

March 19, 2021

Mr. Bradford Billings

New Mexico Oil Conservation Division

1220 South St. Francis Drive Santa Fe, New Mexico 87505 APPROVED By Nelson Velez at 4:42 pm, Dec 28, 2021

Review of 2020 Semi-Annual Monitoring and Remedial Activities Report:

Content satisfactory

1. Continued groundwater monitoring and sampling on a semi-annual basis

2. Continue to monitor the absorbent sock in VG-4 and replace as needed

3. Submit the Annual Monitoring Report to the OCD no later than March 31, 2022

Re: 2020 Semi-Annual Monitoring and Remedial Activities Report ConocoPhillips, Vacuum Glorietta East Unit Lea County, New Mexico (1RP-744)

Mr. Billings:

This report details the continuing groundwater monitoring and remedial activities at the ConocoPhillips Company ("COP") Vacuum Glorietta East Unit, Lea County, New Mexico (Site). The Site location is shown on Figure 1. The Site was assigned the identifier order No. 1RP-744 by the New Mexico Oil Conservation Division (NMOCD).

1.0 BACKGROUND AND PREVIOUS INVESTIGATIONS

Impacts to soil and groundwater are believed to be associated with a release that was reported to the NMOCD on October 28, 2002. Approximately 80 barrels of oil and 20 barrels of water were recovered after the release. The affected area was estimated to be approximately 80 feet by 150 feet in size.

An initial investigation was performed at the Site by B&H Environmental Services in November 2002. A total of seven shallow soil borings were advanced during the investigation. Soil samples collected from the borings indicated the presence of chlorides and petroleum hydrocarbons above NMOCD Recommended Remedial Action Limits (RRALs).

Approximately 3,240 cubic yards (yd^3) of petroleum-impacted soil was excavated in August 2004, and another 1,000 yd^3 of soil was removed in November and December 2008 after additional assessment. One monitoring well (VG-1) was installed during this time, but was abandoned because it was located within the footprint of the excavation.

Backfilling and reseeding of the excavation was approved and performed in June 2009, and three monitoring wells were subsequently installed: VG-2 was installed down gradient of the excavation, VG-3 was installed up gradient of the excavation, and VG-4 was installed within the footprint of the excavation. Three additional groundwater monitoring wells (VG-5, VG-6, and VG-7) were installed between December 4 and December 13, 2013 to further assess the northern, western, and southern extent of hydrocarbons and chlorides in the groundwater.

Due to the presence of light non-aqueous phase liquid (LNAPL), mobile dual phase extraction (MDPE) was used as a remediation method at the Site. The first MDPE event at the Site took place on September 8 and 9, 2014. Approximately 1,636 gallons of total fluids were extracted from monitoring well VG-4, including approximately 6.06 gallons of hydrocarbons (liquid and vapor). The second MDPE event performed at the Site occurred from May 4 to 6, 2015. Approximately 6,349 gallons of total fluids were extracted from monitoring well VG-4, including approximately 14.51 gallons of hydrocarbons (liquid and vapor). A soil vapor extraction (SVE) event was conducted at the Site on June 11 through 13, 2019. A total of 9.78 gallons of vapor LNAPL were recovered during this event. MDPE and SVE events were performed by AcuVac Remediation, LLC (AcuVac) of Houston, Texas.

Trace amounts of LNAPL and exceedances of benzene, toluene, ethylbenzene, and total xylenes (collectively referred to as BTEX) and chlorides have historically been documented in VG-4, and an absorbent sock has been placed in this well.

3.0 HYDROLOGY/GROUNDWATER

The water bearing zone consists of the Pliocene-age Ogallala aquifer under unconfined conditions at the site. The Ogallala aquifer is located at the base of the Ogallala Formation. In general, the Ogallala Formation consists of quartz sand and gravel that is poorly to well-cemented with calcium carbonate and contains minor amounts of clay. The wells installed at the Site were drilled to depths of approximately 70 to 80 feet bgs with static groundwater water levels approximately 65 feet bgs.

4.0 2020 GROUNDWATER MONITORING

4.1 Groundwater Sampling and Analysis

Prior to purging the wells, each well was gauged to measure the depth to groundwater and phase separated hydrocarbons (PSH), if any. The water levels and the PSH measurements are summarized in Table 1, and well locations are shown on Figure 2. Monitoring wells containing PSH are gauged, but not sampled. Each monitoring well not containing PSH was sampled utilizing low flow sampling techniques. The semi-annual groundwater monitoring events occurred in May and November 2020. Groundwater samples were collected and analyzed for BTEX by United States Environmental Protection Agency (EPA) Method 8260 and chlorides by Method 300.0. Groundwater samples were transported to Pace Analytical Services, LLC, in Mount Juliet, Tennessee under chain-of-custody control for the 2020 sampling events. Table 2 presents a summary of the groundwater analyses. The analytical report and chain-of-custody is presented in Appendix A.

4.2 Groundwater Gradient

Groundwater gradient maps were generated for the May and November 2020 sampling events. The hydraulic gradient for the aquifer was generally to the southeast, and consistent with historical data. The May and November 2020 groundwater gradient maps are included as Figure 3 and Figure 4, respectively.

4.3 Phase Separated Hydrocarbon (PSH)

The monitoring wells were gauged for the presence of PSH during groundwater sampling events. Monitoring well VG-4 exhibited 0.04 feet of PSH during the November 2020 sampling event and was not sampled during this event.

5.0 GROUNDATER ANALYTICAL RESULTS

5.1 June 2020 Sampling Event

During the May 2020 sampling event, monitoring wells VG-2, VG-3, VG-4, VG-5, VG-6, and VG-7 were sampled. The concentrations of benzene (1.59 mg/L), total xylenes (0.826 mg/L), and chlorides (581 mg/L) in the sample collected from monitoring well VG-4 exceeded the applicable NMWQCC Groundwater Quality Standards (0.01 mg/L, 0.62 mg/L, and 250 mg/L, respectively). Additionally, the concentration of chlorides in the sample collected from VG-5 (295 mg/L) exceeded the applicable standard. No additional exceedances of the applicable NMWQCC standards were found.

5.2 November 2020 Sampling Event

During the November 2020 monitoring event, monitoring wells VG-2, VG-3, VG-5, VG-6, and VG-7, were sampled. The concentration of chlorides in the sample collected from VG-5 (638 mg/L) exceeded the applicable standard. No additional exceedances of the applicable NMWQCC standards were found.

6.0 REMEDIAL ACTIVITIES

On May 4 through 6, 2020, Tetra Tech personnel mobilized to the Site to supervise remedial activities to enhance recovery of PSH in both liquid and vapor phases. AcuVac Remediation, LLC (AcuVac) of Houston, Texas performed three days of mobile dual phase extraction (MDPE)/soil vapor extraction (SVE) events on VG-4, which consisted of two 10-hour days of MDPE (events 4A and 4B) and one 8-hour day of SVE (event 4C). The first 10-hour day of MDPE on VG-4 resulted in the recovery of 4.18 gallons of LNAPL, the second 10-hour day of MDPE on VG-4 resulted in the recovery of 4.49 gallons of LNAPL, and the 8-hour day of SVE on VG-4 resulted in the recovery of 3.21 gallons of LNAPL. The AcuVac report of remedial activities performed at the Site is presented in Appendix B.

7.0 WORK PLAN

Groundwater monitoring and sampling of the monitoring wells will be continued on a semi-annual basis, with annual reporting to the NMOCD. Tetra Tech will continue to monitor the absorbent sock in VG-4 and replace as needed. Additional remedial activities will be evaluated for remediation at the Site, including additional MDPE events.

2020 Annual Groundwater Monitoring and Remedial Activities Report ConocoPhillips - Vacuum Glorietta East Unit Lea County, New Mexico (1RP-744) March 19, 2021

If you have any questions, please call Julie Evans at (432) 258-3451.

Sincerely, Tetra Tech, Inc.

Evans

Julie Evans Project Manager

cc: Mr. Marvin Soriwei – ConocoPhillips

Reviewed By:

Greg W. Pope, P.G. Program Manager

Attachments:

Figure 1 – Site Location Map

Figure 2 – Site Map

Figure 3 – Groundwater Gradient Map – May 2020

Figure 4 – Groundwater Gradient Map – November 2020

Table 1 – Summary of Groundwater Elevations and PSH Thickness

Table 2 – Summary of Groundwater Analytical Data

Appendix A – Laboratory Analytical Data Packages

Appendix B – AcuVac Remediation, LLC Mobile Dual Phase Extraction Report

•

FIGURES

Released to Imaging: 12/28/2021 4:45:42 PM

BELIKANSELI HOLLUNGUDUNG COLECTE MOCHANE doof Prode Forder Dy Client/Conoco/02397 COP - Vacuum Glorietta 2021/2020 Annual Report/Figures/Figure 2 Vacuum Glorietta.mxd By: troy fegter

Statistic Hole Mole Control Revealed and Anticipate Figure 1 Vient Conoco/02397 COP - Vacuum Glorietta 2021/2020 Annual Report/Figures/Figure 3 Vacuum Glorietta.mxd By: troy fegter

CARACTER AND A CONTROL OF A CON

•

TABLES

Released to Imaging: 12/28/2021 4:45:42 PM

Table 1ConocoPhillipsVacuum GloriettaLea County, New MexicoSummary of Groundwater Elevations and PSH Thickness

Wall	Dete		Draduat	Water	PSH	Product	Top of Casing	Groundwater
vven	Date	Well Total		level (ft)	Thickness	Elevation,	Elevation, feet	Elevation
Identification	weasured	Depth (ft)	(ff) (100)	(TOC)	(ft)	feet AMSL	AMSL	(ft)
VG-2	1/27/2014	70	-	65.41	-	-	3,930.56	3,865.15
	4/16/2014	70	-	65.38	-	-	3,930.56	3,865.18
	7/22/2014	70	-	65.32	-	-	3,930.56	3,865.24
	10/9/2014	70	-	64.03	-	-	3,930.56	3,866.53
	1/14/2015	70	-	64.3	-	-	3,930.56	3,866.26
	4/16/2015	70	-	64.37	-	-	3,930.56	3,866.19
	7/8/2015	70	-	64.85	-	-	3,930.56	3,865.71
	10/9/2015	70	-	65.15	-	-	3,930.56	3,865.41
	1/7/2016	70	-	65.25	-	-	3,930.56	3,865.31
	4/6/2016	70	-	65.29	-	-	3,930.56	3,865.27
	6/10/2016	70	-	65.35	-	-	3,930.56	3,865.21
	8/16/2017	70	-	65.58	-	-	3,930,56	3.864.98
	11/30/2017	70	-	65.57	-	-	3,930.56	3,864.99
	7/24/2018	-	-	65.79	-	-	3,930.56	3,864.77
	11/14/2018	67.7	-	65.9	-	-	3,930,56	3.864.66
	6/17/2019	67.89	-	66.44	-	-	3,930,56	3.864.12
	11/20/2019	67.89	-	66.42	-	-	3,930,56	3.864.14
	5/13/2020	67.7	-	66.51	_	-	3.930.56	3.864.05
	11/19/2020	67.7	-	66.74	_	-	3.930.56	3.863.82
							-,	-,
VG-3	1/27/2014	70	-	64.71	-	-	3.931.15	3.866.44
	4/16/2014	70	-	64.66	_	-	3.931.15	3.866.49
	7/22/2014	70	-	64.59	-	-	3.931.15	3.866.56
	9/10/2014	70	-	63.3	-	-	3.931.15	3.867.85
	1/14/2015	70	-	63.58	-	-	3.931.15	3.867.57
	4/16/2015	70	-	63.63	-	-	3.931.15	3.867.52
	8/7/2015	70	-	64.11	_	-	3.931.15	3.867.04
	9/10/2015	70	-	64.38	-	-	3.931.15	3.866.77
	7/1/2016	70	-	64.48	-	-	3,931.15	3,866.67
	6/4/2016	70	-	64.54	-	-	3.931.15	3.866.61
	6/10/2016	70	-	64.61	-	-	3.931.15	3.866.54
	8/16/2017	70	-	64.86	-	-	3.931.15	3.866.29
	11/30/2017	70	-	64.87	-	-	3.931.15	3.866.28
	7/24/2018	-	-	65.02	-	-	3,931.15	3,866.13
	11/14/2018	68.48	-	65.21	-	-	3,931.15	3,865.94
	6/17/2019	68.61	-	65.56	-	-	3,931.15	3,865.59
	11/19/2019	68.61	-	65.66	-	-	3,931.15	3,865.49
	5/12/2020	68.3	-	65.78	-	-	3,931.15	3,865.37
	11/19/2020	68.3	-	65.98	-	-	3,931.15	3,865.17
	•						,	
VG-4	1/27/2014	78	65.52	65.56	0.04	3,866.41	3,931.93	3,866.40
	4/16/2014	78	65.48	65.49	0.01	3,866.45	3,931.93	3,866.45
	7/22/2014	78	65.44	65.45	0.01	3.866.49	3.931.93	3.866.49
	10/9/2014	78	-	63.93	-	-	3,931.93	3,868.00
	1/14/2015	78	-	64.48	-	-	3,931.93	3,867.45
	4/16/2015	78	-	64.53	-	-	3,931.93	3,867.40
	7/8/2015	78	-	65.02	-	-	3,931.93	3,866.91
	10/9/2015	78	-	65.25	-	-	3,931.93	3,866.68
	1/7/2016	78	-	65.33	-	-	3,931.93	3,866.60

Table 1ConocoPhillipsVacuum GloriettaLea County, New MexicoSummary of Groundwater Elevations and PSH Thickness

