District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Page 1 of 95

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party: Enterprise Field Services, LLC	OGRID: 151618
Contact Name: Thomas Long	Contact Telephone: 505-599-2286
Contact email:tjlong@eprod.com	Incident # (assigned by OCD): NRM2012860521
Contact mailing address: 614 Reilly Ave, Farmington, NM 87401	1

Location of Release Source

Latitude 36.88030

Longitude -107.70200

(NAD 83 in decimal degrees to 5 decimal places)

Site Name Quinn 340S	Site Type Natural Gas Gathering Pipeline
Date Release Discovered: 02/03/2020	Serial Number (if applicable): N/A

Unit Letter	Section	Township	Range	County
Н	30	31N	8W	San Juan

Surface Owner: 🛛 State 🗌 Federal 🔲 Tribal 🗌 Private (Name: Nick Jaramillo

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls): 3-5 BBLS	Volume Recovered (bbls): None
🛛 Natural Gas	Volume Released (Mcf): 4 MCF	Volume Recovered (Mcf): None
Other (describe)	Volume/Weight Released (provide units):	Volume/Weight Recovered (provide units)

Cause of Release On February 3, 2020, Enterprise discovered a release of natural gas from the Quinn 340S well tie. No liquids were released to the ground surface. No washes were affected. Repairs and remediation began on February 11, 2020. Enterprise determined the release reportable per NMOCD regulation on February 12, 2020 after receipt and review of laboratory analysis and due to the volume of impacted subsurface soil. Repairs and remediation were completed on February 18, 2020. The final excavation dimensions measured approximately 58 feet long by 28 feet wide by approximately 19 feet deep. Approximately 84 cubic yards of hydrocarbon impacted soil were excavated and transported to a New Mexico Oil Conservation Division approved land farm facility. A third party closure report is included with this "Final." C-141.

Received by OCD: 9/15/2020 7:23:02 AM State of New Mexico

Page 2

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name: Jon E. Fields	Title: Director, Environmental Date: 9/14/2020
signature:fw ? email: jefields@eprod.com	Telephone: (713) 381-6684
OCD Only	
Received by:	Date:
	rty of liability should their operations have failed to adequately investigate and ce water, human health, or the environment nor does not relieve the responsible nd/or regulations.
Closure Approved by: Nelson Velez Printed Name: Nelson Velez	Date: 05/16/2022
Printed Name: Nelson Velez	Title: Environmental Specialist – Adv

CLOSURE REPORT

Property:

Quinn 340S Pipeline Release SW ¼, S20 T31N R8W San Juan County, New Mexico

June 12, 2020 Ensolum Project No. 05A1226094

Prepared for:

Enterprise Field Services, LLC 614 Reilly Avenue Farmington, NM 87401 Attn: Mr. Thomas Long

Prepared by:

etechi

Ranee Deechilly Environmental Scientist

umm

Kyle Summers, CPG Sr. Project Manager

.

Table of Contents

1.0	INTRODUCTION11.1SITE DESCRIPTION & BACKGROUND11.2PROJECT OBJECTIVE1
2.0	CLOSURE CRITERIA1
3.0	SOIL REMEDIATION ACTIVITIES
4.0	SOIL SAMPLING PROGRAM
5.0	SOIL LABORATORY ANALYTICAL METHODS4
6.0	DATA EVALUATION4
7.0	RECLAMATION AND REVEGETATION4
8.0	FINDINGS AND RECOMMENDATION
9.0	STANDARDS OF CARE, LIMITATIONS, AND RELIANCE

LIST OF APPENDICES

Appendix A:	Figures Figure 1 Figure 2 Figure 3	Topographic Map Site Vicinity Map Site Map with Soil Analytical Results		
Appendix B:	Siting Doc	umentation		
Appendix C:	Executed (C-138 Solid Waste Acceptance Form		
Appendix D:	Photograp	hic Documentation		
Appendix E:	Table 1 - Soil Analytical Summary			
Appendix F:	•	<pre>/ Data Sheets & ustody Documentation</pre>		
Appendix G:	Regulatory	/ Correspondence		

