

October 11, 2021

District Supervisor
Oil Conservation Division, District 1
1625 North French Drive
Hobbs, New Mexico 88240

Re: Release Characterization and Remediation Work Plan
ConocoPhillips
MCA 4B Header Release
Unit Letter O, Section 23, Township 17 South, Range 32 East
Lea County, New Mexico
Incident ID# nAPP2111950687

Sir or Madam:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips to assess a release that occurred due to a trunk line failure approximately 1,675 feet northwest of the Maljamar Cooperative Agreement (MCA) 4B Header. The release footprint is located in Public Land Survey System (PLSS) Unit Letter O, Section 23, Township 17 South, Range 32 East, in Lea County, New Mexico (Site). The approximate release point occurred at coordinates 32.815249°, -103.734255°, as shown on Figures 1 and 2.

BACKGROUND

According to the State of New Mexico C-141 Initial Report (Appendix A), the release was discovered on April 17, 2021. The release occurred as the result of a trunk line failure. Approximately 10.2 barrels (bbls) of produced water and 1.4 bbls of oil were released, of which 0 bbls of fluid were reported recovered. The New Mexico Oil Conservation Division (NMOCD) received the C-141 report form for the release on April 29, 2021. The release was subsequently assigned the Incident ID for this release is nAPP2111950687.

SITE CHARACTERIZATION

A site characterization was performed and no watercourses, sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, playa lakes, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the distances specified in 19.15.09 New Mexico Administrative Code (NMAC). The Site is in an area of low karst potential.

According to the New Mexico Office of the State Engineers (NMOSE) reporting system, there are no water wells located within an 800-meter (approximately ½-mile) radius of the release location. However, there are four water wells within a 3,500-meter radius with an average depth to groundwater at 107 feet below ground surface (bgs).

The remediation action levels proposed for the site are largely dependent upon depth to groundwater. As such, the OCD focuses upon depth to water estimation. Thus, 19.15.11(A)(2) NMAC allows for various means of determining depth to groundwater. For this release, as the available water level information was from wells further than ½ mile away from the site, COP reviewed adjacent release sites with approved Work Plans for the possibility of associated borings which could provide a means for determining depth to groundwater in the nAPP2111950687 release area. As such, subsurface data from the MCA 123 Injection Line Release Site (nJXK1621825385) was reviewed.

Tel 432.682.4559

Tetra Tech

901 West Wall St., Suite 100, Midland, TX 79701

Fax 432.682.3946 www.tetratech.com

Release Characterization and Work Plan October 11, 2021

ConocoPhillips

Two borings (BH-1 and BH-4) drilled as a portion of the MCA 123 release characterization were identified as located within roughly a ½ mile radius of the MCA 4B Header release footprint. A review of the associated boring logs indicates that boring BH-4 does not define depth to groundwater but was dry to greater than 51 feet bgs. Similarly, boring BH-1 was dry at 50' bgs. Thus, based on this data, COP proposes to use the 51 feet-100 feet criteria listed in Table I of 19.15.29.12 NMAC. The boring logs from the MCA 123 investigation are included in Appendix B. The remainder of the site characterization data is also included in Appendix B.

REGULATORY FRAMEWORK

Based upon the release footprint location and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil.

Based on the site characterization and in accordance with Table I of 19.15.29.12 NMAC, the remediation RRALs for the Site are as follows:

Constituent	Remediation RRAL
Chloride	10,000 mg/kg
TPH (GRO+DRO+ORO)	2,500 mg/kg
BTEX	50 mg/kg
Benzene	10 mg/kg

Additionally, in accordance with the NMOCD guidance *Procedures for Implementation of the Spill Rule* (19.15.29 NMAC) (September 6, 2019), the following reclamation requirements for surface soils (0-4 feet bgs) outside of active oil and gas operations are as follows:

Constituent	Reclamation Requirements
Chloride	600 mg/kg
TPH (GRO+DRO+ORO)	100 mg/kg

INITIAL RESPONSE AND ASSESSMENT ACTIVITIES

In June 2021, Tetra Tech personnel were onsite to oversee initial response excavation activities and simultaneously characterize the release footprint. Visually impacted soils within the release extent were first scraped to 6-inches bgs, and excavated soils were transported offsite for proper disposal. Approximately 30 cubic yards of material were transported to the R360 facility in Hobbs, New Mexico. Photos of the scraped area are provided in Appendix C. Copies of the waste manifests are included in Appendix D.

While onsite, Tetra Tech personnel installed a total of eight (8) hand auger borings to achieve vertical and horizontal delineation of the release. Two (2) borings (AH-1 and AH-2) were installed within the release extent to depths of 6 and 9 feet bgs, respectively, to vertically delineate the release. Six (6) borings (AH-3 through AH-8) were installed along the perimeter of the release extent to 3 feet bgs to achieve horizontal delineation. Soils at the Site consist of light brown to tan loose silty sands from the surface down to 9 feet bgs. All samples were field screened for salinity using an ExTech EC400 ExStik and for total hydrocarbons using a photoionization detector (PID) to measure volatile organics.

A total of twenty-two (22) samples were collected from the eight (8) borings and submitted to Pace Analytical (Pace) to be analyzed for TPH (DRO and ORO) by EPA Method 8015, TPH Low Fraction (GRO) by EPA Method 8015D, BTEX by EPA Method 8260B, and chlorides by EPA Method 300.0. Sample locations, along with the release extent and scraped area, are shown in Figure 3.

Release Characterization and Remediation Work Plan September 23, 2021

ConocoPhillips

SUMMARY OF SAMPLING RESULTS

Results from the June 2021 soil sampling event are summarized in Table 1. The analytical results associated with AH-1 and AH-2 sample locations exceed the Site reclamation requirements for chloride and TPH in soils in the top 4 feet within the release footprint. The results associated with perimeter sample locations AH-3 through AH-8 were below the Site reclamation requirements for chloride, TPH and BTEX in all analyzed samples. After review of the analytical results from the sampling event, both horizontal and vertical delineation was achieved during the June 2021 soil assessment activities. A copy of the laboratory analytical report and chain-of-custody documentation are included in Appendix E.

REMEDIATION WORK PLAN

Based on the analytical results from the assessment, ConocoPhillips proposes to remove the impacted material within the release extent as shown in Figure 4. Impacted soils will be excavated using heavy equipment (backhoes, mini-excavators, and track hoes) to a maximum depth of 4 feet below the surrounding surface or until a representative sample from the walls and bottom of the excavation is below the Site RRALs. Heavy equipment will come no more than 3 ft from any pressurized lines. Impacted soils within the vicinity of the surface and subsurface lines which intersect the release footprint will be dug by hand to the maximum extent practicable.

Excavated soils will be transported offsite and disposed of at an NMOCD-approved or permitted facility. Confirmation bottom and sidewall samples will be collected for verification of remedial activities, and analyzed for TPH, BTEX, and chlorides. Once analytical results are received, NMOCD will be notified, and the excavation will then be backfilled with clean material to surface grade. The estimated volume of material to be remediated is approximately 335 cubic yards.

ALTERNATIVE CONFIRMATION SAMPLING PLAN

In accordance with 19.15.29.12(D)(1)(b) NMAC, COP proposes the following alternative confirmation sampling plan to adhere with NMOCD requirements. The proposed confirmation sample locations are depicted in Figure 5. Six (6) confirmation floor samples and nine (9) confirmation sidewall samples are proposed for verification of remedial activities. In accordance with Subsection D of 19.15.29.12 NMAC, the COP will notify the appropriate division district office prior to conducting confirmation sampling. The proposed excavation encompasses a surface area of approximately 2,250 square feet.

These confirmation sidewall and floor samples will be representative of no more than approximately 500 square feet of excavated area. Confirmation samples will be sent to an accredited laboratory for analysis of TPH (Method 8015 modified), BTEX (Method 8260B), and chloride (USEPA Method 300.0). Once results are received, NMOCD will be notified, and the excavation will then be backfilled with clean material to surface grade.

SITE RECLAMATION AND RESTORATION PLAN

Post-remediation, the backfilled areas will be seeded (in the next first favorable growing season) to aid in revegetation. Based on the soils at the site, the New Mexico State Land Office (NMSLO) Sandy (S) Sites Seed Mixture will be used for seeding and will be planted in the amount specified in the pounds pure live seed (PLS) per acre. The seed mixture will be spread by a drill equipped with a depth regulator or a handheld broadcaster and raked. If a hand-held broadcaster is used for dispersal, the pounds pure live seed per acre will be doubled.

Site inspections will be performed to assess the revegetation progress and evaluate the site for the presence of primary or secondary noxious weeds. If noxious weeds are identified, the NMSLO will be contacted to determine an effective method for eradication. If the site does not show revegetation after one growing season, the area will be reseeded as appropriate. The NMSLO seed mixture details and corresponding pounds pure live seed per acre are included in Appendix F. Final reclamation will create a landform that approximates and blends in with the surrounding landform, while controlling erosion.

Release Characterization and Remediation Work Plan September 23, 2021

ConocoPhillips

CONCLUSION

ConocoPhillips proposes to begin remediation activities at the Site within 120 days of NMOCD plan approval. Upon completion of the proposed work, a final closure report detailing the remediation activities and the results of the confirmation sampling will be submitted to NMOCD. If you have any questions concerning the soil assessment or the proposed remediation activities for the Site, please call me at (512) 739-7874 or Christian at (512) 338-2861.

Sincerely,

Tetra Tech, Inc.

Samantha K. Abbott, P.G.

Project Manager

Christian M, Llull, P.G.

Program Manager

CC

Ms. Jenni Fortunato, RMR – ConocoPhillips

Release Characterization and Remediation Work Plan September 23, 2021

ConocoPhillips

LIST OF ATTACHMENTS

Figures:

Figure 1 – Site Location Map

Figure 2 – Topographic Map

Figure 3 – Release Extent and Sample Locations

Figure 4 – Proposed Remediation Extent

Figure 5 – Alternative Confirmation Sampling Plan

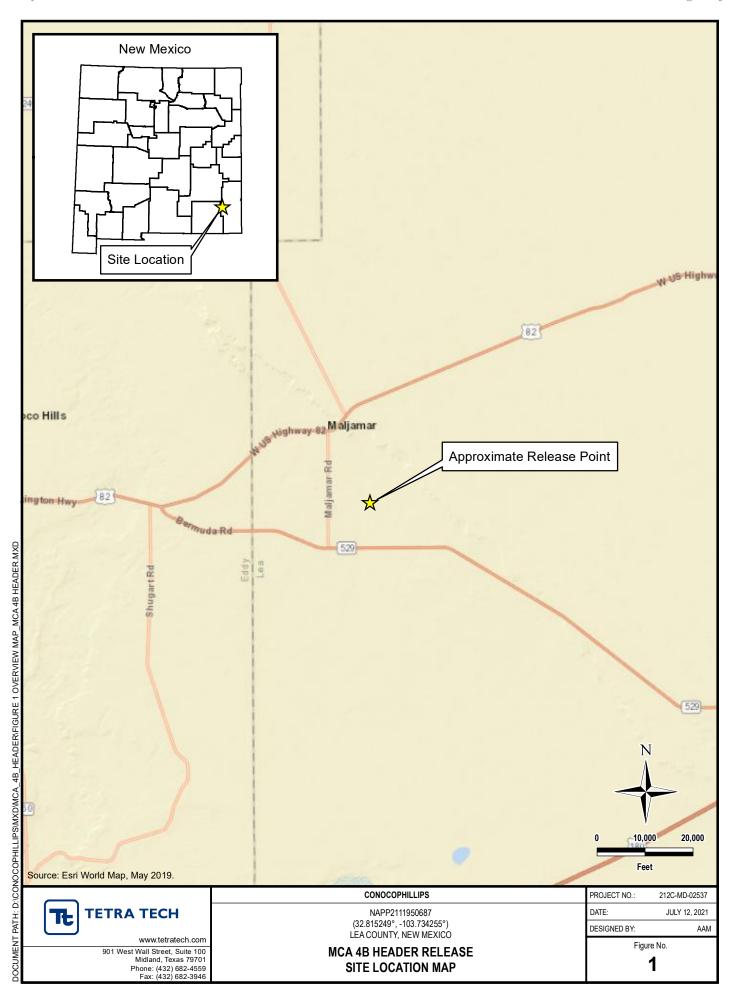
Tables:

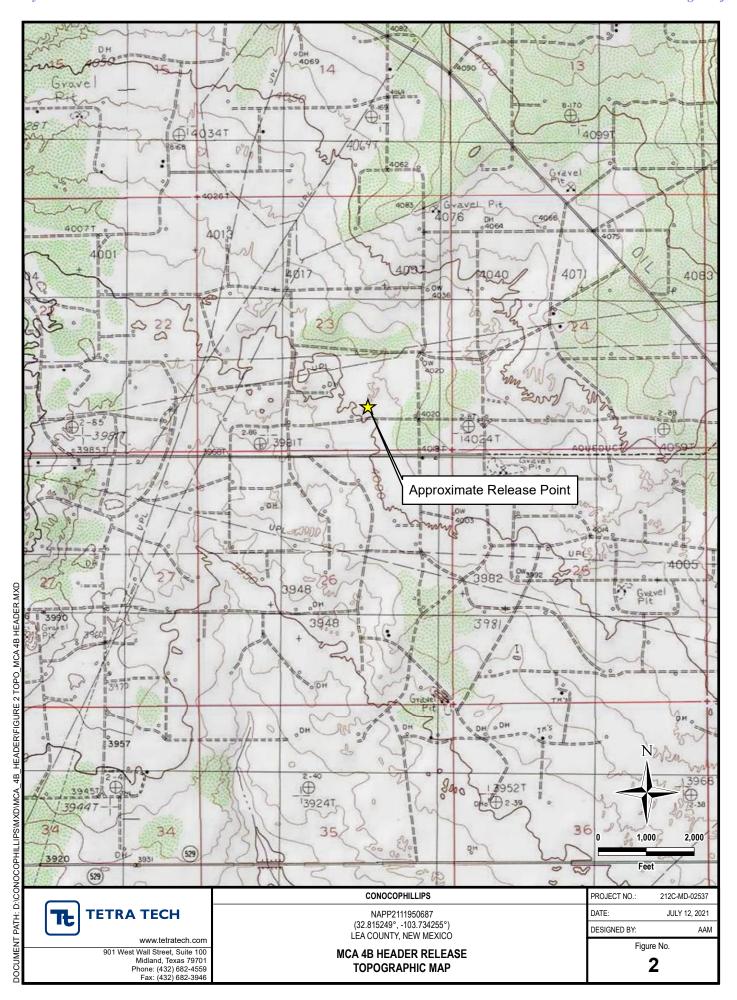
Table 1 – Summary of Analytical Results – Soil Assessment

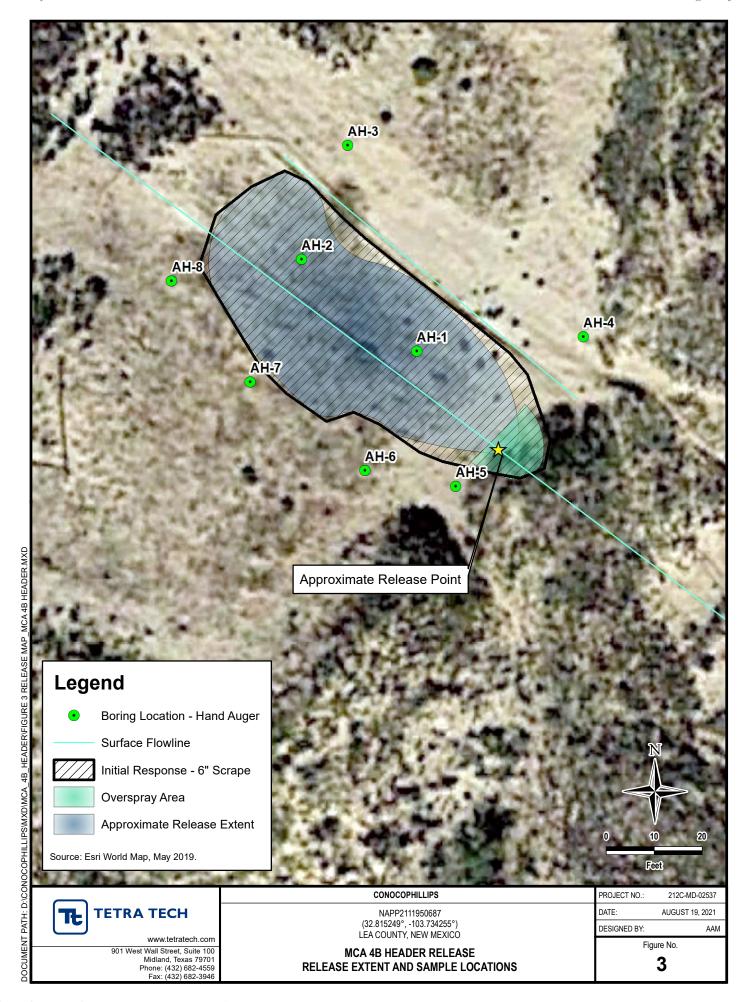
Appendices:

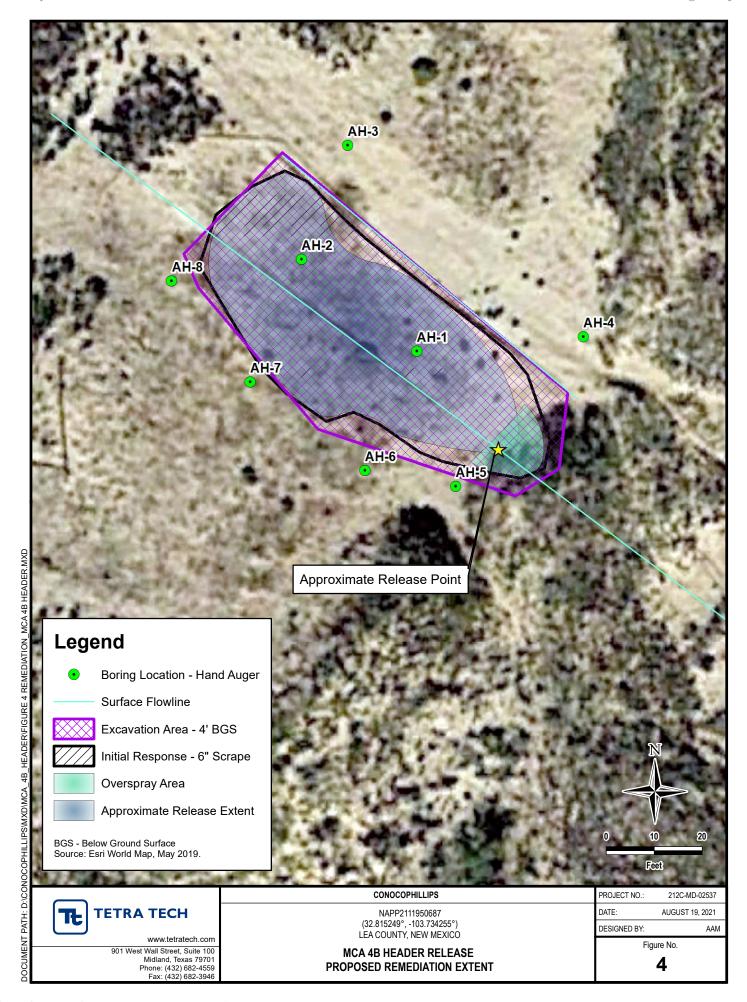
Appendix A – C-141 Forms

Appendix B - Site Characterization Data


Appendix C – Photographic Documentation


Appendix D – Waste Manifests


Appendix E – Laboratory Analytical Data


Appendix F – NMSLO Seed Mixture Details

FIGURES

TABLES

TABLE 1

SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT - nAPP2111950687 CONOCOPHILLIPS MCA 4B HEADER RELEASE

LEA COUNTY, NM

			Field Screen	ina Desulte							BTEX ²								TPH	3		
Sample ID	Sample Date	Sample Depth Interval	rieid Screen	iing Kesuits	Chloride ¹		Benzene		Toluene		Ethylbenzene		Total Xylenes		Total BTEX	GRO ⁴		DRO		ORO		Total TPH
Sample ID	Sample Date		Chloride	PID			Delizene		Totache		Littyibenzen		Total Aylenes		Total BTEX	C ₃ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		(GRO+DRO+ORO)
		ft. bgs	pp	m	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
		0.5-1.5	646	-	752		0.864		16.1		24.9		24.6		66.5	1,440		12,500		6,180		20,120
AH-1	6/30/2021	2-3	743	-	2,120		0.124		3.40		15.3		9.55		28.4	519		5,610		2,820		8,949
		3-4	302	-	282		< 0.0118		0.284		1.64		2.31		4.23	72.5		1,570		810		2,453
		5-6	314	-	195		0.00151		0.00451	J	0.00219	J	0.0709		0.0776	7.64		91.2		65.6	Ш	164
		0.5-1.5	279	-	229	J	0.0438	J	0.171	J	0.0890	J	8.06		8.36	848		3,380		1,940		6,168
		2-3	2520	-	2,650		0.266		4.45		23.9		15.5		44.1	1,020		11,100		5,350		17,470
AH-2	6/30/2021	3-4	1870	-	3,570		0.244		5.86		22.1		14.8		43.0	1,240		11,300		5,420		17,960
AITZ	0,30,2021	5-6	1360	-	3,290		0.000910	J	0.00176	J	0.00130	J	0.0106		0.0146	0.502		35.0	J6	25.3		60.8
		7-8	1260	-	3,700		< 0.00138		< 0.00692		< 0.00346		< 0.00899		-	0.118	J	9.26		8.13		17.5
		8-9	2350	-	4,720		< 0.00137		< 0.00684		< 0.00342		0.00141	J	0.00141	0.933		63.7		46.9		112
AH-3	6/30/2021	0-1	175	-	84.8	J	< 0.00124		< 0.00618		< 0.00309		< 0.00804		-	0.0829	ВJ	< 4.47		1.32	J	1.40
An-3	0/30/2021	2-3	191	-	209		< 0.00119		< 0.00595		< 0.00298		< 0.00774		-	0.0705	ВJ	< 4.38		0.760	J	0.760
	5 /20 /2004	0-1	36.5	-	46.7		< 0.00102		< 0.00508		< 0.00254		< 0.00661	Ī	-	0.0614	ВЈ	12.8		44.2		57.1
AH-4	6/30/2021	2-3	334	-	316		< 0.00128		< 0.00640		< 0.00320		< 0.00832		=	0.0841	ВЈ	7.42		20.2		27.7
	6/30/2021	0-1	10.3	-	< 24.9		< 0.00149		< 0.00746		< 0.00373		< 0.00970		-	0.0676	ВJ	< 4.98		< 4.98		0.0676
AH-5	6/30/2021	2-3	101	-	65.2		< 0.00158		< 0.00788		< 0.00394		< 0.0102		-	0.0822	ВЈ	< 5.15		1.38	J	1.46
	5 /20 /2004	0-1	16.1	-	< 23.7		< 0.00137		< 0.00686		< 0.00343		< 0.00892		-	0.0931	ВЈ	< 4.74		2.21	J	2.30
AH-6	6/30/2021	2-3	35.6	-	< 21.7		< 0.00117		< 0.00583		< 0.00292		< 0.00758		=	0.0655	ВЈ	< 4.33		1.45	J	1.52
	0-1	18.1	-	< 24.7		< 0.00147		< 0.00737		< 0.00368		< 0.00958		-	0.0739	ВЈ	< 4.95		1.05	J	1.12	
AH-7	6/30/2021	2-3	24.2	-	< 24.5		< 0.00145		< 0.00723		< 0.00362		< 0.00940		=	0.0602	ВЈ	< 4.89	J3 J6	0.465	J	0.525
411.0	6/30/2021	0-1	104	-	13.8	J	< 0.00111		< 0.00557		< 0.00279		< 0.00724		-	0.0614	ВЈ	15.2		25.5		40.8
AH-8	0/30/2021	2-3	52.6	-	< 20.5		< 0.00105		< 0.00525		< 0.00262		< 0.00682		-	0.0411	ВJ	< 4.10		1.32	J	1.36

NOTES:

ft. F

bgs Below ground surface ppm Parts per million

mg/kg Milligrams per kilogram

TPH Total Petroleum Hydrocarbons

EPA Method 8015D/GRO

GRO Gasoline range organics

DRO Diesel range organics

ORO Oil range organics

1 EPA Method 300.0

2 EPA Method 8260B

3 EPA Method 8015

 $Bold\ and\ italicized\ values\ indicate\ exceedance\ of\ proposed\ Remediation\ RRALs\ and/or\ Reclamation\ Requirements.$

Shaded rows indicate intervals proposed for excavation.

QUALIFIERS:

- B The same analyte is found in the associated blank.
- J The identification of the analyte is acceptable; the reported value is an estimate.
- J3 The associated batch QC was outside the established quality control range for precision.
- J6 The sample matrix interfered with the ability to make any accurate determination; spike value is low.

APPENDIX A C-141 Forms

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Incident ID	NAPP2111950687
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party Conoco Phillips Company					OGRID 217817				
Contact Nam	e Kelsy V	Vaggaman		Contact Te	elephone 505-577-9071				
Contact email Kelsy.Waggaman@ConocoPhillips.com Incident # (assigned by OCD) nAPP2111950687									
Contact mail	Contact mailing address 29 Vacuum Complex Lane, Lovington, NM 88260								
Location of Release Source									
Latitude 32.815433 Longitude -103.734441									
			(NAD 83 in deci	mal degrees to 5 decim	ial places)				
Site Name: 41	B Header Pr	oduction Line		Site Type:					
Date Release	Discovered	4/17/21		API# (if app	licable) N/A				
Unit Letter	Section	Township	Range	Coun	ftv				
Ont Letter	23	17S		Lea	ty				
	20	170	32E	Lea					
Surface Owner	r: State	Federal ☐ T	Tribal Private (I	Name:					
			Nature and	Volume of I	Release				
	36	//		1 1					
Crude Oil	Material	Volume Release		calculations or specific	justification for the volumes provided below) Volume Recovered (bbls) 0				
X Produced	Water	Volume Release	d (bbls) 10.2		Volume Recovered (bbls) 0				
		Is the concentrat	ion of dissolved ch >10,000 mg/l?	loride in the	☐ Yes ☐ No				
Condensa	te	Volume Release			Volume Recovered (bbls)				
☐ Natural G	as	Volume Release	d (Mcf)		Volume Recovered (Mcf)				
Other (describe) Volume/Weight Released (provide units)					Volume/Weight Recovered (provide units)				
Cause of Rele	Cause of Release								
4B header trunk line failure.									

Received by OCD: 10/11/2021/10:05:54PM Form C-141 State of New Mexico Page 2 Oil Conservation Division

Page 16cof 111

Incident ID	NAPP2111950687
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC? ☐ Yes ☒ No	If YES, for what reason(s) does the respo	nsible party consider this a major release?
If YES, was immediate n	otice given to the OCD? By whom? To w.	nom? When and by what means (phone, email, etc)?
	Initial R	esponse
The responsible	party must undertake the following actions immediate	ly unless they could create a safety hazard that would result in injury
The source of the rela	ease has been stopped.	
The impacted area ha	s been secured to protect human health and	the environment.
X Released materials ha	ave been contained via the use of berms or	dikes, absorbent pads, or other containment devices.
All free liquids and re	ecoverable materials have been removed an	d managed appropriately.
P. 10.15.20.0 P. (4) NIV.		
has begun, please attach	a narrative of actions to date. If remedial	emediation immediately after discovery of a release. If remediation efforts have been successfully completed or if the release occurred blease attach all information needed for closure evaluation.
regulations all operators are public health or the environi failed to adequately investig	required to report and/or file certain release not ment. The acceptance of a C-141 report by the Gate and remediate contamination that pose a through	best of my knowledge and understand that pursuant to OCD rules and fications and perform corrective actions for releases which may endanger OCD does not relieve the operator of liability should their operations have at to groundwater, surface water, human health or the environment. In responsibility for compliance with any other federal, state, or local laws
Printed Name: Kelsy V	Vaggaman	Title: Environmental Coordinator
Signature: Kuyl	Vaggaman	Date: 4/29/21
email: Kelsy.Waggar	man@ConocoPhillips.com	Telephone:505-577-9071
OCD Only		
Received by: Ran	nona Marcus	Date:

	L48 Spill Volume Estimate Form
Pacific Name & Number ATR beaster truck the going to battery	4
Received by OCD: 10/11/2021 10:05:54 PM	

NAPP2111950687 Page 17eof 111

Total Estimated

Volume of Spilled Oil

(bbl.)

0.654

0.654

0.029

0.000

0.000

0.000

0.000

0.000

0.000

0.000

1 338

Total Estimated

Volume of Spilled

Liquid other than Oil

(bbl.)

4 953

4.953

0.223

0.000

0.000

0.000

0.000

0.000

0.000

0.000

10 128

Release Discovery Date & Time: 4/17/2021 4:00PM Release Type: Oil Mixture

Was the release on pad or off-pad?

Width

25.0

25.0

Released to Imaging: 11/17/2021/9:32:59 AM

Has it rained at least a half inch in the last 24 hours?

Length

(ff)

50.0

50.0

15.0

Convert Irregular shape

into a series of rectangles

Rectangle A

Rectangle B

Rectangle C

Rectangle D

Rectangle E

Rectangle F

Rectangle G

Doctangle H

rectangle J

Provide any known details about the event. Trunk line Leak

Depth

(in.)

2.00

2 00

0.50

Soil Spilled-Fluid Saturation

15.12%

15.12%

Yes, On Pad - 8%: Off Pad - 13.57% soil spilled-fluid saturation factor; if No. use factors above.

Spill Calculation - Subsurface Spill - Rectangle

Estimated volume of each area

(bbl.)

37.083

37 083

1.669

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Total Volume Release:

On Pad - 10.5%: Off Pad - 15.12% soil spilled-fluid saturation factor

Total Estimated

Volume of Spill

(bbl.)

5 607

5.607

0.252

0.000

0.000

0.000

0.000

0.000

0.000

0.000

11 466

Percentage of Oil if

Spilled Fluid is a

Mixture

11 67%

11.67%

11 67%

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III
1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 26358

CONDITIONS OF APPROVAL

Operator:			OGRID:	Action Number:	Action Type:
CONOCOPHILLIPS COMPANY	600 W. Illinois Avenue	Midland, TX79701	217817	26358	C-141

OCD Reviewer	Condition
rmarcus	None

Received by OCD: 10/11/2021	10:05:54 PM
Form C-141	State of New Mexico
Page 3	Oil Conservation Division

	Page 19 of 111
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ☐ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ☐ No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ☐ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ☐ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ☐ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☐ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ☐ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ☐ No
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ☐ No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vercontamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	rtical extents of soil
Characterization Report Checklist: Each of the following items must be included in the report.	
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well Field data Data table of soil contaminant concentration data Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs Photographs including date and GIS information Topographic/Aerial maps Laboratory data including chain of custody	ls.
1	

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

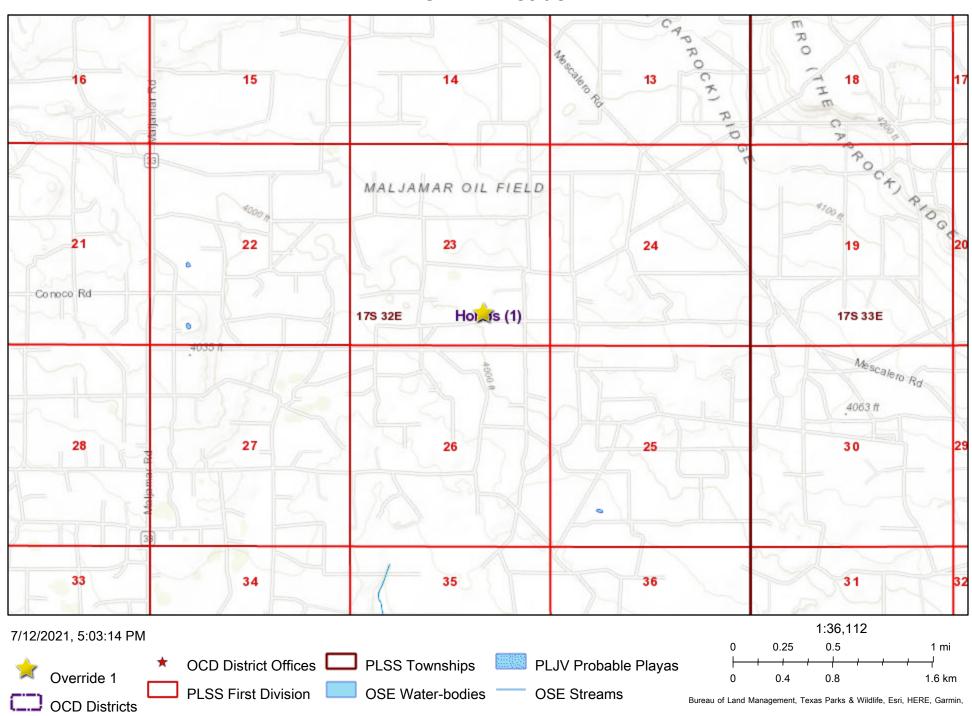
Received by OCD: 10/11/2021 10:05:54 PM Form C-141 State of New Mexico Oil Conservation Division Page 4

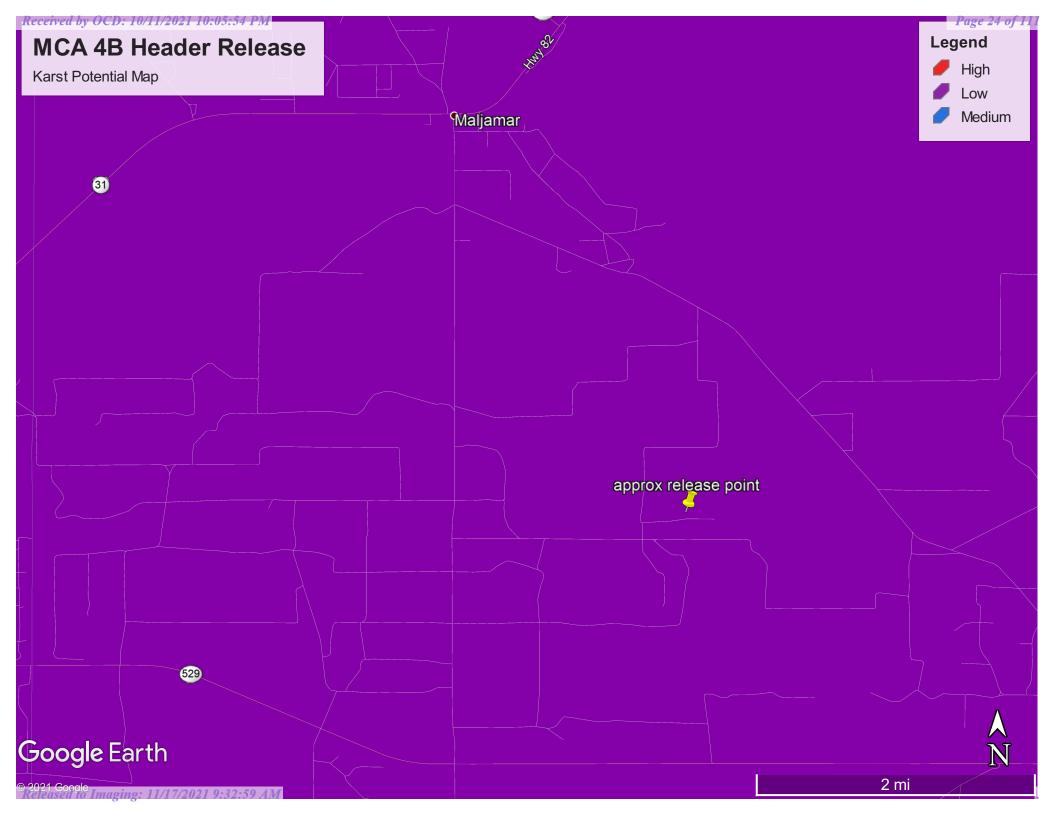
	Page 20	of 11.
t ID		

Incident ID	
District RP	
Facility ID	
Application ID	

I hereby certify that the information given above is true and complete to the regulations all operators are required to report and/or file certain release not public health or the environment. The acceptance of a C-141 report by the Gailed to adequately investigate and remediate contamination that pose a threaddition, OCD acceptance of a C-141 report does not relieve the operator of and/or regulations.	ifications and perform corrective actions for releases which may endanger DCD does not relieve the operator of liability should their operations have eat to groundwater, surface water, human health or the environment. In
Printed Name:	Title:
Signature:	Date:
email:	Telephone:
OCD Only	
Received by:	Date:

Received by OCD: 10/11/2021 10:05:54 PM Form C-141 State of New Mexico Page 5 Oil Conservation Division


	Page 21 of 11
Incident ID	
District RP	
Facility ID	
Annlinetian ID	


Remediation Plan

Remediation Plan Checklist: Each of the following items must b	e included in the plan
Remediation I fair Checknist. Each of the following tiems must be	e included in the plan.
Detailed description of proposed remediation technique	
Scaled sitemap with GPS coordinates showing delineation poin	ts
Estimated volume of material to be remediated	
Closure criteria is to Table 1 specifications subject to 19.15.29.	12(C)(4) NMAC
Proposed schedule for remediation (note if remediation plan tin	
<u>Deferral Requests Only</u> : Each of the following items must be con	nfirmed as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around p deconstruction.	roduction equipment where remediation could cause a major facility
Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human healt	n, the environment, or groundwater.
rules and regulations all operators are required to report and/or file which may endanger public health or the environment. The accepta liability should their operations have failed to adequately investigat	e and remediate contamination that pose a threat to groundwater,
surface water, human health or the environment. In addition, OCD responsibility for compliance with any other federal, state, or local	
Printed Name:	Title:
Signature:	Date:
email:	Telephone:
OCD Only	
Received by:	Date:
☐ Approved	Approval
Signature: Chal There Cay	
Signature:	Date:

APPENDIX B Site Characterization Data

MCA 4B Header

New Mexico Office of the State Engineer Water Column/Average Depth to Water

No records found.

UTMNAD83 Radius Search (in meters):

Easting (X): 618484.43 **Northing (Y):** 3631520.18 **Radius:** 800

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW#### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)

(R=POD has been replaced, O=orphaned, C=the file is

closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters)

(In feet)

	POD Sub-			Q (•	Depth	
POD Number	Code basin	County	64	16 4	1 Se	c Tws	Rng	X	Υ	Distance	Well	Water	Column
RA 11911 POD1	RA	LE	1	3	1 24	1 17S	32E	619192	3632296 🌑	1050	35		
RA 11957 POD1	RA	LE	3	4	1 19	9 17S	33E	621177	3632200 🌍	2777	55		
RA 11937 POD1	RA	LE	1	4	1 19	9 17S	33E	621244	3632281 🌕	2862	95		
RA 11936 POD1	RA	LE	1	4	1 19	9 17S	33E	621246	3632321 🌕	2875	92		
L 12974 POD1	L	LE	3	4 :	3 18	3 17S	33E	621233	3632940 🌕	3093	140	130	10
RA 12721 POD5	RA	LE	2	4 4	4 28	3 17S	32E	615650	3629961 🌕	3234	130	124	6
RA 12521 POD1	RA	LE	3	3 4	4 2	l 17S	32E	615127	3631271 🌕	3366	105	92	13
RA 12020 POD3	RA	LE	2	1 2	2 28	3 17S	32E	615152	3631019 🌕	3369	112	83	29
RA 12721 POD3	RA	LE	2	3 4	4 28	3 17S	32E	615417	3629979 🌑	3432	115		

Average Depth to Water: 107 feet

> Minimum Depth: 83 feet

> 130 feet Maximum Depth:

Record Count: 9

UTMNAD83 Radius Search (in meters):

Easting (X): 618484.43 Radius: 3500 Northing (Y): 3631520.18

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

212	212C-MD-02067 TETRA TECH												LOG OF BORING BH-1					Page 1 of 2
Proje	ect N	lam	e: MC	A 123 I	njec	tion	Line	Rele	ase									
Bore	hole	Lo	cation:	GPS: 32	2.810)737°	, -10	3.742	845°			Su	ırface Elev	atior	n: 3974 ft			
Bore	hole	Nu	mber:	BH-1						ŀ	Borel Diam	hole	r (in.): 8		Date Started: 3/23/2020	Date F	inishe	d: 3/23/2020
			(mda	(mdc	ERY (%)	ENT (%)	(J)		DEX			v	Vhile Drillir temarks:		WATER LEVEL OBSERVATIO ☐ DRY ft Upon Completion of		Ā C	DRY_ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	XX CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG		M	1AT	ERIAL DESCRIPTION		DEPTH (ft)	REMARKS
	7	M	132	1.4									-SM- SIL	TY S	SAND; Brown, medium dense, owith no staining.	lry,		BH-1 (0'-1')
-	\rangle												With Ho o	doi,	with no staining.			
177 1.6													3	BH-1 (2'-3')				
-	$ \rangle\rangle$	M	191	1.2									-SM- SIL	TY S	SAND; Light brown, dense, dry, no staining.	with		BH-1 (3'-4')
5	$ \rangle\rangle$	M	1.48	1.3									no odor,	vvitii	no staining.		_	BH-1 (4'-5')
	$\left \right\rangle \left\langle \right $																_	
-	$\langle \rangle$	M	1.47	0.9													_	BH-1 (6'-7')
-	$\langle \rangle$																	
-	$ \rangle\rangle$																_	
-	\rangle	M	3.05	2.1													_	BH-1 (9'-10')
10_	$ \rangle\rangle$	H	0.00														_	Bii (0 10)
-	$\left \right\rangle \rangle$																_	
-	$\left \right\rangle \rangle$																_	
-	$\left \right\rangle \rangle$																_	
-	$ \rangle\rangle$	H	4000														_	
15_	$ \rangle\rangle$	A	>10000	2.2													_	BH-1 (14'-15')
-	$ \rangle\rangle$																_	
-	$ \rangle\rangle$																_	
-	$ \rangle\rangle$																_	
-	$ \rangle\rangle$												CM SII	TV	SAND; Brown, dense, dry, with r	20	19	
20	$ \rangle\rangle$	И	7.97	1.8									odor, with	n no	staining.	Ю	_	BH-1 (19'-20')
_	$ \rangle\rangle$																_	
_	$ \rangle$																	
_	$\left \right\rangle \left\langle \right $																	
_																		
25		X	4.53	3.1														BH-1 (24'-25')
Sam Type	pler s:		Split Spoon		Acetat	te Line	r C	Opera Types	ation E				Hand Auger		tes:			
Shelby Vane Shear Mud Rotary								Rot	ary		Analytical samples are shown in the "Remarks" column. Surface elevation is an estimated value.					column.		
		1	Bulk Sampl		Califor	rnia				ntinuou ht Aug	us ger Direct Push							
Grab Sample Test Pit Wash Rotary Co												\bigvee	Core Barrel					
Logg												Air Ro	otary	Drill	er: Scarborough Drilling			

212C-MD-02067	TETRA 1	TECH	LOG OF BORING BH-1	Page 2 of 2					
Project Name: N	CA 123 Injection Lir	ne Release							
Borehole Location:	GPS: 32.810737°, -	-103.742845°	Surface Elevation: 3974 ft						
Borehole Number:	BH-1	Borel Diam	hole hole eter (in.): 8 Date Started: 3/23/2020 Date Finished	: 3/23/2020					
E E E E E E E E E E E E E E E E E E E	ppm) ERY (%) TENT (%)	<u> </u>	WATER LEVEL OBSERVATIONS While Drilling ☐ DRY ft Upon Completion of Drilling ☐ DRY	RY_ft					
OPERATION TYPE SAMPLE TABLE SAMPLE CHLORIDE FIELD SCREENING (ppm)	<u> </u>	DRY DENSITY (pcf) LIQUID LIMIT LIQUID LIMIT LASTICITY INDEX MINUS NO. 200 (%)	MATERIAL DESCRIPTION (E) HLdd	REMARKS					
30 8.30	1.1		-SM- SILTY SAND; Tan, dense, dry, with no odor, with no staining.	BH-1 (29'-30') BH-1 (34'-35')					
50	0.8	Operation		BH-1 (49'-50')					
Sampler Types: Spii Spii Spoi She	Vane Shear California	Operation Types: Mud Rotary Continuous Flight Auger Wash Rotary Drilling Equipment	Hand Auger Air Rotary Direct Push Core Barrel Bottom of borehole at 50.0 feet. Analytical samples are shown in the "Remarks" of Surface elevation is an estimated value. Drillor: Contract Dellication.	olumn.					

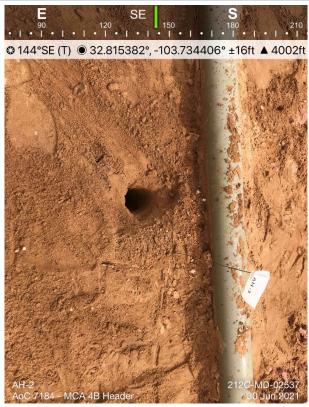
212C-MD-02067 TETRA TECH												L	OG OF BORING BH-	4		Page 1 of 3
Project N	lam	e: MC	A 123 I	njec	tion L	ine	Rele	ase								
Borehole	Loc	cation:	GPS: 32	2.810)847°	, -103	3.743	217°			Surface Elev	atior	n: 3973 ft			
Borehole	Nu	mber:	BH-4						E	Boreh Diame	ole eter (in.):		Date Started: 3/23/2020	Date F	inished	d: 3/23/2020
		LD (mdo	(mdc	ERY (%)	ENT (%)	if)		IDEX			While Drillin		WATER LEVEL OBSERVA		Ā D	RY_ft
DEPTH (ft) OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	UOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	N	1ATI	ERIAL DESCRIPTION		DЕРТН (ft)	REMARKS
	X	208	1.6								-SM- SIL odor, with	TY S	SAND; Brown, dense, dry, wi staining.	th no		BH-4 (0'-1')
10 10 15 20		361 657 2.0 2.03 1.95	1.7 1.9 2.1 1.9 2								with no s	TY S	SAND; Tan, dense, dry, with ng. SAND; Light brown, dense, d no staining.			BH-4 (2'-3') BH-4 (3'-4') BH-4 (4'-5') BH-4 (6'-7') BH-4 (9'-10') BH-4 (14'-15')
25 Sampler Types:	11)) \	2.81 Split Spoor Shelby Bulk Samp Grab Samp	y 🗓 V le \mathbf{X} C			r I	ppera ypes	: Muc Rota	ary Itinuou ht Aug sh		Hand Auger Air Rotary Direct Push Core Barrel	An	tes: alytical samples are shown i rface elevation is an estimat	n the "Rema ed value.	arks" (BH-4 (24'-25') column.
Logger:	Dev	in Domingu			[Orilling	g Equ	uipme	ent: Aiı	r Rotary	Driller: Scarborough Drilling					


2120	212C-MD-02067 TETRATECH												L	OG OF BORING BH-4			Page 2 of 3
Proje	ct N	lam	e: MC	A 123 lı	 njec	tion I	Line	Rele	ase		'						
Borel	nole	Lo	cation:	GPS: 32	2.810)847°	, -103	3.743	217°			Surface Elev	ation	: 3973 ft			
Borel	nole	Nu	mber:	BH-4						E	Boreho Diame	ole ter (in.): 8		Date Started: 3/23/2020	Date Fin	ished	d: 3/23/2020
E = LD ppm) ppm) ERY (%) TENT (%) cf) cf)							ZDEX				WATER LEVEL OBSERVATIONS While Drilling ▼ DRY ft Upon Completion of Drilling ▼ DRY ft						
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	UOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	T LIQUID LIMIT	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	M	IATE	ERIAL DESCRIPTION		DЕРТН (ft)	REMARKS
30 			1.87 1.87 Split Spoon Shelby Shelby	1.7 1.7	Acetat	te Line Shear		De la companya de la				with no si	Note An	ONE; Red, moderately hard, mowith no staining.	e "Remar		BH-4 (29'-30') BH-4 (39'-40') BH-4 (49'-50')
	Bulk Sample California Cor Flig									tinuou ht Aug sh	Surface elevation is an estimated value. Core Barrel						
Llogg	۵r.	Dov	in Domingu	07			lг	rillin	a Ea	iinma	nt. Air	Deten	Drille	er: Scarborough Drilling			

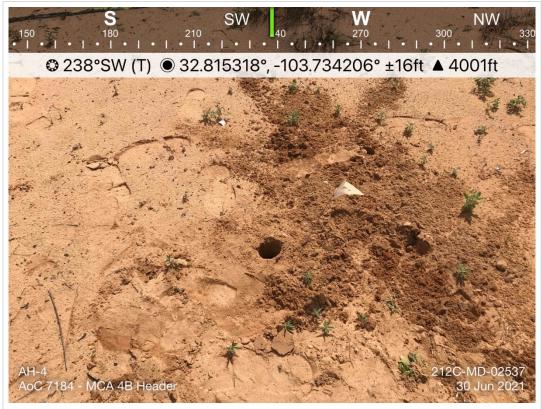
212C-N		i	T	ŧΙΤ	ETRA	A TEC	Н				L	OG OF BORING BH-4		Page 3 of 3
Project	Nam	e: MC	A 123 li	njec	tion I	ine	Rele	ase						l
Borehol	e Lo	cation:	GPS: 32	2.810)847°	, -103	3.743	217°			Surface Elevation:	3973 ft		
Borehol	e Nu	ımber:	BH-4						B	oreho	ole ter (in.):	Date Started: 3/23/2020	Date Finished	d: 3/23/2020
Dm) Sm) Sm) Sm) Sm) Sm(%) Sm(%											V	VATER LEVEL OBSERVATIO DRY ft Upon Completion of D		RY_ft
DEPTH (ft) OPERATION TYPE	SAMPLE	XX CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	☐ PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATE	ERIAL DESCRIPTION	DEPTH (ft)	REMARKS
55 (60 (60 (60 (60 (60 (60 (60 (60 (60 (60		491	1.4					PI			Bott	com of borehole at 60.0 feet.	- - - - - - - - 60	BH-4 (59'-60')
Sample Types:	1	Split Spoor Shelb Bulk Samp Grab Samp	y			r T)pera ypes	Muc Rota Con	ary tinuous nt Auge sh		Hand Auger Note Air Rotary Air Rotary Sur Direct Push Core Barrel	es: alytical samples are shown in the face elevation is an estimated v	e "Remarks" (alue.	column.
Logger:	Dev	•					Orilling	g Equ	ıipme	nt: Air	Rotary Drille	er: Scarborough Drilling		

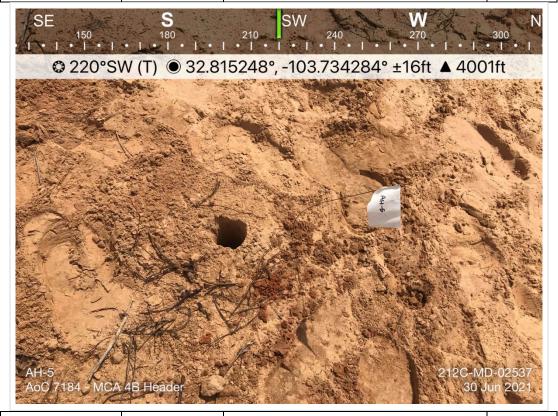
APPENDIX C Photographic Documentation

TETRA TECH, INC. PROJECT NO. 212C-MD-02537	DESCRIPTION	View northeast of the release point.	1
	SITE NAME	ConocoPhillips MCA 4B Header Release	6/30/2021


TETRA TECH, INC. PROJECT NO. 212C-MD-02537	DESCRIPTION	View northwest of the release point, release extent and surface flowline with cribbing.	2
	SITE NAME	ConocoPhillips MCA 4B Header Release	6/30/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02537	DESCRIPTION	View north of the release point, release extent and surface flowline with cribbing.	3
	SITE NAME	ConocoPhillips MCA 4B Header Release	6/30/2021


TETRA TECH, INC. PROJECT NO. 212C-MD-02537	DESCRIPTION	View of backfilled boring AH-1 and surface flowline with cribbing.	4
	SITE NAME	ConocoPhillips MCA 4B Header Release	6/30/2021


