

U.S. Department of the Interior
BUREAU OF LAND MANAGEMENT

Well Name: CORRAL CANYON FEDERAL	Well Location: T25S / R29E / SEC 4 / SWSW / 32.1524088 / -103.9973395	County or Parish/State: EDDY / NM
Well Number: 17H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM15302	Unit or CA Name:	Unit or CA Number:
US Well Number: 3001542929	Operator: XTO ENERGY INCORPORATED	

Notice of Intent**Sundry ID:** 2875767**Type of Submission:** Notice of Intent**Type of Action:** Plug and Abandonment**Date Sundry Submitted:** 09/25/2025**Time Sundry Submitted:** 12:49**Date proposed operation will begin:** 10/25/2025

Procedure Description: XTO Permian Operating LLC, respectfully requests approval for plug and abandonment of the above mentioned well. Please see the attached P&A procedure, with current and proposed WBD's for your review.

Surface Disturbance**Is any additional surface disturbance proposed?:** No**NOI Attachments****Procedure Description**

Corral_Canyon_Federal_017H__Sub_Package_20250925122653.pdf

Well Name: CORRAL CANYON
FEDERAL

Well Location: T25S / R29E / SEC 4 /
SWSW / 32.1524088 / -103.9973395

County or Parish/State: EDDY /
NM

Well Number: 17H

Type of Well: OIL WELL

Allottee or Tribe Name:

Lease Number: NMNM15302

Unit or CA Name:

Unit or CA Number:

US Well Number: 3001542929

Operator: XTO ENERGY
INCORPORATED

Conditions of Approval

Specialist Review

Corral_Canyon_Federal_17H_2875767_COA_AND_PROCEDURE_20251214125041.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: ALEJANDRA TIDWELL

Signed on: SEP 25, 2025 12:29 PM

Name: XTO ENERGY INCORPORATED

Title: Regulatory Technician I

Street Address: 6401 HOLIDAY HILL RD BLDG 5

City: MIDLAND State: TX

Phone: (346) 335-5482

Email address: ALEJANDRA.TIDWELL@EXXONMOBIL.COM

Field

Representative Name:

Street Address:

City: State:

Zip:

Phone:

Email address:

BLM Point of Contact

BLM POC Name: KEITH P IMMATTY

BLM POC Title: ENGINEER

BLM POC Phone: 5759884722

BLM POC Email Address: KIMMATTY@BLM.GOV

Disposition: Approved

Disposition Date: 12/14/2025

Signature: KEITH IMMATTY

**PLUG AND ABANDON WELLCORE
CORRAL CANYON FEDERAL 017H
EDDY COUNTY, NEW MEXICO
Class II**

MASIP	MAOP	MAWP	Surface Csg Yield
1,000 psi	3,500 psi	3,500 psi	2730 PSI

SUMMARY: Plug and abandon wellbore according to BLM regulations.

Steps 1-8 shall be completed with Prep Rig

- 1) MIRU plugging company. Set open top steel pit for plugging.
- 2) POOH LD tubing and pump.
- 3) ND WH and NU 3K manual BOP. Function test BOP.
- 4) POOH tbg.
- 5) MIRU WLU, RIH GR to 5,600'; RIH set CIBP at 5,570', pressure test to 500 PSI for 30 minutes.
- 6) Run CBL from 5,570' to surface. (estimated TOC at 2,550'). Send CBL results to engineering. **Review CBL with BLM**
- 7) Dump bail 35' Class C cement from 5,570' to 5,535'. WOC and tag to verify TOC. (T/ Perf)
- 8) ND BOP and NU Wellhead, RDMO.

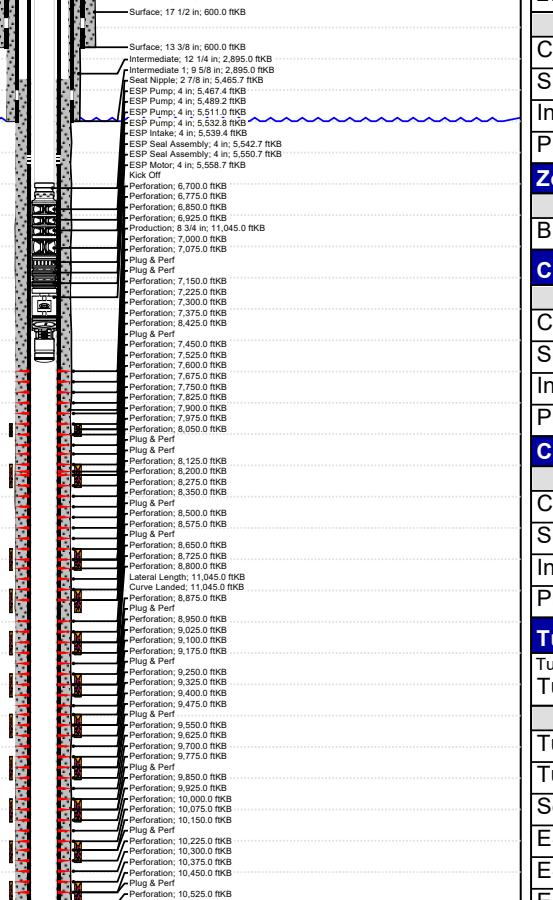
Steps 9 and forward will be completed with P&A rig within 90 days from RDMO.

- 9) MIRU plugging unit company. Set open Steel Pit for plugging
- 10) ND WH and NU 3K manual BOP. Function test BOP.
- 11) Spot 25 SKS Class C cement from 5,450' to 5,200'. (T/Brushy Canyon)
- 12) Spot 140 SKS Class C cement from 3,900' to 2,550'. WOC and tag to verify TOC. (T/Cherry Canyon, Intermediate Casing Shoe, T/Bell Canyon, T/Delaware, B/Salt)
- 13) MIRU WLU, perforate at 700'.

