U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

WPX ENERGY

NMNM41646

Well Name	Well Number	US Well Number	Lease Number	Case Number	Operator
STEEL GUITAR	324H	3001555935	NMNM19609	NMNM19609	WPX ENERGY
STEEL GUITAR	325H	3001555936	NMNM41646	NMNM41646	WPX ENERGY
STEEL GUITAR	333H	3001555937	NMNM19609	NMNM19609	WPX ENERGY
STEEL GUITAR	334H	3001555938	NMNM19609	NMNM19609	WPX ENERGY

NMNM41646

Notice of Intent

Sundry ID: 2856744

STEEL GUITAR

Type of Submission: Notice of Intent

Type of Action: APD Change

3001555939

Date Sundry Submitted: 06/09/2025 Time Sundry Submitted: 09:28

Date proposed operation will begin: 06/10/2025

335H

Procedure Description: WPX Energy Permian, LLC (aka Devon Energy Production Co, LP) respectfully requests a drill plan change for the subject wells. WPX also requests break test and offline cementing variances. Please see revised drill plan for the deepest TVD well on this pad and variance attachments.

NOI Attachments

Procedure Description

Offline_Cementing___Variance_Request_20250609092823.pdf

Break_Test_Variance_Offline_BOP_2_3_2025_20250609092801.pdf

5.5_20lb_P110_ICY_20250609092733.pdf

8.625_32lb_P110_ICY_20250609092716.pdf

10.75_45.5lb_J55_BTC_20250609092658.pdf

13.375_54.5lb_J55_20250609092643.pdf

4_String_Sundry___STEEL_GUITAR_35_26_FED_COM_335H_rev1_20250609092530.pdf

Conditions of Approval

Specialist Review

Steel_Guitar_35_26_Fed_Com_Batch_Sundry_ID_2856744_20250623102340.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: AMY BROWN Signed on: JUN 09, 2025 09:28 AM

Name: WPX ENERGY PERMIAN LLC

Title: Regulatory Professional

Street Address: 333 WEST SHERIDAN AVENUE

City: OKLAHOMA CITY State: OK

Phone: (405) 552-6137

Email address: AMY.BROWN@DVN.COM

Field

Representative Name:

Street Address:

City: State: Zip:

Phone:

Email address:

BLM Point of Contact

BLM POC Name: LONG VO BLM POC Title: Petroleum Engineer

BLM POC Phone: 5759885402 BLM POC Email Address: LVO@BLM.GOV

Disposition: Approved **Disposition Date:** 06/23/2025

Signature: Long Vo

Form 3160-5 (June 2019)

UNITED STATES DEPARTMENT OF THE INTERIOR

FORM APPROVED
OMB No. 1004-0137
Expires: October 31, 202

BUREAU OF LAND MANAGEMENT	5. Lease Serial No.			
SUNDRY NOTICES AND REPORTS ON V Do not use this form for proposals to drill or to abandoned well. Use Form 3160-3 (APD) for su	6. If Indian, Allottee or Tribe Name			
SUBMIT IN TRIPLICATE - Other instructions on pag	ge 2	7. If Unit of CA/Agreement, N	lame and/or No.	
1. Type of Well Oil Well Gas Well Other	•	8. Well Name and No.		
2. Name of Operator		9. API Well No.		
3a. Address 3b. Phone No.	. (include area code)	10. Field and Pool or Explorate	ory Area	
4. Location of Well (Footage, Sec., T.,R.,M., or Survey Description)		11. Country or Parish, State		
12. CHECK THE APPROPRIATE BOX(ES) TO IN	DICATE NATURE O	F NOTICE, REPORT OR OTH	IER DATA	
TYPE OF SUBMISSION	TYPE	OF ACTION		
Notice of Intent Acidize Deep Alter Casing Hyd	pen raulic Fracturing	Production (Start/Resume) Reclamation	Water Shut-Off Well Integrity	
Subsequent Report	Construction and Abandon	Recomplete Temporarily Abandon	Other	
	g Back	Water Disposal		
completed. Final Abandonment Notices must be filed only after all requiremen is ready for final inspection.)	is, including reclamati	on, nave been completed and ti	ne operator has detennined that the site	
14. I hereby certify that the foregoing is true and correct. Name (<i>Printed/Typed</i>)	Title			
Signature	Date			
THE SPACE FOR FED	ERAL OR STAT	E OFICE USE		
Approved by	Title	r	Date	
Conditions of approval, if any, are attached. Approval of this notice does not warrar certify that the applicant holds legal or equitable title to those rights in the subject leads which would entitle the applicant to conduct operations thereon.	nt or	1	, m.	
tle 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States by false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.				

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

(Form 3160-5, page 2)

Additional Information

Batch Well Data

STEEL GUITAR 35-26 FED COM 333H, US Well Number: 3001555937, Case Number: NMNM19609, Lease Number: NMNM19609, Operator: WPX ENERGY PERMIAN LLC

STEEL GUITAR 35-26 FED COM 334H, US Well Number: 3001555938, Case Number: NMNM19609, Lease Number: NMNM19609, Operator: WPX ENERGY PERMIAN LLC

STEEL GUITAR 35-26 FED COM 324H, US Well Number: 3001555935, Case Number: NMNM19609, Lease Number: NMNM19609, Operator: WPX ENERGY PERMIAN LLC

STEEL GUITAR 35-26 FED COM 325H, US Well Number: 3001555936, Case Number: NMNM41646, Lease Number: NMNM41646, Operator: WPX ENERGY PERMIAN LLC

STEEL GUITAR 35-26 FED COM 335H, US Well Number: 3001555939, Case Number: NMNM41646, Lease Number: NMNM41646, Operator: WPX ENERGY PERMIAN LLC

Offline Cementing

Variance Request

Devon Energy requests to offline cement on intermediate strings that are set in formations shallower than the Wolfcamp. Prior to commencing offline cementing operations, the well will be monitored for any abnormal pressures and confirmed to be static. A dual manifold system (equipped with chokes) for the returns will also be utilized as a redundancy. All equipment used for offline cementing will have a minimum 5M rating to match intermediate sections' 5M BOPE requirements.

