Ceived by UCD: 0/24/2025 7:11:06 AM U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		Sundry Print Repor
	Well Location: T25S / R31E / SEC 15 / NENE / 32.136962 / -103.759097	County or Parish/State: EDDY /
Well Number: 304H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM0503	Unit or CA Name:	Unit or CA Number:
US Well Number:	Operator: DEVON ENERGY PRODUCTION COMPANY LP	

Notice of Intent

Sundry ID: 2840670

Type of Submission: Notice of Intent

Date Sundry Submitted: 03/07/2025

Date proposed operation will begin: 03/07/2025

Type of Action: APD Change Time Sundry Submitted: 02:24

Procedure Description: Devon Energy Production Co., L.P. (Devon) respectfully requests a SHL, BHL, and drill plan change for the subject well (APD ID 10400100971). Devon also requests break test with stump and offline cementing variances. Please see revised C102, drill plan, directional plan, and variance attachments. Permitted SHL: UL A, 265 FNL, 584 FEL, Sec 15, T 25S, R 31E Proposed SHL: UL A, 265 FNL, 554 FEL, Sec 15, T 25S, R 31E Proposed SHL: UL A, 20 FNL, 1200 FEL, Sec 34, T 24S, R 31E Proposed BHL: UL A, 20 FNL, 1300 FEL, Sec 34, T 24S, R 31E

NOI Attachments

Procedure Description

Offline_Cementing___Variance_Request_20250307142338.pdf

Break_Test_Variance_Offline_BOP_2_3_2025_20250307142324.pdf

5.5_20lb_P110HP_TALON_RD_20250307142123.pdf

7.625_29.7lb_P110_HP_Talon_SFC_20250307142107.pdf

9.625_40lb_J55_SeAH_20250307142050.pdf

Exmoor_15_WP_2_Site_Map_2025_20250307141830.pdf

EXMOOR_10_34_FED_COM_304H_3_6_20250307141818.pdf

EXMOOR_10_34_FED_COM_304H_Directional_Plan_03_06_25_20250307141805.pdf

R	eceived by OCD: 6/24/2025 7:11:06 AM Well Name: EXMOOR 10-34 FED COM	Well Location: T25S / R31E / SEC 15 / NENE / 32.136962 / -103.759097	County or Parish/State: EDBY 7 of 38
	Well Number: 304H	Type of Well: OIL WELL	Allottee or Tribe Name:
	Lease Number: NMNM0503	Unit or CA Name:	Unit or CA Number:
	US Well Number:	Operator: DEVON ENERGY PRODUCTION COMPANY LP	

WA022455560_EXMOOR_10_34_FED_COM_304H_WL_R1_Signed_20250307141747.pdf

Conditions of Approval

Additional

Exmoor_10_34_Fed_Com_304H_Dr_COA_20250326104931.pdf

15_25_31_A_Sundry_ID_2840670_Exmoor_10_34_Fed_Com_304H_20250326104931.pdf

State: OK

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: AMY BROWN

Name: DEVON ENERGY PRODUCTION COMPANY LP

Title: Regulatory Professional

Street Address: 333 WEST SHERIDAN AVENUE

City: OKLAHOMA CITY

Phone: (405) 552-6137

Email address: AMY.BROWN@DVN.COM

Field

Representative Name	e:
Street Address:	
City:	State:
Phone:	
Email address:	

Zip:

BLM Point of Contact

BLM POC Name: CHRISTOPHER WALLS BLM POC Phone: 5752342234

Disposition: Approved

Signature: Chris Walls

BLM POC Title: Petroleum Engineer

BLM POC Email Address: cwalls@blm.gov

Disposition Date: 04/16/2025

Signed on: MAR 07, 2025 02:23 PM

Received by OCD: 6/24/2025 7:11:06 AM

cectrea by 0 cb. o		11.00 1101			ruge o oj .
Form 3160-5 (June 2019)		UNITED STATE PARTMENT OF THE I EAU OF LAND MAN	INTERIOR	0	DRM APPROVED MB No. 1004-0137 res: October 31, 2021
Do no	t use this		ORTS ON WELLS to drill or to re-enter an .PD) for such proposals.	6. If Indian, Allottee or Tribe N	ame
	SUBMIT IN	TRIPLICATE - Other instr	uctions on page 2	7. If Unit of CA/Agreement, Na	ame and/or No.
1. Type of Well Oil Well	Gas V	Vell Other		8. Well Name and No.	
2. Name of Operator				9. API Well No.	
3a. Address			3b. Phone No. (include area code)	10. Field and Pool or Explorate	bry Area
4. Location of Well (Fo	otage, Sec., T.,I	R.,M., or Survey Description))	11. Country or Parish, State	
	12. CHE	CK THE APPROPRIATE B	OX(ES) TO INDICATE NATURE (OF NOTICE, REPORT OR OTH	ER DATA
TYPE OF SUBM	IISSION		TYPI	E OF ACTION	
Notice of Intent		Acidize	Deepen Hydraulic Fracturing	Production (Start/Resume) Reclamation	Water Shut-Off Well Integrity
Subsequent Repo	ort	Casing Repair Change Plans	New Construction Plug and Abandon	Recomplete	Other
Final Abandonm	ent Notice	Convert to Injection	Plug Back	Water Disposal	
the proposal is to de the Bond under whi completion of the ir	eepen directiona ch the work wi nvolved operation pandonment No	ally or recomplete horizontal Il be perfonned or provide th ons. If the operation results in	ly, give subsurface locations and me e Bond No. on file with BLM/BIA. n a multiple completion or recomple	asured and true vertical depths of Required subsequent reports mus ption in a new interval, a Form 31	k and approximate duration thereof. If f all pertinent markers and zones. Attach t be filed within 30 days following 60-4 must be filed once testing has been he operator has detennined that the site

14. I hereby certify that the foregoing is true and correct. Name (<i>Printed/Typed</i>)		
	Title	
Signature	Date	
THE SPACE FOR FEDE	RAL OR STATE OF	ICE USE
Approved by		
	Title	Date
Conditions of approval, if any, are attached. Approval of this notice does not warrant of certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon.		
Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any any false, fictitious or fraudulent statements or representations as to any matter within		fully to make to any department or agency of the United States

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

Additional Information

Location of Well

0. SHL: NENE / 265 FNL / 584 FEL / TWSP: 25S / RANGE: 31E / SECTION: 15 / LAT: 32.136962 / LONG: -103.759097 (TVD: 0 feet, MD: 0 feet) PPP: SESE / 100 FSL / 1200 FEL / TWSP: 25S / RANGE: 31E / SECTION: 10 / LAT: 32.137964 / LONG: -103.761081 (TVD: 10415 feet, MD: 10473 feet) PPP: SENE / 2467 FNL / 1197 FEL / TWSP: 24S / RANGE: 31E / SECTION: 34 / LAT: 32.1742887 / LONG: -103.7610065 (TVD: 10806 feet, MD: 24000 feet) PPP: LOT 4 / 137 FSL / 1190 FEL / TWSP: 24S / RANGE: 31E / SECTION: 34 / LAT: 32.167142 / LONG: -103.7610204 (TVD: 10831 feet, MD: 21400 feet) PPP: SENE / 2463 FNL / 1202 FEL / TWSP: 25S / RANGE: 31E / SECTION: 3 / LAT: 32.1599954 / LONG: -103.7610342 (TVD: 10855 feet, MD: 18800 feet) PPP: SENE / 2479 FNL / 1191 FEL / TWSP: 25S / RANGE: 31E / SECTION: 10 / LAT: 32.1454272 / LONG: -103.7610624 (TVD: 10904 feet, MD: 13500 feet) BHL: NENE / 20 FNL / 1200 FEL / TWSP: 24S / RANGE: 31E / SECTION: 34 / LAT: 32.181015 / LONG: -103.760993 (TVD: 10784 feet, MD: 26447 feet)

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Devon Energy Production Company LP -
	Section 15, T.25 S., R.31 E., NMPM
COUNTY:	Eddy County, New Mexico

WELL NAME & NO.:	Exmoor 10-34 Fed Com 304H
ATS/API ID:	ATS-24-2900
APD ID:	10400100971
Sundry ID:	2840670

COA

H2S	No 🔽		
Potash	None	None	
Cave/Karst Potential	High 🔻		
Cave/Karst Potential			
Variance	🖸 None	🖸 Flex Hose	C Other
Wellhead	Conventional and Multibowl	T	
Other	□ 4 String □ 5 String	Capitan Reef None	WIPP
Other	Pilot Hole None	Open Annulus	
Cementing	Contingency Squeeze	Echo-Meter	Primary Cement Squeeze None
Special Requirements	☐ Water Disposal/Injection	COM	□ Unit
Special Requirements	□ Batch Sundry	Waste Prevention Waste MP	
Special Requirements Variance	☑ BOPE Break Testing☑ Offline BOPE Testing	Offline Cementing	Casing Clearance

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet **43 CFR part 3170 Subpart 3176**, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- The 9-5/8 inch surface casing shall be set at approximately 880 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt when present, and below usable fresh water) and cemented to the surface. The surface hole shall be 13 1/2 inch in diameter.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 7-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Option 2:

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

a. First stage: Operator will cement with intent to reach the top of the **Brushy** Canyon at 6580'.

- b. Second stage:
 - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified. (Squeeze 583 sxs Class C)
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Operator has proposed to pump down **9-5/8**" X **7-5/8**" annulus after primary cementing stage. <u>Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus Or operator shall run a CBL from TD of the **7-5/8**" casing to surface after the second stage <u>BH to verify TOC.</u></u>

Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out. Operator must run one CBL per Well Pad. Operator may conduct a negative and positive pressure test during completion to remediate sustained casing pressure.

If cement does not reach surface, the next casing string must come to surface.

Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures.

- In <u>High Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash. Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi. Annular which shall be tested to 3500 (70% Working Pressure) psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the **7-5/8** inch intermediate casing shoe shall be **5000 (5M)** psi.

Option 2:

Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the **9-5/8** inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR part 3170 Subpart 3171
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.

• In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

BOPE Break Testing Variance (Approved)

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at **21**-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR part 3170 Subpart 3172.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.
- The BOPE testing shall be conducted while the rig is stationary.

Offline BOPE Testing

Operator has been (Approved) to test the BOPE offline.

The BOPE offline testing shall be stationary during pressure testing.

Online BOPE testing should commence within 72 hours of offline BOPE testing completion. Notify the BLM if interval exceeds 72 hours.

Notify the BLM 4hrs prior to offline BOPE testing at Eddy County: 575-361-2822.

Offline Cementing

Operator has been (Approved) to pump the proposed cement program offline in the Intermediate(s) interval.

Offline cementing should commence within 24 hours of landing the casing for the interval.

.

Notify the BLM 4hrs prior to cementing offline at Eddy County: 575-361-2822.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Eddy County

EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220,

BLM_NM_CFO_DrillingNotifications@BLM.GOV (575) 361-2822

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or

if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL
- All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.

- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been

done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)

- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170
 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Long Vo (LVO) 3/26/2025

