District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Page 1 of 102

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party: Enterprise Field Services, LLC	OGRID: 151618
Contact Name: Thomas Long	Contact Telephone: 505-599-2286
Contact email:tjlong@eprod.com	Incident # (assigned by OCD): NRM2020229771
Contact mailing address: 614 Reilly Ave, Farmington, NM 87401	

Location of Release Source

 Latitude
 36.780479
 Longitude -107.562231
 (NAD 83 in decimal degrees to 5 decimal places)

 Site Name Frances Mesa Compressor Station
 Site Type Natural Gas Compressor Station

 Date Release Discovered:
 07/12/2020
 Serial Number (if applicable): NM 093684

Unit Letter	Section	Township	Range	County
K	27	30N	7W	Rio Arriba

Surface Owner: 🔲 State 🛛 Federal 🛄 Tribal 🛄 Private (Name: BL	Surface Owner	: 🔲 State	Federal	Tribal	Private	(Name: BLM	
--	---------------	-----------	---------	--------	---------	------------	--

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below) Crude Oil Volume Released (bbls) Volume Recovered (bbls) Produced Water Volume Released (bbls) 5-7 BBLs Volume Recovered (bbls) None Is the concentration of dissolved chloride in the Yes No produced water >10,000 mg/l? Condensate Volume Released (bbls): Volume Recovered (bbls): Natural Gas Volume Released (Mcf): Volume Recovered (Mcf): Other (describe) Volume/Weight Released (provide units): Volume/Weight Recovered (provide units) Cause of Release On July 12, 2020, Enterprise had a release of produced water and condensate at the Frances Mesa Compressor Station. The release was a result of the Emergency Shutdown (ESD) event. The released fluids were ejected from the facility ESD

vent. An area or approximately 150 feet long by 70 feet wide was affected by the released fluids. All fluids remained on the facility property. No washes were affected. Entperise mobilized a contractor to recover the standing liquids as much as practicable. Remediation activities were completed on July 23, 2020. The final excavation dimensions measured approximately 96 feet long by 80 feet wide by approximately one foot deep. Approximately 174 cubic yards of hydrocarbon impacted soil was excavated and transported to a New Mexico Oil Conservation Division approved land farm. A third party closure report is included with this "Final." C-141.

Page 2

Oil Conservation Division

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report, A scaled site and sampling diagram as described in 19.15.29.11 NMAC Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) Description of remediation activities I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Title: Director, Environmental Printed Name: Jon E. Fields - for E. full Date: 10/29 Signature: email: jefields@eprod.com Telephone: (713) 381-6684 **OCD** Only Received by: _____ Date: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: Nelson Velez
Printed Name: Nelson Velez Date: 04/26/2022 Title: Environmental Specialist – Adv

CLOSURE REPORT

Property:

Frances Mesa Compressor Station (July 2020) SW 1/4, S27 T30N R7W Rio Arriba County, New Mexico

> October 7, 2020 Ensolum Project No. 05A1226112

> > Prepared for:

Enterprise Field Services, LLC 614 Reilly Avenue Farmington, NM 87401 Attn: Mr. Thomas Long

Prepared by:

Landon Daniell Staff Geologist

Ummo

Kyle Summers, CPG Senior Project Manager

Ensolum, LLC | Environmental & Hydrogeologic Consultants 606 South Rio Grande, Suite A | Aztec, NM 87410 | ensolum.com

.

Table of Contents

INTRODUCTION	1 1 1
CLOSURE CRITERIA	1
SOIL REMEDIATION ACTIVITIES	3
SOIL SAMPLING PROGRAM	3
SOIL LABORATORY ANALYTICAL METHODS	4
DATA EVALUATION	4
RECLAMATION AND REVEGETATION	5
FINDINGS AND RECOMMENDATION	5
STANDARDS OF CARE, LIMITATIONS, AND RELIANCE	5 5
	1.1 SITE DESCRIPTION & BACKGROUND 1.2 PROJECT OBJECTIVE CLOSURE CRITERIA SOIL REMEDIATION ACTIVITIES SOIL SAMPLING PROGRAM SOIL SAMPLING PROGRAM SOIL LABORATORY ANALYTICAL METHODS SOIL CABORATORY ANALYTICAL METHODS PROJECT OBJECTION SOIL SAMPLING PROGRAM SOIL LABORATORY ANALYTICAL METHODS SOIL CABORATORY ANALYTICAL METHODS SOIL SAMPLING PROGRAM SOIL SAMPLING PROGRAM SOIL LABORATORY ANALYTICAL METHODS SOIL SAMPLING SOIL SAMPLING PROGRAM SOIL SAMPLING PROGRAM SOIL LABORATORY ANALYTICAL METHODS SOIL SAMPLING SOIL SAMPLING PROGRAM SOIL SAMPLING SOIL SAMPLING PROGRAM SOIL SAMPLING SOIL LABORATORY ANALYTICAL METHODS SOIL SAMPLING SOIL SAMPLING PROGRAM SOIL SAMPLING SOIL SAMPLING PROGRAM SOIL SAMPLING SOIL SAMPLING AND REVEGETATION SOIL SAMPLING STANDARD OF CARE, LIMITATIONS, AND RELIANCE SOIL STANDARD OF CARE

LIST OF APPENDICES

Appendix A:	Figures	
	Figure 1	Topographic Map
	Figure 2	Site Vicinity Map
	Figure 3	Site Map
Appendix B:	Siting Figur	es and Documentation
	Figure A	1.0 Mile Radius Water Well Map
	Figure B	Cathodic Protection Well Recorded Depth to Water
	Figure C	300 Foot Radius Watercourse and Drainage Identification
	Figure D	300 Foot Radius Occupied Structure Identification
	Figure E	Water Well and Natural Spring Location
	Figure F	Wetlands
	Figure G	Mines, Mills, and Quarries
	Figure H	100-Year Flood Plain Map
Appendix C:	Executed C	-138 Solid Waste Acceptance Form
Appendix D:	Photograph	ic Documentation
Appendix E:	Table 1 - So	il Analytical Summary

- Appendix F: Laboratory Data Sheets & Chain of Custody Documentation
- Appendix G: Regulatory Correspondence

CLOSURE REPORT

Frances Mesa Compressor Station (July 2020) SW 1/4, S27 T30N R7W Rio Arriba County, New Mexico

Ensolum Project No. 05A1226112

1.0 INTRODUCTION

1.1 Site Description & Background

Operator:	Enterprise Field Services, LLC / Enterprise Products Operating LLC (Enterprise)
Site Name:	Frances Mesa Compressor Station (July 2020) (Site)
Location:	36.780479° North, 107.562231° West Southwest (SW) ¼ of Section 27, Township 30 North, Range 7 West Rio Arriba County, New Mexico
Property:	Enterprise and United States Bureau of Land Management (BLM)
Regulatory:	New Mexico Energy, Minerals and Natural Resources Department (EMNRD) Oil Conservation Division (OCD)

On July 12, 2020, a release of produced water and condensate occurred from a blowdown vent stack during an emergency shutdown event at the Site. The release resulted in an overspray area approximately 115 feet long by 50 feet wide. On July 16, 2020, Enterprise initiated corrective action activities to remediate potential petroleum hydrocarbon impact resulting from the release.

A **Topographic Map** depicting the location of the Site is included as **Figure 1** and a **Site Vicinity Map** is included as **Figure 2** in **Appendix A**.

1.2 **Project Objective**

The primary objective of the closure activities was to reduce constituent of concern (COC) concentrations in the on-site soils to below the applicable New Mexico EMNRD OCD closure criteria.

2.0 CLOSURE CRITERIA

The Site is subject to regulatory oversight by the New Mexico EMNRD OCD. Ensolum, LLC (Ensolum) referenced New Mexico Administrative Code (NMAC) 19.15.29 *Releases,* which establishes investigation and abatement action requirements for oil and gas release sites that are subject to reporting and/or corrective action, during the evaluation and remediation of the Site. Ensolum utilized the general site characteristics and information available from the New Mexico Office of the State Engineer (OSE) and the New Mexico EMNRD OCD imaging database to determine the appropriate closure criteria for the Site. Supporting documentation and figures associated with the following bullets are provided in **Appendix B**.

 The OSE tracks the usage and assignment of water rights and water well installations and records this information in the Water Rights Reporting System (WRRS) database. Water wells and other points of diversion (PODs) are each assigned POD numbers in the database (which is searchable and includes an interactive map). Two (2) points of diversion (POD) (SJ-00035 and SJ-00163-S-2) were identified within a mile of the Site in the OSE Water Right Reporting System (WRRS)

database. POD SJ-00035, with a recorded depth to water of 467 feet below grade surface (bgs), is located approximately 0.9 miles southwest of the Site and at a lower elevation (6,281 feet) than the Site (6,902 feet). POD SJ-00163-S-2, with a recorded depth to water of 800 feet bgs, is located approximately 0.9 miles east of the Site and at a lower elevation (6,870 feet) than the Site.

- Five (5) cathodic protection wells were identified within one mile of the Site. The shallowest recorded depth to water was identified at 40 feet bgs for the cathodic protection well located near the San Juan 30-6 Unit #411 well location (Unit A, Sec27 T30N R7W), which is located at a much lower elevation (6,523 feet) than the Site. The records for the closest cathodic protection well (San Juan 30-6 #422 & #38 (Unit M, Sec27 T30N R7W)), located approximately 630 feet southwest of the Site, indicate a depth to water of 130 feet bgs. The records for the cathodic protection wells located near the San Juan 30-6 #97A (Unit J, Sec27 T30N R7W), San Juan 30-6 Unit #97 (Unit NE, Sec27 T30N R7W), and the SJ 30-6 #38A (Unit E, Sec 27 T30N R7W) well locations indicate depths to water ranging from 98 feet bgs to 200 feet bgs.
- The Site is not located within 300 feet of a New Mexico EMNRD OCD-defined continuously flowing watercourse or significant watercourse. However, a stock pond, which is considered equivalent to a livestock well by the New Mexico EMNRD OCD, is located approximately 330 feet southeast of the Site.
- The Site is not located within 200 feet of a lakebed, sinkhole, or playa lake.
- The Site is not located within 300 feet of a permanent residence, school, hospital, institution, or church.
- The Site is not located within 500 feet of springs, or private domestic fresh water wells used by less than five (5) households for domestic or stock watering purposes. However, a stock pond, which is considered equivalent to a livestock well by the New Mexico EMNRD OCD, is located approximately 330 feet southeast of the Site.
- No fresh water wells or springs were identified within 1,000 feet of the Site.
- The Site is not located within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to New Mexico Statues Annotated (NMSA) 1978, Section 3-27-3.
- Based on information identified in the U.S. Fish & Wildlife Service National Wetlands Inventory Wetlands Mapper, the Site is not located within 300 feet of a wetland.
- Based on information identified in the New Mexico Mining and Minerals Division's Geographic Information System (GIS), Maps and Mine Data database, the Site is not located within an area overlying a subsurface mine.
- The Site is not located within an unstable area.
- Based on information identified on the Federal Emergency Management Agency (FEMA) National Flood Hazard Layer (NFHL) geospatial database, the Site is not located within a 100-year floodplain.

Based on the identified siting criteria, cleanup goals for soils remaining in place at the Site include:

Closure Criteria for Soils Impacted by a Release							
Constituent	Method	Limit					
Chloride	EPA 300.0 or SM4500 CI B	600 mg/kg					
TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015	100 mg/kg					
BTEX	EPA SW-846 Method 8021 or 8260	50 mg/kg					
Benzene	EPA SW-846 Method 8021 or 8260	10 mg/kg					

3.0 SOIL REMEDIATION ACTIVITIES

On July 16, 2020, Enterprise initiated activities to facilitate the remediation of petroleum hydrocarbon impact at the Site. During the remediation and corrective action activities, Sierra Oilfield Services, Inc. provided heavy equipment and labor support, while Ensolum provided environmental consulting support.

The final excavated/scraped area measured approximately 96 feet long and 80 feet wide at the maximum extents. The maximum depth of the excavation measured approximately one (1) feet bgs.

The lithology that was encountered during the completion of the remediation activities consisted primarily of gravelly silty sand (the gravel is not naturally occurring and was previously imported to provide a suitable driving surface).

Approximately 174 cubic yards of petroleum hydrocarbon affected soils were transported to the Envirotech, Inc. (Envirotech) landfarm near Hilltop, New Mexico for disposal/remediation. The executed C-138 solid waste acceptance form is provided in **Appendix C**. The excavation was backfilled with imported fill and contoured to surrounding grade.

Figure 3 (**Appendix A**) is a map that identifies approximate soil sample locations and depicts the approximate dimensions of the excavated/scraped area with respect to Site structures and appurtenances. Photographic documentation of the field activities is included in **Appendix D**.

4.0 SOIL SAMPLING PROGRAM

Ensolum field screened soil samples from the excavation utilizing a calibrated Dexsil PetroFLAG[®] hydrocarbon analyzer system and a photoionization detector (PID) fitted with a 10.6 eV lamp to guide excavation extents.

Ensolum's soil sampling program included the collection of 21 composite soil samples (S-1 through S-10, S2-a through S4-a, S6-a through S10-a, S10-B, B-1, and B-2) from the excavated/scraped area for laboratory analysis. The composite samples were comprised of five (5) aliquots each and represent an estimated 200 square foot sample area per guidelines outlined in 19.15.29.12 Section D NMAC. A clean shovel was utilized to obtain fresh aliquots from each area of the excavation. Regulatory correspondence is provided in **Appendix G**.

First Sampling Event

On July 17, 2020, the first sampling event was performed at the Site. A New Mexico EMNRD OCD representative was on Site during this sampling event. Composite soil samples S-1 (1') and S-2 through S-10 (0.12') were collected from the excavated/scraped area, and samples B-1 (0.12') and B-2 (0.12') were collected from the southeast side of the compressor building (outside the excavated/scraped area. Analytical results for composite soil samples S-2 through S-4 and S-6 through S-10 indicated exceedances

Enterprise Field Services, LLC Closure Report Frances Mesa Compressor Station (July 2020) October 7, 2020

of the applicable New Mexico EMNRD OCD closure criteria. In response to the data exceedances, the area was further excavated/scraped to remove petroleum hydrocarbon impacts. Soils associated with composite soil samples S-2 through S-4 and S-6 through S-10 were transported to the landfarm for disposal/remediation.

Second Sampling Event

On July 23, 2020, a second sampling event was performed. Composite soil samples S2-a (0.42'), S3-a (0.33'), S4-a (0.13'), S6-a (0.13'), S7-a (0.33'), S8-a (1'), S9-a (0.42'), and S10-a (0.25') were collected from the excavated/scraped area. The New Mexico EMNRD OCD was notified of the sampling event although no representative was present during the sampling activities. Subsequent analytical results for composite soil sample S10-a indicated an exceedance of the applicable New Mexico EMNRD OCD total petroleum hydrocarbons (TPH) closure criteria. In response to this information, Enterprise excavated and removed the soils associated with composite soil sample S10-a. Removed soils were transported to the landfarm for disposal/remediation.

Third Sampling Event

On July 27, 2020, after the removal of soils associated with S10-a, a third sampling event was performed. The New Mexico EMNRD OCD was notified of the sampling event although no representative was present during the sampling activities. Composite soil sample S10-B (0.58') was collected from the excavated/scraped area.

The soil samples were collected and placed in laboratory prepared glassware. The containers were labeled and sealed using the laboratory supplied labels and custody seals and were stored on ice in a cooler. The samples were relinquished to the courier for Hall Environmental Analysis Laboratory of Albuquerque, New Mexico, under proper chain-of-custody procedures.

5.0 SOIL LABORATORY ANALYTICAL METHODS

The composite soil samples were analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX) using Environmental Protection Agency (EPA) SW-846 Method #8021; TPH gasoline range organics (GRO), diesel range organics (DRO), and motor oil/lube oil range organics (MRO) using EPA SW-846 Method #8015; and chlorides using EPA Method #300.0.

The laboratory analytical results are summarized in **Table 1** in **Appendix E**. The laboratory data sheets and executed chain-of-custody forms are provided in **Appendix F**.

6.0 DATA EVALUATION

Ensolum compared the BTEX, TPH, and chloride laboratory analytical results or laboratory practical quantitation limits (PQLs) / reporting limits (RLs) associated with the composite soil samples representing soils remaining at the Site (S-1, S-5, B-1, B-2, S2-a through S4-a, S6-a through S9-a, and S10-B) to the applicable New Mexico EMNRD OCD closure criteria. The soils associated with composite soil samples S-2 through S-4, S-6 through S-10, and S10-a were removed from the Site and transported to Envirotech landfarm for disposal/remediation and are not included in the following discussion.

• The laboratory analytical results for the composite soil samples collected from soils remaining at the Site indicate benzene is not present at concentrations greater than the laboratory PQLs/RLs, which are less than the applicable New Mexico EMNRD OCD closure criteria of 10 milligrams per kilogram (mg/kg).

Page 9 of 102

- The laboratory analytical results for the composite soil samples collected from soils remaining at the Site indicate total BTEX is not present at concentrations greater than the laboratory PQLs/RLs, which are less than the applicable New Mexico EMNRD OCD closure criteria of 50 mg/kg.
- The laboratory analytical results for composite soil samples S4-a and S-5 indicate combined TPH GRO/DRO/MRO concentrations of 9.7 mg/kg and 59 mg/kg, respectively, which do not exceed the applicable New Mexico EMNRD OCD closure criteria of 100 mg/kg. The laboratory analytical results for the remaining composite soil samples collected from soils remaining at the Site indicate combined TPH GRO/DRO/MRO is not present at concentrations greater than the laboratory PQLs/RLs, which are less than the applicable New Mexico EMNRD OCD closure criteria of 100 mg/kg.
- The laboratory analytical results for the composite soil samples collected from soils remaining at the Site indicate chloride is not present at concentrations greater than the laboratory PQLs/RLs, which are less than the applicable New Mexico EMNRD OCD closure criteria of 600 mg/kg.

The laboratory analytical results are summarized in **Table 1** (Appendix E).

7.0 RECLAMATION AND REVEGETATION

The excavation was backfilled with imported fill and resurfaced with gravel to provide a suitable driving surface.

8.0 FINDINGS AND RECOMMENDATION

- A total of 21 composite soil samples were collected from the excavation. Based on laboratory analytical results, the soils remaining at the Site do not exhibit COC concentrations above the applicable New Mexico EMNRD OCD closure criteria.
- Approximately 174 cubic yards of petroleum hydrocarbon affected soils were transported to the Envirotech landfarm for disposal/remediation. The excavation was backfilled with imported fill and resurfaced with gravel to provide a suitable driving surface.

Based on field observations and laboratory analytical results, no additional investigation or corrective action appears warranted at this time.

9.0 STANDARDS OF CARE, LIMITATIONS, AND RELIANCE

9.1 Standard of Care

Ensolum's services were performed in accordance with standards customarily provided by a firm rendering the same or similar services in the area during the same time period. Ensolum makes no warranties, express or implied, as to the services performed hereunder. Additionally, Ensolum does not warrant the work of third parties supplying information used in the report (e.g. laboratories, regulatory agencies, or other third parties).

9.2 Limitations

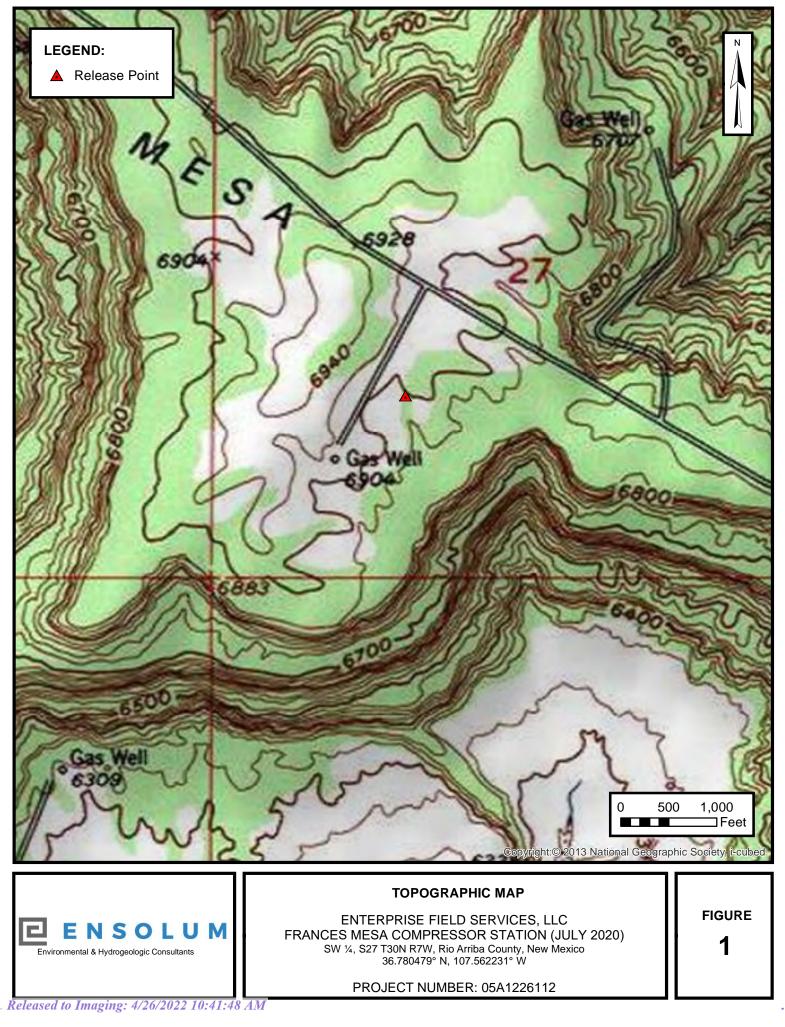
Findings, conclusions, and recommendations resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work and it should be

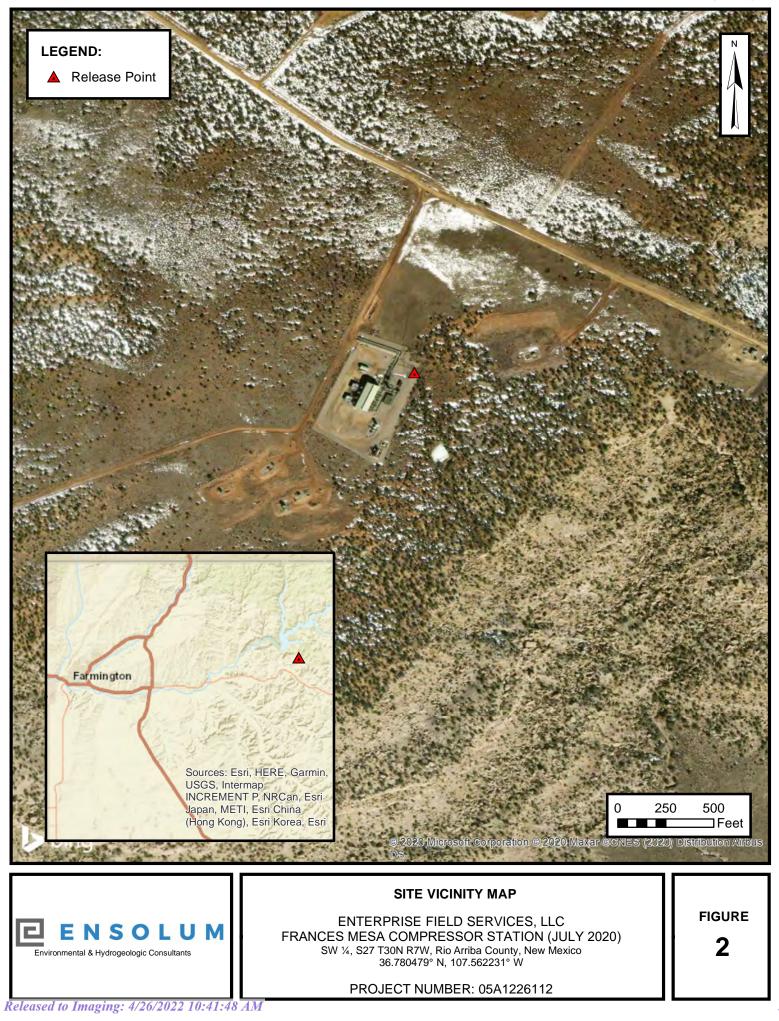
Enterprise Field Services, LLC Closure Report Frances Mesa Compressor Station (July 2020) October 7, 2020

