Received by OCD: 2/18/2021 2:15:09 PM

February 18, 2021

Mr. Cory Smith New Mexico Oil Conservation Division 1000 Rio Brazos Road Aztec, NM 87410

RE: 2020 Annual Groundwater Report Hilcorp Energy Company Flora Vista 1 – 3RP-173 Incident #: nCS1907338841 San Juan County, New Mexico

Dear Mr. Smith:

APPROVED

By Nelson Velez at 3:01 pm, Dec 28, 2021

Review of 2020 Annual Groundwater Report: Content satisfactory

1. Continue quarterly sampling from monitoring wells MW-1 – MW-5 to examine BTEX, dissolved iron and dissolved manganese in 2021

2. Continue annual sampling of DW-1 and DW-2 in 2021

3. Submit the Annual Monitoring Report to the OCD no later than March 31, 2022

Hilcorp Energy Company (Hilcorp) presents the following annual report discussing ground water monitoring activities conducted at the Flora Vista 1 natural gas production well (Site) during 2020. Ground water was impacted by an earthen dehydrator pit. Hilcorp acquired the Site from ConocoPhillips in April 2017. The Site is located on private property in Unit Letter F, Section 22, Township 30N, Range 12W, of San Juan County, NM (Figure 1). This report represents the results for 2020 monitoring events. The site consists of a gas well and associated equipment and installations. A detailed Site Plan is provided as Figure 2. A full history of this site can be found in the annual reports previously submitted.

Methodology

Quarterly groundwater monitoring was conducted by Hilcorp on March 26, June 10, August 28 and November 5. A depth to groundwater was measurable in MW-1 in June and August 2020 but there was not enough water to collect a sample during those quarters. Groundwater elevations are detailed in Table 1.

Prior to sample collection, wells were purged of up to three well volumes. If three well volumes could not be purged, wells were purged until dry and allowed to recharge prior to sampling. While bailing each well, groundwater parameter data, including temperature, pH, conductivity, dissolved and oxidation/reduction potential were collected using a calibrated multi parameter meter. Field parameters are summarized in Table 2.

Collected groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped under chain of custody documentation to Pace Analytical Services in Mount Juliet, TN. The samples were analyzed for the presence of BTEX by EPA Method 8260 and dissolved iron and manganese according to EPA method 6010.

On June 9, 2020 Hilcorp collected a groundwater sample from a down gradient domestic irrigation well DW-1, located at #32 CR 3581. Another groundwater sample was collected from DW-2, located at 34 CR 3581 on June 9, 2020. Dissolved iron and manganese were added to the analyses for these well samples in addition to BTEX constituents. Well records for these two down gradient wells have been compared to on-site monitor wells and are believed to be completed in the same aquifer as the Site. The wells have been sampled on an annual basis since 2009 (see Table 3).

Results

All constituents tested from domestic wells DW-1 and DW-2 were recorded at concentrations below the respective laboratory reporting limits (LRLs). Groundwater collected from the Site monitor wells exceeded the NMWQCC standards for the following constituents:

March 2020

- The concentration of dissolved iron from MW-5 were 9.16 mg/L
- The concentration of dissolved manganese in MW-4 and MW-5 were 2.39 mg/L and 0.67 mg/L, respectively
- The concentration of Benzene in MW-1 and MW-5 were 0.0196 mg/L and 0.0171 mg/L, respectively

June 2020

- The concentrations of dissolved manganese from MW-4 and MW-5 were 3.29 mg/L and 5.12 mg/L, respectively
- The concentrations of dissolved Iron from MW-5 was 15.5 mg/L

August 2020

- The concentration of Benzene from MW-5 were 0.0196 mg/L
- The concentration of Xylenes from MW-5 were 0.910 mg/L
- The concentrations of dissolved iron from MW-5 were 10.5 mg/L
- The concentrations of dissolved manganese from MW-4 and MW-5 were 3.22 mg/L and 7.92 mg/L, respectively

November 2020

- The concentrations of Benzene from MW-1 and MW-5 were 0.0426 mg/L and 0.0141 mg/L, respectively
- The concentrations of Dissolved Iron from MW-5 was3.49 mg/L
- The concentrations of Dissolved Manganese from MW-1, MW-4 and MW-5 were 2.25 mg/L, 3.56 mg/L and 3.19 mg/L, respectively

A summary of the historical groundwater laboratory analytical results is presented in Table 3 and the 2020 laboratory reports are included in Attachment 1.

Conclusions/Recommendations

Based on 2020 quarterly monitoring results, a downward trend for BTEX constituents in Site monitor wells shows a diminishing hydrocarbon dissolved-phase plume. Dissolved iron and manganese continue to be detected in some Site wells at concentrations in excess of groundwater standards for these constituents.

Non-detect concentrations of BTEX constituents and dissolved iron and manganese in the down gradient domestic irrigation wells DW-1 and DW-2 serve to delineate the Site contaminant plume with respect to documented COCs and support evidence that the plume is confined to the Site and stable and diminishing. The shallow domestic irrigation wells, operated only during irrigation season, are completed in the same shallow aquifer as Site monitor wells and therefore are representative of Off-site, down-gradient groundwater quality.

Continued quarterly sampling is recommended, as purging the monitoring well enhances oxygen content and natural attenuation. Based on the stability of the Site dissolved-phase groundwater plume, Hilcorp proposes continuing quarterly sampling for monitoring well MW-1 – MW-5 to monitor BTEX, dissolved iron and dissolved

manganese constituents for compliance with NMWQCC standards for eight consecutive quarters. At that time, final closure will be requested. Annual sampling of DW-1 and DW-2 is also recommended for 2021.

If you have any questions or comments regarding this report, do not hesitate to contact me at (505) 324-5128 or by email <u>Jdeal@hilcorp.com</u>.

Kind Regards,

Jennifer Deal

Jennifer Deal Environmental Specialist Hilcorp Energy Company – L48 West

Attachments:

Figures 1 & 2 Table 1 – Ground Water Elevations Table 2 – Field Parameter Results Table 3 – Petroleum Hydrocarbon Groundwater Analytical Results Attachment 1 – Analytical Reports Received by OCD: 2/18/2021 2:15:09 PM

Source: USGS 7.5 Minute Quad "Farmington, New Mexico"

HILCORP ENERGY COMPANY FARMINGTON, NEW MEXICO FARMINGTON B-COM No. 1E

11207521-00 Jan 21, 2019

SITE LOCATION MAP

FIGURE 1

ConocoPhillips High Resolution Aerial Imagery

HILCORP ENERGY COMPANY FARMINGTON, NEW MEXICO FARMINGTON B-COM No. 1E

SITE PLAN

TABLE 1 WELL CONSTRUCTION INFORMATION AND GROUNDWATER ELEVATIONS

FLORA VISTA #1 SAN JUAN COUNTY, NEW MEXICO HILCORP ENERGY COMPANY

		Top of Casing	Screened		Depth to	Groundwater
Well ID	Total Depth (ft)	Elevation (1)	Interval	Sample Date	Groundwater	Elevation (1)
		Elevation (1)	(ft bgs)	(/00 /00 00	(ft BTOC)	
				6/20/2003	NM	NM
				9/23/2003	17.03	77.35
				12/16/2003	20.11	74.27
				3/16/2004	23.69	70.69
				6/21/2004	19.92	74.46
				9/30/2004	16.82	77.56
				12/13/2004	20.40	73.98
				3/22/2005	24.32	70.06
				6/22/2005	NM	NM
				10/24/2005	NM	NM
				12/13/2005	21.24	73.14
				3/22/2006	24.75	69.63
				6/22/2006	20.48	73.90
				10/20/2006	19.13	75.25
		94.38		12/13/2006	21.24	73.14
				11/9/2007	19.71	74.67
				1/15/2008	NM	NM
				3/19/2008	24.35	70.03
				7/23/2008	19.89	74.49
				10/21/2008	19.48	74.90
				1/28/2009	23.96	70.42
				9/30/2009	18.16	76.22
				6/10/2010	21.64	72.74
				9/27/2010	19.31	75.07
	26.02		11.02 - 26.02	12/14/2010	21.41	72.97
				3/17/2011	24.95	69.43
				6/24/2011	22.55	71.83
				9/29/2011	18.37	76.01
				12/14/2011	20.63	73.75
				3/9/2012	24.12	70.26
				6/7/2012	23.08	70.88
				9/19/2012	18.94	75.02
MW-1				12/13/2012	21.22	72.74
				3/20/2013	24.79	69.17
				6/12/2013	22.51	71.45
				9/11/2013	18.34	75.62
				12/13/2013	21.53	72.43
				3/19/2014	25.26	68.70
				6/17/2014	21.55	72.41
		93.96		9/18/2014	19.58	74.38
				12/18/2014		ccessible
				3/19/2015	25.18	68.78
				6/18/2015	23.56	70.40

.

Well ID	Total Depth (ft)	Top of Casing Elevation (1)	Screened Interval (ft bqs)	Sample Date	Depth to Groundwater (ft BTOC)	Groundwater Elevation (1)		
				9/17/2015	21.85	72.11		
				12/3/2015	22.65	71.31		
				3/31/2016*	26.02	67.94		
				6/20/2016	23.52	70.44		
				9/6/2016	20.98	72.98		
				11/29/2016	21.90	72.06		
				3/9/2017	24.72	69.24		
				6/15/2017	23.90	70.06		
				9/27/2017	21.57	72.39		
				12/5/2017	22.30	71.66		
				3/15/2018	DRY			
				6/27/2018	DRY			
						9/6/2018	22.75	71.21
							12/20/2018	23.10
	26.02	93.96	11.02 - 26.02	3/6/2019	25.20	68.76		
				6/12/2019	25.82	68.14		
				9/6/2019	23.26	70.70		
				12/9/2019	23.01	70.95		
				3/16/2020	25.62	68.34		
				6/10/2020	26.11	67.85		
				8/28/2020	26.11	67.85		
				11/5/2020	21.89	72.07		

Well ID	Total Depth (ft)	Top of Casing Elevation (1)	Screened Interval	Sample Date	Depth to Groundwater	Groundwater Elevation (1)
		Lievation (1)	(ft bgs)		(ft BTOC)	
				10/21/2008	20.71	76.39
				1/28/2009	22.75	74.35
				9/30/2009	18.83	78.27
				6/11/2010	22.09	75.01
				9/27/2010	20.12	76.98
		97.1		12/14/2010	NM	NM
				3/17/2011	NM	NM
				6/24/2011	22.50	74.60
				9/29/2011	18.95	75.43
				12/14/2011	21.79	75.31
				3/9/2012	25.60	71.50
				6/7/2012	22.46	74.54
				9/19/2012	17.70	79.30
				12/13/2012	22.43	74.57
				3/20/2013	26.49	70.51
				6/12/2013	22.13	74.87
				9/11/2013	17.95	79.05
				12/13/2013	22.78	74.22
	21.25		10.05 07.05	3/19/2014	26.99	70.01
	31.35		12.35 - 27.35	6/17/2014	20.31	76.69
				9/18/2014	19.87	77.13
		97.00		12/18/2014	23.00	74.00
MW-2				3/19/2015	26.92	70.08
				6/18/2015	23.24	73.76
				9/17/2015	22.78	74.22 72.77
				12/3/2015	24.23	68.80
				3/31/2016 6/20/2016	28.20 25.67	71.33
				9/6/2016	23.57	73.43
				11/29/2016	23.69	73.43
				3/9/2017	26.70	70.30
				6/15/2017		ccessible
				9/27/2017	23.84	73.16
				12/5/2017		ccessible
				3/15/2018	27.65	69.35
				6/27/2018	26.36	70.64
				9/6/2018	25.03	71.97
				12/20/2018	25.20	71.80
				3/7/2019	27.51	69.49
				6/13/2019	27.43	69.57
				9/6/2019	25.45	71.55
				12/10/2019	25.19	71.81
	31.35	97.00	12.35 - 27.35	3/26/2020	28.29	68.71
				6/10/2020	27.59	69.41
				8/28/2020	25.31	71.69
				11/5/2020	24.17	72.83

Well ID	Total Depth (ft)	Top of Casing	Screened Interval	Sample Date	Depth to Groundwater	Groundwater		
		Elevation (1)	(ft bgs)	·	(ft BTOC)	Elevation (1)		
				10/21/2008	17.92	74.98		
				1/28/2009	21.53	71.37		
				9/30/2009	16.43	76.47		
				6/10/2010	19.71	73.19		
				9/27/2010	17.81	75.09		
		92.9		12/14/2010	19.61	73.29		
				3/17/2011	23.32	69.58		
				6/24/2011	20.55	72.35		
				9/29/2011	16.84	77.54		
				12/14/2011	19.13	73.77		
				3/9/2012	22.51	70.39		
				6/7/2012	20.93	71.50		
				9/19/2012	17.48	74.95		
				12/13/2012	19.78	72.65		
				3/20/2013	23.18	69.25		
				6/12/2013	20.68	71.75		
				9/11/2013	16.90	75.53		
				12/13/2013	20.11	72.32		
				3/19/2014	23.64	68.79		
				6/17/2014	19.85	72.58		
				9/18/2014	18.01	74.42		
	30.87			12/18/2014		ccessible		
			11 07 0/ 07	3/19/2015	23.55	68.88		
MW-3		30.87	30.87			11.87 - 26.87	6/18/2015	21.84
						9/17/2015	20.18	72.25
					12/3/2015	21.10	71.33	
					3/31/2016	24.81	67.62	
						6/20/2016	21.66	70.77
		92.43		9/6/2016	19.18	73.25		
				11/29/2016	20.39	72.04		
				3/9/2017	23.35	69.08		
				6/15/2017	22.03	70.40		
				9/27/2017		ccessible		
				12/5/2017	20.89	71.54		
				3/15/2018	24.28	68.15		
				6/27/2018	22.42	70.01		
				9/6/2018	21.16	71.27		
				12/20/2018	21.60	70.83		
				3/6/2019 6/12/2019	24.13	68.30		
				9/5/2019	23.71	68.72		
					21.50	70.93		
				12/10/2019	21.55	70.88		
				3/16/2020	24.61	67.82		
				6/10/2020	23.80	68.63		
				8/27/2020	21.41	71.02		
				11/5/2020	20.27	72.16		

Well ID	Total Depth (ft)	Top of Casing Elevation (1)	Screened Interval (ft bgs)	Sample Date	Depth to Groundwater (ft BTOC)	Groundwater Elevation (1)			
			(IL DQS)	10/21/2008	18.06	75.54			
				1/28/2009	24.55	69.05			
				9/30/2009	17.89	75.71			
				6/10/2010	21.02	72.58			
				9/27/2010	18.93	74.67			
		93.6		12/14/2010	21.04	72.56			
				3/17/2011	24.58	69.02			
				6/24/2011	21.80	71.80			
				9/29/2011	17.94	76.44			
				12/14/2011	20.28	73.32			
				3/9/2012	23.70	69.90			
				6/7/2012	22.19	70.98			
				9/19/2012	18.60	74.57			
				12/13/2012	20.96	72.21			
				3/20/2013	24.38	68.79			
				6/12/2013	21.81	71.36			
				9/11/2013	18.89	74.28			
				12/13/2013	21.28	71.89			
				3/19/2014	24.88	68.29			
				6/17/2014	21.21	71.96			
				9/18/2014	19.16	74.01			
				12/18/2014	21.41	71.76			
	30.42			3/19/2015	24.80	68.37			
MW-4			11.42 - 26.42	6/18/2015	23.09	70.08			
							9/17/2015	21.37	71.80
							12/3/2015	22.29	70.88
				3/31/2016	26.05	67.12			
				6/20/2016	22.95	70.22			
		93.17		9/6/2016	20.40	72.77			
				11/29/2016	21.59	71.58			
				3/9/2017	24.58	68.59			
				6/15/2017	23.40	69.77			
				9/27/2017	21.25	71.92			
				12/5/2017	22.05	71.12			
				3/15/2018	25.54	67.63			
				6/27/2018	23.67	69.50			
				9/6/2018	22.29	70.88			
				12/20/2018	22.75	70.42			
				3/6/2019	25.33	67.84			
				6/12/2019	24.93	68.24			
				9/5/2019	22.71	70.46			
				12/9/2019	22.68	70.49			
				3/16/2020	25.84	67.33			
				6/10/2020	24.93	68.24			
				8/27/2020	22.51	70.66			
				11/5/2020	21.34	71.83			

.