Exmoor 10-34 Fed Com 304H

9 5/8		surface csg in a	13 1/2 i	inch hole.		Design	Factors			Surface		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	40.00		j 55	btc	17.90	6.25	0.7	880	10	1.18	11.80	35,200
"B"			-	btc				0				0
	w/	8.4#/g mud, 30min Sfc Csg Test	psig: 1,500	Tail Cmt	does not	circ to sfc.	Totals:	880				35,200
omparison of	Proposed t	o Minimum Required Cem	ent Volumes									
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cpl
13 1/2	0.4887	495	713	430	66	9.00	3359	5M				1.44
urst Frac Grad	ient(s) for Se	gment(s) A, B = , b All > 0.	70, OK.									
7 5/8		asing inside the	9 5/8			Design I	Factors			Int 1		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	29.70		p 110	talon sfc	2.99	1.29	1.83	10,320	2	3.06	2.16	306,504
"B"								0				0
	w/	8.4#/g mud, 30min Sfc Csg Test	psig: 2,270				Totals:	10,320				306,504
		The cement v	volume(s) are intend	led to achieve a top of	0	ft from su	rface or a	880				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cpl
8 3/4	0.1005	604	1340	1044	28	10.50	3510	5M				0.43
V Tool(s):			6580				sum of sx	<u>Σ</u> CuFt				Σ%exces
y stage % :		257	26				1187	2180				109
	t yld > 1.35											
		asing inside the	7 5/8			Design Fac	ctors			Prod 1		
Tail cmt 5 1/2		asing inside the Grade	7 5/8	Coupling	Joint	<u>Design Far</u> Collapse	<u>ctors</u> Burst	Length	B@s	Prod 1 a-B	a-C	Weight
Tail cmt 5 1/2 Segment "A"	c	•	7 5/8 p 110	Coupling talon rd	Joint 3.38			Length 26,459	B@s 2			Weight 529,180
Tail cmt 5 1/2 Segment "A" "B"	c #/ft	•				Collapse	Burst	-		a-B		
Tail cmt 5 1/2 Segment "A"	c #/ft	•				Collapse	Burst	26,459		a-B		529,180
Tail cmt 5 1/2 Segment "A" "B"	c #/ft	•				Collapse	Burst	26,459 0		a-B		529,180 0
Tail cmt 5 1/2 Segment "B" "C"	c #/ft 20.00	•	p 110			Collapse	Burst	26,459 0 0		a-B		529,18 0 0 0
Tail cmt 5 1/2 Segment "A" "B" "C"	c #/ft 20.00	Grade 8.4#/g mud, 30min Sfc Csg Test	p 110			Collapse	Burst 2.44 Totals:	26,459 0 0 0		a-B	3.75	529,180 0 0
Tail cmt 5 1/2 Segment "A" "B" "C"	c #/ft 20.00	Grade 8.4#/g mud, 30min Sfc Csg Test	p 110	talon rd	3.38	Collapse 2.24	Burst 2.44 Totals:	26,459 0 0 26,459		a-B	3.75	529,180 0 0 529,180 overlap.
Tail cmt 5 1/2 Segment "A" "B" "C" "D"	c #/ft 20.00 w/	Grade 8.4#/g mud, 30min Sfc Csg Test The cement V	p 110 psig: 2,373 volume(s) are intend	talon rd	3.38	Collapse 2.24 ft from su	Burst 2.44 Totals: rface or a	26,459 0 0 26,459 200		a-B	3.75	529,180 0 0 529,180 overlap. Min Dist
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4	c #/ft 20.00 w/ Annular Volume 0.0835	Grade 8.4#/g mud, 30min Sfc Csg Test The cement v 1 Stage	p 110 psig: 2,373 volume(s) are intend 1 Stage	talon rd led to achieve a top of Min	3.38 10120 1 Stage	Collapse 2.24 ft from su Drilling	Burst 2.44 Totals: Inface or a Calc	26,459 0 0 26,459 200 Req'd		a-B	3.75	529,180 0 0 529,180 overlap. Min Dist
Tail cmt Tail cmt 5 1/2 Segment "A" "C" "D" Hole Size 6 3/4 lass 'C' tail cmt	c #/ft 20.00 w/ Annular Volume 0.0835	Grade 8.4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx	p 110 psig: 2,373 rolume(s) are intend 1 Stage CuFt Cmt	talon rd led to achieve a top of Min Cu Ft	3.38 10120 1 Stage % Excess	Collapse 2.24 ft from su Drilling Mud Wt	Burst 2.44 Totals: Inface or a Calc	26,459 0 0 26,459 200 Req'd		a-B	3.75	529,180 0 0 529,180 overlap. Min Dist Hole-Cpl
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 lass 'C' tail cml	c #/ft 20.00 w/ Annular Volume 0.0835	Grade 8.4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx	p 110 psig: 2,373 rolume(s) are intend 1 Stage CuFt Cmt 1676	talon rd led to achieve a top of Min Cu Ft	3.38 10120 1 Stage % Excess	Collapse 2.24 ft from su Drilling Mud Wt 10.50	Burst 2.44 Totals: rface or a Calc MASP	26,459 0 0 26,459 200 Req'd	2	a-B 4.09	3.75	529,180 0 0 529,180 overlap. Min Dist Hole-Cpl
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 lass 'C' tail cmt #N/A 0	c #/ft 20.00 w/ Annular Volume 0.0835 : yld > 1.35	Grade 8.4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx 1085	p 110 psig: 2,373 rolume(s) are intend 1 Stage CuFt Cmt	talon rd	3.38 10120 1 Stage % Excess 23	Collapse 2.24 ft from su Drilling Mud Wt 10.50 Design I	Burst 2.44 Totals: rface or a Calc MASP Factors	26,459 0 0 26,459 200 Req'd BOPE	2	a-B 4.09 hoose Casi	3.75 ing>	529,180 0 0 529,180 overlap. Min Dist Hole-Cpl. 0.43
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 ass 'C' tail cml #N/A 0 Segment	c #/ft 20.00 w/ Annular Volume 0.0835	Grade 8.4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx	p 110 psig: 2,373 rolume(s) are intend 1 Stage CuFt Cmt 1676	talon rd led to achieve a top of Min Cu Ft 1366 Coupling	3.38 10120 1 Stage % Excess	Collapse 2.24 ft from su Drilling Mud Wt 10.50	Burst 2.44 Totals: rface or a Calc MASP	26,459 0 0 26,459 200 Req'd BOPE	2	a-B 4.09	3.75	529,18(0 0 529,18(overlap. Min Dist Hole-Cpl 0.43 Weight
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 lass 'C' tail cml #N/A 0 Segment "A"	c #/ft 20.00 w/ Annular Volume 0.0835 : yld > 1.35	Grade 8.4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx 1085	p 110 psig: 2,373 rolume(s) are intend 1 Stage CuFt Cmt 1676	talon rd led to achieve a top of Min Cu Ft 1366 Coupling 0.00	3.38 10120 1 Stage % Excess 23	Collapse 2.24 ft from su Drilling Mud Wt 10.50 Design I	Burst 2.44 Totals: rface or a Calc MASP Factors	26,459 0 0 26,459 200 Req'd BOPE	2	a-B 4.09 hoose Casi	3.75 ing>	529,18(0 0 529,18(overlap. Min Dist Hole-Cpl 0.43 Weight 0
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 ass 'C' tail cml #N/A 0 Segment	c #/ft 20.00 /// Annular Volume 0.0835 : yld > 1.35 // th	Grade 8.4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx 1085 Grade	p 110 psig: 2,373 volume(s) are intend 1 Stage CuFt Cmt 1676 5 1/2	talon rd led to achieve a top of Min Cu Ft 1366 Coupling	3.38 10120 1 Stage % Excess 23	Collapse 2.24 ft from su Drilling Mud Wt 10.50 Design I	Burst 2.44 Totals: rface or a Calc MASP Factors Burst	26,459 0 0 26,459 200 Req'd BOPE	2	a-B 4.09 hoose Casi	3.75 ing>	529,18 0 0 529,18 overlap. Min Dis Hole-Cpl 0.43 Weigh 0 0
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 ass 'C' tail cml #N/A 0 Segment "A"	c #/ft 20.00 /// Annular Volume 0.0835 : yld > 1.35 // th	Grade 8.4#/g mud, 30min Sfc Csg Test The cement V 1 Stage Cmt Sx 1085 Grade 8.4#/g mud, 30min Sfc Csg Test	p 110 p 110 psig: 2,373 volume(s) are intend 1 Stage CuFt Cmt 1676 5 1/2	talon rd led to achieve a top of Min Cu Ft 1366 Coupling 0.00 0.00	3.38 10120 1 Stage % Excess 23 #N/A	Collapse 2.24 ft from su Drilling Mud Wt 10.50 <u>Design I</u> Collapse	Burst 2.44 Totals: rface or a Calc MASP Factors Burst Totals:	26,459 0 0 26,459 200 Req'd BOPE	2	a-B 4.09 hoose Casi	3.75 ing> a-C	529,18 0 0 529,18 overlap. Min Dis Hole-Cpi 0.43 Weigh 0 0
ass 'C' tail cmt Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 ass 'C' tail cmt #N/A 0 Segment "A" "B"	c #/ft 20.00 «// Annular Volume 0.0835 : yld > 1.35 #/ft	Grade 8.4#/g mud, 30min Sfc Csg Test The cement V 1 Stage Cmt Sx 1085 Grade 8.4#/g mud, 30min Sfc Csg Test Cmt vol ca	p 110 p 110 psig: 2,373 volume(s) are intend 1 Stage CuFt Cmt 1676 5 1/2 psig: alc below includes the second sec	talon rd led to achieve a top of Min Cu Ft 1366 Coupling 0.00 0.00 his csg, TOC intended	3.38 10120 1 Stage % Excess 23 #N/A	Collapse 2.24 ft from su Drilling Mud Wt 10.50 <u>Design I</u> Collapse	Burst 2.44 Totals: rface or a Calc MASP Factors Burst	26,459 0 0 26,459 200 Req'd BOPE	2	a-B 4.09 hoose Casi	3.75 ing> a-C	529,18 0 0 529,18 overlap. Min Dis Hole-Cp 0.43 Weigh 0 0 0 0 overlap.
ass 'C' tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 ass 'C' tail cmt #N/A 0 Segment "A" "B" Hole	C #/ft 20.00 w/ Annular Volume 0.0835 Volume 0.0835 ¥/ft w/ Annular	Grade 8.4#/g mud, 30min Sfc Csg Test The cement v 1 Stage Cmt Sx 1085 Grade 8.4#/g mud, 30min Sfc Csg Test Cmt vol cs 1 Stage	p 110 psig: 2,373 rolume(s) are intend 1 Stage CuFt Cmt 1676 5 1/2 psig: alc below includes tl 1 Stage	talon rd led to achieve a top of Min Cu Ft 1366 Coupling 0.00 0.00 his csg, TOC intended Min	3.38 10120 1 Stage % Excess 23 #N/A 1 Stage	Collapse 2.24 ft from su Drilling Mud Wt 10.50 <u>Design I</u> Collapse ft from su Drilling	Burst 2.44 Totals: rface or a Calc MASP Factors Burst Totals: rface or a Calc	26,459 0 0 26,459 200 Req'd BOPE Length 0 0 0 #N/A Req'd	2	a-B 4.09 hoose Casi	3.75 ing> a-C	529,18 0 0 529,18 overlap. Min Dis Hole-Cp) 0.43 Weigh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ass 'C' tail cmt Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 6 3/4 ass 'C' tail cmt #N/A 0 Segment "A" "B"	c #/ft 20.00 «// Annular Volume 0.0835 : yld > 1.35 #/ft	Grade 8.4#/g mud, 30min Sfc Csg Test The cement V 1 Stage Cmt Sx 1085 Grade 8.4#/g mud, 30min Sfc Csg Test Cmt vol ca	p 110 p 110 psig: 2,373 volume(s) are intend 1 Stage CuFt Cmt 1676 5 1/2 psig: alc below includes the second sec	talon rd led to achieve a top of Min Cu Ft 1366 Coupling 0.00 0.00 his csg, TOC intended	3.38 10120 1 Stage % Excess 23 #N/A	Collapse 2.24 ft from su Drilling Mud Wt 10.50 <u>Design I</u> Collapse	Burst 2.44 Totals: rface or a Calc MASP Factors Burst	26,459 0 0 26,459 200 Req'd BOPE	2	a-B 4.09 hoose Casi	3.75 ing> a-C	529,18(0 0 529,18(overlap. Min Dist Hole-Cpl 0.43 Weight 0 0

.

Offline Cementing

Variance Request

Devon Energy requests to offline cement on intermediate strings that are set in formations shallower than the Wolfcamp. Prior to commencing offline cementing operations, the well will be monitored for any abnormal pressures and confirmed to be static. A dual manifold system (equipped with chokes) for the returns will also be utilized as a redundancy. All equipment used for offline cementing will have a minimum 5M rating to match intermediate sections' 5M BOPE requirements.

Section 2 - Blowout Preventer Testing Procedure

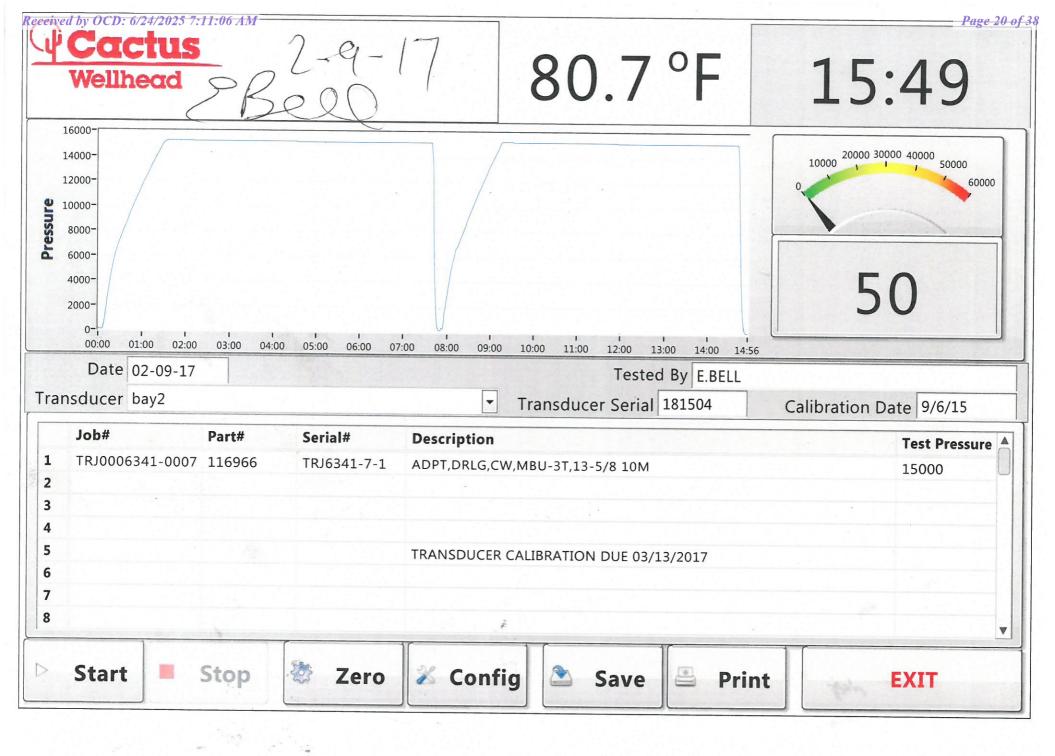
Variance Request

Devon Energy requests to only test BOP connection breaks after drilling out of surface casing and while skidding between wells which conforms to API Standard 53 and industry standards. The initial BOP test will follow 43 CFR 3172, and subsequent tests following a skid will only test connections that are broken. This test will at minimum include the Top Pipe Ram, HCR, Kill Line Check Valve, QDC (quick disconnect to wellhead) and BOP shell of the 10M BOPE to 5M for 10 minutes. Additional pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken. If a break to the flex hose that runs to the choke manifold is required due to repositioning from a skid, the HCR will remain open during the shell test to include that additional break. The variance only pertains to intermediate hole-sections. This variance will meet or exceed 43 CFR 3172 per the following: Devon Energy will perform a full BOP test per 43 CFR 3172 before drilling out of the intermediate casing string(s) and starting the production hole, testing the Annular during initial BOP testing to a minimum of 70% RWP and higher than MASP, and pressure testing at a 21-day interval frequency. The BLM will be contacted 4hrs prior to a BOPE test. The BLM will be notified if and when a well control event is encountered. In the event break testing is not utilized, then a full BOPE test would be conducted.

Devon Energy requests to perform offline BOP stump testing and offline BOPE testing. All pressurecontaining and pressure-controlling seals will be tested either online or offline as denoted in the table below and per BLM approval during initial BOP test following test pressure requirements set forth in 43 CFR 3172. Remaining components not tested offline or on the stump will be tested within 72-hours when the BOP is connected to the wellhead. If stump testing exceeds 72-hour window prior to connecting to the wellhead, the BLM will be notified and either stump testing restarted, or the BOP being tested online. The BLM will be contacted 4hrs prior to a BOPE test. The BLM will be notified if and when a well control event is encountered. In the event stump testing is not utilized, then a full BOPE test would be conducted.