TETRA TECH, INC.	DESCRIPTION	View of boring AH-2 and surface flowline.	5
PROJECT NO. 212C-MD-02537	SITE NAME	ConocoPhillips MCA 4B Header Release	6/30/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02537	DESCRIPTION	View of boring AH-3.	6
	SITE NAME	ConocoPhillips MCA 4B Header Release	6/30/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02537	DESCRIPTION	View of boring AH-4.	7
	SITE NAME	ConocoPhillips MCA 4B Header Release	6/30/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02537	DESCRIPTION	View of boring AH-5.	8
	SITE NAME	ConocoPhillips MCA 4B Header Release	6/30/2021

TETRA TECH, INC.	DESCRIPTION	View of boring AH-6.	9
212C-MD-02537	SITE NAME	ConocoPhillips MCA 4B Header Release	6/30/2021

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View of boring AH-7.	10
212C-MD-02537	SITE NAME	ConocoPhillips MCA 4B Header Release	6/30/2021

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View of boring AH-8.	11
212C-MD-02537	SITE NAME	ConocoPhillips MCA 4B Header Release	6/30/2021

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View east of the surface flowline and completed 6-inch scrape.	12	
212C-MD-02537	SITE NAME	ConocoPhillips MCA 4B Header Release	6/30/2021	

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View east southeast of the surface flowline and completed 6-inch scrape.	13
212C-MD-02537	SITE NAME	ConocoPhillips MCA 4B Header Release	6/30/2021

TETRA TECH, INC. PROJECT NO.	inch sc		14
212C-MD-02537	SITE NAME	ConocoPhillips MCA 4B Header Release	6/30/2021

APPENDIX D Waste Manifests

TRANSPORTER'S MANIFEST

MANIFEST# O

SHIPPING FACILITY NAME & ADDRESS: ConocoPhillips Company 935 N. Eldridge Pkwy., Houston, TX 77079 Attn. Jenni Fortunato Jenni.Fortunato@conocophillips.com 832.486.2477	ACCOUNTING INFORMATION MCA 4B Header Release – RMR Project GL Account No.: 702000 WBS Element: 4AO.000.7184.00.RM
LOCATION OF MATERIAL: ConocoPhillips Company	
MCA 4B Header Release (AoC 7184) Unit Letter O, Section 23, Township 17 Sou Lea County, New Mexico	uth, Range 32 East
TRANSPORTER NAME AND ADDRESS:	
McNabb Partners 4008 N. Grimes Hobbs, New Mexico 88240 575.397.0050	
DESCRIPTION OF WASTE: Impacted Soil	
TRUCK CAPACITY:	APPROXIMATE % FULL
APPROX	KIMATE VOLUME HAULED OFF
E A CH ITTY CONTE A CT	
	re of Contact: ConocoPhillips)
NAME OF TRANSPORTER (Driver):	
Date: Signatur	re Driver: Lynn Rd7
DISPOSAL SITE:	
R360 P.O. Box 388 4507 W Carlsbad Hwy Hobbs, New Mexico 88241	
Date: (c) 30 2 Represer	\ //\

M- > Z

Received by OCD: 10/11/2021 RESULTIONS Permian Basin	Customer: Customer #: Ordered by: AFE #: PO #: Manifest #: Manif. Date: Hauler: Driver Truck # Card # Job Ref #	ANDREW GARCIA 01	Ticket #: Bid #: Date: Generator: Generator #: Well Ser. #: Well Name: Well #: Field: Field #: Rig: County		
Facility: CRI					TANASSAS ALIMEET
Product / Service		Quar	ntity Units		
Contaminated Soil (RCRA Exe	mpt)		15.00 yards		
Generator Certification Statem I hereby certify that according to the 1988 regulatory determination, the a X RCRA Exempt: Oil Field waste RCRA Non-Exempt: Oil field w characteristics established in RCRA amended. The following documenta MSDS Information RCRA Driver/ Agent Signature	e Resource Conser above described was generated from covaste which is non regulations, 40 Covastion is attached to	vation and Recovery Act (RCR aste is: oil and gas exploration and prochazardous that does not exceed FR 261.21-261.24 or listed haza of demonstrate the above-describ	duction operations and the minimum standar dous waste as defined bed waste is non-hazar ledge Other Pro	l are not mixed with a rds for waste hazardo in 40 CFR, part 261 doug. (Check the app	non-exempt wast ous by l, subpart D, as propriate items):
Customer Approval	TH	IS IS NOT AN IN	VOICE!		

A	Date:	
Approved By:	 	

6/30/2021 11:08:58AM

t6UJ9A01J91N Released to Imaging: 11/17/2021 9:32:59 AM

TRANSPORTER'S MANIFEST

MANIFEST # 02

SHIPPING	FACILITY	NAME	& ADDRESS:
ConocoPhi	llips Com	oanv	

935 N. Eldridge Pkwy., Houston, TX 77079 Attn. Jenni Fortunato

Jenni.Fortunato@conocophillips.com

832.486.2477

ACCOUNTING INFORMATION

MCA 4B Header Release - RMR Project GL Account No.: 702000

WBS Element: 4AO.000.7184.00.RM

LOCATION OF MATERIAL:

ConocoPhillips Company

MCA 4B Header Release (AoC 7184)

Unit Letter O, Section 23, Township 17 South, Range 32 East Lea County, New Mexico

TRANSPORTER NAME AND ADDRESS:

McNabb Partners 4008 N. Grimes Hobbs, New Mexico 88240 575.397.0050

DESCRIPTION OF WASTE:

Impacted Soil

TRUCK CAPACITY:

18

APPROXIMATE % FULL

15

APPROXIMATE VOLUME HAULED OFF

FACILITY CONTACT:

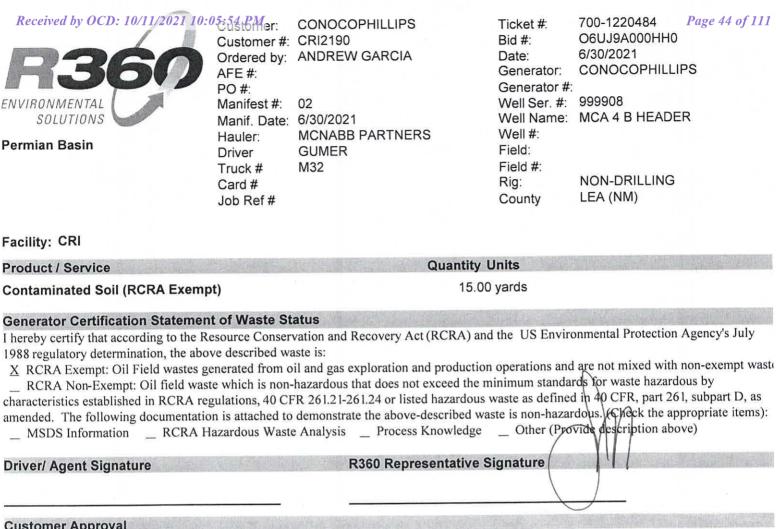
Date:

30 June 21

Signature of Contact:
(Agent for ConocoPhillips)

river):

Signature Driver: Hum Rd ~


NAME OF TRANSPORTER (Driver):

Date:

DISPOSAL SITE:

R360 P.O. Box 388 4507 W Carlsbad Hwy Hobbs, New Mexico 88241

Representative Signature

Customer Approval

THIS IS NOT AN INVOICE!

Date: Approved By:

6/30/2021 2:47:20PM t6UJ9A01J95W

APPENDIX E Laboratory Analytical Data

Pace Analytical® ANALYTICAL REPORT

Ss

ConocoPhillips - Tetra Tech

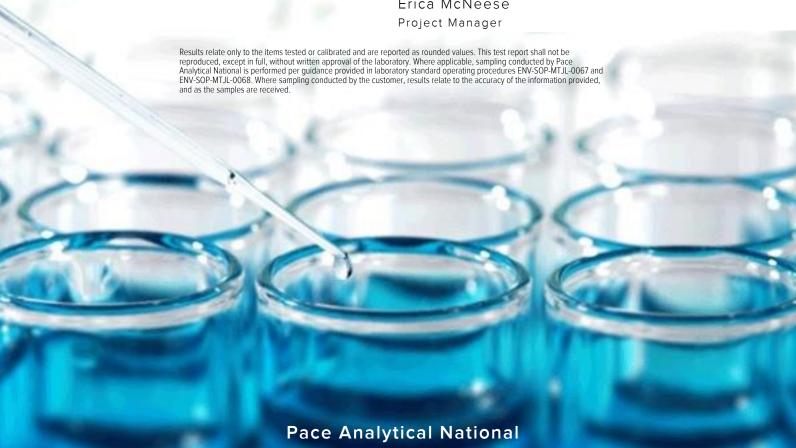
Sample Delivery Group: L1373875 Samples Received: 07/02/2021

Project Number: 212C-MD-02537

Description: MCA 4B Header Release

Report To: Christian Llull

901 West Wall


Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Enica Mc Neese

Erica McNeese Project Manager

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	8
Sr: Sample Results	9
AH-1(0.5'-1.5') L1373875-01	9
AH-1(2'-3') L1373875-02	10
AH-1(3'-4') L1373875-03	11
AH-1(5'-6') L1373875-04	12
AH-2(0.5'-1.5') L1373875-05	13
AH-2(2'-3') L1373875-06	14
AH-2(3'-4') L1373875-07	15
AH-2(5'-6') L1373875-08	16
AH-2(7'-8') L1373875-09	17
AH-2(8'-9') L1373875-10	18
AH-3(0'-1') L1373875-11	19
AH-3(2'-3') L1373875-12	20
AH-4(0'-1') L1373875-13	21
AH-4(2'-3') L1373875-14	22
AH-5(0'-1') L1373875-15	23
AH-5(2'-3') L1373875-16	24
AH-6(0'-1') L1373875-17	25
AH-6(2'-3') L1373875-18	26
AH-7(0'-1') L1373875-19	27
AH-7(2'-3') L1373875-20	28
AH-8(0'-1') L1373875-21	29
AH-8(2'-3') L1373875-22	30
Qc: Quality Control Summary	31
Total Solids by Method 2540 G-2011	31
Wet Chemistry by Method 300.0	34
Volatile Organic Compounds (GC) by Method 8015D/GRO	36
Volatile Organic Compounds (GC/MS) by Method 8260B	39
Semi-Volatile Organic Compounds (GC) by Method 8015M	42
GI: Glossary of Terms	45
Al: Accreditations & Locations	46

Sc: Sample Chain of Custody

47

	O/ (())	3 0 1 1 1 1 1	,,,,,,,,			
AH-1(0.5'-1.5') L1373875-01 Solid			Collected by Andrew Garcia	Collected date/time 06/30/21 08:30	Received da 07/02/21 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
metriou	Batem	Dilation	date/time	date/time	ruidiyse	Location
Total Solids by Method 2540 G-2011	WG1701089	1	07/08/21 08:15	07/08/21 08:38	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1707461	10	07/19/21 00:15	07/19/21 03:11	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1702884	200	07/06/21 07:55	07/11/21 13:48	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1701301	20	07/06/21 07:55	07/07/21 16:37	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1702461	40	07/09/21 08:28	07/12/21 02:35	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-1(2'-3') L1373875-02 Solid			Andrew Garcia	06/30/21 08:45	07/02/21 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1701089	1	07/08/21 08:15	07/08/21 08:38	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1707461	20	07/19/21 00:15	07/19/21 03:20	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1702884	200	07/06/21 07:55	07/11/21 14:11	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1701301	20	07/06/21 07:55	07/07/21 16:56	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1702461	40	07/09/21 08:28	07/12/21 00:46	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-1(3'-4') L1373875-03 Solid			Andrew Garcia	06/30/21 09:00	07/02/21 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1701089	1	07/08/21 08:15	07/08/21 08:38	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1707461	1	07/19/21 00:15	07/19/21 03:29	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1705390	25	07/06/21 07:55	07/14/21 17:18	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1701301	8	07/06/21 07:55	07/07/21 17:15	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1702461	20	07/09/21 08:28	07/12/21 00:19	CAG	Mt. Juliet, TN
ALL 1/E' G') 1127297E 04 Colid			Collected by Andrew Garcia	Collected date/time 06/30/21 09:15	Received da 07/02/21 09	
AH-1(5'-6') L1373875-04 Solid	D : 1	D:1 ::				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1701089	1	07/08/21 08:15	07/08/21 08:38	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1707461	1	07/19/21 00:15	07/19/21 03:39	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1702884	1	07/06/21 07:55	07/11/21 08:00	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1702599	1	07/06/21 07:55	07/09/21 13:45	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1702461	1	07/09/21 08:28	07/11/21 23:51	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-2(0.5'-1.5') L1373875-05 Solid			Andrew Garcia	06/30/21 09:30	07/02/21 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1701089	1	07/08/21 08:15	07/08/21 08:38	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1707461	10	07/19/21 00:15	07/19/21 03:48	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1702884	500	07/06/21 07:55	07/11/21 14:59	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1701301	40	07/06/21 07:55	07/07/21 17:53	ADM	Mt. Juliet, TN
					0.4.0	

Semi-Volatile Organic Compounds (GC) by Method 8015M

WG1702461

20

07/09/21 08:28

07/12/21 01:13

CAG

	· · · · · · · · · · · · · · · · · · ·					
AH-2(2'-3') L1373875-06 Solid			Collected by Andrew Garcia	Collected date/time 06/30/21 09:45	Received da 07/02/21 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1701089	1	07/08/21 08:15	07/08/21 08:38	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1707461	100	07/19/21 00:15	07/19/21 03:58	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1702884	500	07/06/21 07:55	07/11/21 15:23	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1701301	40	07/06/21 07:55	07/07/21 18:11	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1702461	40	07/09/21 08:28	07/12/21 01:41	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-2(3'-4') L1373875-07 Solid			Andrew Garcia	06/30/21 10:00	07/02/21 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1701089	1	07/08/21 08:15	07/08/21 08:38	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1707461	100	07/19/21 00:15	07/19/21 04:08	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1702884	500	07/06/21 07:55	07/11/21 15:46	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1701301	40	07/06/21 07:55	07/07/21 18:30	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1702461	40	07/09/21 08:28	07/12/21 02:08	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-2(5'-6') L1373875-08 Solid			Andrew Garcia	06/30/21 10:15	07/02/21 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1701089	1	07/08/21 08:15	07/08/21 08:38	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1707461	10	07/19/21 00:15	07/19/21 04:17	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1705390	1	07/06/21 07:55	07/14/21 17:40	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1701301	1	07/06/21 07:55	07/07/21 12:29	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1702577	1	07/09/21 16:43	07/10/21 18:24	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-2(7'-8') L1373875-09 Solid			Andrew Garcia	06/30/21 10:45	07/02/21 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1701094	1	07/08/21 10:18	07/08/21 10:26	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1707461	10	07/19/21 00:15	07/19/21 04:46	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1705390	1	07/06/21 07:55	07/14/21 18:02	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1701301	1	07/06/21 07:55	07/07/21 12:49	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1702577	1	07/09/21 16:43	07/10/21 17:19	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-2(8'-9') L1373875-10 Solid			Andrew Garcia	06/30/21 11:15	07/02/21 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1701094	1	07/08/21 10:18	07/08/21 10:26	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1707461	10	07/19/21 00:15	07/19/21 04:55	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1702884	1	07/06/21 07:55	07/11/21 09:11	DWR	Mt. Juliet, TN
Valatila Osasaia Casasas da (CC/MC) ha Matha d 03000	11104704004	4	07/06/04 07 55	07/07/24 42:00	4014	NAC INTER TAI

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 8015M

WG1701301

WG1702577

07/06/21 07:55

07/09/21 16:43

07/07/21 13:08

07/10/21 19:04

ADM

CAG

Mt. Juliet, TN

	0, 22					
AH-3(0'-1') L1373875-11 Solid			Collected by Andrew Garcia	Collected date/time 06/30/21 11:30	Received da 07/02/21 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1701094	1	07/08/21 10:18	07/08/21 10:26	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1707461	5	07/19/21 00:15	07/19/21 05:05	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1702884	1	07/06/21 07:55	07/11/21 09:36	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1701301	1	07/06/21 07:55	07/07/21 13:27	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1702577	1	07/09/21 16:43	07/10/21 17:32	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-3(2'-3') L1373875-12 Solid			Andrew Garcia	06/30/21 11:45	07/02/21 09:	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
T-1-1 C-1:1-1 h. M-11-1 25 40 C 2044	WC470400.4	1	date/time	date/time	KDW	NAL INC. A TNI
Total Solids by Method 2540 G-2011	WG1701094	1	07/08/21 10:18	07/08/21 10:26	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1707461	1	07/19/21 00:15	07/19/21 05:43	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1702884 WG1701301	1 1	07/06/21 07:55	07/11/21 09:59	DWR ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1701301	1	07/06/21 07:55 07/09/21 16:43	07/07/21 13:46 07/10/21 17:45	CAG	Mt. Juliet, TN Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-4(0'-1') L1373875-13 Solid			Andrew Garcia	06/30/21 12:00	07/02/21 09:	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1701094	1	07/08/21 10:18	07/08/21 10:26	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1707461	1	07/19/21 00:15	07/19/21 06:02	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1702884	1	07/06/21 07:55	07/11/21 10:23	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1701301	1	07/06/21 07:55	07/07/21 14:05	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1702577	1	07/09/21 16:43	07/10/21 19:30	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-4(2'-3') L1373875-14 Solid			Andrew Garcia	06/30/21 13:30	07/02/21 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1701094	1	07/08/21 10:18	07/08/21 10:26	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1707461	5	07/19/21 00:15	07/19/21 06:11	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1702884	1	07/06/21 07:55	07/11/21 10:47	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1701301	1	07/06/21 07:55	07/07/21 14:24	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1702577	1	07/09/21 16:43	07/12/21 00:02	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-5(0'-1') L1373875-15 Solid			Andrew Garcia	06/30/21 14:00	07/02/21 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1701094	1	07/08/21 10:18	07/08/21 10:26	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1707461	1	07/19/21 00:15	07/19/21 06:40	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1702884	1	07/06/21 07:55	07/11/21 11:10	DWR	Mt. Juliet, TN
V-1-4:1- 0	14104704004	4	07/06/24 07:55	07/07/24 44:42	ADM	NAC 1 IN A TAIL