Section 2 - Blowout Preventer Testing Procedure

Variance Request

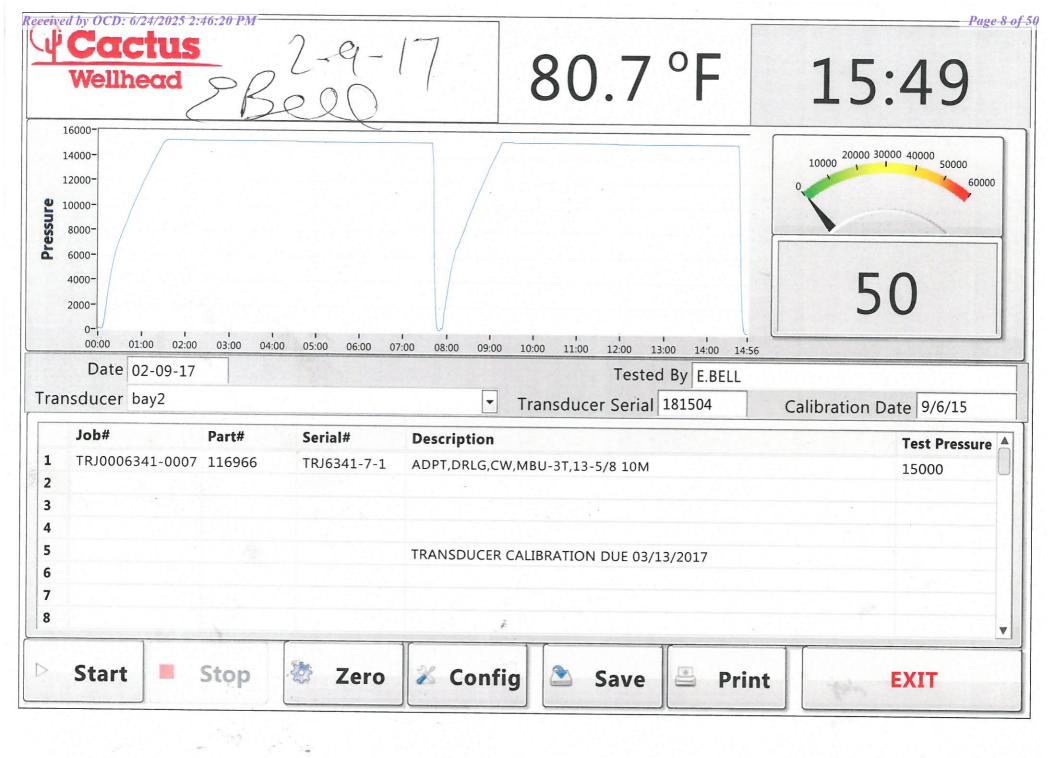
Devon Energy requests to only test BOP connection breaks after drilling out of surface casing and while skidding between wells which conforms to API Standard 53 and industry standards. The initial BOP test will follow 43 CFR 3172, and subsequent tests following a skid will only test connections that are broken. This test will at minimum include the Top Pipe Ram, HCR, Kill Line Check Valve, QDC (quick disconnect to wellhead) and BOP shell of the 10M BOPE to 5M for 10 minutes. Additional pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken. If a break to the flex hose that runs to the choke manifold is required due to repositioning from a skid, the HCR will remain open during the shell test to include that additional break. The variance only pertains to intermediate hole-sections. This variance will meet or exceed 43 CFR 3172 per the following: Devon Energy will perform a full BOP test per 43 CFR 3172 before drilling out of the intermediate casing string(s) and starting the production hole, testing the Annular during initial BOP testing to a minimum of 70% RWP and higher than MASP, and pressure testing at a 21-day interval frequency. The BLM will be contacted 4hrs prior to a BOPE test. The BLM will be notified if and when a well control event is encountered. In the event break testing is not utilized, then a full BOPE test would be conducted.

Devon Energy requests to perform offline BOP stump testing and offline BOPE testing. All pressure-containing and pressure-controlling seals will be tested either online or offline as denoted in the table below and per BLM approval during initial BOP test following test pressure requirements set forth in 43 CFR 3172. Remaining components not tested offline or on the stump will be tested within 72-hours when the BOP is connected to the wellhead. If stump testing exceeds 72-hour window prior to connecting to the wellhead, the BLM will be notified and either stump testing restarted, or the BOP being tested online. The BLM will be contacted 4hrs prior to a BOPE test. The BLM will be notified if and when a well control event is encountered. In the event stump testing is not utilized, then a full BOPE test would be conducted.

Components	Offline	Offline, BOPE	Break	Online
Upper Rams		X	X	Х
Blind Rams		Х		Х
Lower Rams				X
Outside Kill Valve		X	X	X
Inside Kill Valve		X	X	X
Kill Line Check Valve		Х	Х	Х
Inside Choke Valve		Х	Х	Х
HCR		X	X	X
Kill Line	X			X
Annular		X		X
Choke Manifold Valves and Hose	Χ			X
Mudline (Mud Pumps, Rig Floor Valves, Kelly Hose, Mud Line)	Х			X
Standpipe Valve	Х			X
IBOP (Upper and Lower)	X			X

Devon requests offline BOPE testing for the following components: Upper Rams, Blind Rams, Kill Valves, Choke Valves, and Annular Remaining well control equipment components will either be tested offline or online, per BLM approval

Remaining BOPE will be tested online within 72-hours form completing the offline BOPE component testing


Notify the BLM if the online BOPE testing exceeds 72-hours

All Full Tests not completed "Offline" or "Offline, BOPE" are required to be complete Online

Devon requests Break testing as stated above for 5K tests, not including production hole

 $Annular\ Preventer\ will\ be\ tested\ to\ minimum\ of\ 70\%\ RWP\ and\ higher\ than\ MASP\ during\ initial\ BOP\ test$

Pressure testing is required for pressure-containing connections if the integrity of a pressure seal is broken during a break test Full Tests required when entering production hole

TenarisHydril Wedge 461®

Coupling	Pipe Body
Grade: P110-ICY	Grade: P110-ICY
Body: White	1st Band: White
1st Band: Pale Green	2nd Band: Pale Green
2nd Band: -	3rd Band: Pale Green
3rd Band: -	4th Band: -
	5th Band: -
	6th Band: -

Outside Diameter	5.500 in.	Wall Thickness	0.361 in.	Grade	P110-ICY
Min. Wall Thickness	87.50 %	Pipe Body Drift	API Standard	Туре	Casing
Connection OD Option	REGULAR				

Pipe Body Data

Geometry			
Nominal OD	5.500 in.	Wall Thickness	0.361 in.
Nominal Weight	20.00 lb/ft	Plain End Weight	19.83 lb/ft
Drift	4.653 in.	OD Tolerance	API
Nominal ID	4.778 in.		

Performance	
Body Yield Strength	729 x1000 lb
Min. Internal Yield Pressure	14,360 psi
SMYS	125,000 psi
Collapse Pressure	12,300 psi

Connection Data

Geometry	
Connection OD	6.300 in.
Coupling Length	7.714 in.
Connection ID	4.778 in.
Make-up Loss	3.775 in.
Threads per inch	3.40
Connection OD Option	Regular

Performance	
Tension Efficiency	100 %
Joint Yield Strength	729 x1000 lb
Internal Pressure Capacity	14,360 psi
Compression Efficiency	100 %
Compression Strength	729 x1000 lb
Max. Allowable Bending	104 °/100 ft
External Pressure Capacity	12,300 psi
Coupling Face Load	329,000 lb

Make-Up Torques	
Minimum	17,000 ft-lb
Optimum	18,000 ft-lb
Maximum	21,600 ft-lb
Operation Limit Torques	
Operating Torque	43,000 ft-lb
Yield Torque	51,000 ft-lb
Buck-On	
Minimum	21,600 ft-lb
	00.400.6.11
Maximum	23,100 ft-lb

Notes

This connection is fully interchangeable with:
Wedge 441® - 5.5 in. - 0.304 (17.00) / 0.361 (20.00) in. (lb/ft)
Wedge 461® - 5.5 in. - 0.304 (17.00) / 0.415 (23.00) / 0.476 (26.00) in. (lb/ft)
Connections with Dopeless® Technology are fully compatible with the same connection in its doped version
In October 2019, TenarisHydril Wedge XP® 2.0 was renamed TenarisHydril Wedge 461™. Product dimensions and properties remain identical and both connections are fully interchangeable.