- 14) Circulate Class C cement from 700' to surface. (~220 SKS) (T/Salt, Surface Casing Shoe)
- 15) ND BOP and cut off wellhead 5' below surface, If needed top off wellhead with cement. RDMO PU, transport trucks, and pump truck.
- 16) Set P&A marker.
- 17) Pull fluid from steel tank and haul to disposal. Release steel tank.

OK AS PROPOSED. PLEASE SEND CBL TO BLM

APPROVED


By Keith Immatty at 12:49 pm, Dec 14, 2025

Downhole Well Profile - with Schematic

Well Name: Corral Canyon Federal 017H

API/UWI 3001542929	SAP Cost Center ID 1141171001	Permit Number BLM	State/Province New Mexico	County Eddy		
Surface Location T56S R26E S24		Spud Date 2/17/2015 12:00	Original KB Elevation (ft) 8,800.00	Ground Elevation (ft) 8,614.00	KB-Ground Distance (ft) 185.00	Surface Casing Flange Elevation (ft)

MD (ftKB)	TVD (ftKB)	Incl (°)	Vertical schematic (actual)		Wellbores		Wellbore API/UWI			
					Wellbore Name Original Hole	Parent Wellbore Original Hole		3001542969		
89.9	89.9	0.5	<ul style="list-style-type: none"> Conductor: 24 in; 90.0 ftKB Conductor: 20 in; 90.0 ftKB Surface: 17 1/2 in; 600.0 ftKB Intermediate: 12 1/4 in; 2,695.0 ftKB Intermediate: 11 5/8 in; 2,635.0 ftKB Intermediate: 10 7/8 in; 2,585.0 ftKB Intermediate: 10 5/8 in; 2,535.0 ftKB ESP Pump: 4 in; 5,467.4 ftKB ESP Pump: 4 in; 5,489.2 ftKB ESP Pump: 4 in; 5,511.0 ftKB ESP Pump: 4 in; 5,518.8 ftKB ESP Seal Assembly: 4 in; 5,542.7 ftKB ESP Seal Assembly: 4 in; 5,550.7 ftKB Conductor: 4 in; 5,558.7 ftKB Kick Off Perforation: 6,700.0 ftKB Perforation: 6,775.0 ftKB Perforation: 6,850.0 ftKB Perforation: 6,925.0 ftKB Production: 8,34 in; 11,045.0 ftKB Perforation: 7,000.0 ftKB Perforation: 7,075.0 ftKB Plug & Perf Perforation: 7,150.0 ftKB Perforation: 7,225.0 ftKB Perforation: 7,250.0 ftKB Perforation: 7,275.0 ftKB Perforation: 8,425.0 ftKB Plug & Perf Perforation: 7,450.0 ftKB Perforation: 7,525.0 ftKB Perforation: 7,600.0 ftKB Perforation: 7,675.0 ftKB Perforation: 7,750.0 ftKB Perforation: 7,825.0 ftKB Perforation: 7,900.0 ftKB Perforation: 7,975.0 ftKB Perforation: 8,050.0 ftKB Plug & Perf Perforation: 8,125.0 ftKB Perforation: 8,200.0 ftKB Perforation: 8,275.0 ftKB Perforation: 8,350.0 ftKB Plug & Perf Perforation: 8,500.0 ftKB Perforation: 8,575.0 ftKB Plug & Perf Perforation: 8,650.0 ftKB Perforation: 8,725.0 ftKB Perforation: 8,800.0 ftKB Later Lateral: 11,045.0 ftKB Curve Landed: 11,045.0 ftKB Perforation: 8,875.0 ftKB Plug & Perf Perforation: 8,950.0 ftKB Perforation: 9,025.0 ftKB Perforation: 9,100.0 ftKB Perforation: 9,175.0 ftKB Plug & Perf Perforation: 9,250.0 ftKB Perforation: 9,325.0 ftKB Perforation: 9,400.0 ftKB Perforation: 9,475.0 ftKB Plug & Perf Perforation: 9,550.0 ftKB Perforation: 9,625.0 ftKB Perforation: 9,700.0 ftKB Perforation: 9,775.0 ftKB Plug & Perf Perforation: 9,850.0 ftKB Perforation: 9,925.0 ftKB Perforation: 10,000.0 ftKB Perforation: 10,075.0 ftKB Perforation: 10,150.0 ftKB Plug & Perf Perforation: 10,225.0 ftKB Perforation: 10,300.0 ftKB Perforation: 10,375.0 ftKB Perforation: 10,450.0 ftKB Plug & Perf Perforation: 10,525.0 ftKB Perforation: 10,600.0 ftKB Perforation: 10,675.0 ftKB Perforation: 10,750.0 ftKB Stims and Treats Perforation: 10,825.0 ftKB Sleeve: 10,902.0 ftKB Cement: Production Casing Cement (plug): 11,045.0 ftKB PBTID: 10,961.0 ftKB PBTID: 5 1/2 in; 11,045.0 ftKB TD - Original Hole: 11,045.0 ftKB 		Start Depth (ftKB) 25.0		Profile Type Horizontal			
557.7	557.7	1.1			Section Des	Size (in)	Act Top (ftKB)	Act Btm (ftKB)		
700.1	700.1	1.2			Conductor	24	25.0	90.0		
2,851.7	2,848.6	0.7			Surface	17 1/2	90.0	600.0		
2,895.0	2,891.9	0.5			Intermediate	12 1/4	600.0	2,895.0		
5,402.2	5,398.9	1.0			Production	8 3/4	2,895.0	11,045.0		
5,465.9	5,462.6	1.1			Zones					
5,489.2	5,485.9	1.1			Zone Name	Top (ftKB)	Btm (ftKB)	Current Status		
5,535.1	5,531.8	1.0	BRUSHY CANYON			6,700.0	10,902.0			
5,550.9	5,547.5	1.0			Casing Strings					
5,585.0	5,581.7	0.9			Csg Des	Set Depth (ftKB)	OD (in)	Wt/Len (lb/ft)		
6,700.1	6,642.9	68.6			Conductor	90.0	20	169.00		
6,924.9	6,490.3	92.2			Surface	600.0	13 3/8	54.50		
7,149.9	6,480.2	89.1			Intermediate 1	2,895.0	9 5/8	J-55		
7,375.0	6,485.0	91.0			Production	11,045.0	5 1/2	J-55		
7,600.1	6,483.3	89.7			Cement		Grade			
7,825.1	6,485.7	89.8			Des	Type	Start Date	Top (ftKB)		
8,049.9	6,488.0	88.7			Conductor Casing Cement	Casing	2/10/2015	25.0		
8,274.9	6,486.3	91.7			Surface Casing Cement	Casing	2/18/2015	90.0		
8,500.0	6,484.4	90.3			Intermediate 1 Casing Cement	Casing	2/24/2015	600.0		
8,725.1	6,483.4	89.1			Production Casing Cement	Casing	3/17/2015	2,895.0		
8,950.1	6,482.5	89.7			Tubing Strings		Btm (ftKB)			
9,174.9	6,489.0	88.3			Tubing Description	Run Date	Set Depth (ftKB)			
9,399.9	6,496.9	88.3	Tubing - Production			2/7/2020	5,683.2			
9,625.0	6,496.6	91.4			Item Des	OD (in)	Wt (lb/ft)	Grade		
9,850.1	6,492.0	89.5			Tubing Hanger	7 1/16				
10,075.1	6,494.6	89.1			Tubing	2 7/8	6.50	L-80		
10,299.9	6,495.3	90.1			Seat Nipple	2 7/8				
10,524.9	6,492.6	90.4			ESP Discharge	4				
10,750.0	6,491.5	89.9			ESP Pump	4				
10,903.5	6,490.1	91.3			ESP Pump	4				
10,950.8	6,488.8	91.9			ESP Pump	4				
11,044.9	6,485.4	92.2			ESP Intake	4				