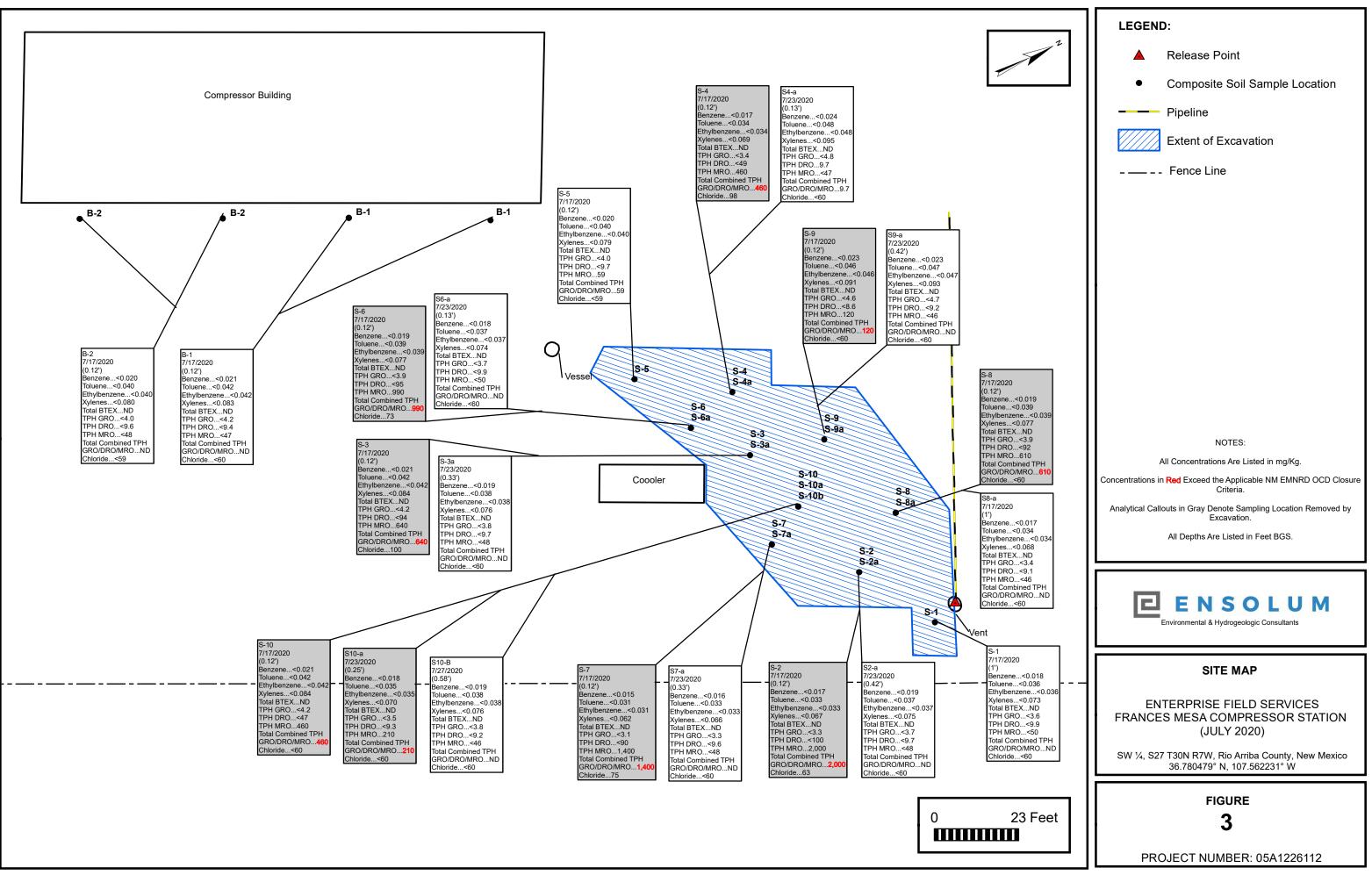
Page 10 of 102

noted that this information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, or not present during these services, and Ensolum cannot represent that the Site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during the investigation. Environmental conditions at other areas or portions of the Site may vary from those encountered at actual sample locations. Ensolum's findings and recommendation are based solely upon data available to Ensolum at the time of these services.

9.3 Reliance

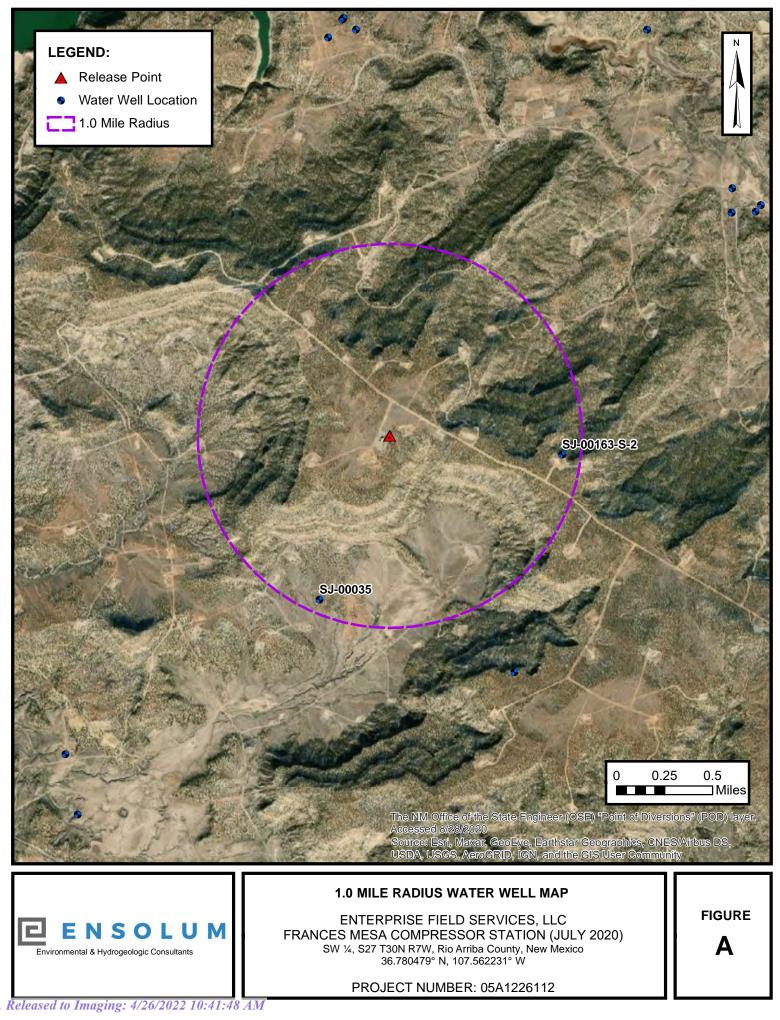

This report has been prepared for the exclusive use of Enterprise, and any authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the Site) is prohibited without the express written authorization of Enterprise and Ensolum. Any unauthorized distribution or reuse is at the client's sole risk. Notwithstanding the foregoing, reliance by authorized parties will be subject to the terms, conditions and limitations stated in the Closure Report, and Ensolum's Master Services Agreement. The limitation of liability defined in the agreement is the aggregate limit of Ensolum's liability to the client.

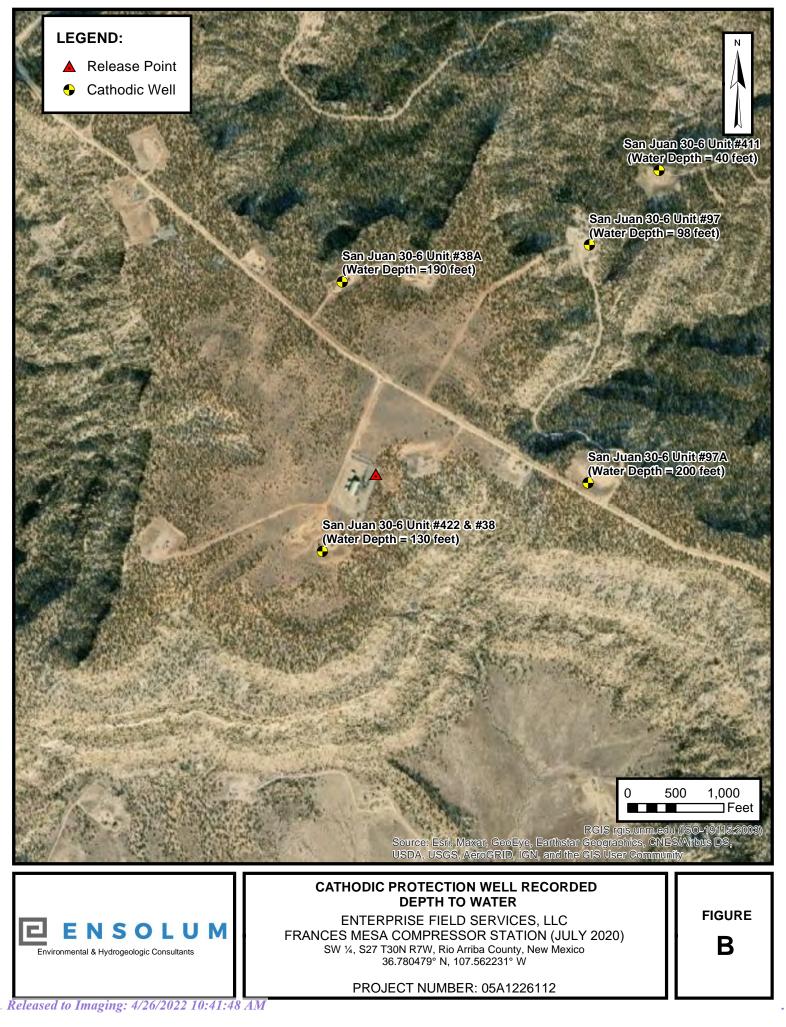

APPENDIX A

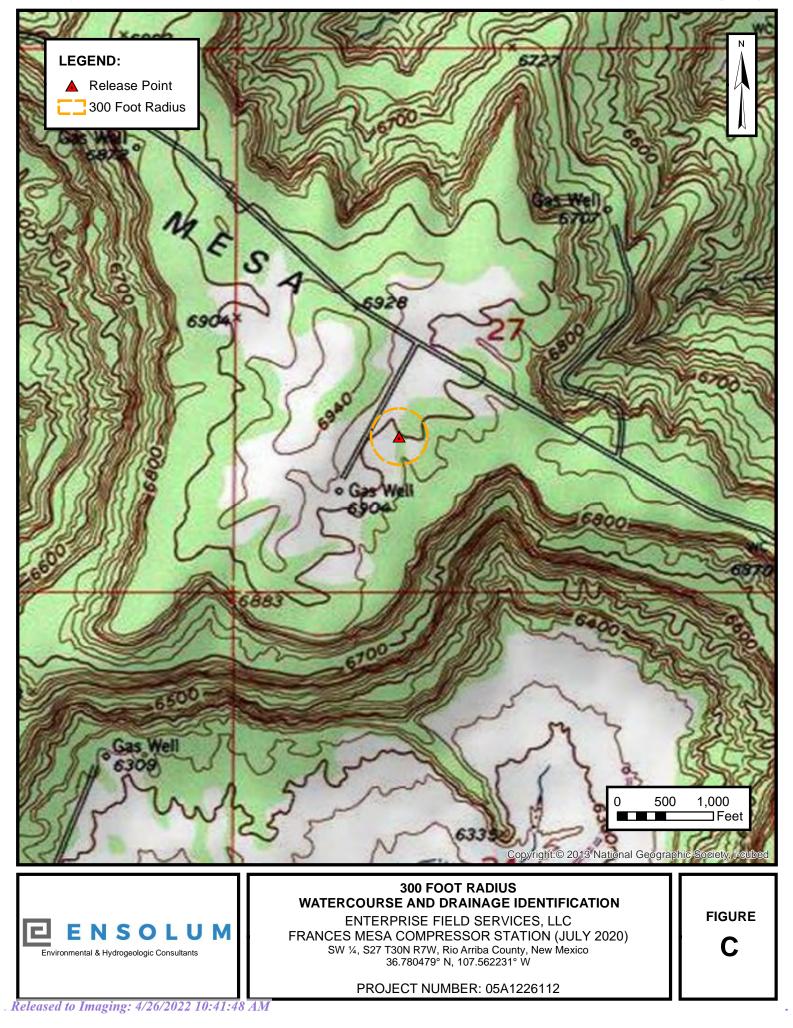

Figures

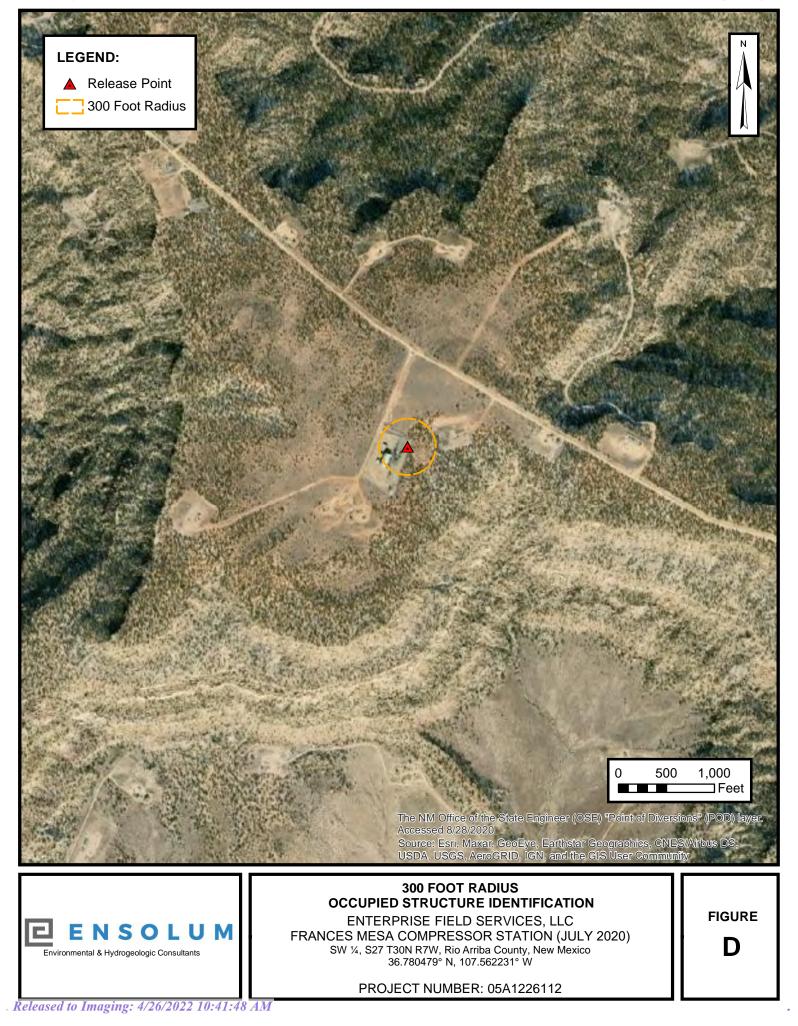
Received by OCD: 11/4/2020 10:45:16 AM

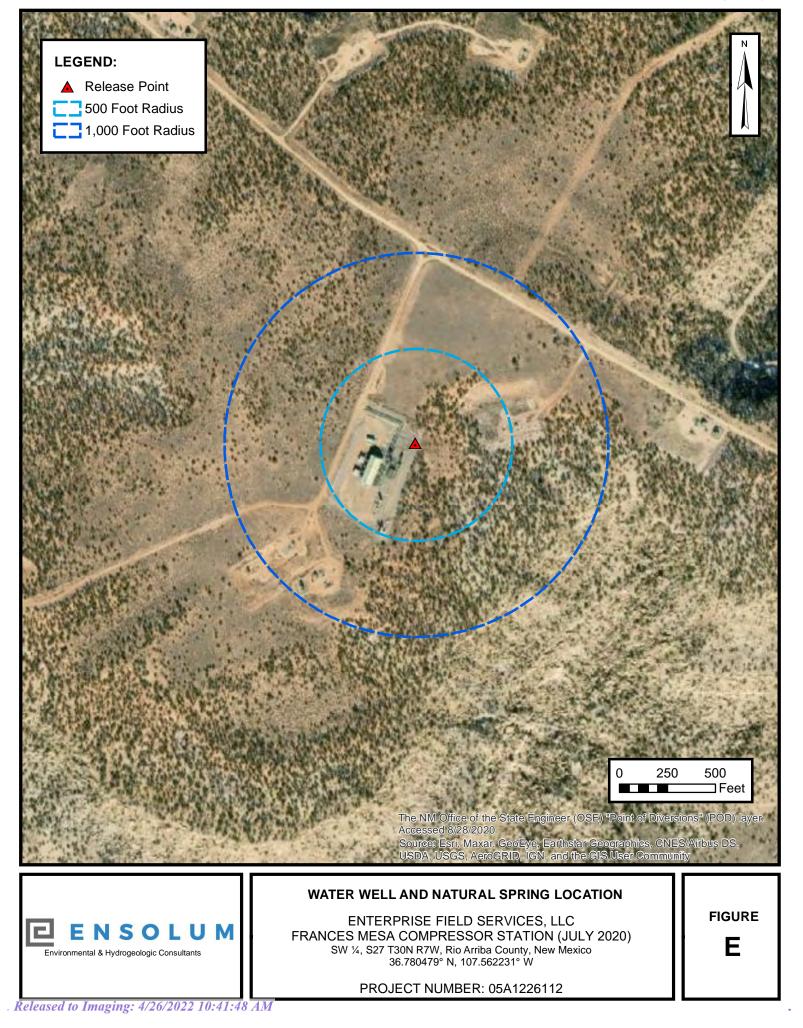
Received by OCD: 11/4/2020 10:45:16 AM

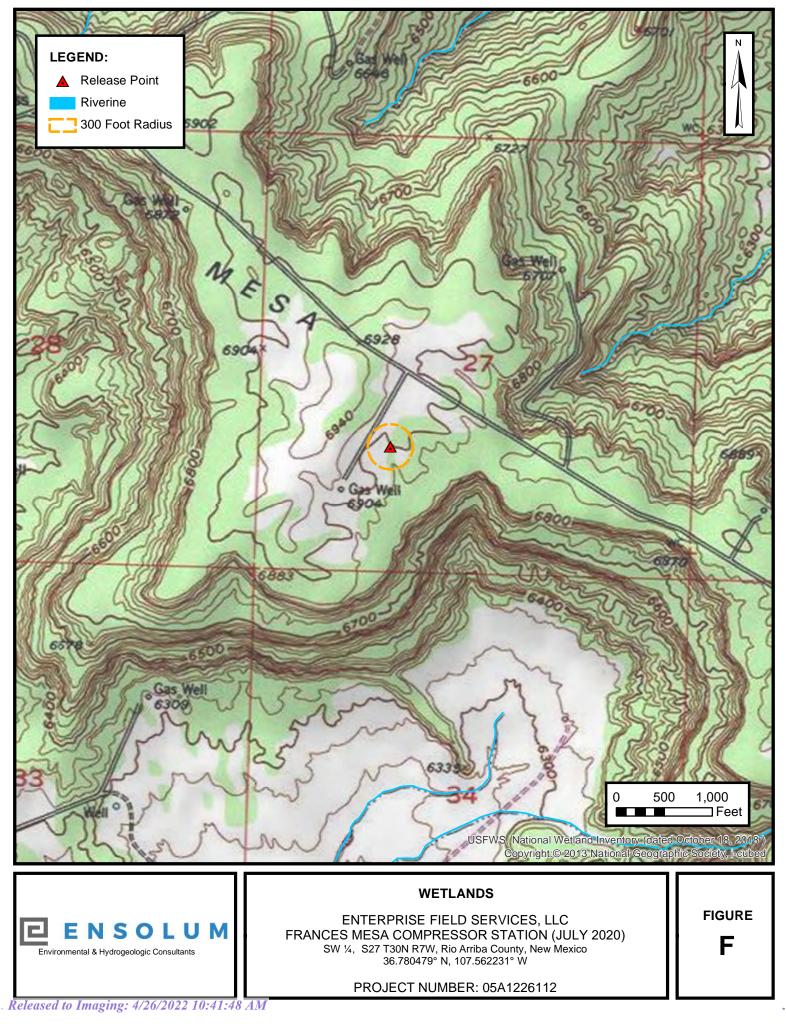


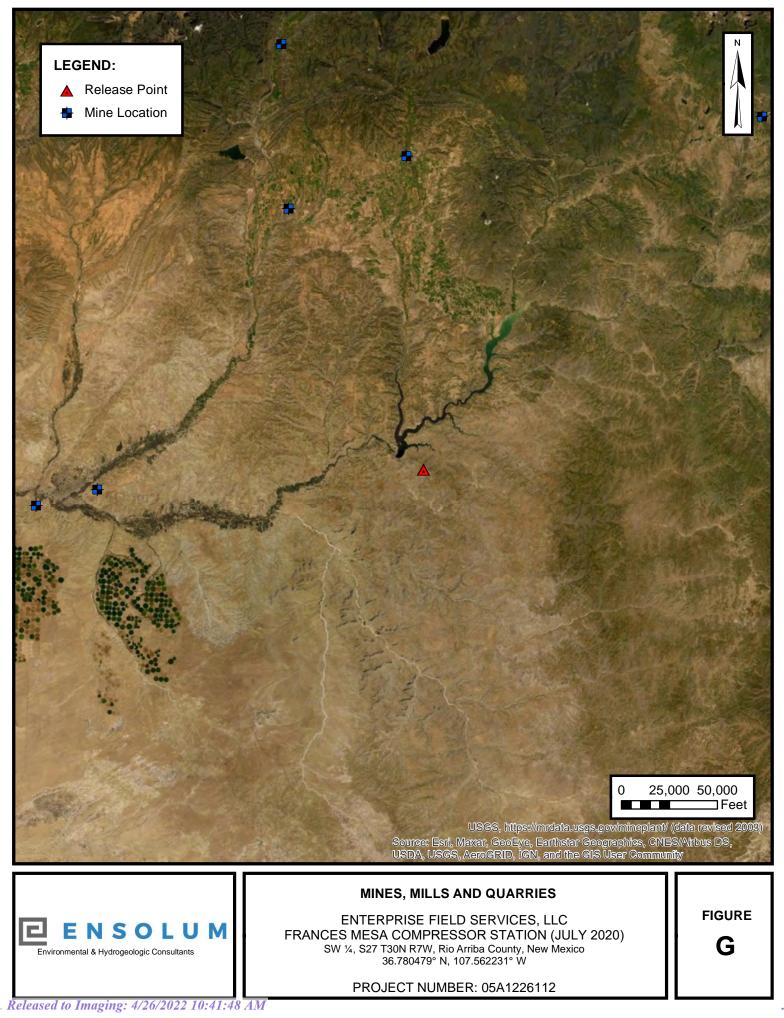

APPENDIX B

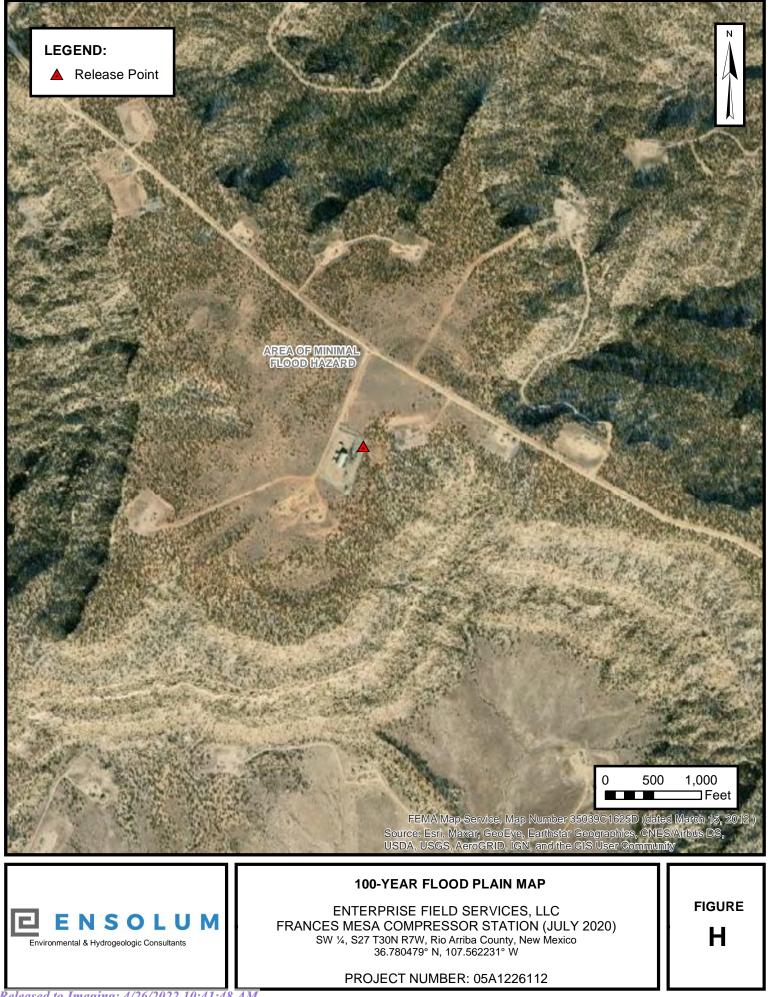

Siting Figures and Documentation


. Released to Imaging: 4/26/2022 10:41:48 AM




Page 17 of 102





Received by OCD: 11/4/2020 10:45:16 AM

Released to Imaging: 4/26/2022 10:41:48 AM

New Mexico Office of the State Engineer Water Column/Average Depth to Water

POD Sub- Q Q V <th>(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)</th> <th>(R=POD has been replaced O=orphaned, C=the file is closed)</th> <th>(quar</th> <th></th> <th></th> <th></th> <th></th> <th>IE 3=SW largest)</th> <th></th> <th>3 UTM in meters)</th> <th></th> <th>(In fee</th> <th>t)</th>	(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is closed)	(quar					IE 3=SW largest)		3 UTM in meters)		(In fee	t)
SJ 03301 SJ SJ 4 4 4 34 30N 07W 272344 4071603* 21 10 11 Average Depth to Water: 238 feet Minimum Depth: 10 feet	POD Number	Sub-	County			Sec	Tws	Rng	х	Y	-	-	
Average Depth to Water: 238 feet Minimum Depth: 10 feet	SJ 00035	SJ	RA	22	4	33	30N	07W	270745	4072250* 🌍	547	467	80
Minimum Depth: 10 feet	SJ 03301	SJ	SJ	4 4	4	34	30N	07W	272344	4071603* 🌍	21	10	11
										Minimun	n Depth:	10 f	eet