For the lastest performance data, always visit our website: www.tenaris.com
For further information on concepts indicated in this datasheet, download the Datasheet Manual from www.tenaris.com

Tenaris has issued this document for general information only, and the information in this document, including, without limitation, any pictures, drawings or designs ("Information") is not intended to constitute professional or any other type of advice or recommendation and is provided on an "as is" basis. No warranty is given. Tenaris has not independently verified any information—if any- provided by the user in connection with, or for the purpose of, the Information contained hereunder. The use of the Information is at user's own risk and Tenaris does not assume any responsibility or liability of any kind for any loss, damage or injury resulting from, or in connection with any Information contained hereunder or any use thereof. The Information in this document is subject to change or modification without notice. Tenaris's products and services are subject to Tenaris's standard terms and conditions or otherwise to the terms resulting from the respective contracts of sale or services, as the case may be, between petitioner and Tenaris. For more complete information please contact a Tenaris's representative or visit our website at www.tenaris.com. ©Tenaris 2024. All rights reserved.

TenarisHydril Wedge 441[®] - AD

Coupling Pipe Body

Grade: P110-ICY

 Body: White
 1st Band: White

 1st Band: Pale Green
 2nd Band: Pale Green

 2nd Band: 3rd Band: Pale Green

 3rd Band: 4th Band:

5th Band: -

Grade: P110-ICY

Outside Diameter	8.625 in.	Wall Thickness	0.352 in.	Grade	P110-ICY
Min. Wall Thickness	90.00 %	Pipe Body Drift	Alternative Drift	Туре	Casing
Connection OD Option	REGULAR				

Pipe Body Data

Geometry			
Nominal OD	8.625 in.	Wall Thickness	0.352 in.
Nominal Weight	32.00 lb/ft	Plain End Weight	31.13 lb/ft
Drift	7.875 in.	OD Tolerance	API
Nominal ID	7.921 in.		

Performance	
Body Yield Strength	1144 x1000 lb
Min. Internal Yield Pressure	9180 psi
SMYS	125,000 psi
Collapse Pressure	4000 psi

Connection Data

Geometry	
Connection OD	8.889 in.
Coupling Length	8.862 in.
Connection ID	7.921 in.
Make-up Loss	3.744 in.
Threads per inch	3.43
Connection OD Option	Regular

Performance	
Tension Efficiency	81.20 %
Joint Yield Strength	929 x1000 lb
Internal Pressure Capacity	9180 psi
Compression Efficiency	81.20 %
Compression Strength	929 x1000 lb
Max. Allowable Bending	53.59 °/100 ft
External Pressure Capacity	4000 psi

Make-Up Torques	
Minimum	23,000 ft-lb
Optimum	24,000 ft-lb
Maximum	27,000 ft-lb
Operation Limit Torques	
Operating Torque	59,000 ft-lb
Operating Torque Yield Torque	59,000 ft-lb
	<u> </u>
	<u> </u>
Yield Torque	<u> </u>
Yield Torque Buck-On	70,000 ft-lb

Notes

For the lastest performance data, always visit our website: www.tenaris.com
For further information on concepts indicated in this datasheet, download the Datasheet Manual from www.tenaris.com

Tenaris has issued this document for general information only, and the information in this document, including, without limitation, any pictures, drawings or designs ("Information") is not intended to constitute professional or any other type of advice or recommendation and is provided on an "as is" basis. No warranty is given. Tenaris has not independently verified any information—if any- provided by the user in connection with, or for the purpose of, the Information contained hereunder. The use of the Information is at user's own risk and Tenaris does not assume any responsibility or liability of any kind for any loss, damage or injury resulting from, or in connection with any Information contained hereunder or any use thereof. The Information in this document is subject to change or modification without notice. Tenaris's products and services are subject to Tenaris's standard terms and conditions or otherwise to the terms resulting from the respective contracts of sale or services, as the case may be, between petitioner and Tenaris. For more complete information please contact a Tenaris's representative or visit our website at www.tenaris.com . ©Tenaris 2024. All rights reserved.

<u>10-3/4"</u>	<u>45.50#</u>	<u>0.400"</u>	<u>J-55</u>	
<u>Dimensions</u>	(Nominal)			
Outside Diameter			10.750	in.
Wall			0.400	in.
Inside Diameter			9.950	in.
Drift			9.875	in.
Weight, T&C			45.500	lbs/ft
Weight, PE			44.260	lbs/ft
Performance	Properties			
Collapse			2090	psi
Internal Yield Pres	sure at Minimum Yield			
	PE		3580	psi
	STC		3580	psi
	ВТС		3580	psi
Yield Strength, Pip	e Body		715	1000 lbs
Joint Strength				
	STC		493	1000 lbs
	BTC		796	1000 lbs
	BTC Special Clearance	(11.25" OD Cplg)	506	1000 lbs

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

<u>13-3/8"</u> <u>54.50#</u> <u>.380</u> <u>J-55</u>

Dimensions (Nominal)

Outside Diameter	13.375	in.
Wall	0.380	in.
Inside Diameter	12.615	in.
Drift	12.459	in.
Weight, T&C	54.500	lbs/ft
Weight, PE	52.790	lbs/ft

Performance Ratings, Minimum

Collapse, PE	1130	psi
Internal Yields Pressure		
PE	2730	psi
STC	2730	PSI
ВТС	2730	psi
Yield Strength, Pipe Body	853	1000 lbs
Joint Strength, STC	514	1000 lbs
Joint Strength, BTC	909	1000 lbs

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

1. Geologic Formations

TVD of target	9250	Pilot hole depth	N/A
MD at TD:	16185	Deepest expected fresh water	

Basin

Basin	D 41	W/-4/M*1	
.	Depth	Water/Mineral	TT 1.4
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	386		
Salt	1261		
Base of Salt	2967		
Delaware	2967		
Cherry Canyon	3981		
Brushy Canyon	5070		
1st Bone Spring Lime	6701		
Bone Spring 1st	7627		
Bone Spring 2nd	8224		
3rd Bone Spring Lime	8687		
			,

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

Hole Size	Csg. Size	Wt (PPF)	Grade	Conn	Top (MD)	Bottom (MD)	Top (TVD)	Bottom (TVD)
17 1/2	13 3/8	54.5	J-55	BTC	0	411 MD	0	411 TVD
12 1/4	10 3/4	45.5	J-55	BTC SCC	0	3020 MD	0	3020 TVD
9 7/8	8 5/8	32.0	P110-ICY	441	0	8709 MD	0	8709 TVD
7 7/8	5 1/2	20.0	P110-ICY	461	0	16185 MD	0	9250 TVD

[•]All casing strings will be tested in accordance with 43 CFR 3172. Must have table for contingency casing.

[•] The Rustler top will be validated via drilling parameters (i.e. reduction in ROP), and the surface casing setting depth will be revised accordingly. In addition, surface casing will be set a minimum of 25' above the top of the salt.

3. Cementing Program (3-String Primary Design)

Casing	# Sks	TOC	Wt. (lb/gal)	Yld (ft3/sack)	Slurry Description
Surface	335	Surf	13.2	1.4	Lead: Class C Cement + additives
Τ.,	188	Surf	9.0	3.3	Lead: Class C Cement + additives
Int	101	500' above shoe	13.2	1.4	Tail: Class H / C + additives
T . 1	364	Surf	9.0	3.3	Lead: Class C Cement + additives
Int 1	67	500' above shoe	13.2	1.4	Tail: Class H / C + additives
Int 1	As Needed	Surf	0.0	3.3	Squeeze Lead: Class C Cement + additives
Intermediate	188	Surf	9.0	3.3	Lead: Class C Cement + additives
Squeeze	101	500' above shoe	13.2	1.4	Tail: Class H / C + additives
Production	375	50' above Capitan	9.0	3.3	Lead: Class H /C + additives
Floduction	976	KOP	13.2	1.4	Tail: Class H / C + additives

If a DV tool is ran the depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. Slurry weights will be adjusted based on estimated fracture gradient of the formation. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If cement is not returned to surface during the primary cement job on the surface casing string, a planned top job will be conducted immediately after completion of the primary job.