Downhole Well Profile - with Schematic

Well Name: Corral Canyon Federal 017H

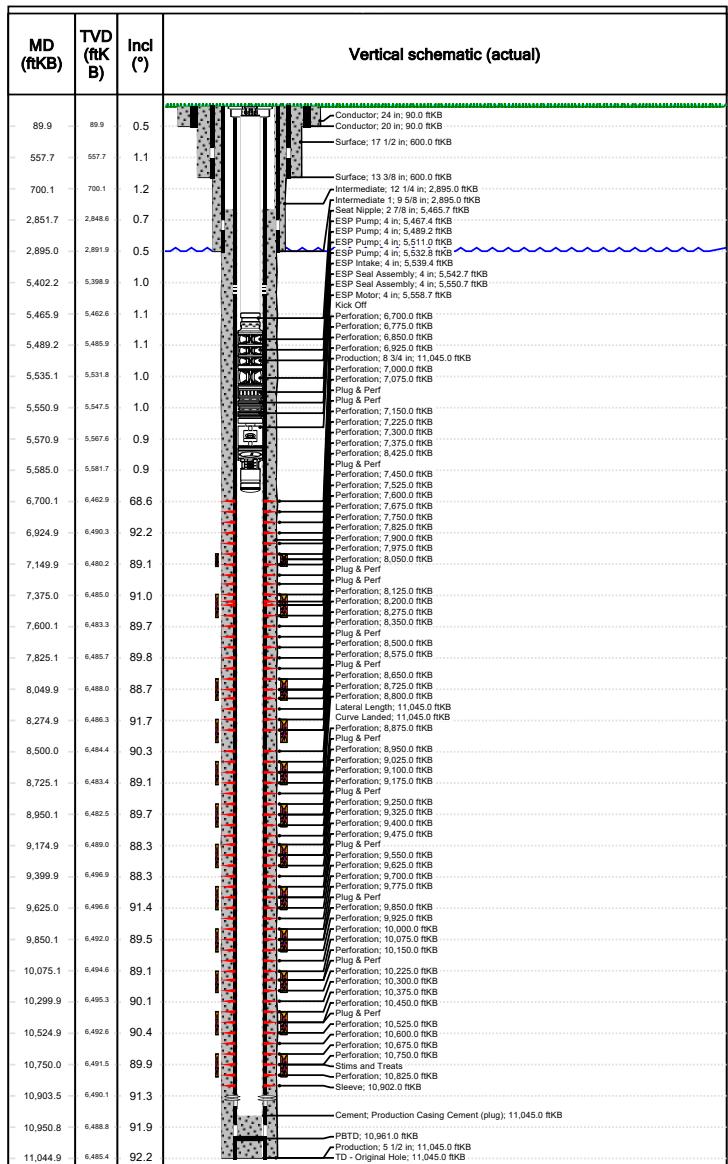
API/UWI 3001542929			SAP Cost Center ID 1141171001	Permit Number BLM	State/Province New Mexico		County Eddy							
Surface Location TOEFC_R00F_001			Spud Date 2014-01-10 00:00:00		Original KB Elevation (ft) 0000.00	Ground Elevation (ft) 0044.00	KB-Ground Distance (ft) 05.00	Surface Casing Flange Elevation						
MD (ftKB)	TVD (ftKB)	Incl (°)	Vertical schematic (actual)				Item Des	OD (in)	Wt (lb/ft)	Grade	Jts	Len (ft)	Top (ftKB)	Btm (ftKB)
89.9	89.9	0.5					Conductor; 24 in; 90.0 ftKB				1	8.00	5,542.7	5,550.7
557.7	557.7	1.1					Conductor; 20 in; 90.0 ftKB				1	8.00	5,550.7	5,558.7
700.1	700.1	1.2					Surface; 17 1/2 in; 600.0 ftKB				1	18.70	5,558.7	5,577.4
2,851.7	2,848.6	0.7					Intermediate; 12 1/4 in; 2,895.0 ftKB				1	1.90	5,577.4	5,579.3
2,895.0	2,891.9	0.5					Intermediate; 1 9/16 in; 5,465.7 ftKB				1	5.50	5,579.3	5,584.8
5,402.2	5,398.9	1.0					Seat Nipple; 2 7/16 in; 5,465.7 ftKB				1	5.50	5,579.3	5,584.8
5,465.9	5,462.6	1.1					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
5,489.2	5,485.9	1.1					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
5,535.1	5,531.8	1.0					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
5,550.9	5,547.5	1.0					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
5,570.9	5,567.6	0.9					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
5,585.0	5,581.7	0.9					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
6,700.1	6,692.9	68.6					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
6,924.9	6,900.3	92.2					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
7,149.9	6,480.2	89.1					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
7,375.0	6,485.0	91.0					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
7,600.1	6,483.3	89.7					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
7,825.1	6,485.7	89.8					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
8,049.9	6,488.0	88.7					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
8,274.9	6,486.3	91.7					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
8,500.0	6,484.4	90.3					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
8,725.1	6,483.4	89.1					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
8,950.1	6,482.5	89.7					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
9,174.9	6,489.0	88.3					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
9,399.9	6,496.9	88.3					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
