

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Sundry Print Report

County or Parish/State: EDDY /

Well Name: BRUSHY DRAW 30 Well Location: T25S / R30E / SEC 30 /

FEDERAL SWSW / 32.094511 / -103.925404

Well Number: 122H Type of Well: CONVENTIONAL GAS

WELL

Allottee or Tribe Name:

Lease Number: NMNM014785,

NMNM14785

Unit or CA Name:

Unit or CA Number:

LLC

Notice of Intent

Sundry ID: 2662751

Type of Submission: Notice of Intent

Type of Action: Other

Date Sundry Submitted: 03/18/2022 Time Sundry Submitted: 07:13

Date proposed operation will begin: 04/19/2022

Procedure Description: **Spacing, Casing/Cement, Drilling Variance Changes XTO Permian Operating, LLC requests permission to make the following changes to the original APD: No Additional Surface Disturbance Change formation from Wolfcamp to Bone Spring Change Pool fr/Purple Sage; Wolfcamp (98220) to Corral Canyon; Bone Spring, South (13354) Change BHL fr/2440'FNL & 990'FWL to 2460'FNL & 2580'FWL Casing/Cement design per the attached drilling program. Batch & Spudder Rig Attachments: C102 Drilling Program Directional Plan Multibowl Diagram Spudder Rig Request Offline Cement Variance (Surface & Intermediate Only) Request BOP Breaktest Variance

Surface Disturbance

Is any additional surface disturbance proposed?: No

NOI Attachments

Procedure Description

BD_30_Fed_122H_Attachments_20220421133650.pdf

Page 1 of 2

eived by OCD: 6/26/2025 7:44:36 AM Well Name: BRUSHY DRAW 30

FEDERAL

Well Location: T25S / R30E / SEC 30 / SWSW / 32.094511 / -103.925404

County or Parish/State: Page 2 of

NM

Well Number: 122H

Type of Well: CONVENTIONAL GAS WELL

Allottee or Tribe Name:

Lease Number: NMNM014785,

NMNM14785

Unit or CA Name:

Unit or CA Number:

US Well Number: 3001545190

Operator: XTO PERMIAN OPERATING

Conditions of Approval

Additional

Sec_30_25S_30E_NMP_Sundry_2662751_Brushy_Draw_31_Federal_122H_Eddy_NMNM14785_XTO_13_22_44673_ Allison_Morency_20220422102112.pdf

Sec_30_25S_30E_NMP_Sundry_2662751_Brushy_Draw_31_Federal_122H_Eddy_NMNM14785_XTO_COAs_202204 22102111.pdf

Sec_30_25S_30E_NMP_Sundry_2662751_Brushy_Draw_31_Federal_122H_Break_Testing_COAs_20220422102111. pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: STEPHANIE RABADUE Signed on: APR 21, 2022 01:37 PM

Name: XTO PERMIAN OPERATING LLC

Title: Regulatory Coordinator

Street Address: 500 W. Illinois St. Ste 100

City: Midland State: TX

Phone: (432) 620-6714

Email address: STEPHANIE.RABADUE@EXXONMOBIL.COM

Field

Representative Name:

Street Address:

State: City: Zip:

Phone:

Fmail address:

BLM Point of Contact

BLM POC Name: CHRISTOPHER WALLS BLM POC Title: Petroleum Engineer

BLM POC Phone: 5752342234 BLM POC Email Address: cwalls@blm.gov

Disposition: Approved Disposition Date: 04/22/2022

Signature: Chris Walls

Page 2 of 2

Form 3160-5 (June 2019)

UNITED STATES DEPARTMENT OF THE INTERIOR

FORM APPROVED
OMB No. 1004-0137
Expires: October 31, 202

BURI	EAU OF LAND MANAC		5. Lease Serial No.				
Do not use this f	OTICES AND REPOR form for proposals to Use Form 3160-3 (API	drill or to re-	enter an	6. If Indian, Allottee or Tribe Name			
SUBMIT IN T	TRIPLICATE - Other instruct	ions on page 2		7. If Unit of CA/Agreement, 1	Name a	nd/or No.	
1. Type of Well	_			8. Well Name and No.			
Oil Well Gas W	Vell Other						
2. Name of Operator				9. API Well No.			
3a. Address	3b	Phone No. (inclu	de area code)	10. Field and Pool or Explora	tory Ar	ea	
4. Location of Well (Footage, Sec., T.,R	.,M., or Survey Description)		11. Country or Parish, State				
12. CHE	CK THE APPROPRIATE BOX	(ES) TO INDICAT	ΓE NATURE C	OF NOTICE, REPORT OR OT	HER D.	ATA	
TYPE OF SUBMISSION			TYPE	E OF ACTION			
Notice of Intent	Acidize	Deepen		Production (Start/Resume)		Water Shut-Off	
Trouble of Intent	Alter Casing	Hydraulic 1	Fracturing [Reclamation		Well Integrity	
Subsequent Report	Casing Repair	New Const	truction	Recomplete		Other	
	Change Plans	Plug and A	bandon	Temporarily Abandon			
Final Abandonment Notice	Convert to Injection	Plug Back	[Water Disposal			
4. I hereby certify that the foregoing is	true and correct. Name (Printe						
		Title	;				
Signature		Date	;				
	THE SPACE F	OR FEDERA	L OR STA	TE OFICE USE			
Approved by							
			Title		Date		
Conditions of approval, if any, are attact certify that the applicant holds legal or e which would entitle the applicant to con	equitable title to those rights in t	es not warrant or the subject lease	Office				
Fitle 18 U.S.C Section 1001 and Title 43	3 U.S.C Section 1212, make it a	crime for any per	son knowingly	and willfully to make to any d	epartme	ent or agency of the United States	

Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United State any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

(Form 3160-5, page 2)

Additional Information

Additional Remarks

Attachments:

C102

Drilling Program

Directional Plan

Multibowl Diagram

Spudder Rig Request

Offline Cement Variance (Surface & Intermediate Only) Request

BOP Breaktest Variance

Location of Well

Sec 30-25S-30E-NMP Sundry 2662751 Brushy Draw 31 Federal 122H Eddy NMNM14785 XTO 13-22 44673 Allison Morency

