SITE INFORMATION

Report	Type: Mor	nitoring Wo	ork Plan	Inciden	t #NAB1	922035	506		
General Site Info	rmation:								
Site:		Big Papi Feo	deral Com #2H						
Company:		COG Operat	ing LLC			-			
Section, Townsh	ip and Range	Unit C	Sec. 04	T 26S	R 29E				
County:		Eddy Count	ddy County						
GPS:			32.07758			-103.9	991414		
Surface Owner:									
Directions:		From the inters	section of Hwy 28 west and go .7m a	35 and Longho and arrive on lo	rn road go ap ocation	prox 2.4m a	nd turn north and go 1m		
Release Data:									
Date Released:		7/12/2019							
Type Release:		Produced Wa	ater						
Source of Contar	nination:	Flowline							
Fluid Released:		240 bbl wate	240 bbl water						
Fluids Recovered.		40 bbls water) bbls water						
Official Commun	ication:								
Name:	Ike Tavarez			Mike Carmona					
Company:	COG Operating,	LLC			Tetra Tech				
Address:	One Concho Cer	ter			901 West W	901 West Wall Street			
	600 W. Illinois Av	′e.			Suite 100				
City:	Midland Texas, 7	9701		Midland, Texas					
Phone number:	(432) 686-3023				(432) 687-8	121			
Fax:	(432) 684-7137								
Email:	itavarez@conch	no.com			Mike.carm	ona@tetrat	ech.com		

Site Characterization	
Depth to Groundwater:	78'
Karst	Medium

Recommended Remedial Action Levels (RRALs)								
Benzene	Total BTEX	TPH (GRO+DRO+MRO)	Chlorides					
10 mg/kg	50 mg/kg	100 mg/kg	600 mg/kg					

December 17, 2020

Mr Mike Bratcher District Supervisor Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Re: Monitoring Work Plan Continued for the COG Operating, LLC, Big Papi Federal Com #2H, Unit C, Section 04, Township 26 South, Range 29 East, Eddy County, New Mexico. Incident # NAB1922035506

Mr Bratcher:

Tetra Tech, Inc. (Tetra Tech) was contacted by COG Operating, LLC (COG) to assess a release that occurred at the Big Papi Federal Com #2H, Unit C, Section 04, Township 26 South, Range 29 East, Eddy County, New Mexico (Site). The spill site coordinates are 32.077580°, -103.991414°. The site location is shown on Figures 1 and 2.

Background

According to the State of New Mexico C-141 Initial Report, the release was discovered on July 12, 2019, and released approximately 240 barrels of produced water due to the flowline being ruptured. None of the produced water was recovered. The release occurred behind the tank battery in the pasture and migrated into the wash/draw impacting areas measuring approximately 65' x 40' and 1,290' x 15'. The C-141 Form is included in Appendix A.

Site Characterization

A Site characterization was performed for the site, and no lakebeds, sinkholes, playa lakes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances. However, the site is in a medium karst potential area and migrated into a draw. Also, a watercourse is located within 300' of the site, according to the USGS topographic map.

The nearest water well is listed on the New Mexico State Engineer's (NMOSE) database, approximately 1.50 miles southwest of the site, and has a reported depth to groundwater of 78' below surface. According to the Chevron Texaco Groundwater Trend map, the average depth to groundwater in the area is approximately 125' below surface. The site characterization data is shown in Appendix B.

Regulatory

A risk-based evaluation was performed for the site following the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills, and Releases, updated August 14, 2018. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based on the site characterization, the proposed RRAL for TPH is 100 mg/kg (GRO + DRO + MRO). Additionally, based on the site characterization, the proposed RRAL for chlorides is 600 mg/kg.

Initial Soil Assessment and Analytical Results

On July 25, 2019, Tetra Tech personnel were onsite to evaluate and sample the release area. A total of fourteen (14) hand auger holes (AH-1 through AH-14) were installed in the pasture area and draw area to total depths ranging from surface to 2.5' below surface. Selected soil samples were collected and submitted to the laboratory for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The results of the sampling are summarized in Table 1. The sample locations are shown on Figure 3 and Figure 3A.

Pasture and Draw Areas

One auger hole (AH-1) was installed in the top of the draw to a total depth of 0-0.5' below surface. The remaining auger holes (AH-2 through AH-14) were installed in the wash/draw area.

Referring to Table 1, none of the samples analyzed showed benzene, TPH, or total BTEX concentrations above the laboratory reporting limits, with the exception of areas of AH-9 and AH-11, which showed TPH concentrations of 719 mg/kg and 1,020 mg/kg, respectively.

Auger hole (AH-1) showed elevated chloride concentrations of 20,700 mg/kg at a depth of 0-0.5' below surface and deeper samples were not collected due to the dense formation. The remaining auger holes (AH-2 through AH-14) in the draw all showed chloride concentrations above the RRALs, with concentrations ranging from 1,250 mg/kg to 17,200 mg/kg. The area of AH-10 was showed a chloride concentration of 12,600 mg/kg at 0-0.5' below surface.

Remediation and Sampling

On August 8-13, 2019, Tetra Tech personnel were onsite to remediate the top pasture area and a portion of the wash/draw area to the maximum extent practical. Due to limited access, the BLM requested the draw area be flushed with clean freshwater using a power washer to washout the visual staining and chlorides from the draw. In addition, all the fluids generated during the washing would be captured and properly disposed of. However, no fluids were generated during the washing due to the sandy formation at the bottom of the draw.

The area of auger hole (AH-2) was excavated to a depth of 4.0' and the area of auger hole (AH-1) to a depth of 6.0' below surface. Deeper samples were not collected due to dense formation in the bottom. A total of three (3) bottom hole confirmation samples and seven (7) sidewall confirmation samples were collected to ensure proper removal of the impacted soils to the maximum extent possible. The samples were submitted to the laboratory to be analyzed for TPH method 8015 extended, BTEX method 8021B, and Chloride by EPA Method 300.0. The sampling results are summarized in Table 2. The excavation depths and sample locations are shown on Figure 4.

Referring to Table 2, all of the confirmation samples analyzed for benzene, total BTEX, and TPH were below the laboratory reporting limits. The area of Bottom 1 showed a chloride concentration of 2,480 mg/kg at 4.0' below surface and was considered the beginning of the draw. It was excavated to the maximum extent practicable, due to dense formation.

The areas of Bottom 2 and Bottom 3 were excavated to a total depth of 6.0' below surface and showed chloride concentrations of 112 mg/kg and 144 mg/kg below surface. The sidewalls (NSW, WSW-1, and ESW-2) Showed chloride concentrations below the RRALs, with chloride concentrations ranging from 48.0 mg/kg to 592 mg/kg. In the area near the draw, sidewalls (WSW-2 and ESW-1) showed chloride concentrations of 1,250 mg/kg and 1,500 mg/kg and were not remediated due to the natural course of the draw being altered. The area of SSW-1 showed a chloride concentration of 7,520 mg/kg and connects to the draw, which limited our access to the area.

Approximately 200 cubic yards of material were excavated and transported offsite for proper disposal. The area was then backfilled with clean material to surface grade.

2020 Site Monitoring Activities

• On February 12, 2020, Tetra Tech performed the first monitoring event to evaluate the draw area to monitor the chloride concentrations. The sampling results are summarized in Table 1. Referring to Table 1, the areas of auger holes (AH-2 through AH-14) in the draw were resampled to total depths ranging from surface to 2.5' below surface. The soil samples were collected and submitted to the laboratory for chloride by EPA method 300.0.

The areas of auger holes (AH-2, AH-3, and AH-6 through AH-14) showed chloride concentrations ranging from <9.92 mg/kg to 310 mg/kg, all below the RRALs. The areas of auger hole (AH-4) showed chloride concentrations of 142 mg/kg at surface to 1.0', 189 mg/kg at 1.0-1.5', and 607 mg/kg at 1.5'-2.0' below surface. The area of (AH-5) showed concentrations ranging from 624 mg/kg to 1,040 mg/kg below surface. Deeper samples were not collected due to dense formation in the bottom for the areas of auger hole (AH-4 and AH-5).

• On May 1, 2020, Tetra Tech performed the second monitoring event to evaluate the draw area to monitor the chloride concentrations. The sampling results are summarized in Table 1. Referring to Table 1, the areas of auger holes (AH-2 through AH-14) in the draw were resampled to total depths ranging from surface to 2.5' below surface. The soil samples were collected and submitted to the laboratory for chloride by EPA method 300.0.

The areas of auger holes (AH-3, AH-4, AH-7 through AH-14) showed chloride concentrations ranging from 12.7 mg/kg to 382 mg/kg, all below the RRALs. The area of AH-2 showed a high chloride concentration of 1,850 mg/kg at surface to 1.0'below surface, then decreased with depth at 1.0'-1.5' below surface, with a concentration of 280 mg/kg. The area of auger hole (AH-5) showed chloride of 902 mg/kg at surface to 1.0', 1,250 mg/kg at 1.0-1.5', and 7,770 mg/kg at 2.0'-2.5' below surface.

• On August 19, 2020, Tetra Tech performed the 3rd monitoring event to evaluate the draw area to monitor the chloride and TPH concentrations. The areas of Bottom Hole-1 and SSW-1 were also re-evaluated, per email from the BLM dated March 9, 2020. The sampling results are summarized in Table 1 and Table 2. Referring to Table 1, the areas of auger holes (AH-4, AH-5, AH-6, AH-9, and AH-11) in the draw were resampled to total depths ranging from surface to 2.5' below surface. The soil samples were collected and submitted to the laboratory for chloride by EPA method 300.0.

The areas of auger holes (AH-4, AH-5, and AH-6) showed elevated chloride concentrations ranging from 622 mg/kg to 5,010 mg/kg. The areas of auger holes (AH-9 and AH-11) showed TPH concentrations of <50.0 mg/kg at surface to 0.5'. Deeper samples were not collected due to dense formation in the bottom for auger hole areas (AH-4, AH-5, and AH-6).

Conclusion

As of 2020, three (3) areas exceeded the regulatory levels of 600 mg/kg for chloride. The areas of auger holes (AH-4, AH-5, and AH-6) will be monitored for the calendar year of 2021.

Proposed Plan

Based on the data supported by the sampling events, the rain events in the area have affected the chloride concentrations and continue to show a reduction of concentrations over time. COG proposes to continue the monitoring process of the draw area in 2021. Site monitoring activities will be performed on a quarterly basis or after a heavy rain event until the chlorides are below the regulatory limit.

Once the chlorides are below the regulatory threshold, a final report will be submitted. If you have any questions or comments concerning the assessment or remediation activities for this site, please call at (432) 682-4559.

Respectfully submitted,

TETRA TECH

ne

Mike Carmona Geologist

.

Figures

Released to Imaging: 4/15/2021 2:39:09 PM

Released to Imaging: 4/15/2021 2:39:09 PM

Released to Imaging: 4/15/2021 2:39:09 PM

#CH

MXD/2

5H

Approximate Scale in Feet

SCALE= 1"=20"

AH-5

AH-6 Ô

о^{АН-3}

AH-4

SPILL ASSESSMENT MAP

BIG PAPI FEDERAL COM #2H

EDDY COUNTY, NEW MEXICO

ACONCH(

AH-1

AH-2

Page 9 of 168

LATITUDE

32.077088

32.077201

32.077202

32.077201

32.077119

32.077182°

32.077074°

32.076870

32.076639

32.076427

32.076159

32.075970

32.075813°

32.075562

32.075357

32.075182°

32.075189°

32.075094°

AH-3

AH-4

AH-5

AH-6

AH-7

AH-8

AH-9

AH-10

AH-11 AH-12

AH-13

AH-14

212C-MD-0185

Date: 01-09

Property Located at coordinates 32.077580°,-103.991414°

LONGITUDE -103.991435

-103.991422

-103.991461

-103.99144

-103.991432

-103.991443°

-103.991443°

-103.991412°

-103.991428°

-103.991353°

103.991326

-103.991227

-103.991426°

-103.991386°

-103 991381°

-103.991494

-103.991717°

-103.992039°

103.992100

FIGURE

3

•

۲

 \mathbf{x}

Г

SOURCE

FLOWLINE X-X- FENCELINE

AFFECTED SPILL AREA

e: "New Mexico". 32° 4'39.29"N, 103°59 ary 2019.October 14,2019.

BOTTOM HOLE SAMPLE LOCATION

AUGERHOLE SAMPLE LOCATIONS

Received by OCD: 12/19/2020 9:49:53 AM

•

Tables

Released to Imaging: 4/15/2021 2:39:09 PM

			0.11		_		,							
Sample ID	Sample Date	Sample Depth (ft)	Soli		0.00			Tatal	Benzene (mg/kg)	Toluene (mg/kg)	Ethlybenzene (mg/kg)	Xylene (mg/kg)	Total BTEX (mg/kg)	Chloride (mg/kg)
	rea - Remedia	ted Results	In-Situ	Removed	GRO	DRO		lotal						,
AH-1	7/25/2019	0-0.5		- X	<15.0	36.7	<15.0	36.7	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	20.700
	7/25/2010	0-0.5		X	<15.0	22.8	<15.0	22.8	<0.00198	<0.00198	<0.00108	<0.00108	<0.00108	13 300
	0/40/0000	0-0.0	V		<10.0	22.0		22.0	<0.00130	<0.00130	<0.00190	<0.00130	<0.00130	13,300
AH-2	2/12/2020	0-1 1-1.5	X		-	-	-	-	-	-	-	-	-	67.4 197
	E/1/2020	0.1												1 950
	5/1/2020	1-1.5	X		-	-	-	-	-	-	-	-	-	280
	Drav	v Area	~										<u> </u>	200
	7/25/2019	0-1	Х		<14.9	<14.9	<14.9	<14.9	<0.00202	<0.00202	<0.00202	<0.00202	<0.00202	15,600
AH-3	2/12/2020	0-1	Х		-	-	-	_	-	-	-	-	-	248
	5/1/2020	0_1	× ×						_			_		19.5
	3/1/2020	0-1			-	-	-	-	-	-	-	-	-	10.5
	"	0-1	X X		<15.0	27.6	<15.0	27.6	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	14,400 9 810
	"	1.5-2	X		<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	8,450
	2/12/2020	0-1	Х		_	_	-	_	_	-	-	_	_	142
	"	1-1.5	X		-	-	-	-	-	-	-	-	-	189
	"	1.5-2	Х		-	-	-	-	-	-	-	-	-	607
AH-4	5/1/2020	0-1	Х		-	-	-	-	-	-	-	-	-	54.2
	II	1-1.5	Х		-	-	-	-	-	-	-	-	-	149
	"	1.5-2	Х		-	-	-	-	-	-	-	-	-	335
	8/19/2020	0-1	Х		-	-	-	-	-	-	-	-	-	3,030
	"	1-1.5	Х		-	-	-	-	-	-	-	-	-	5,010
	"	1.5-2	Х		-	-	-	-	-	-	-	-	-	3,150
	7/25/2019	0-1	Х		<15.0	<15.0	<15.0	<15.0	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	11,300
	"	1-1.5	X		<15.0	<15.0	<15.0	<15.0	<0.00198	<0.00198	<0.00198	<0.00198	<0.00198	5,000
		2-2.5	X		<15.0	<15.0	<15.0	<15.0	<0.00202	<0.00202	<0.00202	<0.00202	<0.00202	1,250
	2/12/2020	0-1	X		-	-	-	-	-	-	-	-	-	624 822
	"	2-2.5	X		-	-	-	-	-	-	-	-	-	023 1.040
AH-5	5/1/2020	0_1	× ×											002
	3/1/2020	1-1.5	X		-	-	-	-	-	-	-	-	-	1.250
	"	2-2.5	X		-	-	-	-	-	-	-	-	-	7,770
	8/19/2020	0-1	Х		-	-	-	-	_	-	-	_	_	1.930
	"	1-1.5	X		-	-	-	-	-	-	-	-	-	1,670
	"	2-2.5	Х		-	-	-	-	-	-	-	-	-	1,630
	7/25/2019	0-1	Х		<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	9,240
	2/12/2020	0-1	Х		-	-	-	-	-	-	-	-	-	310
AH-6	5/1/2020	0-1	Х		_	_	-	_	_	-	-	_	_	977
	8/10/2020	0_1	v		_		_							622
						-	45.0		-	-	-		-	45 300
	7/25/2019	0.5	X		18.9	50.5	<15.0	69.4	0.00345	<0.00198	<0.00198	0.00842	0.0119	15,700
AH-7	2/12/2020	0.5	X		-	-	-	-	-	-	-	-	-	69.7
	5/1/2020	0.5	Х		-	-	-	-	-	-	-	-	-	28.3

Table 1 COG Big Pappy Federal Com #002H (7.12.19) Eddy County, New Mexico

	Sample	Sample	Soil S	Status		TPH (mg/kg)		Benzene	Toluene	Fthlybenzene	Xvlene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	7/25/2019	0.5	Х		<15.0	29.9	<15.0	29.9	<0.00202	<0.00202	<0.00202	<0.00202	<0.00202	14,000
AH-8	2/12/2020	0.5	Х		-	-	-	-	-	-	-	-	-	<9.92
	5/1/2020	0.5	Х		-	-	-	-	-	-	-	-	-	25.8
	7/25/2019	0.5	Х		147	523	49.4	719	0.0200	0.00522	0.0446	0.154	0.223	15,400
AU 0	2/12/2020	0.5	Х		-	-	-	-	-	-	-	-	-	29.1
Ап-9	5/1/2020	0.5	Х		-	-	-	-	-	-	-	-	-	37.5
	8/19/2020	0.5	Х		<50.0	<50.0	<50.0	<50.0	-	-	-	-	-	-
	7/25/2019	0.5	Х		<15.0	37.8	<15.0	37.8	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	12,600
AH-10	2/12/2020	0.5	Х		-	-	-	-	-	-	-	-	-	99.2
	5/1/2020	0.5	Х		-	-	-	-	-	-	-	-	-	382
	7/25/2019	0.5	Х		38.2	903	76.7	1,020	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	13,700
	2/12/2020	0.5	Х		-	-	-	-	-	-	-	-	-	160
	5/1/2020	0.5	Х		-	-	-	-	-	-	-	-	-	277
	8/19/2020	0.5	Х		<50.0	<50.0	<50.0	<50.0	-	-	-	-	-	-
	7/25/2019	0.5	Х		<15.0	170	26.2	196	<0.00202	<0.00202	<0.00202	<0.00202	<0.00202	13,300
AH-12	2/12/2020	0.5	Х		-	-	-	-	-	-	-	-	-	34.4
	5/1/2020	0.5	Х		-	-	-	-	-	-	-	-	-	23.6
	7/25/2019	0.5	Х		<15.0	<15.0	<15.0	<15.0	<0.00202	<0.00202	<0.00202	<0.00202	<0.00202	17,200
AH-13	2/12/2020	0.5	Х		-	-	-	-	-	-	-	-	-	29.6
	5/1/2020	0.5	Х		-	-	-	-	-	-	-	-	-	12.7
	7/25/2019	0.5	Х		<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	12.5
AH-14	2/12/2020	0.5	Х		-	-	-	-	-	-	-	-	-	15.3
	5/1/2020	0.5	Х		-	-	-	-	-	-	-	-	-	41.1

Table 1 COG Big Pappy Federal Com #002H (7.12.19) Eddy County, New Mexico

Table 2 COG Big Pappy Federal Com #002H (7.12.19) Eddy County, New Mexico

Comple ID	Sample	Sample	BEB	Soil Status			TPH (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	8/8/2019	-	4.0		Х	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	2,480
	8/19/2020	0-1		Х		-	-	-	-	-	-	-	-	-	122
Pottom Holo 1	"	1-1.5		Х		-	-	-	-	-	-	-	-	-	219
	"	2-2.5		Х		-	-	-	-	-	-	-	-	-	35.1
	"	3-3.5		Х		-	-	-	-	-	-	-	-	-	33.4
	"	3.5-4		Х		-	-	-	-	-	-	-	-	-	<10.0
	0/0/2010		4.0	V		.10.0	.10.0	.10.0	.10.0	-0.050	-0.050	-0.050	-0.450	.0.200	000
Bottom Hole 2	8/8/2019	-	4.0	×		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	960
	8/13/2019	-	6.0	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	112
Bottom Hole 3	8/8/2019	-	4.0		X	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	512
	8/13/2019	-	6.0	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	144
North Sidewall	8/8/2019	-	-	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	592
South Sidowall	8/8/2019	-	-	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	7,520
South Sidewall	8/19/2020	-		Х		-	-	-	-	-	-	-	-	-	130
West Sidewall 1	8/8/2019	-	-	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	272
West Sidewall 2	8/8/2019	-	-	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	1,250
East Sidewall 1	8/8/2019	-	-	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	1,500
East Sidewall 2	8/8/2019	-	-	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
	8/13/2019	-	-	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0

•

Photos

Released to Imaging: 4/15/2021 2:39:09 PM

Concho Big Papi Federal Com #002H (7.12.19)

Eddy County, New Mexico

View South, area of Bottomholes 2 and 3

View South, area of bottomhole 1

Page 16 of 168

Concho Big Papi Federal Com #002H (7.12.19)

Eddy County, New Mexico

View South, area of Bottom Hole 1

View South, area of AH-1

Page 17 of 168

Eddy County, New Mexico

View North, area of AH-3 and AH-4

View South, AH-5 and AH-6

Concho Big Papi Federal Com #002H (7.12.19)

Eddy County, New Mexico

View Southeast, area of AH-3 and AH-4

View Southeast, area of AH-3 and AH-4

Eddy County, New Mexico

View East, area of AH-7

View West, area of AH-8

Eddy County, New Mexico

View South, area of AH-9

View South, area of AH-10 and AH-11

đ

TETRA TECH

Eddy County, New Mexico

View West, area of AH-12, AH-3, and AH-14

Appendix A

32.07719

04

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Page 24 of 168

Incident ID	NAB1922035506
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	COG Operating, LLC	OGRID	229137		
Contact Name	Jennifer Knowlton	Contact Telephone	(575) 748-1570		
Contact email	JKnowlton@concho.com	Incident # (assigned by OCD)			
Contact mailing address	600 West Illinois Avenue, Midland, Texas 79701				

Location of Release Source

Latitude

С

-103.99144

(NAD 83 in decimal degrees to 5 decimal places)

Site Name		Big Papi Fede	ral Com #002H	ł	Site Type	Flowli	ne
Date Release	Discovered	July 12, 2019			API# (if applicable)		
Unit Letter	Section	Township	Range		County		

Eddy

Surface Owner: State 🔳 Federal 🗌 Tribal 🗌 Private (Name: _____

26S

Nature and Volume of Release

Material	(s) Released (Select all that apply and attach calculations or specific	justification for the volumes provided below)
Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls) 240	Volume Recovered (bbls) 0
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Ves No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

The release was caused by a ruptured flowline. The flowline is being repaired.

29E

The release was in the pasture. A vacuum truck was dispatched to remove all freestanding fluids. Concho will evaluate the site to determine if we may commence remediation immediately or delineate any possible impact from the release and we will present a remediation work plan to the NMOCD for approval prior to any significant remediation activities.

Received by OCD	: 12/19/2020 9:49:53	Mate of New Mexico
1 UIIII U-1 4 1		

Page	2
rage	4

Oil Conservation Division

Incident ID	NAB1922035506
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC? Yes No	If YES, for what reason(s) does the responsible party consider this a major release? The volume released was greater than 25 barrels.
If YES, was immediate n	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?
Immediate notice w and Jim Amos.	as given by Rebecca Haskell via e-mail July 12, 2019 at 2:44 pm to Mike Bratcher

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: DeAnn Grant	Title: HSE Administrative Assistant
Signature: Deann Opeant	Date: 7/19/2019
email: agrant@concho.com	Telephone: (432) 253-4513
OCD Only	
Received by:	Date:

Received by OCD: 12/19/2020 9:49:53 AM Form C-141 State of New Mexico

Page 3

Oil Conservation Division

	Page 27 of 16
Incident ID	NAB1922035506
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>78</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗹 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗹 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🔽 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🔽 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗹 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🔽 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗹 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗹 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🔽 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗹 No
Did the release impact areas not on an exploration, development, production, or storage site?	🖌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. Field data
- Data table of soil contaminant concentration data
- Depth to water determination
- Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 12/19/2020 9	9:49:53 AM			Page 28 of 168
Form C-141			Incident ID	
Page 4	Oil Conservation Division		District RP	
			Facility ID	
			Application ID	
I hereby certify that the information regulations all operators are requipublic health or the environment. failed to adequately investigate are addition, OCD acceptance of a C- and/or regulations. Printed Name:	on given above is true and complete to the b red to report and/or file certain release notif The acceptance of a C-141 report by the O ad remediate contamination that pose a threa 141 report does not relieve the operator of p	best of my knowledge an fications and perform co OCD does not relieve the at to groundwater, surfa responsibility for compl Title: Date:	nd understand that pursu rrective actions for rele operator of liability sho ce water, human health iance with any other fec	ant to OCD rules and ases which may endanger buld their operations have or the environment. In deral, state, or local laws
OCD Only				
Received by:		Date:		

Received by OCD: 12/19/2020 9:49:53 AM Form C-141 State of New Mexico

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

<u>Remediation Plan Checklist</u> : Each of the following items must be	included in the plan.
 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12 Proposed schedule for remediation (note if remediation plan time 	2(C)(4) NMAC line is more than 90 days OCD approval is required)
Deferral Requests Only: Each of the following items must be conj	firmed as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around prodeconstruction.	duction equipment where remediation could cause a major facility
Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human health,	the environment, or groundwater.
I hereby certify that the information given above is true and complete rules and regulations all operators are required to report and/or file co- which may endanger public health or the environment. The acceptan liability should their operations have failed to adequately investigate surface water, human health or the environment. In addition, OCD a responsibility for compliance with any other federal, state, or local la	e to the best of my knowledge and understand that pursuant to OCD ertain release notifications and perform corrective actions for releases ce of a C-141 report by the OCD does not relieve the operator of and remediate contamination that pose a threat to groundwater, cceptance of a C-141 report does not relieve the operator of ws and/or regulations.
Printed Name:	Title:
Signature: 14.7	Date:
email:	Telephone:
OCD Only	
Received by:	Date:
Approved Approved with Attached Conditions of A	Approval Denied Deferral Approved
Signature:	Date:

Page 5

•

Appendix B

Released to Imaging: 4/15/2021 2:39:09 PM

Water Well Data Average Depth to Groundwater (ft) Big Papi Federal #2H Eddy County, New Mexico

	25 Sc	outh	28	East	
6	5	4 35	3 32	2	1
	59				Site
7	8	9	10	11	12
18	17	16	15 <mark>48</mark>	14	13
67			49		
19	20	21	22	23	24
	96				\sum
30	29	28	27	26 40	25
	15	90			5
31	32	33	34	35	36
					40

	26 S	South	28 East		
6	5	4	3	2 120	1 کر
				21	
7	8	9	10	11	12
					100
18	17	16	15	14	13
				120	56
19	20	21	22	23	24
			120		
30	29	28	27	26	25
31	32	33	34	35	36

	25 South		29		
6	5	4	3	2	1
40					
	8	9	10	11	12
			40		
لر 18	17	16	15	14	13
			60		
19	20	21	22	23	24
30	29	28	27	26	25
30					
31	32 <mark>98</mark>	33	34	35	36

	26 Sc	outh	29	East	
6	5 <mark>78</mark>	4 Site	3	2	1
7	8	9	10	11	12
18	17	16 125	15	14	13
19	20	21	22 <mark>57</mark>	23 <mark>80</mark>	24
30 🗸	29	28	27	26	25
31	32	33	34	35	36

	25 Sc	outh	30	East	
6	5	4	3	2 295	1
7 264	8	9 295	10	11	12 390
18	17	16	15	14	13
19	20	21 265 268	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

	26 So	outh	30	East	
6	5 179 180	4	3	2	1
7	8 1 72	9	10	11	12
18	17	16	15	14	13
19	20	21	22	23	24 180
30	29	28	27	26	25
31	32	33	34	35	36

88 New Mexico State Engineers Well Reports

105 USGS Well Reports

90 Geology and Groundwater Conditions in Southern Lea, County, NM (Report 6) Geology and Groundwater Resources of Eddy County, NM (Report 3)

- 34 NMOCD Groundwater Data
- 123 Tetra Tech installed temporary wells and field water level
- **143** NMOCD Groundwater map well location

🙊 NFHL Web Mapping Application

					► Measur
-					
		0004.0			
		2984 π			
			Search Result		
				.2975 ft	
	100m				
Released	to Imaging: 4/15/2021 2:39:09 PM				

32.077319 -103.991242

pipeline Road Humber?