Well ID	Total Depth (ft)	Top of Casing Elevation (1)	Screened Interval (ft bgs)	Sample Date	Depth to Groundwater (ft BTOC)	Groundwater Elevation (1)		
				9/17/2015	21.59	72.23		
				12/3/2015	22.41	71.41		
				3/31/2016	26.18	67.64		
				6/20/2016	23.18	70.64		
				9/6/2016	20.67	73.15		
				11/29/2016	21.72	72.10		
		93.82		3/9/2017	25.04	68.78		
				6/15/2017	23.61	70.21		
				9/27/2017	Well ina	ccessible		
				12/5/2017	21.96	71.86		
				3/15/2018	25.55	68.27		
MW-5	29.68		15-30	6/27/2018	23.93	69.89		
				9/6/2018	22.54	71.28		
							12/20/2018	22.84
				3/7/2019	25.39	68.43		
				6/13/2019	24.75	69.07		
				9/6/2019	22.78	71.04		
				12/10/2019	22.84	70.98		
				3/26/2020	26.17	67.65		
				6/10/2020	25.25	68.57		
				8/28/2020	22.87	70.95		
				11/5/2020	21.21	72.61		

Notes:

(1) - surface elevation based on an arbitrary datum of 100 feet set at the gas well head

bgs - below ground surface BTOC - below top of casing

ft = feet

NM = Not measured

PSH - phase separated hydrocarbons

TABLE 2 FIELD PARAMETER RESULTS

FLORA VISTA #1 SAN JUAN COUNTY, NEW MEXICO HILCORP ENERGY COMPANY

Well ID	Sample Date	Temperature	рН	TDS	Conductivity	DO	ORP	Volume
	I	(°C)		(g/L)	(uS/cm)	(mg/L)	(mV)	(gallons)
	3/31/2016		No	parameters or sa	mple collected du	e to low well volu		
	6/20/2016	16.70	6.34		1,070	0.41	-132.7	0.25
	9/7/2016	15.55	6.30	0.027	37	9.16	-66.6	1.50
	3/9/2017				mple collected due			
	6/15/2017		No		mple collected due	e to low well volu		
	12/5/2017	15.07	6.94	4.785	7,364	4.69	-183.5	0.50
	3/15/2018				mple collected du			
	6/27/2018		No	parameters or sa	mple collected du	e to low well volu	ume.	
MW-1	9/6/2018	16.08	7.10		7,138	2.51	-117.9	0.50
	3/6/2019	14.60	7.63	0.640	1,260		-40.8	0.25
	6/12/2019		No	parameters or sa	mple collected du	e to low well volu	ume.	
	9/6/2019	21.30	6.99	1.220	2,430		-4.0	1.25
	12/9/2019		6.25	1.110	2,230	0.60	-17.8	1.00
	3/16/2020	22.40	6.33	1.820	3,630	8.08	-14.1	
	6/10/2020		No		mple collected du	e to low well volu		•
	8/28/2020				mple collected du			
	11/5/2020	14.70	6.65	1.880	3,750	4.80	-12.6	
	3/31/2016				s taken due to lov	wwell volume		ł
	6/20/2016	17.00	6.40	No parameter	870	2.32	-104.0	1.50
	9/7/2016	15.00		0.571	879	3.67	-104.0	
			6.57	0.571	879 909			4.00
	11/29/2016	14.78	7.21			4.51	-17.1	
	3/9/2017	15.04		Darameters or sa	nple collected du			2.00
	3/15/2018	15.24	7.06		977	0.93	56.3	2.00
	6/27/2018	1/ 05	7.00	No parameter	s taken due to lov		0.00	0.50
MW-2	9/6/2018	16.05	7.30		929	1.15	-0.80	3.50
	3/7/2019	19.40	6.96	0.510	1,020		-23.7	2.25
	6/13/2019	20.60	6.62	0.500	1,000		-10.2	2.00
	9/6/2019	21.00	6.77	0.520	1,030		-20.8	3.00
	12/10/2019		6.36	0.550	1,120	0.36	-23.3	3.00
	3/26/2020	16.40	6.18	0.530	1,060	8.47	-9.1	
	6/10/2020	16.50	6.37	0.500	1,000	2.39	-15.1	
	8/28/2020	14.70	6.67	0.500	1,010	2.21	-12.9	
	11/5/2020	17.90	6.08	0.490	960	2.30	-7.0	
	3/31/2016	14.68	7.13	0.510	800	4.66	-13.0	2.50
	6/20/2016	14.90	7.05		750	2.02	83.2	4.00
	9/7/2016	14.19	6.02	0.467	719	5.55	12.5	5.00
	11/29/2016	13.68	7.41	NM	725	5.03	-11.4	
	3/9/2017	14.44	7.06	0.675	1,038	1.38	-199.9	
	6/15/2017	13.90	7.67	0.470	723	4.06	-79.1	1.00
	12/5/2017	12.80	7.10	0.513	723	2.09	-135.4	4.00
	3/15/2018	14.54	7.10	0.015	702	2.09	59.2	2.50
			7.12					
MW-3	6/27/2018	15.30			680	2.58	-16.8	3.75
	9/6/2018	14.81	7.49		639	4.77	-20.0	4.00
	3/6/2019		7.30	0.380	770		-21.6	2.5
	6/12/2019	19.40	6.91	0.360	740		-57.0	2.00
	9/5/2019	20.00	7.15	0.360	720		-29.4	3.25
	12/10/2019		6.36	0.390	780	1.36	-1.9	3.00
	3/16/2020	19.60	6.44	0.380	780	8.65	-25.2	
	6/10/2020	17.60	6.2	0.380	760	2.77	-22.8	
	8/27/2020	24.10	6.43	0.590	1,180	1.46	-10.7	
	11/5/2020	14.40	6.43	0.400	800	4.45	-14.3	

.

	Sampla Data	Temperature	الم	TDS	Conductivity	DO	ORP	Volume
Well ID	Sample Date	(°C)	рН	(g/L)	(uS/cm)	(mg/L)	(mV)	(gallons)
	3/31/2016	15.60	6.98	0.700	1.030	5.73	-47.0	2.25
	6/20/2016	15.20	6.79		1,040	1.06	-60.8	3.50
	9/7/2016	14.55	6.40	0.655	1,008	2.48	-59.8	4.50
	11/29/2016	13.58	7.16		903	3.04	-80.9	
	3/9/2017	14.45	6.96	0.753	1,159	1.69	-133.5	
	6/15/2017	13.63	7.00	1.769	2,721	5.00	-114.3	3.50
	12/5/2017	13.88	6.84	1.721	2,647	1.13	-135.7	4.00
	3/15/2018	15.04	7.04		1,180	-0.06	-100.2	2.25
	6/27/2018	15.21	6.80		1,315	0.55	-79.0	3.00
MW-4	9/6/2018	15.15	7.11		1,394	1.05	-73.1	4.00
	3/6/2019	15.90	7.21	0.620	1,260		-7.5	2.50
	6/12/2019	19.80	6.66	0.710	1,410		6.9	2.50
	9/5/2019	18.10	7.04	0.530	1,070		2.7	3.50
	12/9/2019		6.10	0.770	1,550	0.00	3.8	3.00
	3/16/2020	13.90	6.48	0.660	1,310	6.03	7.2	
	6/9/2020	16.70	6.33	0.550	1,060	1.85	16.1	
	8/27/2020	22.00	6.47	0.510	1,050	1.45	14.6	
	11/5/2020	14.10	6.09	0.500	1,000	1.76	18.9	
	3/31/2016	16.16	7.13	0.600	980	4.74	-97.0	1.75
	6/20/2016	15.90	6.88		1,030	0.68	-99.7	3.25
	9/7/2016	14.96	6.34	0.599	918	1.51	-130.2	4.50
	3/9/2017	15.29	7.35	0.793	1,255	8.83	-124.9	
	6/15/2017	14.56	7.06	3.143	4,842	2.19	-132.6	2.00
	12/5/2017	15.11	6.76	0.706	1,086	0.52	-160.5	2.25
	3/15/2018	14.70	6.75		2,400	0.39	-9.2	0.50
	6/27/2018			No parameter	s taken due to lov	v well volume.		
MW-5	9/6/2018	16.47	7.17		1,460	1.65	-125.0	1.00
	3/7/2019	19.60	6.92	0.480	940		0.3	0.75
	6/13/2019	19.50	6.58	1.460	2,930		0.3	1.00
	9/6/2019	26.00	6.50	1.000	2,000		17.5	2.00
	12/10/2019		6.53	0.240	490	0.47	-3.4	2.00
	3/26/2020	16.10	6.01	0.400	780	9.37	33.1	
	6/10/2020	14.50	5.99	1.400	2,810	1.69	26.3	
	8/28/2020	19.10	6.19	1.610	3,190	1.15	12.2	
	11/5/2020	18.10	6.14	0.880	1,780	3.65	11.4	

Notes:

g/L - grams per liter

uS/cm - microsiemens per centimeter

mg/L - milligrams per liter

°C - degrees Celcius

DO - dissolved oxygen

mV - millivolts

ORP - oxidation-reduction potential

TDS - total dissolved solids

-- - data not collected

.

TABLE 3 PETROLEUM HYDROCARBON GROUNDWATER ANALYTICAL RESULTS

FLORA VISTA #1 SAN JUAN COUNTY, NEW MEXICO HILCORP ENERGY COMPANY

			111	LCORP ENERG		-		
Well ID	Sample ID	Sample Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)	lron (dissolved) (mg/L)
NMWQCC Stand	lards			0.010	0.75	0.75	0.62	1.0
	MW-1	6/20/2003	(orig)	1.7	0.3	0.49	5.09	
	MW-1	9/23/2003	(orig)	7.5	0.02	0.66	9.22	
	MW-1	12/16/2003	(orig)	7.93	0.01	1.18	0.864	
	MW-1	3/16/2004	(orig)	6.86	ND	1.16	8.47	
	MW-1	6/21/2004	(orig)	4.14	ND	0.43	3.12	
	MW-1	9/30/2004	(orig)	9.08	0.03	1.41	9.98	
	MW-1	12/13/2004	(orig)	8.52	ND	1.34	9.39	
	MW-1	3/22/2005	(orig)	4.55	ND	0.85	5.95	
	MW-1	6/22/2005	(orig)		0.02188			
	MW-1	10/24/2005	(orig)	6.39	ND	1.01	7.416	
	MW-1	12/13/2005	(orig)	6.17	ND	1.01	7.57	
	MW-1	3/22/2006	(orig)	3.58	ND	0.77	5.84	
	MW-1	6/22/2006	(orig)	3.1	ND	0.5	3.5	
	MW-1	10/20/2006	(orig)	6.6	0.01	1.22	8.91	
	MW-1	12/13/2006	(orig)	4.23	0.01	1.09	8.13	
	MW-1	3/27/2007	(orig)	2.37	0.007	0.504	3.749	
	MW-1	6/25/2007	(orig)	2.87	0.14	0.51	3.89	
	MW-1	11/9/2007	(orig)	5.6	< 0.0007	0.91	6.8	
	MW-1	1/15/2008	(orig)	4.2	< 0.0007	0.89	5.7	
	MW-1	3/19/2008	(orig)	2.7	< 0.005	0.59	4.7	
	MW-1	7/23/2008	(orig)	2	< 0.005	0.38	1.4	
	MW-1	10/21/2008	(orig)	4.5	< 0.005	0.63	5.3	
	MW-1	1/28/2009	(orig)	4	< 0.005	0.88	8.7	
	MW-1	9/30/2009	(orig)	4.2	0.0016	0.53	5.1	2.08
	MW-1	6/10/2010	(orig)	1.7	0.0012	0.33	0.99	0.126
	MW-1	9/27/2010	(orig)	3.2	0.002	0.53	4.2016	7.73
	MW-1	12/14/2010	(orig)	3.2	0.0012	0.62	5.3016	4.13
	MW-1	3/17/2011	(orig)	1.7	0.0037	0.48	4.3092	1.11
	GW-74926-062411-PG-01	6/24/2011	(orig)	2.1	0.0025	0.494	2.03	< 0.1
	GW-74926-062411-PG-02	6/24/2011	(Duplicate)	1.97	0.0026	0.458	1.94	
	GW-074926-092911-CM-009	9/29/2011	(orig)	2.44	< 0.005	0.519	3.65	25.2
	GW-074926-121411-CB-MW-1	12/14/2011	(orig)	2.31	0.0055	0.508	3.93	25.4
	GW-074926-3912-CB-MW-1	3/9/2012	(orig)	1.59	< 0.001	0.636	5.04	25.3
	GW-074926-060712-CB-MW-1	6/7/2012	(orig)	1.77	0.127	0.182	0.633	21.4
MW-1	GW-074926-091912-JP-MW-1	9/19/2012	(orig)	1.52	< 0.020	0.414	2.49	19
	GW-074926-121312-CM-MW-1	12/13/2012	(orig)	2.02	< 0.025	0.809	5.02	23.8
	GW-074926-032013-CM-MW-1	3/20/2013	(orig)	0.182	< 0.002	0.0406	0.0914	9.39
	GW-074926-061213-JR-MW1	6/12/2013	(orig)	0.698	< 0.001	0.160	0.873	12.8
	GW-074926-091113-CM-MW1	9/11/2013	(orig)	1.05	< 0.020	0.831	5.1	18.0
	GW-074926-121313-CM-MW-1	12/13/2013	(orig)	0.591	0.0015	0.670	1.79	25.4

Table 3 - Groundwater Analytical Results

Well ID	Sample ID	Sample Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)	Iron (dissolved) (mg/L)	
NMWQCC Standa	ards	•		0.010	0.75	0.75	0.62	1.0	
	GW-074926-031914-CK-MW-1	3/19/2014	(orig)	0.0822	< 0.001	0.039	0.271		
	GW-074926-061714-CK-MW-1	6/17/2014	(orig)	0.522	< 0.001	0.189	0.398	17.4	
	GW-074926-091814-CB-MW-1	9/18/2014	(orig)	0.849	< 0.001	0.299	1.23	23.4	
		12/18/2014				structed and inacc			
		3/19/2015		suffiencient volu	me				
	GW-074926-061815-CB-MW-1	6/18/2015	(orig)	0.213	< 0.001	0.116	0.691	5.72	
	GW-074926-061815-CB-DUP	6/18/2015	(Duplicate)	0.17	< 0.001	0.0684	0.533		
	GW-074926-091715-CK-MW-1	9/17/2015	(orig)	0.0673	< 0.001	0.0859	0.362	4.22	
	GW-074926-12315-CB-MW-1	12/3/2015	(orig)	0.0908	< 0.001	0.0612	0.138	2.69	
		3/31/2016			N	lo sample due to ir	suffiencient volu	me	
	GW-074926-062016-SP-MW-1	6/20/2016	(orig)	0.834	< 0.025	0.533	2.06	40.8	
	GW-074926-090716-SP-MW-1	9/7/2016	(orig)	0.525	< 0.020	0.416	1.62	17.6	
		10/25/2016				ISCO Injection-15%	PersulfOx solution	on	
		3/9/2017		No sample due to insuffiencient volume					
	GW-074926-061517-CN-MW-1	6/15/2017	(orig)	0.0371	<1.0	0.0404	0.157		
	GW-11145982-092717-SP-MW-1	9/27/2017	(orig)	0.0231	<1.0	0.0306	0.118	24.2	
	GW-11145982-120517-SP-SP-1	12/5/2017	(orig)	0.288	<1.0	0.444	1.07	19.9	
		3/15/2018	No sample due to insuffiencient volume						
		6/27/2018			N	lo sample due to ir	nsuffiencient volu	me	
	GW-11145982-090618-CN-MW-1	9/6/2018	(orig)	0.0313	<1.0	0.1730	0.365	11.70	
	MW-1	12/20/2018	(orig)	0.0827	<0.001	0.1560	0.468	0.4870	
	MW-1	3/6/2019	(orig)	0.0093	< 0.005	0.0088	0.0355	0.4970	
	MW-1	6/13/2019			N	lo sample due to ir	suffiencient volu	me	
	MW-1	9/6/2019	(orig)	0.0174	0.0014	0.0124	0.119	1.38	
	MW-1	12/9/2019	(orig)	0.0195	< 0.001	< 0.001	0.0567	4.54	
	MW-1	3/16/2020	(orig)	0.0196	< 0.001	0.0174	0.106		
	MW-1	6/10/2020		No sample due to insuffiencient volume					
	MW-1	8/28/2020			N	lo sample due to ir	suffiencient volu	me	
	MW-1	11/5/2020	(orig)	0.0426	< 0.001	0.0505	0.345	<0.10	