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 8015M

WG1701301

WG1702577

1

07/06/21 07:55

07/09/21 16:43

ADM

CAG

07/07/21 14:43

07/10/21 17:58

Mt. Juliet, TN

	JAMII LL V					Ü
AH-5(2'-3') L1373875-16 Solid			Collected by Andrew Garcia	Collected date/time 06/30/2114:30	Received da 07/02/21 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	,	
Total Solids by Method 2540 G-2011	WG1701094	1	07/08/21 10:18	07/08/21 10:26	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1707461	1	07/19/21 00:15	07/19/21 06:49	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1702884	1	07/06/21 07:55	07/11/21 11:34	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1701301	1	07/06/21 07:55	07/07/21 15:02	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1702577	1	07/09/21 16:43	07/10/21 18:11	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-6(0'-1') L1373875-17 Solid			Andrew Garcia	06/30/21 15:00	07/02/21 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1701094	1	07/08/21 10:18	07/08/21 10:26	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1707461	1	07/19/21 00:15	07/19/21 06:59	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1702884	1	07/06/21 07:55	07/11/21 11:58	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1701301	1	07/06/21 07:55	07/07/21 15:21	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1702595	1	07/09/21 16:55	07/11/21 06:13	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-6(2'-3') L1373875-18 Solid			Andrew Garcia	06/30/21 15:30	07/02/21 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1701094	1	07/08/21 10:18	07/08/21 10:26	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1707461	1	07/19/21 00:15	07/19/21 07:08	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1702884	1	07/06/21 07:55	07/11/21 12:36	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1701301	1	07/06/21 07:55	07/07/21 15:40	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1702595	1	07/09/21 16:55	07/11/21 06:27	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-7(0'-1') L1373875-19 Solid			Andrew Garcia	06/30/21 16:00	07/02/21 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1701095	1	07/08/21 09:54	07/08/21 10:14	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1707461	1	07/19/21 00:15	07/19/21 07:18	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1702884	1	07/06/21 07:55	07/11/21 13:00	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1701007	1	07/06/21 07:55	07/07/21 01:34	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1702595	1	07/09/21 16:55	07/11/21 06:41	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-7(2'-3') L1373875-20 Solid			Andrew Garcia	06/30/21 16:30	07/02/21 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1701095	1	07/08/21 09:54	07/08/21 10:14	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1707461	1	07/19/21 00:15	07/19/21 07:27	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1703082	1	07/06/21 07:55	07/10/21 19:44	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1701007	1	07/06/21 07:55	07/07/21 01:54	JAH	Mt. Juliet, TN
	14104700505	_				

Semi-Volatile Organic Compounds (GC) by Method 8015M

WG1702595

07/09/21 16:55

07/11/21 06:54

CAG

			Collected by	Collected date/time	Received date/time	
AH-8(0'-1') L1373875-21 Solid			Andrew Garcia	06/30/21 17:00	07/02/21 09:	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1701095	1	07/08/21 09:54	07/08/21 10:14	KDW	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1707467	1	07/18/21 21:00	07/19/21 04:31	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1703082	1	07/06/21 07:55	07/10/21 20:07	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1701007	1	07/06/21 07:55	07/07/21 02:15	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1702595	1	07/09/21 16:55	07/11/21 17:29	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-8(2'-3') L1373875-22 Solid			Andrew Garcia	06/30/21 17:15	07/02/21 09:	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1701095	1	07/08/21 09:54	07/08/21 10:14	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1707467	1	07/18/21 21:00	07/19/21 04:47	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1703082	1	07/06/21 07:55	07/10/21 20:31	JAH	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1701007	1	07/06/21 07:55	07/07/21 02:35	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1702595	1	07/09/21 16:55	07/11/21 07:35	CAG	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Erica McNeese Project Manager

Collected date/time: 06/30/21 08:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	83.7		1	07/08/2021 08:38	<u>WG1701089</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	752		110	239	10	07/19/2021 03:11	WG1707461

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	1440		6.03	27.8	200	07/11/2021 13:48	WG1702884
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120		07/11/2021 13:48	WG1702884

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.864		0.0130	0.0278	20	07/07/2021 16:37	WG1701301
Toluene	16.1		0.0361	0.139	20	07/07/2021 16:37	WG1701301
Ethylbenzene	24.9		0.0204	0.0695	20	07/07/2021 16:37	WG1701301
Total Xylenes	24.6		0.0245	0.181	20	07/07/2021 16:37	WG1701301
(S) Toluene-d8	100			<i>75.0-131</i>		07/07/2021 16:37	WG1701301
(S) 4-Bromofluorobenzene	108			67.0-138		07/07/2021 16:37	WG1701301
(S) 1,2-Dichloroethane-d4	100			70.0-130		07/07/2021 16:37	WG1701301

	9 1	`	7 3				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	12500		76.9	191	40	07/12/2021 02:35	WG1702461
C28-C36 Motor Oil Range	6180		13.1	191	40	07/12/2021 02:35	WG1702461
(S) o-Terphenyl	0.000	<u>J7</u>		18.0-148		07/12/2021 02:35	WG1702461

Collected date/time: 06/30/21 08:45

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	80.9		1	07/08/2021 08:38	WG1701089

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	2120		227	495	20	07/19/2021 03:20	WG1707461

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	519		6.39	29.5	200	07/11/2021 14:11	WG1702884
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120		07/11/2021 14:11	WG1702884

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.124		0.0138	0.0295	20	07/07/2021 16:56	WG1701301
Toluene	3.40		0.0383	0.147	20	07/07/2021 16:56	WG1701301
Ethylbenzene	15.3		0.0217	0.0737	20	07/07/2021 16:56	WG1701301
Total Xylenes	9.55		0.0259	0.192	20	07/07/2021 16:56	WG1701301
(S) Toluene-d8	103			75.0-131		07/07/2021 16:56	WG1701301
(S) 4-Bromofluorobenzene	116			67.0-138		07/07/2021 16:56	WG1701301
(S) 1,2-Dichloroethane-d4	105			70.0-130		07/07/2021 16:56	WG1701301

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015M

	<u> </u>	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5610		79.6	198	40	07/12/2021 00:46	WG1702461
C28-C36 Motor Oil Range	2820		13.6	198	40	07/12/2021 00:46	WG1702461
(S) o-Terphenyl	0.000	<u>J7</u>		18.0-148		07/12/2021 00:46	WG1702461

Recreined by 10CD: 10/11/2021 10:05:54 PM

SAMPLE RESULTS - 03

Collected date/time: 06/30/21 09:00 Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	80.9		1	07/08/2021 08:38	WG1701089

Cp

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	282		11.4	24.7	1	07/19/2021 03:29	WG1707461

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	72.5		0.800	3.68	25	07/14/2021 17:18	WG1705390
(S) a,a,a-Trifluorotoluene(FID)	94.6			77.0-120		07/14/2021 17:18	WG1705390

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.00551	0.0118	8	07/07/2021 17:15	WG1701301
Toluene	0.284		0.0153	0.0589	8	07/07/2021 17:15	WG1701301
Ethylbenzene	1.64		0.00869	0.0295	8	07/07/2021 17:15	WG1701301
Total Xylenes	2.31		0.0104	0.0766	8	07/07/2021 17:15	WG1701301
(S) Toluene-d8	104			75.0-131		07/07/2021 17:15	WG1701301
(S) 4-Bromofluorobenzene	108			67.0-138		07/07/2021 17:15	WG1701301
(S) 1,2-Dichloroethane-d4	103			70.0-130		07/07/2021 17:15	WG1701301

Gl

Sample Narrative:

L1373875-03 WG1701301: Elevated RL due to sample matrix.

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1570		39.8	98.9	20	07/12/2021 00:19	WG1702461
C28-C36 Motor Oil Range	810		6.77	98.9	20	07/12/2021 00:19	WG1702461
(S) o-Terphenyl	0.000	<u>J7</u>		18.0-148		07/12/2021 00:19	WG1702461

Collected date/time: 06/30/21 09:15

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	79.6		1	07/08/2021 08:38	<u>WG1701089</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	195		11.6	25.1	1	07/19/2021 03:39	WG1707461

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	7.64		0.0273	0.126	1	07/11/2021 08:00	WG1702884
(S) a,a,a-Trifluorotoluene(FID)	99.4			77.0-120		07/11/2021 08:00	WG1702884

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000706	0.00151	1	07/09/2021 13:45	WG1702599
Toluene	0.00451	<u>J</u>	0.00197	0.00756	1	07/09/2021 13:45	WG1702599
Ethylbenzene	0.00219	<u>J</u>	0.00111	0.00378	1	07/09/2021 13:45	WG1702599
Total Xylenes	0.0709		0.00133	0.00983	1	07/09/2021 13:45	WG1702599
(S) Toluene-d8	105			<i>75.0-131</i>		07/09/2021 13:45	WG1702599
(S) 4-Bromofluorobenzene	106			67.0-138		07/09/2021 13:45	WG1702599
(S) 1,2-Dichloroethane-d4	65.1	<u>J2</u>		70.0-130		07/09/2021 13:45	WG1702599

Semi-Volatile Organic Compounds (GC) by Method 8015M

	'	,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	91.2		2.02	5.02	1	07/11/2021 23:51	WG1702461
C28-C36 Motor Oil Range	65.6		0.344	5.02	1	07/11/2021 23:51	WG1702461
(S) o-Terphenyl	49.8			18.0-148		07/11/2021 23:51	WG1702461

Gl

Collected date/time: 06/30/21 09:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	81.3		1	07/08/2021 08:38	WG1701089

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	229	<u>J</u>	113	246	10	07/19/2021 03:48	WG1707461

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	848		15.9	73.0	500	07/11/2021 14:59	WG1702884
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		07/11/2021 14:59	WG1702884

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.0438	<u>J</u>	0.0273	0.0584	40	07/07/2021 17:53	WG1701301
Toluene	0.171	<u>J</u>	0.0759	0.292	40	07/07/2021 17:53	WG1701301
Ethylbenzene	0.0890	<u>J</u>	0.0430	0.146	40	07/07/2021 17:53	WG1701301
Total Xylenes	8.06		0.0514	0.379	40	07/07/2021 17:53	WG1701301
(S) Toluene-d8	102			<i>75.0-131</i>		07/07/2021 17:53	WG1701301
(S) 4-Bromofluorobenzene	112			67.0-138		07/07/2021 17:53	WG1701301
(S) 1,2-Dichloroethane-d4	104			70.0-130		07/07/2021 17:53	WG1701301

Gl

Sample Narrative:

L1373875-05 WG1701301: Non-target compounds too high to run at a lower dilution.

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3880		39.6	98.3	20	07/12/2021 01:13	WG1702461
C28-C36 Motor Oil Range	1940		6.74	98.3	20	07/12/2021 01:13	WG1702461
(S) o-Terphenyl	0.000	J7		18.0-148		07/12/2021 01:13	WG1702461

Collected date/time: 06/30/21 09:45

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	82.6		1	07/08/2021 08:38	WG1701089

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	2650		1110	2420	100	07/19/2021 03:58	WG1707461

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	1020		15.5	71.0	500	07/11/2021 15:23	WG1702884
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		07/11/2021 15:23	<u>WG1702884</u>

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.266		0.0266	0.0568	40	07/07/2021 18:11	WG1701301
Toluene	4.45		0.0739	0.284	40	07/07/2021 18:11	WG1701301
Ethylbenzene	23.9		0.0419	0.142	40	07/07/2021 18:11	WG1701301
Total Xylenes	15.5		0.0500	0.369	40	07/07/2021 18:11	WG1701301
(S) Toluene-d8	102			75.0-131		07/07/2021 18:11	WG1701301
(S) 4-Bromofluorobenzene	115			67.0-138		07/07/2021 18:11	WG1701301
(S) 1,2-Dichloroethane-d4	105			70.0-130		07/07/2021 18:11	WG1701301

Sample Narrative:

L1373875-06 WG1701301: Non-target compounds too high to run at a lower dilution.

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	11100		77.9	194	40	07/12/2021 01:41	WG1702461
C28-C36 Motor Oil Range	5350		13.3	194	40	07/12/2021 01:41	WG1702461
(S) o-Terphenyl	0.000	J7		18.0-148		07/12/2021 01:41	WG1702461

Recrived by OCD: 10/11/2021 10:05:54 PM

SAMPLE RESULTS - 07

Total Solids by Method 2540 G-2011

Collected date/time: 06/30/21 10:00

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	83.0		1	07/08/2021 08:38	WG1701089

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	3570		1110	2410	100	07/19/2021 04:08	WG1707461

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	1240		15.4	70.5	500	07/11/2021 15:46	WG1702884
(S) a,a,a-Trifluorotoluene(FID)	102			77.0-120		07/11/2021 15:46	WG1702884

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.244		0.0264	0.0564	40	07/07/2021 18:30	WG1701301
Toluene	5.86		0.0733	0.282	40	07/07/2021 18:30	WG1701301
Ethylbenzene	22.1		0.0416	0.141	40	07/07/2021 18:30	WG1701301
Total Xylenes	14.8		0.0496	0.366	40	07/07/2021 18:30	WG1701301
(S) Toluene-d8	104			75.0-131		07/07/2021 18:30	WG1701301
(S) 4-Bromofluorobenzene	113			67.0-138		07/07/2021 18:30	WG1701301
(S) 1,2-Dichloroethane-d4	104			70.0-130		07/07/2021 18:30	WG1701301

Gl

Sample Narrative:

L1373875-07 WG1701301: Non-target compounds too high to run at a lower dilution.

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	11300		77.5	193	40	07/12/2021 02:08	WG1702461
C28-C36 Motor Oil Range	5420		13.2	193	40	07/12/2021 02:08	WG1702461
(S) o-Terphenyl	0.000	J7		18.0-148		07/12/2021 02:08	WG1702461

ConocoPhillips - Tetra Tech

Collected date/time: 06/30/21 10:15

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.4		1	07/08/2021 08:38	WG1701089

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	3290		102	221	10	07/19/2021 04:17	WG1707461

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.502		0.0240	0.111	1	07/14/2021 17:40	WG1705390
(S) a,a,a-Trifluorotoluene(FID)	94.9			77.0-120		07/14/2021 17:40	WG1705390

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000910	<u>J</u>	0.000566	0.00121	1	07/07/2021 12:29	WG1701301
Toluene	0.00176	<u>J</u>	0.00158	0.00606	1	07/07/2021 12:29	WG1701301
Ethylbenzene	0.00130	<u>J</u>	0.000894	0.00303	1	07/07/2021 12:29	WG1701301
Total Xylenes	0.0106		0.00107	0.00788	1	07/07/2021 12:29	WG1701301
(S) Toluene-d8	105			<i>75.0-131</i>		07/07/2021 12:29	WG1701301
(S) 4-Bromofluorobenzene	98.7			67.0-138		07/07/2021 12:29	WG1701301
(S) 1,2-Dichloroethane-d4	97.2			70.0-130		07/07/2021 12:29	WG1701301

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015M

	'						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	35.0	<u>J6</u>	1.78	4.42	1	07/10/2021 18:24	WG1702577
C28-C36 Motor Oil Range	25.3		0.303	4.42	1	07/10/2021 18:24	WG1702577
(S) o-Terphenyl	28.4			18.0-148		07/10/2021 18:24	WG1702577

Collected date/time: 06/30/21 10:45

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	83.9		1	07/08/2021 10:26	WG1701094

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	3700		110	238	10	07/19/2021 04:46	WG1707461

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.118	J	0.0259	0.119	1	07/14/2021 18:02	WG1705390
(S) a,a,a-Trifluorotoluene(FID)	94.9			77.0-120		07/14/2021 18:02	WG1705390

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000646	0.00138	1	07/07/2021 12:49	WG1701301
Toluene	U		0.00180	0.00692	1	07/07/2021 12:49	WG1701301
Ethylbenzene	U		0.00102	0.00346	1	07/07/2021 12:49	WG1701301
Total Xylenes	U		0.00122	0.00899	1	07/07/2021 12:49	WG1701301
(S) Toluene-d8	107			75.0-131		07/07/2021 12:49	WG1701301
(S) 4-Bromofluorobenzene	97.4			67.0-138		07/07/2021 12:49	WG1701301
(S) 1,2-Dichloroethane-d4	96.9			70.0-130		07/07/2021 12:49	WG1701301

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	9.26		1.92	4.77	1	07/10/2021 17:19	WG1702577
C28-C36 Motor Oil Range	8.13		0.326	4.77	1	07/10/2021 17:19	WG1702577
(S) o-Terphenvl	39.3			18.0-148		07/10/2021 17:19	WG1702577

Received by 99D: 10/11/2021 10:05:54 PM

SAMPLE RESULTS - 10

Total Solids by Method 2540 G-2011

Collected date/time: 06/30/21 11:15

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	84.5		1	07/08/2021 10:26	WG1701094

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	4720		109	237	10	07/19/2021 04:55	WG1707461

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.933		0.0257	0.118	1	07/11/2021 09:11	WG1702884
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120		07/11/2021 09:11	<u>WG1702884</u>