Casing String	% Excess
Surface	50%
Intermediate and Intermediate 1	30%
Production	10%

4. Pressure Control Equipment (Four String Design)

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		✓	Tested to:																																																
			Annular		X	50% of rated working pressure																																																
T _{ree} t	13-5/8"	5M	Bline	d Ram	X																																																	
Int	13-3/8	JIVI	Pipe	Ram		5.11																																																
			Doub	le Ram	X	5M																																																
			Other*																																																			
	13-5/8"		Annular		X	50% of rated working pressure																																																
Int 1		5M Blind Ram		d Ram	X																																																	
1111. 1		13-3/8 31/1		13-3/6 31/1	13-3/6 31/1	13-3/6 31/1	13-3/6 3101	13-3/6 31/1	13-3/6 3101	13-3/6 3101	13-3/6 3101	13-3/6	JIVI	3101	3-3/6 3111	13-3/6 3141	13-3/6 3141	13-3/6 3141	3111	31 V1	JIVI	JIVI	J1V1	3111	31 V1	JIVI	3101	JIVI	3101	3101	3101	3101	3101	3101	J1 V1	JIVI	JIVI	3101	JIVI	3101	31 V1	JIVI	JIVI	JIVI	JIVI	3141	J1 V1	JIVI	31 V1	J1 V1	Pipe	Ram		5M
											Doub	le Ram	X	3101																																								
			Other*																																																			
	ion 13-5/8"	13-5/8" 5M	13-5/8" 5M		Annul	ar (5M)	$\mathbf{I} = \mathbf{X} - \mathbf{I}$	50% of rated working pressure																																														
Production				13-5/8" 5M	53.4	Blind Ram	X																																															
					13-3/8 31/1	13-3/0 3101	13-3/6 31/1	13-3/8 3IVI	13-3/8 3IVI	13-3/8 3IVI	13-3/8 3IVI	13-3/8 3IVI	13-3/6 3IVI	13-3/8" 3MI	SIVI	SIVI	13-3/6 31/1	13-3/8" 31/1	Pipe	Ram		5M																																
									Dot	Doub	le Ram	X] JIVI																																									
			Other*																																																			

5. Mud Program (Four String Design)

Section	Туре	Weight (ppg)
Surface	WBM	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Intermediate 1	WBM	8.5-9
Production	WBM	8.5-9

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging,	Coring and Testing
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the
X	Completion Report and sbumitted to the BLM.
	No logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain.
	Coring? If yes, explain.

Additional	logs planned	Interval
	Resistivity	
	Density	
X	CBL	Production casing
X	Mud log	KOP to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	4329
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of 43 CFR 3176. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

N H2S is present

Y H2S plan attached.

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (43 CFR 3172, all COAs and NMOCD regulations).
- The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pad.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. At that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments	
X	Directional Plan
	Other, describe

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Well Name	Well Number	US Well Number	Lease Number	Case Number	Operator
STEEL GUITAR	324H	3001555935	NMNM19609	NMNM19609	WPX ENERGY
STEEL GUITAR	325H	3001555936	NMNM41646	NMNM41646	WPX ENERGY
STEEL GUITAR	333H	3001555937	NMNM19609	NMNM19609	WPX ENERGY
STEEL GUITAR	334H	3001555938	NMNM19609	NMNM19609	WPX ENERGY
STEEL GUITAR	335H	3001555939	NMNM41646	NMNM41646	WPX ENERGY

Notice of Intent

Sundry ID: 2856744

Type of Submission: Notice of Intent

Type of Action: APD Change

Date Sundry Submitted: 06/09/2025 Time Sundry Submitted: 09:28

Date proposed operation will begin: 06/10/2025

Procedure Description: WPX Energy Permian, LLC (aka Devon Energy Production Co, LP) respectfully requests a drill plan change for the subject wells. WPX also requests break test and offline cementing variances. Please see revised drill plan for the deepest TVD well on this pad and variance attachments.

NOI Attachments

Procedure Description

Offline_Cementing___Variance_Request_20250609092823.pdf

Break_Test_Variance_Offline_BOP_2_3_2025_20250609092801.pdf

5.5_20lb_P110_ICY_20250609092733.pdf

8.625_32lb_P110_ICY_20250609092716.pdf

10.75_45.5lb_J55_BTC_20250609092658.pdf

13.375_54.5lb_J55_20250609092643.pdf

4_String_Sundry___STEEL_GUITAR_35_26_FED_COM_335H_rev1_20250609092530.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: AMY BROWN Signed on: JUN 09, 2025 09:28 AM

Name: WPX ENERGY PERMIAN LLC

Title: Regulatory Professional

Street Address: 333 WEST SHERIDAN AVENUE

City: OKLAHOMA CITY State: OK

Phone: (405) 552-6137

Email address: AMY.BROWN@DVN.COM

Field

Representative Name:

Street Address:

City: State: Zip

Phone:

Email address:

APPROVED by Long Vo Petroleum Engineer Carlsbad Field Office 575-988-50402 LVO@BLM.GOV

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: WPX Energy Permian LLC

> **LOCATION:** Section 26, T.26 S., R.29 E., NMPM

COUNTY: Eddy County, New Mexico

WELL NAME & NO.: Steel Guitar 35-26 Fed Com 324H

ATS/API ID: 3001555935 APD ID: 10400095587

Sundry ID: 2856744

WELL NAME & NO.: Steel Guitar 35-26 Fed Com 325H

> ATS/API ID: 3001555936 10400095598 APD ID: **Sundry ID:** 2856744

Steel Guitar 35-26 Fed Com 333H WELL NAME & NO.:

> ATS/API ID: 3001555937 APD ID: 10400095575 Sundry ID: 2856744

Steel Guitar 35-26 Fed Com 334H WELL NAME & NO.:

> ATS/API ID: 3001555938 APD ID: 10400095586 **Sundry ID:** 2856744

WELL NAME & NO.: Steel Guitar 35-26 Fed Com 335H

> ATS/API ID: 3001555939 APD ID: 10400095599 2856744 **Sundry ID:**

COA

H2S	Yes		
Potash	None	None	
Cave/Karst Potential	Medium 🔽		
Cave/Karst Potential	□ Critical		
Variance	None	Flex Hose	C Other
Wellhead	Conventional and Multibowl	▼	
Other	✓ 4 String ☐ 5 String	Capitan Reef None	□WIPP
Other	Pilot Hole None	☐ Open Annulus	
Cementing	Contingency Squeeze Int 2	Echo-Meter None	Primary Cement Squeeze None
Special Requirements	☐ Water Disposal/Injection	▼ COM	□ Unit
Special Requirements	▼ Batch Sundry	Waste Prevention None	
Special Requirements Variance	✓ BOPE Break Testing✓ Offline BOPE Testing	✓ Offline Cementing	☐ Casing Clearance

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Delaware** formation. As a result, the Hydrogen Sulfide area must meet **43 CFR part 3170 Subpart 3176** requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

- 1. The 13-3/8 inch surface casing shall be set at approximately 411 feet (a minimum of 70 feet into the Rustler Anhydrite and above the salt when present, and below usable fresh water) and cemented to the surface. The surface hole shall be 17 1/2 inch in diameter.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 10-3/4 inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

3. The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

❖ In Medium Cave/Karst Areas if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.

