

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

COM

Well Number: 11H

Sundry Print Report

Well Name: SAKER 6-7 FEDERAL Well Location: T24S / R35E / SEC 6 /

LOT 4 / 32.253262 / -103.410974

County or Parish/State: LEA /

Type of Well: OIL WELL **Allottee or Tribe Name:**

Lease Number: NMNM014164 **Unit or CA Name: Unit or CA Number:**

US Well Number: 3002549459 Operator: OXY USA INCORPORATED

Notice of Intent

Sundry ID: 2836428

Type of Submission: Notice of Intent Type of Action: APD Change

Date Sundry Submitted: 02/11/2025 Time Sundry Submitted: 03:29

Date proposed operation will begin: 07/15/2025

Procedure Description: OXY USA INC., respectfully requests to amend the subject AAPD by revising the Well Name, SHL, BHL, TVD & Drill Plan as follows: Old Well Name: SAKER 6_7 FEDERAL COM 11H New Well Name: SAKER 6_7 FEDERAL 11H Old SHL: 200' FNL 1305' FWL New SHL: 200' FNL 1670' FWL Old BHL: 20' FSL 330' FWL New BHL: 20' FSL 930' FWL Old TVD: 10312' New TVD: 10374' Attached is the updated C102, Drill Plan, Directional Survey & APD Change Sundry Worksheet

NOI Attachments

Procedure Description

Saker6_7Fed11H_BradenheadCBLVariance_20250211152833.pdf

Saker6_7Fed11H_USS_EAGLE_SFH_5.5in_20ppf_RYS110_20250211152823.pdf

Saker6_7Fed11H_DirectPlan_20250211152813.pdf

Saker6_7Fed11H_DrillPlan_20250211152804.pdf

Saker6_7Fed11H_C102_20250211152750.pdf

Saker6_7Fed11H_APDCHGSUNDRYWORKSHEET_20250211152738.pdf

Page 1 of 2

eived by OCD: 6/1/2025 9:40:08 PM Well Name: SAKER 6-7 FEDERAL

COM

Well Location: T24S / R35E / SEC 6 / LOT 4 / 32.253262 / -103.410974

County or Parish/State: LEA/ 2 of

Zip:

Well Number: 11H

Type of Well: OIL WELL

Allottee or Tribe Name:

Lease Number: NMNM014164

Unit or CA Name:

Unit or CA Number:

US Well Number: 3002549459

Operator: OXY USA INCORPORATED

Conditions of Approval

Additional

SAKER_6_7_FEDERAL_11H___SUNDRY_COA_20250525105448.pdf

State:

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: MELISSA GUIDRY Signed on: FEB 11, 2025 03:28 PM

Name: OXY USA INCORPORATED

Title: Advisor Regulatory Sr.

Street Address: 5 GREENWAY PLAZA SUITE 110

City: HOUSTON State: TX

Phone: (713) 497-2481

Email address: MELISSA_GUIDRY@OXY.COM

Field

Representative Name:

Street Address:

City:

Phone:

Email address:

BLM Point of Contact

Signature: Chris Walls

BLM POC Name: CHRISTOPHER WALLS BLM POC Title: Petroleum Engineer

BLM POC Phone: 5752342234 BLM POC Email Address: cwalls@blm.gov

Disposition: Approved Disposition Date: 05/28/2025

Page 2 of 2

Form 3160-5 (June 2019)

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

FORM APPROVED
OMB No. 1004-0137
Expires: October 31, 202

BURI	EAU OF LAND MAN	5. Lease Serial No. NMNM014164					
Do not use this f	OTICES AND REPO	to drill or to	re-enter an	6. If Indian, Allottee or Tribe	Name		
abandoned well. U	Jse Form 3160-3 (A	PD) for suc	ch proposals.	+	7. If Unit of CA/Agreement, Name and/or No.		
	TRIPLICATE - Other instru	uctions on pag	e 2	7. If Unit of CA/Agreement, N	Name and/or No.		
1. Type of Well Oil Well Gas W	_			8. Well Name and No. SAKER 6-7 FEDERAL COM11H			
2. Name of Operator OXY USA INCO	RPORATED			9. API Well No. 3002549459)		
3a. Address P.O. BOX 1002, TUPM		3b. Phone No.	(include area code				
	,	(661) 763-604	46	ANTELOPE RIDGE; BONE SPRIN	IG/ANTELOPE RIDGE; BONE SPRING		
4. Location of Well (Footage, Sec., T.,R SEC 6/T24S/R35E/NMP	.,M., or Survey Description)		11. Country or Parish, State LEA/NM				
12. CHE	CK THE APPROPRIATE B	OX(ES) TO INI	DICATE NATURE	OF NOTICE, REPORT OR OTI	HER DATA		
TYPE OF SUBMISSION			TYF	E OF ACTION			
Notice of Intent	Acidize Alter Casing		aulic Fracturing	Production (Start/Resume) Reclamation	Water Shut-Off Well Integrity		
Subsequent Report	Casing Repair Change Plans		Construction and Abandon	Recomplete Temporarily Abandon	Other		
Final Abandonment Notice	Convert to Injection	= 1	Back	Water Disposal			
completed. Final Abandonment Not is ready for final inspection.) OXY USA INC., respectfully re Old Well Name: SAKER 6_7 F New Well Name: SAKER 6_7 I Old SHL: 200' FNL 1305' FWL New SHL: 200' FNL 1670' FWI Old BHL: 20' FSL 330' FWL New BHL: 20' FSL 930' FWL Old TVD: 10312' Continued on page 3 additional	ices must be filed only after quests to amend the subj EDERAL COM 11H FEDERAL 11H	all requirement	s, including reclam	ation, have been completed and t	160-4 must be filed once testing has been the operator has detennined that the site. Plan as follows:		
14. I hereby certify that the foregoing is	true and correct. Name (Pro	inted/Typed)	A 4 D	. mulatama On			
MELISSA GUIDRY / Ph: (713) 497-	-2481		Title Advisor Re	egulatory Sr.			
Signature (Electronic Submissio	n)		Date	02/11/2	025		
	THE SPACE	FOR FED	ERAL OR ST	ATE OFICE USE			
Approved by							
CHRISTOPHER WALLS / Ph: (575	5) 234-2234 / Approved		Title Petro	leum Engineer	05/28/2025 Date		
Conditions of approval, if any, are attack certify that the applicant holds legal or e which would entitle the applicant to con	quitable title to those rights			RLSBAD			

Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

(Form 3160-5, page 2)

Additional Information

Additional Remarks

New TVD: 10374'

Attached is the updated C102, Drill Plan, Directional Survey & APD Change Sundry Worksheet

Location of Well

 $0. \ SHL: \ LOT \ 4 \ / \ 200 \ FNL \ / \ 1305 \ FWL \ / \ TWSP: \ 24S \ / \ RANGE: \ 35E \ / \ SECTION: \ 6 \ / \ LAT: \ 32.253262 \ / \ LONG: \ -103.410974 \ (\ TVD: \ 0 \ feet \)$ PPP: \LOT \ 4 \ / \ 100 \ FNL \ / \ 330 \ FWL \ / \ TWSP: \ 24S \ / \ RANGE: \ 35E \ / \ SECTION: \ 6 \ / \ LAT: \ 32.253534 \ / \ LONG: \ -103.414127 \ (\ TVD: \ 9954 \ feet \ MD: \ 10346 \ feet \) BHL: \LOT \ 4 \ / \ 20 \ FSL \ / \ 330 \ FWL \ / \ TWSP: \ 24S \ / \ RANGE: \ 35E \ / \ SECTION: \ 7 \ / \ LAT: \ 32.224837 \ / \ LONG: \ -103.413639 \ (\ TVD: \ 10312 \ feet \ MD: \ 20290 \ feet \)

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: OXY USA INCORPORATED
WELL NAME & NO.: SAKER 6-7 FEDERAL 11H
LOCATION: Section 6, T.24 S., R.35 E.
COUNTY: Lea County, New Mexico

ALL PREVIOUS COAS STILL APPLY

COA

H2S	• Yes	O No	
Potash	None	O Secretary	O R-111-P
Cave/Karst Potential	• Low	O Medium	O High
Cave/Karst Potential	O Critical		
Variance	O None	• Flex Hose	Other
Wellhead	Conventional	Multibowl	O Both
Wellhead Variance	O Diverter		
Other	□4 String	☐ Capitan Reef	□WIPP
Other	☐ Fluid Filled	☐ Pilot Hole	☐ Open Annulus
Cementing	☐ Contingency	☐ EchoMeter	☑ Primary Cement
	Cement Squeeze		Squeeze
Special Requirements	☐ Water Disposal	□ СОМ	□ Unit
Special Requirements	☐ Batch Sundry		
Special Requirements	☑ Break Testing	✓ Offline	☐ Casing
Variance	_	Cementing	Clearance

ALL PREVIOUS COAs STILL APPLY

A. CASING

- 1. The **13-3/8** inch surface casing shall be set at approximately **1027** feet **TVD** (a minimum of 70 feet into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **24 hours in the Potash Area** or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)

- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The **7-5/8** inch intermediate casing shall be set at approximately **9505** feet. **KEEP CASING 1/2 FULL FOR COLLAPSE SF. PRESSURE TEST NEEDS EXTERNAL PRESSURE REVIEW AS WELL.** The minimum required fill of cement behind the **7-5/8** inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above.