Record Count: 2

PLSS Search:

Section(s): 27, 21, 22, 23,	Township: 30N	Range: 07W
26, 28, 33, 34,		
35		

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

			11-1			ATT.		- Rev	ised June 197
			ST	ATE ENGINEE	P OFFICE	a sél la		12	
		-	, C				8.701 4 1		
		1 - 1 - A		WELL REC	URD				
	·		Section	I. GENERAL	INFORMATIC	NTE ENGLI	MEERIOF	FICE	
						- ハート・マート アンディー			
(A) Owner (A)	of well	<u> </u>	<u>Natural Ga</u>	us Company	<u>_</u>	(Owner's We	il No	<u>arp #1</u>
City and	i State	<u> </u>	mington,	<u>New Mexico</u>	87401				
			1.00						
Well was drille	ed under Perm	it No. <u>S</u> Je	-193-03- 5	J-163-S	and is locat	ed in the:			
a N	E % SE	4 SE 4	¹ / ₄ of ⁴	Section <u>18</u>	Township	28N	Pango 8	W	
ų. <u> </u>		/4 <u></u> /4 .	/4 01 1				_ Kange <u>~</u>		N,M.P.M
, b. Tract	No	of Map 1	No	of th	e	<u></u>			
0 [.	No	of Dissis	2						
				of th			- <u> </u>		_
d. X=	<u> </u>	feet, Y=		feet, N	.M. Coordinat	e System	<u>.</u>		Zone ir
the	<u> </u>	<u> </u>						<u> </u>	Grant
 () () () () ()	en an en	A 7teo	Well Serv	ind 0-	ter tom porter a				··· · · ···
B) Drilling	Contractor								
				icang Compa	any	License N	WD 727	<u> </u>	
							-		
Address		Post_	<u>Office Bo</u>	x B, Aztec.	<u>, New Mexi</u>	co 87410			
Address		Post_	<u>Office Bo</u>		<u>, New Mexi</u>	co 87410			
Address Drilling Began	9=4=7	<u>Post</u>	Office Bo	x_B, Aztec. 9-6-78	New Mexi _ Type tools_	co 87410 Rotary	S	ize of hole.	8 3/4 in
Address Drilling Began	9=4=7	<u>Post</u>	Office Bo	x B, Aztec.	New Mexi _ Type tools_	co 87410 Rotary	S	ize of hole.	8 3/4 in
Address Driffing Began Elevation of la	9=4=7	Post	Office Bo	x_B, Aztec. 9-6-78	<mark>, New Mexi</mark> Type tools _ ill is	co 87/410 Rotary ft. Total d	Si lepth of we	ize of hole. 1450'	<u>8 3/4</u> in ft
Address Driffing Began Elevation of la	9-4- 7 and surface or	Post 78 Co Locat shallow X	Office Bo mpleted ion artesian.	x_B,_Aztec. 9 -6-78 at we	New Mexi Type tools If is 5739' Depth to wat	co 87410 Rotary ft. Total d er upon compl	Si lepth of we	ize of hole. 1450'	<u>8 3/4</u> in ft
Address Drilling Began Elevation of Is Completed we	9-4- 7 and surface or Il is	Post 8 Co Locat shallow X	Office Bo impleted fion artesian. section 2. PRI	x_B, Aztec. 9-6-78	New Mexi Type tools If is 5739' Depth to wat	co 87410 Rotary ft. Total d er upon compl	Si lepth of we	ize of hole. 11	8 3/4 in ft 0ft
Address Driffing Began Elevation of la Completed we Depth	9-4-7 and surface or Il is in Feet	Post 78 Co Locat shallow X	Office Bo impleted fion artesian. section 2. PRI ess	x B, Aztec , 9-6-78 at we NCIPAL WATE	New Mexi Type tools It is 5739' Depth to wat R-BEARING S	co 87410 Rotary ft. Total d er upon compl STRATA	S	ize of hole. 11 1450' 11 80 11 80 Estimated	8 3/4 in ft 0 ft Yield
Address Drilling Began Elevation of la Completed we Depth From	9-4-7 and surface or Il is in Feet <u>To</u>	Post '8 Co Locat shallow X Shallow S Thickno in Fee	Office Bo impleted fion artesian. Section 2. PRI ess it	x B, Aztec. 9-6-78 at we NCIPAL WATE Description of	New Mexi Type tools il is 5739' Depth to wat R-BEARING S Water-Bearing	co 87/410 Rotary ft. Total d er upon compl STRATA Formation	Lepth of we etion of we	ize of hole. 11	8 3/4 in ft 0 ft Yield minute)
Address Driffing Began Elevation of la Completed we Depth	9-4-7 and surface or Il is in Feet	Post 8 Co Locat shallow X S Thickne	Office Bo impleted fion artesian. Section 2. PRI ess it	x B, Aztec , 9-6-78 at we NCIPAL WATE	New Mexi Type tools il is 5739' Depth to wat R-BEARING S Water-Bearing	co 87/410 Rotary ft. Total d er upon compl STRATA Formation	Lepth of we etion of we	ize of hole. 11 1450' 11 80 11 80 Estimated	8 3/4 in ft 0 ft Yield minute)
Address Drilling Began Elevation of la Completed we Depth From	9-4-7 and surface or Il is in Feet <u>To</u>	Post '8 Co Locat shallow X Shallow S Thickno in Fee	Office Bo impleted fion artesian. Section 2. PRI ess it	x B, Aztec. 9-6-78 at we NCIPAL WATE Description of	New Mexi Type tools il is 5739' Depth to wat R-BEARING S Water-Bearing	co 87/410 Rotary ft. Total d er upon compl STRATA Formation	Lepth of we etion of we	ize of hole. 11	8 3/4 in ft 0 ft Yield minute)
Address Drilling Began Elevation of la Completed we Depth From	9-4-7 and surface or Il is in Feet <u>To</u>	Post '8 Co Locat shallow X Shallow S Thickno in Fee	Office Bo impleted fion artesian. Section 2. PRI ess it	x B, Aztec. 9-6-78 at we NCIPAL WATE Description of	New Mexi Type tools il is 5739' Depth to wat R-BEARING S Water-Bearing	co 87/410 Rotary ft. Total d er upon compl STRATA Formation	Lepth of we etion of we	ize of hole. 11	8 3/4 in ft 0 ft Yield minute)
Address Drilling Began Elevation of la Completed we Depth From	9-4-7 and surface or Il is in Feet <u>To</u>	Post '8 Co Locat shallow X Shallow S Thickno in Fee	Office Bo impleted fion artesian. Section 2. PRI ess it	x B, Aztec. 9-6-78 at we NCIPAL WATE Description of	New Mexi Type tools if is 5739' Depth to wat R-BEARING S Water-Bearing	co 87/410 Rotary ft. Total d er upon compl STRATA Formation	Lepth of we etion of we	ize of hole. 11	8 3/4 in ft 0 ft Yield minute)
Address Drilling Began Elevation of la Completed we Depth From	9-4-7 and surface or Il is in Feet <u>To</u>	Post '8 Co Locat shallow X Shallow S Thickno in Fee	Office Bo impleted fion artesian. Section 2. PRI ess it	x B, Aztec. 9-6-78 at we NCIPAL WATE Description of	New Mexi Type tools if is 5739' Depth to wat R-BEARING S Water-Bearing	co 87/410 Rotary ft. Total d er upon compl STRATA Formation	Lepth of we etion of we	ize of hole. 11	8 3/4 in ft 0 ft Yield minute)
Address Drilling Began Elevation of la Completed we Depth From	9-4-7 and surface or Il is in Feet <u>To</u>	Post '8 Co Locat shallow X Shallow S Thickno in Fee	Office Bo impleted fion artesian. Section 2. PRI ess it	x B, Aztec. 9-6-78 at we NCIPAL WATE Description of	New Mexi Type tools if is 5739' Depth to wat R-BEARING S Water-Bearing	co 87/410 Rotary ft. Total d er upon compl STRATA Formation	Lepth of we etion of we	ize of hole. 11	8 3/4 in ft 0 ft Yield minute)
Address Drilling Began Elevation of la Completed we Depth From	9-4-7 and surface or Il is in Feet <u>To</u>	Post '8 Co Locat shallow X Shallow S Thickno in Fee	Office Bo	x B, Aztec. 9-6-78 at we NCIPAL WATE Description of r sands from	New Mexi Type tools If is 5739' Depth to wat R-BEARING S Water-Bearing m 200 - 12	co 87/410 Rotary ft. Total d er upon compl STRATA Formation	Lepth of we etion of we	ize of hole. 11	8 3/4 in ft 0 ft Yield minute)
Address Dritting Began Elevation of la Completed we Depth From 0	9=4=7 and surface or ll is in Feet To 1450	Post 8 Co Locat shallow X Shallow S Thickne in Fee 1200	Office Bo impleted ion artesian. Section 2. PRI ess it Wate Secti	x B, Aztec. 9-6-78 at we NCIPAL WATE Description of r sands from con 3. RECORD	New Mexi Type tools Type tools Depth to wat R-BEARING S Water-Bearing m 200 - 12 OF CASING	co 87/410 Rotary ft. Total d er upon compl STRATA Formation	Lepth of we etion of we	ize of hole. 1450' 11 80 Estimated gallons per 20 gpr.	8 3/4 in ft 0 ft Yield minute) n
Address Dritting Began Elevation of la Completed we Depth From 0 Diameter	9=4=7 and surface or ll is in Feet To 1450 Pounds	Post 78 Co Locat shallow X Thickne in Fee 1200 Threads	Office Bo impleted ion artesian. Section 2. PRI ess it Wate Secti Secti	x B, Aztec. 9-6-78 at we NCIPAL WATE Description of r sands from on 3. RECORD 1 in Feet	New Mexi Type tools Type tools Depth to wat R-BEARING S Water-Bearing m 200 - 12 OF CASING Length	co 87/410 Rotary ft. Total d er upon compl STRATA Formation	S	ize of hole. 11 11 11 1450' 11 80 Estimated gallons per 20 gpr Perfo	8 3/4 in ft 0 ft Yield minute) n
Address Dritting Began Elevation of la Completed we Depth From 0	9=4=7 and surface or ll is in Feet To 1450	Post 8 Co Locat shallow X Shallow S Thickne in Fee 1200	Office Bo impleted ion artesian. Section 2. PRI ess it Wate Secti	x B, Aztec. 9-6-78 at we NCIPAL WATE Description of r sands from con 3. RECORD	New Mexi Type tools Type tools Depth to wat R-BEARING S Water-Bearing m 200 - 12 OF CASING	co 87/410 Rotary ft. Total d er upon comple STRATA Formation 50	S	ize of hole. 1450' 11 80 Estimated gallons per 20 gpr.	8 3/4 in ft 0 ft Yield minute) n
Address Drilling Began Elevation of la Completed we Depth From 0	9=4=7 and surface or ll is in Feet To 1450 Pounds	Post 78 Co Locat shallow X Thickne in Fee 1200 Threads	Office Bo impleted ion artesian. Section 2. PRI ess it Wate Secti Secti	x B, Aztec. 9-6-78 at we NCIPAL WATE Description of r sands from on 3. RECORD 1 in Feet	New Mexi Type tools Type tools Depth to wat R-BEARING S Water-Bearing m 200 - 12 OF CASING Length	co 87/410 Rotary ft. Total d er upon comple STRATA Formation 50	S lepth of we etion of we (g Est	ize of hole. 11 11 11 1450' 11 80 Estimated gallons per 20 gpr Perfo	8 3/4 in ft 0 ft Yield minute) n

5

فالفحا الألادة

}		Sectio	n 4. RECORD OF	MUDDING AND C	CEMENTING
Depth From	in Feet To	Hole Diameter	Sacks of Mud	Cubic Feet of Cement	Method of Placement
()	170'	13 3/4"	Unknown	100	Conventional Circulation
<u> </u>	1450	8 3/4"	Unknown	353	Conventional Circulation

Section 5. PLUGGING RECORD Plugging Contractor Address . Depth in Feet Cubic Feet of Cement Plugging Method No: Top Bottom Date Well Plugged_ 1 Plugging approved by: 2 3 State Engineer Representative 4 FOR USE OF STATE ENGINEER ONLY 9/13/75 Date Received ÷ ter en en en en Quad ___ FWL FSL. Use Drilling & Location No. 28N. 8W. 18 442 File No._ SJ-163-S SANXANNAXCO. Workover San Juan Co.

-Million

200

Released to Imaging: 4/26/2022 10:41:48 AM

Depth in Feet Thick		Thickness	Section 6. LOG OF HOLE					
From	То	in Feet	Color and Type of Material Encountered					
			Because of the nature of this work no samples were available.					
· · · · · ·								
······································								
1.5.2		2.15						
<u> </u>								
	<u> </u>							
<u> </u>								
· · · · · ·								
······································								
		· · · · · · · · · · · · · · · · · · ·						
		<u> </u>						
· · ·								
		· ·						
		<u> </u>						
-	· · · · · · · · · · · · · · · · · · ·							
		<u></u>						
	- S ₁ - 1							

Page 26 of 102

Section 7. REMARKS AND ADDITIONAL INFORMATION

This was an old Pictured Cliffs well which was plugged during 1951. During this conversion to a water well the old hole was reamed out and a new string of casing run to a depth of 1415'.

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

Driller C

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and synaitted to the appropriate district office of the State Engineer. All sections, excer______ction 5, shall be answered as completely an _____curately as possible when any well is "drilled repaired or deepened. When this form is used as a plugging record, only Section 1(a) and Section 5 need be completed. Released to Imaging: 4/26/2022 10:41:48 AM

STATE OF NEW MEXICO

STATE ENGINEER OFFICE

S. E. REYNOLDS STATE ENGINEER

September 22, 1978

Bataan Memorial Building STATE CAPITOL SANTA FE, NEW NEXICO 87501

File SJ- 163-8

El Paso Natural Gas Co. Box 990 Farmington, N. M. 87401

Gentlemen:

Enclosed is copy of the above-numbered Well Record for

.....

your files.

ma encl. cc-J. L. Williams Very truly yours,

S. E. Reynolds State Engineer

By:

E. C. Barry Engr-Tech. Water Rights Bureau

: 11/4/2020 10:45:16 AM	
38	30-039-09110

422 30-039-24261

Received by OCD: 11/4/2020 10:45:16 AM

DATA SHEET FOR DEEP GROUND BED CATHODIC PROTECTION WELLS NORTHWESTERN NEW MEXICO (Submit 3 copies to OCD Aztec Office)

Operator <u>MERIDIAN OIL</u> Location: Unit<u>SW</u> Sec.27 Twp 30 Rng7 Name of Well/Wells or Pipeline Serviced SAN JUAN 30-6 UNIT #38, #422 cps 282w Elevation 6899 Completion Date 10/4/76 Total Depth 438' Land Type* N/A Casing, Sizes, Types & Depths<u>N/A</u> If Casing is cemented, show amounts & types used N/A If Cement or Bentonite Plugs have been placed, show depths & amounts used N/A Depths & thickness of water zones with description of water when possible: Fresh, Clear, Salty, Sulphur, Etc. WFT AT 130'

Depths gas encountered: <u>N/A</u>	RECEIVED
Type & amount of coke breeze used:	MAY 3 1 1991
Depths anodes placed: <u>425', 390', 380', 370', 355'</u>	
Depths vent pipes placed: <u>N/A</u>	OIL CON. DIV. DIST. 3
Vent pipe perforations: 230'	
Remarks: gb #3 FIRST 4 ANODES RESPONDED. BELEIVE HOL	LE CAVED IN AT 140'. MAY BE NO

COKE AROUND #5 ANODE.

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

.

*Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

Received by OCD: 11/4/2020 10:45:16 AM Page 29 of 102 Faim 7-233 (Rev. 11-71) WELL CASING CATHODIC PROTECTION CONSTRUCTION REPORT DAILY LOG Lobbed 10-4-76 Completion Date_ Prilling Log (Attach Hereto). CPS No. Location Aad Name -3E 5027-30-7 AN JUAN. 30-6 282 Work Order No. 007 Lost Circulation Mat'l Used No. Sacks Mud Used Total Drilling Rig Time Total Lbs. Coke Used 30 Socks CG 390 * 4370 # 10 * 3**380** = 5355 ¦# 6 # 7 # 8 :: 9 1= 5 2.0 223 # 3 3. 3 1 J. 3 12 9 # 6 #.7 1: 8 # 10 Lineas Depth # 13 # 15 - 12 # 14 # 16 # 17 # 18 # 19 ¦≭ 20 ** :a - Output (Amps) # 15 : 12 # 13 : 14 # 18 # 16 # 17 # 19 # 20 No. 2 C.P. Caple Used a. • Resistance No. 8 C.P. Cable Usea Amps 9. 3 -21 0 Ohms 1:5 INJ. @ 405 WATER 30' START Ø 5AID WET DALLER ANDING G HOLECAVED FIRST AND)ES FIDONDED BELIEVE ARONA 4NODE COKE BELEVE SACKS SLURRY 30 VENT PERF. 230 \$2,248.50 All Construction Completed 422.40 Depth 14.40 Surf. CHble C.W. L (Signature) 2,685.30 GROUND BED LAYOUT SKETCH 2 74 213.40 INSP 50.00 Misc GB 158 3,056. 90 **DISTRIBUTION:** GB WHITE - Division Corrosion Office YELLOW - Area Corrosion Office PINK - Originator File S. Same

. Released to Imaging: 4/26/2022 10:41:48 AM

		m U Griant	#/		DAILY DRILLING REPORT
LEASE y	NING	CONTRACTOR	RIG NO.	REPORT NO.	DATE 9-4-76
Dniller	Total Men In Crew	Driller	Total Men In Crew	Driller	Total Men In Crew
FROM TO		P.M. FROM TO	FORMATION WT-BIT R.P.M		FORMATION
	k k				
	NO. DCSIZELENG		NO. DCSIZELENG	_	NO. DC SIZE LEN
	NO. DC SIZE LENG		NO. DCSIZE LENG	BIT NO.	NO. DCSIZE
SERI NO.	SINGLES	SIZE	SINGLES	SERIAL NO.	STANDS
<u>SIZE 6 3 RT.</u> TYPE 4	DOWN ON KELLY	TYPE	DOWN ON KELLY	TYPE	DOWN ON KELLY
MAKE	TOTAL DEPTH	MAKE	TOTAL DEPTH	MAKE	TOTAL DEPTH
MUD RECORD	MUD, ADDITIVES USED AND RECEIVED		MUD, ADDITIVES USED AND RECEIVED	MUD RECORD	MUD, ADDITIVES USED AND RECEIV
Time Wt. Vis.		Time Wt. Vis.		Time Wt. Vis.	
	<u>.</u>				
FROM TO	TIME BREAKDOWN	FROM TO	TIME BREAKDOWN	FROM TO	TIME BREAKDOWN
O-110	Sh	161-206 56 3	1/+4		
110-120		200 - 235 5 6	and	air 1	Tra
//0 /30	~~	735-770 34	- ,		
/30-/38_	5 damp	270-302 Sd	damp Wet)	· · ·	
138-161	Shdry .	307 - 307 54			· · · · · · · · · · · · · · · · · · ·
					and a second and a s Second and a second a
REMARKS -		REMARKS -		REMARKS -	No A F 111015
207-31	1 5 dama			groce and	uld to 760 1
31/ - 32				LI.L. Da	100 # 43 9 1
325 35	U W 5			Hore Log	ged 1 438
355 - 40					
405 - 42		-			، معرفة المعرفة (ما يونية) معرفة المعرفة (ما يونية) معرفة المعرفة (ما يونية)
425- 44					A LAN
442-46	Sdamp		- <u>.</u>		
	V :				

. Released to Imaging: 4/26/2022 10:41:48 AM

•

.