Operator has proposed to pump down 10-3/4" X 8-5/8" annulus after primary cementing stage. Operator must run a CBL from TD of the 8-5/8" casing to surface. Submit results to the BLM. Operator may conduct a negative and positive pressure test during completion to remediate sustained casing pressure.

If cement does not tie-back into the previous casing shoe, a third stage remediation BH may be performed. The appropriate BLM office shall be notified.

- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 200 feet into previous casing string.
 Operator shall provide method of verification.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 3000 (3M) psi. Annular which shall be tested to 2100 (70% Working Pressure) psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 10-3/4 intermediate casing shoe shall be 5000 (5M) psi. Annular which shall be tested to 3500 (70% Working Pressure) psi.
- c. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 8-5/8 inch intermediate casing shoe shall be 5000 (5M) psi.

Option 2:

- a. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the 13-3/8 inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR part 3170 Subpart 3171
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

Commercial Well Determination

• A commercial well determination shall be submitted after production has been established for at least six months if the well penetrate a federal exploratory unit acreage, in addition the unit number and participating area number shall be on the well sign when the well is determined to be a Unit well.

• If a participating area has not been established, the operator can use the general unit designation, but will replace the unit number with the participating area number when the sign is replaced.

BOPE Break Testing Variance (Approved)

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR part 3170 Subpart 3172.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.
- The BOPE testing shall be conducted while the rig is stationary.

Offline BOPE Testing

Operator has been (Approved) to test the BOPE offline.

The BOPE offline testing shall be stationary during pressure testing.

Online BOPE testing should commence within 72 hours of offline BOPE testing completion. Notify the BLM if interval exceeds 72 hours.

Notify the BLM 4hrs prior to offline BOPE testing at Eddy County: 575-361-2822.

Offline Cementing

Operator has been (**Approved**) to pump the proposed cement program offline in the **Intermediate(s) interval**.

Offline cementing should commence within 24 hours of landing the casing for the interval.

Notify the BLM 4hrs prior to cementing offline at Eddy County: 575-361-2822.

Batch Sundry:

- Approval shall be for wells with surface, intermediate, and production section within 200' TVD tolerance between shoes above the deepest well shoe(s) set depth.
- Approval shall be for wells with same drill plan design. (Casing depth may vary and cement volumes may vary per Condition of Approval.)
- Approval shall be for wells within the same drill pad.
- Cement excess shall be a minimum of 25%, adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

☑ Eddy County

EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220,

BLM_NM_CFO_DrillingNotifications@BLM.GOV (575) 361-2822

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or

- if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL
- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.

- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been

done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)

- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Long Vo (LVO) 6/23/2025

Form 3160-5 (June 2019)

UNITED STATES DEPARTMENT OF THE INTERIOR

FORM APPROVED
OMB No. 1004-0137
Expires: October 31, 2021

DORLAG OF LAND MANAGEMENT			Lease Serial No. If Indian, Allottee or Tribe Name		
1. Type of Well Gas W	Vell Other		8. Well Name and No.		
2. Name of Operator			9. API Well No.	9. API Well No.	
3a. Address	3b. Phone No	. (include area code)	10. Field and Pool or Explorat	10. Field and Pool or Exploratory Area	
4. Location of Well (Footage, Sec., T.,R	R.,M., or Survey Description)		11. Country or Parish, State	11. Country or Parish, State	
12. CHE	CK THE APPROPRIATE BOX(ES) TO IN	DICATE NATURE (OF NOTICE, REPORT OR OTH	HER DATA	
TYPE OF SUBMISSION		TYPI	E OF ACTION		
Notice of Intent	Acidize Dee	-	Production (Start/Resume)	Water Shut-Off	
		Iraulic Fracturing	Reclamation	Well Integrity	
Subsequent Report		v Construction	Recomplete	Other	
		g and Abandon	Temporarily Abandon		
Final Abandonment Notice	Convert to Injection Plus	g Back	Water Disposal		
completed. Final Abandonment Notice is ready for final inspection.)	ons. If the operation results in a multiple co tices must be filed only after all requiremen				
4. I hereby certify that the foregoing is	true and correct. Name (Printed/Typed)				
		Title			
Signature		Date			
	THE SPACE FOR FED	ERAL OR STA	TE OFICE USE		
Approved by					
		Title	1	Date	
	hed. Approval of this notice does not warra equitable title to those rights in the subject liduct operations thereon.				
Fitle 18 U.S.C Section 1001 and Title 4.	3 U.S.C Section 1212, make it a crime for a	ny person knowingly	and willfully to make to any de	epartment or agency of the United States	

Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United State any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

(Form 3160-5, page 2)

Additional Information

Batch Well Data

STEEL GUITAR 35-26 FED COM 333H, US Well Number: 3001555937, Case Number: NMNM19609, Lease Number: NMNM19609, Operator: WPX ENERGY PERMIAN LLC

STEEL GUITAR 35-26 FED COM 334H, US Well Number: 3001555938, Case Number: NMNM19609, Lease Number: NMNM19609, Operator: WPX ENERGY PERMIAN LLC

STEEL GUITAR 35-26 FED COM 324H, US Well Number: 3001555935, Case Number: NMNM19609, Lease Number: NMNM19609, Operator: WPX ENERGY PERMIAN LLC

STEEL GUITAR 35-26 FED COM 325H, US Well Number: 3001555936, Case Number: NMNM41646, Lease Number: NMNM41646, Operator: WPX ENERGY PERMIAN LLC

STEEL GUITAR 35-26 FED COM 335H, US Well Number: 3001555939, Case Number: NMNM41646, Lease Number: NMNM41646, Operator: WPX ENERGY PERMIAN LLC

Offline Cementing

Variance Request

Devon Energy requests to offline cement on intermediate strings that are set in formations shallower than the Wolfcamp. Prior to commencing offline cementing operations, the well will be monitored for any abnormal pressures and confirmed to be static. A dual manifold system (equipped with chokes) for the returns will also be utilized as a redundancy. All equipment used for offline cementing will have a minimum 5M rating to match intermediate sections' 5M BOPE requirements.

Section 2 - Blowout Preventer Testing Procedure

Variance Request

Devon Energy requests to only test BOP connection breaks after drilling out of surface casing and while skidding between wells which conforms to API Standard 53 and industry standards. The initial BOP test will follow 43 CFR 3172, and subsequent tests following a skid will only test connections that are broken. This test will at minimum include the Top Pipe Ram, HCR, Kill Line Check Valve, QDC (quick disconnect to wellhead) and BOP shell of the 10M BOPE to 5M for 10 minutes. Additional pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken. If a break to the flex hose that runs to the choke manifold is required due to repositioning from a skid, the HCR will remain open during the shell test to include that additional break. The variance only pertains to intermediate hole-sections. This variance will meet or exceed 43 CFR 3172 per the following: Devon Energy will perform a full BOP test per 43 CFR 3172 before drilling out of the intermediate casing string(s) and starting the production hole, testing the Annular during initial BOP testing to a minimum of 70% RWP and higher than MASP, and pressure testing at a 21-day interval frequency. The BLM will be contacted 4hrs prior to a BOPE test. The BLM will be notified if and when a well control event is encountered. In the event break testing is not utilized, then a full BOPE test would be conducted.