Table 3 - Groundwater Analytical Results

WellID	Sample ID	Sample Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)	Iron (dissolved) (mg/L)
NMWQCC Stand	lards	1		0.010	0.75	0.75	0.62	1.0
	MW-2	10/21/2008	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
	MW-2	1/28/2009	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
	MW-2	9/30/2009	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0223
	MW-2	6/11/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.02
	MW-2	9/27/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.02
	GW-74926-062411-PG-05	6/24/2011	(orig)	< 0.0010	< 0.0010	< 0.0010	< 0.0030	0.191
	GW-074926-092911-CM-006	9/29/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.05
	GW-074926-121411-CB-MW-2	12/14/2011	(orig)	0.00031 J	< 0.001	0.0002 J	0.0022 J	0.0133 J
	GW-074926-3912-CB-MW-2	3/9/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.05
	GW-074926-060712-CB-MW-2	6/7/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	0.0822
	GW-074926-091912-JP-MW-2	9/19/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.05
	GW-074926-121312-CM-MW-2	12/13/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	<0.05
	GW-074926-032013-CM-MW-2	3/20/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.05
	GW-074926-061213-JR-MW2	6/12/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	0.0665
	GW-074926-091113-CM-MW2	9/11/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.050
	GW-074926-121313-CM-MW-2	12/13/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.050
	GW-074926-031914-CK-MW-2	3/19/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.050
	GW-074926-061714-CK-MW-2	6/17/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.050
	GW-074926-091814-CB-MW-2	9/18/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	0.0656
	GW-074926-121814-CM-MW-2	12/18/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	0.709
MW-2	GW-074926-031915-CM-MW-2	3/19/2015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	0.883
	GW-074926-061815-CB-MW-2	6/18/2015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.050
	GW-074926-091715-CK-MW-2	9/17/2015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.050
	GW-074926-12315-CB-MW-2	12/3/2015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.050
	GW-074926-033116-CM-MW-2	3/31/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	0.0585
	GW-074926-062016-SP-MW-2	6/20/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.050
	GW-074926-090716-SP-MW-2	9/7/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	0.0512
	GW-074926-112916-CN-MW-2	11/29/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.050
	GW-11145982-092717-SP-MW-2	9/27/2017	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	<0.50
	GW-11145982-031518-JW-MW-2	3/15/2018	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	<0.50
	GW-11145982-062719-CM-MW-2	6/27/2018	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	0.0512
	GW-11145982-090618-CN-MW-2	9/6/2018	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	0.104
	MW-2	12/20/2018	(orig)	< 0.001	< 0.003	< 0.002	< 0.004	<0.10
	MW-2	3/7/2019	(orig)					
	MW-2	6/13/2019	(orig)					<0.10
	MW-2	9/6/2019	(orig)					
	MW-2	12/10/2019	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	<0.10
	MW-2	3/26/2020	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	<0.10
	MW-2	6/10/2020	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	<0.10
	MW-2	8/28/2020	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	<0.10
	MW-2	11/5/2020	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.10

Table 3 - Groundwater Analytical Results

WellID	Sample ID	Sample Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)	lron (dissolved) (mg/L)
NMWQCC Standa	ards	·		0.010	0.75	0.75	0.62	1.0
	MW-3	10/21/2008	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
	MW-3	1/28/2009	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
	MW-3	9/30/2009	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0543
	MW-3	6/10/2010	(orig)	< 0.0005	< 0.001	< 0.001	< 0.001	0.0425
	MW-3	9/27/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.02
	MW-3	12/14/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.02
	MW-3	3/17/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.02
	GW-74926-062411-PG-03	6/24/2011	(orig)	< 0.0010	< 0.0010	< 0.0010	< 0.0030	0.189
	GW-074926-092911-CM-007	9/29/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.05
	GW-074926-121411-CB-MW-3	12/14/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	0.0288 J
	GW-074926-3912-CB-MW-3	3/9/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.05
	GW-074926-060712-CB-MW-3	6/7/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.05
	GW-074926-091912-JP-MW-3	9/19/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.05
	GW-074926-121312-CM-MW-3	12/13/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	0.0605
	GW-074926-032013-CM-MW-3	3/20/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.05
	GW-074926-061213-JR-MW3	6/12/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	0.189
	GW-074926-091113-CM-MW3	9/11/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.050
	GW-074926-121313-CM-MW-3	12/13/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.050
	GW-074926-031914-CK-MW-3	3/19/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.050
	GW-074926-061714-CK-MW-3	6/17/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.050
	GW-074926-091814-CB-MW-3	9/18/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.050
		12/18/2014				head inaccessable	, <u>,</u>	· · · · · · · · · · · · · · · · · · ·
MW-3	GW-074926-031915-CM-MW-3	3/19/2015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.050
	GW-074926-061815-CB-MW-3	6/18/2015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.050
	GW-074926-091715-CK-MW-3	9/17/2015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.050
	GW-074926-12315-CB-MW-3	12/3/2015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.050
	GW-074926-033116-CM-MW-3	3/31/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	0.138
	GW-074926-062016-SP-MW-3	6/20/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.050
	GW-074926-090716-SP-MW-3	9/7/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.050
	GW-074926-112916-SP-MW-3	11/29/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	0.103
	GW-074926-030917-CN-MW-3	3/9/2017	(orig)					0.878
	GW-074926-061517-CN-MW-3	6/15/2017	(orig)					< 0.050
	GW-11145982-120517-SP-MW-3	12/5/2017	(orig)					< 0.050
	GW-11145982-031518-JW-MW-3	3/15/2018	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	0.0642
	GW-11145982-062719-CM-MW-3	6/27/2018	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.050
	GW-11145982-090618-CN-MW-3	9/6/2018	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	0.85
	MW-3 MW-3	12/20/2018	(orig)	< 0.001	< 0.003	< 0.002	< 0.004	<0.10
		3/6/2019	(orig)					
	MW-3 MW-3	6/13/2019	(orig)					<0.10
	MW-3	9/6/2019 12/10/2019	(orig)	< 0.001	< 0.001	< 0.001	<0.003	0.707
	MW-3		(orig)			< 0.001		<0.10
	MW-3 MW-3	3/16/2020 6/9/2020	(orig)	< 0.001	< 0.001	< 0.001	<0.003 <0.003	
	MW-3	6/9/2020 8/27/2020	(orig)	< 0.001	< 0.001	< 0.001		<0.10 <0.10
			(orig)	< 0.001	< 0.001		< 0.003	
	MW-3	11/5/2020	(orig)	< 0.001	< 0.001	< 0.001	<0.003	<0.10

Table 3 - Groundwater Analytical Results

Well ID	Sample ID	Sample Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)	Iron (dissolved (mg/L)
1WQCC Stand	ards	<u> </u>		0.010	0.75	0.75	0.62	1.0
	MW-4	10/21/2008	(orig)	0.039	< 0.0005	0.031	0.18	
	MW-4	1/28/2009	(orig)	0.66	< 0.0005	0.064	0.583	ND
	MW-4	9/30/2009	(orig)	0.34	< 0.0005	0.054	0.572	0.148
	MW-4	6/10/2010	(orig)	0.14	< 0.001	0.027	0.252	0.0566
	MW-4	9/27/2010	(orig)	0.033	< 0.001	0.041	0.274	1.22
	MW-4	12/14/2010	(orig)	0.13	< 0.001	0.093	0.899	1.75
	MW-4	3/17/2011	(orig)	0.017	< 0.001	0.018	0.1966	0.0852
	GW-74926-062411-PG-04	6/24/2011	(orig)	0.0296	< 0.0010	0.0371	0.472	1.5
	GW-074926-092911-CM-008	9/29/2011	(orig)	0.0392	< 0.001	0.0039	0.0536	2.55
	GW-074926-092911-CM-010	9/29/2011	(Duplicate)	0.043	< 0.001	0.0035	0.0483	
	GW-074926-121411-CB-MW-4	12/14/2011	(orig)	0.101	< 0.001	0.0443	0.378	2.62
	GW-074926-121411-CB-DUP	12/14/2011	(Duplicate)	0.104	< 0.005	0.0437	0.372	
	GW-074926-3912-CB-MW-4	3/9/2012	(orig)	0.0264	< 0.001	0.0066	0.0651	2.46
	GW-074926-3912-CB-DUP	3/9/2012	(Duplicate)	0.0234	< 0.001	0.0056	0.058	
	GW-074926-060712-CB-MW-4	6/7/2012	(orig)	0.044	< 0.001	0.0245	0.303	2.07
	GW-074926-060712-CB-DUP	6/7/2012	(Duplicate)	0.026	< 0.001	0.0124	0.155	
	GW-074926-091912-JP-MW-4	9/19/2012	(orig)	0.0029	< 0.001	0.0048	0.0576	1.93
	GW-074926-091912-JP-DUP	9/19/2012	(Duplicate)	0.0029	< 0.001	0.0045	0.0551	
	GW-074926-121312-CM-MW-4	12/13/2012	(orig)	0.0941	< 0.002	0.0399	0.385	2.92
	GW-074926-121312-CM-DUP	12/13/2012	(Duplicate)	0.197	< 0.002	0.0712	0.55	
	GW-074926-032012-CM-MW-4	3/20/2013	(orig)	0.0035	< 0.001	0.002	0.0211	1.82
	GW-074926-032012-CM-DUP	3/20/2013	(Duplicate)	0.0033	< 0.001	0.002	0.0211	
	GW-074926-061213-JR-MW4	6/12/2013	(orig)	0.0588	< 0.005	0.0509	0.545	1.53
	GW-074926-061213-JR-DUP	6/12/2013	(Duplicate)	0.0388	< 0.003	0.0213	0.218	1.55
	GW-074926-091113-CM-MW4	9/11/2013	(orig)	0.0215	< 0.001	0.0213	0.218	3.1
	GW-074926-091113-CM-DUP	9/11/2013	(Duplicate)	0.0156	< 0.001	0.0231	0.228	J. I
		12/13/2013		0.0158	< 0.001	0.0182	0.158	2.7
	GW-074926-121313-CM-MW-4		(orig)	0.0362		0.0199		
	GW-074926-121313-CM-DUP	12/13/2013	(Duplicate)		< 0.001		0.16	
	GW-074926-031914-CK-MW-4	3/19/2014	(orig)	< 0.001	< 0.001	< 0.001	0.0046	1.33
	GW-074926-031914-CK-DUP	3/19/2014	(Duplicate)	< 0.001	< 0.001	< 0.001	0.0049	
	GW-074926-061714-CK-MW-4	6/17/2014	(orig)	0.0069	< 0.001	< 0.001	< 0.003	2.68
MW-4	GW-074926-061714-CK-DUP	6/17/2014	(Duplicate)	0.0063	< 0.001	< 0.001	< 0.003	
	GW-074926-091814-CB-MW-4	9/18/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	3.43
	GW-074926-091814-CB-DUP	9/18/2014	(Duplicate)	0.0018	< 0.001	< 0.001	< 0.003	
	GW-074926-121814-CM-MW-4	12/18/2014	(orig)	0.0398	< 0.001	0.0062	0.0486	4.02
	GW-074926-121814-CM-DUP	12/18/2014	(Duplicate)	0.0296	< 0.001	0.0048	0.0354	
	GW-074926-031915-CM-MW-4	3/19/2015	(orig)	0.0012	< 0.001	< 0.001	< 0.003	1.57
	GW-074926-031915-CM-DUP	3/19/2015	(Duplicate)	0.0011	< 0.001	< 0.001	< 0.003	
	GW-074926-061815-CB-MW-4	6/18/2015	(orig)	0.067	< 0.001	0.0102	0.0563	3.02
	GW-074926-091715-CK-MW-4	9/17/2015	(orig)	0.0319	< 0.001	0.0297	0.178	3.03
	GW-074926-091715-CK-DUP	11/29/2015	(Duplicate)	0.0318	< 0.001	0.027	0.162	
	GW-074926-12315-CB-MW-4	12/3/2015	(orig)	0.0676	< 0.01	0.0526	0.354	4.34
	GW-074926-12315-CB-DUP	12/3/2015	(Duplicate)	0.0489	< 0.01	0.0396	0.263	
	GW-074926-033116-CM-MW-4	3/31/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	1.44
	GW-074926-062016-SP-MW-4	6/20/2016	(orig)	0.0428	< 0.001	0.0112	0.0397	4.88

Table 3 - Groundwater Analytical Results

WellID	Sample ID	Sample Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)	Iron (dissolved) (mg/L)
NMWQCC Standa	ards			0.010	0.75	0.75	0.62	1.0
	GW-074926-090716-SP-MW-4	9/7/2016	(orig)	0.0081	< 0.001	< 0.001	< 0.003	4.01
	GW-074926-112916-SP-MW-4	11/29/2016	(orig)	0.0346	< 0.001	0.0077	0.0237	4.31
	GW-074926-030917-CN-MW-4	3/9/2017	(orig)	< 0.001	< 0.001	<0.001	<0.003	< 0.050
	GW-074926-061517-CN-MW-4	6/15/2017	(orig)	0.0224	< 0.001	0.0045	0.0206	15.5
	GW-11145982-092717-SP-MW-4	9/27/2017	(orig)	0.0131	< 0.001	0.0043	0.0108	22.7
	GW-11145982-120517-SP-MW-4	12/5/2017	(orig)	0.0247	< 0.001	0.0074	0.0161	21.1
	GW-11145982-031518-JW-MW-4	3/15/2018	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	5.68
	GW-11145982-062718-CM-MW-4	6/27/2018	(orig)	0.0114	< 0.001	0.0014	0.0031	< 0.050
	GW-11145982-090618-CN-MW-4	9/6/2018	(orig)	0.0179	< 0.001	0.0047	0.0068	10.5
	MW-4	12/20/2018	(orig)	0.0253	< 0.001	0.0132	0.0236	0.146
	MW-4	3/6/2019	(orig)	0.00147	< 0.001	< 0.001	<0.003	<0.10
	MW-4	6/12/2019	(orig)	0.0048	< 0.001	< 0.001	<0.003	<0.10
	MW-4	9/6/2019	(orig)	< 0.001	< 0.001	< 0.001	<0.003	<0.10
	MW-4	12/9/2019	(orig)	0.0318	< 0.001	0.0121	0.012	0.169
	MW-4	3/16/2020	(orig)	< 0.001	< 0.001	<0.001	<0.003	0.222
	MW-4	6/9/2020	(orig)	0.00155	< 0.001	< 0.001	< 0.003	<0.10
	MW-4	8/27/2020	(orig)	0.00311	< 0.001	0.00125	< 0.003	<0.10
	MW-4	11/5/2020	(orig)	0.00181	< 0.001	< 0.001	< 0.003	<0.10
	GW-074926-091715-CK-MW-5	9/17/2015	(orig)	0.0182	< 0.001	0.571	4.95	2.72
	GW-074926-12315-CB-MW-5	12/3/2015	(orig)	0.128	< 0.001	1.15	12.4	20.9
	GW-074926-033116-CM-MW-5	3/31/2016	(orig)	< 0.010	< 0.01	0.101	0.936	2.06
	GW-074926-033116-CM-DUP	3/31/2016	(Duplicate)	< 0.010	< 0.01	0.136	1.26	
	GW-074926-062016-SP-MW-5	6/20/2016	(orig)	0.0404	< 0.025	0.16	2.48	6.48
	GW-074926-090716-SP-MW-5	9/7/2016	(orig)	0.0229	< 0.01	0.332	3.45	4.6
	GW-074926-090716-SP-DUP	9/7/2016	(Duplicate)	0.0216	< 0.010	0.393	4.46	
		10/26/2016			I	SCO Injection-15%	6 PersulfOx solution	on
	GW-074926-030917-CN-MW-5	3/9/2017	(orig)	0.0865	< 0.010	0.267	3.65	24.6
	GW-074926-061517-CN-MW-5	6/15/2017	(orig)	0.0369	< 0.010	0.0956	0.533	7.43
	GW-11145982-120517-SP-MW-5	12/5/2017	(orig)	0.0562	< 0.010	0.51	5.95	10.3
N/11/ E	GW-11145982-120517-SP-DUP	12/5/2017	(Duplicate)	0.05	< 0.010	0.444	5.97	
MW-5	GW-11145982-031518-JW-MW-5	3/15/2018	(orig)	< 0.020	< 0.020	0.388	1.46	
	GW-11145982-062718-CM-MW-5	6/27/2018	(orig)	0.0371	< 0.020	0.123	2.13	7.08
	GW-11145982-090618-CN-MW-5	9/6/2018	(orig)	0.0511	< 0.010	0.233	1.94	4.9
	MW-5	12/20/2018	(orig)	0.0568	0.00136	0.448	4.48	0.748
	MW-5	3/7/2019	(orig)	0.0124	<.002	0.003	0.146	3.61
	MW-5	6/13/2019	(orig)	0.009	< 0.001	0.054	0.376	<0.10
	MW-5	9/6/2019	(orig)	0.032	<.001	<.001	1.67	8.29
	MW-5	12/10/2019	(orig)	0.0024	< 0.001	0.0414	0.236	0.829
	MW-5	3/26/2020	(orig)	0.0171	< 0.001	0.0133	0.579	9.16
	MW-5	6/10/2020	(orig)	0.00505	< 0.005	<0.005	0.296	15.5
	MW-5	8/28/2020	(orig)	0.0196	< 0.005	0.0389	0.910	10.5
	MW-5	11/5/2020	(orig)	0.0141	0.00208	0.0987	1.100	3.49

Table 3 - Groundwater Analytical Results

.