3000 ft

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD replaced, O=orphan C=the file closed)	has been ned, e is	1 (qu (qu	uarto uarto	ers a	are i	I=NW smalle	/ 2=N] st to la	E 3=SW urgest)	7 4=SE) (NAD83	3 UTM in meter	s) (Iı	n feet)	
POD Number	Code	POD Sub- basin	County	Q 64	Q 16	Q 4	Sec	Tws	Rng	х	Y	DepthWellDepth	W Water Col	ater lumn
<u>C 01354 X-3</u>		CUB	ED	2	1	3	23	26S	29E	598323	3543837	170		
<u>C 02038</u>		С	ED	3	2	4	26	26S	29E	599204	3541992*	200		
<u>C 03507 POD1</u>		С	ED	1	3	3	05	26S	29E	593064	3548313	140	78	62
<u>C 03508 POD1</u>		С	ED	1	3	3	05	26S	29E	593063	3548361	140	75	65
<u>C 03605 POD1</u>		CUB	ED	4	2	3	27	26S	29E	596990	3541983	45	0	45
										A	Average Depth t	o Water:	51 fee	t
											Minim	ım Depth:	0 fee	t
											M aximu	m Depth:	78 fee	t
Record Count: 5														

Township: 26S Range: 29E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

8/6/19 3:52 PM

WATER COLUM N/ AVERAGE DEPTH TO WATER USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

US S Water Resources

Data Categor : Groundwater • eographic rea: New Mexico • GO

Click to hideNews Bulletins

- Introducing The Next Generation of USGS Water Data for the Nation
- ull News RSS icon

Groundwater levels for New Mexico

Click to hide state-specific text

Search Results -- 1 sites found

genc code usgs site no list • 320532104001701

Minimum number of levels l Save file of selected sites to local disk for future upload

US S 05 104001701 5S 1111

Eddy County, New Mexico Latitude 32 05 32, Longitude 104 00 17 NAD27 Land-surface elevation 2,988 feet above NAVD88 The depth of the well is 128 feet below kand surface. This well is completed in the Rustler ormation (312RSLR) local aquifer.

Output formats											
Table of data											
Tab-separated data											
<u>Graph of data</u>	Gaph of data										
Reselect period											
\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$
1958-08-19		C	98.63	i		2		U		U	
1978-01-13		D	95.23			2		U		U	j .
1987-10-14		C	96.69)		2		U		U	
1992-11-03		D	98.13			2		S		U	J .

\$	\$	\$
Water-level accuracy	2	Water level accuracy to nearest hundredth of a foot
Method of measurement	S	Steel-tape measurement.
Measuring agency		Not determined
Water-level approval status	A	Approved for publication Processing and review completed.

uestions about sites/data _eedback on this web site Automated retrievals Help

Appendix C
Analytical Report 632174

for Tetra Tech- Midland

Project Manager: Mike Carmona

Pappy's Preference Federal #1

212C-MD-01855

29-JUL-19

Collected By: Client

1211 W. Florida Ave Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-19-29), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-19-19), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-18-14) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-19-20) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-18-18) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-18-4) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429), North Carolina (483) Received by OCD: 12/19/2020 9:49:53 AM

29-JUL-19

Project Manager: **Mike Carmona Tetra Tech- Midland** 901 West Wall ST Midland, TX 79701

Reference: XENCO Report No(s): 632174 Pappy's Preference Federal #1 Project Address: Eddy County,NM

Mike Carmona:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 632174. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 632174 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jession Vermer

Jessica Kramer Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Page 38 of 168

Sample Id

AH-1 (0-6")
AH-2 (0-6")
AH-3 (0-1')
AH-4 (0-1')
AH-4 (1'-1.5')
AH-4 (1.5'-2')
AH-5 (0-1')
AH-5 (1'-1.5')
AH-2 (2'-2.5')
AH-6 (0-1')
AH-7 (0-6")
AH-8 (0-6")
AH-9 (0-6")
AH-10 (0-6")
AH-11 (0-6")
AH-12 (0-6")
AH-13 (0-6")
AH-14 (0-6")

Sample Cross Reference 632174

Pappy's Preference Federal #1

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	07-25-19 00:00		632174-001
S	07-25-19 00:00		632174-002
S	07-25-19 00:00		632174-003
S	07-25-19 00:00		632174-004
S	07-25-19 00:00		632174-005
S	07-25-19 00:00		632174-006
S	07-25-19 00:00		632174-007
S	07-25-19 00:00		632174-008
S	07-25-19 00:00		632174-009
S	07-25-19 00:00		632174-010
S	07-25-19 00:00		632174-011
S	07-25-19 00:00		632174-012
S	07-25-19 00:00		632174-013
S	07-25-19 00:00		632174-014
S	07-25-19 00:00		632174-015
S	07-25-19 00:00		632174-016
S	07-25-19 00:00		632174-017
S	07-25-19 00:00		632174-018

CASE NARRATIVE

Client Name: Tetra Tech- Midland Project Name: Pappy's Preference Federal #1

Project ID: 212C-MD-01855 Work Order Number(s): 632174 Report Date: 29-JUL-19 Date Received: 07/26/2019

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3096731 TPH by SW8015 Mod Surrogate o-Terphenyl recovered below QC limits. Samples affected are: 7682996-1-BLK,632174-010,632174-011,632174-012,632174-018,632174-006,632174-008. Surrogate 1-Chlorooctane recovered above QC limits. Matrix interferences is suspected. Samples affected are: 632174-004.

Batch: LBA-3096779 BTEX by EPA 8021B

Surrogate 4-Bromofluorobenzene recovered above QC limits. Matrix interferences is suspected; data confirmed by re-analysis.

Samples affected are: 632174-013.

Lab Sample ID 632174-001 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Ethylbenzene, Toluene, m,p-Xylenes, o-Xylene recovered below QC limits in the Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 632174-001, -002, - 003, -004, -005, -006, -007, -008, -009, -010, -011, -012, -013, -014, -015, -016, -017, -018. The Laboratory Control Sample for Toluene, m,p-Xylenes, Ethylbenzene, o-Xylene is within laboratory Control Limits, therefore the data was accepted.

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Project Id:212C-MD-01855Contact:Mike CarmonaProject Location:Eddy County,NM

Certificate of Analysis Summary 632174

Tetra Tech- Midland, Midland, TX Project Name: Pappy's Preference Federal #1

Date Received in Lab:Fri Jul-26-19 10:20 amReport Date:29-JUL-19Project Manager:Jessica Kramer

	Lab Id:	632174-0	001	632174-0	002	632174-	003	632174-	004	632174-	005	632174-	006
Analysis Paguastad	Field Id:	AH-1 (0-	6")	AH-2 (0-	·6")	AH-3 (0	-1')	AH-4 (0	-1')	AH-4 (1'-	1.5')	AH-4 (1.5	5'-2')
Analysis Kequesiea	Depth:												
	Matrix:	SOIL		SOIL		SOIL	,	SOIL		SOIL		SOIL	
	Sampled:	Jul-25-19 (00:00	Jul-25-19 (00:00	Jul-25-19	00:00	Jul-25-19	00:00	Jul-25-19	00:00	Jul-25-19	00:00
BTEX by EPA 8021B	Extracted:	Jul-26-19	11:33	Jul-26-19 1	11:33	Jul-26-19	11:33	Jul-26-19	11:33	Jul-26-19	11:33	Jul-26-19	11:33
	Analyzed:	Jul-27-192	21:48	Jul-27-19 2	22:08	Jul-27-19	22:28	Jul-27-19	22:48	Jul-27-19	23:08	Jul-27-19	23:28
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		< 0.00200	0.00200	<0.00198	0.00198	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00201	0.00201
Toluene		< 0.00200	0.00200	<0.00198	0.00198	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00201	0.00201
Ethylbenzene		< 0.00200	0.00200	<0.00198	0.00198	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00201	0.00201
m,p-Xylenes		< 0.00401	0.00401	<0.00397	0.00397	< 0.00403	0.00403	< 0.00401	0.00401	< 0.00401	0.00401	< 0.00402	0.00402
o-Xylene		< 0.00200	0.00200	<0.00198	0.00198	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00201	0.00201
Total Xylenes		< 0.00200	0.00200	<0.00198	0.00198	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00201	0.00201
Total BTEX		< 0.00200	0.00200	<0.00198	0.00198	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00201	0.00201
Chloride by EPA 300	Extracted:	Jul-27-19	12:30	Jul-27-19 1	12:30	Jul-27-19	12:30	Jul-27-19	12:30	Jul-27-19	12:30	Jul-27-19	12:30
	Analyzed:	Jul-27-19	17:43	Jul-27-19 1	18:04	Jul-27-19	18:10	Jul-27-19	18:26	Jul-27-19	18:32	Jul-27-19	18:37
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		20700	100	13300	100	15600	101	14400	99.6	9810	50.5	8450	49.7
TPH by SW8015 Mod	Extracted:	Jul-27-19 (09:00	Jul-27-19 (09:00	Jul-27-19	09:00	Jul-27-19	09:00	Jul-27-19	09:00	Jul-27-19	09:00
	Analyzed:	Jul-27-192	22:43	Jul-27-19 2	23:54	Jul-28-19	00:17	Jul-28-19	00:41	Jul-28-19	01:05	Jul-28-19	01:28
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0	<15.0	15.0	<14.9	14.9	<15.0	15.0	<15.0	15.0	<15.0	15.0
Diesel Range Organics (DRO)		36.7	15.0	22.8	15.0	<14.9	14.9	27.6	15.0	<15.0	15.0	<15.0	15.0
Motor Oil Range Hydrocarbons (MRO)		<15.0	15.0	<15.0	15.0	<14.9	14.9	<15.0	15.0	<15.0	15.0	<15.0	15.0
Total TPH		36.7	15.0	22.8	15.0	<14.9	14.9	27.6	15.0	<15.0	15.0	<15.0	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Version: 1.%

fession kramer

Jessica Kramer Project Assistant

Final 1.000

Project Id:212C-MD-01855Contact:Mike CarmonaProject Location:Eddy County,NM

Certificate of Analysis Summary 632174

Tetra Tech- Midland, Midland, TX Project Name: Pappy's Preference Federal #1

Date Received in Lab:Fri Jul-26-19 10:20 amReport Date:29-JUL-19Project Manager:Jessica Kramer

	Lab Id:	632174-0	007	632174-0	008	632174-	009	632174-	010	632174-	011	632174-0	012
Analysis Paguested	Field Id:	AH-5 (0	-1')	AH-5 (1'-	1.5')	AH-2 (2'-	2.5')	AH-6 (0	-1')	AH-7 (0	-6")	AH-8 (0-	-6")
Analysis Kequestea	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Jul-25-19 (00:00	Jul-25-19 (00:00	Jul-25-19	00:00	Jul-25-19	00:00	Jul-25-19	00:00	Jul-25-19	00:00
BTEX by EPA 8021B	Extracted:	Jul-26-19	11:33	Jul-26-19 1	11:33	Jul-26-19	11:33	Jul-26-19	11:33	Jul-26-19	11:33	Jul-26-19	11:33
	Analyzed:	Jul-27-19	23:49	Jul-28-19 (00:09	Jul-28-19	00:29	Jul-28-19	00:49	Jul-28-19	02:07	Jul-28-19 (02:28
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		< 0.00201	0.00201	<0.00198	0.00198	< 0.00202	0.00202	< 0.00200	0.00200	0.00345	0.00198	< 0.00202	0.00202
Toluene		< 0.00201	0.00201	<0.00198	0.00198	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00198	0.00198	< 0.00202	0.00202
Ethylbenzene		< 0.00201	0.00201	<0.00198	0.00198	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00198	0.00198	< 0.00202	0.00202
m,p-Xylenes		< 0.00402	0.00402	<0.00396	0.00396	< 0.00404	0.00404	< 0.00400	0.00400	0.00842	0.00396	< 0.00404	0.00404
o-Xylene		< 0.00201	0.00201	<0.00198	0.00198	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00198	0.00198	< 0.00202	0.00202
Total Xylenes		< 0.00201	0.00201	<0.00198	0.00198	< 0.00202	0.00202	< 0.00200	0.00200	0.00842	0.00198	< 0.00202	0.00202
Total BTEX		< 0.00201	0.00201	<0.00198	0.00198	< 0.00202	0.00202	< 0.00200	0.00200	0.0119	0.00198	< 0.00202	0.00202
Chloride by EPA 300	Extracted:	Jul-27-19	12:30	Jul-27-19 1	12:30	Jul-27-19	12:30	Jul-27-19	12:30	Jul-27-19	14:00	Jul-27-19	14:00
	Analyzed:	Jul-27-19	18:42	Jul-27-19 1	18:48	Jul-27-19	18:53	Jul-27-19	18:59	Jul-27-19	19:13	Jul-27-19	19:18
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		11300	49.9	5000	25.1	1250	25.3	9240	49.7	15700	100	14000	99.8
TPH by SW8015 Mod	Extracted:	Jul-27-19	09:00	Jul-27-19 (09:00	Jul-27-19	09:00	Jul-27-19	09:00	Jul-27-19	09:00	Jul-27-19 (09:00
	Analyzed:	Jul-28-19	01:51	Jul-28-19 (02:15	Jul-28-19	02:38	Jul-28-19	03:02	Jul-28-19	03:49	Jul-28-19 (04:12
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	18.9	15.0	<15.0	15.0
Diesel Range Organics (DRO)		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	50.5	15.0	29.9	15.0
Motor Oil Range Hydrocarbons (MRO)		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0
Total TPH		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	69.4	15.0	29.9	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Version: 1.%

fession kenner

Jessica Kramer Project Assistant

Final 1.000

Project Id:212C-MD-01855Contact:Mike CarmonaProject Location:Eddy County,NM

Certificate of Analysis Summary 632174

Tetra Tech- Midland, Midland, TX Project Name: Pappy's Preference Federal #1

Date Received in Lab:Fri Jul-26-19 10:20 amReport Date:29-JUL-19Project Manager:Jessica Kramer

	Lab Id:	632174-0	013	632174-0	014	632174-	015	632174-	016	632174-0	017	632174-0	018
Analysis Paguastad	Field Id:	AH-9 (0-	-6")	AH-10 (0	-6")	AH-11 (0)-6")	AH-12 (0	-6")	AH-13 (0)-6")	AH-14 (0)-6")
Analysis Kequestea	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL	,	SOIL		SOIL	
	Sampled:	Jul-25-19	00:00	Jul-25-19 (00:00	Jul-25-19	00:00	Jul-25-19	00:00	Jul-25-19	00:00	Jul-25-19	00:00
BTEX by EPA 8021B	Extracted:	Jul-26-19	11:33	Jul-26-19	1:33	Jul-26-19	11:33	Jul-26-19	11:33	Jul-26-19	11:33	Jul-26-19	11:33
	Analyzed:	Jul-28-19	05:09	Jul-28-19 (02:48	Jul-28-19	04:49	Jul-28-19	03:08	Jul-28-19 (03:28	Jul-28-19 (03:48
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		0.0200	0.00198	< 0.00201	0.00201	< 0.00200	0.00200	< 0.00202	0.00202	< 0.00202	0.00202	< 0.00200	0.00200
Toluene		0.00522	0.00198	< 0.00201	0.00201	< 0.00200	0.00200	< 0.00202	0.00202	< 0.00202	0.00202	< 0.00200	0.00200
Ethylbenzene		0.0446	0.00198	< 0.00201	0.00201	< 0.00200	0.00200	< 0.00202	0.00202	< 0.00202	0.00202	< 0.00200	0.00200
m,p-Xylenes		0.133	0.00396	< 0.00402	0.00402	< 0.00400	0.00400	< 0.00403	0.00403	< 0.00403	0.00403	< 0.00399	0.00399
o-Xylene		0.0205	0.00198	< 0.00201	0.00201	< 0.00200	0.00200	< 0.00202	0.00202	< 0.00202	0.00202	< 0.00200	0.00200
Total Xylenes		0.154	0.00198	< 0.00201	0.00201	< 0.00200	0.00200	< 0.00202	0.00202	< 0.00202	0.00202	< 0.00200	0.00200
Total BTEX		0.223	0.00198	< 0.00201	0.00201	< 0.00200	0.00200	< 0.00202	0.00202	< 0.00202	0.00202	< 0.00200	0.00200
Chloride by EPA 300	Extracted:	Jul-27-19	14:00	Jul-27-19	4:00	Jul-27-19	14:00	Jul-27-19	14:00	Jul-27-19	14:00	Jul-27-19	14:00
	Analyzed:	Jul-27-19	19:23	Jul-27-19	9:29	Jul-27-19	19:45	Jul-27-19	19:50	Jul-27-19	19:55	Jul-27-19	18:57
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		15400	101	12600	99.2	13700	99.8	13300	100	17200	100	12.5	4.98
TPH by SW8015 Mod	Extracted:	Jul-27-19	09:00	Jul-27-19 (09:00	Jul-27-19	09:00	Jul-27-19	09:00	Jul-27-19 (09:00	Jul-27-19 (09:00
	Analyzed:	Jul-28-19	04:36	Jul-28-19 ()4:59	Jul-28-19	05:23	Jul-28-19	05:46	Jul-28-19 (06:10	Jul-28-19 (06:33
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		147	15.0	<15.0	15.0	38.2	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0
Diesel Range Organics (DRO)		523	15.0	37.8	15.0	903	15.0	170	15.0	<15.0	15.0	<15.0	15.0
Motor Oil Range Hydrocarbons (MRO)		49.4	15.0	<15.0	15.0	76.7	15.0	26.2	15.0	<15.0	15.0	<15.0	15.0
Total TPH		719	15.0	37.8	15.0	1020	15.0	196	15.0	<15.0	15.0	<15.0	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Version: 1.%

fession kramer

Jessica Kramer Project Assistant

Final 1.000

LABORATORIES

Flagging Criteria

Page 44 of 168

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	nt Sample	BLK	Method Blank	
BKS/LCS	Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labor	atory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Project Name: Pappy's Preference Federal #1

Work Or Lab Batch	ders : 63217 #: 3096779	74, Sample: 632174-001 / SMP	Batcl	Project ID: h: 1 Matrix:	212C-MD-0 Soil)1855	
Units:	mg/kg	Date Analyzed: 07/27/19 21:48	SU	RROGATE R	ECOVERY S	STUDY	
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluoro	benzene		0.0320	0.0300	107	70-130	
4-Bromoflue	orobenzene		0.0310	0.0300	103	70-130	
Lab Batch	#: 3096779	Sample: 632174-002 / SMP	Batcl	h: 1 Matrix:	Soil	11	
Units:	mg/kg	Date Analyzed: 07/27/19 22:08	SU	RROGATE R	ECOVERY S	STUDY	
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluoro	benzene	-	0.0325	0.0300	108	70-130	
4-Bromoflue	orobenzene		0.0349	0.0300	116	70-130	
Lab Batch	#: 3096779	Sample: 632174-003 / SMP	Batcl	h: 1 Matrix:	: Soil		
Units:	mg/kg	Date Analyzed: 07/27/19 22:28	SU	RROGATE R	ECOVERY S	STUDY	
	BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluoro	obenzene		0.0314	0.0300	105	70-130	
4-Bromoflue	orobenzene		0.0329	0.0300	110	70-130	
Lab Batch	#: 3096731	Sample: 632174-001 / SMP	Batcl	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 07/27/19 22:43	SU	RROGATE R	ECOVERY S	STUDY	
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooct	ane		79.9	99.9	80	70-135	
o-Terphenyl			36.6	50.0	73	70-135	
Lab Batch	#: 3096779	Sample: 632174-004 / SMP	Batch	h: 1 Matrix:	: Soil		
Units:	mg/kg	Date Analyzed: 07/27/19 22:48	SU	RROGATE R	ECOVERY S	STUDY	
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluoro	benzene		0.0314	0.0300	105	70-130	
				1	1		

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Work Oi	rders: 63217	4,		Project ID:	212C-MD-0	1855	
Lab Batch	#: 3096779	Sample: 632174-005 / SMP	Batch	n: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 07/27/19 23:08	SU	RROGATE R	ECOVERY S	STUDY	
	ВТЕХ	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			נען		
1,4-Difluor	obenzene		0.0307	0.0300	102	70-130	
4-Bromoflu	orobenzene		0.0318	0.0300	106	70-130	
Lab Batch	#: 3096779	Sample: 632174-006 / SMP	Batch	n: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 07/27/19 23:28	SU	RROGATE R	ECOVERY S	STUDY	
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene		0.0321	0.0300	107	70-130	
4-Bromoflu	orobenzene		0.0357	0.0300	119	70-130	
Lab Batch	#: 3096779	Sample: 632174-007 / SMP	Batch	n: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 07/27/19 23:49	SU	RROGATE R	ECOVERY S	STUDY	
	BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene	-	0.0307	0.0300	102	70-130	
4-Bromoflu	orobenzene		0.0322	0.0300	107	70-130	
Lab Batch	#: 3096731	Sample: 632174-002 / SMP	Batch	n: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 07/27/19 23:54	SU	RROGATE R	ECOVERYS	STUDY	
	TPH I	oy SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooc	tane		79.2	99.9	79	70-135	
o-Terpheny	1		35.1	50.0	70	70-135	
Lab Batch	#: 3096779	Sample: 632174-008 / SMP	Batch	n: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 07/28/19 00:09	SU	RROGATE R	ECOVERY S	STUDY	
	ВТЕХ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene	-	0.0308	0.0300	103	70-130	
4-Bromoflu	orobenzene		0.0320	0.0300	107	70-130	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Work Or Lab Batch	rders : 63217 #: 3096731	4, Sample: 632174-003 / SMP	Batch	Project ID: a: 1 Matrix:	212C-MD-0 Soil)1855	
Units:	mg/kg	Date Analyzed: 07/28/19 00:17	SU	RROGATE RI	ECOVERY	STUDY	
	TPH	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooc	etane		79.7	99.6	80	70-135	
o-Terpheny	/1		35.9	49.8	72	70-135	
Lab Batch	#: 3096779	Sample: 632174-009 / SMP	Batch	a: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 07/28/19 00:29	SU	RROGATE RI	ECOVERY	STUDY	
	BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene		0.0310	0.0300	103	70-130	
4-Bromoflu	ıorobenzene		0.0335	0.0300	112	70-130	
Lab Batch	#: 3096731	Sample: 632174-004 / SMP	Batch	: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 07/28/19 00:41	SU	RROGATE RI	ECOVERY	STUDY	
	TPH	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Anarytes					
1-Chlorooc	ctane		172	99.7	173	70-135	**
o-Terpheny	/1		63.1	49.9	126	70-135	
Lab Batch	#: 3096779	Sample: 632174-010 / SMP	Batch	a: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 07/28/19 00:49	SU	RROGATE RI	ECOVERY	STUDY	
	ВТЕУ	Applytos	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
1.4 D'0		Anarytes	0.000	0.0000	[2]	70.100	
1,4-Difluor	obenzene		0.0308	0.0300	103	70-130	
4-Bromoflu	lorobenzene		0.0324	0.0300	108	70-130	
Lab Batch	#: 3096/31	Sample: 632174-0057 SMP	Batch	i: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 07/28/19 01:05	SU	RROGATE RI	ECOVERY	STUDY	
	TPH	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooc	tane	лнануцо	84.1	0 0	84	70-135	
o-Ternheny	/]		35.1	50.0	70	70-135	
	-		55.1	50.0	/0	10-155	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Work Or Lab Batch	rders: 63217 #: 3096731	4, Sample: 632174-006 / SMP	Batch	Project ID: n: 1 Matrix:	212C-MD-0 Soil)1855	
Units:	mg/kg	Date Analyzed: 07/28/19 01:28	SU	RROGATE RI	ECOVERY	STUDY	
	TPH	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooc	tane		79.7	99.8	80	70-135	
o-Terpheny	rl		33.7	49.9	68	70-135	**
Lab Batch	#: 3096731	Sample: 632174-007 / SMP	Batch	n: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 07/28/19 01:51	SU	RROGATE RI	ECOVERY	STUDY	
	TPH	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooc	tane		79.8	100	80	70-135	
o-Terpheny	rl		35.7	50.0	71	70-135	
Lab Batch	#: 3096779	Sample: 632174-011 / SMP	Batch	n: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 07/28/19 02:07	SU	RROGATE RI	ECOVERY	STUDY	
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1 4-Difluor	obenzene		0.0338	0.0300	113	70-130	
4-Bromoflu	lorobenzene		0.0337	0.0300	113	70-130	
Lab Batch	#• 3096731	Sample: 632174-008 / SMP	Batch	• 1 Matrix:	Soil	70-150	
Units:	mg/kg	Date Analyzed: 07/28/19 02:15	SU	RROGATE RI	ECOVERY S	STUDY	
	TPH	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooc	tane		80.3	99.9	80	70-135	
o-Terpheny	/1		32.2	50.0	64	70-135	**
Lab Batch	#: 3096779	Sample: 632174-012 / SMP	Batch	n: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 07/28/19 02:28	SU	RROGATE RI	ECOVERY	STUDY	
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene	<i>.</i>	0.0310	0.0300	103	70-130	
4-Bromoflu	orobenzene		0.0336	0.0300	112	70-130	
					1		