Components	Offline	Offline, BOPE	Break	Online
Upper Rams		Х	Х	Х
Blind Rams		X		Х
Lower Rams				Х
Outside Kill Valve		Х	Х	Х
Inside Kill Valve		Х	Х	Х
Kill Line Check Valve		Х	Х	Х
Inside Choke Valve		Х	Х	X
HCR		Х	Х	Х
Kill Line	х			Х
Annular		Х		Х
Choke Manifold Valves and Hose	Х			X
Mudline (Mud Pumps, Rig Floor Valves, Kelly Hose, Mud Line)	Х			Х
Standpipe Valve	Х			Х
IBOP (Upper and Lower)	Х			X

Devon requests offline BOPE testing for the following components: Upper Rams, Blind Rams, Kill Valves, Choke Valves, and Annular Remaining well control equipment components will either be tested offline or online, per BLM approval


- Remaining BOPE will be tested online within 72-hours form completing the offline BOPE component testing
- Notify the BLM if the online BOPE testing exceeds 72-hours

All Full Tests not completed "Offline" or "Offline, BOPE" are required to be complete Online

Devon requests Break testing as stated above for 5K tests, not including production hole

Annular Preventer will be tested to minimum of 70% RWP and higher than MASP during initial BOP test

Pressure testing is required for pressure-containing connections if the integrity of a pressure seal is broken during a break test Full Tests required when entering production hole

U. S. Steel Tubular Products P110 HP USS-TALON HTQ™ RD 5.500" 20.00lb/ft (0.361" Wall)

MECHANICAL PROPERTIES	Pipe	USS-TALON HTQ™ RD		[6]
Minimum Yield Strength	125,000		psi	
Maximum Yield Strength	140,000		psi	
Minimum Tensile Strength	130,000		psi	
DIMENSIONS	Pipe	USS-TALON HTQ™ RD		
Outside Diameter	5.500	5.900	in.	
Wall Thickness	0.361		in.	
Inside Diameter	4.778	4.778	in.	
Standard Drift	4.653	4.653	in.	
Alternate Drift			in.	
Nominal Linear Weight, T&C	20.00		lb/ft	
Plain End Weight	19.83		lb/ft	
SECTION AREA	Pipe	USS-TALON HTQ™ RD		
Critical Area	5.828	5.828	sq. in.	
Joint Efficiency		100.0	%	[2]
PERFORMANCE	Pipe	USS-TALON HTQ™ RD		
Minimum Collapse Pressure	13,150	13,150	psi	
Minimum Internal Yield Pressure	14,360	14,360	psi	
Minimum Pipe Body Yield Strength	729,000		lb	
Joint Strength		729,000	lb	
Compression Rating		729,000	lb	
Reference Length		24,300	ft	[5]
Maximum Uniaxial Bend Rating		104.2	deg/100 ft	[3]
MAKE-UP DATA	Pipe	USS-TALON HTQ™ RD		
Make-Up Loss		5.58	in.	
Minimum Make-Up Torque		18,400	ft-lb	[4]
Mariana Males I la Tanara		21,400	ft-lb	[4]
Maximum Make-Up Torque		21,400	11-10	רין.

Notes

- 1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).
- 2. Joint efficiencies are calculated by dividing the connection critical area by the pipe body area.

3. Uniaxial bend rating shown is structural only.

- 4. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 5. Reference length is calculated by Joint Strength divided by Nominal Linear Weight, T&C with a 1.5 Safety factor.
- 6. Coupling must meet minimum mechanical properties of the pipe.

Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

> U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380

1-877-893-9461 connections@uss.com www.usstubular.com

5/15/2024 6:31:14 PM

U. S. Steel Tubular Products 7.625" 29.70lb/ft (0.375" Wall) P110 HP USS-TALON SFC™

IECHANICAL PROPERTIES	Pipe	USS-TALON SFC™		
Minimum Yield Strength	125,000		psi	
Maximum Yield Strength	140,000		psi	
Minimum Tensile Strength	130,000		psi	
DIMENSIONS	Pipe	USS-TALON SFC™		
Outside Diameter	7.625	7.900	in.	
Wall Thickness	0.375		in.	
Inside Diameter	6.875	6.815	in.	
Standard Drift	6.750	6.750	in.	
Alternate Drift			in.	
Nominal Linear Weight, T&C	29.70		lb/ft	
Plain End Weight	29.06		lb/ft	
SECTION AREA	Pipe	USS-TALON SFC™		
Critical Area	8.541	7.331	sq. in.	
Joint Efficiency		85.8	%	
PERFORMANCE	Pipe	USS-TALON SFC™		
Minimum Collapse Pressure	7,260	7,260	psi	
Minimum Internal Yield Pressure	10,750	10,750	psi	
Minimum Pipe Body Yield Strength	1,068,000		lb	
Joint Strength		916,000	lb	
Compression Rating		916,000	lb	
Reference Length		20,560	ft	
Maximum Uniaxial Bend Rating		64.4	deg/100 ft	
IAKE-UP DATA	Pipe	USS-TALON SFC™		
Make-Up Loss		5.08	in.	
Minimum Make-Up Torque		30,000	ft-lb	
Maximum Make-Up Torque		33,000	ft-lb	
Maximum Operating Torque		80,500	ft-lb	

Notes

1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).

2. Joint efficiencies are calculated by dividing the connection critical area by the pipe body area.

3. Uniaxial bend rating shown is structural only.

4. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).

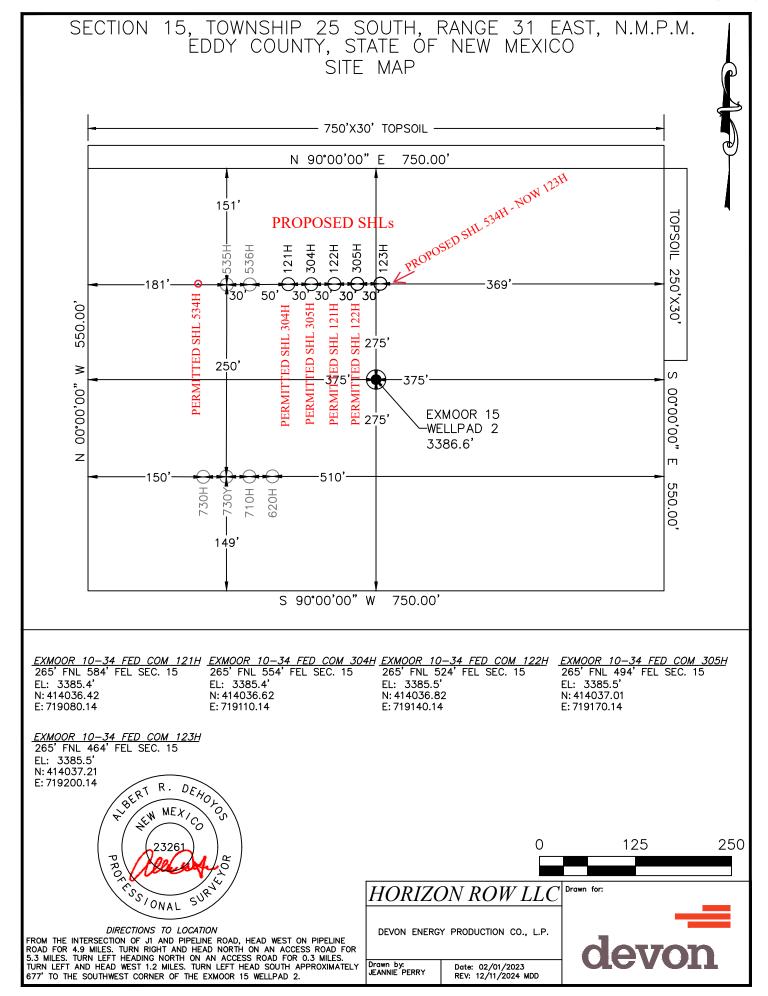
- 5. Reference length is calculated by Joint Strength divided by Nominal Linear Weight, T&C with a 1.5 Safety factor.
- 6. Coupling must meet minimum mechanical properties of the pipe.

Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380 1-877-893-9461 connections@uss.com www.usstubular.com

SěAH 9.625" 40# .395" J-55


Dimensions (Nominal)

Outside Diameter	9.625	in.
Wall	0.395	in.
Inside Diameter	8.835	in.
Drift	8.750	in.
Weight, T&C	40.000	lbs./ft.
Weight, PE	38.970	lbs./ft.

Performance Properties

Collapse, PE	2570	psi
Internal Yield Pressure at Minimum Yield		
PE	3950	psi
LTC	3950	psi
BTC	3950	psi
Yield Strength, Pipe Body	630	1000 lbs.
Joint Strength		
STC	452	1000 lbs.
LTC	520	1000 lbs.
втс	714	1000 lbs.

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility. Received by OCD: 6/24/2025 7:11:06 AM

Released to Imaging: 7/10/2025 2:51:35 PM

1. Geologic Formations

TVD of target	10785	Pilot hole depth	N/A
MD at TD:	26459	Deepest expected fresh water	

Basin

Formation	Depth (TVD)	Water/Mineral Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	855		
Salt	1125		
Base of Salt	4340		
Cherry Canyon	5300		
Brushy Canyon	6580		
1st Bone Spring Lime	8220		
Leonard	8350		
Bone Spring Lime 2nd	9675		
Bone Spring 2nd	9900		
3rd Bone Spring Lime	10415		

*H2S, water flows, loss of circulation, abnormal pressures, etc.

EXMOOR 10-34 FED COM 304H

2.	Casing	Program
----	--------	---------

		Wt			Casing	Interval	Casing	Interval
Hole Size	Csg. Size	(PPF)	Grade	Conn	From (MD)	To (MD)	From (TVD)	To (TVD)
13 1/2	9 5/8	40	J-55	BTC	0	935	0	935
8 3/4	7 5/8	29.7	P110HP	TALON SFC	0	10320	0	10320
6 3/4	5 1/2	20	P110HP	TALON RD	0	26459	0	10785

• All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for contingency casing.

3. Cementing Program

Casing	# Sks	TOC	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	495	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	257	Surf	9	3.27	Lead: Class C Cement + additives
Int I	347	6580	13.2	1.44	Tail: Class H / C + additives
Int 1	583	Surf	13.2	1.44	Squeeze Lead: Class C Cement + additives
Intermediate	257	Surf	9	3.27	Lead: Class C Cement + additives
Squeeze	347	6580	13.2	1.44	Tail: Class H / C + additives
Production	62	8420	9	3.27	Lead: Class H /C + additives
Froduction	1023	10420	13.2	1.44	Tail: Class H / C + additives

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Intermediate 1 (Two Stage)	25%
Prod	10%

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures

Devon Energy requests to offline cement on intermediate strings that are set in formations shallower than the Wolfcamp. Prior to commencing offline cementing operations, the well will be monitored for any abnormal pressures and confirmed to be static. A dual manifold system (equipped with chokes) for the returns will also be utilized as a redundancy. All equipment used for offline cementing will have a minimum 5M rating to match intermediate sections' 5M BOPE requirements

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		~	Tested to:																					
			Annular		Х	50% of rated working pressure																					
Int 1	13-5/8"	5M		d Ram	Х																						
	15 5/0	5111		Ram		5M																					
			Doub	le Ram	Х	5111																					
			Other*																								
			Annul	ar (5M)	Х	50% of rated working pressure																					
Production	13-5/8"	5M	Blind Ram		Х																						
Troduction		15-5/0	15-5/8	13-3/0	13-3/8	13-3/8	5101) 31 vi	JIVI	5111	5111	5111	5111	5101	5101	5141	5101	5111	5111	5101	5101	5101	5111	5101	Pipe	Ram	
			Double Ram		Х	JIVI																					
			Other*																								
			Annul	ar (5M)																							
			Blinc	d Ram																							
			Pipe	Ram																							
			Doub	le Ram																							
			Other*																								
N A variance is requested for	the use of	a diverter or	n the surface	casing. See	attached for	schematic.																					
Y A variance is requested to r																											

4. Pressure Control Equipment

5. Mud Program

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring
what will be used to monitor the loss of gain of field.	i v i/i uson/ v isuai Monitoring

6. Logging and Testing Procedures

Logging, Co	Logging, Coring and Testing								
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the								
Х	Completion Rpeort and sbumitted to the BLM.								
	No logs are planned based on well control or offset log information.								
	Drill stem test? If yes, explain.								
	Coring? If yes, explain.								

Addition	al logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
Х	CBL	Production casing
Х	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	5888
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

N	H2S is present
Y	H2S plan attached.

8. Other facets of operation

Is this a walking operation? Potentially

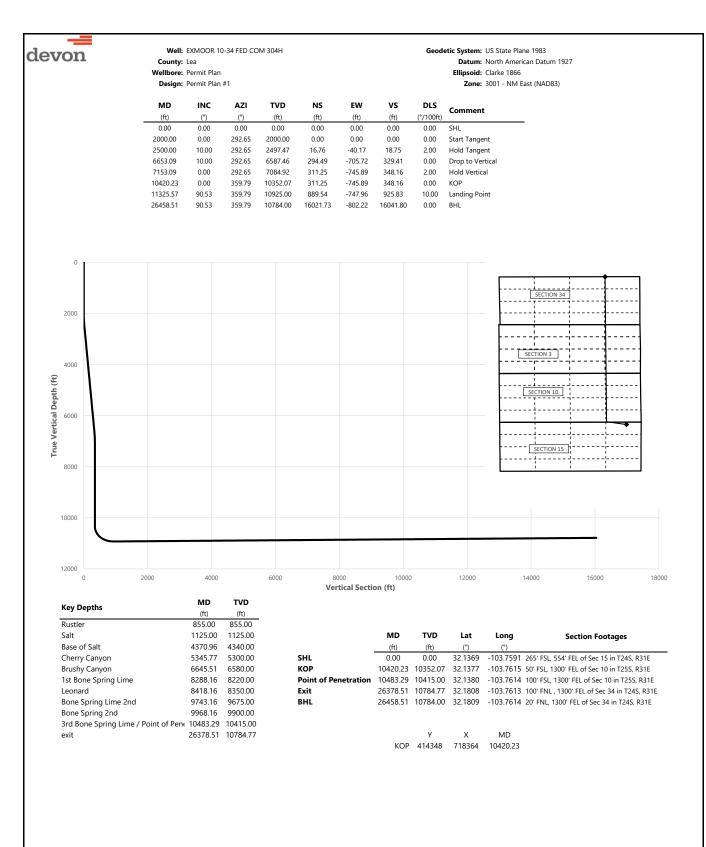
- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

1 Spudder rig will move in and batch drill surface hole.

- a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).


³ The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.

- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments

X Directional Plan

Other, describe

evon		County: Wellbore:			M 304H				Geodetic System: US State Plane 1983 Datum: North American Datum 1927 Ellipsoid: Clarke 1866 Zone: 3001 - NM East (NAD83)
	MD	INC	AZI	TVD	NS	EW	vs	DLS	Comment
-	(ft) 0.00	(°) 0.00	(°) 0.00	(ft) 0.00	(ft) 0.00	(ft) 0.00	(ft) 0.00	(°/100ft) 0.00	SHL
	100.00	0.00	292.65	100.00	0.00	0.00	0.00	0.00	
	200.00	0.00	292.65	200.00	0.00	0.00	0.00	0.00	
	300.00	0.00	292.65	300.00	0.00	0.00	0.00	0.00	
	400.00	0.00	292.65	400.00	0.00	0.00	0.00	0.00	
	500.00	0.00	292.65	500.00	0.00	0.00	0.00	0.00	
	600.00	0.00	292.65	600.00	0.00	0.00	0.00	0.00	
	700.00	0.00	292.65	700.00	0.00	0.00	0.00	0.00	
	800.00 855.00	0.00 0.00	292.65 292.65	800.00 855.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	Rustler
	900.00	0.00	292.65	900.00	0.00	0.00	0.00	0.00	Nustici -
	1000.00	0.00	292.65	1000.00	0.00	0.00	0.00	0.00	
	1100.00	0.00	292.65	1100.00	0.00	0.00	0.00	0.00	
	1125.00	0.00	292.65	1125.00	0.00	0.00	0.00	0.00	Salt
	1200.00	0.00	292.65	1200.00	0.00	0.00	0.00	0.00	
	1300.00	0.00	292.65	1300.00	0.00	0.00	0.00	0.00	
	1400.00	0.00	292.65	1400.00	0.00	0.00	0.00	0.00	
	1500.00	0.00	292.65	1500.00	0.00	0.00	0.00	0.00	
	1600.00 1700.00	0.00 0.00	292.65 292.65	1600.00 1700.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	
	1800.00	0.00	292.65	1800.00	0.00	0.00	0.00	0.00	
	1900.00	0.00	292.65	1900.00	0.00	0.00	0.00	0.00	
	2000.00	0.00	292.65	2000.00	0.00	0.00	0.00	0.00	Start Tangent
	2100.00	2.00	292.65	2099.98	0.67	-1.61	0.75	2.00	-
	2200.00	4.00	292.65	2199.84	2.69	-6.44	3.01	2.00	
	2300.00	6.00	292.65	2299.45	6.04	-14.48	6.76	2.00	
	2400.00	8.00	292.65	2398.70	10.74	-25.73	12.01	2.00	
	2500.00	10.00	292.65	2497.47	16.76	-40.17	18.75	2.00	Hold Tangent
	2600.00 2700.00	10.00 10.00	292.65 292.65	2595.95	23.45	-56.19 -72.22	26.23	0.00	
	2800.00	10.00	292.65	2694.43 2792.91	30.13 36.82	-88.24	33.71 41.19	0.00 0.00	
	2900.00	10.00	292.65	2891.39	43.51	-104.27	48.67	0.00	
	3000.00	10.00	292.65	2989.87	50.20	-120.29	56.15	0.00	
	3100.00	10.00	292.65	3088.35	56.88	-136.32	63.63	0.00	
	3200.00	10.00	292.65	3186.83	63.57	-152.34	71.11	0.00	
	3300.00	10.00	292.65	3285.31	70.26	-168.37	78.59	0.00	
	3400.00	10.00	292.65	3383.79	76.94	-184.40	86.07	0.00	
	3500.00	10.00	292.65	3482.27	83.63	-200.42	93.55	0.00	
	3600.00	10.00	292.65	3580.75	90.32	-216.45	101.03	0.00	
	3700.00 3800.00	10.00 10.00	292.65 292.65	3679.23 3777.72	97.01 103.69	-232.47 -248.50	108.51 115.99	0.00 0.00	
	3900.00	10.00	292.65	3876.20	110.38	-264.52	123.47	0.00	
	4000.00	10.00	292.65	3974.68	117.07	-280.55	130.95	0.00	
	4100.00	10.00	292.65	4073.16	123.75	-296.57	138.43	0.00	
	4200.00	10.00	292.65	4171.64	130.44	-312.60	145.91	0.00	
	4300.00	10.00	292.65	4270.12	137.13	-328.63	153.39	0.00	
	4370.96	10.00	292.65	4340.00	141.87	-340.00	158.70	0.00	Base of Salt
	4400.00	10.00	292.65	4368.60	143.82	-344.65	160.87	0.00	
	4500.00	10.00	292.65	4467.08	150.50	-360.68	168.35	0.00	
	4600.00	10.00	292.65	4565.56	157.19	-376.70	175.83	0.00	
	4700.00 4800.00	10.00 10.00	292.65 292.65	4664.04 4762.52	163.88 170.56	-392.73 -408.75	183.31 190.79	0.00 0.00	
	4800.00	10.00	292.65	4762.52	170.36	-408.75	190.79	0.00	
	5000.00	10.00	292.65	4959.48	183.94	-440.80	205.75	0.00	
	5100.00	10.00	292.65	5057.97	190.63	-456.83	213.23	0.00	
	5200.00	10.00	292.65	5156.45	197.31	-472.86	220.71	0.00	
	5300.00	10.00	292.65	5254.93	204.00	-488.88	228.19	0.00	
	5345.77	10.00	292.65	5300.00	207.06	-496.22	231.62	0.00	Cherry Canyon
	5400.00	10.00	292.65	5353.41	210.69	-504.91	235.67	0.00	
	5500.00	10.00	292.65	5451.89	217.37	-520.93	243.15	0.00	
	5600.00	10.00	292.65	5550.37	224.06	-536.96	250.63	0.00	
	5700.00	10.00	292.65	5648.85	230.75	-552.98	258.11	0.00	
	5800.00 5900.00	10.00	292.65	5747.33 5845 81	237.44	-569.01 -585.04	265.59	0.00	
	5900.00 6000.00	10.00 10.00	292.65 292.65	5845.81 5944.29	244.12 250.81	-585.04 -601.06	273.07 280.56	0.00 0.00	
	6100.00	10.00	292.65	6042.77	250.81	-617.09	288.04	0.00	
	6200.00	10.00	292.65	6141.25	264.18	-633.11	295.52	0.00	
	6300.00	10.00	292.65	6239.73	270.87	-649.14	303.00	0.00	
	6400.00	10.00	292.65	6338.22	277.56	-665.16	310.48	0.00	
	0400.00								

