.87	844.87		
	1950	234781	101965	244223	14517.5	1.56	1.56	N/A	2.47 F	91.30	3344.87	844.87		
	2050	230871	98395	240694	14480.4	1.55	1.56	N/A	2.51 F	92.23	3381.89	881.89		
	2050	227794	98394	237594	14144.2	1.55	1.56	N/A	2.54 F	92.23	3381.89	881.89		
	2300	117966	90294	127818	3024.7	1.70	1.56	N/A	4.91 F	94.35	3466.13	966.13		
	2300	104686	90293	114432	1573.2	1.71	1.56	N/A	5.53 F	94.35	3466.14	966.14		
	2370	102469	88077	112431	1573.2	1.71	1.56	N/A	5.65 F	94.94	3489.28	989.28		
	2370	100817	86424	111200	1573.2	1.75	1.59	N/A	5.75 F	94.94	3489.29	1036.40		
	2700	83660	75583	95052	882.8	1.74	1.59	N/A	6.92 F	97.73	3599.97	1152.35		
	2700	88072	75583	99504	1365.1	1.74	1.59	N/A	6.58 F	97.73	3599.97	1152.35		
	3100	86049	62442	98863	2580.4	1.71	1.59	N/A	6.73 F	101.11	3734.23	1293.00		
	3100	76477	62441	89195	1534.2	1.72	1.59	N/A	7.57 F	101.11	3734.23	1293.01		
	3700	55953	42882	70509	1428.8	1.69	1.60	N/A	10.35 F	106.15	3934.24	1502.54		
	3700	48311	42881	62778	593.5	1.71	1.60	N/A	11.99 F	106.16	3934.25	1502.55		
	4000	41458	33043	56865	919.9	1.69	1.60	N/A	13.97 F	108.69	4034.82	1607.91		
	4650	26293	11655	43706	1600.1	1.63	1.60	N/A	22.03 F	114.20	4253.37	1836.86		
	4900	32619	4156	50970	3111.2	1.59	1.60	N/A	17.76 F	116.32	4337.37	1924.87		
	4900	21439	4155	39625	1889.2	1.61	1.60	N/A	27.02 F	116.32	4337.38	1924.87		
	5039	15822	26	34389	1726.6	1.61	1.61	N/A	36.61 F	117.49	4383.77	1973.48		
	5039	15822	26	34388	1726.6	1.61	1.61	N/A	36.61 F	117.49	4383.78	1973.49		
	5600	-33912	-16743	-14286	1876.7	1.57	1.61	N/A	(14.60)	122.23	4572.11	2170.78		
	5650	-30585	-18235	-10742	1350.0	1.58	1.61	N/A	(16.18)	122.66	4588.87	2188.34		
		Conn Fracture												
		Compression												
	(V) V	/ector Collapse Safet	y Factor											

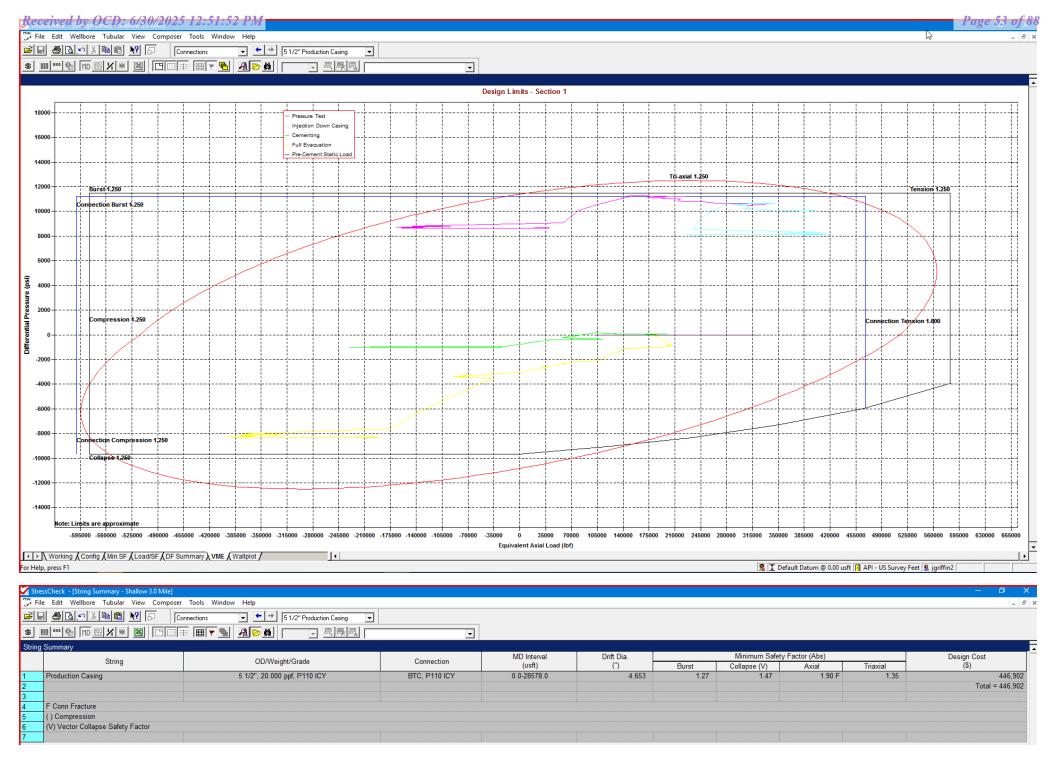
-

For Help, press F1


🕵 I Default Datum @ 0.00 usft 🖪 API - US Survey Feet 😫 jgriffin2

Page 51 of 88

_ 8 >


8-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi

*Modelling done with 8-5/8" 32# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 7/3/2025 9:34:19 AM

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 7/3/2025 9:34:19 AM

Page 11 of 31

Shallow Design C

Hole	Interv	al MD	Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC
7-7/8"	0	29,353	0	12,000	6"	24.5#	P110-EC	VAM Sprint-SF

4. CASING PROGRAM

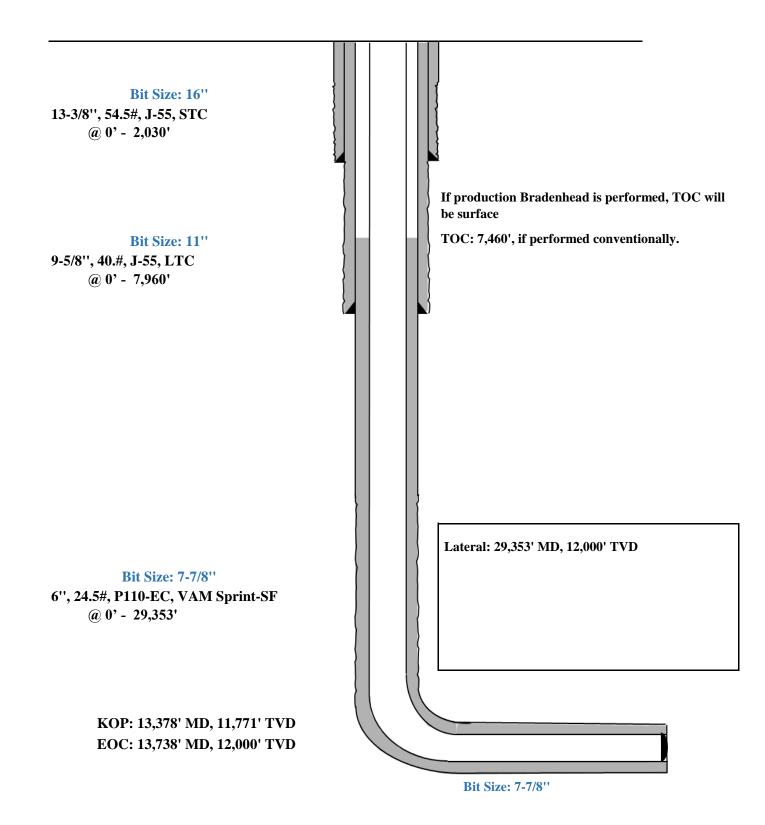
Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" casing in the 7-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 7-7/8" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.