\A /!!	Dete		Desilvest	Water	PSH	Product	Top of Casing	Groundwater
well	Date	Well Total	Product	level (ft)	Thickness	Elevation,	Elevation, feet	Elevation
Identification	Measured	Depth (ft)	(ff) (10C)	(TOC)	(ft)	feet AMSL	AMSL	(ft)
VG-4 continued	4/6/2016	78	65.35	65.36	0.01	3,866.58	3,931.93	3,866.58
	10/6/2016	78	-	65.46	-	-	3,931.93	3,866.47
	8/16/2017	78	-	65.75	-	-	3,931.93	3,866.18
	11/30/2017	78	-	68.42	-	-	3,931.93	3,863.51
	7/24/2018	-	65.13	65.92	0.79	3,866.80	3,931.93	3,866.64
	11/14/2018	-	66.06	67.14	1.08	3.865.87	3.931.93	3.865.65
	6/17/2019	-	66.35	66.38	0.03	3,865.58	3,931.93	3,865.57
	11/19/2019	-	66.57	66.68	0.11	3.865.36	3.931.93	3.865.34
	5/13/2020	72.1	-	66.65	-	-	3,931.93	3,865.28
	11/18/2020	-	67.89	67.93	0.04	3,864.04	3,931.93	3,864.03
							-,	-,
VG-5	1/27/2014	74	-	64.51	-	-	3.930.52	3.866.01
	4/16/2014	74	-	64.8	-	-	3,930,52	3.865.72
	7/22/2014	74	-	64.38	-	-	3,930,52	3.866.14
	10/9/2014	74	-	63.16	-	_	3.930.52	3.867.36
	1/14/2015	74	-	63.42	-	-	3,930,52	3.867.10
	4/16/2015	74	-	63.46	-	-	3,930,52	3.867.06
	7/8/2015	74	-	63.99	-	_	3.930.52	3.866.53
	10/9/2015	74	-	64.25	-	_	3.930.52	3.866.27
	1/7/2016	74	-	64.32	-	_	3.930.52	3.866.20
	4/6/2016	74	_	64.36	-	_	3.930.52	3.866.16
	10/6/2016	74	-	64.43	-	_	3.930.52	3.866.09
	8/16/2017	74	-	64.68	-	_	3.930.52	3.865.84
	11/30/2017	74	-	64.77	_	_	3.930.52	3.865.75
	7/24/2018	-	-	64.84	-	_	3.930.52	3.865.68
	11/14/2018	75.3	-	64.98	-	_	3.930.52	3.865.54
	6/17/2019	75.31	_	65.46	-	_	3.930.52	3.865.06
	11/20/2019	75.31	-	65.49	_	_	3.930.52	3.865.03
	5/13/2020	75.15	-	65.57	-	_	3.930.52	3.864.95
	11/19/2020	75.15	_	65.8	-	_	3.930.52	3.864.72
			l	0010			0,000.02	e,ee
VG-6	1/27/2014	80	-	68.38	-	-	3.935.16	3.866.78
	4/16/2014	80	-	68.32	_	_	3.935.16	3.866.84
	7/22/2014	80	-	68.26	-	_	3.935.16	3.866.90
	10/9/2014	80	-	67.06	-	_	3.935.16	3.868.10
	1/14/2015	80	-	67.27	-	-	3,935,16	3.867.89
	4/16/2015	80	-	67.3	-	_	3.935.16	3.867.86
	7/8/2015	80	-	67.86	-	-	3,935,16	3.867.30
	10/9/2015	80	-	68.12	-	-	3,935,16	3.867.04
	1/7/2016	80	-	68.16	-	_	3.935.16	3.867.00
	4/6/2016	80	-	68.21	-	_	3.935.16	3.866.95
	10/6/2016	80	-	68.27	-	-	3,935.16	3,866.89
	8/16/2017	80	-	68.53	-	-	3,935.16	3,866.63
	11/30/2017	80	-	68.57	-	-	3,935.16	3,866.59
	7/24/2018	-	-	68.69	-	-	3,935.16	3,866.47
	11/14/2018	80	-	68.86	-	-	3,935.16	3,866.30
	6/17/2019	80.16	-	69.35	-	-	3,935.16	3,865.81
	11/19/2019	80.16	-	69.31	-	-	3,935.16	3,865.85
	5/12/2020	79.72	-	69.41	-	-	3,935.16	3,865.75

Table 1ConocoPhillipsVacuum GloriettaLea County, New MexicoSummary of Groundwater Elevations and PSH Thickness

Well Identification	Date Measured	Well Total Depth (ft)	Product (ft) (TOC)	Water level (ft) (TOC)	PSH Thickness (ft)	Product Elevation, feet AMSL	Top of Casing Elevation, feet AMSL	Groundwater Elevation (ft)
VG-6 continued	11/18/2020	79.72	-	69.64	-	-	3,935.16	3,865.52
VG-7	1/27/2014	80	-	68.23	-	-	3,934.78	3,866.55
	4/16/2014	80	-	68.19	-	-	3,934.78	3,866.59
	7/22/2014	80	-	68.1	-	-	3,934.78	3,866.68
	10/9/2014	80	-	66.93	-	-	3,934.78	3,867.85
	1/14/2015	80	-	67.12	-	-	3,934.78	3,867.66
	4/16/2015	80	-	67.16	-	-	3,934.78	3,867.62
	7/8/2015	80	-	67.7	-	-	3,934.78	3,867.08
	10/9/2015	80	-	67.98	-	-	3,934.78	3,866.80
	1/7/2016	80	-	68.01	-	-	3,934.78	3,866.77
	4/6/2016	80	-	68.07	-	-	3,934.78	3,866.71
	10/6/2016	80	-	68.13	-	-	3,934.78	3,866.65
	8/16/2017	80	-	68.38	-	-	3,934.78	3,866.40
	11/30/2017	80	-	68.36	-	-	3,934.78	3,866.42
	7/24/2018	-	-	68.58	-	-	3,934.78	3,866.20
	11/14/2018	79.8	-	68.65	-	-	3,934.78	3,866.13
	6/17/2019	80.09	-	69.15	-	-	3,934.78	3,865.63
	11/19/2019	80.09	-	69.17	-	-	3,934.78	3,865.61
	5/12/2020	79.87	-	69.30	-	-	3,934.78	3,865.48
	11/18/2020	79.86	-	69.48	-	-	3,934.78	3,865.30

Notes:

PSH	phase separated hydrocarbons
-	no measurement
ft	feet
TOC	top of casing
AMSL	above mean sea level

Sample	Sample Date	Benzene	Toluene	Ethlybenzene	Xvlene (mg/L)	Chlorides
Identification		(mg/L)	(mg/L)	(mg/L)	J (J- /	(mg/L)
NMWQCC Grou	Indwater	0.01	0.750	0.75	0.62	250
Quality Standar	rds (mg/L)	0.001				107
VG-2	1/28/2014	<0.001	<0.001	<0.001	< 0.003	125
	4/16/2014	<0.001	<0.001	<0.001	<0.003	134
	7/22/2014	<0.001	<0.001	<0.001	< 0.003	146
	10/9/2014	<0.001	<0.001	<0.001	< 0.003	111
DUP	10/9/2014	<0.001	<0.001	<0.001	< 0.003	139
	1/14/2015	<0.001	<0.001	<0.001	< 0.003	106
	4/16/2015	<0.001	<0.001	<0.001	< 0.003	88.4
	7/8/2015	<0.001	<0.001	<0.001	< 0.003	73.8
	10/9/2015	<0.001	<0.001	<0.001	<0.003	106
	1/7/2016	<0.001	<0.001	<0.001	< 0.003	183
	4/6/2016	<0.001	<0.001	<0.001	<0.003	174
	10/6/2016	<0.001	<0.001	<0.001	<0.003	200
	8/16/2017	<0.0020	<0.0050	<0.0020	<0.0060	200
	11/30/2017	<0.0020	<0.0050	<0.0020	<0.0060	195
	7/25/2018	<0.00100	<0.00100	<0.00100	<0.00300	173
DUP	7/25/2018	<0.00100	<0.00100	<0.00100	<0.00300	169
	11/14/2018	<0.00100	<0.00100	<0.00100	<0.00300	175
	6/17/2019	<0.00100	<0.00100	<0.00100	<0.00300	193
	11/20/2019	<0.00100	<0.00100	<0.00100	<0.00300	192
	5/13/2020	<0.00100	<0.00100	<0.00100	<0.00300	176
	11/19/2020	<0.00100	<0.00100	<0.00100	<0.00300	117
VG-3	1/18/2014	<0.001	<0.001	<0.001	< 0.003	45.2
	4/16/2014	<0.001	<0.001	<0.001	< 0.003	46.7
	7/22/2014	<0.001	<0.001	<0.001	< 0.003	44.4
	9/10/2014	<0.001	<0.001	<0.001	< 0.003	38.2
	1/14/2015	<0.001	<0.001	<0.001	<0.003	50
	4/16/2015	<0.001	<0.001	<0.001	< 0.003	45.7
	7/8/2015	<0.001	<0.001	<0.001	< 0.003	44.2
	10/9/2015	<0.001	<0.001	<0.001	< 0.003	41.6
	1/7/2016	<0.001	<0.001	<0.001	< 0.003	40.4
	4/6/2016	<0.001	<0.001	<0.001	< 0.003	40.9
	10/6/2016	<0.001	<0.001	<0.001	<0.003	40.3
	8/16/2017	< 0.0020	< 0.0050	<0.0020	< 0.0060	40.4
	11/30/2017	< 0.0020	< 0.0050	<0.0020	< 0.0060	38.1
	7/25/2018	<0.00100	<0.00100	<0.00100	<0.00300	44.8
	11/14/2018	<0.00100	<0.00100	<0.00100	<0.00300	46.6
	6/17/2019	<0.00100	<0.00100	<0.00100	<0.00300	49.6
	11/19/2019	<0.00100	<0.00100	<0.00100	<0.00300	55.1
	5/12/2020	<0.00100	<0.00100	<0.00100	<0.00300	56.8

Sample Identification	Sample Date	Benzene	Toluene (mg/l)	Ethlybenzene	Xylene (mg/L)	Chlorides			
NMWOCC Grou	Indwater	(iiig/L)	(iiig/L)	(ing/L)		(iiig/L)			
Quality Standa	rds (mg/L)	0.01	0.750	0.75	0.62	250			
VG-3 continued	11/19/2020	<0.00100	<0.00100	<0.00100	<0.00300	59.8			
				•					
VG-4	10/28/2014	1.80	<0.05	0.82	0.20	4,140			
	1/14/2015	2.70	0.030	1.10	0.78	5,640			
	4/16/2015	5.60	0.037	1.70	0.80	3,080			
DUP	4/16/2015	5.00	0.030	1.30	0.31	-			
	7/8/2015	4.94	<0.05	1.57	<0.15	2,240			
DUP	7/8/2015	4.21	0.002	1.27	0.13	-			
	10/9/2015	4.18	<0.05	1.50	0.31	1,480			
	1/7/2016	4.12	<0.05	2.10	0.27	1,360			
DUP	1/7/2016	4.08	0.022	2.01	0.18	-			
	4/6/2016	3.61	<0.05	5.47	2.13	1,190			
DUP	4/6/2016	3.17	<0.05	2.95	0.99	-			
	10/6/2016	1.51	<0.05	0.54	0.26	1,490			
DUP	10/6/2016	1.58	<0.05	0.57	0.27	-			
	8/16/2017	0.77	<0.0050	0.12	0.04	1,180			
	11/30/2017	0.96	0.007	0.25	0.11	1,060			
DUP 1	11/30/2017	1.50	0.007	0.39	0.11	1,090			
	7/25/2018	NS							
	11/14/2018			NS					
	6/17/2019			NS					
	11/19/2019			NS					
	5/13/2020	1.59	0.0837	0.551	0.826	581			
	11/18/2020			NS					
				-					
VG-5	1/28/2014	<0.001	<0.001	<0.001	<0.003	304			
	4/16/2014	<0.001	<0.001	<0.001	<0.003	342			
DUP	4/16/2014	<0.001	<0.001	<0.001	< 0.003	328			
	7/22/2014	<0.001	<0.001	<0.001	<0.003	140			
	10/9/2014	<0.001	<0.001	<0.001	<0.003	278			
	1/14/2015	<0.001	<0.001	<0.001	< 0.003	228			
DUP	1/14/2015	<0.001	<0.001	<0.001	< 0.003	200			
	4/16/2015	<0.001	<0.001	<0.001	<0.003	200			
	7/8/2015	<0.001	<0.001	<0.001	< 0.003	232			
	10/9/2015	<0.001	<0.001	<0.001	<0.003	204			
DUP	10/9/2015	<0.001	<0.001	<0.001	<0.003	187			
	1/7/2016	<0.001	<0.001	<0.001	<0.003	158			
	4/6/2016	<0.001	<0.001	<0.001	<0.003	224			
	10/6/2016	<0.001	<0.001	<0.001	<0.003	283			
	8/16/2017	<0.0020	<0.0050	<0.0020	<0.0060	298			
	11/30/2017	<0.0020	<0.0050	<0.0020	<0.0060	417			