9,625.0	6,496.6	91.4					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
9,850.1	6,492.0	89.5					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
10,075.1	6,494.6	89.1					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
10,299.9	6,495.3	90.1					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
10,524.9	6,492.6	90.4					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
10,750.0	6,491.5	89.9					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
10,903.5	6,490.1	91.3					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
10,950.8	6,488.8	91.9					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
11,044.9	6,485.4	92.2					ESP Seal Assembly; 4 in; 5,462.6 ftKB				1	0.50	5,682.7	5,683.2
							Perforations							
							Date	Top (ftKB)		Btm (ftKB)		Linked Zone		
							7/28/2015	6,700.0		6,700.0		BRUSHY CANYON, Original Hole		
							7/28/2015	6,775.0		6,775.0		BRUSHY CANYON, Original Hole		
							7/28/2015	6,850.0		6,850.0		BRUSHY CANYON, Original Hole		
							7/28/2015	6,925.0		6,925.0		BRUSHY CANYON, Original Hole		
							7/28/2015	7,000.0		7,000.0		BRUSHY CANYON, Original Hole		
							7/28/2015	7,075.0		7,075.0		BRUSHY CANYON, Original Hole		
							7/28/2015	7,150.0		7,150.0		BRUSHY CANYON, Original Hole		
							7/28/2015	7,225.0		7,225.0		BRUSHY CANYON, Original Hole		
							7/28/2015	7,300.0		7,300.0		BRUSHY CANYON, Original Hole		
							7/28/2015	7,375.0		7,375.0		BRUSHY CANYON, Original Hole		
							7/28/2015	7,450.0		7,450.0		BRUSHY CANYON, Original Hole		
							7/28/2015	7,525.0		7,525.0		BRUSHY CANYON, Original Hole		
							7/28/2015	7,600.0		7,600.0		BRUSHY CANYON, Original Hole		
							7/28/2015	7,675.0		7,675.0		BRUSHY CANYON, Original Hole		
							7/28/2015	7,750.0		7,750.0		BRUSHY CANYON, Original Hole		
							7/28/2015	7,825.0		7,825.0		BRUSHY CANYON, Original Hole		
							7/28/2015	7,900.0		7,900.0		BRUSHY CANYON, Original Hole		
							7/28/2015	7,975.0		7,975.0		BRUSHY CANYON, Original Hole		
							7/28/2015	8,050.0		8,050.0		BRUSHY CANYON, Original Hole		
							7/28/2015	8,125.0		8,125.0		BRUSHY CANYON, Original Hole		
							7/28/2015	8,200.0		8,200.0		BRUSHY CANYON, Original Hole		
							7/28/2015	8,275.0		8,275.0		BRUSHY CANYON, Original Hole		
							7/28/2015	8,350.0		8,350.0		BRUSHY CANYON, Original Hole		
							7/28/2015	8,425.0		8,425.0		BRUSHY CANYON, Original Hole		
							7/28/2015	8,500.0		8,500.0		BRUSHY CANYON, Original Hole		
							7/28/2015	8,575.0		8,575.0		BRUSHY CANYON, Original Hole		
							7/28/2015	8,650.0		8,650.0		BRUSHY CANYON, Original Hole		