Brushy Draw 31 Federal 122H

9 5/8	surface o	-	12 1/4	inch hole.		<u>Design</u>				Surfa		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	40.00	J	55	STC	13.55	6.45	0.86	834	10	1.46	11.95	33,360
"B"				STC				0				0
	/g mud, 30min Sf		•	Tail Cmt	does not	circ to sfc.	Totals:	834				33,360
comparison c	of Proposed to	Minimum R	equired Ceme	ent Volumes								
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cp
12 1/4	0.3132	300	493	261	89	9.20	2699	3M				0.81
	d'		h All - 0 -	70. OV								
urst Frac Grac	dient(s) for Seg	ment(s) A, B	= , b All > 0.7	70, OK.	Site plat (pip	e racks S or E)	as per 0.0.1.	III.D.4.I. not f	ound.			
7 5/8	casing ins	side the	9 5/8			<u>Design</u>	Factors			Int 1	L '	
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weigh
"A"	29.70	RY P		Flush Joint	2.09	2.52	1.91	4,000	2	3.38		118,80
"B"	29.70	HCL	80	Flush Joint	2.75	1.25	1.39	4,970	1	2.46	2.14	147,60
	/g mud, 30min Sf						Totals:	8,970				266,40
				chieve a top of	0	ft from su		834				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dis
				O., E4	% Excess	Mud Wt	MASP	BOPE				Hole-Cp
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	70 EXCESS	muu vvi	MIAOI	DUPE				11010 Op
Size 8 3/4	0.1005	590	1279	908	41	10.20	2796	3M				0.56
Size 8 3/4 Class 'H' tail cm	0.1005 nt yld > 1.20	590	1279			10.20	2796			Prod	1	
Size 8 3/4 Class 'H' tail cm Tail cmt 5 1/2	0.1005 nt yld > 1.20 casing ins	590		908	41	10.20 Design Fa	2796	3M	B@s	Prod a-B		0.56
Size 8 3/4 Class 'H' tail cm Tail cmt 5 1/2 Segment	0.1005 nt yld > 1.20 casing ins	590 Side the Grade	1279 75/8	908 Coupling	41 Joint	10.20 Design Fa Collapse	2796 ctors Burst	3M Length	B@s	a-B	a-C	0.56
Size 8 3/4 Class 'H' tail cm Tail cmt 5 1/2	0.1005 nt yld > 1.20 casing ins #/ft 20.00	590 side the Grade RY P	1279 7 5/8	908 Coupling Semi-Premiur	Joint 3.25	Design Fa Collapse 2.48	2796 ctors Burst 2.55	3M Length 8,870	3	a-B 4.52	a-C 4.41	0.56 Weigh 177,40
Size 8 3/4 Class 'H' tail cm Tail cmt 5 1/2 Segment "A" "B"	0.1005 nt yld > 1.20 casing ins #/ft 20.00 20.00	590 side the Grade RY P RY P	75/8 110 110	908 Coupling	41 Joint	10.20 Design Fa Collapse	2796 ctors Burst 2.55 2.55	3M Length 8,870 14,383	_	a-B	a-C	0.56 Weigh 177,40 287,66
Size 8 3/4 Class 'H' tail cm Tail cmt 5 1/2 Segment "A" "B" w/8.4#/	0.1005 nt yld > 1.20 casing ins #/ft 20.00 20.00 /g mud, 30min Sf	590 side the Grade RY P RY P c Csg Test psig:	7 5/8 110 110 1,951	908 Coupling Semi-Premiur	Joint 3.25	Design Fa Collapse 2.48	2796 Ctors Burst 2.55 2.55 Totals:	3M Length 8,870	3	a-B 4.52	a-C 4.41 3.97	0.56 Weigh 177,40 287,66
Size 8 3/4 Class 'H' tail cm Tail cmt 5 1/2 Segment "A" "B" w/8.4#/	0.1005 nt yld > 1.20 casing ins #/ft 20.00 20.00 /g mud, 30min Sf	590 side the Grade RY P RY P c Csg Test psig:	7 5/8 110 110 1,951	Coupling Semi-Premiur Semi-Flush	Joint 3.25 32.70	Design Fa Collapse 2.48 2.24 ft from su	2796 Ctors Burst 2.55 2.55 Totals:	Length 8,870 14,383 23,253 570	3	a-B 4.52	a-C 4.41 3.97	Weigh 177,40 287,66 465,06 overlap.
Size 8 3/4 Class 'H' tail cm Tail cmt 5 1/2 Segment "A" "B" w/8.4#/	0.1005 nt yld > 1.20 casing ins #/ft 20.00 20.00 /g mud, 30min Sf The cement vo	590 side the Grade RY P RY P c Csg Test psig: blume(s) are	7 5/8 110 110 1,951 intended to a	Coupling Semi-Premiur Semi-Flush	Joint 3.25 32.70 8400	Design Fa Collapse 2.48 2.24	2796 Ctors Burst 2.55 2.55 Totals: urface or a	Length 8,870 14,383 23,253	3	a-B 4.52	a-C 4.41 3.97	Weigh 177,40 287,66 465,06 overlap. Min Dis
Size 8 3/4 Class 'H' tail cm 5 1/2 Segment "A" "B" w/8.4#/	0.1005 nt yld > 1.20 casing ins #/ft 20.00 20.00 /g mud, 30min Sf The cement vo	590 Side the Grade RY P RY P c Csg Test psig: blume(s) are 1 Stage	7 5/8 110 110 1,951 intended to a 1 Stage	Coupling Semi-Premiur Semi-Flush chieve a top of	Joint 3.25 32.70 8400 1 Stage	Design Fa Collapse 2.48 2.24 ft from su Drilling	2796 Cotors Burst 2.55 2.55 Totals: urface or a Calc	Length 8,870 14,383 23,253 570 Req'd	3	a-B 4.52	a-C 4.41 3.97	0.56 Weigh 177,400 287,660 465,060 overlap. Min Dis
Size 8 3/4 Class 'H' tail cm 5 1/2 Segment "A" "B" w/8.4#/ Hole Size	0.1005 nt yld > 1.20 casing ins #/ft 20.00 20.00 /g mud, 30min Sf The cement vo Annular Volume 0.0835	side the Grade RY P RY P c Csg Test psig: blume(s) are 1 Stage Cmt Sx	7 5/8 110 110 1,951 intended to a 1 Stage CuFt Cmt	Coupling Semi-Premiur Semi-Flush chieve a top of Min Cu Ft	Joint 3.25 32.70 8400 1 Stage % Excess	Design Fa Collapse 2.48 2.24 ft from su Drilling Mud Wt	2796 Cotors Burst 2.55 2.55 Totals: urface or a Calc	Length 8,870 14,383 23,253 570 Req'd	3	a-B 4.52	a-C 4.41 3.97	Weigh 177,40 287,66 465,06 overlap. Min Dis Hole-Cpl
Size 8 3/4 Class 'H' tail cm 5 1/2 Segment "A" "B" w/8.4#, Hole Size 6 3/4 Class 'C' tail cm	0.1005 nt yld > 1.20 casing ins #/ft 20.00 20.00 /g mud, 30min Sf The cement vo Annular Volume 0.0835	side the Grade RY P RY P c Csg Test psig: blume(s) are 1 Stage Cmt Sx	7 5/8 110 110 1,951 intended to a 1 Stage CuFt Cmt	Coupling Semi-Premiur Semi-Flush chieve a top of Min Cu Ft	Joint 3.25 32.70 8400 1 Stage % Excess	Design Fa Collapse 2.48 2.24 ft from su Drilling Mud Wt	2796 Cotors Burst 2.55 2.55 Totals: urface or a Calc	Length 8,870 14,383 23,253 570 Req'd	3	a-B 4.52	a-C 4.41 3.97	Weigh 177,400 287,660 465,060 overlap. Min Dis Hole-Cpl
Size 8 3/4 Class 'H' tail cm 5 1/2 Segment "A" "B" w/8.4#, Hole Size 6 3/4 Class 'C' tail cm	0.1005 Int yld > 1.20 Casing ins #/ft 20.00 /g mud, 30min Sf The cement vo Annular Volume 0.0835 Int yld > 1.35	side the Grade RY P RY P c Csg Test psig: blume(s) are 1 Stage Cmt Sx	7 5/8 110 110 1,951 intended to a 1 Stage CuFt Cmt	Coupling Semi-Premiur Semi-Flush chieve a top of Min Cu Ft	Joint 3.25 32.70 8400 1 Stage % Excess	Design Fa Collapse 2.48 2.24 ft from su Drilling Mud Wt	ctors Burst 2.55 2.55 Totals: urface or a Calc MASP	Length 8,870 14,383 23,253 570 Req'd	3 3	a-B 4.52	a-C 4.41 3.97	Weigh 177,40 287,66 465,06 overlap. Min Dis Hole-Cpl
Size 8 3/4 Class 'H' tail cm 5 1/2 Segment "A" "B" w/8.4#, Hole Size 6 3/4 Class 'C' tail cm #N/A 0 Segment	0.1005 nt yld > 1.20 casing ins #/ft 20.00 20.00 /g mud, 30min Sf The cement vo Annular Volume 0.0835	side the Grade RY P RY P c Csg Test psig: blume(s) are 1 Stage Cmt Sx	75/8 110 110 1,951 intended to a 1 Stage CuFt Cmt 1576	Coupling Semi-Premiur Semi-Flush chieve a top of Min Cu Ft 1246 Coupling	Joint 3.25 32.70 8400 1 Stage % Excess	Design Fa Collapse 2.48 2.24 ft from su Drilling Mud Wt 9.70	ctors Burst 2.55 2.55 Totals: urface or a Calc MASP	Length 8,870 14,383 23,253 570 Req'd BOPE	3 3	a-B 4.52 4.52 Choose C	a-C 4.41 3.97	0.56 Weigh 177,40 287,66 465,06 overlap. Min Dis Hole-Cp 0.23
Size 8 3/4 8 3/4 Tail cmt 5 1/2 Segment "A" "B"	0.1005 Int yld > 1.20 Casing ins #/ft 20.00 /g mud, 30min Sf The cement vo Annular Volume 0.0835 Int yld > 1.35	side the Grade RY P RY P c Csg Test psig: Dlume(s) are 1 Stage Cmt Sx 1020	75/8 110 110 1,951 intended to a 1 Stage CuFt Cmt 1576	Coupling Semi-Premiur Semi-Flush Chieve a top of Min Cu Ft 1246 Coupling 0.00	Joint 3.25 32.70 8400 1 Stage % Excess 26	Design Fa Collapse 2.48 2.24 ft from su Drilling Mud Wt 9.70	ctors Burst 2.55 2.55 Totals: urface or a Calc MASP	Length 8,870 14,383 23,253 570 Req'd BOPE	3 3	a-B 4.52 4.52 Choose C	a-C 4.41 3.97	0.56 Weigh 177,40 287,66 465,06 overlap. Min Dis Hole-Cp 0.23
Size 8 3/4 Class 'H' tail cm 5 1/2 Segment "A" "B" w/8.4#/ Hole Size 6 3/4 Class 'C' tail cm #N/A 0 Segment "A" "B"	0.1005 nt yld > 1.20 casing ins #/ft 20.00 20.00 /g mud, 30min Sf The cement vo Annular Volume 0.0835 nt yld > 1.35 #/ft	side the Grade RY P RY P c Csg Test psig: ollume(s) are 1 Stage Cmt Sx 1020 Grade	75/8 110 110 1,951 intended to a 1 Stage CuFt Cmt 1576	Coupling Semi-Premiur Semi-Flush chieve a top of Min Cu Ft 1246 Coupling	Joint 3.25 32.70 8400 1 Stage % Excess 26	Design Fa Collapse 2.48 2.24 ft from su Drilling Mud Wt 9.70	ctors Burst 2.55 2.55 Totals: urface or a Calc MASP	Length 8,870 14,383 23,253 570 Req'd BOPE	3 3	a-B 4.52 4.52 Choose C	a-C 4.41 3.97	0.56 Weigh 177,40 287,66 465,06 overlap. Min Dis Hole-Cp 0.23 Weigh 0
Size 8 3/4 8 3/4 Class 'H' tail cm 5 1/2 Segment "A" "B" w/8.4#/ Hole Size 6 3/4 Class 'C' tail cm #N/A 0 Segment "A" "B"	0.1005 nt yld > 1.20 casing ins #/ft 20.00 20.00 /g mud, 30min Sf The cement vo Annular Volume 0.0835 nt yld > 1.35 #/ft	side the Grade RY P RY P c Csg Test psig: plume(s) are 1 Stage Cmt Sx 1020 Grade	75/8 110 110 1,951 intended to a 1 Stage CuFt Cmt 1576	Coupling Semi-Premiur Semi-Flush chieve a top of Min Cu Ft 1246 Coupling 0.00 0.00	Joint 3.25 32.70 8400 1 Stage % Excess 26 #N/A	Design Factorial Collapse 2.48 2.24 St. Frilling Mud Wt. 9.70 Sesign Collapse	ctors Burst 2.55 2.55 Totals: urface or a Calc MASP Factors Burst Totals:	Length 8,870 14,383 23,253 570 Req'd BOPE Length 0	3 3	a-B 4.52 4.52 Choose C	a-C 4.41 3.97	0.56 Weigh 177,40 287,66 465,06 overlap. Min Dis Hole-Cp 0.23
Size 8 3/4 Class 'H' tail cm 5 1/2 Segment "A" "B" w/8.4#, Hole Size 6 3/4 Class 'C' tail cm #N/A 0 Segment "A" "B" w/8.4#,	0.1005 nt yld > 1.20 casing ins #/ft 20.00 20.00 /g mud, 30min Sf The cement vo Annular Volume 0.0835 nt yld > 1.35 #/ft /g mud, 30min Sf Cmt vol cal	side the Grade RY P RY P c Csg Test psig: plume(s) are 1 Stage Cmt Sx 1020 Grade	75/8 110 110 1,951 intended to a 1 Stage CuFt Cmt 1576 51/2	Coupling Semi-Premiur Semi-Flush Chieve a top of Min Cu Ft 1246 Coupling 0.00 0.00 TOC intended	Joint 3.25 32.70 8400 1 Stage % Excess 26 #N/A	Design Fa Collapse 2.48 2.24 ft from su Drilling Mud Wt 9.70 Design Collapse	ctors Burst 2.55 2.55 Totals: Irface or a Calc MASP Factors Burst Totals: Irface or a	Length 8,870 14,383 23,253 570 Req'd BOPE Length 0 0 #N/A	3 3	a-B 4.52 4.52 Choose C	a-C 4.41 3.97	0.56 Weigh 177,40 287,666 465,06 overlap. Min Dis Hole-Cp 0.23 Weigh 0 overlap.
Size 8 3/4 Class 'H' tail cm 5 1/2 Segment "A" "B" w/8.4#, Hole Size 6 3/4 Class 'C' tail cm 4N/A 0 Segment "A" "B" w/8.4#,	0.1005 nt yld > 1.20 casing ins #/ft 20.00 20.00 /g mud, 30min Sf The cement vo Annular Volume 0.0835 nt yld > 1.35 #/ft /g mud, 30min Sf Cmt vol cal Annular	side the Grade RY P RY P c Csg Test psig: clume(s) are 1 Stage Cmt Sx 1020 Grade c Csg Test psig:	75/8 110 110 1,951 intended to a 1 Stage CuFt Cmt 1576 51/2	Coupling Semi-Premiur Semi-Flush Chieve a top of Min Cu Ft 1246 Coupling 0.00 0.00 TOC intended Min	Joint 3.25 32.70 8400 1 Stage % Excess 26 #N/A	Design Factorial Collapse 2.48 2.24 ft from surprilling Mud Wt 9.70 Design Collapse ft from surprilling	ctors Burst 2.55 2.55 Totals: Irface or a Calc MASP Totals: Irface or a Calc	Length 8,870 14,383 23,253 570 Req'd BOPE Length 0 0 #N/A Req'd	3 3	a-B 4.52 4.52 Choose C	a-C 4.41 3.97	0.56 Weigh 177,40 287,66 465,06 overlap. Min Dis Hole-Cpi 0.23 Weigh 0 overlap. Min Dis
Size 8 3/4 Class 'H' tail cm 5 1/2 Segment "A" "B" w/8.4#, Hole Size 6 3/4 Class 'C' tail cm #N/A 0 Segment "A" "B" w/8.4#,	0.1005 nt yld > 1.20 casing ins #/ft 20.00 20.00 /g mud, 30min Sf The cement vo Annular Volume 0.0835 nt yld > 1.35 #/ft /g mud, 30min Sf Cmt vol cal	side the Grade RY P RY P c Csg Test psig: plume(s) are 1 Stage Cmt Sx 1020 Grade	75/8 110 110 1,951 intended to a 1 Stage CuFt Cmt 1576 51/2	Coupling Semi-Premiur Semi-Flush Chieve a top of Min Cu Ft 1246 Coupling 0.00 0.00 TOC intended	Joint 3.25 32.70 8400 1 Stage % Excess 26 #N/A	Design Fa Collapse 2.48 2.24 ft from su Drilling Mud Wt 9.70 Design Collapse	ctors Burst 2.55 2.55 Totals: Irface or a Calc MASP Factors Burst Totals: Irface or a	Length 8,870 14,383 23,253 570 Req'd BOPE Length 0 0 #N/A	3 3	a-B 4.52 4.52 Choose C	a-C 4.41 3.97	Weigh 177,40 287,66 465,06 overlap. Min Dis Hole-Cp 0.23 Weigh 0 0 overlap.

Carlsbad Field Office 4/22/2022

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

Updated COAs per Sundry 2662751 approved through engineering on 04/22/2022. Includes approval for an updated casing plan, to use a bradenhead squeeze to get the second stage cement to surface, to utilize a spudder rig, offline cementing for the surface and intermediate casing, and additional COAs for break / shell testing the BOP.

OPERATOR'S NAME: XTO Permian Operating
WELL NAME & NO.: Brushy Draw 30 Federal 122H
LOCATION: Sec 30-25S-30E-NMP
COUNTY: Eddy County, New Mexico

COA

H2S	O Yes	• No	
Potash	None	Secretary	© R-111-P
Cave/Karst Potential	• Low	Medium	O High
Cave/Karst Potential	Critical		
Variance	O None	• Flex Hose	Other
Wellhead	Conventional	• Multibowl	O Both
Other	☐4 String Area	☐ Capitan Reef	□WIPP
Other	☐ Fluid Filled	Cement Squeeze	☐ Pilot Hole
Special Requirements	☐ Water Disposal	□ СОМ	□ Unit

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The **9-5/8** inch surface casing shall be set at approximately 830 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.

- b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the **7-5/8** inch intermediate casing is:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.

Operator has proposed to pump down 9-5/8" X 7-5/8" annulus. Operator must run a CBL from TD of the 7-5/8" casing to surface. Submit results to BLM.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Casing does not meet 0.422" clearance requirement so cement should tie-back at least **300 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **3000** (**3M**) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.

- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Eddy County
 Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
 - ✓ Lea CountyCall the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575)689-5981
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area

immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the

- formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.

- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
 - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
 - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - e. The results of the test shall be reported to the appropriate BLM office.
 - f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
 - g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to

the test at full stack pressure.

h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Conditions of Approval Brushy Draw 30 Federal 122H

BOP Break Testing Variance (Note: Shell testing is not approved for any portion of the hole with a MASP of 5000 psi or greater)

- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer prior to the commencement of any BOP Break Testing operations.

A full BOP test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOP test will be required.

<u>District III</u> 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV

Phone: (575) 748-1283 Fax: (575) 748-9720

1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

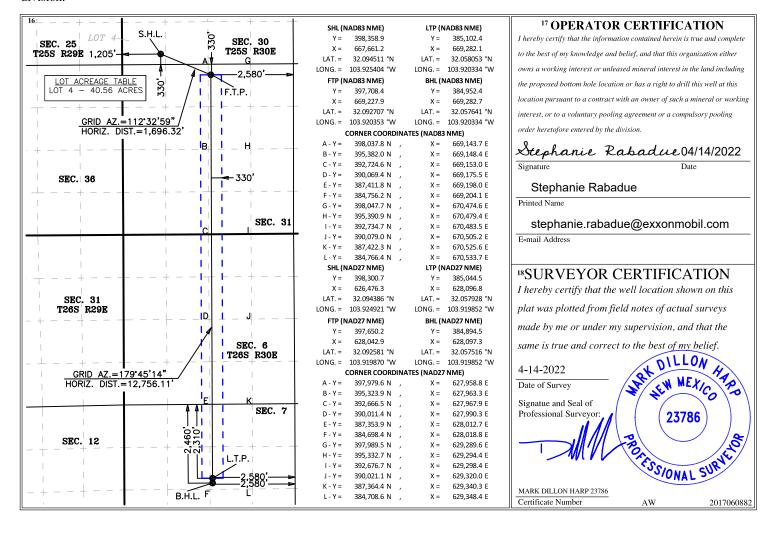
State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

☐ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

¹ API Number 30-015-45190	2 Pool Code 1 3 3 5 4			
⁴ Property Code	BRUS	⁵ Property Name	⁶ Well Number	
322241		SHY DRAW 30 FEDERAL	122H	
⁷ OGRID No.	XTO PE	⁸ Operator Name	⁹ Elevation	
373075		ERMIAN OPERATING, LLC	3,091'	


¹⁰ Surface Location

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
4	30	25 S	30 E		330	SOUTH	1,205	WEST	EDDY

¹¹ Bottom Hole Location If Different From Surface

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
G	7	26 S	30 E		2,460	NORTH	2,580	EAST	EDDY
12 Dedicated Acres	13 Joint or	r Infill 14 C	onsolidation	Code 15 Or	der No.		,	,	
400									

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

DRILLING PLAN: BLM COMPLIANCE (Supplement to BLM 3160-3)

XTO Energy Inc. Brushy Draw 30 Federal 122H Projected TD: 23253' MD / 9850' TVD Eddy County, NM

1. Geologic Name of Surface Formation

A. Quaternary

2. Estimated Tops of Geological Markers & Depths of Anticipated Fresh Water, Oil or Gas

Formation	Well Depth (TVD)	Water/Oil/Gas
Rustler	734'	Water
Top of Salt	884'	Water
Base of Salt	3255'	Water
Delaware	3480'	Water
Brushy Canyon	6260'	Water/Oil/Gas
Bone Spring	7290'	Water
1st Bone Spring Ss	8190'	Water/Oil/Gas
2nd Bone Spring Ss	8795'	Water/Oil/Gas
3rd Bone Spring Sh	9665'	Water/Oil/Gas
Target/Land Curve	9800'	Water/Oil/Gas

^{***} Hydrocarbons @ Brushy Canyon

No other formations are expected to yield oil, gas or fresh water in measurable volumes. The surface fresh water sands will be protected by setting 9.625 inch casing @ 834' (50' above the salt) and circulating cement back to surface. The intermediate will isolate from the top of salt down to the next casing seat by setting 7.625 inch casing at 8970' and cemented to surface. A 6.75 inch curve and 6.75 inch lateral hole will be drilled to 23253 MD/TD and 5.5 inch production casing will be set at TD and cemented back up in the intermediate shoe (estimated TOC 8670 feet).