CLOSURE REPORT

Quinn 340S Pipeline Release SW ¼, S20 T31N R8W San Juan County, New Mexico

Ensolum Project No. 05A1226094

1.0 INTRODUCTION

1.1 Site Description & Background

Operator:	Enterprise Field Services, LLC / Enterprise Products Operating LLC (Enterprise)
Site Name:	Quinn #340S Pipeline Release (Site)
Location:	36.88030° North, 107.70200° West Southwest (SW) ¼ of Section 20, Township 31 North, Range 8 West San Juan County, New Mexico
Property:	Private Land
Regulatory:	New Mexico Energy, Minerals and Natural Resources Department (EMNRD) Oil Conservation Division (OCD)

On February 3, 2020, Enterprise personnel identified a release of natural gas on the Quinn #340S pipeline. Enterprise subsequently isolated and locked the pipeline out of service. On February 10, 2020, Enterprise initiated activities to remediate potential petroleum hydrocarbon impact resulting from the release. Enterprise initiated pipeline repairs on February 11, 2020.

A **Topographic Map** depicting the location of the Site is included as **Figure 1**, and a **Site Vicinity Map** is included as **Figure 2** in **Appendix A**.

1.2 **Project Objective**

The primary objective of the closure activities was to reduce constituent of concern (COC) concentrations in the on-site soils to below the applicable New Mexico EMNRD OCD closure criteria.

2.0 CLOSURE CRITERIA

The Site is subject to regulatory oversight by the New Mexico EMNRD OCD. To address activities related to exempt oil and gas releases, the New Mexico EMNRD OCD references New Mexico Administrative Code (NMAC) 19.15.29 *Releases*, which establishes investigation and abatement action requirements for oil and gas release sites subject to reporting and/or corrective action. Ensolum, LLC (Ensolum) utilized information provided by Enterprise, the general site characteristics, and information available from the New Mexico Office of the State Engineer (OSE) and the New Mexico EMNRD OCD imaging database to determine the appropriate closure criteria for the Site.

• The OSE tracks the usage and assignment of water rights and water well installations and records this information in the Water Rights Reporting System (WRRS) database. Water wells and other points of diversion (PODs) are each assigned POD numbers in the database (which is searchable and includes an interactive map). One water well (SJ 00012) was identified within a one-mile radius of the Site in the OSE WRRS database. The records for SJ 00012, located approximately 0.8 miles

Enterprise Field Services, LLC Closure Report Quinn #340S Pipeline Release June 12, 2020

southwest of the Site and at a higher elevation (6,547 feet) than the Site (6,516 feet), indicate a depth to water of 475 feet below grade surface (bgs). Supporting documentation is provided in **Appendix B**.

- Five (5) cathodic protection well records were found in the New Mexico EMNRD imaging database within the approximate one mile search radius. The closest cathodic protection well is located near the Quinn #1, #339 oil/gas production well (Unit L, Sec 20 T31N R8W) (located approximately 0.18 miles from the Site). The record for this cathodic protection well indicates a depth to water of 270 feet bgs. The records for cathodic protection wells located near the Quinn #340 (Unit A, Sec 20 T31N R8W), SJ 32-8 Unit #12, #234 (Unit M, Sec 21 T31 R8W), Quinn #6A, #9 (Unit P, Sec 21 T30N R8W), and Quinn #4A (Unit I, Sec 19 T31N R8W) oil/gas production wells indicate depths to water ranging from 140 feet bgs to 400 feet bgs. Supporting documentation is provided in Appendix B.
- The Site is located within 300 feet of a New Mexico EMNRD OCD-defined continuously flowing watercourse or significant watercourse. The excavation is located immediately adjacent (approximately three (3) feet) to an unnamed ephemeral wash.
- The Site is not located within 200 feet of a lakebed, sinkhole or playa lake.
- The Site is not located within 300 feet of a permanent residence, school, hospital, institution or church.
- No springs, or private domestic fresh water wells used by less than five (5) households for domestic or stock watering purposes were identified within 500 feet of the Site.
- No fresh water wells or springs were identified within 1,000 feet of the Site.
- The Site is not located within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to New Mexico Statutes Annotated (NMSA) 1978, Section 3-27-3.
- The Site is not located within 300 feet of a wetland.
- Based on information identified in the New Mexico Mining and Minerals Division's Geographic Information System (GIS), Maps and Mine Data database, the Site is not located within an area overlying a subsurface mine.
- The Site is not located within an unstable area.
- The Site is not located within a 100-year floodplain.