El Paso Natural Gas Company ENGINEERING CALCULATION

Date:	
By:	
File	

		ŚW	27-30-7			
a an an at a day a second a s	SAN	JHAN	30-6-	# 38	282W	40072
	125	.4	350	11.4		425 2.0 3.
	30	.5	55	1.5 x	2_	390 2.0 3.
	35	7.1	60	1.4 x	3	380 1.9 3
MW gals/mol 16.04 C1 6.4	40	18	65	1.2		370 119 3
30.07 C2 10 12	45	19	70	1,4 X	Sr	355 20 2
44.10 C3 10.42 58.12 IC4 12.38	50	.9	75	1.5		
58.12 nC4 11.93 72 15 iC5 13.85	55		80	X		
72.15 nC5 13.71 86.18 iC6 15.50	60	1.1	85	1.4 ×		
86.18 C6 15.57	70	,6	90			
100.21 IC7 17.2 100.21 C7 17 46	The statistic statistic state and an and the	.8	400			
114.23 C8 19.39 28.05 C2 ² 9.64	75 80	8	- 05	1.0		
42.08 C3 9.67	8.5	6	10	. 9	· · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	90	'3	15	.9		· · · · · · · · · · · · · · · · · · ·
	95	1.1	20	1,2		
	200		25	1.5 X		· · · · · · · · · · · · · · · · · · ·
	05		30		· · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	10		35	8		
	15	2	- 40	18		
,	20	,2	45	18	7.0, 438	
	25		50			
	30	1.0	55			
	35 40	.9	60			
	45			RILLER 5	AID Wer	47/30
MISC. MW gals/mol	50	1.0	57	AAT INS		NATER STAND
32.00 O2 3.37 28.01 CO 4.19	55	1.0	40	71 Ihr		
44.01 CO ₂ 6 38 64.06 SO ₂ 5.50	60	.1	· · · · · · · · · · · · · · · · · · ·			·
34.08 H2S 5.17 28.01 N2 4 16	65	. 7	FIR	SA FOUR	ANODES	RESPONDED BELIEVE NO NODE
2.02 H2 3.38	20	1.2	He	ECAVED	A 140'	RELIEVENO
	- 75		e >	Ke ARO	NN3 #5 A.	NOUE
	80 85	17				
- ,	90	.9	9.	3 A V	12-0	1-272
-	55	1,0				
· · ·	3.0.0	1.0				
	05	1.0				
•-	10	11				
	15	.1	-1mg	1.4		
	20	, 7				
- 12 C	25	.7				
		.7				
	30					
•	35	8				
 The second sec			DENT		230	

. Released to Imaging: 4/26/2022 10:41:48 AM

#974 30-039-25448 DATA SHEET FOR DEEP GROUND BED CATHODIC. PROTECTION WELLS NORTHWESTERN NEW MEXICO Operator Meridian Oil INC. Location: Unit J Sec. 27 TWD 30Rng 07 Name of Well/Wells.or Pipeline Serviced____ SAN JUAN 30-6#97A Elevation ____ Completion Date 7-28.75 Total Depth 472 Land Type F Casing Strings; Sizes, Types & Depths 3/9 Set 98 OF 8" PVC CASING. NO GAS, WATER, or Boulders Were ENCOUNTEREd During CASING. If Casing Strings are cemented, show amounts & types used CemenTed WITH 20 SACKS. If Cement or Bentonite Plugs have been placed, show depths & amounts used No plugs Depths 4 thickness of water zones with description of water: Fresh, Clear, Salty, Sulphur, Etc. 200'and was clean Depths gas encountered: No gas Ground bed depth with type & amount of coke breeze used: 472 with 66 (10016) sacks of Loresco Sw Depths anodes placed: # 15 at 450 + #15 is at 215 Depths vent pipes placed: Bottom to Surface Vent pipe perforations: Up to 180 necentein JAN 1 1 1996 Remarks: ON CON DING DIST. 3

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

Land Type may be shown: F-Federal: I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

ç. . **4**

۰. ۰

	data sh eet	FOR DEEP GRO	und bed cath	odic. Protec	TION WELLS	
	•	NORTHWE	stern new me	XICO ·		
		<u>Kesources</u> : Pipeline Se				
		· · · · · · · · · · · · · · · · · · ·		<u>and the second s</u>		
		tion Date_ <u>3-/</u>				
Casing St	rings, Size:	s, Types & De	pths <u>x" Pv</u>	12 x 20'		•
	*** *	•	•	•	• • • •	
If Casing	J Strings ar	e cémented, s	how amounts	& types use	d 4 Bags	· · · ·
_Portla	nd Cement		•			·
If Cement	t or Bentoni	te Plugs have	e been placed	i, show dept	hs & amoun	ts used
None				, *	•	
Depths &	thickness o	f water zones	s with descr	iption of wa	ater: Fresh	, Clear,
Salty, Su	ulphur, Etc.	190 Secp)			
·						
Depths ga	as encounter	ed: <u>nove</u>				
Ground be	ed depth wit	h type & amou	unt of coke	breeze used	: 300' = 2	DOD Ibs
Lorrs	ro SW			- 		
Depths a	nodes placed	: 260, 253,2	46,239,236	R, 225, 2/8,	211,204,	197
Depths v	ent pipes pl	aced: 300'		<u>D</u> I		
Vent pip	e perforatic	ns: Bottom	150'		SUGIVU	<u>5</u>]]]
Remarks:				1.4 Lá	MAK - 9 1999	
		· .		(0)	l coin. d - dist. s -	<u> </u>

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included

Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

TD1505-18-134 Page 34 of 102

		c compa Buc		OA RA				LOG DAT	N SHEE!			
WELL N	AME .	1.555	30-1	×# 75	2A						(Önder)	- 1983 - 1983
LEGAL L	OCATIO	N: E -	27-30	2-7	• •••		COUNT	ry: Ri	Ani	ha		T.C.
				.*			a de la composición de				di dang g	
DATE:		6-98					TYPE (OF COKE:	10144	500 5	w	
DEPTH:	300				\sim		JAMT. C)F COKE B	ACKFILL:	200	o lbs	
BIT SIZE	6	3/4					VENT I	PIPE: 3	AO		dan att.	
DRILLEF	R NAME:	Jack	Led	utter			PERF.	PIPE: B	ottom	150	Kess	
SIZE AN	DIYPE	OF CASIN	G: 8*	PUL	<u>x 20'</u>		ANODE	: AMT. & T	YPE: A	notec	Duri	ner
DEPTH	<u> </u>		DEPTH			Incore		ER DRILLI			新作品	
FT.	LOG	ANODE		LOG	ANODE	DEPTH	Contract of the local division of the local		COMPLE	TION INF	ORMATIO	N:
	100	ANODE		LUG	ANODE		LOG	ANODE	WATER	DEPTHS:	190 .	<u> eel</u>
100			265	1.7	<u> </u>	430	}		ISOLATI	UN PLUG	<u>s:</u>	Ļ
105			270	16	<u> </u>	435			-	}	OUTPUT	
110		1	275	13	<u>}</u>	440	<u> </u>			I INEDTU	NO COK	
115		1	280	13	t	445	t		1	260	12 K2	
120			285	13	†	450	ĵ	+	2	253	10	
125			290	13		455		1	3	246	//~	<u>नि</u> ५.
130			295	13	1	460	1		4	239	1.5	7.
135			300	TO,		465	T		5	232	2.1	8
140			305			470	[6	225	2,2	2
145			310			475			7	218	2.1	恬
150	1.4		315			480			8	211	1.3	12
155	14		320			485			9	204	10	13,
160	1.4	<u> </u>	325		ļ	490			10	197	1.0	3
165	<u> 4. L</u>	 	330	 		495			11			
170 175	1.2	 	335	ļ	ļ	500	ļ		12			
_	لبج		340			505	ļ		13			
180 185	1.0		345		 -	510			14			
190	45	 	350 355	 		515			15	L		
195	1.0	 	355 360	}		520 525	ļ		16	ļ		
200	1.0	{ ────┤	365	 		525 530			17	 		┣
205	1.0	 	370			535			18 19	<u> </u>	ļ	┣—
210	1.2		375	 		540			20	 		
215	1.8	t	380			545			20	<u> </u>		╂
220	2.5		385			550			22	<u> </u>		┣
225	2.2		390			555			23	<u> </u>		┢───
230	1.9		395			560		1	24	t		†
235	13		400			565		1	25	t		†
240	1.0		405			570			26	<u> </u>		<u>† </u>
245	10		410			575			27		·	t
250	<u>7</u>		415			580			28			†
255 260	1.0		420			585			29			
100	1.2		425			590			30			
OGING		┕┯┯┙				595						
OTAL A		11.4			VOLTAG							
		13.4				B/B RESIS		. 89				
REMARK	S:			D5F	357	65A	κ	em Jet				
		·									268	0,0
					J XT1	za a	nodi	20 2 1	75.00	عم	-	0.0
d to Ima	ging: 4/2	6/2022 10):41:48 A	M						RAL	303 7	0.0

Received by OCD: 11/4/2020 10:45:16 AM TIERRA DYNAMIC COMPANY

COMPANYAR	E Cor Inesten	Resource	1 1991 30-7		
WELLENAN	CAR DUCAR DAL	LEGALS	E-170 30-7	COUNTY: R	O Arr.ba
RECHERN		and an		and the second	
	RER AND A	MODEL:		SERIAL	
CAPACITY:					
73		·			
DRILLING LO)G:				
DEPTH					
M	REMARKS:	DEPTH	REMARKS:	DEPTH	REMARKS:
FT.	Sandistone	FT.		FI Carlos Constant	
20		210	Sandstone	410	
30		220	<u>Shale</u>	420	
10		230		430	
50 60		240	Sandstone	440	
		250		450	
70		260		460	
30	V	270		470	1997. - 1997.
00	Shale	280		480	
00		290		490	
10		300	T.D.	500	
20		310		510	
30	Ne	320		520	
40	V	330		530	
50	Sandstone	340		540	
60		350		550	
70	1	360		560	
80		370		570	
90		380		580	
200	V	390		590	
		400		600	

. Released to Imaging: 4/26/2022 10:41:48 AM

4355

Jo-039-01767 DATA SHEET FOR DEEP GROUND BED CATHODIC PROTECTION WELLS NORTHWESTERN NEW MEXICO (Submit 3 copies to OCD Aztec Office)

Operator <u>MERIDIAN OIL</u>	Location: Unit <u>NE_Sec.27_Twp_30_Rng_7_</u>
Name of Well/Wells or Pipelin	e Serviced SAN JUAN 30-6 UNIT #97
	cps 138w
Elevation 6707 Completion Date	6/27/77 Total Depth 214' Land Type* N/A
Casing, Sizes, Types & Depths	N/A
If Casing is cemented, show a	mounts & types used N/A
If Cement or Bentonite Plugs	have been placed, show depths & amounts used
Depths & thickness of water z	ones with description of water when possible:
Fresh, Clear, Salty, Sulphur,	EtcN/A
	·
Depths gas encountered:	N/A
Type & amount of coke breeze	used:1600 1bs
Depths anodes placed: 185', 175	<u>5', 165', 155', 145'</u>
Depths vent pipes placed:	190'
Vent pipe perforations:	190' MATS1 1991.
Remarks:gb #2	DIST. 3

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

*Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

Page 37 of 102 Received by OCD: 11/4/2020 10:45:16 AM El Paso Natural Gas Company فلرجر لأ Form 7-238 (Rev. 11-71) WELL CASING Hú CATHODIC PROTECTION CONSTRUCTION REPORT Completion Date 6-27-Drilling Log (Attach Hereto). [CPS No. E27-30-7 38ω Work Order No. Type & Size Bit Used 52491 Anode Hole Depth Total Lbs. Coke Used rilling Rig Time Lost Circulation Mat^{*}l Used No. Sacks Mud Used 1600 Anode Depth s 5145 75 # 3 / 65 := 6 # 7 # 8 z 9 # 10 Anode Output (a 54.2 # 3 **3.2** 3.0 # 4**3.2** # 2 #6 #-7-I∺ 8 # 9 # 10 Anode Depth #11 # 17 # 13 # 12 # 14 ¦≠ 15 # 16 # 18 # 19 # 20 Anode Output (Amps) # 11 # 13 # 12 a 14 # 15 # 17 # 18 # 20 **#** 16 # 19 Total Circuit Resistance No. 8 C.P. Cable Used No. 2 C.P. Cable Used 9.5 Volts Amps Ohms 1.27 RILL TO 200 WITH 5/18 BIT- WEFT 180' OFPIPE IN HOLE **Remarks:** DAMP at 98 TO 105 LEN MATER OUT NEXT A.M. TO 124. J) RILLERS LOG HOW SHALE LL TO 220' FOR BOTTOMS-065% KIITH 6 3/4 TO 220' V/CN. EAM SLUERY 20 COKE ÷., Construction Completed (Signatur GROUND BED LAYOUT SKETCH 72 DISTRIBUTION: WHITE - Division Corrosion Office YELLOW - Area Corrosion Office PINK - Originator File

[.] Released to Imaging: 4/26/2022 10:41:48 AM

Form 22-2 (Rev. 1-61)

Released to Imaging: 4/26/2022 10:41:48 AM

EL PASO NATURAL GAS COMPANY

DRILLING DEPARTMENT

DAILY DRILLING REPORT

LEASE		WELL NO.	38 W CON	TRACTOR			RIG NO.	REPO	RT NO.	DATE fame	21	1977
Driller		Total Men In Cr	ew	Driller		Ťotal Me	n In Crew	Driller		Total Men Ii	n Crøw	
FROM	то	FORMATION	WT-BIT R.P.M.	FROM	TO	FORMATION	WT-BIT R.P.M.	FROM	то	FORMATION	WT-BIT	R.P.M.
Ø	30	Sondstone		98	105	SANSTONE	dano	131	190	Shalp.		
30	50	Shale,		105	110	Shalo		190	220	Sand store	•	
.50	65	Sandstone		110	124	Sandstone	wet	77				
65	93	Shale		124	126	Shale				- · · ·		
93	<i>48</i> .	Say NS hole SIZE_	LENG	126	131	Sandyouskan	E LENG			NO. DCSIZE		NG
BIT NO.		NO. DC SIZE	LENG.	BIT NO.		- /	ZE LENG	BIT NO.		NO. DC SI ZE	ELEI	NG
SERI 10.		STANDS		SERIAL NO.		STANDS	••••	SERIAL NO.		STANDS		
SI Z E		SINGLES		SIZE		SINGLE	<u>s</u>	SIZE		SINGLES	·	÷
TYPE		DOWN ON KELLY		TYPE		DOWN ON KEL	<u>Y</u> .	TYPE		DOWN ON KELLY	· · · · ·	
MAKE		TOTAL DEPTH		MAKE		TOTAL DEP	ГН	MAKE		TOTAL DEPTH	• • • • •	
MUD REC	ORD	MUD, ADDITIVES USED A	ND RECEIVED		RECORD	MUD, ADDITIVES US		<u> </u>	ECORD	MUD, ADDITIVES USED		VED
Time W	Wt. Vis.	· · · · · · · · · · · · · · · · · · ·	•	Time	Wt. Vis.	tal ,	1	Time	Wt. Vis.			
				 	ļ	14 ho	le				· · ·	· · · · · · · · · · · · · · · · · · ·
		-				Drilled 7	200 ut	5/8 6	7 4	6550	<u> </u>	
						Reaved +	- drilled +	\$ 7.20	of us	6 74		
FROM 1	то	TIME BREAKDOW	1	FROM	to	TIME BREA	K DOWN	FROM	•. то		WN CON	
								•		· · · · · · · · · · · · · · · · · · ·		14 A. C.
				Ţ								
				T I								ļ. ģ. se
												¥. (
				1								
		·····		1								
REMARKS -	I		· · · · · · · · · · · · · · · · · · ·	REMARK	<u> </u>			REMARKS		· · · · · · · · · · · · · · · · · · ·		ت کر چې ۱۹۹۸ د ا
REMARKS-					•	· · · · · · · · · · · · · · · · · · ·					· · ·	
				<u> </u>	• =			· [·			· · · · · ·	>
·			· · · · · · · · · · · · · · · · · · ·								<u> </u>	
				<u> </u>			- , 4	-+				4-
						· · · · · · · · · · · · · · · · · · ·	met		· .	·		
·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		······································	oBu	· · · · · · · · · · · · · · · · · · ·					
			<u></u>	<u> </u>		/ <i>V`</i>	<u> </u>	- 				
				 				·				· · · · ·
		· · · · · · · · · · · · · · · · · · ·		1		· · · · · · · · · · · · · · · · · · ·		1		·		···
		• ,	SIGN					On				a e Ca
		• •	SIGN	ED: Toolpush	er	· · · · · · · · · · · · · · · · · · ·		Company Supervi	501		· · · · · · · · · · · · · · · · · · ·	5 a
			•							· • •		

Received by OCD: 11/4/2020 10:45:16 AM

,

El Paso Natural Gas Company ENGINEERING CALCULATION

.

ارم دیا در ۱۰۰ م		38w	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
•	5, 30-6	5 #97-NE27-30	1-7 - 52491	
MW gals/mol 18.04 C1 6.4 30.07 C2 10.12	120 b 1.1 30 13 40 15 k 40	51/8·3:+	DEILL TO 200 LEFT 180' DI BLEW LATR 2 NEXT AM. DAMID 04 9	PEINHOLE BUT 870 105
44.10 C3 10.42 58.12 iC4 12.38 58.12 nC4 11.93 72.15 iC5 13.85 72.15 nC5 13.71 86.18 iC6 15.50 86.18 iC6 15.57 100.21 iC7 17.4	16 20 1.4 Rei 14: 60 1.3 15 70 1.3	am 6 ³ /4	E 11b Ta 124 Drillers Log Shale 131- DRILL TO 22	
114.23 Cg 19.39 28.05 C2 ² 9.64 42.08 C3 ² 9.67	15 10 13 15 15		901 Venil Per 205× Co	f. ALL ke 3.0
	13 200 ,7 16 10 T.O 214		1 1 85 134 2 1 7 5 1,27 3 1 6 5 1,32 4 1 5 5 1,23 5 1 4 5 1,50	3.1 3.3 3.2 4.2
MISC.	_ 20		95 12.1V 9	SA = 1.27-2-
MW gais/mol 32.00 O2 3.37 28.01 CO 4.19 44.01 CO2 6.38 64.06 SO2 5.50 34.08 H2S 5.17 28.01 N2 4.16 2.02 H2 3.38				
•			· · · · · · · · · · · · · · · · · · ·	
:				
A .				

. Released to Imaging: 4/26/2022 10:41:48 AM

Received by OCD: 11/4/2020 10:45:16 AM

Page 40 of 102

30-039-24189900/

DATA SHEET FOR DEEP GROUND BED CATHODIC PROTECTION WELLS NORTHWESTERN NEW MEXICO (Submit 3 copies to OCD Aztec Office)

Operator MERIDIAN OIL INC.	Location: Unit A Sec. 27 Twp 30 Rng 7
Name of Well/Wells or Pipeline Servic	ed SAN JUAN 30-6 UNIT #411
······································	cps 1941w
Elevation 6523' Completion Date 5/4/88	_Total Depth 360' Land Type* N/A
Casing, Sizes, Types & Depths	N/A
If Casing is cemented, show amounts &	types used N/A
If Cement or Bentonite Plugs have bee	n placed, show depths & amounts used
Depths & thickness of water zones wit	h description of water when possible:
Fresh, Clear, Salty, Sulphur, Etc	40' RECEIVE
Depths gas encountered: N/A	MAY 3 1 1991 MAY 3 1 1991 OIL CON. DIV
Type & amount of coke breeze used:	
Depths anodes placed: 330', 320', 265', 2	255', 245', 235', 225', 195', 185', 175'
Depths vent pipes placed: 355'	
Vent pipe perforations: 300'	·
Remarks: gb #1	······

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

*Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

Received by OCD: 11/4/2020 10:45:16 AM Page 41 of 102 FM-07-0238 (Rev. 10-82) WELL CASING CATHODIC PROTECTION CONSTRUCTION REPORT DAILY-EGG Comp 6-20:50 Completion Date 5-4-88 X Drilling Log (Attach Hereto) CPS # Well Name, Line or Plant Work Order # Ins. Union Check 20- 8-7-111 2749A D Bad (Xcood 5. J. 30-6#411 071041100 600'E . . 80 1941 - W Anode Size: Anose Type: Size Bitz 63/4 2 ×60 Duriron A27-30-Lost Carulation Mar I Usea Depen Duiled Depth Logged Deiling Alg Tune Total Lbs. Geke Used No. Sacks Mud Used 360 351 Anode Depth 1=3265 = 255 = 245 = 235 = 225 = 195 = 185 = 10175 = 2 320 Ansie Output (Amps) 4.2 = 5 3.6 = 5 4.7 1 7 4.0 h = 5.0 - 3.9 = 1 3.**5** 2 2 3.5 1=95.6 = 104.8 Ancae Depth ¦# 15 2 15 1= 17 |a 18 '= 13 a 14 a 19 '= 20 = 11 '≈ 12 Ancoe Output (Amps. [a 12 a 13 'z : 2 1= 15 a 16 = 17 2 19 '≈ 19 = 11 = 20 No. 8 C.P. Caple Lsea Total Circuit Resistance io. 2 C.P. Cas.e Used 11.95 Amps 22.2 538 ·538 Volts DRILLED 360' LOGGED 351'. DRILLER SAID WATER AT ____+ CAUGHT SAM D/E. JUSTALLED 355' PVC VENT DERTERATED BOTTOM 300' ١ 5 40 v 16 Rectifier Size:___ All Construction Completed Addn'l Depth_ 149' Depth Credit:___ 30' Extra Cable:__ 230 Ditch & 1 Cable:_ znature 1941 10' 25' Meter Pole: GROUND 20' Heter Pole: BED 10' Stub Pole: UNE Junction Box: 4074.00 - 521.50 -140' 7.20 / N 161.00 -297.00 225.00 1911.70 Uning 669.00 4912 523 ed to Imaging: 4/2 eleased

•		Δ	Orass DRILLING CO.
کې د د د و د و د و کې د . د د و کې د و کې			DRILLINGCO:
		Drill N	No. <u>3</u>
			_
			DRILLER'S WELL LOG
	S. P. No.	S.T. 3	0-6 Unit "
	Client 0	asidin	Oil Co. Prospect
	County_	0	state Mars Mexic
	County	<u></u>	
	If hole is	a redrill ar	if moved from original staked position show distance
	and direa	tion move	d:
	FROM	TO	FORMATION - COLOR - HARDNESS
· · ·	~	35	Saudstone
_ •		45	SANd
	45	200	Shale
	200	360	SANdy Shale
• • •			-
	<u></u>		· · · · · · · · · · · · · · · · · · ·
ar e A second			
	<u></u>		
	·	<u> </u>	
		<u> </u>	
			· · · · · · · · · · · · · · · · · · ·
	Mud		Bron Lime
	Rock Bit	Number	Make
	Remarks:	ملار	ter Q 40'
	MANGULES:		
			·
.*		-	iller RONNic Brown
		Dr	
· .			\backslash
			an an an an an ann an an an an an an an
	and the second second		
	an ann an Staine Ìmr	N 1992 N 8 1 1 1 1	

LENCE CONTRACTOR DE LE CONTRACTOR DE LE CONTRACTOR DE RÉVISE DE LE CONTRACTOR DE LE

rene statutere server arrest en same en ar ar arrest en server server server en arrest en arrest en arrest en s They are first arrest en arrest They arrest en arrest

. Released to Imaging: 4/26/2022 10:41:48 AM

ren og her forsækrigen av der Skoletingen skilder og som

Page 42 of 102

and a second second

APPENDIX C

Executed C-138 Solid Waste Acceptance Form

. Released to Imaging: 4/26/2022 10:41:48 AM

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

> **Oil Conservation Division** 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-138 Revised August 1, 2011

*Surface Waste Management Facility Operator and Generator shall maintain and make this documentation available for Division inspection.

97057 - 1121

REQUEST FOR APPROVAL TO ACCEPT SOLID WASTE 1. **Generator Name and Address:** Enterprise Field Services, LLC, 614 Reilly Avenue, Farmington, NM 87401 2. AFE: N48872 **PM: Matt Garrison** Pay Key: EM20767 3. **Originating Site: Frances Mesa Compressor Station** 4. Location of Material (Street Address, City, State or ULSTR): UL K Section 27 T30N R7W; 36.780479, -107.562231 Source and Description of Waste: Hydrocarbon/Produced water impacted soil/sludge from remediation activities associated with a 4. produced water release. yd^3 bbls Known Volume (to be entered by the operator at the end of the haul) 174vd³/ bbls 5. Estimated Volume 50 5. GENERATOR CERTIFICATION STATEMENT OF WASTE STATUS _ representative or authorized agent for ____ Enterprise Field Services, LLC ___ do hereby I, Thomas Long PRINT & SIGN NAME COMPANY NAME certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is: (Check the appropriate classification) RCRA Exempt: Oil field wastes generated from oil and gas exploration and production operations and are not mixed with nonexempt waste. Operator Use Only: Waste Acceptance Frequency [] Monthly [] Weekly [] Per Load RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24, or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items) □ MSDS Information □ RCRA Hazardous Waste Analysis □ Process Knowledge □ Other (Provide description in Box 4) **GENERATOR 19.15.36.15 WASTE TESTING CERTIFICATION STATEMENT FOR LANDFARMS** *Thorm Larg*______, representative for <u>Enterprise Field Services, LLC</u> authorize <u>Envirotech, Inc</u>. to I. 1 **Generator Signature** complete the required testing/sign the Generator Waste Testing Certification. I. (, representative for Envirotech, Inc. do hereby certify that representative samples of the oil field waste have been subjected to the paint filter test and tested for chloride content and that the samples have been found to conform to the specific requirements applicable to landfarms pursuant to Section 15 of 19.15.36 NMAC. The results of the representative samples are attached to demonstrate the above-described waste conform to the requirements of Section 15 of 19.15.36 NMAC. Transporter: Sierra Oil Field Services or subcontractors. **OCD Permitted Surface Waste Management Facility** Name and Facility Permit #: Envirotech, Inc. Soil Remediation Facility * Permit #: NM 01-0011 Address of Facility: Hilltop, NM Method of Treatment and/or Disposal: Evaporation Injection Treating Plant Landfarm Landfill Other Waste Acceptance Status: APPROVED **DENIED** (Must Be Maintained As Permanent Record) PRINT NAME: Cong Crabbrea TITLE: Enviro Mangen DATE: 7/16/2020 rn G TELEPHONE NO.: 505-632-0615 SIGNATURE:

Surface Waste Management Facility Authorized Agent

Received by OCD: 11/4/2020 10:45:16 AM

APPENDIX D

Photographic Documentation

SITE PHOTOGRAPHS

Enterprise Field Services, LLC Closure Report Frances Mesa Compressor Station (July 2020) Ensolum Project No. 05A1226112

Page 46 of 102

Photograph 1

Photograph Date: 7/16/20

Photograph Description: View of in-process excavation/scraping activities (facing northeast).

Photograph 2

Photograph Date: 7/16/20

Photograph Description: View of in-process excavation activities (facing north).

Photograph 3

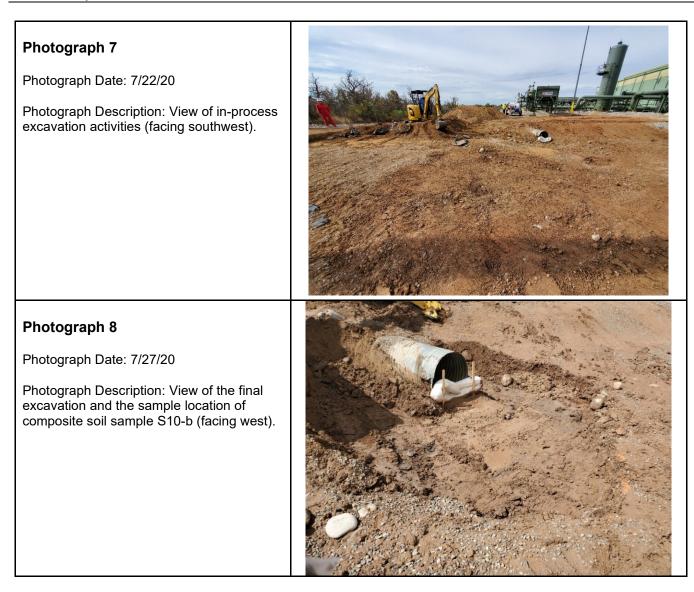
Photograph Date: 7/16/20

Photograph Description: View of the initial excavation (facing southwest).