		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidny Description
2,030' 13-3/8''	570	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' _{9-5/8''}	760	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	250	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' _{6''}	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	2500	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)

5. CEMENTING PROGRAM:

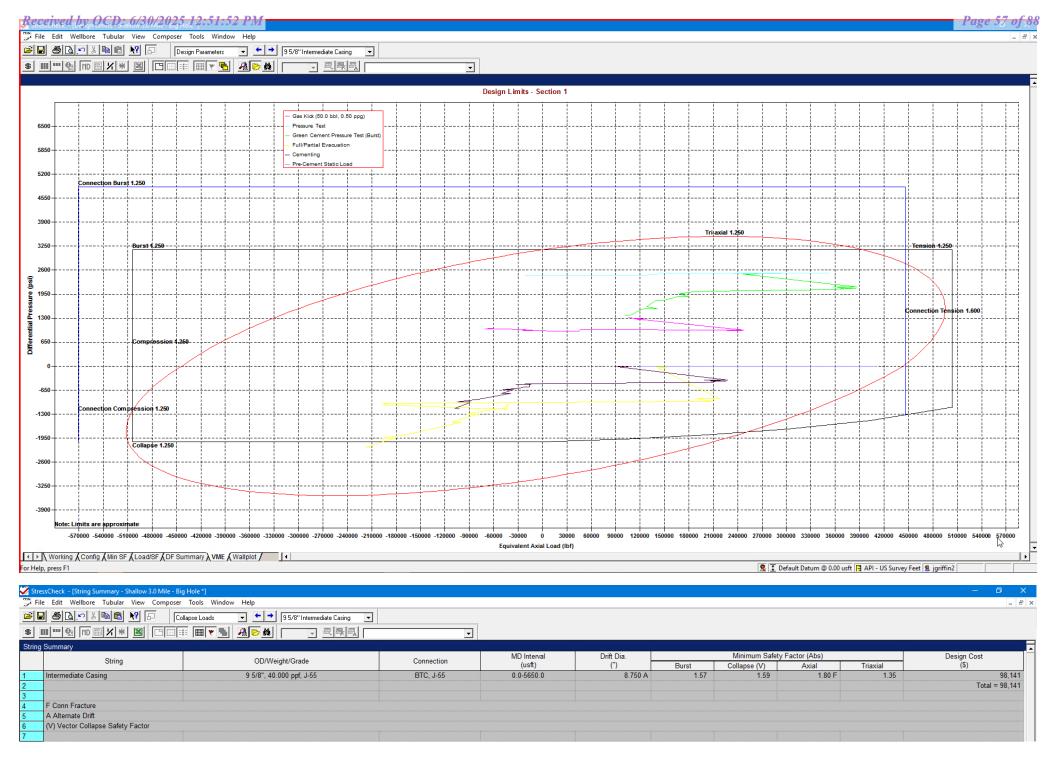
Shallow Design C

Proposed Wellbore

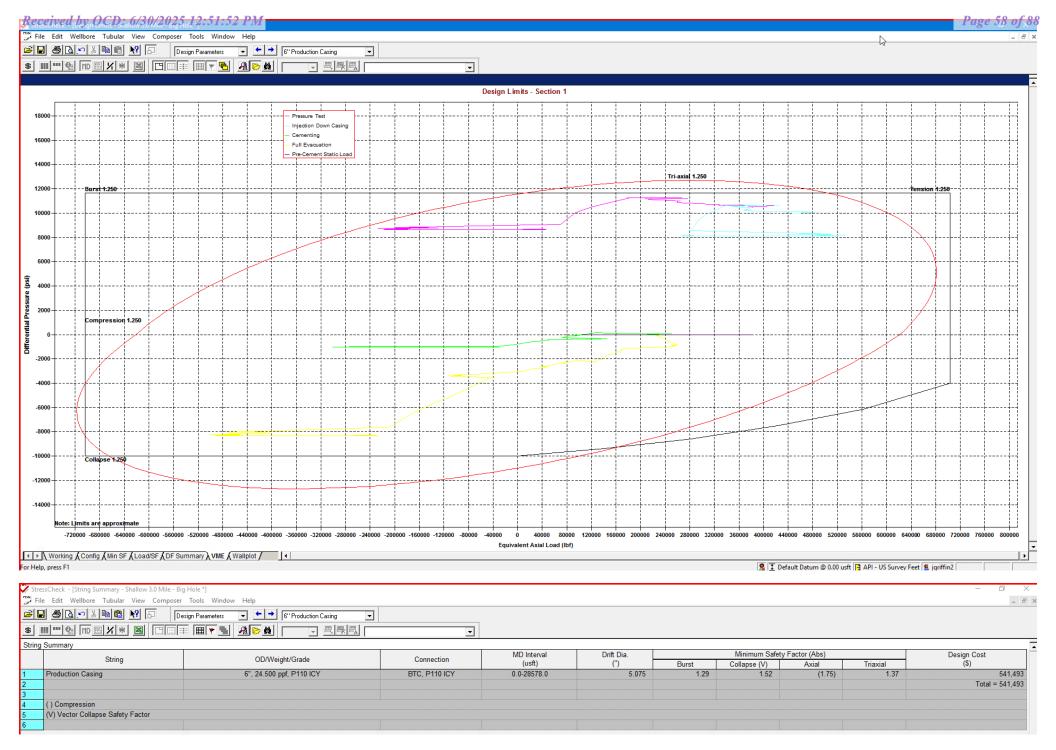
KB: 3558' GL: 3533'

Released to Imaging: 7/3/2025 9:34:19 AM

Image: Section of the section of t


Depth (MD)		orce (lbf)	Equivalent	Bending Stress		Absolute S	afety Factor		Temperature	Pressure	e (psi)	Addt'l Pickup To	Buckled
(usft)	Apparent (w/Bending)	Actual (w/o Bending)	Axial Load (lbf)	at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	(°F)	Internal	External	Prevent Buck. (Ibf)	Length (usft
0	252987	228954	253140	2098.2	1.69	1.58	N/A	2.82 F	70.00	2500.00	0.00	N/A	N/A
 100	247735	223702	248466	2098.2	1.69	1.58	N/A	2.88 F	71.10	2543.63	43.63		
100	234996	223701	235716	986.2	1.71	1.58	N/A	3.04 F	71.10	2543.64	43.64		
1700	341565	139667	352253	17627.2	1.53	1.57	N/A	2.09 F	88.70	3241.64	741.64		
1700	312979	139666	323488	15131.5	1.58	1.57	N/A	2.28 F	88.70	3241.65	741.65		
1850	336881	132027	348440	17885.2	1.51	1.57	N/A	2.12 F	90.29	3305.05	805.05		
1850	318549	132027	329984	16284.8	1.54	1.57	N/A	2.24 F	90.29	3305.06	805.06		
1950	320468	127243	332475	16869.9	1.52	1.57	N/A	2.23 F	91.30	3344.87	844.87		
1950	312802	127243	324756	16200.7	1.53	1.57	N/A	2.28 F	91.30	3344.87	844.87		
2050 2050	307858 303560	122773 122772	320295 315965	16159.3 15784.1	1.52 1.53	1.57 1.57	N/A N/A	2.32 F 2.35 F	92.23 92.23	3381.89 3381.89	881.89 881.89		
2050	151294	112633	163658	3375.4	1.55	1.57	N/A	4.72 F	92.23	3466.13	966.13		
2300	132741	112633	144956	1755.6	1.71	1.57	N/A	4.72 F 5.38 F	94.35	3466.13	966.13		
2300	129966	109858	144956	1755.6	1.72	1.57	N/A	5.49 F	94.95	3489.28	989.28		
2370	125500	103836	142432	1755.6	1.72	1.60	N/A	5.58 F	94.94	3489.29	1036.40		
2700	105515	94232	140322	985.1	1.75	1.60	N/A	6.77 F	97.73	3599.97	1152.35		
2700	111680	94231	126006	1523.4	1.75	1.60	N/A	6.39 F	97.73	3599.97	1152.35		
3100	110766	77783	126839	2879.6	1.71	1.60	N/A	6.44 F	101.11	3734.23	1293.00		
3100	97392	77783	113331	1712.1	1.73	1.60	N/A	7.33 F	101.11	3734.23	1293.01		
3700	71565	53303	89806	1594.4	1.70	1.61	N/A	9.97 F	106.15	3934.24	1502.54		
3700	60887	53302	79004	662.3	1.71	1.61	N/A	11.72 F	106.16	3934.25	1502.55		
4650	34671	14219	56495	1785.6	1.64	1.61	N/A	20.59 F	114.20	4253.37	1836.86		
4900	44595	4828	67626	3472.0	1.59	1.61	N/A	16.01 F	116.32	4337.37	1924.87		
4900	28975	4828	51775	2108.2	1.62	1.61	N/A	24.64 F	116.32	4337.38	1924.87		
5029	22103	34	45340	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.40	1969.94		
5029	22102	33	45339	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.41	1969.95		
5600	-45329	-21341	-20805	2094.3	1.57	1.62	N/A	(13.67)	122.23	4572.11	2170.78		
5650	-40465	-23210	-15657	1506.5	1.58	1.62	N/A	(15.31)	122.66	4588.87	2188.34		
F	Conn Fracture												
	Compression												
(V)	Vector Collapse Safet	y Factor											