3. Casing Design

Hole Size	TVD	Measured Depth	OD Csg	Weight	Grade	Collar	New/Used	SF Burst	SF Collapse	SF Tension
12.25	834'	0' - 834'	9.625	40	J-55	втс	New	1.55	6.81	18.88
8.75	3927'	0' – 4000'	7.625	29.7	RY P-110	Flush Joint	New	3.72	2.65	2.09
8.75	8711'	4000' – 8970'	7.625	29.7	HC L-80	Flush Joint	New	2.70	2.23	2.75
6.75	8611'	0' – 8870'	5.5	20	RY P-110	Semi-Premium	New	1.05	2.62	2.15
6.75	9850'	8870' - 23253'	5.5	20	RY P-110	Semi-Flush	New	1.05	2.36	5.33

- · Production casing meets the clearance requiremenets as tapered string crosses over before encountering the intermediate shoe, per Onshore Order 2, 3.B.1
- · XTO requests the option to utilize a spudder rig (Atlas Copco RD20 or Equivalent) to set and cement surface casing per this Sundry
- · XTO requests to not utilize centralizers in the curve and lateral
- \cdot 7.625 Collapse analyzed using 50% evacuation based on regional experience.
- 5.5 Tension calculated using vertical hanging weight plus the lateral weight multiplied by a friction factor of 0.35
- · Test on Casing will be limited to 70% burst of the casing or 1500 psi, whichever is less
- · XTO requests the option to use 5" BTC Float equipment for the the production casing

Wellhead:

Permanent Wellhead - Multibowl System

A. Starting Head: 11" 10M top flange x 9-5/8" bottom

- B. Tubing Head: 11" 10M bottom flange x 7-1/16" 15M top flange
 - Wellhead will be installed by manufacturer's representatives.
 - Manufacturer will monitor welding process to ensure appropriate temperature of seal.
 - \cdot Operator will test the 7-5/8" casing per BLM Onshore Order 2
 - · Wellhead Manufacturer representative will not be present for BOP test plug installation

^{***} Groundwater depth 40' (per NM State Engineers Office).

4. Cement Program

Surface Casing: 9.625, 40 New BTC, J-55 casing to be set at +/- 834'

Lead: 170 sxs EconoCem-HLTRRC (mixed at 12.9 ppg, 1.87 ft3/sx, 10.13 gal/sx water) Tail: 130 sxs Class C + 2% CaCl (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water)

Top of Cement: Surface

Compressives: 12-hr = 900 psi 24 hr = 1500 psi

2nd Intermediate Casing: 7.625, 29.7 New casing to be set at +/- 8970'

<u>1st Stage</u>

Optional Lead: 340 sxs Class C (mixed at 10.5 ppg, 2.77 ft3/sx, 15.59 gal/sx water)

TOC: Surface

Tail: 250 sxs Class C (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water)

TOC: Brushy Canyon @ 6260

Compressives: 12-hr = 900 psi 24 hr = 1150 psi

2nd Stage

Lead: 0 sxs Class C (mixed at 12.9 ppg, 2.16 ft3/sx, 9.61 gal/sx water) Tail: 700 sxs Class C (mixed at 14.8 ppg, 1.33 ft3/sx, 6.39 gal/sx water)

Top of Cement: 0

Compressives: 12-hr = 900 psi 24 hr = 1150 psi

XTO requests to pump a two stage cement job on the 7-5/8" intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brush Canyon (6260') and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. If cement is not visually confirmed to circulate to surface, the final cement top after the second stage job will be verified by Echo-meter. If necessary, a top out consisting of 1,500 sack of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (2.30 yld, 12.91 ppg) will be executed as a contingency. If cement is still unable to circulate to surface, another Echo-meter run will be performed for cement top verification.

XTO will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program.

XTO will report to the BLM the volume of fluid (limited to 5 bbls) used to flush intermediate casing valves following backside cementing procedures.

XTO requests to pump an Optional Lead if well conditions dictate in an attempt to bring cement inside the first intermediate casing. If cement reaches the desired height, the BLM will be notified and the second stage bradenhead squeeze and subsequent TOC verification will be negated.

XTO requests the option to conduct the bradenhead squeeze and TOC verification offline as per standard approval from BLM when unplanned remediation is needed and batch drilling is approved. In the event the bradenhead is conducted, we will ensure the first stage cement job is cemented properly and the well is static with floats holding and no pressure on the csg annulus as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

Production Casing: 5.5, 20 New Semi-Flush, RY P-110 casing to be set at +/- 23253'

Lead: 30 sxs NeoCem (mixed at 11.5 ppg, 2.69 ft3/sx, 15.00 gal/sx water) Top of Cement:

Tail: 990 sxs VersaCem (mixed at 13.2 ppg, 1.51 ft3/sx, 8.38 gal/sx water) Top of Cement:

Compressives: 12-hr = 800 psi 24 hr = 1500 psi

XTO requests the option to offline cement and remediate (if needed) surface and intermediate casing strings where batch drilling is approved and if unplanned remediation is needed. XTO will ensure well is static with no pressure on the csg annulus, as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed when applicable per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops. Offline cement operations will then be conducted after the rig is moved off the current well to the next well in the batch sequence.

8670 feet

9453 feet

5. Pressure Control Equipment

Once the permanent WH is installed on the 9.625 casing, the blow out preventer equipment (BOP) will consist of a 13-5/8" minimum 3M Hydril and a 13-5/8" minimum 3M Double Ram BOP. MASP should not exceed 2545 psi. In any instance where 10M BOP is required by BLM, XTO requests a variance to utilize 5M annular with 10M ram preventers (a common BOP configuration, which allows use of 10M rams in unlikely event that pressures exceed 5M).

All BOP testing will be done by an independent service company. Annular pressure tests will be limited to 50% of the working pressure. When nippling up on the 9.625, 3M bradenhead and flange, the BOP test will be limited to 3000 psi. When nippling up on the 7.625, the BOP will be tested to a minimum of 3000 psi. All BOP tests will include a low pressure test as per BLM regulations. The 3M BOP diagrams are attached. Blind rams will be functioned tested each trip, pipe rams will be functioned tested each day.

A variance is requested to allow use of a flex hose as the choke line from the BOP to the Choke Manifold. If this hose is used, a copy of the manufacturer's certification and pressure test chart will be kept on the rig. Attached is an example of a certification and pressure test chart. The manufacturer does not require anchors.

XTO requests a variance to be able to batch drill this well if necessary. In doing so, XTO will set casing and ensure that the well is cemented properly (unless approval is given for offline cementing) and the well is static. With floats holding, no pressure on the csg annulus, and the installation of a 10K TA cap as per Cactus recommendations, XTO will contact the BLM to skid the rig to drill the remaining wells on the pad. Once surface and both intermediate strings are all completed, XTO will begin drilling the production hole on each of the wells.

A variance is requested to **ONLY** test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API standard 53 states, that for pad drilling operation, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken. Based on discussions with the BLM on February 27th 2020, we will request permission to **ONLY** retest broken pressure seals if the following conditions are met: 1. After a full BOP test is conducted on the first well on the pad 2. When skidding to drill an intermediate section that does not penetrate into the Wolfcamp.

6. Proposed Mud Circulation System

INTERVAL	Hole Size		Mud Type	MW	Viscosity	Fluid Loss
		Hole Size	Mud Type	(ppg)	(sec/qt)	(cc)
0' - 834'		12.25	FW/Native	8.7-9.2	35-40	NC
834' - 8970'		8.75	FW / Cut Brine / Direct Emulsion	9.7-10.2	30-32	NC
8970' - 23253'		6.75	ОВМ	9.2-9.7	50-60	NC - 20

The necessary mud products for weight addition and fluid loss control will be on location at all times.

Spud with fresh water/native mud. Drill out from under 9-5/8" surface casing with brine solution. A 9.7 ppg - 10.2 ppg cut brine mud will be used while drilling through the salt formation. Use fibrous materials as needed to control seepage and lost circulation. Pump viscous sweeps as needed for hole cleaning. Pump speed will be recorded on a daily drilling report after mudding up. A Pason or Totco will be used to detect changes in loss or gain of mud volume. A mud test will be performed every 24 hours to determine: density, viscosity, strength, filtration and pH as necessary. Use available solids controls equipment to help keep mud weight down after mud up. Rig up solids control equipment to operate as a closed loop system.

7. Auxiliary Well Control and Monitoring Equipment

- A. A Kelly cock will be in the drill string at all times.
- B. A full opening drill pipe stabbing valve having appropriate connections will be on the rig floor at all times.
- C. H2S monitors will be on location when drilling below the 9.625 casing.

8. Logging, Coring and Testing Program

Mud Logger: Mud Logging Unit (2 man) below intermediate casing.

Open hole logging will not be done on this well.

9. Abnormal Pressures and Temperatures / Potential Hazards

None Anticipated. BHT of 165 to 185 F is anticipated. No H2S is expected but monitors will be in place to detect any H2S occurrences. Should these circumstances be encountered the operator and drilling contractor are prepared to take all necessary steps to ensure safety of all personnel and environment. Lost circulation could occur but is not expected to be a serious problem in this area and hole seepage will be compensated for by additions of small amounts of LCM in the drilling fluid. The maximum anticipated bottom hole pressure for this well is 4712 psi.

10. Anticipated Starting Date and Duration of Operations

Anticipated spud date will be after BLM approval. Move in operations and drilling is expected to take 40 days.

Well Plan Report - Brushy Draw 30 Fed 122H Mesured Distribution 23252.00 ft Distribution 23252.00 ft

27

9850.00 ft

TVB RKB:

Cagographic New Mexico Reference System: East - NAD

Northing: 398301.39 ft

Easting: 626484.92 ft

3170.00 ft RKB:

Ground 3140.00 ft Level:

North

Grid Reference:

Convergence 0.22 Deg Angle:

BD 30 Pad B Site:

Brushy Draw Slot:

30 Fed 122H

Plan Sections	Brushy Draw 30 Fed 122H								
Measured			TVD			Build	Turn	Dogleg	
Depth	Inclination	Azimuth	RKB	Y Offset	X Offset	Rate	Rate	Rate	
(ft)	(Deg)	(Deg)	(ft)	(ft)	(ft)	(Deg/100ft)	(Deg/100ft)	(Deg/100ft) Target	
. 0	0	0	0	0	0	0	0	0	

1500	0	0	1500	0	0	0	0	0
2276.88	15.54	88.03	2267.39	3.61	104.63	2	0	2
6911.46	15.54	88.03	6732.6	46.4	1345.37	0	0	0
7688.35	0	0	7500	50	1450	-2	0	2
9453.35	0	0	9265	50	1450	0	0	0
9903.35	45	161	9670.14	-108.67	1504.63	10	0	10
10382.99	90	179.75	9850.38	-533.97	1564.42	9.38	3.91	10
3252.62	90	179.75	9850	-13403.48	1619.3	0	0	0 BHL 2
2								

Position Brushy Draw
Uncertainty 30 Fed 122H

Measured			TVD	Highside		Lateral		Vertical		Magnitude	Semi-major	Semi-minor	Semi-minor Tool
Depth	Inclination	Azimuth	RKB	Error	Bias	Error	Bias	Error	Bias	of Bias	Error	Error	Azimuth Used
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(°)
0	0	0	0	0	0	0	0	2.297	0	0	0	0	OWSG 0 MWD+IFR1+ MS OWSG
100	0	0	100	0.358	0	0.358	0	2.299	0	0	0.358	0.358	0 MWD+IFR1+ MS OWSG
200	0	0	200	0.717	0	0.717	0	2.307	0	0	0.717	0.717	0 MWD+IFR1+ MS OWSG
300	0	0	300	1.075	0	1.075	0	2.321	0	0	1.075	1.075	0 MWD+IFR1+ MS OWSG
400	0	0	400	1.434	0	1.434	0	2.34	0	0	1.434	1.434	0 MWD+IFR1+ MS OWSG
500	0	0	500	1.792	0	1.792	0	2.364	0	0	1.792	1.792	0 MWD+IFR1+ MS OWSG
600	0	0	600	2.151	0	2.151	0	2.393	0	0	2.151	2.151	0 MWD+IFR1+ MS OWSG
700	0	0	700	2.509	0	2.509	0	2.428	0	0	2.509	2.509	0 MWD+IFR1+ MS OWSG
800	0	0	800	2.868	0	2.868	0	2.467	0	0	2.868	2.868	0 MWD+IFR1+1 MS