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Work Or Lab Batch	ders : 63217 #: 3096731	4, Sample: 632174-009 / SMP	Batch	Project ID: 1 Matrix:	212C-MD-0 Soil)1855	
Units:	mg/kg	Date Analyzed: 07/28/19 02:38	SU	RROGATE R	ECOVERY	STUDY	
	TPH	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chloroocta	ane		80.3	99.7	81	70-135	
o-Terphenyl			35.7	49.9	72	70-135	
Lab Batch a	#: 3096779	Sample: 632174-014 / SMP	Batch	n: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 07/28/19 02:48	SU	RROGATE R	ECOVERY	STUDY	
	втех	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluoro	benzene		0.0316	0.0300	105	70-130	
4-Bromofluc	orobenzene		0.0326	0.0300	109	70-130	
Lab Batch #	#: 3096731	Sample: 632174-010 / SMP	Batch	n: 1 Matrix:	Soil	1	
Units:	mg/kg	Date Analyzed: 07/28/19 03:02	SU	RROGATE R	ECOVERY	STUDY	
	TPH	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
1 Chlana att		Anarytes	01.4	100		70.105	
T-Chloroocta	ane		81.4	100	81	70-135	4.4
I ah Datah r	#. 2006770	Samples (22174.016 / SMD	33.4 Batal	50.0	6/	70-135	**
Lab Datch #	#: 5090779	Sample: $052174-0107$ SMP	Datch		5011		
Units:	mg/kg	Date Analyzed: 07/28/19 03:08	SU.	RROGATE R	ECOVERY	STUDY	
	втех	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluoro	benzene		0.0311	0.0300	104	70-130	
4-Bromofluc	orobenzene		0.0345	0.0300	115	70-130	
Lab Batch a	#: 3096779	Sample: 632174-017 / SMP	Batch	n: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 07/28/19 03:28	SU	RROGATE R	ECOVERY	STUDY	
	втех	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluoro	benzene		0.0316	0.0300	105	70-130	
4-Bromofluc	orobenzene		0.0357	0.0300	119	70-130	
			0.0337	0.0500	117	10150	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Pappy's Preference Federal #1

Work Or Lab Batch	ders : 63217	4, Sample: 632174-018 / SMP	Batch	Project ID:	212C-MD-0)1855	
Units:	mg/kg	Date Analyzed: 07/28/19 03:48	SU	RROGATE RI	ECOVERY	STUDY	
	втех	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluoro	obenzene		0.0307	0.0300	102	70-130	
4-Bromoflu	orobenzene		0.0327	0.0300	109	70-130	
Lab Batch	#: 3096731	Sample: 632174-011 / SMP	Batch	n: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 07/28/19 03:49	SU	RROGATE RI	ECOVERY S	STUDY	
	TPH I	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooct	tane	Analytes	7/ 3	00.0	74	70.135	
o-Terphenyl	1		32.5	50.0	65	70-135	**
Lab Batch	#• 3096731	Sample: 632174-012 / SMP	32.3 Ratel		Soil	70-133	
Lab Daten	#• 5050751	Data Applyzad: 07/28/10.04:12	Datci				
Units:	iiig/kg	Date Analyzeu: 07/28/19 04.12	SU	RROGATE RI	ECOVERY	STUDY	
	TPH I	oy SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooct	tane		80.4	99.8	81	70-135	
o-Terpheny	1		33.1	49.9	66	70-135	**
Lab Batch	#: 3096731	Sample: 632174-013 / SMP	Batch	n: 1 Matrix:	Soil	10 100	
Units:	mg/kg	Date Analyzed: 07/28/19 04:36	SU	RROGATE RI	ECOVERY	STUDY	
	TPHI	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooct	tane		77.2	99.9	77	70-135	
o-Terphenv	1		39.9	50.0	80	70-135	
Lab Batch	#: 3096779	Sample: 632174-015 / SMP	Batch	n: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 07/28/19 04:49	SU	RROGATE RI	ECOVERY	STUDY	
	ВТЕХ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluoro	obenzene		0.0300	0.0300	100	70-130	
4-Bromoflu	orobenzene		0.0364	0.0300	121	70-130	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Work Ore Lab Batch #	ders : 63217 #: 3096731	4, Sample: 632174-014 / SMP	Batch	Project ID: n: 1 Matrix:	212C-MD-0 Soil)1855	
Units:	mg/kg	Date Analyzed: 07/28/19 04:59	SU	RROGATE RI	ECOVERYS	STUDY	
	TPH	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chloroocta	ine		76.3	100	76	70-135	
o-Terphenyl			35.0	50.0	70	70-135	
Lab Batch #	#: 3096779	Sample: 632174-013 / SMP	Batch	n: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 07/28/19 05:09	SU	RROGATE RI	ECOVERYS	STUDY	
	втех	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorol	benzene		0.0352	0.0300	117	70-130	
4-Bromofluo	robenzene		0.0493	0.0300	164	70-130	**
Lab Batch #	#: 3096731	Sample: 632174-015 / SMP	Batch	n: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 07/28/19 05:23	SU	RROGATE RI	ECOVERY	STUDY	
	TPH	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chloroocta	ine	•	77.8	99.9	78	70-135	
o-Terphenyl			43.5	50.0	87	70-135	
Lab Batch #	#: 3096731	Sample: 632174-016 / SMP	Batch	n: 1 Matrix:	Soil		
Units:	mg/kg	Date Analyzed: 07/28/19 05:46	SU	RROGATE RI	ECOVERY	STUDY	
	TPH	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
1.611		Analytes					
I-Chloroocta	ine		75.4	99.7	76	70-135	
o-Terphenyl	4. 200(721	9	36.3	49.9	73	70-135	
Lab Batch #	1: 3090731	Sample: 632174-0177 SMP	Batch		5011		
Units:	mg/kg	Date Analyzed: 07/28/19/06:10	SU	RROGATE RI	ECOVERY	STUDY	
	TPH	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chloroocta	ine		72.4	99.9	72	70-135	
o-Terphenyl			39.2	50.0	78	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Work O	rders : 63217	4,		Project ID:	212C-MD-0)1855	
Lab Batch	#: 3096731	Sample: 632174-018 / SMP	Batch	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 07/28/19 06:33	SU	RROGATE R	ECOVERY	STUDY	
	TPH	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1 Chlorese	4	Analytes	71.0	100	72	70.105	
1-Chiorooc	.1		71.9	100	12	70-135	***
Lab Batah	#- 2006770	Samula, 7682024 1 DI K / J	31.0	50.0	Colid	/0-135	**
	1#: 3090779	Sample: 7082924-1-BLK7	DLK Datci		Solid		
Units:	mg/kg	Date Analyzed: 07/27/19/21:28	SU	RROGATE R	ECOVERY	STUDY	
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluor	obenzene	Anarytes	0.0217	0.0300	106	70.120	
1,4-Dinuon	lorobenzene		0.0317	0.0300	100	70-130	
I ab Batch	#• 3096731	Sample: 7682996-1-BLK / I	BIK Batch	0.0300	Solid	70-130	
Lab Daten	mg/kg	Dete Applyzed: 07/27/10 21:32					
	mg/kg	Date Analyzeu: 0//2//19 21.32	SU	RROGATE R	ECOVERY	STUDY	
	TPH	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooc	tane	· · · · · · · · · · · · · · · · · · ·	76.8	100	77	70-135	
o-Terpheny	nl		33.8	50.0	68	70-135	**
Lab Batch	#: 3096779	Sample: 7682924-1-BKS / I	RKS Batch	1 Matrix	Solid	70-135	
Units:	mg/kg	Date Analyzed: 07/27/19 19:48	SIIS Dater SU	RROGATE R	ECOVERY S	STUDY	
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene		0.0306	0.0300	102	70-130	
4-Bromoflu	orobenzene		0.0300	0.0300	100	70-130	
Lab Batch	#: 3096731	Sample: 7682996-1-BKS / I	BKS Batch	h: 1 Matrix:	Solid	1	
Units:	mg/kg	Date Analyzed: 07/27/19 21:56	SU	RROGATE R	ECOVERY	STUDY	
	TPH	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooc	tane		82.7	100	83	70-135	
o-Terpheny	7]		39.4	50.0	79	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Work Or Lab Batch	r ders : 63217 #• 3096779	74, Sample: 7682924-1-BSD / F	SD Batel	Project ID:	212C-MD-0	01855	
Units:	mg/kg	Date Analyzed: 07/27/19 20:08	SU	RROGATE R	ECOVERY S	STUDY	
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene		0.0309	0.0300	103	70-130	
4-Bromoflu	orobenzene		0.0305	0.0300	102	70-130	
Lab Batch	#: 3096731	Sample: 7682996-1-BSD / E	SD Batcl	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 07/27/19 22:20	SU	RROGATE R	ECOVERY S	STUDY	
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooct	tane		75.5	100	76	70-135	
o-Terpheny	1		38.3	50.0	77	70-135	
Lab Batch	#: 3096779	Sample: 632174-001 S / MS	Batcl	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 07/27/19 20:28	SU	RROGATE R	ECOVERY	STUDY	
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluor	obenzene		0.0312	0.0300	104	70-130	
4-Bromoflu	orobenzene		0.0320	0.0300	107	70-130	
Lab Batch	#: 3096731	Sample: 632174-001 S / MS	Batch	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 07/27/19 23:07	SU	RROGATE R	ECOVERY S	STUDY	
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooct	tane		75.6	99.8	76	70-135	
o-Terpheny	1		38.9	49.9	78	70-135	
Lab Batch	#: 3096779	Sample: 632174-001 SD / M	ISD Batcl	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 07/27/19 20:48	SU	RROGATE R	ECOVERY S	STUDY	
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1 4 Diffuor	obenzene	J	0.0315	0.0200	105	70.120	
1,4-Dilluoro		1	(1, (1, 1))	0.0500	10,	/ / / / / / /	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Pappy's Preference Federal #1

W	Vork Orders : 632174,		Project ID:	ject ID: 212C-MD-01855								
L	ab Batch #: 3096731	Sample: 632174-001 SD / M	ASD Batch	n: 1 Matrix:	Soil							
U	nits: mg/kg	Date Analyzed: 07/27/19 23:30	SURROGATE RECOVERY STUDY									
	TPH by At	SW8015 Mod nalytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
1	-Chlorooctane		80.7	99.7	81	70-135						
C	o-Terphenyl		39.7	49.9	80	70-135						

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

BS / BSD Recoveries

Project Name: Pappy's Preference Federal #1

Work Orde	r #: 632174							Pro	ject ID:	212C-MD-)1855	
Analyst:	FOV	D	ate Prepar	ed: 07/26/20	19			Date A	nalyzed: (07/27/2019		
Lab Batch II	Sample: 7682924	-1-BKS	Bate	h #: 1					Matrix:	Solid		
Units:	mg/kg		BLAN	K /BLANK	SPIKE / 2	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	ЭY	
	BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Anal	ytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Benzene		< 0.000385	0.100	0.103	103	0.100	0.0994	99	4	70-130	35	
Toluene		< 0.000456	0.100	0.0909	91	0.100	0.0880	88	3	70-130	35	
Ethylben	zene	< 0.00200	0.100	0.0889	89	0.100	0.0855	86	4	70-130	35	
m,p-Xyle	enes	< 0.00101	0.200	0.176	88	0.200	0.170	85	3	70-130	35	
o-Xylene		< 0.000344	0.100	0.0931	93	0.100	0.0914	91	2	70-130	35	
Analyst:	SPC	D	ate Prepar	ed: 07/27/20	19	4		Date A	nalyzed: (07/27/2019	+	
Lab Batch II	Sample: 7682945	-1-BKS	Batc	h #: 1					Matrix: S	Solid		
Units:	mg/kg		BLAN	K /BLANK	SPIKE / 2	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI)Y	
Anal	Chloride by EPA 300 ytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride		<5.00	250	266	106	250	265	106	0	90-110	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Version: 1.%

BS / BSD Recoveries

Project Name: Pappy's Preference Federal #1

Work Order	r#: 632174							Project ID: 212C-MD-01855								
Analyst:	SPC		Da	ate Prepar	ed: 07/27/20	19			Date A	nalyzed: (07/27/2019					
Lab Batch ID	: 3096754	Sample: 7682948-1-	-BKS	Batcl	n #: 1					Matrix: S	Solid					
Units:	mg/kg			BLAN	K /BLANK	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUE	ΟY				
Angle	Chloride by EPA	A 300	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag			
Chloride	ytes		<0.858	250	262	105	250	260	104	1	00.110	20				
			101000	-00	200	100	200		101	•	/0110					
Analyst: Lab Batch ID	ARM 2: 3096731	Sample: 7682996-1-	-BKS	ate Prepar Batcl	ed: 07/27/20	19			Date A	nalyzed: (Matrix: S)7/27/2019 Solid		,I			
Analyst: Lab Batch ID Units:	ARM 9: 3096731 mg/kg	Sample: 7682996-1-	D: -BKS	ate Prepar Batcl BLAN	ed: 07/27/20 h #: 1 K /BLANK	19 SPIKE / 1	BLANK S	SPIKE DUP	Date A	nalyzed: () Matrix: S RECOVI)7/27/2019 Solid E RY STUI	DY	·'			
Analyst: Lab Batch ID Units: Analy	ARM 9: 3096731 mg/kg TPH by SW8015 ytes	Sample: 7682996-1-	D -BKS Blank Sample Result [A]	ate Prepar Batcl BLAN Spike Added [B]	ed: 07/27/20 h #: 1 K /BLANK (Blank Spike Result [C]	SPIKE /] Blank Spike %R [D]	BLANK S Spike Added [E]	SPIKE DUP Blank Spike Duplicate Result [F]	Date A LICATE Blk. Spk Dup. %R [G]	nalyzed: (Matrix: S RECOVI RPD %	o7/27/2019 Solid ERY STUI Control Limits %R	DY Control Limits %RPD	Flag			
Analyst: Lab Batch ID Units: Analy Gasoline	ARM p: 3096731 mg/kg TPH by SW8015 ytes Range Hydrocarbons (GR	Sample: 7682996-1-	D -BKS Blank Sample Result [A] <8.00	ate Prepar Batcl BLAN Spike Added [B] 1000	ed: 07/27/20 h #: 1 K /BLANK Blank Spike Result [C] 1010	SPIKE /] Blank Spike %R [D] 101	BLANK S Spike Added [E] 1000	Blank Spike Duplicate Result [F] 875	Date A LICATE Blk. Spk Dup. %R [G] 88	nalyzed: 0 Matrix: 5 RECOVI RPD % 14	07/27/2019 Solid ERY STUE Control Limits %R 70-135	DY Control Limits %RPD 20	Flag			

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Version: 1.%

Form 3 - MS / MSD Recoveries

Project Name: Pappy's Preference Federal #1

Work Order # : 632174						Project II): 212C-N	MD-0185	5		
Lab Batch ID: 3096779	QC- Sample ID:	632174	-001 S	Ba	tch #:	1 Matrix	: Soil				
Date Analyzed: 07/27/2019	Date Prepared:	07/26/2	019	An	alyst: F	FOV					
Reporting Units: mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]		[D]	[E]		[G]				
Benzene	<0.000386	0.100	0.0925	93	0.101	0.0780	77	17	70-130	35	
Toluene	0.000661	0.100	0.0822	82	0.101	0.0649	64	24	70-130	35	X
Ethylbenzene	<0.00201	0.100	0.0780	78	0.101	0.0578	57	30	70-130	35	X
m,p-Xylenes	<0.00102	0.201	0.163	81	0.202	0.116	57	34	70-130	35	X
o-Xylene	< 0.000346	0.100	0.0864	86	0.101	0.0611	60	34	70-130	35	X
Lab Batch ID: 3096746	QC- Sample ID:	631951	-033 S	Ba	tch #:	1 Matrix	: Soil				
Date Analyzed: 07/27/2019	Date Prepared:	07/27/2	019	An	alyst: S	SPC					
Date Analyzed:0//2//2019Reporting Units:mg/kg	Date Prepared:	07/27/2 M	019 I ATRIX SPIK I	An E / MAT	alyst: S RIX SPI	SPC KE DUPLICA '	TE REC	OVERY	STUDY		
Date Analyzed: 07/27/2019 Reporting Units: mg/kg Chloride by EPA 300	Date Prepared: Parent Sample Pacult	07/27/2 M Spike	019 IATRIX SPIK Spiked Sample Result	An E / MAT Spiked Sample	alyst: S RIX SPI	SPC KE DUPLICA Duplicate Spiked Sample	TE REC Spiked Dup.	OVERY S	STUDY Control Limits	Control Limits	Flag
Date Analyzed: 07/27/2019 Reporting Units: mg/kg Chloride by EPA 300 Analytes	Date Prepared: Parent Sample Result [A]	07/27/2 M Spike Added [B]	019 [ATRIX SPIK] Spiked Sample Result [C]	An E / MAT Spiked Sample %R [D]	alyst: S RIX SPI Spike Added [E]	SPC KE DUPLICA Duplicate Spiked Sample Result [F]	TE REC Spiked Dup. %R [G]	OVERY S RPD %	STUDY Control Limits %R	Control Limits %RPD	Flag
Date Analyzed: 07/27/2019 Reporting Units: mg/kg Chloride by EPA 300 Analytes Chloride	Date Prepared: Parent Sample Result [A] 4.89	07/27/2 M Spike Added [B] 249	019 IATRIX SPIK Spiked Sample Result [C] 271	An E / MAT Spiked Sample %R [D] 107	RIX SPI Spike Added [E] 249	SPC KE DUPLICA Duplicate Spiked Sample Result [F] 272	TE REC Spiked Dup. %R [G] 107	OVERY S RPD %	STUDY Control Limits %R 90-110	Control Limits %RPD 20	Flag
Date Analyzed: 07/27/2019 Reporting Units: mg/kg Chloride by EPA 300 Analytes Chloride Lab Batch ID: 3096746	Date Prepared: Parent Sample Result [A] 4.89 QC- Sample ID:	07/27/2 M Spike Added [B] 249 631951	019 ATRIX SPIK Spiked Sample Result [C] 271 -040 S	An E / MAT Spiked Sample %R [D] 107 Ba	alyst: S RIX SPI Spike Added [E] 249 tch #:	SPC KE DUPLICA Duplicate Spiked Sample Result [F] 272 1 Matrix	TE REC Spiked Dup. %R [G] 107 c: Soil	OVERY S RPD %	STUDY Control Limits %R 90-110	Control Limits %RPD 20	Flag
Date Analyzed: 07/27/2019 Reporting Units: mg/kg Chloride by EPA 300 Analytes Chloride Lab Batch ID: 3096746 Date Analyzed: 07/27/2019	Date Prepared: Parent Sample Result [A] 4.89 QC- Sample ID: Date Prepared:	07/27/2 M Spike Added [B] 249 631951 07/27/2	019 [ATRIX SPIK] Spiked Sample Result [C] 271 -040 S 019	An E / MAT Spiked Sample %R [D] 107 Ba An	alyst: S RIX SPI Spike Added [E] 249 tch #: alyst: S	SPC KE DUPLICA Duplicate Spiked Sample Result [F] 272 1 Matrix SPC	TE REC Spiked Dup. %R [G] 107 c: Soil	OVERY S RPD %	STUDY Control Limits %R 90-110	Control Limits %RPD 20	Flag
Date Analyzed: 07/27/2019 Reporting Units: mg/kg Chloride by EPA 300 Analytes Chloride Lab Batch ID: 3096746 Date Analyzed: 07/27/2019 Reporting Units: mg/kg	Date Prepared: Parent Sample Result [A] 4.89 QC- Sample ID: Date Prepared:	07/27/2 M Spike Added [B] 249 631951 07/27/2 M	019 ATRIX SPIK Spiked Sample Result [C] 271 -040 S 019 IATRIX SPIK	An E / MAT Spiked Sample %R [D] 107 Ba An E / MAT	alyst: S RIX SPI Spike Added [E] 249 tch #: alyst: S RIX SPI	SPC KE DUPLICA Duplicate Spiked Sample Result [F] 272 1 Matrix SPC KE DUPLICA	TE REC Spiked Dup. %R [G] 107 c: Soil TE REC	OVERY S RPD % 0	STUDY Control Limits %R 90-110 STUDY	Control Limits %RPD 20	Flag
Date Analyzed: 07/27/2019 Reporting Units: mg/kg Chloride by EPA 300 Analytes Chloride Lab Batch ID: 3096746 Date Analyzed: 07/27/2019 Reporting Units: mg/kg Chloride by EPA 300 Analytes	Date Prepared: Parent Sample Result [A] 4.89 QC- Sample ID: Date Prepared: Parent Sample Result [A]	07/27/2 M Spike Added [B] 249 631951 07/27/2 M Spike Added [B]	019 [ATRIX SPIK] Spiked Sample Result [C] 271 -040 S 019 [ATRIX SPIK] Spiked Sample Result [C]	An E / MAT Spiked Sample %R [D] 107 Ba An E / MAT Spiked Sample %R	Adyst: S RIX SPI Spike Added [E] 249 tch #: alyst: S RIX SPI Spike Added [E]	SPC KE DUPLICA Duplicate Spiked Sample Result [F] 272 1 Matrix SPC KE DUPLICA Duplicate Spiked Sample Result [F]	TE REC Spiked Dup. %R [G] 107 c: Soil TE REC Spiked Dup. %R [G]	OVERY RPD % 0 OVERY %	STUDY Control Limits %R 90-110 STUDY Control Limits %R	Control Limits %RPD 20 20 Control Limits %RPD	Flag
Date Analyzed: 07/27/2019 Reporting Units: mg/kg Chloride by EPA 300 Analytes Chloride Lab Batch ID: 3096746 Date Analyzed: 07/27/2019 Reporting Units: mg/kg Chloride by EPA 300 Analytes Chloride by EPA 300 Chloride by EPA 300 Chloride by EPA 300 Chloride	Date Prepared: Parent Sample Result [A] 4.89 QC- Sample ID: Date Prepared: Parent Sample Result [A] 2.16	07/27/2 M Spike Added [B] 249 631951 07/27/2 M Spike Added [B] 249	019 [ATRIX SPIK] Spiked Sample Result [C] 271 -040 S 019 [ATRIX SPIK] Spiked Sample Result [C] 282	An E / MAT Spiked Sample %R [D] 107 Ba An E / MAT Spiked Sample %R [D] 112	alyst: S RIX SPI Spike Added [E] 249 tch #: alyst: S RIX SPI Spike Added [E] 249	SPC KE DUPLICA Duplicate Spiked Sample Result [F] 272 1 Matrix SPC KE DUPLICA Duplicate Spiked Sample Result [F] 278	TE REC Spiked Dup. %R [G] 107 x: Soil TE REC Spiked Dup. %R [G]	OVERY S RPD % 0 OVERY S RPD %	STUDY Control Limits %R 90-110 STUDY Control Limits %R 90-110	Control Limits %RPD 20 20 Control Limits %RPD	Flag

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference $RPD = 200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Page 21 of 24

Form 3 - MS / MSD Recoveries

Project Name: Pappy's Preference Federal #1

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference RPD = $200^{\circ}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

eceived b	y OCI	D: 12/19	9/202(<u>) 9:49:</u>	53 A	I <u>M</u>																		Pa	ige 59
		Relinquished by		Belinguished by	Relinguished by:										(LAB USE)	LAB #		Commense.	Comments:	Invoice to:	Project Location: state)	Project Name:	Client Name:	E.	Analysis Re
					AH-6 (0-1')	AH-5 (2'-2.5')	AH-5 (1'-1.5')	AH-5 (0-1')	AH-4 (1.5'-2')	AH-4 (1'-1.5')	AH-4 (0-1')	AH-3 (0-1')	AH-2 (0-6")	AH-1 (0-6")					Xer	CO	(county, Edc	Pap	СО		quest of Chai
		Date: Time:		TIZE/19	Date: Time:											SAMPLE IDENTIFICATION	·		rco Midland Tx	G lke Tavarez	ly County, NM	ppy's Preference Federal #1	G	Tetra Tech, Inc.	n of Custody Record
	ORIGINAL COP	Received by:	neceived by:	John J	7/25/2019	7/25/2019	7/25/2019	7/25/2019	7/25/2019	7/25/2019	7/25/2019	7/25/2019	7/25/2019	7/25/2019	DATE	YEAR: 2019	SAMPLING		Sampler Signature:		Project #:		Site Manager:		
	-			1	×	×	×	×	X	×	×	×	×	×	WATE SOIL	R	MATRIX		Mike		212C		Mike Ca	901 W Midi Tel Fax	
		Date: Time:	Date: I ime:	Holin I		×	×	X	×	×	×	×	×	×	HCL HNO ₃ ICE None		PRESERVATIVE METHOD		Carmona-Dev		-MD-01855		rmona	rest Wall, Suite 100 and,Texas 79701 (432) 682-4559 x (432) 682-3946	
				G of o	L N	1 N	1 N	1 N	1 N	1 N	1 N	1 N	1 N	1 N	# CONT	FAINE ED (`	ERS (/N)		in D						U
	(Circle	1	Sampl		×	×	×	×	×	×	×	×	×	×	BTEX 8	021B	BT (Ext t	EX 8260	В						Ś
	€ F}	3	e Temp	USE	×	×	×	×	×	×	×	×	×	×	TPH 80	15M (GRO	- DRO - 1	ORO -	MRO)					J-
	ND DE	—	erature	NO											PAH 82 Total Me	tals A	lg As I	Ba Cd Cr	Pb Se	Hg			$\hat{\boldsymbol{b}}$		
	LIVER			<u></u>	-	-				:					TCLP M	etals . olatile	Ag As s	Ba Cd C	r Pb Se	e Hg		Cie			2
	Ņ	<u>ר</u> היי ד	<u>ר</u>						_						TCLP Se	emi V	olatiles	5		,,		0	NA		
	EDEX	ipecial	iUSH:	ST ST											GC/MS	Vol. 8	260B	/ 624					SISA		
	UPS	l Repo	San Sharoe	AND				_	_	\dashv	-				GC/MS	Semi. 082 /	Vol. 8	3270C/62	5				REC		
	Trac	ort Lim	ie Day	ARD											NORM								ŨES		
	ding #:	its or	norize	2	×	×	×	\times	×	×	\times	\mathbf{x}	×	×	PLM (As Chloride	besto	s)					— 0	۳		Jage
		TRAP	4 nr 4	• •	П							_		_	Chloride	SI Wot	ulfate	TDS	200 0#	achod	list)				1
		Repo.	8 hr							:					Anion/C	ation	Balan	ice		uundu I	101)				
		4	2 hr)	$\left - \right $						-+	-+	÷	-+								<u> </u>			1 0f
			C													·		- t							
eased to	o Ima	ging: 4/	(15/20	21 2:3	9:09	PA	1.					Pad		3 of	Hold					Final	1.000				N