<text><text><text></text></text></text>	-									
Control Control <t< th=""><th>=</th><th></th><th>Walls</th><th></th><th></th><th>4 2040</th><th></th><th></th><th></th><th>Geodetic System: US State Plane 1092</th></t<>	=		Walls			4 2040				Geodetic System: US State Plane 1092
Burger berner Burger berner Burger berner Burger berner 10 10	devon				0-34 FED COI	VI 504FI				
MD K2 K2 K2 K3 K4 K4 <thk4< th=""> K4 K4 K4<!--</th--><th></th><th></th><th></th><th></th><th>ı</th><th></th><th></th><th></th><th></th><th></th></thk4<>					ı					
in in<			Design:	Permit Plar	n #1					Zone: 3001 - NM East (NAD83)
in in<		мр	INC	471	TVD	NS	F\W	vs		
66000 000 32.55 61.510 20.52 62.540 000 Brady Carpon 663.10 000 22.55 663.02 71.53 82.44 000 Brady Carpon 663.10 000 22.55 663.27 72.53 82.35 200 69000 5.66 22.57 065.97 74.211 84.40 200 710000 106 22.55 071.13 111.25 74.53 84.40 200 710000 000 35.57 72.11.4 111.25 74.53 84.46 000 710000 000 35.57 73.11.4 111.25 74.53 84.46 000 710000 000 35.57 73.11.4 111.25 74.54 44.46 000 710000 000 35.57 73.11.4 111.25 74.54 44.46 000 70000 000 35.57 73.1.4 111.2 74.54 44.46 000 620000 003										Comment
663309 1000 2225 64374 24.04 7.272 2.301 0.00 point bertikal 64000 7.0 22.26 643.27 30.24 7.253 38.48 2.01 64000 1.0 22.26 642.77 30.48 7.354 34.48 2.01 71000 1.0 22.05 67.017 31.15 7.459 44.45 2.01 71000 0.0 39.37 71.14 11.15 7.459 44.16 0.0 71000 0.0 39.37 72.114 11.13 7.459 44.16 0.0 71000 0.0 39.37 72.114 11.13 7.459 44.16 0.0 71000 0.0 39.37 72.114 11.13 7.459 44.16 0.0 71000 0.0 39.37 82.10 11.13 7.459 44.16 0.0 61000 0.0 39.37 82.10 11.13 7.459 44.16 0.0	-					290.93			0.00	
670007806225632377071298276800800680005002226682318054742084352070000100202668118110742084352071000100202672118110745084162071000100393973144112574598416207300000393973141127459841620730000039397314112745984162073000003939731411274598416207300000393973141127459841620730000039397314112745984162073000003939831411274598416207300000393983141127459841620730000039398314112745984162084000003939831411274598416208400000393983141127459841620840000039398314112745984162084000003939831411274598416208400000393983141127459841620840000039398314 </td <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
6000070082.5682.2782.2882.8083.80807000010022.6682.1780.8184.40207000010022.6692.1111074.5094.7020700000025.9792.11111.274.5094.7020700000025.9772.11111.274.5094.7020700000025.9772.11111.274.5094.7020700000025.9772.11111.274.5094.7020700000035.9772.11111.274.5094.7020700000035.9772.11111.274.5094.7020700000035.9772.11111.274.5094.7020700000035.9772.11111.274.5094.7020700000035.9783.1411.274.5094.7020700000035.9783.1411.274.5094.7020700000035.9783.1411.274.5094.7020700000035.9783.1411.274.5094.7020700000035.9783.1411.274.5094.7020700000035.9783.1411.274.5094.7020700000035.9783.1411.274.5094.70										Drop to Vertical
ebodyebodyebodyebodyebodyebodyebodyebody710001022.6591.0111.0-7.42.014.422.00710001023.6571.0111.1311.13-7.42.014.142.00710001023.9371.11.1411.13-7.42.014.142.007100010023.9371.11.1411.13-7.42.014.140.007100010033.9371.11.1411.12-7.42.014.140.007100010033.9371.11.1411.12-7.42.014.140.007100010033.9371.11.1411.12-7.42.014.140.007100010033.9371.11.1411.12-7.42.014.140.00710000033.9371.11.1411.12-7.42.014.140.00710000033.9371.11.1411.12-7.42.014.140.00710000033.9371.11.1411.12-7.42.014.140.00710000033.9371.11.1411.12-7.42.014.140.00710000033.9371.11.411.12-7.42.014.140.00710000033.9371.11.411.12-7.42.014.140.00710000033.7371.11.411.12-7.42.014.140.00710000033.7371.11.411.12-										
7100001062268704.001010-74.3040.4200720000000357971.11631.12-74.5044.16000740000000359773.11831.12-74.5034.16000740000000359773.11811.12-74.5034.16000770000000359773.11811.12-74.5034.16000770000000359773.11811.12-74.5044.16000770000000359773.11811.22-74.5044.16000770000000359773.11811.22-74.5044.16000780000000359783.11831.12-74.5044.16000810000000359783.11831.12-74.5044.16000828.10000359783.11831.12-74.5044.16000840000000359783.11831.12-74.5044.16000840000000359783.11831.12-74.5044.16000940000000359783.11831.12-74.5044.16000940000000359783.11831.12-74.5044.16000940000000359783.1831.12-74.5044.16000940000000359783.1831.12-74.5044.16000940000 <th></th> <td>6900.00</td> <td>5.06</td> <td>292.65</td> <td>6832.17</td> <td>306.94</td> <td>-735.58</td> <td>343.35</td> <td>2.00</td> <td></td>		6900.00	5.06	292.65	6832.17	306.94	-735.58	343.35	2.00	
7151000.00226267049231127458944.160.007300000.00357771183112745834.160.07300000.003577718183112745834.160.007300000.003577718183112745834.160.007700000.003577718183112745834.160.007700000.00357771181112745834.160.007700000.00357771181112745834.160.00700000.00357771181112745834.160.00700000.003577351181112745834.160.00700000.003577351181112745834.160.00700000.003578351181112745834.160.00810000.003578351181112745834.160.00810000.003578351181112745834.160.009100000.003578351181112745834.160.009100000.003578351181112745834.160.009100000.003578351181112745834.160.009100000.003578351181122745834.160.009100000.00357835118 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
7200000.0039297211.803112745.9044.160.007400000.005937731.81112745.9044.160.007400000.005937731.81112745.9044.160.007400000.003937731.81112745.9044.160.007400000.003937731.81112745.9044.160.007400000.003937731.81112745.9044.160.007400000.003937831.81112745.9044.160.007400000.003937831.81112745.9044.160.007400000.003937831.81112745.9044.160.007400000.003937831.81112745.9044.160.007400000.003937831.81112745.9044.160.007400000.003937831.81112745.9044.160.007400000.003937831.81112745.9044.160.007400000.003937831.81112745.9044.160.007400000.003937831.81112745.9044.160.007400000.003937831.81112745.9044.160.00740000.003937831.81112745.9044.160.0074000<										Hold Vertical
730000008397731431128745884.860007500000035977314431128745884.860007700000003597731443112874.5834.810007700000003597731443112874.5834.810007700000003597731443112874.5834.810007700000003597731443112874.5834.810008200000003597813483112874.5834.810008200000003597813483112874.5834.810008200000003597813483112874.5834.810008418160003597813483112874.5834.81000840000003597813483112874.5834.81000840000003597813483112874.5834.810009100000003597813483112874.5834.810009100000003597813483112874.5834.810009100000003597813483112874.5834.810009100000003597813483112874.5834.81000910000000359781348312874.5834.81000910000000359781348 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
750000005597741.643125745.8484.16000770000005597731.843125745.884.16000770000000005597731.843125745.884.16000790000000005597731.843125745.884.160006100000003597811.843125745.884.160006100000005597811.843125745.834.160006288.160005597813.84312.5745.834.160006400000005597831.84312.5745.834.160006400000005597831.84312.5745.834.160006600000005597831.84312.5745.834.160006600000005597831.84312.5745.834.160006900000005597831.84312.5745.834.160006900000005597831.84312.5745.834.160006900000005597831.84312.5745.834.160006900000005597831.84312.5745.834.160006900000005597831.84312.5745.834.160006900000005597831.84312.5745.834.16000690000 </td <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
7400000003519731443125745834.640007700000003597731443125745834.640007800000003597731443125745834.610008000000003597731443125745834.610008000000003597831443125745834.61000800000003597831443125745834.61000800000003597831443125745834.61000800000003597831443125745834.61000800000003597831443125745834.61000800000003597831443125745834.61000800000003597831443125745834.61000800000003597831443125745834.61000900000003597831443125745834.61000900000003597831443125745834.61000900000003597831443125745834.61000900000003597831443125745834.61000900000003597831443125745834.61000900000003597831443125745834.61 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
770000000852963143128745884.06000790000008599731443128745884.0600790000008599831443128745884.0600810000008599831443128745884.06008288160008599831443128745884.06008288160008599831443128745884.0600840000008599831443128745884.0600840000008599831483128745884.0600840000008599831483128745884.0600890000008599831483128745884.0600900000008599831483128745884.0600900000008599831483128745884.0600900000008599831483128745884.0600900000008599831483128745884.0600900000008599831483128745884.0600900000008599831483128745884.0600900000008599831483128745884.0600900000008599831483128745884.0600<										
78000 000 3527 731.4 311.25 -75.59 34.16 0.00 80000 000 3527 731.4 311.25 -75.59 34.16 0.00 82000 000 3527 831.4 311.25 -75.59 34.16 0.00 82000 000 3527 831.4 311.25 -75.59 34.16 0.00 83000 000 3527 8231.4 311.25 -75.59 34.16 0.00 841.16 0.00 3527 8231.4 311.25 -75.89 34.16 0.00 841.16 0.00 357.9 831.4 311.25 -75.89 34.16 0.00 8600.00 0.00 357.9 831.4 311.25 -75.89 34.16 0.00 9000.00 0.00 357.9 831.4 311.25 -75.89 34.16 0.00 9000.00 0.00 357.9 831.4 311.25 -75.89 34.16 0.00 9000.00 0.00 357.9 831.4 311.25 -75.89 34.16 0.00 9000.00 0.00 357.9 931.4 311.25 -75.89 34.16 0.00 9000.00 0										
7000000.0039:79791:8441.7127.75.8984.160.008100000.0039:79801.8411.1257.75.8984.160.008288.160.0039:7981.1811.1257.75.8984.160.008288.160.0039:7981.1811.1257.75.8984.160.008400.000.0039:7981.1811.1257.75.8984.160.00850000.0039:7981.1811.1257.75.8984.160.008500000.0039:7981.1811.1257.75.8934.160.008700000.0039:7981.1411.1257.75.8934.160.008700000.0039:7989.1411.1257.75.8934.160.009700000.0039:7999.1431.1257.75.8934.160.009700000.0039:7999.1431.1257.75.8934.160.009700000.0039:7999.1431.1257.75.8934.160.009700000.0039:7999.1431.1257.75.8934.160.009700000.0039:7999.1431.1257.75.8934.160.009700000.0039:7999.1431.1257.75.8934.160.009700000.0039:7999.1431.1257.75.8934.160.009700000.0039:7999.1431										
8100000.0039.7980.14311.25-7.45.8984.160.008281610.0039.7982.10011.25-7.5584.160.008400000.0039.7982.1111.25-7.5584.160.008400000.0039.7983.1811.25-7.5584.160.008500000.0039.7983.1811.25-7.5584.160.008600000.0039.7985.1811.25-7.5584.160.008700000.0039.7985.1411.25-7.5584.160.009700000.0039.7983.1411.25-7.5584.160.009700000.0039.7993.1411.25-7.5584.160.009700000.0039.7993.1411.25-7.5584.160.009700000.0039.7993.1411.25-7.5584.160.009700000.0039.7993.1411.25-7.5584.160.009700000.0039.7993.1411.25-7.5584.160.009700000.0039.7993.1411.25-7.5584.160.009700000.0039.7993.1411.25-7.5584.160.009700000.0039.7993.1411.25-7.5584.160.009700000.0039.7993.1411.25-7.5584.160.00 <th></th> <td>7900.00</td> <td>0.00</td> <td>359.79</td> <td>7831.84</td> <td>311.25</td> <td>-745.89</td> <td>348.16</td> <td>0.00</td> <td></td>		7900.00	0.00	359.79	7831.84	311.25	-745.89	348.16	0.00	
20000000399031.841125-74.8048.160.00145 bor Spring Lime6300000003979031.841125-74.8048.160.006418100003979031.841125-74.8048.160.006418100003979031.841125-74.8048.160.00660000.0003979831.841125-74.8048.160.00660000.0003979831.841125-74.8048.160.00670000.0003979831.841125-74.8048.160.009700000.0003979831.841125-74.8048.160.009700000.0003979931.841125-74.8048.160.009700000.0003979931.841125-74.8048.160.009700000.0003979931.841125-74.8048.160.009700000.0003979931.841125-74.8048.160.009700000.0003979931.841125-74.8048.160.009700000.0003979931.841125-74.8048.160.009700000.0003979931.841125-74.8048.160.009700000.0003979931.841125-74.8048.160.009700000.0003979931.841125-74.80 </td <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
2281.6000959992.0031.25-74.8934.160.006400.00059993.1831.12-74.8934.160.006400.00039795.0011.12-74.8934.160.006500.000.00359.7985.1811.12-74.8934.160.006700.000.00359.7985.1811.12-74.8934.160.006700.000.00359.7985.1811.12-74.8934.160.006700.000.00359.79851.4811.12-74.8934.160.009700.000.00359.79851.4411.12-74.8934.160.009700.000.00359.79851.4411.12-74.8934.160.009700.000.00359.79851.4411.12-74.8934.160.009700.000.00359.79851.4411.12-74.8934.160.009700.000.00359.79851.4411.12-74.8934.160.009700.000.00359.79851.4411.12-74.8934.160.009700.000.00359.79851.4411.12-74.8934.160.009700.000.00359.79851.4411.12-74.8934.160.009700.000.00359.79851.4411.12-74.8934.160.009700.000.00359.79851.4411.12-74.89<										
440.00 0.00 35.79 83.18.4 311.25 -74.69 48.16 0.00 650.00 0.00 35.79 83.18.4 311.25 -74.69 48.16 0.00 670.00 0.00 35.79 83.18.4 311.25 -74.69 48.16 0.00 670.00 0.00 35.79 83.18.4 311.25 -74.69 48.16 0.00 690.00 0.00 35.79 83.18.4 311.25 -74.69 48.16 0.00 990.000 0.00 35.79 831.84 311.25 -74.69 48.16 0.00 970.00 0.00 35.79 931.84 311.25 -74.69 48.16 0.00 970.00 0.00 35.79 931.84 311.25 -74.69 48.16 0.00 970.00 0.00 35.79 931.84 311.25 -74.69 48.16 0.00 970.00 0.00 35.79 931.84 312.5 -74.69 48.16 0.00										1st Bone Spring Lime
H118.160.00357.9783.0083.00.00117.5074.56984.060.00600.000.00357.9783.14.431.2574.56984.160.00600.000.00357.9783.14.431.2574.56984.160.00900.000.00357.9783.14.831.2574.56984.160.00900.000.00357.9783.14.831.2574.56984.160.00900.000.00357.9793.14.811.2574.56984.160.00900.000.00357.9793.14.431.2574.56934.160.00900.000.00357.9793.14.411.274.56934.160.00900.000.00357.9793.14.411.274.56934.160.00970.000.00357.9793.14.411.274.56934.160.00970.000.00357.9793.14.411.274.56934.160.00970.000.00357.9793.14.411.274.56934.160.00970.000.00357.9793.14.411.274.56934.160.00970.000.00357.9793.14.411.274.56934.160.00970.000.00357.9793.14.411.2574.56934.160.00970.000.00357.9793.14.411.2574.56934.160.00970.000.00357.97 </td <th></th> <td>8300.00</td> <td>0.00</td> <td>359.79</td> <td>8231.84</td> <td>311.25</td> <td>-745.89</td> <td>348.16</td> <td>0.00</td> <td></td>		8300.00	0.00	359.79	8231.84	311.25	-745.89	348.16	0.00	
55000 0.00 3579 83144 31125 -7458 84.16 0.00 67000 0.00 3597 83144 31125 -7458 84.16 0.00 880000 0.00 3597 83144 31125 -7458 84.16 0.00 90000 0.00 3597 83144 31125 -74589 84.16 0.00 90000 0.00 3597 93144 31125 -74589 34.16 0.00 920000 0.00 3597 93144 31125 -74589 34.16 0.00 940000 0.00 3597 93144 31125 -74589 34.16 0.00 940000 0.00 3597 93144 31125 -74589 34.16 0.00 970000 0.00 3597 93144 31125 -74589 34.16 0.00 970416 0.00 3597 93144 31125 -74589 34.16 0.00 990000 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
8000 000 3537 6314 311.2 74.80 348.16 000 80000 000 3537 87314 311.2 74.80 348.16 0.00 90000 000 3537 831.84 311.25 74.80 348.16 0.00 90000 000 3537 831.84 311.25 74.80 348.16 0.00 90000 000 3537 931.84 311.25 74.80 348.16 0.00 90000 000 3537 931.84 311.25 74.80 348.16 0.00 90000 0.00 3597 951.84 311.25 74.80 348.16 0.00 900000 0.00 3597 951.84 311.25 74.80 348.16 0.00 900000 0.00 3597 951.44 311.25 74.80 348.16 0.00 900000 0.00 3597 931.44 312.5 74.80 348.16 0.00 9000										Leonard
87000 0.00 95379 6611 48 311.25 74.86 348.16 0.00 90000 0.00 3537 831.34 311.25 74.88 348.16 0.00 90000 0.00 3537 931.34 311.25 74.88 348.16 0.00 90000 0.00 3537 921.14 311.25 74.88 348.16 0.00 90000 0.00 3597 923.14 311.25 74.88 348.16 0.00 900000 0.00 3597 931.44 311.25 74.88 348.16 0.00 900000 0.00 3597 951.44 311.25 74.88 348.16 0.00 900000 0.00 3597 951.44 311.25 74.88 348.16 0.00 900000 0.00 3597 931.44 311.25 74.88 348.16 0.00 900000 0.00 3597 931.44 311.25 74.88 348.16 0.00 <tr< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>										
89000 0.00 58379 88184 31125 74589 34816 0.00 90000 0.00 35379 903184 31125 74589 34816 0.00 90000 0.00 35379 93184 31125 74589 34616 0.00 90000 0.00 35379 93184 31125 74589 34616 0.00 90000 0.00 35379 93184 31125 74589 34616 0.00 90000 0.00 35379 93184 31125 74589 34616 0.00 97000 0.00 35379 93184 31125 74589 34616 0.00 97000 0.00 35379 93184 31125 74589 34616 0.00 97000 0.00 35379 93184 31125 74589 34616 0.00 97000 0.00 35379 103144 31125 74589 34616 0.00 1000000 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
9000 0.00 359.79 893.18 911.25 745.89 348.16 0.00 90000 0.00 359.79 923.18 311.25 745.89 348.16 0.00 90000 0.00 359.79 923.18 311.25 745.89 348.16 0.00 90000 0.00 359.79 933.18 311.25 745.89 348.16 0.00 90000 0.00 359.79 933.18 311.25 745.89 348.16 0.00 9700.00 0.00 359.79 963.18 311.25 745.89 348.16 0.00 9700.00 0.00 359.79 973.18 311.25 745.89 348.16 0.00 9900.00 0.00 359.79 973.14 311.25 745.89 348.16 0.00 9900.01 0.00 359.79 931.84 311.25 745.89 348.16 0.00 10000.00 0.00 359.79 1031.48 311.25 745.89 348.16										
91000 0.00 359.79 931.84 311.25 -74.89 348.16 0.00 920000 0.00 359.79 931.84 311.25 -74.89 348.16 0.00 940000 0.00 359.79 931.84 311.25 -74.89 348.16 0.00 950000 0.00 359.79 931.84 311.25 -74.89 348.16 0.00 970000 0.00 359.79 931.84 311.25 -74.89 348.16 0.00 9743.16 0.00 359.79 971.84 311.25 -74.89 348.16 0.00 9900.00 0.00 359.79 991.81 311.25 -74.89 348.16 0.00 9906.16 0.00 359.79 901.18 311.25 -74.89 348.16 0.00 1000000 0.00 359.79 1031.44 311.25 -74.89 348.16 0.00 1000000 0.00 359.79 1031.44 311.25 -74.89 348.16										
92000 0.00 59579 931.84 311.25 -745.89 348.16 0.00 930000 0.00 59579 931.84 311.25 -745.89 348.16 0.00 960000 0.00 59579 931.84 311.25 -745.89 348.16 0.00 970000 0.00 59579 951.84 311.25 -745.89 348.16 0.00 9700.00 0.00 59579 9675.00 311.25 -745.89 348.16 0.00 9900.00 0.00 59579 991.84 311.25 -745.89 348.16 0.00 9900.00 0.00 59579 991.84 311.25 -745.89 348.16 0.00 9900.00 0.00 59579 903.184 311.25 -745.89 348.16 0.00 10100.00 0.00 59579 1031.84 311.25 -745.89 348.16 0.00 10200.00 0.00 59579 1031.84 311.25 -745.89 348.16<										
94000 0.00 359.79 931.84 311.25 -745.89 348.16 0.00 9500.00 0.00 359.79 953.144 311.25 -745.89 348.16 0.00 9700.00 0.00 359.79 953.144 311.25 -745.89 348.16 0.00 9704.16 0.00 359.79 957.184 311.25 -745.89 348.16 0.00 9900.00 0.00 359.79 9831.84 311.25 -745.89 348.16 0.00 9900.00 0.00 359.79 9931.84 311.25 -745.89 348.16 0.00 9900.00 359.79 9931.84 311.25 -745.89 348.16 0.00 10000.00 0.00 359.79 10031.44 311.25 -745.89 348.16 0.00 10000.00 0.00 359.79 10031.44 311.25 -745.89 348.16 0.00 10000.00 0.00 359.79 10231.44 311.25 -745.89 348.16<										
960000.00359.799431.84311.25-745.89348.160.009700000.00359.799631.84311.25-745.89348.160.009743.160.00359.799731.84311.25-745.89348.160.009800.000.00359.799731.84311.25-745.89348.160.009906.110.00359.799731.84311.25-745.89348.160.009000.000.00359.799931.84311.25-745.89348.160.0010000.000.00359.791031.84311.25-745.89348.160.0010000.000.00359.791031.84311.25-745.89348.160.0010000.000.00359.791031.84311.25-745.89348.160.0010000.000.00359.791031.84311.25-745.89348.160.0010000.000.00359.791031.84311.25-745.89348.160.0010000.000.00359.791031.84311.25-745.89348.160.0010400.020.00359.791031.84311.25-745.89348.160.0010400.030.00359.791035.02314.71-745.89348.160.0010400.031.791.752.71.752.71.0001.00010400.037.98359.791043.163317.25-745.89348.161.000104										
96000 0.00 353.79 9631.84 311.25 -745.89 348.16 0.00 970301 0.00 355.79 973.18 311.25 -745.89 348.16 0.00 9900.00 0.00 355.79 973.18 311.25 -745.89 348.16 0.00 9900.00 0.00 355.79 973.18 311.25 -745.89 348.16 0.00 9968.16 0.00 355.79 993.14 311.25 -745.89 348.16 0.00 10000.00 0.00 355.79 1031.84 311.25 -745.89 348.16 0.00 10000.00 0.00 359.79 1031.84 311.25 -745.89 348.16 0.00 10400.00 0.00 359.79 1033.00 311.25 -745.89 348.16 0.00 10400.00 0.00 359.79 1032.07 311.25 -745.89 348.16 0.00 10400.00 7.78 359.79 10432.05 314.71 7745.89										
970.00 0.00 359.79 961.84 311.25 -745.89 348.16 0.00 9743.16 0.00 359.79 973.18 311.25 -745.89 348.16 0.00 9900.00 0.00 359.79 973.18 311.25 -745.89 348.16 0.00 9966.16 0.00 359.79 993.144 311.25 -745.89 348.16 0.00 1000.00 0.00 359.79 903.144 311.25 -745.89 348.16 0.00 1000.00 0.00 359.79 1031.84 311.25 -745.89 348.16 0.00 1000.00 0.00 359.79 1031.84 311.25 -745.89 348.16 0.00 10000.00 0.00 359.79 1032.14 311.25 -745.89 348.16 0.00 10402.23 0.00 359.79 1032.07 312.57 745.89 348.16 0.00 10402.23 0.00 359.79 1032.05 314.71 -745.89										
980.00 0.00 359.79 9731.84 311.25 -745.89 348.16 0.00 9908.1 0.00 359.79 9931.84 311.25 -745.89 348.16 0.00 10000.00 0.00 359.79 9931.84 311.25 -745.89 348.16 0.00 10100.00 0.00 359.79 1031.84 311.25 -745.89 348.16 0.00 10200.00 0.00 359.79 1031.84 311.25 -745.89 348.16 0.00 10300.00 0.00 359.79 1031.84 311.25 -745.89 348.16 0.00 10400.00 0.00 359.79 1031.84 311.25 -745.89 348.16 0.00 10430.23 0.00 359.79 1035.07 311.25 -745.89 348.16 0.00 10400.00 7.98 359.79 1045.00 314.27 -745.91 357.0 10.00 10600.00 17.98 359.79 1062.08 372.0 -746.32 453.5 10.00 10800.00 379.8 359.79 10										
990000 000 5577 990100 31125 -745.89 348.16 0.00 100000 0.00 359.79 9901.00 31125 -745.89 348.16 0.00 11000.00 0.00 359.79 1001.14 31125 -745.89 348.16 0.00 11000.00 0.00 359.79 1021.14 31125 -745.89 348.16 0.00 10300.00 0.00 359.79 1021.14 31125 -745.89 348.16 0.00 10400.00 0.00 359.79 1021.84 31125 -745.89 348.16 0.00 10440.00 0.00 359.79 1021.84 31125 -745.89 348.16 0.00 10442.23 0.01 359.79 1021.80 312.5 -745.91 357.01 10.00 10600.00 7.98 359.79 1043.05 312.5 -745.91 357.01 10.00 10600.00 37.98 359.79 1043.55 312.5 -745.57										Bone Spring Lime 2nd
9968.16 0.00 359.79 9900.00 311.25 -745.89 348.16 0.00 10000.00 0.00 359.79 9031.44 311.25 -745.89 348.16 0.00 10200.00 0.00 359.79 10131.44 311.25 -745.89 348.16 0.00 10200.00 0.00 359.79 10231.44 311.25 -745.89 348.16 0.00 10400.00 0.00 359.79 10331.44 311.25 -745.89 348.16 0.00 10440.00 0.00 359.79 1031.84 311.25 -745.89 348.16 0.00 10483.29 6.31 359.79 1031.50 316.7 -745.91 357.0 10.00 10500.00 7.98 359.79 1052.80 332.2 -745.91 357.0 10.00 10700.00 37.98 359.79 1074.73 505.75 173.74 10.00 10800.00 37.98 359.79 1074.75 574.85 174.75 1										
10000.0 0.00 359.79 9931.84 311.25 -745.89 348.16 0.00 10100.0 0.00 359.79 10131.84 311.25 -745.89 348.16 0.00 10200.00 0.00 359.79 10131.44 311.25 -745.89 348.16 0.00 10300.0 0.00 359.79 1031.44 311.25 -745.89 348.16 0.00 10400.02 0.00 359.79 1031.44 311.25 -745.89 348.16 0.00 10420.23 0.00 359.79 1031.44 311.25 -745.89 348.16 0.00 10420.23 0.00 359.79 10415.00 314.71 -745.90 351.62 10.00 10483.29 6.31 359.79 1043.89 316.79 -746.31 415.04 10.00 10700.00 7.98 359.79 1074.63 432.56 -746.32 469.35 11.00 10800.00 37.98 359.79 1083.26 693.5 -747.17 750.86 11.00 11800.00 77.98 359.79										Bone Spring 2nd
10200.0 0.00 359.79 10131.84 311.25 -745.89 348.16 0.00 10400.0 0.00 359.79 10231.84 311.25 -745.89 348.16 0.00 10402.23 0.00 359.79 1035.07 311.25 -745.89 348.16 0.00 10420.23 0.00 359.79 1045.00 314.15 312.5 -745.89 348.16 0.00 KOP 10400.00 7.88 359.79 1041.50 314.7 -745.90 351.0 10.0 10600.00 7.88 359.79 1052.05 339.22 -746.13 415.04 10.0 10700.00 27.88 359.79 1077.05 50.65 -746.32 469.35 10.00 10900.00 47.88 359.79 10787.45 537.36 10.00 11000.00 77.88 359.79 1083.22 669.35 -747.17 750.28 10.00 11200.00 77.88 359.79 1083.24 60.37 -747										
10300.00 0.00 359.79 10231.84 311.25 -745.89 348.16 0.00 10400.00 0.00 359.79 10331.84 311.25 -745.89 348.16 0.00 10420.23 0.00 359.79 10351.03 311.25 -745.89 348.16 0.00 10483.29 6.31 359.79 10415.00 311.71 -745.90 351.62 10.00 10500.00 7.98 359.79 10431.58 316.79 -745.19 353.70 10.00 10700.00 27.98 359.79 1072.08 378.20 -746.13 415.04 10.00 10700.00 27.98 359.79 10704.63 432.56 -746.57 537.6 10.00 10800.00 37.98 359.79 10707.70 506.65 -747.52 801.28 10.00 11000.00 57.98 359.79 1072.467 663.59 -747.74 705.88 10.00 11100.00 67.98 359.79 1092.467 663.97 -747.52 801.28 10.00 11300.00 853.579 <t< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
10400.00 0.00 359.79 10331.84 311.25 -745.89 348.16 0.00 KOP 10482.23 0.00 359.79 1045.00 311.25 -745.89 346.16 0.00 KOP 10482.29 6.31 359.79 10415.00 311.25 -745.90 351.62 10.00 3rd Bone Spring Lime / Point of Penetration 105000 7.98 359.79 10431.58 316.22 -745.91 353.70 10.00 10600.00 17.98 359.79 1074.63 325.65 -746.32 469.35 10.00 10900.00 47.98 359.79 1077.70 50.65 -746.57 537.36 10.00 11000.00 57.98 359.79 1074.63 432.56 -746.32 469.35 10.00 11000.00 67.98 359.79 1083.22 66.35 -747.77 705.88 10.00 11100.00 67.98 359.79 1092.46 764.85 -747.52 801.28 10.00 11200.00 97.93 359.79 1092.46 764.85 -747.52 801.28										
10420.230.00359.7910352.07311.25-745.89348.160.00KOP10483.296.31359.7910415.00314.71-745.90351.6210.0010500.007.98359.7910528.90339.22-745.99376.1010.0010700.0027.98359.7910528.00378.20-746.33415.0410.0010700.0037.98359.791074.63432.56-746.57537.3610.0010900.0047.98359.791077.70500.65-746.57537.3610.0011000.0057.98359.7910837.84580.39-746.55617.0110.0011000.0057.98359.7910832.22669.35-747.17705.8810.0011000.0077.98359.7910924.6768.397-747.8790.2910.0011300.0087.58359.7910924.3196.397-748.23100.1810.0011300.0095.3359.7910924.3196.397-748.23100.1810.0011400.0090.53359.7910924.3196.397109.1210.0010.0011600.0095.3359.7910924.31166.396-749.501100.700.0011600.0095.3359.7910924.31166.396-749.501100.700.0011600.0095.3359.7910924.31166.396-749.501109.700.0011600.0095.3359.79109										
1050.00 7.98 359.79 10431.58 316.79 -745.91 353.70 10.00 10600.00 17.98 359.79 10528.90 339.22 -745.99 376.10 10.00 10700.00 27.98 359.79 10704.63 432.56 -746.32 469.35 10.00 10900.00 47.98 359.79 1077.70 50.65 -746.57 537.36 10.00 11000.00 57.98 359.79 10837.84 580.39 -746.82 610.00 11000.00 67.98 359.79 10837.84 580.39 -746.52 801.28 10.00 11200.00 67.98 359.79 10924.67 863.97 -747.52 801.28 10.00 11300.00 87.98 359.79 10924.07 863.97 -747.87 900.29 10.00 11300.00 87.98 359.79 10924.31 963.97 -748.29 1100.07 0.00 11500.00 90.53 359.79 10924.31 163.96 -748.95 1190.95 0.00 11600.00 90.53 359.79										КОР
10600.00 17.98 359.79 1052.89 339.22 -745.99 376.10 10.00 10700.00 27.98 359.79 1062.085 378.20 -746.13 415.04 10.00 10900.00 37.98 359.79 10704.63 432.66 -746.57 537.36 10.00 10900.00 47.98 359.79 1077.70 500.65 -746.55 537.36 10.00 11000.00 57.98 359.79 1083.22 669.35 -747.17 705.88 10.00 11100.00 67.98 359.79 10824.67 669.35 -747.57 900.29 10.00 11200.00 77.98 359.79 10924.67 669.37 -747.59 902.9 10.00 11305.7 90.53 359.79 10924.67 86.37 -748.95 10.00 Landing Point 11400.00 90.53 359.79 10924.67 86.35 -748.95 1100.07 0.00 11500.00 90.53 359.79 10924.47 163.96 -748.95 1199.95 0.00 11600.00 90.53										3rd Bone Spring Lime / Point of Penetration
10700.0027.98359.7910620.85378.20-746.13415.0410.0010800.0037.98359.7910704.63432.56-746.57537.3610.0010900.0047.98359.7910877.70500.65-746.57537.3610.0011000.0057.98359.7910837.84580.39-746.57617.0110.0011100.0067.98359.791083.22669.35-747.17705.8810.0011200.0077.98359.791092.46764.85-747.52801.2810.0011300.0087.98359.791092.46863.97-748.23100.0111300.0087.98359.791092.47863.97-748.23100.0111300.0090.53359.791092.41963.97-748.23100.0111500.0090.53359.791092.151126.395-749.501100.070.0011700.0090.53359.791092.151126.395-749.601399.730.0011800.0090.53359.791092.151126.395-749.601399.730.0011800.0090.53359.791092.58136.395-749.601399.730.001190.0090.53359.791091.65146.394-750.021499.620.001200.0090.53359.791091.79166.393-750.781599.510.001200.0090.53359.791091.79166.393-751.76159										
10800.0037.98359.7910704.63432.56-746.32469.3510.0010900.0047.98359.791077.70500.65-746.57537.3610.0011000.0057.98359.7910837.84580.39-746.85617.0110.0011100.0067.98359.7910812.46764.85-747.17705.8810.0011200.0077.98359.7910912.46764.85-747.52801.2810.0011300.0087.98359.791092.467863.97-747.87900.2910.0011325.5790.53359.791092.31963.97-748.23100.010.0011500.0090.53359.791092.3371063.66-749.531100.770.0011600.0090.53359.791092.54163.95-749.591109.70.0011700.0090.53359.791092.54136.95-749.59100.070.0011800.0090.53359.791092.54136.95-749.50129.950.0011900.0090.53359.791092.58136.39-750.28139.730.0011800.0090.53359.791091.651463.94-750.02149.620.0011900.0090.53359.791091.651463.94-750.38159.790.001200.0090.53359.791091.651463.94-750.38159.390.001200.0090.53359.791091.65750										
11000.0057.98359.7910837.84580.39-746.85617.0110.0011100.0067.98359.7910883.22669.35-747.17705.8810.0011200.0077.98359.7910912.46764.85-747.52801.2810.0011300.0087.98359.7910924.67863.97-747.87902.910.0011325.5790.53359.7910925.00889.54-747.96925.8310.00Landing Point11400.0090.53359.7910923.371063.96-748.591100.070.0011500.0090.53359.7910921.511263.95-749.651199.950.0011600.0090.53359.7910921.511263.95-749.661399.730.0011700.0090.53359.7910921.511263.95-749.661399.730.0011800.0090.53359.791091.551463.94-750.21499.620.0012000.0090.53359.791091.791663.93-750.741693.990.0012000.0090.53359.7910918.651763.93-750.741699.390.0012000.0090.53359.7910918.651763.93-751.46189.170.0012000.0090.53359.7910915.921863.92-751.46189.170.0012000.0090.53359.7910915.921863.92-751.46189.170.0012000.0090.53 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
11100.0067.98359.7910883.22669.35-747.17705.8810.0011200.0077.98359.7910912.46764.85-747.52801.2810.0011300.0087.98359.7910924.67863.97-747.87900.2910.0011325.5790.53359.7910924.31963.97-748.231000.180.0011400.0090.53359.7910924.31963.97-748.231000.180.0011500.0090.53359.7910924.31963.97-748.591100.070.0011600.0090.53359.7910924.41163.96-748.591190.950.0011600.0090.53359.7910921.511263.95-749.30129.840.0011700.0090.53359.7910921.511263.95-749.661399.730.0011800.0090.53359.7910916.551463.94-750.021499.620.0011900.0090.53359.7910918.721563.94-750.74169.390.0012000.0090.53359.7910918.721563.94-750.74169.390.0012000.0090.53359.7910918.651763.93-751.46189.170.0012000.0090.53359.7910915.921863.92-751.46189.170.0012000.0090.53359.7910915.921863.92-751.82199.060.0012000.0090.53359.7910										
11200.0077.98359.7910912.46764.85-747.52801.2810.0011300.0087.98359.7910924.67863.97-747.87900.2910.0011325.5790.53359.7910925.00889.54-747.96925.8310.00Landing Point11400.0090.53359.7910923.371063.96-748.231000.180.0011500.0090.53359.7910923.371063.96-748.591100.070.0011600.0090.53359.7910922.441163.96-748.951190.950.0011600.0090.53359.7910921.511263.95-749.301299.840.0011700.0090.53359.7910921.511263.95-749.301299.840.0011800.0090.53359.7910915.511263.95-749.661399.730.0011900.0090.53359.7910918.721563.94-750.021499.620.0012000.0090.53359.7910918.721563.94-750.741699.390.0012000.0090.53359.7910918.851763.93-751.401799.280.0012000.0090.53359.7910915.921863.92-751.461899.170.0012000.0090.53359.7910915.921863.92-751.82199.060.0012000.0090.53359.7910915.921863.92-751.82199.060.0012000.019										
11325.5790.53359.7910925.00889.54-747.96925.8310.00Landing Point11400.0090.53359.7910924.31963.97-748.231000.180.0011500.0090.53359.7910923.371063.96-748.591100.070.0011600.0090.53359.7910922.441163.96-748.951199.950.0011700.0090.53359.7910921.511263.95-749.661399.730.0011800.0090.53359.7910921.511263.95-749.661399.730.0011900.0090.53359.791091.651463.94-750.021499.620.0012000.0090.53359.7910918.721563.94-750.28159.510.0012100.0090.53359.7910918.721563.93-751.04159.930.0012200.0090.53359.7910916.851763.93-751.101799.280.0012200.0090.53359.7910915.921863.92-751.461899.170.0012400.0090.53359.7910915.921863.92-751.82199.060.00										
11400.00 90.53 359.79 10924.31 963.97 -748.23 1000.18 0.00 11500.00 90.53 359.79 10923.37 1063.96 -748.59 1100.07 0.00 11600.00 90.53 359.79 10922.44 1163.96 -748.95 1199.95 0.00 11700.00 90.53 359.79 10921.51 1263.95 -749.30 1299.84 0.00 11800.00 90.53 359.79 10921.51 1263.95 -749.66 1399.73 0.00 11800.00 90.53 359.79 10921.55 1463.94 -750.02 1499.62 0.00 11200.00 90.53 359.79 10918.72 1563.94 -750.02 1499.62 0.00 12100.00 90.53 359.79 10918.72 1563.93 -750.74 1699.39 0.00 12200.00 90.53 359.79 10916.85 1763.93 -751.10 1799.28 0.00 12200.00 90.53 359.79 10915.92 1863.92 -751.46 1899.17 0.00 12300.00 90		11300.00	87.98	359.79	10924.67	863.97	-747.87	900.29	10.00	
11500.0090.53359.7910923.371063.96-748.591100.070.0011600.0090.53359.7910922.441163.96-748.951199.950.0011700.0090.53359.7910921.511263.95-749.301299.840.0011800.0090.53359.7910920.581363.95-749.661399.730.0011900.0090.53359.7910918.521463.94-750.021499.620.0012000.0090.53359.7910918.721563.94-750.03159.510.0012100.0090.53359.7910918.721563.93-750.74169.390.0012200.0090.53359.7910918.721563.93-750.74169.390.0012200.0090.53359.7910918.551763.93-751.10179.280.0012300.0090.53359.7910915.921863.92-751.461899.170.0012400.0090.53359.7910914.991963.92-751.82199.060.00										Landing Point
11600.0090.53359.7910922.441163.96-748.951199.950.0011700.0090.53359.7910921.511263.95-749.301299.840.0011800.0090.53359.7910920.581363.95-749.661399.730.0011900.0090.53359.791091.651463.94-750.021499.620.0012000.0090.53359.7910918.721563.94-750.021499.620.0012100.0090.53359.7910917.791663.93-750.741699.390.0012200.0090.53359.7910916.851763.93-751.101799.280.0012300.0090.53359.7910915.921863.92-751.461899.170.0012400.0090.53359.7910915.921863.92-751.82199.060.0012400.0090.53359.7910914.991963.92-751.82199.060.00										
11700.0090.53359.7910921.511263.95-749.301299.840.0011800.0090.53359.7910920.581363.95-749.661399.730.0011900.0090.53359.7910919.651463.94-750.021499.620.0012000.0090.53359.7910918.721563.94-750.381599.510.0012100.0090.53359.7910918.721663.93-750.741699.390.0012200.0090.53359.7910915.851763.93-751.101799.280.0012300.0090.53359.7910915.921863.92-751.461899.170.0012400.0090.53359.7910914.991963.92-751.82199.060.00										
11900.0090.53359.7910919.651463.94-750.021499.620.0012000.0090.53359.7910918.721563.94-750.381599.510.0012100.0090.53359.7910917.791663.93-750.741699.390.0012200.0090.53359.7910916.851763.93-751.101799.280.0012300.0090.53359.7910915.921863.92-751.461899.170.0012400.0090.53359.7910914.991963.92-751.82199.060.00										
12000.0090.53359.7910918.721563.94-750.381599.510.0012100.0090.53359.7910917.791663.93-750.741699.390.0012200.0090.53359.7910916.851763.93-751.101799.280.0012300.0090.53359.7910915.921863.92-751.461899.170.0012400.0090.53359.7910914.991963.92-751.821999.060.00					10920.58	1363.95		1399.73	0.00	
12100.00 90.53 359.79 10917.79 1663.93 -750.74 1699.39 0.00 12200.00 90.53 359.79 10916.85 1763.93 -751.10 1799.28 0.00 12300.00 90.53 359.79 10915.92 1863.92 -751.46 1899.17 0.00 12400.00 90.53 359.79 10914.99 1963.92 -751.82 1999.06 0.00										
12200.00 90.53 359.79 10916.85 1763.93 -751.10 1799.28 0.00 12300.00 90.53 359.79 10915.92 1863.92 -751.46 1899.17 0.00 12400.00 90.53 359.79 10914.99 1963.92 -751.82 1999.06 0.00										
12300.00 90.53 359.79 10915.92 1863.92 -751.46 1899.17 0.00 12400.00 90.53 359.79 10914.99 1963.92 -751.82 1999.06 0.00										
						1863.92				
12.10 2030 30.35 323.13 10314.00 2003.31 -132.10 2030.35 0.00										
		12300.00	50.35	27212	10314.00	2003.31	1 32.10	2030.33	0.00	