Working (Config (Min SF) Load/SF (DF Summary (VME (Wallplot) For Help, press F1


🕵 I Default Datum @ 0.00 usft 🖪 API - US Survey Feet 😫 jgriffin2

9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi

*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

*Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 7/3/2025 9:34:19 AM

Shallow Design D

4 . C												
Hole	Interv	al MD	Interval TVD		Interval TVD		Csg					
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn				
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC				
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC				
7-7/8"	0	13,278	0	11,671	6"	22.3#	P110-EC	DWC/C IS				
6-3/4"	13,278	29,353	11,671	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS				

4. CASING PROGRAM

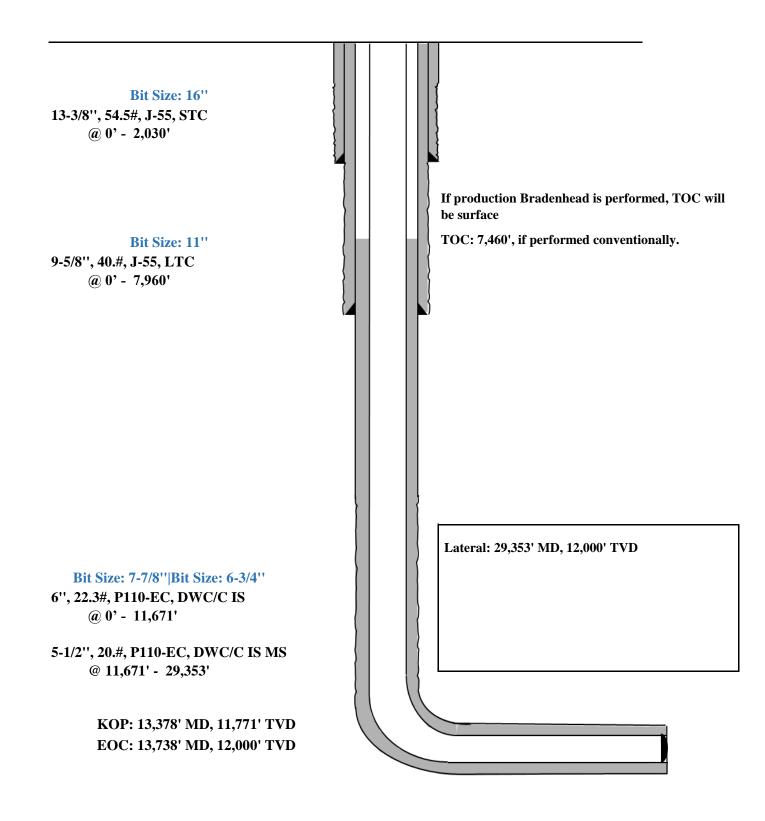
Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized in the cement slurry for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.


		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidiny Description
2,030' 13-3/8''	570	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' 9-5/8''	760	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	250	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' _{6''}	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	2500	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)

5. CEMENTING PROGRAM:

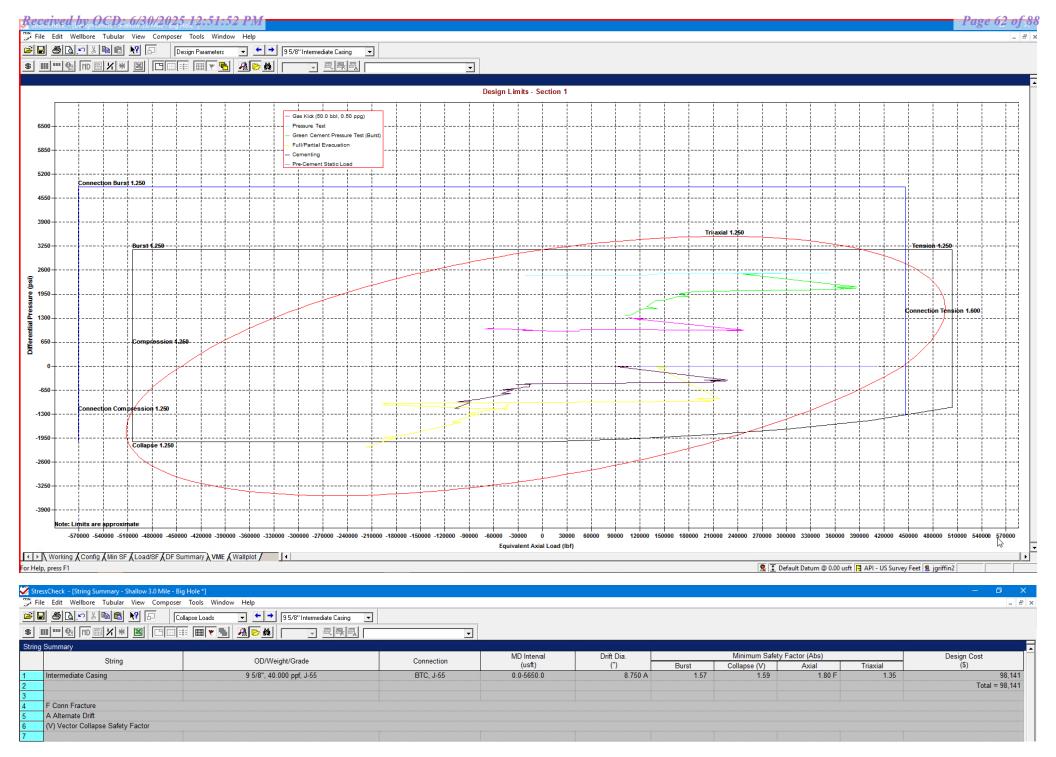
Shallow Design D

Proposed Wellbore

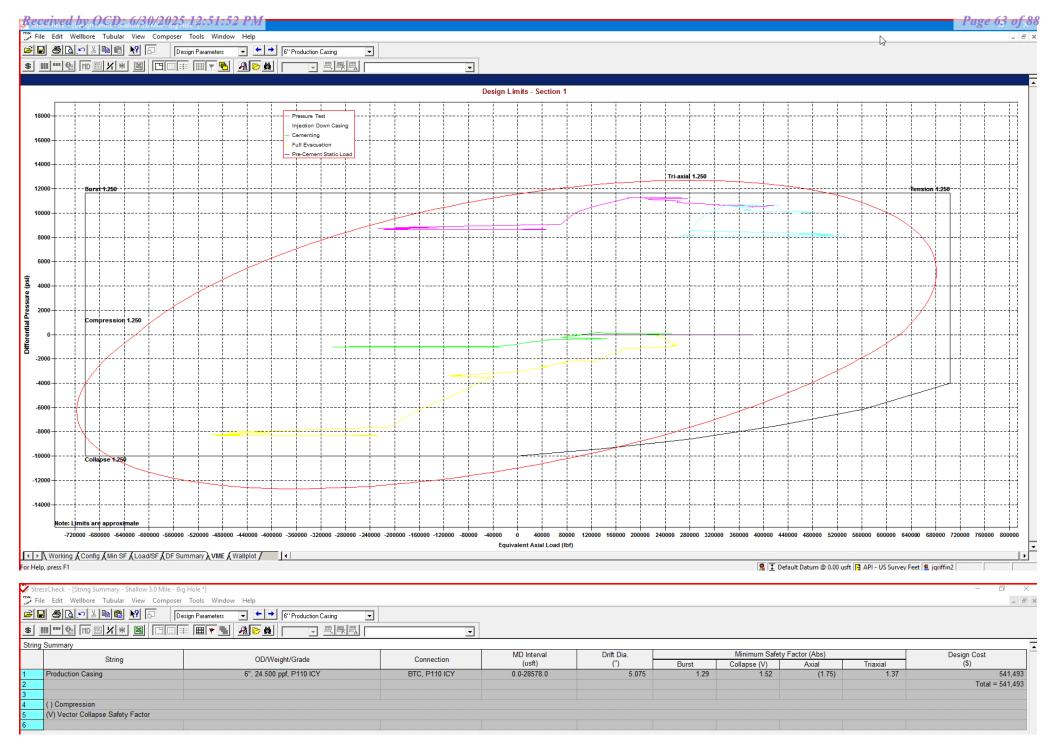
KB: 3558' GL: 3533'