SITE PHOTOGRAPHS

Page 47 of 102

Enterprise Field Services, LLC Closure Report Frances Mesa Compressor Station (July 2020) Ensolum Project No. 05A1226112



Photograph 4 Photograph Date: 7/21/20 Photograph Description: View of in-process excavation/scraping activities (facing northeast). Photograph 5 Photograph Date: 7/22/20 Photograph Description: View of in-process excavation activities (facing northeast). Photograph 6 Photograph Date: 7/22/20 Photograph Description: View of in-process excavation activities (facing west).

SITE PHOTOGRAPHS

Enterprise Field Services, LLC Closure Report Frances Mesa Compressor Station (July 2020) Ensolum Project No. 05A1226112

APPENDIX E

Table 1 – Soil Analytical Summary

. Released to Imaging: 4/26/2022 10:41:48 AM

ENSOLUM

TABLE 1 Frances Mesa Compressor Station (July 2020) SOIL ANALYTICAL SUMMARY													
Sample I.D.	Date	Sample Type C- Composite G - Grab	Sample Depth (feet)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH MRO (mg/kg)	Total Combined TPH (GRO/DRO/MRO) (mg/kg)	Chloride (mg/kg)
		Natural Resources		10	NE	NE	NE	50				100	600
					Exca	avation Soil Sample	s Removed by Exc	avation					
S-2	7.17.20	С	0.12	<0.017	<0.033	< 0.033	<0.067	ND	<3.3	<100	2,000	2,000	63
S-3	7.17.20	С	0.12	<0.021	<0.042	<0.042	<0.084	ND	<4.2	<94	640	640	100
S-4	7.17.20	С	0.12	<0.017	<0.034	<0.034	<0.069	ND	<3.4	<49	460	460	98
S-6	7.17.20	С	0.12	<0.019	<0.039	<0.039	<0.077	ND	<3.9	<95	990	990	73
S-7	7.17.20	С	0.12	<0.015	<0.031	<0.031	<0.062	ND	<3.1	<90	1,400	1,400	75
S-8	7.17.20	С	0.12	<0.019	<0.039	<0.039	<0.077	ND	<3.9	<92	610	610	<60
S-9	7.17.20	С	0.12	<0.023	<0.046	<0.046	<0.091	ND	<4.6	<8.6	120	120	<60
S-10	7.17.20	С	0.12	<0.021	<0.042	<0.042	<0.084	ND	<4.2	<47	460	460	<60
S10-a	7.23.20	С	0.25	<0.018	< 0.035	< 0.035	<0.070	ND	<3.5	<9.3	210	210	<60
						Excavation Comp	oosite Soil Sample	s					
S-1	7.17.20	С	1	<0.018	<0.036	<0.036	<0.073	ND	<3.6	<9.9	<50	ND	<60
S-5	7.17.20	С	0.12	<0.020	<0.040	<0.040	<0.079	ND	<4.0	<9.7	59	59	<59
B-1	7.17.20	С	0.12	<0.021	<0.042	<0.042	<0.083	ND	<4.2	<9.4	<47	ND	<60
B-2	7.17.20	C	0.12	<0.020	<0.040	<0.040	<0.080	ND	<4.0	<9.6	<48	ND	<59
S2-a	7.23.20	С	0.42	<0.019	<0.037	<0.037	<0.075	ND	<3.7	<9.7	<48	ND	<60
S3-a	7.23.20	С	0.33	< 0.019	<0.038	< 0.038	< 0.076	ND	<3.8	<9.7	<48	ND	<60
S4-a	7.23.20	С	0.13	<0.024	<0.048	<0.048	<0.095	ND	<4.8	9.7	<47	9.7	<60
S6-a	7.23.20	С	0.13	<0.018	<0.037	<0.037	<0.074	ND	<3.7	<9.9	<50	ND	<60
S7-a	7.23.20	C	0.33	<0.016	<0.033	<0.033	<0.066	ND	<3.3	<9.6	<48	ND	<60
S8-a	7.23.20	С	1	<0.017	< 0.034	<0.034	<0.068	ND	<3.4	<9.1	<46	ND	<60
S9-a	7.23.20	С	0.42	<0.023	<0.047	<0.047	<0.093	ND	<4.7	<9.2	<46	ND	<60
S10-B	7.27.20	C w exceed the applica	0.58	<0.019	<0.038	<0.039	<0.076	ND	<3.8	<9.2	<46	ND	<60

ND = Not Detected above the Practical Quantitation Limits (PQLs) / Reporting Limits (RLs)

NA = Not Analyzed

NE = Not Established

mg/kg = milligram per kilogram

BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes

TPH = Total Petroleum Hydrocarbon

GRO = Gasoline Range Organics

DRO = Diesel Range Organics

MRO = Motor Oil/Lube Oil Range Organics

APPENDIX F

Laboratory Data Sheets & Chain of Custody Documentation

. Released to Imaging: 4/26/2022 10:41:48 AM

July 22, 2020

Kyle Summers ENSOLUM 606 S. Rio Grande Suite A Aztec, NM 87410 TEL: (903) 821-5603 FAX

RE: Frances Mesa CS

OrderNo.: 2007961

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: clients.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 12 sample(s) on 7/18/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2007961

Date Reported: 7/22/2020

CLIENT: ENSOLUM	Client Sample ID: S-1 Collection Date: 7/17/2020 9:00:00 AM								
Project: Frances Mesa CS									
Lab ID: 2007961-001	Matrix: SOIL		Received	Date	: 7/1	8/2020 11:05:00 AM			
Analyses	Result	RL	Qual Un	nits	DF	Date Analyzed	Batch		
EPA METHOD 300.0: ANIONS						Analyst	: ЈМТ		
Chloride	ND	60	mg	g/Kg	20	7/19/2020 4:36:54 PM	53808		
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS					Analyst	JME		
Diesel Range Organics (DRO)	ND	9.9	mg	g/Kg	1	7/18/2020 3:55:45 PM	53804		
Motor Oil Range Organics (MRO)	ND	50	mg	g/Kg	1	7/18/2020 3:55:45 PM	53804		
Surr: DNOP	95.8	55.1-146	%F	Rec	1	7/18/2020 3:55:45 PM	53804		
EPA METHOD 8015D: GASOLINE RANGE	E					Analyst	NSB		
Gasoline Range Organics (GRO)	ND	3.6	mg	g/Kg	1	7/18/2020 4:16:34 PM	G70450		
Surr: BFB	89.1	66.6-105	%F	Rec	1	7/18/2020 4:16:34 PM	G70450		
EPA METHOD 8021B: VOLATILES						Analyst	NSB		
Benzene	ND	0.018	mg	g/Kg	1	7/18/2020 4:16:34 PM	B70450		
Toluene	ND	0.036	mg	g/Kg	1	7/18/2020 4:16:34 PM	B70450		
Ethylbenzene	ND	0.036	mg	g/Kg	1	7/18/2020 4:16:34 PM	B70450		
Xylenes, Total	ND	0.073	mg	g/Kg	1	7/18/2020 4:16:34 PM	B70450		
Surr: 4-Bromofluorobenzene	108	80-120	%F	Rec	1	7/18/2020 4:16:34 PM	B70450		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 16

Hall	Environmental	Analysis	Laboratory,	Inc.
------	---------------	----------	-------------	------

Lab Order 2007961

Date Reported: 7/22/2020

CLIENT: ENSOLUM	Client Sample ID: S-2							
Project: Frances Mesa CS		(Collect	ion Dat	e: 7/1	7/2020 9:05:00 AM		
Lab ID: 2007961-002	Matrix: SOIL		Recei	ved Dat	e: 7/1	8/2020 11:05:00 AM		
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch	
EPA METHOD 300.0: ANIONS						Analyst	: JMT	
Chloride	63	60		mg/Kg	20	7/19/2020 5:13:56 PM	53808	
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS					Analyst	JME	
Diesel Range Organics (DRO)	ND	100	D	mg/Kg	10	7/20/2020 9:39:32 AM	53804	
Motor Oil Range Organics (MRO)	2000	500		mg/Kg	10	7/20/2020 9:39:32 AM	53804	
Surr: DNOP	0	55.1-146	S	%Rec	10	7/20/2020 9:39:32 AM	53804	
EPA METHOD 8015D: GASOLINE RANGE	E					Analyst	NSB	
Gasoline Range Organics (GRO)	ND	3.3		mg/Kg	1	7/18/2020 5:28:18 PM	G70450	
Surr: BFB	90.9	66.6-105		%Rec	1	7/18/2020 5:28:18 PM	G70450	
EPA METHOD 8021B: VOLATILES						Analyst	: NSB	
Benzene	ND	0.017		mg/Kg	1	7/18/2020 5:28:18 PM	B70450	
Toluene	ND	0.033		mg/Kg	1	7/18/2020 5:28:18 PM	B70450	
Ethylbenzene	ND	0.033		mg/Kg	1	7/18/2020 5:28:18 PM	B70450	
Xylenes, Total	ND	0.067		mg/Kg	1	7/18/2020 5:28:18 PM	B70450	
Surr: 4-Bromofluorobenzene	107	80-120		%Rec	1	7/18/2020 5:28:18 PM	B70450	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 16

Hall Environmental Analy	sis Laboratory, Inc.
--------------------------	----------------------

Lab Order 2007961

Date Reported: 7/22/2020

CLIENT: ENSOLUM	Client Sample ID: S-3							
Project: Frances Mesa CS		(7/2020 9:10:00 AM		
Lab ID: 2007961-003	Matrix: SOIL		Recei	ved Dat	e: 7/1	8/2020 11:05:00 AM		
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch	
EPA METHOD 300.0: ANIONS						Analyst	JMT	
Chloride	100	60		mg/Kg	20	7/19/2020 5:26:16 PM	53808	
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS					Analyst	JME	
Diesel Range Organics (DRO)	ND	94	D	mg/Kg	10	7/20/2020 10:27:41 AM	53804	
Motor Oil Range Organics (MRO)	640	470		mg/Kg	10	7/20/2020 10:27:41 AM	53804	
Surr: DNOP	0	55.1-146	S	%Rec	10	7/20/2020 10:27:41 AM	53804	
EPA METHOD 8015D: GASOLINE RANGE	E					Analyst	NSB	
Gasoline Range Organics (GRO)	ND	4.2		mg/Kg	1	7/18/2020 6:41:41 PM	G70450	
Surr: BFB	87.4	66.6-105		%Rec	1	7/18/2020 6:41:41 PM	G70450	
EPA METHOD 8021B: VOLATILES						Analyst	NSB	
Benzene	ND	0.021		mg/Kg	1	7/18/2020 6:41:41 PM	B70450	
Toluene	ND	0.042		mg/Kg	1	7/18/2020 6:41:41 PM	B70450	
Ethylbenzene	ND	0.042		mg/Kg	1	7/18/2020 6:41:41 PM	B70450	
Xylenes, Total	ND	0.084		mg/Kg	1	7/18/2020 6:41:41 PM	B70450	
Surr: 4-Bromofluorobenzene	106	80-120		%Rec	1	7/18/2020 6:41:41 PM	B70450	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 3 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2007961

Date Reported: 7/22/2020

CLIENT: ENSOLUM	Client Sample ID: S-4 Collection Date: 7/17/2020 9:15:00 AM								
Project: Frances Mesa CS									
Lab ID: 2007961-004	Matrix: SOIL		Recei	ved Dat	e: 7/1	8/2020 11:05:00 AM			
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch		
EPA METHOD 300.0: ANIONS						Analyst	JMT		
Chloride	98	60		mg/Kg	20	7/19/2020 5:38:38 PM	53808		
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS					Analyst	JME		
Diesel Range Organics (DRO)	ND	49	D	mg/Kg	5	7/20/2020 8:03:17 AM	53804		
Motor Oil Range Organics (MRO)	460	250		mg/Kg	5	7/20/2020 8:03:17 AM	53804		
Surr: DNOP	109	55.1-146		%Rec	5	7/20/2020 8:03:17 AM	53804		
EPA METHOD 8015D: GASOLINE RANGE	1					Analyst	NSB		
Gasoline Range Organics (GRO)	ND	3.4		mg/Kg	1	7/18/2020 7:05:32 PM	G70450		
Surr: BFB	89.4	66.6-105		%Rec	1	7/18/2020 7:05:32 PM	G70450		
EPA METHOD 8021B: VOLATILES						Analyst	: NSB		
Benzene	ND	0.017		mg/Kg	1	7/18/2020 7:05:32 PM	B70450		
Toluene	ND	0.034		mg/Kg	1	7/18/2020 7:05:32 PM	B70450		
Ethylbenzene	ND	0.034		mg/Kg	1	7/18/2020 7:05:32 PM	B70450		
Xylenes, Total	ND	0.069		mg/Kg	1	7/18/2020 7:05:32 PM	B70450		
Surr: 4-Bromofluorobenzene	110	80-120		%Rec	1	7/18/2020 7:05:32 PM	B70450		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 4 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2007961

Date Reported: 7/22/2020

CLIENT: ENSOLUM	Client Sample ID: S-5									
Project: Frances Mesa CS		(Collection D	ate: 7/	/17/2020 9:20:00 AM					
Lab ID: 2007961-005	Matrix: SOIL		Received D	ate: 7/	/18/2020 11:05:00 AM					
Analyses	Result	RL	Qual Unit	s DI	F Date Analyzed	Batch				
EPA METHOD 300.0: ANIONS					Analyst	: JMT				
Chloride	ND	59	mg/k	ig 20	7/19/2020 5:50:59 PM	53808				
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	: JME				
Diesel Range Organics (DRO)	ND	9.7	mg/k	g 1	7/20/2020 8:02:56 AM	53804				
Motor Oil Range Organics (MRO)	59	48	mg/k	g 1	7/20/2020 8:02:56 AM	53804				
Surr: DNOP	93.7	55.1-146	%Re	c 1	7/20/2020 8:02:56 AM	53804				
EPA METHOD 8015D: GASOLINE RANGE	E				Analyst	: NSB				
Gasoline Range Organics (GRO)	ND	4.0	mg/k	g 1	7/18/2020 7:29:21 PM	G70450				
Surr: BFB	90.1	66.6-105	%Re	c 1	7/18/2020 7:29:21 PM	G70450				
EPA METHOD 8021B: VOLATILES					Analyst	: NSB				
Benzene	ND	0.020	mg/k	g 1	7/18/2020 7:29:21 PM	B70450				
Toluene	ND	0.040	mg/k	g 1	7/18/2020 7:29:21 PM	B70450				
Ethylbenzene	ND	0.040	mg/k	g 1	7/18/2020 7:29:21 PM	B70450				
Xylenes, Total	ND	0.079	mg/k	.g 1	7/18/2020 7:29:21 PM	B70450				
Surr: 4-Bromofluorobenzene	107	80-120	%Re	c 1	7/18/2020 7:29:21 PM	B70450				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range

RL Reporting Limit

Page 5 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2007961

Date Reported: 7/22/2020

CLIENT: ENSOLUM Project: Frances Mesa CS				ample II tion Dat		5 7/2020 9:25:00 AM		
Lab ID: 2007961-006	Matrix: SOIL Received Date: 7/18/2020 11:05:00 A							
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch	
EPA METHOD 300.0: ANIONS						Analyst	: JMT	
Chloride	73	60		mg/Kg	20	7/19/2020 6:03:19 PM	53808	
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS					Analyst	: JME	
Diesel Range Organics (DRO)	ND	95	D	mg/Kg	10	7/20/2020 11:15:48 AN	53804	
Motor Oil Range Organics (MRO)	990	480		mg/Kg	10	7/20/2020 11:15:48 AN	53804	
Surr: DNOP	0	55.1-146	S	%Rec	10	7/20/2020 11:15:48 AN	53804	
EPA METHOD 8015D: GASOLINE RANG	GE					Analyst	: NSB	
Gasoline Range Organics (GRO)	ND	3.9		mg/Kg	1	7/18/2020 7:53:08 PM	G70450	
Surr: BFB	86.1	66.6-105		%Rec	1	7/18/2020 7:53:08 PM	G70450	
EPA METHOD 8021B: VOLATILES						Analyst	: NSB	
Benzene	ND	0.019		mg/Kg	1	7/18/2020 7:53:08 PM	B70450	
Toluene	ND	0.039		mg/Kg	1	7/18/2020 7:53:08 PM	B70450	
Ethylbenzene	ND	0.039		mg/Kg	1	7/18/2020 7:53:08 PM	B70450	
Xylenes, Total	ND	0.077		mg/Kg	1	7/18/2020 7:53:08 PM	B70450	
Surr: 4-Bromofluorobenzene	107	80-120		%Rec	1	7/18/2020 7:53:08 PM	B70450	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 6 of 16

Hall Environmental Analy	sis Laboratory, Inc.
--------------------------	----------------------

Lab Order 2007961

Date Reported: 7/22/2020

CLIENT: ENSOLUM		Cl	ient Sa	ample II	D: S-7	7	
Project: Frances Mesa CS		(Collect	ion Dat	e: 7/1	7/2020 9:30:00 AM	
Lab ID: 2007961-007	Matrix: SOIL		Recei	ved Dat	e: 7/1	8/2020 11:05:00 AM	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: JMT
Chloride	75	61		mg/Kg	20	7/19/2020 6:15:40 PM	53808
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS					Analyst	: JME
Diesel Range Organics (DRO)	ND	90	D	mg/Kg	10	7/20/2020 10:26:20 AM	53804
Motor Oil Range Organics (MRO)	1400	450		mg/Kg	10	7/20/2020 10:26:20 AM	53804
Surr: DNOP	0	55.1-146	S	%Rec	10	7/20/2020 10:26:20 AM	53804
EPA METHOD 8015D: GASOLINE RANGE						Analyst	: NSB
Gasoline Range Organics (GRO)	ND	3.1		mg/Kg	1	7/18/2020 8:16:53 PM	G70450
Surr: BFB	89.0	66.6-105		%Rec	1	7/18/2020 8:16:53 PM	G70450
EPA METHOD 8021B: VOLATILES						Analyst	: NSB
Benzene	ND	0.015		mg/Kg	1	7/18/2020 8:16:53 PM	B70450
Toluene	ND	0.031		mg/Kg	1	7/18/2020 8:16:53 PM	B70450
Ethylbenzene	ND	0.031		mg/Kg	1	7/18/2020 8:16:53 PM	B70450
Xylenes, Total	ND	0.062		mg/Kg	1	7/18/2020 8:16:53 PM	B70450
Surr: 4-Bromofluorobenzene	108	80-120		%Rec	1	7/18/2020 8:16:53 PM	B70450

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 7 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2007961

Date Reported: 7/22/2020

CLIENT: ENSOLUM	Client Sample ID: S-8										
Project: Frances Mesa CS	Collection Date: 7/17/2020 9:35:										
Lab ID: 2007961-008	Matrix: SOIL	8/2020 11:05:00 AM									
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch				
EPA METHOD 300.0: ANIONS						Analyst	: JMT				
Chloride	ND	60		mg/Kg	20	7/19/2020 6:52:45 PM	53808				
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS					Analyst	JME				
Diesel Range Organics (DRO)	ND	92	D	mg/Kg	10	7/20/2020 11:14:27 AM	53804				
Motor Oil Range Organics (MRO)	610	460		mg/Kg	10	7/20/2020 11:14:27 AM	53804				
Surr: DNOP	0	55.1-146	S	%Rec	10	7/20/2020 11:14:27 AM	53804				
EPA METHOD 8015D: GASOLINE RANGE	E					Analyst	: NSB				
Gasoline Range Organics (GRO)	ND	3.9		mg/Kg	1	7/18/2020 8:40:36 PM	G70450				
Surr: BFB	87.1	66.6-105		%Rec	1	7/18/2020 8:40:36 PM	G70450				
EPA METHOD 8021B: VOLATILES						Analyst	: NSB				
Benzene	ND	0.019		mg/Kg	1	7/18/2020 8:40:36 PM	B70450				
Toluene	ND	0.039		mg/Kg	1	7/18/2020 8:40:36 PM	B70450				
Ethylbenzene	ND	0.039		mg/Kg	1	7/18/2020 8:40:36 PM	B70450				
Xylenes, Total	ND	0.077		mg/Kg	1	7/18/2020 8:40:36 PM	B70450				
Surr: 4-Bromofluorobenzene	103	80-120		%Rec	1	7/18/2020 8:40:36 PM	B70450				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 8 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2007961

Date Reported: 7/22/2020

CLIENT: ENSOLUM Project: Frances Mesa CS			ient Sample II				
Project:Frances Mesa CSLab ID:2007961-009	Collection Date: 7/17/2020 9:40:00 AM Matrix: SOIL Received Date: 7/18/2020 11:05:00 AM						
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch	
EPA METHOD 300.0: ANIONS					Analyst	JMT	
Chloride	ND	60	mg/Kg	20	7/19/2020 7:05:05 PM	53808	
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	JME	
Diesel Range Organics (DRO)	ND	8.6	mg/Kg	1	7/20/2020 8:50:36 AM	53804	
Motor Oil Range Organics (MRO)	120	43	mg/Kg	1	7/20/2020 8:50:36 AM	53804	
Surr: DNOP	100	55.1-146	%Rec	1	7/20/2020 8:50:36 AM	53804	
EPA METHOD 8015D: GASOLINE RANGE	E				Analyst	: NSB	
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	7/18/2020 9:04:18 PM	G70450	
Surr: BFB	88.9	66.6-105	%Rec	1	7/18/2020 9:04:18 PM	G70450	
EPA METHOD 8021B: VOLATILES					Analyst	: NSB	
Benzene	ND	0.023	mg/Kg	1	7/18/2020 9:04:18 PM	B70450	
Toluene	ND	0.046	mg/Kg	1	7/18/2020 9:04:18 PM	B70450	
Ethylbenzene	ND	0.046	mg/Kg	1	7/18/2020 9:04:18 PM	B70450	
Xylenes, Total	ND	0.091	mg/Kg	1	7/18/2020 9:04:18 PM	B70450	
Surr: 4-Bromofluorobenzene	107	80-120	%Rec	1	7/18/2020 9:04:18 PM	B70450	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 9 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2007961

Date Reported: 7/22/2020

CLIENT: ENSOLUM		Cl	ient Sa	ample II	D: S-2	10			
Project: Frances Mesa CS	Collection Date: 7/17/2020 9:45:00 AM								
Lab ID: 2007961-010	Matrix: SOIL		Recei	ved Dat	e: 7/1	8/2020 11:05:00 AM			
Analyses	Result	RL	Qual	Qual Units		Date Analyzed	Batch		
EPA METHOD 300.0: ANIONS						Analyst	JMT		
Chloride	ND	60		mg/Kg	20	7/19/2020 7:17:26 PM	53808		
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS					Analyst	JME		
Diesel Range Organics (DRO)	ND	47	D	mg/Kg	5	7/20/2020 8:51:24 AM	53804		
Motor Oil Range Organics (MRO)	460	240		mg/Kg	5	7/20/2020 8:51:24 AM	53804		
Surr: DNOP	105	55.1-146		%Rec	5	7/20/2020 8:51:24 AM	53804		
EPA METHOD 8015D: GASOLINE RANG	GE					Analyst	: NSB		
Gasoline Range Organics (GRO)	ND	4.2		mg/Kg	1	7/18/2020 9:27:55 PM	G70450		
Surr: BFB	87.9	66.6-105		%Rec	1	7/18/2020 9:27:55 PM	G70450		
EPA METHOD 8021B: VOLATILES						Analyst	: NSB		
Benzene	ND	0.021		mg/Kg	1	7/18/2020 9:27:55 PM	B70450		
Toluene	ND	0.042		mg/Kg	1	7/18/2020 9:27:55 PM	B70450		
Ethylbenzene	ND	0.042		mg/Kg	1	7/18/2020 9:27:55 PM	B70450		
Xylenes, Total	ND	0.084		mg/Kg	1	7/18/2020 9:27:55 PM	B70450		
Surr: 4-Bromofluorobenzene	106	80-120		%Rec	1	7/18/2020 9:27:55 PM	B70450		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range

RL Reporting Limit Page 10 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2007961