devon		Well:	EXMOOR 1	0-34 FED CO	M 304H				Geodetic System: US State Plane 1983
uevon		County:							Datum: North American Datum 1927
			Permit Plar						Ellipsoid: Clarke 1866
		Design:	Permit Plar	1#1					Zone: 3001 - NM East (NAD83)
	MD	INC	AZI	TVD	NS	EW	vs	DLS	Comment
_	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
	12600.00	90.53	359.79	10913.13	2163.91	-752.54	2198.83	0.00	
	12700.00 12800.00	90.53 90.53	359.79 359.79	10912.20 10911.26	2263.90 2363.90	-752.90 -753.25	2298.72 2398.61	0.00 0.00	
	12800.00	90.53	359.79	10911.28	2363.90	-753.61	2398.01	0.00	
	13000.00	90.53	359.79	10909.40	2563.89	-753.97	2598.38	0.00	
	13100.00	90.53	359.79	10908.47	2663.88	-754.33	2698.27	0.00	
	13200.00	90.53	359.79	10907.54	2763.88	-754.69	2798.16	0.00	
	13300.00	90.53	359.79	10906.61	2863.87	-755.05	2898.05	0.00	
	13400.00 13500.00	90.53 90.53	359.79 359.79	10905.67 10904.74	2963.87 3063.86	-755.41 -755.77	2997.94 3097.82	0.00 0.00	
	13600.00	90.53	359.79	10903.81	3163.86	-756.13	3197.71	0.00	
	13700.00	90.53	359.79	10902.88	3263.85	-756.49	3297.60	0.00	
	13800.00	90.53	359.79	10901.95	3363.85	-756.85	3397.49	0.00	
	13900.00	90.53 90.53	359.79	10901.02 10900.08	3463.84	-757.20 -757.56	3497.38	0.00	
	14000.00 14100.00	90.55 90.53	359.79 359.79	10900.08	3563.84 3663.83	-757.92	3597.26 3697.15	0.00 0.00	
	14200.00	90.53	359.79	10898.22	3763.83	-758.28	3797.04	0.00	
	14300.00	90.53	359.79	10897.29	3863.82	-758.64	3896.93	0.00	
	14400.00	90.53	359.79	10896.36	3963.82	-759.00	3996.81	0.00	
	14500.00	90.53	359.79	10895.43	4063.81	-759.36	4096.70	0.00	
	14600.00 14700.00	90.53 90.53	359.79 359.79	10894.49 10893.56	4163.81 4263.80	-759.72 -760.08	4196.59 4296.48	0.00 0.00	
	14800.00	90.53	359.79	10892.63	4363.80	-760.44	4396.37	0.00	
	14900.00	90.53	359.79	10891.70	4463.79	-760.80	4496.25	0.00	
	15000.00	90.53	359.79	10890.77	4563.79	-761.15	4596.14	0.00	
	15100.00	90.53	359.79	10889.84	4663.78	-761.51	4696.03	0.00	
	15200.00 15300.00	90.53 90.53	359.79 359.79	10888.91 10887.97	4763.78 4863.77	-761.87 -762.23	4795.92 4895.81	0.00 0.00	
	15400.00	90.53	359.79	10887.04	4963.77	-762.59	4995.69	0.00	
	15500.00	90.53	359.79	10886.11	5063.76	-762.95	5095.58	0.00	
	15600.00	90.53	359.79	10885.18	5163.76	-763.31	5195.47	0.00	
	15700.00 15800.00	90.53 90.53	359.79 359.79	10884.25 10883.32	5263.75 5363.75	-763.67 -764.03	5295.36 5395.24	0.00 0.00	
	15900.00	90.53 90.53	359.79	10882.38	5463.74	-764.03	5395.24 5495.13	0.00	
	16000.00	90.53	359.79	10881.45	5563.74	-764.75	5595.02	0.00	
	16100.00	90.53	359.79	10880.52	5663.73	-765.10	5694.91	0.00	
	16200.00	90.53	359.79	10879.59	5763.73	-765.46	5794.80	0.00	
	16300.00 16400.00	90.53 90.53	359.79 359.79	10878.66 10877.73	5863.72 5963.72	-765.82 -766.18	5894.68 5994.57	0.00 0.00	
	16500.00	90.53	359.79	10876.79	6063.72	-766.54	6094.46	0.00	
	16600.00	90.53	359.79	10875.86	6163.71	-766.90	6194.35	0.00	
	16700.00	90.53	359.79	10874.93	6263.70	-767.26	6294.24	0.00	
	16800.00	90.53	359.79	10874.00	6363.70	-767.62	6394.12	0.00	
	16900.00 17000.00	90.53 90.53	359.79 359.79	10873.07 10872.14	6463.69 6563.69	-767.98 -768.34	6494.01 6593.90	0.00 0.00	
	17100.00	90.53	359.79	10871.20	6663.68	-768.70	6693.79	0.00	
	17200.00	90.53	359.79	10870.27	6763.68	-769.05	6793.67	0.00	
	17300.00	90.53	359.79	10869.34	6863.67	-769.41	6893.56	0.00	
	17400.00	90.53	359.79	10868.41	6963.67	-769.77	6993.45 7093.34	0.00	
	17500.00 17600.00	90.53 90.53	359.79 359.79	10867.48 10866.55	7063.66 7163.66	-770.13 -770.49	7093.34	0.00 0.00	
	17700.00	90.53	359.79	10865.62	7263.65	-770.85	7293.11	0.00	
	17800.00	90.53	359.79	10864.68	7363.65	-771.21	7393.00	0.00	
	17900.00	90.53	359.79	10863.75	7463.64	-771.57	7492.89	0.00	
	18000.00	90.53	359.79	10862.82 10861.89	7563.64 7663.63	-771.93	7592.78	0.00	
	18100.00 18200.00	90.53 90.53	359.79 359.79	10861.89	7663.63	-772.29 -772.65	7692.67 7792.55	0.00 0.00	
	18300.00	90.53	359.79	10860.03	7863.62	-773.00	7892.44	0.00	
	18400.00	90.53	359.79	10859.09	7963.62	-773.36	7992.33	0.00	
	18500.00	90.53	359.79	10858.16	8063.61	-773.72	8092.22	0.00	
	18600.00	90.53	359.79	10857.23	8163.61	-774.08	8192.10	0.00	
	18700.00 18800.00	90.53 90.53	359.79 359.79	10856.30 10855.37	8263.60 8363.60	-774.44 -774.80	8291.99 8391.88	0.00 0.00	
	18800.00	90.53 90.53	359.79 359.79	10855.37 10854.44	8363.60 8463.59	-774.80 -775.16	8391.88 8491.77	0.00	
	19000.00	90.53	359.79	10853.50	8563.59	-775.52	8591.66	0.00	
	19100.00	90.53	359.79	10852.57	8663.58	-775.88	8691.54	0.00	
	19200.00	90.53	359.79	10851.64	8763.58	-776.24	8791.43	0.00	
	19300.00	90.53	359.79	10850.71	8863.57	-776.60	8891.32	0.00	
	19400.00 19500.00	90.53 90.53	359.79 359.79	10849.78 10848.85	8963.57 9063.56	-776.95 -777.31	8991.21 9091.09	0.00 0.00	
		20.00	200.10					5.00	

