Form 3160-3 FORM APPROVED OMB No. 1004-0137 (June 2015) Expires: January 31, 2018 **UNITED STATES** DEPARTMENT OF THE INTERIOR 5. Lease Serial No. NMNM90587 BUREAU OF LAND MANAGEMENT APPLICATION FOR PERMIT TO DRILL OR REENTER 6. If Indian, Allotee or Tribe Name 7. If Unit or CA Agreement, Name and No. **✓** DRILL REENTER 1a. Type of work: NMNM140586/Lost Tank 1b. Type of Well: ✓ Oil Well Gas Well Other 8. Lease Name and Well No. 1c. Type of Completion: Hydraulic Fracturing Single Zone ✓ Multiple Zone LOST TANK 30 19 FEDERAL COM 71H 2. Name of Operator 9. API Well No. **OXY USA INCORPORATED** 30-025-54920 3a. Address 3b. Phone No. (include area code) 10. Field and Pool, or Exploratory BILBREY BASIN/BONE SPRING SOUTH P.O. BOX 1002, TUPMAN, CA 93276-1002 (661) 763-6046 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec., T. R. M. or Blk. and Survey or Area SEC 19/T22S/R32E/NMP At surface NENW / 476 FNL / 2087 FWL / LAT 32.382966 / LONG -103.716189 At proposed prod. zone LOT 4 / 20 FSL / 960 FWL / LAT 32.355265 / LONG -103.719821 14. Distance in miles and direction from nearest town or post office* 12. County or Parish 13 State LEA NM 46 miles 15. Distance from proposed* 16. No of acres in lease 17. Spacing Unit dedicated to this well 476 feet location to nearest property or lease line, ft. 640.0 (Also to nearest drig. unit line, if any) 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file to nearest well, drilling, completed, 30 feet 11200 feet / 22152 feet FED: ESB000226 applied for, on this lease, ft. 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 3619 feet 02/01/2026 45 days 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see 2. A Drilling Plan. Item 20 above) 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification. 6. Such other site specific information and/or plans as may be requested by the SUPO must be filed with the appropriate Forest Service Office). 25. Signature Name (Printed/Typed) Date (Electronic Submission) MELISSA GUIDRY / Ph: (713) 366-5716 01/27/2025 Title Advisor Regulatory Sr. Approved by (Signature) Name (Printed/Typed) Date (Electronic Submission) CODY LAYTON / Ph: (575) 234-5959 04/28/2025 Title Office Assistant Field Manager Lands & Minerals Carlsbad Field Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction (Continued on page 2) *(Instructions on page 2) #### INSTRUCTIONS GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices. ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well. ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions. ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices. ITEMS 15 AND 18: If well is to be, or has been directionary drilled, give distances for subsurface location of hole in any present or objective productive zone. ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started. ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices. #### **NOTICES** The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application. AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160 PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts. ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities. EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease. The Paperwork Reduction Act of 1995 requires us to inform you that: The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agencysponsored information collection unless it displays a currently valid OMB control number. BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240. #### **Additional Operator Remarks** #### **Location of Well** 0. SHL: NENW / 476 FNL / 2087 FWL / TWSP: 22S / RANGE: 32E / SECTION: 19 / LAT: 32.382966 / LONG: -103.716189 (TVD: 0 feet, MD: 0 feet) PPP: LOT 1 / 100 FNL / 960 FWL / TWSP: 22S / RANGE: 32E / SECTION: 19 / LAT: 32.383982 / LONG: -103.719839 (TVD: 11200 feet, MD: 11704 feet) PPP: LOT 2 / 1321 FNL / 961 FWL / TWSP: 22S / RANGE: 32E / SECTION: 19 / LAT: 32.380627 / LONG: -103.719837 (TVD: 11200 feet, MD: 12920 feet) PPP: LOT 3 / 2642 FNL / 962 FWL / TWSP: 22S / RANGE: 32E / SECTION: 19 / LAT: 32.376997 / LONG: -103.719834 (TVD: 11200 feet, MD: 14241 feet) PPP: LOT 4 / 0 FNL / 964 FWL / TWSP: 22S / RANGE: 32E / SECTION: 19 / LAT: 32.369742 / LONG: -103.71983 (TVD: 11200 feet, MD: 16881 feet) BHL: LOT 4 / 20 FSL / 960 FWL / TWSP: 22S / RANGE: 32E / SECTION: 30 / LAT: 32.355265 / LONG: -103.719821 (TVD: 11200 feet, MD: 22152 feet) #### **BLM Point of Contact** Name: TENILLE C MOLINA Title: Land Law Examiner Phone: (575) 234-2224 Email: TCMOLINA@BLM.GOV #### **Review and Appeal Rights** A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information. | | | /29/2025 1: | 9.01 FM | | C4-4CNI | M | | | 5 | Page 5 | |---|-----------------|---|---|---|--|-------------------|---------------|--------------------------------|--------------------------------------|---------| | <u>C-102</u> | | State of New Mexico Energy, Minerals & Natural Resources Department | | | | | | Kevis | sed July 9, 2024 | | | Submit |
Electronical | lv | | | | TION DIVISION | | | _ | | | Via OCD Permitting | | | | | | | | Initial Submit | ☑ Initial Submittal ☐ Amended Report | ☐ As Drilled | ☐ As Drilled | | | | | | | | | WELL LOCA | TION INFORMATION | N | | | | | API Nu
30-025 | | 920 | Pool Code
97366 | ; | | Pool Name BILBR | EY BASI | N; BOI | NE SPRING | , SOUTH | | Property Code Property Name | | | lame | LOST TA | ST TANK 30-19 FED COM Well Number 71H | | | | | | | OGRID No. Operator N | | | OXY USA INC. | | | | | Ground Level Elevation 3619.1' | | | | Surface Owner: ☐ State ☐ Fee ☐ Tribal ☑ Federal | | | deral | ral Mineral Owner: ☐ State ☐ Fee ☐ Tribal ☑ Federal | | | | | | | | | | | | | Sur | face Location | | | | | | UL | Section | Township | Range | Lot | Ft. from N/S | Ft. from E/W | Latitude (N | (AD 83) I | Longitude (NAD 83) | County | | С | 19 | 22S | 32E | | 476 NORTH | I 2087 WEST | 32.3829 | 966° | -103.716189° | LEA | | | | | | ļ | Botton | n Hole Location | | | | | | UL | Section | Township | Range | Lot | Ft. from N/S | Ft. from E/W | Latitude (N | (AD 83) I | Longitude (NAD 83) | County | | M4- | 30 | 22S | 32E 4 20 SOUTH 960 WEST 32.355265° -103 | | | | -103.719821° | LEA | | | | | • | • | | ' | • | <u>'</u> | • | ' | | • | | | ted Acres | Infill or Defi | ning Well | Definir | ig Well API | Overlapping Spaci | ng Unit (Y/N) | Consolida | ntion Code | | | 678.92 | 640- | INFILL | | 21H - 30-025-47942 N | | | | N/A | | | | Order Numbers. N/A | | | | Well setbacks are u | ınder Common | Ownership: | □Yes 🗖 No | | | | Kick Off Point (KOP) | | | | 1 | | Kick Oil : | Point (KOP) | | | | |------|---------|----------|-------|-----|--------------|--------------|-------------------|--------------------|--------| | UL | Section | Township | Range | Lot | Ft. from N/S | Ft. from E/W | Latitude (NAD 83) | Longitude (NAD 83) | County | | M 4- | 18 | 22S | 32E | 4 | 300 SOUTH | 960 WEST | 32.385082° | -103.719838° | LEA | | | | | | 4 | | | | | | | | | | | | First Take | Point (FTP) | | | | | UL | Section | Township | Range | Lot | Ft. from N/S | Ft. from E/W | Latitude (NAD 83) | Longitude (NAD 83) | County | | DŁ | 19 | 22S | 32E | 1 | 100 NORTH | 960 WEST | 32.383982° | -103.719839° | LEA | | | | | | ı | | | | | | | | | | | | Last Take | Point (LTP) | | | | | UL | Section | Township | Range | Lot | Ft. from N/S | Ft. from E/W | Latitude (NAD 83) | Longitude (NAD 83) | County | | M 4- | 30 | 22S | 32E | 4 | 100 SOUTH | 960 WEST | 32.355485° | -103.719821° | LEA | | | | | | ' | | | | | | | Unitized Area or Area of Uniform Interest $$ | S | Spacing Unit Type 🕝 Horizontal 🗖 Vertical | Ground Floor Elevation: | 3619.1' | | |--|---|---|-------------------------|---------|--| |--|---|---|-------------------------|---------|--| my belief. #### OPERATOR CERTIFICATIONS I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief, and, if the well is a vertical or directional well, that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with an owner of a working interest or unleased mineral interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division. If this well is a horizontal well, I further certify that this organization has received the consent of at least one lessee or owner of a working interest or unleased mineral interest in each tract (in the target pool or formation) in which any part of the well's completed interval will be located or obtained a compulsory pooling order from the division. #### Melissa Guidry 01/22/25 Signature Melissa Guidry Printed Name 23782 Signature and Seal of Professional Surveyor SURVEYOR CERTIFICATIONS Certificate Number July 18, 2023 Date of Survey I hereby certify that the well location shown on this plat was plotted from the field notes of actual surveys made by me or under my supervision, and that the same is true and correct to the best of Note: No allowable will be assigned to this completion until all interest have been consolidated or a non-standard unit has been approved by the division. melissa_guidry@oxy.com Email Address Well Number Property Name Drawn By Revised By LOST TANK 30-19 FED COM 71H D.J.S. 08-01-23 REV. 2 T.I.R. 09-13-24 (UPDATE FORMAT) | HSU COORDINATES | | | | | | | | |-----------------|-------------------------|------------|---------------------------------------|------------|--|--|--| | | NAD 27 N.I
PLANE, EA | | NAD 83 N.M. STATE
PLANE, EAST ZONE | | | | | | POINT | NORTHING | EASTING | NORTHING | EASTING | | | | | A | 503996.27' | 688575.56' | 504056.69' | 729757.94' | | | | | В | 504027.29' | 691370.49' | 504087.71' | 732552.89' | | | | | C | 498746.53' | 691405.57' | 498806.82' | 732588.12' | | | | | D | 493473.55' | 691443.93' | 493533.69' | 732626.62' | | | | | E | 493422.39' | 688641.46' | 493482.53' | 729824.14' | | | | | F | 496076.50' | 688619.02' | 496136.71' | 729801.63' | | | | | G | 498715.68' | 688604.05' | 498775.96' | 729786.58' | | | | | Н | 501354.62' | 688589.82' | 501414.97' | 729772.28' | | | | | LINE TABLE | | | | | | | |------------|-------------|----------|--|--|--|--| | LINE | DIRECTION | LENGTH | | | | | | L1 | N00°04'43"W | 2638.22' | | | | | | L2 | N00°09'21"W | 5284.30' | | | | | | L3 | S89*36'19"W | 5436.77 | | | | | | L4 | N00°08'14"W | 2640.78 | | | | | | L5 | N00°09'30"W | 2641.43 | | | | | | L6 | S89°36'36"W | 5443.96' | | | | | | L7 | N00°04'10"W | 2639.54 | | | | | | L8 | N00°04'12"W | 2642.25' | | | | | | L9 | N00°08'37"W | 5284.27 | | | | | | L10 | S89°49'38"W | 2638.59' | | | | | | L11 | S89*11'42"W | 2803.46 | | | | | | L12 | N00°14'43"W | 2654.77 | | | | | | L13 | N00°05'09"W | 2639.78' | | | | | | L14 | N55*44'41"W | 1364.83 | | | | | | L15 | S00°04'36"E | 400.01 | | | | | | L16 | S00°07'01"E | 1220.99' | | | | | | L17 | S00°07'01"E | 1320.99' | | | | | | L18 | S00°07'01"E | 2639.86' | | | | | | L19 | S00°07'01"E | 5187.61 | | | | | | L20 | S0014'43"E | 80.00' | | | | | ● = SURFACE HOLE LOCATION ◆ = KICK OFF POINT/TAKE POIN □ = LEASE CROSSING. ○ = BOTTOM HOLE LOCATION ■ = SECTION CORNER LOCATED = SURFACE HOLE LOCATION = KICK OFF POINT/TAKE POINTS = HORIZONTAL SPACING UNIT S.O.W. = SOUTH OF WELL. W.O.W. = WEST OF WELL. - NOTE: Distances referenced on plat to section lines are perpendicular. - Basis of Bearings is a Transverse Mercator Projection with a Central Meridian of W103°53'00" (NAD 83) - Colored areas within section lines represent Federal oil & gas leases. | NAD 83 (SURFACE HOLE LOCATION) | |---| | LATITUDE = 32°22'58.68" (32.382966°) | | LONGITUDE = -103°42'58.28" (-103.716189°) | | NAD 27 (SURFACE HOLE LOCATION) | | LATITUDE = 32°22'58.23" (32.382843°) | | LONGITUDE = -103°42'56.52" (-103.715700°) | | STATE PLANE NAD 83 (N.M. EAST) | | N: 503603.95' E: 731847.14' | | STATE PLANE NAD 27 (N.M. EAST) | | N: 503543.54' E: 690664.74' | | | | NAD 83 (LEASE CROSSING 2) | | I AFRICA 2000000 100 (20 25(0050) | | NAD 83 (LEASE CROSSING 2) | |---| | LATITUDE = 32°22'37.19" (32.376997°) | | LONGITUDE = -103°43'11.40" (-103.719834°) | | NAD 27 (LEASE CROSSING 2) | | LATITUDE = 32°22'36.75" (32.376874°) | | LONGITUDE = -103°43'09.65" (-103.719346°) | | STATE PLANE NAD 83 (N.M. EAST) | | N: 501425.90' E: 730734.13' | | STATE PLANE NAD 27 (N.M. EAST) | | N: 501365.55' E: 689551.68' | | NAD 83 (KICK OFF POINT) | |---| | LATITUDE = 32°23'06.29" (32.385082°) | | LONGITUDE = -103°43'11.42" (-103.719838°) | | NAD 27 (KICK OFF POINT) | | LATITUDE = 32°23'05.85" (32.384959°) | | LONGITUDE = -103°43'09.66" (-103.719350°) | | STATE PLANE NAD 83 (N.M. EAST) | | N: 504367.29' E: 730716.04' | | STATE PLANE NAD 27 (N.M. EAST) | | N: 504306.86' E: 689533.67' | | | | N: 504306.86' E: 689533.67' | |---| | NAD 83 (LEASE CROSSING 3) | | | | LATITUDE = 32°22'11.07" (32.369742°) | | LONGITUDE = -103°43'11.39" (-103.719830°) | | NAD 27 (LEASE CROSSING 3) | | LATITUDE = 32°22'10.63" (32.369619°) | | LONGITUDE = -103°43'09.63" (-103.719342°) | | STATE PLANE NAD 83 (N.M. EAST) | | N: 498786.58' E: 730750.62' | | STATE PLANE NAD 27 (N.M. EAST) | | N: 498726.30' E: 689568.09' | | NAD 83 (FIRST TAKE POINT) | |---| | LATITUDE = 32°23'02.34" (32.383982°) | | LONGITUDE = -103°43'11.42" (-103.719839°) | | NAD 27 (FIRST TAKE POINT) | | LATITUDE = 32°23'01.89" (32.383860°) | | LONGITUDE = -103°43'09.66" (-103.719350°) | | STATE PLANE NAD 83 (N.M. EAST) | | N: 503967.36' E: 730718.26' | | STATE PLANE NAD 27 (N.M. EAST) | | N: 503906.94' E: 689535.88' | | NAD 83 (LAST TAKE POINT) | |---| | LATITUDE = 32°21'19.75" (32.355485°) | | LONGITUDE = -103°43'11.36" (-103.719821°) | | NAD 27 (LAST TAKE POINT) | | LATITUDE = 32°21'19.30" (32.355362°) | | LONGITUDE = -103°43'09.60" (-103.719334°) | | STATE PLANE NAD 83 (N.M. EAST) | | N: 493600.03' E: 730783.01' | | STATE PLANE NAD 27 (N.M. EAST) | | N: 493539.89' E: 689600.32' | | | | NAD 83 (LEASE CROSSING 1) | |---| | LATITUDE = 32°22'50.26" (32.380627°) | | LONGITUDE = -103°43'11.41" (-103.719837°) | | NAD 27 (LEASE CROSSING 1) | | LATITUDE = 32°22'49.81" (32.380504°) | | LONGITUDE = -103°43'09.65" (-103.719348°) | | STATE PLANE NAD 83 (N.M. EAST) | | N: 502746.62' E: 730725.89' | | STATE PLANE NAD 27 (N.M. EAST) | | N: 502686.24' E: 689543.47' | | STATE FLANE NAD 27 (N.M. EAST) | |---| | N: 502686.24' E: 689543.47' | | NAD 83
(BOTTOM HOLE LOCATION) | | LATITUDE = 32°21'18.95" (32.355265°) | | LONGITUDE = -103°43'11.35" (-103.719821°) | | NAD 27 (BOTTOM HOLE LOCATION) | | LATITUDE = 32°21'18.51" (32.355142°) | | LONGITUDE = -103°43'09.60" (-103.719333°) | | STATE PLANE NAD 83 (N.M. EAST) | | N: 493520.04' E: 730783.68' | | STATE PLANE NAD 27 (N.M. EAST) | | N: 493459.90' E: 689601.00' | #### State of New Mexico Energy, Minerals and Natural Resources Department Submit Electronically Via E-permitting Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 #### NATURAL GAS MANAGEMENT PLAN This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well. | Section 1 – Plan Description <u>Effective May 25, 2021</u> | | | | | | | | | | |--|---|---|--------------------|----------------------------|-----------|---------------------|---------|---------------------------------------|--| | I. Operator: OXY US | A INC. | | OGRID: _16 | 6696 | | Date: _ | 0 1/ | 2 7/ 2 5 | | | II. Type: ☑ Original □ | ☐ Amendment | due to □ 19.15.27. | 9.D(6)(a) NMA | C □ 19.15.27.9.D(| (6)(b) N | ГМАС □ (| Other. | | | | If Other, please describe | :: | | | | | | | | | | III. Well(s): Provide the be recompleted from a s | | | | | wells pr | roposed to | be dri | lled or proposed to | | | Well Name | API | ULSTR | Footages | Anticipated Oil BBL/D | | cipated
MCF/D | | Anticipated roduced Water BBL/D | | | SEE ATTACHED | | | | | | | | | | | V. Anticipated Schedul proposed to be recomple | le: Provide the | following informat | tion for each nev | v or recompleted w | vell or s | • | | 7.9(D)(1) NMAC] seed to be drilled or | | | Well Name | API | Spud Date | TD Reached
Date | Completion
Commencement | | Initial F
Back D | | First Production Date | | | SEE ATTACHED | | | | | | | | | | | VI. Separation Equipm VII. Operational Pract Subsection A through F VIII. Best Management during active and planne | tices: Attac
of 19.15.27.8
at Practices: | h a complete descr
NMAC.
☑ Attach a complet | ription of the ac | tions Operator wil | l take t | o comply | with tl | he requirements of | | #### Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022 Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section. ✓ Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area. #### IX. Anticipated Natural Gas Production: | W | ell | API | Anticipated Average
Natural Gas Rate MCF/D | Anticipated Volume of Natural Gas for the First Year MCF | |-------------------|--------------------|-----------------|---|--| | | | | | | | X. Natural Gas Ga | thering System (NG | GS): | | | | Operator | System | ULSTR of Tie-in | Anticipated Gathering | Available Maximum Daily Capacity | | XI. Map. \square Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the | |--| | production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of | | the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected. | | | | XII. Line Capacity. The natural gas gathering system [| \square will \square will not have | capacity to gather 100 |)% of the anticipated n | atural gas | |--|--|------------------------|-------------------------|------------| | production volume from the well prior to the date of first | st production. | | | | | XIII. Line Pressure. Operator \square does \square does not anticipate that its existing well(s) connected to the same segment, or portion, | of the | |---|---------| | natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new wo | ell(s). | | ☐ Attach Operator | 's plan to manage | production in respons | se to the increase | ed line pressure | |-------------------|-------------------|-----------------------|--------------------|------------------| | | | | | | | XIV. Co | onfidentiality: 🗆 🤇 | Operator asserts | confidentiality | pursuant to | Section | 71-2-8 | NMSA | 1978 1 | for the | information | provided in | |-----------|----------------------|--------------------|------------------|--------------|----------|-----------|-----------|---------|---------|----------------|-------------| | Section 2 | 2 as provided in Par | agraph (2) of Sub | osection D of 1 | 9.15.27.9 NN | MAC, and | d attache | es a full | descrij | otion o | f the specific | information | | for whic | h confidentiality is | asserted and the l | basis for such a | ssertion. | | | | | | | | ## Section 3 - Certifications Effective May 25, 2021 Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal: Departor will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or ☐ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. If Operator checks this box, Operator will select one of the following: Well Shut-In. Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or Venting and Flaring Plan. Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including: power generation on lease; (a) power generation for grid; **(b)** compression on lease; (c) (d) liquids removal on lease: reinjection for underground storage; (e) reinjection for temporary storage; **(f)** reinjection for enhanced oil recovery; (g) fuel cell production; and (h) #### **Section 4 - Notices** 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud: other alternative beneficial uses approved by the division. - (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or - (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement. - 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud. (i) I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act. | Signature: Melissa Guidry | |---| | Printed Name: Melissa Guidry | | Title: Regulatory Advisor Sr. | | E-mail Address: melissa_guidry@oxy.com | | Date: 01/27/25 | | Phone: 713-497-2481 | | OIL CONSERVATION DIVISION | | (Only applicable when submitted as a standalone form) | | Approved By: | | Title: | | Approval Date: | | Conditions of Approval: | | | | | | | | | #### V. Anticipated Schedule | Well Name | API | WELL LOCATION (ULSTR) | Footages | ANTICIPATED OIL BBL/D | ANTICIPATED GAS MCF/D | ANTICIPATED PROD WATER BBL/D | |-----------------------------|---------|-----------------------|------------------|-----------------------|-----------------------|------------------------------| |
LOST TANK 30_19 FED COM 71H | Pending | C-19-T22S-R32E | 476 FNL 2087 FWL | 1000 | 3250 | 2750 | | LOST TANK 30_19 FED COM 72H | Pending | C-19-T22S-R32E | 461 FNL 2113 FWL | 1000 | 3250 | 2750 | #### V. Anticipated Schedule | Well Name | API | Spud Date | TD Reached Date | Completion Commencement Date | Initial Flow Back Date | First Production Date | |-----------------------------|---------|-----------|-----------------|-------------------------------------|------------------------|-----------------------| | LOST TANK 30_19 FED COM 71H | Pending | 2/1/2026 | 03/01/2026 | 03/15/2026 | 05/01/2026 | 05/02/2026 | | LOST TANK 30_19 FED COM 72H | Pending | 2/1/2026 | 03/01/2026 | 03/15/2026 | 05/01/2026 | 05/02/2026 | Central Delivery Point Name: Lost Tank 18 Central Processing Facility #### Part VI. Separation Equipment Operator will size the flowback separator to handle 12,000 Bbls of fluid and 6-10MMscfd which is more than the expected peak rates for these wells. Each separator is rated to 1440psig, and pressure control valves and automated communication will cause the wells to shut in in the event of an upset at the facility, therefore no gas will be flared on pad during an upset. Current Oxy practices avoid use of flare or venting on pad, therefore if there is an upset or emergency condition at the facility, the wells will immediately shut down, and reassume production once the condition has cleared. #### **VII. Operational Practices** #### **Gathering System and Pipeline Notification** Well(s) will be connected to a production facility and fluids will be sent to the facility after initial flowback operations are complete, where a gas transporter system is in place. The gas produced from production facility will be dedicated to MarkWest Energy West Texas Gas Company LLC ("MarkWest") and will be connected to MarkWest's high pressure gathering system located in Lea and Eddy Counties, New Mexico and Loving and Culberson Counties, TX. OXY USA INC. ("OXY") will provide (periodically) to MarkWest a production forecast for wells being sent to their system. In addition, OXY and MarkWest will have periodic conference calls to discuss changes to production forecasts arising out of changes to drilling and completion schedules. Gas from these wells will be processed at MarWest's Preakness and Tornado Processing Plants located in Culberson County, TX and Loving County, Texas respectively. The actual flow of the gas will be based on compression operating parameters and gathering system pressures #### Flowback Strategy After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on MPLX system at that time. Based on current information, it is OXY's belief the system can take this gas upon completion of the well(s). Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis. #### **VIII. Best Management Practices** Alternatives to Reduce Flaring Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared. Power Generation – On lease Only a portion of gas is consumed operating the generator, remainder of gas will be flared Compressed Natural Gas - On lease Gas flared would be minimal, but might be uneconomical to operate when gas volume declines NGL Removal – On lease Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines | | TANKS BO | ONESPRING | |----------|-------------|-------------| | | Oil (bbl/d) | Gas (mcf/d) | | Jan-2024 | 1,006 | 1,259 | | Feb-2024 | 1,133 | 1,807 | | Mar-2024 | 938 | 1,919 | | Apr-2024 | 790 | 1,931 | | May-2024 | 681 | 1,965 | | Jun-2024 | 596 | 1,922 | | Jul-2024 | 530 | 1,827 | | Aug-2024 | 477 | 1,744 | | Sep-2024 | 432 | 1,671 | | Oct-2024 | 395 | 1,604 | | Nov-2024 | 363 | 1,543 | | Dec-2024 | 337 | 1,490 | | Jan-2025 | 314 | 1,441 | | Feb-2025 | 293 | 1,393 | | Mar-2025 | 274 | 1,350 | | Apr-2025 | 258 | 1,309 | | May-2025 | 243 | 1,271 | | Jun-2025 | 229 | 1,234 | | Jul-2025 | 218 | 1,200 | | Aug-2025 | 207 | 1,169 | | Sep-2025 | 197 | 1,139 | | Oct-2025 | 188 | 1,110 | | Nov-2025 | 179 | 1,083 | | Dec-2025 | 172 | 1,058 | | Jan-2026 | 165 | 1,034 | | Feb-2026 | 159 | 1,011 | | Mar-2026 | 152 | 988 | | Apr-2026 | 147 | 967 | | May-2026 | 141 | 947 | | Jun-2026 | 136 | 927 | | Jul-2026 | 132 | 908 | | Aug-2026 | 127 | 890 | | Sep-2026 | 123 | 873 | | Oct-2026 | 120 | 856 | | Nov-2026 | 116 | 840 | | Dec-2026 | 112 | 825 | U.S. Department of the Interior BUREAU OF LAND MANAGEMENT NAME: MELISSA GUIDRY # Operator Certification Data Report Signed on: 02/12/2025 #### **Operator** I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements. | MANIE. MELIOOA GOIDI | IX I | Oigiled Oil. 02/12/2020 | |---------------------------|-----------------------|-------------------------| | Title: Advisor Regulatory | / Sr. | | | Street Address: 5 GRE | ENWAY PLAZA SUITE 110 | | | City: HOUSTON | State: TX | Zip: 77026 | | Phone: (713)497-2481 | | | | Email address: MELISS | SA_GUIDRY@OXY.COM | | | | | | | Field | | | | Representative Name: | | | | Street Address: | | | | City: | State: | Zip: | | Phone: | | | | Email address: | | | U.S. Department of the Interior BUREAU OF LAND MANAGEMENT Application Data **APD ID:** 10400103342 Submission Date: 01/27/2025 **Operator Name: OXY USA INCORPORATED** Well Name: LOST TANK 30_19 FEDERAL COM Well Type: OIL WELL Well Number: 71H Well Work Type: Drill Highlighted data reflects the most recent changes **Show Final Text** #### **Section 1 - General** APD ID: 10400103342 Tie to previous NOS? N Submission Date: 01/27/2025 **BLM Office:** Carlsbad **User:** MELISSA GUIDRY Title: Advisor Regulatory Sr. Federal/Indian APD: FED Is the first lease penetrated for production Federal or Indian? FED Lease number: NMNM90587 Lease Acres: Surface access agreement in place? Allotted? Reservation: Agreement in place? YES Federal or Indian agreement: FEDERAL Agreement number: NMNM140586 Agreement name: Lost Tank Keep application confidential? N **Permitting Agent? NO APD Operator: OXY USA INCORPORATED** Operator letter of #### **Operator Info** Operator Organization Name: OXY USA INCORPORATED Operator Address: P.O. BOX 1002 **Operator PO Box:** State: CA **Operator City: TUPMAN** **Operator Phone:** (661)763-6046 **Operator Internet Address:** #### **Section 2 - Well Information** Well in Master Development Plan? NO **Master Development Plan name:** Well in Master SUPO? NO Master SUPO name: Well in Master Drilling Plan? NO Master Drilling Plan name: Well Name: LOST TANK 30_19 FEDERAL COM Well Number: 71H Well API Number: Field/Pool or Exploratory? Field and Pool Field Name: BILBREY BASIN Pool Name: BONE SPRING SOUTH **Zip:** 93276-1002 Well Name: LOST TANK 30_19 FEDERAL COM Well Number: 71H Is the proposed well in an area containing other mineral resources? USEABLE WATER, NATURAL GAS, OIL Is the proposed well in a Helium production area? N Use Existing Well Pad? N New surface disturbance? **Type of Well Pad:** MULTIPLE WELL Multiple Well Pad Name: LSTTNK_22S32E Number: 1902 Well Class: HORIZONTAL Number of Legs: 1 Well Work Type: Drill Well Type: OIL WELL Describe Well Type: Well sub-Type: INFILL Describe sub-type: Reservoir well spacing assigned acres Measurement: 640 Acres Well plat: LostTank30_19FedCom71H_C102_20250127150127.pdf LostTank30_19FedCom71H_SITE_PLAN_20250127150137.pdf #### **Section 3 - Well Location Table** Survey Type: RECTANGULAR **Describe Survey Type:** Datum: NAD83 Vertical Datum: NAVD88 Survey number: Reference Datum: GROUND LEVEL | Wellbore | NS-Foot | NS Indicator | EW-Foot | EW Indicator | Twsp | Range | Section | Aliquot/Lot/Tract | Latitude | Longitude | County | State | Meridian | Lease Type | Lease Number | Elevation | MD | TVD | Will this well produce
from this | |------------------|---------|--------------|----------|--------------|------|-------|---------|-------------------|---------------|---------------------|--------|-------------------|-------------------|------------|---------------|---------------|-----------|-----------|-------------------------------------| | SHL
Leg
#1 | 476 | FNL | 208
7 | FW
L | 22S | 32E | | Aliquot
NENW | 32.38296
6 | -
103.7161
89 | LEA | 1 | NEW
MEXI
CO | F | NMNM
90587 | 361
9 | 0 | 0 | N | | KOP
Leg
#1 | 300 | FSL | 960 | FW
L | 22S | 32E | 18 | Lot
4 | 32.38508
2 | -
103.7198
38 | LEA | NEW
MEXI
CO | NEW
MEXI
CO | F | NMNM
90587 | -
692
5 | 107
09 | 105
44 | N | Well Name: LOST TANK 30_19 FEDERAL COM Well Number: 71H | _ | |--------------------|----------|--------------|---------|--------------|------|-------|---------|-------------------|---------------|---------------------|--------
-------|-------------------|------------|----------------|---------------|-----------|-----------|-------------------------------------| | Wellbore | NS-Foot | NS Indicator | EW-Foot | EW Indicator | Twsp | Range | Section | Aliquot/Lot/Tract | Latitude | Longitude | County | State | Meridian | Lease Type | Lease Number | Elevation | MD | TVD | Will this well produce
from this | | PPP
Leg
#1-1 | 100 | FNL | 960 | FW
L | 22S | 32E | 19 | Lot
1 | 32.38398
2 | -
103.7198
39 | LEA | | NEW
MEXI
CO | F | NMNM
90587 | -
758
1 | 117
04 | 112
00 | Y | | PPP
Leg
#1-2 | 132
1 | FNL | 961 | FW
L | 22S | 32E | 19 | Lot
2 | 32.38062
7 | -
103.7198
37 | LEA | | NEW
MEXI
CO | F | NMNM
90587 | -
758
1 | 129
20 | 112
00 | Υ | | PPP
Leg
#1-3 | 264
2 | FNL | 962 | FW
L | 22S | 32E | 19 | Lot
3 | 32.37699
7 | -
103.7198
34 | LEA | | NEW
MEXI
CO | F | NMNM
90587 | -
758
1 | 142
41 | 112
00 | Υ | | PPP
Leg
#1-4 | 0 | FNL | 964 | FW
L | 22S | 32E | 19 | Lot
4 | 32.36974
2 | -
103.7198
3 | LEA | | NEW
MEXI
CO | F | NMNM
90587 | -
758
1 | 168
81 | 112
00 | Y | | EXIT
Leg
#1 | 100 | FSL | 960 | FW
L | 22S | 32E | 30 | Lot
4 | 32.35548
5 | -
103.7198
21 | LEA | | NEW
MEXI
CO | F | NMNM
106915 | -
758
1 | 212
88 | 112
00 | Y | | BHL
Leg
#1 | 20 | FSL | 960 | FW
L | 22S | 32E | 30 | Lot
4 | 32.35526
5 | -
103.7198
21 | LEA | | NEW
MEXI
CO | F | NMNM
106915 | -
758
1 | 221
52 | 112
00 | N | #### U.S. Department of the Interior BUREAU OF LAND MANAGEMENT # Drilling Plan Data Report 04/28/2025 APD ID: 10400103342 Submission Date: 01/27/2025 Highlighted data reflects the most recent changes **Operator Name: OXY USA INCORPORATED** Well Number: 71H Well Name: LOST TANK 30_19 FEDERAL COM Well Type: OIL WELL Well Work Type: Drill **Show Final Text** #### **Section 1 - Geologic Formations** | Formation ID | Formation Name | Elevation | True Vertical | Measured
Depth | Lithologies | Mineral Resources | Producing
Formatio | |--------------|-----------------|-----------|---------------|-------------------|--|------------------------------------|-----------------------| | 15513982 | RUSTLER | 3619 | 855 | 855 | ANHYDRITE,
DOLOMITE, SHALE | USEABLE WATER | N | | 15513983 | SALADO | 2470 | 1149 | 1149 | ANHYDRITE,
DOLOMITE, HALITE,
SHALE | OTHER : SALT | N | | 15513984 | CASTILE | 757 | 2862 | 2862 | ANHYDRITE | OTHER : SALT | N | | 15513985 | DELAWARE | -964 | 4583 | 4583 | LIMESTONE,
SANDSTONE,
SILTSTONE | NATURAL GAS, OIL,
OTHER : BRINE | Y | | 15513986 | BELL CANYON | -1046 | 4665 | 4665 | SANDSTONE,
SILTSTONE | NATURAL GAS, OIL,
OTHER : BRINE | Y | | 15513987 | CHERRY CANYON | -1875 | 5494 | 5505 | SANDSTONE,
SILTSTONE | NATURAL GAS, OIL,
OTHER : BRINE | Y | | 15513988 | BRUSHY CANYON | -3119 | 6738 | 6787 | SANDSTONE,
SILTSTONE | OTHER : LOSSES | N | | 15513989 | BONE SPRING | -4868 | 8487 | 8589 | LIMESTONE,
SANDSTONE,
SILTSTONE | NATURAL GAS, OIL | Y | | 15513990 | BONE SPRING 1ST | -5955 | 9574 | 9710 | LIMESTONE,
SANDSTONE,
SILTSTONE | NATURAL GAS, OIL | Y | | 15513991 | BONE SPRING 2ND | -6586 | 10205 | 10360 | LIMESTONE,
SANDSTONE,