Downhole Well Profile - with Schematic

Well Name: Corral Canyon Federal 017H

API/UWI 3001542929		SAP Cost Center ID 1141171001	Permit Number BLM	State/Province New Mexico		County Eddy		
Surface Location TOEFC_R00F_S001				Spud Date 2017-09-19 00	Original KB Elevation (ft) 0 000 00	Ground Elevation (ft) 0 011 00	KB-Ground Distance (ft) 0 000 00	Surface Casing Flange Elevation
Vertical schematic (actual)								
MD (ftKB)	TVD (ftKB)	Incl (°)						
89.9	89.9	0.5						
557.7	557.7	1.1						
700.1	700.1	1.2						
2,851.7	2,848.6	0.7						
2,895.0	2,891.9	0.5						
5,402.2	5,398.9	1.0						
5,465.9	5,462.6	1.1						
5,489.2	5,485.9	1.1						
5,535.1	5,531.8	1.0						
5,550.9	5,547.5	1.0						
5,570.9	5,567.6	0.9						
5,585.0	5,581.7	0.9						
6,700.1	6,692.9	68.6						
6,924.9	6,900.3	92.2						
7,149.9	6,480.2	89.1						
7,375.0	6,485.0	91.0						
7,600.1	6,483.3	89.7						
7,825.1	6,485.7	89.8						
8,049.9	6,488.0	88.7						
8,274.9	6,486.3	91.7						
8,500.0	6,484.4	90.3						
8,725.1	6,483.4	89.1						
8,950.1	6,482.5	89.7						
9,174.9	6,489.0	88.3						
9,399.9	6,496.9	88.3						
9,625.0	6,496.6	91.4						
9,850.1	6,492.0	89.5						
10,075.1	6,494.6	89.1						
10,299.9	6,495.3	90.1						
10,524.9	6,492.6	90.4						
10,750.0	6,491.5	89.9						
10,903.5	6,490.1	91.3						
10,950.8	6,488.8	91.9						
11,044.9	6,485.4	92.2						
Perforations								
			Date	Top (ftKB)	Btm (ftKB)	Linked Zone		
7/28/2015				8,725.0	8,725.0	BRUSHY CANYON, Original Hole		
7/28/2015				8,800.0	8,800.0	BRUSHY CANYON, Original Hole		
7/28/2015				8,875.0	8,875.0	BRUSHY CANYON, Original Hole		
7/28/2015				8,950.0	8,950.0	BRUSHY CANYON, Original Hole		
7/28/2015				9,025.0	9,025.0	BRUSHY CANYON, Original Hole		
7/28/2015				9,100.0	9,100.0	BRUSHY CANYON, Original Hole		
7/28/2015				9,175.0	9,175.0	BRUSHY CANYON, Original Hole		
7/28/2015				9,250.0	9,250.0	BRUSHY CANYON, Original Hole		
7/28/2015				9,325.0	9,325.0	BRUSHY CANYON, Original Hole		
7/28/2015				9,400.0	9,400.0	BRUSHY CANYON, Original Hole		
7/28/2015				9,475.0	9,475.0	BRUSHY CANYON, Original Hole		
7/28/2015				9,550.0	9,550.0	BRUSHY CANYON, Original Hole		
7/28/2015				9,625.0	9,625.0	BRUSHY CANYON, Original Hole		
7/28/2015				9,700.0	9,700.0	BRUSHY CANYON, Original Hole		
7/28/2015				9,775.0	9,775.0	BRUSHY CANYON, Original Hole		
7/28/2015				9,850.0	9,850.0	BRUSHY CANYON, Original Hole		
7/28/2015				9,925.0	9,925.0	BRUSHY CANYON, Original Hole		
7/28/2015				10,000.0	10,000.0	BRUSHY CANYON, Original Hole		
7/28/2015				10,075.0	10,075.0	BRUSHY CANYON, Original Hole		
7/28/2015				10,150.0	10,150.0	BRUSHY CANYON, Original Hole		
7/28/2015				10,225.0	10,225.0	BRUSHY CANYON, Original Hole		
7/28/2015				10,300.0	10,300.0	BRUSHY CANYON, Original Hole		
7/28/2015				10,375.0	10,375.0	BRUSHY CANYON, Original Hole		
7/28/2015				10,450.0	10,450.0	BRUSHY CANYON, Original Hole		
7/28/2015				10,525.0	10,525.0	BRUSHY CANYON, Original Hole		
7/28/2015				10,600.0	10,600.0	BRUSHY CANYON, Original Hole		
7/28/2015				10,675.0	10,675.0	BRUSHY CANYON, Original Hole		
7/28/2015				10,750.0	10,750.0	BRUSHY CANYON, Original Hole		
7/28/2015				10,825.0	10,825.0	BRUSHY CANYON, Original Hole		
7/28/2015				10,902.0	10,902.0	BRUSHY CANYON, Original Hole		
Stimulation Intervals								
Interval Number			Top (ftKB)	Btm (ftKB)	Pump Power Max (hp)	Max Slurry Rate (bbl/min)	Proppant Total (lb)	
1						50	103,769.0	
2			10,675	10,825		3,477	435,931.0	