Sample Identification	Sample Date	Benzene (mg/L)	Toluene (mg/L)	Ethlybenzene (mg/L)	Xylene (mg/L)	Chlorides (ma/L)
NMWQCC Grou	Indwater	(3, -/	(9. – /	(9. –)		(3. –)
Quality Standa	rds (mg/L)	0.01	0.750	0.75	0.62	250
VG-5 continued	7/25/2018	<0.00100	<0.00100	<0.00100	<0.00300	225
	11/14/2018	<0.00100	<0.00100	<0.00100	<0.00300	180
DUP	11/14/2018	<0.00100	<0.00100	<0.00100	<0.00300	177
	6/17/2019	0.000862 J	0.00439	0.000526 J	0.00244 J	188
	11/20/2019	<0.00100	<0.00100	<0.00100	<0.00300	176
	5/13/2020	<0.00100	<0.00100	<0.00100	<0.00300	295
	11/19/2020	<0.00100	<0.00100	<0.00100	<0.00300	368
VG-6	1/28/2014	<0.001	<0.001	<0.001	<0.003	88.3
	4/16/2014	<0.001	<0.001	<0.001	<0.003	78.1
	7/22/2014	<0.001	<0.001	<0.001	<0.003	95.3
	10/9/2014	<0.001	<0.001	<0.001	<0.003	113
	1/14/2015	<0.001	<0.001	<0.001	<0.003	88.4
	4/16/2015	<0.001	<0.001	<0.001	<0.003	82.3
	7/8/2015	<0.001	<0.001	<0.001	<0.003	99.9
	10/9/2015	<0.001	<0.001	<0.001	<0.003	134
	1/7/2016	<0.001	<0.001	<0.001	<0.003	111
	4/6/2016	<0.001	<0.001	<0.001	<0.003	86
	10/6/2016	<0.001	<0.001	<0.001	<0.003	139
	8/16/2017	<0.0020	<0.0050	<0.0020	<0.0060	140
	11/30/2017	<0.0020	<0.0050	<0.0020	<0.0060	84.4
	7/25/2018	<0.00100	<0.00100	<0.00100	<0.00300	117
	11/14/2018	<0.00100	<0.00100	<0.00100	<0.00300	134
	6/17/2019	<0.00100	0.001	<0.00100	<0.00300	138
	11/19/2019	<0.00100	<0.00100	<0.00100	<0.00300	143
	5/12/2020	<0.00100	<0.00100	<0.00100	<0.00300	135
	11/18/2020	<0.00100	<0.00100	<0.00100	<0.00300	115
VG-7	1/28/2014	<0.001	<0.001	<0.001	<0.003	191
DUP	1/28/2014	<0.001	<0.001	<0.001	<0.003	201
	4/16/2014	<0.001	<0.001	<0.001	<0.003	211
	7/22/2014	<0.001	<0.001	<0.001	<0.003	201
DUP	7/22/2014	-	-	-	-	203
	10/9/2014	<0.001	<0.001	<0.001	<0.003	189
	1/14/2015	<0.001	<0.001	<0.001	<0.003	246
	4/16/2015	<0.001	<0.001	<0.001	<0.003	270
	7/8/2015	<0.001	<0.001	<0.001	<0.003	203
	10/9/2015	<0.001	<0.001	<0.001	<0.003	154
	1/7/2016	<0.001	<0.001	<0.001	<0.003	121
	4/6/2016	<0.001	<0.001	<0.001	<0.003	148
	10/6/2016	<0.001	<0.001	<0.001	<0.003	172

Sample Identification	Sample Date	Benzene (mg/L)	Toluene (mg/L)	Ethlybenzene (mg/L)	Xylene (mg/L)	Chlorides (mg/L)
NMWQCC Grou	Indwater	0.01	0 750	0.75	0.62	250
Quality Standa	rds (mg/L)	0.01	0.100	0.70	0.02	200
VG-7 continued	8/16/2017	<0.0020	<0.0050	<0.0020	<0.0060	134
	11/30/2017	<0.0020	<0.0050	<0.0020	<0.0060	164
	7/25/2018	<0.00100	<0.00100	<0.00100	<0.00300	254
	11/14/2018	<0.00100	<0.00100	<0.00100	<0.00300	229
	6/17/2019	<0.00100	<0.00100	<0.00100	<0.00300	207
DUP	6/17/2019	<0.00100	<0.00100	<0.00100	<0.00300	207
	11/19/2019	<0.00100	<0.00100	<0.00100	<0.00300	149
DUP	11/19/2019	<0.00100	<0.00100	<0.00100	<0.00300	145
	5/12/2020	<0.00100	<0.00100	<0.00100	<0.00300	129
DUP	5/12/2020	<0.00100	<0.00100	<0.00100	<0.00300	129
	11/18/2020	<0.00100	<0.00100	<0.00100	<0.00300	122
DUP	11/18/2020	<0.00100	<0.00100	<0.00100	<0.00300	125

Notes:

mg/L	milligrams per liter
bold	Exceeds NMWQCC groundwater quality standards
DUP	duplicate sample
NS	not sampled
J	The reported value is an estimate
	not analyzed

•

APPENDIX A

Released to Imaging: 12/28/2021 4:45:42 PM

ANALYTICAL REPORT

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

Report To:

L1220144 05/19/2020 212C-MD-02070 COP- Vacuum Glorietta

Julie Evans 901 West Wall Suite 100 Midland, TX 79701

Ср Тс Ss Cn Sr *Q*c Gl AI Sc

Entire Report Reviewed By:

chu, foph June

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Released to Imaging: 12/28/2021 4:45:42 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02070

SDG: L1220144 DATE/TIME: 05/28/20 21:39

PAGE: 1 of 16

Page 19 of 73

Cp: Cover Page	1				
Tc: Table of Contents	2				
Ss: Sample Summary					
Cn: Case Narrative	4				
Sr: Sample Results	5				
VG-3 L1220144-01	5				
VG-6 L1220144-02	6				
VG-7 L1220144-03	7				
VG-2 L1220144-04	8				
VG-5 L1220144-05	9				
VG-4 L1220144-06	10				
DUP L1220144-07	11				
Qc: Quality Control Summary	12				
Wet Chemistry by Method 9056A	12				
Volatile Organic Compounds (GC/MS) by Method 8260B	13				
GI: Glossary of Terms	14				
Al: Accreditations & Locations	15				
Sc: Sample Chain of Custody	16				

SDG: L1220144

SAMPLE SUMMARY

ONE LAB. NATI Rage 21 0 73

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

VG-3 11220144-01 GW			Collected by Preston Poitevint	Collected date/time 05/12/20 11:05	Received da 05/19/20 08	te/time :45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A Volatile Organic Compounds (GC/MS) by Method 8260B	WG1480013 WG1479805	1 1	05/22/20 16:58 05/21/20 04:57	05/22/20 16:58 05/21/20 04:57	ELN ADM	Mt. Juliet, TN Mt. Juliet, TN
VG-6 L1220144-02 GW			Collected by Preston Poitevint	Collected date/time 05/12/20 12:15	Received da 05/19/20 08	te/time :45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A Volatile Organic Compounds (GC/MS) by Method 8260B	WG1480013 WG1479805	5 1	05/22/20 17:11 05/21/20 05:17	05/22/20 17:11 05/21/20 05:17	ELN ADM	Mt. Juliet, TN Mt. Juliet, TN
VG-7 L1220144-03 GW			Collected by Preston Poitevint	Collected date/time 05/12/20 14:00	Received da 05/19/20 08	te/time :45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A Volatile Organic Compounds (GC/MS) by Method 8260B	WG1480013 WG1479805	5 1	05/22/20 17:24 05/21/20 05:37	05/22/20 17:24 05/21/20 05:37	ELN ADM	Mt. Juliet, TN Mt. Juliet, TN
VG-2 L1220144-04 GW			Collected by Preston Poitevint	Collected date/time 05/13/20 11:35	Received date/time 05/19/20 08:45	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A Volatile Organic Compounds (GC/MS) by Method 8260B	WG1480013 WG1479805	5 1	05/22/20 17:37 05/21/20 05:56	05/22/20 17:37 05/21/20 05:56	ELN ADM	Mt. Juliet, TN Mt. Juliet, TN
VG-5 L1220144-05 GW			Collected by Preston Poitevint	Collected date/time 05/13/20 12:50	Received da 05/19/20 08	te/time :45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A Volatile Organic Compounds (GC/MS) by Method 8260B	WG1480013 WG1479805	5 1	05/22/20 17:50 05/21/20 06:16	05/22/20 17:50 05/21/20 06:16	ELN ADM	Mt. Juliet, TN Mt. Juliet, TN
VG-4 L1220144-06 GW			Collected by Preston Poitevint	Collected date/time 05/13/20 13:45	Received da 05/19/20 08	te/time :45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A Volatile Organic Compounds (GC/MS) by Method 8260B	WG1480013 WG1479805	20 50	05/22/20 18:04 05/21/20 06:35	05/22/20 18:04 05/21/20 06:35	ELN ADM	Mt. Juliet, TN Mt. Juliet, TN
DUP L1220144-07 GW			Collected by Preston Poitevint	Collected date/time 05/12/20 00:00	Received da 05/19/20 08	te/time :45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A Volatile Organic Compounds (GC/MS) by Method 8260B	WG1480013 WG1479805	5 1	05/22/20 18:43 05/21/20 06:55	05/22/20 18:43 05/21/20 06:55	ELN ADM	Mt. Juliet, TN Mt. Juliet, TN

PROJECT: 212C-MD-02070

SDG: L1220144 DATE/TIME: 05/28/20 21:39

Э

PAGE: 3 of 16

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 92/28/2021 4:45:42 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02070

SDG: L1220144

DATE/TIME: 05/28/20 21:39

PAGE: 4 of 16

SAMPLE RESULTS - 01 L1220144

Â

Sc

Collected date/time: 05/12/20 11:05

Wet Chemistry	by	Method	9056A
---------------	----	--------	-------

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	56.8		0.379	1.00	1	05/22/2020 16:58	WG1480013	Tc

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic Compounds (GC/MS) by Method 8260B											
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch				
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cn			
Benzene	U		0.0000941	0.00100	1	05/21/2020 04:57	WG1479805				
Toluene	U		0.000278	0.00100	1	05/21/2020 04:57	WG1479805	5			
Ethylbenzene	U		0.000137	0.00100	1	05/21/2020 04:57	WG1479805	ِ Sr			
Total Xylenes	U		0.000174	0.00300	1	05/21/2020 04:57	WG1479805				
(S) Toluene-d8	110			80.0-120		05/21/2020 04:57	WG1479805	⁶ Oc			
(S) 4-Bromofluorobenzene	108			77.0-126		05/21/2020 04:57	WG1479805				
(S) 1,2-Dichloroethane-d4	106			70.0-130		05/21/2020 04:57	<u>WG1479805</u>	⁷ Gl			

PROJECT: 212C-MD-02070

SDG: L1220144

PAGE: 5 of 16

SAMPLE RESULTS - 02 L1220144

AI

Sc

Collected date/time: 05/12/20 12:15

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	135		1.90	5.00	5	05/22/2020 17:11	WG1480013	T

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		4
Benzene	U		0.0000941	0.00100	1	05/21/2020 05:17	WG1479805	
Toluene	U		0.000278	0.00100	1	05/21/2020 05:17	WG1479805	5
Ethylbenzene	U		0.000137	0.00100	1	05/21/2020 05:17	WG1479805	د
Total Xylenes	U		0.000174	0.00300	1	05/21/2020 05:17	WG1479805	
(S) Toluene-d8	110			80.0-120		05/21/2020 05:17	WG1479805	6
(S) 4-Bromofluorobenzene	100			77.0-126		05/21/2020 05:17	WG1479805	G
(S) 1,2-Dichloroethane-d4	112			70.0-130		05/21/2020 05:17	WG1479805	⁷ G

SAMPLE RESULTS - 03 L1220144

Â

Sc

Collected date/time: 05/12/20 14:00

Wet Chemistry by Method 9056A									
Result <u>Qualifier</u> MDL RDL Dilution Analysis <u>Batch</u>									
Analyte	mg/l		mg/l	mg/l		date / time			2
Chloride	129		1.90	5.00	5	05/22/2020 17:24	WG1480013		To

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		
Benzene	U		0.0000941	0.00100	1	05/21/2020 05:37	WG1479805	
Toluene	U		0.000278	0.00100	1	05/21/2020 05:37	WG1479805	
Ethylbenzene	U		0.000137	0.00100	1	05/21/2020 05:37	WG1479805	
Total Xylenes	U		0.000174	0.00300	1	05/21/2020 05:37	WG1479805	
(S) Toluene-d8	112			80.0-120		05/21/2020 05:37	WG1479805	
(S) 4-Bromofluorobenzene	106			77.0-126		05/21/2020 05:37	WG1479805	
(S) 1,2-Dichloroethane-d4	106			70.0-130		05/21/2020 05:37	WG1479805	

SAMPLE RESULTS - 04 L1220144

Â

Sc

Collected date/time: 05/13/20 11:35

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	176		1.90	5.00	5	05/22/2020 17:37	WG1480013	Tc

Volatile Organic Compounds (GC/MS) by Method 8260B											
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch				
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cn			
Benzene	U		0.0000941	0.00100	1	05/21/2020 05:56	WG1479805				
Toluene	U		0.000278	0.00100	1	05/21/2020 05:56	WG1479805	5			
Ethylbenzene	U		0.000137	0.00100	1	05/21/2020 05:56	WG1479805	ٌSr			
Total Xylenes	U		0.000174	0.00300	1	05/21/2020 05:56	WG1479805				
(S) Toluene-d8	114			80.0-120		05/21/2020 05:56	WG1479805	⁶ Oc			
(S) 4-Bromofluorobenzene	104			77.0-126		05/21/2020 05:56	WG1479805	QC			
(S) 1,2-Dichloroethane-d4	107			70.0-130		05/21/2020 05:56	WG1479805	⁷ Gl			

SAMPLE RESULTS - 05 L1220144

Â

Sc

Collected date/time: 05/13/20 12:50

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	295		1.90	5.00	5	05/22/2020 17:50	WG1480013	Tc

Volatile Organic Compounds (GC/MS) by Method 8260B											
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch				
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cn			
Benzene	U		0.0000941	0.00100	1	05/21/2020 06:16	WG1479805				
Toluene	U		0.000278	0.00100	1	05/21/2020 06:16	WG1479805	5			
Ethylbenzene	U		0.000137	0.00100	1	05/21/2020 06:16	WG1479805	_Sr			
Total Xylenes	U		0.000174	0.00300	1	05/21/2020 06:16	WG1479805				
(S) Toluene-d8	110			80.0-120		05/21/2020 06:16	WG1479805	⁶ Oc			
(S) 4-Bromofluorobenzene	100			77.0-126		05/21/2020 06:16	WG1479805				
(S) 1,2-Dichloroethane-d4	106			70.0-130		05/21/2020 06:16	WG1479805	⁷ Gl			