SILTSTONE | NATURAL GAS, OIL | Y | #### **Section 2 - Blowout Prevention** Pressure Rating (PSI): 10M Rating Depth: 11200 Equipment: 13-5/8" 5M Annular, 10M Blind Ram, 10M Double Ram Requesting Variance? YES Variance request: Request for the use of a flexible choke line from the BOP to Choke Manifold. Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per 43 CFR part 3170 Subpart 3172 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. OXY requests permission to adjust the BOP Well Name: LOST TANK 30_19 FEDERAL COM Well Number: 71H break testing requirements as per the agreement reached in the OXY/BLM meeting on September 5, 2019. See the attached BOP Break Testing variance. #### **Choke Diagram Attachment:** LostTank30_19FedCom71H_ChkManifolds_20250127152144.pdf #### **BOP Diagram Attachment:** LostTank30_19FedCom71H_BOP_20250127152150.pdf LostTank30_19FedCom71H_13inADAPT_13.375in_9.625in_10x10_20250127152156.pdf LostTank30_19FedCom71H_FlexHoseCert_20250127152212.pdf #### **Section 3 - Casing** | Casing ID | String Type | Hole Size | Csg Size | Condition | Standard | Tapered String | Top Set MD | Bottom Set MD | Top Set TVD | Bottom Set TVD | Top Set MSL | Bottom Set MSL | Calculated casing
length MD | Grade | Weight | Joint Type | Collapse SF | Burst SF | Joint SF Type | Joint SF | Body SF Type | Body SF | |-----------|------------------|-----------|----------|-----------|----------|----------------|------------|---------------|-------------|----------------|-------------|----------------|--------------------------------|------------|--------|----------------------|-------------|----------|---------------|----------|--------------|---------| | 1 | SURFACE | 17.5 | 13.375 | NEW | API | N | 0 | 915 | 0 | 915 | 3619 | 2704 | 915 | J-55 | 54.5 | BUTT | 1 | 1.1 | BUOY | 1.4 | BUOY | 1.4 | | 2 | OTHER | 12.2
5 | 10.75 | NEW | API | N | 0 | 4583 | 0 | 4583 | 3698 | -964 | 4583 | HCL
-80 | | OTHER -
BTC-SC | 1 | 1.1 | BUOY | 1.4 | BUOY | 1.4 | | 3 | INTERMED
IATE | 9.87
5 | 7.625 | NEW | API | N | 0 | 10609 | 0 | 10444 | 3698 | -6825 | 10609 | HCL
-80 | 26.4 | BUTT | 1 | 1.1 | BUOY | 1.4 | BUOY | 1.4 | | 4 | PRODUCTI
ON | 6.75 | 5.5 | NEW | API | N | 0 | 22152 | 0 | 11200 | 3619 | -7581 | 22152 | P-
110 | | OTHER -
SPRINT-SF | 1 | 1.1 | BUOY | 1.4 | BUOY | 1.4 | #### **Casing Attachments** Operator Name: OXY USA INCORPORATED Well Name: LOST TANK 30_19 FEDERAL COM Well Number: 71H **Casing Attachments** Casing ID: 1 **SURFACE** String **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): LostTank30_19FedCom71H_CsgCriteria_20250127152313.pdf Casing ID: 2 **String OTHER** - SALT **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): LostTank30_19FedCom71H_CsgCriteria_20250127152436.pdf Casing ID: 3 **String INTERMEDIATE Inspection Document:** **Spec Document:** **Tapered String Spec:** Casing Design Assumptions and Worksheet(s): LostTank30_19FedCom71H_CsgCriteria_20250127152525.pdf Well Name: LOST TANK 30_19 FEDERAL COM Well Number: 71H #### **Casing Attachments** Casing ID: 4 String **PRODUCTION** **Inspection Document:** **Spec Document:** **Tapered String Spec:** #### Casing Design Assumptions and Worksheet(s): $Lost Tank 30_19 Fed Com 71 H_Csg Criteria_20250127152634.pdf$ $Lost Tank 30_19 Fed Com 71 H_API_BTC_SC_10.750 in_45.50 ppf_L80 IC_20250127152640. pdf$ $Lost Tank 30_19 Fed Com 71 H_VAM_SPRINT_SF_5.5 in_20 ppf_P110 RY_20250127152648. pdf$ ### Section 4 - Cement | Section 4 | 4 - Ce | emen | t | | | | | | | | | |--------------|-----------|---------------------|--------|-----------|--------------|-------|---------|-------|---------|-------------|----------------------| | String Type | Lead/Tail | Stage Tool
Depth | Тор МD | Bottom MD | Quantity(sx) | Yield | Density | Cu Ft | Excess% | Cement type | Additives | | SURFACE | Lead | | 0 | 915 | 956 | 1.33 | 14.8 | 1271 | 100 | Class C | Accelerator | | | | | | | | | | | | | | | OTHER | Lead | 1 | 0 | 4083 | 643 | 1.73 | 12.9 | 1112 | 50 | Class Pozz | Retarder | | | | | | | | | | | | | | | OTHER | Lead | 1 | 4083 | 4583 | 85 | 1.33 | 14.8 | 113 | 20 | Class C | Accelerator | | | | | | | | | | | | | | | INTERMEDIATE | Lead | 2 | 0 | 7037 | 983 | 1.71 | 13.3 | 1681 | 25 | Class C | Accelerator | | | | | | | | | | | | | | | INTERMEDIATE | Lead | 1 | 7037 | 1060
9 | 479 | 1.68 | 13.2 | 805 | 5 | Class C | Retarder, Dispersant | Well Name: LOST TANK 30_19 FEDERAL COM Well Number: 71H | String Type | Lead/Tail | Stage Tool
Depth | Top MD | Bottom MD | Quantity(sx) | Yield | Density | Cu Ft | Excess% | Cement type | Additives | |-------------|-----------|---------------------|-----------|-----------|--------------|-------|---------|-------|---------|-------------|-----------| | PRODUCTION | Lead | 1 | 1010
9 | 2215
2 | 682 | 1.84 | 13.3 | 1255 | 25 | Class C | Retarder | #### **Section 5 - Circulating Medium** Mud System Type: Closed Will an air or gas system be Used? NO Description of the equipment for the circulating system in accordance with 43 CFR 3172: Diagram of the equipment for the circulating system in accordance with 43 CFR 3172: Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls, Drilling Paper, Salt Water Clay, CACL2. Oxy will use a closed mud system. Describe the mud monitoring system utilized: PVT/MD Totco/Visual Monitoring #### **Circulating Medium Table** | Top Depth | Bottom Depth | Mud Type | Min Weight (Ibs/gal) | Max Weight (lbs/gal) | Density (lbs/cu ft) | Gel Strength (lbs/100 sqft) | ЬН | Viscosity (CP) | Salinity (ppm) | Filtration (cc) | Additional Characteristics | |-----------
--------------|---|----------------------|----------------------|---------------------|-----------------------------|----|----------------|----------------|-----------------|----------------------------| | 1060
9 | 2215
2 | OTHER:
WATER-BASED
MUD OR OIL-
BASED MUD | 9.5 | 12.5 | | | | | | | | | 0 | 915 | WATER-BASED
MUD | 8.6 | 8.8 | | | | | | | | | 915 | 4583 | OTHER:
SATURATED
BRINE-BASED
OR OIL-BASED
MUD | 8 | 10 | | | | | | | | | 4583 | 1060
9 | OTHER :
WATER-BASED
MUD OR OIL- | 8 | 10 | | | | | | | Dogo F of 7 | Well Name: LOST TANK 30_19 FEDERAL COM Well Number: 71H | BASED MUD | |-----------| |-----------| #### **Section 6 - Test, Logging, Coring** List of production tests including testing procedures, equipment and safety measures: GR from TD to surface (horizontal well vertical portion of hole) Mud Log from Bone Spring - TD CBL (production string) - to be ran by completions. List of open and cased hole logs run in the well: GAMMA RAY LOG, CEMENT BOND LOG, DIRECTIONAL SURVEY, MUD LOG/GEOLOGICAL LITHOLOGY LOG, #### Coring operation description for the well: No coring is planned at this time. #### **Section 7 - Pressure** Anticipated Bottom Hole Pressure: 7280 **Anticipated Surface Pressure: 4815** Anticipated Bottom Hole Temperature(F): 170 Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO Describe: **Contingency Plans geoharzards description:** Contingency Plans geohazards Hydrogen Sulfide drilling operations plan required? YES Hydrogen sulfide drilling operations LostTank30_19FedCom71H_H2S1_20250127153547.pdf LostTank30_19FedCom71H_H2S2_20250127153552.pdf Well Name: LOST TANK 30_19 FEDERAL COM Well Number: 71H #### **Section 8 - Other Information** #### Proposed horizontal/directional/multi-lateral plan submission: $Lost Tank 30_19 Fed Com 71 HC_Direct Plan_20250127153621.pdf$ LostTank30_19FedCom71HC_AC_20250127153627.pdf #### Other proposed operations facets description: #### Other proposed operations facets attachment: LostTank30_19FedCom71H_DrillPlan_20250127153634.pdf LostTank30_19FedCom71H_Blanket_Design_A_Pad_Review_LSTTNK_22S32E_1902_20250127153641.pdf LostTank30_19FedCom71H_Blanket_Design_A___OXY___3S_Slim_v7.1_20250127153650.pdf LostTank30_19FedCom71H_SpudRigData_20250127153704.pdf LostTank30_19FedCom71H_NGMP___WMP_20250127153714.pdf #### Other Variance attachment: $Lost Tank 30_19 Fed Com 71 H_BOP Break Testing Variance _20250127153748.pdf$ LostTank30_19FedCom71H_BradenheadCBLVariance_20250127153756.pdf LostTank30_19FedCom71H_OfflineCementVariance_20250127153803.pdf U.S. Department of the Interior BUREAU OF LAND MANAGEMENT SUPO Data Repor APD ID: 10400103342 **Operator Name: OXY USA INCORPORATED** Well Name: LOST TANK 30_19 FEDERAL COM Well Type: OIL WELL Submission Date: 01/27/2025 Well Number: 71H Well Work Type: Drill Highlighted data reflects the most recent changes Show Final Text #### **Section 1 - Existing Roads** Will existing roads be used? YES **Existing Road Map:** LostTank30_19FedCom71H_ExistingRoad_20250127153833.pdf Existing Road Purpose: ACCESS, FLUID TRANSPORT Row(s) Exist? NO ROW ID(s) ID: Do the existing roads need to be improved? NO **Existing Road Improvement Description:** **Existing Road Improvement Attachment:** #### Section 2 - New or Reconstructed Access Roads Will new roads be needed? YES **New Road Map:** LostTank30_19FedCom71H_NewRoads_20250127153859.pdf New road type: LOCAL Length: 836 Width (ft.): 30 Feet Max slope (%): 0 Max grade (%): 0 Army Corp of Engineers (ACOE) permit required? N ACOE Permit Number(s): New road travel width: 20 New road access erosion control: Watershed diversion every 200', if needed. New road access plan or profile prepared? N New road access plan Well Name: LOST TANK 30_19 FEDERAL COM Well Number: 71H Access road engineering design? N Access road engineering design Turnout? N Access surfacing type: OTHER Access topsoil source: ONSITE Access surfacing type description: CALICHE Access onsite topsoil source depth: 0 Offsite topsoil source description: Onsite topsoil removal process: If available Access other construction information: Access miscellaneous information: Number of access turnouts: Access turnout map: **Drainage Control** New road drainage crossing: CULVERT Drainage Control comments: Watershed diversion every 200', if needed. Road Drainage Control Structures (DCS) description: Watershed diversion every 200', if needed. **Road Drainage Control Structures (DCS) attachment:** **Access Additional Attachments** **Section 3 - Location of Existing Wells** **Existing Wells Map?** YES Attach Well map: LostTank30_19FedCom71H_ExistingWells_20250127153923.pdf Section 4 - Location of Existing and/or Proposed Production Facilities Submit or defer a Proposed Production Facilities plan? SUBMIT **Production Facilities description:** **Production Facilities map:** LostTank30_19FedCom71H_LeaseFacility_20250127154002.pdf Well Name: LOST TANK 30_19 FEDERAL COM Well Number: 71H #### **Section 5 - Location and Types of Water Supply** #### **Water Source Table** Water source type: GW WELL Water source use type: SURFACE CASING OTHER Describe use type: DRILLING INTERMEDIATE/PRODUCTION **CASING** Source latitude: Source longitude: Source datum: Water source permit type: WATER WELL Water source transport method: TRUCKING **PIPELINE** Source land ownership: COMMERCIAL Source transportation land ownership: COMMERCIAL Water source volume (barrels): 2000 Source volume (acre-feet): 0.25778619 Source volume (gal): 84000 #### Water source and transportation LostTank30_19FedCom71H_Water___Caliche_Source_Map_20250127154017.pdf LostTank30_19FedCom71H_WtrSrcGRR_20250127154022.pdf LostTank30_19FedCom71H_WtrSrcMesq_20250127154028.pdf **Water source comments:** This well will be drilled using a combination of water mud systems. It will be obtained from commercial water stations (Gregory Rockhouse, Mesquite) in the area and will be hauled to location by transport truck using existing and proposed roads. New water well? N #### **New Water Well Info** Well latitude: Well Longitude: Well datum: Well target aquifer: Est. depth to top of aquifer(ft): Est thickness of aquifer: **Aquifer comments:** Aquifer documentation: Well depth (ft): Well casing type: Well Name: LOST TANK 30_19 FEDERAL COM Well Number: 71H Well casing outside diameter (in.): Well casing inside diameter (in.): New water well casing? Used casing source: Drilling method: Drill material: Grout material: Grout depth: Casing length (ft.): Casing top depth (ft.): Well Production type: Completion Method: Water well additional information: State appropriation permit: Additional information attachment: #### **Section 6 - Construction Materials** Using any construction materials: YES Construction Materials description: Primary All caliche utilized for the drilling pad and proposed access road will be obtained from an existing BLM/State/Fee approved pit or from prevailing deposits found on the location. Will use BLM recommended extra caliche from other locations close by for roads, if available. Secondary The secondary way of obtaining caliche to build locations and roads will be by turning over the location. This means, caliche will be obtained from the actual well site. A caliche permit will be obtained from BLM prior to pushing up any caliche. 2400 cubic yards is max amount of caliche needed for pad and roads. Amount will vary for each pad. The procedure below has been approved by BLM personnel: a. The top 6 of topsoil is pushed off and stockpiled along the side of the location. b. An approximate 120 X 120 area is used within the proposed well site to remove caliche. c. Subsoil is removed and piled alongside the 120 X 120 within the pad site. d. When caliche is found, material will be stockpiled within the pad site to build the location and road. e. Then subsoil is pushed back in the hole and caliche is spread accordingly across entire location and road. f. Once the well is drilled the stockpiled top soil will be used for interim reclamation and spread along areas where caliche is picked up and the location size is reduced. Neither caliche nor subsoil will be stockpiled outside of the well pad. Topsoil will be stockpiled along the edge of the pad as depicted in the site plan included with this APD. #### **Construction Materials source location** LostTank30_19FedCom71H_Water___Caliche_Source_Map_20250127154042.pdf #### **Section 7 - Methods for Handling** Waste type: DRILLING Waste content description: Water-Based Cuttings, Water-Based Mud, Oil-Based Cuttings, Oil-Based Mud, Produced Water Amount of waste: 1889 barrels Waste disposal frequency: Daily Safe containment description: Haul-Off Bins Safe containment attachment: Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL **FACILITY** Disposal type description: **Disposal location description:** An approved facility that can process drill cuttings, drill fluids, flowback water, produced water, contaminated soils, and other non-hazardous wastes. Methods of Handling Waste Material: a. A closed loop system will be utilized consisting of above ground steel tanks and haul-off bins. Well Name: LOST TANK 30_19 FEDERAL COM Well Number: 71H Disposal of liquids, drilling fluids and cuttings will be disposed of at an approved facility. Solids-CRI, Liquids-Laguna b. All trash, junk and other waste material will be contained in trash cages or bins to prevent scattering. When the job is completed, all contents will be removed and disposed of in an approved sanitary landfill. c. The supplier, including broken sacks, will pickup slats remaining after completion of well. d. A Porto-john will be provided for the rig crews. This equipment will be properly maintained during the drilling and completion operations and will be removed when all operations are complete. e. Disposal of fluids to be transported will be by the following
companies. TFH Ltd, Laguna SWD Facility #### **Reserve Pit** Reserve Pit being used? NO Temporary disposal of produced water into reserve pit? NO Reserve pit length (ft.) Reserve pit width (ft.) Reserve pit depth (ft.) Reserve pit volume (cu. yd.) Is at least 50% of the reserve pit in cut? Reserve pit liner Reserve pit liner specifications and installation description #### **Cuttings Area** Cuttings Area being used? NO Are you storing cuttings on location? Y **Description of cuttings location** A closed loop system will be utilized consisting of above ground steel tanks and haul-off bins. Disposal of liquids, drilling fluids and cuttings will be disposed of at an approved facility. Cuttings area length (ft.) Cuttings area width (ft.) Cuttings area depth (ft.) Cuttings area volume (cu. yd.) Is at least 50% of the cuttings area in cut? WCuttings area liner Cuttings area liner specifications and installation description #### **Section 8 - Ancillary** Are you requesting any Ancillary Facilities?: N **Ancillary Facilities** Comments: Well Name: LOST TANK 30_19 FEDERAL COM Well Number: 71H #### **Section 9 - Well Site** #### **Well Site Layout Diagram:** LostTank30_19FedCom71H_ClosedLoop_20250127154133.pdf Comments: #### **Section 10 - Plans for Surface Reclamation** Type of disturbance: New Surface Disturbance Multiple Well Pad Name: LSTTNK 22S32E Multiple Well Pad Number: 1902 #### Recontouring LostTank30_19FedCom71H_SITE_PLAN_20250127154154.pdf LostTank30 19FedCom71H LocationLayout 20250127154207.pdf Drainage/Erosion control construction: Reclamation to be wind rowed as needed to control erosion. Drainage/Erosion control reclamation: Reclamation to be wind rowed as needed to control erosion. Well pad proposed disturbance (acres): 8.8 Road proposed disturbance (acres): 0.58 Powerline proposed disturbance (acres): 2.05 Pipeline proposed disturbance (acres): 34.7 Other proposed disturbance (acres): 1.49 **Total proposed disturbance:** 47.620000000000005 Well pad interim reclamation (acres): 1.34 Well pad long term disturbance (acres): 7.45 Road interim reclamation (acres): 0.19 Road long term disturbance (acres): 0.38 Powerline interim reclamation (acres): Powerline long term disturbance (acres): 0 Pipeline interim reclamation (acres): 23.14 Pipeline long term disturbance (acres): 11.57 Other interim reclamation (acres): 0 Other long term disturbance (acres): **Total interim reclamation: 26.72** Total long term disturbance: 20.88999999999997 **Disturbance Comments:** Reconstruction method: If the well is deemed commercially productive, caliche from the areas of the pad site not required for operations will be reclaimed. The original topsoil will be returned to the area of the drill pad not necessary to operate the well. These unused areas of the drill pad will be contoured, as close as possible, to match the original topography, and the are will be seeded with an approved BLM mixture to re-establish vegetation. After concluding the drilling and/or completion operations, if the well is found non-commercial, the caliche will be removed from the pad and transported to the original caliche pit or used for other drilling locations. The road will be reclaimed as directed by the BLM. the original topsoil will again be returned to the pad and contoured, as close as possible, to the original topography and the area will be seeded with an approved BLM mixture to re-establish vegetation. **Topsoil redistribution:** The original topsoil will be returned to the area of the drill pad not necessary to operate the well. **Soil treatment:** To be determined by BLM. **Existing Vegetation at the well pad:** To be determined by BLM at onsite. **Existing Vegetation at the well pad** Well Name: LOST TANK 30_19 FEDERAL COM Well Number: 71H Existing Vegetation Community at the road: To be determined by BLM at onsite. **Existing Vegetation Community at the road** Existing Vegetation Community at the pipeline: To be determined by BLM at onsite. **Existing Vegetation Community at the pipeline** Existing Vegetation Community at other disturbances: To be determined by BLM at onsite. **Existing Vegetation Community at other disturbances** Non native seed used? N Non native seed description: Seedling transplant description: Will seedlings be transplanted for this project? N Seedling transplant description Will seed be harvested for use in site reclamation? N Seed harvest description: Seed harvest description attachment: Seed Seed Type **Seed Table** Seed Summary Pounds/Acre Seed reclamation **Operator Contact/Responsible Official** First Name: Michael Last Name: Wilson Phone: Email: michael_wilson@oxy.com **Total pounds/Acre:** Seedbed prep: Seed BMP: Seed method: Existing invasive species? N Existing invasive species treatment description: Well Name: LOST TANK 30_19 FEDERAL COM Well Number: 71H **Existing invasive species treatment** Weed treatment plan description: To be determined by BLM. Weed treatment plan Monitoring plan description: To be determined by BLM. Monitoring plan Success standards: To be determined by BLM. Pit closure description: NA Pit closure attachment: #### **Section 11 - Surface Ownership** Disturbance type: WELL PAD Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: **BIA Local Office:** **BOR Local Office:** **COE Local Office:** **DOD Local Office:** NPS Local Office: **State Local Office:** **Military Local Office:** **USFWS Local Office:** **Other Local Office:** **USFS** Region: **USFS** Forest/Grassland: **USFS** Ranger District: Disturbance type: NEW ACCESS ROAD Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: **BIA Local Office:** | Operator Name: OXY USA INCORPORATED | | |--|------------------------| | Well Name: LOST TANK 30_19 FEDERAL COM | Well Number: 71H | | BOR Local Office: | | | COE Local Office: | | | DOD Local Office: | | | NPS Local Office: | | | State Local Office: | | | Military Local Office: | | | USFWS Local Office: | | | Other Local Office: | | | USFS Region: | | | USFS Forest/Grassland: | USFS Ranger District: | | | | | | | | | | | | | | Disturbance type: PIPELINE | | | Describe: | | | Surface Owner: BUREAU OF LAND MANAGEMENT | | | Other surface owner description: | | | BIA Local Office: | | | BOR Local Office: | | | COE Local Office: DOD Local Office: | | | NPS Local Office: | | | State Local Office: | | | | | | Military Local Office: | | | USFWS Local Office: Other Local Office: | | | USFS Region: | | | USFS Forest/Grassland: | USFS Ranger District: | | OOI O I OIGSYOI assiallu. | ooi o nanger bistrict. | Well Name: LOST TANK 30_19 FEDERAL COM Well Number: 71H Disturbance type: OTHER **Describe:** ELECTRIC LINES Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: **BIA Local Office:** **BOR Local Office:** **COE Local Office:** **DOD Local Office:** **NPS Local Office:** **State Local Office:** **Military Local Office:** **USFWS Local Office:** Other Local Office: **USFS** Region: **USFS** Forest/Grassland: **USFS Ranger District:** # Section 12 - Other Right of Way needed? Y Use APD as ROW? Y **ROW Type(s):** 281001 ROW - ROADS,285003 ROW - POWER TRANS,288100 ROW - O&G Pipeline,288101 ROW - O&G Facility Sites,289001 ROW- O&G Well Pad **ROW** **SUPO Additional Information:** Permian Basin MOA: To be submitted after APD acceptance. GIS shapefiles available for BLM. Use a previously conducted onsite? N **Previous Onsite information:** **Other SUPO** U.S. Department of the Interior BUREAU OF LAND MANAGEMENT PWD Data Report BUREAU OF LAND MANAGEMENT **APD ID:** 10400103342 **Submission Date:** 01/27/2025 **Operator Name: OXY USA INCORPORATED** Well Name: LOST TANK 30_19 FEDERAL COM Well Number: 71H Well Type: OIL WELL Well Work Type: Drill ### **Section 1 - General** Would you like to address long-term produced water disposal? NO ### **Section 2 - Lined** Would you like to utilize Lined Pit PWD options? N **Produced Water Disposal (PWD) Location:** PWD surface owner: PWD disturbance (acres): Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit Pit liner description: Pit liner manufacturers Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule Lined pit reclamation description: Lined pit reclamation Leak detection system description: Leak detection system Well Name: LOST TANK 30_19 FEDERAL COM Well Number: 71H **Lined pit Monitor description:** **Lined pit Monitor** Lined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond? Lined pit bond number: Lined pit bond amount: Additional bond information ### **Section 3 - Unlined** Would you like to utilize Unlined Pit PWD options? N **Produced Water Disposal (PWD) Location:** PWD disturbance (acres): PWD surface owner: Unlined pit PWD on or off channel: Unlined pit PWD discharge volume (bbl/day): Unlined pit Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal Unlined pit precipitated solids disposal schedule: Unlined pit precipitated solids disposal schedule Unlined pit reclamation description: Unlined pit reclamation Unlined pit Monitor description: **Unlined pit Monitor** Do you propose to put the produced water to beneficial use? Beneficial use user Estimated depth of the shallowest aquifer (feet): Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected? TDS lab results: Geologic and hydrologic State **Unlined Produced Water Pit Estimated** Unlined pit: do you have a reclamation bond for the pit? Well Name: LOST TANK 30_19 FEDERAL COM Well Number: 71H Is the reclamation bond a rider under the BLM bond? Unlined pit bond number: Unlined pit bond amount: **Additional
bond information** Section 4 - Would you like to utilize Injection PWD options? N **Produced Water Disposal (PWD) Location:** PWD surface owner: PWD disturbance (acres): Injection PWD discharge volume (bbl/day): Injection well mineral owner: Injection well type: Injection well number: Injection well name: Assigned injection well API number? Injection well API number: Injection well new surface disturbance (acres): Minerals protection information: Mineral protection **Underground Injection Control (UIC) Permit?** **UIC Permit** Section 5 - Surface Would you like to utilize Surface Discharge PWD options? N **Produced Water Disposal (PWD) Location:** PWD surface owner: PWD disturbance (acres): Surface discharge PWD discharge volume (bbl/day): **Surface Discharge NPDES Permit?** **Surface Discharge NPDES Permit attachment:** Surface Discharge site facilities information: Surface discharge site facilities map: Section 6 - Would you like to utilize Other PWD options? N **Produced Water Disposal (PWD) Location:** PWD surface owner: PWD disturbance (acres): Other PWD discharge volume (bbl/day): Released to Imaging: 8/6/2025 11:21:20 AM Well Name: LOST TANK 30_19 FEDERAL COM Well Number: 71H Other PWD type description: Other PWD type Have other regulatory requirements been met? Other regulatory requirements U.S. Department of the Interior **BUREAU OF LAND MANAGEMENT** **Bond Info Data** 04/28/2025 APD ID: 10400103342 **Operator Name: OXY USA INCORPORATED** Well Name: LOST TANK 30_19 FEDERAL COM Well Type: OIL WELL Submission Date: 01/27/2025 Highlighted data reflects the most Well Number: 71H Well Work Type: Drill recent changes **Show Final Text** ### **Bond** Federal/Indian APD: FED **BLM Bond number:** ESB000226 **BIA Bond number:** Do you have a reclamation bond? NO Is the reclamation bond a rider under the BLM bond? Is the reclamation bond BLM or Forest Service? **BLM** reclamation bond number: Forest Service reclamation bond number: **Forest Service reclamation bond attachment:** **Reclamation bond amount:** **Reclamation bond rider amount:** Additional reclamation bond information attachment: Received by OCD: 4/29/2025 1:19:01 PM Page 43 of 122 # Oxy USA Inc. - Lost Tank 30_19 Fed Com 71H Drill Plan # 1. Geologic Formations | TVD of Target (ft |): 11200 | Pilot Hole Depth (ft): | | |--------------------------|----------|------------------------------------|-----| | Total Measured Depth (ft |): 22152 | Deepest Expected Fresh Water (ft): | 855 | # **Delaware Basin** | Formation | MD-RKB (ft) | TVD-RKB (ft) | Expected Fluids | |-----------------|-------------|--------------|------------------------| | Rustler | 855 | 855 | | | Salado | 1149 | 1149 | Salt | | Castile | 2862 | 2862 | Salt | | Delaware | 4583 | 4583 | Oil/Gas/Brine | | Bell Canyon | 4665 | 4665 | Oil/Gas/Brine | | Cherry Canyon | 5505 | 5494 | Oil/Gas/Brine | | Brushy Canyon | 6787 | 6738 | Losses | | Bone Spring | 8589 | 8487 | Oil/Gas | | Bone Spring 1st | 9710 | 9574 | Oil/Gas | | Bone Spring 2nd | 10360 | 10205 | Oil/Gas | | Bone Spring 3rd | | | Oil/Gas | | Wolfcamp | | | Oil/Gas | | Penn | | | Oil/Gas | | Strawn | | | Oil/Gas | ^{*}H2S, water flows, loss of circulation, abnormal pressures, etc. # 2. Casing Program | | | N | 1D | T\ | /D | | | | | |--------------|-----------|------|-------|------|-------|---------|---------|---------|-----------| | | Hole | From | То | From | То | Csg. | Csg Wt. | | | | Section | Size (in) | (ft) | (ft) | (ft) | (ft) | OD (in) | (ppf) | Grade | Conn. | | Surface | 17.5 | 0 | 915 | 0 | 915 | 13.375 | 54.5 | J-55 | ВТС | | Salt | 12.25 | 0 | 4583 | 0 | 4583 | 10.75 | 45.5 | L-80 HC | BTC-SC | | Intermediate | 9.875 | 0 | 10609 | 0 | 10444 | 7.625 | 26.4 | L-80 HC | ВТС | | Production | 6.75 | 0 | 22152 | 0 | 11200 | 5.5 | 20 | P-110 | Sprint-SF | All casing strings will be tested in accordance with 43 CFR part 3170 Subpart 3172 *Oxy requests the option to run the 10.75" Intermediate I as a contingency string to be run only if severe hole conditions dictate an additional casing string necessary. This would make the planned 7.625" / 7.827" Casing the Intermediate II. **If 4S Contingency is not required, Oxy requests permission to transition from 12.25" to 9.875" Intermediate I at 1st trip point below Brushy top (estimated top in formation table above). Cement volumes will be updated on C103 submission. Page 44 of 122 Occidental - Permian New Mexico | All Casing SF Values will meet or exceed those below | | | | | | | |--|-------|----------------|----------|--|--|--| | SF | SF | Body SF | Joint SF | | | | | Collapse | Burst | Tension | Tension | | | | | 1.00 | 1.100 | 1.4 | 1.4 | | | | | | Y or N | |---|--------| | Is casing new? If used, attach certification as required in 43 CFR 3160 | Y | | Does casing meet API specifications? If no, attach casing specification sheet. | Y | | Is premium or uncommon casing planned? If yes attach casing specification sheet. | Y | | Does the above casing design meet or exceed BLM's minimum standards? | Y | | If not provide justification (loading assumptions, casing design criteria). | 1 | | Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching | Y | | the collapse pressure rating of the casing? | 1 | | | | | Is well located within Capitan Reef? | N | | If yes, does production casing cement tie back a minimum of 50' above the Reef? | | | Is well within the designated 4 string boundary. | | | | | | Is well located in SOPA but not in R-111-Q? | N | | If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back | | | 500' into previous casing? | | | | | | Is well located in R-111-Q and SOPA? | N | | If yes, are the first three strings cemented to surface? | | | Is 2 nd string set 100' to 600' below the base of salt? | | | | | | Is well located in high Cave/Karst? | N | | If yes, are there two strings cemented to surface? | | | (For 2 string wells) If yes, is there a contingency casing if lost circulation occurs? | | | | | | Is well located in critical Cave/Karst? | N | | If yes, are there strings cemented to surface? | | 3. Cementing Program | Section | Stage | Slurry: | Sacks | Yield
(ft^3/ft) | Density
(lb/gal) | Excess: | тос | Placement | Description | |---------|-------|---------------------------|-------|--------------------|---------------------|---------|--------|------------|-----------------------| | Surface | 1 | Surface - Tail | 956 | 1.33 | 14.8 | 100% | - | Circulate | Class C+Accel. | | Int.1 | 1 | Intermediate - Tail | 85 | 1.33 | 14.8 | 20% | 4,083 | Circulate | Class C+Accel. | | Int.1 | 1 | Intermediate - Lead | 643 | 1.73 | 12.9 | 50% | - | Circulate | Class Pozz+Ret. | | Int. 2 | 1 | Intermediate 1S - Tail | 479 | 1.68 | 13.2 | 5% | 7,037 | Circulate | Class C+Ret., Disper. | | Int. 2 | 2 | Intermediate 2S - Tail BH | 983 | 1.71 | 13.3 | 25% | - | Bradenhead | Class C+Accel. | | Prod. | 1 | Production - Tail | 682 | 1.84 | 13.3 | 25% | 10,109 | Circulate | Class C+Ret. | # **Offline Cementing Request** Oxy requests a variance to cement the 9.625" and/or 7.625" intermediate casing strings offline in accordance to the approved variance, EC Tran 461365. Please see Offline Cementing Variance attachment for further details. # **Bradenhead CBL Request** Oxy requests permission to adjust the CBL requirement after bradenhead cement jobs, on 7-5/8" intermediate casings, as per the agreement reached in the OXY/BLM meeting on September 5, 2019. Please see Bradenhead CBL Variance attachment for further details. Page 46 of 122 # 4. Pressure Control Equipment | BOP installed and tested before drilling which hole? | Size? | Min.