File Edit Wellbore Tubular View Composer Tools Window Help

Depth (MD)		orce (lbf)	Equivalent	Bending Stress		Absolute Sa	afety Factor		Temperature	Pressure	e (psi)	Addt'l Pickup To	Buckled
(usft)	Apparent (w/Bending)	Actual (w/o Bending)	Axial Load (lbf)	at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	(°F)	Internal	External	Prevent Buck. (Ibf)	Length (usf
0	252987	228954	253140	2098.2	1.69	1.58	N/A	2.82 F	70.00	2500.00	0.00	N/A	N/A
100	247735	223702	248466	2098.2	1.69	1.58	N/A	2.88 F	71.10	2543.63	43.63		
100	234996	223701	235716	986.2	1.71	1.58	N/A	3.04 F	71.10	2543.64	43.64		
1700	341565	139667	352253	17627.2	1.53	1.57	N/A	2.09 F	88.70	3241.64	741.64		
1700	312979	139666	323488	15131.5	1.58	1.57	N/A	2.28 F	88.70	3241.65	741.65		
1850	336881	132027	348440	17885.2	1.51	1.57	N/A	2.12 F	90.29	3305.05	805.05		
1850	318549	132027	329984	16284.8	1.54	1.57	N/A	2.24 F	90.29	3305.06	805.06		
1950	320468	127243	332475	16869.9	1.52	1.57	N/A	2.23 F	91.30	3344.87	844.87		
1950	312802	127243	324756	16200.7	1.53	1.57	N/A	2.28 F	91.30	3344.87	844.87		
2050	307858	122773	320295	16159.3	1.52	1.57	N/A	2.32 F	92.23	3381.89	881.89		
2050	303560	122772	315965	15784.1	1.53	1.57	N/A	2.35 F	92.23	3381.89	881.89		
2300	151294	112633	163658	3375.4	1.71	1.57	N/A	4.72 F	94.35	3466.13	966.13		
2300	132741	112633	144956	1755.6	1.72	1.57	N/A	5.38 F	94.35	3466.14	966.14		
2370	129966	109858	142452	1755.6	1.72	1.57	N/A	5.49 F	94.94	3489.28	989.28		
2370	127909	107800	140922	1755.6	1.75	1.60	N/A	5.58 F	94.94	3489.29	1036.40		
2700	105515	94232	119785	985.1	1.75	1.60	N/A	6.77 F	97.73	3599.97	1152.35		
2700	111680	94231	126006	1523.4	1.75	1.60	N/A	6.39 F	97.73	3599.97	1152.35		
3100	110766	77783	126839	2879.6	1.71	1.60	N/A	6.44 F	101.11	3734.23	1293.00		
3100	97392	77783	113331	1712.1	1.73	1.60	N/A	7.33 F	101.11	3734.23	1293.01		
3700	71565	53303	89806	1594.4	1.70	1.61	N/A	9.97 F	106.15	3934.24	1502.54		
3700	60887	53302	79004	662.3	1.71	1.61	N/A	11.72 F	106.16	3934.25	1502.55		
4650	34671	14219	56495	1785.6	1.64	1.61	N/A	20.59 F	114.20	4253.37	1836.86		
4900	44595	4828	67626	3472.0	1.59	1.61	N/A	16.01 F	116.32	4337.37	1924.87		
4900	28975	4828	51775	2108.2	1.62	1.61	N/A	24.64 F	116.32	4337.38	1924.87		
5029	22103	34	45340	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.40	1969.94		
5029	22102	33	45339	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.41	1969.95		
5600	-45329	-21341	-20805	2094.3	1.57	1.62	N/A	(13.67)	122.23	4572.11	2170.78		
5650	-40465	-23210	-15657	1506.5	1.58	1.62	N/A	(15.31)	122.66	4588.87	2188.34		
-	Conn Fracture												
()	Compression Vector Collapse Safety	- - +											

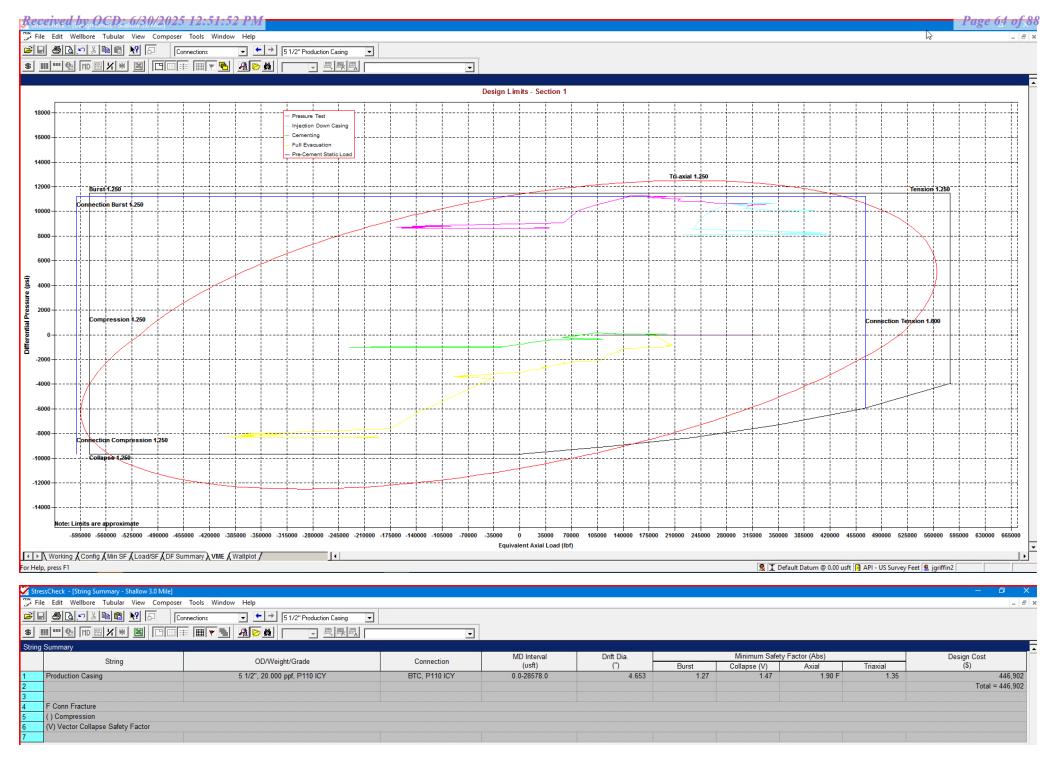

For Help, press F1

🙎 👤 Default Datum @ 0.00 usft 📑 API - US Survey Feet 🙎 jgriffin2


9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi

Page 61 of 88



*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

*Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 7/3/2025 9:34:19 AM

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 7/3/2025 9:34:19 AM

Page 22 of 31

1

CASING PROGRAM

Seog resources

Shallow Casing Design E

Hole	Interv	terval MD Interv		l TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13"	0	2,025	0	2,025	10-3/4"	40.5#	J-55	STC
9-7/8"	0	7,793	0	5,645	8-5/8"	32#	J-55	BTC-SC
7-7/8"	0	12,626	0	10,896	6"	24.5#	P110-EC	VAM Sprint-TC
6-3/4"	12,626	28,578	10,896	11,225	5-1/2"	20#	P110-EC	VAM Sprint SF

**For highlighted rows above, variance is requested to run entire string of either 6" or 5-1/2" casing string above due to availablility.

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

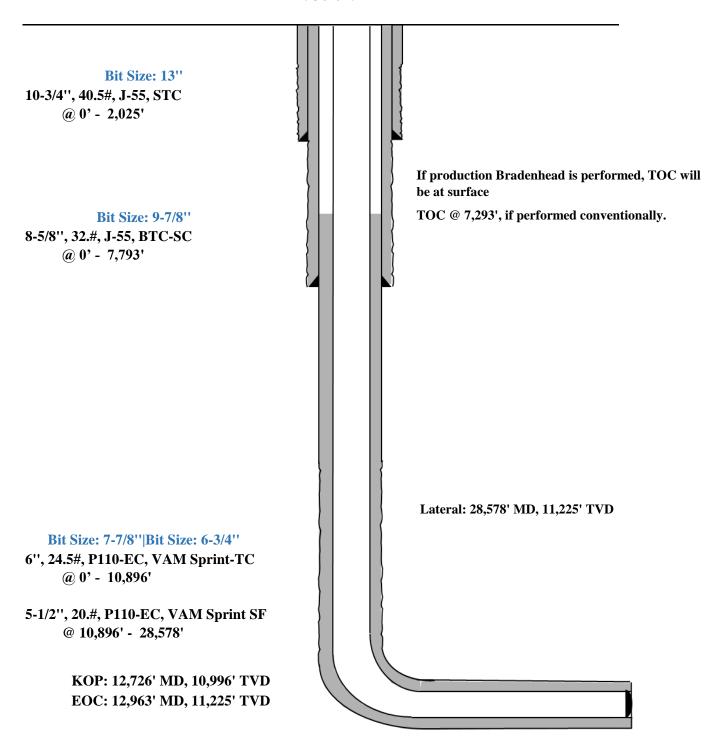
Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized in the cement slurry for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