168

linquished by	inquistied by		innuished hy									LAB #			seiving Labora	bice to:	ject Location: le)	ject Name:	ent Name:	F
Date:	Date:	26/L	Doto	АП-14 (U-6)	AH-13 (0-6")	AH-12 (0-6")	AH-11 (0-6")	AH-10 (0-6")	AH-9 (0-6")	AH-8 (0-6")	AH-7 (0-6")	SAMPLE IDENTIFICAT			tory: Xenco Midland Tx	COG lke Tavarez	^{(county,} Eddy County, NM	Pappy's Preference Fede	COG	Tetra Te
Time: Received	Time: Recéived	In Scenar	Timo	7/25/201	7/25/201	7/25/201	7/25/201	7/25/201	7/25/20-	7/25/20-	7/25/20-	TION DATE	SA		Sampler Si		Project #:	eral #1	Site Manag	ch, Inc.
by:	by:			19	19 X	19 X	19 X	TIME WATER SOIL	MPLING MATRIX		gnature: Mike		2120		er: Mike Ca	901 V Mit Fe				
Date: Time:	Date: Time:	Uta IOZO		×	×	×	X	×	×	×	X	HCL HNO ₃ ICE None	METHOD		Carmona-Devin D		C-MD-01855		armona	West Wall, Suite 100 /land,Texas 79701 el (432) 682-4559 ax (432) 682-3946
	S			1 Z	ı Z X	1 N X	1 Z X	⊥ Z X	⊥ z ×	-1 Z X	1 N X	# CONTAINI FILTERED ('	ERS Y/N)	EX 8260	3					ļ
N.	ample Ter	AB US		×	×	×	×	×	×	×	×	TPH TX1005	(Ext to	o C35) - DRO - (DRO - I	MRO)				
2	nperatur	EON						_				PAH 8270C Total Metals /	Ag As I	Ba Cd Cr	Pb Se	Hg				ŀ
	w											TCLP Metals TCLP Volatile	Ag As s	Ba Cd Cr	Pb Se	Hg				
									-			TCLP Semi V RCI	olatile	5				— 9 — 9	NAL	
ush Cr ɔecial l	USH:	ST∕	□ †									GC/MS Vol. 8	3260B	/ 624	5) і	I SIS/	
harges Report	Same	NDA										GC/MS Semi. РСВ's 8082 /	vol. 8 608	s270C/62	5				REQU	
Autho	Day	ΩR	$\left - \right $	_	$\left - \right $			_				NORM PLM (Asbesto	is)					— thc	UEST	
or TF	24 hr			×	×	×	×	×	×	×	×	Chloride	ulfate	тре				— ă — z		
IRP R	48 F											General Wate	er Che	emistry (s	ee atta	ached I	ist)	_ <u>°</u>		
pode								-				Anion/Cation	Balar							
	-	-			1	T	T	T		T	-									
	linquished by: Date: Time: Solutionized Date: Time: Solution: Date: Time: Solution: Date: Time: Special Report Limits or TRRP Report	Inquisited by: Date: Time: Hecelved by: Date: Time: Sample Temperature X RUSH: Same Day 24 hr 48 hr linquished by: Date: Time: Received by: Date: Time: \$, 3 / 3 / 1 Rush Charges Authorized Special Report Limits or TRRP Report Special Report Limits or TRRP Report Special Report Limits or TRRP Report Special Report Limits or TRRP Report	Inquished by: Date: Time: Meceived by: Date: Time: Received by: Date: Time: Rush Charges Authorized Inquished by: Date: Time: Received by: Date: Time: \$, 3 / 3 / Rush: Sample Temperature Rush: Sample Temperature Rush: Sample Temperature Rush: Same Day 24 hr 48 hr Inquished by: Date: Time: Received by: Date: Time: \$, 3 / 3 / Rush: Rush: Charges Authorized Inquished by: Date: Time: Date: Time: \$, 3 / 3 / Special Report Limits or TRRP Report	Inquished by: Date: Time: Maceived by: Date: Time: Remarks: JAC/IA JAC/IA JAU JAU LAB USE ONLY STANDARD Inquished by: Date: Time: Received by: Date: Time: Sample Temperature RUSH: Same Day 24 hr 48 hr linquished by: Date: Time: Sample Temperature RUSH: Same Day 24 hr 48 hr linquished by: Date: Time: Sample Temperature RUSH: Same Day 24 hr 48 hr linquished by: Date: Time: Sample Temperature Rush Charges Authorized Rush Charges Authorized linquished by: Date: Time: S, 3 / 3 / Image: Special Report Linits or TRRP Report	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LAB # SAMPLE IDENTIFICATION TERE. 2019 ATTE TERE. 2019 AtH 0 (0-6) AtH 0 (0-6) 725/2019 TIME ATTE TIME AtH 0 (0-6) 725/2019 725/2019 TIME TIME AtH 10 (0-6) 725/2019 TIME TIME TIME AtH 10 (0-6) TIME TIME	LAB # SAMPLE IDENTIFICATION THE MATRIX PRESENTIVE PRESENT Att-17 (0-6°) Att-17 (0-6°) DATE Image: Comparison of the compar	SAMPLE IDENTIFICATION SAMPLE IDENTIFICATION VALUE MATRIX METHOD VALUE SAMPLE IDENTIFICATION VALUE MATRIX METHOD VALUE SAMPLE IDENTIFICATION VALUE VALUE ALT-10-G-01 ATTREE ALT-10-G-01 VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE	Importance Sample Signature: Mile Carmona-Devin D VA.9 SAMPLE DENTIFICATION SAMPLE DENTIFICATION SAMPLE DENTIFICATION VA.9 AH-7 (0.6°) SAMPLE DENTIFICATION SAMPLE DENTIFICATION SAMPLE DENTIFICATION VA.9 AH-7 (0.6°) SAMPLE DENTIFICATION SAMPLE DENTIFICATION SAMPLE DENTIFICATION SAMPLE DENTIFICATION VA.9 AH-9 (0.6°) 7725/2016 TIME REIMON REIMON AH-10 (0.6°) 7725/2016 7725/2016 X X X X X H AH-11 (0.6°) 7725/2016 X X X X X H HUNO AH-11 (0.6°) 7725/2016 X X X X X H HUNO AH-11 (0.6°) 7725/2016 X X X X X H HUNO AH-11 (0.6°) 7725/2016 X X X X X H HUNO AH-11 (0.6°) 7725/2016 X X X X X H HUNO AH-11 (0.6°) 7725/2016 X X X X Y H HUNO X X AH-11 (0.6°)	Boot Bit COC IKe Tavarez Sample Signature (Location) Sample Signature (Location) Mile Carmona-Devin D Use Fill Value Sample Signature (Location) Mile Carmona-Devin D Mile Carmona-Devin D Use Fill Mile Carmona Sample Signature (Location) Mile Carmona-Devin D Mile Carmona-Devin D Use Fill Mile Carmona Sample Signature (Location) Mile Carmona-Devin D Mile Carmona-Devin D Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona Mile Carmona	Image: County, NM Project: 2120-MD-01985 Image: COD Ikg Tavatez SampLaneouv King Lances VLAP SampLaneouv King Lances King Lances VLAP SampLaneouv King Lances King Lances VLAP SampLaneouv King Lances King Lances VLAP SampLances King Lances King Lances VLAP SampLances SampLances King Lances VLAP SampLances SampLances King Lances VLAP SampLances SampLances King Lances VLAP SampLances King Lances King Lances VLAP SampLances King Lances King Lances VLAP King Lances King Lances King Lances	Instruction Code (a) Federan co Federal #1 Protect 210C MD-01655 Coll for Twater Coll for	Instance Condition Name Condition Condit is an and an and andit andit and an and and andit a

Rec

of 168

August 09, 2019

MIKE CARMONA TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: BIG PAPI FEDERAL COM 2H

Enclosed are the results of analyses for samples received by the laboratory on 08/08/19 17:06.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-18-11. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Whe Singh

Mike Snyder For Celey D. Keene Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	08/08/2019	Sampling Date:	08/08/2019
Reported:	08/09/2019	Sampling Type:	Soil
Project Name:	BIG PAPI FEDERAL COM 2H	Sampling Condition:	Cool & Intact
Project Number:	212C -MD - 01885 (7-12-19)	Sample Received By:	Jodi Henson
Project Location:	COG - EDDY CO NM		

Sample ID: BOTTOM HOLE #1 (4' BEB) (H902739-01)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/09/2019	ND	1.91	95.5	2.00	3.81	
Toluene*	<0.050	0.050	08/09/2019	ND	1.92	96.2	2.00	1.60	
Ethylbenzene*	<0.050	0.050	08/09/2019	ND	1.92	95.8	2.00	2.17	
Total Xylenes*	<0.150	0.150	08/09/2019	ND	5.82	97.0	6.00	1.74	
Total BTEX	<0.300	0.300	08/09/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2480	16.0	08/09/2019	ND	416	104	400	0.00	QM-07
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/09/2019	ND	203	102	200	2.11	
DRO >C10-C28*	<10.0	10.0	08/09/2019	ND	195	97.5	200	1.28	
EXT DRO >C28-C36	<10.0	10.0	08/09/2019	ND					
Surrogate: 1-Chlorooctane	112 %	6 41-142							
Surrogate: 1-Chlorooctadecane	115 %	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	08/08/2019	Sampling Date:	08/08/2019
Reported:	08/09/2019	Sampling Type:	Soil
Project Name:	BIG PAPI FEDERAL COM 2H	Sampling Condition:	Cool & Intact
Project Number:	212C -MD - 01885 (7-12-19)	Sample Received By:	Jodi Henson
Project Location:	COG - EDDY CO NM		

Sample ID: BOTTOM HOLE #2 (4' BEB) (H902739-02)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/09/2019	ND	1.91	95.5	2.00	3.81	
Toluene*	<0.050	0.050	08/09/2019	ND	1.92	96.2	2.00	1.60	
Ethylbenzene*	<0.050	0.050	08/09/2019	ND	1.92	95.8	2.00	2.17	
Total Xylenes*	<0.150	0.150	08/09/2019	ND	5.82	97.0	6.00	1.74	
Total BTEX	<0.300	0.300	08/09/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 %	6 73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	960	16.0	08/09/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/09/2019	ND	203	102	200	2.11	
DRO >C10-C28*	<10.0	10.0	08/09/2019	ND	195	97.5	200	1.28	
EXT DRO >C28-C36	<10.0	10.0	08/09/2019	ND					
Surrogate: 1-Chlorooctane	111 %	6 41-142							
Surrogate: 1-Chlorooctadecane	113 %	6 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	08/08/2019	Sampling Date:	08/08/2019
Reported:	08/09/2019	Sampling Type:	Soil
Project Name:	BIG PAPI FEDERAL COM 2H	Sampling Condition:	Cool & Intact
Project Number:	212C -MD - 01885 (7-12-19)	Sample Received By:	Jodi Henson
Project Location:	COG - EDDY CO NM		

Sample ID: BOTTOM HOLE #3 (4' BEB) (H902739-03)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/09/2019	ND	1.91	95.5	2.00	3.81	
Toluene*	<0.050	0.050	08/09/2019	ND	1.92	96.2	2.00	1.60	
Ethylbenzene*	<0.050	0.050	08/09/2019	ND	1.92	95.8	2.00	2.17	
Total Xylenes*	<0.150	0.150	08/09/2019	ND	5.82	97.0	6.00	1.74	
Total BTEX	<0.300	0.300	08/09/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	512	16.0	08/09/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/09/2019	ND	195	97.7	200	4.87	
DRO >C10-C28*	<10.0	10.0	08/09/2019	ND	191	95.7	200	5.50	
EXT DRO >C28-C36	<10.0	10.0	08/09/2019	ND					
Surrogate: 1-Chlorooctane	106 9	% 41-142							
Surrogate: 1-Chlorooctadecane	109 9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	08/08/2019	Sampling Date:	08/08/2019
Reported:	08/09/2019	Sampling Type:	Soil
Project Name:	BIG PAPI FEDERAL COM 2H	Sampling Condition:	Cool & Intact
Project Number:	212C -MD - 01885 (7-12-19)	Sample Received By:	Jodi Henson
Project Location:	COG - EDDY CO NM		

Sample ID: NORTH SIDEWALL (H902739-04)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/09/2019	ND	1.91	95.5	2.00	3.81	
Toluene*	<0.050	0.050	08/09/2019	ND	1.92	96.2	2.00	1.60	
Ethylbenzene*	<0.050	0.050	08/09/2019	ND	1.92	95.8	2.00	2.17	
Total Xylenes*	<0.150	0.150	08/09/2019	ND	5.82	97.0	6.00	1.74	
Total BTEX	<0.300	0.300	08/09/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 %	6 73.3-12	9						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	592	16.0	08/09/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/09/2019	ND	195	97.7	200	4.87	
DRO >C10-C28*	<10.0	10.0	08/09/2019	ND	191	95.7	200	5.50	
EXT DRO >C28-C36	<10.0	10.0	08/09/2019	ND					
Surrogate: 1-Chlorooctane	116 %	6 41-142							
Surrogate: 1-Chlorooctadecane	121 %	6 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	08/08/2019	Sampling Date:	08/08/2019
Reported:	08/09/2019	Sampling Type:	Soil
Project Name:	BIG PAPI FEDERAL COM 2H	Sampling Condition:	Cool & Intact
Project Number:	212C -MD - 01885 (7-12-19)	Sample Received By:	Jodi Henson
Project Location:	COG - EDDY CO NM		

Sample ID: EAST 1 SIDEWALL (H902739-05)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/09/2019	ND	1.91	95.5	2.00	3.81	
Toluene*	<0.050	0.050	08/09/2019	ND	1.92	96.2	2.00	1.60	
Ethylbenzene*	<0.050	0.050	08/09/2019	ND	1.92	95.8	2.00	2.17	
Total Xylenes*	<0.150	0.150	08/09/2019	ND	5.82	97.0	6.00	1.74	
Total BTEX	<0.300	0.300	08/09/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 %	6 73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1500	16.0	08/09/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/09/2019	ND	195	97.7	200	4.87	
DRO >C10-C28*	<10.0	10.0	08/09/2019	ND	191	95.7	200	5.50	
EXT DRO >C28-C36	<10.0	10.0	08/09/2019	ND					
Surrogate: 1-Chlorooctane	118 %	6 41-142							
Surrogate: 1-Chlorooctadecane	124 %	6 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	08/08/2019	Sampling Date:	08/08/2019
Reported:	08/09/2019	Sampling Type:	Soil
Project Name:	BIG PAPI FEDERAL COM 2H	Sampling Condition:	Cool & Intact
Project Number:	212C -MD - 01885 (7-12-19)	Sample Received By:	Jodi Henson
Project Location:	COG - EDDY CO NM		

Sample ID: EAST 2 SIDEWALL (H902739-06)

BTEX 8021B	mg/	kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/09/2019	ND	2.05	102	2.00	0.251	
Toluene*	<0.050	0.050	08/09/2019	ND	2.15	108	2.00	1.81	
Ethylbenzene*	<0.050	0.050	08/09/2019	ND	2.03	102	2.00	1.25	
Total Xylenes*	<0.150	0.150	08/09/2019	ND	6.09	102	6.00	0.936	
Total BTEX	<0.300	0.300	08/09/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.8 9	6 73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	08/09/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/09/2019	ND	195	97.7	200	4.87	
DRO >C10-C28*	<10.0	10.0	08/09/2019	ND	191	95.7	200	5.50	
EXT DRO >C28-C36	<10.0	10.0	08/09/2019	ND					
Surrogate: 1-Chlorooctane	123 %	6 41-142							
Surrogate: 1-Chlorooctadecane	128 %	6 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	08/08/2019	Sampling Date:	08/08/2019
Reported:	08/09/2019	Sampling Type:	Soil
Project Name:	BIG PAPI FEDERAL COM 2H	Sampling Condition:	Cool & Intact
Project Number:	212C -MD - 01885 (7-12-19)	Sample Received By:	Jodi Henson
Project Location:	COG - EDDY CO NM		

Sample ID: WEST 1 SIDEWALL (H902739-07)

BTEX 8021B	mg/	kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/09/2019	ND	2.05	102	2.00	0.251	
Toluene*	<0.050	0.050	08/09/2019	ND	2.15	108	2.00	1.81	
Ethylbenzene*	<0.050	0.050	08/09/2019	ND	2.03	102	2.00	1.25	
Total Xylenes*	<0.150	0.150	08/09/2019	ND	6.09	102	6.00	0.936	
Total BTEX	<0.300	0.300	08/09/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.6 %	73.3-12	9						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	272	16.0	08/09/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/09/2019	ND	195	97.7	200	4.87	
DRO >C10-C28*	<10.0	10.0	08/09/2019	ND	191	95.7	200	5.50	
EXT DRO >C28-C36	<10.0	10.0	08/09/2019	ND					
Surrogate: 1-Chlorooctane	112 %	6 41-142	?						
Surrogate: 1-Chlorooctadecane	118 %	6 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	08/08/2019	Sampling Date:	08/08/2019
Reported:	08/09/2019	Sampling Type:	Soil
Project Name:	BIG PAPI FEDERAL COM 2H	Sampling Condition:	Cool & Intact
Project Number:	212C -MD - 01885 (7-12-19)	Sample Received By:	Jodi Henson
Project Location:	COG - EDDY CO NM		

Sample ID: WEST 2 SIDEWALL (H902739-08)

BTEX 8021B	mg/	kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/09/2019	ND	2.05	102	2.00	0.251	
Toluene*	<0.050	0.050	08/09/2019	ND	2.15	108	2.00	1.81	
Ethylbenzene*	<0.050	0.050	08/09/2019	ND	2.03	102	2.00	1.25	
Total Xylenes*	<0.150 0.150		08/09/2019	ND	6.09	102	6.00	0.936	
Total BTEX	<0.300	0.300	08/09/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.8 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1250	16.0	08/09/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/09/2019	ND	195	97.7	200	4.87	
DRO >C10-C28*	<10.0	10.0	08/09/2019	ND	191	95.7	200	5.50	
EXT DRO >C28-C36	<10.0	10.0	08/09/2019	ND					
Surrogate: 1-Chlorooctane	110 %	6 41-142	?						
Surrogate: 1-Chlorooctadecane	114 %	6 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	08/08/2019	Sampling Date:	08/08/2019
Reported:	08/09/2019	Sampling Type:	Soil
Project Name:	BIG PAPI FEDERAL COM 2H	Sampling Condition:	Cool & Intact
Project Number:	212C -MD - 01885 (7-12-19)	Sample Received By:	Jodi Henson
Project Location:	COG - EDDY CO NM		

Sample ID: SOUTH 1 SIDEWALL (H902739-09)

BTEX 8021B	mg/	kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/09/2019	ND	2.05	102	2.00	0.251	
Toluene*	<0.050	0.050	08/09/2019	ND	2.15	108	2.00	1.81	
Ethylbenzene*	<0.050	0.050	08/09/2019	ND	2.03	102	2.00	1.25	
Total Xylenes*	<0.150	0.150	08/09/2019	ND	6.09	102	6.00	0.936	
Total BTEX	<0.300	0.300	08/09/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.2 9	73.3-12)						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	7520	16.0	08/09/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/09/2019	ND	195	97.7	200	4.87	
DRO >C10-C28*	<10.0	10.0	08/09/2019	ND	191	95.7	200	5.50	
EXT DRO >C28-C36	<10.0	10.0	08/09/2019	ND					
Surrogate: 1-Chlorooctane	120 %	6 41-142							
Surrogate: 1-Chlorooctadecane	124 % 37.6-14		7						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Received by	v OCD.	Relinguished by:	2/19/	Relinquished by:	Burr	Belinguished by:	53 2	EN O	R WE	10 EAS	U ERE	2 4 200	50	0 1 Bo	gg I	(LAB USE)	LAB #	HADZIZA	Comments:		Dooriting Laborator	County, state)	rivject Name:		Client Name:	Page 72 of 16 C1 Jo C1 efforts Reque
		Date: Time:		Date: Time:	Mochicia 3/8/19 1700	Data: Time	UTH 1 SIDEWALL	EST 2 SIDEWALL	ST I SIDEWALL	ST Z SIDEWALL	ST I SIDEWALL	ORTH SIDEWALL	TTOM HOLE #3	TTOM HOLE #2 (1)	ATTOM HOLE #1 (4' BEB)		SAMPLE IDENTIFICATION			Cardinal	COG - Ike Tavarez	Eddy Co, NM	Big Papi Fed Com 2H (7.12.14)	Concho	Tetra Tech, Inc	est of Chain of Custody Record
ORIGINAL COP	neceived by:	00000	Occived by:	HAVAL V	Hegeived by:		21812	51815	L1 8 8	12/8/19	21912	18/8/18	6188	181 8 8	18 8	DATE	YEAR: 2019	SAMPLING		Sampler Signature:		Project #:		one manager.	Gié Managan	
	Date: Tin	7	Date: In	ANOMI ABIA	Date: Tir		×	×	×	×	×	×	×	×	×	WATER SOIL HCL HNO ₃ ICE		MATRIX PRESER		Conner Moehri		212C-MD-0188		Mike Carmona	901W Wall Street, Ste Midland, Texas 797C Tel (432) 682-4555 Fax (432) 682-394	
0	ne:		ne: Sa	17.06	ne:		- 2 ×	- Z X	- 2 X	- Z X	- 2 ×	- 2 >	- 7 X	- Z ×	- 2 ×	None # CONTA FILTERE	NINEI D (Y/ 21B		X 8260B	Вu		5			6 9 00	
rcie) HAND DELIVERED FE		1407	mple Temperature	ONLY	LAB USE REMAR		×	×	×	×	×	×	X	×	×	TPH TX10 TPH 8015 PAH 8270 Total Meta TCLP Meta TCLP Vola TCLP Serr	005 (5M (0 DC Ils Ag als A atiles ni Vol	Ext to GRO - g As Ba g As B g As B	C35) DRO - O a Cd Cr P a Cd Cr F	RO - M b Se H Pb Se I	IRO) g lg		(Circle or	ANA		
DEX UPS Tracking #:	Special Report Limits or TRRP F	Push Charges Authorized	RUSH: Same Day (24 hr) 48		RKS: STANDARD		×	X	×	×	×	×	×	×	× 0	RCI GC/MS Vo GC/MS Se PCB's 808 NORM PLM (Asbe Chloride Chloride General W	ol. 82 mi. V 32 / 6 estos) Sul /ater	260B / (/ol. 82 08) fate Chem	524 70C/625 TDS istry (see	e attac	hed list)	Specify Method No.)	LYSIS REQUEST		Page
Rolous	Report		3 hr 72 hr	/ -	0.24	2.0	0-00									Anion/Cati	on B	alance)			,				of

August 14, 2019

MIKE CARMONA TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: BIG PAPI FEDERAL COM 2H

Enclosed are the results of analyses for samples received by the laboratory on 08/13/19 17:10.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-18-11. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Whe Singh

Mike Snyder For Celey D. Keene Lab Director/Quality Manager

Analytical Results For:

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	08/13/2019	Sampling Date:	08/13/2019
Reported:	08/14/2019	Sampling Type:	Soil
Project Name:	BIG PAPI FEDERAL COM 2H	Sampling Condition:	Cool & Intact
Project Number:	212C -MD - 01885 (7-12-19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: BOTTOM HOLE #2 (6' BEB) (H902775-01)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/14/2019	ND	1.85	92.4	2.00	1.69	
Toluene*	<0.050	0.050	08/14/2019	ND	1.97	98.6	2.00	4.30	
Ethylbenzene*	<0.050	0.050	08/14/2019	ND	1.97	98.7	2.00	4.93	
Total Xylenes*	<0.150	0.150	08/14/2019	ND	5.99	99.8	6.00	6.80	
Total BTEX	<0.300	0.300	08/14/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	08/14/2019	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/14/2019	ND	194	97.1	200	7.24	
DRO >C10-C28*	<10.0	10.0	08/14/2019	ND	180	90.0	200	9.13	
EXT DRO >C28-C36	<10.0	10.0	08/14/2019	ND					
Surrogate: 1-Chlorooctane	69.8	% 41-142							
Surrogate: 1-Chlorooctadecane	67.9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Loadarotaries.

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	08/13/2019	Sampling Date:	08/13/2019
Reported:	08/14/2019	Sampling Type:	Soil
Project Name:	BIG PAPI FEDERAL COM 2H	Sampling Condition:	Cool & Intact
Project Number:	212C -MD - 01885 (7-12-19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: BOTTOM HOLE #3 (6' BEB) (H902775-02)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/14/2019	ND	1.85	92.4	2.00	1.69	
Toluene*	<0.050	0.050	08/14/2019	ND	1.97	98.6	2.00	4.30	
Ethylbenzene*	<0.050	0.050	08/14/2019	ND	1.97	98.7	2.00	4.93	
Total Xylenes*	<0.150	0.150	08/14/2019	ND	5.99	99.8	6.00	6.80	
Total BTEX	<0.300	0.300	08/14/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 %	6 73.3-12	9						
Chloride, SM4500Cl-B	mg/kg		Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	08/14/2019	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/14/2019	ND	194	97.1	200	7.24	
DRO >C10-C28*	<10.0	10.0	08/14/2019	ND	180	90.0	200	9.13	
EXT DRO >C28-C36	<10.0	10.0	08/14/2019	ND					
Surrogate: 1-Chlorooctane	70.5 9	% 41-142							
Surrogate: 1-Chlorooctadecane	70.7 9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Loadarotaries.