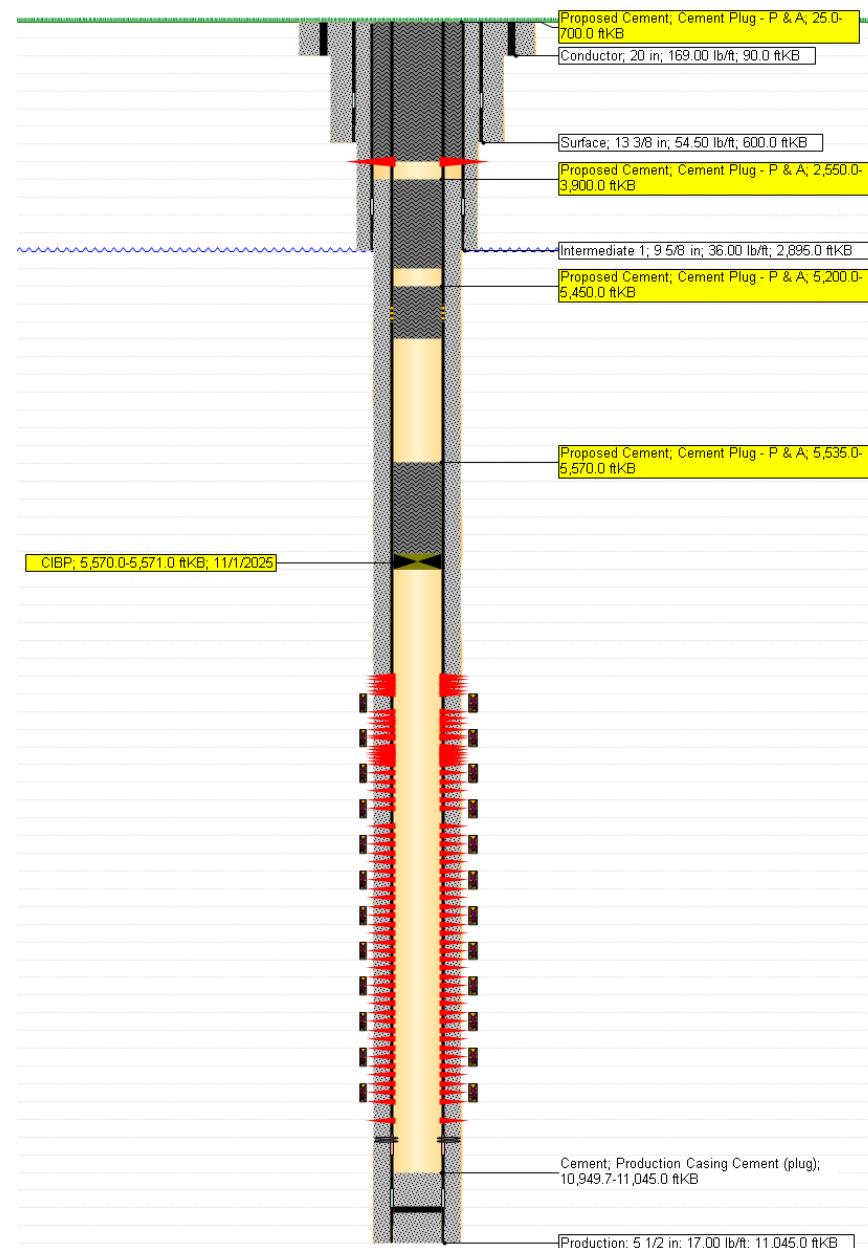
Downhole Well Profile - with Schematic


Well Name: Corral Canyon Federal 017H

API/UWI 3001542929	SAP Cost Center ID 1141171001	Permit Number BLM	State/Province New Mexico	County Eddy
Surface Location TOEFC-DOOF-001			Spud Date 04/07/2005 10:00	Original KB Elevation (ft) 0,000.00

Ground Elevation (ft)
0,014.00

KB-Ground Distance (ft)
05.00


Surface Casing Flange Elevation
05.00

Stimulation Intervals					
Interval Number	Top (ftKB)	Btm (ftKB)	Pump Power Max (hp)	Max Slurry Rate (bbl/min)	Proppant Total (lb)
3	10,375	10,525		80	347,969.0
4	10,075	10,225		87	419,671.0
5	9,775	9,925		90	323,411.0
6	9,475	9,625		83	431,626.0
7	9,175	9,325		83	435,143.0
8	8,875	9,025		83	426,582.0
9	8,575	8,725		82	425,497.0
10	8,275	8,425		81.3	429,579.0
11	7,975	8,125		82.1	422,629.0
12	7,975	8,125		80.8	431,978.0
13	7,375	7,525		85	454,820.0
14	7,075	7,150		85.2	386,080.0
15	7,075	7,150		81	431,949.0

Corral Canyon Federal 017H - Proposed WBD

600' Surface Casing Shoe
 606' T/Salt
 2550' TOC
 2653' B/Salt
 2889' T/Bell Canyon,
 T/Delaware
 2895' Intermediate Casing
 Shoe
 3801' T/Cherry Canyon
 5390' T/Brushy Canyon
 5600' KOP
 6700' T/Perfs

Perf and circulate 700' to surface.

Spot 140 SKS Class C:
 3,900' to 2,550'. WOC and Tag.

Spot 25 SKS Class C: 5,450'
 to 5,200'.

Dump bail 35' Class C atop
 CIBP: 5,570' to 5,535'. PT
 CIBP to 500 PSIG for 30
 min. WOC and Tag.

**BUREAU OF LAND MANAGEMENT
Carlsbad Field Office
620 East Greene Street
Carlsbad, New Mexico 88220
575-234-5972**

**Permanent Abandonment of Federal Wells
Conditions of Approval**

Failure to comply with the following Conditions of Approval may result in a Notice of Incidents of Noncompliance (INC) in accordance with 43 CFR 3163.1.

Plugging operations shall commence within **ninety (90)** days from the approval date of this Notice of Intent to Abandon.

If you are unable to plug the well by the 90th day provide this office, prior to the 90th day, with the reason for not meeting the deadline and a date when we can expect the well to be plugged. Failure to do so will result in enforcement action.

The rig used for the plugging procedure cannot be released and moved off without the prior approval of the authorized officer. Failure to do so may result in enforcement action.

Notification: Contact the appropriate BLM office at least 24 hours prior to the commencing of any plugging operations. For wells in Chaves and Roosevelt County, call 575-627-0272; Lea County, call 575-689-5981. Eddy County, please email notifications to: BLM_NM_CFO_PluggingNotifications@BLM.GOV. The Eddy County inspector on call phone, 575-361-2822, will remain active as a secondary contact.