Denth	No. Wt. Yld			Slurry Description
Depth	Sacks	ppg	Ft3/sk	
2,030' 10-3/4"	450	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
	120	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
7,890' 8-5/8"	460	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	210	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6234')
28,578' _{6"}	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	2410	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ 8140')


2. CEMENTING PROGRAM:

Shallow Casing Design E

Proposed Wellbore	KB: 3558'
-------------------	-----------

GL: 3533'

API: 30-025-****

StressCheck - [Triaxial Results - Shallow 3.0 Mile *]

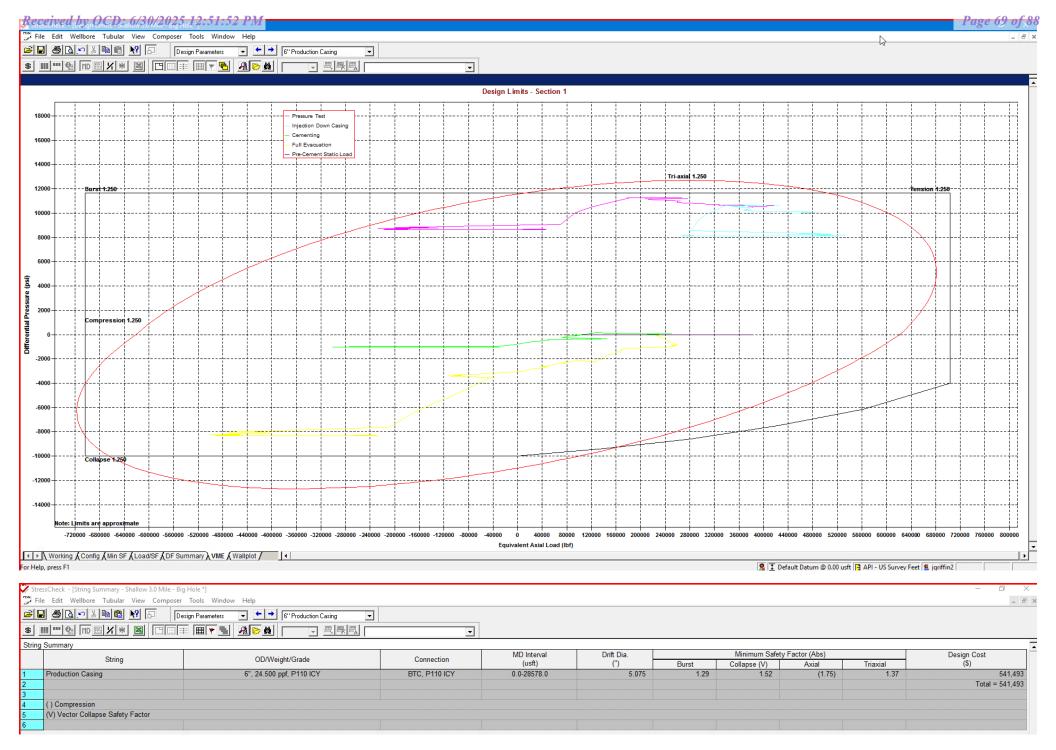
Image: Image

Depth (MD) (usft)		Force (lbf)	Equivalent	Bending Stress	Absolute Safety Factor				Temperature	Pressure	(psi)	Addt'l Pickup To	Buckled
	Apparent (w/Bending)	Actual (w/o Bending)	Axial Load (lbf)	at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	(°F)	Internal	External	Prevent Buck. (lbf)	Length (usf
0	200426	183224	200546	1880.2	1.68	1.57	N/A	2.89 F	70.00	2500.00	0.00	N/A	N/A
100	196229	179028	196812	1880.2	1.69	1.57	N/A	2.95 F	71.10	2543.63	43.63		
100	187111	179027	187686	883.7	1.70	1.57	N/A	3.10 F	71.10	2543.64	43.64		
1700	256401	111891	264835	15795.8	1.56	1.56	N/A	2.26 F	88.70	3241.64	741.64		
1700	235940	111891	244247	13559.4	1.60	1.56	N/A	2.45 F	88.70	3241.65	741.65		
1850	252413	105788	261533	16027.0	1.54	1.56	N/A	2.29 F	90.29	3305.05	805.05		
1850	239292	105787	248323	14592.9	1.56	1.56	N/A	2.42 F	90.29	3305.06	805.06		
1950	240267	101966	249748	15117.2	1.54	1.56	N/A	2.41 F	91.30	3344.87	844.87		
1950	234781	101965	244223	14517.5	1.56	1.56	N/A	2.47 F	91.30	3344.87	844.87		
2050	230871	98395	240694	14480.4	1.55	1.56	N/A	2.51 F	92.23	3381.89	881.89		
2050	227794	98394	237594	14144.2	1.55	1.56	N/A	2.54 F	92.23	3381.89	881.89		
2300	117966	90294	127818	3024.7	1.70	1.56	N/A	4.91 F	94.35	3466.13	966.13		
2300	104686	90293	114432	1573.2	1.71	1.56	N/A	5.53 F	94.35	3466.14	966.14		
2370	102469	88077	112431	1573.2	1.71	1.56	N/A	5.65 F	94.94	3489.28	989.28		
2370	100817	86424	111200	1573.2	1.75	1.59	N/A	5.75 F	94.94	3489.29	1036.40		
2700	83660	75583	95052	882.8	1.74	1.59	N/A	6.92 F	97.73	3599.97	1152.35		
2700	88072	75583	99504	1365.1	1.74	1.59	N/A	6.58 F	97.73	3599.97	1152.35		
3100	86049	62442	98863	2580.4	1.71	1.59	N/A	6.73 F	101.11	3734.23	1293.00		
3100	76477	62441	89195	1534.2	1.72	1.59	N/A	7.57 F	101.11	3734.23	1293.01		
3700	55953	42882	70509	1428.8	1.69	1.60	N/A	10.35 F	106.15	3934.24	1502.54		
3700	48311	42881	62778	593.5	1.71	1.60	N/A	11.99 F	106.16	3934.25	1502.55		
4000	41458	33043	56865	919.9	1.69	1.60	N/A	13.97 F	108.69	4034.82	1607.91		
4650	26293	11655	43706	1600.1	1.63	1.60	N/A	22.03 F	114.20	4253.37	1836.86		
4900	32619	4156	50970	3111.2	1.59	1.60	N/A	17.76 F	116.32	4337.37	1924.87		
4900	21439	4155	39625	1889.2	1.61	1.60	N/A	27.02 F	116.32	4337.38	1924.87		
5039	15822	26	34389	1726.6	1.61	1.61	N/A	36.61 F	117.49	4383.77	1973.48		
5039	15822	26	34388	1726.6	1.61	1.61	N/A	36.61 F	117.49	4383.78	1973.49		
5600	-33912	-16743	-14286	1876.7	1.57	1.61	N/A	(14.60)	122.23	4572.11	2170.78		
5650	-30585	-18235	-10742	1350.0	1.58	1.61	N/A	(16.18)	122.66	4588.87	2188.34		
	Conn Fracture												
()	Compression												
()	Compression Vector Collapse Safet	y Factor											