Date Reported: 7/22/2020

CLIENT: ENSOLUM		Cl	ient Sample II	D: B-	1				
Project: Frances Mesa CS	Collection Date: 7/17/2020 9:50:00 AM								
Lab ID: 2007961-011	Matrix: SOIL								
Analyses	Result	RL Qual Units		DF Date Analyzed		Batch			
EPA METHOD 300.0: ANIONS					Analys	t: JMT			
Chloride	ND	60	mg/Kg	20	7/19/2020 7:29:47 PM	53808			
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analys	t: JME			
Diesel Range Organics (DRO)	ND	9.4	mg/Kg	1	7/20/2020 9:38:24 AM	53804			
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	7/20/2020 9:38:24 AM	53804			
Surr: DNOP	97.7	55.1-146	%Rec	1	7/20/2020 9:38:24 AM	53804			
EPA METHOD 8015D: GASOLINE RANG	E				Analys	t: NSB			
Gasoline Range Organics (GRO)	ND	4.2	mg/Kg	1	7/18/2020 10:15:03 PN	/ G70450			
Surr: BFB	87.4	66.6-105	%Rec	1	7/18/2020 10:15:03 PM	/ G70450			
EPA METHOD 8021B: VOLATILES					Analys	t: NSB			
Benzene	ND	0.021	mg/Kg	1	7/18/2020 10:15:03 PN	A B70450			
Toluene	ND	0.042	mg/Kg	1	7/18/2020 10:15:03 PN	A B70450			
Ethylbenzene	ND	0.042	mg/Kg	1	7/18/2020 10:15:03 PN	A B70450			
Xylenes, Total	ND	0.083	mg/Kg	1	7/18/2020 10:15:03 PN	A B70450			
Surr: 4-Bromofluorobenzene	105	80-120	%Rec	1	7/18/2020 10:15:03 PN	A B70450			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 11 of 16

Hall Environmental	Analysis	Laboratory.	Inc.
	•		

Lab Order 2007961

Date Reported: 7/22/2020

CLIENT: ENSOLUM Project: Frances Mesa CS			ient Sample Collection Da		-2 17/2020 9:55:00 AM		
Lab ID: 2007961-012	Matrix: SOIL Received Date: 7/18/2020 11:05:0						
Analyses	Result		RL Qual Units		Date Analyzed	Batch	
EPA METHOD 300.0: ANIONS					Analyst	: JMT	
Chloride	ND	59	mg/K	g 20	7/19/2020 7:42:08 PM	53808	
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	: JME	
Diesel Range Organics (DRO)	ND	9.6	mg/K	g 1	7/18/2020 9:14:42 PM	53804	
Motor Oil Range Organics (MRO)	ND	48	mg/K	g 1	7/18/2020 9:14:42 PM	53804	
Surr: DNOP	101	55.1-146	%Red	; 1	7/18/2020 9:14:42 PM	53804	
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB	
Gasoline Range Organics (GRO)	ND	4.0	mg/K	g 1	7/18/2020 10:38:34 PM	G70450	
Surr: BFB	85.9	66.6-105	%Red	; 1	7/18/2020 10:38:34 PM	G70450	
EPA METHOD 8021B: VOLATILES					Analyst	: NSB	
Benzene	ND	0.020	mg/K	g 1	7/18/2020 10:38:34 PM	B70450	
Toluene	ND	0.040	mg/K	g 1	7/18/2020 10:38:34 PM	B70450	
Ethylbenzene	ND	0.040	mg/K	g 1	7/18/2020 10:38:34 PM	B70450	
Xylenes, Total	ND	0.080	mg/K	g 1	7/18/2020 10:38:34 PM	B70450	
Surr: 4-Bromofluorobenzene	107	80-120	%Red	; 1	7/18/2020 10:38:34 PM	B70450	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 16

2007961

WO#:

Hall Environmental Analysis Laboratory, Inc.									22-Jul-2(
Client: Project:	ENSO France	LUM es Mesa CS									
Sample ID: MB-	53808	SampT	ype: ml	olk	Tes	tCode: E	PA Method	300.0: Anion	S		
Client ID: PBS	5	Batch	n ID: 53	808	RunNo: 70454						
Prep Date: 7/1	9/2020	Analysis D	ate: 7/	19/2020	SeqNo: 2449910			Units: mg/Kg			
Analyte Chloride		Result ND	PQL 1.5	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sample ID: LCS	-53808	SampT	ype: Ics	3	Tes	tCode: E	PA Method	300.0: Anior	S		
Client ID: LCS	S	Batch	n ID: 53	808	F	RunNo: 7	0454				
Prep Date: 7/1	9/2020	Analysis D	ate: 7/	19/2020	:	SeqNo: 2	449911	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	94.0	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 16

OC SUMMARY REPORT

Page	<u>66</u>	of 102	
------	-----------	--------	--

L.		WO#:	2007961
Hall Env	vironmental Analysis Laboratory, Inc.		22-Jul-20
Client:	ENSOLUM		

Project: Frances	Mesa CS								
Sample ID: MB-53804	SampType:	MBLK	Tes	tCode: EPA	A Method	8015M/D: Die	esel Range	e Organics	
Client ID: PBS	Batch ID:	53804	F	RunNo: 70 4	48				
Prep Date: 7/18/2020	Analysis Date:	7/18/2020	S	SeqNo: 245	50048	Units: mg/K	g		
Analyte	Result PC	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10							
Motor Oil Range Organics (MRO)	ND	50							
Surr: DNOP	9.2	10.00		92.2	55.1	146			
Sample ID: LCS-53804 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics									
Client ID: LCSS	Batch ID:	53804	F	RunNo: 70 4	148				
Prep Date: 7/18/2020	Analysis Date:	7/18/2020	5	SeqNo: 245	50050	Units: mg/K	g		
Analyte	Result PC	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	47	10 50.00	0	94.9	70	130			
Surr: DNOP	4.5	5.000		90.5	55.1	146			
Sample ID: 2007961-001AMS	SampType:	MS	Tes	tCode: EP/	A Method	8015M/D: Die	esel Range	e Organics	
Client ID: S-1	Batch ID:	53804	F	RunNo: 704	148				
Prep Date: 7/18/2020	Analysis Date:	7/18/2020	S	SeqNo: 245	50054	Units: mg/K	g		
Analyte	Result PC	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	41 9	9.8 49.21	0	82.7	47.4	136			
Surr: DNOP	4.6	4.921		93.5	55.1	146			
Sample ID: 2007961-001AMS	D SampType:	MSD	Tes	tCode: EPA	A Method	8015M/D: Die	esel Range	e Organics	
Client ID: S-1	Batch ID:	53804	F	RunNo: 704	148				
Prep Date: 7/18/2020	Analysis Date:	7/18/2020	5	SeqNo: 245	50056	Units: mg/K	g		
Analyte	Result PC	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	38 9	9.4 46.86	0	81.3	47.4	136	6.65	43.4	
Surr: DNOP	4.4	4.686		94.7	55.1	146	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 14 of 16

QC SUMMARY REPORT H

	WO#:	2007961
Hall Environmental Analysis Laboratory, Inc.		22-Jul-20

Client: ENSOLU	JM									
Project: Frances	Mesa CS									
Sample ID: mb	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015D: Gaso	oline Rang	e	
Client ID: PBS	Batch	n ID: G7	0450	F	RunNo: 7	0450				
Prep Date:	Analysis D	ate: 7/	18/2020	5	SeqNo: 2	449576	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO) Surr: BFB	ND 1100	5.0	1000		106	66.6	105			S
Sample ID: 2.5ug gro Ics	SampT	ype: LC	s	Tes	tCode: El	PA Method	8015D: Gaso	oline Rang	e	
Client ID: LCSS	Batch	n ID: G7	0450	F	RunNo: 7	0450				
Prep Date:	Analysis D	ate: 7/	18/2020	S	SeqNo: 2	449577	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	22	5.0	25.00	0	88.9	72.5	106			
Surr: BFB	1100		1000		107	66.6	105			S
Sample ID: 2007961-001ams	SampT	ype: M S	6	Tes	tCode: El	PA Method	8015D: Gaso	oline Rang	e	
Client ID: S-1	Batch	n ID: G7	0450	F	RunNo: 7	0450				
Prep Date:	Analysis D	ate: 7/	18/2020	5	SeqNo: 2	449597	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	16	3.6	18.20	0	89.9	80	120			
Surr: BFB	750		727.8		103	66.6	105			
Sample ID: 2007961-001ams	d SampT	ype: M S	SD	Tes	tCode: El	PA Method	8015D: Gaso	oline Rang	e	
Client ID: S-1	Batch	n ID: G7	0450	F	RunNo: 7	0450				
Prep Date:	Analysis D	ate: 7/	18/2020	5	SeqNo: 2	449598	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	17	3.6	18.20	0	91.4	80	120	1.68	20	
Surr: BFB	750		727.8		103	66.6	105	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

L	Uc SUMMART REFORT						
Hall Env	Hall Environmental Analysis Laboratory, Inc.						
Client:	ENSOLUM						

Sample ID: mb	SampT	уре: МЕ	BLK	Test	Code: El	PA Method	8021B: Volat	iles		
Client ID: PBS	Batcl	n ID: B7	0450	R	unNo: 7	0450				
Prep Date:	Analysis D	Date: 7/	18/2020	S	eqNo: 24	449662	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenzene	1.2		1.000		117	80	120			
Sample ID: 100ng btex lcs	SampT	ype: LC	S	Test	Code: El	PA Method	8021B: Volat	iles		
Client ID: LCSS	Batcl	n ID: B7	0450	R	unNo: 7	0450				
Prep Date:	Analysis D	Date: 7/	18/2020	S	eqNo: 24	449671	Units: mg/k	íg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.97	0.025	1.000	0	96.8	80	120			
Toluene	0.96	0.050	1.000	0	95.9	80	120			
Ethylbenzene	0.96	0.050	1.000	0	95.7	80	120			
Xylenes, Total	2.9	0.10	3.000	0	97.2	80	120			
Surr: 4-Bromofluorobenzene	1.1		1.000		112	80	120			
Sample ID: 2007961-002ams	s SampT	уре: М	5	Test	Code: El	PA Method	8021B: Volat	iles		
Client ID: S-2	Batcl	h ID: B7	0450	R	unNo: 7	0450				
Prep Date:	Analysis D)ato: 7/	4.0.100.00	c						
	2		18/2020	3	eqNo: 24	449701	Units: mg/k	(g		
Analyte	Result	PQL		SPK Ref Val	eqNo: 2 / %REC	449701 LowLimit	Units: mg/k HighLimit	^Kg %RPD	RPDLimit	Qual
	-						_	-	RPDLimit	Qual
Benzene	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	-	RPDLimit	Qual
Benzene Toluene	Result 0.65	PQL 0.017	SPK value 0.6662	SPK Ref Val 0	%REC 97.9	LowLimit 78.5	HighLimit 119	-	RPDLimit	Qual
Benzene Toluene Ethylbenzene	Result 0.65 0.66	PQL 0.017 0.033	SPK value 0.6662 0.6662	SPK Ref Val 0 0	%REC 97.9 99.2	LowLimit 78.5 75.7	HighLimit 119 123	-	RPDLimit	Qual
Benzene Toluene Ethylbenzene	Result 0.65 0.66 0.66	PQL 0.017 0.033 0.033	SPK value 0.6662 0.6662 0.6662	SPK Ref Val 0 0 0	%REC 97.9 99.2 98.9	LowLimit 78.5 75.7 74.3	HighLimit 119 123 126	-	RPDLimit	Qual
Benzene Toluene Ethylbenzene Xylenes, Total	Result 0.65 0.66 0.66 2.0 0.76	PQL 0.017 0.033 0.033	SPK value 0.6662 0.6662 0.6662 1.999 0.6662	SPK Ref Val 0 0 0 0	%REC 97.9 99.2 98.9 101 115	LowLimit 78.5 75.7 74.3 72.9 80	HighLimit 119 123 126 130	%RPD	RPDLimit	Qual
Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromofluorobenzene	Result 0.65 0.66 0.66 2.0 0.76 sd SampT	PQL 0.017 0.033 0.033 0.067	SPK value 0.6662 0.6662 0.6662 1.999 0.6662	SPK Ref Val 0 0 0 0 Test	%REC 97.9 99.2 98.9 101 115	LowLimit 78.5 75.7 74.3 72.9 80 PA Method	HighLimit 119 123 126 130 120	%RPD	RPDLimit	Qual
Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromofluorobenzene Sample ID: 2007961-002ams	Result 0.65 0.66 0.66 2.0 0.76 sd SampT	PQL 0.017 0.033 0.033 0.067	SPK value 0.6662 0.6662 1.999 0.6662 5D 0450	SPK Ref Val 0 0 0 0 Test	%REC 97.9 99.2 98.9 101 115	LowLimit 78.5 75.7 74.3 72.9 80 PA Method 0450	HighLimit 119 123 126 130 120	%RPD	RPDLimit	Qual
Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromofluorobenzene Sample ID: 2007961-002ams Client ID: S-2	Result 0.65 0.66 0.66 2.0 0.76 sd SampT Batcl	PQL 0.017 0.033 0.033 0.067	SPK value 0.6662 0.6662 1.999 0.6662 0.6662 5D 0450 18/2020	SPK Ref Val 0 0 0 0 Test	%REC 97.9 99.2 98.9 101 115 Code: El	LowLimit 78.5 75.7 74.3 72.9 80 PA Method 0450	HighLimit 119 123 126 130 120 8021B: Volat	%RPD	RPDLimit	Qual
Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromofluorobenzene Sample ID: 2007961-002ams Client ID: S-2 Prep Date: Analyte	Result 0.65 0.66 0.66 2.0 0.76 sd SampT Batcl Analysis E	PQL 0.017 0.033 0.033 0.067 Type: MS n ID: B7 Date: 7 /	SPK value 0.6662 0.6662 1.999 0.6662 0.6662 5D 0450 18/2020	SPK Ref Val 0 0 0 0 Test R S	%REC 97.9 99.2 98.9 101 115 Code: El cunNo: 7 seqNo: 24	LowLimit 78.5 75.7 74.3 72.9 80 PA Method 0450 449709 LowLimit 78.5	HighLimit 119 123 126 130 120 8021B: Volat	%RPD		
Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromofluorobenzene Sample ID: 2007961-002ams Client ID: S-2 Prep Date: Analyte Benzene	Result 0.65 0.66 0.66 2.0 0.76 sd SampT Batcl Analysis D Result	PQL 0.017 0.033 0.033 0.067 	SPK value 0.6662 0.6662 1.999 0.6662 0.6662 0450 18/2020 SPK value 0.6662 0.6662 0.6662	SPK Ref Val 0 0 0 Test R SPK Ref Val	%REC 97.9 99.2 98.9 101 115 Code: El cunNo: 7 ceqNo: 2 %REC	LowLimit 78.5 75.7 74.3 72.9 80 PA Method 0450 449709 LowLimit 78.5 75.7	HighLimit 119 123 126 130 120 8021B: Volat Units: mg/M HighLimit	%RPD	RPDLimit	
Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromofluorobenzene Sample ID: 2007961-002ams Client ID: S-2 Prep Date:	Result 0.65 0.66 0.66 2.0 0.76 sd SampT Batcl Analysis Result 0.65 0.65 0.65	PQL 0.017 0.033 0.067 Type: MS n ID: B7 Date: 7/ PQL 0.017 0.033 0.033	SPK value 0.6662 0.6662 1.999 0.6662 0.6662 0.6662 0.6662 0.6662 0.6662 0.6662	SPK Ref Val 0 0 0 Test R SPK Ref Val 0	%REC 97.9 99.2 98.9 101 115 Code: El cunNo: 70 ceqNo: 20 %REC 97.9 98.1 98.3	LowLimit 78.5 75.7 74.3 72.9 80 PA Method 0450 449709 LowLimit 78.5 75.7 74.3	HighLimit 119 123 126 130 120 8021B: Volat Units: mg/k HighLimit 119	%RPD tiles 5g %RPD 0.0306 1.12 0.639	RPDLimit 20	
Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromofluorobenzene Sample ID: 2007961-002ams Client ID: S-2 Prep Date: Analyte Benzene Toluene	Result 0.65 0.66 0.66 2.0 0.76 sd SampT Batcl Analysis D Result 0.65 0.65	PQL 0.017 0.033 0.067 Type: MS n ID: B7 Date: 7 / PQL 0.017 0.033	SPK value 0.6662 0.6662 1.999 0.6662 0.6662 0450 18/2020 SPK value 0.6662 0.6662 0.6662	SPK Ref Val 0 0 0 Test SPK Ref Val 0 0	%REC 97.9 99.2 98.9 101 115 Code: El cunNo: 70 ceqNo: 20 %REC 97.9 98.1	LowLimit 78.5 75.7 74.3 72.9 80 PA Method 0450 449709 LowLimit 78.5 75.7	HighLimit 119 123 126 130 120 8021B: Volat Units: mg/k HighLimit 119 123	%RPD iiles 5g %RPD 0.0306 1.12	RPDLimit 20 20	

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environme, TEL: 505-345-3 Website: client	490 Albuquerq 1975 FAX:	1 Hawkii ue, NM 8 505-345-	ns NE 87109 Sa 4107	ample Log-In Check	List
Client Name: ENSOLUM	Work Order Num	ber: 200	7961		RcptNo: 1	
Received By: Leah Baca	7/18/2020 11:05:00) AM		Lad SB.	nea	
Completed By: Leah Baca	7/18/2020 11:18:52	2 AM		Lab B. Lab B.	2010	
Reviewed By: DF 7/18/2020				Luirfe		
Chain of Custody						
1. Is Chain of Custody complete?		Yes	\checkmark	No 🗌	Not Present	
2. How was the sample delivered?		Cou	ier			
Log In						
3. Was an attempt made to cool the sam	ples?	Yes	\checkmark	No	NA 🗌	
4. Were all samples received at a temper	ature of >0° C to 6.0°C	Yes		No] NA 🗌	
5. Sample(s) in proper container(s)?		Yes	~	No]	
6. Sufficient sample volume for indicated	test(s)?	Yes	\checkmark	No 🗌		
7. Are samples (except VOA and ONG) p	roperly preserved?	Yes	\checkmark	No 🗌		
8. Was preservative added to bottles?		Yes		No 🔽	NA 🗌	
9. Received at least 1 vial with headspace	e <1/4" for AQ VOA?	Yes		No 🗌	NA 🔽	
10. Were any sample containers received	broken?	Yes		No 🗸	# of preserved bottles checked	
11.Does paperwork match bottle labels? (Note discrepancies on chain of custod	у)	Yes	✓	No 🗌	for pH: (<2 or >12 unle	ss noted)
12. Are matrices correctly identified on Cha	ain of Custody?	Yes	\checkmark	No 🗌	Adjusted?	
13. Is it clear what analyses were requeste	d?		\checkmark	No 🗌	IB =	2/18/20
14. Were all holding times able to be met? (If no, notify customer for authorization))	Yes	\checkmark	No 🗌	Checked by: M	110/00
Special Handling (if applicable)						
15. Was client notified of all discrepancies	with this order?	Yes		No	NA 🗹	
Person Notified:	Date:	North Contraction	an ann		ase.	
By Whom:	Via:	🗌 eMa	ail 🗌 F	Phone 🗌 Fa	ax 🗌 In Person	
Regarding:						
Client Instructions: 16. Additional remarks:						
17. <u>Cooler Information</u> Cooler No Temp ^o C Conditior 1 5.9 Good	Seal Intact Seal No Yes	Seal D	ate	Signed By		

Page 1 of 1

Client: Ensolu.	stody Record n S R.10 Grande 87410	Project #:	rd ⊉∕Rush ne:	Scribay 160% <u>7-20-20</u> esa CS	www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request											
email or Fax#: QA/QC Package: Standard Accreditation: Az Com NELAC Other EDD (Type)	Level 4 (Full Validation) pliance	Sampler: On Ice: # of Cooler	CDApe ¥ Yes S: €	O.S. extension of the Statement	MTBE / TMB's (8021)	TPH:8015D(GRO / DRO / MRO)	Pesticides/8082 PCB's	504	PAHs by 8310 or 8270SIMS RCRA 8 Metals	Mr. NO3, NO2, PO4, SQ4		8270 (Semi-VOA)	Coliform (Present/Absent)			0.43.10 /AM
7/17 900 5	Sample Name	Container Type and #	Preservative Type	HEAL No. 20094961 -001	🖌 BTEX/	★ TPH:80	8081 Pe	EDB (Method	PAHS by RCRA 8 1	X CI, Y B	8260 (VOA)	8270 (S	Total Co			
7/17 905 S 7/17 910 S 7/17 915 S	S-2 S-3 S-4		Coul Coul Coul	-002 -003 -064	X X V	¥ ¥ X				X X Y						
7/17 920 5 7/17 925 5 7/17 930 5	S-5- S-6 S-7		Lool Coul Coul	-065 -006	K	× ×				¥ ¥						
7/17 935 S 7/17 940 S	5-8 5-9		Cool	-007 -008 -089	¥	¥ ¥				4 4			100			
1/17 945 S 7/17 950 S 7/17 955 S	S-10 13-1 13-2		1001 Coul Coul	-010 -011 -012	¥ ¥	¥ ¥ ¥				Y Y F						
Date: Time: Relinquished	the	Received by: Received by:	Via: 	7/17/28 1316 Date Time 7/18/20 1105	Rem	arks	Pa	y K	Tr ry	sm GC	20	ng 580	Ð	St	Per	the of a Smith

July 28, 2020

Kyle Summers ENSOLUM 606 S. Rio Grande Suite A Aztec, NM 87410 TEL: (903) 821-5603 FAX:

OrderNo.: 2007C44

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: clients.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

RE: Frances Mesa CS

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 8 sample(s) on 7/24/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2007C44

Date Reported: 7/28/2020

CLIENT: ENSOLUM Project: Frances Mesa CS			ient Sample II Collection Dat		-a 23/2020 9:00:00 AM				
Lab ID: 2007C44-001	Matrix: SOIL Received Date: 7/24/2020 8:10:00 AM								
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS					Analyst	CAS			
Chloride	ND	60	mg/Kg	20	7/24/2020 10:56:51 AM	53936			
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	BRM			
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	7/24/2020 10:17:35 AM	53934			
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	7/24/2020 10:17:35 AM	53934			
Surr: DNOP	133	55.1-146	%Rec	1	7/24/2020 10:17:35 AM	53934			
EPA METHOD 8015D: GASOLINE RANGE					Analyst	RAA			
Gasoline Range Organics (GRO)	ND	3.7	mg/Kg	1	7/24/2020 11:02:45 AM	G70588			
Surr: BFB	90.1	66.6-105	%Rec	1	7/24/2020 11:02:45 AM	G70588			
EPA METHOD 8021B: VOLATILES					Analyst	RAA			
Benzene	ND	0.019	mg/Kg	1	7/24/2020 11:02:45 AM	R70588			
Toluene	ND	0.037	mg/Kg	1	7/24/2020 11:02:45 AM	R70588			
Ethylbenzene	ND	0.037	mg/Kg	1	7/24/2020 11:02:45 AM	R70588			
Xylenes, Total	ND	0.075	mg/Kg	1	7/24/2020 11:02:45 AM	R70588			
Surr: 4-Bromofluorobenzene	102	80-120	%Rec	1	7/24/2020 11:02:45 AM	R70588			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 15

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2007C44

Date Reported: 7/28/2020

CLIENT: ENSOLUM Project: Frances Mesa CS	Client Sample ID: S3-a Collection Date: 7/23/2020 9:05:00 AM							
Lab ID: 2007C44-002	Matrix: SOIL Received Date: 7/24/2020 8:10:00 AM							
Analyses	Result	RL	Qual Unit	s D	F Date Analyzed	Batch		
EPA METHOD 300.0: ANIONS					Analyst	CAS		
Chloride	ND	60	mg/l	(g 2	20 7/24/2020 11:09:16 AM	53936		
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	BRM		
Diesel Range Organics (DRO)	ND	9.7	mg/l	(g 1	7/24/2020 10:27:28 AM	53934		
Motor Oil Range Organics (MRO)	ND	48	mg/l	(g 1	7/24/2020 10:27:28 AM	53934		
Surr: DNOP	135	55.1-146	%Re	c 1	7/24/2020 10:27:28 AM	53934		
EPA METHOD 8015D: GASOLINE RANGI	E				Analyst	RAA		
Gasoline Range Organics (GRO)	ND	3.8	mg/l	(g 1	7/24/2020 11:26:22 AM	G70588		
Surr: BFB	90.6	66.6-105	%Re	c 1	7/24/2020 11:26:22 AM	G70588		
EPA METHOD 8021B: VOLATILES					Analyst	RAA		
Benzene	ND	0.019	mg/l	(g 1	7/24/2020 11:26:22 AM	R70588		
Toluene	ND	0.038	mg/l	(g 1	7/24/2020 11:26:22 AM	R70588		
Ethylbenzene	ND	0.038	mg/l	(g 1	7/24/2020 11:26:22 AM	R70588		
Xylenes, Total	ND	0.076	mg/l	(g 1	7/24/2020 11:26:22 AM	R70588		
Surr: 4-Bromofluorobenzene	101	80-120	%Re	c 1	7/24/2020 11:26:22 AM	R70588		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 15