SAMPLE RESULTS - 06 L1220144

Â

Sc

Collected date/time: 05/13/20 13:45

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	581		7.58	20.0	20	05/22/2020 18:04	WG1480013	Tc

Volatile Organic Co	ompound	ds (GC/MS)	by Metho	od 8260B				³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cr
Benzene	1.59		0.00471	0.0500	50	05/21/2020 06:35	WG1479805	
Toluene	0.0837		0.0139	0.0500	50	05/21/2020 06:35	WG1479805	5
Ethylbenzene	0.551		0.00685	0.0500	50	05/21/2020 06:35	WG1479805	Š۲ ا
Total Xylenes	0.826		0.00870	0.150	50	05/21/2020 06:35	WG1479805	
(S) Toluene-d8	110			80.0-120		05/21/2020 06:35	WG1479805	⁶ Oc
(S) 4-Bromofluorobenzene	108			77.0-126		05/21/2020 06:35	WG1479805	GC
(S) 1,2-Dichloroethane-d4	102			70.0-130		05/21/2020 06:35	WG1479805	⁷ Gl

SAMPLE RESULTS - 07 L1220144

Â

Sc

Collected date/time: 05/12/20 00:00

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	129		1.90	5.00	5	05/22/2020 18:43	WG1480013	Tc

Volatile Organic Compounds (GC/MS) by Method 8260B								³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cr
Benzene	U		0.0000941	0.00100	1	05/21/2020 06:55	WG1479805	
Toluene	U		0.000278	0.00100	1	05/21/2020 06:55	WG1479805	5
Ethylbenzene	U		0.000137	0.00100	1	05/21/2020 06:55	WG1479805	Š۲ ا
Total Xylenes	U		0.000174	0.00300	1	05/21/2020 06:55	WG1479805	
(S) Toluene-d8	111			80.0-120		05/21/2020 06:55	WG1479805	⁶ Oc
(S) 4-Bromofluorobenzene	104			77.0-126		05/21/2020 06:55	WG1479805	GC
(S) 1,2-Dichloroethane-d4	106			70.0-130		05/21/2020 06:55	WG1479805	⁷ Gl

Reg @ qdbg OGD: 3/22/2021 1:51:37 PM

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1220144-01,02,03,04,05,06,07

G

Â

Sc

Method Blank (MB)

Method Blank (MB)					1 Cp		
(MB) R3532114-1 05/22/20 15:42							
	MB Result	MB Qualifier	MB MDL	MB RDL	2		
Analyte	mg/l		mg/l	mg/l	⁻Tc		
Chloride	U		0.379	1.00			
					³ Ss		

Original Sample (OS) • Duplicate (DUP)

Original Sample (O	S) • Duplic	ate (DUP)					4
(OS) • (DUP) R3532114-3	05/22/20 16:4	-5					Cn
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁵ Sr
Analyte		mg/l		%		%	
Chloride		42.4	1	0.975		15	

Laboratory Control Sample (LCS)

_CS) R3532114-2 05/22/20 15:55					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	40.1	100	80.0-120	

L1220295-05 Original Sample (OS) • Matrix Spike (MS)

(OS) L1220295-05 05/23/)S) L1220295-05 05/23/20 14:08 • (MS) R3532114-9 05/23/20 14:22									
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier			
Analyte	mg/l	mg/l	mg/l	%		%				
011 11	50.0	0 570	F4 F	10.2	4	00.0.400				

DATE/TIME: 05/28/20 21:39

PAGE: 12 of 16 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3531464-3 05/21/20 00:25							
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/l		mg/l	mg/l			
Benzene	U		0.0000941	0.00100			
Ethylbenzene	U		0.000137	0.00100			
Toluene	U		0.000278	0.00100			
Xylenes, Total	U		0.000174	0.00300			
(S) Toluene-d8	113			80.0-120			
(S) 4-Bromofluorobenzene	102			77.0-126			
(S) 1,2-Dichloroethane-d4	108			70.0-130			

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3531464-1 05/20/2	0 23:26 • (LCS	D) R3531464-2	05/20/20 23	46							-	
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	/	GI
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	L	
Benzene	0.00500	0.00485	0.00499	97.0	99.8	70.0-123			2.85	20	8	⁸ Al
Ethylbenzene	0.00500	0.00517	0.00481	103	96.2	79.0-123			7.21	20		
Toluene	0.00500	0.00505	0.00506	101	101	79.0-120			0.198	20	9	
Xylenes, Total	0.0150	0.0147	0.0148	98.0	98.7	79.0-123			0.678	20	5	Sc
(S) Toluene-d8				110	110	80.0-120						
(S) 4-Bromofluorobenzene				107	106	77.0-126						
(S) 1,2-Dichloroethane-d4				107	106	70.0-130						

DATE/TIME: 05/28/20 21:39

PAGE: 13 of 16

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

PROJECT: 212C-MD-02070

SDG: L1220144 DATE/TIME: 05/28/20 21:39

PAGE: 14 of 16

Received by OCD: 3/22/2021 1:51:37 PM CCREDITATIONS & LOCATIONS

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ¹⁶	90010
Kentucky ²	16
Louisiana	AI30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

NE-OS-15-05 TN-03-2002-34 2975 TN002 n/a 11742
TN-03-2002-34 2975 TN002 n/a 11742
2975 TN002 n/a 11742
TN002 n/a 11742
n/a 11742
11742
Env375
DW21704
41
R-140
CL0069
9915
TN200002
68-02979
LAO00356
84004
n/a
2006
T104704245-18-15
LAB0152
TN00003
VT2006
460132
C847
233
9980939910
A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 92/28/2021 4:45:42 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02070

SDG: L1220144

DATE/TIME: 05/28/20 21:39

ConocoPhillips - Tetu 901 West Wall Suite 100	ra Tech		Billing Info Account 901 Wes Suite 10 Midland	rmation: s Payable st Wall 0 TX 79701		Pres Chk			Analysi	s / Conta	ainer / Pri	eservative			Chain of Custod	Y Page f. c Analytical *
Midland TX 79701			Control To di	ulia auror Otatrata	ch com											
Julie Evans			critan to.j	niereaguz@reriare	CHLCOIN			L L			1				1206S Lebanon Rd Mount Juliet, TN 3	7122
Project Description: COP- Vacuum Glo	rietta			City/State Collected:	-										Phone: 800-767-51 Fax: 615 758-5859	
Phone: 432-687-8137 Fax:	Client Project	# MD-C3	0102	Lab Project # COPTETRA-VA	CUUM		-NoPres	HCI							LH 120	06
Collected by (print):	Site/Facility ID)#	No 17" 18	P.O.#	1		UHDPE-	n Amb-							Acctnum: CO Template:T1	PTETRA 51596
Immediately Packed on Ice N Y	Same Da Same Da Next Day Two Day Three Da	ab MUST Be ay Five I y 5 Day / 10 Da ay	Notified) Day (Rad Only) ay (Rad Only)	Date Resul	ts Needed	No.	RIDE 125n	OBTEX 40n							Prelogin: P7 TSR: 526 - Chr PB:	1 4613 is McCord
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	TLOI	3260							Shipped Via:	1
1/5 2				1	11			2 2					_		Remarks	Sample # (lab
10-3		GW		9-12-20	105	4	X	X		-						FOI
16-6		GVV		77/2-20	111.	-4										-02
<u> </u>		GVV	1.000	5-12-20	17.00	- 4										0
1155		GW		5-15-40	1750	7 1	X	v							1	-04
1/6-4	_	GW		5-13-00	1240	4	X	V V								26
10:10		GW		575-40		4	X	X						-		-07
DUP		GW				4	X	X			-			-		
		GW/				4	X	X								
			1		3	-	A			-						
* Matrix: SS - Soil AIR - Air F - Filter GW = Groundwater B - Bioassay WW = WasteWater	Remarks:			<u>ا</u>		1	L		pł Fie	4	Tem	p	COC : COC : Bott	Seal P Seal P Signed les ar] ple Receipt C Present/Intacl /Accurate: rive intact:	hecki P
DW - Drinking Water OT - Other	Samples return UPSFe	ned via: dExCou	rier	d Tra	cking # 44	13	0	39	127	2	10	8	Suff.	icient Zero H	volume sent: <u>If Applical</u> leadspace:	ole A
Relinquisted by (Signature)	AS -	Date: 5	-20	1200 Rec 1200 7	eved by: (Signa	ture)		/	Trip Bl	ank Rec	eived: Y	res / No HCL / Meol TBR	Presi	ervati	on Correct/Ch	ieckel:
Religiushed by : (Signature)		Date:	-20	lime: Rec	eived by: (Signa	ture)			Temp.	AS	C Bot		If pre	servatio	on required by Lo	ogin: Date/Tim
Relinquished by : (Signature)		Date:	1	Time: Rec	eived for lab by	(Signa	ture)	2	Date:	+1	Tim	ne:	Hold:			Conditio

Keleasea lo 1maging: 12/20/2021 4:43:42 PA	:42 PM	1:45	/2021 4	ng: 12/28	to Imagi	leased	Rei
--	--------	------	---------	-----------	----------	--------	-----

ANALYTICAL REPORT

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

Report To:

L1289139 11/21/2020 212C-MD-02070 COP- Vacuum Glorietta

Julie Evans 901 West Wall Suite 100 Midland, TX 79701

Сp Тс Ss Cn Sr *Q*c Gl AI Sc

Entire Report Reviewed By:

Chu, foph June

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Released to Imaging: 12/28/2021 4:45:42 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02070

SDG: L1289139 DATE/TIME: 12/07/20 19:35

PAGE: 1 of 15

Page 35 of 73

Cp: Cover Page	1					
Tc: Table of Contents						
Ss: Sample Summary	3					
Cn: Case Narrative	4					
Sr: Sample Results	5					
VG-6 L1289139-01	5					
VG-7 L1289139-02	6					
VG-3 L1289139-03	7					
VG-2 L1289139-04	8					
VG-5 L1289139-05	9					
DUP L1289139-06	10					
Qc: Quality Control Summary	11					
Wet Chemistry by Method 9056A	11					
Volatile Organic Compounds (GC/MS) by Method 8260B	12					
GI: Glossary of Terms	13					
Al: Accreditations & Locations						
Sc: Sample Chain of Custody						

PROJECT: 212C-MD-02070

SDG: L1289139 DATE/TIME: 12/07/20 19:35 PAGE: 2 of 15
SAMPLE SUMMARY

ONE LAB. NATI Rage 37 0173

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

			Collected by	Collected date/time	Received da	ite/time
VG-6 L1289139-01 GW			Preston Poitevint	11/18/20 13:10	11/21/20 09:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1586295	5	12/07/20 00:48	12/07/20 00:48	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1583926	1	11/30/20 04:11	11/30/20 04:11	JAH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
VG-7 L1289139-02 GW			Preston Poitevint	11/18/20 14:30	11/21/20 09:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1586295	5	12/07/20 01:19	12/07/20 01:19	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1583926	1	11/30/20 04:33	11/30/20 04:33	JAH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
VG-3 L1289139-03 GW			Preston Poitevint	11/19/20 11:15	11/21/20 09:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG1586295	1	12/07/20 01:34	12/07/20 01:34	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1583926	1	11/30/20 04:54	11/30/20 04:54	JAH	Mt. Juliet, TN
			Collected by	Collected date/time	Received date/time	
VG-2 L1289139-04 GW			Preston Poitevint	11/19/20 12:35	11/21/20 09:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1586295	5	12/07/20 02:52	12/07/20 02:52	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1583926	1	11/30/20 05:16	11/30/20 05:16	JAH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ate/time
VG-5 L1289139-05 GW			Preston Poitevint	11/19/20 14:05	11/21/20 09:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1586295	10	12/07/20 03:07	12/07/20 03:07	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1583926	1	11/30/20 05:38	11/30/20 05:38	JAH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
DUP L1289139-06 GW			Preston Poitevint	11/18/20 00:00	11/21/20 09:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1586295	5	12/07/20 03:22	12/07/20 03:22	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1583926	1	11/30/20 05:59	11/30/20 05:59	JAH	Mt. Juliet, TN

PROJECT: 212C-MD-02070

SDG: L1289139 DATE/TIME:

12/07/20 19:35

PAGE: 3 of 15

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Sample Delivery Group (SDG) Narrative

Lab Sample ID	Project Sample ID	Method
L1289139-03	VG-3	8260B
L1289139-04	VG-2	8260B

SDG: L1289139

DATE/TIME: 12/07/20 19:35 PAGE: 4 of 15

SAMPLE RESULTS - 01 L1289139

Â

Sc

Collected date/time: 11/18/20 13:10

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	115		1.90	5.00	5	12/07/2020 00:48	WG1586295	Tc

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic Compounds (GC/MS) by Method 8260B											
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch				
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cn			
Benzene	U		0.0000941	0.00100	1	11/30/2020 04:11	WG1583926				
Toluene	U		0.000278	0.00100	1	11/30/2020 04:11	WG1583926	5			
Ethylbenzene	U		0.000137	0.00100	1	11/30/2020 04:11	WG1583926	Š۲ .			
Total Xylenes	U		0.000174	0.00300	1	11/30/2020 04:11	WG1583926				
(S) Toluene-d8	106			80.0-120		11/30/2020 04:11	WG1583926	6 0 C			
(S) 4-Bromofluorobenzene	97.7			77.0-126		11/30/2020 04:11	WG1583926				
(S) 1,2-Dichloroethane-d4	91.7			70.0-130		11/30/2020 04:11	WG1583926	⁷ Gl			

Released to Imaging: 0228/2021 4:45:42 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02070

SDG: L1289139

DATE/TIME: 12/07/20 19:35 PAGE: 5 of 15

SAMPLE RESULTS - 02 L1289139

Â

Sc

Collected date/time: 11/18/20 14:30

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	122		1.90	5.00	5	12/07/2020 01:19	WG1586295	Tc