Devon Energy requests to perform offline BOP stump testing and offline BOPE testing. All pressure-containing and pressure-controlling seals will be tested either online or offline as denoted in the table below and per BLM approval during initial BOP test following test pressure requirements set forth in 43 CFR 3172. Remaining components not tested offline or on the stump will be tested within 72-hours when the BOP is connected to the wellhead. If stump testing exceeds 72-hour window prior to connecting to the wellhead, the BLM will be notified and either stump testing restarted, or the BOP being tested online. The BLM will be contacted 4hrs prior to a BOPE test. The BLM will be notified if and when a well control event is encountered. In the event stump testing is not utilized, then a full BOPE test would be conducted.

Components	Offline	Offline, BOPE	Break	Online
Upper Rams		X	X	Х
Blind Rams		Х		Х
Lower Rams				X
Outside Kill Valve		X	X	X
Inside Kill Valve		X	X	X
Kill Line Check Valve		Х	Х	Х
Inside Choke Valve		Х	Х	Х
HCR		X	X	X
Kill Line	X			X
Annular		X		X
Choke Manifold Valves and Hose	Χ			X
Mudline (Mud Pumps, Rig Floor Valves, Kelly Hose, Mud Line)	Х			X
Standpipe Valve	Х			X
IBOP (Upper and Lower)	X			X

Devon requests offline BOPE testing for the following components: Upper Rams, Blind Rams, Kill Valves, Choke Valves, and Annular Remaining well control equipment components will either be tested offline or online, per BLM approval

Remaining BOPE will be tested online within 72-hours form completing the offline BOPE component testing


Notify the BLM if the online BOPE testing exceeds 72-hours

All Full Tests not completed "Offline" or "Offline, BOPE" are required to be complete Online

Devon requests Break testing as stated above for 5K tests, not including production hole

 $Annular\ Preventer\ will\ be\ tested\ to\ minimum\ of\ 70\%\ RWP\ and\ higher\ than\ MASP\ during\ initial\ BOP\ test$

Pressure testing is required for pressure-containing connections if the integrity of a pressure seal is broken during a break test Full Tests required when entering production hole

TenarisHydril Wedge 461®

Coupling	Pipe Body
Grade: P110-ICY	Grade: P110-ICY
Body: White	1st Band: White
1st Band: Pale Green	2nd Band: Pale Green
2nd Band: -	3rd Band: Pale Green
3rd Band: -	4th Band: -
	5th Band: -
	6th Band: -

Outside Diameter	5.500 in.	Wall Thickness	0.361 in.	Grade	P110-ICY
Min. Wall Thickness	87.50 %	Pipe Body Drift	API Standard	Туре	Casing
Connection OD Option	REGULAR				

Pipe Body Data

Geometry			
Nominal OD	5.500 in.	Wall Thickness	0.361 in.
Nominal Weight	20.00 lb/ft	Plain End Weight	19.83 lb/ft
Drift	4.653 in.	OD Tolerance	API
Nominal ID	4.778 in.		

Performance	
Body Yield Strength	729 x1000 lb
Min. Internal Yield Pressure	14,360 psi
SMYS	125,000 psi
Collapse Pressure	12,300 psi

Connection Data

Geometry	
Connection OD	6.300 in.
Coupling Length	7.714 in.
Connection ID	4.778 in.
Make-up Loss	3.775 in.
Threads per inch	3.40
Connection OD Option	Regular

Performance	
Tension Efficiency	100 %
Joint Yield Strength	729 x1000 lb
Internal Pressure Capacity	14,360 psi
Compression Efficiency	100 %
Compression Strength	729 x1000 lb
Max. Allowable Bending	104 °/100 ft
External Pressure Capacity	12,300 psi
Coupling Face Load	329,000 lb

Make-Up Torques	
Minimum	17,000 ft-lb
Optimum	18,000 ft-lb
Maximum	21,600 ft-lb
Operation Limit Torques	
Operating Torque	43,000 ft-lb
Yield Torque	51,000 ft-lb
Buck-On	
Minimum	21,600 ft-lb
Maximum	23,100 ft-lb

Notes

This connection is fully interchangeable with:
Wedge 441® - 5.5 in. - 0.304 (17.00) / 0.361 (20.00) in. (lb/ft)
Wedge 461® - 5.5 in. - 0.304 (17.00) / 0.415 (23.00) / 0.476 (26.00) in. (lb/ft)
Connections with Dopeless® Technology are fully compatible with the same connection in its doped version
In October 2019, TenarisHydril Wedge XP® 2.0 was renamed TenarisHydril Wedge 461™. Product dimensions and properties remain identical and both connections are fully interchangeable.

For the lastest performance data, always visit our website: www.tenaris.com
For further information on concepts indicated in this datasheet, download the Datasheet Manual from www.tenaris.com

Tenaris has issued this document for general information only, and the information in this document, including, without limitation, any pictures, drawings or designs ("Information") is not intended to constitute professional or any other type of advice or recommendation and is provided on an "as is" basis. No warranty is given. Tenaris has not independently verified any information—if any- provided by the user in connection with, or for the purpose of, the Information contained hereunder. The use of the Information is at user's own risk and Tenaris does not assume any responsibility or liability of any kind for any loss, damage or injury resulting from, or in connection with any Information contained hereunder or any use thereof. The Information in this document is subject to change or modification without notice. Tenaris's products and services are subject to Tenaris's standard terms and conditions or otherwise to the terms resulting from the respective contracts of sale or services, as the case may be, between petitioner and Tenaris. For more complete information please contact a Tenaris's representative or visit our website at www.tenaris.com. ©Tenaris 2024. All rights reserved.

TenarisHydril Wedge 441[®] - AD

 Coupling
 Pipe Body

 Grade: P110-ICY
 Grade: P110-ICY

 Body: White
 1st Band: White

 1st Band: Pale Green
 2nd Band: Pale Green

 2nd Band: 3rd Band: Pale Green

 3rd Band: 4th Band:

 5th Band: 5th Band:

6th Band: -

Outside Diameter	8.625 in.	Wall Thickness	0.352 in.	Grade	P110-ICY
Min. Wall Thickness	90.00 %	Pipe Body Drift	Alternative Drift	Туре	Casing
Connection OD Option	REGULAR				

Pipe Body Data

Geometry			
Nominal OD	8.625 in.	Wall Thickness	0.352 in.
Nominal Weight	32.00 lb/ft	Plain End Weight	31.13 lb/ft
Drift	7.875 in.	OD Tolerance	API
Nominal ID	7.921 in.		