Option 2 (Bradenhead):

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

- a. First stage: Operator will cement with intent to reach the top of the **Brushy** Canyon
- b. Second stage:
 - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified
- 3. The **5-1/2** inch production casing shall be set at approximately **20,446** feet. The minimum required fill of cement behind the **5-1/2** inch production casing is:

Option 1 (Single Stage):

• Cement should tie-back at least **500 feet** into previous casing string. Operator shall provide method of verification.

BOPE Break Testing Variance

(Note: For a minimum 5M BOPE or less (Utilizing a 10M BOPE system)

- BOPE Break Testing is ONLY permitted for hole sections with 5M MASP or less.
- The break test should involve a shell test that includes testing the upper pipe rams as proposed.
- Variance only pertains to the hole-sections in and shallower than the Wolfcamp formation. Break testing is NOT allowed when planning to penetrate the Penn group.

- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle in accordance with API STD 53.
- Any well control event while drilling require notification to the BLM Petroleum Engineer.
- A full BOPE test is required prior to drilling the first intermediate section.
- If a hole section tends to show more background gas than normal, please notify BLM Engineer prior to proceeding with break testing on the next well.
- The BLM PET is to be contacted 4 hours prior to BOPE tests.
 - Eddy County Petroleum Engineering Inspection Staff: (575) 361-2822
 - Lea County Petroleum Engineering Inspection Staff: (575) 689-5981
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per
 - 43 CFR 3172. **NOTE:** A function test is **NOT** adequate in the event of a component repair. Please review and revise procedure.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Contact Eddy County Petroleum Engineering Inspection Staff:

Email or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220; **BLM NM CFO DrillingNotifications@BLM.GOV**; (575) 361-2822

Contact Lea County Petroleum Engineering Inspection Staff:

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - i.Notify the BLM when moving in and removing the Spudder Rig.
 - ii.Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.

- iii.BOP/BOPE test to be conducted per **43 CFR 3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. For intervals in which cement to surface is required, cement to surface should be verified with a visual check and density or pH check to differentiate cement from spacer and drilling mud. The results should be documented in the driller's log and daily reports.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-Q potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in **43 CFR 3172**.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - i. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - ii.If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - iii.Manufacturer representative shall install the test plug for the initial BOP test
 - iv. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - v.If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - i.In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - ii.In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
 - iii. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to **43 CFR 3172** with the pressure not to exceed 70% of the burst rating

- for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- iv. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- v.The results of the test shall be reported to the appropriate BLM office.
- vi.All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- vii. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- viii.BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

KPI 5/25/2025

Bradenhead Cement CBL Variance Request

Oxy requests permission to adjust the CBL requirement after bradenhead cement jobs, on 7-5/8" intermediate casings, as per the agreement reached in the OXY/BLM meeting on September 5, 2019.

Three string wells:

- CBL will be required on one well per pad
- If the pumped volume of cement is less than permitted in the APD, BLM will be notified and a CBL may be run
- Echometer will be used after bradenhead cement job to determine TOC before pumping top-out cement

Four string wells:

- CBL is not required
- If the pumped volume of cement is less than permitted in the APD, BLM will be notified and a CBL may be run
- Echometer will be used after bradenhead cement job to determine TOC before pumping top-out cement

1/29/2025 10:57:40 AM

U. S. Steel Tubular Products 5.500" 20.00lb/ft (0.361" Wall)

USS RYS110 USS-EAGLE SFH®

MECHANICAL PROPERTIES	Pipe	USS-EAGLE SFH [®]		
Minimum Yield Strength	110,000		psi	
Maximum Yield Strength	125,000		psi	
Minimum Tensile Strength	120,000		psi	
DIMENSIONS	Pipe	USS-EAGLE SFH [®]		
Outside Diameter	5.500	5.830	in.	
Wall Thickness	0.361		in.	
Inside Diameter	4.778	4.693	in.	
Standard Drift	4.653	4.653	in.	
Alternate Drift		4.653	in.	
Nominal Linear Weight, T&C	20.00		lb/ft	
Plain End Weight	19.83		lb/ft	
SECTION AREA	Pipe	USS-EAGLE SFH [®]		
Critical Area	5.828	5.027	sq. in.	
Joint Efficiency		86.3	%	
PERFORMANCE	Pipe	USS-EAGLE SFH [®]		
Minimum Collapse Pressure	11,100	11,100	psi	
External Pressure Leak Resistance		8,900	psi	
Minimum Internal Yield Pressure	12,640	12,640	psi	
Minimum Pipe Body Yield Strength	641,000		lb	
Joint Strength		553,000	lb	
Compression Rating		553,000	lb	
Reference Length		18,590	ft	
Maximum Uniaxial Bend Rating		79.1	deg/100 ft	
MAKE-UP DATA	Pipe	USS-EAGLE SFH [®]		
Make-Up Loss		5.92	in.	
Minimum Make-Up Torque		14,200	ft-lb	
Maximum Make-Up Torque		16,800	ft-lb	

Notes

Legal Notice

Maximum Operating Torque

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380

24,000

1-877-893-9461 connections@uss.com www.usstubular.com

ft-lb

PRD NM DIRECTIONAL PLANS (NAD 1983) Saker 6_7 Saker 6_7 Fed 11H

Wellbore #1

Plan: Permitting Plan

Standard Planning Report

31 January, 2025

Planning Report

Database: HOPSPP

Company: ENGINEERING DESIGNS

Project: PRD NM DIRECTIONAL PLANS (NAD 1983)

Site: Saker 6_7
Well: Saker 6_7 Fed 11H
Wellbore: Wellbore #1
Design: Permitting Plan

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well Saker 6_7 Fed 11H RKB=25' @ 3479.70ft RKB=25' @ 3479.70ft

Grid

Minimum Curvature

Project PRD NM DIRECTIONAL PLANS (NAD 1983)

Map System:US State Plane 1983Geo Datum:North American Datum 1983

Map Zone: North American Datum 1983
New Mexico Eastern Zone

System Datum: Mean Sea Level

Using geodetic scale factor

59.87

47,829.60000000

Site Saker 6_7

 Site Position:
 Northing:
 457,094.74 usft
 Latitude:
 32.253262

 From:
 Map
 Easting:
 826,474.44 usft
 Longitude:
 -103.410974

Position Uncertainty: 0.89 ft Slot Radius: 13.200 in

Well Saker 6_7 Fed 11H

Well Position +N/-S 0.00 ft Northing: 457.098.26 usf Latitude: 32.253263 +E/-W 0.00 ft Easting: 826,839.37 usf Longitude: -103.409794 **Position Uncertainty** 2.00 ft Wellhead Elevation: ft **Ground Level:** 3,454.70 ft

Grid Convergence: 0.49 °

HDGM FILE

Wellbore #1

Magnetics Model Name Sample Date Declination (°) (°) (nT)

6.60

12/31/2019

Design Permitting Plan Audit Notes: Version: Phase: **PROTOTYPE** Tie On Depth: 0.00 **Vertical Section:** Depth From (TVD) +N/-S +E/-W Direction (ft) (ft) (ft) (°) -2.40 0.00 0.00 183.57