Required
WP | | Туре | ✓ | Tested to: | TVD Depth
(ft) per
Section: | | | | |--|---------|------------------------|------------|------------|----------|--------------------------|-----------------------------------|----------|--------------------|--| | | | 5M | | Annular | √ | 70% of working pressure | | | | | | | | | | Blind Ram | ✓ | | | | | | | 12.25" Hole | 13-5/8" | 5M | | Pipe Ram | | 250 psi / 5000 psi | 4583 | | | | | | | JIVI | | Double Ram | ✓ | 230 μεί / 3000 μεί | | | | | | | | | Other* | | | | | | | | | | | 5M | | Annular | ✓ | 70% of working pressure | 10444 | | | | | | | | | Blind Ram | ✓ | | | | | | | 9.875" Hole | 13-5/8" | 5 N / | | Pipe Ram | | 250 psi / 5000 psi | | | | | | | | | | | 5M | | Double Ram | ✓ | 250 psi / 5000 psi | | | | | | Other* | | | | | | | | | | | 5M | | Annular | √ | 100% of working pressure | | | | | | | | | | Blind Ram | √ | | | | | | | 6.75" Hole | 13-5/8" | 4.004 | Pipe Ram | | | 250 pai / 10000 pai | 11200 | | | | | | | 10M | Double Ram | | √ | 250 psi / 10000 psi | | | | | | | | | Other* | | | | | | | | # *Specify if additional ram is utilized BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per 43 CFR part 3170 Subpart 3172 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke # **5M Annular BOP Request** Per BLM's Memorandum No. NM-2017-008: *Decision and Rationale for a Variance Allowing the Use of a 5M Annular Preventer with a 10M BOP Stack,* Oxy requests to employ a 5M annular with a 10M BOPE stack in the pilot and lateral sections of the well and
will ensure that two barriers to flow are maintained at all times. Please see Annular BOP Variance attachment for further details. Formation integrity test will be performed per 43 CFR part 3170 Subpart 3172. On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with 43 CFR part 3170 Subpart 3172. A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart. Y Are anchors required by manufacturer? A multibowl or a unionized multibowl wellhead system will be employed. The wellhead and connection to the BOPE will meet all API 6A requirements. The BOP will be tested per 43 CFR part 3170 Subpart 3172 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. We will test the flange connection of the wellhead with a test port that is directly in the flange. We are proposing that we will run the wellhead through the rotary prior to cementing surface casing as discussed with the BLM on October 8, 2015. See attached schematics. # **BOP Break Testing Request** Oxy requests permission to adjust the BOP break testing requirements as per the agreement reached in the OXY/BLM meeting on September 5, 2019. Please see BOP Break Testing Variance attachment for further details. Oxy will use Cameron ADAPT wellhead system that uses an OEC top flange connection. This connection has been fully vetted and verified by API to Spec 6A and carries an API monogram. # 5. Mud Program | | Depth | | Depth - | TVD | | Weight | | Water | |----------------|-----------|---------|-----------|---------|--|-----------------|--------------|-------| | Section | From (ft) | To (ft) | From (ft) | To (ft) | Туре | Weight
(ppg) | I VISCOSITVI | | | Surface | 0 | 915 | 0 | 915 | Water-Based Mud | 8.6 - 8.8 | 40-60 | N/C | | Intermediate 1 | 915 | 4583 | 915 | 4583 | Saturated Brine-Based or Oil-Based Mud | 8.0 - 10.0 | 35-45 | N/C | | Intermediate 2 | 4583 | 10609 | 4583 | 10444 | Water-Based or Oil-
Based Mud | 8.0 - 10.0 | 38-50 | N/C | | Production | 10609 | 22152 | 10444 | 11200 | Water-Based or Oil-
Based Mud | 9.5 - 12.5 | 38-50 | N/C | Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls, | What will be used to monitor the | DVT/NAD Totas (Visual Manitoring | |----------------------------------|----------------------------------| | loss or gain of fluid? | PVT/MD Totco/Visual Monitoring | # **6. Logging and Testing Procedures** | Logg | Logging, Coring and Testing. | | | | | | |--|----------------------------------|----|---|--|--|--| | Yes Will run GR from TD to surface (horizontal well – vertical portion of hole). Stated logs run will be in the Completion Report and submitted to the BLM. | | | | | | | | | | No | Logs are planned based on well control or offset log information. | | | | | No | Drill stem test? If yes, explain | | | | | | | No | Coring? If yes, explain | | | | | | | Addit | tional logs planned | Interval | |-------|---------------------|-------------------| | No | Resistivity | | | No | Density | | | Yes | CBL | Production string | | Yes | Mud log | Bone Spring – TD | | No | PEX | | # 7. Drilling Conditions | Condition | Specify what type and where? | |-------------------------------|------------------------------| | BH Pressure at deepest TVD | 7280 psi | | Abnormal Temperature | No | | BH Temperature at deepest TVD | 170°F | Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times. Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of 43 CFR part 3170 Subpart 3172. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM. N H2S is present Y H2S Plan attached # 8. Other facets of operation | | Yes/No | |--|--------| | Will the well be drilled with a walking/skidding operation? If yes, describe. | | | We plan to drill the 2 well pad in batch by section: all surface sections, intermediate | Vac | | sections and production sections. The wellhead will be secured with a night cap whenever | Yes | | the rig is not over the well. | | | Will more than one drilling rig be used for drilling operations? If yes, describe. | | | Oxy requests the option to contract a Surface Rig to drill, set surface casing, and cement for | | | this well. If the timing between rigs is such that Oxy would not be able to preset surface, | Yes | | the Primary Rig will MIRU and drill the well in its entirety per the APD. Please see the | | | attached document for information on the spudder rig. | | | | | Total Estimated Cuttings Volume: 1889 bbls Received by OCD: 4/29/2025 1:19:01 PM # Oxy USA Inc. - Blanket Design Pad Document **OXY - Blanket Design A** Pad Name: LSTTNK_22S32E_1902 **SHL:** 2087' FNL 476' FWL, Sec 19, T22S-R32E Oxy requests for the bellow wells to be approved for the two designs listed in the Blanket Design document (Blanket Design A –OXY –3S Slim v7.) The MDs and TVDs for all intervals are within the boundary conditions. The max inclination and DLS are also within the boundary conditions (directional plans attached separately for review.) # 1. Blanket Design - Wells | Well Name | ADD # | Sur | face | Interm | nediate | Production | | | |-----------------------------|------------------|-----|------|--------|---------|------------|-------|--| | well Name | APD# | MD | TVD | MD | TVD | MD | TVD | | | Lost Tank 30_19 Fed Com 71H | N/A - New Permit | 915 | 915 | 10609 | 10444 | 22152 | 11200 | | | Lost Tank 30_19 Fed Com 72H | N/A - New Permit | 908 | 908 | 10511 | 10430 | 22048 | 11200 | # 2. Review Criteria Table | | Y or N | |---|--------| | Is casing new? If used, attach certification as required in 43 CFR 3160 | Y | | Does casing meet API specifications? If no, attach casing specification sheet. | Y | | Is premium or uncommon casing planned? If yes attach casing specification sheet. | Y | | Does the above casing design meet or exceed BLM's minimum standards? | Y | | If not provide justification (loading assumptions, casing design criteria). | 1 | | Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching | Y | | the collapse pressure rating of the casing? | Y | | | | | Is well located within Capitan Reef? | N | | If yes, does production casing cement tie back a minimum of 50' above the Reef? | | | Is well within the designated 4 string boundary. | | | | | | Is well located in SOPA but not in R-111-P? | N | | If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back | | | 500' into previous casing? | | | | | | Is well located in R-111-P and SOPA? | N | | If yes, are the first three strings cemented to surface? | | | Is 2 nd string set 100' to 600' below the base of salt? | | | | | | Is well located in high Cave/Karst? | N | | If yes, are there two strings cemented to surface? | | | (For 2 string wells) If yes, is there a contingency casing if lost circulation occurs? | | | | | | Is well located in critical Cave/Karst? | N | | If yes, are there three strings cemented to surface? | | Received by OCD: 4/29/2025 1:19:01 PM Occidental - Permian New Mexico Pad Review Document - Blanket Design A # 3. Geologic Formations | Formation | MD-RKB (ft) | TVD-RKB (ft) | Expected Fluids | |-----------------|-------------|--------------|------------------------| | Rustler | 855 | 855 | | | Salado | 1149 | 1149 | Salt | | Castile | 2862 | 2862 | Salt | | Delaware | 4583 | 4583 | Oil/Gas/Brine | | Bell Canyon | 4665 | 4665 | Oil/Gas/Brine | | Cherry Canyon | 5505 | 5494 | Oil/Gas/Brine | | Brushy Canyon | 6787 | 6738 | Losses | | Bone Spring | 8589 | 8487 | Oil/Gas | | Bone Spring 1st | 9710 | 9574 | Oil/Gas | | Bone Spring 2nd | 10360 | 10205 | Oil/Gas | | Bone Spring 3rd | | | Oil/Gas | | Wolfcamp | | | Oil/Gas | | Penn | | | Oil/Gas | | Strawn | | | Oil/Gas | # 4. Cementing Program | Section | Stage | Slurry: | Sacks | Yield
(ft^3/ft) | Density
(lb/gal) | Excess: | тос | Placement | Description | |---------|-------|---------------------------|-------|--------------------|---------------------|---------|--------|------------|-----------------------| | Surface | 1 | Surface - Tail | 956 | 1.33 | 14.8 | 100% | - | Circulate | Class C+Accel. | | Int.1 | 1 | Intermediate - Tail | 85 | 1.33 | 14.8 | 20% | 4,083 | Circulate | Class C+Accel. | | Int.1 | 1 | Intermediate - Lead | 643 | 1.73 | 12.9 | 50% | - | Circulate | Class Pozz+Ret. | | Int. 2 | 1 | Intermediate 1S - Tail | 479 | 1.68 | 13.2 | 5% | 7,037 | Circulate
| Class C+Ret., Disper. | | Int. 2 | 2 | Intermediate 2S - Tail BH | 983 | 1.71 | 13.3 | 25% | - | Bradenhead | Class C+Accel. | | Prod. | 1 | Production - Tail | 682 | 1.84 | 13.3 | 25% | 10,109 | Circulate | Class C+Ret. | # 1. Casing Program The designs and associated details listed in this document are the "worst case scenario" boundaries for design safety factors. Location and lithology have NOT been accounted for in these designs; however, the designs are NOT valid for wells within KPLA Boundaries or Capitan Reef areas. The specific well details will be based on the APD/Sundry package and the information listed in the COA. The mud program listed below will remain the same between each design variation. Hole will be full during casing run for well control and tensile SF. Casing will be kept at least half full during run for these designs to meet BLM collapse SF requirement. ### Design Variation "A1" | | | I | MD | TVD | | | | | | |--------------|-------------------|--------------|------------|--------------|------------|-----------------|------------------|---------|---------------------------------------| | Section | Hole
Size (in) | From
(ft) | To
(ft) | From
(ft) | To
(ft) | Csg.
OD (in) | Csg Wt.
(ppf) | Grade | Conn. | | Surface | 14.75 | 0 | 1200 | 0 | 1200 | 10.75 | 45.5 | J-55 | ВТС | | Intermediate | 9.875 | 0 | 13111* | 0 | 12775* | 7.625 | 26.4 | L-80 HC | BTC
Axis HT | | Production | 6.75 | 0 | 23361 | 0 | 12775 | 5.5 | 20 | P-110 | Wedge 461
Sprint SF
DWC/C-HT-IS | ^{*}Curve could be in intermediate or production section ## Design Variation "A2" - Option to Pivot to Design "B" for Contingency 4S | | | MD | | TVD | | | | | | |--------------|-------------------|--------------|------------|--------------|------------|-----------------|------------------|---------|---------------------------------------| | Section | Hole
Size (in) | From
(ft) | To
(ft) | From
(ft) | To
(ft) | Csg.
OD (in) | Csg Wt.
(ppf) | Grade | Conn. | | Surface | 17.5 | 0 | 1200 | 0 | 1200 | 13.375 | 54.5 | J-55 | ВТС | | Intermediate | 12.25† | 0 | 13111* | 0 | 12775* | 7.625 | 26.4 | L-80 HC | BTC
Axis HT | | Production | 6.75 | 0 | 23361 | 0 | 12775 | 5.5 | 20 | P-110 | Wedge 461
Sprint SF
DWC/C-HT-IS | ^{*}Curve could be in intermediate or production section All casing strings will be tested in accordance with 43 CFR part 3170 Subpart 3172 | All Casing SF Values will meet or | | | | | | | | | | |-----------------------------------|---------------------|---------|----|--|--|--|--|--|--| | exceed those below | | | | | | | | | | | SF | SF Body SF Joint SF | | | | | | | | | | | <u> </u> | Doug o. | 30 | | | | | | | | Collapse | | Tension | | | | | | | | [†]If 4S Contingency is not required, Oxy requests permission to transition from 12.25" to 9.875" Intermediate at some point during the hole section. Cement volumes will be updated on C103 submission. ### §Annular Clearance Variance Request As per the agreement reached in the Oxy/BLM face-to-face meeting on Feb 22, 2018, Oxy requests permission to allow deviation from the 0.422" annular clearance requirement. Please see Annular Clearance Variance attachment for further details. §Annular Clearance Variance Request may not apply to all connections used or presented. # 2. Trajectory / Boundary Conditions | | MC |) | TV | D | | | |--------------|--------------------------------|-------------------|---------------------|-------------------|---------------|---------------------| | Section | Deepest KOP
(ft) | End Build
(ft) | Deepest KOP
(ft) | End Build
(ft) | Max.
Angle | Max.
Planned DLS | | Surface | 0 | 1200 | 0 | 1200 | 5° | 1°/100 ft | | Intermediate | 5000
(inside Cherry Canyon) | 6500 | 4980 | 6390 | 20° | 2°/100 ft | | | 12211 | 13111 | 12202 | 12775 | 92°‡ | 12°/100 ft ‡ | | Production | 12211
(~100' MD past ICP) | 13111 | 12202 | 12775 | 92°‡ | 12°/100 ft ‡ | [‡] Applies only when intermediate casing depth is deepened to landing point to match TVD of production in some areas where required to accommodate higher MWs in depleted areas. Oxy has reviewed casing burst, collapse, and axial loadcases in Landmark StressCheck with the boundary conditions in the table above which satisfies Oxy and BLM minimum design criteria. Triaxial plots for each casing string is shown in Section 7 and intermediate load case inputs are shown in Section 8. # 3. Cementing Program NOTE: Blanket design is for technical review only. The cement volumes will be adjusted to ensure cement tops meet BLM requirements. ### Design Variation "A1" | Section | Stage | Slurry: | Sacks | Yield
(ft^3/ft) | Density
(lb/gal) | Excess: | тос | Placement | Description | |---------|-------|---------------------------|-------|--------------------|---------------------|---------|-------------|------------|-----------------------| | Surface | 1 | Surface - Tail | 819 | 1.33 | 14.8 | 100% | 1 | Circulate | Class C+Accel. | | Int. | 1 | Intermediate 1S - Tail | 658 | 1.68 | 13.2 | 5% | 7,206 | Circulate | Class C+Ret., Disper. | | Int. | 2 | Intermediate 2S - Tail BH | 1111 | 1.71 | 13.3 | 25% | • | Bradenhead | Class C+Accel. | | Prod. | 1 | Production - Tail | 665 | 1.84 | 13.3 | 25% | 11,611 | Circulate | Class C+Ret. | | | | | | | | | 500' inside | _ | | | Prod. | 2* | Production - Tail BH* | TBD | 1.84 | 13.3 | 50% | prev csg | Circulate | Class C+Ret. | ^{*}Only applies in scenario where planned single stage job TOC is not 500' above previous shoe as designed/programmed requiring bradenhead 2nd stage to meet requirements ### Design Variation "A2" | Section | Stage | Slurry: | Sacks | Yield
(ft^3/ft) | Density
(lb/gal) | Excess: | тос | Placement | Description | |---------|-------|---------------------------|-------|--------------------|---------------------|---------|-------------------------|------------|-----------------------| | Surface | 1 | Surface - Tail | 1023 | 1.33 | 14.8 | 100% | - | Circulate | Class C+Accel. | | Int. | 1 | Intermediate 1S - Tail | 658 | 1.68 | 13.2 | 5% | 7,206 | Circulate | Class C+Ret., Disper. | | Int. | 2 | Intermediate 2S - Tail BH | 1293 | 1.71 | 13.3 | 25% | - | Bradenhead | Class C+Accel. | | Prod. | 1 | Production - Tail | 665 | 1.84 | 13.3 | 25% | 11,611 | Circulate | Class C+Ret. | | Prod. | 2* | Production - Tail BH* | TBD | 1.84 | 13.3 | 50% | 500' inside
prev csg | Circulate | Class C+Ret. | ^{*}Only applies in scenario where planned single stage job TOC is not 500' above previous shoe as designed/programmed requiring bradenhead 2nd stage to meet requirements ### **Offline Cementing Request** Oxy requests a variance to cement the 9.625" and/or 7.625" intermediate casing strings offline in accordance to the approved variance, EC Tran 461365. Please see Offline Cementing Variance attachment for further details. ### **Bradenhead CBL Request** Oxy requests permission to adjust the CBL requirement after bradenhead cement jobs, on 7-5/8" intermediate casings, as per the agreement reached in the OXY/BLM meeting on September 5, 2019. Please see Bradenhead CBL Variance attachment for further details. # 4. Pressure Control Equipment | BOP installed and tested before drilling which hole? | Size? | Min.
Required
WP | Туре | | 1 | Tested to: | Deepest TVD
Depth (ft) per
Section: | |--|---------|------------------------|-----------------------|------------|--------------------|--------------------------|---| | | | 5M | | Annular | ✓ | 70% of working pressure | | | | | | | Blind Ram | ✓ | | | | 9.875" Hole | 13-5/8" | 5M | Pipe Ram 250 pgi / 50 | | 250 psi / 5000 psi | 12775** | | | | | Sivi | | Double Ram | √ | 230 psi / 3000 psi | | | | | | Other* | | | | | | | | 5M | | Annular | ✓ | 100% of working pressure | | | | | | | Blind Ram | ✓ | | | | 6.75" Hole | 13-5/8" | 10M | | Pipe Ram | | 250 psi / 10000 psi | 12775 | | | | TOW | | Double Ram | | 230 psi / 10000 psi | | | | | | Other* | | | | | ^{*}Specify if additional ram is utilized BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per 43 CFR part 3170 Subpart 3172 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics. ### **5M Annular BOP Request** Per BLM's Memorandum No. NM-2017-008: *Decision and Rationale for a Variance Allowing the Use of a 5M Annular Preventer with a 10M BOP Stack*, Oxy requests to employ a 5M annular with a 10M BOPE stack in the pilot and lateral sections of the well and will ensure that two barriers to flow are ^{**}Curve could be in intermediate or production section Formation integrity test will be performed per 43 CFR part 3170 Subpart 3172. On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with 43 CFR part 3170 Subpart 3172. A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. Coflex hoses are in compliance with API 16C and meets inspection and testing requirements. See attached for specs and hydrostatic test chart. Υ Are anchors required by manufacturer? A multibowl or a unionized multibowl wellhead system will be employed. The wellhead and connection to the BOPE will meet all API 6A requirements. The BOP will be tested per 43 CFR part 3170 Subpart
3172 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. We will test the flange connection of the wellhead with a test port that is directly in the flange. We are proposing that we will run the wellhead through the rotary prior to cementing surface casing as discussed with the BLM on October 8, 2015. See attached Schematics. ### **BOP Break Testing Request** Oxy requests permission to adjust the BOP break testing requirements as per the agreement reached in the OXY/BLM meeting on September 5, 2019. Please see BOP Break Testing Variance attachment for further details. ### **Hammer Union Variance** Oxy requests permission for hammer unions behind the choke to be routed to the gas buster. The hammer unions will not be subject to wellbore pressure in compliance with API STD 53. Oxy will use Cameron ADAPT wellhead system that uses an OEC top flange connection. This connection has been fully vetted and verified by API to Spec 6A and carries an API monogram. # 5. Mud Program & Drilling Conditions | G. 4 | Depth | - MD | Depth | - TVD | Т | Weight | ¥7° | Water | |--------------|-----------|---------|-----------|---------|--|------------|-----------|-------| | Section | From (ft) | To (ft) | From (ft) | To (ft) | | (ppg) | Viscosity | Loss | | Surface | 0 | 1200 | 0 | 1200 | Water-Based Mud | 8.6 - 8.8 | 40-60 | N/C | | Intermediate | 1200 | 13111* | 1200 | 12775* | Saturated Brine-Based or Oil-Based Mud | 8.0 - 10.0 | 35-45 | N/C | | Production | 13111 | 23361 | 12775 | 12775 | Water-Based or Oil-
Based Mud | 9.5 - 13.5 | 38-50 | N/C | ^{*}Curve could be in intermediate or production section* Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls, Drilling Paper, Salt Water Clay, CACL2. Oxy will use a closed mud system. ## **Drilling Blind Request** In the event total losses are encountered in the intermediate section, Oxy requests permission to drill blind due to depleted formations where risk of hydrocarbon kicks are unlikely. - Oxy will first attempt to cure losses before proceeding with drilling blind - Drilling blind will only be allowed in the Castille and formations below - While drilling blind, will monitor backside by filling-up on connections and utilize gas monitors - Depths at which losses occurred and attempt to cure losses with relevant details (LCM sweep info, etc.) will be documented in the drillers log and Subsequent Reports to the BLM. - If a well control event (hydrocarbon kick) occurs while drilling blind, the BLM will be notified after the well is secured and returned to static. | What will be used to monitor the | PVT/MD Totco/Visual Monitoring | |----------------------------------|--| | loss or gain of fluid? | F V 1/1VID TOLCO/ VISUAL IVIOLITIONING | Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times. Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for zonal isolation. # 6. Wellbore Diagram(s) # Design Variation "A1" 5-1/2" 20# P110 Wedge 461 / Sprint SF / DWC/C-HT-IS Casing TOC @ 500' Above Prev. CSG # Design Variation "A2" 5-1/2" 20# P110 Wedge 461 / Sprint SF / DWC/C-HT-IS Casing TOC @ 500' Above Prev. CSG # 7. Landmark StressCheck Screenshots - Triaxial Output ## 8. Landmark StressCheck Screenshots – Inputs for Intermediate CSG Load Cases ### **Burst Load Cases** ## **Collapse Load Cases** ### **Axial Load Cases** # 9. Landmark StressCheck Screenshot – Int. Casing Triaxial Results Table (Pressure Test) Internal Pressure = Surface Pressure + Hydrostatic = 9756 psi External Pressure = Fluid Gradient w/ Pore Pressure = 7918 psi Burst SF = 3.16 NOTE: Specific load case inputs for the pressure test can be seen in **Section 8** above. The test pressure does not exceed 70% of the minimum internal yield. # 10. Intermediate Non-API Casing Spec Sheet # **Technical Data Sheet** 7 5/8" 26.40 lbs/ft. L80HC - Axis HT | Meci | hanical | Properties | | |----------------------------------|---------|-------------|-------------| | Minimum Yield Strength | | 80,000 | | | Maximum Yield Strength | psi. | 95,000 | | | Minimum Tensile Strength | psi. | 95,000 | | | | Dimei | nsions | | | | | Pipe | AXIS HT | | Outside Diameter | in. | 7.625 | 8.500 | | Wall Thickness | in. | 0.328 | - | | Inside Diameter | in. | 6.969 | - | | Standard Drift | in. | 6.844 | 6.844 | | Alternate Drift | in. | - | - | | Plain End Weight | lbs/ft. | - | - | | Nominal Linear Weight | lbs/ft. | 26.40 | - | | | Perfor | mance | | | | | Pipe | AXIS HT | | Minimum Collapse Pressure | psi. | 4,320 | - | | Minimum Internal Yield Pressure | psi. | 6,020 | 6,020 | | Minimum Pipe Body Yield Strength | lbs. | 602 x 1,000 | - | | Joint Strength | lbs. | - | 635 x 1,000 | | Ma | ake-Up | Torques | | | | | Pipe | AXIS HT | | Optimum Make-Up Torque | ft/lbs. | - | 8,000 | | Maximum Operational Torque | ft/lbs. | - | 25,000 | Disclaimer: The content of this Technical Data Sheet is for general information only and does not guarantee performance and/or accuracy, which can only be determined by a professional expert with the specific installation and operation parameters. Information printed or downloaded may not be current and no longer in control by Axis Pipe and Tube. Anyone using the information herein does so at his or her own risk. To verify that you have the latest technical information, please contact Axis Pipe and Tube Technical Sales +1 (979) 599-7600, www.axisoipeandtube.com # 11. Production Non-API Casing Spec Sheets | | Printed on: 11/0 | |----------------------|----------------------| | Coupling | Pipe Body | | Grade: P1104CY | Grade: P110-ICY | | Body: White | 1st Band: White | | 1st Band: Pale Green | 2nd Band: Pale Green | | 2nd Band: - | 3rd Band: Pale Green | | 3rd Band: - | 4th Band: - | | | 5th Band: - | | | 6th Band: - | | Outside Diameter | 5.500 in. | Wall Thickness | 0.361 in. | Grade | P110-ICY | |----------------------|-----------|-----------------|--------------|-------|----------| | Min. Wall Thickness | 87.50 % | Pipe Body Drift | API Standard | Туре | Casing | | Connection OD Option | MS | | | | | ### Pipe Body Data | Geometry | | | | |----------------|-----------|------------------|-------------| | Nominal OD | 5.500 in. | Wall Thickness | 0.361 in. | | Nominal Weight | 20 lb/ft | Plain End Weight | 19.83 lb/ft | | Drift | 4.653 in. | OD Tolerance | API | | Nominal ID | 4.778 in. | | | | Performance | | |------------------------------|--------------| | Body Yield Strength | 729 x1000 lb | | Min. Internal Yield Pressure | 14,360 psi | | SMYS | 125,000 psi | | Collapse Pressure | 12,300 psi | ### Connection Data | 6.050 in. | |-----------| | 7.714 in. | | 4.778 in. | | 3.775 in. | | 3.40 | | Ms | | | | Performance | | |----------------------------|--------------| | Tension Efficiency | 100 % | | Joint Yield Strength | 729 x1000 lb | | Internal Pressure Capacity | 14,360 psi | | Compression Efficiency | 100 % | | Compression Strength | 729 x1000 lb | | Max. Allowable Bending | 104 °/100 fi | | External Pressure Capacity | 12,300 psi | | Coupling Face Load | 273.000 lb | | Make-Up Torques | | |-------------------------|--------------| | Minimum | 17,000 ft-lb | | Optimum | 18,000 ft-lb | | Maximum | 21,600 ft-lb | | Operation Limit Torques | | | Operating Torque | 43,000 ft-lb | | Yield Torque | 51,000 ft-lb | | Buck-On | | | Minimum | 21,600 ft-lb | | Maximum | 23,100 ft-lb | ### Notes This connection is fully interchangeable with: Wedge 441®-5.5 in. - 0.304 / 0.361 in. Wedge 461®-5.5 in. - 0.304 / 0.415 / 0.476 in. Connections with Dopeless® Technology are fully compatible with the same connection in its Standard version In October 2019, TenarisHydril Wedge XP® 2.0 was renamed TenarisHydril Wedge 461™. Product dimensions and properties remain identical and both connections are fully interchangeable For the lastest performance data, always visit our website: www.tenaris.com Tenaris has issued this document for general information only, and the information in this document, including, without limitation, any pictures, drawings or designs ("Information") is not intended to constitute professional or any other type of advice or recommendation and is provided on an "as is" basis. No warranty is given. Tenaris has not independently verified any information—if any-provided by the user in connection with, or for the purpose of, the Information contained hereunder. The use of the Information is at user's own risk and Tenaris does not assume any responsibility or liability of any kind for any loss, damage or injury resulting from, or in connection with any Information contained hereunder or any use thereof. The Information in this document is subject to change or modification without notice. Tenaris's reproducts and services are subject to Tenaris's standard terms and conditions or otherwise to the terms resulting from the respective contracts of sale or services, as the case may be, between petitioner and Tenaris. For more complete information please contact a Tenaris's representative or visit our website at www.tenaris.com . ©Tenaris 2021. All rights reserved. Generated on May 21, 2024 140 125 641 12,640 11,100 ksi ksi ### CONNECTION DATA SHEET | PIPE BODY PROPERTIES ——— | | | |--------------------------|---------|-------| | Nominal OD | 5.500 | in. | | Nominal ID | 4.778 | in. | | Nominal Wall
Thickness | 0.361 | in. | | Minimum Wall Thickness | 87.5 | % | | Nominal Weight (API) | 20.00 | lb/ft | | Plain End Weight | 19.83 | lb/ft | | Drift | 4.653 | in. | | Grade Type | API 5CT | | | Minimum Yield Strength | 110 | ksi | ### **CONNECTION PROPERTIES** • Maximum Yield Strength **Pipe Body Yield Strength** **Internal Yield Pressure** **Collapse Pressure** **Minimum Ultimate Tensile Strength** | Connection Type | Semi-Pre | emium Integral | |------------------------------|----------|----------------| | Nominal Connection OD | 5.783 | in. | | Nominal Connection ID | 4.718 | in. | | Make-up Loss | 5.965 | in. | | Tension Efficiency | 90 | % Pipe Body | | Compression Efficiency | 90 | % Pipe Body | | Internal Pressure Efficiency | 100 | % Pipe Body | | External Pressure Efficiency | 100 | % Pipe Body | | | | | ### JOINT PERFORMANCES | Tension Strength | 577 | klb | |--------------------------------------|--------|----------| | Compression Strength | 577 | klb | | Internal Pressure Resistance | 12,640 | psi | | External Pressure Resistance | 11,100 | psi | | Maximum Bending, Structural | 78 | °/100 ft | | Maximum Bending, with Sealability(1) | 30 | °/100 ft | (1) Sealability rating demonstrated as per API RP 5C5 / ISO 13679 Scan the QR code to contact us he information available on this Site (Information') is offered for general information. It is supposed to be correct at the time of publishing on the Site but is not intended to constitute professional advice and is provided 'as is'. Vallourec boes not guarantee the completeness and accuracy of this information. Under no circumstances will Vallourec be liable for damage, liability of any kind, or any loss or injury that may result from the credibility given to this information or ts use. The information may be amended, corrected, at any time by Vallourec without warning. Vallourec's products and sear are subject to Vallourec's The Information may be amended, corrected, and/or supplemented at any time by Valloure without warning, standard terms and conditions or otherwise to the terms resulting from the respective contracts of sale or services. # ### **Connection Data Sheet** | OD (in.) | WEIGHT (lbs./ft.) | WALL (in.) | GRADE | API DRIFT (in.) | RBW% | CONNECTION | |----------|------------------------------------|------------|-------------|-----------------|------|-------------| | 5.500 | Nominal: 20.00
