Form 3160-3 FORM APPROVED OMB No. 1004-0137 (October 2024) Expires: October 31, 2027 **UNITED STATES** DEPARTMENT OF THE INTERIOR 5. Lease Serial No. BUREAU OF LAND MANAGEMENT APPLICATION FOR PERMIT TO DRILL OR REENTER 6. If Indian, Allotee or Tribe Name 7. If Unit or CA Agreement, Name and No. DRILL REENTER 1a. Type of work: 1b. Type of Well: Oil Well Gas Well Other 8. Lease Name and Well No. 1c. Type of Completion: Hydraulic Fracturing Single Zone Multiple Zone 2. Name of Operator 9. API Well No. 30-045-38495 10. Field and Pool, or Exploratory 3a. Address 3b. Phone No. (include area code) 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec., T. R. M. or Blk. and Survey or Area At surface At proposed prod. zone 14. Distance in miles and direction from nearest town or post office* 12. County or Parish 13. State 15. Distance from proposed* 16. No of acres in lease 17. Spacing Unit dedicated to this well location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any) 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file to nearest well, drilling, completed, applied for, on this lease, ft. 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see 2. A Drilling Plan. Item 20 above). 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification. SUPO must be filed with the appropriate Forest Service Office). 6. Such other site specific information and/or plans as may be requested by the 25. Signature Name (Printed/Typed) Date Title Approved by (Signature) Name (Printed/Typed) Date Title Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction

APPROVED WITH CONDITIONS

*(Instructions on page 2)

Additional Operator Remarks

Location of Well

0. SHL: NESW / 2358 FSL / 1912 FWL / TWSP: 25N / RANGE: 12W / SECTION: 22 / LAT: 36.3859008 / LONG: -108.1013488 (TVD: 0 feet, MD: 0 feet) PPP: SENW / 2405 FNL / 2190 FWL / TWSP: 25N / RANGE: 12W / SECTION: 22 / LAT: 36.3873104 / LONG: -108.1004058 (TVD: 4851 feet, MD: 5289 feet) PPP: NESW / 0 FNL / 0 FWL / TWSP: 25N / RANGE: 12W / SECTION: 22 / LAT: 36.3861718 / LONG: -108.0988853 (TVD: 4851 feet, MD: 12970 feet) PPP: SENW / 0 FNL / 0 FWL / TWSP: 25N / RANGE: 12W / SECTION: 22 / LAT: 36.3866697 / LONG: -108.0995502 (TVD: 4851 feet, MD: 12970 feet) PPP: NWSE / 0 FNL / 0 FWL / TWSP: 25N / RANGE: 12W / SECTION: 23 / LAT: 36.3794473 / LONG: -108.0899073 (TVD: 4851 feet, MD: 12970 feet) PPP: SWSW / 0 FNL / 0 FWL / TWSP: 25N / RANGE: 12W / SECTION: 23 / LAT: 36.3794232 / LONG: -108.089875 (TVD: 4851 feet, MD: 12970 feet) BHL: SENW / 2305 FNL / 2498 FWL / TWSP: 25N / RANGE: 12W / SECTION: 26 / LAT: 36.3730905 / LONG: -108.0814224 (TVD: 4851 feet, MD: 12970 feet)

BLM Point of Contact

Name: CHRISTOPHER P WENMAN Title: Natural Resource Specialist

Phone: (505) 564-7727 Email: cwenman@blm.gov

C-102						Revised Ju				vised July	9 2024				
Submit Electronically Via OCD Permitting			E	State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION Submittal Type: As Drilled					mittal						
				W	VEI.I.	LOCAT	ION	INF	ORN	MATION					
API Nun			_	Pool (Pool Nar							
Propert	0-4-	45-3849	5	Proper	rty Name	5890				BISTI I	LOWE	R-GALLUP	(O) Well N	umber	
	3	20279			•			CARS	ON	UNIT				606H	
OGRID N	۷o.	371838		Operat	or Name	•		JR OPE	RATI	ING, LLC			Ground	i Level Elev 6354'	ation
Surfac	ce Owner	r: 🗆 Sta	te 🗆 Fe	e 🛛	Tribal	☐ Federa					Stat	te 🗆 Fee	X Tr	ibal 🏻 F	ederal
						Surface	Loc	ation	(S	HL)					
UL K	Section 22	Township 25N	Range 12W	Lot	Ft from 2359	m the N/S SOUTH	Ft fr 1912	om the E		Latitude 36.385901	• N	Longitude 108.101350)• W	County SAN	JUAN
					Вс	ottom He	ole :	Locati	on	(BHL)					
UL P	Section 36	Township 25N	Range 12W	Lot	Ft from	m the N/S SOUTH	Ft fr 220	om the E	,	Latitude 36.352846	° N	Longitude 108.05481	1° W	County SAN	JUAN
SEC 22: NE/NE (4 AC.); SEC	ed Acres SE/NW, NE/S 40 AC.); SEC C 35: NE/NE SW/NE, NW/S	PENETRATEI SW, NW/SE, SV 23: SW/SW (4 (40 AC.); SEC SE, NE/SE & S	D SPACING UN N/SE & SE/SE 40 AC.); SEC 2 : 25: SW/SW (SE/SE (360 AC	(200 AC 26: NW/4 40 AC.);	C.); SEC 2 & SE/4 SEC 36: 1 0 ACRES	7: (320 NW/4,	r Defin	ing Well	Defi	ning Well API		apping Spacing Jnit (Y/N)		idation Cod JNIT	e
		rs: R-828		-828			Well	Setbac	ks a	re under C	omm	on Ownersl	nip:	□ Yes	□ No
						Kick C	ff F	oint	(KO	P)					
UL	Section	Township	Range	Lot	Ft from 2359	m the N/S	Ft fr 191	om the E	•	Latitude	• NI	Longitude	3. W	County	111441
K	22	25N	12W		2339				ST	36.385901	N	108.10135	J W	SAN	JUAN
UL	Section	Township	Range	Lot	Ft from	First Ta		Point om the E		TP)		Longitude		County	
K	22	25N	12W		2413	•	212	_	ST	36.386046	• N	108.10064	1° W	1	JUAN
						Last Ta	ake	Point	(Ľ	TP)					
UL_	Section	Township	Range	Lot		m the N/S		om the E	•	Latitude		Longitude		County	
Р	36	25N	12W		884'	SOUTH	220) EA	.51	36.352846	5 N	108.05481	1° W	SAN	JUAN
Unitiz	ed Area	or Area CARSO		m Int	erest	Spacing U	nit T	ype 🛚	Hori	izontal 🗆 V	ertic	al Ground	Floor	Elevatio	n
0.D.E.D.		1DM1D10 + M						aribir.	1170 D	- CDDMIDICA	mro.	~			
		RTIFICAT		tained	horoin i	s true and				CERTIFICA			m this	nlat was ni	ntted
complete to the best of my knowledge and belief, and, if the well is a from f						ield r	notes of actual e same is true	surve	ys made by m	e or un	der my suj				
If this well is a horizontal well, I further certify that this organization has received the consent of at least one lessee or owner of a working interest or unleased mineral interest in each tract (in the target pool or formation) in which any part of the well's completed interval will be located or obtained a compulsory pooling order from the division.							The state of the s	TP.	BROADHUR DO						
Shaw-Marie Ford 9/29/2025 Signature Date				_			OFFESSIO	9/29 WAL	12025 SURVE						
	w-Marie	Ford					_								
Printe	ed Name									Signature a	nd Sea	l of Professional	Surveyor	:	
		uringresou	ırces.com	l			_	Certificate	Numb			Date of Surve	•		2025
E-mail Address						11393		SEP	IFMR	ER 26,	ZUZ5				

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description <u>Effective May 25, 2021</u>

I. Operator: DJR Operating	g, LLC_		OGRID:371838		Date: _12_/_16_	
II. Type: ⊠ Original □ Amo	endment	due to □ 19.15.2	7.9.D(6)(a) NMAC □ 19.	15.27.9.D(6)(b) N	MAC □ Other.	
If Other, please describe:						
III. Well(s): Provide the follo be recompleted from a single v				or set of wells pr	oposed to be dril	led or proposed to
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D	Anticipated Produced Water BBL/D
Carson Unit 606H	TBD	K-22-25N-12W	2358 FSL x 1912 FWL	850	1701	166
Carson Unit 610H	TBD	K-22-25N-12W	2358 FSL x 1852 FWL	850	1701	166
Carson Unit 627H	TBD	K-22-25N-12W	2358 FSL x 1872 FWL	850	1701	166
Carson Unit 631H	TBD	K-22-25N-12W	2358 FSL x 1892 FWL	850	1701	166
				3-year Decline	3-year Decline	3-year Decline
Carson Unit 606H	TBD	K-22-25N-12W	2358 FSL x 1912 FWL	192	384	38
Carson Unit 610H	TBD	K-22-25N-12W	2358 FSL x 1852 FWL	192	384	38
Carson Unit 627H	TBD	K-22-25N-12W	2358 FSL x 1872 FWL	192	384	38
Carson Unit 631H	TBD	K-22-25N-12W	2358 FSL x 1892 FWL	192	384	38

IV. Central Delivery Point Name: Chaco Processing Plant [See 19.15.27.9(D)(1) NMAC]

V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	Spud Date	TD Reached	Completion	Initial Flow	First Production
			Date	Commencement Date	Back Date	Date
Carson Unit 606H	TBD	Q3 2025	Q3 2025	Q3 2025	Q3 2025	Q3 2025
Carson Unit 610H	TBD	Q3 2025	Q3 2025	Q3 2025	Q3 2025	Q3 2025
Carson Unit 627H	TBD	Q3 2025	Q3 2025	Q3 2025	Q3 2025	Q3 2025
Carson Unit 631H	TBD	Q3 2025	Q3 2025	Q3 2025	Q3 2025	Q3 2025

- VI. Separation Equipment: ⊠ Attach a complete description of how Operator will size separation equipment to optimize gas capture.
- VII. Operational Practices: ⊠ Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.

Page 1 of 4

VIII. Best Management Practices:

Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

Section 2 — Enhanced Plan EFFECTIVE APRIL 1, 2022								
	Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable eporting area must complete this section.							
-	es that it is not require t for the applicable rep	-	ction because Operator is in o	compliance with its statewide natural gas				
IX. Anticipated Na	ntural Gas Productio	n:						
W	/ell	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF				
X. Natural Gas Ga	thering System (NG	GS):						
Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in				
production operation the segment or porting the segment or porting the segment or porting the segment or porting the segment of the segment o								

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

☑ Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

☐ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system.

If Operator checks this box, Operator will select one of the following:

Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. ☐ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- **(b)** power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Shaw-Maris Ford
Printed Name: Shaw-Marie Ford
Title: Regulatory Specialist
E-mail Address: sford@enduringresources.com
Date: 12/19/2024
Phone: 505-716-3297
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

SEPARATION EQUIPMENT

DJR Operating, LLC (DJR) has pulled representative pressurized samples from wells in the same producing formation. DJR has utilized these samples in process simulations to determine the amount of gas anticipated in each stage of the process and utilized this information with a safety factor to size the equipment listed below:

Separation equipment will be set as follows:

- o Individual 3 phase separator will be set for the individual well.
- o The separator will be sized based on the anticipated volume of the well and the pressure of the lines utilized for oil, gas, and water takeaway.
- o The 3 phase production separator will be equipped with a 0.75 MMBtu/hr indirect fired heater.

Heater treaters will be set as follows:

- o Individual heater treaters will be set for the individual well.
- o The heater treaters are sized based on the anticipated combined volume of oil and produced water predicted to come from the initial 3 phase separator.
- Oil will be separated from the produced water and the oil/produced water will be sent to its respective tanks.
- o The combined oil and natural gas stream is routed to the Vapor Recovery Tower.

Vapor Recovery Equipment will be set as follows:

- o The Vapor Recovery Tower has been sized, based on the anticipated volume of gas from the heater treater and oil and water tanks.
- The Vapor Recovery Unit has been sized, based on the anticipated volume of gas from the heater treater and oil and water tanks. The Vapor Recovery Unit is utilized to push the recovered gas into the sales pipeline.

Production storage tanks will be set as follows:

- The oil and produced water tanks utilize a closed vent capture system to ensure all breathing, working, and flashing losses are routed to the Vapor Recovery Tower and Vapor Recovery Unit.
- o Each of the production storage tanks will be equipped with a 0.5 MMBtu/hr indirect heater.

VENTING and FLARING

DJR Operating, LLC (DJR) has a natural gas system available prior to startup of completion operations. DJR utilizes a Vapor Recovery Unit System and sells all natural gas except during periods of startup, shutdown, maintenance, or malfunction for the gas capturing equipment, including the vapor recovery tower, vapor recovery unit, storage tanks, and pipelines.

Currently, DJR utilizes the following from list A-I of Section 3 for its operations to minimize flaring:

- a) DJR utilizes natural gas-powered generators to power its leases where grid power isn't available.
- b) When electrical grid power is unavailable, natural gas generators will be used for major equipment onsite.
- c) DJR's in service compression will be natural gas powered.
- d) Should liquids removal, such as dehydration be required, units will be powered by natural gas.

DJR will only flare gas during the following times:

- o Scheduled maintenance for gas capturing equipment including:
 - Vapor Recovery Tower
 - Vapor Recovery Unit
 - Storage tanks
 - o Pipelines
 - o Emergency flaring

OPERATIONAL PRACTICES

19.15.27.8 A. Venting and Flaring of Natural Gas

DJR Operating, LLC (DJR) understands the requirements of NMAC 19.15.27.8 which states that the venting and flaring of natural gas during drilling, completion or production that constitutes waste as defined in 19.15.2 are prohibited.