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	08/13/2019	Sampling Date:	08/13/2019
Reported:	08/14/2019	Sampling Type:	Soil
Project Name:	BIG PAPI FEDERAL COM 2H	Sampling Condition:	Cool & Intact
Project Number:	212C -MD - 01885 (7-12-19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: EAST 2 SIDEWALL (H902775-03)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/14/2019	ND	1.85	92.4	2.00	1.69	
Toluene*	<0.050	0.050	08/14/2019	ND	1.97	98.6	2.00	4.30	
Ethylbenzene*	<0.050	0.050	08/14/2019	ND	1.97	98.7	2.00	4.93	
Total Xylenes*	<0.150	0.150	08/14/2019	ND	5.99	99.8	6.00	6.80	
Total BTEX	<0.300	0.300	08/14/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 %	73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	08/14/2019	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/14/2019	ND	194	97.1	200	7.24	
DRO >C10-C28*	<10.0	10.0	08/14/2019	ND	180	90.0	200	9.13	
EXT DRO >C28-C36	<10.0	10.0	08/14/2019	ND					
Surrogate: 1-Chlorooctane	76.2 9	% 41-142							
Surrogate: 1-Chlorooctadecane	75.5 9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Loratorites.

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

	Relinquished by:		CONNET	Relinquished by:	53 AA				U	310		(LAB USE)	LAB #	Lanna	Comments:		Involce to:	Project Location: (county, state)	Project Name:	Client Name:	, F	Analysis Re
	Date: Time:	Date: Lime:	2 young 8/13/19	Date: Time:	•				EVAL SIDEMALL	Baton Hoir #3 (6' BEB)	Bottom fluic #2 @ (G' BEB)		SAMPLE IDENTIFICATION			Cardinal	COG - Ike Tavarez	Eddy Co, NM	Big Papi Fed Com 2H (ヿ. パス・パイ)	Concho	Tetra Tech, Inc.	quest of Chain of Custody Record
ORIGINAL COP	Received by:	Received by:	amar	Received by:					115118	5/12/14	8/13/14	DATE	YEAR: 2019	SAMPLING		Sampler Signature:		Project #:		Site Manager:		
Ŷ	Date:	Date	a Chable	Date:					~	: ×	×	WATEF SOIL HCL HNO3	3	MATRIX PRE		Conner Moe		212C-MD-0-		Mike Carmona	901W Wall Street Midland, Texas Tel (432) 682- Fax (432) 682	
	Time:	Time:	28-13-19 17.	Time.					~	< < -	×	ICE None # CONT.	AINE			hring		1885			. Ste 100 79705 -3946	
Ô	0	Sa	10	-	\square	_	$\left \right $		7	7	7 ×	FILTERE	ED (Y/	'N) BTE	X 8260B							
ircle) H	4.0	mple Tel	ON	-			\square		1	, X	X	TPH TX TPH 801	1005 (5M (Ext to GRO -	C35) DRO - O	RO - N	/RO)					
	cote	mperatu	USE	-			\square	_	Ì			PAH 827 Total Met	OC als Ac	As B	a Cd Cr F	b Se F	, Ia		_ []			
LIVERE	B	2°.8		2		-			-			TCLP Me	tals A	g As B	a Cd Cr I	Pb Se	Hg					
D FE]				_						TCLP Sei	mi Vol	atiles					_ or	INAL		
DEX L	pecial	USH:	ST									GC/MS V	ol. 82	260B /	624				pec	VSIS		
JPS	Repor	Sam	AND/	\vdash				_				GC/MS S PCB's 80	emi. \)82 / 6	/ol. 82	70C/625				ITY N	REC		
Trackin	t Limit	e Day	ARD	F						\square		NORM PLM (Ash	estos)		- 1			leth	UES		т
ig #:	s or Ti	(24 h)						\prec	×	×	Chloride	20100	,					2	Ä		age
	RRP F	€¥ 48	-									Chloride General \	Sul Nater	fate Cherr	TDS histry (se	e attac	ched lis	:t)				1
	Report	hr 7		H		-	-		-			Anion/Ca	tion B	alance	9				_			1
		2 hr					\square															of
																			<u>2</u>			4

Analytical Report 652156

for Tetra Tech- Midland

Project Manager: Mike Carmona

Big Pappy Fed Com 2H (7-12-19)

212C-MD-01855

14-FEB-20

Collected By: Client

1089 N Canal Street Carlsbad, NM 88220

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-19-30), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (19-037-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (TX104704295-19-22), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-19-16) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-19-21) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19) Xenco-Carlsbad (LELAP): Louisiana (05092) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-19-5) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Tampa: Florida (E87429), North Carolina (483) Received by OCD: 12/19/2020 9:49:53 AM

14-FEB-20

Project Manager: **Mike Carmona Tetra Tech- Midland** 901 West Wall ST Midland, TX 79701

Reference: XENCO Report No(s): **652156 Big Pappy Fed Com 2H (7-12-19)** Project Address: Eddy Co, NM

Mike Carmona:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 652156. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 652156 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jessica Veramer

Jessica Kramer Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Id

AH#2 (0-1')
AH#2 (1-1.5')
AH#3(0-1')
AH#4(0-1')
AH#4 (1-1.5')
AH#4 (1.5-2')
AH#5(0-1')
AH#5 (1-1.5')
AH#5 (2-2.5')
AH#6(0-1')
AH#6(0-1') AH#7 (0-6")
AH#6(0-1') AH#7 (0-6") AH#8 (0-6")
AH#6(0-1') AH#7 (0-6") AH#8 (0-6") AH#9 (0-6")
AH#6(0-1') AH#7 (0-6") AH#8 (0-6") AH#9 (0-6") AH#10 (0-6")
AH#6(0-1') AH#7 (0-6") AH#8 (0-6") AH#9 (0-6") AH#10 (0-6") AH#11 (0-6")
AH#6(0-1') AH#7 (0-6") AH#8 (0-6") AH#9 (0-6") AH#10 (0-6") AH#11 (0-6") AH#12 (0-6")
AH#6(0-1') AH#7 (0-6") AH#8 (0-6") AH#9 (0-6") AH#10 (0-6") AH#11 (0-6") AH#12 (0-6") AH#13 (0-6")

Sample Cross Reference 652156

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7-12-19)

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	02-12-20 00:00	0 - 1 ft	652156-001
S	02-12-20 00:00	1 - 1.5 ft	652156-002
S	02-12-20 00:00	0 - 1 ft	652156-003
S	02-12-20 00:00	0 - 1 ft	652156-004
S	02-12-20 00:00	1 - 1.5 ft	652156-005
S	02-12-20 00:00	1.5 - 2 ft	652156-006
S	02-12-20 00:00	0 - 1 ft	652156-007
S	02-12-20 00:00	1 - 1.5 ft	652156-008
S	02-12-20 00:00	2 - 2.5 ft	652156-009
S	02-12-20 00:00	0 - 1 ft	652156-010
S	02-12-20 00:00	0 - 6 In	652156-011
S	02-12-20 00:00	0 - 6 In	652156-012
S	02-12-20 00:00	0 - 6 In	652156-013
S	02-12-20 00:00	0 - 6 In	652156-014
S	02-12-20 00:00	0 - 6 In	652156-015
S	02-12-20 00:00	0 - 6 In	652156-016
S	02-12-20 00:00	0 - 6 In	652156-017
S	02-12-20 00:00	0 - 6 In	652156-018

.

CASE NARRATIVE

Client Name: Tetra Tech- Midland Project Name: Big Pappy Fed Com 2H (7-12-19)

Project ID: 212C-MD-01855 Work Order Number(s): 652156 Report Date: 14-FEB-20 Date Received: 02/12/2020

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3116368 Chloride by EPA 300

Lab Sample ID 652161-008 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Chloride recovered above QC limits in the Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 652156-016, -017, -018.

The Laboratory Control Sample for Chloride is within laboratory Control Limits, therefore the data was accepted.

212C-MD-01855

Mike Carmona

Eddy Co, NM

Project Id:

Project Location:

Contact:

Certificate of Ar	alysis Summary	652156
-------------------	----------------	--------

Tetra Tech- Midland, Midland, TX

Page 83 of 168

Project Name: Big Pappy Fed Com 2H (7-12-19)

Date Received in Lab:Wed Feb-12-20 01:15 pmReport Date:14-FEB-20Project Manager:Jessica Kramer

	Lab Id:	652156-0	01	652156-0	02	652156-0	03	652156-0	04	652156-0	05	652156-0)06
Analysis Paguastad	Field Id:	AH#2 (0-	1')	AH#2 (1-1	.5')	AH#3(0-	1')	AH#4(0-	1')	AH#4 (1-1	.5')	AH#4 (1.5	5-2')
Anuiysis Kequesieu	Depth:	0-1 ft		1-1.5 ft		0-1 ft		0-1 ft		1-1.5 ft		1.5-2 f	Ì
	Matrix:	SOIL	SOIL			SOIL		SOIL		SOIL		SOIL	
	Sampled:	Feb-12-200	Feb-12-20 00:00		Feb-12-20 00:00		00:00	Feb-12-20 (00:00	Feb-12-20 (00:00	Feb-12-20	00:00
Chloride by EPA 300	Extracted:	Feb-12-20 1	4:30	Feb-12-20 14:30		Feb-12-20 1	4:30	Feb-12-20 1	4:30	Feb-12-20 1	4:30	Feb-12-20	14:30
	Analyzed:	Feb-12-20 1	Feb-12-20 16:31		6:37	Feb-12-20 1	6:43	Feb-12-20 1	6:49	Feb-12-20 1	6:55	Feb-12-20	17:01
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		67.4	10.0	197	10.1	248	9.98	142	9.88	189	9.94	607	9.90

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Version: 1.%

fession kenner

Jessica Kramer Project Assistant

212C-MD-01855

Mike Carmona

Eddy Co, NM

Project Id:

Project Location:

Contact:

Certificate of An	alysis Summary	652156
-------------------	----------------	--------

Tetra Tech- Midland, Midland, TX

Page 84 of 168

Project Name: Big Pappy Fed Com 2H (7-12-19)

Date Received in Lab:Wed Feb-12-20 01:15 pmReport Date:14-FEB-20Project Manager:Jessica Kramer

	Lab Id:	652156-0	07	652156-0	08	652156-0	09	652156-0	10	652156-0	011	652156-0	012
Analysis Paguastad	Field Id:	AH#5(0-1	')	AH#5 (1-1	.5')	AH#5 (2-2	.5')	AH#6(0-1	1')	AH#7 (0-	6")	AH#8 (0-	6")
Anuiysis Kequesieu	Depth:	0-1 ft		1-1.5 ft	1-1.5 ft		2-2.5 ft			0-6 In		0-6 In	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Feb-12-20 0	Feb-12-20 00:00		Feb-12-20 00:00		0:00	Feb-12-20 0	0:00	Feb-12-20 (00:00	Feb-12-20 (00:00
Chloride by EPA 300	Extracted:	Feb-12-20 1	4:30	Feb-12-20 14:30		Feb-12-20 1	4:30	Feb-12-20 1	4:30	Feb-12-20	14:30	Feb-12-20 1	14:30
	Analyzed:	Feb-12-20 1	7:19	Feb-12-20 1	7:25	Feb-12-20 1	7:42	Feb-12-20 1	7:48	Feb-12-20	17:54	Feb-12-20 1	18:00
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		624	9.98	823	10.0	1040	9.96	310	9.98	69.7	9.98	<9.92	9.92

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Version: 1.%

fession kenner

Jessica Kramer Project Assistant

Certificate of An	alysis Summary	652156
-------------------	----------------	--------

Tetra Tech- Midland, Midland, TX

Page 85 of 168

Project Id:212C-MD-01855Contact:Mike CarmonaProject Location:Eddy Co, NM

 Project Name: Big Pappy Fed Com 2H (7-12-19)
 Date Received in Lab:
 Wed Feb-12-20 01:15 pm

 Report Date:
 14-FEB-20
 14-FEB-20

 Project Manager:
 Jessica Kramer

	Lab Id:	652156-0	13	652156-0	14	652156-0	015	652156-0	16	652156-017		652156-018	
Analysis Paguastad	Field Id:	AH#9 (0-	6")	AH#10 (0-	-6")	AH#11 (0	-6")	AH#12 (0-	-6")	AH#13 (0	-6")	AH#14 (0)-6")
Anulysis Kequesieu	Depth:	0-6 In		0-6 In	0-6 In		0-6 In			0-6 In		0-6 Ir	1
Ma		SOIL	SOIL			SOIL		SOIL		SOIL		SOIL	
	Sampled:	Feb-12-20 (Feb-12-20 00:00		Feb-12-20 00:00		00:00	Feb-12-20 (00:00	Feb-12-20 (00:00	Feb-12-20 00:0	
Chloride by EPA 300	Extracted:	Feb-12-20 1	4:30	Feb-12-20 14:30		Feb-12-20 14:30		Feb-12-20 1	7:31	Feb-12-20	7:31	Feb-12-20	17:31
	Analyzed:	Feb-12-20 1	8:06	Feb-12-20 1	8:12	Feb-12-20	18:18	Feb-12-20 1	8:56	Feb-12-20	9:15	Feb-12-20	19:22
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		29.1	9.92	99.2	9.98	160	9.90	34.4	9.98	29.6	9.88	15.3	9.92

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Version: 1.%

fession kramer

Jessica Kramer Project Assistant

1

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7-12-19)

Sample Id:AH#Lab Sample Id:6521	2 (0-1') 56-001		Matrix: Date Collecte	Soil ed: 02.12.20 00.00	Date Received:02.12.20 13.15 Sample Depth: 0 - 1 ft					
Analytical Method:Tech:MABAnalyst:MABSeq Number:31163	Chloride by EPA 300	0	Date Prep:	02.12.20 14.30		Prep Method: % Moisture: Basis:	E300 Wet	P Weight		
Parameter		Cas Number	Result 1	8L	Units	Analysis Da	ite	Flag	Dil	

16887-00-6 **67.4**

10.0

mg/kg

02.12.20 16.31

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7-12-19)

Sample Id:	AH#2 (1-1.5')		Matrix:	Soil		Date Received	1:02.12.20	13.15
Lab Sample Id	: 652156-002		Date Collect	ed: 02.12.20 00.00		Sample Depth	:1 - 1.5 ft	
Analytical Me	thod: Chloride by EPA 30	00				Prep Method:	E300P	
Tech:	MAB					% Moisture:		
Analyst:	MAB		Date Prep:	02.12.20 14.30		Basis:	Wet Wei	ght
Seq Number:	3116357							
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Fla	ıg Dil

16887-00-6 197

10.1

02.12.20 16.37

mg/kg

1

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7-12-19)

Sample Id:	AH#3(0-1')		Matrix:	Soil		Date Received	1:02.12	.20 13.15	
Lab Sample Id	: 652156-003		Date Collect	ed: 02.12.20 00.00		Sample Depth	:0 - 1 1	ft	
Analytical Me	thod: Chloride by EPA 30	00				Prep Method:	E300	Р	
Tech:	MAB					% Moisture:			
Analyst:	MAB		Date Prep:	02.12.20 14.30		Basis:	Wet W	Veight	
Seq Number:	3116357								
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate	Flag	Dil

248

Chloride

16887-00-6

9.98

mg/kg

02.12.20 16.43

1

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7-12-19)

Sample Id: AH Lab Sample Id: 652	# 4(0-1') 156-004		Matrix: Date Collect	Soil ed: 02.12.20 00.00		Date Received Sample Depth	:02.12 :0 - 1	2.20 13.15 ft	
Analytical Method:	Chloride by EPA 30	0				Prep Method:	E300	P	
Tech: MAI	В					% Moisture:			
Analyst: MAI	В		Date Prep:	02.12.20 14.30		Basis:	Wet V	Weight	
Seq Number: 3116	5357								
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate	Flag	Dil

Chloride

16887-00-6 142

9.88

mg/kg

02.12.20 16.49

1

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7-12-19)

Sample Id: Lab Sample Id:	AH#4 (1-1.5') 652156-005		Matrix: Date Collect	Soil ed: 02.12.20 00.00		Date Received Sample Depth	:02.12 :1 - 1.	2.20 13.15 5 ft	
Analytical Met Tech: Analyst: Seq Number:	hod: Chloride by EPA 30 MAB MAB 3116357	0	Date Prep:	02.12.20 14.30		Prep Method: % Moisture: Basis:	E300 Wet V	P Weight	
Parameter		Cas Number	Result]	RL	Units	Analysis Da	ate	Flag	Dil

189

16887-00-6

9.94

mg/kg

02.12.20 16.55

1

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7-12-19)

Sample Id:	AH#4 (1.5-2')		Matrix:	Soil		Date Received	l:02.12	2.20 13.15	
Analytical Ma	thed: Chloride by EPA 3	00	Date Collecte	d. 02.12.20 00.00		Bran Mathod:	. 1.3 -	2 II	
Tech:	MAB					% Moisture:	E300	/1	
Analyst:	MAB		Date Prep:	02.12.20 14.30		Basis:	Wet Y	Weight	
Seq Number:	3116357								
Parameter		Cas Number	Result I	RL	Units	Analysis Da	ate	Flag	Dil

607

16887-00-6

9.90

02.12.20 17.01

mg/kg

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7-12-19)

Sample Id:	AH#5(0-1')		Matrix:	Soil		Date Received	1:02.12	2.20 13.15	
Lab Sample Id: 652156-007			Date Collect	ed: 02.12.20 00.00		Sample Depth	:0 - 1	ft	
Analytical Metl	hod: Chloride by EPA 30	00				Prep Method:	E300	P	
Tech:	MAB					% Moisture:			
Analyst:	MAB		Date Prep:	02.12.20 14.30		Basis:	Wet V	Weight	
Seq Number:	3116357								
Parameter		Cas Number	Result]	8L	Units	Analysis D	ate	Flag	Dil

Chloride

16887-00-6 **624**

9.98

9.98

02.12.20 17.19

mg/kg

1

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7-12-19)

Sample Id: Lab Sample Id	AH#5 (1-1.5') : 652156-008		Matrix: Date Collect	Soil ed: 02.12.20 00.00		Date Received Sample Depth	1:02.12. 1:1 - 1.5	.20 13.15 5 ft	
Analytical Met	thod: Chloride by EPA 30	00				Prep Method:	E300F	0	
Tech:	MAB					% Moisture:			
Analyst:	MAB		Date Prep:	02.12.20 14.30		Basis:	Wet W	Veight	
Seq Number:	3116357								
Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil

16887-00-6 823

10.0

mg/kg

02.12.20 17.25

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7-12-19)

Sample Id: Lab Sample Id	AH#5 (2-2.5') : 652156-009		Matrix: Date Collect	Soil ed: 02.12.20 00.00		Date Received Sample Depth	l:02.12 : 2 - 2.	2.20 13.15 .5 ft	
Analytical Met Tech:	thod: Chloride by EPA 30	00				Prep Method: % Moisture:	E300	P	
Analyst: Seq Number:	MAB 3116357		Date Prep:	02.12.20 14.30		Basis:	Wet	Weight	
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate	Flag	Dil

1040

Chloride

16887-00-6

9.96

mg/kg 02.12.20 17.42

1

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7-12-19)

Sample Id:	AH#6(0-1')		Matrix:	Soil		Date Received	1:02.12	2.20 13.15	
Lab Sample Id	: 652156-010		Date Collect	ed: 02.12.20 00.00		Sample Depth	:0 - 1	ft	
Analytical Me	thod: Chloride by EPA 30	00				Prep Method:	E300	Р	
Tech:	MAB					% Moisture:			
Analyst:	MAB		Date Prep:	02.12.20 14.30		Basis:	Wet V	Weight	
Seq Number:	3116357								
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate	Flag	Dil

Chloride

16887-00-6 **310**

9.98

mg/kg 02.12.20 17.48

1

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7-12-19)

Sample Id:	AH#7 (0-6'')		Matrix:	Soil		Date Received	1:02.12	2.20 13.15	
Lab Sample Id	: 652156-011		Date Collect	ed: 02.12.20 00.00		Sample Depth	:0-6	In	
Analytical Me	thod: Chloride by EPA 30	00				Prep Method:	E300	Р	
Tech:	MAB					% Moisture:			
Analyst:	MAB		Date Prep:	02.12.20 14.30		Basis:	Wet V	Weight	
Seq Number:	3116357								
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate	Flag	Dil

69.7

Chloride

16887-00-6

9.98

02.12.20 17.54

mg/kg

1

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7-12-19)

Sample Id:	AH#8 (0-6'')		Matrix:	Soil		Date Received	1:02.12.20 13.15	
Lab Sample Id	: 652156-012		Date Collecte	d: 02.12.20 00.00		Sample Depth	:0 - 6 In	
Analytical Me	thod: Chloride by EPA 30	00				Prep Method:	E300P	
Tech:	MAB					% Moisture:		
Analyst:	MAB		Date Prep:	02.12.20 14.30		Basis:	Wet Weight	
Seq Number:	3116357							
Parameter		Cas Number	Result R	L	Units	Analysis D	ate Flag	Dil

<9.92

Chloride

16887-00-6

9.92

mg/kg

02.12.20 18.00 U

1

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7-12-19)

Sample Id: AH Lab Sample Id: 652	H#9 (0-6'') 2156-013		Matrix: Date Collecte	Soil ed: 02.12.20 00.00		Date Received Sample Depth	:02.12 :0 - 6	2.20 13.15 In	
Analytical Method	: Chloride by EPA 30	0				Prep Method:	E300	Р	
Analyst: MA Seq Number: 311	лв 6357		Date Prep:	02.12.20 14.30		Basis:	Wet V	Weight	
Parameter		Cas Number	Result I	RL	Units	Analysis Da	ate	Flag	Dil

Chloride

29.1

16887-00-6

9.92

02.12.20 18.06

mg/kg

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7-12-19)

Sample Id:	AH#10 (0-6'')		Matrix:	Soil		Date Received	1:02.12.	.20 13.15	
Lab Sample Id	52156-014		Date Collect	ed: 02.12.20 00.00		Sample Depth	:0-61	n	
Analytical Me	thod: Chloride by EPA 30	00				Prep Method:	E300F	þ	
Tech:	MAB					% Moisture:			
Analyst:	MAB		Date Prep:	02.12.20 14.30		Basis:	Wet W	Veight	
Seq Number:	3116357								
Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil

99.2

Chloride

16887-00-6

9.98

mg/kg 02.12.20 18.12

1

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7-12-19)

Sample Id: Lab Sample Id	AH#11 (0-6'') : 652156-015		Matrix: Date Collec	Soil ted: 02.12.20 00.00		Date Received Sample Depth	1:02.12.20 13.1: : 0 - 6 In	5
Analytical Me Tech:	thod: Chloride by EPA 30 MAB	00				Prep Method: % Moisture:	E300P	
Analyst: Seq Number:	MAB 3116357		Date Prep:	02.12.20 14.30		Basis:	Wet Weight	
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil

160

Chloride

16887-00-6

9.90

mg/kg 02.12.20 18.18

1

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7-12-19)

Sample Id:	AH#12 (0-6'')		Matrix:	Soil		Date Received	1:02.12	.20 13.15	
Lab Sample Id	: 652156-016		Date Collect	ed: 02.12.20 00.00		Sample Depth	:0-6]	In	
Analytical Me	thod: Chloride by EPA 30	00				Prep Method:	E300	Р	
Tech:	MAB					% Moisture:			
Analyst:	MAB		Date Prep:	02.12.20 17.31		Basis:	Wet V	Weight	
Seq Number:	3116368								
Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil

Chloride

16887-00-6 **34.4**

9.98

mg/kg 02.12.20 18.56

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7-12-19)

Sample Id:	AH#13 (0-6'')		Matrix:	Soil		Date Received	1:02.12	.20 13.15	
Lab Sample Id	: 652156-017		Date Collect	ed: 02.12.20 00.00		Sample Depth	:0-6]	In	
Analytical Me	thod: Chloride by EPA 30	00				Prep Method:	E3001	Р	
Tech:	MAB					% Moisture:			
Analyst:	MAB		Date Prep:	02.12.20 17.31		Basis:	Wet W	Weight	
Seq Number:	3116368								
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate	Flag	Dil

29.6

Chloride

16887-00-6

9.88

02.12.20 19.15

mg/kg

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7-12-19)

Sample Id: AH#14 (0-6") Lab Sample Id: 652156-018		Matrix: Date Collecte	Soil d: 02.12.20 00.00		Date Received Sample Depth	1:02.12.20 13 :0 - 6 In	15
Analytical Method:Chloride by EPA 3Tech:MABAnalyst:MABSeq Number:3116368	00	Date Prep:	02.12.20 17.31		Prep Method: % Moisture: Basis:	E300P Wet Weight	
Parameter	Cas Number	Result F	RL	Units	Analysis D	ate Flag	Dil

15.3

16887-00-6

9.92

02.12.20 19.22

mg/kg

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	nt Sample	BLK	Method Blank	
BKS/LCS	Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labor	atory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Analytical Method: Chloride by EPA 300

ATORIES

Prep Method: E300P

Tetra Tech- Midland

Big Pappy Fed Com 2H (7-12-19)

Seq Number:	3116357			Matrix:	Solid				Date Pr	rep: 02.1	12.20	
MB Sample Id:	7696526-1-BLK		LCS Sat	nple Id:	7696526-	1-BKS		LCS	D Sampl	e Id: 769	6526-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Lin	nit Units	Analysis Date	Flag
Chloride	<10.0	250	255	102	256	102	90-110	0	20	mg/kg	02.12.20 15:26	
Analytical Method:	Chloride by EPA 3	600		Matrix	Solid			Р	rep Meth	iod: E30	0P	
MB Sample Id	7696527-1-BLK		LCS Sa	mple Id:	7696527-	1-BKS		LCS	Date Pi D Sampl	e Id: 769	6527-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Lin	nit Units	Analysis Date	Flag
Chloride	<10.0	250	256	102	258	103	90-110	1	20	mg/kg	02.12.20 18:43	
Analytical Method:	Chloride by EPA 3	600						Р	rep Meth	od: E30	0P	
Seq Number:	3116357		MS So	Matrix:	Soil 652152.0	04 \$		м	Date Pi	rep: 02.1	12.20 152.004 SD	
Parent Sample Id:	052152-004	a n		iipie iu.	052152-0	04.5	.			e iu. 052	152-004 5D	
Parameter	Result	Spike Amount	Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lin	ut Units	Analysis Date	Flag
Chloride	17.5	200	205	94	207	95	90-110	1	20	mg/kg	02.12.20 15:44	
Analytical Method:	Chloride by EPA 3	600						Р	rep Meth	od: E30	0P	
Seq Number:	3116357			Matrix:	Soil			-	Date Pr	rep: 02.1	12.20	
Parent Sample Id:	652156-006		MS Sa	nple Id:	652156-0	06 S		MS	D Sampl	e Id: 652	156-006 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lin	nit Units	Analysis Date	Flag
Chloride	607	199	812	103	816	105	90-110	0	20	mg/kg	02.12.20 17:07	
Analytical Method:	Chloride by EPA 3	600						Р	rep Meth	od: E30	0P	
Seq Number:	3116368			Matrix:	Soil				Date Pr	rep: 02.1	12.20	

beq i tumber.	5110500			-	·iuuin.	bon			Dute 11ep. 02.12.20								
Parent Sample Id:	652156-016			MS Sam	ple Id:	652156-01	6 S		MS	D Sample	e Id: 652	156-016 SD					
Parameter	P I	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag				
Chloride		34.4	200	253	109	264	115	90-110	4	20	mg/kg	02.12.20 19:02	Х				