														OWSG
Re	900	0	0	900	3.225	0	3.225	0	2.511	0	0	3.225	3.225	0 MWD+IFR1+
Released to Imaging: 10/23/2025 12:45:35 PM														MS
sed	1000	0	0	1000	2 505	0	2 505	0	2.550	0	0	2 505	2 505	OWSG
to	1000	0	0	1000	3.585	0	3.585	0	2.559	0	0	3.585	3.585	0 MWD+IFR1+ MS
Im														OWSG
agi	1100	0	0	1100	3.942	0	3.942	0	2.613	0	0	3.942	3.942	0 MWD+IFR1+
ga		-				-		-		-				MS
10														owsg 🖁
1/2	1200	0	0	1200	4.301	0	4.301	0	2.67	0	0	4.301	4.301	0 MWD+IFR1+
22														MS 🕺
125						_								OWSG
12	1300	0	0	1300	4.659	0	4.659	0	2.731	0	0	4.659	4.659	0 MWD+IFR1+
.45														MS OWSG
33	1400	0	0	1400	5.018	0	5.018	0	2.797	0	0	5.018	5.018	0 MWD+IFR1+
P	1400	Ü	O	1400	5.010	O	5.010	Ü	2.737	O	U	5.010	3.010	MS
X														OWSG
	1500	0	0	1500	5.377	0	5.377	0	2.866	0	0	5.377	5.377	0 MWD+IFR1+
														MS
														OWSG
	1600	1.999	88.02	1599.98	5.723	0	5.726	0	2.938	0	0	5.726	5.726	0 MWD+IFR1+
														MS
	1700	4	00.02	1600 830	C 057	0	C 0C0	0	2.012	0	0	6.07	C 0C0	OWSG
	1700	4	88.02	1699.838	6.057	0	6.068	0	3.013	0	0	6.07	6.068	0 MWD+IFR1+ MS
														OWSG
	1800	6	88.02	1799.452	6.385	0	6.411	0	3.089	0	0	6.415	6.411	1.317 MWD+IFR1+
														MS
														OWSG
	1900	7.999	88.02	1898.702	6.708	0	6.755	0	3.165	0	0	6.761	6.755	2.773 MWD+IFR1+
														MS
	2000	40	00.00	4007.465	7.026	•	7.4		2 2 4 7	•	•	7 400	7.4	OWSG
	2000	10	88.02	1997.465	7.026	0	7.1	0	3.247	0	0	7.108	7.1	4.678 MWD+IFR1+ MS
														OWSG
	2100	11.99	88.02	2095.623	7.339	0	7.447	0	3.33	0	0	7.456	7.446	7.003 MWD+IFR1+
						-		-		-				MS
														OWSG
	2200	14	88.02	2193.055	7.645	0	7.795	0	3.416	0	0	7.804	7.794	11.572 MWD+IFR1+
														MS
														OWSG
2	2276.8	15.53	88.02	2267.395	7.879	0	8.064	0	3.484	0	0	8.074	8.063	14.732 MWD+IFR1+
														MS OWSG
	2300	15.53	88.02	2289.668	7.961	0	8.145	0	3.504	0	0	8.156	8.144	15.003 MWD+IFR1+
	2300	13.33	00.02	2203.000	7.501	O	0.143	O	3.304	O	U	0.150	0.144	MS MS
														OWSG 1
	2400	15.53	88.02	2386.014	8.322	0	8.499	0	3.614	0	0	8.504	8.496	33.414 MWD+IFR1+
														MS 🕺
•														6

1	2500	15.53	88.02	2482.359	8.686	0	8.855	0	3.728	0	0	8.859	8.848	OWSG
Released to Imaging: 10/23/2025 12:45:35 PM	2500	15.55	88.02	2482.359	8.080	0	8.855	0	3.728	0	0	8.859	0.040	52.269 MWD+IFR1+ MS
ısed	2600	15.53	88.02	2578.704	9.053	0	9.215	0	3.847	0	0	9.218	9.202	OWSG 61.299 MWD+IFR1+
to 1	2000	13.33	88.02	2378.704	9.033	U	9.213	U	3.047	Ü	U	9.210	9.202	MS MS
ma														owsg 🥈
ging	2700	15.53	88.02	2675.05	9.424	0	9.577	0	3.971	0	0	9.58	9.559	64.876 MWD+IFR1+
g: 1														MS OWSG
0/2	2800	15.53	88.02	2771.395	9.798	0	9.941	0	4.099	0	0	9.945	9.919	66.331 MWD+IFR1+
3/20														MS
125	2900	15.53	88.02	2867.741	10.17	0	10.306	0	4.231	0	0	10.31	10.277	OWSG 68.95 MWD+IFR1+
12:	2900	15.55	88.02	2807.741	10.17	0	10.306	0	4.231	0	0	10.31	10.277	MS MS
45:														owsg 🛔
351	3000	15.53	88.02	2964.086	10.552	0	10.673	0	4.367	0	0	10.678	10.644	66.698 MWD+IFR1+
PM														MS
	3100	15.53	88.02	3060.432	10.931	0	11.042	0	4.507	0	0	11.047	11.008	OWSG 67.254 MWD+IFR1+
	3100	13.33	00.02	3000.132	10.331	Ü	11.012	G	1.507	Ü	Ü	11.017	11.000	MS
														OWSG
	3200	15.53	88.02	3156.777	11.311	0	11.412	0	4.649	0	0	11.417	11.373	67.562 MWD+IFR1+
														MS OWSG
	3300	15.53	88.02	3253.123	11.696	0	11.787	0	4.795	0	0	11.792	11.745	67.709 MWD+IFR1+
														MS
	2400	45.50	00.00	2240 460	42.002		12.450	•	4044		•	12.465	10.116	OWSG
	3400	15.53	88.02	3349.468	12.083	0	12.159	0	4.944	0	0	12.165	12.116	66.063 MWD+IFR1+ MS
														OWSG
	3500	15.53	88.02	3445.814	12.466	0	12.535	0	5.096	0	0	12.542	12.486	67.708 MWD+IFR1+
														MS
	3600	15.53	88.02	3542.159	12.855	0	12.909	0	5.252	0	0	12.917	12.859	OWSG 66.251 MWD+IFR1+
	3000	15.55	00.02	3342.133	12.033	Ü	12.505	O	3.232	Ü	O	12.517	12.033	MS MS
														OWSG
	3700	15.53	88.02	3638.505	13.244	0	13.287	0	5.409	0	0	13.295	13.234	66.234 MWD+IFR1+
														MS OWSG
	3800	15.53	88.02	3734.85	13.633	0	13.662	0	5.57	0	0	13.671	13.609	64.935 MWD+IFR1+
														MS
														OWSG
	3900	15.53	88.02	3831.196	14.023	0	14.041	0	5.733	0	0	14.051	13.984	64.93 MWD+IFR1+ MS
														OWSG
	4000	15.53	88.02	3927.541	14.414	0	14.421	0	5.899	0	0	14.431	14.361	64.885 MWD+IFR1+
														MS
	4100	15 52	00 02	4022 006	14 000	0	14 001	0	6.069	0	0	14 013	14741	OWSG
	4100	15.53	88.02	4023.886	14.808	0	14.801	0	6.068	0	0	14.813	14.741	63.773 MWD+IFR1+ MS
•														IVIS

	1200	45.52	00.03	4420.222	45.2	0	45 470	0	6 220	0	0	45 404	45.447	OWSG
Released to Imaging: 10/23/2025 12:45:35 PM	4200	15.53	88.02	4120.232	15.2	0	15.178	0	6.239	0	0	15.191	15.117	62.726 MWD+IFR1+ MS
ised	4300	15.53	88.02	4216.577	15.595	0	15.558	0	6.412	0	0	15.573	15.497	OWSG 61.745 MWD+IFR1+
to I	4300	13.33	00.02	4210.377	13.333	Ü	13.330	· ·	0.412	Ü	Ü	13.373	13.437	MS MS
mag	4.400	45.50	00.00	4242.022	45.007	•	45.04		6.500	0	•	45.055	45.076	OWSG
ing	4400	15.53	88.02	4312.923	15.987	0	15.94	0	6.589	0	0	15.955	15.876	61.795 MWD+IFR1+ MS
: 10														OWSG
1/23,	4500	15.53	88.02	4409.268	16.383	0	16.321	0	6.767	0	0	16.338	16.256	60.911 MWD+IFR1+
/20:														MS OWSG
25 I	4600	15.53	88.02	4505.614	16.778	0	16.703	0	6.948	0	0	16.721	16.638	60.087 MWD+IFR1+
2:4														MS 💃
5:3	4700	15.53	88.02	4601.959	17.174	0	17.085	0	7.131	0	0	17.104	17.019	OWSG 59.308 MWD+IFR1+
5 P	4700	15.55	88.02	4001.959	17.174	U	17.085	U	7.131	U	U	17.104	17.019	MS
X														OWSG
	4800	15.53	88.02	4698.305	17.57	0	17.47	0	7.316	0	0	17.49	17.401	59.393 MWD+IFR1+
														MS
	4900	15.53	88.02	4794.65	17.966	0	17.852	0	7.504	0	0	17.874	17.783	OWSG 58.691 MWD+IFR1+
	.500	20.00	00.02	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	27.000	· ·	27.002	· ·	7100.	· ·	· ·	27.07.	271700	MS
														OWSG
	5000	15.53	88.02	4890.996	18.365	0	18.235	0	7.694	0	0	18.259	18.166	57.264 MWD+IFR1+
														MS OWSG
	5100	15.53	88.02	4987.341	18.761	0	18.617	0	7.886	0	0	18.643	18.548	56.672 MWD+IFR1+
														MS
	5200	15.53	88.02	5083.687	19.16	0	19.003	0	8.081	0	0	19.03	18.933	OWSG 56.113 MWD+IFR1+
	3200	15.55	00.02	3063.067	19.16	U	19.005	U	0.001	U	U	19.05	10.955	MS
														OWSG
	5300	15.53	88.02	5180.032	19.556	0	19.386	0	8.278	0	0	19.415	19.315	55.598 MWD+IFR1+
														MS OWSG
	5400	15.53	88.02	5276.377	19.955	0	19.772	0	8.476	0	0	19.802	19.7	55.112 MWD+IFR1+
														MS
						_		_		_				OWSG
	5500	15.53	88.02	5372.723	20.354	0	20.155	0	8.678	0	0	20.188	20.084	54.011 MWD+IFR1+ MS
														OWSG
	5600	15.53	88.02	5469.068	20.752	0	20.541	0	8.881	0	0	20.575	20.468	53.611 MWD+IFR1+
														MS
	5700	15.53	88.02	5565.414	21.151	0	20.927	0	9.087	0	0	20.963	20.853	OWSG 53.234 MWD+IFR1++
	3700	13.33	00.02	3303.414	21.131	O	20.327	O	3.087	Ü	U	20.903	20.833	MS MS
														owsg 🧜
	5800	15.53	88.02	5661.759	21.552	0	21.311	0	9.295	0	0	21.35	21.239	51.716 MWD+IFR1+
														MS

														OWSG
R	5900	15.53	88.02	5758.105	21.951	0	21.697	0	9.505	0	0	21.738	21.624	51.428 MWD+IFR1+
Released to Imaging: 10/23/2025 12:45:35 PM														MS
ıseı														OWSG
d to	6000	15.53	88.02	5854.45	22.351	0	22.083	0	9.718	0	0	22.126	22.01	50.616 MWD+IFR1+
In														MS
nas	6400	45.50	00.00	5050 706	22.752	•	22.47	•	0.000	•	•	22.545	22.206	OWSG
in	6100	15.53	88.02	5950.796	22.752	0	22.47	0	9.932	0	0	22.515	22.396	49.857 MWD+IFR1+
99														MS OWSG
0	6200	15.53	88.02	6047.141	23.152	0	22.856	0	10.149	0	0	22.904	22.782	49.15 MWD+IFR1+
23/	0200	15.55	00.02	0047.141	25.152	O	22.030	O	10.143	O	U	22.304	22.702	MS
202														OWSG
5	6300	15.53	88.02	6143.487	23.553	0	23.242	0	10.368	0	0	23.292	23.168	48.491 MWD+IFR1+
2:														MS 🐇
45:														owsg 🚡
35	6400	15.53	88.02	6239.832	23.953	0	23.628	0	10.588	0	0	23.681	23.554	47.879 MWD+IFR1+
Pk														MS
														OWSG
	6500	15.53	88.02	6336.178	24.353	0	24.015	0	10.812	0	0	24.07	23.94	47.309 MWD+IFR1+
														MS
	6600	45.52	00.00	6422 522	24.754	•	24.404	0	11.026	0	•	24.46	24.220	OWSG
	6600	15.53	88.02	6432.523	24.754	0	24.401	0	11.036	0	0	24.46	24.328	46.335 MWD+IFR1+ MS
														OWSG
	6700	15.53	88.02	6528.869	25.157	0	24.79	0	11.265	0	0	24.85	24.716	45.857 MWD+IFR1+
	0,00	25.55	55.52	0020.003	20.207		0	•		· ·		2	2 20	MS
														OWSG
	6800	15.53	88.02	6625.214	25.556	0	25.176	0	11.498	0	0	25.239	25.101	45.413 MWD+IFR1+
														MS
														OWSG
	6900	15.53	88.02	6721.559	25.958	0	25.563	0	11.73	0	0	25.629	25.488	44.602 MWD+IFR1+
														MS
,	6011.4	15 52	00.02	6722 605	26.004	0	25 600	0	11 756	0	0	25 674	25 522	OWSG
(5911.4	15.53	88.02	6732.605	26.004	0	25.608	0	11.756	0	0	25.674	25.533	44.603 MWD+IFR1+ MS
														OWSG
	7000	13.76	88.02	6818.258	26.391	0	25.947	0	11.962	0	0	26.017	25.873	43.846 MWD+IFR1+
								_		-	-			MS
														OWSG
	7100	11.76	88.02	6915.781	26.794	0	26.328	0	12.194	0	0	26.4	26.254	43.51 MWD+IFR1+
														MS
														OWSG
	7200	9.766	88.02	7014.015	27.16	0	26.702	0	12.426	0	0	26.775	26.627	43.19 MWD+IFR1+
														MS
	7200	7.700	00.00	7112 042	27.40	0	27.000	0	12.052	0	0	27 4 42	26.002	OWSG
	7300	7.766	88.02	7112.842	27.49	0	27.068	0	12.653	0	0	27.143	26.993	42.882 MWD+IFR1+ MS
														OWSG
	7400	5.766	88.02	7212.14	27.784	0	27.428	0	12.876	0	0	27.505	27.353	42.586 MWD+IFR1+
		••	- J. V.	· ===·= ·		•		J		-	-			MS
•														6