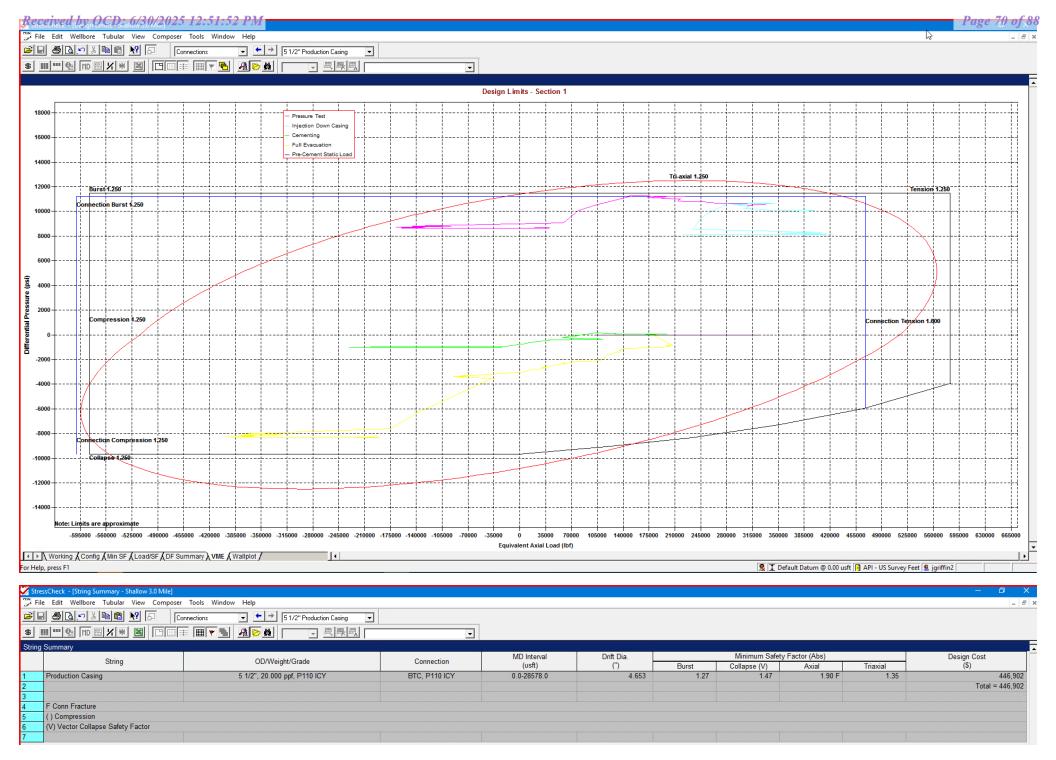

-

For Help, press F1

🙎 I Default Datum @ 0.00 usft 🖪 API - US Survey Feet 🙎 jgriffin2


8-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi _ 8 >


*Modelling done with 8-5/8" 32# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 7/3/2025 9:34:19 AM

*Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 7/3/2025 9:34:19 AM

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 7/3/2025 9:34:19 AM

Page 28 of 31

Additive	Purpose
Bentonite Gel	Lightweight/Lost circulation prevention
Calcium Chloride	Accelerator
Cello-flake	Lost circulation prevention
Sodium Metasilicate	Accelerator
MagOx	Expansive agent
Pre-Mag-M	Expansive agent
Sodium Chloride	Accelerator
FL-62	Fluid loss control
Halad-344	Fluid loss control
Halad-9	Fluid loss control
HR-601	Retarder
Microbond	Expansive Agent

Shallow Casing Design 501H

Cement integrity tests will be performed immediately following plug bump.

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

EOG requests variance from minimum standards to pump a two stage cement job on the production casing string with the first stage being pumped conventionally with the calculated top of cement at the top of the Brushy Canyon and the second stage performed as a 1000 sack bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of 400 sacks of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (1.32 yld, 14.8 ppg) will be executed as a contingency. Top will be verified by Echo-meter.

Bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.

MUD PROGRAM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal. The applicable depths and properties of the drilling fluid systems are as follows:

Measured Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0-2,030'	Fresh - Gel	8.6-8.8	28-34	N/c
2,030' – 7,793'	Brine	9-10.5	28-34	N/c
5,450' – 28,578' Lateral	Oil Base	8.8-9.5	58-68	N/c - 6

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

Appendix A - Spec Sheets

.

Pipe Bodu and API Connections Performance Data Received by OCD: 6/30/2025 12:51:52 PM 13.375 54.50/0.380 J55

Page 74 of 88 PDF

New Search »

a Back to Previous List

USC O Metric

6/8/2015 10:04:37 AM						
Mechanical Properties	Pipe	BTC	LTC	STC		
Minimum Yield Strength	55,000				psi	
Maximum Yield Strength	80,000	-	-		psi	
Minimum Tensile Strength	75,000	· · · · · · · · · · · · · · · · · · ·			psi	
Dimensions	P1pe	втс	LTC	STC		
Outside Diameter	13.375	14.375	-	14.375	in.	
Wall Thickness	0.380	77			in.	
Inside Diameter	12.615	12.615		12.615	in.	
Standard Drift	12.459	12.459	-	12.459	in.	
Alternate Drift	-	-	-	-	in.	
Nominal Linear Weight, T&C	54.50	-	: it	-	lbs/ft	
Plain End Weight	52.79	,			lbs/ft	
Performance	Pipe	втс	LTC	STC		
Minimum Collapse Pressure	1,130	1,130		1,130	psi	
Minimum Internal Yield Pressure	2,740	2,740		2,740	psi	
Minimum Pipe Body Yield Strength	853.00	-	-	-	1000 lbs	
Joint Strength	-	909	-	514	1000 lbs	
Reference Length	-	11,125	-	6,290	ft	
Make-Up Data	Ріре	втс	LTC	STC		
Make-Up Loss	-	4.81	-	3.50	in.	
Minimum Make-Up Torque	-	-		3,860	ft-Ibs	
Released to Imaging: 7/3/2025 9:34:19 AM Maximum Make-Up Torque	-	-	-	6,430	ft-Ibs	

Pipe Body and API Connections Performance Data Received by OCD: 6/30/2025 12:31:52 PM 9.625 40.00/0.395 J55

Page 75 of 88 PDF


New Search »

« Back to Previous List

USC O Metric

6/8/2015 10:23:27 AM	10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		2		0
Mechanical Properties	Pipe	втс	LTC	STC	
Minimum Yield Strength	55,000	-		-	psi
Maximum Yield Strength	80,000	-	-		psi
Minimum Tensile Strength	75,000	-		-	psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	9.625	10.625	10.625	10.625	in.
Wall Thickness	0.395		27 .5	-	in.
Inside Diameter	8.835	8.835	8.835	8.835	in.
Standard Drift	8.679	8.679	8.679	8.679	in.
Alternate Drift	8.750	8.750	8.750	8.750	in.
Nominal Linear Weight, T&C	40.00	-	-		lbs/ft
Plain End Weight	38.97	-		-	lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	2,570	2,570	2,570	2,570	psi
Minimum Internal Yield Pressure	3,950	3,950	3,950	3,950	psi
Minimum Pipe Body Yield Strength	630.00	-			1000 lbs
Joint Strength		714	520	452	1000 lbs
Reference Length	- 	11,898	8,665	7,529	ft
Make-Up Data	Pipe	втс	LTC	STC	
Make-Up Loss		4.81	4.75	3.38	in.
Minimum Make-Up Torque	1	<u> </u>	3 <mark>,</mark> 900	3,390	ft-lbs
Released to Imaging: 7/3/2025 9:34:19 AM Maximum Make-Up Torque		-	6,500	5,650	fi-lbs

Received by OCD: 6/30/2025 12:51:52 PM

Need Help? Contact: <u>tech.support@vam-usa.com</u> Reference Drawing: 8136PP Rev.01 & 8136BP Rev.01 Date: 12/03/2019 Time: 06:19:27 PM

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages.

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234 VAM[®] USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

1. DWC connections are available with a seal ring (SR) option.

2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.

Connection performance properties are based on nominal pipe body and connection dimensions.
 DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
 DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.

6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.

7. Bending efficiency is equal to the compression efficiency.

8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.

9. Connection yield torque is not to be exceeded.

10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.

11. DWC connections will accommodate API standard drift diameters.

12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages.

Pipe Body and API Connections Performance Data

10.750 40.50/0.350 J55

Released to Imaging: 7/3/2025 9:34:19 AM

Maximum Make-Up Torque

Page 78 of 88 PDF

New Search »

« Back to Previous List

USC O Metric

5,250

ft-lbs

6/8/2015 10:14:05 AM	3/2015 10:14:05 AM						
Mechanical Properties	Ptpe	втс	LTC	STC			
Minimum Yield Strength	55,000	-	-		psi		
Maximum Yield Strength	80,000	-	-	-	psi		
Minimum Tensile Strength	75,000	-	-	-	psi		
Dimensions	Pipe	BTC	LTC	STC			
Outside Diameter	10.750	11.750	-	11.750	in.		
Wall Thickness	0.350	-	-	-	in.		
Inside Diameter	10.050	10.050	-	10.050	in.		
Standard Drift	9.894	9.894	-	9.894	in.		
Alternate Drift	-	-	-	-	in.		
Nominal Linear Weight, T&C	40.50		-		lbs/ft		
Plain End Weight	38.91	-	-	-	lbs/ft		
Performance	Ptpe	BTC	LTC	STC			
Minimum Collapse Pressure	1,580	1,580	-	1,580	psi		
Minimum Internal Yield Pressure	3,130	3,130	-	3,130	psi		
Minimum Pipe Body Yield Strength	629.00	-	-	-	1000 lbs		
Joint Strength	-	700	-	420	1000 lbs		
Reference Length	-	11,522	-	6,915	ft		
Make-Up Data	Pipe	втс	LTC	STC			
Make-Up Loss	-	4.81	-	3.50	in.		
Minimum Make-Up Torque				3,150	ft-lbs		