Performance	
Body Yield Strength	1144 x1000 lb
Min. Internal Yield Pressure	9180 psi
SMYS	125,000 psi
Collapse Pressure	4000 psi

Connection Data

Geometry	
Connection OD	8.889 in.
Coupling Length	8.862 in.
Connection ID	7.921 in.
Make-up Loss	3.744 in.
Threads per inch	3.43
Connection OD Option	Regular

Performance	
Tension Efficiency	81.20 %
Joint Yield Strength	929 x1000 lb
Internal Pressure Capacity	9180 psi
Compression Efficiency	81.20 %
Compression Strength	929 x1000 lb
Max. Allowable Bending	53.59 °/100 ft
External Pressure Capacity	4000 psi

Make-Up Torques	
Minimum	23,000 ft-lb
Optimum	24,000 ft-lb
Maximum	27,000 ft-lb
Operation Limit Torques	
Operating Torque	59,000 ft-lb
Yield Torque	70,000 ft-lb
Yield Torque Buck-On	70,000 ft-lb
	70,000 ft-lb

Notes

For the lastest performance data, always visit our website: www.tenaris.com
For further information on concepts indicated in this datasheet, download the Datasheet Manual from www.tenaris.com

Tenaris has issued this document for general information only, and the information in this document, including, without limitation, any pictures, drawings or designs ("Information") is not intended to constitute professional or any other type of advice or recommendation and is provided on an "as is" basis. No warranty is given. Tenaris has not independently verified any information—if any- provided by the user in connection with, or for the purpose of, the Information contained hereunder. The use of the Information is at user's own risk and Tenaris does not assume any responsibility or liability of any kind for any loss, damage or injury resulting from, or in connection with any Information contained hereunder or any use thereof. The Information in this document is subject to change or modification without notice. Tenaris's products and services are subject to Tenaris's standard terms and conditions or otherwise to the terms resulting from the respective contracts of sale or services, as the case may be, between petitioner and Tenaris. For more complete information please contact a Tenaris's representative or visit our website at www.tenaris.com . ©Tenaris 2024. All rights reserved.

<u>10-3/4"</u>	<u>45.50#</u>	<u>0.400"</u>	<u>J-55</u>						
<u>Dimensions (Nominal)</u>									
Outside Diameter			10.750	in.					
Wall			0.400	in.					
Inside Diameter			9.950	in.					
Drift			9.875	in.					
Weight, T&C			45.500	lbs/ft					
Weight, PE			44.260	lbs/ft					
Performance	Properties								
Collapse			2090	psi					
Internal Yield Pres	sure at Minimum Yield								
	PE		3580	psi					
	STC		3580	psi					
	ВТС		3580	psi					
Yield Strength, Pip	e Body		715	1000 lbs					
Joint Strength									
	STC		493	1000 lbs					
	BTC		796	1000 lbs					
	BTC Special Clearance	(11.25" OD Cplg)	506	1000 lbs					

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

<u>13-3/8"</u> <u>54.50#</u> <u>.380</u> <u>J-55</u>

Dimensions (Nominal)

Outside Diameter	13.375	in.
Wall	0.380	in.
Inside Diameter	12.615	in.
Drift	12.459	in.
Weight, T&C	54.500	lbs/ft
Weight, PE	52.790	lbs/ft

Performance Ratings, Minimum

Collapse, PE	1130	psi
Internal Yields Pressure		
PE	2730	psi
STC	2730	PSI
ВТС	2730	psi
Yield Strength, Pipe Body	853	1000 lbs
Joint Strength, STC	514	1000 lbs
Joint Strength, BTC	909	1000 lbs

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

1. Geologic Formations

TVD of target	9250	Pilot hole depth	N/A
MD at TD:	16185	Deepest expected fresh water	

Basin

Dasin	D (1	XX7 4 /X/I* 1	
	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	386		
Salt	1261		
Base of Salt	2967		
Delaware	2967		
Cherry Canyon	3981		
Brushy Canyon	5070		
1st Bone Spring Lime	6701		
Bone Spring 1st	7627		
Bone Spring 2nd	8224		
3rd Bone Spring Lime	8687		

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

Hole Size	Csg. Size	Wt (PPF)	Grade	Conn	Top (MD)	Bottom (MD)	Top (TVD)	Bottom (TVD)
17 1/2	13 3/8	54.5	J-55	BTC	0	411 MD	0	411 TVD
12 1/4	10 3/4	45.5	J-55	BTC SCC	0	3020 MD	0	3020 TVD
9 7/8	8 5/8	32.0	P110-ICY	441	0	8709 MD	0	8709 TVD
7 7/8	5 1/2	20.0	P110-ICY	461	0	16185 MD	0	9250 TVD

[•]All casing strings will be tested in accordance with 43 CFR 3172. Must have table for contingency casing.

[•] The Rustler top will be validated via drilling parameters (i.e. reduction in ROP), and the surface casing setting depth will be revised accordingly. In addition, surface casing will be set a minimum of 25' above the top of the salt.

3. Cementing Program (3-String Primary Design)

Casing	# Sks	TOC	Wt. (lb/gal)	Yld (ft3/sack)	Slurry Description
Surface	335	Surf	13.2	1.4	Lead: Class C Cement + additives
Τ.,	188	Surf	9.0	3.3	Lead: Class C Cement + additives
Int	101	500' above shoe	13.2	1.4	Tail: Class H / C + additives
T . 1	364	Surf	9.0	3.3	Lead: Class C Cement + additives
Int 1	67	500' above shoe	13.2	1.4	Tail: Class H / C + additives
Int 1	As Needed	Surf	0.0	3.3	Squeeze Lead: Class C Cement + additives
Intermediate	188	Surf	9.0	3.3	Lead: Class C Cement + additives
Squeeze	101	500' above shoe	13.2	1.4	Tail: Class H / C + additives
Production	375	50' above Capitan	9.0	3.3	Lead: Class H /C + additives
Floduction	976	KOP	13.2	1.4	Tail: Class H / C + additives

If a DV tool is ran the depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. Slurry weights will be adjusted based on estimated fracture gradient of the formation. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If cement is not returned to surface during the primary cement job on the surface casing string, a planned top job will be conducted immediately after completion of the primary job.

Casing String	% Excess
Surface	50%
Intermediate and Intermediate 1	30%
Production	10%

4. Pressure Control Equipment (Four String Design)

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		✓	Tested to:																														
			Anı	Annular		50% of rated working pressure																														
Int	13-5/8"	5M	Bline	d Ram	X																															
Int	13-3/8	SIVI	Pipe	Ram		5M																														
			Doub	le Ram	X	3101																														
			Anı	nular	X	50% of rated working pressure																														
Int 1	13-5/8"	13-5/8"	13-5/8" 5M	13-5/8" 5M	13-5/8" 5M	13-5/8" 5M	13-5/8" 5M	13-5/8" 5M	13-5/8" 5M	13-5/8" 5M	13-5/8" 5M	13-5/8" 5M	13-5/8" 5M	13-5/8" 5M	13-5/8" 5M	13-5/8" 5M	13-5/8" 5M	5M	5M	5M	13-5/8" 5M	12 5/0" 5M	12 5/9" 5M	5/Q" 5M	/0" 5M	" 5M	5M	5M	Blind	d Ram	X					
1111. 1																						Pipe	Ram		5M											
								Doub	le Ram	X	JIVI																									
			Other*																																	
			Annul	ar (5M)	X	50% of rated working pressure																														
Production	13-5/8"	13-5/8" 5M	13-5/8" 5M	13-5/8" 5M	13-5/8" 5M	13-5/8" 5M	13-5/8" 5M	13-5/8" 5M	13-5/8" 5M	13-5/8" 5M	13-5/8" 5M	13-5/8" 5M	13-5/8" 5M	5M	5M	8" 5M	Bline	d Ram	X																	
														13-3/6 3111			, 5101		Ram		5M															
								,		Double Ram		X																								
			Other*																																	

5. Mud Program (Four String Design)

Section	Туре	Weight (ppg)
Surface	WBM	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Intermediate 1	WBM	8.5-9
Production	WBM	8.5-9

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging, C	Coring and Testing
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the
X	Completion Report and sbumitted to the BLM.
	No logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain.
	Coring? If yes, explain.