Plan Survey Tool Program
Date 1/31/2025

Depth From (ft) (ft) Survey (Wellbore)
Tool Name Remarks

1 0.00 20,445.50 Permitting Plan (Wellbore #1) B001Mc_MWD+HRGM_R5

MWD+HRGM

Plan Sections Measured Vertical Dogleg Build Turn Depth Depth +N/-S Inclination **Azimuth** +E/-W Rate Rate Rate **TFO** (ft) (ft) (°/100ft) (°/100ft) (°/100ft) (ft) (°) (°) (ft) (°) **Target** 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5,317.00 0.00 0.00 5,317.00 0.00 0.00 0.00 0.00 0.00 0.00 6,317.00 10.00 282.38 6,311.93 18.67 -85.02 1.00 1.00 0.00 282.38 9,605.00 10.00 282.38 9,549.98 141.12 -642.69 0.00 0.00 0.00 0.00 88.63 179.48 10,136.79 -418.81 -736.11 10.00 8.65 -102.94 10,513.75 -11 32 20,445.75 88.63 179.48 -10,347.58 -646.37 0.00 0.00 10,373.65 0.00 0.00 PBHL (Saker 6_7

Planning Report

Database: Company: Project: HOPSPP

ENGINEERING DESIGNS

PRD NM DIRECTIONAL PLANS (NAD 1983)

Site: Saker 6_7
Well: Saker 6_7 Fed 11H
Wellbore: Wellbore #1
Design: Permitting Plan

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well Saker 6_7 Fed 11H RKB=25' @ 3479.70ft RKB=25' @ 3479.70ft

Grid

Design:	Permitting Pla	111							
Diagnod Cumray									
Planned Survey									
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00
200.00	0.00	0.00	200.00	0.00	0.00	0.00	0.00	0.00	0.00
300.00	0.00	0.00	300.00	0.00	0.00	0.00	0.00	0.00	0.00
400.00	0.00	0.00	400.00	0.00	0.00	0.00	0.00	0.00	0.00
500.00	0.00	0.00	500.00	0.00	0.00	0.00	0.00	0.00	0.00
600.00	0.00	0.00	600.00	0.00	0.00	0.00	0.00	0.00	0.00
700.00	0.00	0.00	700.00	0.00	0.00	0.00	0.00	0.00	0.00
800.00	0.00	0.00	800.00	0.00	0.00	0.00	0.00	0.00	0.00
900.00	0.00	0.00	900.00	0.00	0.00	0.00	0.00	0.00	0.00
1,000.00	0.00	0.00	1,000.00	0.00	0.00	0.00	0.00	0.00	0.00
1,100.00	0.00	0.00	1,100.00	0.00	0.00	0.00	0.00	0.00	0.00
1,200.00	0.00	0.00	1,200.00	0.00	0.00	0.00	0.00	0.00	0.00
1.300.00	0.00	0.00	1,300.00	0.00	0.00	0.00	0.00	0.00	0.00
1,400.00	0.00	0.00	1,400.00	0.00	0.00	0.00	0.00	0.00	0.00
1,500.00	0.00	0.00	1,500.00	0.00	0.00	0.00	0.00	0.00	0.00
1,600.00	0.00	0.00	1,500.00	0.00	0.00	0.00	0.00	0.00	0.00
1,700.00	0.00	0.00	1.700.00	0.00	0.00	0.00	0.00	0.00	0.00
1,800.00	0.00	0.00	1.800.00	0.00	0.00	0.00	0.00	0.00	0.00
1,900.00	0.00	0.00	1,900.00	0.00	0.00	0.00	0.00	0.00	0.00
2,000.00	0.00	0.00	2,000.00	0.00	0.00	0.00	0.00	0.00	0.00
2,100.00 2,200.00	0.00 0.00	0.00	2,100.00 2,200.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00
2,200.00	0.00	0.00 0.00	2,200.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00
2,400.00	0.00	0.00	2,400.00	0.00	0.00	0.00	0.00	0.00	0.00
2,500.00	0.00	0.00	2,500.00	0.00	0.00	0.00	0.00	0.00	0.00
2,600.00	0.00 0.00	0.00	2,600.00 2,700.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00
2,700.00 2,800.00	0.00	0.00 0.00	2,700.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00
2,900.00	0.00	0.00	2,900.00	0.00	0.00	0.00	0.00	0.00	0.00
3,000.00	0.00	0.00	3,000.00	0.00	0.00	0.00	0.00	0.00	0.00
3,100.00	0.00	0.00	3,100.00	0.00	0.00	0.00	0.00	0.00	0.00
3,200.00 3,300.00	0.00 0.00	0.00	3,200.00 3.300.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00
3,400.00	0.00	0.00 0.00	3,400.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00 0.00
3,500.00	0.00	0.00	3,500.00	0.00	0.00	0.00	0.00	0.00	0.00
3,600.00	0.00	0.00	3,600.00	0.00	0.00	0.00	0.00	0.00	0.00
3,700.00	0.00	0.00	3,700.00	0.00	0.00	0.00	0.00	0.00	0.00
3,800.00 3,900.00	0.00 0.00	0.00 0.00	3,800.00 3,900.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
			,						
4,000.00	0.00	0.00	4,000.00	0.00	0.00	0.00	0.00	0.00	0.00
4,100.00	0.00	0.00	4,100.00	0.00	0.00	0.00	0.00	0.00	0.00
4,200.00	0.00	0.00	4,200.00	0.00	0.00	0.00	0.00	0.00	0.00
4,300.00 4,400.00	0.00	0.00	4,300.00	0.00	0.00	0.00	0.00	0.00	0.00
,	0.00	0.00	4,400.00	0.00	0.00	0.00	0.00	0.00	0.00
4,500.00	0.00	0.00	4,500.00	0.00	0.00	0.00	0.00	0.00	0.00
4,600.00	0.00	0.00	4,600.00	0.00	0.00	0.00	0.00	0.00	0.00
4,700.00	0.00	0.00	4,700.00	0.00	0.00	0.00	0.00	0.00	0.00
4,800.00	0.00	0.00	4,800.00	0.00	0.00	0.00	0.00	0.00	0.00
4,900.00	0.00	0.00	4,900.00	0.00	0.00	0.00	0.00	0.00	0.00
5,000.00	0.00	0.00	5,000.00	0.00	0.00	0.00	0.00	0.00	0.00
5,100.00	0.00	0.00	5,100.00	0.00	0.00	0.00	0.00	0.00	0.00
5,200.00	0.00	0.00	5,200.00	0.00	0.00	0.00	0.00	0.00	0.00
5,300.00	0.00	0.00	5,300.00	0.00	0.00	0.00	0.00	0.00	0.00
5,317.00	0.00	0.00	5,317.00	0.00	0.00	0.00	0.00	0.00	0.00

Planning Report

Database: Company: HOPSPP

ENGINEERING DESIGNS

Project: PRD NM DIRECTIONAL PLANS (NAD 1983)

Site: Saker 6_7
Well: Saker 6_7 Fed 11H
Wellbore: Wellbore #1
Design: Permitting Plan

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Saker 6_7 Fed 11H RKB=25' @ 3479.70ft RKB=25' @ 3479.70ft