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic Compounds (GC/MS) by Method 8260B											
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch				
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cn			
Benzene	U		0.0000941	0.00100	1	11/30/2020 04:33	WG1583926				
Toluene	U		0.000278	0.00100	1	11/30/2020 04:33	WG1583926	5			
Ethylbenzene	U		0.000137	0.00100	1	11/30/2020 04:33	WG1583926	ٌSr			
Total Xylenes	U		0.000174	0.00300	1	11/30/2020 04:33	WG1583926				
(S) Toluene-d8	106			80.0-120		11/30/2020 04:33	WG1583926	6 0 c			
(S) 4-Bromofluorobenzene	99.1			77.0-126		11/30/2020 04:33	WG1583926				
(S) 1,2-Dichloroethane-d4	92.6			70.0-130		11/30/2020 04:33	WG1583926	⁷ Gl			

Released to Imaging: 0228/2021 4:45:42 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02070

SDG: L1289139

DATE/TIME: 12/07/20 19:35

PAGE: 6 of 15

SAMPLE RESULTS - 03 L1289139

Â

Sc

Collected date/time: 11/19/20 11:15

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	59.8		0.379	1.00	1	12/07/2020 01:34	WG1586295	Tc

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic Compounds (GC/MS) by Method 8260B												
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch					
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cn				
Benzene	U		0.0000941	0.00100	1	11/30/2020 04:54	WG1583926					
Toluene	U		0.000278	0.00100	1	11/30/2020 04:54	WG1583926	5				
Ethylbenzene	U		0.000137	0.00100	1	11/30/2020 04:54	WG1583926	_Sr				
Total Xylenes	U		0.000174	0.00300	1	11/30/2020 04:54	WG1583926					
(S) Toluene-d8	105			80.0-120		11/30/2020 04:54	WG1583926	6 0 c				
(S) 4-Bromofluorobenzene	95.8			77.0-126		11/30/2020 04:54	WG1583926					
(S) 1,2-Dichloroethane-d4	92.8			70.0-130		11/30/2020 04:54	WG1583926	⁷ Gl				

SAMPLE RESULTS - 04 L1289139

Collected date/time: 11/19/20 12:35

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	 Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	117		1.90	5.00	5	12/07/2020 02:52	WG1586295	Тс

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic Compounds (GC/MS) by Method 8260B												
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch					
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cn				
Benzene	U		0.0000941	0.00100	1	11/30/2020 05:16	WG1583926					
Toluene	U		0.000278	0.00100	1	11/30/2020 05:16	WG1583926	5				
Ethylbenzene	U		0.000137	0.00100	1	11/30/2020 05:16	WG1583926	Š۲ .				
Total Xylenes	U		0.000174	0.00300	1	11/30/2020 05:16	WG1583926					
(S) Toluene-d8	105			80.0-120		11/30/2020 05:16	WG1583926	600				
(S) 4-Bromofluorobenzene	99.1			77.0-126		11/30/2020 05:16	WG1583926					
(S) 1,2-Dichloroethane-d4	93.1			70.0-130		11/30/2020 05:16	WG1583926	7				

Sc

SAMPLE RESULTS - 05 L1289139

Â

Sc

Collected date/time: 11/19/20 14:05

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Cp
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	368		3.79	10.0	10	12/07/2020 03:07	WG1586295	Tc

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic Compounds (GC/MS) by Method 8260B											
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch				
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cr			
Benzene	U		0.0000941	0.00100	1	11/30/2020 05:38	WG1583926				
Toluene	U		0.000278	0.00100	1	11/30/2020 05:38	WG1583926	5			
Ethylbenzene	U		0.000137	0.00100	1	11/30/2020 05:38	WG1583926	ِّSr			
Total Xylenes	U		0.000174	0.00300	1	11/30/2020 05:38	WG1583926				
(S) Toluene-d8	104			80.0-120		11/30/2020 05:38	WG1583926	6			
(S) 4-Bromofluorobenzene	95.4			77.0-126		11/30/2020 05:38	WG1583926	GC			
(S) 1,2-Dichloroethane-d4	94.0			70.0-130		11/30/2020 05:38	WG1583926	⁷ Gl			

SAMPLE RESULTS - 06 L1289139

Â

Sc

Collected date/time: 11/18/20 00:00

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	125		1.90	5.00	5	12/07/2020 03:22	WG1586295	Tc

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic Compounds (GC/MS) by Method 8260B											
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch				
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cn			
Benzene	U		0.0000941	0.00100	1	11/30/2020 05:59	WG1583926				
Toluene	U		0.000278	0.00100	1	11/30/2020 05:59	WG1583926	5			
Ethylbenzene	U		0.000137	0.00100	1	11/30/2020 05:59	WG1583926	_Sr			
Total Xylenes	U		0.000174	0.00300	1	11/30/2020 05:59	WG1583926				
(S) Toluene-d8	105			80.0-120		11/30/2020 05:59	WG1583926	6 0 c			
(S) 4-Bromofluorobenzene	94.3			77.0-126		11/30/2020 05:59	WG1583926				
(S) 1,2-Dichloroethane-d4	93.8			70.0-130		11/30/2020 05:59	WG1583926	⁷ Gl			

Released to Imaging: 12/28/2021 4:45:42 PM ConocoPhillips - Tetra Tech

Received by 800 \$/22/2021 1:51:37 PM

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1289139-01,02,03,04,05,06

Ср

Τс

Ss

Method Blank (MB)

(MB) R3601016-1 12/06/20 17:24					
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Chloride	U		0.379	1.00	

L1289139-01 Original Sample (OS) • Duplicate (DUP)

LI289139-01 Origin	289139-01 Original Sample (OS) • Duplicate (DOP)										
OCS) E1289139-01 12/07/20 00:48 • (DOP) R3001013 12/07/20 01:04 DUP RPD DUP Qualifier Limits											
Analyte	mg/l	mg/l		%		%					
Chloride	115	115	5	0.471		15					

L1289730-02 Original Sample (OS) • Duplicate (DUP)

L1289730-02 Original Sample (OS) • Duplicate (DUP)											
(OS) L1289730-02 12/07/20 11:08 • (DUP) R3601016-6 12/07/20 11:23											
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al				
Analyte	mg/l	mg/l		%		%					
Chloride	0.659	0.622	1	5.78	J	15	⁹ Sc				

Laboratory Control Sample (LCS)

(LCS) R3601016-2 12/06/20	0 17:40				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	38.8	97.0	80.0-120	

L1289139-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1289139-03 12/07/20 01:34 • (MS) R3601016-4 12/07/20 01:50 • (MSD) R3601016-5 12/07/20 02:05												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	59.8	102	102	83.8	84.5	1	80.0-120	E	E	0.310	15

L1289730-02 Original Sample (OS) • Matrix Spike (MS)

(OS) L1289730-02 12/07/20 11:08 • (MS) R3601016-7 12/07/20 11:38										
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier			
Analyte	mg/l	mg/l	mg/l	%		%				
Chloride	50.0	0.659	49.7	98.1	1	80.0-120				

Released to	Imaging ^{AC} f2/287/2021 4:4	5:42	РМ
	ConocoPhillips - Tetra Tech		

PROJECT: 212C-MD-02070

SDG: L1289139

DATE/TIME: 12/07/20 19:35

PAGE: 11 of 15 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

L1289139-01,02,03,04,05,06

Qc

Method Blank (MB)

method Blank (mB	/				1 Cm
(MB) R3599024-2 11/30/2	20 00:29				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	Tc
Benzene	U		0.0000941	0.00100	
Ethylbenzene	U		0.000137	0.00100	³ Ss
Toluene	U		0.000278	0.00100	00
Xylenes, Total	U		0.000174	0.00300	4
(S) Toluene-d8	105			80.0-120	Cn
(S) 4-Bromofluorobenzene	95.8			77.0-126	
(S) 1,2-Dichloroethane-d4	92.8			70.0-130	⁵Sr

Laboratory Control Sample (LCS)

(LCS) R3599024-1 11/29/2	0 23:46					7
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	[′] GI
Analyte	mg/l	mg/l	%	%		
Benzene	0.00500	0.00514	103	70.0-123		⁸ A I
Ethylbenzene	0.00500	0.00584	117	79.0-123		AI
Toluene	0.00500	0.00521	104	79.0-120		Q
Xylenes, Total	0.0150	0.0177	118	79.0-123		Sc
(S) Toluene-d8			103	80.0-120		
(S) 4-Bromofluorobenzene			102	77.0-126		
(S) 1,2-Dichloroethane-d4			94.7	70.0-130		

SDG: L1289139

DATE/TIME: 12/07/20 19:35

PAGE: 12 of 15

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).

The identification of the analyte is acceptable; the reported value is an estimate.

J

SDG: L1289139

Received by OCD: 3/22/2021 1:51:37 PM CCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Ne
Alaska	17-026	Ne
Arizona	AZ0612	Ne
Arkansas	88-0469	Ne
California	2932	Ne
Colorado	TN00003	Ne
Connecticut	PH-0197	No
Florida	E87487	No
Georgia	NELAP	No
Georgia ¹	923	No
ldaho	TN00003	Oh
Illinois	200008	Ok
Indiana	C-TN-01	Ore
lowa	364	Pe
Kansas	E-10277	Rh
Kentucky 16	90010	So
Kentucky ²	16	So
Louisiana	AI30792	Ter
Louisiana ¹	LA180010	Tex
Maine	TN0002	Te
Maryland	324	Uta
Massachusetts	M-TN003	Ve
Michigan	9958	Vir
Minnesota	047-999-395	Wa
Mississippi	TN00003	We
Missouri	340	Wis
Montana	CERT0086	Wv

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico 1	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LA000356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 92/28/2021 4:45:42 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02070

SDG: L1289139

DATE/TIME: 12/07/20 19:35 PAGE: 14 of 15

			Billing Info	irmation:	2.05				Analysis / Conta	ner / Preservative		Chain of Custody	Page Lo
ConocoPhillips - Tetra Tech 901 West Wall Suite 100 Midland TX 79701		Accounts Payable Pres 901 West Wall Chk							Pace	Analytical			
		Suite 10 Midland	uite 100 Midland, TX 79701								Netional Center		
Report to:		A	Email To: ju	ulie.evans@tetratec	h.com							12065 Lebanon Rd Mount Juliet TN 37	122 日乾
Julie Evans			1	Ch. Kanta								Phone: 615-758-58 Phone: 800-767-58	58
Project Description: COP- Vacuum Glor	ietta			Collected:	NM	-	5					Fax: 615-758-5859	回 <u>2</u> 41 2
Phone: 432-687-8137 Fax:	Client Project	# -мо-0;	2070	Lab Project # COPTETRA-VA	сиим		-NoPre	Ę				H2	29
Colleged by (print): Prestan Poiterint	Site/Facility ID)#		P.O. #			HDPE	Amb-				Acctnum: CO	PTETRA
Collected by (signature):	Rush? (L	ab MUST Be	Notified)	Quote #			5ml	10ml				Template: T15	4613
mmediately Packed on Ice N Y V	Same Da	ay Five L γ 5 Day ν 10 Da ay	oay (Rad Only) ay (Rad Only)	Date Result	s Needed	No. of	RIDE 12	OBTEX 4				TSR: 526 - Chr PB:	s McCord
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	CHLC	V826				Shipped Via: Beirarks	Sasople # (lat
VG-6		GW	-	11-18-20	1310	43	X	X					-0
V6-7		GW		11-18-20	1430	43	X	X					-0'
V6-3		GW	100	11-19-20	1115	4	X	X					-0
V6-2		GW		11-19-20	1235	4	X	X					-0"
V6-5		GW	-	11-19-20	1405	4	X	X	1.8				-05
Dup	_	GW		-		4	X	X					-06
		GW				4	X	X					
	5	GW		1 200		4	X	X					
1. 2. 1. 1. 1.	8.5-	GW			No. 10	4	X	X					
					2								
Matrix: S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay	Remarks:								рн	Temp	COC Se COC Si	Sample Receipt C al Present/Intact gned/Accurate:	hecklist : _NP _Y
VW - WasteWater W - Drinking Water	Samples return	ned via:	rior		ting #	-	50. 1		Flow	Other	Correc Suffic	s arrive intact: t bottles used: ient volume sent: If Applicat	ole
Relinquished by (Signature)		Date:		Time: Reco	ever the france	yre)		V	Trip Blank Rece	ived: Yes/Np HCL/Me	OH R	ro Headspace: vation Correct/Ch	ecked: _Y
Reliquished by : (Signature)		Date: [[-20	-20 2.20	1030 Time: Rect 143	Eved by: (Signat	ure)			Temp:	TBR C Bottles Receiv	d: If prese	rvation required by Lc	gin: Date/Tin
elinquished by : (Signature)	····	Date:	Т	ime: Rece	eived for lab by:	(Signat	ure)		Date:	Time:	30 Hold:		Conditio
12/20/2021	1.45.42 DM				Still	na	/		11/21/70	4.6	HA		NCF / (

•

APPENDIX B

May 7, 2020

Ms. Julie Evans Hydrogeologist/Environmental Project Manager Tetra Tech 1500 City West Boulevard, Suite 1000 Houston, TX 77042

Dear Julie:

Re: Vacuum Glorietta Site, Lea County, NM, (Event #4)

At your request, AcuVac Remediation, LLC (AcuVac) performed two Mobile Dual Phase Extraction (MDPE) Events (#4A and #4B) and one Soil Vapor Extraction with Enhanced Vapor Recovery (SVE/EVR), Event #4C as outlined in the table below at the above referenced site (Site). The following is the report and a copy of the operating data collected during Event #4. Additionally, the attached Table #1 contains the Summary Well Data, and Table #2 contains the Summary Recovery Data.