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000639	0.00137	1	07/07/2021 13:08	WG1701301
Toluene	U		0.00178	0.00684	1	07/07/2021 13:08	WG1701301
Ethylbenzene	U		0.00101	0.00342	1	07/07/2021 13:08	WG1701301
Total Xylenes	0.00141	<u>J</u>	0.00120	0.00889	1	07/07/2021 13:08	WG1701301
(S) Toluene-d8	108			75.0-131		07/07/2021 13:08	WG1701301
(S) 4-Bromofluorobenzene	97.4			67.0-138		07/07/2021 13:08	WG1701301
(S) 1,2-Dichloroethane-d4	90.3			70.0-130		07/07/2021 13:08	WG1701301

Sc

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	63.7		1.91	4.74	1	07/10/2021 19:04	WG1702577
C28-C36 Motor Oil Range	46.9		0.324	4.74	1	07/10/2021 19:04	WG1702577
(S) o-Terphenyl	50.8			18.0-148		07/10/2021 19:04	WG1702577

ConocoPhillips - Tetra Tech

Collected date/time: 06/30/21 11:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	89.4		1	07/08/2021 10:26	WG1701094

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	84.8	<u>J</u>	51.4	112	5	07/19/2021 05:05	WG1707461

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0829	ВЈ	0.0243	0.112	1	07/11/2021 09:36	WG1702884
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		07/11/2021 09:36	<u>WG1702884</u>

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000577	0.00124	1	07/07/2021 13:27	WG1701301
Toluene	U		0.00161	0.00618	1	07/07/2021 13:27	WG1701301
Ethylbenzene	U		0.000911	0.00309	1	07/07/2021 13:27	WG1701301
Total Xylenes	U		0.00109	0.00804	1	07/07/2021 13:27	WG1701301
(S) Toluene-d8	107			75.0-131		07/07/2021 13:27	WG1701301
(S) 4-Bromofluorobenzene	95.3			67.0-138		07/07/2021 13:27	WG1701301
(S) 1,2-Dichloroethane-d4	96.8			70.0-130		07/07/2021 13:27	WG1701301

Semi-Volatile Organic Compounds (GC) by Method 8015M

	<u>'</u>	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.80	4.47	1	07/10/2021 17:32	WG1702577
C28-C36 Motor Oil Range	1.32	<u>J</u>	0.306	4.47	1	07/10/2021 17:32	WG1702577
(S) o-Terphenyl	40.0			18.0-148		07/10/2021 17:32	WG1702577

Gl

Collected date/time: 06/30/21 11:45

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.3		1	07/08/2021 10:26	WG1701094

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	209		10.1	21.9	1	07/19/2021 05:43	WG1707461

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0705	<u>B J</u>	0.0238	0.110	1	07/11/2021 09:59	WG1702884
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		07/11/2021 09:59	<u>WG1702884</u>

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000556	0.00119	1	07/07/2021 13:46	WG1701301
Toluene	U		0.00155	0.00595	1	07/07/2021 13:46	WG1701301
Ethylbenzene	U		0.000878	0.00298	1	07/07/2021 13:46	WG1701301
Total Xylenes	U		0.00105	0.00774	1	07/07/2021 13:46	WG1701301
(S) Toluene-d8	108			<i>75.0-131</i>		07/07/2021 13:46	WG1701301
(S) 4-Bromofluorobenzene	96.1			67.0-138		07/07/2021 13:46	WG1701301
(S) 1,2-Dichloroethane-d4	91.7			70.0-130		07/07/2021 13:46	WG1701301

	<u> </u>	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.76	4.38	1	07/10/2021 17:45	WG1702577
C28-C36 Motor Oil Range	0.760	<u>J</u>	0.300	4.38	1	07/10/2021 17:45	WG1702577
(S) o-Terphenyl	47.7			18.0-148		07/10/2021 17:45	WG1702577

Received by OCD: 10/11/2021 10:05:54 PM

SAMPLE RESULTS - 13

Total Solids by Method 2540 G-2011

Collected date/time: 06/30/21 12:00

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	99.2		1	07/08/2021 10:26	WG1701094

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	46.7		9.28	20.2	1	07/19/2021 06:02	WG1707461

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0614	ВЈ	0.0219	0.101	1	07/11/2021 10:23	WG1702884
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120		07/11/2021 10:23	WG1702884

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000475	0.00102	1	07/07/2021 14:05	WG1701301
Toluene	U		0.00132	0.00508	1	07/07/2021 14:05	WG1701301
Ethylbenzene	U		0.000749	0.00254	1	07/07/2021 14:05	WG1701301
Total Xylenes	U		0.000895	0.00661	1	07/07/2021 14:05	WG1701301
(S) Toluene-d8	107			75.0-131		07/07/2021 14:05	WG1701301
(S) 4-Bromofluorobenzene	97.6			67.0-138		07/07/2021 14:05	WG1701301
(S) 1,2-Dichloroethane-d4	93.6			70.0-130		07/07/2021 14:05	WG1701301

Semi-Volatile Organic Compounds (GC) by Method 8015M

	'	, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	12.8		1.62	4.03	1	07/10/2021 19:30	WG1702577
C28-C36 Motor Oil Range	44.2		0.276	4.03	1	07/10/2021 19:30	WG1702577
(S) o-Terphenyl	48.9			18.0-148		07/10/2021 19:30	WG1702577

Recrived by QCD: 10/11/2021 10:05:54 PM

SAMPLE RESULTS - 14

Collected date/time: 06/30/21 13:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	87.8		1	07/08/2021 10:26	WG1701094

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	316		52.4	114	5	07/19/2021 06:11	WG1707461

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0841	ВЈ	0.0247	0.114	1	07/11/2021 10:47	WG1702884
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120		07/11/2021 10:47	WG1702884

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000597	0.00128	1	07/07/2021 14:24	WG1701301
Toluene	U		0.00166	0.00640	1	07/07/2021 14:24	WG1701301
Ethylbenzene	U		0.000943	0.00320	1	07/07/2021 14:24	WG1701301
Total Xylenes	U		0.00113	0.00832	1	07/07/2021 14:24	WG1701301
(S) Toluene-d8	107			<i>75.0-131</i>		07/07/2021 14:24	WG1701301
(S) 4-Bromofluorobenzene	96.7			67.0-138		07/07/2021 14:24	WG1701301
(S) 1,2-Dichloroethane-d4	95.8			70.0-130		07/07/2021 14:24	WG1701301

Gl

	•						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.42		1.83	4.56	1	07/12/2021 00:02	WG1702577
C28-C36 Motor Oil Range	20.2		0.312	4.56	1	07/12/2021 00:02	WG1702577
(S) o-Terphenyl	51.2			18.0-148		07/12/2021 00:02	WG1702577

Recrined by OCD: 10/11/2021 10:05:54 PM

SAMPLE RESULTS - 15

Collected date/time: 06/30/21 14:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	80.3		1	07/08/2021 10:26	WG1701094

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		11.5	24.9	1	07/19/2021 06:40	WG1707461

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0676	BJ	0.0270	0.125	1	07/11/2021 11:10	WG1702884
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		07/11/2021 11:10	<u>WG1702884</u>

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000697	0.00149	1	07/07/2021 14:43	WG1701301
Toluene	U		0.00194	0.00746	1	07/07/2021 14:43	WG1701301
Ethylbenzene	U		0.00110	0.00373	1	07/07/2021 14:43	WG1701301
Total Xylenes	U		0.00131	0.00970	1	07/07/2021 14:43	WG1701301
(S) Toluene-d8	108			75.0-131		07/07/2021 14:43	WG1701301
(S) 4-Bromofluorobenzene	100			67.0-138		07/07/2021 14:43	WG1701301
(S) 1,2-Dichloroethane-d4	98.5			70.0-130		07/07/2021 14:43	WG1701301

Semi-Volatile Organic Compounds (GC) by Method 8015M

		` '	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		2.00	4.98	1	07/10/2021 17:58	WG1702577
C28-C36 Motor Oil Range	U		0.341	4.98	1	07/10/2021 17:58	WG1702577
(S) o-Terphenyl	45.1			18.0-148		07/10/2021 17:58	WG1702577

Gl

Received by 99D: 10/11/2021 10:05:54 PM

SAMPLE RESULTS - 16

Collected date/time: 06/30/21 14:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	77.6		1	07/08/2021 10:26	WG1701094

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	65.2		11.8	25.8	1	07/19/2021 06:49	WG1707461

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0822	ВЈ	0.0279	0.129	1	07/11/2021 11:34	WG1702884
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		07/11/2021 11:34	WG1702884

Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	DDI (-I)			
			WIDE (diy)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000736	0.00158	1	07/07/2021 15:02	WG1701301
Toluene	U		0.00205	0.00788	1	07/07/2021 15:02	WG1701301
Ethylbenzene	U		0.00116	0.00394	1	07/07/2021 15:02	WG1701301
Total Xylenes	U		0.00139	0.0102	1	07/07/2021 15:02	WG1701301
(S) Toluene-d8	104			75.0-131		07/07/2021 15:02	WG1701301
(S) 4-Bromofluorobenzene	96.4			67.0-138		07/07/2021 15:02	WG1701301
(S) 1,2-Dichloroethane-d4	93.6			70.0-130		07/07/2021 15:02	WG1701301

	<u>'</u>	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		2.07	5.15	1	07/10/2021 18:11	WG1702577
C28-C36 Motor Oil Range	1.38	<u>J</u>	0.353	5.15	1	07/10/2021 18:11	WG1702577
(S) o-Terphenyl	47.8			18.0-148		07/10/2021 18:11	WG1702577

Collected date/time: 06/30/21 15:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	84.3		1	07/08/2021 10:26	WG1701094

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		10.9	23.7	1	07/19/2021 06:59	WG1707461

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0931	ВЈ	0.0257	0.119	1	07/11/2021 11:58	WG1702884
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120		07/11/2021 11:58	WG1702884

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Patch
		Qualifier	MDL (dry)	KDL (dry)	Dilution	•	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000641	0.00137	1	07/07/2021 15:21	WG1701301
Toluene	U		0.00178	0.00686	1	07/07/2021 15:21	WG1701301
Ethylbenzene	U		0.00101	0.00343	1	07/07/2021 15:21	WG1701301
Total Xylenes	U		0.00121	0.00892	1	07/07/2021 15:21	WG1701301
(S) Toluene-d8	106			75.0-131		07/07/2021 15:21	WG1701301
(S) 4-Bromofluorobenzene	97.1			67.0-138		07/07/2021 15:21	WG1701301
(S) 1,2-Dichloroethane-d4	94.4			70.0-130		07/07/2021 15:21	WG1701301

Gl

	<u>'</u>	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.91	4.74	1	07/11/2021 06:13	WG1702595
C28-C36 Motor Oil Range	2.21	<u>J</u>	0.325	4.74	1	07/11/2021 06:13	WG1702595
(S) o-Terphenyl	28.3			18.0-148		07/11/2021 06:13	WG1702595

Collected date/time: 06/30/21 15:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.3		1	07/08/2021 10:26	WG1701094

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.97	21.7	1	07/19/2021 07:08	WG1707461

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0655	ВЈ	0.0235	0.108	1	07/11/2021 12:36	WG1702884
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120		07/11/2021 12:36	WG1702884

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000545	0.00117	1	07/07/2021 15:40	WG1701301
Toluene	U		0.00152	0.00583	1	07/07/2021 15:40	WG1701301
Ethylbenzene	U		0.000860	0.00292	1	07/07/2021 15:40	WG1701301
Total Xylenes	U		0.00103	0.00758	1	07/07/2021 15:40	WG1701301
(S) Toluene-d8	106			<i>75.0-131</i>		07/07/2021 15:40	WG1701301
(S) 4-Bromofluorobenzene	96.8			67.0-138		07/07/2021 15:40	WG1701301
(S) 1,2-Dichloroethane-d4	94.7			70.0-130		07/07/2021 15:40	WG1701301

Sc

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.74	4.33	1	07/11/2021 06:27	WG1702595
C28-C36 Motor Oil Range	1.45	<u>J</u>	0.297	4.33	1	07/11/2021 06:27	WG1702595
(S) o-Terphenyl	44.3			18.0-148		07/11/2021 06:27	WG1702595

Collected date/time: 06/30/21 16:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	80.9		1	07/08/2021 10:14	WG1701095

²Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		11.4	24.7	1	07/19/2021 07:18	WG1707461

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0739	ВЈ	0.0268	0.124	1	07/11/2021 13:00	WG1702884
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		07/11/2021 13:00	<u>WG1702884</u>

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000688	0.00147	1	07/07/2021 01:34	WG1701007
Toluene	U		0.00192	0.00737	1	07/07/2021 01:34	WG1701007
Ethylbenzene	U		0.00109	0.00368	1	07/07/2021 01:34	WG1701007
Total Xylenes	U		0.00130	0.00958	1	07/07/2021 01:34	WG1701007
(S) Toluene-d8	108			75.0-131		07/07/2021 01:34	WG1701007
(S) 4-Bromofluorobenzene	95.4			67.0-138		07/07/2021 01:34	WG1701007
(S) 1,2-Dichloroethane-d4	86.2			70.0-130		07/07/2021 01:34	WG1701007

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015M

9	<u>'</u>	`	, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
C10-C28 Diesel Range	U		1.99	4.95	1	07/11/2021 06:41	WG1702595	
C28-C36 Motor Oil Range	1.05	<u>J</u>	0.339	4.95	1	07/11/2021 06:41	WG1702595	
(S) o-Terphenyl	45.6			18.0-148		07/11/2021 06:41	WG1702595	

ConocoPhillips - Tetra Tech

SAMPLE RESULTS - 20

Collected date/time: 06/30/21 16:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	81.7		1	07/08/2021 10:14	<u>WG1701095</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		11.3	24.5	1	07/19/2021 07:27	WG1707461

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0602	ВЈ	0.0265	0.122	1	07/10/2021 19:44	WG1703082
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120		07/10/2021 19:44	WG1703082

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

Toluene U 0.00188 0.00723 1 07/07/2021 01:54 WG17	
Benzene U 0.000676 0.00145 1 07/07/2021 01:54 WG17 Toluene U 0.00188 0.00723 1 07/07/2021 01:54 WG17	<u>1</u>
Toluene U 0.00188 0.00723 1 07/07/2021 01:54 WG17	
	<u>701007</u>
Ethylbenzene U 0.00107 0.00362 1 07/07/2021 01:54 WG17	<u>701007</u>
•	701007
Total Xylenes U 0.00127 0.00940 1 07/07/2021 01:54 WG17	701007
(S) Toluene-d8 111 75.0-131 07/07/2021 01:54 WG17	701007
(S) 4-Bromofluorobenzene 94.8 67.0-138 07/07/2021 01:54 <u>WG17</u>	701007
(S) 1,2-Dichloroethane-d4 79.9 70.0-130 07/07/2021 01:54 <u>WG17</u>	701007

Semi-Volatile Organic Compounds (GC) by Method 8015M

	'	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U	<u>J3 J6</u>	1.97	4.89	1	07/11/2021 06:54	WG1702595
C28-C36 Motor Oil Range	0.465	<u>J</u>	0.335	4.89	1	07/11/2021 06:54	WG1702595
(S) o-Terphenyl	39.5			18.0-148		07/11/2021 06:54	WG1702595

28 of 50

SAMPLE RESULTS - 21

Collected date/time: 06/30/21 17:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.6		1	07/08/2021 10:14	WG1701095

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	13.8	<u>J</u>	9.72	21.1	1	07/19/2021 04:31	WG1707467

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0614	ВЈ	0.0229	0.106	1	07/10/2021 20:07	WG1703082
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120		07/10/2021 20:07	WG1703082

Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000520	0.00111	1	07/07/2021 02:15	WG1701007
Toluene	U		0.00145	0.00557	1	07/07/2021 02:15	WG1701007
Ethylbenzene	U		0.000821	0.00279	1	07/07/2021 02:15	WG1701007
Total Xylenes	U		0.000980	0.00724	1	07/07/2021 02:15	WG1701007
(S) Toluene-d8	108			75.0-131		07/07/2021 02:15	WG1701007
(S) 4-Bromofluorobenzene	96.9			67.0-138		07/07/2021 02:15	WG1701007
(S) 1,2-Dichloroethane-d4	84.8			70.0-130		07/07/2021 02:15	WG1701007

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015M

	•	, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	15.2		1.70	4.23	1	07/11/2021 17:29	WG1702595
C28-C36 Motor Oil Range	25.5		0.290	4.23	1	07/11/2021 17:29	WG1702595
(S) o-Terphenyl	42.7			18.0-148		07/11/2021 17:29	WG1702595

SAMPLE RESULTS - 22

Collected date/time: 06/30/21 17:15

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.6		1	07/08/2021 10:14	WG1701095

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.43	20.5	1	07/19/2021 04:47	WG1707467

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0411	ВЈ	0.0222	0.102	1	07/10/2021 20:31	WG1703082
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120		07/10/2021 20:31	WG1703082

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000490	0.00105	1	07/07/2021 02:35	WG1701007
Toluene	U		0.00136	0.00525	1	07/07/2021 02:35	WG1701007
Ethylbenzene	U		0.000773	0.00262	1	07/07/2021 02:35	WG1701007
Total Xylenes	U		0.000924	0.00682	1	07/07/2021 02:35	WG1701007
(S) Toluene-d8	106			75.0-131		07/07/2021 02:35	WG1701007
(S) 4-Bromofluorobenzene	94.6			67.0-138		07/07/2021 02:35	WG1701007
(S) 1,2-Dichloroethane-d4	84.3			70.0-130		07/07/2021 02:35	WG1701007

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.10	1	07/11/2021 07:35	WG1702595
C28-C36 Motor Oil Range	1.32	<u>J</u>	0.281	4.10	1	07/11/2021 07:35	WG1702595
(S) o-Terphenyl	42.3			18.0-148		07/11/2021 07:35	WG1702595