Rei	7500	3.766	88.02	7311.789	28.039	0	27.779	0	13.1	0	0	27.857	27.704	OWSG 42.635 MWD+IFR1+
Released to Imaging: 10/23/2025 12:45:35 PM														MS OWSG
ed to	7600	1.766	88.02	7411.667	28.256	0	28.126	0	13.315	0	0	28.201	28.048	43.672 MWD+IFR1+
) Im														MS OWSG
ıagi	7688.3	0	0	7500	28.415	0	28.417	0	13.509	0	0	28.492	28.339	44.671 MWD+IFR1+
ng:		-	-			-				-				MS 🕺
10/						•								OWSG
23/	7700	0	0	7511.653	28.452	0	28.453	0	13.535	0	0	28.529	28.376	44.671 MWD+IFR1+ MS
202.														OWSG
5 12	7800	0	0	7611.653	28.777	0	28.773	0	13.751	0	0	28.851	28.699	45.653 MWD+IFR1+
:45														MS OWSG
:35	7900	0	0	7711.653	29.102	0	29.091	0	13.971	0	0	29.172	29.02	46.944 MWD+IFR1+
PM														MS
	9000	0	0	7011 (52	20.420	0	20 442	0	14 100	0	0	20.406	20.244	OWSG
	8000	0	0	7811.653	29.428	0	29.413	0	14.199	0	0	29.496	29.344	47.892 MWD+IFR1+ MS
														OWSG
	8100	0	0	7911.653	29.754	0	29.734	0	14.426	0	0	29.82	29.668	48.823 MWD+IFR1+
														MS OWSG
	8200	0	0	8011.653	30.082	0	30.057	0	14.656	0	0	30.145	29.993	49.733 MWD+IFR1+
														MS
	8300	0	0	8111.653	30.409	0	30.379	0	14.893	0	0	30.47	30.318	OWSG 50.625 MWD+IFR1+
	6300	U	U	6111.055	30.409	U	30.379	U	14.095	0	U	30.47	30.310	MS
														OWSG
	8400	0	0	8211.653	30.738	0	30.702	0	15.129	0	0	30.796	30.643	51.791 MWD+IFR1+
														MS OWSG
	8500	0	0	8311.653	31.068	0	31.027	0	15.372	0	0	31.124	30.971	52.633 MWD+IFR1+
														MS
	8600	0	0	8411.653	31.397	0	31.353	0	15.614	0	0	31.452	31.298	OWSG 53.452 MWD+IFR1+
	0000	· ·	Ü	0411.055	31.337	Ü	31.333	· ·	15.014	Ü	Ü	31.432	31.230	MS MS
														OWSG
	8700	0	0	8511.653	31.718	0	31.67	0	15.865	0	0	31.771	31.617	53.966 MWD+IFR1+ MS
														OWSG
	8800	0	0	8611.653	32.047	0	32	0	16.115	0	0	32.1	31.947	53.918 MWD+IFR1+
														MS
	8900	0	0	8711.653	32.388	0	32.326	0	16.371	0	0	32.436	32.278	OWSG 56.548 MWD+IFR1+
	0000	· ·		0/11/000	02.000	· ·	02.020	· ·	10.071	Č		3230	02.270	MS 4
			_			_				_				OWSG
	9000	0	0	8811.653	32.711	0	32.65	0	16.628	0	0	32.759	32.602	56.488 MWD+IFR1+ MS
•														IVIS

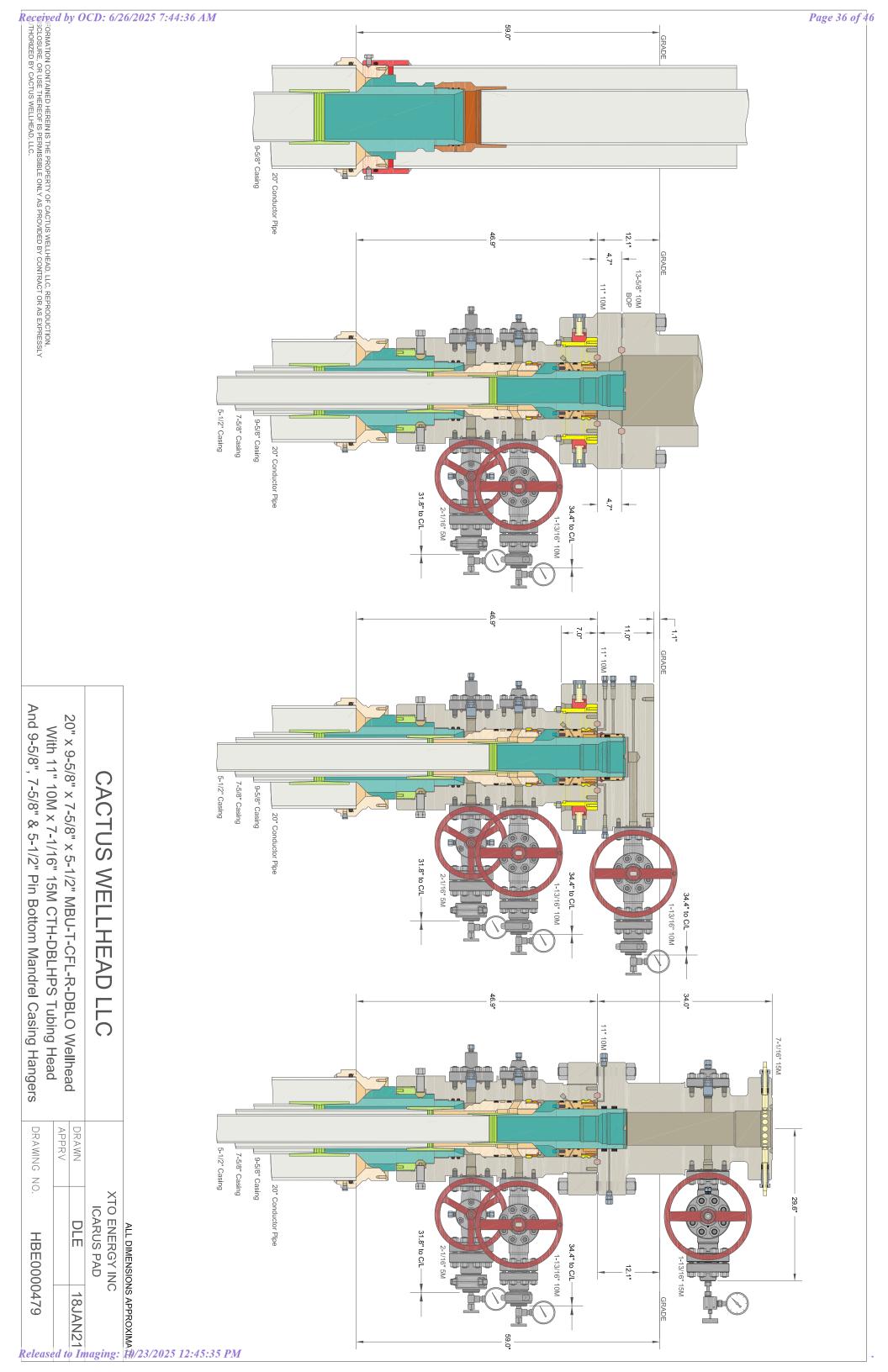
														OWSG
R	9100	0	0	8911.653	33.045	0	32.985	0	16.888	0	0	33.093	32.937	56.428 MWD+IFR1+
Released to Imaging: 10/23/2025 12:45:35 PM														MS
ase														OWSG 📑
d to	9200	0	0	9011.653	33.377	0	33.317	0	17.152	0	0	33.424	33.269	56.37 MWD+IFR1+
) Iı														MS 🚶
na														OWSG
gin	9300	0	0	9111.653	33.719	0	33.645	0	17.421	0	0	33.763	33.602	58.758 MWD+IFR1+
80														MS
10/	0.400	0	0	0244 652	24.044	0	22.074	0	17.000	0	0	24.007	22.027	OWSG 58.69 MWD+IFR1+
23/	9400	0	0	9211.653	34.044	0	33.971	0	17.692	0	0	34.087	33.927	N A
20:														MS OWSG
25	9453.3	0	0	9265	34.234	0	34.147	0	17.838	0	0	34.274	34.107	60.893 MWD+IFR1+
12:	5455.5	Ü	· ·	3203	34.234	Ü	34.147	· ·	17.030	Ü	Ü	34.274	34.107	MS
45:														OWSG
35	9500	4.665	161	9311.602	34.433	0	34.271	0	17.967	0	0	34.424	34.263	58.468 MWD+IFR1+
PA														MS
1														OWSG
	9600	14.66	161	9410.057	34.248	0	34.587	0	18.243	0	0	34.759	34.58	59.435 MWD+IFR1+
														MS
														OWSG
	9700	24.66	161	9504.105	33.326	0	34.91	0	18.515	0	0	35.088	34.897	55.979 MWD+IFR1+
														MS
	9800	34.66	161	9590.888	31.744	0	35.23	0	18.778	0	0	35.403	35.208	OWSG 51.282 MWD+IFR1+
	9600	34.00	101	9590.666	31.744	U	33.23	U	10.770	U	U	33.403	33.206	MS
														OWSG
	9903.3	45	161	9670.142	29.53	0	35.526	0	19.042	0	0	35.68	35.496	47.188 MWD+IFR1+
														MS
														OWSG
	10000	53.83	166.1	9732.978	27.085	0	35.795	0	19.282	0	0	35.891	35.733	37.277 MWD+IFR1+
														MS
														OWSG
	10100	63.17	170.3	9785.18	24.464	0	36.024	0	19.527	0	0	36.06	35.926	21.649 MWD+IFR1+
														MS
	10200	72.6	173.9	9822.79	22.142	0	36.219	0	19.774	0	0	36.222	36.042	OWSG 0.614 MWD+IFR1+
	10200	72.0	1/3.9	9022.79	22.142	U	30.219	U	19.774	U	U	30.222	36.042	MS
														OWSG
	10300	82.1	177.1	9844.663	20.597	0	36.351	0	20.022	0	0	36.358	36.084	-12.456 MWD+IFR1+
						_		-		-	-			MS
														OWSG
	10382	90	179.7	9850.376	20.234	0	36.416	0	20.234	0	0	36.456	36.069	-19.226 MWD+IFR1+
														MS
														OWSG
	10400	90	179.7	9850.376	20.278	0	36.429	0	20.278	0	0	36.479	36.073	-20.881 MWD+IFR1+
														MS
	10500	00	170 7	0050 270	20.552	^	26 542	0	20 552	0	0	26.005	26.020	OWSG
	10500	90	179.7	9850.376	20.552	0	36.512	0	20.552	0	0	36.605	36.029	-23.983 MWD+IFR1+ MS
														IVIS

														OWSG
Re	10600	90	179.7	9850.376	20.852	0	36.609	0	20.852	0	0	36.745	35.997	-25.67 MWD+IFR1+
Released to Imaging: 10/23/2025 12:45:35 PM														MS OWSG
ed	10700	90	179.7	9850.376	21.178	0	36.705	0	21.178	0	0	36.886	35.964	-26.72 MWD+IFR1+
to I										-				MS
ma														OWSG 🦹
gin	10800	90	179.7	9850.376	21.527	0	36.829	0	21.527	0	0	37.045	35.926	-26.575 MWD+IFR1+
g: 1														MS OWSG
0/2	10900	90	179.7	9850.376	21.9	0	36.951	0	21.9	0	0	37.207	35.898	-26.716 MWD+IFR1+
3/2														MS 👫
025														OWSG
12.	11000	90	179.7	9850.376	22.293	0	37.087	0	22.293	0	0	37.378	35.873	-26.612 MWD+IFR1+
45														MS OWSG
:35	11100	90	179.7	9850.376	22.707	0	37.236	0	22.707	0	0	37.559	35.851	-26.349 MWD+IFR1+
PN														MS
1									22.422				2= 224	OWSG
	11200	90	179.7	9850.376	23.139	0	37.398	0	23.139	0	0	37.751	35.831	-25.986 MWD+IFR1+ MS
														OWSG
	11300	90	179.7	9850.376	23.59	0	37.572	0	23.59	0	0	37.952	35.814	-25.553 MWD+IFR1+
														MS
						•						20.46=	0= 044	OWSG
	11400	90	179.7	9850.376	24.058	0	37.758	0	24.058	0	0	38.165	35.811	-25.205 MWD+IFR1+ MS
														OWSG
	11500	90	179.7	9850.376	24.542	0	37.944	0	24.542	0	0	38.375	35.796	-24.802 MWD+IFR1+
														MS
	11600	90	179.7	9850.376	25.042	0	38.155	0	25.042	0	0	38.606	35.785	OWSG
	11600	90	1/9./	9630.370	23.042	0	30.133	U	25.042	U	U	36.000	33.763	-24.26 MWD+IFR1+ MS
														OWSG
	11700	90	179.7	9850.376	25.556	0	38.365	0	25.556	0	0	38.838	35.786	-23.9 MWD+IFR1+
														MS
	11800	90	179.7	9850.376	26.083	0	38.6	0	26.083	0	0	39.088	35.779	OWSG -23.339 MWD+IFR1+
	11000	30	1,3.,	3030.370	20.000	Ü	30.0	Ū	20.005	Ü	Ü	33.000	33.773	MS
														OWSG
	11900	90	179.7	9850.376	26.623	0	38.833	0	26.623	0	0	39.339	35.783	-22.938 MWD+IFR1+
														MS OWSG
	12000	90	179.7	9850.376	27.175	0	39.078	0	27.175	0	0	39.599	35.789	-22.514 MWD+IFR1+
														MS
														OWSG
	12100	90	179.7	9850.376	27.738	0	39.333	0	27.738	0	0	39.868	35.785	-22.028 MWD+IFR1+
														MS OWSG
	12200	90	179.7	9850.376	28.311	0	39.6	0	28.311	0	0	40.148	35.793	-21.605 MWD+IFR1+
														MS
•														6