		Mr. II.	EVI 400B 1	0.24 550 600	4 20 411				C	LIC Chata Diana 1002	
devon		Well: County:		0-34 FED CO	M 304H				•	US State Plane 1983 North American Datum 1927	
			Permit Plar	ı						Clarke 1866	
		Design:	Permit Plar	า #1					Zone:	3001 - NM East (NAD83)	
				-							
	MD (ft)	INC (°)	AZI (°)	TVD (ft)	NS (ft)	EW (ft)	VS (ft)	DLS (°/100ft)	Comment		
-	19600.00	90.53	359.79	10847.91	9163.56	-777.67	9190.98	0.00			
	19700.00	90.53	359.79	10846.98	9263.55	-778.03	9290.87	0.00			
	19800.00	90.53	359.79	10846.05	9363.55	-778.39	9390.76	0.00			
	19900.00 20000.00	90.53 90.53	359.79 359.79	10845.12 10844.19	9463.54 9563.54	-778.75 -779.11	9490.65 9590.53	0.00 0.00			
	20100.00	90.53	359.79	10843.26	9663.53	-779.47	9690.42	0.00			
	20200.00	90.53	359.79	10842.32	9763.53	-779.83	9790.31	0.00			
	20300.00	90.53	359.79	10841.39	9863.52	-780.19	9890.20	0.00			
	20400.00 20500.00	90.53 90.53	359.79 359.79	10840.46 10839.53	9963.52	-780.55 -780.90	9990.09 10089.97	0.00 0.00			
	20600.00	90.53	359.79	10839.55	10063.51 10163.51	-780.90	10089.97	0.00			
	20700.00	90.53	359.79	10837.67	10263.50	-781.62	10289.75	0.00			
	20800.00	90.53	359.79	10836.74	10363.50	-781.98	10389.64	0.00			
	20900.00	90.53	359.79	10835.80	10463.49	-782.34	10489.52	0.00			
	21000.00 21100.00	90.53 90.53	359.79 359.79	10834.87 10833.94	10563.49 10663.48	-782.70 -783.06	10589.41 10689.30	0.00 0.00			
	21200.00	90.53	359.79	10833.01	10763.48	-783.42	10789.19	0.00			
	21300.00	90.53	359.79	10832.08	10863.47	-783.78	10889.08	0.00			
	21400.00	90.53	359.79	10831.15	10963.47	-784.14	10988.96	0.00			
	21500.00 21600.00	90.53 90.53	359.79 359.79	10830.21 10829.28	11063.46 11163.46	-784.50 -784.85	11088.85 11188.74	0.00 0.00			
	21700.00	90.53	359.79		11263.45	-785.21	11288.63	0.00			
	21800.00	90.53	359.79	10827.42		-785.57	11388.52	0.00			
	21900.00	90.53	359.79		11463.44	-785.93	11488.40	0.00			
	22000.00	90.53	359.79	10825.56		-786.29	11588.29	0.00			
	22100.00 22200.00	90.53 90.53	359.79 359.79	10824.62 10823.69		-786.65 -787.01	11688.18 11788.07	0.00 0.00			
	22300.00	90.53	359.79	10822.76		-787.37	11887.95	0.00			
	22400.00	90.53	359.79	10821.83	11963.42	-787.73	11987.84	0.00			
	22500.00	90.53	359.79		12063.41	-788.09	12087.73	0.00			
	22600.00 22700.00	90.53 90.53	359.79 359.79	10819.97 10819.03		-788.44 -788.80	12187.62 12287.51	0.00 0.00			
	22800.00	90.53	359.79	10818.10	12363.40	-789.16	12387.39	0.00			
	22900.00	90.53	359.79	10817.17		-789.52	12487.28	0.00			
	23000.00	90.53	359.79	10816.24		-789.88	12587.17	0.00			
	23100.00 23200.00	90.53 90.53	359.79 359.79	10815.31 10814.38	12663.38	-790.24 -790.60	12687.06 12786.95	0.00 0.00			
	23300.00	90.53	359.79		12863.37	-790.96	12886.83	0.00			
	23400.00	90.53	359.79	10812.51	12963.37	-791.32	12986.72	0.00			
	23500.00	90.53	359.79	10811.58	13063.36	-791.68	13086.61	0.00			
	23600.00 23700.00	90.53 90.53	359.79 359.79	10810.65 10809.72		-792.04 -792.39	13186.50 13286.38	0.00 0.00			
	23800.00	90.53	359.79	10808.79		-792.75	13386.27	0.00			
	23900.00	90.53	359.79	10807.86		-793.11	13486.16	0.00			
	24000.00	90.53	359.79	10806.92		-793.47	13586.05	0.00			
	24100.00 24200.00	90.53 90.53	359.79 359.79	10805.99 10805.06	13663.33 13763.33	-793.83 -794.19	13685.94 13785.82	0.00 0.00			
	24300.00	90.53	359.79		13863.32	-794.55	13885.71	0.00			
	24400.00	90.53	359.79	10803.20	13963.32	-794.91	13985.60	0.00			
	24500.00	90.53	359.79	10802.27		-795.27	14085.49	0.00			
	24600.00 24700.00	90.53 90.53	359.79 359.79	10801.33 10800.40	14163.31 14263.30	-795.63 -795.99	14185.38 14285.26	0.00 0.00			
	24800.00	90.53	359.79	10799.47	14363.30	-796.34	14385.15	0.00			
	24900.00	90.53	359.79	10798.54	14463.29	-796.70	14485.04	0.00			
	25000.00	90.53	359.79	10797.61	14563.29	-797.06	14584.93	0.00			
	25100.00 25200.00	90.53 90.53	359.79 359.79	10796.68 10795.74	14663.28 14763.28	-797.42 -797.78	14684.81 14784.70	0.00 0.00			
	25300.00	90.53	359.79	10794.81	14863.27	-798.14	14884.59	0.00			
	25400.00	90.53	359.79	10793.88		-798.50	14984.48	0.00			
	25500.00	90.53	359.79	10792.95	15063.26	-798.86	15084.37	0.00			
	25600.00 25700.00	90.53 90.53	359.79 359.79	10792.02 10791.09	15163.26 15263.25	-799.22 -799.58	15184.25 15284.14	0.00 0.00			
	25800.00	90.53 90.53	359.79	10791.09		-799.58 -799.94	15284.14	0.00			
	25900.00	90.53	359.79	10789.22		-800.29	15483.92	0.00			
	26000.00	90.53	359.79	10788.29	15563.24	-800.65	15583.81	0.00			
	26100.00 26200.00	90.53 90.53	359.79 359.79	10787.36 10786.43		-801.01 -801.37	15683.69 15783.58	0.00 0.00			
	26200.00	90.53 90.53	359.79	10785.50		-801.37	15783.58	0.00			
	26378.51	90.53	359.79	10784.77	15941.73	-802.01	15961.90	0.00	exit	exit	
	26400.00	90.53	359.79	10784.57	15963.22	-802.09	15983.36	0.00			
1											