Plain End: 19.83 | 0.361 | ‡VST P110MY | 4.653 | 87.5 | DWC/C-HT-IS | | PIPE PROPERTIES | | | |------------------------------|--------|---------| | Nominal OD | 5.500 | in. | | Nominal ID | 4.778 | in. | | Nominal Area | 5.828 | sq.in. | | Grade Type | | API 5CT | | Min. Yield Strength | 125 | ksi | | Max. Yield Strength | 140 | ksi | | Min. Tensile Strength | 135 | ksi | | Yield Strength | 729 | klb | | Ultimate Strength | 787 | klb | | Min. Internal Yield Pressure | 14,360 | psi | | Collapse Pressure | 12,090 | psi | | Connection Type | Semi-Pren | nium T&C | |------------------------------|-----------|----------| | Connection OD (nom) | 6.050 | in | | Connection ID (nom) | 4.778 | in | | Make-Up Loss | 4.125 | in | | Coupling Length | 9.250 | in | | Critical Cross Section | 5.828 | sq.in | | Tension Efficiency | 89.1% | of pipe | | Compression Efficiency | 88.0% | of pipe | | Internal Pressure Efficiency | 86.1% | of pipe | | External Pressure Efficiency | 100.0% | of pipe | | CONNECTION PERFORMANCES | | | |---|--------|----------| | Yield Strength | 649 | klb | | Parting Load | 729 | klb | | Compression Rating | 641 | klb | | Min. Internal Yield Pressure | 12,360 | psi | | External Pressure Resistance | 12,090 | psi | | Maximum Uniaxial Bend Rating | 91.7 | °/100 ft | | Reference String Length w 1.4 Design Factor | 22,890 | ft. | | FIELD TORQUE VALUES | | | |--------------------------------|--------|-------| | Min. Make-up torque | 16,600 | ft.lb | | Opti. Make-up torque | 17,950 | ft.lb | | Max. Make-up torque | 19,300 | ft.lb | | Min. Shoulder Torque | 1,660 | ft.lb | | Max. Shoulder Torque | 13,280 | ft.lb | | Max. Delta Turn | 0.200 | Turns | | †Maximum Operational Torque | 23,800 | ft.lb | | †Maximum Torsional Value (MTV) | 26,180 | ft.lb | † Maximum Operational Torque and Maximum Torsional Value only valid with Vallourec P110MY Material. ‡ P110MY - Coupling Min Yield Strength is 110ksi and Coupling Max Yield is 125ksi. "VST = Vallourec Star as the mill source for the pipe, "P110EC" is the grade name" Need Help? Contact: tech.support@vam-usa.com For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s). Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application. All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an ""AS IS"" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages. 03/04/2024 08:36:50 PM VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042 Phone: 713-479-3230 Fax: 713-479-3234 VAM® USA Sales E-mail: VAMUSAsales@vam-usa.com Tech Support Email: tech.support@vam-usa.com ### **DWC Connection Data Sheet Notes:** - 1. DWC connections are available with a seal ring (SR) option. - 2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall. - 3. Connection performance properties are based on nominal pipe body and connection dimensions. - 4. DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3. - 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area. - 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3. - 7. Bending efficiency is equal to the compression efficiency. - 8. The torque value's listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc. - 9. Connection yield torque is not to be exceeded. - 10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc. - 11. DWC connections will accommodate API standard drift diameters. - 12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up. Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application. All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or impfed, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages. 03/04/2024 08:36:50 PM # OXY PRD NM DIRECTIONAL PLANS (NAD 1983) Lost Tank 30-19 Fed Lost Tank 30_19 Fed Com 71HC Wellbore #1 **Plan: Permitting Plan** # **Standard Planning Report** 22 May, 2024 # OXY North Reference: ### Planning Report Database: HOPSPP Company: ENGINEERING DESIGNS Project: PRD NM DIRECTIONAL PLANS (NAD 1983) Site: Lost Tank 30-19 Fed Well: Lost Tank 30_19 Fed Com 71HC Wellbore: Wellbore #1 Design: Permitting Plan Local Co-ordinate Reference: **Survey Calculation Method:** **TVD Reference:** RKB = 25' @ 3644.10ft **MD Reference:** RKB = 25' @ 3644.10ft Grid Minimum Curvature Well Lost Tank 30_19 Fed Com 71HC Project PRD NM DIRECTIONAL PLANS (NAD 1983) Map System: US State Plane 1983 Geo Datum: North
American Datum 1983 Map Zone: New Mexico Eastern Zone System Datum: Mean Sea Level Using geodetic scale factor Site Lost Tank 30-19 Fed Site Position: Northing: 503,826.03 usft Latitude: 32.372894 From: Lat/Long Easting: 0.00 usft Longitude: -106.086667 Position Uncertainty: 44.72 ft Slot Radius: 13.200 in Well Lost Tank 30_19 Fed Com 71HC **Well Position** +N/-S 0.00 ft Northing: 503.603.95 usf Latitude: 32.382966 +E/-W 0.00 ft Easting: 731,847.14 usf Longitude: -103.716189 **Position Uncertainty** 1.79 ft Wellhead Elevation: 0.00 ft **Ground Level:** 3,619.10 ft Grid Convergence: $0.33\,^\circ$ Wellbore Wellbore #1 Magnetics Model Name Sample Date (°) Declination (°) Dip Angle (°) Field Strength (nT) HDGM FILE 12/11/2023 6.35 59.98 47,592.40000000 Design Permitting Plan Audit Notes: Version: Phase: **PROTOTYPE** Tie On Depth: 0.00 Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (ft) (ft) (ft) (°) 0.00 0.00 0.00 186.02 Plan Survey Tool Program Date 5/22/2024 Depth From (ft) Depth To (ft) Survey (Wellbore) Tool Name Remarks 1 0.00 22,150.77 Permitting Plan (Wellbore #1) B001Mc_MWD+HRGM_R5 MWD+HRGM | Plan Sections | | | | | | | | | | | |---------------------------|-----------------|----------------|---------------------------|---------------|---------------|-----------------------------|----------------------------|---------------------------|------------|-----------------| | Measured
Depth
(ft) | Inclination (°) | Azimuth
(°) | Vertical
Depth
(ft) | +N/-S
(ft) | +E/-W
(ft) | Dogleg
Rate
(°/100ft) | Build
Rate
(°/100ft) | Turn
Rate
(°/100ft) | TFO
(°) | Target | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 4,678.00 | 0.00 | 0.00 | 4,678.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 5,377.83 | 14.00 | 312.54 | 5,370.89 | 57.51 | -62.67 | 2.00 | 2.00 | 0.00 | 312.54 | | | 10,708.77 | 14.00 | 312.54 | 10,543.56 | 929.31 | -1,012.62 | 0.00 | 0.00 | 0.00 | 0.00 | | | 11,703.54 | 90.00 | 179.64 | 11,200.00 | 363.43 | -1,128.94 | 10.00 | 7.64 | -13.36 | -132.04 I | TP (Lost Tank | | 22,151.60 | 90.00 | 179.64 | 11,200.00 | -10,084.43 | -1,063.51 | 0.00 | 0.00 | 0.00 | 0.00 I | PBHL (Lost Tank | #### Planning Report Database: Company: Project: Site: HOPSPP **ENGINEERING DESIGNS** PRD NM DIRECTIONAL PLANS (NAD 1983) Lost Tank 30-19 Fed Well: Lost Tank 30_19 Fed Com 71HC Wellbore: Wellbore #1 Design: Permitting Plan Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Well Lost Tank 30_19 Fed Com 71HC RKB = 25' @ 3644.10ft RKB = 25' @ 3644.10ft Grid | lanned Survey | | | | | | | | | | |---------------------------|--------------------|----------------|---------------------------|---------------|---------------|-----------------------------|-----------------------------|----------------------------|---------------------------| | Measured
Depth
(ft) | Inclination
(°) | Azimuth
(°) | Vertical
Depth
(ft) | +N/-S
(ft) | +E/-W
(ft) | Vertical
Section
(ft) | Dogleg
Rate
(°/100ft) | Build
Rate
(°/100ft) | Turn
Rate
(°/100ft) | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 100.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 200.00
300.00 | 0.00
0.00 | 0.00
0.00 | 200.00
300.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | 400.00 | 0.00 | 0.00 | 400.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | 500.00 | 0.00 | 0.00 | 500.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 600.00 | 0.00 | 0.00 | 600.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 700.00
800.00 | 0.00
0.00 | 0.00
0.00 | 700.00
800.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | 855.10 | 0.00 | 0.00 | 855.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | RUSTLER | 0.00 | 0.00 | 033.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | 900.00 | 0.00 | 0.00 | 900.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1,000.00 | 0.00 | 0.00 | 1,000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1,100.00
1,149.10 | 0.00 | 0.00 | 1,100.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 0.00
0.00 | | 1,149.10
SALADO | 0.00 | 0.00 | 1,149.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1,200.00 | 0.00 | 0.00 | 1,200.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | 1,300.00 | 0.00 | 0.00 | 1,300.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1,400.00
1,500.00 | 0.00
0.00 | 0.00
0.00 | 1,400.00
1.500.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | 1,600.00 | 0.00 | 0.00 | 1,600.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1,700.00 | 0.00 | 0.00 | 1,700.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | 1,800.00
1,900.00 | 0.00
0.00 | 0.00
0.00 | 1,800.00
1,900.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | 2,000.00 | 0.00 | 0.00 | 2,000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 2,100.00 | 0.00 | 0.00 | 2,100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 2,200.00 | 0.00 | 0.00 | 2,200.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 2,300.00 | 0.00 | 0.00 | 2,300.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 2,400.00 | 0.00 | 0.00 | 2,400.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 2,500.00 | 0.00 | 0.00 | 2,500.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 2,600.00 | 0.00 | 0.00 | 2,600.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 2,700.00 | 0.00 | 0.00 | 2,700.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 2,800.00 | 0.00 | 0.00 | 2,800.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 2,862.10 | 0.00 | 0.00 | 2,862.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | CASTILE | | | | | | | | | | | 2,900.00 | 0.00 | 0.00 | 2,900.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 3,000.00 | 0.00 | 0.00 | 3,000.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 3,100.00 | 0.00 | 0.00 | 3,100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 3,200.00 | 0.00 | 0.00 | 3,200.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 3,300.00 | 0.00 | 0.00 | 3,300.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 3,400.00 | 0.00 | 0.00 | 3,400.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 3,500.00 | 0.00 | 0.00 | 3,500.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 3,600.00 | 0.00 | 0.00 | 3,600.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 3,700.00 | 0.00 | 0.00 | 3,700.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 3,800.00 | 0.00 | 0.00 | 3,800.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 3,900.00 | 0.00 | 0.00 | 3,900.00 | 0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00 | 0.00 | | 4,000.00
4,100.00 | 0.00
0.00 | 0.00
0.00 | 4,000.00
4,100.00 | 0.00
0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00
0.00 | | | | | , | | | | | | | | 4,200.00 | 0.00 | 0.00 | 4,200.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 4,300.00
4,400.00 | 0.00
0.00 | 0.00
0.00 | 4,300.00
4,400.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | 4,500.00 | 0.00 | 0.00 | 4,500.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 4,583.10 | 0.00 | 0.00 | 4,583.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | , • | 5.55
E | | , | | | | | | | #### Planning Report Database: Company: Project: Site: HOPSPP **ENGINEERING DESIGNS** PRD NM DIRECTIONAL PLANS (NAD 1983) Lost Tank 30-19 Fed Well: Lost Tank 30_19 Fed Com 71HC Wellbore: Wellbore #1 Design: Permitting Plan Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Well Lost Tank 30_19 Fed Com 71HC RKB = 25' @ 3644.10ft RKB = 25' @ 3644.10ft Grid | Design: | | Permitting Pla | an | | | | | | | | |-----------|--------------------------|--------------------|------------------|---------------------------|------------------|--------------------|-----------------------------|-----------------------------|----------------------------|---------------------------| | Planned S | Survey | | | | | | | | | | | | easured
Depth
(ft) | Inclination
(°) | Azimuth
(°) | Vertical
Depth
(ft) | +N/-S
(ft) | +E/-W
(ft) | Vertical
Section
(ft) | Dogleg
Rate
(°/100ft) | Build
Rate
(°/100ft) | Turn
Rate
(°/100ft) | | | 4,600.00 | 0.00 | 0.00 | 4,600.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 4,665.10
BELL CANY | 0.00 | 0.00 | 4,665.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 4,678.00 | 0.00 | 0.00 | 4,678.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | uild 2°/100 | | | , | | | | | | | | | 4,700.00 | 0.44 | 312.54 | 4,700.00 | 0.06 | -0.06 | -0.05 | 2.00 | 2.00 | 0.00 | | | 4,800.00 | 2.44 | 312.54 | 4,799.96 | 1.76 | -1.91 | -1.55 | 2.00 | 2.00 | 0.00 | | | 4,900.00 | 4.44 | 312.54 | 4,899.78 | 5.81 | -6.33 | -5.12 | 2.00 | 2.00 | 0.00 | | | 5,000.00
5,100.00 | 6.44
8.44 | 312.54
312.54 | 4,999.32
5,098.48 | 12.22
20.98 | -13.32
-22.86 | -10.76
-18.46 | 2.00
2.00 | 2.00
2.00 | 0.00
0.00 | | | 5,200.00 | 10.44 | 312.54 | 5,197.12 | 32.07 | -34.94 | -28.23 | 2.00 | 2.00 | 0.00 | | | 5,300.00 | 12.44 | 312.54 | 5,295.12 | 45.48 | -49.55 | -40.03 | 2.00 | 2.00 | 0.00 | | | 5,377.83 | 14.00 | 312.54 | 5,370.89 | 57.51 | -62.67 | -50.62 | 2.00 | 2.00 | 0.00 | | | lold 14° Tar | | = | -, 0.00 | | 02.07 | 30.02 | 2.00 | 2.00 | 3.00 | | | 5,400.00 | 14.00 | 312.54 | 5,392.40 | 61.14 | -66.62 | -53.81 | 0.00 | 0.00 | 0.00 | | | 5,500.00 | 14.00 | 312.54 | 5,489.43 | 77.49 | -84.44 | -68.21 | 0.00 | 0.00 | 0.00 | | | 5,504.81 | 14.00 | 312.54 | 5,494.10 | 78.28 | -85.29 | -68.90 | 0.00 | 0.00 | 0.00 | | | 5,600.00 | 14.00 | 312.54 | 5,586.46 | 93.84 | -102.26 | -82.60 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | | | 5,700.00
5,800.00 | 14.00
14.00 | 312.54
312.54 |
5,683.50
5.780.53 | 110.20
126.55 | -120.08
-137.89 | -96.99
-111.39 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | | 5,900.00 | 14.00 | 312.54 | 5,877.56 | 142.90 | -155.71 | -111.39 | 0.00 | 0.00 | 0.00 | | | 6,000.00 | 14.00 | 312.54 | 5,974.59 | 159.26 | -173.53 | -140.18 | 0.00 | 0.00 | 0.00 | | | 6,100.00 | 14.00 | 312.54 | 6,071.62 | 175.61 | -191.35 | -154.57 | 0.00 | 0.00 | 0.00 | | (| 6,200.00 | 14.00 | 312.54 | 6,168.65 | 191.96 | -209.17 | -168.97 | 0.00 | 0.00 | 0.00 | | | 6,300.00 | 14.00 | 312.54 | 6,265.68 | 208.32 | -226.99 | -183.36 | 0.00 | 0.00 | 0.00 | | | 6,400.00 | 14.00 | 312.54 | 6,362.71 | 224.67 | -244.81 | -197.76 | 0.00 | 0.00 | 0.00 | | | 6,500.00
6,600.00 | 14.00
14.00 | 312.54
312.54 | 6,459.74
6,556.77 | 241.02
257.38 | -262.63
-280.45 | -212.15
-226.54 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | | | | | | | | | | | | | | 6,700.00
6,786.87 | 14.00
14.00 | 312.54
312.54 | 6,653.81
6,738.10 | 273.73
287.94 | -298.27
-313.75 | -240.94
-253.44 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | | RUSHY CA | | 312.54 | 0,736.10 | 207.94 | -313.73 | -233.44 | 0.00 | 0.00 | 0.00 | | | 6,800.00 | 14.00 | 312.54 | 6,750.84 | 290.08 | -316.09 | -255.33 | 0.00 | 0.00 | 0.00 | | | 6,900.00 | 14.00 | 312.54 | 6,847.87 | 306.44 | -333.91 | -269.73 | 0.00 | 0.00 | 0.00 | | | 7,000.00 | 14.00 | 312.54 | 6,944.90 | 322.79 | -351.73 | -284.12 | 0.00 | 0.00 | 0.00 | | | 7,100.00 | 14.00 | 312.54 | 7,041.93 | 339.15 | -369.55 | -298.52 | 0.00 | 0.00 | 0.00 | | | 7,200.00 | 14.00 | 312.54 | 7,138.96 | 355.50 | -387.37 | -312.91 | 0.00 | 0.00 | 0.00 | | | 7,300.00 | 14.00 | 312.54 | 7,235.99 | 371.85 | -405.19 | -327.31 | 0.00 | 0.00 | 0.00 | | | 7,400.00
7,500.00 | 14.00
14.00 | 312.54
312.54 | 7,333.02
7,430.05 | 388.21
404.56 | -423.01
-440.83 | -341.70
-356.09 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | | | | | | | | | | | | | | 7,600.00 | 14.00 | 312.54 | 7,527.09 | 420.91 | -458.65 | -370.49 | 0.00 | 0.00 | 0.00 | | | 7,700.00
7,800.00 | 14.00
14.00 | 312.54
312.54 | 7,624.12
7,721.15 | 437.27
453.62 | -476.47
-494.29 | -384.88
-399.28 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | | 7,800.00 | 14.00 | 312.54 | 7,721.13 | 469.97 | -494.29
-512.11 | -399.20
-413.67 | 0.00 | 0.00 | 0.00 | | | 8,000.00 | 14.00 | 312.54 | 7,915.21 | 486.33 | -529.93 | -428.07 | 0.00 | 0.00 | 0.00 | | | 8,100.00 | 14.00 | 312.54 | 8,012.24 | 502.68 | -547.75 | -442.46 | 0.00 | 0.00 | 0.00 | | | 8,200.00 | 14.00 | 312.54 | 8,109.27 | 519.03 | -565.57 | -456.86 | 0.00 | 0.00 | 0.00 | | | 8,300.00 | 14.00 | 312.54 | 8,206.30 | 535.39 | -583.39 | -471.25 | 0.00 | 0.00 | 0.00 | | | 8,400.00 | 14.00 | 312.54 | 8,303.33 | 551.74 | -601.21 | -485.64 | 0.00 | 0.00 | 0.00 | | | 8,500.00 | 14.00 | 312.54 | 8,400.36 | 568.09 | -619.02 | -500.04 | 0.00 | 0.00 | 0.00 | | | 8,589.39 | 14.00 | 312.54 | 8,487.10 | 582.71 | -634.95 | -512.91 | 0.00 | 0.00 | 0.00 | | | ONE SPRIN | | 240.54 | 0.407.40 | E04.45 | 600.04 | E44.40 | 0.00 | 0.00 | 0.00 | | | 8,600.00
8,700.00 | 14.00
14.00 | 312.54
312.54 | 8,497.40
8,594.43 | 584.45
600.80 | -636.84
-654.66 | -514.43
-528.83 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | | 8,800.00 | 14.00 | 312.54 | 8,691.46 | 617.16 | -672.48 | -526.65
-543.22 | 0.00 | 0.00 | 0.00 | #### **Planning Report** Database: Company: Site: HOPSPP **ENGINEERING DESIGNS** Project: PRD NM DIRECTIONAL PLANS (NAD 1983) Lost Tank 30-19 Fed Well: Lost Tank 30_19 Fed Com 71HC Wellbore: Wellbore #1 Design: Permitting Plan Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Well Lost Tank 30_19 Fed Com 71HC RKB = 25' @ 3644.10ft RKB = 25' @ 3644.10ft Grid | Design: | Permitting Pla | an
 | | | | | | | | |---|---|--|---|---|---|--|--|--|--| | Planned Survey | | | | | | | | | | | Measured
Depth
(ft) | Inclination (°) | Azimuth
(°) | Vertical
Depth
(ft) | +N/-S
(ft) | +E/-W
(ft) | Vertical
Section
(ft) | Dogleg
Rate
(°/100ft) | Build
Rate
(°/100ft) | Turn
Rate
(°/100ft) | | 8,900.00 | 14.00 | 312.54 | 8,788.49 | 633.51 | -690.30 | -557.62 | 0.00 | 0.00 | 0.00 | | 9,000.00
9,100.00
9,200.00
9,300.00
9,400.00 | 14.00
14.00
14.00
14.00
14.00 | 312.54
312.54
312.54
312.54
312.54 | 8,885.52
8,982.55
9,079.58
9,176.61
9,273.64 | 649.86
666.22
682.57
698.92
715.28 | -708.12
-725.94
-743.76
-761.58
-779.40 | -572.01
-586.41
-600.80
-615.19
-629.59 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 9,500.00
9,600.00
9,700.00
9,709.65 | 14.00
14.00
14.00
14.00 | 312.54
312.54
312.54
312.54 | 9,370.68
9,467.71
9,564.74
9,574.10 | 731.63
747.98
764.34
765.91 | -797.22
-815.04
-832.86
-834.58 | -643.98
-658.38
-672.77
-674.16 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 9,800.00 | NG 1ST
14.00 | 312.54 | 9,661.77 | 780.69 | -850.68 | -687.17 | 0.00 | 0.00 | 0.00 | | 9,900.00
10,000.00
10,100.00
10,200.00
10,300.00 | 14.00
14.00
14.00
14.00
14.00 | 312.54
312.54
312.54
312.54
312.54 | 9,758.80
9,855.83
9,952.86
10,049.89
10,146.92 | 797.04
813.40
829.75
846.10
862.46 | -868.50
-886.32
-904.14
-921.96
-939.78 | -701.56
-715.95
-730.35
-744.74
-759.14 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | | 10,359.96 | 14.00 | 312.54 | 10,205.10 | 872.26 | -950.46 | -767.77 | 0.00 | 0.00 | 0.00 | | 10,400.00
10,500.00
10,600.00
10,700.00
10,708.77 | 14.00
14.00
14.00
14.00
14.00 | 312.54
312.54
312.54
312.54
312.54 | 10,243.95
10,340.99
10,438.02
10,535.05
10,543.56 | 878.81
895.16
911.52
927.87
929.31 | -957.60
-975.42
-993.24
-1,011.06 | -773.53
-787.93
-802.32
-816.72
-817.98 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | KOP, Build | | 312.54 | 10,545.50 | 929.31 | -1,012.62 | -017.90 | 0.00 | 0.00 | 0.00 | | 10,800.00
10,900.00
11,000.00
11,100.00
11,200.00 | 10.35
14.11
22.11
31.24
40.76 | 271.61
226.22
206.35
197.16 | 10,632.88
10,730.80
10,825.86
10,915.16
10,995.99 | 937.01
928.81
903.45
861.70
804.83 | -1,028.98
-1,046.81
-1,064.00
-1,080.05
-1,094.45 | -823.93
-813.90
-786.88
-743.67
-685.61 | 10.00
10.00
10.00
10.00 | -3.99
3.76
8.00
9.14
9.51 | -44.87
-45.39
-19.87
-9.19 | | 11,300.00
11,400.00
11,500.00
11,600.00 | 50.43
60.19
69.99
79.82 | 188.32
185.65
183.45
181.52 | 11,065.89
11,122.74
11,164.81
11,190.82 | 734.57
653.05
562.75
466.41 | -1,106.77
-1,116.64
-1,123.76
-1,127.91 | -614.44
-532.34
-441.79
-345.55 | 10.00
10.00
10.00
10.00 | 9.68
9.76
9.80
9.82 | -3.55
-2.67
-2.19
-1.93 | | 11,700.00
11,703.54 | 89.65
90.00 | 179.70
179.64 | 11,199.99
11,200.00 | 366.97
363.43 | -1,128.96
-1,128.94 | -246.54
-243.02 | 10.00
10.00 | 9.84
9.84 | -1.82
-1.80 | | Landing Po
11,800.00
11,900.00
12,000.00 | 90.00
90.00
90.00 | 179.64
179.64
179.64 | 11,200.00
11,200.00
11,200.00 | 266.97
166.97
66.97 | -1,128.33
-1,127.71
-1,127.08 | -147.16
-47.78
51.60 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | | 12,100.00
12,200.00
12,300.00
12,400.00
12,500.00 | 90.00
90.00
90.00
90.00
90.00 | 179.64
179.64
179.64
179.64
179.64 | 11,200.00
11,200.00
11,200.00
11,200.00
11,200.00 | -33.02
-133.02
-233.02
-333.02
-433.02 | -1,126.46
-1,125.83
-1,125.20
-1,124.58
-1,123.95 | 150.98
250.36
349.75
449.13
548.51 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 12,600.00
12,700.00
12,800.00
12,900.00
13,000.00 | 90.00
90.00
90.00
90.00
90.00 | 179.64
179.64
179.64
179.64
179.64 | 11,200.00
11,200.00
11,200.00
11,200.00
11,200.00 | -533.01
-633.01
-733.01
-833.01
-933.01 | -1,123.32
-1,122.70
-1,122.07
-1,121.45
-1,120.82 | 647.89
747.27
846.65
946.03
1,045.41 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 13,100.00
13,200.00
13,300.00
13,400.00
13,500.00 | 90.00
90.00
90.00
90.00
90.00 | 179.64
179.64
179.64
179.64
179.64 | 11,200.00
11,200.00
11,200.00
11,200.00
11,200.00 | -1,033.00
-1,133.00
-1,233.00
-1,333.00
-1,433.00 | -1,120.19
-1,119.57
-1,118.94
-1,118.32
-1,117.69 | 1,144.79
1,244.17
1,343.55
1,442.94
1,542.32 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | #### Planning Report Database: Company: Site: HOPSPP **ENGINEERING DESIGNS** Project: PRD NM DIRECTIONAL PLANS (NAD
1983) Lost Tank 30-19 Fed Well: Lost Tank 30_19 Fed Com 71HC Wellbore: Wellbore #1 Design: Permitting Plan Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Well Lost Tank 30_19 Fed Com 71HC RKB = 25' @ 3644.10ft RKB = 25' @ 3644.10ft Grid | Design: | Permitting Pla | an | | | | | | | | |---------------------------|--------------------|----------------|---------------------------|---------------|---------------|-----------------------------|-----------------------------|----------------------------|---------------------------| | Planned Survey | | | | | | | | | | | Measured
Depth
(ft) | Inclination
(°) | Azimuth
(°) | Vertical
Depth
(ft) | +N/-S
(ft) | +E/-W
(ft) | Vertical
Section
(ft) | Dogleg
Rate
(°/100ft) | Build
Rate
(°/100ft) | Turn
Rate
(°/100ft) | | 13,600.00 | 90.00 | 179.64 | 11,200.00 | -1,532.99 | -1,117.06 | 1,641.70 | 0.00 | 0.00 | 0.00 | | 13,700.00 | 90.00 | 179.64 | 11,200.00 | -1,632.99 | -1,116.44 | 1,741.08 | 0.00 | 0.00 | 0.00 | | 13,800.00 | 90.00 | 179.64 | 11,200.00 | -1,732.99 | -1,115.81 | 1,840.46 | 0.00 | 0.00 | 0.00 | | 13,900.00 | 90.00 | 179.64 | 11,200.00 | -1,832.99 | -1,115.18 | 1,939.84 | 0.00 | 0.00 | 0.00 | | 14,000.00 | 90.00 | 179.64 | 11,200.00 | -1,932.99 | -1,114.56 | 2,039.22 | 0.00 | 0.00 | 0.00 | | 14,100.00 | 90.00 | 179.64 | 11,200.00 | -2,032.98 | -1,113.93 | 2,138.60 | 0.00 | 0.00 | 0.00 | | 14,200.00 | 90.00 | 179.64 | 11,200.00 | -2,132.98 | -1,113.31 | 2,237.98 | 0.00 | 0.00 | 0.00 | | 14,300.00 | 90.00 | 179.64 | 11,200.00 | -2,232.98 | -1,112.68 | 2,337.36 | 0.00 | 0.00 | 0.00 | | 14,400.00 | 90.00 | 179.64 | 11,200.00 | -2,332.98 | -1,112.05 | 2,436.74 | 0.00 | 0.00 | 0.00 | | 14,500.00 | 90.00 | 179.64 | 11,200.00 | -2,432.98 | -1,111.43 | 2,536.12 | 0.00 | 0.00 | 0.00 | | 14,600.00 | 90.00 | 179.64 | 11,200.00 | -2,532.97 | -1,110.80 | 2,635.51 | 0.00 | 0.00 | 0.00 | | 14,700.00 | 90.00 | 179.64 | 11,200.00 | -2,632.97 | -1,110.17 | 2,734.89 | 0.00 | 0.00 | 0.00 | | 14,800.00 | 90.00 | 179.64 | 11,200.00 | -2,732.97 | -1,109.55 | 2,834.27 | 0.00 | 0.00 | 0.00 | | 14,900.00 | 90.00 | 179.64 | 11,200.00 | -2,832.97 | -1,108.92 | 2,933.65 | 0.00 | 0.00 | 0.00 | | 15,000.00 | 90.00 | 179.64 | 11,200.00 | -2,932.97 | -1,108.30 | 3,033.03 | 0.00 | 0.00 | 0.00 | | 15,100.00 | 90.00 | 179.64 | 11,200.00 | -3,032.97 | -1,107.67 | 3,132.41 | 0.00 | 0.00 | 0.00 | | 15,200.00 | 90.00 | 179.64 | 11,200.00 | -3,132.96 | -1,107.04 | 3,231.79 | 0.00 | 0.00 | 0.00 | | 15,300.00 | 90.00 | 179.64 | 11,200.00 | -3,232.96 | -1,106.42 | 3,331.17 | 0.00 | 0.00 | 0.00 | | 15,400.00 | 90.00 | 179.64 | 11,200.00 | -3,332.96 | -1,105.79 | 3,430.55 | 0.00 | 0.00 | 0.00 | | 15,500.00 | 90.00 | 179.64 | 11,200.00 | -3,432.96 | -1,105.17 | 3,529.93 | 0.00 | 0.00 | 0.00 | | 15,600.00 | 90.00 | 179.64 | 11,200.00 | -3,532.96 | -1,104.54 | 3,629.31 | 0.00 | 0.00 | 0.00 | | 15,700.00 | 90.00 | 179.64 | 11,200.00 | -3,632.95 | -1,103.91 | 3,728.70 | 0.00 | 0.00 | 0.00 | | 15,800.00 | 90.00 | 179.64 | 11,200.00 | -3,732.95 | -1,103.29 | 3,828.08 | 0.00 | 0.00 | 0.00 | | 15,900.00 | 90.00 | 179.64 | 11,200.00 | -3,832.95 | -1,102.66 | 3,927.46 | 0.00 | 0.00 | 0.00 | | 16,000.00 | 90.00 | 179.64 | 11,200.00 | -3,932.95 | -1,102.03 | 4,026.84 | 0.00 | 0.00 | 0.00 | | 16,100.00 | 90.00 | 179.64 | 11,200.00 | -4,032.95 | -1,101.41 | 4,126.22 | 0.00 | 0.00 | 0.00 | | 16,200.00 | 90.00 | 179.64 | 11,200.00 | -4,132.94 | -1,100.78 | 4,225.60 | 0.00 | 0.00 | 0.00 | | 16,300.00 | 90.00 | 179.64 | 11,200.00 | -4,232.94 | -1,100.16 | 4,324.98 | 0.00 | 0.00 | 0.00 | | 16,400.00 | 90.00 | 179.64 | 11,200.00 | -4,332.94 | -1,099.53 | 4,424.36 | 0.00 | 0.00 | 0.00 | | 16,500.00 | 90.00 | 179.64 | 11,200.00 | -4,432.94 | -1,098.90 | 4,523.74 | 0.00 | 0.00 | 0.00 | | 16,600.00 | 90.00 | 179.64 | 11,200.00 | -4,532.94 | -1,098.28 | 4,623.12 | 0.00 | 0.00 | 0.00 | | 16,700.00 | 90.00 | 179.64 | 11,200.00 | -4,632.93 | -1,097.65 | 4,722.50 | 0.00 | 0.00 | 0.00 | | 16,800.00 | 90.00 | 179.64 | 11,200.00 | -4,732.93 | -1,097.03 | 4,821.88 | 0.00 | 0.00 | 0.00 | | 16,900.00 | 90.00 | 179.64 | 11,200.00 | -4,832.93 | -1,096.40 | 4,921.27 | 0.00 | 0.00 | 0.00 | | 17,000.00 | 90.00 | 179.64 | 11,200.00 | -4,932.93 | -1,095.77 | 5,020.65 | 0.00 | 0.00 | 0.00 | | 17,100.00 | 90.00 | 179.64 | 11,200.00 | -5,032.93 | -1,095.15 | 5,120.03 | 0.00 | 0.00 | 0.00 | | 17,200.00 | 90.00 | 179.64 | 11,200.00 | -5,132.92 | -1,094.52 | 5,219.41 | 0.00 | 0.00 | 0.00 | | 17,300.00 | 90.00 | 179.64 | 11,200.00 | -5,232.92 | -1,093.89 | 5,318.79 | 0.00 | 0.00 | 0.00 | | 17,400.00 | 90.00 | 179.64 | 11,200.00 | -5,332.92 | -1,093.27 | 5,418.17 | 0.00 | 0.00 | 0.00 | | 17,500.00 | 90.00 | 179.64 | 11,200.00 | -5,432.92 | -1,092.64 | 5,517.55 | 0.00 | 0.00 | 0.00 | | 17,600.00 | 90.00 | 179.64 | 11,200.00 | -5,532.92 | -1,092.02 | 5,616.93 | 0.00 | 0.00 | 0.00 | | 17,700.00 | 90.00 | 179.64 | 11,200.00 | -5,632.91 | -1,091.39 | 5,716.31 | 0.00 | 0.00 | 0.00 | | 17,800.00 | 90.00 | 179.64 | 11,200.00 | -5,732.91 | -1,090.76 | 5,815.69 | 0.00 | 0.00 | 0.00 | | 17,900.00 | 90.00 | 179.64 | 11,200.00 | -5,832.91 | -1,090.14 | 5,915.07 | 0.00 | 0.00 | 0.00 | | 18,000.00 | 90.00 | 179.64 | 11,200.00 | -5,932.91 | -1,089.51 | 6,014.46 | 0.00 | 0.00 | 0.00 | | 18,100.00 | 90.00 | 179.64 | 11,200.00 | -6,032.91 | -1,088.88 | 6,113.84 | 0.00 | 0.00 | 0.00 | | 18,200.00 | 90.00 | 179.64 | 11,200.00 | -6,132.90 | -1,088.26 | 6,213.22 | 0.00 | 0.00 | 0.00 | | 18,300.00 | 90.00 | 179.64 | 11,200.00 | -6,232.90 | -1,087.63 | 6,312.60 | 0.00 | 0.00 | 0.00 | | 18,400.00 | 90.00 | 179.64 | 11,200.00 | -6,332.90 | -1,087.01 | 6,411.98 | 0.00 | 0.00 | 0.00 | | 18,500.00 | 90.00 | 179.64 | 11,200.00 | -6,432.90 | -1,086.38 | 6,511.36 | 0.00 | 0.00 | 0.00 | | 18,600.00 | 90.00 | 179.64 | 11,200.00 | -6,532.90 | -1,085.75 | 6,610.74 | 0.00 | 0.00 | 0.00 | | 18,700.00 | 90.00 | 179.64 | 11,200.00 | -6,632.89 | -1,085.13 | 6,710.12 | 0.00 | 0.00 | 0.00 | | 18,800.00 | 90.00 | 179.64 | 11,200.00 | -6,732.89 | -1,084.50 | 6,809.50 | 0.00 | 0.00 | 0.00 | | 18,900.00 | 90.00 | 179.64 | 11,200.00 | -6,832.89 | -1,083.88 | 6,908.88 | 0.00 | 0.00 | 0.00 | | 19,000.00 | 90.00 | 179.64 | 11,200.00 | -6,932.89 | -1,083.25 | 7,008.26 | 0.00 | 0.00 | 0.00 | #### Planning Report Database: Company: HOPSPP **ENGINEERING DESIGNS** Project: PRD NM DIRECTIONAL PLANS (NAD 1983) Site: Lost Tank 30-19 Fed Well: Lost Tank 30_19 Fed Com 71HC Wellbore: Wellbore #1 Design: Permitting Plan Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Well Lost Tank 30_19 Fed Com 71HC RKB = 25' @ 3644.10ft RKB = 25' @ 3644.10ft Grid | Design. | T Citintuing T is | | | | | | | | | |---|--|--|--|---|---|---
--|--|--| | Planned Survey | | | | | | | | | | | Measured
Depth
(ft) | Inclination
(°) | Azimuth
(°) | Vertical
Depth
(ft) | +N/-S
(ft) | +E/-W
(ft) | Vertical
Section
(ft) | Dogleg
Rate
(°/100ft) | Build
Rate
(°/100ft) | Turn
Rate
(°/100ft) | | 19,100.00 19,200.00 19,300.00 19,400.00 19,500.00 19,600.00 19,700.00 19,800.00 20,000.00 20,100.00 20,200.00 20,300.00 20,400.00 20,500.00 20,600.00 20,700.00 20,800.00 21,000.00 21,100.00 21,200.00 21,300.00 21,500.00 21,500.00 21,600.00 21,500.00 21,600.00 21,600.00 21,600.00 21,600.00 21,600.00 21,600.00 21,600.00 21,600.00 21,600.00 21,600.00 21,600.00 21,600.00 21,600.00 21,600.00 21,600.00 | 90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00 | 179.64
179.64
179.64
179.64
179.64
179.64
179.64
179.64
179.64
179.64
179.64
179.64
179.64
179.64
179.64
179.64
179.64
179.64
179.64
179.64
179.64
179.64
179.64
179.64
179.64
179.64
179.64
179.64
179.64
179.64
179.64
179.64 | 11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00
11,200.00 | -7,032.89
-7,132.88
-7,232.88
-7,332.88
-7,432.88
-7,532.88
-7,632.88
-7,632.87
-7,832.87
-7,832.87
-8,032.87
-8,132.87
-8,132.86
-8,132.86
-8,432.86
-8,532.86
-8,732.85
-8,932.85
-9,032.85
-9,132.85
-9,132.85
-9,132.85
-9,132.84
-9,332.84
-9,432.84
-9,532.84
-9,532.84
-9,632.84
-9,632.84
-9,632.84
-9,732.83 | -1,082.62
-1,082.00
-1,081.37
-1,080.74
-1,079.49
-1,078.87
-1,076.99
-1,076.36
-1,075.74
-1,075.11
-1,074.48
-1,073.23
-1,072.60
-1,071.98
-1,071.98
-1,071.98
-1,070.73
-1,070.73
-1,068.85
-1,068.22
-1,066.34
-1,066.34
-1,066.72 | 7,107.64 7,207.03 7,306.41 7,405.79 7,505.17 7,604.55 7,703.93 7,803.31 7,902.69 8,002.07 8,101.45 8,200.83 8,300.22 8,399.60 8,498.98 8,598.36 8,697.74 8,797.12 8,896.50 8,995.88 9,095.26 9,194.64 9,294.02 9,393.41 9,492.79 9,592.17 9,691.55 9,790.93 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 | | 21,900.00
22,000.00
22,100.00
22,151.60 | 90.00
90.00
90.00
90.00 | 179.64
179.64
179.64
179.64 | 11,200.00
11,200.00
11,200.00
11,200.00 | -9,832.83
-9,932.83
-10,032.83
-10,084.43 | -1,065.09
-1,064.46
-1,063.84
-1,063.51 | 9,890.31
9,989.69
10,089.07
10,140.35 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | TD at 22151 | | 178.04 | 11,200.00 | -10,004.43 | -1,003.31 | 10, 140.33 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | Design Targets | | | | | | | | | | |--|------------------|----------------------|---------------------|-------------------------|-------------------------|--------------------|-------------------|-----------|-------------| | Target Name - hit/miss target - Shape | Dip Angle
(°) | Dip Dir.