WellID	Sample ID	Sample Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)	Iron (dissolved) (mg/L)	
NMWQCC Stand	lards			0.010	0.75	0.75	0.62	1.0	
	DW-1	12/16/2009	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		
	RS-74926-062411-CB-01	6/24/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		
	GW-074926-072712-JK-DW-17	7/27/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		
	DW-074926-061213-JR-32	6/12/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		
	12/18/2014				Attempt to conta	act landowner reg	arding well sampl	ing. No response.	
DW-1	GW-074926-061815-CB-DOM-32	6/18/2015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		
	GW-074926-062016-SP-DOM1	6/20/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		
	GW-11145982-092717-SP-32	9/27/2017	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		
		6/27/2018	Unable to sample-homeowner away.						
	DW-1	5/29/2019	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	<0.10	
	DW-1	6/9/2020	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	<0.10	
	#34	6/10/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		
	Domestic #34	3/17/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		
	GW-074926-061712-CB-DW34	6/7/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		
	DW-074926-061213-JR-34	6/12/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		
		12/18/2014		Atte	empt to sample w	ell but landowner	had shut well in f	or the winter mor	
DW-2	GW-074926-061815-CB-DOM-34	6/18/2015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		
	GW-074926-062016-SP-DOM2	6/20/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		
	GW-11145982-092717-SP-34	9/27/2017	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		
	GW-11145982-062718-CM-D34	6/27/2018	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		
	DW-2	8/2/2019	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	<0.10	
	DW-2	6/9/2020	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	<0.10	

Notes:

mg/L - milligrams per liter

J - laboratory flag for estimated concentration

ND - not detected, practical quantitation limit unknown

NE - not established

NMWQCC - New Mexico Water Quality Control Commission

NT - not tested

 ${<}0.037$ - indicates result less than the stated laboratory reporting limit (PQL)

BOLD - indicates concentration exceeds the NNEPA standard

-- - not analyzed

Table 3 - Groundwater Analytical Results

ANALYTICAL REPORT April 01, 2020

HilCorp-Farmington, NM

Entire Report Reviewed By:

Sample Delivery Group:	L1203199
Samples Received:	03/27/2020
Project Number:	
Description:	Flora Vista 1
Site:	FLORA VISTA#1
Report To:	Kurt Hoekstra
	382 Road 3100
	Aztec, NM 87401

Unio S

Olivia Studebaker Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be Analytical National is performed per guidance provided in laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

HilCorp-Farmington, NM

ACCOUNT:

PROJECT:

SDG: L1203199

DATE/TIME: 04/01/20 16:45

PAGE: 1 of 16

Тс Ss Cn Śr *Q*c GI A Sc

TABLE OF CONTENTS

*	
¹ Cp	
² Tc	
³ Ss	
⁴ Cn	
⁵ Sr	
⁶ Qc	

GI

A

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW1 L1203199-01	5
MW2 L1203199-02	6
MW3 L1203199-03	7
MW4 L1203199-04	8
MW5 L1203199-05	9
Qc: Quality Control Summary	10
Metals (ICP) by Method 6010B	10
Volatile Organic Compounds (GC/MS) by Method 8260B	11
GI: Glossary of Terms	14
Al: Accreditations & Locations	15
Sc: Sample Chain of Custody	16

SDG: L1203199 DATE/TIME: 04/01/20 16:45

SAMPLE SUMMARY

*

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

	JAIM LL .	501011				
MW1 L1203199-01 GW			Co ll ected by Kurt H	Collected date/time 03/16/20 15:00	Received da 03/27/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1451751	1	03/28/20 02:59	03/28/20 02:59	JAH	Mt. Juliet, TN
MW2 L1203199-02 GW			Co ll ected by Kurt H	Collected date/time 03/26/20 13:25	Received da 03/27/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453050 WG1451751	1 1	03/31/20 10:16 03/28/20 03:20	03/31/20 11:48 03/28/20 03:20	CCE JAH	Mt. Juliet, TN Mt. Juliet, TN
MW3 L1203199-03 GW			Co ll ected by Kurt H	Co ll ected date/time 03/16/20 13:30	Received da 03/27/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453050 WG1451751	1 1	03/31/20 10:16 03/28/20 03:40	03/31/20 11:58 03/28/20 03:40	CCE JAH	Mt. Juliet, TN Mt. Juliet, TN
MW4 L1203199-04 GW			Co ll ected by Kurt H	Collected date/time 03/16/20 11:20	Received da 03/27/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453050 WG1451998	1 1	03/31/20 10:16 03/28/20 12:26	03/31/20 12:01 03/28/20 12:26	CCE DWR	Mt. Juliet, TN Mt. Juliet, TN
MW5 L1203199-05 GW			Co ll ected by Kurt H	Collected date/time 03/16/20 12:45	Received da 03/27/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B Volatile Organic Compounds (GC/MS) by Method 8260B	WG1453050 WG1451998	1 1	03/31/20 10:16 03/28/20 12:46	03/31/20 12:04 03/28/20 12:46	CCE DWR	Mt. Juliet, TN Mt. Juliet, TN
	11/04/15/25/2	_	00/00/00 44 6 *	00/00/00 44 04	100	A ALL A LEVEL TAL

WG1452769

5

03/30/20 14:04

03/30/20 14:04

ACG

Mt. Juliet, TN

Volatile Organic Compounds (GC/MS) by Method 8260B

SDG: L1203199

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Olivia Studebaker Project Manager

Τс Ss Cn Sr Qc GI AI Sc

SAMPLE RESULTS - 01

*

Qc

GI

ΆL

Sc

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Benzene	0.0196		0.00100	1	03/28/2020 02:59	WG1451751
Toluene	ND		0.00100	1	03/28/2020 02:59	WG1451751
Ethylbenzene	0.0174		0.00100	1	03/28/2020 02:59	WG1451751
Total Xylenes	0.106		0.00300	1	03/28/2020 02:59	WG1451751
(S) Toluene-d8	109		80.0-120		03/28/2020 02:59	WG1451751
(S) 4-Bromofluorobenzene	132	<u>J1</u>	77.0-126		03/28/2020 02:59	WG1451751
(S) 1,2-Dichloroethane-d4	99.1		70.0-130		03/28/2020 02:59	WG1451751

Collected date/time: 03/26/20 13:25

SAMPLE RESULTS - 02 L1203199

Â

Sc

Metals (ICP) by Method 6010B

		Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		2
Iron,Dissolved	ND		0.100	1	03/31/2020 11:48	WG1453050	
Manganese, Dissolved	ND		0.0100	1	03/31/2020 11:48	WG1453050	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Benzene	ND		0.00100	1	03/28/2020 03:20	WG1451751	
Toluene	ND		0.00100	1	03/28/2020 03:20	<u>WG1451751</u>	
Ethylbenzene	ND		0.00100	1	03/28/2020 03:20	<u>WG1451751</u>	
Total Xylenes	ND		0.00300	1	03/28/2020 03:20	<u>WG1451751</u>	
(S) Toluene-d8	117		80.0-120		03/28/2020 03:20	WG1451751	
(S) 4-Bromofluorobenzene	108		77.0-126		03/28/2020 03:20	<u>WG1451751</u>	
(S) 1,2-Dichloroethane-d4	102		70.0-130		03/28/2020 03:20	WG1451751	

Collected date/time: 03/16/20 13:30

SAMPLE RESULTS - 03

Ss

Â

Sc

Metals (ICP) by Method 6010B

())							Cn
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte	mg/l		mg/l		date / time		2
Iron,Dissolved	ND		0.100	1	03/31/2020 11:58	WG1453050	Tc
Manganese, Dissolved	ND		0.0100	1	03/31/2020 11:58	WG1453050	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Benzene	ND		0.00100	1	03/28/2020 03:40	WG1451751	
Toluene	ND		0.00100	1	03/28/2020 03:40	<u>WG1451751</u>	
Ethylbenzene	ND		0.00100	1	03/28/2020 03:40	<u>WG1451751</u>	
Total Xylenes	ND		0.00300	1	03/28/2020 03:40	<u>WG1451751</u>	
(S) Toluene-d8	113		80.0-120		03/28/2020 03:40	WG1451751	
(S) 4-Bromofluorobenzene	108		77.0-126		03/28/2020 03:40	<u>WG1451751</u>	
(S) 1,2-Dichloroethane-d4	102		70.0-130		03/28/2020 03:40	WG1451751	

Collected date/time: 03/16/20 11:20

SAMPLE RESULTS - 04

Ss

Â

Sc

Metals (ICP) by Method 6010B

())							Cn
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ch
Analyte	mg/l		mg/l		date / time		2
Iron,Dissolved	0.222		0.100	1	03/31/2020 12:01	WG1453050	Tc
Manganese, Dissolved	2.39		0.0100	1	03/31/2020 12:01	WG1453050	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Benzene	ND		0.00100	1	03/28/2020 12:26	WG1451998	
Toluene	ND		0.00100	1	03/28/2020 12:26	<u>WG1451998</u>	
Ethylbenzene	ND		0.00100	1	03/28/2020 12:26	<u>WG1451998</u>	
Total Xylenes	ND		0.00300	1	03/28/2020 12:26	WG1451998	
(S) Toluene-d8	98.5		80.0-120		03/28/2020 12:26	WG1451998	
(S) 4-Bromofluorobenzene	99.9		77.0-126		03/28/2020 12:26	WG1451998	
(S) 1,2-Dichloroethane-d4	92.1		70.0-130		03/28/2020 12:26	WG1451998	

Collected date/time: 03/16/20 12:45

SAMPLE RESULTS - 05

Ss

Sc

Metals (ICP) by Method 6010B

())							/ Cp
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		2
Iron,Dissolved	9.16		0.100	1	03/31/2020 12:04	WG1453050	Тс
Manganese, Dissolved	1.67		0.0100	1	03/31/2020 12:04	WG1453050	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	4
Analyte	mg/l		mg/l		date / time		
Benzene	0.0171		0.00100	1	03/28/2020 12:46	WG1451998	5
Toluene	ND		0.00100	1	03/28/2020 12:46	WG1451998	
Ethylbenzene	0.0133		0.00100	1	03/28/2020 12:46	WG1451998	
Total Xylenes	0.579		0.00300	5	03/30/2020 14:04	WG1452769	e
(S) Toluene-d8	90.8		80.0-120		03/28/2020 12:46	WG1451998	
(S) Toluene-d8	91.3		80.0-120		03/30/2020 14:04	WG1452769	5
(S) 4-Bromofluorobenzene	91.5		77.0-126		03/28/2020 12:46	WG1451998	,
(S) 4-Bromofluorobenzene	80.1		77.0-126		03/30/2020 14:04	WG1452769	L
(S) 1,2-Dichloroethane-d4	90.3		70.0-130		03/28/2020 12:46	WG1451998	8
(S) 1,2-Dichloroethane-d4	89.2		70.0-130		03/30/2020 14:04	WG1452769	

WG1453050

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY

Method Blank (MB)

/20 11:43			
MB Result	MB Qualifier	MB MDL	MB RDL
mg/I		mg/l	mg/l
U		0.0141	0.100
U		0.00120	0.0100
	MB Result	MB Result <u>MB Qualifier</u>	MB Result MB Qualifier MB MDL mg/l mg/l 0.0141

Laboratory Control Sample (LCS)

(LCS) R3514282-2 03/31/2	(LCS) R3514282-2 03/31/20 11:45									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/l	mg/l	%	%						
Iron, Dissolved	10.0	9.68	96.8	80.0-120						
Manganese, Dissolved	1.00	0.946	94.6	80.0-120						

L1203199-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1203199-02 03/31/20 11:48 • (MS) R3514282-4 03/31/20 11:53 • (MSD) R3514282-5 03/31/20 11:56

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%
Iron,Dissolved	10.0	ND	9.50	9.55	95.0	95.5	1	75.0-125			0.514
Manganese, Dissolved	1.00	ND	0.933	0.938	93.2	93.7	1	75.0-125			0.568

ACCOUNT:	
HilCorp-Farmington, NM	

PROJECT:

SDG: L1203199 DATE/TIME: 04/01/20 16:45

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3513863-2 03/27/2	20 20:52				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/I	mg/l	
Benzene	U		0.000331	0.00100	
Ethylbenzene	U		0.000384	0.00100	
Toluene	U		0.000412	0.00100	
Xylenes, Total	U		0.00106	0.00300	
(S) Toluene-d8	113			80.0-120	
(S) 4-Bromofluorobenzene	103			77.0-126	
(S) 1,2-Dichloroethane-d4	106			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3513863-1 03/27/2	20 19:32				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Benzene	0.00500	0.00485	97.0	70.0-123	
Ethylbenzene	0.00500	0.00489	97.8	79.0-123	
Toluene	0.00500	0.00497	99.4	79.0-120	
Xylenes, Total	0.0150	0.0151	101	79.0-123	
(S) Toluene-d8			112	80.0-120	
(S) 4-Bromofluorobenzene			107	77.0-126	
(S) 1,2-Dichloroethane-d4			103	70.0-130	

ACCOUNT: HilCorp-Farmington, NM PROJECT:

SDG: L1203199 DATE/TIME: 04/01/20 16:45

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3513906-2 03/28/2	20 11:05					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/l		mg/l	mg/I		
Benzene	U		0.000331	0.00100		
Ethylbenzene	U		0.000384	0.00100		
Toluene	U		0.000412	0.00100		
Xylenes, Total	U		0.00106	0.00300		
(S) Toluene-d8	103			80.0-120		
(S) 4-Bromofluorobenzene	106			77.0-126		
(S) 1,2-Dichloroethane-d4	92.3			70.0-130		

Laboratory Control Sample (LCS)