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample) LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 27 of 31

Tetra Tech- Midland

Big Pappy Fed Com 2H (7-12-19)

Analytical Method:	Chloride by EPA 3	300						P	rep Meth	od: E3	00P	
Seq Number:	3116368			Matrix:	Soil				Date Pr	rep: 02	.12.20	
Parent Sample Id:	652161-008		MS Sar	nple Id:	652161-00)8 S		MS	D Sampl	e Id: 65	2161-008 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lin	nit Units	Analysis Date	Flag
Chloride	25.8	200	237	106	239	107	90-110	1	20	mg/kg	02.12.20 20:32	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

[D] = 100*(C-A) / B $\begin{aligned} \text{RPD} &= 200^* \mid (\text{C-E}) / (\text{C+E}) \mid \\ \text{[D]} &= 100^* (\text{C}) / \text{[B]} \end{aligned}$ Log Diff. = Log(Sample Duplicate) - Log(Original Sample) LCS = Laboratory Control SampleA = Parent Result C = MS/LCS Result E = MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 28 of 31

	uished by:	uished by:	wished by:					T				-		UB USE	AB #		nents:	ving Labora	e to:	ct Location: ty, state)	ct Name:	t Name:	F	lysis Re
	Date:	Date:	bury 2/12/20	AH#6 (0.1)	AH# 5 (2-2.5)	AH45 (1-1.5)	AH#5 (0-1)	AHH 4 (1:3-2')	DH#4 (1-1.5)	PH # 4 (6-1)	PH#3 (0-1)	AH#Z (1-1.5)	AH#2 (0-1)		SAMPLE IDENTIFICA			Xenco	COG - Ike Tavarez	: Eddy Co, NM	Big Pappy Fed Com 2H	Concho	Tetra Te	quest of Chain of Custody Recor
0	Time: R	Time:	1315 A				7	2	2												(7.12.15)	(0)	ch, Inc.	
RIGINAL COPY	eceived by:	éceived by:	PA LLL	2/12/20	2/12/70	n [21] 2	2/12/10	112/20	2/12/20	2/12/28	2/12/20	2/12/26	2/12/2020	DATE TIME	EAR: 2020	SAMPLING		sampier signature:		⁹ roject #:		Site Manager:		
	Date:	Date:	Date:	X	X	×	×	X	×	X	×	X	×	WATEI SOIL HCL	R	MATRIX P		Conner Mc		212C-MD-		Mike Carmon	901W Wall Str Midland, Tex Tel (432) 6 Fax (432) 6	
	Time:	Time:	Time:	X	1 X	1 ×	X I		X	X	X	X	×	HNO ₃ ICE None	AINE	METHOD		pehring		01855		a	eet, Ste 100 as 79705 82-4559 82-3946	
		(0)	3)	2	Z	2	S	S	2	2	- 2	۔ ح	1 N	FILTER	ED ()	//N)								
Circle) HA	Ś	ample Ter	OF											BTEX 8 TPH TX TPH 80	021B 1005 15M (BTE (Ext to GBO	X 8260 C35)	B OBO -	MBO)		_			
ND DELI	7	mperature	USE											PAH 82 Total Me	70C tals A	g As E	a Cd Cr	Pb Se	Hg		-1	0		
VERED			REM											TCLP M	etals . platile	Ag As I s	Ba Cd C	r Pb Se	Hg			AN		
FEDEX]Rush]Speci	RUS	IARKS:											RCI	emi Vo	platiles	624					IALYS		
UPS	Charge al Repo	t: Sam	TAND											GC/MS	Semi.	Vol. 8	270C/62	5	1			IS RE		
Tracking	s Autho	e Day	ARD											NORM PLM (As	besto	s)						DUES		т
#	rized or TRRP	24 hr 4		X	X	X	×	X	X	X	X	×	X	Chloride Chloride	Wat	ulfate	TDS	100 ctt	ohed "	ot)		T		age
	Report	8 hr 72												Anion/C	ation	Baland	ce	ad all	aoneu II	31)	_			-
		hr																						억

Conche Ste Manger: Mile Carmona Circle or Spec	elinquished by		elinquished by	1 mmal										(LAB USE ONLY)	LAB #		Comments:		Invoice to:	Project Locatio (county, state)	Project Name:	client Name:	
M2H (7, -1, 2, -1, 4,) Ster Manager: Mike Carmona Conner Moehning Conehning Conner Moehning	Da		Da	eteile Crisela		нн тн (о-о")	("0-0) EI# HA	AH#12 (0-6")	AH # 11 (0~6")	AH #10 (0-6")	DH#9 (0.6")	AH#8 (0.6")	AH#7 (0-6")		SAMPLE IDEN			Xenco	COG - Ike Tavarez	n: Eddy Co, NM	Big Pappy Fed Co	Concho	Tetra
Site Manager: Mike Carmona Conner Moehring Circle or Spect Image: Sampler Signature: Conner Moehring (Circle or Spect (Circle or Spect Image: Sampler Signature: Conner Moehring (Circle or Spect (Circle or Spect Image: TIME MATRIX Preservoire (Circle or Spect (Circle or Spect Image: TIME MATRIX Preservoire (Circle or Spect (Circle or Spect Image: TIME MATER (Circle or Spect (Circle or Spect (Circle or Spect Image: TIME MATRIX Preservoire (Circle or Spect (Circle or Spect Image: TIME X HO03 (Circle or Spect (Circle or Spect Image: X HO3 (Circle or Spect (Circle or Spect (Circle or Spect Image: X X HO3 (Circle or Spect (Circle or Spect Image: X X X X (Circle or Spect (Circle or Spect Image: X X	te: Time:		te: Time:												TIFICATION						m2H (7.12.19)		Tech, Inc.
Mike Carmona Marting 1 1	Received by:		Received by:	Hecewey by:	4.1	02/21/2	02/21/2	2/22/20	2/12/20	2/12/20	2/12/20	2/12/20	2/12/2020	DATE	YEAR: 2020	SAMPLIN		Sampler Signature		Project #:)	Site Manager:	2
ale: Time: Image: Time: </td <td>D</td> <td></td> <td></td> <td>UL 2h</td> <td></td> <td>X</td> <td>×</td> <td>×</td> <td>×</td> <td>X</td> <td>X</td> <td>X</td> <td>×</td> <td>TIME WATE SOIL</td> <td>7</td> <td>G MATRIX</td> <td></td> <td>" Conn</td> <td></td> <td>2120</td> <td></td> <td>Mike Ca</td> <td>901W Midl Fax</td>	D			UL 2h		X	×	×	×	X	X	X	×	TIME WATE SOIL	7	G MATRIX		" Conn		2120		Mike Ca	901W Midl Fax
3.5 - - - - # CONTAINERS 3.7 - - - - - # CONTAINERS 3.7 -<	ate: Time:)ate: Time:	1/20 ()		X	X	×	×	X	×	X	×	HCL HNO ₃ ICE None		PRESERVATIVE		er Moehring		-MD-01855		rmona	Wall Street, Ste 100 and,Texas 79705 I (432) 682-4559 t (432) 682-3946
And Lysic BTEX 8021B BTEX 8260B BTEX 8021B BTEX 8260B BTEX 8021B BTEX 8260B Circle Circle Circle		0 0		55		1 2	1 2	- 2	1 N	N I	- 2	- 2	1 N	# CONT FILTER	AINE	ERS (/N)							
Image: specific constraints Image: specific cons	3.2	ample Temperature		LAB USE ONLY										TPH TX TPH 80 PAH 82 Total Me	021B 1005 15M (70C tals A	BTE (Ext to GRO -	X 8260E C35) DRO - C a Cd Cr	DRO - Pb Se	MRO) Hg			(Cire	
0 GC/MS Semi Vol 8270C/625	Special R		RUSH: S	REMARKS:										TCLP Vo TCLP Se RCI GC/MS V	latile mi V /ol. 8	Ag As E s olatiles 3260B /	624 270C/628	PD Se	Hg			ANALYSIS I	
rges Authonized VDARD VDA V X X X X X X Chloride Sulfate TDS VDA V V V V V V V V V V V V V V V V V V	arges Autrionzed eport Limits or TRF		ame Day 24 hr	NDARD		X	X	×	×	×	X	×	X	PCB's 8 NORM PLM (As Chloride	082 /	608 s)	TDS					REQUEST	
Above Above Above Above Above Above 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Report		48 hr 72 hr											General Anion/C	Wate	er Cher Balanc	nistry (se	ee atta	iched li	st)			
XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland	Acceptable Temperature Range: 0 - 6 degC				
Date/ Time Received: 02.12.2020 01.15.00 PM	Air and Metal samples	Acceptable Range: Ambient			
Work Order #: 652156	Temperature Measurir	ng device used: T-NM-007			
Sample Rece	eipt Checklist	Comments			
#1 *Temperature of cooler(s)?	3.2				
#2 *Shipping container in good condition?	Yes				
#3 *Samples received on ice?	Yes				
#4 *Custody Seals intact on shipping container/ cooler?	Yes				
#5 Custody Seals intact on sample bottles?	Yes				
#6*Custody Seals Signed and dated?	Yes				
#7 *Chain of Custody present?	Yes				
#8 Any missing/extra samples?	No				
#9 Chain of Custody signed when relinquished/ received?	Yes				
#10 Chain of Custody agrees with sample labels/matrix?	Yes				
#11 Container label(s) legible and intact?	Yes				
#12 Samples in proper container/ bottle?	Yes				
#13 Samples properly preserved?	Yes				
#14 Sample container(s) intact?	Yes				
#15 Sufficient sample amount for indicated test(s)?	Yes				
#16 All samples received within hold time?	Yes				
#17 Subcontract of sample(s)?	No				
#18 Water VOC samples have zero headspace?	N/A				

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Elizabeth McClellan Checklist reviewed by: Jessica Kramer

Date: 02.12.2020

Jessica Kramer

Date: 02.12.2020

Analytical Report 660477

for

Tetra Tech- Midland

Project Manager: Mike Carmona

Big Papi Federal Com #2H (7.12.19)

212C-MD-01855

05.07.2020

Collected By: Client

1211 W. Florida Ave Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-32), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (19-037-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (TX104704295-19-23), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-19-16) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-22) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19) Xenco-Carlsbad (LELAP): Louisiana (05092) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-19-5) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Tampa: Florida (E87429), North Carolina (483)

212C-MD-01855

Eddy County, NM

Mike Carmona

Project Id:

Project Location:

Contact:

Certificate of Analysis Summary 660477

Tetra Tech- Midland, Midland, TX

Project Name: Big Papi Federal Com #2H (7.12.19)

Date Received in Lab:Mon 05.04.2020 10:24Report Date:05.07.2020 12:24Project Manager:Jessica Kramer

Lab Id: 660477-001 660477-002 660477-003 660477-004 660477-005 660477-006 Field Id: AH-2 (0'-1') AH-2 (1'-1.5') AH-3 (0'-1') AH-4 (0'-1') AH-4 (1'-1.5') AH-4 (1.5'-2') Analysis Requested Depth: Matrix: SOIL SOIL SOIL SOIL SOIL SOIL Sampled: 05.01.2020 00:00 05.01.2020 00:00 05.01.2020 00:00 05.01.2020 00:00 05.01.2020 00:00 05.01.2020 00:00 Chloride by EPA 300 05.04.2020 16:55 05.04.2020 16:55 05.04.2020 16:55 05.04.2020 16:55 05.05.2020 12:00 05.05.2020 12:00 Extracted: Analyzed: 05.05.2020 02:07 05.05.2020 02:14 05.05.2020 02:21 05.05.2020 02:28 05.05.2020 13:33 05.05.2020 14:00 mg/kg RL mg/kg RL mg/kg RL mg/kg RL mg/kg RL mg/kg RL Units/RL: 1850 24.9 280 4.98 18.5 4.99 54.2 5.00 149 4.97 335 4.98 Chloride

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Jession Vramer

Jessica Kramer Project Manager

Page 111 of 168

212C-MD-01855

Eddy County, NM

Mike Carmona

Project Id:

Project Location:

Contact:

Certificate of Analysis Summary 660477

Tetra Tech- Midland, Midland, TX

Project Name: Big Papi Federal Com #2H (7.12.19)

 Date Received in Lab:
 Mon 05.04.2020 10:24

 Report Date:
 05.07.2020 12:24

 Project Manager:
 Jessica Kramer

Lab Id: 660477-007 660477-008 660477-009 660477-010 660477-011 660477-012 Field Id: AH-5 (0'-1') AH-5 (1'-1.5') AH-5 (2'-2.5') AH-6 (0'-1') AH-7 (0-6") AH-8 (0-6") Analysis Requested Depth: Matrix: SOIL SOIL SOIL SOIL SOIL SOIL Sampled: 05.01.2020 00:00 05.01.2020 00:00 05.01.2020 00:00 05.01.2020 00:00 05.01.2020 00:00 05.01.2020 00:00 Chloride by EPA 300 05.05.2020 12:00 05.05.2020 12:00 05.05.2020 12:00 05.05.2020 12:00 05.05.2020 12:00 05.05.2020 12:00 Extracted: Analyzed: 05.05.2020 14:06 05.05.2020 14:11 05.05.2020 14:16 05.05.2020 14:40 05.05.2020 14:45 05.05.2020 14:50 mg/kg RL mg/kg RL mg/kg RL mg/kg RL mg/kg RL mg/kg RL Units/RL: 902 5.01 1250 5.04 7770 50.3 977 25.0 28.3 5.00 25.8 4.98 Chloride

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Jession Vramer

Jessica Kramer Project Manager

Page 112 of 168

Page 2 of 29

212C-MD-01855

Eddy County, NM

Mike Carmona

Project Id:

Project Location:

Contact:

Certificate of Analysis Summary 660477

Tetra Tech- Midland, Midland, TX

Project Name: Big Papi Federal Com #2H (7.12.19)

 Date Received in Lab:
 Mon 05.04.2020 10:24

 Report Date:
 05.07.2020 12:24

Project Manager: Jessica Kramer

	Lab Id:	660477-0	13	660477-0	14	660477-0	15	660477-0	16	660477-0	17	660477-0	018
Analysis Requested	Field Id:	AH-9 (0-6	")	AH-10 (0-	6")	AH-11 (0-6	")	AH-12 (0-6	")	AH-13 (0-6	")	AH-14 (0-6	5")
Analysis Kequesieu	Depth:												
	Matrix:	SOIL	SOIL		SOIL		SOIL			SOIL		SOIL	
	Sampled:	05.01.2020 (05.01.2020 00:00		05.01.2020 00:00		00:00	05.01.2020	00:00	05.01.2020	00:00	05.01.2020 00:00	
Chloride by EPA 300	Extracted:	05.05.2020	12:00	05.05.2020 12:00		05.05.2020	12:00	05.05.2020	12:00	05.05.2020	12:00	05.05.2020	12:00
	Analyzed:	05.05.2020	14:55	05.05.2020	15:01	05.05.2020	15:22	05.05.2020	15:06	05.05.2020	15:27	05.05.2020	15:43
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		37.5	5.01	382	5.02	277	4.96	23.6	5.03	12.7	4.99	41.1	4.95

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

fession kenner

Jessica Kramer Project Manager

05.07.2020

Project Manager: **Mike Carmona Tetra Tech- Midland** 901 West Wall ST Midland, TX 79701

Reference: XENCO Report No(s): **660477 Big Papi Federal Com #2H (7.12.19)** Project Address: Eddy County, NM

Mike Carmona:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 660477. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 660477 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

fession kenner

Jessica Kramer Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Page 5 of 29

Sample Id

AH-2 (0'-1')
AH-2 (1'-1.5')
AH-3 (0'-1')
AH-4 (0'-1')
AH-4 (1'-1.5')
AH-4 (1.5'-2')
AH-5 (0'-1')
AH-5 (1'-1.5')
AH-5 (2'-2.5')
AH-6 (0'-1')
AII-0(0-1)
AH-7 (0-6")
AH-8 (0-6")
AH-9 (0-6")
AH-10 (0-6")
AH-11 (0-6")
AH-12 (0-6")
AH-13 (0-6")
AH-14 (0-6")

Sample Cross Reference 660477

Tetra Tech- Midland, Midland, TX

Big Papi Federal Com #2H (7.12.19)

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	05.01.2020 00:00		660477-001
S	05.01.2020 00:00		660477-002
S	05.01.2020 00:00		660477-003
S	05.01.2020 00:00		660477-004
S	05.01.2020 00:00		660477-005
S	05.01.2020 00:00		660477-006
S	05.01.2020 00:00		660477-007
S	05.01.2020 00:00		660477-008
S	05.01.2020 00:00		660477-009
S	05.01.2020 00:00		660477-010
S	05.01.2020 00:00		660477-011
S	05.01.2020 00:00		660477-012
S	05.01.2020 00:00		660477-013
S	05.01.2020 00:00		660477-014
S	05.01.2020 00:00		660477-015
S	05.01.2020 00:00		660477-016
S	05.01.2020 00:00		660477-017
S	05.01.2020.00:00		660477-018

CASE NARRATIVE

Client Name: Tetra Tech- Midland Project Name: Big Papi Federal Com #2H (7.12.19)

Project ID: 212C-MD-01855 Work Order Number(s): 660477
 Report Date:
 05.07.2020

 Date Received:
 05.04.2020

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Certificate of Analytical Results 660477

Tetra Tech- Midland, Midland, TX

Big Papi Federal Com #2H (7.12.19)

Sample Id:	AH-2 (0'-1')		Matrix:	Soil		Date Received	1:05.04	4.2020 10:	24
Lab Sample I	d: 660477-001		Date Collected: 05.01.2020 00:00						
Analytical Me	ethod: Chloride by EPA	300				Prep Method:	E300)P	
Tech:	SPC					% Moisture:			
Analyst:	SPC		Date Prep	b: 05.04.2020 16:55	5	Basis:	Wet	Weight	
Seq Number:	3125066								
Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil
Chloride		16887-00-6	1850	24.9	mg/kg	05.05.2020 0	2:07		5

16887-00-6 1850

24.9

5

.

Released to Imaging: 4/15/2021 2:39:09 PM

Certificate of Analytical Results 660477

Tetra Tech- Midland, Midland, TX

Big Papi Federal Com #2H (7.12.19)

Sample Id:	AH-2 (1'-1.5')		Matrix:	Soil		Date Received	1:05.04.2020	10:24
Lab Sample I	d: 660477-002		Date Col	lected: 05.01.2020 00:0	0			
Analytical Me	ethod: Chloride by EPA	300				Prep Method:	E300P	
Tech:	SPC					% Moisture:		
Analyst:	SPC		Date Pre	p: 05.04.2020 16:5	5	Basis:	Wet Weigh	t
Seq Number:	3125066							
Parameter		Cas Number	Result	RL	Units	Analysis D	ate Flag	Dil
Chloride		16887-00-6	280	4.98	mg/kg	05.05.2020 02	2:14	1

16887-00-6

4.98

mg/kg 05.05.2020 02:14

Certificate of Analytical Results 660477

Tetra Tech- Midland, Midland, TX

Big Papi Federal Com #2H (7.12.19)

Sample Id:	AH-3 (0'-1')		Matrix:	Soil		Date Received	1:05.04.2	020 10:	24
Lab Sample I	d: 660477-003		Date Collected: 05.01.2020 00:00						
Analytical Me	ethod: Chloride by EPA	300				Prep Method:	E300P		
Tech:	SPC					% Moisture:			
Analyst:	SPC		Date Prep	b: 05.04.2020 16:55	5	Basis:	Wet We	eight	
Seq Number:	3125066								
Parameter		Cas Number	Result	RL	Units	Analysis D	ate I	Flag	Dil
Chloride		16887-00-6	18.5	4.99	mg/kg	05.05.2020 0	2:21		1

16887-00-6 18.5

4.99

mg/kg 05.05.2020 02:21

Certificate of Analytical Results 660477

Tetra Tech- Midland, Midland, TX

Big Papi Federal Com #2H (7.12.19)

Sample Id:	AH-4 (0'-1')		Matrix:	Soil		Date Received	1:05.04.202	20 10:24	
Lab Sample I	d: 660477-004		Date Col	lected: 05.01.2020 00:0	0				
Analytical Me	ethod: Chloride by EPA	300				Prep Method:	E300P		
Tech:	SPC					% Moisture:			
Analyst:	SPC		Date Prep	p: 05.04.2020 16:5	5	Basis:	Wet Weig	ght	
Seq Number:	3125066								
Parameter		Cas Number	Result	RL	Units	Analysis D	ate Fla	ag Dil	
Chloride		16887-00-6	54.2	5.00	mg/kg	05.05.2020 02	2:28	1	_

16887-00-6 54.2

5.00

mg/kg

05.05.2020 02:28

1

.

Certificate of Analytical Results 660477

Tetra Tech- Midland, Midland, TX

Big Papi Federal Com #2H (7.12.19)

Sample Id: A	AH-4 (1'-1.5')		Matrix:	Soil		Date Received	1:05.04.2020 10	:24
Lab Sample Id: 6	560477-005		Date Collected: 05.01.2020 00:00					
Analytical Metho Tech: C	od: Chloride by EPA 30 HE	00				Prep Method: % Moisture:	E300P	
Analyst: C	HE		Date Prep:	05.05.2020 12:	00	Basis:	Wet Weight	
Seq Number: 31	125116							
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil

149

Chloride

16887-00-6

4.97

05.05.2020 13:33

mg/kg

Certificate of Analytical Results 660477

Tetra Tech- Midland, Midland, TX

Big Papi Federal Com #2H (7.12.19)

5116	Cas Number	Result	RL	Units	Analysis D	ate Flag	Dil		
5116									
		Date Prep	: 05.05.2020 12	:00	Basis:	Wet Weight			
					% Moisture:				
Chloride by EPA 3	300				Prep Method:	E300P			
477-006		Date Colle	ected: 05.01.2020 00	:00					
-4 (1.5'-2')		Matrix:	Soil		Date Received	d:05.04.2020 10	:24		
	-4 (1.5'-2') 477-006 Chloride by EPA 3	-4 (1.5'-2') 477-006 Chloride by EPA 300	-4 (1.5'-2') Matrix: 477-006 Date Colle Chloride by EPA 300 Kenter State	-4 (1.5'-2') Matrix: Soil 477-006 Date Collected: 05.01.2020 00 Chloride by EPA 300 Chloride by EPA 300	-4 (1.5'-2') Matrix: Soil 477-006 Date Collected: 05.01.2020 00:00 Chloride by EPA 300 Soil	-4 (1.5'-2')Matrix:SoilDate Receive477-006Date Collected: 05.01.2020 00:00Prep Method:Chloride by EPA 300Prep Method:	-4 (1.5'-2') Matrix: Soil Date Received:05.04.2020 10 477-006 Date Collected: 05.01.2020 00:00 Prep Method: E300P Chloride by EPA 300 Prep Method: E300P		

Chloride

16887-00-6 335

4.98

mg/kg 05.05.2020 14:00

.

Released to Imaging: 4/15/2021 2:39:09 PM

Certificate of Analytical Results 660477

Tetra Tech- Midland, Midland, TX

Big Papi Federal Com #2H (7.12.19)

Sample Id:	AH-5 (0'-1')		Matrix:	Soil		Date Received	1:05.04.202	0 10:24
Lab Sample I	d: 660477-007		Date Col					
Analytical Me	ethod: Chloride by EPA	300				Prep Method:	E300P	
Tech:	CHE					% Moisture:		
Analyst:	CHE		Date Prep	p: 05.05.2020 12:	00	Basis:	Wet Weig	ght
Seq Number:	3125116							
Parameter		Cas Number	Result	RL	Units	Analysis D	ate Fla	g Dil
Chloride		16887-00-6	902	5.01	mg/kg	05.05.2020 14	4:06	1

16887-00-6 902

5.01

mg/kg 05.05.2020 14:06

Released to Imaging: 4/15/2021 2:39:09 PM

Certificate of Analytical Results 660477

Tetra Tech- Midland, Midland, TX

Big Papi Federal Com #2H (7.12.19)

Sample Id:	AH-5 (1'-1.5')		Matrix:	Soil		Date Received	1:05.04.	.2020 10:	:24
Lab Sample I	d: 660477-008		Date Col	lected: 05.01.2020 00:0	0				
Analytical Me	ethod: Chloride by EPA	300				Prep Method:	E300F	D	
Tech:	CHE					% Moisture:			
Analyst:	CHE		Date Prep	p: 05.05.2020 12:0	0	Basis:	Wet V	Veight	
Seq Number:	3125116								
Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil
Chloride		16887-00-6	1250	5.04	mg/kg	05.05.2020 14	4:11		1

16887-00-6 1250

5.04

mg/kg 05.05.2020 14:11

10

.

Certificate of Analytical Results 660477

Tetra Tech- Midland, Midland, TX

Big Papi Federal Com #2H (7.12.19)

Sample Id:	AH-5 (2'-2.5')		Matrix:	Soil		Date Received	1:05.04.2	020 10:2	4
Lab Sample Id	660477-009		Date Collec	ted: 05.01.2020 00:00					
Analytical Met Tech:	hod: Chloride by EPA 3 CHE	00				Prep Method: % Moisture:	E300P		
Analyst:	CHE		Date Prep:	05.05.2020 12:00		Basis:	Wet We	eight	
Seq Number:	3125116								
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate I	Flag	Dil

Chloride

16887-00-6 7770

50.3

mg/kg

05.05.2020 14:16

Certificate of Analytical Results 660477

Tetra Tech- Midland, Midland, TX

Big Papi Federal Com #2H (7.12.19)

Sample Id:	AH-6 (0'-1')		Matrix:		Soil		Date Received	:05.04.	2020 10:2	.4
Lab Sample Id:	660477-010		Date Colle	ected:	05.01.2020 00:00					
Analytical Meth Tech: C Analyst: C Seq Number: 3	ood: Chloride by EPA 30 CHE CHE 3125116	00	Date Prep:	:	05.05.2020 12:00		Prep Method: % Moisture: Basis:	E300F Wet W	e Veight	
Parameter		Cas Number	Result	RL		Units	Analysis Da	ite	Flag	Dil

16887-00-6 **977**

25.0

mg/kg (

05.05.2020 14:40

5

.