														OWSG
R	12300	90	179.7	9850.376	28.895	0	39.878	0	28.895	0	0	40.436	35.804	-21.168 MWD+IFR1+
elec														MS
ıse														OWSG 📑
d to	12400	90	179.7	9850.376	29.489	0	40.153	0	29.489	0	0	40.723	35.814	-20.795 MWD+IFR1+
In														MS
nag	12500	00	170.7	0050 276	20.00	0	40.453	0	20.00	0	0	44.02	25 027	OWSG -20.371 MWD+IFR1+
ing	12500	90	179.7	9850.376	30.09	0	40.452	0	30.09	0	0	41.03	35.827	-20.371 MWD+IFR1+
;: 1														OWSG
0/2	12600	90	179.7	9850.376	30.7	0	40.748	0	30.7	0	0	41.335	35.839	-19.994 MWD+IFR1+
3/2						-		-		-	•			MS
02.														owsg 🕴
5 L	12700	90	179.7	9850.376	31.318	0	41.067	0	31.318	0	0	41.66	35.853	-19.578 MWD+IFR1+
2:4														MS
Released to Imaging: 10/23/2025 12:45:35 PM														OWSG
5 I	12800	90	179.7	9850.376	31.937	0	41.383	0	31.937	0	0	41.982	35.867	-19.208 MWD+IFR1+
Me														MS
	12900	90	179.7	9850.376	32.573	0	41.708	0	32.573	0	0	42.315	35.895	OWSG -18.875 MWD+IFR1+
	12900	90	1/9./	3630.370	32.373	U	41.700	U	32.373	U	U	42.313	33.633	MS
														OWSG
	13000	90	179.7	9850.376	33.211	0	42.044	0	33.211	0	0	42.654	35.911	-18.511 MWD+IFR1+
														MS
														OWSG
	13100	90	179.7	9850.376	33.853	0	42.388	0	33.853	0	0	43.002	35.928	-18.152 MWD+IFR1+
														MS
	12200	00	470.7	0050 076	24.406	•	40.744	•	24.406	•	•	42.250	25.050	OWSG
	13200	90	179.7	9850.376	34.496	0	42.741	0	34.496	0	0	43.359	35.958	-17.828 MWD+IFR1+
														MS OWSG
	13300	90	179.7	9850.376	35.157	0	43.091	0	35.157	0	0	43.713	35.975	-17.507 MWD+IFR1+
						-		-		-	•			MS
														OWSG
	13400	90	179.7	9850.376	35.819	0	43.461	0	35.819	0	0	44.085	36.007	-17.191 MWD+IFR1+
														MS
						_				_				OWSG
	13500	90	179.7	9850.376	36.483	0	43.829	0	36.483	0	0	44.455	36.038	-16.904 MWD+IFR1+
														MS OWSG
	13600	90	179.7	9850.376	37.162	0	44.216	0	37.162	0	0	44.844	36.07	-16.603 MWD+IFR1+
	13000	30	175.7	3030.370	37.102	O	77.210	O	37.102	Ü	U	44.044	30.07	MS
														OWSG
	13700	90	179.7	9850.376	37.829	0	44.599	0	37.829	0	0	45.228	36.089	-16.302 MWD+IFR1+
														MS
														OWSG
	13800	90	179.7	9850.376	38.51	0	44.99	0	38.51	0	0	45.62	36.122	-16.026 MWD+IFR1+
														MS
	12000	00	170.7	0050 276	20 102	0	45 300	0	20 102	0	0	46.02	26 155	OWSG
	13900	90	179.7	9850.376	39.192	0	45.389	0	39.192	0	0	46.02	36.155	-15.761 MWD+IFR1+ MS
•														IVIS

														OWSG
R	14000	90	179.7	9850.376	39.887	0	45.796	0	39.887	0	0	46.426	36.189	-15.493 MWD+IFR1+
Released to Imaging: 10/23/2025 12:45:35	1.000		_,,,,,	3030.070	00.007		101700	· ·	00.007	·	Ü		33.233	MS
ase														owsg
t p	14100	90	179.7	9850.376	40.571	0	46.21	0	40.571	0	0	46.839	36.236	-15.248 MWD+IFR1+
0 1														MS 🧍
ma														owsg 🦹
gir	14200	90	179.7	9850.376	41.267	0	46.62	0	41.267	0	0	47.249	36.27	-15.01 MWD+IFR1+
0,0														MS 👔
10,														OWSG
23,	14300	90	179.7	9850.376	41.964	0	47.047	0	41.964	0	0	47.675	36.305	-14.756 MWD+IFR1+
20														MS
25	14400	00	170.7	0050 276	42.661	0	47 471	0	42.661	0	0	48.099	36.339	OWSG -14.527 MWD+IFR1+:
12	14400	90	179.7	9850.376	42.661	0	47.471	0	42.001	0	0	48.099	30.339	-14.527 MS
45														OWSG
نن	14500	90	179.7	9850.376	43.37	0	47.912	0	43.37	0	0	48.538	36.388	-14.296 MWD+IFR1+
PM	1.555		_,,,,,	3030.070	10.07	· ·		· ·	10.07	·	Ü	.0.555	33.333	MS
X														OWSG
	14600	90	179.7	9850.376	44.068	0	48.349	0	44.068	0	0	48.973	36.423	-14.074 MWD+IFR1+
														MS
														OWSG
	14700	90	179.7	9850.376	44.777	0	48.792	0	44.777	0	0	49.415	36.471	-13.868 MWD+IFR1+
														MS
						_		_		_				OWSG
	14800	90	179.7	9850.376	45.497	0	49.242	0	45.497	0	0	49.862	36.507	-13.649 MWD+IFR1+
														MS OWSG
	14900	90	179.7	9850.376	46.206	0	49.697	0	46.206	0	0	50.316	36.556	-13.45 MWD+IFR1+
	14300	30	1/3./	9830.370	40.200	U	43.037	O	40.200	O	U	30.310	30.330	MS
														OWSG
	15000	90	179.7	9850.376	46.925	0	50.158	0	46.925	0	0	50.775	36.605	-13.254 MWD+IFR1+
														MS
														OWSG
	15100	90	179.7	9850.376	47.634	0	50.615	0	47.634	0	0	51.23	36.654	-13.071 MWD+IFR1+
														MS
														OWSG
	15200	90	179.7	9850.376	48.363	0	51.088	0	48.363	0	0	51.699	36.704	-12.877 MWD+IFR1+
														MS
	15200	90	179.7	0050 276	40.002	0	F1 FF6	0	40.002	0	0	52.165	26.752	OWSG -12.699 MWD+IFR1+
	15300	90	1/9./	9850.376	49.082	0	51.556	0	49.082	0	0	32.103	36.753	-12.099 MVD+IFK1+ MS
														OWSG
	15400	90	179.7	9850.376	49.81	0	52.039	0	49.81	0	0	52.646	36.803	-12.516 MWD+IFR1+
							0 = 1000	-		-	-			MS
														OWSG
	15500	90	179.7	9850.376	50.527	0	52.518	0	50.527	0	0	53.122	36.852	-12.344 MWD+IFR1+
														MS 🦸
														owsg 👢
	15600	90	179.7	9850.376	51.254	0	53.002	0	51.254	0	0	53.603	36.902	-12.175 MWD+IFR1+
														MS
-														-

15800 90 179.7 9850.376 52.716 0 53.985 0 52.716 0 0 54.579 37.015 -11. 15900 90 179.7 9850.376 53.451 0 54.483 0 53.451 0 0 55.574 37.065 -11. 16000 90 179.7 9850.376 54.185 0 54.986 0 54.185 0 0 56.069 37.179 -11. 16100 90 179.7 9850.376 54.918 0 55.484 0 54.918 0 0 56.069 37.179 -11. 16300 90 179.7 9850.376 55.651 0 55.996 0 55.651 0 0 57.081 37.292 -11. 16400 90 179.7 9850.376 57.131 0 57.015 0 57.131 0 0 57.59 37.355 -10.	OWSG OWSG MS OWSG 853 MWD+IFR1+ MS OWSG 693 MWD+IFR1+ MS OWSG 535 MWD+IFR1+ MS OWSG 393 MWD+IFR1+ MS OWSG 247 MWD+IFR1+ MS OWSG 106 MWD+IFR1+ MS
15800 90 179.7 9850.376 52.716 0 53.985 0 52.716 0 0 54.579 37.015 -11. 15900 90 179.7 9850.376 53.451 0 54.483 0 53.451 0 0 55.574 37.065 -11. 16000 90 179.7 9850.376 54.185 0 54.986 0 54.185 0 0 56.069 37.179 -11. 16100 90 179.7 9850.376 54.918 0 55.484 0 54.918 0 0 56.069 37.179 -11. 16300 90 179.7 9850.376 55.651 0 55.996 0 55.651 0 0 57.081 37.292 -11. 16400 90 179.7 9850.376 57.131 0 57.015 0 57.131 0 0 57.59 37.355 -10.	MS OWSG 853 MWD+IFR1+ MS OWSG 693 MWD+IFR1+ MS OWSG 535 MWD+IFR1+ MS OWSG 393 MWD+IFR1+ MS OWSG 247 MWD+IFR1+ MS OWSG 106 MWD+IFR1+
16300 90 179.7 9850.376 56.391 0 56.504 0 56.391 0 0 57.081 37.292 -11. 16400 90 179.7 9850.376 57.131 0 57.015 0 57.131 0 0 57.59 37.355 -10. 16500 90 179.7 9850.376 57.871 0 57.531 0 57.871 0 0 58.102 37.419 -10.	OWSG 853 MWD+IFR1+ MS OWSG 693 MWD+IFR1+ MS OWSG 535 MWD+IFR1+ MS OWSG 393 MWD+IFR1+ MS OWSG 247 MWD+IFR1+ MS OWSG 106 MWD+IFR1+
16300 90 179.7 9850.376 56.391 0 56.504 0 56.391 0 0 57.081 37.292 -11. 16400 90 179.7 9850.376 57.131 0 57.015 0 57.131 0 0 57.59 37.355 -10. 16500 90 179.7 9850.376 57.871 0 57.531 0 57.871 0 0 58.102 37.419 -10.	MS OWSG 693 MWD+IFR1+ MS OWSG 535 MWD+IFR1+ MS OWSG 393 MWD+IFR1+ MS OWSG 247 MWD+IFR1+ MS OWSG 106 MWD+IFR1+
16300 90 179.7 9850.376 56.391 0 56.504 0 56.391 0 0 57.081 37.292 -11. 16400 90 179.7 9850.376 57.131 0 57.015 0 57.131 0 0 57.59 37.355 -10. 16500 90 179.7 9850.376 57.871 0 57.531 0 57.871 0 0 58.102 37.419 -10.	OWSG 693 MWD+IFR1+ MS OWSG 535 MWD+IFR1+ MS OWSG 393 MWD+IFR1+ MS OWSG 247 MWD+IFR1+ MS OWSG 106 MWD+IFR1+
16300 90 179.7 9850.376 56.391 0 56.504 0 56.391 0 0 57.081 37.292 -11. 16400 90 179.7 9850.376 57.131 0 57.015 0 57.131 0 0 57.59 37.355 -10. 16500 90 179.7 9850.376 57.871 0 57.531 0 57.871 0 0 58.102 37.419 -10.	693 MWD+IFR1+ MS OWSG 535 MWD+IFR1+ MS OWSG 393 MWD+IFR1+ MS OWSG 247 MWD+IFR1+ MS OWSG 106 MWD+IFR1+
16300 90 179.7 9850.376 56.391 0 56.504 0 56.391 0 0 57.081 37.292 -11. 16400 90 179.7 9850.376 57.131 0 57.015 0 57.131 0 0 57.59 37.355 -10. 16500 90 179.7 9850.376 57.871 0 57.531 0 57.871 0 0 58.102 37.419 -10.	MS OWSG 535 MWD+IFR1+ MS OWSG 393 MWD+IFR1+ MS OWSG 247 MWD+IFR1+ MS OWSG 106 MWD+IFR1+
16300 90 179.7 9850.376 56.391 0 56.504 0 56.391 0 0 57.081 37.292 -11. 16400 90 179.7 9850.376 57.131 0 57.015 0 57.131 0 0 57.59 37.355 -10. 16500 90 179.7 9850.376 57.871 0 57.531 0 57.871 0 0 58.102 37.419 -10.	OWSG 535 MWD+IFR1+ MS OWSG 393 MWD+IFR1+ MS OWSG 247 MWD+IFR1+ MS OWSG 106 MWD+IFR1+
16300 90 179.7 9850.376 56.391 0 56.504 0 56.391 0 0 57.081 37.292 -11. 16400 90 179.7 9850.376 57.131 0 57.015 0 57.131 0 0 57.59 37.355 -10. 16500 90 179.7 9850.376 57.871 0 57.531 0 57.871 0 0 58.102 37.419 -10.	535 MWD+IFR1+ MS OWSG 393 MWD+IFR1+ MS OWSG 247 MWD+IFR1+ MS OWSG 106 MWD+IFR1+
16300 90 179.7 9850.376 56.391 0 56.504 0 56.391 0 0 57.081 37.292 -11. 16400 90 179.7 9850.376 57.131 0 57.015 0 57.131 0 0 57.59 37.355 -10. 16500 90 179.7 9850.376 57.871 0 57.531 0 57.871 0 0 58.102 37.419 -10.	MS OWSG 393 MWD+IFR1+ MS OWSG 247 MWD+IFR1+ MS OWSG 106 MWD+IFR1+
16300 90 179.7 9850.376 56.391 0 56.504 0 56.391 0 0 57.081 37.292 -11. 16400 90 179.7 9850.376 57.131 0 57.015 0 57.131 0 0 57.59 37.355 -10. 16500 90 179.7 9850.376 57.871 0 57.531 0 57.871 0 0 58.102 37.419 -10.	OWSG 393 MWD+IFR1+ MS OWSG 247 MWD+IFR1+ MS OWSG 106 MWD+IFR1+
16300 90 179.7 9850.376 56.391 0 56.504 0 56.391 0 0 57.081 37.292 -11. 16400 90 179.7 9850.376 57.131 0 57.015 0 57.131 0 0 57.59 37.355 -10. 16500 90 179.7 9850.376 57.871 0 57.531 0 57.871 0 0 58.102 37.419 -10.	393 MWD+IFR1+ MS OWSG 247 MWD+IFR1+ MS OWSG 106 MWD+IFR1+
16300 90 179.7 9850.376 56.391 0 56.504 0 56.391 0 0 57.081 37.292 -11. 16400 90 179.7 9850.376 57.131 0 57.015 0 57.131 0 0 57.59 37.355 -10. 16500 90 179.7 9850.376 57.871 0 57.531 0 57.871 0 0 58.102 37.419 -10.	MS OWSG 247 MWD+IFR1+ MS OWSG 106 MWD+IFR1+
16300 90 179.7 9850.376 56.391 0 56.504 0 56.391 0 0 57.081 37.292 -11. 16400 90 179.7 9850.376 57.131 0 57.015 0 57.131 0 0 57.59 37.355 -10. 16500 90 179.7 9850.376 57.871 0 57.531 0 57.871 0 0 58.102 37.419 -10.	OWSG 247 MWD+IFR1+ MS OWSG 106 MWD+IFR1+
16300 90 179.7 9850.376 56.391 0 56.504 0 56.391 0 0 57.081 37.292 -11. 16400 90 179.7 9850.376 57.131 0 57.015 0 57.131 0 0 57.59 37.355 -10. 16500 90 179.7 9850.376 57.871 0 57.531 0 57.871 0 0 58.102 37.419 -10.	247 MWD+IFR1+ MS OWSG 106 MWD+IFR1+
16300 90 179.7 9850.376 56.391 0 56.504 0 56.391 0 0 57.081 37.292 -11. 16400 90 179.7 9850.376 57.131 0 57.015 0 57.131 0 0 57.59 37.355 -10. 16500 90 179.7 9850.376 57.871 0 57.531 0 57.871 0 0 58.102 37.419 -10.	MS OWSG 106 MWD+IFR1+
16300 90 179.7 9850.376 56.391 0 56.504 0 56.391 0 0 57.081 37.292 -11.00 16400 90 179.7 9850.376 57.131 0 57.015 0 57.131 0 0 57.59 37.355 -10.00 16500 90 179.7 9850.376 57.871 0 57.531 0 57.871 0 0 58.102 37.419 -10.00	106 MWD+IFR1+
16400 90 179.7 9850.376 57.131 0 57.015 0 57.131 0 0 57.59 37.355 -10 16500 90 179.7 9850.376 57.871 0 57.531 0 57.871 0 0 58.102 37.419 -10.	
16500 90 179.7 9850.376 57.871 0 57.531 0 57.871 0 0 58.102 37.419 -10.	MS
16500 90 179.7 9850.376 57.871 0 57.531 0 57.871 0 0 58.102 37.419 -10.	
16500 90 179.7 9850.376 57.871 0 57.531 0 57.871 0 0 58.102 37.419 -10.	OWSG
	0.97 MWD+IFR1+
	MS
	OWSG 836 MWD+IFR1+
16600 90 179.7 9850.376 58.609 0 58.05 0 58.609 0 0 58.618 37.482 -10.	MS
16600 90 179.7 9850.376 58.609 0 58.05 0 58.609 0 0 58.618 37.482 -10.	OWSG
	704 MWD+IFR1+
	MS
	OWSG
16700 90 179.7 9850.376 59.355 0 58.574 0 59.355 0 0 59.138 37.545 -10.	577 MWD+IFR1+
	MS
	OWSG
16800 90 179.7 9850.376 60.1 0 59.101 0 60.1 0 0 59.662 37.609 -10.	449 MWD+IFR1+
	MS
16900 90 179.7 9850.376 60.844 0 59.632 0 60.844 0 0 60.19 37.672 -10.	OWSG 326 MWD+IFR1+
10300 30 173.7 3830.370 00.844 0 33.032 0 00.844 0 0 00.13 37.072 -10.	MS MS
	OWSG
17000 90 179.7 9850.376 61.587 0 60.159 0 61.587 0 0 60.713 37.736 -10.	207 MWD+IFR1+
	MS
	OWSG
17100 90 179.7 9850.376 62.338 0 60.697 0 62.338 0 0 61.247 37.799 -10.	087 MWD+IFR1+
	MS
	OWSG
17200 90 179.7 9850.376 63.079 0 61.231 0 63.079 0 0 61.777 37.862 -9.	972 N/N/D_IED1
	972 MWD+IFR1+
17300 90 179.7 9850.376 63.828 0 61.768 0 63.828 0 0 62.311 37.938 -9.	MS 🦸
17300 90 179.7 9850.376 63.828 0 61.768 0 63.828 0 0 62.311 37.938 -9.	MS OWSG
	MS 🦸