			5/4/000 1		4 20 41 :				Control Control	US State Direct 1000
		Well: County:)-34 FED COM	VI 304H				Datum:	US State Plane 1983 North American Datum 1927
			Permit Plan Permit Plan							Clarke 1866 3001 - NM East (NAD83)
									Lone.	
	MD (ft)	INC (°)	AZI (°)	TVD (ft)	NS (ft)	EW (ft)	VS (ft)	DLS (°/100ft)	Comment	
	26458.51	90.53	359.79	10784.00	16021.73	-802.22	16041.80	0.00	BHL	
L										

Energy, Minerals & Natural						New Mexico l Resources Department 'ION DIVISION						
	D Permitting								Submittal	Initial Submitta		
									Type:			
								As Drilled				
					ELL LOO		ON INFORMATIO	N				
	lumber		Pool Cod	e 6641		I	Pool Name	A; BONE	SDDING	1		
	0 <u>15-56594</u> erty Code 332686		Property		EXM	OOR	10-34 FED COM	A, DONE	SERING	Well Number 304H		
OGRIE) No.		Operator							Ground Level	Elevation	
-	6137					Y PI	RODUCTION COMPA			3385.4'		
Surface Owner: □State □Fee □Tribal ÀFederal				Mineral Owner:	□State	∐Fee ∐1	fribal XFederal					
Sur						Surf	ace Location					
UL	Section	Township	Range	Lot	Ft. from	m N/	S Ft. from E/W	Latitude		Longitude	County	
Α	15	25-S	31-E		265'N		554'E	32.136	962	103.759000	EDDY	
·					В	otton	n Hole Location					
UL	Section	Township	Range	Lot	Ft. from N/			Latitude		Longitude	County	
Α	34	24-S	31-E		20' N		1300'E	32.181	015	103.761317	EDDY	
Dedicat	ted Acres	Infill or Def	ining Well	Defining	Well API	0ver	lapping Spacing Unit	t (Y/N)	Consolida	ation Code		
95	954.5 DEFINING 30-015-4				49346		Ν		С			
Order	Numbers	N/A	1			Well	setbacks are under	Ownershi	ip: □Yes 🖾No			
UL	Section	Township	Damma	Lot	Ft. from		f Point (KOP) 'S Ft. from E/W	Latitude		Longitudo	County	
		-	Range	LOU	50'	,				Longitude		
Р	10	25-S	31-E			_	1300' E	32.1377		-103.7615	EDDY	
TIT	0	m	Deres	T . 4	Fir Ft. froi		ke Point (FTP)	T - 424 3 -		T	C	
UL P	Section	Township 25-S	Range 31–E	Lot	100'	,	S Ft. from E/W 1300' E	Latitude 32.137963		Longitude 103.761404	County EDDY	
1	10	20-5	91-F					32.137903		105.701404	EDD1	
			D				ke Point (LTP)	· ··· ·		.		
	Section 34	Township 24-S	Range 31–E	Lot	Ft. from 100'	'	S Ft. from E/W 1300' E	Latitude 32.180		Longitude 103.761317	County EDDY	
A	34	24-5	31-E		100	IN	1300 E	32.100	790	103.701317	EDDI	
Unitiz	ed Area or	Area of Unit N	form Interes	st	Spac	cing 1	Unit Type Horizontal Vertical G: X			Ground Floor Elevation: N/A		
ODDD		DIGLIDIONG						- TIONG				
	TOR CERTI certify that the	FICATIONS e information con	ntained herein i	s true and co	omplete to th		SURVEYOR CERTIFIC					
of my kr	nowledge and l	elief, and, if the	well is a vertic	al or directi	onal well, tha	at this	I hereby certify that the we of actual surveys made by					
including	g the proposed	ns a working inte bottom hole loc	ation or has a r	ight to drill 1	this well at th	nis	correct to the best of my be		1			
		contract with an on voluntary pooli								SERT	DEHOLOS	
	re entered by t		0.0	1	<i>y</i> 1 0					EN MEX	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
		tal well, I furthe	2	0							$\langle \circ \rangle$	
		lessee or owner on the target pool								23261		
interest in each tract (in the target pool or formation) in which any part of the well's completed interval will be located or obtained a compulsory pooling order from the division.								R Villes	styles /			
An	NY A.	Brown	∠ 03/07	/2025							<u></u>	
Signa	pare	• • •	Date	-			Signature and Seal	of Profes	ssional S	urveyor / ONAL	SU	
Am	y A. Brov	vn										
	ed Name	• * 1					Certificate Number	Date of	Survev			
	y.brown@	dvn.com										
Emai	l Address						23261	12/20	24			

ACREAGE DEDICATION PLATS

This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is closest to any outer boundary of the tract.

Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

N 89"38'26" F

89*39'41"

NM 36379

LOT

히

BG

ī 0503

304H SHL BAGH

비

89°27'13' 2664.19'

И

V

S 89°46'50' 2625.95'

S

11

Х

		N 89°38'26" E 2640.04'	B 89°3
SURFACE HOLE LOCATION GEODETIC COORDINATES NAD 83 NMSP EAST SURFACE LOCATION		30	4H BHL 4H LTP
265' FNL 554' FEL SECTION 15 EL: 3385.4' N:414036.62/E:719110.14 LAT:32.36962/LDN:103.759000	00723/06 2641.37	D_C E ^I F	
<u>KICK DFF PDINT</u> CALLS: 50 FSL 1300 FEL N:414349_7E:718364_ LAT: 32:1377_/LDN:_103.7615	ء D z	34 T24S-R31E	(PPP 5)
FIRST TAKE PDINT(PPP 1) 100' FSL 1300' FEL SECTION 10 N:414396.72/E:718364.13 LAT:32.137963/LDN:103.761404	2536.13' W 89'59'08' [6 89'59'08'		J
LAST TAKE PDINT 100' FNL 1300' FEL SECTION 34 N:429978.35/E:718308.10 LAT:32.180795/LDN:103.761317	s 89'59'08'' E 46.15' <i>G</i>		(PPP 4) H S 89*58 2645
BUTTOM HOLE LOCATION 20' FNL 1300' FEL SECTION 34 N443058.357/Ei718307.92 LAT:32.181015/LON:103.761317	000104 ∓ 2655.59'	:	NM 00
PPP_2 2641' FSL 1292' FEL SECTION 10 N:416937.90/E:718354.99 LAT:32.144949/LON:103.761390	J		(PPP 3)-
PPP_3 2648' FSL 1304' FEL SECTION 3 N:422238.91/E:718335.93 LAT:32.159520/LON:103.761360	00002/09≖ W 2650.71' W	K	NM 0046525
PPP 4 0' FNL 1290' FEL SECTION 3 N:424875.43/E:718326.45 LAT:32.166768/LON:103.761346		N 89'41'56" E 2649:44'	MN 89 26
PPP 5 2560' FSL 1296' FEL SECTION 34 N:427435.49/E:718317.24 LAT:32.173805/LON:103.761331	00'09'44" W 2647.26' W	E r	<u> </u>
	0	10 T25S-R31E	(PPP 2)
	N 00714'32" 2648:34' .34'	NM 0031384	то М М ММ
	≈ Q		304H FTP¬ R
	N_00°02'11" E 2650.67'		304+
	T	<i>T255</i>	15
A=N:430053.86 E:714327.58 M=N:419584.16 E:716980.14 B=N:430070.42 E:716967.57 N=N:419597.37 E:719631.86 C=N:430086.03 E:71967.78 D=N:416922.99 E:714338.22 D=N:427412.55 E:714345.32 P=N:416942.70 E:719647.42 E=N:427442.97 E:7191366.96 R=N:414287.74 E:71700.18	26,26		

D=N:427412.55 E:7143	345.32 P=N:416942	2.70 E:719647.42
E=N:427442.97 E:719	613.73 Q=N:414274	4.67 E:714349.43
F=N:424876.52 E:714	366.96 R=N:414287	7.74 E:717001.18
G=N:424876.53 E:714	320.81 S=N:414305	5.28 E:719664.76
H=N:424875.86 E:716	970.84 T=N:411624	.00 E:714347.74
I=N:424875.02 E:7196	16.79 U=N:411652	.57 E:719658.66
J=N:422220.95 E:7143	329.07 V=N:40896	7.80 E:714365.72
K=N:422244.76 E:719	639.44 W=N:40897	7.85 E:716991.66
L=N:419570.24 E:7143	330.73 X=N:409003	3.26 E:719655.72

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

OGRID:
6137
Action Number:
478173
Action Type:
[C-103] NOI Change of Plans (C-103A)

CONDITIONS			
	Created By		Condition Date
	ward.rikala	Any previous COA's not addressed within the updated COA's still apply.	7/10/2025

CONDITIONS

Page 38 of 38

.

Action 478173

Released to Imaging: 7/10/2025 2:51:35 PM