Grid

esign:	Permitting Pia	111							
lanned Survey									
Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	(°/100ft)	(°/100ft)
		()		()	(-7				
Build 1°/100	•								
5,400.00	0.83	282.38	5,400.00	0.13	-0.59	-0.09	1.00	1.00	0.00
5,500.00	1.83	282.38	5,499.97	0.63	-2.85	-0.45	1.00	1.00	0.00
5,600.00	2.83	282.38	5,599.89	1.50	-6.83	-1.07	1.00	1.00	0.00
5,700.00	3.83	282.38	5,699.71	2.74	-12.50	-1.96	1.00	1.00	0.00
5,800.00	4.83	282.38	5,799.43	4.36	-19.87	-3.12	1.00	1.00	0.00
5,900.00	5.83	282.38	5,898.99	6.36	-28.95	-4.54	1.00	1.00	0.00
6,000.00	6.83	282.38	5,998.38	8.72	-39.71	-6.23	1.00	1.00	0.00
6,100.00	7.83	282.38	6,097.57	11.46	-52.18	-8.18	1.00	1.00	0.00
6,200.00	8.83	282.38	6,196.51	14.56	-66.33	-10.40	1.00	1.00	0.00
6,300.00	9.83	282.38	6,295.18	18.04	-82.16	-12.88	1.00	1.00	0.00
6,317.00	10.00	282.38	6,311.93	18.67	-85.02	-13.33	1.00	1.00	0.00
Hold 10° Tar		_52.55	2,2		55.52				3.00
6,400.00	10.00	282.38	6,393.67	21.76	-99.10	-15.54	0.00	0.00	0.00
6,500.00	10.00	282.38	6,492.15	25.48	-116.06	-18.20	0.00	0.00	0.00
6,600.00	10.00	282.38	6,590.63	29.21	-133.02	-20.86	0.00	0.00	0.00
6,700.00	10.00	282.38	6,689.11	32.93	-149.98	-23.52	0.00	0.00	0.00
6,800.00	10.00	282.38	6,787.59	36.66	-166.94	-26.18	0.00	0.00	0.00
6,900.00	10.00	282.38	6,886.07	40.38	-183.90	-28.84	0.00	0.00	0.00
7,000.00	10.00	282.38	6,984.55	44.10	-200.86	-31.50	0.00	0.00	0.00
7,100.00	10.00	282.38	7.083.04	47.83	-217.82	-34.15	0.00	0.00	0.00
7,200.00	10.00	282.38	7,181.52	51.55	-234.78	-36.81	0.00	0.00	0.00
,									
7,300.00	10.00	282.38	7,280.00	55.28	-251.74 -268.70	-39.47 -42.13	0.00	0.00 0.00	0.00
7,400.00 7,500.00	10.00 10.00	282.38 282.38	7,378.48 7,476.96	59.00 62.72	-285.67	-42.13 -44.79	0.00 0.00	0.00	0.00 0.00
7,600.00	10.00	282.38	7,476.96	66.45	-302.63	-44.79 -47.45	0.00	0.00	0.00
7,700.00	10.00	282.38	7,673.92	70.17	-319.59	-50.11	0.00	0.00	0.00
7,800.00	10.00	282.38	7,772.40	73.90	-336.55	-52.77	0.00	0.00	0.00
7,900.00	10.00	282.38	7,870.88	77.62	-353.51	-55.43	0.00	0.00	0.00
8,000.00	10.00	282.38 282.38	7,969.36 8,067.84	81.35 85.07	-370.47 -387.43	-58.09 -60.75	0.00 0.00	0.00 0.00	0.00 0.00
8,100.00 8,200.00	10.00 10.00	282.38	8,166.32	88.79	-307.43 -404.39	-60.75 -63.41	0.00	0.00	0.00
8,300.00	10.00	282.38	8,264.80	92.52	-421.35	-66.07	0.00	0.00	0.00
8,400.00	10.00	282.38	8,363.29	96.24	-438.31	-68.73	0.00	0.00	0.00
8,500.00	10.00	282.38	8,461.77	99.97	-455.27	-71.39	0.00	0.00	0.00
8,600.00	10.00	282.38	8,560.25	103.69	-472.23	-74.05	0.00	0.00	0.00
8,700.00	10.00	282.38	8,658.73	107.41	-489.19	-76.71	0.00	0.00	0.00
8,800.00	10.00	282.38	8,757.21	111.14	-506.15	-79.37	0.00	0.00	0.00
8,900.00	10.00	282.38	8,855.69	114.86	-523.11	-82.03	0.00	0.00	0.00
9,000.00	10.00	282.38	8,954.17	118.59	-540.08	-84.68	0.00	0.00	0.00
9,100.00	10.00	282.38	9,052.65	122.31	-557.04	-87.34	0.00	0.00	0.00
9,200.00	10.00	282.38	9,151.13	126.03	-574.00	-90.00	0.00	0.00	0.00
9,300.00	10.00	282.38	9,249.61	129.76	-590.96	-92.66	0.00	0.00	0.00
9,400.00	10.00	282.38	9,348.09	133.48	-607.92	-95.32	0.00	0.00	0.00
9,500.00	10.00	282.38	9,446.57	137.21	-624.88	-97.98	0.00	0.00	0.00
9,600.00	10.00	282.38	9,545.06	140.93	-641.84	-100.64	0.00	0.00	0.00
9,605.00	10.00	282.38	9,549.98	141.12	-642.69	-100.77	0.00	0.00	0.00
KOP, Build 8	& Turn 10°/100	•							
9,700.00	12.12	232.36	9,643.41	136.79	-658.68	-95.46	10.00	2.23	-52.66
9,800.00	19.73	207.86	9,739.61	115.40	-674.91	-73.10	10.00	7.61	-24.50
9,900.00	28.80	197.45	9,830.72	77.40	-690.06	-34.23	10.00	9.07	-10.41
10,000.00	38.31	191.80	9,913.98	23.94	-703.66	19.97	10.00	9.51	-5.65
40 400 00	48.00	188.14	9,986.85	-43.35	-715.29	87.86	10.00	9.69	-3.66
10,100.00	40.00	100.14	0,000.00	.0.00		01.00		0.00	0.00

Planning Report

Database: Company: HOPSPP

ENGINEERING DESIGNS

Project: PRD NM DIRECTIONAL PLANS (NAD 1983)

Site: Saker 6_7

Well: Saker 6_7 Fed 11H

Wellbore: Wellbore #1

Design: Permitting Plan

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well Saker 6_7 Fed 11H RKB=25' @ 3479.70ft RKB=25' @ 3479.70ft

Grid

Design:	Permitting Pla	an							
Planned Survey									
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
10,300.00 10,400.00 10,500.00 10,513.75	67.58 77.43 87.28 88.63	183.31 181.44 179.72 179.48	10,092.98 10,123.01 10,136.30 10,136.79	-210.91 -306.08 -405.06 -418.81	-731.31 -735.22 -736.20 -736.11	256.09 351.32 450.17 463.88	10.00 10.00 10.00 10.00	9.82 9.84 9.85 9.86	-2.15 -1.87 -1.73 -1.69
Landing Po									
10,600.00 10,700.00 10,800.00 10,900.00 11,000.00	88.63 88.63 88.63 88.63	179.48 179.48 179.48 179.48 179.48	10,138.85 10,141.24 10,143.62 10,146.01 10,148.39	-505.02 -604.99 -704.96 -804.93 -904.89	-735.33 -734.42 -733.52 -732.62 -731.71	549.88 649.60 749.32 849.03 948.75	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
11,100.00 11,200.00 11,300.00 11,400.00 11,500.00	88.63 88.63 88.63 88.63	179.48 179.48 179.48 179.48 179.48	10,150.77 10,153.16 10,155.54 10,157.93 10,160.31	-1,004.86 -1,104.83 -1,204.80 -1,304.76 -1,404.73	-730.81 -729.91 -729.00 -728.10 -727.19	1,048.47 1,148.18 1,247.90 1,347.62 1,447.33	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
11,600.00 11,700.00 11,800.00 11,900.00 12,000.00	88.63 88.63 88.63 88.63	179.48 179.48 179.48 179.48 179.48	10,162.70 10,165.08 10,167.47 10,169.85 10,172.24	-1,504.70 -1,604.67 -1,704.63 -1,804.60 -1,904.57	-726.29 -725.39 -724.48 -723.58 -722.68	1,547.05 1,646.77 1,746.48 1,846.20 1,945.92	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
12,100.00 12,200.00 12,300.00 12,400.00 12,500.00	88.63 88.63 88.63 88.63	179.48 179.48 179.48 179.48 179.48	10,174.62 10,177.01 10,179.39 10,181.78 10,184.16	-2,004.54 -2,104.50 -2,204.47 -2,304.44 -2,404.41	-721.77 -720.87 -719.97 -719.06 -718.16	2,045.63 2,145.35 2,245.07 2,344.78 2,444.50	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
12,600.00 12,700.00 12,800.00 12,900.00 13,000.00	88.63 88.63 88.63 88.63	179.48 179.48 179.48 179.48 179.48	10,186.55 10,188.93 10,191.32 10,193.70 10,196.09	-2,504.37 -2,604.34 -2,704.31 -2,804.28 -2,904.24	-717.26 -716.35 -715.45 -714.55 -713.64	2,544.22 2,643.93 2,743.65 2,843.37 2,943.08	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
13,100.00 13,200.00 13,300.00 13,400.00 13,500.00	88.63 88.63 88.63 88.63	179.48 179.48 179.48 179.48 179.48	10,198.47 10,200.86 10,203.24 10,205.62 10,208.01	-3,004.21 -3,104.18 -3,204.15 -3,304.11 -3,404.08	-712.74 -711.84 -710.93 -710.03 -709.12	3,042.80 3,142.52 3,242.23 3,341.95 3,441.67	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
13,600.00 13,700.00 13,800.00 13,900.00 14,000.00	88.63 88.63 88.63 88.63	179.48 179.48 179.48 179.48 179.48	10,210.39 10,212.78 10,215.16 10,217.55 10,219.93	-3,504.05 -3,604.02 -3,703.98 -3,803.95 -3,903.92	-708.22 -707.32 -706.41 -705.51 -704.61	3,541.38 3,641.10 3,740.82 3,840.54 3,940.25	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
14,100.00 14,200.00 14,300.00 14,400.00 14,500.00	88.63 88.63 88.63 88.63	179.48 179.48 179.48 179.48 179.48	10,222.32 10,224.70 10,227.09 10,229.47 10,231.86	-4,003.89 -4,103.85 -4,203.82 -4,303.79 -4,403.76	-703.70 -702.80 -701.90 -700.99 -700.09	4,039.97 4,139.69 4,239.40 4,339.12 4,438.84	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
14,600.00 14,700.00 14,800.00 14,900.00 15,000.00	88.63 88.63 88.63 88.63	179.48 179.48 179.48 179.48 179.48	10,234.24 10,236.63 10,239.01 10,241.40 10,243.78	-4,503.72 -4,603.69 -4,703.66 -4,803.63 -4,903.59	-699.19 -698.28 -697.38 -696.48 -695.57	4,538.55 4,638.27 4,737.99 4,837.70 4,937.42	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
15,100.00 15,200.00 15,300.00 15,400.00 15,500.00	88.63 88.63 88.63 88.63	179.48 179.48 179.48 179.48 179.48	10,246.17 10,248.55 10,250.94 10,253.32 10,255.71	-5,003.56 -5,103.53 -5,203.50 -5,303.46 -5,403.43	-694.67 -693.77 -692.86 -691.96 -691.05	5,037.14 5,136.85 5,236.57 5,336.29 5,436.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00