(°) | TVD
(ft) | +N/-S
(ft) | +E/-W
(ft) | Northing
(usft) | Easting
(usft) | Latitude | Longitude | | KOP (Lost Tank 30_19
- plan misses target
- Circle (radius 50.00 | | 0.00
64.65ft at 0 | 0.00
.00ft MD (0 | 763.38
.00 TVD, 0.00 | -1,131.16
N, 0.00 E) | 504,367.29 | 730,716.04 | 32.385082 | -103.719839 | | PBHL (Lost Tank
- plan hits target cen
- Point | 0.00
iter | 0.00 | 11,200.00 | -10,084.43 | -1,063.51 | 493,520.04 | 730,783.68 | 32.355265 | -103.719821 | | FTP (Lost Tank 30_19 - plan hits target cen - Point | 0.00
iter | 0.00 | 11,200.00 | 363.43 | -1,128.94 | 503,967.36 | 730,718.26 | 32.383982 | -103.719839 | #### Planning Report Database: HOPSPP Company: ENGINEERING DESIGNS Project: PRD NM DIRECTIONAL PLANS (NAD 1983) Site: Lost Tank 30-19 Fed Well: Lost Tank 30_19 Fed Com 71HC Wellbore: Wellbore #1 Design: Permitting Plan Local Co-ordinate Reference: TVD
Reference: MD Reference: North Reference: Survey Calculation Method: Well Lost Tank 30_19 Fed Com 71HC RKB = 25' @ 3644.10ft RKB = 25' @ 3644.10ft Grid | rmations | | | | | | | |----------|---------------------------|---------------------------|-----------------|-----------|------------|-------------------------| | | Measured
Depth
(ft) | Vertical
Depth
(ft) | Name | Lithology | Dip
(°) | Dip
Direction
(°) | | | 855.10 | 855.10 | RUSTLER | | | | | | 1,149.10 | 1,149.10 | SALADO | | | | | | 2,862.10 | 2,862.10 | CASTILE | | | | | | 4,583.10 | 4,583.10 | DELAWARE | | | | | | 4,665.10 | 4,665.10 | BELL CANYON | | | | | | 5,504.81 | 5,494.10 | CHERRY CANYON | | | | | | 6,786.87 | 6,738.10 | BRUSHY CANYON | | | | | | 8,589.39 | 8,487.10 | BONE SPRING | | | | | | 9,709.65 | 9,574.10 | BONE SPRING 1ST | | | | | | 10,359.96 | 10,205.10 | BONE SPRING 2ND | | | | | Plan Annotatio | ns | | | | | |----------------|---------------|---------------|---------------|---------------|---------------------| | | Measured | Vertical | Local Coor | dinates | | | | Depth
(ft) | Depth
(ft) | +N/-S
(ft) | +E/-W
(ft) | Comment | | | ` , | ` ' | (14) | (14) | Comment | | | 4,678.00 | 4,678.00 | 0.00 | 0.00 | Build 2°/100' | | | 5,377.83 | 5,370.89 | 57.51 | -62.67 | Hold 14° Tangent | | | 10,708.77 | 10,543.56 | 929.31 | -1,012.62 | KOP, Build 10°/100' | | | 11,703.54 | 11,200.00 | 363.43 | -1,128.94 | Landing Point | | | 22,151.60 | 11,200.00 | -10,084.43 | -1,063.51 | TD at 22151.60' MD | PRD NM DIRECTIONAL PLANS (NAD 1983) Lost Tank 30-19 Fed Lost Tank 30_19 Fed Com 71HC Wellbore #1 Permitting Plan # **Anticollision Summary Report** 22 May, 2024 #### **Anticollision Summary Report** Company: ENGINEERING DESIGNS Project: PRD NM DIRECTIONAL PLANS (NAD 1983) Reference Site: Lost Tank 30-19 Fed Site Error: 44.72 ft Reference Well: Lost Tank 30_19 Fed Com 71HC Well Error: 1.79 ft Reference Wellbore Wellbore #1 Reference Design: Permitting Plan Local Co-ordinate Reference: Well Lost Tank 30_19 Fed Com 71HC **TVD Reference:** RKB = 25' @ 3644.10ft **MD Reference:** RKB = 25' @ 3644.10ft North Reference: Grid Survey Calculation Method: Minimum Curvature Output errors are at 2.50 sigma Database: HOPSPP Offset TVD Reference: Offset Datum Reference Permitting Plan Filter type: NO GLOBAL FILTER: Using user defined selection & filtering criteria Interpolation Method: MD Interval 100.00ft Error Model: ISCWSA Depth Range: Unlimited Scan Method: Closest Approach 3D Results Limited by: Maximum centre distance of 2,040.81ft Error Surface: Combined Pedal Curve Warning Levels Evaluated at: 3.50 Sigma Casing Method: Through Borehole Radius Survey Tool Program Date 5/22/2024 From To (ft) (ft) Survey (Wellbore) Tool Name Description 0.00 22,150.77 Permitting Plan (Wellbore #1) B001Mc_MWD+HRGM_R MWD+HRGM | Summary | | | | | | | |--|---|---|---|---|--|--| | Site Name
Offset Well - Wellbore - Design | Reference
Measured
Depth
(ft) | Offset
Measured
Depth
(ft) | Dista
Between
Centres
(ft) | nce
Between
Ellipses
(ft) | Separation
Factor | Warning | | Lost Tank 30-19 Fed | | | | | | | | Lost Tank 30_19 Fed Com 21H - Wellbore #1 - Permitting Lost Tank 30_19 Fed Com 21H - Wellbore #1 - Permitting Lost Tank 30_19 Fed Com 21H - Wellbore #1 - Permitting Lost Tank 30_19 Fed Com 22H - Wellbore #1 - Permitting Lost Tank 30_19 Fed Com 22H - Wellbore #1 - Permitting Lost Tank 30_19 Fed Com 22H - Wellbore #1 - Permitting Lost Tank 30_19 Fed Com 32H - Wellbore #1 - Permitting Lost Tank 30_19 Fed Com 32H - Wellbore #1 - Permitting Lost Tank 30_19 Fed Com 33H - Wellbore #1 - Permitting Lost Tank 30_19 Fed Com 41H - Wellbore #1 - Permitting Lost Tank 30_19 Fed Com 41H - Wellbore #1 - Permitting Lost Tank 30_19 Fed Com 41H - Wellbore #1 - Permitting Lost Tank 30_19 Fed Com 42H - Wellbore #1 - Copy of P Lost Tank 30_19 Fed Com 42H - Wellbore #1 - Copy of P Lost Tank 30_19 Fed Com 42H - Wellbore #1 - Permitting Lost Tank 30_19 Fed Com 42H - Wellbore #1 - Permitting Lost Tank 30_19 Fed Com 72HC - Wellbore #1 - Permittin Lost Tank 30_19 Fed Com 72HC - Wellbore #1 - Permittin Lost Tank 30_19 Federal Com 13H - Wellbore #1 - Permit Lost Tank 30_19 Federal Com 13H - Wellbore #1 - Permit Lost Tank 30_19 Federal Com 13H - Wellbore #1 - Permit Lost Tank 30_19 Federal Com 13H - Wellbore #1 - Permit Lost Tank 30_19 Federal Com 13H - Wellbore #1 - Permit Lost Tank 30_19 Federal Com 13H - Wellbore #1 - Permit Lost Tank 30_19 Federal Com 13H - Wellbore #1 - Permit Lost Tank 30_19 Federal Com 13H - Wellbore #1 - Permit Lost Tank 30_19 Federal Com 13H - Wellbore #1 - Permit Lost Tank 30_19 Federal Com 13H - Wellbore #1 - Permit Lost Tank 30_19 Federal Com 13H - Wellbore #1 - Permit Lost Tank 30_19 Federal Com 13H - Wellbore #1 - Permit Lost Tank 30_19 Federal Com 13H - Wellbore #1 - Permit Lost Tank 30_19 Federal Com 13H - Wellbore #1 - Permit Lost Tank 30_19 Federal Com 13H - Wellbore #1 - Permit Lost Tank 30_19 Federal Com 13H - Wellbore #1 - Permit Lost Tank 30_19 Federal Com 13H - Wellbore #1 - Permit Lost Tank 30_19 Federal Com 13H - Wellbore #1 - Permit Lost Tank 30_19 Federal Com 13H - Wellbore #1 - Permit Lost Tank 30_ | 4,013.21
4,100.00
22,151.60
6,030.03
6,100.00
6,200.00
9,224.95
9,300.00
7,367.97
6,512.40
6,600.00
4,700.00
4,989.79
5,000.00
4,989.79
5,000.00
4,700.00
3,500.00
4,100.00
9,874.07
5,997.32 | 4,012.61
4,099.24
21,286.62
6,005.16
6,074.65
6,173.97
9,124.86
9,198.68
7,309.99
6,500.60
6,587.98
6,687.73
4,988.68
4,998.82
4,988.82
4,600.20
4,700.20
3,497.80
3,596.45
4,079.72
9,803.79
5,958.01 | 124.98
124.99
947.18
125.43
125.70
126.99
34.60
37.18
135.99
72.33
72.59
73.52
57.55
57.56
57.55
57.56
30.00
30.02
302.59
302.74
317.59
243.04
247.86 | 93.67
93.12
633.54
80.73
80.53
81.14
-36.51
-36.90
80.85
23.79
23.29
23.32
20.01
19.95
5.35
5.14
274.79
274.31
286.10
166.21
203.11 | 0.502
2.466
1.490
1.472
1.464
1.533
1.531
1.531
1.217
1.206
10.886
10.648
10.086
3.163
5.539 | ES SF CC ES SF L4MOC (HPR) & L2MOC L4MOC (HPR) & L2MOC CC, ES, SF SS-SVY Procedures, CC SS-SVY Procedures, ES SS-SVY Procedures, CC SS-SVY Procedures, CC SS-SVY Procedures, CC SS-SVY Procedures, ES, SS-SVY Procedures, CC SS-SVY Procedures, CC SS-SVY Procedures, ES, Level 2 MOC, CC Level 2 MOC, ES, SF CC
ES SF CC, ES, SF CC | | Lost Tank 30_19 Federal Com 23H - Wellbore #1 - Permi
Lost Tank 30_19 Federal Com 23H - Wellbore #1 - Permi | 6,000.00
22,151.60 | 5,960.58
21,424.32 | 247.86
1,487.99 | 203.10
1,131.68 | 5.537
4.176 | | | LOST TANK 30-19 FED 31H - WB00 - Permitting Plan
LOST TANK 30-19 FED 31H - WB00 - Permitting Plan
Lost Tank 30-19 Fed Com 11HC - Wellbore #1 - Permittin
Lost Tank 30-19 Fed Com 11HC - Wellbore #1 - Permittin | 11,664.22
22,000.00
3,510.00
3,700.00 | 11,129.95
22,047.13
3,507.90
3,689.60 | 571.99
866.93
173.26
176.75 | 483.40
575.83
151.82
154.66 | 2.978 | CC, ES | | Lost Tank 30-19 Fed Com 12HC - Wellbore #1 - Permittin
Lost Tank 30-19 Fed Com 2HC - Wellbore #1 - Permitting | 5,671.43
5,600.00 | 5,654.26
5,583.27 | 24.28
29.41 | -4.77
1.02 | | L4MOC (HPR) & L2MOC
Level 2 MOC, CC, ES, SF | #### **Anticollision Summary Report** Company: **ENGINEERING DESIGNS** Project: PRD NM DIRECTIONAL PLANS (NAD 1983) Lost Tank 30-19 Fed Reference Site: Site Error: 44.72 ft Reference Well: Lost Tank 30_19 Fed Com 71HC Well Error: 1.79 ft Reference Wellbore Wellbore #1 Reference Design: Permitting Plan Local Co-ordinate Reference: Well Lost Tank 30_19 Fed Com 71HC **TVD Reference:** RKB = 25' @ 3644.10ft RKB = 25' @ 3644.10ft MD Reference: North Reference: Grid **Survey Calculation Method:** Minimum Curvature Output errors are at 2.50 sigma **HOPSPP** Database: Offset TVD Reference: Offset Datum Reference Depths are relative to RKB = 25' @ 3644.10ft Offset Depths are relative to Offset Datum Central Meridian is -104.333334 Coordinates are relative to: Lost Tank 30_19 Fed Com 71HC Coordinate System is US State Plane 1983, New Mexico Eastern Zone Grid Convergence at Surface is: 0.33° #### **Anticollision Summary Report** Company: **ENGINEERING DESIGNS** Project: PRD NM DIRECTIONAL PLANS (NAD 1983) Lost Tank 30-19 Fed Reference Site: Site Error: 44.72 ft Reference Well: Lost Tank 30_19 Fed Com 71HC Well Error: 1.79 ft Reference Wellbore Wellbore #1 Reference Design: Permitting Plan Local Co-ordinate Reference: Well Lost Tank 30_19 Fed Com 71HC TVD Reference: RKB = 25' @ 3644.10ft RKB = 25' @ 3644.10ft MD Reference: Grid North Reference: **Survey Calculation Method:** Minimum Curvature Output errors are at 2.50 sigma **HOPSPP** Database: Offset TVD Reference: Offset Datum Reference Depths are relative to RKB = 25' @ 3644.10ft Coordinates are relative to: Lost Tank 30_19 Fed Com 71HC Offset Depths are relative to Offset Datum Central Meridian is -104.333334 Coordinate System is US State Plane 1983, New Mexico Eastern Zone Grid Convergence at Surface is: 0.33° # PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL OPERATOR'S NAME: OXY USA INCORPORATED WELL NAME & NO.: LOST TANK 30 19 FEDERAL COM 71H LOCATION: Section 19, T.22 S., R.32 E. COUNTY: Lea County, New Mexico COA | H2S | • Yes | O No | | |----------------------|------------------|-----------------------------|------------------| | Potash | None | O Secretary | O R-111-P | | Cave/Karst Potential | • Low | O Medium | O High | | Cave/Karst Potential | O Critical | | _ | | Variance | O None | • Flex Hose | Other | | Wellhead | Conventional | Multibowl | O Both | | Wellhead Variance | O Diverter | | | | Other | □4 String | ☐ Capitan Reef | □WIPP | | Other | ☐Fluid Filled | ☐ Pilot Hole | ☐ Open Annulus | | Cementing | ☐ Contingency | ☐ EchoMeter | ☑ Primary Cement | | | Cement Squeeze | | Squeeze | | Special Requirements | ☐ Water Disposal | ☑ COM | □ Unit | | Special Requirements | ☐ Batch Sundry | | | | Special Requirements | ☑ Break Testing | ✓ Offline | | | Variance | | Cementing | Clearance | #### A. HYDROGEN SULFIDE A Hydrogen Sulfide (H2S) Drilling Plan shall be activated AT SPUD. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM. #### B. CASING NOTE: WELL APPROVED FOR DESIGNS A1 AND A2. REVIEW CEMENT VOLUMES TO ACHIEVE TIE BACKS LISTED BELOW. MEDIUM CAVA KARST. PLEASE HAVE CONTINGENCIES IN PLACE IN THE EVENT OF SEVERE LOSSES #### **A1:** 1. The **10-3/4** inch surface casing shall be set at approximately **945** feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface. *BLM Geology Feedback: The operator* purposed set depth will not adequately protect usable water zones. Instead, set casing at 945 feet. - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job. - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **24 hours in the Potash Area** or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement) - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater. - d. If cement falls back, remedial cementing will be done prior to drilling out that string. - 2. The 7-5/8 inch intermediate casing shall be set at approximately 10,609 feet. KEEP CASING 1/2 FULL FOR COLLAPSE SF. PRESSURE TEST NEEDS EXTERNAL PRESSURE REVIEW AS WELL. The minimum required fill of cement behind the 7-5/8 inch intermediate casing is: #### **Option 1 (Single Stage):** • Cement to surface. If cement does not circulate see B.1.a, c-d above. Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface. - a. First stage: Operator will cement with intent to reach the top of the **Brushy** Canyon - b. Second stage: - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified - ❖ In <u>Secretary Potash Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface. Operator has proposed to pump down 10-3/4" X 7-5/8" annulus. <u>Operator must top out cement after the bradenhead squeeze and verify cement to surface. Operator</u> can also check TOC with Echo-meter. CBL must be run from TD of the 7-5/8" casing to surface if confidence is lacking on the quality of the bradenhead squeeze cement job. Submit results to BLM. If cement does not tie-back into the previous casing shoe, a third stage remediation BH may be performed. The appropriate BLM office shall be notified. Bradenhead squeeze in the production interval is only as an edge case remediation measure and is NOT approved in this COA. If production cement job experiences losses and a bradenhead squeeze is needed for tie-back, BLM Engineering should be notified prior to job with volumes and planned wellbore schematic. CBL will be needed when this occurs. 3. The **5-1/2** inch production casing shall be set at approximately **22,152** feet. The minimum required fill of cement behind the **5-1/2** inch production casing is: #### **Option 1 (Single Stage):** • Cement should tie-back at least **500 feet** into previous casing string. Operator shall provide method of verification. #### **A2:** - 1. The 13-3/8 inch surface casing shall be set at approximately 945 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface. BLM Geology Feedback: The operator purposed set depth will not adequately protect usable water zones. Instead, set casing at 945 feet. - e. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job. - f. Wait on cement (WOC) time for a primary cement job will be a minimum of **24 hours in the Potash Area** or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement) - g. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater. - h. If cement falls back, remedial cementing will be done prior to drilling out that string. - 2. The **7-5/8** inch intermediate casing shall be set at approximately **10,609** feet. **KEEP CASING 1/2 FULL FOR COLLAPSE SF. PRESSURE TEST NEEDS** EXTERNAL PRESSURE REVIEW AS WELL. The minimum required fill of cement behind the **7-5/8** inch intermediate casing is: #### **Option 1 (Single Stage):** • Cement to surface. If cement does not circulate see B.1.a, c-d above. #### **Option 2 (Bradenhead):** Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface. - c. First stage: Operator will cement with intent to reach the top of the **Brushy** Canyon - d. Second stage: - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified - 3. The 5-1/2 inch production casing shall be set at approximately 22,152 feet. The minimum required fill of cement behind the 5-1/2 inch production casing is: #### **Option 1 (Single Stage):** • Cement should tie-back at least
500 feet into previous casing string. Operator shall provide method of verification. #### C. PRESSURE CONTROL - 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).' - 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi and below the intermediate casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 3500 (70% Working Pressure) psi. - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry. - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal. - c. Manufacturer representative shall install the test plug for the initial BOP test. - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed. - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed. #### D. SPECIAL REQUIREMENT (S) #### **Communitization Agreement** - The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request. - The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in Onshore Order 1 and 2. - If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1. - In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign. #### (Note: For a minimum 5M BOPE or less (Utilizing a 10M BOPE system) BOPE Break Testing Variance - BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP) - BOPE Break Testing is NOT permitted to drilling the production hole section. - Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation. - While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle. - Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations. - A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable). - The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests. - As a minimum, a full BOPE test shall be performed at 21-day intervals. - In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per Onshore Oil and Gas Order No. 2. - If in the event break testing is not utilized, then a full BOPE test would be conducted. #### **Offline Cementing** Offline cementing OK for surface and intermediate intervals. Notify the BLM prior to the commencement of any offline cementing procedure. #### **GENERAL REQUIREMENTS** The BLM is to be notified in advance for a representative to witness: - a. Spudding well (minimum of 24 hours) - b. Setting and/or Cementing of all casing strings (minimum of 4 hours) - c. BOPE tests (minimum of 4 hours) #### **Contact Eddy County Petroleum Engineering Inspection Staff:** Email or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220; **BLM_NM_CFO_DrillingNotifications@BLM.GOV**; (575) 361-2822 #### **Contact Lea County Petroleum Engineering Inspection Staff:** Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981 - 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s). - b. When the operator proposes to set surface casing with Spudder Rig - i.Notify the BLM when moving in and removing the Spudder Rig. - ii.Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location. - iii.BOP/BOPE test to be conducted per **43** CFR **3172** as soon as 2nd Rig is rigged up on well. - 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor Page 6 of 9 is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area. 3. For intervals in which cement to surface is required, cement to surface should be verified with a visual check and density or pH check to differentiate cement from spacer and drilling mud. The results should be documented in the driller's log and daily reports. #### A. CASING - 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed. - 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug. - 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug. - 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string. - 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer. - 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole. - 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations. - 8. Whenever a casing string is cemented in the R-111-Q potash area, the NMOCD requirements shall be followed. #### **B. PRESSURE CONTROL** - 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in **43 CFR 3172**. - 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating.
Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. - 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure. - 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met: - i. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry. - ii.If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal. - iii.Manufacturer representative shall install the test plug for the initial BOP test. - iv. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed. - v.If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed. - 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests. - i.In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified). - ii. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.) - iii. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item). - iv. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock. - v.The results of the test shall be reported to the appropriate BLM office. - vi.All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office. - vii.The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure. - viii.BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR 3172. #### C. DRILLING MUD Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented. #### D. WASTE MATERIAL AND FLUIDS All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations. **KPI** 4/15/2025 # Permian Drilling Hydrogen Sulfide Drilling Operations Plan Open drill site. No homes or buildings are near the proposed location. #### 1. Escape Personnel shall escape upwind of wellbore in the event of an emergency gas release. Escape can take place through the lease road on the Southeast side of the location. Personnel need to move to a safe distance and block the entrance to location. If the primary route is not an option due to the wind direction, then a secondary egress route should be taken. # Permian Drilling Hydrogen Sulfide Drilling Operations Plan New Mexico #### **Scope** This contingency plan establishes guidelines for the public, all company employees, and contract employees who's work activities may involve exposure to hydrogen sulfide (H2S) gas. While drilling this well, it is possible to encounter H2S bearing formations. At all times, the first barrier to control H2S emissions will be the drilling fluid, which will have a density high enough to control influx. #### **Objective** - 1. Provide an immediate and predetermined response plan to any condition when H2S is detected. All H2S detections in excess of 10 parts per million (ppm) concentration are considered an Emergency. - 2. Prevent any and all accidents, and prevent the uncontrolled release of hydrogen sulfide into the atmosphere. - 3. Provide proper evacuation procedures to cope with emergencies. - 4. Provide immediate and adequate medical attention should an injury occur. #### **Discussion** Implementation: This plan with all details is to be fully implemented before drilling to commence. Emergency response Procedure: This section outlines the conditions and denotes steps to be taken in the event of an emergency. Emergency equipment Procedure: This section outlines the safety and emergency equipment that will be required for the drilling of this well. Training provisions: This section outlines the training provisions that must be adhered to prior to drilling. Drilling emergency call lists: Included are the telephone numbers of all persons to be contacted should an emergency exist. Briefing: This section deals with the briefing of all people involved in the drilling operation. Public safety: Public safety personnel will be made aware of any potential evacuation and any additional support needed. Check lists: Status check lists and procedural check lists have been included to insure adherence to the plan. General information: A general information section has been included to supply support information. #### **Hydrogen Sulfide Training** All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on the well: - 1. The hazards and characteristics of H2S. - 2. Proper use and maintenance of personal protective equipment and life support systems. - 3. H2S detection. - 4. Proper use of H2S detectors, alarms, warning systems, briefing areas, evacuation procedures and prevailing winds. - 5. Proper techniques for first aid and rescue procedures. - 6. Physical effects of hydrogen sulfide on the human body. - 7. Toxicity of hydrogen sulfide and sulfur dioxide. - 8. Use of SCBA and supplied air equipment. - 9. First aid and artificial respiration. - 10. Emergency rescue. In addition, supervisory personnel will be trained in the following areas: - 1. The effects of H2S on metal components. If high tensile strength tubular is to be used, personnel will be trained in their special maintenance requirements. - 2. Corrective action and shut-in procedures when drilling a well, blowout prevention and well control procedures. - 3. The contents and requirements of the H2S Drilling Operations Plan. H2S training refresher must have been taken within one year prior to drilling the well. Specifics on the well to be drilled will be discussed during the pre-spud meeting. H2S and well control (choke) drills will be performed while drilling the well, at least on a weekly basis. This plan shall be available in the well site. All personnel will be required to carry the documentation proving that the H2S training has been taken. #### Service company and visiting personnel - A. Each service company that will be on this well will be notified if the zone contains H2S. - B. Each service company must provide for the training and equipment of their employees before they arrive at the well site. - C. Each service company will be expected to attend a well site #### **Emergency Equipment Requirements** #### 1. Well control equipment The well shall have hydraulic BOP equipment for the anticipated pressures. Equipment is to be tested on installation and follow Oxy Well Control standard, as well as 43 CFR part 3170 Subpart 3172. #### Special control equipment: - A. Hydraulic BOP equipment with remote control on
ground. Remotely operated choke. - B. Rotating head - C. Gas buster equipment shall be installed before drilling out of surface pipe. #### 2. <u>Protective equipment for personnel</u> - A. Four (4) 30-minute positive pressure air packs (2 at each briefing area) on location. - B. Adequate fire extinguishers shall be located at strategic locations. - C. Radio / cell telephone communication will be available at the rig. - Rig floor and trailers. - Vehicle. #### 3. Hydrogen sulfide sensors and alarms - A. H2S sensor with alarms will be located on the rig floor, at the bell nipple, and at the flow line. These monitors will be set to alarm at 10 ppm with strobe light, and audible alarm. - B. Hand operated detectors with tubes. - C. H2S monitor tester (to be provided by contract Safety Company.) - D. There shall be one combustible gas detector on location at all times. #### 4. <u>Visual Warning Systems</u> A. One sign located at each location entrance with the following language: Caution – potential poison gas Hydrogen sulfide No admittance without authorization #### *Wind sock – wind streamers:* - A. One 36" (in length) wind sock located at protection center, at height visible from rig floor. - B. One 36" (in length) wind sock located at height visible from pit areas. #### Condition flags A. One each condition flag to be displayed to denote conditions. ``` green – normal conditions yellow – potential danger red – danger, H2S present ``` B. Condition flag shall be posted at each location sign entrance. #### 5. <u>Mud Program</u> The mud program is designed to minimize the risk of having H2S and other formation fluids at surface. Proper mud weight and safe drilling practices will be applied. H2S scavengers will be used to minimize the hazards while drilling. Below is a summary of the drilling program. #### Mud inspection devices: Garrett gas train or hatch tester for inspection of sulfide concentration in mud system. #### 6. <u>Metallurgy</u> - A. Drill string, casing, tubing, wellhead, blowout preventers, drilling spools or adapters, kill lines, choke manifold, lines and valves shall be suitable for the H2S service. - B. All the elastomers, packing, seals and ring gaskets shall be suitable for H2S service. #### 7. Well Testing No drill stem test will be performed on this well. #### 8. Evacuation plan Evacuation routes should be established prior to well spud for each well and discussed with all rig personnel. #### 9. <u>Designated area</u> - A. Parking and visitor area: all vehicles are to be parked at a predetermined safe distance from the wellhead. - B. There will be a designated smoking area. - C. Two briefing areas on either side of the location at the maximum allowable distance from the well bore so they offset prevailing winds perpendicularly, or at a 45-degree angle if wind direction tends to shift in the area. #### **Emergency procedures** - A. In the event of any evidence of H2S level above 10 ppm, take the following steps: - 1. The Driller will pick up off bottom, shut down the pumps, slow down the pipe rotation. - 2. Secure and don escape breathing equipment, report to the upwind designated safe briefing / muster area. - 3. All personnel on location will be accounted for and emergency search should begin for any missing, the Buddy System will be implemented. - 4. Order non-essential personnel to leave the well site, order all essential personnel out of the danger zone and upwind to the nearest designated safe briefing / muster area. - 5. Entrance to the location will be secured to a higher level than our usual "Meet and Greet" requirement, and the proper condition flag will be displayed at the entrance to the location. - 6. Take steps to determine if the H2S level can be corrected or suppressed and, if so, proceed as required. #### B. If uncontrollable conditions occur: 1. Take steps to protect and/or remove any public in the down-wind area from the rig – partial evacuation and isolation. Notify necessary public safety personnel and appropriate regulatory entities (i.e. BLM) of the situation. - 2. Remove all personnel to the nearest upwind designated safe briefing / muster area or off location. - 3. Notify public safety personnel of safe briefing / muster area. - 4. An assigned crew member will blockade the entrance to the location. No unauthorized personnel will be allowed entry to the location. - 5. Proceed with best plan (at the time) to regain control of the well. Maintain tight security and safety procedures. #### C. Responsibility: - 1. Designated personnel. - a. Shall be responsible for the total implementation of this plan. - b. Shall be in complete command during any emergency. - c. Shall designate a back-up. All personnel: - 1. On alarm, don escape unit and report to the nearest upwind designated safe briefing / muster area upw - 2. Check status of personnel (buddy system). - 3. Secure breathing equipment. - 4. Await orders from supervisor. Drill site manager: - 1. Don escape unit if necessary and report to nearest upwind designated safe briefing / muster area. - 2. Coordinate preparations of individuals to return to point of release with tool pusher and driller (using the buddy system). - 3. Determine H2S concentrations. - 4. Assess situation and take control measures. Tool pusher: - 1. Don escape unit Report to up nearest upwind designated safe briefing / muster area. - 2. Coordinate preparation of individuals to return to point of release with tool pusher drill site manager (using the buddy system). - 3. Determine H2S concentration. - 4. Assess situation and take control measures. Driller: 1. Don escape unit, shut down pumps, continue rotating DP. - 2. Check monitor for point of release. - 3. Report to nearest upwind designated safe briefing / muster area. - 4. Check status of personnel (in an attempt to rescue, use the buddy system). - 5. Assigns least essential person to notify Drill Site Manager and tool pusher by quickest means in case of their absence. - 6. Assumes the responsibilities of the Drill Site Manager and tool pusher until they arrive should they be absent. Derrick man Floor man #1 Floor man #2 1. Will remain in briefing / muster area until instructed by supervisor. Mud engineer: - Report to nearest upwind designated safe briefing / muster area. - 2. When instructed, begin check of mud for ph and H2S level. (Garett gas train.) Safety personnel: 1. Mask up and check status of all personnel and secure operations as instructed by drill site manager. #### Taking a kick When taking a kick during an H2S emergency, all personnel will follow standard Well control procedures after reporting to briefing area and masking up. #### **Open-hole logging** All unnecessary personnel off floor. Drill Site Manager and safety personnel should monitor condition, advise status and determine need for use of air equipment. #### Running casing or plugging Following the same "tripping" procedure as above. Drill Site Manager and safety personnel should determine if all personnel have access to protective equipment. #### **Ignition procedures** The decision to ignite the well is the responsibility of the operator (Oxy Drilling Management). The decision should be made only as a last resort and in a situation where it is clear that: - 1. Human life and property are endangered. - 2. There is no hope controlling the blowout under the prevailing conditions at the well. #### <u>Instructions for igniting the well</u> - 1. Two people are required for the actual igniting operation. They must wear self-contained breathing units and have a safety rope attached. One man (tool pusher or safety engineer) will check the atmosphere for explosive gases with the gas monitor. The other man is responsible for igniting the well. - 2. Primary method to ignite: 25 mm flare gun with range of approximately 500 feet. - 3. Ignite upwind and do not approach any closer than is warranted. - 4. Select the ignition site best for protection, and which offers an easy escape route. - 5. Before firing, check for presence of combustible gas. - 6. After lighting, continue emergency action and procedure as before. - 7. All unassigned personnel will remain in briefing area until instructed by supervisor or directed by the Drill Site Manager. <u>Remember</u>: After well is ignited, burning hydrogen sulfide will convert to sulfur dioxide, which is also highly toxic. <u>Do not assume the area is safe after the well is ignited.</u> #### **Status check list** Note: All items on this list must be completed before drilling to production casing point. - 1. H2S sign at location entrance. - 2. Two (2) wind socks located as required. - 3. Four (4) 30-minute positive pressure air packs (2 at each Briefing area) on location for all rig personnel and mud loggers. - 4. Air packs inspected and ready for use. - 5. Cascade system and hose line hook-up as needed. - 6. Cascade system for refilling air bottles as needed. - 7. Condition flag on location and ready for use. - 8. H2S detection system hooked up and tested. - 9. H2S alarm system hooked up and tested. - 10. Hand operated H2S detector with tubes on location. - 11. 1-100' length of nylon rope on location. - 12. All rig crew and supervisors trained as required. - 13. All outside service contractors advised of potential H2S hazard on well. - 14. No smoking sign posted and a designated smoking area identified. - 15. Calibration of all H2S equipment shall be noted on the IADC report. | | _ | |-------------|------| | Checked by: | Date | #### **Procedural check list during H2S events** #### Perform each tour: - 1. Check fire extinguishers to see that they have the proper charge. - 2. Check breathing equipment to ensure that it in proper working order. - 3. Make sure all the H2S detection system is operative. #### Perform each week: - 1. Check each piece of breathing equipment to make sure that demand or forced air regulator is working. This requires that the bottle be opened and the mask assembly be put on
tight enough so that when you inhale, you receive air or feel air flow. - 2. BOP skills (well control drills). - 3. Check supply pressure on BOP accumulator stand by source. - 4. Check breathing equipment mask assembly to see that straps are loosened and turned back, ready to put on. - 5. Check pressure on breathing equipment air bottles to make sure they are charged to full volume. (Air quality checked for proper air grade "D" before bringing to location) - 6. Confirm pressure on all supply air bottles. - 7. Perform breathing equipment drills with on-site personnel. - 8. Check the following supplies for availability. - A. Emergency telephone list. - B. Hand operated H2S detectors and tubes. #### **General evacuation plan** - 1. When the company approved supervisor (Drill Site Manager, consultant, rig pusher, or driller) determines the H2S gas cannot be limited to the well location and the public will be involved, he will activate the evacuation plan. - 2. Drill Site Manager or designee will notify local government agency that a hazardous condition exists and evacuation needs to be implemented. - 3. Company or contractor safety personnel that have been trained in the use of H2S detection equipment and self-contained breathing equipment will monitor H2S concentrations, wind directions, and area of exposure. They will delineate the outer perimeter of the hazardous gas area. Extension to the evacuation area will be determined from information gathered. - 4. Law enforcement personnel (state police, police dept., fire dept., and sheriff's dept.) Will be called to aid in setting up and maintaining road blocks. Also, they will aid in evacuation of the public if necessary. - 5. After the discharge of gas has been controlled, company safety personnel will determine when the area is safe for re-entry. <u>Important:</u> Law enforcement personnel will not be asked to come into a contaminated area. Their assistance will be limited to uncontaminated areas. Constant radio contact will be maintained with them. #### **Emergency actions** #### Well blowout – if emergency - 1. Evacuate all personnel to "Safe Briefing / Muster Areas" or off location if needed. - 2. If sour gas evacuate rig personnel. - 3. If sour gas evacuate public within 3000 ft radius of exposure. - 4. Don SCBA and shut well in if possible using the buddy system. - 5. Notify Drilling Superintendent and call 911 for emergency help (fire dept and ambulance) if needed. - 6. Implement the Blowout Contingency Plan, and Drilling Emergency Action Plan. - 6. Give first aid as needed. #### Person down location/facility - 1. If immediately possible, contact 911. Give location and wait for confirmation. - 2. Don SCBA and perform rescue operation using buddy system. #### Toxic effects of hydrogen sulfide Hydrogen sulfide is extremely toxic. The acceptable ceiling concentration for eight-hour exposure is 10 ppm, which is .001% by volume. Hydrogen sulfide is heavier than air (specific gravity – 1.192) and colorless. It forms an explosive mixture with air between 4.3 and 46.0 percent by volume. Hydrogen sulfide is almost as toxic as hydrogen cyanide and is between five and six times more toxic than carbon monoxide. Toxicity data for hydrogen sulfide and various other gases are compared in table i. Physical effects at various hydrogen sulfide exposure levels are shown in table ii. Table i Toxicity of various gases | Common name | Chemical
formula | Specific gravity | Threshold limit | Hazardous
limit | Lethal concentration (3) | |---------------------|---------------------|------------------|-----------------|--------------------|--------------------------| | TT 1 | TT | (sc=1) | (1) | (2) | 200 | | Hydrogen
Cyanide | Hen | 0.94 | 10 ppm | 150 ppm/hr | 300 ppm | | Hydrogen
Sulfide | H2S | 1.18 | 10 ppm | 250 ppm/hr | 600 ppm | | Sulfur
Dioxide | So2 | 2.21 | 5 ppm | - | 1000 ppm | | Chlorine | C12 | 2.45 | 1 ppm | 4 ppm/hr | 1000 ppm | | Carbon
Monoxide | Co | 0.97 | 50 ppm | 400 ppm/hr | 1000 ppm | | Carbon
Dioxide | Co2 | 1.52 | 5000 ppm | 5% | 10% | | Methane | Ch4 | 0.55 | 90,000 ppm | Combustib | le above 5% in air | - 1) threshold limit concentration at which it is believed that all workers may be repeatedly exposed day after day without adverse effects. - 2) hazardous limit concentration that will cause death with short-term exposure. - 3) lethal concentration concentration that will cause death with short-term exposure. #### Toxic effects of hydrogen sulfide Table ii Physical effects of hydrogen sulfide | | | Concentration | Physical effects | |-------------|-----|---------------|------------------------------| | Percent (%) | Ppm | Grains | | | , , | - | 100 std. Ft3* | | | 0.001 | <10 | 00.65 | Obvious and unpleasant odor. | | 0.002 | 10 | 01.30 | Safe for 8 hours of exposure. | |-------|------|-------|--| | 0.010 | 100 | 06.48 | Kill smell in $3 - 15$ minutes. May sting eyes and throat. | | 0.020 | 200 | 12.96 | Kills smell shortly; stings eyes and throat. | | 0.050 | 500 | 32.96 | Dizziness; breathing ceases in a few minutes; needs prompt artificial respiration. | | 0.070 | 700 | 45.36 | Unconscious quickly; death will result if not rescued promptly. | | 0.100 | 1000 | 64.30 | Unconscious at once; followed by death within minutes. | ^{*}at 15.00 psia and 60'f. # **Use of self-contained breathing equipment (SCBA)** - 1. Written procedures shall be prepared covering safe use of SCBA's in dangerous atmosphere, which might be encountered in normal operations or in emergencies. Personnel shall be familiar with these procedures and the available SCBA. - 2 SCBA's shall be inspected frequently at random to insure that they are properly used, cleaned, and maintained. - 3. Anyone who may use the SCBA's shall be trained in how to insure proper face-piece to face seal. They shall wear SCBA's in normal air and then wear them in a test atmosphere. (note: such items as facial hair {beard or sideburns} and eyeglasses will not allow proper seal.) Anyone that may be reasonably expected to wear SCBA's should have these items removed before entering a toxic atmosphere. A special mask must be obtained for anyone who must wear eyeglasses or contact lenses. - 4. Maintenance and care of SCBA's: - a. A program for maintenance and care of SCBA's shall include the following: - 1. Inspection for defects, including leak checks. - 2. Cleaning and disinfecting. - 3. Repair. - 4. Storage. - b. Inspection, self-contained breathing apparatus for emergency use shall be inspected monthly. - 1. Fully charged cylinders. - 2. Regulator and warning device operation. - 3. Condition of face piece and connections. - 4. Rubber parts shall be maintained to keep them pliable and prevent deterioration. - c. Routinely used SCBA's shall be collected, cleaned and disinfected as frequently as necessary to insure proper protection is provided. - 5. Persons assigned tasks that requires use of self-contained breathing equipment shall be certified physically fit (medically cleared) for breathing equipment usage at least annually. - 6. SCBA's should be worn when: - A. Any employee works near the top or on top of any tank unless test reveals less than 10 ppm of H2S. - B. When breaking out any line where H2S can reasonably be expected. - C. When sampling air in areas to determine if toxic concentrations of H2S exists. - D. When working in areas where over 10 ppm H2S has been detected. - E. At any time there is a doubt as to the H2S level in the area to be entered. # Rescue First aid for H2S poisoning # Do not panic! Remain calm – think! - 1. Don SCBA breathing equipment. - 2. Remove victim(s) utilizing buddy system to fresh air as quickly as possible. (go up-wind from source or at right angle to the wind. Not down wind.) - 3. Briefly apply chest pressure arm lift method of artificial respiration to clean the victim's lungs and to avoid inhaling any toxic gas directly from the victim's lungs. - 4. Provide for prompt transportation to the hospital, and continue giving artificial respiration if needed. - 5. Hospital(s) or medical facilities need to be informed, before-hand, of the possibility of H2S gas poisoning no matter how remote the possibility is. - 6. Notify emergency room personnel that the victim(s) has been exposed to H2S gas. Besides basic first aid, everyone on location should have a good working knowledge of artificial respiration. Revised CM 6/27/2012 ### NOTES: - Underground utilities shown on this sheet are for visualization purposes only, actual locations to be determined prior to construction. - Basis of Bearings is a Transverse Mercator Projection with a Central Meridian of W103°53'00" (NAD 83) - OXY USA INC. personnel to provide any site specific requirements needed at the time of construction. # **OXY USA INC.** LSTTNK_22S32E_1902 NE 1/4 NW 1/4, SECTION 19, T22S, R32E, N.M.P.M. LEA COUNTY, NEW MEXICO SURVEYED BY C.T., C.S. 07-18-23 SCALE DRAWN BY D.J.S. 08-01-23 1" = 120' LOCATION LAYOUT UELS, LLC Corporate Office * 85 South 200 East Vernal, UT 84078 * (435) 789-1017 | Received by OCD: 4/29/2025 1:19: | 01 PM | | Page 114 of 1 |
---|---|---|--| | | | | DUIS | | | | | JUL BUCHE | | | | | Q KON MEXICO | | LOST TANK 30-19 FED COM 11H - EL: 3617.0' NAD 83 | LOST TANK 30-19 FED COM 12H - EL: 3617.3'
NAD 83 | LOST TANK 30-19 FED COM 2H - EL: 3617.5' NAD 83 | S. C. | | LATITUDE = 32°22'59.13" (32.383093°) | LATITUDE = 32°22'59.28" (32.383135°) | LATITUDE = 32°22'59.44" (32.383177°) | | | LONGITUDE = -103°43'00.23" (-103.716730°) | LONGITUDE = -103°42'59.93" (-103.716646°) | LONGITUDE = -103°42'59.62" (-103.716562°) | 1 1 23/18/2 N pf | | NAD 27 | NAD 27 | NAD 27 | Teles / Ducky | | LATITUDE = 32°22'58.69" (32.382970°)
LONGITUDE = -103°42'58.47" (-103.716241°) | LATITUDE = 32°22'58.84" (32.383012°)
LONGITUDE = -103°42'58.17" (-103.716158°) | LATITUDE = 32°22'58.99" (32.383054°)
LONGITUDE = -103°42'57.87" (-103.716074°) | 08-01-23 | | STATE PLANE NAD 83 (N.M. EAST) | STATE PLANE NAD 83 (N.M. EAST) | STATE PLANE NAD 83 (N.M. EAST) | 00-01-23 | | N: 503649.15' E: 731679.89' | N: 503664.62' E: 731705.59' | N: 503680.09' E: 731731.29' | S/OHH SU | | STATE PLANE NAD 27 (N.M. EAST) | STATE PLANE NAD 27 (N.M. EAST) | STATE PLANE NAD 27 (N.M. EAST) | ONAL SO | | N: 503588.74' E: 690497.49' | N: 503604.20' E: 690523.19' | N: 503619.67' E: 690548.89' | | | LOST TANK 30-19 FED COM 21H - EL: 3618.5'