17400 90 179.7 9850.376 64.583 0 62.308 0 64.583 0 0 0	62.848 63.389	38.001 38.077	OWSG -9.752 MWD+IFR1+ MS OWSG -9.647 MWD+IFR1+
released 17500 90 179.7 9850.376 65.33 0 62.852 0 65.33 0 0		38.077	owsg
17500 90 179.7 9850.376 65.33 0 62.852 0 65.33 0 0		38.077	78
17500 90 179.7 9850.376 65.33 0 62.852 0 65.33 0 0		38.077	-9.647 MWD+IFR1+
			MS 🕺
			owsg 🖁
§ 17600 90 179.7 9850.376 66.083 0 63.399 0 66.083 0 0	63.932	38.14	-9.54 MWD+IFR1+🊏
89:			MS 🐧
			OWSG 🕺
17700 90 179.7 9850.376 66.836 0 63.949 0 66.836 0 0	64.479	38.217	-9.436 MWD+IFR1+
7/2			MS 🕺
025			OWSG 🚶
17800 90 179.7 9850.376 67.587 0 64.502 0 67.587 0 0	65.028	38.292	-9.336 MWD+IFR1+
2.4			MS
37			OWSG
17900 90 179.7 9850.376 68.337 0 65.051 0 68.337 0 0	65.574	38.368	-9.241 MWD+IFR1+
$N_{m{q}}$			MS
10000 00 170.7 0050.275 00.004 0 0 05.01 0 0.004 0 0	CC 120	20 424	OWSG
18000 90 179.7 9850.376 69.094 0 65.61 0 69.094 0 0	66.129	38.431	-9.14 MWD+IFR1+
			MS OWSG
18100 90 179.7 9850.376 69.85 0 66.164 0 69.85 0 0	66.68	38.507	-9.045 MWD+IFR1+
18100 90 179.7 9830.576 69.83 0 60.104 0 69.83 0 0	00.08	36.307	MS
			OWSG
18200 90 179.7 9850.376 70.605 0 66.729 0 70.605 0 0	67.241	38.582	-8.95 MWD+IFR1+
10200 30 175.7 3030.370 70.003 0 00.723 0 70.003	07.241	30.302	MS
			OWSG
18300 90 179.7 9850.376 71.358 0 67.289 0 71.358 0 0	67.798	38.658	-8.86 MWD+IFR1+
			MS
			OWSG
18400 90 179.7 9850.376 72.118 0 67.852 0 72.118 0 0	68.358	38.745	-8.774 MWD+IFR1+
			MS
			OWSG
18500 90 179.7 9850.376 72.87 0 68.418 0 72.87 0 0	68.92	38.821	-8.686 MWD+IFR1+
			MS
			OWSG
18600 90 179.7 9850.376 73.627 0 68.979 0 73.627 0 0	69.478	38.896	-8.601 MWD+IFR1+
			MS
			OWSG
18700 90 179.7 9850.376 74.384 0 69.549 0 74.384 0 0	70.045	38.971	-8.516 MWD+IFR1+
			MS
40000 00 470.7 0050.276 75.447 0 70.422 0 75.447 0 0	70.645	20.050	OWSG
18800 90 179.7 9850.376 75.147 0 70.123 0 75.147 0 0	70.615	39.058	-8.434 MWD+IFR1+
			MS OWSG
18900 90 179.7 9850.376 75.908 0 70.691 0 75.908 0 0	71.18	39.133	-8.353 MWD+IFR1++
18300 30 173.7 3830.370 73.308 0 70.031 0 73.308 0	71.10	39.133	MS MS
			OWSG
19000 90 179.7 9850.376 76.668 0 71.262 0 76.668 0 0	71.748	39.22	-8.277 MWD+IFR1+
25555 55 27577 751555 6 72.252 6 75.555	, 1., 40	33.22	MS T
			IVIS

														OWSG
R	19100	90	179.7	9850.376	77.427	0	71.843	0	77.427	0	0	72.325	39.307	-8.198 MWD+IFR1+
Released to Imaging: 10/23/2025 12:45:35 PM														MS 🚦
ise														OWSG 📑
d ta	19200	90	179.7	9850.376	78.186	0	72.418	0	78.186	0	0	72.898	39.382	-8.12 MWD+IFR1+
In														MS
nag										_				OWSG -8.045 MWD+IFR1+
gin	19300	90	179.7	9850.376	78.949	0	72.996	0	78.949	0	0	73.473	39.469	
9:														MS
10%	19400	90	179.7	9850.376	79.712	0	73.577	0	79.712	0	0	74.05	39.555	OWSG -7.973 MWD+IFR1+
23/	19400	30	1/3./	3630.370	79.712	U	73.377	U	75.712	U	U	74.03	39.333	MS
202														OWSG
25	19500	90	179.7	9850.376	80.474	0	74.159	0	80.474	0	0	74.629	39.642	-7.9 MWD+IFR1+
12:						•		-		-	-			MS
45:														owsg
35	19600	90	179.7	9850.376	81.234	0	74.737	0	81.234	0	0	75.204	39.728	-7.83 MWD+IFR1+
$P\lambda$														MS
1														OWSG
	19700	90	179.7	9850.376	81.994	0	75.324	0	81.994	0	0	75.788	39.814	-7.76 MWD+IFR1+
														MS
	10000	00	4707	0050 276	02.750	•	75.006	•	00 750	•	•	76.267	20.0	OWSG
	19800	90	179.7	9850.376	82.759	0	75.906	0	82.759	0	0	76.367	39.9	-7.692 MWD+IFR1+
														MS OWSG
	19900	90	179.7	9850.376	83.522	0	76.497	0	83.522	0	0	76.955	39.986	-7.624 MWD+IFR1+
	15500	50	175.7	3630.370	03.322	U	70.437	O	03.322	Ü	U	70.555	33.300	MS
														OWSG
	20000	90	179.7	9850.376	84.285	0	77.084	0	84.285	0	0	77.539	40.072	-7.557 MWD+IFR1+
														MS
														OWSG
	20100	90	179.7	9850.376	85.053	0	77.672	0	85.053	0	0	78.124	40.17	-7.494 MWD+IFR1+
														MS
	20200	00	4707	0050 276	05.00	•	70.060	•	05.00	•	•	70 744	10.256	OWSG
	20200	90	179.7	9850.376	85.82	0	78.263	0	85.82	0	0	78.711	40.256	-7.429 MWD+IFR1+
														MS OWSG
	20300	90	179.7	9850.376	86.585	0	78.855	0	86.585	0	0	79.301	40.353	-7.368 MWD+IFR1+
	20300	30	175.7	3030.370	00.505	Ū	70.055	Ü	00.505	Ü	Ü	73.301	40.555	MS
														OWSG
	20400	90	179.7	9850.376	87.35	0	79.449	0	87.35	0	0	79.892	40.438	-7.306 MWD+IFR1+
														MS
														OWSG
	20500	90	179.7	9850.376	88.114	0	80.045	0	88.114	0	0	80.485	40.535	-7.244 MWD+IFR1+
														MS
										_				OWSG
	20600	90	179.7	9850.376	88.882	0	80.637	0	88.882	0	0	81.074	40.632	-7.186 MWD+IFR1+
														MS OWSG
	20700	90	179.7	9850.376	89.649	0	81.236	0	89.649	0	0	81.671	40.717	-7.126 MWD+IFR1+
	20700	30	1/3./	3630.370	09.049	U	01.230	U	03.043	J	U	01.0/1	40./1/	
•														MS

														OWSG
R	20800	90	179.7	9850.376	90.416	0	81.831	0	90.416	0	0	82.263	40.813	-7.07 MWD+IFR1+
ele														MS 🚦
ase														owsg 🚦
Released to Imaging: 10/23/2025 12:45:35 PM	20900	90	179.7	9850.376	91.181	0	82.428	0	91.181	0	0	82.858	40.91	-7.014 MWD+IFR1+
0 I														MS 🦹
ma														OWSG 🖁
811	21000	90	179.7	9850.376	91.951	0	83.033	0	91.951	0	0	83.46	41.006	-6.957 MWD+IFR1+
0,0														MS 🐧
10														OWSG
23	21100	90	179.7	9850.376	92.715	0	83.634	0	92.715	0	0	84.057	41.102	-6.901 MWD+IFR1+
2														MS 👫
925														OWSG
1	21200	90	179.7	9850.376	93.483	0	84.23	0	93.483	0	0	84.651	41.198	-6.848 MWD+IFR1+
4														MS
5:3						_				_	_			OWSG
5	21300	90	179.7	9850.376	94.255	0	84.833	0	94.255	0	0	85.252	41.293	-6.795 MWD+IFR1+
Ž														MS
	21.400	00	170.7	0050 276	05 024	0	05 420	0	05 024	0	^	05.054	44 404	OWSG
	21400	90	179.7	9850.376	95.021	0	85.439	0	95.021	0	0	85.854	41.401	-6.743 MWD+IFR1+
														MS OWSG
	21500	90	179.7	9850.376	95.791	0	86.045	0	95.791	0	0	86.459	41.496	-6.69 MWD+IFR1+
	21300	30	1/9./	3630.370	93.791	U	80.043	U	33.731	U	U	80.433	41.490	MS
														OWSG
	21600	90	179.7	9850.376	96.561	0	86.648	0	96.561	0	0	87.059	41.591	-6.641 MWD+IFR1+
	21000	30	1,3.,	3030.370	30.301	Ü	00.010	· ·	30.301	Ü	Ū	67.033	11.331	MS
														OWSG
	21700	90	179.7	9850.376	97.329	0	87.252	0	97.329	0	0	87.66	41.697	-6.592 MWD+IFR1+
														MS
														OWSG
	21800	90	179.7	9850.376	98.097	0	87.864	0	98.097	0	0	88.269	41.792	-6.541 MWD+IFR1+
														MS
														OWSG
	21900	90	179.7	9850.376	98.869	0	88.471	0	98.869	0	0	88.874	41.898	-6.493 MWD+IFR1+
														MS
														OWSG
	22000	90	179.7	9850.376	99.639	0	89.079	0	99.639	0	0	89.48	42.004	-6.445 MWD+IFR1+
														MS
	22400	00	170.7	0050 276	400 300	0	00.000	0	100 200	0	•	00.000	42.000	OWSG
	22100	90	179.7	9850.376	100.399	0	89.689	0	100.399	0	0	90.088	42.098	-6.398 MWD+IFR1+
														MS OWSG
	22200	90	179.7	9850.376	101.143	0	90.301	0	101.143	0	0	90.697	42.203	-6.352 MWD+IFR1+
	22200	30	1/3./	9830.370	101.143	O	30.301	U	101.145	O	U	90.097	42.203	MS
														OWSG
	22300	90	179.7	9850.376	101.931	0	90.908	0	101.931	0	0	91.302	42.309	-6.306 MWD+IFR1+
				,		ŭ		•		-	-			MS A
														OWSG 1
	22400	90	179.7	9850.376	102.713	0	91.523	0	102.713	0	0	91.914	42.413	-6.262 MWD+IFR1+
														MC T
٠														IVIS

														OWSG
R	22500	90	179.7	9850.376	103.489	0	92.138	0	103.489	0	0	92.527	42.518	-6.217 MWD+IFR1+
ele														MS 💈
Released to														owsg 🦹
dt	22600	90	179.7	9850.376	104.259	0	92.75	0	104.259	0	0	93.136	42.623	-6.174 MWD+IFR1+
														MS 🧎
ma														owsg 🦹
Imaging:	22700	90	179.7	9850.376	105.024	0	93.362	0	105.024	0	0	93.746	42.727	-6.13 MWD+IFR1+
8:														MS 🛊
10														OWSG 🕺
10/23/2025	22800	90	179.7	9850.376	105.783	0	93.977	0	105.783	0	0	94.358	42.831	-6.088 MWD+IFR1+
/2														MS
925														OWSG
	22900	90	179.7	9850.376	106.536	0	94.592	0	106.536	0	0	94.972	42.946	-6.046 MWD+IFR1+
.4														MS 🕺
12:45:35														OWSG
	23000	90	179.7	9850.376	107.331	0	95.209	0	107.331	0	0	95.586	43.05	-6.005 MWD+IFR1+
PM														MS
,										_	_			OWSG
	23100	90	179.7	9850.376	108.12	0	95.827	0	108.12	0	0	96.202	43.165	-5.964 MWD+IFR1+
														MS
	22200	00	470 7	0050 076	400.050	•	06.446	•	400.050	•	•	06.040	42.260	OWSG
	23200	90	179.7	9850.376	108.858	0	96.446	0	108.858	0	0	96.819	43.268	-5.924 MWD+IFR1+
														MS
	22252	00	470.7	0050	100.27	0	06.772	0	400.27	0	0	07.444	42.225	OWSG
	23252	90	179.7	9850	109.27	0	96.772	0	109.27	0	0	97.144	43.325	-5.903 MWD+IFR1+
														MS

Plan Targets	Brushy Draw 30 Fed 122H				
	Measured Depth	Grid Northing	Grid Easting	TVD MSL Target	
Target Name	(ft)	(ft)	(ft)	(ft)	
FTP 2	10499.3	397651.12	628049.77	6680 CIRCLE	
LTP 2	23102.92	385047.78	628103.96	6680 CIRCLE	
BHL 2	23252.64	384897.91	628104.22	6680 CIRCLE	

Subject: Request for a Variance Allowing break Testing of the Blowout Preventer Equipment (BOPE)

XTO Energy requests a variance to ONLY test broken pressure seals on the BOPE and function test BOP when skidding a drilling rig between multiple wells on a pad.