Planning Report

Database: Company:

Planned Survey

18,300.00

18.400.00

18,500.00

18,600.00

18,700.00

18.800.00

18,900.00

19,000.00

19,100.00

19,200.00

19 300 00

19,400.00

19,500.00

19.600.00

19,700.00

19,800.00

19.900.00

20,000.00

20,100.00

20.200.00

20,300.00

20.400.00

20,445.75

TD at 20445.75' MD

88.63

88.63

88.63

88.63

88.63

88.63

88.63

88 63

88.63

88.63

88.63

88.63

88.63

88.63

88.63

88.63

88.63

88.63

88.63

88 63

88.63

88.63

88.63

179.48

179.48

179.48

179.48

179.48

179.48

179.48

179.48

179.48

179.48

179 48

179.48

179.48

179.48

179.48

179.48

179.48

179.48

179.48

179 48

179.48

179.48

179.48

10,322.48

10.324.86

10,327.25

10,329.63

10,332.02

10,334.40

10,336.79

10,339.17

10,341.56

10,343.94

10 346 33

10,348.71

10,351.10

10.353.48

10,355.87

10,358.25

10,360.64

10,363.02

10,365.41

10.367.79

10,370.17

10.372.56

10,373.65

-8,202.52

-8.302.49

-8,402.45

-8,502.42

-8,602.39

-8.702.36

-8,802.32

-8,902.29

-9,002.26

-9,102.23

-9.202.19

-9,302.16

-9,402.13

-9.502.10

-9,602.06

-9,702.03

-9.802.00

-9,901.97

-10,001.93

-10,101.90

-10,201.87

-10.301.84

-10,347.58

-665.76

-664.85

-663.95

-663.05

-662.14

-661.24

-660.34

-659.43

-658.53

-657.63

-656 72

-655.82

-654.91

-654.01

-653.11

-652.20

-651.30

-650.40

-649.49

-648.59

-647.69

-646.78

-646.37

8,228.07

8.327.79

8,427.50

8,527.22

8,626.94

8,726.65

8,826.37

8.926.09

9.025.80

9,125.52

9 225 24

9,324.95

9,424.67

9.524.39

9,624.10

9,723.82

9.823.54

9,923.25

10,022.97

10.122.69

10,222.40

10.322.12

10,367.74

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

HOPSPP

ENGINEERING DESIGNS

Project: PRD NM DIRECTIONAL PLANS (NAD 1983)

Site: Saker 6_7
Well: Saker 6_7 Fed 11H
Wellbore: Wellbore #1
Design: Permitting Plan

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Saker 6_7 Fed 11H RKB=25' @ 3479.70ft RKB=25' @ 3479.70ft

Grid

	Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)	
	15,600.00	88.63	179.48	10,258.09	-5,503.40	-690.15	5,535.72	0.00	0.00	0.00	
	15,700.00	88.63	179.48	10,260.47	-5,603.36	-689.25	5,635.44	0.00	0.00	0.00	
	15,800.00	88.63	179.48	10,262.86	-5,703.33	-688.34	5,735.15	0.00	0.00	0.00	
	15,900.00	88.63	179.48	10,265.24	-5,803.30	-687.44	5,834.87	0.00	0.00	0.00	
	16,000.00	88.63	179.48	10,267.63	-5,903.27	-686.54	5,934.59	0.00	0.00	0.00	
	16,100.00	88.63	179.48	10,270.01	-6,003.23	-685.63	6,034.30	0.00	0.00	0.00	
	16,200.00	88.63	179.48	10,272.40	-6,103.20	-684.73	6,134.02	0.00	0.00	0.00	
	16,300.00	88.63	179.48	10,274.78	-6,203.17	-683.83	6,233.74	0.00	0.00	0.00	
	16,400.00	88.63	179.48	10,277.17	-6,303.14	-682.92	6,333.45	0.00	0.00	0.00	
	16,500.00	88.63	179.48	10,279.55	-6,403.10	-682.02	6,433.17	0.00	0.00	0.00	
	16,600.00	88.63	179.48	10,281.94	-6,503.07	-681.12	6,532.89	0.00	0.00	0.00	
	16,700.00	88.63	179.48	10,284.32	-6,603.04	-680.21	6,632.60	0.00	0.00	0.00	
	16,800.00	88.63	179.48	10,286.71	-6,703.01	-679.31	6,732.32	0.00	0.00	0.00	
	16,900.00	88.63	179.48	10,289.09	-6,802.97	-678.41	6,832.04	0.00	0.00	0.00	
	17,000.00	88.63	179.48	10,291.48	-6,902.94	-677.50	6,931.75	0.00	0.00	0.00	
	17,100.00	88.63	179.48	10,293.86	-7,002.91	-676.60	7,031.47	0.00	0.00	0.00	
	17,200.00	88.63	179.48	10,296.25	-7,102.88	-675.70	7,131.19	0.00	0.00	0.00	
	17,300.00	88.63	179.48	10,298.63	-7,202.84	-674.79	7,230.90	0.00	0.00	0.00	
	17,400.00	88.63	179.48	10,301.02	-7,302.81	-673.89	7,330.62	0.00	0.00	0.00	
	17,500.00	88.63	179.48	10,303.40	-7,402.78	-672.98	7,430.34	0.00	0.00	0.00	
	17,600.00	88.63	179.48	10,305.79	-7,502.75	-672.08	7,530.05	0.00	0.00	0.00	
	17,700.00	88.63	179.48	10,308.17	-7,602.71	-671.18	7,629.77	0.00	0.00	0.00	
	17,800.00	88.63	179.48	10,310.56	-7,702.68	-670.27	7,729.49	0.00	0.00	0.00	
	17,900.00	88.63	179.48	10,312.94	-7,802.65	-669.37	7,829.20	0.00	0.00	0.00	
1	18,000.00	88.63	179.48	10,315.32	-7,902.62	-668.47	7,928.92	0.00	0.00	0.00	
	18,100.00	88.63	179.48	10,317.71	-8,002.58	-667.56	8,028.64	0.00	0.00	0.00	
	18,200.00	88.63	179.48	10,320.09	-8,102.55	-666.66	8,128.35	0.00	0.00	0.00	

Planning Report

Database: HOPSPP

Company: ENGINEERING DESIGNS

Project: PRD NM DIRECTIONAL PLANS (NAD 1983)

Site: Saker 6_7
Well: Saker 6_7 Fed 11H
Wellbore: Wellbore #1
Design: Permitting Plan