19.15.27.8 B. Venting and flaring during drilling operations

- o DJR shall capture or combust natural gas if technically feasible during drilling operations using best industry practices.
- A flare stack with a 100% capacity for expected volumes will be set on location of the facility at least 100 feet from the nearest surface hole location, well heads, and storage tanks.
- o In the event of an emergency, DJR will vent natural gas in order to avoid substantial impact. DJR shall report the vented or flared gas to the NMOCD.

19.15.27.8 E. Venting and flaring during completion or recompletion operations

During Completion Operations, DJR utilizes the following:

- o DJR facilities are built and ready from day 1 of Flowback.
- o Individual well test separators will be set to properly separate gas and liquids. Temporary test separator will be utilized initially to process volumes. In addition, separators will be tied into flowback tanks which will be tied into the gas processing equipment for sales down a pipeline. See Separation Equipment for details.
- O Should the facility not yet be capable of processing gas, or the gas does not meet quality standards, then storage tanks will be set that are tied into gas busters or temporary flare to manage natural gas. This flare would meet the following requirements:
 - 1) An appropriately sized flare stack with an automatic igniter.
 - 2) DJR analyzes the natural gas samples twice per week.
 - 3) DJR routes the natural gas into a gathering pipeline as soon as the pipeline specifications are met.
 - 4) DJR provides the NMOCD with pipeline specifications and natural gas data.

19.15.27.8 D. Venting and flaring during production operations

During Production Operations DJR will not vent or flare natural gas except under the following circumstances:

- 1. During an emergency or malfunction
- 2. To unload or clean-up liquid holdup in a well to atmospheric pressure, provided:
 - a. DJR does not vent after the well achieves a stabilized rate and pressure.
 - b. DJR will remain present on-site during liquids unloading by manual purging and tall all reasonable actions to achieve a stabilized rate and pressure at the earliest practical time.
 - c. DJR will optimize the system to minimize natural gas venting on any well equipped with a plunger lift or auto control system.
 - d. Best Management Practices will be used during downhole well maintenance.
- 3. During the first year of production from an exploratory well provided:
 - a. DJR receives approval from the NMOCD.
 - b. DJR remains in compliance with the NM gas capture requirements.
 - c. DJR submits an updated C-129 form to the NMOCD.
- 4. During the following activities unless prohibited:
 - a. Gauging or sampling a storage tank or low-pressure production vessel.
 - b. Loading out liquids from a storage tank.
 - c. Repair and maintenance.
 - d. Normal operation of gas activated pneumatic controller or pump.
 - e. Normal operation of a storage tank but not including venting from a thief hatch.
 - f. Normal operation of dehydration units.
 - g. Normal operations of compressors, compressor engines, turbines, valves, flanges, and connectors.
 - h. During a bradenhead, packer leakage test, or production test lasting less than 24-hours.
 - i. When natural gas does not meet the gathering pipeline specifications.
 - j. Commissioning of pipelines, equipment, or facilities only for as long as necessary to purge introduced impurities.

19.15.27.8 E. Performance standards

- 1. DJR has utilized process simulations with a safety factor to design all separation and storage equipment. The equipment is routed to a Vapor Recovery System and utilizes a flare as back up for periods of startup, shutdown, maintenance, or malfunction of the VRU System.
- 2. DJR will install a flare that designed to handle the full volume of vapors from the facility in case of the VRU failure and it its designed with an auto ignition system.
- 3. Flare stacks will appropriately sized and designed to ensure proper combustion efficiency.
 - a. Flare stacks installed or replaced will be equipped with an automatic ignitor or continuous pilot.

- b. Previously installed flare stacks will be retrofitted with an automatic ignitor, continuous pilot, or technology that alerts DJR of flare malfunction within 18 months after May 25, 2021.
- c. Flare stacks replaced after May 25, 2021, will be equipped with an automatic ignitor or continuous pilot if located at a well or facility with average daily production of 60,000 cubic feet of natural gas or less.
- d. Flare stacks will be located at least 100 feet from the well and storage tanks and securely anchored.
- 4. DJR will conduct an AVO inspection on all components for leaks and defects on a weekly basis.
- 5. DJR will make and keep records of AVO inspections which will be available to the NMOCD for at least 5 years.
- 6. DJR may use a remote or automated monitoring technology to detect leaks and releases in lieu of AVO inspections with prior NMOCD approval.
- 7. Facilities will be designed to minimize waste.
- 8. DJR will resolve emergencies as promptly as possible.

19.15.27.8 F. Measurement or estimation of vented and flared natural gas

- 1. DJR will have meters on both the low- and high-pressure sides of the flares and the volumes will be recorded in DJR's SCADA system.
- 2. DJR will install equipment to measure the volume of flared natural gas that has an average daily production of 60,000 cubic feet or greater of natural gas.
- 3. DJR's measuring equipment will conform to the industry standards.
- 4. The measurement system is designed such that it cannot be bypassed except for inspections and servicing meters.
- 5. DJR will estimate the volume of vented or flared natural gas using a methodology that can be independently verified if metering is not practicable due to low flow rate or pressure.
- 6. DJR will estimate the volume of flared and vented natural gas based on the results of an annual GOR test for wells that do not require measuring equipment reported on Form C-116.
- 7. DJR will install measuring equipment whenever the NMOCD determines that metering is necessary.

BEST MANAGEMENT PRACTICES

DJR Operating, LLC (DJR) utilizes the following Best Management Practices to minimize venting during active and planned maintenance.

DJR has a closed vent capture system to route emissions from the heater treater, tanks, and vapor recovery to the vapor recovery unit with an enclosed combustion device (ECD) for backup. The system is designed such that if the vapor recovery unit is taken out of service for any reason, the vapors will be routed to the ECD for combustion.

DJR will isolate and attempt to route all vapors to the vapor recovery unit or ECD prior to opening any lines for maintenance to minimize venting from the equipment.

DJR shall notify the NMOCD of venting or flaring that exceeds 50 MCF but less than 500 MCF in volume that either resulted from an emergency or malfunction, or an event lasting over eight hours or more cumulatively within any 24-hour period from a single event by filing a form C-129 no later than 15 days following the discovery or commencement of venting or flaring.

DJR shall notify the NMOCD verbally or by e-mail within 24-hours following discovery or commencement of venting or flaring that exceeds 500 MCF in volume or otherwise qualifies as a major release as defined in 19.15.29.7 NMAC from a single event and provide the information required in form C-129 to the NMOCD no later than 15 days that verifies, updates, or corrects the verbal or e-mail notification.

DJR will install measuring equipment to conform to industry standards such as American Petroleum Institute (API) Manual of Petroleum Measurement Standards (MPMS) Chapter 14.10 Measurement of Flow to Flares.

DJRs measuring equipment shall not be designed or equipped with a manifold that allows the diversion of natural gas around the metering element except for the sole purpose of inspecting and servicing the measurement equipment.

DJR shall report the volume of vented and flared natural gas for each well or facility at which venting or flaring occurred on a monthly basis.

DRILLING PLAN Carson Unit #606H San Juan County, New Mexico

Surface Location

1912-ft FWL & 2358-ft FSL Sec 22 T25N R12W Graded Elevation 6354' MSL RKB Elevation 6368' (14' KB) SHL Geographical Coordinates (NAD-83)

Latitude 36.3859008° N Longitude 108.1013488° W

Kick Off Point for Horizontal Build Curve

4195-ft MD 4076-ft TVD **Local Coordinates (from SHL)**

856-ft North 258-ft West

Heel Location (Pay zone entry)

2190-ft FWL & 2405-ft FNL Sec 22 T25 R12

36.38731036° N Latitude

Longitude 108.10040575° W

Last Take Point (LTP)

2007-ft FWL & 1850-ft FNL Sec 26 T25 R12

LTP Geographical Coordinates (NAD-83)

Heel Geographical Coordinates (NAD-83)

36.37434199° N Latitude Longitude 108.08309260° W

Bottom Hole Location (TD)

2498-ft FWL & 2305-ft FNL

Sec 26 T25 R12

BHL Geographical Coordinates (NAD-83)

Latitude 36.3730905° N Longitude 108.0814224° W

Well objectives

This well is planned as a 7620-ft lateral in the Gallup C sand.

Bottom Hole temperature and pressure

The temperature in the Gallup C horizontal objective is 134°F. Bottom hole pressure in the Gallup C is forecast to be 1985 psi.

Formation Tops (Sd = Sand; Sh = Shale; Siltstone = Slt, Coal = C; W = water; O = oil; G = gas; NP = no penetration)

Name	MD (ft)	TVD (ft)	Lithology	Pore fluid	Expected Pore Pressure	Planned Mud Weight (ppg)
					(ppg)	
Ojo Alamo	269	269	Sd	W	8.3	8.4 – 8.8
Kirtland	392	392	Sh	-	8.3	8.4 - 8.8
Fruitland	903	902	С	G	8.3	9.0 - 9.5
Pictured Cliffs	1179	1173	Sd	W	8.3	9.0 - 9.5
Lewis	1332	1321	Sh	-		9.0 - 9.5
Chacra	1961	1926	Sd	-	8.3	9.0 - 9.5
Menefee	2640	2580	Sd, C	G	8.3	9.0 - 9.5
Point Lookout	3699	3599	Sd	-	8.3	9.0 - 9.5
Mancos	3877	3770	Sh	-		9.0 - 9.5
Mancos Silt	4211	4092	SIt	O/G	6.6	9.0 - 9.5
Gallup A	4781	4622	SIt	O/G	6.6	9.0 - 9.5
Gallup B	4864	4682	Sd	O/G	6.6	8.8 -9.0
Gallup C	5028	4777	Sd	O/G	6.6	8.8 -9.0
Target	5353	4854	Sd	O/G	6.6	8.8 -9.0

Casing Program

Casing	Hole	Weight			MD	MD	TVD	TVD	Top of Cement
OD	Size	(#/ft)	Grade	Coupling	Top	Bottom	Top	Bottom	
9-5/8"	12-1/4"	36	K-55	STC	surf	380	surf	380	surface
7"	8-3/4"	26	K-55	LTC	surf	5289	surf	4851	surface
4-1/2"	6-1/8"	11.6	P-110	BTC	5008	12970	4767	4766	5008

Note: all casing will be new

Casing Design Load Cases

			Casing String	
	Description	9-5/8" Surface	7" Intermediate	4-1/2" Production Liner
Collapse	Full internal evacuation ¹	Juliace		∠IIIei
- Comapos	Cementing	~	~	✓
Burst	Pressure test	✓2	✓2	✓
	Gas kick		✓3	
	Fracture at shoe, 1/3 BHP at surface		✓ 4	
	Injection down casing			√ 5
Axial	Dynamic load on casing coupling ⁶	-	/	✓
Axial	Overpull ⁷	✓	✓	~

Note

- Fluid level at shoe, air column to surface, pore pressure outside
- 1 2 Tested to 80% of minimum internal yield with freshwater inside, pore pressure outside
- 3 50 bbl kick at TD, 0.50 ppg intensity, 4" drill pipe, 9.0 ppg mud, fracture gradient at shoe
- 4 5
- 2060 psi BHP, 687 psi surface pressure, 12.5 ppg EMW shoe integrity Surface stimulation pressure of 8000 psi on 8.3 ppg fluid column. Stimulation will be down frac string, so load does not apply to 7" intermediate casing.
- 6 Shock load from abrupt pipe deceleration, evaluated against coupling rating
- Overpull values as follows: Surface casing 20,000 lbs, Intermediate & Production 100,000 lbs

Casing Design Factors

		Design Factors					
Casing string	Casing OD	Burst	Collapse	Axial	Triaxial		
Surface	9-5/8"	1.25	13.38	8.16	1.56		
Intermediate	7"	1.25	1.50	1.68	1.34		
Production liner	4-1/2"	1.37	3.68	1.88	1.69		

Cement Design

<u>Lead</u>
Redi-Mix
I-II
Surface
14.50
1.61
7.41
114
33
185
50

7" Intermediate Casing Lead <u>Tail</u>

	American Cementing	American Cementing
Type	I/II	Poz/G
Planned top	Surface	3877-ft
Density (ppg)	12.30	13.50
Yield (cf/sx)	2.32	1.46
Mix water (gal/sx)	13.22	7.11
Volume (sx)	432	152
Volume (bbls)	179	39
Volume (cu.ft.)	1002	221
Excess %	78	0

4-1/2" Production Liner

	American Cementing
Type	Poz/Ğ
Planned top	5008-ft
Density (ppg)	13.3
Yield (cf/sx)	1.52
Mix water (gal/sx)	7.53
Volume (sx)	688
Volume (bbls)	186
Volume (cu.ft)	1046
Excess %	40

Wellhead & Pressure Control

The well head will be an 11" 5M multi-bowl system. A 3M BOPE conforming to Onshore Order #2 will be installed on the surface casing. The BOP and accumulator will meet API 16D and 16E respectively.

A PVT mud monitoring system and a trip tank will be rigged up and operational for all hole intervals. An electronic geolograph will be employed to monitor and record drilling data (ROP, WOB, SPM, Pressure, RPM and torque).

Mud Program

Surface hole will be drilled with a fresh water, native mud system. In intermediate hole, a low weight 7% KCI LSND drilling fluid will be used, with KCl providing chemical stability for the young shales and clays present in the interval. In production hole a LSND system with polymer and lubricant additives is programmed. Sufficient drill water and mud additives will be on hand to maintain adequate pit volumes and maintain well control.