Event	Well		Event	
Number	Number	Event Type	Duration (hrs)	Date
#4A	VG-4	MDPE	10.0	05/05/2020
#4B	VG-4	MDPE	10.0	05/06/2020
#4C	VG-4	SVE/EVR	8.0	05/07/2020

The purpose of the events was to enhance recovery of phase separated hydrocarbons (PSH) present at the Site through the removal of petroleum hydrocarbons in both liquid and vapor phases. PSH is referred to as petroleum hydrocarbons and Light Non-Aqueous Phase Liquids (LNAPL). The source of the PSH is a historical pipeline release. The two different methodologies were employed to determine the most cost effective manner to remove the dissolved phase LNAPL from the groundwater.

OBJECTIVES

The objectives of the MDPE Events:

- Evaluate the potential for removing liquid and vapor phase NAPL from the groundwater and soils in the subsurface formations.
- Expose the capillary fringe area and below to the extraction well induced vacuums.
- Increase the groundwater and contaminant specific yields with high induced vacuums.
- Provide an induced hydraulic gradient to gain hydraulic control of the area during the Event period.

The objectives of the SVE event:

- Maximize liquid and vapor phase petroleum hydrocarbon removal from groundwater and soils in the subsurface formations within the influence of the extraction well.
- Expose the capillary fringe area and below to the extraction well induced vacuums.
- Increase the liquid and vapor phase petroleum hydrocarbon specific yields with high induced vacuums.

METHODS AND EQUIPMENT

AcuVac owns and maintains an inventory of equipment to perform MDPE and SVE events and uses no third party equipment. The events at the Site were conducted using the AcuVac I-6 System (System) with a Roots RAI-33 blower, used as a vacuum pump, and a Roots RAI-22 positive displacement blower. The table below lists additional equipment and instrumentation employed, and the data element captured by each.

Equipment and Instrumentation Employed by AcuVac								
Measurement Equipment	Data Element							
Extraction Well Induced Vacuum and Flow								
Dwyer Magnehelic Gauges	Extraction Well Vacuum							
Dwyer Averaging Pitot Tubes / Magnehelic Gauges	Extraction Well Vapor Flow							
Observation Wells								
Dwyer Digital Manometer	Vacuum / Pressure Influence							
Extraction Well Vapor Monitoring								
V-1 Vacuum Box	Extraction Well Non-Diluted Vapor Sample Collection							
HORIBA [®] Analyzer	Extraction Well Vapor TPH Concentration							
QRae Mini II O ₂ Monitor	Extraction Well Vapor Oxygen Content							
NAPL Thickness (if present)								
Solinst Interface Probes Model 122	Depth to LNAPL and Depth to Groundwater							
Groundwater Depression / Upwelling								
In-Situ Level Troll 700 Data Logger	Liquid Column in Extraction and Observation Wells							
In-Situ Vented Cable with Chamber	Equalize Well Vacuum/Pressure							
In-Situ Rugged Reader Data Logger Interface	Capture Readings from Data Logger Trolls							
Atmospheric Conditions								
Testo Model 511	Relative and Absolute Barometric Pressure							

The vacuum extraction portion of the System consists of a vacuum pump driven by an internal combustion engine (IC engine). The vacuum pump connects to the extraction well, and the vacuum created on the extraction well causes light hydrocarbons in the soil and on the groundwater to volatilize and flow through a moisture knockout tank to the vacuum pump and the IC engine where they burn as part of the normal combustion process. Auxiliary propane powers the engine if the well vapors do not provide the required energy.

The IC engine provides the power necessary to achieve and maintain high induced vacuums and/or high well vapor flows needed to maximize the vacuum radius of influence.

Emissions from the engine pass through two of three catalytic converters to maximize destruction of effluent hydrocarbon vapors. The engine's fuel-to-air ratio is adjusted to maintain efficient combustion. Because the engine powers all equipment, the System stops when the engine stops preventing an uncontrolled release of hydrocarbons. Since the System operates entirely under vacuum, any leaks in the seals or connections leak into the System and not the atmosphere. Vacuum loss, low oil pressure, over-speed, or overheating automatically shut down the engine.

The design of the AcuVac System enables independent control of both the induced well vacuum and the groundwater pumping functions such that the AcuVac team controls the induced hydraulic gradient to increase exposure of the formation to soil vapor extraction (SVE). The ability to separate the vapor and liquid flows within the extraction well improve the LNAPL recovery rates and enabled the AcuVac team to record data specific to each media.

RECOVERY SUMMARY FOR MDPE AND SVE EVENT #4

The Recovery Summary table below lists the groundwater and LNAPL recovery data for Event #4 (MDPE/SVE) and compares the results with Events #3 (SVE) and #2 (MDPE) performed on the dates shown. Event #1 was omitted from this report due to the elapsed time since the event.

Recovery Summary Well VG-4											
		Event #4C 05/07/2020	Event #4B 05/06/2020	Event #4A 05/05/2020	Event #4 Total	Event #3 06/13/2019	Event #2 05/06/2015				
Event Hours	hrs	8.0	10.0	10.0	28.0	28.0	24.0				
Groundwater Recovery	gals	0	2,503	2,562	5,065	0	6,349				
LNAPL Recovery											
Liquid	gals	0	0	0	0	0	6.35				
Vapor	gals	3.21	4.49	4.18	11.88	9.78	8.16				
Total	gals	3.21	4.49	4.18	11.88	9.78	14.51				
Gallons/Hour	gpm	0.40	0.45	0.42	0.42	0.35	0.60				

 Total vapor hydrocarbons burned as IC engine fuel in the Recovery Table above are based on the HORIBA[®] data recorded. The HORIBA[®] analytical data from the influent vapor samples are compared with previous events in the Influent Vapor Data Table on the following page:

Influent Vapor Data Well VG-4										
Event Number		Event #4C	Event #4B	Event #4A	Event #3C	Event #2C				
Event Date		05/07/2020	05/06/2020	05/05/2020	06/13/2019	05/06/2015				
Event Hours		8.0	10.0	10.0	8.0	8.0				
Data Element										
TPH- Maximum	ppmv	14,560	13,740	13,850	11,140	10,630				
TPH- Average	ppmv	11,068	13,061	13,334	9,749	9,990				
TPH- Minimum	ppmv	7,850	12,340	12,640	4,970	9,310				
TPH- Initial	ppmv	7,850	12,340	12,750	4,970	10,570				
TPH- Ending	ppmv	13,890	13,110	13,070	10,940	9,310				
CO ₂	%	9.51	11.01	11.49	8.90	4.92				
СО	%	0.02	0.02	0.02	0.01	0.01				
O ₂	%	2.48	4.81	4.69	3.0	8.2				
H₂S	ppm	2.94	8.41	7.60	3.10	78.00				

• The TPH vapor concentrations from the influent vapor samples for Event #4 are presented in the graph below:

• The extraction well induced vacuum and well vapor flow for Event #4 is compared with previous events in the table below.

Well Vacuum and Well Vapor Flow Well VG-4									
Event Number		Event #4C	Event #4B	Event #4A	Event #3	Event #2			
Event Date		05/07/2020	05/06/2020	05/05/2020	06/13/2019	05/06/2015			
Event Hours		8.0	10.0	10.0	8.0	8.0			
Data Element									
Well Vacuum- Maximum	"H₂O	90.00	68.00	60.00	75.00	80.00			
Well Vacuum- Average	"H₂O	82.94	65.14	60.00	70.59	79.41			
Well Vacuum- Minimum	"H₂O	80.00	65.00	60.00	65.00	70.00			
Well Vapor Flow- Maximum	scfm	17.13	15.92	14.57	16.67	17.22			
Well Vapor Flow- Average	scfm	16.75	15.91	14.51	16.33	17.14			
Well Vapor Flow- Minimum	scfm	16.17	15.83	14.36	16.01	15.86			

• The groundwater pump rates for Event #2 through Event #4 are contained in the table below.

	Groundwater Pump Data Well MW-2A									
		Event #4C	Event #4B	Event #4A	Event #3C	Event #2C				
		05/07/2020	05/06/2020	05/05/2020	06/13/2019	05/06/2015				
Event Hours	hrs	8.0	10.0	10.0	8.0	8.0				
Data Element										
Maximum Groundwater Pump Rate	gpm	-	4.53	5.27	-	4.50				
Average Groundwater Pump Rate	gpm	-	4.17	4.40	-	4.33				

• The LNAPL thickness recorded at the start and conclusion of each event is contained in the table below.

LNAPL Thickness Data Well MW-2A										
		Event #4C	Event #4B	Event #4A	Event #3C	Event #2C				
		05/07/2020	05/06/2020	05/05/2020	06/13/2019	05/06/2015				
Event Hours	hrs	10.0	10.0	28.0	8.0	8.0				
Event Start										
Depth to Groundwater	Ft BTOC	66.67	66.67	66.76	66.34	64.63				
Depth to LNAPL	Ft BTOC	-	66.64	66.61	66.33	-				
LNAPL Thickness	ft	-	0.03	0.15	0.01	-				
Hydro Equivalent	Ft BTOC	66.67	66.65	66.65	66.33	64.63				
Event Conclusion										
Depth to Groundwater	Ft BTOC	67.35	66.23	67.32	65.95	64.91				
Depth to LNAPL	Ft BTOC	-	-	67.26	-	-				
LNAPL Thickness	ft	-	-	0.06	-	-				
Hydro Equivalent	Ft BTOC	67.35	66.23	67.28	65.95	64.91				

ADDITIONAL INFORMATION

- All LNAPL volume recovered, 11.88 gals, was burned as IC engine fuel.
- For Event #4C, SVE with Enhanced Vapor Recovery was employed to determine if the injected air would volatize a sufficient amount of the dissolved LNAPL to increase the TPH concentration in the well vapors. While the EVR was running, the TPH concentrations decreased and the oxygen concentrations increased as the oxygen displaced the THP vapors. The EVR was then suspended, and the TPH concentrations increased to the highest level recorded during all of Event #4.
- Overall, the TPH vapor concentrations were higher in Event #4 than either Event #3 or Event #2.

CONCLUSION AND RECOMMENDATION FOR FUTURE EVENTS

AcuVac recommends that future events be conducted as a combination of MDPE and SVE/EVR. The MDPE events will remove groundwater containing dissolved phase LNAPL, and the EVR will remove the dissolved phase through volatilization. In future events, the EVR will be cycled on and off to volatize the dissolved phase and then remove the vapors through SVE. A further benefit of EVR is that it will create an oxygen rich environment in the area surrounding well VG-4 to assist with natural bio-degradation.

SVE proved to be a more cost effective method to remediate the Site over MDPE. While the hourly rate of recovery for vapor phase LNAPL, as shown in the Recovery Summary Table on page 3, was slightly less for Event #4C, than Event #4A or #4B, there was no groundwater produced in Event #4C, and thus no cost associated with its disposal.

METHOD OF CALIBRATION AND CALCULATIONS

The HORIBA® Analytical instrument is calibrated with Hexane, CO and CO₂.

The formula used to calculate the emission rate is: $ER = HC (ppmv) \times MW (Hexane) \times Flow Rate (scfm) \times 1.58E^{-7} (min)(lb mole) = lbs/hr$ $(hr)(ppmv)(ft^3)$

INFORMATION INCLUDED WITH REPORT

- Table #1 Summary Well Data
- Table #2 Summary Recovery Data
- Description of the Enhanced Vapor Recovery Process
- Recorded Data
- Photographs of the AcuVac System and well VG-4.

After you have reviewed the report and if you have any questions, please contact me. We appreciate you selecting AcuVac to provide these services.

Sincerely, ACUVAC REMEDIATION, LLC

Prustand

Paul D. Faucher President

Summary Well Data Table #1

Event		4A	4B	4C
WELL NO.		VG-4	VG-4	VG-4
Current Event Hours		10.0	10.0	8.0
Total Event Hours		70.0	80.0	88.0
TD (estimated)	ft BGS	70.0	70.0	70.0
Well Screen	ft BGS	unknown	unknown	unknown
Well Size	in	4.0	40	4.0
Well Data				
Depth to Groundwater - Static - Start Event	ft BTOC	66.67	66.67	66.76
Depth To LNAPL - Static - Start Event	ft BTOC	-	66.64	66.61
LNAPL Thickness	ft	-	0.03	0.15
Hydro-Equivalent- Beginning	ft BTOC	66.67	66.65	66.65
Depth to Groundwater - End Event	ft BTOC	67.35	66.23	67.32
Depth To LNAPL - End Event	ft BTOC	-	-	67.26
LNAPL Thickness	ft	-	-	0.06
Hydro-Equivalent- Ending	ft BTOC	67.35	66.23	67.28
Extraction Data				
Maximum Extraction Well Vacuum	"H₂O	90.00	68.00	60.00
Average Extraction Well Vacuum	"H₂O	82.94	65.14	60.00
Minimum Extraction Well Vacuum	"H₂O	80.00	65.00	60.00
Maximum Extraction Well Vapor Flow	scfm	17.13	15.92	14.57
Average Extraction Well Vapor Flow	scfm	16.75	15.91	14.51
Minimum Extraction Well Vapor Flow	scfm	16.17	15.83	14.36
Influent Data				
Maximum TPH	ppmv	14,560	13,740	13,850
Average TPH	ppmv	11,068	13,061	13,334
Maximum TPH	ppmv	7,850	12,340	12,640
Initial TPH	ppmv	7,850	12,340	12,750
Final TPH	ppmv	13,890	13,110	13,070
Average CO ₂	%	9.51	11.01	11.49
Average CO	%	0.02	0.02	0.02
Average O ₂	%	2.48	4.81	4.69
Average H₂S	ppm	2.94	8.74	7.60

.