Released to Imaging: 4/15/2021 2:39:09 PM

1

Certificate of Analytical Results 660477

Tetra Tech- Midland, Midland, TX

Big Papi Federal Com #2H (7.12.19)

Sample Id: AH-7 (0-6 '')		Matrix:	Soil		Date Received	1:05.04.2	2020 10:2	24
Lab Sample Id: 660477-011		Date Collected	1:05.01.2020 00:00					
Analytical Method: Chloride by EPA Tech: CHE	300				Prep Method: % Moisture:	E300P	•	
Analyst: CHE		Date Prep:	05.05.2020 12:00		Basis:	Wet W	/eight	
Seq Number: 3125116								
Parameter	Cas Number	Result RI		Units	Analysis Da	ate	Flag	Dil

Chloride

16887-00-6 28.3

5.00

mg/kg 05.05.2020 14:45

:45

Released to Imaging: 4/15/2021 2:39:09 PM

Certificate of Analytical Results 660477

Tetra Tech- Midland, Midland, TX

Big Papi Federal Com #2H (7.12.19)

Sample Id:	AH-8 (0-6'')		Matrix:		Soil		Date Received	1:05.04	.2020 10:2	24
Lab Sample Id	: 660477-012		Date Colle	Date Collected: 05.01.2020 00:00						
Analytical Met Tech:	thod: Chloride by EPA 3 CHE	00			05 05 2020 12:00		Prep Method: % Moisture:	E300	P	
Analyst: Seq Number:	3125116		Date Prep:		05.05.2020 12:00		Basis:	wet	weight	
Parameter		Cas Number	Result	RL		Units	Analysis Da	ate	Flag	Dil

Chloride

16887-00-6 **25.8**

4.98

mg/kg 05.05.2020 14:50

1

Certificate of Analytical Results 660477

Tetra Tech- Midland, Midland, TX

Big Papi Federal Com #2H (7.12.19)

Sample Id: AH-9 (0-6'')		Matrix:	Soil		Date Received	1:05.04.202	0 10:24
Lab Sample Id: 660477-013		Date Collected	1:05.01.2020 00:00				
Analytical Method: Chloride by EP. Tech: CHE	A 300				Prep Method: % Moisture:	E300P	
Analyst: CHE		Date Prep:	05.05.2020 12:00		Basis:	Wet Weig	ht
Seq Number: 3125116							
Parameter	Cas Number	Result RL		Units	Analysis Da	ate Fla	g Dil

Chloride

16887-00-6 **37.5**

5.01

mg/kg 05.05.2020 14:55

1

1

.

Certificate of Analytical Results 660477

Tetra Tech- Midland, Midland, TX

Big Papi Federal Com #2H (7.12.19)

Sample Id:	AH-10 (0-6")		Matrix:		Soil		Date Received	1:05.04	.2020 10:2	24
Lab Sample Id	l: 660477-014		Date Colle	ected	: 05.01.2020 00:00					
Analytical Me Tech: Analyst: Seq Number:	thod: Chloride by EPA 3 CHE CHE 3125116	00	Date Prep	:	05.05.2020 12:00		Prep Method: % Moisture: Basis:	E300	P Weight	
Parameter		Cas Number	Result	RL		Units	Analysis Da	ate	Flag	Dil

16887-00-6 **382**

5.02

mg/kg 05.05.2020 15:01

5:01

1

Certificate of Analytical Results 660477

Tetra Tech- Midland, Midland, TX

Big Papi Federal Com #2H (7.12.19)

Sample Id: AH-11 (0-6'')		Matrix:	Soil		Date Received	1:05.04.2020 10):24
Lab Sample Id: 660477-015		Date Collecte	d: 05.01.2020 00:00				
Analytical Method: Chloride by EPA Tech: CHE	300				Prep Method: % Moisture:	E300P	
Analyst: CHE		Date Prep:	05.05.2020 12:00		Basis:	Wet Weight	
Seq Number: 3125116							
Parameter	Cas Number	Result RI		Units	Analysis Da	ate Flag	Dil

Chloride

16887-00-6 277

4.96

mg/kg 05.05.2020 15:22

Certificate of Analytical Results 660477

Tetra Tech- Midland, Midland, TX

Big Papi Federal Com #2H (7.12.19)

Sample Id:	AH-12 (0-6")		Matrix:		Soil		Date Received	1:05.04	.2020 10:2	24
Lab Sample Id	l: 660477-016		Date Colle	ected	: 05.01.2020 00:00					
Analytical Me Tech: Analyst: Seq Number:	thod: Chloride by EPA 3 CHE CHE 3125116	00	Date Prep	÷	05.05.2020 12:00		Prep Method: % Moisture: Basis:	E300 Wet V	P Weight	
Parameter		Cas Number	Result	RL		Units	Analysis Da	ate	Flag	Dil

Chloride

16887-00-6 **23.6**

5.03

mg/kg 05.05.2020 15:06

1

-

Certificate of Analytical Results 660477

Tetra Tech- Midland, Midland, TX

Big Papi Federal Com #2H (7.12.19)

Sample Id: AH-13 (0-6'')		Matrix:	Soil		Date Received	1:05.04.20	20 10:24
Lab Sample Id: 660477-017		Date Collected	1:05.01.2020 00:00				
Analytical Method: Chloride by EF Tech: CHE	PA 300				Prep Method: % Moisture:	E300P	
Analyst: CHE		Date Prep:	05.05.2020 12:00		Basis:	Wet Wei	ght
Seq Number: 3125116							
Parameter	Cas Number	Result RL		Units	Analysis Da	ate Fl	ag Dil

Chloride

16887-00-6 12.7

4.99

mg/kg 05.05.2020 15:27

1

Released to Imaging: 4/15/2021 2:39:09 PM

Certificate of Analytical Results 660477

Tetra Tech- Midland, Midland, TX

Big Papi Federal Com #2H (7.12.19)

Sample Id: AH-14 (0-6'')		Matrix:	Soil		Date Received	1:05.04.2020	0 10:24
Lab Sample Id: 660477-018		Date Collected	1:05.01.2020 00:00				
Analytical Method: Chloride by EPA Tech: CHE	x 300				Prep Method: % Moisture:	E300P	
Analyst: CHE		Date Prep:	05.05.2020 12:00		Basis:	Wet Weigh	nt
Seq Number: 3125116							
Parameter	Cas Number	Result RL	,	Units	Analysis Da	ate Flag	Dil

16887-00-6 **41.1**

4.95

mg/kg 05.05.2020 15:43

1

- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

** Surrogate recovered outside laboratory control limit.

BRL	Below Reporting Limit.	ND Not Detected.			
RL	Reporting Limit				
MDL	Method Detection Limit	SDL Sample Det	ection Limit	LOD Limit of Detection	
PQL	Practical Quantitation Limit	MQL Method Qua	antitation Limit	LOQ Limit of Quantitation	n
DL	Method Detection Limit				
NC	Non-Calculable				
SMP	Client Sample		BLK	Method Blank	
BKS/I	LCS Blank Spike/Laboratory	Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labor	catory Control Sample Duplicate
MD/S	D Method Duplicate/Samp	le Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate
+ NE	LAC certification not offered	for this compound.			

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Tetra Tech- Midland

Big Papi Federal Com #2H (7.12.19)

Analytical Method: Seq Number:	Chloride by 3125066	y EPA 3()0		Matrix:	Solid			Pr	rep Meth Date Pr	od: E30 ep: 05.0	00P 04.2020	
MB Sample Id:	7702663-1-	BLK		LCS Sar	nple Id:	7702663-	I-BKS		LCSI	D Sample	e Id: 770	2663-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		<5.00	250	272	109	273	109	90-110	0	20	mg/kg	05.04.2020 23:09	
Analytical Method: Seq Number:	Chloride by 3125116	y EPA 3()0		Matrix:	Solid			Pr	rep Meth Date Pr	od: E30 ep: 05.0	00P 05.2020	
MB Sample Id:	7/02/4/-1-	BLK	~ *	LCS Sar	nple Id:	//02/4/-	I-BKS		LCSI	D Sample	e Id: //0	2/4/-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		<5.00	250	261	104	244	98	90-110	7	20	mg/kg	05.05.2020 13:15	
Analytical Method: Seq Number: Parent Sample Id:	Chloride by 3125066 660467-001	y EPA 3()0	MS Sat	Matrix: nple Id:	Soil 660467-00	01 S		Pr MSI	rep Meth Date Pr D Sample	od: E30 ep: 05.0 e Id: 660	00P 04.2020 467-001 SD	
	000107 001	Parent	Spike	MS	MS	MSD	MSD	Limits	%RPD	RPD	Units	Analysis	E1
Parameter		Result	Amount	Result	%Rec	Result	%Rec			Limit		Date	Flag
Chloride		332	248	593	105	594	106	90-110	0	20	mg/kg	05.04.2020 23:30	
Analytical Method: Seq Number:	Chloride by 3125066	y EPA 3()0		Matrix:	Soil			Pr	rep Meth Date Pr	od: E30 ep: 05.0	00P 04.2020	
Parent Sample Id:	660467-005	i		MS Sa	nple Id:	660467-00	05 S		MS	D Sampl	e Id: 660	467-005 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		7.01	249	274	107	274	107	90-110	0	20	mg/kg	05.05.2020 01:06	
Analytical Method: Seq Number:	Chloride by 3125116	y EPA 3()0	MC C	Matrix:	Soil	05 6		Pr	rep Meth Date Pr	od: E30 ep: 05.0	00P 05.2020	
Parent Sample Id:	6604//-005	_	<i>a</i> n	MS Sal	npie iu:	000477-00	05 5		NISI	D Sampi		477-005 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		149	249	376	91	380	93	90-110	1	20	mg/kg	05.05.2020 13:42	
Analytical Method:	Chloride by	y EPA 3()0		Motrive	Soil			Pr	rep Meth Date Pr	od: E30	00P	
Seq Number: Parent Sample Id:	3125116 660477-016	i		MS Sa	mple Id:	660477-0	16 S		MS	D Sampl	e Id: 660	477-016 SD	
Seq Number: Parent Sample Id: Parameter	3125116 660477-016	Parent Result	Spike Amount	MS Sar MS Result	matrix. nple Id: MS %Rec	660477-0 MSD Result	16 S MSD %Rec	Limits	MS] %RPD	Date 11 D Sample RPD Limit	e Id: 660 Units	15.2020 477-016 SD Analysis Date	Flag

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference $\begin{array}{l} [D] = 100*(C-A) \ / \ B \\ RPD = 200* \ | \ (C-E) \ / \ (C+E) \ | \\ [D] = 100*(C) \ / \ [B] \\ Log \ Diff. = Log(Sample \ Duplicate) \ - \ Log(Original \ Sample) \end{array}$

 $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 27 of 29

```
Final 1.000
```

ived by	<u>0C</u>	D : T	12/1	9/ <u>2</u>	020 9	. <u>/0</u>	53.	4 <u>M</u>		Т	Τ	T		T					ç	He	Ţ		Pr	5	Pa	ge 137
		elinquished		elinquished	mil	elinguished										LAB USE ONLY	LAB #		omments:	ceiving Lab	voice to:	oject Locatic ounty, state)	oject Name:	ient Name:	A	nalysis R
		by:		by:		by:	AH-5	AH-5	AH-5	AH-4	AH-4	AH-4	AH-3	AH-2	AH-2					oratory:		ň			Construction of the second sec	equest
				, ,	10		(2'-2.5')	(1'-1.5')	(0'-1')	(1.5'-2')	(1'-1.5')	(0'-1')	(0'-1')	(1'-1.5')	(0'-1')		SAMPLE			Xenco	COG - Attn: I	Eddy County,	Big Papi Fede	COG	Tetr	of Chain of Cust
		Date:		Date:	5/4/20	Date:											DENTIFIC				ke Tavare	MN	eral Com		a To	ody Reco
		Time:		Time:	420 JOZH	Time:											ATION				Z		#2H (7.12.19)		ech, Inc.	ord
ORIGINAL		Received by:		Received by:	1. Al	5/1/2020	5/1/2020	5/1/2020	5/1/2020	5/1/2020	5/1/2020	5/1/2020	5/1/2020	5/1/2020	5/1/2020	DATE	YEAR:	SAMPL		Sampler Signat		Project #:		Site Manager:		
- COPY																TIME		ING		ure:						
					2		×	×	×	×	×	×	×	×	×	WATEI SOIL	7	MATRIX		Carlo		2120		Mike Ca	4000 N. 401 N Te Fax	
		Date:		Date:	4/Jac	Date:										HCL HNO₃		PRES		os Tomli		:-MD-01		rmona	Big Spring Sl hidland, Texas I (432) 682-4i < (432) 682-3	00
		Time:		Time:				×	×	×	×	×	×	×	×	ICE		ERVATIVE		nson/Tor		855			reet, Ste ; 79705 559 946	2
					h h h			-1 Z	Z	- <u>-</u> Z	1 7 7	1 7 7	1 N	1 N	N 1	# CONT	AINE	RS		וץ Legaro						
(Circl		<u>,</u>	n R	Samp												FILTERI BTEX 80	ED (Y 021B 1005	/N) BTE	X 8260E	12						
е) НАМД	Y C		212	le Temper												TPH 80 ⁻ PAH 82	15M (70C	GRO -	DRO - C)RO - I	MRO)			5		
DELIVER	X		C	ature	ň		_									Total Me TCLP Me	tals A etals A	g As Ba Ag As B	a Cd Cr I Ba Cd Cr	Pb Se I Pb Se	⊣g Hg					
Ë	Ľ															TCLP Vo TCLP Se	mi Vo	latiles					Q	ANALY		
DEX	pecial		lush Cl	NUSH:	N S: Standa			1								GC/MS	/ol. 8	260B /	624					SIS F		
JPS T	Report		harges	Same	ard											PCB's 8	082 /	608			·		 V	REQU		
racking	Limits		Author	Day												PLM (As	besto	3)					i	EST		Pag
.# 	or TRE		ized	24 hr		É	Ť	Ě	É	Ě	$\overset{\sim}{\Box}$	× 	~	^		Chloride	Su	lfate	TDS			,				Ō
	1P Repo			48 hr		E	+									General Anion/Ca	Wate ation I	r Chen Balanc	nıstry (se e	e atta	cned lis	st)		-		
	h			72 hr		F																				1 0f
						L																				

	Helinquished b		Adlinguished b	Relinquished b										LAB USE	LAB #			Comments:	Receiving Labo	(county, state)	Project Name:	Client Name:	(7)
	×	Ÿ	C			AH-14	AH-13	AH-12	AH-11	AH-10	AH-9	AH-8	AH-7						ratory:	-	2		
		(7		(0-6")	(0-6")	(0-6")	(0-6")	(0-6")	(0-6")	(0-6")	(0-6")		SA			Xenco	COG - AI	Eddy Cot	Big Papi	600	Te
	Date: Time:		5/4/2020 /024	Date: Time:											MPLE IDENTIFICATION				ttn: Ike Tavarez	unty, NM	Federal Com #2H (7.12.19)		etra Tech, Inc.
	Received by:	Heceived by:	X	Received by:			5/1/2020	5/1/2020	5/1/2020	5/1/2020	5/1/2020	5/1/2020	5/1/2020	DATE	YEAR:	SAMP			Campler Gion	Project #:		Site Manager:	
			N											TIME		LING							
							×	×	×	×	×	×	×	WATER SOIL		MATE		Ca		21:		Mike (4000 401
	Date	Date	2	Date			-							HCL		Ĩ		rlos To		2C-MD		Carmo	N. Big Spi Midland, Tel (432) Fax (432)
	Tin	=	2	빌			×	×	×	×	×	X	X	HNO₃ ICE		PRESERV		mlinso		-01855		าล	ing Street, Texas 797 382-4559 382-3946
	ne:	ne:	P	чe:												ATIVE OD		n/Ton					05 Ste
			/002c						-1 7	- 7	N L	N 1	۲ I	# CONTA	INE	RS		/ Legar					
		Sa						-		_	_	-	-	FILTERE BTEX 80	D (Y 21B	(/N) BTE	EX 8260	da B					
	L L	mple Ter	o v		-	-								TPH TX1 TPH 801	005 5M ((Ext to GRO	o C35) - DRO - (ORO -	MRO)				
	130	nperatur												PAH 827 Total Meta	DC als A	g As E	3a Cd Cr	Pb Se	Hg				
1				R										TCLP Met TCLP Vola	als /	Ag As s	Ba Cd Cr	Pb Se	e Hg		č	Ā	
ļ			I ⊠ st	MARK			-							TCLP Ser RCI	ni Vo	olatiles	;				<u> </u>		
ecial-r		H:	anda	ŝ										GC/MS Vo	ol. 8 emi.	260B Vol. 8	/ 624 3270C/62	5				SIS R	
nodes	all fer	Same	, g	ļ										PCB's 80	82 /	608						N PO	
		Day	1	ł										PLM (Asb	esto	s)						EST	
		24 hr		F		-	×	×	×	×T	×	×	×	Chloride Chloride	SL	ulfate	TDS					z	
		48		þ										General V	Vate	r Che	mistry (s	ee atta	ached li	ist)	;	-	
epon-		ır 72		ŀ										Anion/Cal		Jaidh	66						
		hr		┠	+	+	-																
- 1				F			\vdash	\vdash	_													1	

168

•

eurofins Environment Testing Xenco

Analytical Report 670700

Page 139 of 168

for

Tetra Tech- Midland

Project Manager: Mike Carmona

Big Pappy Fed Com 2H (7.12.19)

212C-MD-01855

08.24.2020

Collected By: Client

1089 N Canal Street Carlsbad, NM 88220

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-37), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (20-035-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-20-26), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-20-18) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-23) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-21) Xenco-Carlsbad (LELAP): Louisiana (05092) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-20-8) Xenco-Tampa: Florida (E87429), North Carolina (483)

eurofins Environment Testing

Project Id:

Project Location:

Contact:

Xenco

212C-MD-01855

Eddy County, NM

Mike Carmona

Certificate of Analysis Summary 670700

Tetra Tech- Midland, Midland, TX

Project Name: Big Pappy Fed Com 2H (7.12.19)

Date Received in Lab: Fri 08.21.2020 10:55 Report Date: 08.24.2020 08:14 Project Manager: Jessica Kramer

	Lab Id:	670700-00)1	670700-0	02	670700-0	03	670700-0	04	670700-0	05	670700-0	06
Analysis Requested	Field Id:	AH #4 (0-1	')	AH #4 (-1	.5')	AH #4 (1.5-2	2')	AH #5 (0-1	')	AH #5 (1-1.	5')	AH #5 (2-2.	5')
Απαιγείε Κετμιετίεα	Depth:	0-1 ft		1-1.5 ft		1.5-2 ft		0-1 ft		1-1.5 ft		2-2.5 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	08.19.2020 0	00:00	08.19.2020	00:00	08.19.2020 (00:00	08.19.2020	00:00	08.19.2020	00:00	08.19.2020	00:00
Inorganic Anions by EPA 300/300.1	Extracted:	08.21.2020 1	3:00	08.21.2020	13:00	08.21.2020	13:00	08.21.2020	13:00	08.21.2020	13:00	08.21.2020	13:00
	Analyzed:	08.21.2020 1	5:35	08.21.2020	15:41	08.21.2020	15:57	08.21.2020	16:03	08.21.2020	16:20	08.21.2020	16:25
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		3030	50.1	5010	49.7	3150	49.9	1930	49.9	1670	50.1	1630	50.2

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Jession Vramer

eurofins Environment Testing

Project Id:

Project Location:

Contact:

Xenco

212C-MD-01855

Eddy County, NM

Mike Carmona

Certificate of Analysis Summary 670700

Tetra Tech- Midland, Midland, TX

Project Name: Big Pappy Fed Com 2H (7.12.19)

Date Received in Lab: Fri 08.21.2020 10:55

Report Date: 08.24.2020 08:14

Project Manager: Jessica Kramer

	Lab Id:	670700-0	07	670700-00)8	670700-00)9	670700-0	010	670700-0	11	670700-0	012	
Analysis Reauested	Field Id:	AH #6 (0-	AH #6 (0-1')		AH #9 (0-0.5')		5')	South 1 Sidewall		Bottom Hole #1 (0-1')		Bottom Hole #1 (1-1.5)		
Anulysis Requesieu	Depth:	0-1 ft	0-1 ft		0-0.5 ft		0-0.5 ft		0-0 ft		0-1 ft		1-1.5 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL		
	Sampled:	08.19.2020	00:00	08.19.2020 0	00:00	08.19.2020 0	00:00	08.19.2020	00:00	08.19.2020	00:00	08.19.2020	00:00	
Inorganic Anions by EPA 300/300.1	Extracted:	<i>Extracted:</i> 08.21.2020 13:00						08.21.2020	13:00	08.21.2020	13:00	08.21.2020	13:00	
	Analyzed:	08.21.2020	16:31					08.21.2020	16:36	08.21.2020	16:42	08.21.2020	16:48	
	Units/RL:	mg/kg	RL					mg/kg	RL	mg/kg	RL	mg/kg	RL	
Chloride		622	10.0					130	9.98	122	9.94	219	9.90	
TPH By SW8015 Mod	Extracted:			08.21.2020 1	3:00	08.21.2020 1	13:00							
	Analyzed:			08.21.2020 1	4:17	08.21.2020 1	15:18							
	Units/RL:			mg/kg	RL	mg/kg	RL							
Gasoline Range Hydrocarbons (GRO)				<50.0	50.0	<50.0	50.0							
Diesel Range Organics (DRO)				<50.0	50.0	<50.0	50.0							
Motor Oil Range Hydrocarbons (MRO)				<50.0	50.0	<50.0	50.0							
Total TPH				<50.0	50.0	<50.0	50.0							

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Jession Vramer

Page 141 of 168

Page 2 of 28

eurofins Environment Testing

Xenco

Project Id: 212C-MD-01855 Mike Carmona **Contact:** Eddy County, NM **Project Location:**

Certificate of Analysis Summary 670700

Tetra Tech- Midland, Midland, TX

Project Name: Big Pappy Fed Com 2H (7.12.19)

Date Received in Lab: Fri 08.21.2020 10:55

Report Date: 08.24.2020 08:14

Project Manager: Jessica Kramer

	Lab Id:	670700-01	3	670700-0	14	670700-01	15		
Analysis Doguested	Field Id:	Bottom Hole #1	(2-2.5')	Bottom Hole #1	(3-3.5')	Bottom Hole #1 (3	3.5-4')		
Anaiysis Kequesiea	Depth:	2-2.5 ft		3-3.5 ft		3.5-4 ft			
	Matrix:	SOIL		SOIL		SOIL			
	Sampled:	08.19.2020 0	0:00	08.19.2020 0	00:00	08.19.2020 0	00:00		
Inorganic Anions by EPA 300/300.1	Extracted:	08.21.2020 1	3:00	08.21.2020	16:20	08.21.2020 1	6:20		
	Analyzed:	08.21.2020 16:53		08.21.2020 17:27		08.21.2020 17:43			
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		35.1	10.1	33.4	9.94	<10.0	10.0		

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Jession Vramer

eurofins Environment Testing Xenco

08.24.2020

Project Manager: **Mike Carmona Tetra Tech- Midland** 901 West Wall ST Midland, TX 79701

Reference: Eurofins Xenco, LLC Report No(s): 670700 Big Pappy Fed Com 2H (7.12.19) Project Address: Eddy County, NM

Mike Carmona:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Eurofins Xenco, LLC Report Number(s) 670700. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by Eurofins Xenco, LLC. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 670700 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Eurofins Xenco, LLC to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

fession kenner

Jessica Kramer Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

eurofins Environment Testing Xenco

Sample Id

AH #4 (0-1') AH #4 (-1.5') AH #4 (1.5-2') AH #5 (0-1') AH #5 (1-1.5') AH #5 (2-2.5') AH #6 (0-1') AH #9 (0-0.5') AH #11 (0-0.5') South 1 Sidewall Bottom Hole #1 (0-1') Bottom Hole #1 (1-1.5) Bottom Hole #1 (2-2.5') Bottom Hole #1 (3-3.5') Bottom Hole #1 (3.5-4')

Sample Cross Reference 670700

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7.12.19)

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	08.19.2020 00:00	0 - 1 ft	670700-001
S	08.19.2020 00:00	1 - 1.5 ft	670700-002
S	08.19.2020 00:00	1.5 - 2 ft	670700-003
S	08.19.2020 00:00	0 - 1 ft	670700-004
S	08.19.2020 00:00	1 - 1.5 ft	670700-005
S	08.19.2020 00:00	2 - 2.5 ft	670700-006
S	08.19.2020 00:00	0 - 1 ft	670700-007
S	08.19.2020 00:00	0 - 0.5 ft	670700-008
S	08.19.2020 00:00	0 - 0.5 ft	670700-009
S	08.19.2020 00:00	0 - 0 ft	670700-010
S	08.19.2020 00:00	0 - 1 ft	670700-011
S	08.19.2020 00:00	1 - 1.5 ft	670700-012
S	08.19.2020 00:00	2 - 2.5 ft	670700-013
S	08.19.2020 00:00	3 - 3.5 ft	670700-014
S	08.19.2020 00:00	3.5 - 4 ft	670700-015
Received by OCD: 12/19/2020 9:49:53 AM

Environment Testing Xenco

CASE NARRATIVE

Client Name: Tetra Tech- Midland Project Name: Big Pappy Fed Com 2H (7.12.19)

Project ID: 212C-MD-01855 Work Order Number(s): 670700
 Report Date:
 08.24.2020

 Date Received:
 08.21.2020

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7.12.19)

Sample Id:	AH #4 (0-1')		Matrix:	So	bil		Date Received	1:08.21.	2020 10:5	55
Lab Sample Io	l: 670700-001		Date Colle	ected: 08	8.19.2020 00:00		Sample Depth	:0-1f	t	
Analytical Me	thod: Inorganic Anions	by EPA 300/300.1					Prep Method:	E300F)	
Tech:	MAB						% Moisture:			
Analyst:	MAB		Date Prep	: 08	3.21.2020 13:00		Basis:	Wet W	Veight	
Seq Number:	3135303									
Parameter		Cas Number	Result	RL		Units	Analysis Da	ate	Flag	Dil
Chloride		16887-00-6	3030	50.1		mg/kg	08.21.2020 15	5:35		5