API 5CT, 10th Ed. Connection Data Sheet

		APT 501, TUIT EU. CONNECTION DATA SNEET								
O.D. (in) WEIGHT (lb/ft) WALL ((in)	GR/	ADE	*API DRI	FT (in)	RBV	V %	
8.625	Nominal: Plain End:	32.00 31.13	0.352	2	J£	55	7.79	6	87	.5
N	laterial Propert	ies (PE)					Pipe Body	/ Data (PE)	
	Pipe						Geor	metry		
Minimum Y	ield Strength:	55	ksi		Nomin	al ID:			7.92 i	nch
Maximum \	Yield Strength:	80	ksi		Nomin	al Area	1:		9.149 j	in ²
Minimum T	ensile Strength:	75	ksi		*Speci	al/Alt. [Drift:		7.875 i	nch
Coupling							Perfor	mance		
Minimum Y	ield Strength:	55	ksi		Pipe B	ody Yi	eld Streng	th:	503 I	kips
Maximum \	Yield Strength:	80	ksi				istance:		ا 2,530	psi
		75			Internal	Yield Pr	essure:		3,930 (aai
Minimum T	ensile Strength:	/5	ksi		(API His	storical)			3,930	51
Minimum T			KSI		(API His	,				JSI
Minimum T	API Connection Coupling OD: 9	n Data .625"	KSI		(API His	AF	PI Connec		orque	551
Minimum T	API Connection	n Data .625"	KSI		(API His	AF	PI Connec STC Torq		orque	JSI
	API Connection Coupling OD: 9	n Data .625" ance			(API His	AF			orque	
STC Intern	API Connection Coupling OD: 9 STC Perform	n Data .625" ance	psi		X	AF	STC Torq	ue (ft-ll	orque os)	
STC Intern	API Connection Coupling OD: 9 STC Performation	n Data .625" ance 3,930 372	psi		X	AF	STC Torq	j ue (ft-II 3,724	orque os) Max:	
STC Intern STC Joint S	API Connection Coupling OD: 9 STC Performant al Pressure: Strength:	n Data .625" ance 3,930 372	psi kips		X	AF	STC Torq Opti:	j ue (ft-II 3,724	orque os) Max:	4,6
STC Intern STC Joint S LTC Interna	API Connection Coupling OD: 9 STC Performan al Pressure: Strength: LTC Performan al Pressure: Strength:	n Data .625" ance 3,930 372 ance 3,930 417	psi kips psi kips		Min:	AF 2,793	STC Torq Opti: LTC Torq	j ue (ft-II 3,724 j ue (ft-II	orque os) Max: os)	4,6
STC Intern STC Joint S LTC Interna	API Connection Coupling OD: 9 STC Performan al Pressure: Strength: LTC Performan al Pressure:	n Data .625" ance 3,930 372 ance 3,930 417	psi kips psi kips		Min:	AF 2,793 3,130	STC Torq Opti: LTC Torq	j ue (ft-ll 3,724 j ue (ft-ll 4,174	orque os) Max: os) Max:	4,6
STC Intern STC Joint S LTC Interna LTC Joint S SC-BTC P	API Connection Coupling OD: 9 STC Performan al Pressure: Strength: LTC Performan al Pressure: Strength:	n Data .625" ance 3,930 372 ance 3,930 417	psi kips psi kips 9.125''		Min: Min:	AF 2,793 3,130	STC Torq Opti: LTC Torq Opti:	jue (ft-ll 3,724 jue (ft-ll 4,174 jue (ft-ll	orque DS) Max: DS) Max:	4,65 5,21

**If above API connections do not suit your needs, VAM® premium connections are available up to

100% of pipe body ratings.

ALL INFORMATION IS PROVIDED BY VALLOUREC OR ITS AFFILIATES AT USER'S SOLE RISK, WITHOUT LIABILITY FOR LOSS, DAMAGE OR INJURY RESULTING FROM THE USE THEREOF; AND ON AN "AS IS" BASIS WITHOUT WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR PURPOSE, ACCURACY OR COMPLETENESS. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND IS BASED ON ESTIMATES THAT HAVE NOT BEEN VERIFIED OR TESTED. IN NO EVENT SHALL VALLOUREC OR ITS AFFILIATES BE RESPONSIBLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, EXEMPLARY OR CONSEQUENTIAL LOSS OR DAMAGE (INCLUDING WITHOUT LIMITATION, LOSS OF USE, LOSS OF BARGAIN, LOSS OF REVENUE, PROFIT OR ANTICIPATED PROFIT) HOWEVER CAUSED OR ARISING, AND WHETHER SUCH LOSSES OR DAMAGES WERE FORESEEABLE OR VALLOUREC OR ITS AFFILIATES WERE ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 10/21/2022 15:24

Rev 3, 7/30/2021

S S2L2 DA 7.875 W/O# SLN # PO# MADE IN USA FT LB

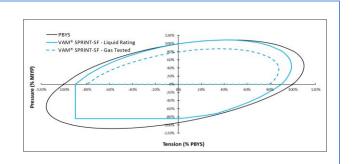
VALLOUREC STAR 8.625 32# J55

**If above API connections do not ALL INFORMATION IS PROVIDED BY VALLOUREC OR ITS AFFILIATES AND ON AN "AS IS" BASIS WITHOUT WARRANTY OR REPRESENT

Issued on: 10 Feb. 2021 by Wesley Ott

OD	Weight (lb/ft)	Wall Th.	Grade	API Drift:	Connection
6 in.	Nominal: 24.50 Plain End: 23.95	0.400 in.	P110EC	5.075 in.	VAM [®] SPRINT-SF

PI PE PROPERTI ES		
Nominal OD	6.000	in.
Nominal ID	5.200	in.
Nominal Cross Section Area	7.037	sqin.
Grade Type	Hig	h Yield
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Ultimate Tensile Strength	135	ksi


CONNECTION PROPERTIES		
Connection Type	Integral	Semi-Flush
Connection OD (nom):	6.277	in.
Connection ID (nom):	5.146	in.
Make-Up Loss	5.386	in.
Critical Cross Section	6.417	sqin.
Tension Efficiency	91.0	% of pipe
Compression Efficiency	91.0	% of pipe
Internal Pressure Efficiency	100	% of pipe
External Pressure Efficiency	100	% of pipe

CONNECTION PERFORMANC		
Tensile Yield Strength	801	klb
Compression Resistance	801	klb
Internal Yield Pressure	14,580	psi
Collapse Resistance	12,500	psi
Max. Structural Bending	83	°/100ft
Max. Bending with ISO/API Sealability	30	°/100ft

TORQUE VALUES		
Min. Make-up torque	21,750	ft.lb
Opt. Make-up torque	24,250	ft.lb
Max. Make-up torque	26,750	ft.lb
Max. Torque with Sealability (MTS)	53,000	ft.lb

* 87.5% RBW

VAM® SPRINT-SF is a semi-flush connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections and tight clearance requirements.

Do you need help on this product? - Remember no one knows VAM® like VAM®

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

Connection Data Sheet

OD (in.)	WEIGHT (lbs./ft.)	WALL (in.)	GRADE	API DRIFT (in.)	RBW%	CONNECTION
6.000	Nominal: 22.30	0.360	VST P110EC	5.155	92.5	DWC/C-IS
	Plain End: 21 70			•		-

PIPE PROPER	PIPE PROPERTIES					
Nominal OD	6.000	in.				
Nominal ID	5.280	in.				
Nominal Area	6.379	sq.in.				
Grade Type	API 5CT					
Min. Yield Strength	125	ksi				
Max. Yield Strength	140	ksi				
Min. Tensile Strength	135	ksi				
Yield Strength	797	klb				
Ultimate Strength	861	klb				
Min. Internal Yield Pressure	13,880	psi				
Collapse Pressure	9,800	psi				

CONNECTION PERFORMA	NCES	
Yield Strength	797	klb
Parting Load	861	klb
Compression Rating	797	klb
Min. Internal Yield	13,880	psi
External Pressure	9,800	psi
Maximum Uniaxial Bend Rating	47.7	°/100 ft
Reference String Length w 1.4 Design Factor	25,530	ft.