Hole Section	Fluid type	Interval (MD)	Density (ppg)	Funnel Viscosity	Yield Point	Fluid Loss (cc/30 min)
Surface	Fresh water spud mud	0 – 380	8.4 - 8.8	32 – 44	2 – 12	NC
Intermediate	7% KCl Low solids, non- dispersed	380 – 5289	9.0 – 9.5	38 – 45	8 – 14	<20
Production	Low solids, non-dispersed	5289 – 12970	8.8 - 9.2	34 – 38	6 – 8	6 – 8

Cores, tests and logs

Wellbore surveying: Drift (inclination only) surveys will be obtained in surface hole. MWD directional surveys will be taken in intermediate and production hole.

Logging while drilling: None in surface hole. MWD GR in intermediate and production hole.

Mud logging: a two-person mud logging unit with C1 - C4 gas analysis will be operational in intermediate and production hole.

Electric logging: No open hole electric logs are programmed. A cased hole GR/CCL will be run during completions for perforating depth control.

Fluids and Solids Control Program Closed-Loop System

A fully, closed-loop system will be utilized. The system will consist of above-ground piping and above-ground storage tanks and bins. The system will not entail any earthen pits, below-grade storage, or drying pads. All equipment will be disassembled and removed from the site when drilling operations cease. The system will be capable of storing all fluids and generated cuttings and of preventing uncontrolled releases of the same. The system will be operated in an efficient manner to allow the recycling and reuse of as much fluid as possible and to minimize the amount of fluids and solids that require disposal.

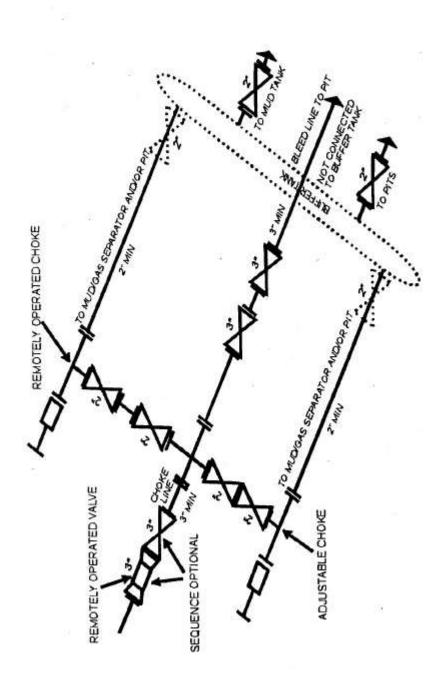
Fluid Measurement

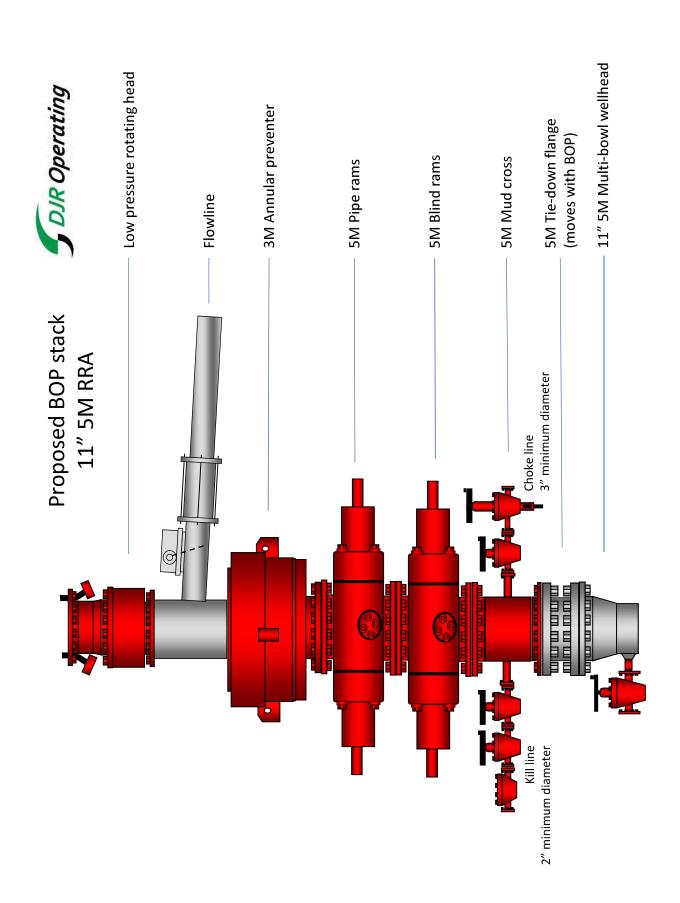
Pumps shall be equipped with stroke counters with displays in the dog-house. Slow pump speed shall be recorded daily and after mudding up, at a minimum, on the drilling report. A Pit Volume Totalizer will be installed and the readout will be displayed in the dog-house. Gas-detecting equipment will be installed at the shakers, and readouts will be available in the dog-house and the in the geologist's work-station (if geologist or mud-logger is on-site).

Fluid Disposal

Fluids that cannot be reused, recycled, or returned to the supplier will be hauled to and disposed of at an approved disposal site (Industrial Ecosystem, Inc. or Envirotech, Inc.).

Solid Disposal


Drilling solids will be stored (until haul-off) on-site in separate containers with no other waste, debris, or garbage products. Waste solids will be hauled to and disposed of at an approved disposal site (Industrial Ecosystem, Inc. or Envirotech, Inc.).


Completion

It is envisioned that this well will be completed with a multi-stage sand frac, using the plug and perf technique. After drilling out the plugs, the current plan is to install a 2-7/8" plunger-assisted gas lift tubing string. The stimulation and completion plan will be sundried at a later date.

Choke Manifold Actual system to conform with Onshore Order 2

Proposed Carson Unit WC 22-2 Pad # 606H - Slot 4

Original Drilling

Plan: APD

Standard Planning Report

21 March, 2022

Planning Report

Database: Company: Project: Grand Junction
DJR Operating
Proposed Carson Unit

WC 22-2 Pad

Well: # 606H
Wellbore: Original Drilling
Design: APD

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well # 606H - Slot 4

GL 6354' & RKB 14' @ 6368ft GL 6354' & RKB 14' @ 6368ft

True

Minimum Curvature

Project

Site:

Proposed Carson Unit

Map System:US State Plane 1983Geo Datum:North American Datum 1983

Map Zone: North American Datum 198
North American Datum 198
New Mexico Western Zone

System Datum:

Mean Sea Level

Site WC 22-2 Pad

 Site Position:
 Northing:
 1,959,879.47 usft
 Latitude:
 36.38590016

 From:
 Lat/Long
 Easting:
 2,644,143.98 usft
 Longitude:
 -108.10155276

Position Uncertainty: 0 ft Slot Radius: 13.20 in

Well # 606H - Slot 4

 Well Position
 +N/-S
 0 ft
 Northing:
 1,959,879.54 usft
 Latitude:
 36.38590081

 +E/-W
 0 ft
 Easting:
 2,644,204.01 usft
 Longitude:
 -108.10134882

Position Uncertainty 0 ft Wellhead Elevation: ft Ground Level: 6354 ft

Grid Convergence: -0.16 °

Wellbore Original Drilling

 Magnetics
 Model Name
 Sample Date
 Declination (°)
 Dip Angle (nT)
 Field Strength (nT)

 IGRF2015
 7/27/2021
 8.95
 62.93
 49,352.57801928

Design APD

Audit Notes:

Version: Phase: PLAN Tie On Depth: 0

 Vertical Section:
 Depth From (TVD) (ft)
 +N/-S (ft)
 +E/-W (ft)
 Direction (°)

 0
 0
 0
 0
 128.48

Plan Survey Tool Program Date 3/21/2022

Depth From Depth To

(ft) (ft) Survey (Wellbore) Tool Name Remarks

1 0 12,970 APD (Original Drilling) MWD+IGRF

OWSG MWD + IGRF or WMM

Plan Sections										
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0	0.00	0.00	0	0	0	0.00	0.00	0.00	0.00	
515	0.00	0.00	515	0	0	0.00	0.00	0.00	0.00	
1304	15.78	343.21	1294	103	-31	2.00	2.00	0.00	343.21	
4195	15.78	343.21	4076	856	-258	0.00	0.00	0.00	0.00	
5353	90.66	132.80	4854	513	278	9.00	6.47	12.92	148.53	606H Heel
12,970	90.66	132.80	4766	-4663	5866	0.00	0.00	0.00	0.00	606H Toe

Lonestar Consulting, LLC

Planning Report

Database: Company: Project:

Grand Junction
DJR Operating
Proposed Carson Unit

Site: WC 22-2 Pad
Well: # 606H
Wellbore: Original Drilling

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well # 606H - Slot 4

GL 6354' & RKB 14' @ 6368ft GL 6354' & RKB 14' @ 6368ft

True

Design:	APD								
Planned Survey									
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0	0.00	0.00	0	0	0	0	0.00	0.00	0.00
100	0.00	0.00	100	0	0	0	0.00	0.00	0.00
200	0.00	0.00	200	0	0	0	0.00	0.00	0.00
300 400	0.00 0.00	0.00 0.00	300 400	0 0	0	0	0.00 0.00	0.00 0.00	0.00 0.00
500	0.00	0.00	500	0	0	0	0.00	0.00	0.00
515	0.00	0.00	515	0	0	0	0.00	0.00	0.00
600	1.70	343.21	600	1	0	-1	2.00	2.00	0.00
700 800	3.70 5.70	343.21	700 800	6 14	-2 -4	-5 -12	2.00	2.00	0.00 0.00
000	5.70	343.21					2.00	2.00	0.00
900	7.70	343.21	899	25	-7	-21	2.00	2.00	0.00
1000	9.70	343.21	998	39	-12	-34	2.00	2.00	0.00
1100	11.70	343.21	1096	57	-17	-49	2.00	2.00	0.00
1200	13.70	343.21	1193	78	-24	-67	2.00	2.00	0.00
1300	15.70	343.21	1290	102	-31	-88	2.00	2.00	0.00
1304	15.78	343.21	1294	103	-31	-89	2.00	2.00	0.00
1400	15.78	343.21	1386	128	-39	-110	0.00	0.00	0.00
1500	15.78	343.21	1483	154	-47	-133	0.00	0.00	0.00
1600	15.78	343.21	1579	180	-54	-155	0.00	0.00	0.00
1700	15.78	343.21	1675	206	-62	-177	0.00	0.00	0.00
1800	15.78	343.21	1771	232	-70	-200	0.00	0.00	0.00
1900	15.78	343.21	1868	259	-78	-222	0.00	0.00	0.00
2000	15.78	343.21	1964	285	-86	-244	0.00	0.00	0.00
2100	15.78	343.21	2060	311	-94	-267	0.00	0.00	0.00
2200	15.78	343.21	2156	337	-102	-289	0.00	0.00	0.00
2300	15.78	343.21	2253	363	-109	-311	0.00	0.00	0.00
2400	15.78	343.21	2349	389	-117	-334	0.00	0.00	0.00
2500	15.78	343.21	2445	415	-125	-356	0.00	0.00	0.00
2600	15.78	343.21	2541	441	-133	-378	0.00	0.00	0.00
2700	15.78	343.21	2637	467	-141	-401	0.00	0.00	0.00
2800	15.78	343.21	2734	493	-149	-423	0.00	0.00	0.00
2900	15.78	343.21	2830	519	-157	-445	0.00	0.00	0.00
3000	15.78	343.21	2926	545	-164	-468	0.00	0.00	0.00
3100	15.78	343.21	3022	571	-172	-490	0.00	0.00	0.00
3200	15.78	343.21	3119	597	-180	-512	0.00	0.00	0.00
3300	15.78	343.21	3215	623	-188	-535	0.00	0.00	0.00
3400	15.78	343.21	3215	623 649	-188 -196	-535 -557	0.00	0.00	0.00
3500	15.78	343.21	3407	675	-204	-537 -580	0.00	0.00	0.00
3600	15.78	343.21	3504	701	-212	-602	0.00	0.00	0.00
3700	15.78	343.21	3600	727	-219	-624	0.00	0.00	0.00
3800	15.78	343.21	3696 3792	753 770	-227 225	-647	0.00	0.00	0.00 0.00
3900 4000	15.78 15.78	343.21 343.21	3792 3888	779 805	-235 -243	-669 -691	0.00 0.00	0.00 0.00	0.00
4100	15.76	343.21	3985	831	-243 -251	-091 -714	0.00	0.00	0.00
4195	15.78	343.21	4076	856	-258	-714	0.00	0.00	0.00
4200	15.37	344.16	4081	857	-259	-736	9.00	-7.64 6.26	17.73
4300	9.11 9.53	16.10 74.00	4179 4278	878	-260 250	-750 748	9.00	-6.26 0.41	31.94 57.90
4400 4500	9.53 16.10	74.00 102.92	4278 4375	888 887	-250 -228	-748 -731	9.00 9.00	0.41 6.58	28.93
4600	24.27	102.92	4375 4469	875	-220 -196	-731 -698	9.00	8.16	11.23
4700	32.85	119.88	4557	853	-154	-651	9.00	8.58	5.72
4800	41.60	123.41	4636	821	-102	-591	9.00	8.75	3.54
4900	50.42	125.90	4706	781	-43	-520	9.00	8.82	2.49
5000	59.28	127.82	4763	731	22	-438	9.00	8.86	1.92

Page 25 of 47

Lonestar Consulting, LLC

Planning Report

Database: Company: Project:

Grand Junction DJR Operating Proposed Carson Unit

WC 22-2 Pad Site:

Local Co-ordinate Reference:

Survey Calculation Method:

TVD Reference: MD Reference: North Reference: Well # 606H - Slot 4 GL 6354' & RKB 14' @ 6368ft GL 6354' & RKB 14' @ 6368ft

weii:	# 6060
Wellbore:	Original Drilling
Design:	APD

Planned Survey									
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5100	68.17	129.42	4807	676	92	-348	9.00	8.89	1.59
5200	77.07	130.82	4837	614	165	-253	9.00	8.90	1.41
5300	85.97	132.13	4852	549	239	-154	9.00	8.91	1.31
5353	90.66	132.80	4854	513	278	-102	9.00	8.91	1.28
5400	90.66	132.80	4853	481	312	-55	0.00	0.00	0.00
5500	90.66	132.80	4852	413	386	45	0.00	0.00	0.00
5600	90.66	132.80	4851	345	459	145	0.00	0.00	0.00
5700	90.66	132.80	4850	277	532	244	0.00	0.00	0.00
5800	90.66	132.80	4848	209	606	344	0.00	0.00	0.00
5900	90.66	132.80	4847	141	679	444	0.00	0.00	0.00
6000	90.66	132.80	4846	73	753	544	0.00	0.00	0.00
6100	90.66	132.80	4845	5	826	643	0.00	0.00	0.00
6200	90.66	132.80	4844	-63	899	743	0.00	0.00	0.00
6300	90.66	132.80	4843	-131	973	843	0.00	0.00	0.00
6400	90.66	132.80	4842	-199	1046	942	0.00	0.00	0.00
6500	90.66	132.80	4840	-266	1119	1042	0.00	0.00	0.00
6600	90.66	132.80	4839	-334	1193	1142	0.00	0.00	0.00
6700	90.66	132.80	4838	-402	1266	1241	0.00	0.00	0.00
6800	90.66	132.80	4837	-470	1339	1341	0.00	0.00	0.00
6900	90.66	132.80	4836	-538	1413	1441	0.00	0.00	0.00
7000	90.66	132.80	4835	-606	1486	1541	0.00	0.00	0.00
7100	90.66	132.80	4833	-674	1560	1640	0.00	0.00	0.00
7200	90.66	132.80	4832	-742	1633	1740	0.00	0.00	0.00
7300	90.66	132.80	4831	-810	1706	1840	0.00	0.00	0.00
7400	90.66	132.80	4830	-878	1780	1939	0.00	0.00	0.00
7500	90.66	132.80	4829	-946	1853	2039	0.00	0.00	0.00
7600	90.66	132.80	4828	-1014	1926	2139	0.00	0.00	0.00
7700	90.66	132.80	4827	-1082	2000	2239	0.00	0.00	0.00
7800	90.66	132.80	4825	-1150	2073	2338	0.00	0.00	0.00
7900	90.66	132.80	4824	-1218	2146	2438	0.00	0.00	0.00
8000	90.66	132.80	4823	-1286	2220	2538	0.00	0.00	0.00
8100	90.66	132.80	4822	-1354	2293	2637	0.00	0.00	0.00
8200	90.66	132.80	4821	-1422	2367	2737	0.00	0.00	0.00
8300	90.66	132.80	4820	-1489	2440	2837	0.00	0.00	0.00
8400	90.66	132.80	4819	-1557	2513	2937	0.00	0.00	0.00
8500	90.66	132.80	4817	-1625	2587	3036	0.00	0.00	0.00
8600	90.66	132.80	4816	-1693	2660	3136	0.00	0.00	0.00
8700	90.66	132.80	4815	-1761	2733	3236	0.00	0.00	0.00
8800	90.66	132.80	4814	-1829	2807	3335	0.00	0.00	0.00
8900	90.66	132.80	4813	-1897	2880	3435	0.00	0.00	0.00
9000	90.66	132.80	4812	-1965	2953	3535	0.00	0.00	0.00
9100	90.66	132.80	4810	-2033	3027	3634	0.00	0.00	0.00
9200	90.66	132.80	4809	-2101	3100	3734	0.00	0.00	0.00
9300	90.66	132.80	4808	-2169	3174	3834	0.00	0.00	0.00
9400	90.66	132.80	4807	-2237	3247	3934	0.00	0.00	0.00
9500	90.66	132.80	4806	-2305	3320	4033	0.00	0.00	0.00
9600	90.66	132.80	4805	-2373	3394	4133	0.00	0.00	0.00
9700	90.66	132.80	4804	-2441	3467	4233	0.00	0.00	0.00
9800	90.66	132.80	4802	-2509	3540	4332	0.00	0.00	0.00
9900	90.66	132.80	4801	-2577	3614	4432	0.00	0.00	0.00
10,000	90.66	132.80	4800	-2645	3687	4532	0.00	0.00	0.00
10,100	90.66	132.80	4799	-2713	3760	4632	0.00	0.00	0.00
10,200	90.66	132.80	4798	-2780	3834	4731	0.00	0.00	0.00
10,300	90.66	132.80	4797	-2848	3907	4831	0.00	0.00	0.00

Planning Report

Database: Company: Project:

Site:

Grand Junction
DJR Operating
Proposed Carson Unit

WC 22-2 Pad

Well: # 606H Wellbore: Original Drilling Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well # 606H - Slot 4

GL 6354' & RKB 14' @ 6368ft GL 6354' & RKB 14' @ 6368ft

True

esign:	APD	5							
lanned Survey									
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,400 10,500	90.66 90.66	132.80 132.80	4796 4794	-2916 -2984		4931 5030	0.00 0.00	0.00 0.00	0.00 0.00
10,600 10,700 10,800 10,900	90.66 90.66 90.66	132.80 132.80 132.80 132.80	4793 4792 4791 4790	-3052 -3120 -3188 -3256	4201 4274 4347	5130 5230 5330 5429	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
11,000 11,100 11,200 11,300	90.66 90.66 90.66	132.80 132.80 132.80 132.80	4789 4787 4786 4785	-3324 -3392 -3460 -3528	4494 4567 4641	5529 5629 5728 5828	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
11,400 11,500 11,600	90.66 90.66 90.66	132.80 132.80 132.80	4784 4783 4782	-3596 -3664 -3732	4787	5928 6028 6127	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
11,700 11,800 11,900 12,000	90.66 90.66 90.66 90.66	132.80 132.80 132.80 132.80	4781 4779 4778 4777	-3800 -3868 -3936 -4003	4934 5008 5081	6227 6327 6426 6526	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
12,100 12,200 12,300 12,400 12,500	90.66 90.66 90.66 90.66 90.66	132.80 132.80 132.80 132.80 132.80	4776 4775 4774 4773 4771	-4071 -4139 -4207 -4275 -4343	5228 5301 5374 5448	6626 6725 6825 6925 7025	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
12,600 12,700 12,800 12,900 12,970	90.66 90.66 90.66 90.66 90.66	132.80 132.80 132.80 132.80 132.80	4770 4769 4768 4767 4766	-4411 -4479 -4547 -4615 -4663	5668 5741 5815	7124 7224 7324 7423 7494	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (ft)	+N/-S (ft)	+E/-W (ft)	Northing (usft)	Easting (usft)	Latitude	Longitude
606H Toe - plan hits target cent - Circle (radius 50)	0.00 eer	0.00	4766	-4663	5866	1,955,200.51	2,650,057.18	36.37309050	-108.08142240
606H Heel - plan hits target cent - Circle (radius 50)	0.00 er	0.00	4854	513	278	1,960,391.89	2,644,483.01	36.38731036	-108.10040574

Casing Points							
	Measured Depth (ft)	Vertical Depth (ft)		Name	Casing Diameter (in)	Hole Diameter (in)	
	380 5289	380 4851	Surface Intermediate		9.63 7.00	12.25 8.75	

Planning Report

Database:

Grand Junction Company: DJR Operating Project: Proposed Carson Unit WC 22-2 Pad Site:

Well: # 606H Original Drilling Wellbore: Design: APD

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well # 606H - Slot 4

GL 6354' & RKB 14' @ 6368ft GL 6354' & RKB 14' @ 6368ft

ions						
	Measured Depth (ft)	Vertical Depth (ft)	Name	Lithology	Dip (°)	Dip Direction (°)
	269	269	Ojo Alamo		0.00	0.00
	392	392	Kirtland		0.00	0.00
	903	902	Fruitland		0.00	0.00
	1179	1173	Pictured Cliffs		0.00	0.00
	1332	1321	Lewis		0.00	0.00
	1961	1926	Chacra		0.00	0.00
	2640	2580	Menefee		0.00	0.00
	3699	3599	Point Lookout		0.00	0.00
	3877	3770	Mancos		0.00	0.00
	4211	4092	Mancos Silt		0.00	0.00
	4781	4622	Gallup A		0.00	0.00
	4864	4682	Gallup B		0.00	0.00
	5028	4777	Gallup C		0.00	0.00

Proposed Carson Unit WC 22-2 Pad # 606H

Original Drilling APD

Anticollision Report

21 March, 2022

Lonestar Consulting, LLC

Anticollision Report

Company: **DJR** Operating Project: Proposed Carson Unit WC 22-2 Pad

Reference Site: Site Error: 0 ft Reference Well: # 606H Well Error: 0 ft

Reference Wellbore Original Drilling

Reference Design: APD Local Co-ordinate Reference:

Well # 606H - Slot 4 TVD Reference: GL 6354' & RKB 14' @ 6368ft GL 6354' & RKB 14' @ 6368ft MD Reference:

North Reference: True

Survey Calculation Method: Minimum Curvature Output errors are at 2.00 sigma

Database: **Grand Junction** Offset TVD Reference: Offset Datum

Reference APD

Filter type: NO GLOBAL FILTER: Using user defined selection & filtering criteria

Interpolation Method: Stations Error Model: **ISCWSA**

Depth Range: Unlimited Scan Method: Closest Approach 3D Results Limited by: Maximum centre distance of 1000ft Error Surface: Pedal Curve Warning Levels Evaluated at: 2.00 Sigma Casing Method: Not applied

Date 3/21/2022 **Survey Tool Program**

> From То

(ft) Survey (Wellbore) **Tool Name** Description (ft)

12,970 APD (Original Drilling) MWD+IGRF OWSG MWD + IGRF or WMM 0

Summary						
Site Name Offset Well - Wellbore - Design	Reference Measured Depth (ft)	Offset Measured Depth (ft)	Dista Between Centres (ft)	nce Between Ellipses (ft)	Separation Factor	Warning
WC 22-2 Pad						
# 610H - Original Drilling - APD # 610H - Original Drilling - APD	515 800	515 793	60 71	56 65	16.712 CC 12.695 SF	, ES
# 627H - Original Drilling - APD	501	501	40	37	11.986 CC	
# 627H - Original Drilling - APD # 627H - Original Drilling - APD	515 1000	515 995	40 61	37 54	11.651 ES 8.693 SF	
# 631H - Original Drilling - APD # 631H - Original Drilling - APD	515 1304	515 1302	20 23	16 13	5.564 CC 2.333 ES	
# 631H - Original Drilling - APD	1800	1798 4799	32	17	2.123 SF 2.912 CC	
Bisti Gallup 22-15 - OH - OH Bisti Gallup 22-15 - OH - OH	7899 7900	4799 4799	640 640	420 420	2.912 CC 2.911 ES,	
Bisti Gallup 22-16 - OH - OH Bisti Gallup 22-6 - OH - OH	8540 5332	4802 4851	126 167	-109 -2		el 3, CC, ES, SF el 3, CC, ES, SF
Hunter Foster 1 - OH - OH	12,970	4767	516	187	1.567 CC	, ES, SF
Lee Hixon 2 - OH - OH	12,145	4783	80	-244	0.247 Lev	el 3, CC, ES, SF

Offset Des	sign: WO	22-2 Pad	- #610H	- Original D	rilling - AF	PD							Offset Site Error:	0 ft
Survey Progr	ram: 0-1	MWD+IGRF								Rule Assi	gned:		Offset Well Error:	0 ft
Refer Measured Depth (ft)	rence Vertical Depth (ft)	Off Measured Depth (ft)	set Vertical Depth (ft)	Semi M Reference (ft)	Major Axis Offset (ft)	Highside Toolface (°)	Offset Wellbo +N/-S (ft)	+E/-W (ft)	Dis Between Centres (ft)	tance Between Ellipses (ft)	Minimum Separation (ft)	Separation Factor	Warning	
0	0	0	0	0	0	-90.23	0	-60	60					
100	100	100	100	0	0	-90.23	0	-60	60	59	0.62	97.358		
200	200	200	200	1	1	-90.23	0	-60	60	59	1.33	45.015		
300	300	300	300	1	1	-90.23	0	-60	60	58	2.05	29.275		
400	400	400	400	1	1	-90.23	0	-60	60	57	2.77	21.691		
500	500	500	500	2	2	-90.23	0	-60	60	57	3.48	17.228		
515	515	515	515	2	2	-90.23	0	-60	60	56	3.59	16.712 CC, ES	3	
600	600	598	598	2	2	-74.43	0	-61	61	57	4.19	14.545		
700	700	696	696	2	2	-77.88	0	-66	64	59	4.88	13.183		
800	800	793	793	3	3	-83.01	1	-73	71	65	5.58	12.695 SF		
900	899	890	889	3	3	-88.78	2	-84	81	75	6.29	12.858		
1000	998	986	984	4	4	-94.31	3	-99	95	88	7.03	13.503		
1100	1096	1081	1077	4	4	-99.09	5	-116	113	105	7.80	14.489		
1200	1193	1175	1169	4	4	-102.98	6	-135	135	126	8.61	15.692		

Lonestar Consulting, LLC

Anticollision Report

DJR Operating Company: Project: Proposed Carson Unit

WC 22-2 Pad Reference Site: Site Error: 0 ft

Reference Well: # 606H Well Error: 0 ft

Original Drilling Reference Wellbore

Reference Design: APD Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

True

Well # 606H - Slot 4

Survey Calculation Method:

Output errors are at Database:

Grand Junction Offset TVD Reference: Offset Datum

GL 6354' & RKB 14' @ 6368ft GL 6354' & RKB 14' @ 6368ft Minimum Curvature 2.00 sigma

Survey Prog	ram: 0-N	MWD+IGRF								Rule Assi	gned:		Offset Well Error:	0
Refe Measured	rence Vertical	Offs Measured	set Vertical	Semi I Reference	Major Axis Offset	Highside	Offset Wellb		Dist Between	tance Between	Minimum	Separation	Warning	
Depth	Depth	Depth	Depth			Toolface	+N/-S	+E/-W	Centres	Ellipses	Separation	Factor		
(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(°)	(ft)	(ft)	(ft)	(ft)	(ft)			
1304	1294	1271	1262	5	5	-106.14	8	-159	162	153	9.50	17.082		
1400	1386	1360	1348	6	5	-108.60	11	-183	190	180	10.38	18.327		
1500	1483	1455	1439	6	6	-110.46	13	-209	220	209	11.35	19.377		
1600	1579	1551	1531	7	6	-111.88	15	-236	250	238	12.35	20.239		
1700	1675	1646	1623	7	7	-113.00	17	-262	280	267	13.36	20.953		
1800	1771	1741	1714	8	8	-113.90	20	-288	310	296	14.38	21.553		
1900	1868	1836	1806	8	8	-114.64	22	-315	340	325	15.42	22.060		
2000	1964	1932	1897	9	9	-115.26	24	-341	370	354	16.47	22.494		
2100	2060	2027	1989	10	9	-115.79	27	-367	401	383	17.52	22.868		
2200	2156	2122	2080	10	10	-116.24	29	-394	431	412	18.58	23.194		
2300	2253	2217	2172	11	11	-116.63	31	-420	461	442	19.64	23.480		
2400	2349	2313	2263	11	11	-116.98	34	-446	491	471	20.71	23.732		
2500	2445	2408	2355	12	12	-117.28	36	-472	522	500	21.78	23.955		
2600	2541	2503	2446	13	12	-117.55	38	-499	552	529	22.86	24.155		
2700	2637	2598	2538	13	13	-117.80	41	-525	582	559	23.94	24.335		
2800	2734	2694	2629	14	14	-118.02	43	-551	613	588	25.02	24.497		
2900	2830	2789	2721	14	14	-118.21	45	-578	643	617	26.10	24.644		
3000	2926	2884	2812	15	15	-118.39	47	-604	674	646	27.18	24.778		
3100	3022	2979	2904	16	15	-118.56	50	-630	704	676	28.27	24.900		
3200	3119	3075	2995	16	16	-118.71	52	-657	734	705	29.36	25.012		
3300	3215	3170	3087	17	17	-118.85	54	-683	765	734	30.45	25.116		
3400	3311	3265	3178	18	17	-118.98	57	-709	795	763	31.54	25.211		
3500	3407	3360	3270	18	18	-119.10	59	-736	825	793	32.63	25.299		
3600	3504	3456	3361	19	19	-119.21	61	-762	856	822	33.72	25.381		
3700	3600	3551	3453	19	19	-119.31	64	-788	886	851	34.81	25.457		
3800	3696	3646	3545	20	20	-119.41	66	-814	917	881	35.91	25.527		
3900	3792	3742	3636	21	20	-119.50	68	-841	947	910	37.00	25.594		
4000	3888	3837	3728	21	21	-119.58	71	-867	977	939	38.10	25.656		

Anticollision Report

DJR Operating Company: Project: Proposed Carson Unit

WC 22-2 Pad Reference Site: 0 ft Site Error: Reference Well: # 606H Well Error: 0 ft

Original Drilling Reference Wellbore

Reference Design: APD Local Co-ordinate Reference:

Well # 606H - Slot 4 TVD Reference: GL 6354' & RKB 14' @ 6368ft GL 6354' & RKB 14' @ 6368ft MD Reference: True

North Reference:

Survey Calculation Method: Minimum Curvature Output errors are at 2.00 sigma

Grand Junction Database: Offset TVD Reference: Offset Datum

Offset Des	sign: WC	22-2 Pad	- # 627H	- Original D	rilling - Al	PD							Offset Site Error:	0 ft
Survey Progr		MWD+IGRF								Rule Assi	gned:		Offset Well Error:	0 ft
Refer Measured	rence Vertical	Off: Measured	set Vertical	Semi N Reference	lajor Axis Offset	Highside	Offset Wellbo	ore Centre	Dist Between	ance Between	Minimum	Separation	Warning	
Depth (ft)	Depth (ft)	Depth (ft)	Depth (ft)	(ft)	(ft)	Toolface (°)	+N/-S (ft)	+E/-W (ft)	Centres (ft)	Ellipses (ft)	Separation (ft)	Factor		
0	0	0	0	0	0	-90.26	0	-40	40					
100	100	100	100	0	0	-90.26	0	-40	40	40	0.46	86.599		
200	200	200	200	1	1	-90.26	0	-40	40	39	1.18	33.955		
300	300	300	300	1	1	-90.26	0	-40	40	38	1.90	21.118		
400	400	400	400	1	1	-90.26	0	-40	40	37	2.61	15.324		
500	500	500	500	2	2	-90.26	0	-40	40	37	3.33	12.025		
501	501	501	501	2	2	-90.26	0	-40	40	37	3.34	11.986 CC		
515	515	515	515	2	2	-90.25	0	-40	40	37	3.44	11.651 ES		
600	600	599	599	2	2	-74.15	1	-41	41	37	4.04	10.126		
700	700	698	697	2	2	-76.74	3	-45	44	39	4.74	9.234		
800	800	797	796	3	3	-80.78	7	-52	49	43	5.46	8.930		
900	899	896	895	3	3	-87.24	11	-60	54	48	6.20	8.731		
1000	998	995	994	4	3	-95.58	16	-67	61	54	6.97	8.693 SF		
1100	1096	1092	1090	4	4	-103.60	20	-78	71	63	7.76	9.168		
1200	1193	1188	1185	4	4	-110.09	24	-91	87	78	8.58	10.087		
1304	1294	1287	1283	5	5	-115.04	29	-108	108	98	9.47	11.350		
1400	1386	1378	1371	6	5	-118.04	33	-126	130	120	10.33	12.616		
1500	1483	1471	1462	6	5	-119.35	38	-148	156	145	11.24	13.903		
1600	1579	1564	1551	7	6	-119.53	42	-173	184	172	12.18	15.132		
1700	1675	1655	1638	7	7	-119.04	47	-200	214	201	13.14	16.312		
1800	1771	1749	1727	8	7	-118.28	51	-230	246	231	14.18	17.330		
1900	1868	1844	1817	8	8	-117.68	56	-260	277	262	15.24	18.177		
2000	1964	1939	1907	9	8	-117.21	61	-290	308	292	16.32	18.898		
2100	2060	2034	1997	10	9	-116.82	65	-321	340	323	17.42	19.517		
2200	2156	2129	2087	10	10	-116.50	70	-351	371	353	18.52	20.055		
2300	2253	2224	2177	11	10	-116.23	75	-381	403	383	19.63	20.524		
2400	2349	2319	2266	11	11	-115.99	80	-411	434	414	20.74	20.937		
2500	2445	2414	2356	12	12	-115.79	84	-441	466	444	21.86	21.303		
2600	2541	2508	2446	13	12	-115.62	89	-471	497	474	22.99	21.629		
2700	2637	2603	2536	13	13	-115.46	94	-502	529	505	24.12	21.921		
2800	2734	2698	2626	14	14	-115.32	99	-532	560	535	25.25	22.185		
2900	2830	2793	2716	14	14	-115.20	103	-562	592	565	26.39	22.423		
3000	2926	2888	2806	15	15	-115.09	108	-592	623	596	27.53	22.639		
3100	3022	2983	2895	16	16	-114.99	113	-622	655	626	28.67	22.837		
3200	3119	3078	2985	16	16	-114.90	118	-652	686	656	29.81	23.018		
3300	3215	3173	3075	17	17	-114.82	122	-683	718	687	30.95	23.184		
3400	3311	3268	3165	18	18	-114.74	127	-713	749	717	32.10	23.337		
3500	3407	3363	3255	18	18	-114.67	132	-743	781	747	33.25	23.479		
3600	3504	3457	3345	19	19	-114.61	136	-773	812	778	34.40	23.610		
3700	3600	3552	3435	19	20	-114.55	141	-803	844	808	35.55	23.733		
3800	3696	3647	3524	20	21	-114.49	146	-834	875	838	36.70	23.846		
3900	3792	3742	3614	21	21	-114.44	151	-864	907	869	37.85	23.953		
4000	3888	3837	3704	21	22	-114.44	155	-894	938	899	39.00	24.052		
4100	3985	3932	3704	22	23	-114.35	160	-094 -924	930	929	40.16	24.052		
4195	4076	4022	3879	22	23	-114.31	165	-953	999	958	41.25	24.229		

Anticollision Report

DJR Operating Company: Project: Proposed Carson Unit

WC 22-2 Pad Reference Site: Site Error: 0 ft

Reference Well: # 606H Well Error: 0 ft

Original Drilling Reference Wellbore

Reference Design: APD Local Co-ordinate Reference:

Well # 606H - Slot 4 TVD Reference: GL 6354' & RKB 14' @ 6368ft GL 6354' & RKB 14' @ 6368ft MD Reference:

North Reference: True

Survey Calculation Method: Minimum Curvature Output errors are at 2.00 sigma

Grand Junction Database: Offset TVD Reference: Offset Datum

Depth (ft)	nce	//WD+IGRF												
Measured \ Depth (ft)		Offs	et	Semi M	aior Axis		Offset Wellbo	ore Centre	Dist	Rule Assi	gned:		Offset Well Error:	0 1
	Vertical Depth (ft)	Measured Depth (ft)	Vertical Depth (ft)	Reference (ft)	Offset (ft)	Highside Toolface (°)	+N/-S (ft)	+E/-W (ft)	Between Centres (ft)	Between Ellipses (ft)	Minimum Separation (ft)	Separation Factor	Warning	
0	0	0	0	0	0	-90.42	0	-20	20					
100	100	100	100	0	0	-90.42	0	-20	20	19	0.62	32.413		
200	200	200	200	1	1	-90.42	0	-20	20	19	1.33	14.987		
300	300	300	300	1	1	-90.42	0	-20	20	18	2.05	9.747		
400	400	400	400	1	1	-90.42	0	-20	20	17	2.77	7.222		
500	500	500	500	2	2	-90.42	0	-20	20	17	3.48	5.736		
515	515	515	515	2	2	-90.42	0	-20	20	16	3.59	5.564 CC		
600	600	600	600	2	2	-73.67	1	-20	20	16	4.20	4.768		
700	700	700	699	2	2	-73.82	5	-22	20	15	4.91	4.102		
800 900	800 899	799 899	799 898	3	3	-74.08 -74.43	13 24	-24 -28	20 21	15 14	5.64 6.39	3.617 3.247		
1000	998	999	997	4	4	-74.87	39	-33	21	14	7.18	2.953		
1100	1096	1099	1095	4	4	-75.39	56	-39	22	14	8.02	2.713		
1200	1193	1199	1192	4	4	-75.97	77	-46	22	13	8.93	2.512		
1304 1400	1294 1386	1302 1398	1292 1384	5 6	5 6	-76.63 -73.86	102 128	-54 -63	23 24	13 13	9.95 10.94	2.333 ES 2.233		
1500	1483	1498	1480	6	6	-69.40	156	-72	26	14	11.96	2.180		
1600	1579	1598	1575	7	7	-65.49	184	-82	28	15	12.97	2.147		
1700	1675	1698	1671	7	7	-62.06	212	-91	30	16	13.97	2.130		
1800	1771	1798	1766	8	8	-59.05	240	-101	32	17	14.95	2.123 SF		
1900	1868	1898	1862	8	9	-56.40	267	-110	34	18	15.92	2.123		
2000	1964	1998	1957	9	9	-54.06	295	-120	36	19	16.88	2.129		
2100	2060	2098	2053	10	10	-51.99	323	-129	38	20	17.82	2.138		
2200	2156	2198	2148	10	10	-50.14	351	-138	40	22	18.76	2.150		
2300	2253	2298	2244	11	11	-48.49	379	-148	43	23	19.69	2.163		
2400	2349	2398	2339	11	12	-47.00	407	-157	45	24	20.62	2.178		
2500	2445	2498	2435	12	12	-45.66	435	-167	47	26	21.53	2.193		
2600	2541	2598	2530	13	13	-44.45	463	-176	50	27	22.45	2.208		
2700	2637	2698	2626	13	14	-43.35	491	-185	52	29	23.36	2.224		
2800	2734	2798	2722	14	14	-42.34	519	-195	54	30	24.26	2.239		
2900	2830	2898	2817	14	15	-41.42	547	-204	57	32	25.17	2.254		
3000	2926	2998	2913	15	16	-40.57	575	-214	59	33	26.07	2.268		
3100	3022	3098	3008	16	16	-39.79	603	-223	62	35	26.97	2.283		
3200	3119	3198	3104	16	17	-39.07	631	-232	64	36	27.87	2.296		
3300	3215	3297	3199	17	18	-38.40	659	-242	66	38	28.76	2.310		
3400	3311	3397	3295	18	18	-37.78	687	-251	69	39	29.66	2.323		
3500	3407	3497	3390	18	19	-37.21	715	-261	71	41	30.55	2.335		
3600	3504	3597	3486	19	19	-36.67	742	-270	74	42	31.45	2.348		
3700	3600	3697	3581	19	20	-36.16	770	-279	76	44	32.34	2.359		
3800	3696	3797	3677	20	21	-35.69	798	-289	79	46	33.23	2.371		
3900	3792	3897	3772	21	21	-35.25	826	-298	81	47	34.12	2.381		
4000	3888	3997	3868	21	22	-34.83	854	-308	84	49	35.01	2.392		
4100	3985	4097	3963	22	23	-34.44	882	-317	86	50	35.90	2.402		
4195	4076	4192	4054	22	23	-34.08	909	-326	89	52	36.75	2.411		
4200 4250	4081 4130	4197 4247	4059 4106	22 23	23 24	-34.98 -46.28	910 924	-327 -331	89 92	52 55	36.79 37.22	2.412 2.482		
4300	4179	4296	4154	23	24	-65.76	938	-336	100	62	37.61	2.656		
4350	4228	4345	4200	23	24	-94.79	951	-340	111	73	37.99	2.930		
4400	4278	4393	4246	23	25	-122.45	965	-345	126	88	38.34	3.299		
4450 4500	4327	4439	4290	23	25 25	-140.08	978	-349	145	107	38.67	3.758		
4500 4550	4375 4423	4484 4526	4333 4373	23 23	25 26	-150.29 -156.50	990 1002	-353 -358	168 194	129 154	38.99 39.29	4.303 4.928		