Additiona	l logs planned	Interval
	Resistivity	
	Density	
X	CBL	Production casing
X	Mud log	KOP to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	4329
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of 43 CFR 3176. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

N H2S is present

Y H2S plan attached.

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (43 CFR 3172, all COAs and NMOCD regulations).
- The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pad.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. At that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments	
X	Directional Plan
	Other, describe

Steel Guitar 35-26 Fed Com 335H

13 3/8	SI	ırface csg in a	17 1/2	inch hole.	<u>Design Factors</u> Surfa				Surface			
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	54.50		j 55	btc	38.09	5.88	1.66	411	15	2.78	11.11	22,400
"B"				btc				0				0
1	w/8.4	4#/g mud, 30min Sfc Csg Test psi	g: 1,500	Tail Cmt	does not	circ to sfc.	Totals:	411				22,400
Comparison of Proposed to Minimum Required Cement Volumes												
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
17 1/2	0.6946	335	469	285	64	9.00	983	2M				1.56
,												
L												

casir	g inside the	13 3/8	<u>Design Factors</u>					Int 1			
#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
45.50		j 55	btc scc	3.68	1.27	0.88	3,020	2	1.66	2.13	137,410
							0				0
w/8.4#/	g mud, 30min Sfc Csg Test	psig: 1,188				Totals:	3,020				137,410
	The cement v	olume(s) are intende	ed to achieve a top of	0	ft from su	ırface or a	411				overlap.
Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
0.1882	289	762	589	29	10.50	2156	3M				0.50
						sum of sx	Σ CuFt				Σ%excess
	#VALUE!	#VALUE!				289	762				29
yld > 1.35											
ant(s) for Sagmo	n+(c): A B C D = 1 10 b	a a d All > 0.70 OF									
enit(s) for Segmen	IL(S). A, D, C, D = 1.19, L	J, C, U AII > U.7U, UK	•								
	#/ft 45.50 w/8.4#/ Annular Volume 0.1882	45.50 w/8.4#/g mud, 30min Sfc Csg Test The cement v Annular 1 Stage Volume Cmt Sx 0.1882 289 #VALUE!	#/ft Grade 45.50 j 55 w/8.4#/g mud, 30min Sfc Csg Test psig: 1,188	#/ft Grade Coupling 45.50 j 55 btc scc w/8.4#/g mud, 30min Sfc Csg Test psig: 1,188 The cement volume(s) are intended to achieve a top of Annular 1 Stage 1 Stage Min Volume Cmt Sx CuFt Cmt Cu Ft 0.1882 289 762 589 #VALUE! #VALUE!	#/ft Grade Coupling Joint 45.50 j 55 btc scc 3.68 w/8.4#/g mud, 30min Sfc Csg Test psig: 1,188	#/ft Grade Coupling Joint Collapse 45.50 j 55 btc scc 3.68 1.27 w/8.4#/g mud, 30min Sfc Csg Test psig: 1,188 The cement volume(s) are intended to achieve a top of Annular 1 Stage Min 1 Stage Drilling Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt 0.1882 289 762 589 29 10.50 #VALUE! #VALUE!	#/ft Grade Coupling Joint Collapse 45.50 j 55 btc scc 3.68 1.27 0.88 #/8.4#/g mud, 30min Sfc Csg Test psig: 1,188 Totals: The cement volume(s) are intended to achieve a top of Office for surface or a Annular 1 Stage Min 1 Stage Min 1 Stage Drilling Calc Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP 0.1882 289 762 589 29 10.50 2156 #VALUE! #VALUE! #VALUE!	#/ft Grade Coupling Joint Collapse Burst 3,020 45.50 j 55 btc scc 3.68 1.27 0.88 3,020 w/8.4#/g mud, 30min 5fc Csg Test psig: 1,188 Totals: 3,020 Totals: 3,020 The cement volume(s) are intended to achieve a top of 0 ft from surface or a 411 Annular 1 Stage Min 1 Stage Drilling Calc Req'd Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP BOPE 0.1882 289 762 589 29 10.50 2156 3M #VALUE! #VALUE! #VALUE! 289 762 762 1 Stage Min 1 Stage Drilling Calc Req'd #VALUE! #VALUE! #VALUE! 289 762 762 1 Stage Min 1 Stage Drilling Calc Req'd #VALUE! #VALUE! #VALUE! 289 762 1 Stage Min 1 Stage Drilling Calc Req'd 2 Stage Mud Wt MASP BOPE 3 Mud Wt MASP BOPE 3 Mud Wt MASP Sum of sx SCUFt 4 Totals: 3,020 4 11	##ft Grade Coupling Joint Collapse Burst Length B@s 45.50 j 55 btc scc 3.68 1.27 0.88 3,020 0 0 w/8.4#/g mud, 30min Sfc Csg Test psig: 1,188 Totals: 3,020 The cement volume(s) are intended to achieve a top of 1 Stage Min 1 Stage Drilling Calc Req'd Wind Coupling Calc Reg'd Burst Length B@s 3,020 Calc Calc	#/ft Grade Coupling Joint Collapse Burst Length 3,020 5 btc scc 3.68 1.27 0.88 3,020 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	casing inside the 13 3/8 Design Factors Int 1 #/ft Grade Coupling Joint Scottage Collapse Burst Length B@s a-B a-C 45.50 j 55 btc scc 3.68 1.27 0.88 3,020 2 1.66 2.13 w/8.4#/g mud, 30min Sfc Csg Test psig: 1,188 Totals: 3,020 The cement volume(s) are intended to achieve a top of The cement volume(s) are intended to achieve a top of Stage 0 ft from surface or a H11 411

8 5/8	casing	g inside the	10 3/4	_		Design Fac	ctors			Int 2		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	32.00		p 110	wedge 441	3.33	0.98	2.12	8,709	2	4.01	1.86	278,688
"B"								0				0
"C"								0				0
"D"								0				0
	w/8.4#/g	mud, 30min Sfc Csg Test	psig: 1,916				Totals:	8,709				278,688
		The cement	volume(s) are intend	ed to achieve a top of	2820	ft from su	rface or a	200				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
9 7/8	0.1261	431	1295	744	74	9.00	2290	3M				0.49
Class 'C' tail cm	t yld > 1.35											

1 ail cmt	ras	ing inside the	8 5/8			Design I	Factors			Prod 1		
Segment	#/ft	Grade	0 3/0	Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	20.00		p 110	wedge 461	3.46	2.57	2.92	16,185	3	5.52	4.85	323,700
"B"								0				0
	w/8.4	#/g mud, 30min Sfc Csg Test p	osig: 2,035				Totals:	16,185				323,700
		The cement vo	olume(s) are intend	led to achieve a top of	8509	ft from su	rface or a	200				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
7 7/8	0.1733	1351	2604	1331	96	9.00						0.91
Class 'H' tail cn	lass 'H' tail cmt yld > 1.20 Capitan Reef est top XXXX.											
												_

Carlsbad Field Office 6/23/2025

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 478506

CONDITIONS

Operator:	OGRID:
WPX Energy Permian, LLC	246289
Devon Energy - Regulatory	Action Number:
Oklahoma City, OK 73102	478506
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

(Created By	Condition	Condition Date
	ward.rikala	Any previous COA's not addressed within the updated COA's still apply.	12/5/2025