(LCS) R3513906-1 03/28/	20 09:52		CS) R3513906-1 03/28/20 09:52										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier								
Analyte	mg/l	mg/l	%	%									
Benzene	0.00500	0.00527	105	70.0-123									
Ethylbenzene	0.00500	0.00483	96.6	79.0-123									
Toluene	0.00500	0.00484	96.8	79.0-120									
Xylenes, Total	0.0150	0.0142	94.7	79.0-123									
(S) Toluene-d8			101	80.0-120									
(S) 4-Bromofluorobenzene			104	77.0-126									
(S) 1,2-Dichloroethane-d4			92.6	70.0-130									

L1203254-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1203254-01 03/28/20 13:27 • (MS) R3513906-3 03/28/20 18:51 • (MSD) R3513906-4 03/28/20 19:11											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%
Benzene	0.00500	U	0.00391	0.00517	78.2	103	1	17.0-158		<u>J3</u>	27.8
Ethylbenzene	0.00500	U	0.00350	0.00479	70.0	95.8	1	30.0-155		<u>J3</u>	31.1
Toluene	0.00500	U	0.00351	0.00461	70.2	92.2	1	26.0-154			27.1
Xylenes, Total	0.0150	U	0.0103	0.0140	68.7	93.3	1	29.0-154		<u>J3</u>	30.5
(S) Toluene-d8					102	101		80.0-120			
(S) 4-Bromofluorobenzene					104	105		77.0-126			
(S) 1,2-Dichloroethane-d4					90.4	91.2		70.0-130			

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:
HilCorp-Farmington, NM		L1203199	04/01/20 16:45

WG1452769

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3513953-2 03/30/2	IB) R3513953-2 03/30/20 12:31									
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/l		mg/I	mg/l						
Xylenes, Total	U		0.00106	0.00300						
(S) Toluene-d8	99.0			80.0-120						
(S) 4-Bromofluorobenzene	86.9			77.0-126						
(S) 1,2-Dichloroethane-d4	87.4			70.0-130						

Laboratory Control Sample (LCS)

(LCS) R3513953-1 03/30/20 11:50										
Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
mg/l	mg/l	%	%							
0.0150	0.0164	109	79.0-123							
		96.9	80.0-120							
		91.9	77.0-126							
		88.1	70.0-130							
	Spike Amount mg/I	Spike Amount LCS Result mg/l mg/l	Spike Amount LCS Result LCS Rec. mg/l mg/l % 0.0150 0.0164 109 g6.9 91.9 91.9	Spike Amount LCS Result LCS Rec. Rec. Limits mg/l mg/l % % 0.0150 0.0164 109 79.0-123 96.9 80.0-120 91.9 77.0-126						

ACCOUNT: HilCorp-Farmington, NM PROJECT:

SDG: L1203199 DATE/TIME: 04/01/20 16:45

GLOSSARY OF TERMS

₩

Τс

Śs

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

(Jualifier	Description
J	1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J	3	The associated batch QC was outside the established quality control range for precision.

ACCREDITATIONS & LOCATIONS

NE-OS-15-05

n/a 11742 Env375

DW21704 41 R-140

CL0069 9915 TN200002

68-02979 LAO00356 84004

n/a 2006 T104704245-18-15

LAB0152 TN00003 VT2006 460132 C847 233 9980939910 A2LA

TN-03-2002-34 2975 TN002

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report. * Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshire
Arkansas	88-0469	New Jersey-NELAP
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina ¹
Georgia	NELAP	North Carolina ³
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio-VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
owa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky ¹⁶	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	Al30792	Tennessee ¹⁴
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Received by OCD: 2/18/2021 2:15:09 PM												Р	age 3	6 of 8	82
Hill Corp-Farmington, NM 382 Road 3100 Azt ec, NM 87401			PO Box	Billing Information: PO Box 61529 Houston, TX 77208						nalvsis /	Contair	ner / Presi	ervative		
			Email To:						TEREL						
Rep ort to: Kurt Hoekstra				orp.com;khoek	stra@hilcorp.com		55		1						
Project Description: Flora Vista 1		City/State Collected:			Please Circ PT MT CT		NoPre		5						
Ph⊘ne: 505-486-9543 Fax:	Client Project	#		Lab Project # HILCORAN	M-FLORAVISTA		HDPE-	G	121-						
Collected by (print):	Site/Facility ID		++1	P.O. #			Mn 250mlHDPE-NoPres	H-qm	D SE						
Collected by (signature):	Rush? (L	ab MUST Be	Notified)	Quote #			Wh :	40mlA	Die	-					
Immediately Packed on Ice N Y X	mediately Next Day5 Day			Date R	esults Needed	ts Needed No. of		V8260BTEX 40mlAmb-HCl	SAR						
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	Dissolved Fe,	V8260	No						
MW1		GW		3-16	3:00	24	#	X	×	He	LD	Tin	LE	AB	bu
MW2		GW		3-26	1125	4	X	X	X						
MW3		GW		3-16	1:30	4	x	X	X	140	10	-			0.
MW4		GW		3-16	11:20	4	x	X	X	6100		11	ne	2 4	TOC
MW5		GW		3-26	12:45	4	x	X	X						
								-			an a				
						+-+									
* Matrix:	Remarks:	I		1				L	L engender	L	BEADERCHIN				
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater						-				pH Flov		Temp Other			COC COC BOEL
DW - Drinking Water OT - Other	Orinking Water Symples returned via:			Courier Tracking # // 4 5 2			123	13	299	14					Corr Suff VOA
Relinquished by (Signature)	h	Date:	6-20	Time: 2:00	Received by: (Signa	Contraction of the local division of the loc		and a second second	ALL AND	201032443/00/00/03	nk Rece	I and the	S /NO ICL / Me BR	юН	Pres RAD
Refinquished by ! (Signature)		Date:		Time:	Received by: (Signa	iture)				Temp: 3.6-0	后,自己的 [[[[[]] []] []] [] [] []		es Receiv	ved:	If pre
Relinquished by : (Signature)		Date:		Time:	Received for lab by	: (Signa	ture)		anore discontrated	Date:	1/20	Time	1830		Hold

ANALYTICAL REPORT

HilCorp-Farmington, NM

Sample Delivery Group:	L1228287
Samples Received:	06/11/2020
Project Number:	
Description:	Flora Vista 1
Site:	FLOR VISTA #1
Report To:	Kurt Hoekstra
	382 Road 3100
	Aztec, NM 87401

¹ Cp
² Tc
³ Ss
⁴ Cn
⁵ Sr
⁶ Qc
⁷ GI
⁸ AI
°Sc

Entire Report Reviewed By:

Unio S

Olivia Studebaker Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

PROJECT:

SDG: L1228287

TABLE OF CONTENTS

ONE LAB. NATIONWIDE.	*
1	¹ Cp
2	Ср
3	² Tc
4	
5	³ Ss
5	4
6	⁴ Cn
7	⁵ Sr
8	
9	⁶ Qc
10	7
11	⁷ GI
11	⁸ AI
13	
15	⁹ Sc
16	
17	

Tc: Table of Contents
Ss: Sample Summary
Cn: Case Narrative
Sr: Sample Results
MW2 L1228287-01
MW3 L1228287-02
MW4 L1228287-03
MW5 L1228287-04
DW1 L1228287-05
DW2 L1228287-06
Qc: Quality Control Summary
Metals (ICP) by Method 6010B
Volatile Organic Compounds (GC/MS) by Method 8260B
GI: Glossary of Terms
Al: Accreditations & Locations
Sc: Sample Chain of Custody

Cp: Cover Page

SDG: L1228287

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Tc

Ss

Cn

Sr

Qc

GL

ΆI

Sc

	SYNN EE S	0.01111				
MW2 L1228287-01 GW			Collected by Kurt	Collected date/time 06/10/20 10:15	Received da 06/11/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B Volatile Organic Compounds (GC/MS) by Method 8260B	WG1492339 WG1491940	1 1	06/14/20 23:26 06/13/20 09:01	06/15/20 17:37 06/13/20 09:01	EL ADM	Mt. Juliet, TN Mt. Juliet, TN
MW3 L1228287-02 GW			Collected by Kurt	Collected date/time 06/09/20 14:00	Received da 06/11/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B Volatile Organic Compounds (GC/MS) by Method 8260B	WG1492339 WG1491940	1 1	06/14/20 23:26 06/13/20 09:21	06/15/20 17:39 06/13/20 09:21	EL ADM	Mt. Juliet, TN Mt. Juliet, TN
MW4 L1228287-03 GW			Collected by Kurt	Collected date/time 06/09/20 12:30	Received da 06/11/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B Volatile Organic Compounds (GC/MS) by Method 8260B	WG1492339 WG1494147	1 1	06/14/20 23:26 06/17/20 16:54	06/15/20 17:47 06/17/20 16:54	EL DWR	Mt. Juliet, TN Mt. Juliet, TN
MW5 L1228287-04 GW			Collected by Kurt	Co ll ected date/time 06/10/20 09:00	Received da 06/11/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B Volatile Organic Compounds (GC/MS) by Method 8260B	WG1494002 WG1494147	1 5	06/18/20 00:13 06/17/20 17:13	06/18/20 11:18 06/17/20 17:13	CCE DWR	Mt. Juliet, TN Mt. Juliet, TN
DW1 L1228287-05 GW			Collected by Kurt	Collected date/time 06/09/20 11:45	Received da 06/11/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B Volatile Organic Compounds (GC/MS) by Method 8260B	WG1494002 WG1491940	1 1	06/18/20 00:13 06/13/20 10:22	06/18/20 11:21 06/13/20 10:22	CCE ADM	Mt. Juliet, TN Mt. Juliet, TN
DW2 L1228287-06 GW			Collected by Kurt	Collected date/time 06/09/20 10:30	Received da 06/11/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B Volatile Organic Compounds (GC/MS) by Method 8260B	WG1494002 WG1494147	1 1	06/18/20 00:13 06/17/20 17:34	06/18/20 11:24 06/17/20 17:34	CCE DWR	Mt. Juliet, TN Mt. Juliet, TN

SDG: L1228287

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Olivia Studebaker Project Manager

Τс Ss Cn Sr Qc GI AI Sc

Collected date/time: 06/10/20 10:15

SAMPLE RESULTS - 01

Ss

Â

Sc

Metals (ICP) by Method 6010B

							 Cn
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte	mg/l		mg/l		date / time		2
Iron,Dissolved	ND		0.100	1	06/15/2020 17:37	WG1492339	Tc
Manganese, Dissolved	ND		0.0100	1	06/15/2020 17:37	WG1492339	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	4
Analyte	mg/l		mg/l		date / time		
Benzene	ND		0.00100	1	06/13/2020 09:01	WG1491940	5
Toluene	ND		0.00100	1	06/13/2020 09:01	<u>WG1491940</u>	۳S
Ethylbenzene	ND		0.00100	1	06/13/2020 09:01	WG1491940	
Total Xylenes	ND		0.00300	1	06/13/2020 09:01	<u>WG1491940</u>	⁶ Q
(S) Toluene-d8	98.6		80.0-120		06/13/2020 09:01	WG1491940	
(S) 4-Bromofluorobenzene	93.4		77.0-126		06/13/2020 09:01	WG1491940	7
(S) 1,2-Dichloroethane-d4	112		70.0-130		06/13/2020 09:01	WG1491940	Ĝ

Collected date/time: 06/09/20 14:00

SAMPLE RESULTS - 02

*

Ss

Â

Sc

Metals (ICP) by Method 6010B

							 Cn
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte	mg/l		mg/l		date / time		2
Iron,Dissolved	ND		0.100	1	06/15/2020 17:39	WG1492339	Tc
Manganese, Dissolved	ND		0.0100	1	06/15/2020 17:39	WG1492339	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	4
Analyte	mg/l		mg/l		date / time		Cr
Benzene	ND		0.00100	1	06/13/2020 09:21	WG1491940	5
Toluene	ND		0.00100	1	06/13/2020 09:21	<u>WG1491940</u>	ຶSr
Ethylbenzene	ND		0.00100	1	06/13/2020 09:21	<u>WG1491940</u>	
Total Xylenes	ND		0.00300	1	06/13/2020 09:21	<u>WG1491940</u>	⁶ Q
(S) Toluene-d8	<i>95.3</i>		80.0-120		06/13/2020 09:21	WG1491940	G
(S) 4-Bromofluorobenzene	92.9		77.0-126		06/13/2020 09:21	<u>WG1491940</u>	7
(S) 1,2-Dichloroethane-d4	113		70.0-130		06/13/2020 09:21	WG1491940	G

Collected date/time: 06/09/20 12:30

SAMPLE RESULTS - 03

Ss

Â

Sc

Metals (ICP) by Method 6010B

							 Col
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l		date / time		 2
Iron,Dissolved	ND		0.100	1	06/15/2020 17:47	WG1492339	Тс
Manganese, Dissolved	3.29		0.0100	1	06/15/2020 17:47	WG1492339	

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Benzene	0.00155		0.00100	1	06/17/2020 16:54	WG1494147
Toluene	ND		0.00100	1	06/17/2020 16:54	WG1494147
Ethylbenzene	ND		0.00100	1	06/17/2020 16:54	WG1494147
Total Xylenes	ND		0.00300	1	06/17/2020 16:54	WG1494147
(S) Toluene-d8	114		80.0-120		06/17/2020 16:54	WG1494147
(S) 4-Bromofluorobenzene	92.9		77.0-126		06/17/2020 16:54	WG1494147
(S) 1,2-Dichloroethane-d4	109		70.0-130		06/17/2020 16:54	WG1494147

Collected date/time: 06/10/20 09:00

SAMPLE RESULTS - 04

Ss

Â

Sc

Metals (ICP) by Method 6010B

······································							 1 Cn
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte	mg/l		mg/l		date / time		2
Iron,Dissolved	15.5		0.100	1	06/18/2020 11:18	WG1494002	Tc
Manganese, Dissolved	5.12		0.0100	1	06/18/2020 11:18	WG1494002	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	4
Analyte	mg/l		mg/l		date / time		
Benzene	0.00505		0.00500	5	06/17/2020 17:13	WG1494147	
Toluene	ND		0.00500	5	06/17/2020 17:13	<u>WG1494147</u>	
Ethylbenzene	ND		0.00500	5	06/17/2020 17:13	WG1494147	
Total Xylenes	0.296		0.0150	5	06/17/2020 17:13	<u>WG1494147</u>	e
(S) Toluene-d8	113		80.0-120		06/17/2020 17:13	WG1494147	
(S) 4-Bromofluorobenzene	104		77.0-126		06/17/2020 17:13	<u>WG1494147</u>	5
(S) 1,2-Dichloroethane-d4	107		70.0-130		06/17/2020 17:13	WG1494147	ľ

Collected date/time: 06/09/20 11:45

SAMPLE RESULTS - 05

Ss

Â

Sc

Metals (ICP) by Method 6010B

())							 l'Cn
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte	mg/l		mg/l		date / time		2
Iron,Dissolved	ND		0.100	1	06/18/2020 11:21	WG1494002	Tc
Manganese, Dissolved	ND		0.0100	1	06/18/2020 11:21	WG1494002	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Benzene	ND		0.00100	1	06/13/2020 10:22	WG1491940	
Toluene	ND		0.00100	1	06/13/2020 10:22	<u>WG1491940</u>	
Ethylbenzene	ND		0.00100	1	06/13/2020 10:22	<u>WG1491940</u>	
Total Xylenes	ND		0.00300	1	06/13/2020 10:22	<u>WG1491940</u>	
(S) Toluene-d8	95.1		80.0-120		06/13/2020 10:22	<u>WG1491940</u>	
(S) 4-Bromofluorobenzene	92.8		77.0-126		06/13/2020 10:22	<u>WG1491940</u>	
(S) 1,2-Dichloroethane-d4	122		70.0-130		06/13/2020 10:22	WG1491940	