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7.12.19)

Sample Id:	AH #4 (-1.5')		Matrix:		Soil		Date Received	1:08.21	.2020 10::	55
Lab Sample Io	l: 670700-002		Date Colle	ected:	08.19.2020 00:00		Sample Depth	:1 - 1.:	5 ft	
Analytical Me	thod: Inorganic Anions	by EPA 300/300.1					Prep Method:	E300	Р	
Tech:	MAB						% Moisture:			
Analyst:	MAB		Date Prep	:	08.21.2020 13:00		Basis:	Wet V	Veight	
Seq Number:	3135303									
Parameter		Cas Number	Result	RL		Units	Analysis Da	ate	Flag	Dil
Chloride		16887-00-6	5010	49.	7	mg/kg	08.21.2020 1	5:41		5

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7.12.19)

Sample Id:	AH #4 (1.5-2')		Matrix:	So	oil		Date Received	1:08.21.20	020 10:5	55
Lab Sample Io	l: 670700-003		Date Coll	ected: 08	3.19.2020 00:00		Sample Depth	: 1.5 - 2 ft	t	
Analytical Me	thod: Inorganic Anions	by EPA 300/300.1					Prep Method:	E300P		
Tech:	MAB						% Moisture:			
Analyst:	MAB		Date Prep	o: 08	3.21.2020 13:00		Basis:	Wet We	ight	
Seq Number:	3135303									
Parameter		Cas Number	Result	RL		Units	Analysis Da	ate F	lag	Dil
Chloride		16887-00-6	3150	49.9		mg/kg	08.21.2020 15	5:57		5

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7.12.19)

Sample Id:	AH #5 (0-1')		Matrix:	Soil		Date Received	1:08.21.2020 1	0:55
Lab Sample Io	l: 670700-004		Date Coll	ected: 08.19.2020 00:0	00	Sample Depth	:0 - 1 ft	
Analytical Me	thod: Inorganic Anions	by EPA 300/300.1				Prep Method:	E300P	
Tech:	MAB					% Moisture:		
Analyst:	MAB		Date Prep	: 08.21.2020 13:0	00	Basis:	Wet Weight	
Seq Number:	3135303							
Parameter		Cas Number	Result	RL	Units	Analysis D	ate Flag	Dil
Chloride		16887-00-6	1930	49.9	mg/kg	08.21.2020 1	6:03	5

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7.12.19)

Sample Id:	AH #5 (1-1.5')		Matrix:	Soil		Date Received	1:08.21.2020	10:55
Lab Sample Io	l: 670700-005		Date Colle	ected: 08.19.2020 00:00		Sample Depth	:1 - 1.5 ft	
Analytical Me	thod: Inorganic Anions	by EPA 300/300.1				Prep Method:	E300P	
Tech:	MAB					% Moisture:		
Analyst:	MAB		Date Prep	: 08.21.2020 13:00		Basis:	Wet Weight	
Seq Number:	3135303							
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil
Chloride		16887-00-6	1670	50.1	mg/kg	08.21.2020 10	5:20	5

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7.12.19)

Sample Id:	AH #5 (2-2.5')		Matrix:	Soil		Date Received	1:08.21.2020	0 10:55
Lab Sample Io	l: 670700-006		Date Colle	ected: 08.19.2020 00:0	0	Sample Depth	: 2 - 2.5 ft	
Analytical Me	thod: Inorganic Anions	by EPA 300/300.1				Prep Method:	E300P	
Tech:	MAB					% Moisture:		
Analyst:	MAB		Date Prep	: 08.21.2020 13:0	0	Basis:	Wet Weig	ht
Seq Number:	3135303							
Parameter		Cas Number	Result	RL	Units	Analysis D	ate Flag	g Dil
Chloride		16887-00-6	1630	50.2	mg/kg	08.21.2020 1	6:25	5

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7.12.19)

Sample Id:	AH #6 (0-1')		Matrix:		Soil		Date Received	1:08.2	1.2020 10::	55
Lab Sample Io	l: 670700-007		Date Colle	ected	08.19.2020 00:00		Sample Depth	:0 - 1	ft	
Analytical Me	thod: Inorganic Anions	by EPA 300/300.1					Prep Method:	E300)P	
Tech:	MAB						% Moisture:			
Analyst:	MAB		Date Prep	:	08.21.2020 13:00		Basis:	Wet	Weight	
Seq Number:	3135303									
Parameter		Cas Number	Result	RL		Units	Analysis D	ate	Flag	Dil
Chloride		16887-00-6	622	10).0	mg/kg	08.21.2020 1	6:31		1

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7.12.19)

Sample Id: AH #9 (0-0.5')		Matrix:	Soil		Date Received	1:08.21.2	2020 10:5	5
Lab Sample Id: 670700-008		Date Collecte	d: 08.19.2020 00:00		Sample Depth	:0-0.5	ft	
Analytical Method: TPH By SW8015 Tech: DTH	Mod				Prep Method: % Moisture:	SW801	5P	
Analyst: DTH Seq Number: 3135293		Date Prep:	08.21.2020 13:00		Basis:	Wet W	eight	
Parameter	Cas Number	Result RI		Units	Analysis Da	ate	Flag	Dil

						e	0		
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	08.21.2020 14:17	U	1	
Diesel Range Organics (DRO)	C10C28DRO	<50.0	50.0		mg/kg	08.21.2020 14:17	U	1	
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.0	50.0		mg/kg	08.21.2020 14:17	U	1	
Total TPH	PHC635	<50.0	50.0		mg/kg	08.21.2020 14:17	U	1	
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag		
1-Chlorooctane		111-85-3	92	%	70-135	08.21.2020 14:17			
o-Terphenyl		84-15-1	90	%	70-135	08.21.2020 14:17			

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7.12.19)

Sample Id:	AH #11 (0-0.5')		Matrix:	Soil		Date Received	:08.21.2	2020 10:5	5
Lab Sample Id	: 670700-009		Date Collected	1:08.19.2020 00:00		Sample Depth	:0-0.5	ft	
Analytical Me	thod: TPH By SW8015 M	Aod				Prep Method:	SW801	5P	
Tech:	DTH					% Moisture:			
Analyst:	DTH		Date Prep:	08.21.2020 13:00		Basis:	Wet W	eight	
Seq Number:	3135293								
Parameter		Cas Number	Result RL		Units	Analysis Da	ite]	Flag	Dil

T di diffetter	Casitanibe	ittouit	KL		Units	Analysis Date	Flag	DI	
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	08.21.2020 15:18	U	1	-
Diesel Range Organics (DRO)	C10C28DRO	<50.0	50.0		mg/kg	08.21.2020 15:18	U	1	
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.0	50.0		mg/kg	08.21.2020 15:18	U	1	
Total TPH	PHC635	<50.0	50.0		mg/kg	08.21.2020 15:18	U	1	
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag		
1-Chlorooctane		111-85-3	90	%	70-135	08.21.2020 15:18			
o-Terphenyl		84-15-1	90	%	70-135	08.21.2020 15:18			

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7.12.19)

Sample Id:	South 1 Sidewall		Matrix:	Soil		Date Received	1:08.21.2020	10:55
Lab Sample Io	l: 670700-010		Date Colle	ected: 08.19.2020 00:00)	Sample Depth	:0-0ft	
Analytical Me	thod: Inorganic Anions	by EPA 300/300.1				Prep Method:	E300P	
Tech:	MAB					% Moisture:		
Analyst:	MAB		Date Prep	: 08.21.2020 13:00)	Basis:	Wet Weigh	t
Seq Number:	3135303							
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil
Chloride		16887-00-6	130	9.98	mg/kg	08.21.2020 10	6:36	1

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7.12.19)

Sample Id:	Bottom Hole #1 (0-1')		Matrix:		Soil		Date Received	1:08.21	.2020 10::	55
Lab Sample Io	l: 670700-011		Date Colle	ected:	08.19.2020 00:00		Sample Depth	:0-1	ft	
Analytical Me	thod: Inorganic Anions	by EPA 300/300.1					Prep Method:	E300	Р	
Tech:	MAB						% Moisture:			
Analyst:	MAB		Date Prep):	08.21.2020 13:00		Basis:	Wet V	Weight	
Seq Number:	3135303									
Parameter		Cas Number	Result	RL		Units	Analysis Da	ate	Flag	Dil
Chloride		16887-00-6	122	9.9	94	mg/kg	08.21.2020 10	5:42		1

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7.12.19)

Sample Id:	Bottom Hole #1 (1-1.5	5)	Matrix:	Soil		Date Received	1:08.21.2020	10:55
Lab Sample Io	l: 670700-012		Date Colle	ected: 08.19.2020 00:00)	Sample Depth	: 1 - 1.5 ft	
Analytical Me	thod: Inorganic Anions	by EPA 300/300.1				Prep Method:	E300P	
Tech:	MAB					% Moisture:		
Analyst:	MAB		Date Prep	: 08.21.2020 13:00)	Basis:	Wet Weight	
Seq Number:	3135303							
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil
Chloride		16887-00-6	219	9.90	mg/kg	08.21.2020 10	6:48	1

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7.12.19)

Sample Id:	Bottom Hole #1 (2-2.5	5')	Matrix:	Soil		Date Received	1:08.21.2020	10:55
Lab Sample Io	l: 670700-013		Date Colle	ected: 08.19.2020 00:00)	Sample Depth	: 2 - 2.5 ft	
Analytical Me	thod: Inorganic Anions	by EPA 300/300.1				Prep Method:	E300P	
Tech:	MAB					% Moisture:		
Analyst:	MAB		Date Prep	: 08.21.2020 13:00)	Basis:	Wet Weigh	t
Seq Number:	3135303							
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil
Chloride		16887-00-6	35.1	10.1	mg/kg	08.21.2020 10	6:53	1

Received by OCD: 12/19/2020 9:49:53 AM

Environment Testir Xenco

Certificate of Analytical Results 670700

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7.12.19)

Sample Id:	Bottom Hole #1 (3-3.5	5')	Matrix:	Soil		Date Received	1:08.21.	2020 10:5	55
Lab Sample Io	l: 670700-014		Date Coll	ected: 08.19.2020 00:00		Sample Depth	1:3 - 3.5	ft	
Analytical Me	thod: Inorganic Anions	by EPA 300/300.1				Prep Method:	E300P	•	
Tech:	MAB					% Moisture:			
Analyst:	MAB		Date Prep	: 08.21.2020 16:20		Basis:	Wet W	/eight	
Seq Number:	3135304								
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate	Flag	Dil
Chloride		16887-00-6	33.4	9.94	mg/kg	08.21.2020 17	7:27		1

Tetra Tech- Midland, Midland, TX

Big Pappy Fed Com 2H (7.12.19)

Sample Id:	Bottom Hole #1 (3.5-4	! ')	Matrix:		Soil		Date Received	1:08.2	1.2020 10:5	55
Lab Sample Id	l: 670700-015		Date Colle	ected:	08.19.2020 00:00		Sample Depth	: 3.5 -	4 ft	
Analytical Me	thod: Inorganic Anions	by EPA 300/300.1					Prep Method:	E300)P	
Tech:	MAB						% Moisture:			
Analyst:	MAB		Date Prep):	08.21.2020 16:20		Basis:	Wet	Weight	
Seq Number:	3135304									
Parameter		Cas Number	Result	RL		Units	Analysis D	ate	Flag	Dil
Chloride		16887-00-6	<10.0	10	.0	mg/kg	08.21.2020 17	7:43	U	1

- outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

** Surrogate recovered outside laboratory control limit.

BRL	Below Reporting Limit.	ND Not Detected.			
RL	Reporting Limit				
MDL	Method Detection Limit	SDL Sample Det	ection Limit	LOD Limit of Detection	
PQL	Practical Quantitation Limit	MQL Method Qua	antitation Limit	LOQ Limit of Quantitation	1
DL	Method Detection Limit				
NC	Non-Calculable				
SMP	Client Sample		BLK	Method Blank	
BKS/	LCS Blank Spike/Laboratory	Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labor	atory Control Sample Duplicate
MD/S	D Method Duplicate/Samp	le Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate
+ NE	LAC certification not offered	for this compound.			

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Received by OCD: 12/19/2020 9:49:53 AM

Xenco

Environment Testing

🔅 eurofins

QC Summary 670700

Tetra Tech- Midland

Big Pappy Fed Com 2H (7.12.19)

Analytical Method:	Inorganic Ani	ions by	y EPA 300	/300.1	Motein	Salid			Pı	ep Meth	od: E30	0P	
MR Sample Id:	7700083 1 BI	V		LCS Sat	nnle Id.	7709983-	I-BKS		LCS	Date FI	ep. 08.2 e Id: 770	9983-1-BSD	
Parameter	7707903-1-DL	MB Result	Spike Amount	LCS Sur LCS Result	LCS	LCSD		Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		<10.0	250	263	105	266	106	90-110	1	20	mg/kg	08.21.2020 14:11	
Analytical Method:	Inorganic Ani	ions by	y EPA 300/	/300.1					Pı	ep Meth	od: E30	0P	
Seq Number:	3135304			T CC C	Matrix:	Solid	DUG		I GG	Date Pr	ep: 08.2	21.2020	
MB Sample Id:	7709984-1-BL	.K		LCS Sar	nple Id:	//09984	I-BKS		LCS	D Sample	e Id: 770	9984-1-BSD	
Parameter	R	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	•	<10.0	250	263	105	266	106	90-110	1	20	mg/kg	08.21.2020 17:15	
Analytical Method:	Inorganic Ani	ions by	y EPA 300,	/300.1					Pı	ep Meth	od: E30	0P	
Seq Number:	3135303			MGG	Matrix:	Soil	01 G		MG	Date Pr	ep: 08.2	21.2020	
Parent Sample Id:	670695-001			MS Sai	npie ia:	670695-00	11.5		MS	D Sampi	e Id: 670	695-001 SD	
Parameter	Pa R	arent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	1	17600	200	17800	100	17800	101	90-110	0	20	mg/kg	08.21.2020 14:28	
Analytical Method: Sea Number:	Inorganic Ani 3135303	ions by	y EPA 300/	/300.1	Matrix:	Soil			Pı	ep Meth Date Pr	od: E30	0P 21.2020	
Parent Sample Id:	670700-002			MS Sai	nple Id:	670700-00	02 S		MS	D Sampl	e Id: 670	700-002 SD	
Parameter	Pa R	arent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		5010	198	5210	101	5210	99	90-110	0	20	mg/kg	08.21.2020 15:46	
Analytical Method: Seq Number:	Inorganic Ani 3135304	ions by	y EPA 300/	/300.1	Matrix:	Soil			Pı	ep Meth Date Pr	od: E30 ep: 08.2	00P 21.2020	
Parent Sample Id:	670700-014			MS Sai	nple Id:	670700-0	14 S		MS	D Sampl	e Id: 670	700-014 SD	
Parameter	P: R	arent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		33.4	199	236	102	237	102	90-110	0	20	mg/kg	08.21.2020 17:32	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

[D] = 100*(C-A) / B $\begin{array}{l} \text{[D]} & = 100^{+} \left[(\text{C-E}) / (\text{C+E}) \right] \\ \text{[D]} & = 100^{+} (\text{C}) / [\text{B}] \\ \text{Log Diff.} & = \text{Log(Sample Duplicate)} - \text{Log(Original Sample)} \end{array}$ LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 24 of 28

Received by OCD: 12/19/2020 9:49:53 AM

eurofins Environment Testing Xenco

Tetra Tech- Midland

Big Pappy Fed Com 2H (7.12.19)

Analytical Method:	TPH By S	W8015 M	od						P	rep Metho	od: SW	8015P	
Seq Number:	3135293]	Matrix:	Solid				Date Pr	ep: 08.2	21.2020	
MB Sample Id:	7709972-1-	-BLK		LCS San	nple Id:	7709972-	I-BKS		LCS	D Sample	e Id: 770	9972-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb	ons (GRO)	< 50.0	1000	929	93	956	96	70-135	3	35	mg/kg	08.21.2020 13:37	
Diesel Range Organics	(DRO)	<50.0	1000	977	98	1010	101	70-135	3	35	mg/kg	08.21.2020 13:37	
Surrogate		MB %Rec	MB Flag	L0 %]	CS Rec	LCS Flag	LCSI %Re) LCS c Flag	D Li g	imits	Units	Analysis Date	
1-Chlorooctane		87		1	10		111		70	-135	%	08.21.2020 13:37	
o-Terphenyl		87		10	00		101		70	-135	%	08.21.2020 13:37	

Analytical Method: Seq Number:	TPH By SW8015 Mod 3135293	Matrix: MB Sample Id:	Solid 7709972-1-BLK	Prep Method: Date Prep:	SW3 08.2	8015P 11.2020	
Parameter		MB Result		τ	J nits	Analysis Date	Flag
Motor Oil Range Hydrocarb	ons (MRO)	<50.0		n	ng/kg	08.21.2020 11:57	

Analytical Method:	TPH By SW	78015 M	od						Pi	rep Meth	od: SW	8015P	
Seq Number:	3135293]	Matrix:	Soil				Date Pr	ep: 08.2	21.2020	
Parent Sample Id:	670700-008			MS San	nple Id:	670700-00)8 S		MS	D Sample	e Id: 670	700-008 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarbo	ons (GRO)	< 50.0	1000	968	97	968	97	70-135	0	35	mg/kg	08.21.2020 14:37	
Diesel Range Organics (DRO)	<50.0	1000	1010	101	1020	102	70-135	1	35	mg/kg	08.21.2020 14:37	
Surrogate				N %]	IS Rec	MS Flag	MSD %Re) MSI c Flag) Li g	imits	Units	Analysis Date	
1-Chlorooctane				1	20		119		70	-135	%	08.21.2020 14:37	
o-Terphenyl				1	07		109		70	-135	%	08.21.2020 14:37	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference $\begin{array}{l} [D] = 100*(C-A) \ / \ B \\ RPD = 200* \ | \ (C-E) \ / \ (C+E) \ | \\ [D] = 100*(C) \ / \ [B] \\ Log \ Diff. = Log(Sample \ Duplicate) \ - \ Log(Original \ Sample) \end{array}$

 $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 25 of 28

		quished by:		quished by:	idual for the	Miliehod by:	AH	AH	AH	AH	AH	AH	AH	AH	АН	ONLY	LAB #			omments:	eceiving Laborato	voice to:	roject Location: county, state)	Toject Name:	roint Name.	Dient Name:	
		Date: Time:		Date: Time:	Date: Time:		#11 (0-0.5')	#9 (0-0.5')	#6 (0-1')	#5 (2-2.5')	#5 (1-1.5')	#5 (0-1')	#4 (1.5-2')	#4 (1-1.5')	#4 (0-1')		SAMPLE IDENTIFICATION			Xenco	COG - Ike Taverez		Eddy Co. NM	Big Pappy Fed Com 2H (7.12.19)	COG	rena recu, inc	Totas Total I
		Received by:	neceived by:	Car	Received by:		8/19/2020	8/19/2020	8/19/2020	8/19/2020	8/10/2020	8/19/2020	8/19/2020	8/19/2020	8/19/2020	DATE	YEAR: 2020	SAMPLIN		Sampler Signatu	0		Project #:		Site Manager:		
		Date: Time:	Date: Time:	utton Sializio 1	Date: Time:	,	×××	× >	< >	< >	< >	× >	×	× ×	X	TIME WATER SOIL HCL HNO ₃ CE		NG MATRIX PRESERVA		Conner Moehring		212C-MD-01855			Mike Carmona	901 W Wall Street, Ste 1 Midland, Texas 79705 Tel (432) 682-4559 Fax (432) 682 3946	
				0:55		-	4 - N	4 11 2 Z	1 N		- Z			4 - 12	4 #	CONTA	INERS D (Y/N									0	
Cirile HAND DEI WEDER EEDEV IND TANKAL	Special Report Limits or TRRP Repor	H. Y. Y. A Rush Charges Authorized	Sample Temperature RUSH: Same Day 24 hr 48 hr	ONLY STANDARD	AR IISE REMARKS:										B T T T T T T T T T T T T T T T T T T T	TEX 802 PH TX10 PH 8015i AH 82700 btal Metal CLP Volat CLP Volat CLP Semi Cl C/MS Vol. C/MS Sen CB's 8082 DRM M (Asbess loride aneral Wa ion/Catio	1B 05 (Ex C C s Ag A Is Ag / iles Volati 8260 Volati 8260 2 / 608 tos) Sulfat ter Ci n Bala	BTEX BTEX BTEX BTEX BTEX BTEX BTEX BTEX	8260B 35) RO - OF Cd Cr Pt Cd Cd Cr Pt Cd Cd Cr Pt Cd Cd C	RO - M o Se H o Se H	RO) 9 ed list)			(Circle or Specify Method No.)	ANALYSIS REQUEST	LOE"	rage
	a		72 hr																							06	1 of

	quantos by.	nuished he	nquished by	22	nquished by:										LAB USE)	I AR #			omments:	ceiving Labo	voice to:	ounty, state)	roiect ocatio	roject Name:	lient Name:	لم ا
	Date: Time:		Date: Time:	2 8/2/1 1055	Date: Time			Bottom hole #1 (3.5-4')	Bottom hole #1 (3-3.5')	Bottom hole #1 (2-2.5')	Bottom hole #1 (1-1.5')			South 1 Sidewall	SAMPLE IDENTIFICATION				Xenco	ratory:	COG - Ike Taverez		Big Pappy Fed Com 2H (7.12.19)	2	006	Tetra Tech, Inc
ORIGINAL COI	Received by:		Received by:	Cher Ch	Deposited by:			8/19/2020	8/19/2020	8/19/2020	8/19/2020	8/19/2020	8/19/2020	E	DATE	YEAR: 2020	SAMPLIN		sampler signatu	0		Project #:			Site Manager:	•
Pγ	Da		D	A 2 2 2				×	×	×	×	×	×	T V S	VATER SOIL		IG MATRIX		re: Conn			2120		IVIKe Ca	Miloo	901V
	ate: Time:		ate: Time:	ate: Time:				×	×	×	×	×	×	H IC N	HCL HNO ₃ CE Ione		PRESERVATIVE		ler Moehring			-MD-01855		armona		V Wall Street, Ste 100 dland,Texas 79705 el (432) 682-4559 ax (432) 682-3946
15		- 60	ł	アカ				1 . Z	Z	L N	1 N	N L	1 N	# FI	CONTAINE	EF	IS V)									
ircle) HAND DELIV	1.1/4.0			LAB USE										BT TF TF PA	TEX 8021B PH TX1005 PH 8015M (AH 8270C otal Metals A	3 5 (E (G	BTEX Ext to CC RO - D	8260B 35) RO - OF	RO - M	RO))			<u>.</u>		
ERED FEDEX U	Special F			REMARKS:										TC TC TC RC	CLP Metals , CLP Volatile: CLP Semi Vo Cl C/MS Vol. 8	Ag ola	As Ba tiles	Cd Cr P	b Se H	lg				ANALYSI		
S Tracking #:	arges Authorized leport Limits or TF	Same Day 24 h		NDARD			>	< ×	; >	< >	< >	×	×	GC PC NO PLI Chi	C/MS Semi. CB's 8082 / DRM M (Asbesto: loride	60 (s)	bl. 8270 8	0C/625						S REQUEST	6.0	1050
	RP Report	r 48 hr 72 hr)											Ch Ge Ani	loride Sumeral Wate	ulfa er (Ba	ate TI Chemist Iance	DS try (see	attach	ned	list)		NO.)		100	1 Cn
				ŀ	+			-			-	T	ł	Hol	ld					_			_			

Page 165 of 168

Eurofins Xenco, LLC

Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland	Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient			
Date/ Time Received: 08.21.2020 10.55.00 AM				
Work Order #: 670700	Temperature Measuring device used: T_NM_007			
Sample Recei	pt Checklist	Comments		
#1 *Temperature of cooler(s)?	4.2			
#2 *Shipping container in good condition?	Yes			
#3 *Samples received on ice?	Yes			
#4 *Custody Seals intact on shipping container/ cooler?	Yes			
#5 Custody Seals intact on sample bottles?	Yes			
#6*Custody Seals Signed and dated?	Yes			
#7 *Chain of Custody present?	Yes			
#8 Any missing/extra samples?	No			
#9 Chain of Custody signed when relinquished/ received?	Yes			
#10 Chain of Custody agrees with sample labels/matrix?	Yes			
#11 Container label(s) legible and intact?	Yes			
#12 Samples in proper container/ bottle?	Yes	Samples received in bulk containers.		
#13 Samples properly preserved?	Yes			
#14 Sample container(s) intact?	Yes			
#15 Sufficient sample amount for indicated test(s)?	Yes			
#16 All samples received within hold time?	Yes			
#17 Subcontract of sample(s)?	No			
#18 Water VOC samples have zero headspace?	N/A			

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Date: 08.21.2020

Checklist reviewed by: Jessica Kramer

Date: 08.21.2020

Received by OCD: 12/19/2020 9:49:53 AM Form C-141 State of New Mexico

Oil Conservation Division

Incie	dent ID	
Dist	rict RP	
Faci	lity ID	
App	lication ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.			
 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) 			
Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation.			
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.			
Extents of contamination must be fully delineated.			
Contamination does not cause an imminent risk to human health, the environment, or groundwater.			
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.			
Printed Name: Title:			
Signature: Date:			
email: Telephone:			
OCD Only			
Received by: <u>Robert Hamlet</u> Date: <u>4/15/2021</u>			
Approved With Attached Conditions of Approval Denied Deferral Approved			
Signature: Robert Hamlet Date: 4/15/2021			

District I 1625 N. French Dr., Hobbs, NM 88240	State of New Mexico	CONDITIONS
District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170 District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462	Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505	Action 12743

CONDITIONS OF APPROVAL

Operator:				OGRID:	Action Number:	Action Type:
	COG OPERATING LLC	600 W Illinois Ave	Midland, TX79701	229137	12743	C-141
OCD	Condition					
Reviewer						
rhamlet The Remediation Plan is approved with the following conditions: All pasture floor samples 0-4' need to be below closure criteria standards of <50' depth to groundwater from Table 1 of the spill rule. If evidence of depth to ground water within a ½ mile radius of the site cannot be provided, impacted soils will need to meet Table 1 Closure Criteria for ground water at a depth of 50 feet or less. Please keep OCD up to date on the chloride concentrations in the draw area and any BLM decision.						