Anticollision Report

Company: DJR Operating
Project: Proposed Carson Unit

Reference Site: WC 22-2 Pad Site Error: 0 ft

Reference Well: # 606H
Well Error: 0 ft

Reference Wellbore Original Drilling

Reference Design: APD

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Output errors are at Database:

Offset TVD Reference:

Well # 606H - Slot 4

GL 6354' & RKB 14' @ 6368ft GL 6354' & RKB 14' @ 6368ft

True

Minimum Curvature

2.00 sigma
Grand Junction
Offset Datum

urvey Progr		MWD+IGRF								Rule Assi	gned:		Offset Well Error:	0 f
Measured	rence Vertical Depth	Off Measured Depth	set Vertical Depth	Semi N Reference	lajor Axis Offset	Highside Toolface	Offset Wellbo	re Centre +E/-W	Dist Between Centres	ance Between Ellipses	Minimum Separation	Separation Factor	Warning	
Depth (ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(°)	(ft)	(ft)	(ft)	(ft)	(ft)	ractor		
4600	4469	4565	4410	23	26	-160.57	1013	-361	223	183	39.55	5.634		
4650	4514	4592	4436	23	26	-163.43	1021	-364	256	217	39.64	6.465		
4700	4557	4615	4457	23	26	-165.51	1028	-368	294	254	39.66	7.408		
4750	4598	4634	4475	23	26	-167.10	1035	-371	335	295	39.64	8.445		
4800	4636	4650	4489	23	26	-168.35	1041	-374	379	339	39.61	9.557		
4850	4672	4662	4500	23	27	-169.38	1045	-376	425	385	39.56	10.732		
4900	4706	4671	4508	23	27	-170.29	1048	-378	472	433	39.52	11.949		
4950	4736	4677	4513	23	27	-171.21	1051	-380	521	482	39.48	13.195		
5000	4763	4680	4517	23	27	-172.60	1052	-380	571	531	39.47	14.457		
5050	4787	4681	4518	22	27	171.22	1053	-381	620	581	39.46	15.723		
5100	4807	4681	4517	22	27	11.16	1052	-381	670	631	39.48	16.984		
5150	4824	4678	4515	22	27	9.61	1051	-380	720	681	39.50	18.230		
5200	4837	4674	4511	22	27	9.04	1050	-379	769	730	39.54	19.455		
5250	4847	4669	4506	22	27	8.73	1048	-378	818	778	39.60	20.652		
5300	4852	4650	4489	22	26	8.55	1041	-374	865	826	39.49	21.916		
5353	4854	4650	4489	22	26	8.47	1041	-374	914	874	39.69	23.027		
5400	4853	4650	4489	23	26	8.47	1041	-374	957	917	39.86	24.016		

Lonestar Consulting, LLC

Anticollision Report

Company: DJR Operating
Project: Proposed Carson Unit

Reference Site: WC 22-2 Pad Site Error: 0 ft

 Site Error:
 0 ft

 Reference Well:
 # 606H

 Well Error:
 0 ft

Reference Wellbore Original Drilling

Reference Design: APD

Local Co-ordinate Reference:

TVD Reference:
MD Reference:

Database:

North Reference: Survey Calculation Method:

Output errors are at

Offset TVD Reference:

Well # 606H - Slot 4

GL 6354' & RKB 14' @ 6368ft GL 6354' & RKB 14' @ 6368ft

True

Minimum Curvature

2.00 sigma
Grand Junction
Offset Datum

rvey Progr		0-INCLINOME								Rule Assi	gned:		Offset Well Error:	0 ft
Refer Measured Depth (ft)	rence Vertical Depth (ft)	Off Measured Depth (ft)	set Vertical Depth (ft)	Semi M Reference (ft)	Major Axis Offset (ft)	Highside Toolface (°)	Offset Wellbo +N/-S (ft)	+E/-W (ft)	Dist Between Centres (ft)	ance Between Ellipses (ft)	Minimum Separation (ft)	Separation Factor	Warning	
7200	4832	4803	4803	58	146	90.05	-1687	1711	948	757	190.60	4.972		
7300	4831	4803	4802	60	146	90.00	-1687	1711	877	682	194.71	4.502		
7400	4830	4802	4802	62	146	89.95	-1687	1711	811	612	199.26	4.072		
7500	4829	4802	4801	65	146	89.89	-1687	1711	754	550	204.13	3.694		
7600	4828	4801	4801	67	146	89.84	-1686	1711	706	497	209.07	3.378		
7700	4827	4800	4800	69	146	89.79	-1686	1711	670	456	213.66	3.136		
7800	4825	4800	4799	72	146	89.73	-1686	1711	647	430	217.37	2.978		
7899	4824	4799	4799	74	146	89.68	-1686	1711	640	420	219.69	2.912 CC		
7900	4824	4799	4799	74	146	89.68	-1686	1711	640	420	219.70	2.911 ES, SF		
8000	4823	4799	4798	77	146	89.62	-1686	1711	648	427	220.37	2.938		
8100	4822	4798	4797	79	146	89.57	-1686	1711	670	451	219.44	3.055		
8200	4821	4797	4797	81	146	89.51	-1686	1711	707	490	217.27	3.253		
8300	4820	4797	4796	84	146	89.46	-1686	1711	755	540	214.32	3.522		
8400	4819	4796	4796	86	146	89.40	-1686	1711	812	601	211.02	3.849		
8500	4817	4795	4795	89	146	89.34	-1686	1711	877	670	207.66	4.225		
8600	4816	4795	4794	91	146	89.28	-1686	1711	949	744	204.45	4.640		

Anticollision Report

DJR Operating Company: Project: Proposed Carson Unit

WC 22-2 Pad Reference Site: Site Error: 0 ft

Reference Well: # 606H Well Error: 0 ft

Original Drilling Reference Wellbore

Reference Design: APD Local Co-ordinate Reference:

Well # 606H - Slot 4 TVD Reference: GL 6354' & RKB 14' @ 6368ft GL 6354' & RKB 14' @ 6368ft MD Reference:

North Reference: True

Survey Calculation Method: Minimum Curvature

Output errors are at 2.00 sigma **Grand Junction** Database: Offset TVD Reference: Offset Datum

ırvey Progr Refe	ram: 94-	-INCLINOMET		Semi N	lajor Axis		Offset Wellb	ore Centre	Dist	Rule Assi	gned:		Offset Well Error:	0
Measured Depth (ft)	Vertical Depth (ft)	Measured Depth (ft)	Vertical Depth (ft)	Reference (ft)	Offset (ft)	Highside Toolface (°)	+N/-S (ft)	+E/-W (ft)	Between Centres (ft)	Between Ellipses (ft)	Minimum Separation (ft)	Separation Factor	Warning	
7600	4828	4811	4811	67	146	-94.11	-1560	2702	948	783	165.67	5.724		
7700	4827	4810	4810	69	146	-93.70	-1560	2702	849	683	165.89	5.120		
7800	4825	4809	4809	72	146	-93.28	-1560	2702	751	584	166.30	4.514		
7900	4824	4808	4808	74	146	-92.86	-1560	2702	652	485	167.03	3.905		
8000	4823	4808	4807	77	146	-92.44	-1560	2702	554	386	168.35	3.294		
8100	4822	4807	4806	79	146	-92.01	-1560	2702	458	287	170.75	2.680		
8200	4821	4806	4805	81	146	-91.59	-1560	2702	363	187	175.22	2.069		
8300	4820	4805	4804	84	146	-91.16	-1560	2702	271	87	183.90	1.474 Level	3	
8400	4819	4804	4804	86	146	-90.73	-1560	2702	188	-13	201.18	0.937 Level	3	
8500	4817	4803	4803	89	146	-90.30	-1560	2702	132	-96	228.76	0.579 Level	3	
8540	4817	4802	4802	90	146	-90.12	-1560	2702	126	-109	235.42	0.536 Level	3, CC, ES, SF	
8600	4816	4802	4802	91	146	-89.86	-1560	2702	140	-91	230.99	0.605 Level	3	
8700	4815	4801	4801	94	146	-89.43	-1560	2702	204	-6	210.19	0.969 Level	3	
8800	4814	4800	4800	96	146	-88.99	-1560	2702	289	93	196.18	1.473 Level	3	
8900	4813	4799	4799	99	146	-88.55	-1560	2702	381	193	188.17	2.027		
9000	4812	4798	4798	101	146	-88.11	-1560	2702	477	294	183.29	2.602		
9100	4810	4797	4797	104	146	-87.67	-1560	2702	574	394	180.11	3.187		
9200	4809	4796	4796	106	146	-87.23	-1560	2702	672	494	177.90	3.777		
9300	4808	4795	4795	109	146	-86.78	-1560	2702	770	594	176.29	4.370		
9400	4807	4794	4794	111	146	-86.33	-1560	2702	869	694	175.09	4.964		
9500	4806	4793	4793	113	146	-85.89	-1560	2702	968	794	174.15	5.560		

Lonestar Consulting, LLC

Anticollision Report

Company: DJR Operating
Project: Proposed Carson Unit

Reference Site: WC 22-2 Pad
Site Error: 0 ft

Reference Well: # 606H Well Error: 0 ft

Reference Wellbore Original Drilling

Reference Design: APD

Local Co-ordinate Reference: Well # 606H - Slot 4

 TVD Reference:
 GL 6354' & RKB 14' @ 6368ft

 MD Reference:
 GL 6354' & RKB 14' @ 6368ft

North Reference: True

Survey Calculation Method: Minimum Curvature

Output errors are at 2.00 sigma

Database: Grand Junction

Offset TVD Reference: Offset Datum

Offset Des				illup 22-6 - C	JH - OH								Offset Site Error:	0 ft
Survey Progra		0-INCLINOME Offs		Sami M	ajor Axis		Offset Wellbo	ore Centre	Diet	Rule Assi tance	gned:		Offset Well Error:	0 ft
Measured Depth (ft)	Vertical Depth (ft)	Measured Depth (ft)	Vertical Depth (ft)	Reference (ft)	Offset (ft)	Highside Toolface (°)	+N/-S (ft)	+E/-W (ft)	Between Centres (ft)	Between Ellipses (ft)	Minimum Separation (ft)	Separation Factor	Warning	
0	0	0	0	0	0	29.96	650	375	751	()	()			
100	100	96	96	0	3	29.96	650	375	751	748	3.22	232.910		
200	200	196	196	1	6	29.96	650	375	751	744	6.62	113.437		
300	300	297	297	1	9	29.96	650	375	751	741	10.06	74.653		
334 400	334	330	330	1 1	10	29.96	651	375	751 751	740 737	11.16	67.317		
400	400	396	396	'	12	29.96	650	375	751	131	13.41	55.991		
500	500	496	496	2	15	29.96	650	375	751	734	16.80	44.680		
515	515	511	511	2	16	29.96	650	375	751	734	17.31	43.365		
600	600	596	596	2	18	46.84	650	375	750	730	20.20	37.128		
700	700	698	698	2	21	47.12	651	375	748	724	23.66	31.601		
800	800	800	800	3	24	47.70	651	375	742	714	27.12	27.348		
900	899	895	895	3	27	48.48	650	375	733	703	30.38	24.142		
1000	998	994	994	4	30	49.52	650	375	723	690	33.77	21.423		
1100	1096	1092	1092	4	33	50.84	650	375	711	674	37.16	19.146		
1200	1193	1190	1189	4	36	52.44	650	375	698	657	40.55	17.201		
1304	1294	1295	1294	5	39	54.47	651	375	682	638	44.22	15.424		
1400	1386	1383	1382	6	42	56.21	650	375	666	619	47.37	14.062		
1500	1483	1481	1481	6	45	58.17	651	375	651	600	50.87	12.802		
1600	1579	1575	1575	7	48	60.16	650	375	637	582	54.28	11.730		
1700	1675	1672	1672	7	51	62.24	651	375	624	566	57.77	10.794		
1800	1771	1771	1771	8	54	64.52	651	375	611	549	61.36	9.954		
1900	1868	1864	1864	8	57	66.73	650	375	599	534	64.78	9.247		
2000	1964	1963	1963	9	60	69.16	651	375	589	520	68.40	8.604		
2100	2060	2057	2056	10	62	71.52	650	375	579	507	71.86	8.057		
2200	2156	2155	2155	10	65	74.08	651	375	571	495	75.49	7.560		
2300	2253	2249	2249	11	68	76.58	650	375	563	485	78.97	7.135		
2400	2349	2346	2345	11	71	79.18	651	375	558	475	82.54	6.757		
2500	2445	2442	2442	12	74	81.88	651	375	553	467	86.12	6.421		
2600	2541	2538	2537	13	77	84.57	650	375	550	460	89.65	6.130		
2700	2637	2634	2633	13	80	87.27	651	375	548	454	93.20	5.877		
2800	2734	2731	2730	14	83	90.03	651	375	547	450	96.75	5.653		
2806	2739	2736	2735	14	83	90.19	651	375	547	450	96.94	5.642		
2900	2830	2827	2826	14	86	92.78	650	375	548	447	100.26	5.462		
3000	2926	2923	2923	15	89	95.47	651	375	550	446	103.79	5.297		
3100	3022	3019	3018	16	92	98.21	650	375	553	446	107.26	5.156		
3200	3119	3116	3115	16	95	100.82	651	375	558	447	110.74	5.037		
3300	3215	3212	3211	17	98	103.49	650	375	564	449	114.17	4.937		
3400	3311	3308	3307	18	100	105.49	651	375	571	453	117.60	4.854		
3500	3407	3404	3403	18	103	108.55	650	375	579	458	121.00	4.787		
3600	3504	3501	3500	19	106	110.98	650	375	589	464	124.38	4.733		
3700	3600	3596	3594	19	109	113.22	651	375	599	472	127.71	4.692		
3800	3696	3693	3692	20	112	115.60	650	375	611	480	131.09	4.661		
3900	3792	3790	3788	20	115	117.79	650	375	624	489	134.41	4.639		
4000	3888	3884	3883	21	118	119.73	652	375	637	499	137.69	4.624		
4100	3985	3982	3981	22	121	121.91	650	375	651	510	141.03	4.619		
4195	4076	4073	4072	22	124	123.74	650	375	666	522	144.13	4.619		
4200	4081	4078	4077	22	124	122.96	650	375	667	522	144.31	4.619		
4200 4250	4130	4078 4127	4126	22	124 125	122.96 112.51	650 650	375 375	672	522 526	144.31 145.96	4.619 4.606		
4300	4179	4176	4175	23	127	93.48	651	375	674	527	147.61	4.568		
4350	4228	4225	4223	23	128	64.72	651	375	673	524	149.24	4.510		
4400	4278	4274	4272	23	130	37.12	651	375	668	517	150.84	4.430		
4450	4007	4000	4004	00	404	10.05	054	075	000	507	450.40	4 000		
4450	4327	4322	4321	23	131	19.35	651	375	660	507	152.43	4.329		