Collected date/time: 06/09/20 10:30

SAMPLE RESULTS - 06

Ss

Â

Sc

Metals (ICP) by Method 6010B

							 1 Cn
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte	mg/l		mg/l		date / time		2
Iron,Dissolved	ND		0.100	1	06/18/2020 11:24	WG1494002	Tc
Manganese, Dissolved	ND		0.0100	1	06/18/2020 11:24	<u>WG1494002</u>	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	4
Analyte	mg/l		mg/l		date / time		
Benzene	ND		0.00100	1	06/17/2020 17:34	WG1494147	5
Toluene	ND		0.00100	1	06/17/2020 17:34	<u>WG1494147</u>	ĭS
Ethylbenzene	ND		0.00100	1	06/17/2020 17:34	WG1494147	
Total Xylenes	ND		0.00300	1	06/17/2020 17:34	WG1494147	6
(S) Toluene-d8	109		80.0-120		06/17/2020 17:34	WG1494147	
(S) 4-Bromofluorobenzene	88.5		77.0-126		06/17/2020 17:34	WG1494147	7
(S) 1,2-Dichloroethane-d4	107		70.0-130		06/17/2020 17:34	WG1494147	Í (

WG1492339

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3539000-1 06/15/20 17:15 MB RDL MB Result MB Qualifier MB MDL Analyte mg/l mg/I mg/l U 0.100 Iron, Dissolved 0.0458 Manganese, Dissolved U 0.00327 0.0100

Laboratory Control Sample (LCS)

(LCS) R3539000-2 06/15	/20 17:18				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Iron, Dissolved	10.0	10.1	101	80.0-120	
Manganese, Dissolved	1.00	0.995	99.5	80.0-120	

L1228493-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1228493-01 06/15/20 17:20 • (MS) R3539000-4 06/15/20 17:26 • (MSD) R3539000-5 06/15/20 17:28

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%
Iron,Dissolved	10.0	ND	9.96	10.0	99.6	100	1	75.0-125			0.542
Manganese, Dissolved	1.00	ND	0.980	0.979	98.0	97.9	1	75.0-125			0.133

ACCOUNT:	
HilCorp-Farmington, N	Л

PROJECT:

SDG: L1228287

WG1494002

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3540098-1 06/18/2	20 11:02						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/I		mg/l	mg/I			
Iron, Dissolved	U		0.0458	0.100			
Manganese, Dissolved	U		0.00327	0.0100			

Laboratory Control Sample (LCS)

(LCS) R3540098-2 06/18	3/20 11:04				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Iron, Dissolved	10.0	9.89	98.9	80.0-120	
Manganese, Dissolved	1.00	0.977	97.7	80.0-120	

ACCOUNT:	
HilCorp-Farmington,	NM

PROJECT:

SDG: L1228287

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3539571-3 06/13/20	J 05:10			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/I	mg/I
Benzene	U		0.0000941	0.00100
Ethylbenzene	U		0.000137	0.00100
Toluene	U		0.000278	0.00100
Xylenes, Total	U		0.000174	0.00300
(S) Toluene-d8	97.8			80.0-120
(S) 4-Bromofluorobenzene	94.0			77.0-126
(S) 1,2-Dichloroethane-d4	110			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3539571-1 06/13/2	0 04:11 • (LCSD) R3539571-2	06/13/20 04:31							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Benzene	0.00500	0.00524	0.00566	105	113	70.0-123			7.71	20
Ethylbenzene	0.00500	0.00468	0.00493	93.6	98.6	79.0-123			5.20	20
Toluene	0.00500	0.00468	0.00487	93.6	97.4	79.0-120			3.98	20
Xylenes, Total	0.0150	0.0137	0.0146	91.3	97.3	79.0-123			6.36	20
(S) Toluene-d8				95.0	95.5	80.0-120				
(S) 4-Bromofluorobenzene				95.8	93.2	77.0-126				
(S) 1,2-Dichloroethane-d4				114	112	70.0-130				

ACCOUNT: HilCorp-Farmington, NM PROJECT:

SDG: L1228287

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3539815-3 06/17/2	0 15:48				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/I	
Benzene	U		0.0000941	0.00100	
Ethylbenzene	U		0.000137	0.00100	
Toluene	U		0.000278	0.00100	
Xylenes, Total	U		0.000174	0.00300	
(S) Toluene-d8	114			80.0-120	
(S) 4-Bromofluorobenzene	98.3			77.0-126	
(S) 1,2-Dichloroethane-d4	103			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3539815-1 06/17/2	0 14:43				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Benzene	0.00500	0.00474	94.8	70.0-123	
Ethylbenzene	0.00500	0.00505	101	79.0-123	
Toluene	0.00500	0.00510	102	79.0-120	
Xylenes, Total	0.0150	0.0157	105	79.0-123	
(S) Toluene-d8			107	80.0-120	
(S) 4-Bromofluorobenzene			101	77.0-126	
(S) 1,2-Dichloroethane-d4			102	70.0-130	

ACCOUNT: HilCorp-Farmington, NM PROJECT:

SDG: L1228287

GLOSSARY OF TERMS

₩

Τс

Śs

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report. * Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ¹⁶	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Internet 2975 lew Hampshire 2975 lew Jersey–NELAP TN002 lew Mexico ¹ n/a lew York 11742 lorth Carolina Env375 lorth Carolina ¹ DW21704 lorth Carolina ³ 41 lorth Carolina ³ 41 lorth Dakota R-140 Dhio–VAP CL0069 Dregon TN200002 Rennsylvania 68-02979 Rhode Island LA000356 iouth Dakota n/a iouth Dakota n/a iouth Carolina 84004 iouth Carolina B4004 iouth Dakota n/a iouth Dakota n/a iouth Dakota n/a iouth Dakota Na iouth Dakota Na iouth Dakota Na iouth Dakota Na iouth Carolina 84004 iouth Carolina 84004 iouth Carolina 84004 iouth Ca	lebraska	NE-OS-15-05
New Jersey–NELAPTN002New Mexico 1n/aNew York11742North CarolinaEnv375North Carolina 1DW21704North Carolina 341North Carolina 341North DakotaR-140Ohio–VAPCL0069Oklahoma9915OregonTN200002Pennsylvania68-02979Rhode IslandLA000356South Carolina84004South Dakotan/aTennessee 142006TexasT104704245-18-15Texas 5LAB0152UtahTN00003VermontVT2006Virginia460132WashingtonC847West Virginia9980939910	Nevada	TN-03-2002-34
New Mexico 1 n/a New York 11742 North Carolina Env375 North Carolina 1 DW21704 North Carolina 3 41 North Carolina 3 41 North Dakota R-140 Ohio–VAP CL0069 Oklahoma 9915 Oregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Carolina 84004 </td <td>New Hampshire</td> <td>2975</td>	New Hampshire	2975
New York 11742 North Carolina Env375 North Carolina ¹ DW21704 North Carolina ³ 41 North Carolina ³ 41 North Carolina ³ 41 North Dakota R-140 Ohio–VAP CL0069 Oklahoma 9915 Oregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Carolina 84004 South Dakota n/a Tennessee ^{1.4} 2006 Texas T104704245-18-15 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	New Jersey-NELAP	TN002
Invariant Env375 North Carolina 1 DW21704 North Carolina 3 41 North Dakota R-140 Ohio–VAP CL0069 Oklahoma 9915 Oregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Dakota n/a Tennessee 1.4 2006 Texas T104704245-18-15 Texas 5 LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	New Mexico ¹	n/a
North Carolina 1 DW21704 North Carolina 3 41 North Dakota R-140 Ohio–VAP CL0069 Oklahoma 9915 Oregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Carolina 84004 South Dakota n/a Tennessee ^{1.4} 2006 Texas T104704245-18-15 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	New York	11742
North Carolina ³ 41 North Dakota R-140 Ohio–VAP CL0069 Oklahoma 9915 Oregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Carolina 84004 South Dakota n/a Tennessee ^{1.4} 2006 Texas T104704245-18-15 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	North Carolina	Env375
North Dakota R-140 Ohio–VAP CL0069 Oklahoma 9915 Oregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Dakota n/a Tennessee ^{1 4} 2006 Texas T104704245-18-15 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	North Carolina ¹	DW21704
Ohio–VAP CL0069 Oklahoma 9915 Oregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Carolina 84004 South Dakota n/a Tennessee ^{1.4} 2006 Texas T104704245-18-15 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	North Carolina ³	41
Oklahoma 9915 Oregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Carolina 84004 South Dakota n/a Tennessee ^{1.4} 2006 Texas T104704245-18-15 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	North Dakota	R-140
Oregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Carolina 84004 South Dakota n/a Tennessee ^{1.4} 2006 Texas T104704245-18-15 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Ohio–VAP	CL0069
Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Dakota n/a Tennessee ^{1.4} 2006 Texas T104704245-18-15 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Oklahoma	9915
Rhode Island LA000356 South Carolina 84004 South Dakota n/a Tennessee ^{1.4} 2006 Texas T104704245-18-15 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Oregon	TN200002
South Carolina 84004 South Carolina 84004 South Dakota n/a Tennessee ^{1 4} 2006 Texas T104704245-18-15 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Pennsylvania	68-02979
South Dakota n/a Tennessee ^{1 4} 2006 Texas T104704245-18-15 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Rhode Island	LAO00356
Tennessee ^{1 4} 2006 Texas T104704245-18-15 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	South Carolina	84004
Texas T104704245-18-15 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	South Dakota	n/a
Texas LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Tennessee ¹⁴	2006
Itah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Texas	T104704245-18-15
Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Texas ⁵	LAB0152
Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Utah	TN00003
Washington C847 West Virginia 233 Wisconsin 9980939910	Vermont	VT2006
West Virginia 233 Wisconsin 9980939910	Virginia	460132
Wisconsin 9980939910	Washington	C847
	West Virginia	233
Wyoming A2LA	Wisconsin	9980939910
	Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

HilCorp-Farmington, NM

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

L1228287

PAGE: 16 of 17

06/18/20 15:02

eived by OCD: 2/18/2021 2:1	15:09 PM		Sel gran	aligne and		the Alter	1.10	10.116			1997 - 1997 -	7.27.6.9.5.57	- C	53 of 82	-
HilCorp-Farmington, N 382 Road 3100	M		PO Box Houstor		08		Pres Chk			ERED	Analvsis /	Container /	Preser	<u>rative</u>	
Aztec, NM 87401 Report to:	anti. Tarihan		Email To:							11				4.32	
Keport to: Kurt Hoekstra				orp.com;k	hoekstra	@hilcorp.com	1	s		L					
Project Description: Flora Vista 1		City/State Collected:				Please Circ PT MT CT		NoPre		C.D				and the second sec	
Phone: 505-486-9543	Client Project	#		Lab Proj HILCO		FLORAVIST	A	250mIHDPE-NoPres	₽	FIE					
Collected by (print):	Site/Facility ID		±1	P.O. #	nj s			50m	-qm	ES				-	
Collected by (signature):	Rush? (I	ab MUST Be	Notified)	Quote	#			Mn	40mlAmb-HCl	MDL					
Kurt Hocktle Immediately Packed on Ice N_YX	Same Da Next Da Two Day Three D	y 5 Day / 10 D	Day y (Rad Only) ay (Rad Only)	Dat	e Result	s Needed	No. of	ved Fe,	V8260BTEX 4	54					
Sample ID	Comp/Grab	Matrix *	Depth	Da	ite	Time	Cntrs	Dissolved	/8260	No				-	
MW1		GW		6-	10		4	X	×	X		- 1	10	SAN	1
MW2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GW	1	6-	1000000	10:15	4	X	X	X			-		7
MW3		GW			9	2:00	4	X	X	X			12		T
MW4		GW	1.11	6-	9	12:30	4	X	X	X				in the	
MW5		GW		6-	10	9:00		X	X	X				12	
DW1		GW		6-	9	11:45		X	X	X					
DW2		GW		4-	9	10:30	4	X	X	X.					
															T
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks:										pH		mp		CC CC BC
WW - WasteWater DW - Drinking Water OT - Other	Samples returned UPSFedEx		1º al		Tracki	ng# 16	20	2	756	398	Flow.				Ca St V(
Relinquished by (Sjensture)	Da	te:	Tim	2;15	Receiv	ed by: (Signatu	Statements and statements		4			k Received:	HCL	MeoH	Pi RJ
Relinquished by : (Signature)		ite:	Tim	and the state	Receiv	ed by: (Signatu	ure)		~		Temp: 25-2:	°C =	TBR ottles R	eceived:	lf
Relinquished by : (Signature)	Di	ate:	Tim	e:	Receiv	ed for Jab by:	Signat	ure)	1		Date:	inci	ime:	980	H

ANALYTICAL REPORT

September 08, 2020

HilCorp-Farmington, NM

Sample Delivery Group:

Samples Received: Project Number:

Description:

Flora Vista 1

08/29/2020

L1256208

Report To:

Kurt Hoekstra 382 Road 3100 Aztec, NM 87401

Entire Report Reviewed By:

inio S

Olivia Studebaker Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: HilCorp-Farmington, NM

PROJECT:

SDG: L1256208 DATE/TIME: 09/08/20 16:35

TABLE OF CONTENTS

*	
¹ Cp	
² Tc	
³ Ss	
⁴ Cn	
⁵Sr	
⁶ Qc	

GL

A

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW2 L1256208-01	5
MW3 L1256208-02	6
MW4 L1256208-03	7
MW5 L1256208-04	8
Qc: Quality Control Summary	9
Metals (ICP) by Method 6010B	9
Volatile Organic Compounds (GC/MS) by Method 8260B	10
GI: Glossary of Terms	11
Al: Accreditations & Locations	12
Sc: Sample Chain of Custody	13

SDG: L1256208

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Tc

Ss

Ċn

Sr

Qc

GI

ΆI

Sc

			Collected by Kurt H	Collected date/time 08/28/20 10:10	Received da 08/29/20 09	
MW2 L1256208-01 GW				00/20/20 10:10	00/23/20 03	.50
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICP) by Method 6010B	WG1537110	1	09/02/20 18:45	09/03/20 02:02	CCE	Mt. Ju l iet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536001	1	09/01/20 11:46	09/01/20 11:46	BMB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW3 L1256208-02 GW			Kurt H	08/27/20 14:30	08/29/20 09	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICP) by Method 6010B	WG1537110	1	09/02/20 18:45	09/03/20 02:05	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536001	1	09/01/20 12:06	09/01/20 12:06	BMB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW4 L1256208-03 GW			Kurt H	08/27/20 12:50	08/29/20 09	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICP) by Method 6010B	WG1537110	1	09/02/20 18:45	09/03/20 02:08	CCE	Mt. Ju l iet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1536001	1	09/01/20 12:26	09/01/20 12:26	BMB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW5 L1256208-04 GW			Kurt H	08/28/20 09:15	08/29/20 09	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICP) by Method 6010B	WG1537110	1	09/02/20 18:45	09/03/20 02:11	CCE	Mt. Juliet, TN

SDG: L1256208

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Olivia Studebaker Project Manager

Τс Ss Cn Sr Qc GI AI Sc

Collected date/time: 08/28/20 10:10

SAMPLE RESULTS - 01 L1256208

Â

Sc

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
ron,Dissolved	ND		0.100	1	09/03/2020 02:02	WG1537110	
Manganese, Dissolved	ND		0.0100	1	09/03/2020 02:02	WG1537110	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Benzene	ND		0.00100	1	09/01/2020 11:46	WG1536001	
Toluene	ND		0.00100	1	09/01/2020 11:46	<u>WG1536001</u>	
Ethylbenzene	ND		0.00100	1	09/01/2020 11:46	<u>WG1536001</u>	
Total Xylenes	ND		0.00300	1	09/01/2020 11:46	<u>WG1536001</u>	
(S) Toluene-d8	104		80.0-120		09/01/2020 11:46	<u>WG1536001</u>	
(S) 4-Bromofluorobenzene	111		77.0-126		09/01/2020 11:46	WG1536001	
(S) 1,2-Dichloroethane-d4	93.9		70.0-130		09/01/2020 11:46	WG1536001	