Blowout Preventers: A blowout preventer (BOP), as appropriate, shall be installed before commencing any plugging operation. The BOP must be installed and maintained as per API and manufacturer recommendations. The minimum BOP requirement is a 2M system for a well not deeper than 9,090 feet; a 3M system for a well not deeper than 13,636 feet; and a 5M system for a well not deeper than 22,727 feet.

Mud Requirement: Mud shall be placed between all plugs. Minimum consistency of plugging mud shall be obtained by mixing at the rate of 25 sacks (50 pounds each) of gel per 100 barrels of water. Minimum nine (9) pounds per gallon.

Cement Requirement: Sufficient cement shall be used to bring any required plug to the specified depth and length. Any given cement volumes on the proposed plugging procedure are merely estimates and are not final. Unless specific approval is received, no plug except the surface plug shall be less than 25 sacks of cement. Any plug that requires a tag will have a minimum WOC time of 4 hours for Class C or accelerated cement (calcium chloride) and 6 hours for Class H. Tagging the plug means running in the hole with a string of tubing or drill pipe and placing sufficient weight on the plug to ensure its integrity. Other methods of tagging the plug may be approved by the BLM authorized officer or BLM field representative.

In lieu of a cement plug across perforations in a cased hole (not for any other plugs), a bridge plug set within 50 feet to 100 feet above the perforations shall be capped with 25 sacks of cement. If a bailer is used to cap this plug, 35 feet of cement shall be sufficient. **Before pumping or bailing cement on top of CIBP, tag will be required to verify depth. Based on depth, a tag of the cement may be deemed necessary.**

Unless otherwise specified in the approved procedure, the cement plug shall consist of either Neat Class "C", for up to 7,500 feet of depth or Neat Class "H", for deeper than 7,500 feet plugs.

Fluid used to mix the cement in R111Q shall be saturated with the salts common to the section penetrated, and in suitable proportions but not less than 1% and not more than 3% calcium chloride by weight of cement will be considered the desired mixture whenever possible.

Above Ground Level Marker: If outside of Lesser Prairie-Chicken Habitat an above ground level marker shall be utilized. All casing shall be cut-off at the base of the cellar or 3 feet below final restored ground level (whichever is deeper). **The BLM is to be notified BY PHONE (numbers listed in 2. Notifications) a minimum of 4 hours prior to the wellhead being cut off to verify that cement is to surface in the casing and all annuluses. Wellhead cut off shall commence within fourteen (14) calendar days of the well being plugged. If the cut off cannot be done by the 14th day, the BLM is to be contacted with justification to receive an extension for completing the cut off.**

The well bore shall then be capped with a 4-inch pipe, 10-feet in length, 4 feet above ground and embedded in cement, unless otherwise noted in COA (requirements will be attached). The following information shall be permanently inscribed on the dry hole marker: well name and number, name of the operator, lease serial number, surveyed location (quarter-quarter section, section, township and range or other authorized survey designation acceptable to the authorized officer such as metes and bounds). A weep hole shall be left if a metal plate is welded in place.

Below Ground Level Marker: If within Lesser Prairie-Chicken Habitat a below ground level marker shall be utilized. All casing shall be cutoff at the base of the cellar or 3 feet below final restored ground level (whichever is deeper). **The BLM is to be notified BY PHONE (numbers listed in 2. Notifications) a minimum of 4 hours prior to the wellhead being cut off to verify that cement is to surface in the casing and all annuluses. Wellhead cut off shall commence within fourteen (14) calendar days of the well being plugged. If the cut off cannot be done by the 14th day, the BLM is to be contacted with justification to receive an extension for completing the cut off.**

Upon the plugging and subsequent abandonment of wells that are located in lesser prairie-chicken habitat, the casings shall be cut-off at the base of the cellar or 3 feet below final restored ground level (whichever is deeper). The well bore shall then be covered with a metal plate at least $\frac{1}{4}$ inch thick and welded in place. A weep hole shall be left in the plate and/or casing. The following information shall be permanently inscribed on the plate: well name and number, name of operator, lease serial number, surveyed location (quarter-quarter section, section, township and range or other authorized survey designation acceptable to the authorized officer such as metes and bounds).

NMOCD also requires the operator to notify NMOCD when this type of dry hole marker is used. This can be done on the subsequent report of abandonment which is submitted to the BLM after the well is plugged. State that a below ground cap was installed as required in the COA's from the BLM.

Operator to verify the ground marker type with the BLM before setting dry hole Marker.

Subsequent Plugging Reporting: Within 30 days after plugging work is completed, Subsequent Report of Abandonment should be filed via AFMSS reporting system. Please include the following information:

- The report should give in detail the manner in which the plugging work was carried out, the extent (by depths) of cement plugs placed, and the size and location (by depths) of casing left in the well.
- The final copy of CBL
- Any email correspondence regarding changes to originally approved procedure
- Show date well was plugged.

Trash: All trash, junk and other waste material shall be contained in trash cages or bins to prevent scattering and will be removed and deposited in an approved sanitary landfill. Burial on site is not permitted.

Following the submission and approval of the Subsequent Report of Abandonment, surface restoration will be required. See attached reclamation objectives.

Timing Limitation Stipulation/ Condition of Approval for Lesser Prairie-Chicken:

From March 1st through June 15th annually, abandonment activities will be allowed except between the hours from 3:00 am and 9:00 am. Normal vehicle use on existing roads will not be restricted.