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: Survey Calculation Method: Well Saker 6_7 Fed 11H RKB=25' @ 3479.70ft RKB=25' @ 3479.70ft

Grid

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (ft)	+N/-S (ft)	+E/-W (ft)	Northing (usft)	Easting (usft)	Latitude	Longitude
KOP (Saker 6_7 Fed - plan misses targe - Point	0.00 t center by 75	0.00 54.80ft at 0.0	0.00 Off MD (0.0	142.82 10 TVD, 0.00	-741.17 N, 0.00 E)	457,241.08	826,098.20	32.253673	-103.412187
FTP (Saker 6_7 Fed - plan misses targe - Point	0.00 t center by 19		10,124.59 100.00ft ME	92.83 O (9986.85 TV	-740.73 'D, -43.35 N,	457,191.09 -715.29 E)	826,098.64	32.253535	-103.412187
PBHL (Saker 6_7 Fed - plan hits target ce	0.00 enter	0.00	10,373.65	-10,347.58	-646.37	446,750.68	826,193.00	32.224837	-103.412172

Formations						
	Measured Depth (ft)	Vertical Depth (ft)	Name	Lithology	Dip (°)	Dip Direction (°)
	859.70	859.70	RUSTLER			
	1,086.70	1,086.70	SALADO			
	3,426.70	3,426.70	CASTILE			
	5,241.70	5,241.70	DELAWARE			
	5,292.70	5,292.70	BELL CANYON			
	6,172.88	6,169.70	CHERRY CANYON			
	7,558.63	7,534.70	BRUSHY CANYON			
	8,775.11	8,732.70	BONE SPRING			
	9,896.56	9,827.70	BONE SPRING 1ST			

Plan Annotations				
Measured	Vertical	Local Coor	dinates	Comment
Depth	Depth	+N/-S	+E/-W	
(ft)	(ft)	(ft)	(ft)	
5,317.00	5,317.00	0.00	0.00	Build 1°/100'
6,317.00	6,311.93	18.67	-85.02	Hold 10° Tangent
9,605.00	9,549.98	141.12	-642.69	KOP, Build & Turn 10°/100'
10,513.75	10,136.79	-418.81	-736.11	Landing Point
20,445.75	10,373.65	-10,347.58	-646.37	TD at 20445.75' MD

Received by OCD: 6/1/2025 9:40:08 PM

Page 21 of 31

Oxy USA Inc. - Saker 6_7 Fed 11H Drill Plan

1. Geologic Formations

	TVD of Target (ft):	10374	Pilot Hole Depth (ft):	
Total M	easured Depth (ft):	20446	Deepest Expected Fresh Water (ft):	860

Delaware Basin

Formation	MD-RKB (ft)	TVD-RKB (ft)	Expected Fluids
Rustler	860	860	
Salado	1087	1087	Salt
Castile	3427	3427	Salt
Delaware	5242	5242	Oil/Gas/Brine
Bell Canyon	5293	5293	Oil/Gas/Brine
Cherry Canyon	6173	6170	Oil/Gas/Brine
Brushy Canyon	7559	7535	Losses
Bone Spring	8775	8733	Oil/Gas
Bone Spring 1st	9897	9828	Oil/Gas
Bone Spring 2nd			Oil/Gas
Bone Spring 3rd			Oil/Gas
Wolfcamp			Oil/Gas
Penn			Oil/Gas
Strawn			Oil/Gas

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

		N	1D	TVD					
	Hole	From	То	From	То	Csg.	Csg Wt.		
Section	Size (in)	(ft)	(ft)	(ft)	(ft)	OD (in)	(ppf)	Grade	Conn.
Surface	17.5	0	1027	0	1027	13.375	54.5	J-55	ВТС
Intermediate	9.875	0	9505	0	9450	7.625	26.4	L-80 HC	ВТС
Production	6.75	0	20446	0	10374	5.5	20	RYS110	USS-Eagle SFH

All casing strings will be tested in accordance with 43 CFR part 3170 Subpart 3172

Page 22 of 31

All Casing SF Values will meet or							
exceed those below							
SF	SF SF Body SF Joint						
Collapse	Burst	Tension	Tension				
1.00	1.100	1.4	1.4				

Annular Clearance Variance Request

As per the agreement reached in the Oxy/BLM face-to-face meeting on Feb 22, 2018, Oxy requests permission to allow deviation from the 0.422" annular clearance requirement. Please see Annular Clearance Variance attachment for further details.

	Y or N
Is casing new? If used, attach certification as required in 43 CFR 3160	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Y
Does the above casing design meet or exceed BLM's minimum standards?	Y
If not provide justification (loading assumptions, casing design criteria).	1
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching	Y
the collapse pressure rating of the casing?	1
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-Q?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well located in R-111-Q and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there strings cemented to surface?	

3. Cementing Program

Section	Stage	Slurry:	Sacks	Yield (ft^3/ft)	Density (lb/gal)	Excess:	тос	Placement	Description
Surface	1	Surface - Tail	1073	1.33	14.8	100%	-	Circulate	Class C+Accel.
Int.	1	Intermediate 1S - Tail	228	1.68	13.2	5%	7,809	Circulate	Class C+Ret., Disper.
Int.	2	Intermediate 2S - Tail BH	1396	1.71	13.3	25%	-	Bradenhead	Class C+Accel.
Prod.	1	Production - Tail	648	1.84	13.3	25%	9,005	Circulate	Class C+Ret.

Offline Cementing Request

Oxy requests a variance to cement the 9.625" and/or 7.625" intermediate casing strings offline in accordance to the approved variance, EC Tran 461365. Please see Offline Cementing Variance attachment for further details.

Bradenhead CBL Request

Oxy requests permission to adjust the CBL requirement after bradenhead cement jobs, on 7-5/8" intermediate casings, as per the agreement reached in the OXY/BLM meeting on September 5, 2019. Please see Bradenhead CBL Variance attachment for further details.

Page 24 of 31

4. Pressure Control Equipment

BOP installed and tested before drilling which hole?	Size?	Min. Required WP		Туре	√	Tested to:	Deepest TVD Depth (ft) per Section:
		5M		Annular	✓	70% of working pressure	
				Blind Ram	✓		
9.875" Hole	13-5/8"	5M		Pipe Ram		250 psi / 5000 psi	9450
		Sivi		Double Ram	✓	230 psi / 3000 psi	
			Other*				
		5M		Annular	✓	70% of working pressure	
				Blind Ram	✓		
6.75" Hole	13-5/8"	5M		Pipe Ram		250 psi / 5000 psi	10374
		JIVI		Double Ram	√	200 psi / 3000 psi	
			Other*				

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per 43 CFR part 3170 Subpart 3172 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke

^{*}Specify if additional ram is utilized

Occidental - Permian New Mexico Saker 6_7 Fed 11H

Formation integrity test will be performed per 43 CFR part 3170 Subpart 3172.

On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with 43 CFR part 3170 Subpart 3172.

A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.

Y Are anchors required by manufacturer?

A multibowl or a unionized multibowl wellhead system will be employed. The wellhead and connection to the BOPE will meet all API 6A requirements. The BOP will be tested per 43 CFR part 3170 Subpart 3172 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. We will test the flange connection of the wellhead with a test port that is directly in the flange. We are proposing that we will run the wellhead through the rotary prior to cementing surface casing as discussed with the BLM on October 8, 2015.

See attached schematics.

BOP Break Testing Request

Oxy requests permission to adjust the BOP break testing requirements as per the agreement reached in the OXY/BLM meeting on September 5, 2019. Please see BOP Break Testing Variance attachment for further details.

Oxy will use Cameron ADAPT wellhead system that uses an OEC top flange connection. This connection has been fully vetted and verified by API to Spec 6A and carries an API monogram.