Collected date/time: 08/27/20 14:30

SAMPLE RESULTS - 02

*

Ss

Â

Sc

Metals (ICP) by Method 6010B

							 Cn
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l		date / time		2
Iron,Dissolved	ND		0.100	1	09/03/2020 02:05	WG1537110	ЪС
Manganese, Dissolved	ND		0.0100	1	09/03/2020 02:05	WG1537110	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Benzene	ND		0.00100	1	09/01/2020 12:06	<u>WG1536001</u>	
Toluene	ND		0.00100	1	09/01/2020 12:06	<u>WG1536001</u>	
Ethylbenzene	ND		0.00100	1	09/01/2020 12:06	<u>WG1536001</u>	
Total Xylenes	ND		0.00300	1	09/01/2020 12:06	<u>WG1536001</u>	
(S) Toluene-d8	105		80.0-120		09/01/2020 12:06	<u>WG1536001</u>	
(S) 4-Bromofluorobenzene	108		77.0-126		09/01/2020 12:06	<u>WG1536001</u>	
(S) 1,2-Dichloroethane-d4	92.6		70.0-130		09/01/2020 12:06	<u>WG1536001</u>	

Collected date/time: 08/27/20 12:50

SAMPLE RESULTS - 03

Ss

Â

Sc

Metals (ICP) by Method 6010B

							 l'Cn
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte	mg/l		mg/l		date / time		2
Iron,Dissolved	ND		0.100	1	09/03/2020 02:08	WG1537110	Tc
Manganese, Dissolved	3.22		0.0100	1	09/03/2020 02:08	WG1537110	

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Benzene	0.00311		0.00100	1	09/01/2020 12:26	WG1536001
Toluene	ND		0.00100	1	09/01/2020 12:26	WG1536001
Ethylbenzene	0.00125		0.00100	1	09/01/2020 12:26	WG1536001
Total Xylenes	ND		0.00300	1	09/01/2020 12:26	WG1536001
(S) Toluene-d8	100		80.0-120		09/01/2020 12:26	WG1536001
(S) 4-Bromofluorobenzene	107		77.0-126		09/01/2020 12:26	WG1536001
(S) 1,2-Dichloroethane-d4	94.9		70.0-130		09/01/2020 12:26	WG1536001

Collected date/time: 08/28/20 09:15

SAMPLE RESULTS - 04

Ss

Â

Sc

Metals (ICP) by Method 6010B

							 Cn
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte	mg/l		mg/l		date / time		2
Iron,Dissolved	10.5		0.100	1	09/03/2020 02:11	WG1537110	Tc
Manganese, Dissolved	7.92		0.0100	1	09/03/2020 02:11	WG1537110	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	4
Analyte	mg/l		mg/l		date / time		
Benzene	0.0196		0.00500	5	09/01/2020 17:11	<u>WG1536001</u>	5
Toluene	ND		0.00500	5	09/01/2020 17:11	<u>WG1536001</u>	٣S
Ethylbenzene	0.0389		0.00500	5	09/01/2020 17:11	<u>WG1536001</u>	
Total Xylenes	0.910		0.0150	5	09/01/2020 17:11	<u>WG1536001</u>	6
(S) Toluene-d8	94.2		80.0-120		09/01/2020 17:11	<u>WG1536001</u>	
(S) 4-Bromofluorobenzene	104		77.0-126		09/01/2020 17:11	<u>WG1536001</u>	7
(S) 1,2-Dichloroethane-d4	90.1		70.0-130		09/01/2020 17:11	WG1536001	í e

WG1537110

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3566806-1 09/03/2	20 01:22			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/		mg/I	mg/l
Iron, Dissolved	U		0.0458	0.100
Manganese, Dissolved	U		0.00327	0.0100

Laboratory Control Sample (LCS)

(LCS) R3566806-2 09/03/20 01:25									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/l	mg/l	%	%					
Iron,Dissolved	10.0	9.78	97.8	80.0-120					
Manganese, Dissolved	1.00	0.980	98.0	80.0-120					

L1255734-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1255734-05 09/03/20 01:28 • (MS) R3566806-4 09/03/20 01:33 • (MSD) R3566806-5 09/03/20 01:35

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%
Iron,Dissolved	10.0	0.675	10.3	10.4	96.7	97.0	1	75.0-125			0.30
Manganese, Dissolved	1.00	0.285	1.25	1.25	96.5	96.8	1	75.0-125			0.233

ACCOUNT:
HilCorp-Farmington, NM

PROJECT:

SDG: L1256208 DATE/TIME: 09/08/20 16:35

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3567768-2 09/01/2	20 10:04					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/I		mg/I	mg/I		
Benzene	U		0.0000941	0.00100		
Ethylbenzene	U		0.000137	0.00100		
Toluene	U		0.000278	0.00100		
Xylenes, Total	U		0.000174	0.00300		
(S) Toluene-d8	104			80.0-120		
(S) 4-Bromofluorobenzene	110			77.0-126		
(S) 1,2-Dichloroethane-d4	93.6			70.0-130		

Laboratory Control Sample (LCS)

(LCS) R3567768-1 09/01/2	20 09:23				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Benzene	0.00500	0.00481	96.2	70.0-123	
Ethylbenzene	0.00500	0.00522	104	79.0-123	
Toluene	0.00500	0.00495	99.0	79.0-120	
Xylenes, Total	0.0150	0.0154	103	79.0-123	
(S) Toluene-d8			103	80.0-120	
(S) 4-Bromofluorobenzene			113	77.0-126	
(S) 1,2-Dichloroethane-d4			95.1	70.0-130	

ACCOUNT: HilCorp-Farmington, NM PROJECT:

SDG: L1256208 DATE/TIME: 09/08/20 16:35

GLOSSARY OF TERMS

*

Τс

Śs

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

SDG: L1256208

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory acapticable to the results reported in the attached report. * Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

Account with a sing applicable to the test methods specified on each scope of decreate

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ¹⁶	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio–VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

HilCorp-Farmington, NM

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

L1256208

PAGE: 12 of 13

09/08/20 16:35

ceived by OCD: 2/18/2021 2:15:0	09 PM	关于 集合人			and the		18-11				* * ± -	(F-16-) -	Pa	ge 66	of 82
HilCorp-Farmington, NN 382 Road 3100 Aztec, NM 87401	1		Billing Info Clara Ca PO Box 6 Houston	rdoza 51529	208		Pres Chk				nalvsis	/ Contain	ner / Pre	eservativ	e
Report to: Kurt Hoekstra		1. 1627 - 1	Email To:	orn com	khoekstr	a@hilcorp.cor				FILTEREN					
Project Description:		City/State	Jucalerine		KIIOEKSU	Please Cir	127	E-NoPres	-	111					
Flora Vista 1		Collected:		1		PT MT C	T ET	-No							
Phone: 505-486-9543	Client Project	#		Lab Pro		-FLORAVIST	A	HDPE	CI	FIELD					
Collected by (print):	Site/Facility ID		A#1	P.O. #				250mlHDP	H-quu	S B					
Collected by (senature):		ab MUST Be	Notified)	Quote	#			Mn	OmlA	Lei					
Immediately Packed on Ice N_YX	Next Day Two Day Three Day	y 5 Day	y (Rad Only) ay (Rad Only)	Da	te Result	s Needed	No. of	/ed Fe,	V8260BTEX 40mIAmb-HCI	SAND					
Sample ID	Comp/Grab	Matrix *	Depth		ate	Time	Cntrs	Dissolved	/8260	er er					
MWI No Saturple		GW					4	×	X	-	- 41				
MW2		GW		8-	28	10:10	4	X	x	X					
MW3		GW		8-		2:30	4	X	x	X	1722		125		
MW4	1	GW		8-	_	12:50	4	X	x	X					-
MW5		GW			28	9:15	4	x	x	X					
			2 4 9	- 11		in the second							1		
												1			
	1 de la													- Stay	
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	narks:										pH Flow		_ Temp Othe		
DW - Drinking Water	nples returned v UPS FedEx				Trackin	ng# 174	9	99	97	2	601			No.	
Relinquished by (Signature)	Dat		Z0 [;	30	Receiv	ed by: (Signatu	ure)			1	2-	nk Recei		es (No HCL / Mee TBR	
Reinquished by : (Signature)	Dat	And the second second	Time		Receiv	ed by: (Signatu	ure)				[emp:)=5.	C Bott		ved: 1
Relinquished by : (Signature)	Dat	e:	Time		Receiv	ed for lab by: (Signati	ure)			Date:	210	Tim	10 1930	

ANALYTICAL REPORT

November 16, 2020

HilCorp-Farmington, NM

Entire Report Reviewed By:

Sample Delivery Group:	L1283271
Samples Received:	11/07/2020
Project Number:	
Description:	Flora Vista 1
Site:	FLORA VISTA #1
Report To:	Kurt Hoekstra
	382 Road 3100
	Aztec, NM 87401

Unio S

Olivia Studebaker Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: HilCorp-Farmington, NM

PROJECT:

SDG: L1283271 DATE/TIME: 11/16/20 17:02

PAGE: 1 of 15

Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

TABLE OF CONTENTS

*
¹ Cp
² Tc
³ Ss
⁴ Cn
⁵ Sr

Qc

GL

ΆI

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW1 L1283271-01	5
MW2 L1283271-02	6
MW3 L1283271-03	7
MW4 L1283271-04	8
MW5 L1283271-05	9
Qc: Quality Control Summary	10
Metals (ICP) by Method 6010B	10
Volatile Organic Compounds (GC/MS) by Method 8260B	11
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

SDG: L1283271

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Тс

Ss

Ċn

Sr

Qc

GI

ΆI

Sc

			Collected by	Collected date/time	Received da	te/time
MW1 L1283271-01 GW			Kurt	11/05/20 10:17	11/07/20 09:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B	WG1574794	1	11/14/20 17:20	11/16/20 10:25	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1574918	1	11/11/20 21:14	11/11/20 21:14	JAH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW2 L1283271-02 GW			Kurt	11/05/20 14:42	11/07/20 09:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICP) by Method 6010B	WG1574794	1	11/14/20 17:20	11/16/20 10:28	CCE	Mt. Ju l iet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1574918	1	11/11/20 21:35	11/11/20 21:35	JAH	Mt. Ju l iet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1576907	1	11/15/20 17:58	11/15/20 17:58	JAH	Mt. Ju l iet, TN
			Collected by	Collected date/time	Received da	te/time
MW3 L1283271-03 GW			Kurt	11/05/20 11:34	11/07/20 09:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICP) by Method 6010B	WG1574794	1	11/14/20 17:20	11/16/20 10:30	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1574918	1	11/11/20 21:55	11/11/20 21:55	JAH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW4 L1283271-04 GW			Kurt	11/05/20 09:28	11/07/20 09:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B	WG1574794	1	11/14/20 17:20	11/16/20 10:33	CCE	Mt. Ju l iet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1574918	1	11/11/20 22:15	11/11/20 22:15	JAH	Mt. Ju l iet, TN
			Collected by	Collected date/time	Received da	te/time
MW5 L1283271-05 GW			Kurt	11/05/20 13:11	11/07/20 09:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010B	WG1574794	1	11/14/20 17:20	11/16/20 10:36	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1574918	1	11/11/20 22:36	11/11/20 22:36	JAH	Mt. Juliet, TN

SDG: L1283271

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Olivia Studebaker Project Manager

Τс Ss Cn Sr Qc GI AI Sc

Collected date/time: 11/05/20 10:17

SAMPLE RESULTS - 01

Ss

Â

Sc

Metals (ICP) by Method 6010B

							 Cn
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte	mg/l		mg/l		date / time		2
Iron,Dissolved	ND		0.100	1	11/16/2020 10:25	<u>WG1574794</u>	Тс
Manganese, Dissolved	2.25		0.0100	1	11/16/2020 10:25	WG1574794	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	4
Analyte	mg/l		mg/l		date / time		
Benzene	0.0426		0.00100	1	11/11/2020 21:14	WG1574918	5
Toluene	ND		0.00100	1	11/11/2020 21:14	<u>WG1574918</u>	Ŭ
Ethylbenzene	0.0505		0.00100	1	11/11/2020 21:14	WG1574918	
Total Xylenes	0.345		0.00300	1	11/11/2020 21:14	<u>WG1574918</u>	6
(S) Toluene-d8	113		80.0-120		11/11/2020 21:14	WG1574918	
(S) 4-Bromofluorobenzene	110		77.0-126		11/11/2020 21:14	<u>WG1574918</u>	7
(S) 1,2-Dichloroethane-d4	90.9		70.0-130		11/11/2020 21:14	WG1574918	, i

Collected date/time: 11/05/20 14:42

SAMPLE RESULTS - 02

Ss

Sc

Metals (ICP) by Method 6010B

())							l'Cn_l
	Result	Qualifier	RDL	Dilution	Analysis	Batch	CP
Analyte	mg/l		mg/l		date / time		2
Iron,Dissolved	ND		0.100	1	11/16/2020 10:28	WG1574794	¯Тс
Manganese, Dissolved	ND		0.0100	1	11/16/2020 10:28	<u>WG1574794</u>	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Benzene	ND		0.00100	1	11/11/2020 21:35	WG1574918	
oluene	ND		0.00100	1	11/11/2020 21:35	<u>WG1574918</u>	
thylbenzene	ND		0.00100	1	11/11/2020 21:35	WG1574918	
otal Xylenes	ND		0.00300	1	11/15/2020 17:58	<u>WG1576907</u>	
(S) Toluene-d8	105		80.0-120		11/11/2020 21:35	WG1574918	
(S) Toluene-d8	94.5		80.0-120		11/15/2020 17:58	<u>WG1576907</u>	
(S) 4-Bromofluorobenzene	99.4		77.0-126		11/11/2020 21:35	WG1574918	
(S) 4-Bromofluorobenzene	101		77.0-126		11/15/2020 17:58	<u>WG1576907</u>	
(S) 1,2-Dichloroethane-d4	91.9		70.0-130		11/11/2020 21:35	<u>WG1574918</u>	
(S) 1,2-Dichloroethane-d4	78.6		70.0-130		11/15/2020 17:58	WG1576907	

Collected date/time: 11/05/20 11:34

SAMPLE RESULTS - 03

Ss

Â

Sc

Metals (ICP) by Method 6010B

())							l'Cn
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte	mg/l		mg/l		date / time		 2
Iron,Dissolved	ND		0.100	1	11/16/2020 10:30	WG1574794	Tc
Manganese, Dissolved	ND		0.0100	1	11/16/2020 10:30	WG1574794	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Benzene	ND		0.00100	1	11/11/2020 21:55	WG1574918	
Toluene	ND		0.00100	1	11/11/2020 21:55	<u>WG1574918</u>	
Ethylbenzene	ND		0.00100	1	11/11/2020 21:55	WG1574918	
Total Xylenes	ND		0.00300	1	11/11/2020 21:55	WG1574918	
(S) Toluene-d8	107		80.0-120		11/11/2020 21:55	WG1574918	
(S) 4-Bromofluorobenzene	99.5		77.0-126		11/11/2020 21:55	WG1574918	
(S) 1,2-Dichloroethane-d4	95.6		70.0-130		11/11/2020 21:55	WG1574918	

Collected date/time: 11/05/20 09:28

SAMPLE RESULTS - 04

Ss

Â

Sc

Metals (ICP) by Method 6010B

())							 l'Cn
	Result	Qualifier	RDL	Dilution	Analysis	Batch	ΓCμ
Analyte	mg/l		mg/l		date / time		2
Iron,Dissolved	ND		0.100	1	11/16/2020 10:33	WG1574794	Tc
Manganese, Dissolved	3.56		0.0100	1	11/16/2020 10:33	<u>WG1574794</u>	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	4
Analyte	mg/l		mg/l		date / time		
Benzene	0.00181		0.00100	1	11/11/2020 22:15	WG1574918	5
Toluene	ND		0.00100	1	11/11/2020 22:15	WG1574918	ຶSr
Ethylbenzene	ND		0.00100	1	11/11/2020 22:15	WG1574918	
Total Xylenes	ND		0.00300	1	11/11/2020 22:15	WG1574918	⁶ Q
(S) Toluene-d8	103		80.0-120		11/11/2020 22:15	WG1574918	Q
(S) 4-Bromofluorobenzene	92.9		77.0-126		11/11/2020 22:15	WG1574918	7
(S) 1,2-Dichloroethane-d4	94.8		70.0-130		11/11/2020 22:15	WG1574918	G