United States Department of the Interior

BUREAU OF LAND MANAGEMENT
 Carlsbad Field Office
 620 E. Greene St.
 Carlsbad, New Mexico 88220-6292
www.blm.gov/nm

In Reply Refer To: 1310

Reclamation Objectives and Procedures

Reclamation Objective: Oil and gas development is one of many uses of the public lands and resources. While development may have a short- or long-term effect on the land, successful reclamation can ensure the effect is not permanent. During the life of the development, all disturbed areas not needed for active support of production operations should undergo "interim" reclamation in order to minimize the environmental impacts of development on other resources and uses. At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land and water are restored.

The long-term objective of final reclamation is to set the course for eventual ecosystem restoration, including the restoration of the natural vegetation community, hydrology, and wildlife habitats. In most cases this means returning the land to a condition approximating or equal to that which existed prior to the disturbance. The final goal of reclamation is to restore the character of the land and water to its pre-disturbance condition. The operator is generally not responsible for achieving full ecological restoration of the site. Instead, the operator must achieve the short-term stability, visual, hydrological, and productivity objectives of the surface management agency and take steps necessary to ensure that long-term objectives will be reached through natural processes.

To achieve these objectives, remove any/all contaminants, scrap/trash, equipment, pipelines and powerlines (**Contact service companies, allowing plenty of time to have the risers and power lines and poles removed prior to reclamation, don't wait till the last day and try to get them to remove infrastructure.**) Strip and remove caliche, contour the location to blend with the surrounding landscape, re-distribute the native soils, provide erosion control as needed, rip (across the slope and seed as specified in the original APD COA. **This will apply to well pads, facilities, and access roads.** Barricade access road at the starting point. If reserve pits have not reclaimed due to salts or other contaminants, submit a plan for approval, as to how you propose to provide adequate restoration of the pit area.

The Application for Permit to Drill or Reenter (APD, Form 3160-3), Surface Use Plan of Operations must include adequate measures for stabilization and reclamation of disturbed lands. Oil and Gas operators must plan for reclamation, both interim and final, up front in the APD process as per Onshore Oil and Gas Order No. 1.

For wells and/or access roads not having an approved plan, or an inadequate plan for surface reclamation (either interim or final reclamation), the operator must submit a proposal describing the procedures for reclamation. For interim reclamation, the appropriate time for submittal would be when filing the Well Completion or Recompletion Report and Log (Form 3160-4). For final reclamation, the appropriate time for submittal would be when filing the Notice of Intent, or the Subsequent Report of Abandonment, Sundry Notices and Reports on Wells (Form 3160-5). Interim reclamation is to be completed within 6 months of well completion, and final reclamation is to be completed within 6 months of well abandonment.

The operator must file a Subsequent Report Plug and Abandonment (Form 3160-5) following the plugging of a well.

Previous instruction had you waiting for a BLM specialist to inspect the location and provide you with reclamation requirements. If you have an approved Surface Use Plan of Operation and/or an approved Sundry Notice, you are free to proceed with reclamation as per approved APD. If you have issues or concerns, contact a BLM specialist to assist you. It would be in your interest to have a BLM specialist look at the location and access road prior to the removal of reclamation equipment to ensure that it meets BLM objectives. Upon

conclusion submit a Form 3160-5, Subsequent Report of Reclamation. This will prompt a specialist to inspect the location to verify work was completed as per approved plans.

The approved Subsequent Report of Reclamation will be your notice that the native soils, contour and seedbed have been reestablished. If the BLM objectives have not been met the operator will be notified and corrective actions may be required.

It is the responsibility of the operator to monitor these locations and/or access roads until such time as the operator feels that the BLM objective has been met. If after two growing seasons the location and/or access roads are not showing the potential for successful revegetation, additional actions may be needed. When you feel the BLM objectives have been met submit a Final Abandonment Notice (FAN), Form 3160-5, stating that all reclamation requirements have been achieved and the location and/or access road is ready for a final abandonment inspection.

At this time the BLM specialist will inspect the location and/or access road. If the native soils and contour have been restored, and the revegetation is successful, the FAN will be approved, releasing the operator of any further liability of the location and/or access road. If the location and/or access road have not achieved the objective, you will be notified as to additional work needed or additional time being needed to achieve the objective.

If there are any questions, please feel free to contact any of the following specialists:

Jim Amos
Supervisory Petroleum Engineering Tech/Environmental Protection Specialist
575-234-5909 (Office), 575-361-2648 (Cell)

Arthur Arias
Environmental Protection Specialist
575-234-6230

Crisha Morgan
Environmental Protection Specialist
575-234-5987

Jose Martinez-Colon
Environmental Protection Specialist
575-234-5951

Angela Mohle
Environmental Protection Specialist
575-234-9226

Robert Duenas
Environmental Protection Specialist
575-234-2229

Terry Gregston
Environmental Protection/HAZMAT Specialist
575-234-5958

Sante Fe Main Office
Phone: (505) 476-3441

General Information
Phone: (505) 629-6116

Online Phone Directory
<https://www.emnrd.nm.gov/ocd/contact-us>

State of New Mexico
Energy, Minerals and Natural Resources
Oil Conservation Division
1220 S. St Francis Dr.
Santa Fe, NM 87505

CONDITIONS

Action 535578

CONDITIONS

Operator: XTO ENERGY, INC 6401 Holiday Hill Road Midland, TX 79707	OGRID: 5380
	Action Number: 535578
	Action Type: [C-103] NOI Plug & Abandon (C-103F)

CONDITIONS

Created By	Condition	Condition Date
gcordero	A Cement Bond Log (CBL) is required to be submitted to electronic permitting.	12/26/2025
gcordero	Submit Cement Bond Logs (CBL) prior to submittal of C-103P.	12/26/2025