Cn

Gl

Page 76 of 111

Total Solids by Method 2540 G-2011

L1373875-01,02,03,04,05,06,07,08

Method Blank	(MR)
MCthod Didnik	(1710)

(MB) R3677388-1 07/08/21	l 08:38				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	%		%	%	
Total Solids	0.000				

L1373875-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1373875-01 07/08/21 08:38 • (DUP) R3677388-3 07/08/21 08:38

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	83.7	82.5	1	1.43		10

Ss

⁶Qc

Laboratory Control Sample (LCS)

(LCS) R3677388-2 07/08/21 08:38

,	Spike Amount L	LCS Result	LCS Rec.	Rec. Limits
Analyte	% %	%	%	%
Total Solids	50.0 5	50.0	100	85.0-115

Page 77 of 111

Total Solids by Method 2540 G-2011

L1373875-09,10,11,12,13,14,15,16,17,18

Ν/	lothod	Blank	(N/IR)
I۷	ietiiou	DIGITA	(1710)

(MB) R3677439-1 C	07/08/21 10:26			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

²Tc

L1373875-10 Original Sample (OS) • Duplicate (DUP)

(OS) I 1373875-10	07/08/21 10:26	(DUP) R3677439-3	07/08/2110:26
(00) = .0,00,0.0	07700720.20	(20.) (100.)	0770072110120

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	84.5	84.2	1	0.258		10

⁴Cn

6 OC

Laboratory Control Sample (LCS)

(LCS) R3677439-2 07/08/2110:26

(LC3) K3077439-2 077067	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Page 78 of 111

Total Solids by Method 2540 G-2011

L1373875-19,20,21,22

(MB) R3677408-1 C	07/08/21 10:14			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

³Ss

L1374280-04 Original Sample (OS) • Duplicate (DUP)

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	85.1	81.6	1	4.23		10

⁶Qc

Laboratory Control Sample (LCS)

(LCS) R3677408-2	07/08/21	10:14
------	--------------	----------	-------

(LC3) R3077408-2 07708.	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

ConocoPhillips - Tetra Tech

Page 79 of 111

Wet Chemistry by Method 300.0

L1373875-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

Method Blank (MB)

(MB) R3681266-1 07/19/21	02:14			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1373875-11 Original Sample (OS) • Duplicate (DUP)

(OS) L1373875-11	07/19/21 05:05	• (DUP) R3681266-3 07/19/21 05:14	

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	84.8	83.1	5	2.04	J	20

[†]Cn

⁶Qc

L1373875-12 Original Sample (OS) • Duplicate (DUP)

(OS) L1373875-12 07/19/21 05:43 • (DUP) R3681266-6 07/19/21 05:52

(00, 2.0, 00, 0 .2 0, 1.0, 2.	Original Result (dry)		Dilution	DUP RPD	DUP RPD Limits	
Analyte	mg/kg	mg/kg		%		%
Chloride	209	206	1	1.45		20

Laboratory Control Sample (LCS)

(LCS) R3681266-2 07/19/21 02:23

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		
Chloride	200	195	97.7	90.0-110		

L1373875-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1373875-11 07/19/21 05:05 • (MS) R3681266-4 07/19/21 05:24 • (MSD) R3681266-5 07/19/21 05:33

(03) E13/30/3-11 07/13/21 03:03 4 (MIS) K3001200-4 07/13/21 03:24 4 (MIS) K3001200-3 07/13/21 03:33												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	559	84.8	610	622	93.9	96.0	5	80.0-120			1.88	20

Page 80 of 111

Wet Chemistry by Method 300.0

L1373875-21,22

20

Method Blank (MB)

Chloride

(MB) R3680991-1 07/18/21				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	- II		9.20	20.0

L1373875-22 Original Sample (OS) • Duplicate (DUP)

(OS) L1373875-22 07/19/21	(OS) L1373875-22 07/19/21 04:47 • (DUP) R3680991-3 07/19/21 05:04										
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits					
Analyte	mg/kg	mg/kg		%		%					

0.000

L1375623-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1375623-01_07/19/21_07:32 • (DUP) R3680991-6_07/19/21_07:48

(00) 210/0020 01 07/10/21	Original Result (dry)		Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	455	430	1	5.69		20

Laboratory Control Sample (LCS)

(LCS) R3680991-2 07/18/21 23:56

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	204	102	90.0-110	

Sc

L1373875-22 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 1373875-22 07/19/21 04:47 • (MS) P3680991-4 07/19/21 05:20 • (MSD) P3680991-5 07/19/21 05:37

(O3) LI3/30/3-22 O/	/13/21 04.47 • (IVIS)	K3000331-4 0	7/13/21 03.20 •	(IVI3D) K3000	331-3 07/13/2	105.57						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	512	U	534	536	104	105	1	80.0-120			0.252	20

Page 81 of 111

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1373875-01,02,04,05,06,07,10,11,12,13,14,15,16,17,18,19

Method Blank (MB)

(MB) R3679412-2 07/11/2	1 07:12			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	0.0301	<u>J</u>	0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3679412-1 07/11/2	1 06:25				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.88	107	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			118	77.0-120	

L1373801-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1373801-01 07/11/21 13:24 • (MS) R3679412-3 07/11/21 16:10 • (MSD) R3679412-4 07/11/21 16:45

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg				%	%		%			%	%
TPH (GC/FID) Low Fraction	550	81.7	294	348	27.3	34.2	100	10.0-151			16.7	28
(S) a,a,a-Trifluorotoluene(FID)					110	112		77.0-120				

Page 82 of 111

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1373875-20,21,22

Method Blank (MB)

(MB) R3678292-3 07/10/	21 17:28			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	0.0348	<u>J</u>	0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3678292-2 07/10/	/21 15:00				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.81	106	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			118	77.0-120	

L1373986-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 1373986-03	07/11/21 02:03	(MS) R3678292-4	07/11/21 03:38 . (1	MSDI	P3678292-5	$0.7/11/21 0.4 \cdot 0.2$
(US) LIS/3300-US	07/11/21 02.03	(IVIS) RSU/0232=4	07/11/21 03.30 • (1	141301	N30/0232-3	07/11/21 04.02

(03) 21373300 03 07711/21 02.03 - (1113) 10370232 4 07711/21 03.00 - (11132) 10370232 3 07711/21 04.02												_	
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	1
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	L
TPH (GC/FID) Low Fraction	1100	280	945	1180	60.5	81.8	200	10.0-151			22.1	28	
(S) a,a,a-Trifluorotoluene(FID)					111	115		77.0-120					

ConocoPhillips - Tetra Tech

Page 83 of 111

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1373875-03,08,09

Method Blank (MB)

(MB) R3680107-2 07/14/2	21 16:24				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	92.1			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3680107-1 07/14/2	1 15:28				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.55	101	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			99.4	77.0-120	

Page 84 of 111

Volatile Organic Compounds (GC/MS) by Method 8260B

L1373875-19,20,21,22

Method Blank (MB)

	MB Result				
	MID Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	108			75.0-131	
(S) 4-Bromofluorobenzene	95.9			67.0-138	
(S) 1,2-Dichloroethane-d4	85.0			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3676612-1 07/06/2	21 19:03				r
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	l
Benzene	0.125	0.126	101	70.0-123	
Ethylbenzene	0.125	0.115	92.0	74.0-126	
Toluene	0.125	0.127	102	75.0-121	
Xylenes, Total	0.375	0.347	92.5	72.0-127	
(S) Toluene-d8			104	75.0-131	
(S) 4-Bromofluorobenzene			97.2	67.0-138	
(S) 1.2-Dichloroethane-d4			92.9	70 0-130	

L1373875-19 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1373875-19 07/07/21 01:34 • (MS) R3676612-3 07/07/21 05:40 • (MSD) R3676612-4 07/07/21 06:01

\ /	٠,		,	,								
	Spike Amount (dry)	Original Result (dry)		MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.184	U	0.228	0.233	124	126	1	10.0-149			1.92	37
Ethylbenzene	0.184	U	0.214	0.220	116	119	1	10.0-160			2.72	38
Toluene	0.184	U	0.233	0.236	126	128	1	10.0-156			1.26	38
Xylenes, Total	0.552	U	0.616	0.632	111	114	1	10.0-160			2.60	38
(S) Toluene-d8					108	105		<i>75.0-131</i>				
(S) 4-Bromofluorobenzene					95.4	95.9		67.0-138				
(S) 1,2-Dichloroethane-d4					85.5	86.9		70.0-130				

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Page 85 of 111

L1373875-01,02,03,05,06,07,08,09,10,11,12,13,14,15,16,17,18

Method Blank (MB)

(MB) R3677409-3 07/07/2	21 10:12				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	109			75.0-131	
(S) 4-Bromofluorobenzene	95.3			67.0-138	
(S) 1,2-Dichloroethane-d4	96.8			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	(LCS) R3677409-1	07/07/21 08:56 •	(LCSD) R3677409-2	07/07/21 09:15
--	------------------	------------------	-------------------	----------------

	•	,									7
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	ľ
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	L
Benzene	0.125	0.109	0.109	87.2	87.2	70.0-123			0.000	20	8
Ethylbenzene	0.125	0.115	0.118	92.0	94.4	74.0-126			2.58	20	
Toluene	0.125	0.116	0.117	92.8	93.6	75.0-121			0.858	20	9
Xylenes, Total	0.375	0.342	0.361	91.2	96.3	72.0-127			5.41	20	ľ
(S) Toluene-d8				103	103	75.0-131					L
(S) 4-Bromofluorobenzene				94.6	102	67.0-138					
(S) 1,2-Dichloroethane-d4				99.7	101	70.0-130					

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Page 86 of 111

L1373875-04

Method Blank (MB)

(MB) R3680076-3 07/09/2	21 12:03				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	108			75.0-131	
(S) 4-Bromofluorobenzene	97.8			67.0-138	
(S) 1,2-Dichloroethane-d4	70.5			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3680076-1 07/09/2110:47	• (LCSD) R3680076-2	07/09/21 11:06
--------------------------------	---------------------	----------------

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.125	0.147	0.145	118	116	70.0-123			1.37	20	
Ethylbenzene	0.125	0.131	0.127	105	102	74.0-126			3.10	20	
Toluene	0.125	0.139	0.140	111	112	75.0-121			0.717	20	
Xylenes, Total	0.375	0.387	0.357	103	95.2	72.0-127			8.06	20	
(S) Toluene-d8				104	105	75.0-131					
(S) 4-Bromofluorobenzene				102	101	67.0-138					
(S) 1,2-Dichloroethane-d4				79.1	77.6	70.0-130					

Page 87 of 111

Semi-Volatile Organic Compounds (GC) by Method 8015M

L1373875-01,02,03,04,05,06,07

Method Blank (MB)

(MB) R3678190-1 07/11/21	l 19:45			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C36 Motor Oil Range	U		0.274	4.00
(S) o-Terphenyl	72.1			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3678190-2 07/1	1/21 19:59				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	39.3	78.6	50.0-150	
(S) o-Terphenyl			79.9	18.0-148	

Page 88 of 111

Semi-Volatile Organic Compounds (GC) by Method 8015M

L1373875-08,09,10,11,12,13,14,15,16

Method Blank (MB)

(MB) R3678045-1 07/10/21 16:13						
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/kg		mg/kg	mg/kg		
C10-C28 Diesel Range	U		1.61	4.00		
C28-C36 Motor Oil Range	U		0.274	4.00		
(S) o-Terphenyl	46.7			18.0-148		

Laboratory Control Sample (LCS)

(LCS) R3678045-2 07/10					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	32.1	64.2	50.0-150	
(S) o-Terphenyl			65.5	18.0-148	

(OS) L1373875-08 07/10/21 18:24 • (MS) R3678045-3 07/10/21 18:37 • (MSD) R3678045-4 07/10/21 18:50

(00) 21070070 00 07/10/2	, ,	Original Result (dry)	•	•	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	55.0	35.0	40.8	43.5	10.7	15.5	1	50.0-150	<u>J6</u>	<u>J6</u>	6.30	20
(S) o-Terphenyl					32.9	33.7		18.0-148				

ConocoPhillips - Tetra Tech

Page 89 of 111

Semi-Volatile Organic Compounds (GC) by Method 8015M

L1373875-17,18,19,20,21,22

Method Blank (MB)

(MB) R3678000-1 07/10/2112:33					
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C36 Motor Oil Range	U		0.274	4.00	
(S) o-Terphenyl	45.9			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3678000-2 07/10	LCS) R3678000-2 07/10/21 12:46						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	mg/kg	mg/kg	%	%			
C10-C28 Diesel Range	50.0	25.7	51.4	50.0-150			
(S) o-Terphenyl			53.6	18.0-148			

L1373875-20 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1373875-20 07/11/21 06:54 • (MS) R3678000-3 07/11/21 07:08 • (MSD) R3678000-4 07/11/21 07:22

⁹ Sc	

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	60.6	U	28.6	23.1	47.3	39.5	1	50.0-150	<u>J6</u>	<u>J3 J6</u>	21.3	20
(S) o-Terphenyl					42.0	25.5		18.0-148				

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

Pace Analy	utical National	12065 Lebanon	Rd Mount Julia	t TN 37122
race Allai	yticai Nationai		i Ku Mourit Julie	l, IIN 3/122

i accinitation		a	
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ^{1 6}	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

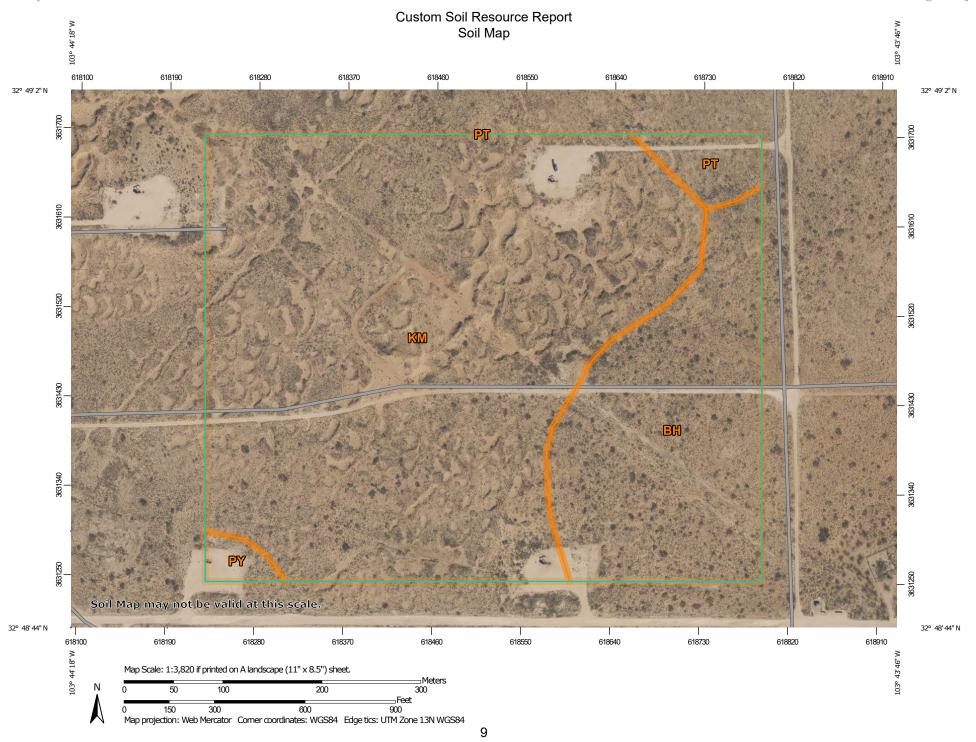
D027

TE	Tetra Tech, Inc.	NA.			901	Midl Te	and, I (43	Il Street Texas 7 2) 682-4 2) 682-3	797 4559	01	0							44	15.4				-5		
Client Name:	Conoco Phillips	Site Manage	er:	Chri	stian	Llull														REG					
Project Name:	MCA 4B Header Release	Contact Info):		ail: Ch			ull@tetr	rated	ch.con	1		1	((Cir.	cle	or:	Spe 	ecit	fy IV	leth	od	No.)	11
Project Location: (county, state)	Lea County, New Mexico	Project #:		212	C-MD	-025	37																		
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 797	01											6										list)		
Receiving Laboratory:	Pace Analytical	Sampler Sig	gnature:	,	Andre	ew Ga	arcia						O-MRO)		Se Hg	oe oe							attached		
Comments: COPTETF	A Acctnum											8260B	DRO - ORO		a la	5		24	8270C/625				ees)		
		SAMF		MA	TRIX	PR		RVATIV THOD	VE	ERS	(N/N)	BTEX 82	GRO -		Ag As Ba Cd C	Ag As ba	olatiles	8260B / 624	Vol.	809	(\$0		E	Balance	
LAB # (LAB USE ONLY)	SAMPLE IDENTIFICATION	DATE	TIME	WATER	SOIL	HCL	HNO ₃	ICE		# CONTAINERS	FILTERED	BTEX 8021B		PAH 8270C	Total Metals A	Volati	TCLP Semi Volatiles	GC/MS Vol. 8	Semi	PCB's 8082 / 608	PLM (Asbestos)	38	Chloride Sulfate General Water Che	Anion/Cation Balan	HOLD
	AH-1 (0.5'-1.5')	06/30/21	830		Х			X		-1	N	Х	X	*			П	1				Х		Mark.	
	AH-1 (2'-3')	06/30/21	845	П	X			X		1	N	X	X									Х			-
	AH-1 (3'-4')	06/30/21	900		X			X		1	N	X	X							П		X			-
	AH-1 (5'-6')	06/30/21	915	П	X			X		1	N	X	X							П		X			-
	AH-2 (0.5'-1.5')	06/30/21	930		X	n (3)		X		1	N	X	X									X		**	
	AH-2 (2'-3')	06/30/21	945		X	90		X		1	N	Х	Х							П		X			
7	AH-2 (3'-4')	06/30/21	1000	П	X			X		1-	Ν	Х	X	7								X			-
	AH-2 (5'-6')	06/30/21	1015		X			X		1	Ν	Х	X						7			X			1
and Stan	AH-2 (7'-8')	06/30/21	1045		X			X		1	Ν	X	X									X			
	AH-2 (8'-9')	06/30/21	1115		X			X		1	N	Х	X								7	X			-
Relinquished by: Andrew Garcia A	Date: Time:	Received by	n	1	7-	Dat	te: -21			Time:	5	-		US	E	R	X	RKS: Stand							1
Relinquished by:	Date: Time: 7-1-21 14:00	Received by:	V 42		7	Dat	te: 21	- }		Time:		Samp	ole Te	mper	ature								48 hr.	72 hr.	
Relinquished by:	Date: Time:	Received by:	A)	<u>'</u>	7	Dat	te:	21	1	Time:										ges Au			Repo	rt	4.4