Lonestar Consulting, LLC

Anticollision Report

Company: DJR Operating
Project: Proposed Carson Unit

Reference Site: WC 22-2 Pad Site Error: 0 ft

Reference Well: # 606H Well Error: 0 ft

Reference Wellbore Original Drilling

Reference Design: APD

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: Survey Calculation Method:

Output errors are at

Offset TVD Reference:

Database:

Well # 606H - Slot 4

GL 6354' & RKB 14' @ 6368ft GL 6354' & RKB 14' @ 6368ft

True

Minimum Curvature

2.00 sigma
Grand Junction
Offset Datum

	10	0-INCLINOME	TED							Rule Assi			Offset Site Error: Offset Well Error:	0
urvey Prog Refe	rence	U-INCLINOME Off:		Semi N	Major Axis		Offset Wellb	ore Centre	Dis	Rule Assi tance	gnea:			U
Measured Depth (ft)	Vertical Depth (ft)	Measured Depth (ft)	Vertical Depth (ft)	Reference (ft)	Offset (ft)	Highside Toolface (°)	+N/-S (ft)	+E/-W (ft)	Between Centres (ft)	Between Ellipses (ft)	Minimum Separation (ft)	Separation Factor	Warning	
4500	4375	4373	4371	23	133	8.80	650	375	648	494	154.06	4.206		
4550	4423	4420	4419	23	134	1.99	650	375	633	477	155.60	4.065		
4600	4469	4467	4465	23	136	-2.93	650	375	614	457	157.09	3.907		
4650	4514	4511	4510	23	137	-6.92	650	375	592	433	158.53	3.732		
4700	4557	4554	4553	23	138	-10.63	651	375	566	406	159.90	3.540		
4750	4598	4595	4593	23	140	-14.24	651	375	538	377	161.19	3.336		
4800	4636	4633	4632	23	141	-18.12	651	375	507	344	162.41	3.121		
4850	4672	4669	4667	23	142	-22.56	651	375	474	310	163.55	2.895		
4900	4706	4702	4701	23	143	-27.85	651	375	438	273	164.61	2.661		
4950	4736	4734	4732	23	144	-34.39	650	375	401	235	165.61	2.420		
5000	4763	4761	4759	23	145	-42.26	650	375	362	196	166.48	2.176		
5050	4787	4785	4783	22	145	-51.48	651	375	323	156	167.25	1.931		
5100	4807	4805	4803	22	146	-61.43	651	375	284	116	167.92	1.692		
5150	4824	4822	4820	22	146	-71.23	650	375	247	78	168.50	1.466 Leve	13	
5200	4837	4835	4833	22	147	-79.60	650	375	213	44	168.97	1.263 Leve	13	
5250	4847	4844	4843	22	147	-85.73	650	375	186	17	169.30	1.101 Leve	13	
5300	4852	4850	4848	22	147	-89.21	650	375	170	1	169.46	1.004 Leve	13	
5332	4853	4851	4849	22	147	-90.00	650	375	167	-2	169.45	0.986 Leve	I 3, CC, ES, SF	
5353	4854	4851	4850	22	147	-89.91	650	375	168	-1	169.39	0.994 Leve	13	
5400	4853	4851	4849	23	147	-89.73	650	375	181	12	169.23	1.068 Leve	13	
5500	4852	4850	4848	24	147	-89.33	650	375	238	69	168.99	1.407 Leve	13	
5600	4851	4848	4847	25	147	-88.94	650	375	317	148	168.89	1.876		
5700	4850	4847	4846	26	147	-88.54	650	375	405	236	168.85	2.400		
5800	4848	4846	4844	28	147	-88.15	650	375	498	329	168.82	2.950		
5900	4847	4845	4843	30	147	-87.76	650	375	593	424	168.80	3.514		
6000	4846	4844	4842	31	147	-87.36	650	375	690	521	168.78	4.087		
6100	4845	4843	4841	33	147	-86.97	650	375	787	618	168.75	4.664		
6200	4844	4842	4840	35	147	-86.58	650	375	885	716	168.73	5.246		
6300	4843	4840	4839	37	147	-86.18	650	375	983	815	168.71	5.829		

Anticollision Report

DJR Operating Company: Project: Proposed Carson Unit

WC 22-2 Pad Reference Site: Site Error: 0 ft Reference Well: # 606H

Well Error: 0 ft Original Drilling Reference Wellbore

Reference Design: APD Local Co-ordinate Reference:

Well # 606H - Slot 4 TVD Reference: GL 6354' & RKB 14' @ 6368ft GL 6354' & RKB 14' @ 6368ft MD Reference:

North Reference: True

Survey Calculation Method: Minimum Curvature

Output errors are at 2.00 sigma **Grand Junction** Database: Offset TVD Reference: Offset Datum

Offset Des	sign: WC	C 22-2 Pad	- Hunter	Foster 1 - C	H - OH								Offset Site Error:	0
urvey Progr Refer Measured		6-INCLINOME Off Measured	set Vertical	Semi M Reference	Major Axis Offset	Highside	Offset Wellb		Between	Rule Assi tance Between	gned: Minimum	Separation	Offset Well Error: Warning	0
Depth (ft)	Depth (ft)	Depth (ft)	Depth (ft)	(ft)	(ft)	Toolface (°)	+N/-S (ft)	+E/-W (ft)	Centres (ft)	Ellipses (ft)	Separation (ft)	Factor		
12,300	4774	4775	4774	183	145	-91.17	-4434	6329	981	750	231.44	4.240		
12,400	4773	4774	4773	186	145	-91.03	-4434	6329	896	654	241.25	3.713		
12,500	4771	4773	4771	188	145	-90.89	-4434	6329	813	560	252.78	3.217		
12,600	4770	4772	4770	191	145	-90.76	-4434	6329	735	469	266.29	2.761		
12,700	4769	4770	4769	193	145	-90.62	-4434	6329	663	381	281.88	2.352		
12,800	4768	4769	4768	196	145	-90.48	-4434	6329	599	299	299.28	2.001		
12,900	4767	4768	4767	198	145	-90.35	-4434	6329	546	228	317.45	1.718		
12,970	4766	4767	4766	200	145	-90.25	-4434	6329	516	187	329.53	1.567 CC, ES,	SF	

Lonestar Consulting, LLC

Anticollision Report

Company: DJR Operating
Project: Proposed Carson Unit

Reference Site: WC 22-2 Pad Site Error: 0 ft

Reference Well: # 606H
Well Error: 0 ft

Reference Wellbore Original Drilling

Reference Design: APD

Local Co-ordinate Reference:

TVD Reference:
MD Reference:

North Reference: To Survey Calculation Method: M

Output errors are at Database:

Offset TVD Reference:

Well # 606H - Slot 4

GL 6354' & RKB 14' @ 6368ft GL 6354' & RKB 14' @ 6368ft

True

Minimum Curvature 2.00 sigma

Grand Junction
Offset Datum

Survey Prog	ram: 32	22-INCLINOME	TER							Rule Assi	aned:		Offset Site Error: Offset Well Error:	0
Refe	rence	Off	set		laior Axis		Offset Wellb	ore Centre		tance	-			
Measured Depth	Vertical Depth	Measured Depth	Vertical Depth	Reference	Offset	Highside Toolface	+N/-S	+E/-W	Between Centres	Between Ellipses	Minimum Separation	Separation Factor	Warning	
(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(°)	(ft)	(ft)	(ft)	(ft)	(ft)			
11,200	4786	4794	4793	156	146	97.71	-4161	5206	948	775	173.81	5.456		
11,300	4785	4793	4792	158	146	96.91	-4161	5206	849	674	175.05	4.848		
11,400	4784	4792	4791	161	146	96.10	-4161	5206	749	573	176.70	4.240		
11,500	4783	4791	4790	163	145	95.28	-4161	5206	650	471	178.94	3.632		
11,600	4782	4790	4789	166	145	94.47	-4161	5206	551	369	182.13	3.024		
11,700	4781	4788	4788	168	145	93.65	-4161	5206	452	265	186.90	2.419		
11,800	4779	4787	4786	171	145	92.83	-4161	5206	354	160	194.62	1.820		
11,900	4778	4786	4785	173	145	92.01	-4161	5206	258	49	208.51	1.236 Leve	el 3	
12,000	4777	4785	4784	176	145	91.19	-4161	5206	166	-72	237.80	0.697 Leve	el 3	
12,100	4776	4784	4783	178	145	90.37	-4161	5206	92	-212	304.21	0.302 Leve	el 3	
12,145	4775	4783	4782	179	145	90.00	-4161	5206	80	-244	324.63	0.247 Leve	el 3, CC, ES, SF	
12,200	4775	4783	4782	181	145	89.55	-4161	5206	97	-194	291.12	0.334 Leve	el 3	
12,300	4774	4781	4781	183	145	88.73	-4161	5206	175	-51	225.87	0.773 Leve	el 3	
12,400	4773	4780	4780	186	145	87.91	-4161	5206	267	69	198.67	1.346 Leve	el 3	
12,500	4771	4779	4778	188	145	87.09	-4161	5206	364	178	185.93	1.957		
12,600	4770	4778	4777	191	145	86.27	-4161	5206	462	283	179.05	2.580		
12,700	4769	4777	4776	193	145	85.45	-4161	5206	561	386	174.98	3.205		
12,800	4768	4776	4775	196	145	84.64	-4161	5206	660	487	172.43	3.827		
12,900	4767	4775	4774	198	145	83.82	-4161	5206	759	588	170.76	4.446		
12,970	4766	4774	4773	200	145	83.25	-4161	5206	829	659	169.92	4.880		

Anticollision Report

Company: **DJR** Operating Project: Proposed Carson Unit

WC 22-2 Pad Reference Site: Site Error: 0 ft # 606H Reference Well: Well Error: 0 ft

Reference Wellbore Original Drilling

Offset Depths are relative to Offset Datum

Reference Depths are relative to GL 6354' & RKB 14' @ 6368ft

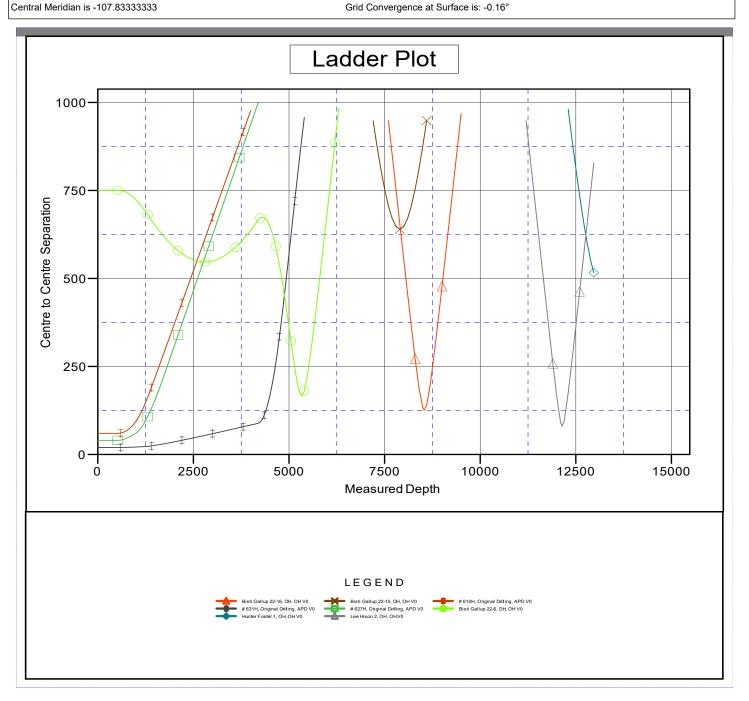
Reference Design: APD Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method: Output errors are at