5. Mud Program

Section	Depth - MD		Depth - TVD		Tymo	Weight	Viceosity	Water
Section	From (ft)	To (ft)	From (ft)	To (ft)	Type	(ppg)	Viscosity	Loss
Surface	0	1027	0	1027	Water-Based Mud	8.6 - 8.8	40-60	N/C
Intermediate	1027	9505	1027	9450	Saturated Brine-Based or Oil-Based Mud	8.0 - 10.0	35-45	N/C
Production	9505	20446	9450	10374	Water-Based or Oil- Based Mud	8.0 - 9.6	38-50	N/C

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls,

What will be used to monitor the	DVT/NAD Totac/Viewal Namitoring
loss or gain of fluid?	PVT/MD Totco/Visual Monitoring

6. Logging and Testing Procedures

Loggi	ing, Coring and Testing.			
Yes Will run GR from TD to surface (horizontal well – vertical portion of hole).				
res	Stated logs run will be in the Completion Report and submitted to the BLM.			
No	Logs are planned based on well control or offset log information.			
No	Drill stem test? If yes, explain			
No	Coring? If yes, explain			

Addit	tional logs planned	Interval
No	Resistivity	
No	Density	
Yes	CBL	Production string
Yes	Mud log	Bone Spring – TD
No	PEX	

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	5179 psi
Abnormal Temperature	No
BH Temperature at deepest TVD	163°F

Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times. Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of 43 CFR part 3170 Subpart 3172. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

N H2S is present

Y H2S Plan attached

8. Other facets of operation

Yes/No
Yes
168
Yes

Total Estimated Cuttings Volume: 1593 bbls

<u>C-102</u>	State of New Mexico
	Energy, Minerals & Natural Resources Department
Submit Electronically Via OCD Permitting	OIL CONSERVATION DIVISION

	Revised July 9, 2024
~ 1 · · · · ·	☐ Initial Submittal
Submittal Type:	☑ Amended Report
	☐ As Drilled

									☐ As Drilled	
					WELL LOCAT	ION INFORMATION	•			
API Nu 30-025	ımber 5-49459		Pool Code 2200		I	Pool Name ANTEL	OPE R	RIDG	E, BONE S	SPRING
Propert	y Code		Property Na	ame	SAKI	ER 6 7 FED			Well Number	Н
OGRIE	O No.		Operator N	ame					Ground Level Ele	
	16696		1		OXY	USA INC.			3,45	4.7'
Surface	Owner: 🗆 S	State □ Fee □	Tribal 🗹 Fed	leral		Mineral Owner:	State □ Fee □	Tribal 🛭	7 Federal	
					Surfa	ce Location				
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude (NA	AD 83)	Longitude (NAD 83)	County
3	6	24S	35E		200 NORTH	1,670 WEST	32.25320		-103.409794°	LEA
					Bottom	Hole Location	1			
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude (NA	AD 83)	Longitude (NAD 83)	County
4	7	24S	35E		20 SOUTH	930 WEST	32.224837°		-103.412171°	LEA
	1				•			I		
Dedicated Acres Infill or Defining Well De			Defining	Well API	Overlapping Spacing	g Unit (Y/N)	Consolida	ation Code		
640.54 DEFINING				PEND	ING	N		N/A		
Order 1	Numbers. N	/A				Well setbacks are un	der Common O	wnership	:□Yes ⊠No	
					Kick O	ff Point (KOP)				
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude (NA	AD 83)	Longitude (NAD 83)	County
4	6	24S	35E		50 NORTH	930 WEST	32.253673°		-103.412187°	LEA
				1	First Ta	ke Point (FTP)				
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude (NAD 83)		Longitude (NAD 83)	County
4	6	24S	35E		100 NORTH	930 WEST	32.253535°		-103.412187°	LEA
					Last Tal	ke Point (LTP)	<u> </u>			
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude (NA	AD 83)	Longitude (NAD 83)	County
4	7	24S	35E		100 SOUTH	930 WEST	32.22503	57°	-103.412172°	LEA
	1		1					Į.		
Unitize	d Area or Ar	ea of Uniform I	nterest N	Spacing	Unit Type 🕝 Horiz	ontal 🗆 Vertical	Ground	d Floor El	evation: 3454.7'	
OPER/	ATOR CERT	IFICATIONS				SURVEYOR CERTIFIC	CATIONS			
		e information cont ef , and, if the wel			plete to the best of vell, that this	I hereby certify that the well surveys made by me or und				

organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with an owner of a working interest or unleased mineral interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division.

If this well is a horizontal well, I further certify that this organization has received the consent of at least one lessee or owner of a working interest or unleased mineral interest in each tract (in the target pool or formation) in which any part of the well's completed interval will be located or obtained a compulsory pooling order from the division.

Melissa Guidry 02/11/25

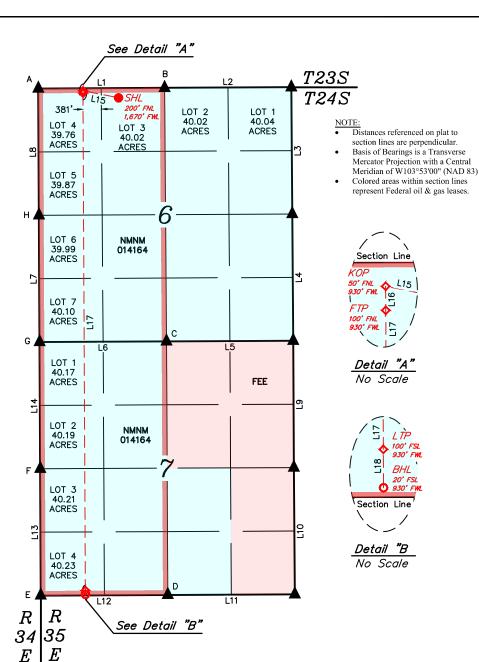
Signature Melissa Guidry

melissa_guidry@oxy.com

Email Address

Printed Name

my belief.


Signature and Seal of Professional Surveyor

October 9, 2024 23782

Certificate Number Date of Survey

ONA L

Well Number Property Name Drawn By Revised By SAKER 6_7 FED 11H R.J. 12-20-19 REV. 1 Z.T. 10-09-24 (SHL, WELLBORE AND FORMAT CHANGES)

HSU COORDINATES								
	NAD 27 N.	M. STATE	NAD 83 N.M. STATE					
	PLANE, EA	AST ZONE	PLANE, EAST ZONE					
POINT	NORTHING	EASTING	NORTHING	EASTING				
A	457222.74	783983.48	457282.08	825167.95				
В	457248.14	786614.03	457307.52	827798.56				
С	451967.34	786676.49	452026.57	827861.23				
D	446686.92	786724.21	446746.01	827909.19				
Е	446663.31	784078.45	446722.38	825263.36				
F	449303.36	784054.78	449362.49	825239.57				
G	451943.56	784030.76	452002.77	825215.43				
Н	454583.40	784006.72	454642.67	825191.27				

LINE TABLE						
LINE	DIRECTION	LENGTH				
L1	S89*41'10"W	2631.14'				
L2	S89*41'56"W	2640.30'				
L3	N00°26'32"W	2642.64				
L4	N00°26'28"W	2640.92'				
L5	S89°43'47"W	2640.49'				
L6	S89°43'29"W	2646.32'				
L7	N00°17'03"W	2640.42'				
L8	N0015'58"W	2639.92'				
L9	N0017'18"W	2640.86				
L10	N00°24'37"W	2642.00'				
L11	S89°45'26"W	2646.85				
L12	S89°43'41"W	2646.34				
L13	N0016'35"W	2640.63				
L14	N0017'02"W	2640.80'				
L15	N78°51'11"W	754.91				
L16	S00°15'58"E	50.00'				
L17	S00°16'40"E	10362.45				
L18	S0016'35"E	80.00'				

NAD 83 (SURFACE HOLE LOCATION)	NAD 83 (KICK OFF POINT)
LATITUDE = 32°15'11.75" (32.253263°)	LATITUDE = 32°15'13.22" (32.253673°)
LONGITUDE = -103°24'35.26" (-103.409794°)	LONGITUDE = -103°24'43.87" (-103.412187°)
NAD 27 (SURFACE HOLE LOCATION)	NAD 27 (KICK OFF POINT)
LATITUDE = 32°15'11.30" (32.253138°)	LATITUDE = 32°15'12.77" (32.253548°)
LONGITUDE = -103°24'33.55" (-103.409320°)	LONGITUDE = -103°24'42.17" (-103.411713°)
STATE PLANE NAD 83 (N.M. EAST)	STATE PLANE NAD 83 (N.M. EAST)
N: 457098.26' E: 826839.37'	N: 457241.08' E: 826098.20'
STATE PLANE NAD 27 (N.M. EAST)	STATE PLANE NAD 27 (N.M. EAST)
N: 457038.91' E: 785654.85'	N: 457181.73' E: 784913.71'
N: 457038.91' E: 785654.85'	N: 457181.73' E: 784913.71'