(Circle) HAND DELIVERED FEDEX UPS Tracking #:

11	27	14	75	ŀ	Page	93	of 1	1.
L	(2)	20	75 Page		2	of	3	

TŁ	Tetra Tech, Inc.	N. T		1	901		nd, T (432)	Stree Texas) 682-	797	01 9	00								. V							
Client Name:	Conoco Phillips	Site Manag	jer:	Chi	ristiar	n Llull						T				,	ANA	ALY	SIS	REC	UE	ST				
Project Name:	MCA 4B Header Release	Contact Inf	o:			hristian (512) 56			rated	ch.cor	n	1,	1	(Circ	ele	or	Sp	eci 	fy I	leth	hod	No).)	1	
Project Location: (county, state)	Lea County, New Mexico	Project #:				D-0253						1														
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 797	01	and the									1														
Receiving Labora		Sampler Si	gnature:		Andr	ew Gar	cia					1	- MRO)		Se Hg								ched list)			
Comments: CC	DPTETRA Acctnum							7-7-2				8260B	DRO - ORO - MRO)		Cr Pb				0C/625	34 3 A		3 T	(see attached			
		SAMI	PLING	MA	ATRIX			VATI	VE	(0)	-	- ×			Ba (se	1601	27				mistry	eo		
LAB#	SAMPLE IDENTIFICATION	YEAR	3: 2021				I I	HOD		NER	(Y/N)	l f			Ag As	es	Semi Volatiles	20208	i. Vol. 8	/ 608	(so)	0.	Sulfate ater Che	Balan		
(LAB USE)		DATE	TIME	WATER	SOIL	HCL	ICE	NONE		CONTAINERS	FILTERED	BTEX 8021B		PAH 8270C	otal Metals 'CLP Metals	rclp Volatiles	٥	RCI GCMS Vol	GC/MS Semi.	PCB's 8082 /	NORM PLM (Asbestos)	38	General Water Chemistry	Anion/Cation Balance	эH 8015R	НОГР
	AH-3 (0'-1')	06/30/21	1130	>	X		X			1	N	m F	X	<u>a</u> 1	F	F	ř	BC C	0	<u> </u>	N G	δ Ĉ	5 8	A I	TP	Ĭ.
	AH-3 (2'-3')	06/30/21	1145		X		X			1	N	Х	X						+	H		X		\forall		\exists
	AH-4 (0'-1')	06/30/21	1200	П	X		X		1	1	N	X	X									X		H		1
	AH-4 (2'-3')	06/30/21	1330	\Box	X		X		1	1	N	X	X									X	+	H		1
	AH-5 (0'-1')	06/30/21	1400		Х		X		1	1	N	X	X	1					+			X				H.
	AH-5 (2'-3')	06/30/21	1430	П	х		X			1	N	Х	X									X				
	AH-6 (0'-1')	06/30/21	1500		X		X			1	N	х	X		+							X		\forall		1
	AH-6 (2'-3')	06/30/21	1530		X		X		1	1	N	Х	X									X				1
	AH-7 (0'-1')	06/30/21	1600		X		X		1	1	N	Х	X						1			х				1
elinquished by:	AH-7 (2'-3')	06/30/21	1630		X		X		T	1	N	X	X									Х				1
	Date: Time: 1-Jul-21 2:05 Date: Time:	Received by:	N	/	7-	Date:	21		12	,-0	0		AB I				X	RKS: Stand	ard		±					
elinquished by:	N 7-1-21 14:00	Feder	/		7-	Date: 1-2	1	1		ime:		Sampl	e Tem	perat	ure					me Da			B hr.	72 hr.		
	Date: Time:	Received by:	1/1	1	-	Date:	1:	2.9	T	ime:	ar					[TRRP	Repor	rt		
		ORIGINA	L COPY					4	PT	50		(Circle	e) HAI	ND D	ELIVE	EREC) F	EDEX	(UI	PS '	Fracki	ıg #:				
eleased to Imag	ing: 11/17/2021 9:32:59 AM	16 1	224	28	35	32	.7	4.1	52																	


Te		Tetra Tech, Inc.				90	٨	/lidla	nd, 7 (432	Stree Texas) 682-	79701 4559																		
Client Name:		Conoco Phillips	Site Manag	ger:	Cl	nristi	an Li	lull					T						ANA	LY	SIS	RE	QU	EST		4	Y	7.	
Project Name:		MCA 4B Header Release	Contact In	fo:		nail:				@tetr	ratech	.com	1	1		((Circ	cle	or	Sp	eci	fy I	Me	tho	1 be	No.	1	11	
Project Location (county, state)		Lea County, New Mexico	Project #:			2C-N																							
Invoice to:	7	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79	701										1													list)			
Receiving Labo	oratory:	Pace Analytical	Sampler Si	gnature:		And	drew	Gar	cia						ORO - MRO)		Se Hg	n								attached lis			
Comments:	COPTETR	RA Acctnum											8260B	5)	1						C/625				S	ees)			
	100	4.4		PLING	М	ATR	IIX			RVATIV		2	(T/N)	10	SRO - DRO		Ag As Ba Cd Cr Pb		atiles		8260B / 624 i. Vol. 8270C/				ate TDS	Chemistry	lance		
LAB# (LAB USE ONLY)		SAMPLE IDENTIFICATION	DATE	R: 2021	WATER	SOIL		HCL	ICF	NONE		CONTAINERS	BTEX 8021B	TPH TX1005 (Ext to		AH 8270C	rotal Metals Ag	CLP Volatiles	CLP Semi Volatiles	100	GC/MS Vol. 8260 GC/MS Semi. Vol.	CB's 8082 / 608	NORM	PLM (Asbestos)	Chloride Sulfate	eneral Water (Anion/Cation Balance TPH 8015R		НОГР
		AH-8 (0'-1')	06/30/21	1700	>	X			X				V X	F	X	A I	ř	F	ř	Œ (5 0	P	ž	<u>ا</u> ا	0	Ö	A F	H	H
		AH-8 (2'-3')	06/30/21	1715	F	X			×			1	N X		X									>	<				-
					F																								
									9											7				- 1					
				200-2																			3 T S						
elinquished by: ndrew Garcia elinquished by:	An	Date: Time: 1-Jul-21 2:00 Date: Time:	Received by:	W)).	7-1)ate:	1		Tin 12:	ne:	Sa		AB ON	LY		RE	MAF	Stan	dard	ame C	Day	24 hr.	48	3 hr.	72 hr.		
Alinquished by:		7-(-2) K(-\omega) Date: Time:	Received by:	X	V	1-		-2 Pate:	. 2		Tin	fan								Spec	ial Re		imits	or TR		Report			
			ORIGINA	L COPY						7.7.	175		(C	rcle) HA	ND [DELIV	ERE	D F	EDE	X L	IPS	Tra	cking	#: _			_	

Released to Imaging: 11/17/2021 9:32:59 AM

5016 1227 2133

Pace Analytical National Center for Testing & Inn	ovation	
Cooler Receipt Form		
Client: (OPTETRA	11373	875
Cooler Received/Opened On:76/2 / 21 Temperature	e: 2.8	
Received By: Bobby Acherry		
Signature: 5000		
		PRETERING
Receipt Check List	Yes	No
Receipt Check List COC Seal Present / Intact?	Yes	No
Receipt creek List	Yes	No
COC Seal Present / Intact?	Yes	No
COC Seal Present / Intact? COC Signed / Accurate?	Yes	No
COC Seal Present / Intact? COC Signed / Accurate? Bottles arrive intact?	Yes	No
COC Seal Present / Intact? COC Signed / Accurate? Bottles arrive intact? Correct bottles used?	Yes	No
COC Seal Present / Intact? COC Signed / Accurate? Bottles arrive intact? Correct bottles used? Sufficient volume sent?	Yes	No

APPENDIX F NMSLO Seed Mixture Details

MAP LEGEND

å

Ŷ

Δ

Water Features

Transportation

00

Background

Spoil Area

Stony Spot

Wet Spot

Other

Rails

US Routes

Major Roads

Local Roads

Very Stony Spot

Special Line Features

Streams and Canals

Interstate Highways

Aerial Photography

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

-

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

ဖ

Blowout

 \boxtimes

Borrow Pit

Ж

Clay Spot

 \Diamond

Closed Depression

Ÿ

Gravel Pit

..

Gravelly Spot

0

Landfill

٨

Lava Flow

Marsh or swamp

2

Mine or Quarry

0

Miscellaneous Water

0

Perennial Water
Rock Outcrop

į.

Saline Spot

. .

Sandy Spot

_

Severely Eroded Spot

Λ

Sinkhole

Ø.

Sodic Spot

Slide or Slip

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 17, Jun 8, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Feb 7, 2020—May 12, 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
ВН	Berino-Cacique association, hummocky	14.9	23.7%
КМ	Kermit soils and Dune land, 0 to 12 percent slopes	45.6	72.5%
PT	Pyote loamy fine sand	1.6	2.6%
PY	Pyote soils and Dune land	0.7	1.1%
Totals for Area of Interest		62.9	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or

landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Lea County, New Mexico

BH—Berino-Cacique association, hummocky

Map Unit Setting

National map unit symbol: dmpg Elevation: 3,000 to 4,400 feet

Mean annual precipitation: 10 to 13 inches Mean annual air temperature: 60 to 62 degrees F

Frost-free period: 190 to 205 days

Farmland classification: Not prime farmland

Map Unit Composition

Berino and similar soils: 50 percent Cacique and similar soils: 40 percent Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Berino

Setting

Landform: Plains

Landform position (three-dimensional): Rise

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Sandy eolian deposits derived from sedimentary rock over

calcareous sandy alluvium derived from sedimentary rock

Typical profile

A - 0 to 10 inches: fine sand

Btk - 10 to 60 inches: sandy clay loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 40 percent

Gypsum, maximum content: 1 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 2.0

Available water capacity: Moderate (about 8.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7c

Hydrologic Soil Group: B

Ecological site: R042XC003NM - Loamy Sand

Hydric soil rating: No

Description of Cacique

Setting

Landform: Plains

Landform position (three-dimensional): Rise

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Calcareous eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 7 inches: fine sand
Bt - 7 to 28 inches: sandy clay loam
Bkm - 28 to 38 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 20 to 40 inches to petrocalcic

Drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 40 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 2.0

Available water capacity: Low (about 3.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7c

Hydrologic Soil Group: C

Ecological site: R042XC004NM - Sandy

Hydric soil rating: No

Minor Components

Kermit

Percent of map unit: 4 percent

Ecological site: R042XC005NM - Deep Sand

Hydric soil rating: No

Maljamar

Percent of map unit: 3 percent

Ecological site: R077CY028TX - Limy Upland 16-21" PZ

Hydric soil rating: No

Palomas

Percent of map unit: 2 percent

Ecological site: R042XC003NM - Loamy Sand

Hydric soil rating: No

Dune land

Percent of map unit: 1 percent

Hydric soil rating: No

KM—Kermit soils and Dune land, 0 to 12 percent slopes

Map Unit Setting

National map unit symbol: dmpx Elevation: 3,000 to 4,400 feet

Mean annual precipitation: 10 to 15 inches Mean annual air temperature: 60 to 62 degrees F

Frost-free period: 190 to 205 days

Farmland classification: Not prime farmland

Map Unit Composition

Kermit and similar soils: 46 percent

Dune land: 44 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kermit

Setting

Landform: Dunes

Landform position (two-dimensional): Shoulder, backslope, footslope

Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear, concave

Across-slope shape: Convex

Parent material: Calcareous sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: fine sand C - 8 to 60 inches: fine sand

Properties and qualities

Slope: 5 to 12 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Excessively drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): Very high (20.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 3 percent

Gypsum, maximum content: 1 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 2.0

Available water capacity: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: A

Ecological site: R042XC022NM - Sandhills

Hydric soil rating: No

Description of Dune Land

Setting

Landform: Dunes

Landform position (two-dimensional): Shoulder, backslope, footslope

Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear, concave

Across-slope shape: Convex

Typical profile

A - 0 to 6 inches: fine sand C - 6 to 60 inches: fine sand

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8e

Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Palomas

Percent of map unit: 3 percent

Ecological site: R042XC003NM - Loamy Sand

Hydric soil rating: No

Pyote

Percent of map unit: 3 percent

Ecological site: R042XC003NM - Loamy Sand

Hydric soil rating: No

Wink

Percent of map unit: 2 percent

Ecological site: R042XC003NM - Loamy Sand

Hydric soil rating: No

Maljamar

Percent of map unit: 2 percent

Ecological site: R042XC003NM - Loamy Sand

Hydric soil rating: No

PT—Pyote loamy fine sand

Map Unit Setting

National map unit symbol: dmqp Elevation: 3,000 to 3,900 feet

Mean annual precipitation: 10 to 12 inches
Mean annual air temperature: 60 to 62 degrees F

Frost-free period: 190 to 200 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Pyote and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pyote

Setting

Landform: Plains

Landform position (three-dimensional): Rise

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 25 inches: loamy fine sand Bt - 25 to 60 inches: fine sandy loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Negligible

Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 5 percent

Gypsum, maximum content: 1 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 2.0

Available water capacity: Low (about 5.3 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: A

Ecological site: R042XC003NM - Loamy Sand

Hydric soil rating: No

Minor Components

Maljamar

Percent of map unit: 8 percent

Ecological site: R042XC003NM - Loamy Sand

Hydric soil rating: No

Palomas

Percent of map unit: 7 percent

Ecological site: R042XC003NM - Loamy Sand

Hydric soil rating: No

PY—Pyote soils and Dune land

Map Unit Setting

National map unit symbol: dmqr Elevation: 3,000 to 4,400 feet

Mean annual precipitation: 10 to 15 inches
Mean annual air temperature: 60 to 64 degrees F

Frost-free period: 190 to 220 days

Farmland classification: Not prime farmland

Map Unit Composition

Pyote and similar soils: 46 percent

Dune land: 44 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pyote

Setting

Landform: Depressions

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 30 inches: fine sand

Bt - 30 to 60 inches: fine sandy loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Negligible

Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 5 percent

Gypsum, maximum content: 1 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 2.0

Available water capacity: Low (about 5.1 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: A

Ecological site: R042XC003NM - Loamy Sand

Hydric soil rating: No

Description of Dune Land

Setting

Landform: Dunes

Landform position (two-dimensional): Backslope, shoulder

Landform position (three-dimensional): Side slope

Down-slope shape: Linear, convex Across-slope shape: Convex

Typical profile

A - 0 to 6 inches: fine sand C - 6 to 60 inches: fine sand

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8e

Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Kermit

Percent of map unit: 5 percent

Ecological site: R042XC022NM - Sandhills

Hydric soil rating: No

Maljamar, fine sand

Percent of map unit: 3 percent

Ecological site: R042XC003NM - Loamy Sand

Hydric soil rating: No

Wink

Percent of map unit: 2 percent

Ecological site: R042XC003NM - Loamy Sand

Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

NMSLO Seed Mix

Sandy (S)

SANDY (S) SITES SEED MIXTURE:

COMMON NAME	VARIETY	APPLICATION RATE (PLS/Acre)	DRILL BOX
Grasses:			
Sand bluestem	Elida, VNS, So.	2.0	F
Little bluestem	Cimarron, Pastura	3.0	F
Black grama	VNS, Southern	1.0	D
Sand dropseed	VNS, Southern	4.0	\mathbf{S}
Plains bristlegrass	VNS, Southern	2.0	D
Forbs:			À .
Firewheel (Gaillardia)	VNS, Southern	1.0	B D
Annual Sunflower	VNS, Southern	1.0	D
Shrubs: Fourwing Saltbush	VNS, Southern	1.0	F
I out wing Saitbush	VIIIS, Southern - 5	1.0	
	Total PLS/a	cre 16.0	8 8

S = Small seed drill box, D = Standard seed drill box, F = Fluffy seed drill box VNS = Variety Not Stated, PLS = Pure Live Seed

- Seed mixes should be provided in bags separating seed types into the three categories: small (S), standard (D) and fluffy (F).
- VNS, Southern Seed should be from a southern latitude collection of this species.
- Double seed application rate for broadcast or hydroseeding.
- If one species is not available, contact the SLO for an approved substitute; alternatively the SLO may require other species proportionately increased.
- Additional information on these seed species can be found on the USDA Plants Database website at http://plants.usda.gov.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 55185

CONDITIONS

Operator:	OGRID:
CONOCOPHILLIPS COMPANY	217817
600 W. Illinois Avenue	Action Number:
Midland, TX 79701	55185
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
chensley	None	11/17/2021