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2007C44

Date Reported: 7/28/2020

CLIENT: ENSOLUM		Cl	ient Sample II	D: S4	-a				
Project: Frances Mesa CS	Collection Date: 7/23/2020 9:10:00 AM								
Lab ID: 2007C44-003	Matrix: SOIL Received Date: 7/24/2020 8:10:00 AM								
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS					Analyst	CAS			
Chloride	ND	60	mg/Kg	20	7/24/2020 11:21:40 AM	53936			
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	BRM			
Diesel Range Organics (DRO)	9.7	9.4	mg/Kg	1	7/24/2020 10:37:24 AM	53934			
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	7/24/2020 10:37:24 AM	53934			
Surr: DNOP	120	55.1-146	%Rec	1	7/24/2020 10:37:24 AM	53934			
EPA METHOD 8015D: GASOLINE RANGE					Analyst	RAA			
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	7/24/2020 11:49:54 AM	G70588			
Surr: BFB	90.0	66.6-105	%Rec	1	7/24/2020 11:49:54 AM	G70588			
EPA METHOD 8021B: VOLATILES					Analyst	RAA			
Benzene	ND	0.024	mg/Kg	1	7/24/2020 11:49:54 AM	R70588			
Toluene	ND	0.048	mg/Kg	1	7/24/2020 11:49:54 AM	R70588			
Ethylbenzene	ND	0.048	mg/Kg	1	7/24/2020 11:49:54 AM	R70588			
Xylenes, Total	ND	0.095	mg/Kg	1	7/24/2020 11:49:54 AM	R70588			
Surr: 4-Bromofluorobenzene	99.8	80-120	%Rec	1	7/24/2020 11:49:54 AM	R70588			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 3 of 15

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2007C44

Date Reported: 7/28/2020

CLIENT: ENSOLUM		Cl	ient Sample II	D: S6	-a		
Project: Frances Mesa CS			Collection Dat	e: 7/2	23/2020 9:15:00 AM		
Lab ID: 2007C44-004	Matrix: SOIL Received Date: 7/24/2020 8:10:00 AM						
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch	
EPA METHOD 300.0: ANIONS					Analyst:	CAS	
Chloride	ND	60	mg/Kg	20	7/24/2020 11:34:04 AM	53936	
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst:	BRM	
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	7/24/2020 7:45:05 PM	53934	
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	7/24/2020 7:45:05 PM	53934	
Surr: DNOP	87.7	30.4-154	%Rec	1	7/24/2020 7:45:05 PM	53934	
EPA METHOD 8015D: GASOLINE RANGE	E				Analyst:	RAA	
Gasoline Range Organics (GRO)	ND	3.7	mg/Kg	1	7/24/2020 12:13:22 PM	G70588	
Surr: BFB	91.5	66.6-105	%Rec	1	7/24/2020 12:13:22 PM	G70588	
EPA METHOD 8021B: VOLATILES					Analyst:	RAA	
Benzene	ND	0.018	mg/Kg	1	7/24/2020 12:13:22 PM	R70588	
Toluene	ND	0.037	mg/Kg	1	7/24/2020 12:13:22 PM	R70588	
Ethylbenzene	ND	0.037	mg/Kg	1	7/24/2020 12:13:22 PM	R70588	
Xylenes, Total	ND	0.074	mg/Kg	1	7/24/2020 12:13:22 PM	R70588	
Surr: 4-Bromofluorobenzene	102	80-120	%Rec	1	7/24/2020 12:13:22 PM	R70588	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 4 of 15

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2007C44

Date Reported: 7/28/2020

CLIENT: ENSOLUM	Client Sample ID: S7-a							
Project: Frances Mesa CS		(Collection E	ate: 7	//23/2020 9:20:00 AM			
Lab ID: 2007C44-005	Matrix: SOIL Received Date: 7/24/2020 8:10:00 AM							
Analyses	Result	RL	Qual Unit	s D	F Date Analyzed	Batch		
EPA METHOD 300.0: ANIONS					Analyst	CAS		
Chloride	ND	60	mg/ł	(g 2	0 7/24/2020 11:46:29 AM	53936		
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	BRM		
Diesel Range Organics (DRO)	ND	9.6	mg/ł	(g 1	7/24/2020 8:09:12 PM	53934		
Motor Oil Range Organics (MRO)	ND	48	mg/ł	(g 1	7/24/2020 8:09:12 PM	53934		
Surr: DNOP	91.7	30.4-154	%Re	c 1	7/24/2020 8:09:12 PM	53934		
EPA METHOD 8015D: GASOLINE RANGE					Analyst	RAA		
Gasoline Range Organics (GRO)	ND	3.3	mg/ł	(g 1	7/24/2020 12:36:57 PM	G70588		
Surr: BFB	89.4	66.6-105	%Re	c 1	7/24/2020 12:36:57 PM	G70588		
EPA METHOD 8021B: VOLATILES					Analyst	RAA		
Benzene	ND	0.016	mg/ł	(g 1	7/24/2020 12:36:57 PM	R70588		
Toluene	ND	0.033	mg/ł	(g 1	7/24/2020 12:36:57 PM	R70588		
Ethylbenzene	ND	0.033	mg/ł	ίg 1	7/24/2020 12:36:57 PM	R70588		
Xylenes, Total	ND	0.066	mg/ł	(g 1	7/24/2020 12:36:57 PM	R70588		
Surr: 4-Bromofluorobenzene	101	80-120	%Re	c 1	7/24/2020 12:36:57 PM	R70588		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 5 of 15

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2007C44

Date Reported: 7/28/2020

CLIENT: ENSOLUM	CNT: ENSOLUM Client Sample ID: S8-a								
Project: Frances Mesa CS	Collection Date: 7/23/2020 9:25:00 AM								
Lab ID: 2007C44-006	Matrix: SOIL								
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS					Analyst	CAS			
Chloride	ND	60	mg/Kg	20	7/24/2020 11:58:53 AM	53936			
EPA METHOD 8015M/D: DIESEL RANG	GE ORGANICS				Analyst	BRM			
Diesel Range Organics (DRO)	ND	9.1	mg/Kg	1	7/24/2020 8:33:25 PM	53934			
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	7/24/2020 8:33:25 PM	53934			
Surr: DNOP	96.0	30.4-154	%Rec	1	7/24/2020 8:33:25 PM	53934			
EPA METHOD 8015D: GASOLINE RAN	IGE				Analyst	RAA			
Gasoline Range Organics (GRO)	ND	3.4	mg/Kg	1	7/24/2020 1:00:34 PM	G70588			
Surr: BFB	90.9	66.6-105	%Rec	1	7/24/2020 1:00:34 PM	G70588			
EPA METHOD 8021B: VOLATILES					Analyst	RAA			
Benzene	ND	0.017	mg/Kg	1	7/24/2020 1:00:34 PM	R70588			
Toluene	ND	0.034	mg/Kg	1	7/24/2020 1:00:34 PM	R70588			
Ethylbenzene	ND	0.034	mg/Kg	1	7/24/2020 1:00:34 PM	R70588			
Xylenes, Total	ND	0.068	mg/Kg	1	7/24/2020 1:00:34 PM	R70588			
Surr: 4-Bromofluorobenzene	103	80-120	%Rec	1	7/24/2020 1:00:34 PM	R70588			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 6 of 15

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2007C44

Date Reported: 7/28/2020

CLIENT: ENSOLUM	Client Sample ID: S9-a								
Project: Frances Mesa CS	Collection Date: 7/23/2020 9:30:00 AM								
Lab ID: 2007C44-007	Matrix: SOIL		Received Dat	t e: 7/2	24/2020 8:10:00 AM				
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS					Analyst	CAS			
Chloride	ND	60	mg/Kg	20	7/24/2020 12:11:18 PM	53936			
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS				Analyst	BRM			
Diesel Range Organics (DRO)	ND	9.2	mg/Kg	1	7/24/2020 11:17:17 AM	53934			
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	7/24/2020 11:17:17 AM	53934			
Surr: DNOP	124	55.1-146	%Rec	1	7/24/2020 11:17:17 AM	53934			
EPA METHOD 8015D: GASOLINE RANG)E				Analyst	RAA			
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	7/24/2020 1:24:03 PM	G70588			
Surr: BFB	95.6	66.6-105	%Rec	1	7/24/2020 1:24:03 PM	G70588			
EPA METHOD 8021B: VOLATILES					Analyst	RAA			
Benzene	ND	0.023	mg/Kg	1	7/24/2020 1:24:03 PM	R70588			
Toluene	ND	0.047	mg/Kg	1	7/24/2020 1:24:03 PM	R70588			
Ethylbenzene	ND	0.047	mg/Kg	1	7/24/2020 1:24:03 PM	R70588			
Xylenes, Total	ND	0.093	mg/Kg	1	7/24/2020 1:24:03 PM	R70588			
Surr: 4-Bromofluorobenzene	105	80-120	%Rec	1	7/24/2020 1:24:03 PM	R70588			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 7 of 15

Hall Environmental	Analysis]	Laboratory,	Inc.

Lab Order 2007C44

Date Reported: 7/28/2020

CLIENT: ENSOLUM		Cl	ient Sample II	D: S1	0-a			
Project: Frances Mesa CS		(Collection Dat	e: 7/2	23/2020 9:35:00 AM			
Lab ID: 2007C44-008	Matrix: SOIL	Matrix: SOIL Received Date: 7/24/2020 8:10:00						
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch		
EPA METHOD 300.0: ANIONS					Analys	t: CAS		
Chloride	ND	60	mg/Kg	20	7/24/2020 12:23:42 PM	1 53936		
EPA METHOD 8015M/D: DIESEL RANGE	E ORGANICS				Analys	t: BRM		
Diesel Range Organics (DRO)	ND	9.3	mg/Kg	1	7/24/2020 11:27:17 AM	1 53934		
Motor Oil Range Organics (MRO)	210	46	mg/Kg	1	7/24/2020 11:27:17 AN	1 53934		
Surr: DNOP	122	55.1-146	%Rec	1	7/24/2020 11:27:17 AM	1 53934		
EPA METHOD 8015D: GASOLINE RANG	E				Analys	t: RAA		
Gasoline Range Organics (GRO)	ND	3.5	mg/Kg	1	7/24/2020 1:47:35 PM	G70588		
Surr: BFB	93.4	66.6-105	%Rec	1	7/24/2020 1:47:35 PM	G70588		
EPA METHOD 8021B: VOLATILES					Analys	t: RAA		
Benzene	ND	0.018	mg/Kg	1	7/24/2020 1:47:35 PM	R70588		
Toluene	ND	0.035	mg/Kg	1	7/24/2020 1:47:35 PM	R70588		
Ethylbenzene	ND	0.035	mg/Kg	1	7/24/2020 1:47:35 PM	R70588		
Xylenes, Total	ND	0.070	mg/Kg	1	7/24/2020 1:47:35 PM	R70588		
Surr: 4-Bromofluorobenzene	103	80-120	%Rec	1	7/24/2020 1:47:35 PM	R70588		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 8 of 15

Client: Project:		OLUM ces Mesa CS							
Sample ID: Client ID:	MB-53936 PBS	SampType Batch ID:			tCode: EPA Methoc RunNo: 70587	l 300.0: Anions			
Prep Date:	7/24/2020	Analysis Date:		S	SeqNo: 2456086	Units: mg/Kg			
Analyte		Result P	QL SPK value	e SPK Ref Val	%REC LowLimit	HighLimit %	6RPD	RPDLimit	Qual
Chloride		ND	1.5						
Sample ID:	LCS-53936	SampType	: Ics	Tes	tCode: EPA Method	l 300.0: Anions			
Client ID:	LCSS	Batch ID:	53936	F	RunNo: 70587				
Prep Date:	7/24/2020	Analysis Date:	7/24/2020	S	SeqNo: 2456087	Units: mg/Kg			
Analyte		Result P	QL SPK value	SPK Ref Val	%REC LowLimit	HighLimit %	6RPD	RPDLimit	Qual
Chloride		14	1.5 15.00	0	91.8 90	110			

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 15

2007C44

28-Jul-20

WO#:

QC SUMMARY REPORT Hall Env

	WO#:	2007C44
vironmental Analysis Laboratory, Inc.		28-Jul-20

	NSOLUM ances Mesa CS									
Sample ID: LCS-5392	5 SampTy	pe: LCS	;	Tes	tCode: EP	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: LCSS	Batch I	ID: 5392	26	R	RunNo: 70	581				
Prep Date: 7/23/202) Analysis Da	te: 7/24	4/2020	S	SeqNo: 24	55254	Units: %Re	C		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP	5.8		5.000		117	55.1	146			
Sample ID: MB-53926	SampTy	pe: MBL	_K	Tes	tCode: EP	A Method	8015M/D: Die	esel Range	e Organics	
Client ID: PBS		ID: 539 2		R	RunNo: 70	581		· ·	C C	
Prep Date: 7/23/202) Analysis Da	te: 7/24	4/2020	S	SeqNo: 24	55255	Units: %Re	C		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP	13		10.00		127	55.1	146		-	
Sample ID: LCS-5393	4 SampTy	pe: LCS	;	Tes	tCode: EP	A Method	8015M/D: Die	esel Range	e Organics	
Client ID: LCSS	Batch I	ID: 5393	34	R	RunNo: 70	585				
Prep Date: 7/24/202) Analysis Da	te: 7/24	4/2020	S	SeqNo: 24	155335	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DR)) 52	10	50.00	0	104	70	130			
Surr: DNOP	5.4		5.000		107	55.1	146			
Sample ID: MB-53934	SampTy	pe: MBL	-K	Tes	tCode: EP	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: PBS	Batch I	ID: 539 3	34	R	RunNo: 70	585				
Prep Date: 7/24/202) Analysis Da	te: 7/24	4/2020	S	SeqNo: 24	55336	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DR		10								
Motor Oil Range Organics (N		50	10.00		115	EE 4	146			
Surr: DNOP	12		10.00		115	55.1	146			
Sample ID: 2007C44-0	01AMS SampTy	pe: MS		Tes	tCode: EP	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: S2-a	Batch I	ID: 539 3	34	R	RunNo: 70)585				
Prep Date: 7/24/202	Analysis Da	te: 7/24	4/2020	S	SeqNo: 24	58269	Units: mg/K	(g		
Analyte	Result			SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DR		9.7	48.50	4.182	109	47.4	136			
Surr: DNOP	6.1		4.850		126	30.4	154			
Sample ID: 2007C44-0	01AMSD SampTy	pe: MSC	D	Tes	tCode: EP	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: S2-a	Batch I	ID: 539 3	34	R	RunNo: 70	585				
Prep Date: 7/24/202) Analysis Da	te: 7/24	4/2020	S	SeqNo: 24	58270	Units: mg/K	g		
										<u> </u>
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Practical Quanitative Limit PQL

% Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 10 of 15

2007C44 28-Jul-20

QC SUMMARY REPORT	WO#:
Hall Environmental Analysis Laboratory, Inc.	

Client:	ENSOLU	М									
Project:	Frances M	lesa CS									
Sample ID: 2007C44-001AMSD SampType: MSD TestCode: EPA Method 8015M/D: Diesel Range Organics											
Client ID: S2-a	I	Batch	1D: 53	934	RunNo: 70585						
Prep Date: 7/2	4/2020	Analysis D	ate: 7/	24/2020	S	SeqNo: 24	458270	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP		7.2		4.859		148	30.4	154	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 15

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#:	2007C44
	28-Jul-20

Cl ¹ ···· 4	ENGOLU	2.4											
Client: Project:	ENSOLU Frances N												
i i ojeci.	Trances N	icsa CS											
Sample ID: 2	2.5ug gro Ics	SampTy	be: L(CS	TestCode: EPA Method 8015D: Gasoline Range								
Client ID:	LCSS	Batch I	D: G	70588	F	RunNo: 7	0588						
Prep Date:		Analysis Da	te: 7	/24/2020	S	SeqNo: 2	455376	Units: mg/Kg	g				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
	e Organics (GRO)	22	5.0		0	89.8	72.5	106					
Surr: BFB		1000		1000		102	66.6	105					
Sample ID:	mb	SampTy	be: M	BLK	Tes	tCode: E	PA Method	8015D: Gasol	line Rang	e			
Client ID:	PBS	Batch I	D: G	70588	F	RunNo: 7	0588						
Prep Date:		Analysis Da	te: 7	/24/2020	S	SeqNo: 2	455386	Units: mg/Kg	g				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Gasoline Range	organics (GRO)	ND	5.0										
Surr: BFB		1000		1000		103	66.6	105					
Sample ID:	2007c44-001ams	SampTy	be: M	s	Tes	tCode: E	PA Method	8015D: Gasol	line Rang	e			
Client ID:	S2-a	Batch I	D: G	70588	RunNo: 70588								
Prep Date:		Analysis Da	te: 7	/24/2020	S	SeqNo: 2	455821	Units: mg/Kg	g				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Gasoline Range	organics (GRO)	15	3.7	18.64	0	81.7	61.3	114					
Surr: BFB		770		745.7		104	66.6	105					
Sample ID:	2007c44-001amsd	SampTy	be: M	SD	Tes	tCode: E	PA Method	8015D: Gasol	line Rang	е			
Client ID:	S2-a	Batch I	D: G	70588	F	RunNo: 7	0588						
Prep Date:		Analysis Da	te: 7	/24/2020	S	SeqNo: 2	455822	Units: mg/Kg	g				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Gasoline Range	organics (GRO)	15	3.7	18.64	0	82.5	61.3	114	0.975	20			
Surr: BFB		840		745.7		113	66.6	105	0	0	S		
Sample ID: I	lcs-53918	SampTy	be: L(cs	Tes	tCode: E	PA Method	8015D: Gasol	line Rang	е			
Client ID:	LCSS	Batch I	D: 53	8918	F	RunNo: 7	0588						
Prep Date:	7/23/2020	Analysis Da	te: 7	/24/2020	S	SeqNo: 2	455823	Units: %Rec					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Surr: BFB		1100		1000		105	66.6	105			S		
Sample ID: I	lcs-53930	SampTy	be: L(CS	Tes	tCode: E	PA Method	8015D: Gasol	line Rang	e			
Client ID:		Batch I				RunNo: 7				-			
Prep Date:		Analysis Da				SeqNo: 2		Units: %Rec					
			•					,					
Analyte		Result	PQL	SDK volue	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

	WO#:	2007C44
Hall Environmental Analysis Laboratory, Inc.		28-Jul-20

Client: Project:	ENSOLUM Frances Mesa CS										
Sample ID: mb-53	3918 Samp	Type: MBLK	TestCode:	TestCode: EPA Method 8015D: Gasoline Range							
Client ID: PBS	Bate	ch ID: 53918	RunNo:	70588							
Prep Date: 7/23/	2020 Analysis	Date: 7/24/2020	SeqNo:	2455825	Units: %Rec						
Analyte	Result	PQL SPK value	e SPK Ref Val %RE	C LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Surr: BFB	900	1000) 90.	1 66.6	105						
Sample ID: mb-53	3930 Samp	Type: MBLK	TestCode:	EPA Method	8015D: Gasol	ine Rang	e				
Client ID: PBS	Bate	ch ID: 53930	RunNo:	70588							
Prep Date: 7/23/	2020 Analysis	Date: 7/25/2020	SeqNo:	Units: %Rec							
Analyte	Result	PQL SPK value	e SPK Ref Val %RE	C LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Surr: BFB	920	1000) 91.	5 66.6	105						

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 13 of 15

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#:	2007C44
	20 7 1 20

28-Jul-20

Client: Project:	ENSOLU Frances N											
Sample ID: 100ng	n btex los	Samp	Гуре: LC	s	Tos	tCode: E	PA Method	8021B: Volat	ilos			
Client ID: LCSS	-		h ID: R7		TestCode: EPA Method 8021B: Volatiles RunNo: 70588							
	•											
Prep Date:		Analysis [Jate: 11	24/2020	2	SeqNo: 24	155388	Units: mg/K	.g			
Analyte		Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene		0.95	0.025	1.000	0	95.0	80	120				
Toluene		0.96	0.050	1.000	0	95.6	80	120				
Ethylbenzene		0.97	0.050	1.000	0	97.2	80	120				
Xylenes, Total		3.0	0.10	3.000	0	98.7	80	120				
Surr: 4-Bromofluorol	benzene	1.0		1.000		103	80	120				
Sample ID: mb		Samp	Гуре: МЕ	BLK	Tes	tCode: EF	PA Method	8021B: Volat	iles			
Client ID: PBS		Batc	h ID: R7	0588	F	RunNo: 7 (0588					
Prep Date:		Analysis [Date: 7/	24/2020	5	SeqNo: 24	455397	Units: mg/K	íg			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene		ND	0.025									
Toluene		ND	0.050									
Ethylbenzene		ND	0.050									
Xylenes, Total		ND	0.10									
Surr: 4-Bromofluorol	benzene	1.1		1.000		110	80	120				
Sample ID: 2007	:44-002ams	Samp	Гуре: МS	5	Tes	estCode: EPA Method 8021B: Volatiles						
Client ID: S3-a		Batc	h ID: R7	0588	RunNo: 70588							
Prep Date:		Analysis [Date: 7/	24/2020	S	SeqNo: 24	455878	Units: mg/K	g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene		0.98	0.025	1.000	0	97.8	78.5	119				
Toluene		0.99	0.050	1.000	0	98.7	75.7	123				
Ethylbenzene		1.0	0.050	1.000	0	99.7	74.3	126				
Xylenes, Total		3.0	0.10	3.000	0	101	72.9	130				
Surr: 4-Bromofluorol	benzene	1.1		1.000		110	80	120				
Sample ID: 2007	:44-002amsd	I Samp	Гуре: МS	5D	Tes	tCode: El	PA Method	8021B: Volat	iles			
Client ID: S3-a			h ID: R7			RunNo: 70						
Prep Date:		Analysis [Date: 7/	24/2020	5	SeqNo: 24	455879	Units: mg/K	(g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene		0.97	0.025	1.000	0	96.6	78.5	119	1.30	20		
Toluene		0.96	0.050	1.000	0	96.1	75.7	123	2.74	20		
		0.98	0.050	1.000	0	97.8	74.3	126	1.91	20		
Ethylbenzene				3.000	0	98.5	72.9	130	2.26	20		
Ethylbenzene Xylenes, Total		3.0	0.10	3.000	0	90.0	12.5	100	2.20	20		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 15