Summary Recovery Data Table #2

Event		4A	4B	4C
WELL NO.	VG-4	VG-4	VG-4	
Recovery Data- Current Event				
Total Liquid Volume Recovered	gals	2,562	2,503	-
Total Liquid LNAPL Recovered	gals	-	-	-
Total Liquid LNAPL Recovered / Total Liquid	%	-	-	-
Total Liquid LNAPL Recovered / Total LNAPL	%	-	-	-
Total Vapor LNAPL Recovered	gals	4.18	4.49	3.21
Total Vapor LNAPL Recovered / Total LNAPL	%	100.00	100.00	100.00
Total Vapor and Liquid LNAPL Recovered	gals	4.18	4.49	3.21
Average LNAPL Recovery	gals/hr	0.42	0.45	0.40
Total LNAPL Recovered	lbs	29.27	31.44	22.44
Total Volume of Well Vapors	cu. ft	8,706	9,546	8,040
Recovery Data- Cumulative				
Total Liquid Volume Recovered	gals	10,546	13,049	13,049
Total Liquid LNAPL Recovered	gals	7.99	7.99	7.99
Total Vapor LNAPL Recovered	gals	26.55	31.04	34.2 4
Total Vapor and Liquid LNAPL Recovered	gals	34.53	39.02	42.23
Average LNAPL Recovery	gals/hr	0.49	0.49	0.48
Total LNAPL Recovered	lbs	1,079	1,111	1,133
Total Volume of Well Vapors	cu. ft	69,455	79,001	87,041

.

•					PAGE #			
LOCA	tion: vacuum Glorietta	Date	Sounty, NM		P	roject Mana	gers: Hendl	ey/George
Wol	1# VG-4	Time	3-5-20		0.778	mic2	0830	0900
TTGI	THE VELOCITIES IN THE PROPERTY OF THE PROPERTY	Hr Meter	(6.50)	6.700	6730	0800	0000	
	Engine Speed		15	Find	1900	1900	1900	1900
R		KPM	50	1700	1700 8-0	50	50	50
LOWI	Water Temp	psi	130	140	145	145	145	145
E/B	Alternator	۲ Volta	12	13	13	12	/3	13
NGN	Intake Vacuum	Volts	15	15	15-	15-	15	15
ш	Gas Elow Euel/Propage	Hg	12.4	120	130	130	120	120
	Extraction Well Vac	cth	130	130	60		60	60
n R	Extraction Well Flow	"H₂O	1426	10/21	1421	1426	14 21	14-26
PHEI M / A		scfm	14.00	17,30	17.30	17.50	17.30	11,50
ACUU	Air Tomp	-1*	61	61	67	61	61	61
A >	Air remp	۴	34	30	30	20.12	3012	30 M
		"Hg	30,10	12 700	30,77	12 640		12000
IENT	IPH	ppmv		12,150		12,00		11.26
NFLU		%		0.10		0.00		11.06
DR / I	со	%		0.00		500		100
VAP(O ₂	%		7,5		0,0		4,0
	H ₂ S	ppm		5,4		1.0		6,4
	Hovie at	site	0610	Tanker	. trick	arrived	at San	e fime,
	Connected to	tanker,	Even	+ start	of 06.	30 . Pu	mp rade	76
TES	over 5 gipm th	en hor	1 tained	AF 4.5	ogp m,	TPHI	5 /13 hr	the durn
0N	the morning,							
	Totalizer 1953		19521	19586	19741	198.99	20014	20649
≿	Pump Rate	gals/min	2.17	5.17	5,27	3,83	4.50	4,47
OVE	Total Volume	gals	O	65	220	378	493	638
REC	NAPL	% Vol	Sheen	sheen	shoe	Sheen	Sheen	Stren
	NAPL	Gals	-	-	-	-	-	_
	Data Logger Head	' 79 ft	2.21	7.06	1.89	1.85	1.30	1.18
2	GW Depression	ft	,72	,07	6.10)	6.147	0.69	20,81)
ŭ	Extraction Well	DTNAPL	16.61					
	Extraction Well	DTGW	66,76					

\diamond	AcuVac Remediation)ATA - FVFN	IT# 4A	PAGE #	2		IDPE SYSTEN
Loca	tion: Vacuum Glorietta	Site, Lea C	County, NM		P	roject Mana	gers: Hendl	ey/George
		Date	5-5-20				Ĭ	
Well	1# VG-4	Time	0930	1000	1030	1100	1130	1200
	V	Hr Meter						
	Engine Speed	RPM	1900	1900	1900	1900	1900	1900
VER	Oil Pressure	psi	50	50	50	50	50	50
BLO	Water Temp	۴	145	145	145	145	145	145
INE /	Alternator	Volts	13	/3	13	13	13	13
ENG	Intake Vacuum	"Hg	15	15	15	15	15	15
	Gas Flow Fuel/Propane	cfh	125	125	125	125	120	120
	Extraction Well Vac.	"H ₂ O	60	60	60	60	60	60
IERE / AIR	Extraction Well Flow	scfm	14.57	14,57	14,57	14,57	14.57	14.57
NUN	Influent Vapor Temp.	°F	67	67	67	67	67	67
ATM	Air Temp	°F_	63	66	68	68	70	フス
	Barometric Pressure	"Hg	30,15	32,15	30.15	30,14	30,14	20,13
Ļ	ТРН	ppmv		13,370		13,630		13,590
ILUE	CO ₂	%		11.48		13,80	-	11.26
S/INF	со	%	-	. 9 7	-	.03	-	102
APOF	O ₂	%		4.5	-	4.7	_	4.7
>	H ₂ S	ppm	~	7.4	-	8.6	-	9.0
NOTES	Joure tank	Reidin	hr mark	tep pr	y rate	cempt,	ned con	n to
	Totalizer	gals	20283	20418	20554	20690	20825	20960
ERY	Pump Rate	gals/min	4.50	4,53	4,53	4,50	1.50	4.5.3
COVI	Total Volume	gals	762	897	1033	1169	1304	1439
RE	NAPL	% Vol	Sheen	sheer	Sheen	sheer	Sheen	sheen
	NAPL	Gals	-	-	-		-	-
	Data Logger Head	,99 ft	1.13	1,00	. 71	179	,75	.75
Ň	GW Depression	ft	6.867	<u>(0,997</u>	(1.08)	(1,20)	<u> (1,24)</u>	(1.24)
	Extraction Well	DTNAPL						
	Extraction Well	DTGW						

V	0	PERATING	DATA – EVEN	NT# 4A	PAGE #	\$ 5	ACUVAC	IDPE SYSTE
Loca	tion: Vacuum Glorietta	i Site, Lea (County, NM		P	roject Mana	gers: Hend	ley/George
	1 12211	Date	5-5-20		-			
wei	# V6-9	Time Hr Meter	1730	1300	1330	1400	/430	1500
	Engine Speed	RPM	1900	1900	1900	1900	1900	1900
WER	Oil Pressure	psi	50	50	50	50	50	50
BLO	Water Temp	۴	145	145	145	145	145	145
INE /	Alternator	Volts	/3	13	13	13	13	13
ENG	Intake Vacuum	"Hg	15	15	15	15	15	15
	Gas Flow Fuel/Propane	cfh	120	120	120	120	/20	120
	Extraction Well Vac.	"H ₂ O	60	60	60	60	60	60
IERE	Extraction Well Flow	scfm	14,57	14,57	14.57	14.57	14.57	14.57
NUM	Influent Vapor Temp.	°F	67	67	67	67	67	67
VAC	Air Temp	۴	72	73	73	74	75	75
:	Barometric Pressure	"Hg	30,11	30.10	30,09	30,07	30,06	30,03
L,	ТРН	ppm∨	-	13,620		13,850	(19 -	13,770
LUE1	CO ₂	%	<u> </u>	11.24	-	11,36		p. 98
/ INF	со	%		,02		. 02	-	102
APOR	O ₂	%	1	4.8	_	4,5	-	4.4
*	H ₂ S	ppm	-	9.1	~	7.2	~	9.3
NOTES								
	Totalizer	gals	21096	2/231	21367	21500	3/633	21766
ΪERY	Pump Rate	gals/min	4,50	4,53	4.43	4,73	4,43	4.97
	Total Volume	gals	1575	17/0	1846	1979	2/12	2245
Ϋ́	NAPL	% Vol	sheen	sheen	Sheen	Sheen	Sheen	Sheeu
	NAPL	Gals	-	-	-	-	-	-
	Data Logger Head	99 ft	75	,16	,75	*71	.68	. 63
š.	GW Depression	ft	124/	(1.23]	(1.247	(1.28)	<1.517	(136)
	Extraction Well	DTNAPL						
	Extraction Well	DTGW						

.

	tion: vacuum Giorietta	i Site, Lea C	County, NM		Pr	oject Mana	agers: Hend	ley/George
Well	1# VG-4	Date Time Hr Meter	5-5-2	1600	1630			
	Engine Speed	RPM	1900	1900	1900			
VER	Oil Pressure	psi	50	50	50	Y		
BLOV	Water Temp	°F	145	145	145			
NE / I	Alternator	Volts	13	13	13			
ENGI	Intake Vacuum	"Hg	15	15	15			
	Gas Flow Fuel/Propane	cfh	120	120	120			
	Extraction Well Vac.	"H₂O	60	60	60			
AIR	Extraction Well Flow	scfm	14,57	14,57	14.37	· · ·		
	Influent Vapor Temp.	°F	67	67	67			
VACL	Air Temp	°F	75	75	75			
	Barometric Pressure	"Hg	30,02	30,01	30.01			
	ТРН	ppmv	<u> </u>	13,070	~			
R / INFLUEN	CO ₂	%	-	10.96				
	со	%		107			,	
POR	O ₂	%	-	5,0	(
۸۷	H ₂ S	ppm	~	9.4	-			
NOTES								
	Totalizer	gals	21900	22034	22083			
EKY	Pump Rate	gals/min	4,47	1.63				
	Total Volume	gals	2379	2513	3.562	1221		
ž	NAPL	% Vol	Sheen	Sheen	Sheen			<u> </u>
	NAPL	Gals	-	-	-			
	Data Logger Head	1,99 ft	,67	,62	163			
3	GW Depression	ft	<1.377	<u> </u>	1.367		<u> </u>	
រៃ 🛛								

	AcuVac Remediation	FRATING)ATA - FVFN	1 1 # 48	PAGE #	± /		ADPE SYSTEM
Loca	tion: Vacuum Glorietta	Site. Lea	County, NM		P	roiect Mana	gers: Hend	lev/George
		Date	5-6-20	2				
Wel	I# V6-4	Time	0600	0630	0700	0730	0800	0830
		Hr Meter						
	Engine Speed	RPM	1900	1900	1900	1900	1900	1900
VER	Oil Pressure	psi	50	50	50	50	50	50
BLOV	Water Temp	°F	140	140	140	140	145	145
NE /	Alternator	Volts	13	/3	13	/3	13	13
ENG	Intake Vacuum	"Hg	14	14	14	14	14	14
	Gas Flow Fuel/Propane	cfh	120	120	120	110	110	110
	Extraction Well Vac.	"H₂O	68	65	65	65	65	65
ERE	Extraction Well Flow	scfm	15,83	15.92	15,92	15.92	15.92	15.92
HASC	Influent Vapor Temp.	۴	67	67	67	67	67	67
ATMO	Air Temp	۴F	52	52	55	57	59	63
	Barometric Pressure	"Hg	30.14	30,15	30,16	30,16	30,16	30,15
F	ТРН	ppmv	~	13,340	_	13,250	_	13070
LUEN	CO ₂	%	-	1082	_	11.78	-	11.22
/ INF	со	%		,01		,02	-	,02
POR	O2	%	-	5,2	_	4.5	_	4.6
1	H ₂ S	ppm	1	5.8)	5.9		5.7
	Arrived at site	0.54	5. Gaup	ed acli	. Conne	ched for	. fake	, Event
	start @ 0600.	Pun	o rate 5	tedy. 7	PH rem	amed co	askad.	
S								
NOTE								
						->11-2		
	Totalizer	gals	02,083	32,214	22352	4785	22014	22746
VERY	Pump Rate	gals/min	4.53	4.43	7.73	7.30	4,90	7,33
ECO	Total Volume	gals		126	267	402	321 2.	96 3 el
Ľ.		% Vol	> hoen	59-2-1	Shern	Syeen	Jueen	STRE M
	Dota Logger Head	Gals	- 	-	206	-	171	1.11
	CW Doprossion	∿/ ≊⊃ ft	d. 05	.21	01	110	1.16	1,66
ΕŇ			66 64		,0,	<u> (131/</u>	1/2//	<.>1/
		DTCW	66 17					
		51077						

,03

	AcuVac Remediation	ERATING I	DATA – EVEN	IT# 48	PAGE	# 2	ACUVAC N	NDPE SYSTEN
Loca	tion: Vacuum Glorietta	Site, Lea (County, NM		P	roject Mana	gers: Hend	ey/George
		Date	5-6-20					
Wel	I# VG-9	Time	0900	0930	1000	1030	1100	1130
		Hr Meter						
	Engine Speed	RPM	1900	1800	1800	1800	1800	1200
WER	Oil Pressure	psi	50	50	50	50	. 50	50
BLOI	Water Temp	°F	145	150	150	150	150	150
INE /	Alternator	Volts	13	13	13	13	13	130
ENG	Intake Vacuum	"Hg	14	14	14	14	14	14
	Gas Flow Fuel/Propane	cfh	110	110	110	110	110	110
	Extraction Well Vac.	"H₂O	65	65	65	65	65	65
IERE / AIR	Extraction Well Flow	scfm	15.92	15.92	15,90	15,92	15.92	15,92
HASO	Influent Vapor Temp.	°F	67	67	67	67	67	67
ATM	Air Temp	°F	67	68	68	72	72	74
	Barometric Pressure	"Hg	30,15	30,14	30,14	30,12	30,11	30,10
Ę	ТРН	ppmv		13,740		13310	-	13,460
LUE	CO ₂	%	-	11,42	-	11.78	-	11.14
INF/	со	%		.02	-	102		102
APOR	O ₂	%	-	4.7	-	4.8	-	4,9
~	H ₂ S	ppm	-	8.4	~	10,1		10.5
	At 0930 unit	was te	mparily	stepped	1 to J.	scomeet	gir con	pressor 1
ES	Pumping re storte some well vac	ad as a	1940 (10 11 Stor	o minutes	s dur tin	n). Quel	ly bele	6
NOT								
	Totalizer		7-076	23004	73050	222.00	22228	3410
≿	Pump Rate	gais	427	7.80	403	430	4.33	430
OVER	Total Volume	gais/inin	793	921	1.005	1/26	1,255	1305
REC	NAPL	% Vol	Sheer	Shean	Sheen	Shen	Sheen	Sheen
	NAPL	Gals						
	Data Logger Head	05 ft	1.66	1.60	2,05	1,95	1,81	1,78
2	GW Depression	ft	(39)	(.45)	0.0	2,107	2.247	(27)
Ē	Extraction Well	DTNAPL	X=1					
	Extraction Well	DTGW						