NAD 83 | LOST TANK 30-19 FED COM 22H - EL: 3619.7' NAD 83 | LOST TANK 30-19 FED COM 41H - EL: 3618.7' NAD 83 | LOST TANK 30-19 FED COM 42H - EL: 3618.6' NAD 83 | | LATITUDE = 32°22'59.74" (32.383261°) | LATITUDE = 32°22'59.89" (32.383303°) | LATITUDE = 32°22'58.22" (32.382839°) | LATITUDE = 32°22'58.37" (32.382881°) | | LONGITUDE = -103°42'59.02" (-103.716395°) | LONGITUDE = -103°42'58.72" (-103.716312°) | LONGITUDE = -103°42'59.18" (-103.716439°) | LONGITUDE = -103°42'58.88" (-103.716356°) | | NAD 27 | NAD 27 | NAD 27 | NAD 27 | | LATITUDE = 32°22'59.30" (32.383138°)
LONGITUDE = -103°42'57.27" (-103.715907°) | LATITUDE = 32°22'59.45" (32.383180°)
LONGITUDE = -103°42'56.96" (-103.715824°) | LATITUDE = 32°22'57.78" (32.382717°)
LONGITUDE = -103°42'57.42" (-103.715951°) | LATITUDE = 32°22'57.93" (32.382759°)
LONGITUDE = -103°42'57.12" (-103.715867°) | | STATE PLANE NAD 83 (N.M. EAST) | | N: 503711.02' E: 731782.68' | N: 503726.49' E: 731808.38' | N: 503557.54' E: 731770.04' | N: 503573.01' E: 731795.74' | | STATE PLANE NAD 27 (N.M. EAST) | | N: 503650.61' E: 690600.29' | N: 503666.08' E: 690625.98' | N: 503497.13' E: 690587.64' | N: 503512.60' E: 690613.34' | | LOST TANK 30-19 FED COM 71H - EL: 3619.1' | LOST TANK 30-19 FED COM 72H - EL: 3619.3' | | 4 - EL: 3618.7' | | NAD 83 | NAD 83 | NAD 83 | NAD 83 | | LATITUDE = 32°22'58.68" (32.382966°)
LONGITUDE = -103°42'58.28" (-103.716189°) | LATITUDE = 32°22'58.83" (32.383008°)
LONGITUDE = -103°42'57.98" (-103.716105°) | LATITUDE = 32°22'54.56" (32.381821°)
LONGITUDE = -103°43'01.43" (-103.717064°) | LATITUDE = 32°22'58.68" (32.382967°)
LONGITUDE = -103°43'04.32" (-103.717866°) | | NAD 27 | NAD 27 | NAD 27 | NAD 27 | | LATITUDE = 32°22'58.23" (32.382843°) | LATITUDE = 32°22'58.39" (32.382885°) | LATITUDE = 32°22'54.11" (32.381698°) | LATITUDE = 32°22'58.24" (32.382844°) | | LONGITUDE = -103°42'56.52" (-103.715700°) | LONGITUDE = -103°42'56.22" (-103.715617°) | LONGITUDE = -103°42'59.67" (-103.716575°) | LONGITUDE = -103°43'02.56" (-103.717378°) | | N: 503603.95' E: 731847.14' | STATE PLANE NAD 83 (N.M. EAST) N: 503619.42' E: 731872.84' | STATE PLANE NAD 83 (N.M. EAST) N: 503186.04' E: 731579.39' | STATE PLANE NAD 83 (N.M. EAST) N: 503601.49' E: 731329.31' | | STATE PLANE NAD 27 (N.M. EAST) | | | | | | | N: 503543.54' E: 690664.74' | N: 503559.01' E: 690690.43' | N: 503125.64' E: 690396.98' | N: 503541.08' E: 690146.91' | | 6 - EL: 3624.4' | N: 503559.01' E: 690690.43' 8 - EL: 3625.5' | 9 - EL: 3623.3' | N: 503541.08° E: 690146.91° | | 6 - EL: 3624.4'
NAD 83 | 8 - EL: 3625.5'
NAD 83 | 9 - EL: 3623.3'
NAD 83 | 10 - EL: 3615.0'
NAD 83 | | 6 - EL: 3624.4¹
NAD 83
LATITUDE = 32°23'01.99" (32.383887°) | 8 - EL: 3625.5'
NAD 83
LATITUDE = 32°22'59.06" (32.383072°) | 9 - EL: 3623.3'
NAD 83
LATITUDE = 32°22'57.48" (32.382633°) | 10 - EL: 3615.0'
NAD 83
LATITUDE = 32°23'00.07" (32.383353°) | | 6 - EL: 3624.4'
NAD 83 | 8 - EL: 3625.5'
NAD 83 | 9 - EL: 3623.3'
NAD 83 | 10 - EL: 3615.0'
NAD 83 | | 6 - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) | 8 - EL: 3625.5' NAD 83 LATITUDE = 32°22'59.06" (32.383072°) LONGITUDE = -103°42'55.70" (-103.715472°) | 9 - EL: 3623.3'
NAD 83
LATITUDE = 32°22'57.48" (32.382633°)
LONGITUDE = -103°42'55.64" (-103.715454°) | 10 - EL: 3615.0'
NAD 83
LATITUDE = 32°23'00.07" (32.383353°)
LONGITUDE = -103°43'01.56" (-103.717100°) | | 6 - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) NAD 27 LATITUDE = 32°23'01.55" (32.383764°) LONGITUDE = -103°42'55.99" (-103.715554°) | 8 - EL: 3625.5' NAD 83 LATITUDE = 32°22'59.06" (32.383072°) LONGITUDE = -103°42'55.70" (-103.715472°) NAD 27 LATITUDE = 32°22'58.62" (32.382950°) LONGITUDE = -103°42'53.94" (-103.714984°) | 9 - EL: 3623.3' NAD 83 LATITUDE = 32°22'57.48" (32.382633°) LONGITUDE = -103°42'55.64" (-103.715454°) NAD 27 LATITUDE = 32°22'57.04" (32.382510°) LONGITUDE = -103°42'53.88" (-103.714966°) | 10 - EL: 3615.0' NAD 83 LATITUDE = 32°23'00.07" (32.383353°) LONGITUDE = -103°43'01.56" (-103.717100°) NAD 27 LATITUDE = 32°22'59.63" (32.383230°) LONGITUDE = -103°42'59.80" (-103.716612°) | | 6 - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) NAD 27 LATITUDE = 32°23'01.55" (32.383764°) LONGITUDE = -103°42'55.99" (-103.715554°) STATE PLANE NAD 83 (N.M. EAST) | 8 - EL: 3625.5' NAD 83 LATITUDE = 32°22'59.06" (32.383072°) LONGITUDE = .103°42'55.70" (-103.715472°) NAD 27 LATITUDE = 32°22'58.62" (32.382950°) LONGITUDE = .103°42'53.94" (-103.714984°) STATE PLANE NAD 83 (N.M. EAST) | 9 - EL: 3623.3' NAD 83 LATITUDE = 32°22'57.48" (32.382633°) LONGITUDE = -103°42'55.64" (-103.715454°) NAD 27 LATITUDE = 32°22'57.04" (32.382510°)
LONGITUDE = -103°42'53.88" (-103.714966°) STATE PLANE NAD 83 (N.M. EAST) | 10 - EL: 3615.0' NAD 83 LATITUDE = 32°23'00.07" (32.383353°) LONGITUDE = -103°43'01.56" (-103.717100°) NAD 27 LATITUDE = 32°22'59.63" (32.383230°) LONGITUDE = -103°42'59.80" (-103.716612°) STATE PLANE NAD 83 (N.M. EAST) | | 6 - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) NAD 27 LATITUDE = 32°23'01.55" (32.383764°) LONGITUDE = -103°42'55.99" (-103.715554°) STATE PLANE NAD 83 (N.M. EAST) N: 503939.23' E: 731890.38' | 8 - EL: 3625.5' NAD 83 LATITUDE = 32°22'59.06" (32.383072°) LONGITUDE = -103°42'55.70" (-103.715472°) NAD 27 LATITUDE = 32°22'58.62" (32.382950°) LONGITUDE = -103°42'53.94" (-103.714984°) STATE PLANE NAD 83 (N.M. EAST) N: 503644.05' E: 732068.07' | 9 - EL: 3623.3' NAD 83 LATITUDE = 32°22'57.48" (32.382633°) LONGITUDE = -103°42'55.64" (-103.715454°) NAD 27 LATITUDE = 32°22'57.04" (32.382510°) LONGITUDE = -103°42'53.88" (-103.714966°) STATE PLANE NAD 83 (N.M. EAST) N: 503484.08' E: 732074.50' | 10 - EL: 3615.0'
NAD 83
LATITUDE = 32°23'00.07" (32.383353°)
LONGITUDE = -103°43'01.56" (-103.717100°)
NAD 27
LATITUDE = 32°22'59.63" (32.383230°)
LONGITUDE = -103°42'59.80" (-103.716612°)
STATE PLANE NAD 83 (N.M. EAST)
N: 503743.29' E: 731564.88' | | 6 - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) NAD 27 LATITUDE = 32°23'01.55" (32.383764°) LONGITUDE = -103°42'55.99" (-103.715554°) STATE PLANE NAD 83 (N.M. EAST) | 8 - EL: 3625.5' NAD 83 LATITUDE = 32°22'59.06" (32.383072°) LONGITUDE = .103°42'55.70" (-103.715472°) NAD 27 LATITUDE = 32°22'58.62" (32.382950°) LONGITUDE = .103°42'53.94" (-103.714984°) STATE PLANE NAD 83 (N.M. EAST) | 9 - EL: 3623.3' NAD 83 LATITUDE = 32°22'57.48" (32.382633°) LONGITUDE = -103°42'55.64" (-103.715454°) NAD 27 LATITUDE = 32°22'57.04" (32.382510°) LONGITUDE = -103°42'53.88" (-103.714966°) STATE PLANE NAD 83 (N.M. EAST) | 10 - EL: 3615.0' NAD 83 LATITUDE = 32°23'00.07" (32.383353°) LONGITUDE = -103°43'01.56" (-103.717100°) NAD 27 LATITUDE = 32°22'59.63" (32.383230°) LONGITUDE = -103°42'59.80" (-103.716612°) STATE PLANE NAD 83 (N.M. EAST) | | 6 - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) NAD 27 LATITUDE = 32°23'01.55" (32.383764°) LONGITUDE = -103°42'55.99" (-103.715554°) STATE PLANE NAD 83 (N.M. EAST) N: 503939.23' E: 731890.38' STATE PLANE NAD 27 (N.M. EAST) | 8 - EL: 3625.5' NAD 83 LATITUDE = 32°22'59.06" (32.383072°) LONGITUDE = -103°42'55.70" (-103.715472°) NAD 27 LATITUDE = 32°22'58.62" (32.382950°) LONGITUDE = -103°42'53.94" (-103.714984°) STATE PLANE NAD 83 (N.M. EAST) N: 503644.05' E: 732068.07' STATE PLANE NAD 27 (N.M. EAST) | 9 - EL: 3623.3' NAD 83 LATITUDE = 32°22'57.48" (32.382633°) LONGITUDE = -103°42'55.64" (-103.715454°) NAD 27 LATITUDE = 32°22'57.04" (32.382510°) LONGITUDE = -103°42'55.88" (-103.714966°) STATE PLANE NAD 83 (N.M. EAST) N: 503484.08" E: 732074.50' STATE PLANE NAD 27 (N.M. EAST) | 10 - EL: 3615.0' NAD 83 LATITUDE = 32°23'00.07" (32.383353°) LONGITUDE = -103°43'01.56" (-103.717100°) NAD 27 LATITUDE = 32°22'59.63" (32.383230°) LONGITUDE = -103°42'59.80" (-103.716612°) STATE PLANE NAD 83 (N.M. EAST) N: 503743.29' E: 731564.88' STATE PLANE NAD 27 (N.M. EAST) | | 6 - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) NAD 27 LATITUDE = 32°23'01.55" (32.383764°) LONGITUDE = -103°42'55.99" (-103.715554°) STATE PLANE NAD 83 (N.M. EAST) N: 503939.23' E: 731890.38' STATE PLANE NAD 27 (N.M. EAST) N: 503878.81' E: 690707.99' 11 - EL: 3617.5' NAD 83 | 8 - EL: 3625.5' NAD 83 LATITUDE = 32°22'59.06" (32.383072°) LONGITUDE = -103°42'55.70" (-103.715472°) NAD 27 LATITUDE = 32°22'58.62" (32.382950°) LONGITUDE = -103°42'53.94" (-103.714984°) STATE PLANE NAD 83 (N.M. EAST) N: 503644.05' E: 732068.07' STATE PLANE NAD 27 (N.M. EAST) N: 503583.63' E: 690885.67' 12 - EL: 3622.1' NAD 83 | 9 - EL: 3623.3' NAD 83 LATITUDE = 32°22'57.48" (32.382633°) LONGITUDE = -103°42'55.64" (-103.715454°) NAD 27 LATITUDE = 32°22'57.04" (32.382510°) LONGITUDE = -103°42'53.88" (-103.714966°) STATE PLANE NAD 83 (N.M. EAST) N: 503484.08' E: 732074.50' STATE PLANE NAD 27 (N.M. EAST) N: 5034823.67' E: 690892.10' 13 - EL: 3622.1' NAD 83 | 10 - EL: 3615.0' NAD 83 LATITUDE = 32°23'00.07" (32.383353°) LONGITUDE = -103°43'01.56" (-103.717100°) NAD 27 LATITUDE = 32°22'59.63" (32.383230°) LONGITUDE = -103°42'59.80" (-103.716612°) STATE PLANE NAD 83 (N.M. EAST) N: 503743.29' E: 731564.88" STATE PLANE NAD 27 (N.M. EAST) N: 503682.88' E: 690382.48' BEGIN ACCESS ROAD "A" - EL: 3618.1' NAD 83 | | 6 - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) NAD 27 LATITUDE = 32°23'01.55" (32.383764°) LONGITUDE = -103°42'55.99" (-103.715554°) STATE PLANE NAD 83 (N.M. EAST) N: 503939.23' E: 731890.38' STATE PLANE NAD 27 (N.M. EAST) N: 503878.81' E: 690707.99' 11 - EL: 3617.5' NAD 83 LATITUDE = 32°23'00.92" (32.383589°) | 8 - EL: 3625.5' NAD 83 LATITUDE = 32°22'59.06" (32.383072°) LONGITUDE = .103°42'55.70" (-103.715472°) NAD 27 LATITUDE = 32°22'58.62" (32.382950°) LONGITUDE = .103°42'53.94" (-103.714984°) STATE PLANE NAD 83 (N.M. EAST) N: 503644.05' E: 732068.07' STATE PLANE NAD 27 (N.M. EAST) N: 503583.63' E: 690885.67' 12 - EL: 3622.1' NAD 83 LATITUDE = 32°23'02.19" (32.383940°) | 9 - EL: 3623.3' NAD 83 LATITUDE = 32°22'57.48" (32.382633°) LONGITUDE = -103°42'55.64" (-103.715454°) NAD 27 LATITUDE = 32°22'57.04" (32.382510°) LONGITUDE = -103°42'53.88" (-103.714966°) STATE PLANE NAD 83 (N.M. EAST) N: 503484.08" E: 732074.50' STATE PLANE NAD 27 (N.M. EAST) N: 503423.67' E: 690892.10' 13 - EL: 3622.1' NAD 83 LATITUDE = 32°23'01.33" (32.383704°) | 10 - EL: 3615.0' NAD 83 LATITUDE = 32°23'00.07" (32.383353°) LONGITUDE = -103°43'01.56" (-103.717100°) NAD 27 LATITUDE = 32°22'59.63" (32.383230°) LONGITUDE = -103°42'59.80" (-103.716612°) STATE PLANE NAD 83 (N.M. EAST) N: 503743.29' E: 731564.88' STATE PLANE NAD 27 (N.M. EAST) N: 503682.88' E: 690382.48' BEGIN ACCESS ROAD "A" - EL: 3618.1' NAD 83 LATITUDE = 32°23'01.03" (32.383619°) | | 6 - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) NAD 27 LATITUDE = 32°23'01.55" (32.383764°) LONGITUDE = -103°42'55.99" (-103.715554°) STATE PLANE NAD 83 (N.M. EAST) N: 503939.23' E: 731890.38' STATE PLANE NAD 27 (N.M. EAST) N: 503878.81' E: 690707.99' 11 - EL: 3617.5' NAD 83 LATITUDE = 32°23'00.92" (32.383589°) LONGITUDE = -103°43'02.16" (-103.717266°) | 8 - EL: 3625.5' NAD 83 LATITUDE = 32°22'59.06" (32.383072°) LONGITUDE = .103°42'55.70" (-103.715472°) NAD 27 LATITUDE = 32°22'58.62" (32.382950°) LONGITUDE = .103°42'53.94" (-103.714984°) STATE PLANE NAD 83 (N.M. EAST) N: 503644.05' E: 732068.07' STATE PLANE NAD 27 (N.M. EAST) N: 503583.63' E: 690885.67' 12 - EL: 3622.1' NAD 83 LATITUDE = 32°23'02.19" (32.383940°) LONGITUDE = .103°42'59.65" (-103.716570°) | 9 - EL: 3623.3' NAD 83 LATITUDE = 32°22'57.48" (32.382633°) LONGITUDE = -103°42'55.64" (-103.715454°) NAD 27 LATITUDE = 32°22'57.04" (32.382510°) LONGITUDE = -103°42'53.88" (-103.714966°) STATE PLANE NAD 83 (N.M. EAST) N: 503484.08' E: 732074.50' STATE PLANE NAD 27 (N.M. EAST) N: 503423.67' E: 690892.10' 13 - EL: 3622.1' NAD 83 LATITUDE = 32°23'01.33" (32.383704°) LONGITUDE = -103°42'59.06" (-103.716404°) | 10 - EL: 3615.0' NAD 83 LATITUDE = 32°23'00.07" (32.383353°) LONGITUDE = -103°43'01.56" (-103.717100°) NAD 27 LATITUDE = 32°22'59.63" (32.383230°) LONGITUDE = -103°42'59.80" (-103.716612°) STATE PLANE NAD 83 (N.M. EAST) N: 503743.29' E: 731564.88' STATE PLANE NAD 27 (N.M. EAST) N: 503682.88' E: 690382.48' BEGIN ACCESS ROAD "A" - EL: 3618.1' NAD 83 LATITUDE = 32°23'01.03" (32.383619°) LONGITUDE = -103°43'03.54" (-103.717651°) | | 6 - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) NAD 27 LATITUDE = 32°23'01.55" (32.383764°) LONGITUDE = -103°42'55.99" (-103.715554°) STATE PLANE NAD 83 (N.M. EAST) N: 503939.23' E: 731890.38' STATE PLANE NAD 27 (N.M. EAST) N: 503878.81' E: 690707.99' 11 - EL: 3617.5' NAD 83 LATITUDE = 32°23'00.92" (32.383589°) LONGITUDE = -103°43'02.16" (-103.717266°) NAD 27 | 8 - EL: 3625.5' NAD 83 LATITUDE = 32°22'59.06" (32.383072°) LONGITUDE = -103°42'55.70" (-103.715472°) NAD 27 LATITUDE = 32°22'58.62" (32.382950°) LONGITUDE = -103°42'53.94" (-103.714984°) STATE PLANE NAD 83 (N.M. EAST) N: 503644.05' E: 732068.07' STATE PLANE NAD 27 (N.M. EAST) N: 503583.63' E: 690885.67' 12 - EL: 3622.1' NAD 83 LATITUDE = 32°23'02.19" (32.383940°) LONGITUDE = -103°42'59.65" (-103.716570°) NAD 27 | 9 - EL: 3623.3' NAD 83 LATITUDE = 32°22'57.48" (32.382633°) LONGITUDE = -103°42'55.64" (-103.715454°) NAD 27 LATITUDE = 32°22'57.04" (32.382510°) LONGITUDE = -103°42'55.88" (-103.714966°) STATE PLANE NAD 83 (N.M. EAST) N: 503442.84 (8' E: 732074.50' STATE PLANE NAD 27 (N.M. EAST) N: 503423.67' E: 690892.10' 13 - EL: 3622.1' NAD 83 LATITUDE = 32°23'01.33" (32.383704°) LONGITUDE = -103°42'59.06" (-103.716404°) NAD 27 | 10 - EL: 3615.0' NAD 83 LATITUDE = 32°23'00.07" (32.383353°) LONGITUDE = -103°43'01.56" (-103.717100°) NAD 27 LATITUDE = 32°22'59.63" (32.383230°) LONGITUDE = -103°42'59.80" (-103.716612°) STATE PLANE NAD 83 (N.M. EAST) N: 503743.29' E: 731564.88" STATE PLANE NAD 27 (N.M. EAST) N: 503682.88' E: 690382.48' BEGIN ACCESS ROAD "A" - EL: 3618.1' NAD 83 LATITUDE = 32°23'01.03" (32.383619°) LONGITUDE = -103°43'03.54" (-103.717651°) NAD 27 | | 6 - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) NAD 27 LATITUDE = 32°23'01.55" (32.383764°) LONGITUDE = -103°42'55.99" (-103.715554°) STATE PLANE NAD 83 (N.M. EAST) N: 503939.23' E: 731890.38' STATE PLANE NAD 27 (N.M. EAST) N: 503878.81' E: 690707.99' 11 - EL: 3617.5' NAD 83 LATITUDE = 32°23'00.92" (32.383589°) LONGITUDE = -103°43'02.16" (-103.717266°) NAD 27 LATITUDE = 32°23'00.48" (32.383467°)
LONGITUDE = -103°43'00.40" (-103.716777°) | 8 - EL: 3625.5' NAD 83 LATITUDE = 32°22'59.06" (32.383072°) LONGITUDE = -103°42'55.70" (-103.715472°) NAD 27 LATITUDE = 32°22'58.62" (32.382950°) LONGITUDE = -103°42'53.94" (-103.714984°) STATE PLANE NAD 83 (N.M. EAST) N: 503644.05' E: 732068.07' STATE PLANE NAD 27 (N.M. EAST) N: 503583.63' E: 690885.67' 12 - EL: 3622.1' NAD 83 LATITUDE = 32°23'02.19" (32.383940°) LONGITUDE = -103°42'59.65" (-103.716570°) NAD 27 LATITUDE = 32°23'01.74" (32.383818°) LONGITUDE = -103°42'57.89" (-103.716081°) | 9 - EL: 3623.3' NAD 83 LATITUDE = 32°22'57.48" (32.382633°) LONGITUDE = -103°42'55.64" (-103.715454°) NAD 27 LATITUDE = 32°22'57.04" (32.382510°) LONGITUDE = -103°42'53.88" (-103.714966°) STATE PLANE NAD 83 (N.M. EAST) N: 503484.08' E: 732074.50' STATE PLANE NAD 27 (N.M. EAST) N: 503423.67' E: 690892.10' 13 - EL: 3622.1' NAD 83 LATITUDE = 32°23'01.33" (32.383704°) LONGITUDE = -103°42'59.06" (-103.716404°) NAD 27 LATITUDE = 32°23'00.89" (32.383581°) LONGITUDE = -103°42'57.30" (-103.715916°) | 10 - EL: 3615.0' NAD 83 LATITUDE = 32°23'00.07" (32.383353°) LONGITUDE = -103°43'01.56" (-103.717100°) NAD 27 LATITUDE = 32°22'59.63" (32.383230°) LONGITUDE = -103°42'59.80" (-103.716612°) STATE PLANE NAD 83 (N.M. EAST) N: 503743.29' E: 731564.88' STATE PLANE NAD 27 (N.M. EAST) N: 503682.88' E: 690382.48' BEGIN ACCESS ROAD "A" - EL: 3618.1' NAD 83 LATITUDE = 32°23'01.03" (32.383619°) LONGITUDE = -103°43'03.54" (-103.717651°) NAD 27 LATITUDE = 32°23'00.59" (32.383497°) LONGITUDE = -103°43'01.78" (-103.717162°) | | 6 - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) NAD 27 LATITUDE = 32°23'01.55" (32.383764°) LONGITUDE = -103°42'55.99" (-103.715554°) STATE PLANE NAD 83 (N.M. EAST) N: 503939.23' E: 731890.38' STATE PLANE NAD 27 (N.M. EAST) N: 503878.81' E: 690707.99' 11 - EL: 3617.5' NAD 83 LATITUDE = 32°23'00.92" (32.383589°) LONGITUDE = -103°43'02.16" (-103.717266°) NAD 27 LATITUDE = 32°23'00.48" (32.383467°) LONGITUDE = -103°43'00.40" (-103.716777°) STATE PLANE NAD 83 (N.M. EAST) | 8 - EL: 3625.5' NAD 83 LATITUDE = 32°22'59.06" (32.383072°) LONGITUDE = -103°42'55.70" (-103.715472°) NAD 27 LATITUDE = 32°22'58.62" (32.382950°) LONGITUDE = -103°42'53.94" (-103.714984°) STATE PLANE NAD 83 (N.M. EAST) N: 503644.05' E: 732068.07' STATE PLANE NAD 27 (N.M. EAST) N: 503583.63' E: 690885.67' 12 - EL: 3622.1' NAD 83 LATITUDE = 32°23'02.19" (32.383940°) LONGITUDE = -103°42'59.65" (-103.716570°) NAD 27 LATITUDE = 32°23'01.74" (32.383818°) LONGITUDE = -103°42'57.89" (-103.716081°) STATE PLANE NAD 83 (N.M. EAST) | 9 - EL: 3623.3' NAD 83 LATITUDE = 32°22'57.48" (32.382633°) LONGITUDE = -103°42'55.64" (-103.715454°) NAD 27 LATITUDE = 32°22'57.04" (32.382510°) LONGITUDE = -103°42'53.88" (-103.714966°) STATE PLANE NAD 83 (N.M. EAST) N: 503484.08" E: 732074.50' STATE PLANE NAD 27 (N.M. EAST) N: 503423.67" E: 690892.10' 13 - EL: 3622.1' NAD 83 LATITUDE = 32°23'01.33" (32.383704°) LONGITUDE = -103°42'59.06" (-103.716404°) NAD 27 LATITUDE = 32°23'00.89" (32.383581°) LONGITUDE = -103°42'57.30" (-103.715916°) STATE PLANE NAD 83 (N.M. EAST) | 10 - EL: 3615.0' NAD 83 LATITUDE = 32°23'00.07" (32.383353°) LONGITUDE = -103°43'01.56" (-103.717100°) NAD 27 LATITUDE = 32°22'59.63" (32.383230°) LONGITUDE = -103°42'59.80" (-103.716612°) STATE PLANE NAD 83 (N.M. EAST) N: 503743.29' E: 731564.88' STATE PLANE NAD 27 (N.M. EAST) N: 503682.88' E: 690382.48' BEGIN ACCESS ROAD "A" - EL: 3618.1' NAD 83 LATITUDE = 32°23'01.03" (32.383619°) LONGITUDE = -103°43'03.54" (-103.717651°) NAD 27 LATITUDE = 32°23'00.59" (32.383497°) LONGITUDE = -103°43'01.78" (-103.717162°) STATE PLANE NAD 83 (N.M. EAST) | | 6 - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) NAD 27 LATITUDE = 32°23'01.55" (32.383764°) LONGITUDE = -103°42'55.99" (-103.715554°) STATE PLANE NAD 83 (N.M. EAST) N: 50399.23' E: 731890.38' STATE PLANE NAD 27 (N.M. EAST) N: 503878.81' E: 690707.99' 11 - EL: 3617.5' NAD 83 LATITUDE = 32°23'00.92" (32.383589°) LONGITUDE = -103°43'02.16" (-103.717266°) NAD 27 LATITUDE = 32°23'00.48" (32.383467°) LONGITUDE = -103°43'00.40" (-103.716777°) STATE PLANE NAD 83 (N.M. EAST) N: 503828.95' E: 731513.31' | 8 - EL: 3625.5' NAD 83 LATITUDE = 32°22'59.06" (32.383072°) LONGITUDE = -103°42'55.70" (-103.715472°) NAD 27 LATITUDE = 32°22'58.62" (32.382950°) LONGITUDE = -103°42'53.94" (-103.714984°) STATE PLANE NAD 83 (N.M. EAST) N: 503644.05' E: 732068.07' STATE PLANE NAD 27 (N.M. EAST) N: 503583.63' E: 690885.67' 12 - EL: 3622.1' NAD 83 LATITUDE = 32°23'02.19" (32.383940°) LONGITUDE = -103°42'59.65" (-103.716570°) NAD 27 LATITUDE = 32°23'01.74" (32.383818°) LONGITUDE = -103°42'57.89" (-103.716081°) STATE PLANE NAD 83 (N.M. EAST) N: 503957.86' E: 731727.46' | 9 - EL: 3623.3' NAD 83 LATITUDE = 32°22'57.48" (32.382633°) LONGITUDE = -103°42'55.64" (-103.715454°) NAD 27 LATITUDE = 32°22'57.04" (32.382510°) LONGITUDE = -103°42'53.88" (-103.714966°) STATE PLANE NAD 83 (N.M. EAST) N: 503484.08' E: 732074.50' STATE PLANE NAD 27 (N.M. EAST) N: 503423.67' E: 690892.10' 13 - EL: 3622.1' NAD 83 LATITUDE = 32°23'01.33" (32.383704°) LONGITUDE = -103°42'59.06" (-103.716404°) NAD 27 LATITUDE = 32°23'00.89" (32.383581°) LONGITUDE = -103°42'57.30" (-103.715916°) STATE PLANE NAD 83 (N.M. EAST) N: 503872.20' E: 731779.02' | 10 - EL: 3615.0' NAD 83 LATITUDE = 32°23'00.07" (32.383353°) LONGITUDE = -103°43'01.56" (-103.717100°) NAD 27 LATITUDE = 32°22'59.63" (32.383230°) LONGITUDE = -103°42'59.80" (-103.716612°) STATE PLANE NAD 83 (N.M. EAST) N: 503743.29' E: 731564.88" STATE PLANE NAD 27 (N.M. EAST) N: 503682.88' E: 690382.48' BEGIN ACCESS ROAD "A" - EL: 3618.1' NAD 83 LATITUDE = 32°23'01.03" (32.383619°) LONGITUDE = -103°43'03.54" (-103.717651°) NAD 27 LATITUDE = 32°23'00.59" (32.383497°) LONGITUDE = -103°43'01.78" (-103.717162°) STATE PLANE NAD 83 (N.M. EAST) N: 503839.16' E: 731394.42' | | 6 - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) NAD 27 LATITUDE = 32°23'01.55" (32.383764°) LONGITUDE = -103°42'55.99" (-103.715554°) STATE PLANE NAD 83 (N.M. EAST) N: 503939.23' E: 731890.38' STATE PLANE NAD 27 (N.M. EAST) N: 503878.81' E: 690707.99' 11 - EL: 3617.5' NAD 83 LATITUDE = 32°23'00.92" (32.383589°) LONGITUDE = -103°43'02.16" (-103.717266°) NAD 27 LATITUDE = 32°23'00.48" (32.383467°) LONGITUDE = -103°43'00.40" (-103.716777°) STATE PLANE NAD 83 (N.M. EAST) N: 50388.95' E: 731513.31' STATE PLANE NAD 27 (N.M. EAST) | 8 - EL: 3625.5' NAD 83 LATITUDE = 32°22'59.06" (32.383072°) LONGITUDE = -103°42'55.70" (-103.715472°) NAD 27 LATITUDE = 32°22'58.62" (32.382950°) LONGITUDE = -103°42'53.94" (-103.714984°) STATE PLANE NAD 83 (N.M. EAST) N: 503644.05' E: 732068.07' STATE PLANE NAD 27 (N.M. EAST) N: 503583.63' E: 690885.67' 12 - EL: 3622.1' NAD 83 LATITUDE = 32°23'02.19" (32.383940°) LONGITUDE = -103°42'59.65" (-103.716570°) NAD 27 LATITUDE = 32°23'01.74" (32.383818°) LONGITUDE = -103°42'57.89" (-103.716081°) STATE PLANE NAD 83 (N.M. EAST) N: 503957.86' E: 731727.46' STATE PLANE NAD 27 (N.M. EAST) | 9 - EL: 3623.3' NAD 83 LATITUDE = 32°22'57.48" (32.382633°) LONGITUDE = -103°42'55.64" (-103.715454°) NAD 27 LATITUDE = 32°22'57.04" (32.382510°) LONGITUDE = -103°42'53.88" (-103.714966°) STATE PLANE NAD 83 (N.M. EAST) N: 503484.08' E: 732074.50' STATE PLANE NAD 27 (N.M. EAST) N: 503423.67' E: 690892.10' 13 - EL: 3622.1' NAD 83 LATITUDE = 32°23'01.33" (32.383704°) LONGITUDE = -103°42'59.06" (-103.716404°) NAD 27 LATITUDE = 32°23'00.89" (32.383581°) LONGITUDE = -103°42'57.30" (-103.715916°) STATE PLANE NAD 83 (N.M. EAST) N: 503872.20' E: 731779.02' STATE PLANE NAD 27 (N.M. EAST) | 10 - EL: 3615.0' NAD 83 LATITUDE = 32°23'00.07" (32.383353°) LONGITUDE = -103°43'01.56" (-103.717100°) NAD 27 LATITUDE = 32°22'59.63" (32.383230°) LONGITUDE = -103°42'59.80" (-103.716612°) STATE PLANE NAD 83 (N.M. EAST) N: 503743.29' E: 731564.88" STATE PLANE NAD 27 (N.M. EAST) N: 503682.88' E: 690382.48' BEGIN ACCESS ROAD "A" - EL: 3618.1' NAD 83 LATITUDE = 32°23'01.03" (32.383619°) LONGITUDE = -103°43'03.54" (-103.717651°) NAD 27 LATITUDE = 32°23'00.59" (32.383497°) LONGITUDE = -103°43'01.78" (-103.717162°) STATE PLANE NAD 83 (N.M. EAST) N: 503839.16' E: 731394.42' STATE PLANE NAD 27 (N.M. EAST) | | 6 - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) NAD 27 LATITUDE = 32°23'01.55" (32.383764°) LONGITUDE = -103°42'55.99" (-103.715554°) STATE PLANE NAD 83 (N.M. EAST) N: 503939.23' E: 731890.38' STATE PLANE NAD 27 (N.M. EAST) N: 503878.81' E: 690707.99' 11 - EL: 3617.5' NAD 83 LATITUDE = 32°23'00.92" (32.383589°) LONGITUDE = -103°43'02.16" (-103.717266°) NAD 27 LATITUDE = 32°23'00.48" (32.383467°) LONGITUDE = -103°43'00.40" (-103.71677°) STATE PLANE NAD 83 (N.M. EAST) N: 503828.95' E: 731513.31' STATE PLANE NAD 27 (N.M. EAST) N: 503768.53' E: 690330.92' | 8 - EL: 3625.5' NAD 83 LATITUDE = 32°22'59.06" (32.383072°) LONGITUDE = -103°42'55.70" (-103.715472°) NAD 27 LATITUDE = 32°22'58.62" (32.382950°) LONGITUDE = -103°42'53.94" (-103.714984°) STATE PLANE NAD 83 (N.M. EAST) N: 503644.05' E: 732068.07' STATE PLANE NAD 27 (N.M. EAST) N: 503583.63' E: 690885.67' 12 - EL: 3622.1' NAD 83 LATITUDE = 32°23'02.19" (32.383940°) LONGITUDE = -103°42'59.65" (-103.716570°) NAD 27 LATITUDE = 32°23'01.74" (32.383818°) LONGITUDE = -103°42'57.89" (-103.716081°) STATE PLANE NAD 83 (N.M. EAST) N: 503957.86' E: 731727.46' STATE PLANE NAD 27 (N.M. EAST) N: 503897.44' E: 690545.07' | 9 - EL: 3623.3' NAD 83 LATITUDE = 32°22'57.48" (32.382633°) LONGITUDE = -103°42'55.64" (-103.715454°) NAD 27 LATITUDE = 32°22'57.04" (32.382510°) LONGITUDE = -103°42'53.88" (-103.714966°) STATE PLANE NAD 83 (N.M. EAST) N: 503484.08' E: 732074.50' STATE PLANE NAD 27 (N.M. EAST) N: 503423.67' E: 690892.10' 13 - EL: 3622.1' NAD 83 LATITUDE = 32°23'01.33" (32.383704°) LONGITUDE = -103°42'59.06" (-103.716404°) NAD 27 LATITUDE = 32°23'00.89" (32.383581°) LONGITUDE =