Background

Onshore Oil and Gas Order (OOGO) No. 2, Drilling Operations, Sections III.A.2.i.iv.B states that the BOP test must be performed whenever any seal subject to test pressure is broken. The current interpretation of the Bureau of Land Management (BLM) requires a complete BOP test and not just a test of the affected component. OOGO No. 2, Section I.D.2 states, "Some situation may exist either on a well-by-well basis or field-wide basis whereby it is commonly accepted practice to vary a particular minimum standard(s) established in this order. This situation can be resolved by requesting a variance...". XTO Energy feels the break testing the BOPE is such a situation. Therefore, as per OOGO No. 2, Section IV., XTO Energy submits this request for the variance.

Supporting Documentation

OOGO No. 2 became effective on December 19, 1988 and has remained the standard for regulating BLM onshore drilling operations for over 30 years. During this time there have been significant changes in drilling technology. BLM continues to use the variance request process to allow for the use of modern technology and acceptable engineering practices that have arisen since OOGO No. 2 was originally released. The XTO Energy drilling rig fleet has many modern upgrades that allow the intact BOP stack to be moved between well slots on a multi-well pad, as well as, wellhead designs that incorporate quick connects facilitating release of the BOP from the wellhead without breaking any BOP stack components apart. These technologies have been used extensively offshore, and other regulators, API, and many operators around the world have endorsed break testing as safe and reliable.

Figure 1: Winch System attached to BOP Stack

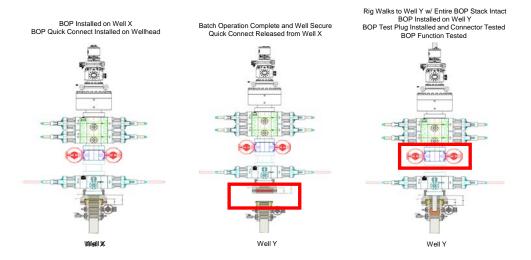
Figure 2: BOP Winch System

American Petroleum Institute (API) standards, specification and recommended practices are considered the industry standard and are consistently utilized and referenced by the industry. OOGO No. 2 recognizes API recommended Practices (RP) 53 in its original development. API Standard 53, *Well Control Equipment Systems for Drilling Wells* (Fifth Edition, December 2018, Annex C, Table C.4) recognizes break testing as an acceptable practice. Specifically, API Standard 53, Section 5.3.7.1 states "A pressure test of the pressure containing component shall be performed following the disconnection or repair, limited to the affected component." See Table C.4 below for reference.

	200000000000000000000000000000000000000	sting, Surface BOP Stacks Pressure Test—	-High Pressureac
Component to be Pressure Tested	Pressure Test—Low Pressure ^{ac} psig (MPa)	Change Out of Component, Elastomer, or Ring Gasket	No Change Out of Component, Elastomer, or Ring Gasket
Annular preventer ^b	250 to 350 (1.72 to 2.41)	RWP of annular preventer	MASP or 70% annular RWP, whichever is lower.
Fixed pipe, variable bore, plind, and BSR preventers ^{bd}	250 to 350 (1.72 to 2.41)	RWP of ram preventer or wellhead system, whichever is lower	ITP
Choke and kill line and BOP side outlet valves below ram preventers (both sides)	250 to 350 (1.72 to 2.41)	RWP of side outlet valve or wellhead system, whichever is lower	ITP
Choke manifold—upstream of chokes ^e	250 to 350 (1.72 to 2.41)	RWP of ram preventers or wellhead system, whichever is lower	ITP
Choke manifold—downstream of chokese	250 to 350 (1.72 to 2.41)	RWP of valve(s), line(s), or M whichever is lower	MASP for the well program,
Kelly, kelly valves, drill pipe safety valves, IBOPs	250 to 350 (1.72 to 2.41)	MASP for the well program	
	during the evaluation period. The p	pressure shall not decrease below the	The state of the s
	from one wellhead to another within when the integrity of a pressure se	n the 21 days, pressure testing is req	uired for pressure-containing and

The Bureau of Safety and Environmental Enforcement (BSEE), Department of Interior, has also utilized the API standards, specification and best practices in the development of its offshore oil and gas regulations and incorporates them by reference within its regulations.

Break testing has been approved by the BLM in the past with other operators based on the detailed information provided in this document.


XTO Energy feels break testing and our current procedures meet the intent of OOGO No. 2 and often exceed it. There has been no evidence that break testing results in more components failing than seen on full BOP tests. XTO Energy's internal standards requires complete BOPE tests more often than that of OOGO No. 2 (Every 21 days). In addition to function testing the annular, pipe rams and blind rams after each BOP nipple up, XTO Energy performs a choke drill with the rig crew prior to drilling out every casing shoe. This is additional training for the rig crew that exceeds the requirements of the OOGO No. 2.

Procedures

- XTO Energy will use this document for our break testing plan for New Mexico Delaware basin.
 The summary below will be referenced in the APD or Sundry Notice and receive approval prior to implementing this variance.
- 2. XTO Energy will perform BOP break testing on multi-wells pads where multiple intermediate sections can be drilled and cased within the 21-day BOP test window.
 - a. A full BOP test will be conducted on the first well on the pad.
 - b. The first intermediate hole section drilled on the pad will be the deepest. All of the remaining hole sections will be the same depth or shallower.
 - i. Our Lower WC targets set the intermediate casing shoe no deeper than the Wolfcamp B.
 - ii. Our Upper WC targets set the intermediate casing shoe shallower than the Wolfcamp B.
 - c. A Full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.
 - d. A full BOP test will be required prior to drilling any production hole.
- 3. After performing a complete BOP test on the first well, the intermediate hole section will be drilled and cased, two breaks would be made on the BOP equipment.
 - a. Between the HCV valve and choke line connection
 - b. Between the BOP guick connect and the wellhead
- 4. The BOP is then lifted and removed from the wellhead by a hydraulic system.
- 5. After skidding to the next well, the BOP is moved to the wellhead by the same hydraulic system and installed.
- 6. The connections mentioned in 3a and 3b will then be reconnected.
- 7. Install test plug into the wellhead using test joint or drill pipe.
- 8. A shell test is performed against the upper pipe rams testing the two breaks.
- 9. The shell test will consist of a 250 psi low test and a high test to the value submitted in the APD or Sundry (e.g. 5,000 psi or 10,000psi).
- 10. Function test will be performed on the following components: lower pipe rams, blind rams, and annular.

- 11. For a multi-well pad the same two breaks on the BOP would be made and on the next wells and steps 4 through 10 would be repeated.
- 12. A second break test would only be done if the intermediate hole section being drilled could not be completed within the 21 day BOP test window.

Note: Picture below highlights BOP components that will be tested during batch operations

Summary

A variance is requested to **ONLY** test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API Standard 53 states, that for pad drilling operation, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken.

The BOP will be secured by a hydraulic carrier or cradle. The BLM will be contacted if a Well Control event occurs prior to the commencement of a BOPE Break Testing operation.

Based on discussions with the BLM on February 27th 2020 and the supporting documentation submitted to the BLM, we will request permission to ONLY retest broken pressure seals if the following conditions are met:

- 1. After a full BOP test is conducted on the first well on the pad.
- 2. The first intermediate hole section drilled on the pad will be the deepest. All of the remaining hole sections will be the same depth or shallower.
- 3. Full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.
- 4. Full BOP test will be required prior to drilling the production hole.

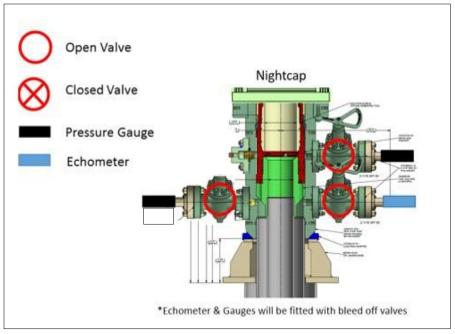
XTO Permian Operating, LLC Offline Cementing Variance Request

XTO requests the option to cement the surface and intermediate casing strings offline as a prudent batch drilling efficiency of acreage development.

1. Cement Program

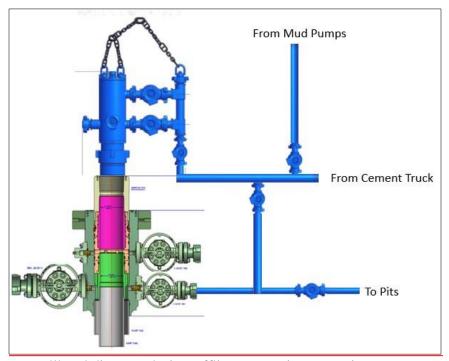
No changes to the cement program will take place for offline cementing.

2. Offline Cementing Procedure


The operational sequence will be as follows. If a well control event occurs, the BLM will be contacted for approval prior to conducting offline cementing operations.

- 1. Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment (float collar and shoe)
- 2. Land casing with mandrel
- 3. Fill pipe with kill weight fluid, do not circulate through floats and confirm well is static
- 4. Set annular packoff shown below and pressure test to confirm integrity of the seal. Pressure ratings of wellhead components and valves is 5,000 psi.
- 5. After confirmation of both annular barriers and internal barriers, nipple down BOP and install cap flange.
 - a. If any barrier fails to test, the BOP stack will not be nippled down until after the cement job is completed with cement 500ft above the highest formation capable of flow with kill weight mud above or after it has achieved 50-psi compressive strength if kill weight fluid cannot be verified.

Annular packoff with both external and internal seals


XTO Permian Operating, LLC Offline Cementing Variance Request

Wellhead diagram during skidding operations

- 6. Skid rig to next well on pad.
- 7. Confirm well is static before removing cap flange, flange will not be removed and offline cementing operations will not commence until well is under control. If well is not static, casing outlet valves will provide access to both the casing ID and annulus. Rig or third party pump truck will kill well prior to cementing or nippling up for further remediation.
 - a. Well Control Plan
 - i. The Drillers Method will be the primary well control method to regain control of the wellbore prior to cementing, if wellbore conditions do not permit the drillers method other methods of well control may be used
 - ii. Rig pumps or a 3rd party pump will be tied into the upper casing valve to pump down the casing ID
 - iii. A high pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
 - iv. Once influx is circulated out of the hole, kill weight mud will be circulated
 - v. Well will be confirmed static
 - vi. Once confirmed static, cap flange will be removed to allow for offline cementing operations to commence
- 8. Install offline cement tool
- 9. Rig up cement equipment

XTO Permian Operating, LLC Offline Cementing Variance Request

Wellhead diagram during offline cementing operations

- 10. Circulate bottoms up with cement truck
 - a. If gas is present on bottoms up, well will be shut in and returns rerouted through gas buster to handle entrained gas
 - b. Max anticipated time before circulating with cement truck is 6 hrs
- 11. Perform cement job taking returns from the annulus wellhead valve
- 12. Confirm well is static and floats are holding after cement job
- 13. Remove cement equipment, offline cement tools and install night cap with pressure gauge for monitoring.

XTO respectfully requests approval to utilize a spudder rig to pre-set surface casing.

Description of Operations:

- 1. Spudder rig will move in to drill the surface hole and pre-set surface casing on the well.
 - a. After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
 - b. The spudder rig will utilize fresh water-based mud to drill the surface hole to TD. Solids control will be handled entirely on a closed loop basis. No earth pits will be used.
- 2. The wellhead will be installed and tested as soon as the surface casing is cut off and WOC time has been reached.
- 3. A blind flange at the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wing valves.
 - a. A means for intervention will be maintained while the drilling rig is not over the well.
- 4. Spudder rig operations are expected to take 2-3 days per well on the pad.
- 5. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 6. Drilling Operations will begin with a larger rig and a BOP stack equal to or greater than the pressure rating that was permitted will be nippled up and tested on the wellhead before drilling operations resume on each well.
 - a. The larger rig will move back onto the location within 180 days from the point at which the wells are secured and the spudder rig is moved off location.
 - b. The BLM will be notified 24 hours before the larger rig moves back on the pre-set locations
- 7. XTO will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations.
- 8. Once the rig is removed, XTO will secure the wellhead area by placing a guard rail around the cellar area.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 479067

CONDITIONS

Operator:	OGRID:
XTO PERMIAN OPERATING LLC.	373075
6401 HOLIDAY HILL ROAD	Action Number:
MIDLAND, TX 79707	479067
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By	Condition	Condition Date
ward.rikala	Work was performed without OCD approval.	10/23/2025
ward.rikala	Administrative order required for non-standard spacing unit prior to production.	10/23/2025