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc

ALF UN I	WO#:	2007C44	
Analysis Laboratory, Inc.		28-Jul-20	

Client:	ENSOLUM												
Project:	Frances Mesa CS												
Sample ID: LCS-53	918 Samp	Type: LC	s	TestCode: EPA Method 8021B: Volatiles									
Client ID: LCSS	Batc	h ID: 53	918	R	lunNo: 7	0588							
Prep Date: 7/23/2	020 Analysis [Date: 7/	24/2020	S	eqNo: 24	455880	Units: %Rec						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Surr: 4-Bromofluorobe	nzene 1.1		1.000		107	80	120						
Sample ID: LCS-53	930 Samp	SampType: LCS TestCode: EPA Method 8021B: Volatiles											
Client ID: LCSS	Batc	h ID: 53	930	R	tunNo: 7	0588							
Prep Date: 7/23/2	020 Analysis [Date: 7/	25/2020	S	eqNo: 24	455881	Units: %Rec						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Surr: 4-Bromofluorobe	4.4		1 000		106	00	100						
Sull. 4-Diomonuolobe	nzene 1.1		1.000		106	80	120						
Sample ID: mb-539		Type: ME		Test			120 8021B: Volati	les					
	18 Samp	Type: ME h ID: 53	BLK			PA Method	-	les					
Sample ID: mb-539	18 Samp Batc	h ID: 53	3LK 918	R	tCode: El	PA Method	-						
Sample ID: mb-539 Client ID: PBS	18 Samp Batc	h ID: 53	BLK 918 /24/2020	R	tCode: El RunNo: 70 SeqNo: 24	PA Method	8021B: Volati		RPDLimit	Qual			
Sample ID: mb-539 Client ID: PBS Prep Date: 7/23/2	118 Samp Batc 020 Analysis I Result	h ID: 53 Date: 7/	BLK 918 /24/2020	R	tCode: El RunNo: 70 SeqNo: 24	PA Method 0588 455882	8021B: Volati Units: %Rec		RPDLimit	Qual			
Sample ID: mb-539 Client ID: PBS Prep Date: 7/23/2 Analyte	118 Samp Batc 020 Analysis I Result nzene 1.0	h ID: 53 Date: 7/	3LK 918 24/2020 SPK value 1.000	R S SPK Ref Val	tCode: El tunNo: 70 SeqNo: 20 %REC 102	PA Method 0588 455882 LowLimit 80	8021B: Volati Units: %Rec HighLimit	%RPD	RPDLimit	Qual			
Sample ID: mb-539 Client ID: PBS Prep Date: 7/23/2 Analyte Surr: 4-Bromofluorobe	118 Samp Batc 020 Analysis I Result nzene 1.0	h ID: 53 Date: 7/ PQL	3LK 918 224/2020 SPK value 1.000 3LK	R S SPK Ref Val Test	tCode: El tunNo: 70 SeqNo: 20 %REC 102	PA Method 0588 455882 LowLimit 80 PA Method	8021B: Volati Units: %Rec HighLimit 120	%RPD	RPDLimit	Qual			
Sample ID: mb-539 Client ID: PBS Prep Date: 7/23/2 Analyte Surr: 4-Bromofluorobe Sample ID: mb-539	118 Samp Batc 020 Analysis I Result nzene 1.0 130 Samp Batc	h ID: 53 Date: 7/ PQL Type: ME h ID: 53	3LK 918 24/2020 SPK value 1.000 3LK 930	R SPK Ref Val Test R	tCode: El RunNo: 70 GeqNo: 24 %REC 102 tCode: El	PA Method 0588 455882 LowLimit 80 PA Method 0588	8021B: Volati Units: %Rec HighLimit 120	%RPD	RPDLimit	Qual			
Sample ID: mb-539 Client ID: PBS Prep Date: 7/23/2 Analyte Surr: 4-Bromofluorobe Sample ID: mb-539 Client ID: PBS	118 Samp Batc 020 Analysis I Result nzene 1.0 130 Samp Batc	h ID: 53 Date: 7/ PQL Type: ME h ID: 53	3LK 918 224/2020 SPK value 1.000 3LK 930 225/2020	R SPK Ref Val Test R	tCode: El sunNo: 7 GeqNo: 2 %REC 102 tCode: El sunNo: 7 GeqNo: 2	PA Method 0588 455882 LowLimit 80 PA Method 0588	8021B: Volati Units: %Rec HighLimit 120 8021B: Volati	%RPD	RPDLimit	Qual			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 15

HALL ENVIRONMENTAL ANALYSIS LABORATORY	TEL: 505-345-:	ntal Analysis Labora 4901 Hawkins Albuquerque, NM 87 8975 FAX: 505-345-4 ts.hallenvironmental.	ne 109 San 107	nple Log-In Check	List
Client Name: ENSOLUM	Work Order Num	ber: 2007C44		RcptNo: 1	
Received By: Cheyenne Cason	7/24/2020 8:10:00	AM			
Completed By: Emily Mocho	7/24/2020 8:16:13	АМ			
Reviewed By: DAD 7/24/2	90				
Chain of Custody					
1. Is Chain of Custody complete?		Yes 🗹	No 🗌	Not Present	
2. How was the sample delivered?		Courier			
Log In 3. Was an attempt made to cool the samp	les?	Yes 🔽	No 🗔	NA 🗌	
4. Were all samples received at a tempera	ture of >0° C to 6.0°C	Yes 🗹	No 🗌		
5. Sample(s) in proper container(s)?		Yes 🗹	No 🗌		
6. Sufficient sample volume for indicated te	est(s)?	Yes 🗹	No 🗌		
7. Are samples (except VOA and ONG) pro	perly preserved?	Yes 🗹	No 🗌		
8. Was preservative added to bottles?		Yes	No 🔽	NA 🗌	
9. Received at least 1 vial with headspace	<1/4" for AQ VOA?	Yes 🗌	No 🗀	NA 🗹	
10. Were any sample containers received b	roken?	Yes 🗀	No 🗹	# of preserved bottles checked	>
11. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes 🗹	No 🗌	for pH: (<2 or >12 unles	s noted)
12. Are matrices correctly identified on Chair	n of Custody?	Yes 🗹	No 🗌	Adjusted?	
13. Is it clear what analyses were requested	?	Yes 🗹	No 🗌	-	7/2 - 1
14. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🗹	No 🗌	Checked by CIMC 7	123/20
Special Handling (if applicable)					
15. Was client notified of all discrepancies v	vith this order?	Yes 🗌	No 🗌	NA 🗹	
Person Notified:	Date				
By Whom:	Via:	🗌 eMail 🔲 P	hone 📋 Fax	In Person	
Regarding:		F			
Client Instructions: 11				·	
17. <u>Cooler Information</u>					
Cooler No Temp °C Condition	Seal Intact Seal No	Seal Date	Signed By		
1 4.8 Good	Yes		J,		

•

Page 1 of 1

an a suara a

Received by OCD: 11/4/2020 10:45:16 AM

	Chain-of-Custody Record				nd Time:	100 20		14	2				-			~					Kecen
Client:	Fo	solu	<i>(n</i>)	□ Stand	ard n∛ Rust	7-24-20	HALL ENVIRONMENTAL														
, 7	1211	20.0		Project Na	ime:													KA		'K T	y O
Mailing	Address	: le oli	S Rio Carde	Fla.	vers Mu	esa CS		49	01 H							tal.co ie, Ni	om M 87 [.]	109			CD: 11
Su	; + 1	4 8	57410	4			Tel. 505-345-3975 Fax 505-345-4107										/4/2				
Phone				0:	5A 1226.	112	Analysis Request									020					
email o	or Fax#:			Project Manager:			Ê	ô					SQ₄			lt)					10:
QA/QC	Package:				K Som	mis	(8021)	/ MRO)	PCB's		٩S					bsel					1:54
🗧 🗆 Star	ndard		Level 4 (Full Validation)					DRO /			8270SIMS		Å			nt/A					0 A/
Accred			ompliance	Sampler:2	Sampler: Ma Aponti L Daniell				8081 Pesticides/8082	Ξ	827		Ø Ø		((Present/Absent)					M
		□ Othe		On lce:				TPH:8015D(GRO	es/8	EDB (Method 504.1)	PAHs by 8310 or	s	1		(Semi-VOA)						
) (Type) _ 	I			Shing Street Line Line Line Line Line Line Line Line	820=4.8	HALE I		ticid	thod	831	RCRA 8 Metals	Ő,	Â	ni-V	Coliform					
				2-2-2-2-2-2-3-3-4-7-4 			_	3015	Pes	(Met	ð	181	Ă	S	(Sei	Coli					
Data	-		Comple Neme	Container	Preservative	TOKOLOH MURICALAR STATES AND A	BTEX	PH:8	81	В	AHs	S.	Jد ا	8260 (VOA)	8270	Total			Ì		
Date	Time	Matrix	Sample Name	Type and	# Type	2007644	1_		ō	Ш		2	<u>บี</u> เม	ö	õ	Ĕ	_				+
763	900	5	SZ-a	1402 Ja	1 60	-001	Y_	¥					¥.						\rightarrow	<u> </u>	
7/23	905	5	53-9		6/19/	-002	¥	X					<u>y</u>					\rightarrow			
733	910	2	54-a		Cuol	-003	X	X					10					\square			
7/23	915	5	56-a		Crol	-004	Ŷ	X.					<u>y</u>								
7/33	320	5	57-a		lool	-065	Y	χ					arphi								
7/33	925	ک	58-2		Cool	-004	Ŷ	У					γ								
7/33	930	5	59-a		Cal	-007	X	X					γ								
7/33	935	2	510-R		Cast	-008	X	\checkmark		ĺ			X								
								,													Γ
																		_			<u> </u>
																					\square
																ĺ					Γ
Date:	Time:	Relinquish	ed by:	Received by:	Via:	Date Time -1/ ; /4//	Ren	nark	3: j) m	T	' Srr	<u> </u>	on	G						<u> </u>
33/20	1411	12	TATO	1 mis	the Walte	123/2020	Remarks: PM TOM Long Pay Kuy GG 11580							Pa							
Date:	Time:	Relinquish	•	Received by:	, Via: ,	Date / Time			F	d	.,	0		0	,	- 0 -			Spr	Ser	ge 80
123/20	1753	1 (Tha	wither Wasters	1 Aller	Court	7/24/20 0810													<i>V</i>	19 V	<u>' @</u>

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

102

July 29, 2020

Kyle Summers ENSOLUM 606 S. Rio Grande Suite A Aztec, NM 87410 TEL: (903) 821-5603 FAX

RE: Frances Mesa CS

OrderNo.: 2007D69

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: clients.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 1 sample(s) on 7/28/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Lab Order 2007D69

Date Reported: 7/29/2020

CLIENT: Project: Lab ID:	ENSOLUM Frances Mesa CS 2007D69-001	Client Sample ID: S10-B Collection Date: 7/27/2020 11:00:00 AM Matrix: SOIL Received Date: 7/28/2020 8:15:00 AM								
Analyses		Result	RL	Oual Units		Date Analyzed	Batch			
	THOD 300.0: ANIONS			C		Analyst	· .IMT			
Chloride		ND	60	mg/Kg	20	7/28/2020 1:48:43 PM	54005			
EPA MET	THOD 8015M/D: DIESEL RANGE	ORGANICS		0.0		Analyst	BRM			
Diesel R	ange Organics (DRO)	ND	9.2	mg/Kg	1	7/28/2020 9:51:37 AM	54003			
	il Range Organics (MRO)	ND	46	mg/Kg	1	7/28/2020 9:51:37 AM	54003			
Surr: I		108	30.4-154	%Rec	1	7/28/2020 9:51:37 AM	54003			
EPA MET	THOD 8015D: GASOLINE RANGE					Analyst	: NSB			
Gasoline	e Range Organics (GRO)	ND	3.8	mg/Kg	1	7/28/2020 11:06:11 AM	53975			
Surr: I	BFB	88.9	66.6-105	%Rec	1	7/28/2020 11:06:11 AM	53975			
EPA MET	THOD 8021B: VOLATILES					Analyst	: NSB			
Benzene		ND	0.019	mg/Kg	1	7/28/2020 11:06:11 AM	53975			
Toluene		ND	0.038	mg/Kg	1	7/28/2020 11:06:11 AM	53975			
Ethylben	izene	ND	0.038	mg/Kg	1	7/28/2020 11:06:11 AM	53975			
Xylenes,	Total	ND	0.076	mg/Kg	1	7/28/2020 11:06:11 AM	53975			
Surr: 4	4-Bromofluorobenzene	102	80-120	%Rec	1	7/28/2020 11:06:11 AM	53975			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 5

Page 91 of 102

Client: Project:	ENSOLUM Frances Mesa CS									
Sample ID: MB-54	1005 Sam	oType: ml	olk	Tes	tCode: EP	A Method	300.0: Anion:	s		
Client ID: PBS	Ba	tch ID: 54	005	F	RunNo: 706	653				
Prep Date: 7/28/	2020 Analysis	Date: 7/	28/2020	S	SeqNo: 24	59753	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	ND	1.5								
Sample ID: LCS-5	4005 Sam	oType: Ics	6	Tes	tCode: EP	A Method	300.0: Anion	s		
Client ID: LCSS	Ba	tch ID: 54	005	F	RunNo: 706	653				
Prep Date: 7/28/	2020 Analysis	Date: 7/	28/2020	S	SeqNo: 24	59754	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	14	1.5	15.00	0	91.0	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 5

	WO#:	2007D69
Hall Environmental Analysis Laboratory, Inc.		29-Jul-20

Client: ENSOL Project: Frances	UM Mesa CS									
Sample ID: MB-54003	•	ype: ME					8015M/D: Di	esel Rang	e Organics	
Client ID: PBS	Batch	n ID: 54	003	F	RunNo: 7	0648				
Prep Date: 7/28/2020	Analysis D	Date: 7/	28/2020	5	SeqNo: 2	458625	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	9.8		10.00		97.5	30.4	154			
Sample ID: LCS-54003	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015M/D: Die	esel Rang	e Organics	
Client ID: LCSS	Batch	n ID: 54	003	F	RunNo: 7	0648				
Prep Date: 7/28/2020	Analysis D	ate: 7/	28/2020	S	SeqNo: 2	458627	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	50	10	50.00	0	101	70	130			
Surr: DNOP	4.8		5.000		95.7	30.4	154			

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 3 of 5

	WO#:	2007D69
Hall Environmental Analysis Laboratory, Inc.		29-Jul-20

Client: ENSOL Project: Frances	LUM Mesa CS									
Sample ID: mb-53975	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID: PBS	Batch	ID: 539	975	F	RunNo: 7	0649				
Prep Date: 7/27/2020	Analysis Da	ate: 7/	28/2020	S	SeqNo: 24	458870	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	5.0								
Surr: BFB	870		1000		87.0	66.6	105			
Sample ID: Ics-53975	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID: LCSS	Batch	ID: 539	975	F	RunNo: 7	0649				
Prep Date: 7/27/2020	Analysis Da	ate: 7/	28/2020	S	SeqNo: 24	458871	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	19	5.0	25.00	0	77.7	72.5	106			
Surr: BFB	950		1000		94.8	66.6	105			

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 4 of 5

	WO#:	2007D69
Hall Environmental Analysis Laboratory, Inc.		29-Jul-20

	NSOLUM ances Mesa CS									
Sample ID: mb-53975	Samp	Туре: МЕ	BLK	Tes	tCode: El	PA Method	8021B: Volat	tiles		
Client ID: PBS	Batc	h ID: 53	975	F	RunNo: 7	0649				
Prep Date: 7/27/2020	Analysis I	Date: 7/	28/2020	5	SeqNo: 24	458896	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenzer	ne 1.0		1.000		101	80	120			
Sample ID: LCS-5397	5 Samp	Туре: LC	S	Tes	tCode: El	PA Method	8021B: Volat	tiles		
Client ID: LCSS	Batc	h ID: 53	975	F	RunNo: 7	0649				
Prep Date: 7/27/2020	Analysis I	Date: 7/	28/2020	S	SeqNo: 24	458897	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.84	0.025	1.000	0	83.9	80	120			
Toluene	0.85	0.050	1.000	0	85.3	80	120			
Ethylbenzene	0.87	0.050	1.000	0	87.2	80	120			
Xylenes, Total	2.6	0.10	3.000	0	88.3	80	120			
Ayionos, rotai	2.0	0.10	0.000	0	00.0	00	.=•			

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 5 of 5

.

HALL ENVIRONMENT ANALYSIS LABORATORY	FAL T	all Environmental A Albuq EL: 505-345-3975 F Vebsite: clients.hall	490 uerq TAX: .	l Hawkins NE ue, NM 87109 505-345-4107	ł	Sar	Page
Client Name: ENSOLUM	/ Wor	k Order Number: 3	2007	D69			RcptNo: 1
Received By: Emily Mo	ocho 7/28/2	020 8:15:00 AM					
Completed By: Emily Mo	ocho 7/28/2	020 8:38:01 AM					
Reviewed By: SPA	7:28.20	8:50					
Chain of Custody							
1. Is Chain of Custody com	plete?	,	Yes	\checkmark	No		Not Present
2. How was the sample deli	vered?	<u>(</u>	Cour	er			
Log In							
3. Was an attempt made to	cool the samples?	Ŋ	Yes	\checkmark	No		NA 🗌
4. Were all samples received	d at a temperature of >0° C	to 6.0°C	res		No		
5. Sample(s) in proper conta	ainer(s)?	Ŋ	Y es	\checkmark	No		
6. Sufficient sample volume	for indicated test(s)?	Y	'es	V	No		
7. Are samples (except VOA	and ONG) properly preserv	ved? Y	'es	\checkmark	No		
8. Was preservative added to	o bottles?	Y	'es		No	\checkmark	NA 🗌
9. Received at least 1 vial wi	th headspace <1/4" for AQ	VOA? Y	'es		No		NA 🔽
10. Were any sample contain	ers received broken?	٢	/es		No	✓	# of preserved bottles checked
11. Does paperwork match bo (Note discrepancies on ch		Y	'es	\checkmark	No		for pH: (<2 or >12 unless noted)
12. Are matrices correctly ider	ntified on Chain of Custody?	Y Y	es	\checkmark	No		Adjusted?
13. Is it clear what analyses w	vere requested?	Y	'es	\checkmark	No		
14. Were all holding times abl (If no, notify customer for a		Y	es	\checkmark	No		Checked by Cunc 1/21
Special Handling (if ap	plicable)						
15. Was client notified of all c	liscrepancies with this order	? \	Yes		No		NA 🗹
Person Notified:		Date:			0.000.000	and an international of	
By Whom:			eMa	il 🗌 Phone	e 🗆	Fax	In Person
Regarding:	-	<u>ل</u> ــــ				• 002103	
Client Instructions:	[and a function of the first of the function of the function of the function of the function of the first of t			net la ner or		
16. Additional remarks:							
17. <u>Cooler Information</u>		1.2.2.2.0		1			1
Cooler No Temp °C	Condition Seal Intact	Seal No Sea	al Da	te Sigi	ned	By	

Page 1 of 1

Client: Mailing	En Address	solu-	ustody Record	Project #:	d) <mark>∕e Rus</mark> h e:					A	N/ www ns N	AL' Alla Alle - 075	envir Albu Fa	IS onm ique ax 5	nent erque	AB al.co e, NN	30 1 om VI 87 4107	RA 109	NT		Received by OCD: 11/4/2020
email o QA/QC □ Star Accred □ NEL	or Fax#: Package: ndard litation:		□ Level 4 (Full Validation) ompliance r	Project Mana	ager: K Scm C D A A∉ Ø Yes	ners	3E/TMB's (8021)	TPH:8015D(GRO / DRO / MRO)	des/8082 PCB's	d 504.1)	10 or 8270SIMS		NO2. PO4. 504		111	(Present/Absent)					0 10:45:16 AM
Date	Time // 00	Matrix	Sample Name	Cooler Temp Container Type and #	O(Including CF): S. C Preservative Type	5±0=5.5 (°C) HEAL No. 2007D69 -001	A BTEX / MTBE	↓ TPH:8015D(8081 Pesticides/8082	EDB (Method 504.1)	PAHs by 8310	_	X CI, F, Br, No.	8260 (VOA)	8270 (Semi-VOA)	Total Coliform					
Date: <i>7</i> /20 Date: 7/27 1/27 1/27	- 1811	Relinquish Relinquish samples sut	att	Received by: Received by: EKM	Via: Via: Via: COURIER ccredited laboratorie	Date Time 7/37/200 Date Time 7/28/20 8-15 s. This serves as notice of this		narks	F	Pm Tayy	1			10		1 A	s 1	e	St.	rl prd	Page 96 of 102

APPENDIX G

Regulatory Correspondence

From:	Long, Thomas
To:	"Smith, Cory, EMNRD (Cory.Smith@state.nm.us)"; kwchristesen@blm.gov
Cc:	Stone, Brian
Subject:	FW: Frances Mesa Compressor Station - UL K Section 27 T30N R7W; 36.780479, -107.562231
Date:	Monday, July 27, 2020 7:09:00 AM
Attachments:	Frances Msea.jpg
	Frances Mesa CS.pdf

Cory/Kenneth,

Please find the attached site sketch and lab report for the Frances Mesa Compressor Station excavation. One sample still exceeds NMOCD Tier I standards. Enterprise will be excavating in the area of S-10a and resampling today, July 27, 2020 around 10:00 a.m. If you have any questions, please call or email.

Thomas J. Long Senior Environmental Scientist Enterprise Products Company 614 Reilly Ave. Farmington, New Mexico 87401 505-599-2286 (office) 505-215-4727 (Cell) tjlong@eprod.com

From: Long, Thomas
Sent: Wednesday, July 22, 2020 9:42 AM
To: 'Smith, Cory, EMNRD (Cory.Smith@state.nm.us)' <Cory.Smith@state.nm.us>;
kwchristesen@blm.gov
Cc: Stone, Brian <bmstone@eprod.com>
Subject: FW: Frances Mesa Compressor Station - UL K Section 27 T30N R7W; 36.780479, -107.562231

Cory/Kenneth,

This email is to notify you that Enterprise will be collecting soil samples for laboratory analysis tomorrow, July 23, 2020 at the Frances Mesa Compressor Station excavation at 9:00 a.m. If you have any questions, please call or email.

Thomas J. Long Senior Environmental Scientist Enterprise Products Company 614 Reilly Ave. Farmington, New Mexico 87401 505-599-2286 (office) 505-215-4727 (Cell) tjlong@eprod.com

From: Smith, Cory, EMNRD <<u>Cory.Smith@state.nm.us</u>>
Sent: Monday, July 20, 2020 1:41 PM
To: Long, Thomas <<u>tjlong@eprod.com</u>>; <u>kwchristesen@blm.gov</u>
Cc: Stone, Brian <<u>bmstone@eprod.com</u>>
Subject: [EXTERNAL] RE: Frances Mesa Compressor Station - UL K Section 27 T30N R7W; 36.780479,
-107.562231

[Use caution with links/attachments] Tom,

Thanks for the update, good to see B1/B2 pass I was a bit concerned with the stained soils/over spray.

Cory Smith Environmental Specialist Oil Conservation Division Energy, Minerals, & Natural Resources 1000 Rio Brazos, Aztec, NM 87410 (505)334-6178 ext 115 cory.smith@state.nm.us

From: Long, Thomas <tilong@eprod.com>
Sent: Monday, July 20, 2020 1:29 PM
To: Smith, Cory, EMNRD <<u>Cory.Smith@state.nm.us</u>>; <u>kwchristesen@blm.gov</u>
Cc: Stone, Brian <<u>bmstone@eprod.com</u>>
Subject: [EXT] FW: Frances Mesa Compressor Station - UL K Section 27 T30N R7W; 36.780479,
-107.562231

Cory/Kenneth,

Please find the attached site sketch, GE map and lab report for the Frances Mesas sampling. We have many samples that exceed NMOCD Tier I standards. We will be continuing remediation activities tomorrow. I will keep you informed as to when we will be collecting soil samples for laboratory analysis. If you have any questions, please call or email.

Thomas J. Long Senior Environmental Scientist Enterprise Products Company 614 Reilly Ave. Farmington, New Mexico 87401 505-599-2286 (office) 505-215-4727 (Cell) tjlong@eprod.com

From: Long, Thomas <tilong@eprod.com>
Sent: Thursday, July 16, 2020 11:52 AM
To: EMNRD Smith Cory <Cory.Smith@state.nm.us>; kwchristesen@blm.gov
Cc: Stone, Brian
bmstone@eprod.com>
Subject: Fwd: Frances Mesa Compressor Station - UL K Section 27 T30N R7W; 36.780479,
-107.562231

Cory/Kenneth,

This email is to notify you that Enterprise will be collecting soil samples for laboratory analysis tomorrow, July 17, 2020 at the Frances Mesa Compressor Station excavation at 9:00 a.m. If you have any questions, please call or email.

Tom Long

Begin forwarded message:

From: "Long, Thomas" <tjlong@eprod.com>
Date: July 12, 2020 at 2:10:00 PM MDT
To: "Smith, Cory, EMNRD (Cory.Smith@state.nm.us)" <Cory.Smith@state.nm.us>,
"kwchristesen@blm.gov" <kwchristesen@blm.gov>
Cc: "Stone, Brian" <bmstone@eprod.com>
Subject: Frances Mesa Compressor Station - UL K Section 27 T30N R7W; 36.780479,
-107.562231

Cory/Kenneth,

This is a follow up to our phone conversation earlier today. Entperise had a release of produced water and condensate at Frances Mesa Compressor Station this morning. The release is a result of the ESD event and the fluids being ejected from the facility ESD vent. An area or approximately 150 feet long by 70 feet wide was affected by the released fluids. All fluids remained of the facility property. No washes have been affected. Entperise has mobilized a contractor to recover the standing liquids as much

as practicable. The release site is located at UL K Section 27 T30N R7W; 36.780479, -107.562231. I will keep you informed as to when remediation activities are scheduled. If you have any questions, please call or email.

Thomas J. Long Senior Environmental Scientist Enterprise Products Company 614 Reilly Ave. Farmington, New Mexico 87401 505-599-2286 (office) 505-215-4727 (Cell) tjlong@eprod.com

This message (including any attachments) is confidential and intended for a specific individual and purpose. If you are not the intended recipient, please notify the sender immediately and delete this message.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170 District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:		OGRID:
	Enterprise Field Services, LLC	241602
	PO Box 4324	Action Number:
	Houston, TX 77210	11074
		Action Type:
		[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
nvelez	None	4/26/2022

Action 11074