-103°42'57.30" (-103.715916°) STATE PLANE NAD 83 (N.M. EAST) N: 503872.20' E: 731779.02' STATE PLANE NAD 27 (N.M. EAST) N: 503811.78' E: 690596.63' | 10 - EL: 3615.0' NAD 83 LATITUDE = 32°23'00.07" (32.383353°) LONGITUDE = -103°43'01.56" (-103.717100°) NAD 27 LATITUDE = 32°22'59.63" (32.383230°) LONGITUDE = -103°42'59.80" (-103.716612°) STATE PLANE NAD 83 (N.M. EAST) N: 503743.29' E: 731564.88' STATE PLANE NAD 27 (N.M. EAST) N: 503682.88' E: 690382.48' BEGIN ACCESS ROAD "A" - EL: 3618.1' NAD 83 LATITUDE = 32°23'01.03" (32.383619°) LONGITUDE = -103°43'03.54" (-103.717651°) NAD 27 LATITUDE = 32°23'00.59" (32.383497°) LONGITUDE = -103°43'01.78" (-103.717162°) STATE PLANE NAD 83 (N.M. EAST) N: 503839.16' E: 731394.42' STATE PLANE NAD 27 (N.M. EAST) N: 503778.75' E: 690212.03' | | 6 - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) NAD 27 LATITUDE = 32°23'01.55" (32.383764°) LONGITUDE = -103°42'55.99" (-103.715554°) STATE PLANE NAD 83 (N.M. EAST) N: 503939.23' E: 731890.38' STATE PLANE NAD 27 (N.M. EAST) N: 503878.81' E: 690707.99' 11 - EL: 3617.5' NAD 83 LATITUDE = 32°23'00.92" (32.383589°) LONGITUDE = -103°43'02.16" (-103.717266°) NAD 27 LATITUDE = 32°23'00.48" (32.383467°) LONGITUDE = -103°43'00.40" (-103.716777°) STATE PLANE NAD 83 (N.M. EAST) N: 50388.95' E: 731513.31' STATE PLANE NAD 27 (N.M. EAST) | 8 - EL: 3625.5' NAD 83 LATITUDE = 32°22'59.06" (32.383072°) LONGITUDE = -103°42'55.70" (-103.715472°) NAD 27 LATITUDE = 32°22'58.62" (32.382950°) LONGITUDE = -103°42'53.94" (-103.714984°) STATE PLANE NAD 83 (N.M. EAST) N: 503644.05' E: 732068.07' STATE PLANE NAD 27 (N.M. EAST) N: 503583.63' E: 690885.67' 12 - EL: 3622.1' NAD 83 LATITUDE = 32°23'02.19" (32.383940°) LONGITUDE = -103°42'59.65" (-103.716570°) NAD 27 LATITUDE = 32°23'01.74" (32.383818°) LONGITUDE = -103°42'57.89" (-103.716081°) STATE PLANE NAD 83 (N.M. EAST) N: 503957.86' E: 731727.46' STATE PLANE NAD 27 (N.M. EAST) | 9 - EL: 3623.3' NAD 83 LATITUDE = 32°22'57.48" (32.382633°) LONGITUDE = -103°42'55.64" (-103.715454°) NAD 27 LATITUDE = 32°22'57.04" (32.382510°) LONGITUDE = -103°42'53.88" (-103.714966°) STATE PLANE NAD 83 (N.M. EAST) N: 503484.08' E: 732074.50' STATE PLANE NAD 27 (N.M. EAST) N: 503423.67' E: 690892.10' 13 - EL: 3622.1' NAD 83 LATITUDE = 32°23'01.33" (32.383704°) LONGITUDE = -103°42'59.06" (-103.716404°) NAD 27 LATITUDE = 32°23'00.89" (32.383581°) LONGITUDE = -103°42'57.30" (-103.715916°) STATE PLANE NAD 83 (N.M. EAST) N: 503872.20' E: 731779.02' STATE PLANE NAD 27 (N.M. EAST) | 10 - EL: 3615.0' NAD 83 LATITUDE = 32°23'00.07" (32.383353°) LONGITUDE = -103°43'01.56" (-103.717100°) NAD 27 LATITUDE = 32°22'59.63" (32.383230°) LONGITUDE = -103°42'59.80" (-103.716612°) STATE PLANE NAD 83 (N.M. EAST) N: 503743.29' E: 731564.88" STATE PLANE NAD 27 (N.M. EAST) N: 503682.88' E: 690382.48' BEGIN ACCESS ROAD "A" - EL: 3618.1' NAD 83 LATITUDE = 32°23'01.03" (32.383619°) LONGITUDE = -103°43'03.54" (-103.717651°) NAD 27 LATITUDE = 32°23'00.59" (32.383497°) LONGITUDE = -103°43'01.78" (-103.717162°) STATE PLANE NAD 83 (N.M. EAST) N: 503839.16' E: 731394.42' STATE PLANE NAD 27 (N.M. EAST) | | 6 - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) NAD 27 LATITUDE = 32°23'01.55" (32.383764°) LONGITUDE = -103°42'55.99" (-103.715554°) STATE PLANE NAD 83 (N.M. EAST) N: 503939.23' E: 731890.38' STATE PLANE NAD 27 (N.M. EAST) N: 503878.81' E: 690707.99' 11 - EL: 3617.5' NAD 83 LATITUDE = 32°23'00.92" (32.383589°) LONGITUDE = -103°43'02.16" (-103.717266°) NAD 27 LATITUDE = 32°23'00.48" (32.383467°) LONGITUDE = -103°43'00.40" (-103.716777°) STATE PLANE NAD 83 (N.M. EAST) N: 503828.95' E: 731513.31' STATE PLANE NAD 27 (N.M. EAST) N: 503768.53' E: 690330.92' PI #1 ACCESS ROAD "A" - EL: 3618.2' NAD 83 LATITUDE = 32°22'59.16" (32.383099°) | 8 - EL: 3625.5' NAD 83 LATITUDE = 32°22'59.06" (32.383072°) LONGITUDE = -103°42'55.70" (-103.715472°) NAD 27 LATITUDE = 32°22'58.62" (32.382950°) LONGITUDE = -103°42'53.94" (-103.714984°) STATE PLANE NAD 83 (N.M. EAST) N: 503644.05' E: 732068.07' STATE PLANE NAD 27 (N.M. EAST) N: 503583.63' E: 690885.67' 12 - EL: 3622.1' NAD 83 LATITUDE = 32°23'02.19" (32.383940°) LONGITUDE = -103°42'59.65" (-103.716570°) NAD 27 LATITUDE = 32°23'01.74" (32.383818°) LONGITUDE = -103°42'57.89" (-103.716081°) STATE PLANE NAD 83 (N.M. EAST) N: 503957.86' E: 731727.46' STATE PLANE NAD 27 (N.M. EAST) N: 503897.44' E: 690545.07' END ACCESS ROAD "A" - EL: 3618.6' NAD 83 LATITUDE = 32°22'58.73" (32.382981°) | 9 - EL: 3623.3' NAD 83 LATITUDE = 32°22'57.48" (32.382633°) LONGITUDE = -103°42'55.64" (-103.715454°) NAD 27 LATITUDE = 32°22'57.04" (32.382510°) LONGITUDE = -103°42'55.88" (-103.714966°) STATE PLANE NAD 83 (N.M. EAST) N: 503484.08' E: 732074.50' STATE PLANE NAD 27 (N.M. EAST) N: 503423.67' E: 690892.10' 13 - EL: 3622.1' NAD 83 LATITUDE = 32°23'01.33" (32.383704°) LONGITUDE = -103°42'59.06" (-103.716404°) NAD 27 LATITUDE = 32°23'00.89" (32.383581°) LONGITUDE = -103°42'57.30" (-103.715916°) STATE PLANE NAD 83 (N.M. EAST) N: 503872.20' E: 731779.02' STATE PLANE NAD 27 (N.M. EAST) N: 503871.28' E: 690596.63' BEGIN ACCESS ROAD "B" - EL: 3626.2' NAD 83 LATITUDE = 32°23'03.82" (32.384396°) | 10 - EL: 3615.0' NAD 83 LATITUDE = 32°23'00.07" (32.383353°) LONGITUDE = -103°43'01.56" (-103.717100°) NAD 27 LATITUDE = 32°22'59.63" (32.383230°) LONGITUDE = -103°42'59.80" (-103.716612°) STATE PLANE NAD 83 (N.M. EAST) N: 503743.29' E: 731564.88" STATE PLANE NAD 27 (N.M. EAST) N: 503682.88' E: 690382.48' BEGIN ACCESS ROAD "A" - EL: 3618.1' NAD 83 LATITUDE = 32°23'01.03" (32.383619°) LONGITUDE = -103°43'03.54" (-103.717651°) NAD 27 LATITUDE = 32°23'00.59" (32.383497°) LONGITUDE = -103°43'01.78" (-103.717162°) STATE PLANE NAD 83 (N.M. EAST) N: 503839.16' E: 731394.42' STATE PLANE NAD 27 (N.M. EAST) N: 503778.75' E: 690212.03' END ACCESS ROAD "B" - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) | | 6 - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) NAD 27 LATITUDE = 32°23'01.55" (32.383764°) LONGITUDE = -103°42'55.99" (-103.715554°) STATE PLANE NAD 83 (N.M. EAST) N: 503939.23' E: 731890.38' STATE PLANE NAD 27 (N.M. EAST) N: 503878.81' E: 690707.99' 11 - EL: 3617.5' NAD 83 LATITUDE = 32°23'00.92" (32.383589°) LONGITUDE = -103°43'02.16" (-103.717266°) NAD 27 LATITUDE = 32°23'00.48" (32.383467°) LONGITUDE = -103°43'00.40" (-103.716777°) STATE PLANE NAD 83 (N.M. EAST) N: 503828.95' E: 731513.31' STATE PLANE NAD 27 (N.M. EAST) N: 503768.53' E: 690330.92' PI#I ACCESS ROAD "A" - EL: 3618.2' NAD 83 LATITUDE = 32°22'59.16" (32.383099°) LONGITUDE = -103°43'04.52" (-103.717921°) | 8 - EL: 3625.5' NAD 83 LATITUDE = 32°22'59.06" (32.383072°) LONGITUDE = -103°42'55.70" (-103.715472°) NAD 27 LATITUDE = 32°22'58.62" (32.382950°) LONGITUDE = -103°42'53.94" (-103.714984°) STATE PLANE NAD 83 (N.M. EAST) N: 503644.05' E: 732068.07' STATE PLANE NAD 27 (N.M. EAST) N: 503583.63' E: 690885.67' 12 - EL: 3622.1' NAD 83 LATITUDE = 32°23'02.19" (32.383940°) LONGITUDE = -103°42'59.65" (-103.716570°) NAD 27 LATITUDE = 32°23'01.74" (32.383818°) LONGITUDE = -103°42'57.89" (-103.716081°) STATE PLANE NAD 83 (N.M. EAST) N: 5035957.86' E: 731727.46' STATE PLANE NAD 27 (N.M. EAST) N: 503897.44' E: 690545.07' END ACCESS ROAD "A" - EL: 3618.6' NAD 83 LATITUDE = 32°22'58.73" (32.382981°) LONGITUDE = -103°43'04.22" (-103.717838°) | 9 - EL: 3623.3' NAD 83 LATITUDE = 32°22'57.48" (32.382633°) LONGITUDE = -103°42'55.64" (-103.715454°) NAD 27 LATITUDE = 32°22'57.04" (32.382510°) LONGITUDE = -103°42'53.88" (-103.714966°) STATE PLANE NAD 83 (N.M. EAST) N: 503484.08' E: 732074.50' STATE PLANE NAD 27 (N.M. EAST) N: 503423.67' E: 690892.10' 13 - EL: 3622.1' NAD 83 LATITUDE = 32°23'01.33" (32.383704°) LONGITUDE = -103°42'59.06" (-103.716404°) NAD 27 LATITUDE = 32°23'00.89" (32.383581°) LONGITUDE = -103°42'57.30" (-103.715916°) STATE PLANE NAD 83 (N.M. EAST) N: 503872.20' E: 731779.02' STATE PLANE NAD 83 (N.M. EAST) N: 503871.20' E: 731779.02' STATE PLANE NAD 27 (N.M. EAST) N: 503811.78' E: 690596.63' BEGIN ACCESS ROAD "B" - EL: 3626.2' NAD 83 LATITUDE = 32°23'03.82" (32.384396°) LONGITUDE = -103°42'56.70" (-103.715751°) | 10 - EL: 3615.0' NAD 83 LATITUDE = 32°23'00.07" (32.383353°) LONGITUDE = -103°43'01.56" (-103.717100°) NAD 27 LATITUDE = 32°22'59.63" (32.383230°) LONGITUDE = -103°42'59.80" (-103.716612°) STATE PLANE NAD 83 (N.M. EAST) N: 503743.29' E: 731564.88' STATE PLANE NAD 27 (N.M. EAST) N: 503682.88' E: 690382.48' BEGIN ACCESS ROAD "A" - EL: 3618.1' NAD 83 LATITUDE = 32°23'01.03" (32.383619°) LONGITUDE = -103°43'03.54" (-103.717651°) NAD 27 LATITUDE = 32°23'00.59" (32.383497°) LONGITUDE = -103°43'01.78" (-103.717162°) STATE PLANE NAD 83 (N.M. EAST) N: 503839.16' E: 731394.42' STATE PLANE NAD 27 (N.M. EAST) N: 503778.75' E: 690212.03' END ACCESS ROAD "B" - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) | | 6 - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) NAD 27 LATITUDE = 32°23'01.55" (32.383764°) LONGITUDE = -103°42'55.99" (-103.715554°) STATE PLANE NAD 83 (N.M. EAST) N: 503939.23' E: 731890.78' N: 503878.81' E: 690707.99' 11 - EL: 3617.5' NAD 83 LATITUDE = 32°23'00.92" (32.383589°) LONGITUDE = -103°43'02.16" (-103.717266°) NAD 27 LATITUDE = 32°23'00.48" (32.383467°) LONGITUDE = -103°43'00.40" (-103.716777°) STATE PLANE NAD 83 (N.M. EAST) N: 50388.95' E: 731513.31' STATE PLANE NAD 27 (N.M. EAST) N: 50388.95' E: 731513.31' STATE PLANE NAD 27 (N.M. EAST) N: 503768.53' E: 690330.92' PI #1 ACCESS ROAD "A" - EL: 3618.2' NAD 83 LATITUDE = 32°22'59.16" (32.383099°) LONGITUDE = -103°43'04.52" (-103.717921°) NAD 27 | 8 - EL: 3625.5' NAD 83 LATITUDE = 32°22'59.06" (32.383072°) LONGITUDE = 103°42'55.70" (-103.715472°) NAD 27 LATITUDE = 32°22'58.62" (32.382950°) LONGITUDE = -103°42'53.94" (-103.714984°) STATE PLANE NAD 83 (N.M. EAST) N: 503644.05' E: 732068.07'
STATE PLANE NAD 27 (N.M. EAST) N: 503583.63' E: 690885.67' 12 - EL: 3622.1' NAD 83 LATITUDE = 32°23'02.19" (32.383940°) LONGITUDE = -103°42'59.65" (-103.716570°) NAD 27 LATITUDE = 32°23'01.74" (32.383818°) LONGITUDE = -103°42'57.89" (-103.716081°) STATE PLANE NAD 83 (N.M. EAST) N: 503957.86' E: 731727.46' STATE PLANE NAD 27 (N.M. EAST) N: 503897.44' E: 690545.07' END ACCESS ROAD "A" - EL: 3618.6' NAD 83 LATITUDE = 32°22'58.73" (32.382981°) LONGITUDE = -103°43'04.22" (-103.717838°) NAD 27 | 9 - EL: 3623.3' NAD 83 LATITUDE = 32°22'57.48" (32.382633°) LONGITUDE = -103°42'55.64" (-103.715454°) NAD 27 LATITUDE = 32°22'57.04" (32.382510°) LONGITUDE = -103°42'53.88" (-103.714966°) STATE PLANE NAD 83 (N.M. EAST) N: 503484.08' E: 732074.50' STATE PLANE NAD 27 (N.M. EAST) N: 503423.67' E: 690892.10' 13 - EL: 3622.1' NAD 83 LATITUDE = 32°23'01.33" (32.383704°) LONGITUDE = -103°42'59.06" (-103.716404°) NAD 27 LATITUDE = 32°23'00.89" (32.383581°) LONGITUDE = -103°42'57.30" (-103.715916°) STATE PLANE NAD 83 (N.M. EAST) N: 503872.20' E: 731779.02' STATE PLANE NAD 27 (N.M. EAST) N: 503811.78' E: 690596.63' BEGIN ACCESS ROAD "B" - EL: 3626.2' NAD 83 LATITUDE = 32°23'03.82" (32.384396°) LONGITUDE = -103°42'55.70" (-103.715751°) NAD 27 | 10 - EL: 3615.0' NAD 83 LATITUDE = 32°23'00.07" (32.383353°) LONGITUDE = -103°43'01.56" (-103.717100°) NAD 27 LATITUDE = 32°22'59.63" (32.383230°) LONGITUDE = -103°42'59.80" (-103.716612°) STATE PLANE NAD 83 (N.M. EAST) N: 503743.29' E: 731564.88" STATE PLANE NAD 27 (N.M. EAST) N: 503682.88' E: 690382.48' BEGIN ACCESS ROAD "A" - EL: 3618.1' NAD 83 LATITUDE = 32°23'01.03" (32.383619°) LONGITUDE = -103°43'03.54" (-103.717651°) NAD 27 LATITUDE = 32°23'00.59" (32.383497°) LONGITUDE = -103°43'01.78" (-103.717162°) STATE PLANE NAD 83 (N.M. EAST) N: 503878.75' E: 690212.03' END ACCESS ROAD "B" - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) NAD 27 | | 6 - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) NAD 27 LATITUDE = 32°23'01.55" (32.383764°) LONGITUDE = -103°42'55.99" (-103.715554°) STATE PLANE NAD 83 (N.M. EAST) N: 503939.23' E: 731890.38' STATE PLANE NAD 27 (N.M. EAST) N: 503878.81' E: 690707.99' 11 - EL: 3617.5' NAD 83 LATITUDE = 32°23'00.92" (32.383589°) LONGITUDE = -103°43'02.16" (-103.717266°) NAD 27 LATITUDE = 32°23'00.48" (32.383467°) LONGITUDE = -103°43'00.40" (-103.716777°) STATE PLANE NAD 83 (N.M. EAST) N: 503828.95' E: 731513.31' STATE PLANE NAD 27 (N.M. EAST) N: 503768.53' E: 690330.92' PI#I ACCESS ROAD "A" - EL: 3618.2' NAD 83 LATITUDE = 32°22'59.16" (32.383099°) LONGITUDE = -103°43'04.52" (-103.717921°) | 8 - EL: 3625.5' NAD 83 LATITUDE = 32°22'59.06" (32.383072°) LONGITUDE = -103°42'55.70" (-103.715472°) NAD 27 LATITUDE = 32°22'58.62" (32.382950°) LONGITUDE = -103°42'53.94" (-103.714984°) STATE PLANE NAD 83 (N.M. EAST) N: 503644.05' E: 732068.07' STATE PLANE NAD 27 (N.M. EAST) N: 503583.63' E: 690885.67' 12 - EL: 3622.1' NAD 83 LATITUDE = 32°23'02.19" (32.383940°) LONGITUDE = -103°42'59.65" (-103.716570°) NAD 27 LATITUDE = 32°23'01.74" (32.383818°) LONGITUDE = -103°42'57.89" (-103.716081°) STATE PLANE NAD 83 (N.M. EAST) N: 5035957.86' E: 731727.46' STATE PLANE NAD 27 (N.M. EAST) N: 503897.44' E: 690545.07' END ACCESS ROAD "A" - EL: 3618.6' NAD 83 LATITUDE = 32°22'58.73" (32.382981°) LONGITUDE = -103°43'04.22" (-103.717838°) | 9 - EL: 3623.3' NAD 83 LATITUDE = 32°22'57.48" (32.382633°) LONGITUDE = -103°42'55.64" (-103.715454°) NAD 27 LATITUDE = 32°22'57.04" (32.382510°) LONGITUDE = -103°42'53.88" (-103.714966°) STATE PLANE NAD 83 (N.M. EAST) N: 503484.08' E: 732074.50' STATE PLANE NAD 27 (N.M. EAST) N: 503423.67' E: 690892.10' 13 - EL: 3622.1' NAD 83 LATITUDE = 32°23'01.33" (32.383704°) LONGITUDE = -103°42'59.06" (-103.716404°) NAD 27 LATITUDE = 32°23'00.89" (32.383581°) LONGITUDE = -103°42'57.30" (-103.715916°) STATE PLANE NAD 83 (N.M. EAST) N: 503872.20' E: 731779.02' STATE PLANE NAD 83 (N.M. EAST) N: 503871.20' E: 731779.02' STATE PLANE NAD 27 (N.M. EAST) N: 503811.78' E: 690596.63' BEGIN ACCESS ROAD "B" - EL: 3626.2' NAD 83 LATITUDE = 32°23'03.82" (32.384396°) LONGITUDE = -103°42'56.70" (-103.715751°) | 10 - EL: 3615.0' NAD 83 LATITUDE = 32°23'00.07" (32.383353°) LONGITUDE = -103°43'01.56" (-103.717100°) NAD 27 LATITUDE = 32°22'59.63" (32.383230°) LONGITUDE = -103°42'59.80" (-103.716612°) STATE PLANE NAD 83 (N.M. EAST) N: 503743.29' E: 731564.88' STATE PLANE NAD 27 (N.M. EAST) N: 503682.88' E: 690382.48' BEGIN ACCESS ROAD "A" - EL: 3618.1' NAD 83 LATITUDE = 32°23'01.03" (32.383619°) LONGITUDE = -103°43'03.54" (-103.717651°) NAD 27 LATITUDE = 32°23'00.59" (32.383497°) LONGITUDE = -103°43'01.78" (-103.717162°) STATE PLANE NAD 83 (N.M. EAST) N: 503839.16' E: 731394.42' STATE PLANE NAD 27 (N.M. EAST) N: 503778.75' E: 690212.03' END ACCESS ROAD "B" - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) | | 6 - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) NAD 27 LATITUDE = 32°23'01.55" (32.383764°) LONGITUDE = -103°42'55.99" (-103.715554°) STATE PLANE NAD 83 (N.M. EAST) N: 503878.81' E: 690707.99' 11 - EL: 3617.5' NAD 83 LATITUDE = 32°23'00.92" (32.383589°) LONGITUDE = -103°43'02.16" (-103.717266°) NAD 27 LATITUDE = 32°23'00.48" (32.383467°) LONGITUDE = -103°43'00.40" (-103.716777°) STATE PLANE NAD 83 (N.M. EAST) N: 503828.95' E: 731513.31' STATE PLANE NAD 27 (N.M. EAST) N: 503828.95' E: 731513.31' STATE PLANE NAD 83 (N.M. EAST) N: 503768.53' E: 690330.92' PI #1 ACCESS ROAD "A" - EL: 3618.2' NAD 83 LATITUDE = 32°22'59.16" (32.383099°) LONGITUDE = -103°43'04.52" (-103.717921°) NAD 27 LATITUDE = 32°22'58.72" (32.383977°) LONGITUDE = -103°43'02.76" (-103.717433°) STATE PLANE NAD 83 (N.M. EAST) | 8 - EL: 3625.5' NAD 83 LATITUDE = 32°22'59.06" (32.383072°) LONGITUDE = -103°42'55.70" (-103.715472°) NAD 27 LATITUDE = 32°22'58.62" (32.382950°) LONGITUDE = -103°42'53.94" (-103.714984°) STATE PLANE NAD 83 (N.M. EAST) N: 503644.05' E: 732068.07' STATE PLANE NAD 27 (N.M. EAST) N: 503583.63' E: 690885.67' 12 - EL: 3622.1' NAD 83 LATITUDE = 32°23'02.19" (32.383940°) LONGITUDE = -103°42'59.65" (-103.716570°) NAD 27 LATITUDE = 32°23'01.74" (32.383818°) LONGITUDE = -103°42'57.89" (-103.716081°) STATE PLANE NAD 83 (N.M. EAST) N: 503957.86' E: 731727.46' STATE PLANE NAD 27 (N.M. EAST) N: 503897.44' E: 690545.07' END ACCESS ROAD "A" - EL: 3618.6' NAD 83 LATITUDE = 32°22'58.73" (32.382981°) LONGITUDE = -103°43'04.22" (-103.717838°) NAD 27 LATITUDE = 32°22'58.29" (32.382859°) LONGITUDE = -103°43'02.46" (-103.717350°) STATE PLANE NAD 83 (N.M. EAST) | 9 - EL: 3623.3' NAD 83 LATITUDE = 32°22'57.48" (32.382633°) LONGITUDE = -103°42'55.64" (-103.715454°) NAD 27 LATITUDE = 32°22'57.04" (32.382510°) LONGITUDE = -103°42'53.88" (-103.714966°) STATE PLANE NAD 83 (N.M. EAST) N: 503484.08' E: 732074.50' ST3484.08' E: 732074.50' ST3484.08' E: 732074.50' ST3485.7' E: 690892.10' 13 - EL: 3622.1' NAD 83 LATITUDE = 32°23'01.33" (32.383704°) LONGITUDE = -103°42'59.06" (-103.716404°) NAD 27 LATITUDE = 32°23'00.89" (32.383581°) LONGITUDE = -103°42'57.30" (-103.715916°) STATE PLANE NAD 83 (N.M. EAST) N: 503872.20' E: 731779.02' STATE PLANE NAD 87 (N.M. EAST) N: 503811.78' E: 690596.63' BEGIN ACCESS ROAD "B" - EL: 3626.2' NAD 83 LATITUDE = 32°23'03.82" (32.384396°) LONGITUDE = -103°42'56.70" (-103.715751°) NAD 27 LATITUDE = 32°23'03.82" (32.384396°) LONGITUDE = -103°42'56.70" (-103.715751°) NAD 27 LATITUDE = 32°23'03.38" (32.384273°) LONGITUDE = -103°42'54.94" (-103.715262°) STATE PLANE NAD 83 (N.M. EAST) | 10 - EL: 3615.0' NAD 83 LATITUDE = 32°23'00.07" (32.383353°) LONGITUDE = -103°43'01.56" (-103.717100°) NAD 27 LATITUDE = 32°22'59.63" (32.383230°) LONGITUDE = -103°42'59.80" (-103.716612°) STATE PLANE NAD 83 (N.M. EAST) N: 503743.29' E: 731564.88' STATE PLANE NAD 27 (N.M. EAST) N: 503682.88' E: 690382.48' BEGIN ACCESS ROAD "A" - EL: 3618.1' NAD 83 LATITUDE = 32°23'01.03" (32.383619°) LONGITUDE = -103°43'03.54" (-103.717651°) NAD 27 LATITUDE = 32°23'00.59" (32.383497°) LONGITUDE = -103°43'01.78" (-103.717162°) STATE PLANE NAD 83 (N.M. EAST) N: 503839.16' E: 731394.42' STATE PLANE NAD 27 (N.M. EAST) N: 503778.75' E: 690212.03' END ACCESS ROAD "B" - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) NAD 27 LATITUDE = 32°23'01.55" (32.383764°) LONGITUDE = -103°42'55.99" (-103.715554°) STATE PLANE NAD 83 (N.M. EAST) | | 6 - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) NAD 27 LATITUDE = 32°23'01.55" (32.383764°) LONGITUDE = -103°42'55.99" (-103.715554°) STATE PLANE NAD 83 (N.M. EAST) N: 503939.23' E: 731890.38' N: 503878.81' E: 690707.99' 11 - EL: 3617.5' NAD 83 LATITUDE = 32°23'00.92" (32.383589°) LONGITUDE = -103°43'02.16" (-103.717266°) NAD 27 LATITUDE = 32°23'00.48" (32.383467°) LONGITUDE = -103°43'00.40" (-103.716777°) STATE PLANE NAD 83 (N.M. EAST) N: 503828.95' E: 731513.31' STATE PLANE NAD 27 (N.M. EAST) N: 503768.53' E: 690330.92' PI #1 ACCESS ROAD "A" - EL: 3618.2' NAD 83 LATITUDE = 32°22'59.16" (32.38399°) LONGITUDE = -103°43'04.52" (-103.717921°) NAD 27 LATITUDE = 32°22'58.72" (32.382977°) LONGITUDE = -103°43'04.52" (-103.717931°) NAD 27 LATITUDE = 32°22'58.72" (32.382977°) LONGITUDE = -103°43'02.6" (-103.717433°) STATE PLANE NAD 83 (N.M. EAST) N: 503649.51' E: 731312.00' | 8 - EL: 3625.5' NAD 83 LATITUDE = 32°22'59.06" (32.383072°) LONGITUDE = -103°42'55.70" (-103.715472°) NAD 27 LATITUDE = 32°22'58.62" (32.382950°) LONGITUDE = -103°42'53.94" (-103.714984°) STATE PLANE NAD 83 (N.M. EAST) N: 503644.05' E: 732068.07' STATE PLANE NAD 27 (N.M. EAST) N: 503583.63' E: 690885.67' 12 - EL: 3622.1' NAD 83 LATITUDE = 32°23'02.19" (32.383940°) LONGITUDE = -103°42'59.65" (-103.716570°) NAD 27 LATITUDE = 32°23'01.74" (32.383818°) LONGITUDE = -103°42'57.89" (-103.716081°) STATE PLANE NAD 83 (N.M. EAST) N: 5039957.86' E: 731727.46' STATE
PLANE NAD 27 (N.M. EAST) N: 503897.44' E: 690545.07' END ACCESS ROAD "A" - EL: 3618.6' NAD 83 LATITUDE = 32°22'58.73" (32.382981°) LONGITUDE = -103°43'04.22" (-103.717838°) NAD 27 LATITUDE = 32°22'58.29" (32.382859°) LONGITUDE = -103°43'04.22" (-103.717350°) STATE PLANE NAD 83 (N.M. EAST) N: 503606.68' E: 731337.92' | 9 - EL: 3623.3' NAD 83 LATITUDE = 32°22'57.48" (32.382633°) LONGITUDE = -103°42'55.64" (-103.715454°) NAD 27 LATITUDE = 32°22'57.04" (32.382510°) LONGITUDE = -103°42'53.88" (-103.714966°) STATE PLANE NAD 83 (N.M. EAST) N: 503484.08' E: 732074.50' STATE PLANE NAD 27 (N.M. EAST) N: 503423.67' E: 690892.10' 13 - EL: 3622.1' NAD 83 LATITUDE = 32°23'01.33" (32.383704°) LONGITUDE = -103°42'59.06" (-103.716404°) NAD 27 LATITUDE = 32°23'00.89" (32.383581°) LONGITUDE = -103°42'57.30" (-103.715916°) STATE PLANE NAD 83 (N.M. EAST) N: 503811.78' E: 690596.63' BEGIN ACCESS ROAD "B" - EL: 3626.2' NAD 83 LATITUDE = 32°23'03.38" (32.384396°) LONGITUDE = -103°42'55.00" (-103.715751°) NAD 27 LATITUDE = 32°23'03.38" (32.384273°) LONGITUDE = -103°42'56.70" (-103.715751°) NAD 27 LATITUDE = 32°23'03.38" (32.384273°) LONGITUDE = -103°42'54.94" (-103.715262°) STATE PLANE NAD 83 (N.M. EAST) N: 50311.78' E: 690596.63' | 10 - EL: 3615.0' NAD 83 LATITUDE = 32°23'00.07" (32.383353°) LONGITUDE = -103°43'01.56" (-103.717100°) NAD 27 LATITUDE = 32°22'59.63" (32.383230°) LONGITUDE = -103°42'59.80" (-103.716612°) STATE PLANE NAD 83 (N.M. EAST) N: 503743.29' E: 731564.88" STATE PLANE NAD 27 (N.M. EAST) N: 503682.88' E: 690382.48' BEGIN ACCESS ROAD "A" - EL: 3618.1' NAD 83 LATITUDE = 32°23'01.03" (32.383619°) LONGITUDE = -103°43'03.54" (-103.717651°) NAD 27 LATITUDE = 32°23'00.59" (32.383497°) LONGITUDE = -103°43'01.78" (-103.717162°) STATE PLANE NAD 83 (N.M. EAST) N: 50389.16' E: 731394.42' STATE PLANE NAD 27 (N.M. EAST) N: 503778.75' E: 690212.03' END ACCESS ROAD "B" - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) NAD 27 LATITUDE = 32°23'01.55" (32.383887°) LONGITUDE = -103°42'57.75" (-103.71554°) STATE PLANE NAD 83 (N.M. EAST) N: 503778.75' E: 690212.03' END ACCESS ROAD "B" - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.55" (32.383876°) LONGITUDE = -103°42'55.99" (-103.715554°) STATE PLANE NAD 83 (N.M. EAST) N: 503939.23' E: 731890.38' | | 6 - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) NAD 27 LATITUDE = 32°23'01.55" (32.383764°) LONGITUDE = -103°42'55.99" (-103.715554°) STATE PLANE NAD 83 (N.M. EAST) N: 503878.81' E: 690707.99' 11 - EL: 3617.5' NAD 83 LATITUDE = 32°23'00.92" (32.383589°) LONGITUDE = -103°43'02.16" (-103.717266°) NAD 27 LATITUDE = 32°23'00.48" (32.383467°) LONGITUDE = -103°43'00.40" (-103.716777°) STATE PLANE NAD 83 (N.M. EAST) N: 503828.95' E: 731513.31' STATE PLANE NAD 27 (N.M. EAST) N: 503828.95' E: 731513.31' STATE PLANE NAD 83 (N.M. EAST) N: 503768.53' E: 690330.92' PI #1 ACCESS ROAD "A" - EL: 3618.2' NAD 83 LATITUDE = 32°22'59.16" (32.383099°) LONGITUDE = -103°43'04.52" (-103.717921°) NAD 27 LATITUDE = 32°22'58.72" (32.383977°) LONGITUDE = -103°43'02.76" (-103.717433°) STATE PLANE NAD 83 (N.M. EAST) | 8 - EL: 3625.5' NAD 83 LATITUDE = 32°22'59.06" (32.383072°) LONGITUDE = -103°42'55.70" (-103.715472°) NAD 27 LATITUDE = 32°22'58.62" (32.382950°) LONGITUDE = -103°42'53.94" (-103.714984°) STATE PLANE NAD 83 (N.M. EAST) N: 503644.05' E: 732068.07' STATE PLANE NAD 27 (N.M. EAST) N: 503583.63' E: 690885.67' 12 - EL: 3622.1' NAD 83 LATITUDE = 32°23'02.19" (32.383940°) LONGITUDE = -103°42'59.65" (-103.716570°) NAD 27 LATITUDE = 32°23'01.74" (32.383818°) LONGITUDE = -103°42'57.89" (-103.716081°) STATE PLANE NAD 83 (N.M. EAST) N: 503957.86' E: 731727.46' STATE PLANE NAD 27 (N.M. EAST) N: 503897.44' E: 690545.07' END ACCESS ROAD "A" - EL: 3618.6' NAD 83 LATITUDE = 32°22'58.73" (32.382981°) LONGITUDE = -103°43'04.22" (-103.717838°) NAD 27 LATITUDE = 32°22'58.29" (32.382859°) LONGITUDE = -103°43'02.46" (-103.717350°) STATE PLANE NAD 83 (N.M. EAST) | 9 - EL: 3623.3' NAD 83 LATITUDE = 32°22'57.48" (32.382633°) LONGITUDE = -103°42'55.64" (-103.715454°) NAD 27 LATITUDE = 32°22'57.04" (32.382510°) LONGITUDE = -103°42'53.88" (-103.714966°) STATE PLANE NAD 83 (N.M. EAST) N: 503484.08' E: 732074.50' ST3484.08' E: 732074.50' ST3484.08' E: 732074.50' ST3485.7' E: 690892.10' 13 - EL: 3622.1' NAD 83 LATITUDE = 32°23'01.33" (32.383704°) LONGITUDE = -103°42'59.06" (-103.716404°) NAD 27 LATITUDE = 32°23'00.89" (32.383581°) LONGITUDE = -103°42'57.30" (-103.715916°) STATE PLANE NAD 83 (N.M. EAST) N: 503872.20' E: 731779.02' STATE PLANE NAD 87 (N.M. EAST) N: 503811.78' E: 690596.63' BEGIN ACCESS ROAD "B" - EL: 3626.2' NAD 83 LATITUDE = 32°23'03.82" (32.384396°) LONGITUDE = -103°42'56.70" (-103.715751°) NAD 27 LATITUDE = 32°23'03.82" (32.384396°) LONGITUDE = -103°42'56.70" (-103.715751°) NAD 27 LATITUDE = 32°23'03.38" (32.384273°) LONGITUDE = -103°42'54.94" (-103.715262°) STATE PLANE NAD 83 (N.M. EAST) | 10 - EL: 3615.0' NAD 83 LATITUDE = 32°23'00.07" (32.383353°) LONGITUDE = -103°43'01.56" (-103.717100°) NAD 27 LATITUDE = 32°22'59.63" (32.383230°) LONGITUDE = -103°42'59.80" (-103.716612°) STATE PLANE NAD 83 (N.M. EAST) N: 503743.29' E: 731564.88' STATE PLANE NAD 27 (N.M. EAST) N: 503682.88' E: 690382.48' BEGIN ACCESS ROAD "A" - EL: 3618.1' NAD 83 LATITUDE = 32°23'01.03" (32.383619°) LONGITUDE = -103°43'03.54" (-103.717651°) NAD 27 LATITUDE = 32°23'00.59" (32.383497°) LONGITUDE = -103°43'03.54" (-103.717162°) STATE PLANE NAD 83 (N.M. EAST) N: 503839.16' E: 731394.42' STATE PLANE NAD 27 (N.M. EAST) N: 503778.75' E: 690212.03' END ACCESS ROAD "B" - EL: 3624.4' NAD 83 LATITUDE = 32°23'01.99" (32.383887°) LONGITUDE = -103°42'57.75" (-103.716042°) NAD 27 LATITUDE = 32°23'01.55" (32.383764°) LONGITUDE = -103°42'57.75" (-103.715554°) STATE PLANE NAD 83 (N.M. EAST) | Sheet 2 of 2 # NOTES: - Underground utilities shown on this sheet are for visualization purposes only, actual locations to be determined prior to construction. - Basis of Bearings is a Transverse Mercator Projection with a Central Meridian of W103°53'00" (NAD 83) OXY USA INC. personnel to provide any site specific requirements needed at the time of construction. # **OXY USA INC.** LSTTNK 22S32E 1902 NE 1/4 NW 1/4, SECTION 19, T22S, R32E, N.M.P.M. LEA COUNTY, NÉW MÉXICO C.T., C.S. SURVEYED BY 07-18-23 **SCALE** 08-01-23 **DRAWN BY LOCATION LAYOUT** **UELS, LLC** Corporate Office * 85 South 200 East Vernal, UT 84078 * (435) 789-1017 # 10M Choke Panel - 1. Choke Manifold Valve - 2. Choke Manifold Valve - 3. Choke Manifold Valve - 4. Choke Manifold Valve - 5. Choke Manifold Valve - 6. Choke Manifold Valve - 7. Choke Manifold Valve - 8. PC Power Choke - 9. Choke Manifold Valve - 10. Choke Manifold Valve - 11. Choke Manifold Valve - 12. LMC Lower Manual Choke - 13. UMC Upper manual choke - 15. Choke Manifold Valve - 16. Choke Manifold Valve - 17. Choke Manifold Valve - 18. Choke Manifold Valve - 21. Vertical Choke Manifold Valve *All Valves 3" minimum # 5/10M BOP Stack # Notes: 1. THIS IS A PROPOSAL DRAWING AND DIMENSIONS SHOWN ARE SUBJECT TO CHANGE DURING THE FINAL DESIGN PROCESS. ${\bf 2.~DIGITALLY~ENABLED~SOLUTIONS,~CHOKES~AND~ESD'S~AVAILABLE~ON~REQUEST}\\$ | CONFIDENTIAL | | | | | |----------------------------|---|--------------|--------------------------|--------------------------| | DO NOT SC | ALE | | CAMERON SURFACE | | | DRAWN BY: | DATE | | | SYSTEMS | | D. GOTTUNG | 18 Feb 22 | | A Schlumberger Company | 2.2.2 | | CHECKED BY: | DATE | | | • | | D. GOTTUNG | 18 Feb 22 | | OXY 13-5/8" 10K AE | APT | | APPROVED BY: | DATE | ĺ | 16" X 10-3/4" X 7-5/8" | X 5-1/2" | | D. GOTTUNG | 18 Feb 22 | | .0 % .0 3/4 % 1 0/0 | | | 5.068 LBS INITIAL USE B/M: | | SHEET | 00 050404 04 | AO REV: | | 3.748 KG | | 1 of 1 | SD-053434-94 | -12 01 | | | DRAWN BY: D. GOTTUNG CHECKED BY: D. GOTTUNG APPROVED BY: | DO NOT SCALE | DO NOT SCALE DRAWN 8Y | DO NOT SCALE DRAWN 8Y | Sante Fe Main Office Phone: (505) 476-3441 General Information Phone: (505) 629-6116 Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us # State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505 COMMENTS Action 456788 # COMMENTS | Operator: | OGRID: | |-----------------------|---| | OXY USA INC | 16696 | | P.O. Box 4294 | Action Number: | | Houston, TX 772104294 | 456788 | | | Action Type: | | | [C-101] BLM - Federal/Indian Land Lease (Form 3160-3) | # COMMENTS | Created By | Comment | Comment
Date | |------------------|--|-----------------| | jeffrey.harrison | BLM approved permit contains two three string well designs, A1 and A2. Well design A2 has yet and additional continency for a 4th string (or 2nd intermediate string). | 8/5/2025 | Sante Fe Main Office Phone: (505) 476-3441 General Information Phone: (505) 629-6116 Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us # State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505 CONDITIONS Action 456788 # **CONDITIONS** | Operator: | OGRID: | |-----------------------|---| | OXY USA INC | 16696 | | P.O. Box 4294 | Action Number: | | Houston, TX 772104294 | 456788 | | | Action Type: | | | [C-101] BLM - Federal/Indian Land Lease (Form 3160-3) | # CONDITIONS | Created By | Condition | Condition
Date | |------------------|---|-------------------|
 melissaguidry | Cement is required to circulate on both surface and intermediate1 strings of casing. | 4/29/2025 | | melissaguidry | If cement does not circulate on any string, a Cement Bond Log (CBL) is required for that string of casing. | 4/29/2025 | | jeffrey.harrison | Notify the OCD 24 hours prior to casing & cement. | 8/5/2025 | | jeffrey.harrison | A [C-103] Sub. Drilling (C-103N) is required within (10) days of spud. | 8/5/2025 | | jeffrey.harrison | File As Drilled C-102 and a directional Survey with C-104 completion packet. | 8/5/2025 | | jeffrey.harrison | Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string. | 8/5/2025 | | jeffrey.harrison | Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system. | 8/5/2025 | | jeffrey.harrison | Administrative order required for non-standard spacing unit prior to production. | 8/6/2025 |