Database: Offset TVD Reference: Well # 606H - Slot 4

GL 6354' & RKB 14' @ 6368ft GL 6354' & RKB 14' @ 6368ft


Minimum Curvature 2.00 sigma **Grand Junction**

Offset Datum

Coordinates are relative to: # 606H - Slot 4

Coordinate System is US State Plane 1983, New Mexico Western Zone

Grid Convergence at Surface is: -0.16°

Lonestar Consulting, LLC

Anticollision Report

DJR Operating Company: Project: Proposed Carson Unit

WC 22-2 Pad Reference Site: Site Error: 0 ft # 606H Reference Well: Well Error: 0 ft

Reference Wellbore Original Drilling

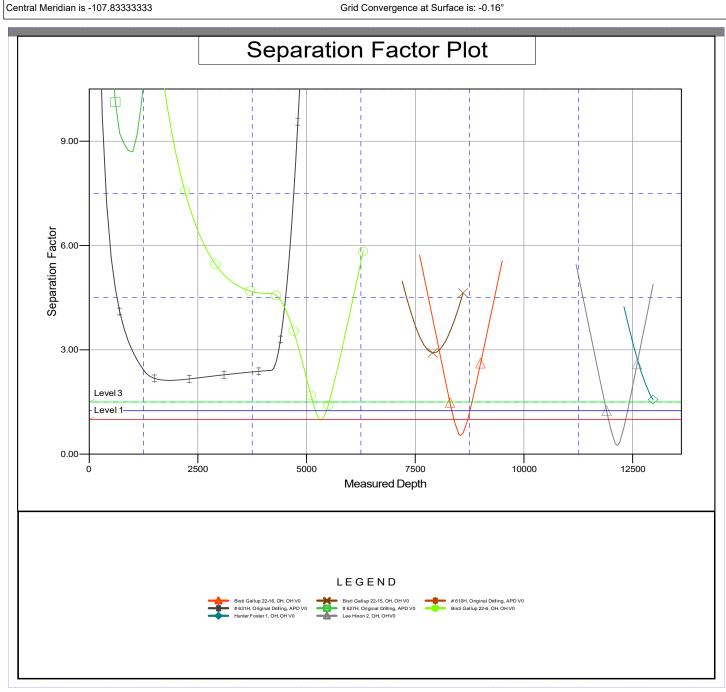
Offset Depths are relative to Offset Datum

Reference Depths are relative to GL 6354' & RKB 14' @ 6368ft

Reference Design: APD **Local Co-ordinate Reference:**

Well # 606H - Slot 4 **TVD Reference:** GL 6354' & RKB 14' @ 6368ft MD Reference: GL 6354' & RKB 14' @ 6368ft North Reference:

Survey Calculation Method: Output errors are at


2.00 sigma Database: **Grand Junction** Offset TVD Reference: Offset Datum

Coordinates are relative to: # 606H - Slot 4

Coordinate System is US State Plane 1983, New Mexico Western Zone

Minimum Curvature

Grid Convergence at Surface is: -0.16°

United States Department of the Interior

BUREAU OF LAND MANAGEMENT Farmington District Office 6251 College Blvd, Suite A Farmington, New Mexico 87402

In Reply Refer To: 3162.3-1(NMF0110)

* DJR OPERATING LLC

#606H CARSON UNIT

Lease: NMNM25449 Agreement: NMNM78385A

SH: NESW Section 22, T. 25 N., R. 12 W.

San Juan County, New Mexico

BH: SENW Section 26, T. 25 N., R. 12 W.

San Juan County, New Mexico

*Above Data Required on Well Sign

GENERAL REQUIREMENTS FOR OIL AND GAS OPERATIONS ON FEDERAL AND INDIAN LEASES

The following special requirements apply and are effective when **checked**:

A. Note all surface/drilling conditions of approval attached.
B. The required wait on cement (WOC) time will be a minimum of 500 psi compressive strength at 60 degrees. Blowout preventor (BOP) nipple-up operations may then be initiated
C. Test the surface casing to a minimum of psi for 30 minutes.
D. Test all casing strings below the surface casing to .22 psi/ft. of casing string length or 1500 psi, whichever is greater, but not to exceed 70% of the minimum internal yield burst) for a minimum of 30 minutes.
E. Communitization Agreement covering the acreage dedicated to this well must be filed for approval with the Bureau of Land Management, New Mexico State Office, Reservoir Management Group, 301 Dinosaur Trail, Santa Fe, New Mexico 87508. The effective date of the agreement must be prior to any sales.
 F. The use of co-flex hose is authorized contingent upon the following: 1. From the BOP to the choke manifold: the co-flex hose must be hobbled on both ends and saddle to prevent whip. 2. From the choke manifold to the discharge tank: the co-flex hoses must be as straight as practical, hobbled on both ends and anchored to prevent whip. 3. The co-flex hose pressure rating must be at least commensurate with approved BOPE.

INTERIOR REGION 7 • UPPER COLORADO BASIN

COLORADO, NEW MEXICO, UTAH, WYOMING

I. GENERAL

- A. Full compliance with all applicable laws and regulations, with the approved Permit to drill, and with the approved Surface Use and Operations Plan is required. Lessees and/or operators are fully accountable for the actions of their contractors and subcontractors. Failure to comply with these requirements and the filing of required reports will result in strict enforcement pursuant to 43 CFR 3163.1 or 3163.2.
- B. Each well shall have a well sign in legible condition from spud date to final abandonment. The sign should show the operator's name, lease serial number, or unit name, well number, location of the well, and whether lease is Tribal or Allotted, (See 43 CFR 3162.6(b)).
- C. A complete copy of the approved Application for Permit to Drill, along with any conditions of approval, shall be available to authorized personnel at the drill site whenever active drilling operations are under way.
- D. For Wildcat wells only, a drilling operations progress report is to be submitted, to the BLM-Field Office, weekly from the spud date until the well is completed and the Well Completion Report is filed. The report should be on 8-1/2 x 11 inch paper, and each page should identify the well by; operator's name, well number, location and lease number.
- E. As soon as practical, notice is required of all blowouts, fires and accidents involving life-threatening injuries or loss of life. (See NTL-3A).
- F. BOP equipment (except the annular preventer) shall be tested utilizing a test plug to full working pressure for 10 minutes. No bleed-off of pressure is acceptable. (See 43 CFR 3172.6(b)(9)(ii)).
- G. The operator shall have sufficient weighting materials and lost circulation materials on location in the event of a pressure kick or in the event of lost circulation. (See 43 CFR 3172.8(a)).
- H. The flare line(s) discharge shall be located not less than 100 feet from the well head, having straight lines unless turns are targeted with running tees, and shall be positioned downwind of the prevailing wind direction and shall be anchored. The flare system shall have an effective method for ignition. Where noncombustible gas is likely or expected to be vented, the system shall be provided supplemental fuel for ignition and to maintain a continuous flare. (See 43 CFR 3172.8(b)(7)).
- I. Prior approval by the BLM-Authorized Office (Drilling and Production Section) is required for variance from the approved drilling program and before commencing plugging operations, plug back work, casing repair work, corrective cementing operations, or suspending drilling operations indefinitely. Emergency approval may be obtained orally, but such approval is contingent upon filing of a Notice of Intent sundry within three business days. Any changes to the approved plan or any questions regarding drilling operations should be directed to BLM during regular business hours at 505-564-7600. Emergency program changes after hours should be directed to Virgil Lucero at 505-793-1836.
- J. The Inspection and Enforcement Section (I&E), phone number (505-564-7750) is to be notified at least 24 hours in advance of BOP test, spudding, cementing, or plugging operations so that a BLM representative may witness the operations.

- L. From the time drilling operations are initiated and until drilling operations are completed, a member of the drilling crew or the tool pusher shall maintain rig surveillance at all times, unless the well is secured with blowout preventers or cement plugs.
- M. If for any reason, drilling operations are suspended for more than 90 days, a written notice must be provided to this office outlining your plans for this well.
- N. **Commingling**: No production (oil, gas, and water) from the subject well should start until Sundry Notices (if necessary) granting variances from applicable regulations as related to commingling and off-lease measurement are approved by this office. (See 43 CFR 3173.14)

II. REPORTING REQUIREMENTS

- A. For reporting purposes, all well Sundry notices, well completion and other well actions shall be referenced by the appropriate lease, communitization agreement and/or unit agreement numbers.
- B. The following reports shall be filed with the BLM-Authorized Officer online through AFMSS 2 within 30 days after the work is completed.
 - 1. Provide complete information concerning.
 - a. Setting of each string of casing. Show size and depth of hole, grade and weight of casing, depth set, depth of all cementing tools that are used, amount (in cubic feet) and types of cement used, whether cement circulated to surface and all cement tops in the casing annulus, casing test method and results, and the date work was done. Show spud date on first report submitted.
 - b. Intervals tested, perforated (include size, number and location of perforations), acidized, or fractured; and results obtained. Provide date work was done on well completion report and completion sundry notice.
 - c. Subsequent Report of Abandonment, show the way the well was plugged, including depths where casing was cut and pulled, intervals (by depths) where cement plugs were replaced, and dates of the operations.
 - 2. Well Completion Report will be submitted with 30 days after well has been completed.
 - a. Initial Bottom Hole Pressure (BHP) for the producing formations. Show the BHP on the completion report. The pressure may be: 1) measured with a bottom hole bomb, or; 2) calculated based on shut in surface pressures (minimum seven day buildup) and fluid level shot.
 - 3. Submit a cement evaluation log if cement is not circulated to surface.
- C. Production Startup Notification is required no later than the 5th business day after any well begins production on which royalty is due anywhere on a lease site or allocated to a lease site or resumes production in the case of a well which has been off production for more than 90 days. The operator shall notify the Authorized Officer by letter or Sundry Notice, Form 3160-5, or orally to be followed by a letter or Sundry Notice, of the date on which such production has begun or resumed. CFR 43 3162.4-1(c).

III. DRILLER'S LOG

The following shall be entered in the daily driller's log: 1) Blowout preventer pressures tests, including test pressures and results, 2) Blowout preventer tests for proper functioning, 3) Blowout prevention drills conducted, 4) Casing run, including size, grade, weight, and depth set, 5) How pipe was cemented, including amount of cement, type, whether cement circulated to surface, location of cementing tools, etc., 6) Waiting on cement time for each casing string, 7) Casing pressure tests after cementing, including test pressure and results, and 8) Estimated amounts of oil and gas recovered and/or produced during drill stem test.

IV. GAS FLARING

Gas produced from this well may not be vented or flared beyond an initial, authorized test period of *_Days, 20 MMCF following its (completion)(recompletion), or flowback has been routed to the production separator, whichever first occurs, without the prior, written approval of the authorized officer in accordance with 43 CFR 3179.81. Should gas be vented or flared without approval beyond the test period authorized above, you may be directed to shut-in the well until the gas can be captured or approval to continue venting or flaring as uneconomic is granted. You shall be required to compensate the lessor for the portion of the gas vented or flared without approval which is determined to have been avoidably lost.

*30 days, unless a longer test period is specifically approved by the authorized officer. The 30-day period will commence upon the beginning of flowback following completion or recompletion.

V. SAFETY

- A. All rig heating stoves are to be of the explosion-proof type.
- B. Rig safety lines are to be installed.
- C. Hard hats and other Personal Protective Equipment (PPE) must be utilized.

VI. CHANGE OF PLANS OR ABANDONMENT

- A. Any changes of plans required to mitigate unanticipated conditions encountered during drilling operations, will require approval as set forth in Section 1.I.
- B. If the well is dry, it is to be plugged in accordance with 43 CFR 3162.3-4, approval of the proposed plugging program is required as set forth in Section 1.I. The report should show the total depth reached, the reason for plugging, and the proposed intervals, by depths, where cement plugs are to be placed, type of plugging mud, etc. A Subsequent Report of Abandonment is required as set forth in Section II.B.1c.
- C. Unless a well has been properly cased and cemented, or properly plugged, the drilling rig must not be moved from the drill site without prior approval from the BLM-Authorized Officer.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

ACKNOWLEDGMENTS

Action 523256

ACKNOWLEDGMENTS

Operator:	OGRID:
DJR OPERATING, LLC	371838
200 Energy Court	Action Number:
Farmington, NM 87401	523256
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

ACKNOWLEDGMENTS

I hereby certify that no additives containing PFAS chemicals will be added to the completion or recompletion of this well.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 523256

CONDITIONS

Operator:	OGRID:
DJR OPERATING, LLC	371838
200 Energy Court	Action Number:
Farmington, NM 87401	523256
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
scrues76	Cement is required to circulate on both surface and intermediate1 strings of casing.	11/5/2025
scrues76	If cement does not circulate on any string, a Cement Bond Log (CBL) is required for that string of casing.	11/5/2025
ward.rikala	Notify the OCD 24 hours prior to casing & cement.	11/5/2025
ward.rikala	File As Drilled C-102 and a directional Survey with C-104 completion packet.	11/5/2025
ward.rikala	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string.	11/5/2025
ward.rikala	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.	11/5/2025
ward.rikala	Administrative order required for non-standard spacing unit prior to production.	11/5/2025