Collected date/time: 11/05/20 13:11

SAMPLE RESULTS - 05

Ss

Sc

Metals (ICP) by Method 6010B

())							—— ĽCp
	Result	Qualifier	RDL	Dilution	Analysis	Batch	· · · ·
Analyte	mg/l		mg/l		date / time		2
Iron,Dissolved	3.49		0.100	1	11/16/2020 10:36	WG1574794	Tc
Manganese, Dissolved	3.19		0.0100	1	11/16/2020 10:36	<u>WG1574794</u>	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	4
Analyte	mg/l		mg/l		date / time		
Benzene	0.0141		0.00100	1	11/11/2020 22:36	WG1574918	
Toluene	0.00208		0.00100	1	11/11/2020 22:36	WG1574918	
Ethylbenzene	0.0987		0.00100	1	11/11/2020 22:36	WG1574918	
Total Xylenes	1.10		0.0600	20	11/15/2020 21:04	<u>WG1576907</u>	e
(S) Toluene-d8	116		80.0-120		11/11/2020 22:36	WG1574918	
(S) Toluene-d8	99.1		80.0-120		11/15/2020 21:04	<u>WG1576907</u>	E
(S) 4-Bromofluorobenzene	145	J1	77.0-126		11/11/2020 22:36	WG1574918	
(S) 4-Bromofluorobenzene	102		77.0-126		11/15/2020 21:04	<u>WG1576907</u>	L
(S) 1,2-Dichloroethane-d4	94.2		70.0-130		11/11/2020 22:36	WG1574918	8
(S) 1,2-Dichloroethane-d4	78.4		70.0-130		11/15/2020 21:04	WG1576907	

WG1574794

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY

Method Blank (MB)

/B) R3593538-1 11/16/20 09:49								
MB Result	MB Qualifier	MB MDL	MB RDL					
mg/I		mg/l	mg/I					
U		0.0180	0.100					
U		0.000934	0.0100					
:	MB Result	MB Result <u>MB Qualifier</u>	MB Result MB Qualifier MB MDL mg/I mg/I U 0.0180					

Laboratory Control Sample (LCS)

(LCS) R3593538-2 11/16/20	0 09:52				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Iron,Dissolved	10.0	9.61	96.1	80.0-120	
Manganese, Dissolved	1.00	0.966	96.6	80.0-120	

L1283402-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1283402-06 11/16/2	(OS) L1283402-06 11/16/20 09:55 • (MS) R3593538-4 11/16/20 10:00 • (MSD) R3593538-5 11/16/20 10:03													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD			
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%			
Iron,Dissolved	10.0	ND	9.69	9.53	96.9	95.3	1	75.0-125			1.65			
Manganese, Dissolved	1.00	ND	0.946	0.958	94.6	95.8	1	75.0-125			1.29			

L1283409-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1283409-02 11/16/20	(OS) L1283409-02 11/16/20 10:05 • (MS) R3593538-6 11/16/20 10:08 • (MSD) R3593538-7 11/16/20 10:11												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD		
Analyte	mg/I	mg/l	mg/l	mg/I	%	%		%			%		
Iron,Dissolved	10.0	ND	9.50	9.63	94.6	95.9	1	75.0-125			1.40		
Manganese, Dissolved	1.00	0.0675	1.01	1.02	94.1	94.9	1	75.0-125			0.809		

ACCOUNT:
HilCorp-Farmington, NM

PROJECT:

SDG: L1283271 DATE/TIME: 11/16/20 17:02

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MD) D2E02207 2 11/11/2/	0.00.14			
(MB) R3593207-2 11/11/20) 20:14			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/I		mg/I	mg/
Benzene	U		0.0000941	0.00100
Ethylbenzene	U		0.000137	0.00100
Toluene	U		0.000278	0.00100
Xylenes, Total	U		0.000174	0.00300
(S) Toluene-d8	105			80.0-120
(S) 4-Bromofluorobenzene	95.1			77.0-126
(S) 1,2-Dichloroethane-d4	94.4			70.0-130

Laboratory Control Sample (LCS)

(LCS) R3593207-1 11/11/20	19:33				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Benzene	0.00500	0.00569	114	70.0-123	
Ethylbenzene	0.00500	0.00506	101	79.0-123	
Toluene	0.00500	0.00545	109	79.0-120	
Xylenes, Total	0.0150	0.0156	104	79.0-123	
(S) Toluene-d8			105	80.0-120	
(S) 4-Bromofluorobenzene			97.7	77.0-126	
(S) 1,2-Dichloroethane-d4			95.6	70.0-130	

ACCOUNT:	
HilCorp-Farmington,	NM

PROJECT:

SDG: L1283271 DATE/TIME: 11/16/20 17:02

WG1576907

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3593524-2 11/15/20) 13:50			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/		mg/I	mg/l
Xylenes, Total	U		0.000174	0.00300
(S) Toluene-d8	98.9			80.0-120
(S) 4-Bromofluorobenzene	103			77.0-126
(S) 1,2-Dichloroethane-d4	78.7			70.0-130

Laboratory Control Sample (LCS)

(LCS) R3593524-1 11/15/2	0 13:09				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Xylenes, Total	0.0150	0.0164	109	79.0-123	
(S) Toluene-d8			97.9	80.0-120	
(S) 4-Bromofluorobenzene			102	77.0-126	
(S) 1,2-Dichloroethane-d4			82.0	70.0-130	
(-)					

ACCOUNT:	
HilCorp-Farmington,	NM

PROJECT:

SDG: L1283271 DATE/TIME: 11/16/20 17:02

GLOSSARY OF TERMS

*

Τс

Śs

Cn

Sr

Qc

G

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

J1

Surrogate recovery limits have been exceeded; values are outside upper control limits.

SDG: L1283271

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory acplicable to the results reported in the attached report.

State Accreditations

Alabama40660Alaska17-026ArizonaAZ0612Arkansas88-0469California2932ColoradoTN00003ConnecticutPH-0197FloridaE87487GeorgiaNELAPGeorgia 1923IdahoTN00003Illinois200008IndianaC-TN-01Iowa364Kantacky 1690010Kentucky 216Louisiana 1LA180010MaineTN0002Maryland324MassachusettsM-TN03Minnesota9958Minnesota047-999-395MississippiTN0003Mississippi340MontanaCERT0086		
ArizonaAZ0612Arkansas88-0469California2932ColoradoTN00003ConnecticutPH-0197FloridaE87487GeorgiaNELAPGeorgia ¹ 923IdahoTN0003Illinois20008IndianaC-TN-01Iowa364Kentucky ¹⁶ 90010Kentucky ² 16LouisianaIA180010MaineTN0002Maryland324MassachusettsM-TN003Minnesota047-999-395Missouri340	Alabama	40660
Arkansas88-0469California2932ColoradoTN00003ConnecticutPH-0197FloridaE87487GeorgiaNELAPGeorgia ¹ 923IdahoTN00003Illinois200008IndianaC-TN-01Iowa364KansasE-10277Kentucky ¹⁶ 90010LouisianaAl30792Louisiana1A180010MaineTN0002Maryland324MassachusettsM-TN003Minnesota047-999-395MississippiTN0003Missouri340	Alaska	17-026
California2932ColoradoTN00003ConnecticutPH-0197FloridaE87487GeorgiaNELAPGeorgia ¹ 923IdahoTN00003Illinois200008IndianaC-TN-01Iowa364KansasE-10277Kentucky ¹⁶ 90010LouisianaAl30792LouisianaIA180010MaineTN0002Maryland324MassachusettsM-TN003Minnesota047-999-395MississippiTN0003Missouri340	Arizona	AZ0612
ColoradoTN0003ConnecticutPH-0197FloridaE87487GeorgiaNELAPGeorgia ¹ 923IdahoTN0003Illinois20008IndianaC-TN-01Iowa364KansasE-10277Kentucky ¹⁶ 90010LouisianaIA180010MaineTN0002Maryland324MassachusettsM-TN003Minnesota047-999-395Missouri340	Arkansas	88-0469
Connecticut PH-0197 Florida E87487 Georgia NELAP Georgia ¹ 923 Idaho TN00003 Illinois 200008 Indiana C-TN-01 Iowa 364 Kansas E-10277 Kentucky ¹⁶ 90010 Louisiana Al30792 Louisiana ¹ LA180010 Maine TN0002 Massachusetts M-TN003 Minnesota 047-999-395 Minnesota 047-999-395 Missouri 340	California	2932
FloridaE87487GeorgiaNELAPGeorgia 1923IdahoTN00003Illinois200008IndianaC-TN-01Iowa364KansasE-10277Kentucky 1690010LouisianaAl30792Louisiana 1LA180010MaineTN0002Maryland324Minnesota047-999-395Minnesota047-999-395Missouri340	Colorado	TN00003
Georgia NELAP Georgia 1 923 Idaho TN00003 Illinois 200008 Indiana C-TN-01 Iowa 364 Kansas E-10277 Kentucky ¹⁶ 90010 Louisiana Al30792 Louisiana 1 LA180010 Maine TN0002 Maryland 324 Massachusetts M-TN003 Minnesota 047-999-395 Mississippi TN00003 Missouri 340	Connecticut	PH-0197
Georgia ¹ 923 Idaho TN00003 Illinois 20008 Indiana C-TN-01 Iowa 364 Kansas E-10277 Kentucky ¹⁶ 90010 Louisiana Al30792 Louisiana ¹ LA180010 Maine TN0002 Massachusetts M-TN003 Minnesota 047-999-395 Mississippi TN0003 Missouri 340	Florida	E87487
Idaho TN00003 Illinois 200008 Indiana C-TN-01 Iowa 364 Kansas E-10277 Kentucky ¹⁶ 90010 Louisiana Al30792 Louisiana ¹ LA180010 Maine TN0002 Maryland 324 Massachusetts M-TN003 Minnesota 047-999-395 Mississippi TN0003 Missouri 340	Georgia	NELAP
Illinois20008IndianaC-TN-01Iowa364KansasE-10277Kentucky ¹ 690010Kentucky ² 16LouisianaAl30792Louisiana ¹ LA180010MaineTN0002Maryland324Minesota9958Minnesota047-999-395MissoippiTN0003Missouri340	Georgia ¹	923
IndianaC-TN-01Iowa364KansasE-10277Kentucky ¹⁶ 90010Kentucky ² 16LouisianaAl30792Louisiana ¹ LA180010MaineTN0002Maryland324Michigan9958Minnesota047-999-395MississippiTN0003Missouri340	Idaho	TN00003
Iowa 364 Kansas E-10277 Kentucky ¹⁶ 90010 Kentucky ² 16 Louisiana Al30792 Louisiana ¹ LA180010 Maine TN0002 Massachusetts M-TN003 Minnesota 047-999-395 Mississippi TN0003 Missouri 340	Illinois	200008
Kansas E-10277 Kentucky ¹⁶ 90010 Kentucky ² 16 Louisiana Al30792 Louisiana ¹ LA180010 Maine TN0002 Maryland 324 Minesota 9958 Minnesota 047-999-395 Mississippi TN0003 Missouri 340	Indiana	C-TN-01
Kentucky ^{1 6} 90010 Kentucky ² 16 Louisiana Al30792 Louisiana ¹ LA180010 Maine TN0002 Maryland 324 Minesota M-TN003 Minnesota 047-999-395 Mississippi TN0003 Missouri 340	lowa	364
Kentucky 216LouisianaAl30792Louisiana 1LA180010MaineTN0002Maryland324MassachusettsM-TN003Michigan9958Minnesota047-999-395MississippiTN0003Missouri340	Kansas	E-10277
Kentucky 216LouisianaAl30792Louisiana 1LA180010MaineTN0002Maryland324MassachusettsM-TN003Michigan9958Minnesota047-999-395MississippiTN0003Missouri340	Kentucky ¹⁶	90010
Louisiana 1LA180010MaineTN0022Maryland324MassachusettsM-TN003Michigan9958Minnesota047-999-395MississippiTN0003Missouri340		16
MaineTN0002Maryland324MassachusettsM-TN003Michigan9958Minnesota047-999-395MississippiTN0003Missouri340	Louisiana	AI30792
Maryland324MassachusettsM-TN003Michigan9958Minnesota047-999-395MississippiTN0003Missouri340	Louisiana ¹	LA180010
MassachusettsM-TN003Michigan9958Minnesota047-999-395MississippiTN00003Missouri340	Maine	TN0002
Michigan 9958 Minnesota 047-999-395 Mississippi TN0003 Missouri 340	Maryland	324
Minnesota 047-999-395 Mississippi TN00003 Missouri 340	Massachusetts	M-TN003
Mississippi TN00003 Missouri 340	Michigan	9958
Missouri 340	Minnesota	047-999-395
	Mississippi	TN00003
Montana CERT0086	Missouri	340
	Montana	CERT0086

lebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio–VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

HilCorp-Farmington, NM

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

L1283271

11/16/20 17:02

eived by OCD: 2/18/2021 2:15	ived by OCD: 2/18/2021 2:15:09 PM		Billing Information:							A	nalvsis	/ Contain	ner Pa	ge 81	ôf 82
		Clasa Cardoza												1	
382 Road 3100			Passi		-										
Aztec, NM 87401			Horston			h				1					
Aztec, NN 87401			JEN	21014	EK	. Den	~L								
Report to:			Email To:	arn comik	hookstr	a@hilcorp.cor	-								
Kurt Hoekstra			Jdeal@nic	orp.com,k	noeksu			res				1. and		The second	
Project Description: Flora Vista 1		City/State Collected:				Please Cir PT MT C		NoP							
Phone: 505-486-9543	Client Project	#		Lab Proj HILCO		FLORAVIST	ТА	Mn 250mlHDPE-NoPres	g						
Collected by (print):	Site/Facility I	D #	-1-	P.O. #				mo	H-q						
Kurt	FLORI	A VIST	A#1				1	25	Am	12.15		AND R			
Collected by (signature):	Rush? (Lab MUST Be	Notified)	Quote	#	1100		Mn	10ml						
Immediately Packed on Ice N Y X	Next Da	ay Five I ay 5 Day y 10 Da Day	(Rad Only)	Dat	e Result	s Needed	No. of	Dissolved Fe,	V8260BTEX 40mlAmb-HCI						
Sample ID	Comp/Grab	Matrix *	Depth	Da	ate	Time	Cntrs	Disso	/826						
MW1		GW		11-	5	10:17	4	X	X						
MW2		GW		11-5		2:42	4	X	X						
MW3		GW	and the	11-		11:34	4	X	X						
MW4		GW		11-		9:28	4	X	X						
MW5		GW		11-		1:11	4	X	X						
				1.		1041	-	1				1200		Carlos I	
												1.5			
					1.2	1						1.2			
		100					-								
							-	12564							
* Matrix:	Remarks:		<u> </u>				1	10000		Transie	1	Technices			1
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater											pH Flov	33.83	_ Tem		
DW - Drinking Water OT - Other	Samples returned	l via: Courier			Tracki	ng # 919	The state	XE	03	08	312				
Relinquished by : (Signature)		ate:	Time	:	Receiv	ed by: (Signat	ure)				Trip Bla	nk Recei	ived: Y	es/No	
Kut Hobite	5	11-6-2	0 7.	:00							1-7.	11		HCL / Me TBR	Hot
Relinquished by (Signature)	D	ate:	Time	::	Receiv	ed by: (Signat	ure)				Temp:		C Bot	tles Receiv	ved:
Relinquished by : (Signature)	D	ate:	Time	:	Receiv	ed for lab by:	(Signat	ure)	100-1		Date:	7-2	Tip	my z	2
						INACIO	pa	0			11	12	3	(1	2

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 18290

CONDITIONS		
Operator:	OGRID:	
HILCORP ENERGY COMPANY	372171	
1111 Travis Street	Action Number:	
Houston, TX 77002	18290	
	Action Type:	
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)	

CONDITIONS

Created By	Condition	Condition Date
nvelez	Review of 2020 Annual Groundwater Report: Content satisfactory 1. Continue quarterly sampling from monitoring wells MW-1 – MW-5 to examine BTEX, dissolved iron and dissolved manganese in 2021 2. Continue annual sampling of DW-1 and DW-2 in 2021 3. Submit the Annual Monitoring Report to the OCD no later than March 31, 2022	12/28/2021