	Acuvac Remediation OP	ERATING D	ATA – EVEN	т# 48	PAGE #	- 3		IDPE SYSTEM
Loca	tion: Vacuum Glorietta	Site, Lea (County, NM		Р	roject Mana	gers: Hendl	ey/George
Wel	1# VG-4	Date Time	5-6-20 1200	1230	1300	1330	1400	14-30
	Engine Speed	HI Meter	10	10-	10 -	10.00	10m	1800
с.		RPM	1800	1000	1000	50	50	50
OWE	Water Temp	psi	50	155	155	15.5	15.5	155
E / BI	Alternator	°F	13	12	17	12	12	/3
NGIN	Intake Vacuum	Volts	14	14	14	14	14	14
ш	Gas Elow Euel/Propage	Hg	110	110	110	110	110	110
<u> </u>	Extraction Well Vac		15	65	65	65	65	65
Ж К	Extraction Well Flow	H ₂ O	15 97	15.93	15.62	15.87	15.90	1597
SPHE M / A		scm	67	17	17	67	67	67
TMOS	Air Temp	۲۲	75	77	76	179	81	81
∢>	Barometric Pressure	٦ "Ha	30.08	24.06	30.05	30.03	30.01	29.99
	трн	nomy		17 790		17 850	-	12.690
UENT		рршу		10.66	-	10.64		10.44
INFL	CO2	%		,07		102		,02
OR /	0	/0 0/		48	_	5,0	(49
VAP		70		10 2	~	29		07
	1120	ppm		1213				0.1
			47 m ¹ . 4					
DTES								
N								
	Totalizer	gals	23597	23727	23855	-3982	24110	24237
ïRΥ	Pump Rate	gals/min	4.33	4.27	4,23	4.27	4,23	4,27
COVE	Total Volume	gals	1514	1644	1722	1899	2,027	2154
RĒ	NAPL	% Voi	sheen	Show	Shoon	Sheon	Stier	Sheen
	NAPL	Gals						
	Data Logger Head	7.05 ft	1.77	1.77	1,73	1.74	1,14	1.63
Ň	GW Depression	ft	<. 28/2	(28)	5,32	<u> </u>	$\langle 41 \rangle$	5.42/
ш	Extraction Well	DTNAPL	Ì					
	Extraction Well	DTGW						

V	0	PERATING	DATA - EVEN	11# 7D	PAGE	# 75	ACUVAC	MDPE SYSTEM
Loca	ation: Vacuum Glorietta	i Site, Lea (County, NM		F	Project Man	agers: Henc	lley/George
		Date	5-6-20	-				0
Wel	I# VG-4	Time	1500	1530	1600			
		Hr Meter						
	Engine Speed	RPM	1800	1200	1800			
WER	Oil Pressure	psi	50	50	50			
BLO	Water Temp	°F	150	150	150			
INE /	Alternator	Volts	13	13	13			
ENG	Intake Vacuum	"Hg	14	14	14			
	Gas Flow Fuel/Propane	cfh	110	110	110			
	Extraction Well Vac.	"H₂O	65	65	65			
ERE	Extraction Well Flow	scfm	15.92	15.92	15.92			
HdSC	Influent Vapor Temp.	°F	67	67	67			
ATMC	Air Temp	°F	87	83	83			
	Barometric Pressure	"Hg	29.97	79,97	79,97			
	ТРН	ppmv		13,110				
-UEN	CO ₂	%)	10,68	-			
/ INFI	со	%	_	102				
POR	O ₂	%	_	4.7	-			
AV	H ₂ S	ppm	·	8.8			1	
		6 P				1		
			-					
DTES								
ž							·	
	Totalizer	gals	74365	24493	X4596			
RY	Pump Rate	gals/min	4.27	3,10	-			
OVE	Total Volume	gals	2282	7410	2503			
REC	NAPL	% Vol	Sheen	sheen	Sheen			
	NAPL	Gals						
	Data Logger Head	ft	1,60	157	1,57			
2	GW Depression	ft	(:45)	2.487	<,48>			
ίΩ Ι	Extraction Well	DTNAPL				68, 23		
	Extraction Well	DTGW				68,33		

Released to Imaging: 12/28/2021 4:45:42 PM

0,00

$\boldsymbol{\wedge}$	AcuVac Remediation			11 -		1		
Y	OP	ERATING	DATA - EVEN	IT# 4C	PAGE #	<u> </u>	ACUVAC N	IDPE SYSTE
Loca	tion: Vacuum Glorietta	Site, Lea	County, NM	·	Р	roject Mana	gers: Hendl	ey/George
	N 1 2 11	Date	5-7-20					
Wel	I# VG-4	Time	0600	6630	0700	0730	08 00	0830
		Hr Meter						
	Engine Speed	RPM	1800	1800	1800	1800	1200	1800
WER	Oil Pressure	psi	50	50	50	50	50	50
BLO	Water Temp	°F	140	140	140	150	140	140
INE /	Alternator	Volts	13	13	13	13	13	13
ENG	Intake Vacuum	"Hg	15	15	15	15	15	15
	Gas Flow Fuel/Propane	cfh	120	130	130	1:30	120	120
	Extraction Well Vac.	"H ₂ O	85	85	Ø5-	85	85	85
IERE / Air	Extraction Well Flow	scfm	16,17	16.17	16,17	16.17	16,17	16.17
NUM	Influent Vapor Temp.	°F	67	67	67	67	67	67
ATM	Air Temp	۴	61	62	62	63	66	70
(i)	Barometric Pressure	"Hg	39,91	29.91	29,90	79,90	39.80	27,87
Ļ	ТРН	ppmv	-	7850		7990	_	8140
LUE	CO ₂	%	-	7.34		7,78	~	7.98
/ INF	со	%	-	,01	-	,01	-	.01
APOF	O ₂	%		19,8	_	70,0	-	201
~	H ₂ S	ppm	-	0.9		1.5	~	1.7
	Arrived at site	054	5, EJ	est stat	@ 060	a longe	I well.	
	EUR Stord 00	15.	TPHV	for	Declars	2 days	5, 602	V.
S								
VOTE								
-								
	· · · · · · · · · · · · · · · · · · ·							
	Totalizer	gals						
ERY	Pump Rate	gals/min						
ECOV	Total Volume	gals						
RE	NAPL	% Vol						
	NAPL	Gals				-		
	Data Logger Head	ft						
EN	GW Depression	ft						
	Extraction Well	DTNAPL	66 67					
	Extraction Well	DTGW	66,67					

$\mathbf{\Lambda}$	AcuVac			110		<u>с</u>		
¥	OP	ERATING D	DATA – EVEN	T# 4C	PAGE #	~	ACUVAC N	IDPE SYSTEM
Loca	tion: Vacuum Glorietta	Site, Lea C	County, NM		Pr	oject Mana	gers: Hendl	ey/George
	16-4	Date	5-7-20	192.			11.00	4.20
Well	# \/ 0 /	Time	0700	0130	1000	1030	1100	1150
		Hr Meter				1000		10
~	Engine Speed	RPM	1800	18,00	1800	1000	1800	1800
OWEF	Oil Pressure	psi	50	30	50	50	50	50
/ BLC	Water Temp	°F	140	140	140	140	140	140
SINE	Alternator	Volts		13	13	13	/3	13
ENC.	Intake Vacuum	"Hg	15	15	15	15	15	15
	Gas Flow Fuel/Propane	cfh	120	120	120	120	120	120
	Extraction Well Vac.	"H₂O	90	90	60	80	80	80
IERE / AIR	Extraction Well Flow	scfm	16.82	16.80	17.13	17.13	17,13	(7,B
HASC	Influent Vapor Temp.	°F	67	67	67	67	67	67
ATMO	Air Temp	۴F	72	73	79	80	80	84
	Barometric Pressure	"Hg	29,86	29.84	29.82	24.80	71.78	29.75
F	ТРН	ppmv		8150	~	13950	-	14,560
-UEN	CO ₂	%	1	7.78	_	11.30	-	11.76
/ INFI	со	%	-	.01	_	,02	-	,02
POR	O ₂	%	-	19.9	~	5.1	_	4.8
٨٨	H ₂ S	ppm	-	2,7	_	4.9	_	5.8
	At 10:00 blow	or turn	d off	TPH	@ 1030	= T 13	.950. K	20. Sim
	to transfe E	UR La	come und	la a f de	to creat	1/20	replaced	I JPH.
			1					
OTES								
ž								
i.	Totalizer	gals						
RY	Pump Rate	gals/min						
OVE	Total Volume	gals						
REC	NAPL	% Vol						
	NAPL	Gals						
	Data Logger Head	ft						
2	GW Depression	ft						
ш	Extraction Well	DTNAPL						
	Extraction Well	DTGW						

	AcuVac Remediation			11/	-	~		
¥	OF	PERATING D	DATA – EVEN	т# 4С	PAGE #	= 3	ACUVAC M	DPE SYSTE
Loca	tion: Vacuum Glorietta	Site, Lea (County, NM	1	P	roject Mana	gers: Hendl	ey/George
		Date	5-7-20					
Well #		Time	1200	1230	1300	1330	1400	
		Hr Meter						
WER	Engine Speed	RPM	1800	1800	1800	1800	1800	
	Oil Pressure	psi	.50	50	50	50	50	
BLO	Water Temp	۴	140	140	140	140	140	
INE /	Alternator	Volts	13	13	13	13	/3	
ENG	Intake Vacuum	"Hg	15	15	15	15	15	
	Gas Flow Fuel/Propane	cfh	120	100	120	170	130	
	Extraction Well Vac.	"H₂O	80	80	Ec	80	80	
ERE	Extraction Well Flow	scfm	17,13	17.13	17.13	17.13	17.13	
HdSC	Influent Vapor Temp.	°F	67	67	67	67	67	
ATMC	Air Temp	°F	_					
	Barometric Pressure	"Hg						
Ļ	ТРН	ppmv	/	14.010	-	13,890	_	
LUEN	CO ₂	%		11.42	~	11.13	_	
/ INF	со	%)	,02	_	,02		
APOR	O2	%	<u> </u>	4.9	~	5.0		
>	H ₂ S	ppm	~	5,3		5,6	-	7.
S								
OTE								
z								
	Totalizer	gals						
OVERY	Pump Rate	gals/min						
	Total Volume	gals			_			
RE(NAPL	% Vol						
	NAPL	Gals						
	Data Logger Head	ft						
3	GW Depression	ft						
ш	Extraction Well	DTNAPL						
	Extraction Well	DTGW						

	AcuVac Remediation OPER	ÁTING DÁTA – N	IDPE/EVR EVE	NT # <u>4</u> 2	PAGE #		EVR SYSTEM
Loca	ation: Vacuum Glorie	tta Site, Lea Cou	nty, NM		Project M	Aanagers: Hend	lley/George
Date Time	5-7-20	0600	0620	0700	6720	0800	0830
Well	Number V6-4	200					
Ň	EW Vac. "H ₂ C	, 85	85	85	85	85	85
	EW Flow scfm	16.17	16,17	16,17	16,17	16.17	16.17
VAPOR / INFLUENT	Instrument	HORIBA	HORIBA	HORIBA	HORIBA	HORIBA	HORIBA
	Well No.	V6-4		<u> </u>			
	HC ppm	/					
	CO2 %						
	%	•					
	O2 %	,					
	H ₂ S %						
EVR MAN	EVR Flow cfr	250	250	250	250	300	300
	EVR Flow cfm						
	EVR Pressure psi	5	5	5	5	8	Ê
EVR Well	Vac (Press) "H₂O						
			OPERATI	NG NOTES			
	<u> </u>						
	····						

002	ation: Vacuum	Glorietta	a Site. Lea Cour	ntv. NM		Project Managers: Hendley/George			
Date			5-7-20						
Time			0900	0930	10 00	1030	1100	1130	
Vell	Number V	6-4							
ΕM	EW Vac.	"H₂O	90	90	80	80	80	80	
	EW Flow	scfm	16.82	16.83	17,13	17,13	17,13	17,13	
	Instrument		HORIBA	HORIBA	HORIBA	HORIBA	HORIBA	HORIBA	
VAPOR / INFLUENT	Well No.								
	нс	ppmv							
	CO ₂	%							
	C0	%							
	0.	0/							
		70							
EVR MAN	H ₂ S	%	7 (10)	760	750				
	EVR Flow	cfh	500	Act					
	EVR Flow	cfm	B		-7				
VR	EVR Pressure	psi	0		/				
/ell	Vac (Press)	"H₂O							
Ē	UR was	shit	a for ant	10:00 fo	remain des e	evant.			
	and the second sec					·			
District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 21588

CONDITIONS			
Operator:	OGRID:		
CONOCOPHILLIPS COMPANY	217817		
600 W. Illinois Avenue	Action Number:		
Midland, TX 79701	21588		
	Action Type: [UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)		

CONDITIONS

Created By	Condition	Condition Date
nvelez	Review of 2020 Semi-Annual Monitoring and Remedial Activities Report: Content satisfactory 1. Continued groundwater monitoring and sampling on a semi- annual basis 2. Continue to monitor the absorbent sock in VG-4 and replace as needed 3. Submit the Annual Monitoring Report to the OCD no later than March 31, 2022	12/28/2021