CONNECTION PRO	PERTIES	
Connection Type	Semi-Prem	nium T&C
Connection OD (nom)	6.650	in.
Connection ID (nom)	5.280	in.
Make-Up Loss	4.313	in.
Coupling Length	9.625	in.
Critical Cross Section	6.379	sq.in.
Tension Efficiency	100.0%	of pipe
Compression Efficiency	100.0%	of pipe
Internal Pressure Efficiency	100.0%	of pipe
External Pressure Efficiency	100.0%	of pipe

FIELD END TORQUE VA	LUES	
Min. Make-up torque	17,000	ft.lb
Opti. Make-up torque	18,250	ft.lb
Max. Make-up torque	19,500	ft.lb
Min. Shoulder Torque	1,700	ft.lb
Max. Shoulder Torque	13,600	ft.lb
Min. Delta Turn	-	Turns
Max. Delta Turn	0.200	Turns
Maximum Operational Torque	24,200	ft.lb
Maximum Torsional Value (MTV)	26,620	ft.lb

Need Help? Contact: <u>tech.support@vam-usa.com</u> Reference Drawing: 8135PP Rev.02 & 8135BP Rev.02 Date: 07/30/2020

Time: 07:50:47 PM

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates us advised of the possibility of such damages.

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234 VAM[®] USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

1. DWC connections are available with a seal ring (SR) option.

2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.

3. Connection performance properties are based on nominal pipe body and connection dimensions.

4. DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.

5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.

6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.

7. Bending efficiency is equal to the compression efficiency.

8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.

9. Connection yield torque is not to be exceeded.

10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values

are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc. 11. DWC connections will accommodate API standard drift diameters.

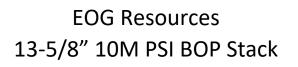
12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

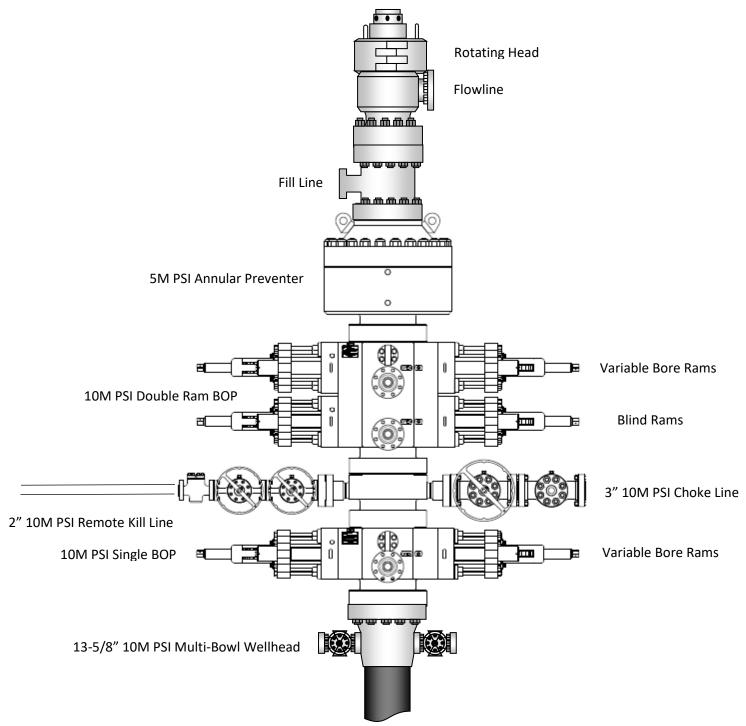
Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

10,000 PSI BOP Annular Variance Request (EOG Variance 1c)

EOG Resources request a variance to use a 5000 psi annular BOP with a 10,000 psi BOP stack. The component and compatibility tables along with the general well control plans demonstrate how the 5000 psi annular BOP will be protected from pressures that exceed its rated working pressure (RWP). The pressure at which the control of the wellbore is transferred from the annular preventer to another available preventer will not exceed 3500 psi (70% of the RWP of the 5000 psi annular BOP).


1. Component and Preventer Compatibility Tables


The tables below outlines the tubulars and the compatible preventers in use. This table, combined with the drilling fluid, documents that two barriers to flow will be maintained at all times.

12-1/4" Intermediate Hole Section 10M psi requirement					
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP
Drillpipe	5.000" or	Annular	5M	Upper 3.5 - 5.5" VBR	10M
	4.500"			Lower 3.5 - 5.5" VBR	10M
HWDP	5.000" or	Annular	5M	Upper 3.5 - 5.5" VBR	10M
	4.500"			Lower 3.5 - 5.5" VBR	10M
Jars	6.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M
				Lower 3.5 - 5.5" VBR	10M
DCs and MWD tools	6.500" – 8.000"	Annular	5M	-	-
Mud Motor	8.000" – 9.625"	Annular	5M	-	-
1 st Intermediate casing	9.625"	Annular	5M	-	-
Open-hole	-	Blind Rams	10M	-	-

8-3/4" Production Hole Section 10M psi requirement					
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP
Drillpipe	5.000" or	Annular	5M	Upper 3.5 - 5.5" VBR	10M
	4.500"			Lower 3.5 - 5.5" VBR	10M
HWDP	5.000" or	Annular	5M	Upper 3.5 - 5.5" VBR	10M
	4.500"			Lower 3.5 - 5.5" VBR	10M
Jars	6.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M
				Lower 3.5 - 5.5" VBR	10M
DCs and MWD tools	6.500" - 8.000"	Annular	5M	-	-
Mud Motor	6.750" – 8.000"	Annular	5M	-	-
2 nd Intermediate casing	7.625″	Annular	5M	-	-
Open-hole	-	Blind Rams	10M	-	-

VBR = Variable Bore Ram

2. Well Control Procedures

Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the BHA through the BOPs. At least one well control drill will be performed weekly per crew to demonstrate compliance with the procedure and well control plan. The well control drill will be recorded in the daily drilling log. The type of drill will be determined by the ongoing operations, but reasonable attempts will be made to vary the type of drill conducted (pit, trip, open hole, choke, etc.). This well control plan will be available for review by rig personnel in the EOG Resources drilling supervisor's office on location, and on the rig floor. All BOP equipment will be tested as per Onshore O&G Order No. 2 with the exception of the 5000 psi annular which will be tested to 100% of its RWP.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps (stop pumps and rotary)
- 4. Shut-in Well (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full opening safety valve and close
- 3. Space out drill string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure While Running Production Casing

- 1. Sound alarm (alert crew)
- 2. Stab crossover and full opening safety valve and close
- 3. Space out string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure With No Pipe In Hole (Open Hole)

- 1. Sound alarm (alert crew)
- 2. Shut-in with blind rams. (HCR and choke will already be in the closed position.)
- 3. Confirm shut-in
- 4. Notify toolpusher/company representative
- 5. Read and record the following:
 - a. SICP
 - b. Pit gain
 - c. Time
- 6. Regroup and identify forward plan

General Procedures While Pulling BHA thru Stack

- 1. PRIOR to pulling last joint of drillpipe thru the stack.
 - a. Perform flowcheck, if flowing:
 - b. Sound alarm (alert crew)
 - c. Stab full opening safety valve and close
 - d. Space out drill string with tool joint just beneath the upper variable bore rams.
 - e. Shut-in using upper variable bore rams. (HCR and choke will already be in the closed position.)
 - f. Confirm shut-in
 - g. Notify toolpusher/company representative
 - h. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - i. Regroup and identify forward plan

- 2. With BHA in the stack and compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full opening safety valve and close
 - c. Space out drill string with upset just beneath the upper variable bore rams.
 - d. Shut-in using upper variable bore rams. (HCR and choke will already be in the closed position.)
 - e. Confirm shut-in
 - f. Notify toolpusher/company representative
 - g. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - h. Regroup and identify forward plan
- 3. With BHA in the stack and NO compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. If possible to pick up high enough, pull string clear of the stack and follow "Open Hole" scenario.
 - c. If impossible to pick up high enough to pull the string clear of the stack:
 - d. Stab crossover, make up one joint/stand of drillpipe, and full opening safety valve and close
 - e. Space out drill string with tooljoint just beneath the upper variable bore ram.
 - f. Shut-in using upper variable bore ram. (HCR and choke will already be in the closed position.)
 - g. Confirm shut-in
 - h. Notify toolpusher/company representative
 - i. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - j. Regroup and identify forward plan

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:		
EOG RESOURCES INC	7377		
5509 Champions Drive	Action Number:		
Midland, TX 79706	480265		
	Action Type:		
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)		

CONDITIONS

Created By	Condition	Condition Date
sharrell1	Cement is required to circulate on both surface and intermediate1 strings of casing.	6/30/2025
sharrell1	If cement does not circulate on any string, a Cement Bond Log (CBL) is required for that string of casing.	6/30/2025
matthew.gomez	Notify the OCD 24 hours prior to casing & cement.	7/3/2025
matthew.gomez	A [C-103] Sub. Drilling (C-103N) is required within (10) days of spud.	7/3/2025
matthew.gomez	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string.	7/3/2025
matthew.gomez	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.	7/3/2025
matthew.gomez	File As Drilled C-102 and a directional Survey with C-104 completion packet.	7/3/2025

CONDITIONS

Action 480265