= SURFACE HOLE LOCATION

= KICK OFF POINT/TAKE POINTS

O = BOTTOM HOLE LOCATION

= SECTION CORNER LOCATED

= DEDICATED ACREAGE

Sheet 2 of 2

NAD 83 (FIRST TAKE POINT) LATITUDE = 32°15'12.73" (32.253535' LONGITUDE = -103°24'43.87" (-103.412187°

NAD 27 (FIRST TAKE POINT) LATITUDE = 32°15'12.28" (32.253410°) LONGITUDE = -103°24'42.17" (-103.411713°

STATE PLANE NAD 83 (N.M. EAST) N: 457191.09' E: 826098.64 STATE PLANE NAD 27 (N.M. EAST)

N: 457131.74' E: 784914.15

NAD 83 (LAST TAKE POINT) LATITUDE = 32°13'30.21" (32.225057 LONGITUDE = -103°24'43.82" (-103.412172° NAD 27 (LAST TAKE POINT) LATITUDE = 32°13'29.75" (32.224932°) LONGITUDE = -103°24'42.12" (-103.411699°

STATE PLANE NAD 83 (N.M. EAST) N: 446830.66' E: 826192.28

STATE PLANE NAD 27 (N.M. EAST) N: 446771.59' E: 785007.35

NAD 83 (BOTTOM HOLE LOCATION) LATITUDE = 32°13'29.41" (32.224837°) LONGITUDE = -103°24'43.82" (-103.412171°) NAD 27 (BOTTOM HOLE LOCATION) LATITUDE = 32°13'28.96" (32.224712°) LONGITUDE = -103°24'42.12" (-103.411699° STATE PLANE NAD 83 (N.M. EAST) N: 446750.68' E: 826193.00

STATE PLANE NAD 27 (N.M. EAST) N: 446691.61' E: 785008.07

Released to Imaging: 7/10/2025 7:42:10 AM

OXY APD CHANGE SUNDRY LIST FORM

DATE SUNDRY WORKSHEET CREATED	2/11/2025
WELL NAME_NUMBER	SAKER 6-7 FED 11H
API NUMBER	30-025-49459
ESTIMATED SPUD DATE	7/15/2025

Hole Size (in.) 17.5 12.25	MD 920 5301	APD BASE LINE TVD 920 5301	13.375	Csg WT	Grade			DATE Sundry Workshee SAKER 6-7 FEDERAL 11H NO 200' FNL 1670' FWL FALCON RIDGE 0602 20' FSL 930' FWL 640.54 ANTELOPE RIDGE; BONE 10374' BONESPRING											
Hole Size (in.) 17.5 12.25	MD 920 5301	TVD 920	13.375		Grade			NO 200' FNL 1670' FWL FALCON RIDGE 0602 20' FSL 930' FWL 640.54 ANTELOPE RIDGE; BONE 10374'											
Hole Size (in.) 17.5 12.25	MD 920 5301	TVD 920	13.375		Grade			200' FNL 1670' FWL FALCON RIDGE 0602 20' FSL 930' FWL 640.54 ANTELOPE RIDGE; BONE 10374'	SPRING										
Hole Size (in.) 17.5 12.25	MD 920 5301	TVD 920	13.375		Grade			FALCON RIDGE 0602 20' FSL 930' FWL 640.54 ANTELOPE RIDGE; BONE 10374'	SPRING										
Hole Size (in.) 17.5 12.25	MD 920 5301	TVD 920	13.375		Grade			20' FSL 930' FWL 640.54 ANTELOPE RIDGE; BONE 10374'	SPRING										
Hole Size (in.) 17.5 12.25	MD 920 5301	TVD 920	13.375		Grade			640.54 ANTELOPE RIDGE; BONE 10374'	SPRING										
Hole Size (in.) 17.5 12.25	MD 920 5301	TVD 920	13.375		Grade			ANTELOPE RIDGE; BONE 10374'	SPRING										
Hole Size (in.) 17.5 12.25	MD 920 5301	TVD 920	13.375		Grade			10374'	SPRING										
17.5 12.25	MD 920 5301	TVD 920	13.375		Grade														
17.5 12.25	MD 920 5301	TVD 920	13.375		Grade			BONESPRING											
17.5 12.25	MD 920 5301	TVD 920	13.375		Grade														
17.5 12.25	920 5301	920	13.375		Grade						SUNDRY PI								
12.25	5301						Conn.	Section	Hole Size (in.)	MD	TVD	Csg OD (in)	Csg WT (ppf)			Conn.			
		5301			J-55			Surface	17.5	1027	1027	13.375	54.5	J-55		BTC			
			9.625	40	L-80		BTC	Int	9.875	9505	9450	7.625	26.4	L-80HC		BTC			
								Int2											
8.5	20289	20289	5.5	20	P-110		DQX	Prod	6.75	20446	10374	5.5	20	RYS110	YS110 USS-Eagle SFH				
								Liner											
APD BASE LINE					Description	Section/Stage Slurry Sacks Yield (ft^3/ft) Density (lb/gal) Excess TOC Placement Description													
Slurry	Sacks				тос	Placement		Section/Stage						100					
Surface (Tail)	972	1.33	14.8	100%		Circulate	Class C+Accel	Surf	Surface - Tail	1073	1.33	14.8	100%		Circulate	Class C+Accel			
Intermediate (Lead)	1247	1.73	12.9 14.8	50% 20%		Circulate	Class Pozz+Ret Class C+Accel	Int	Intermediate 15 - Tail	228	1.68	13.2	5%	7809	Circulate	Class C+Ret, Disp			
Intermediate (Tail)	155 165	1.33			4801 7792	Circulate		Int Int2	Intermediate 2S - Tail BH	1396		13.3	25%		Bradenhead	Class+Accel			
Production 1S (Lead) Production 1S (Tail)	2022	1.38	13.2	5% 5%		Circulate Circulate		Int2	Intermediate 25 - Tail BH	1396	1.71	13.3	25%		Bradenhead	Class+Accel			
Production 15 (Tall)	2022	1.38	13.2	5%	8/38	Circulate		Prod	Production - Tail	648	1.84	13.3	25%	9005	Circulate	Class C+Ret			
		ADD BASELINE						Prou	Production - Tall	040			25%	9005	Circulate	Class CTREE			
		AFD DAGE LINE						BOD Brook Toring Varia	nco	v	JONDATE	Daile							
										^									
		-							¥	1									
	x									×									
Variance																			
Variance																			
		X X	x	X X X	X X X	X X X	X X X	APD BASE LINE X X X	APD BASE LINE X X SM Annular 80P Varian Bradenhead CBL Varian CFIline Cementing Varia X Production Annular 60F Flexible Choke lare Variant Flexible Choke lare Varian	APD BASE LINE X SDP Break Tesing Variance SM Annular BOP Variance SM Annular BOP Variance Bradenhead CBI Variance Offline Cementing Variance CBI VA Production Annular Clearance Variance Flexible Choke Line Variance Flexible Choke Line Variance	APD BASE LINE BDP Break Tesing Variance X X SM Annular BDP Variance X SM Annular BDP Variance X SM Annular BDP Variance X Offline Cementing Variance X Offline Cementing Variance X X Production Annular Clearance Variance X Flobible Choke Line Variance X Flobible Choke Line Variance X Flobible Choke Line Variance X	APD BASE LINE SUNDRY PI	APD BASE LINE SUNDRY PLAN	APD BASE LINE SUNDRY PLAN	APD BASE LINE SUNDRY PLAN X BOP Break Tesing Variance X X SM Annular BOP Variance CM X SM Annular BOP Variance X SM Annular BOP Variance X CM CM CM CM CM CM CM	APD BASE LINE SUNDRY PLAN			

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 469589

CONDITIONS

Operator:	OGRID:
OXY USA INC	16696
P.O. Box 4294	Action Number:
Houston, TX 772104294	469589
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By	Condition	Condition Date
matthew.gomez	If cement is not circulated to surface during cementing operations, a Cement Bond Log (CBL) is required.	7/10/2025
matthew.gomez	Administrative order required for non-standard spacing unit prior to production.	7/10/2025
matthew.gomez	Notify the OCD 24 hours prior to casing & cement.	7/10/2025
matthew.gomez	Any previous COA's not addressed within the updated COA's still apply.	7/10/2025