Based on the identified siting criteria, cleanup goals for soils remaining in place at the Site include:

Closure Criteria for Soils Impacted by a Release					
Constituent	Limit				
Chloride	600 mg/kg				
TPH (GRO+DRO+MRO)	100 mg/kg				
BTEX	EPA SW-846 Method 8021 or 8260	50 mg/kg			
Benzene	EPA SW-846 Method 8021 or 8260	10 mg/kg			

Enterprise Field Services, LLC Closure Report Quinn #340S Pipeline Release June 12, 2020

Page 7 of 95

3.0 SOIL REMEDIATION ACTIVITIES

On February 10, 2020, Enterprise initiated activities to remediate petroleum hydrocarbon impact resulting from the release. During the remediation and corrective action activities, West States Energy Contractors, Inc. provided heavy equipment and labor support, while Ensolum provided environmental consulting support.

The final excavation measured approximately 58 feet long and 28 feet wide at the maximum extents. The maximum depth of the excavation measured approximately 19 feet bgs.

The lithology encountered during the completion of remediation activities consisted primarily of unconsolidated silty sand.

A total of approximately 84 cubic yards of petroleum hydrocarbon affected soils were transported to the Envirotech, Inc. (Envirotech) landfarm near Hilltop, New Mexico for disposal/remediation. The executed C-138 solid waste acceptance form is provided in **Appendix C**. The excavation was backfilled with a combination of imported fill and segregated, laboratory-confirmed, unaffected stockpiled soils, and then contoured to surrounding grade.

Figure 3 is a map that identifies approximate soil sample locations and depicts the approximate dimensions of the excavation with respect to the pipeline (**Appendix A**). Photographic documentation of the field activities is included in **Appendix D**.

4.0 SOIL SAMPLING PROGRAM

Ensolum field screened the soil samples from the excavation utilizing a calibrated Dexsil PetroFLAG[®] hydrocarbon analyzer system and a photoionization detector (PID) fitted with a 10.6 eV lamp to guide excavation extents.

Ensolum's soil sampling program included the collection of 18 composite soil samples (CS-1 through CS-18), comprised of five (5) aliquots each, from the excavation for laboratory analysis. In addition, six (6) composite stockpiled soil samples (SP-1 through SP-6) were collected from the soils that were segregated for potential reuse, to confirm the material was suitable to remain on Site. A clean shovel was utilized to obtain fresh aliquots from each accessible area of the excavation. An excavator, operated by West States, was utilized to obtain fresh aliquots from top portions of the excavation sidewalls. The New Mexico EMNRD OCD provided verbal approval to proceed with the sampling events, although a New Mexico EMNRD OCD representative was not on Site during the sampling events. New Mexico EMNRD OCD correspondence is provided in **Appendix G**.

First Sampling Event

On February 10, 2020, the first sampling event was performed to evaluate petroleum hydrocarbon impact. Composite soil sample CS-1 (14') was collected from the floor of excavation near the release point. Composite soil samples CS-2 (0'-14) and CS-7 (0'-14) were collected from the end-walls of the excavation prior to extending the excavation to accommodate pipeline repairs. Composite soil samples CS-3 (0'-8.5'), CS-4 (8.5'-17'), CS-5 (0'-8.5'), and CS-6 (8.5'-17') were collected from the sidewalls of the excavation. Subsequent analytical results indicate a data exceedance above the applicable New Mexico EMNRD OCD closure criteria for composite soil sample CS-1. In response to the data exceedance, the excavation was deepened in the vicinity of sample CS-1. The soil associated with composite samples CS-1 and SP-2 was transported from the Site to the landfarm for disposal/remediation.

Second Sampling Event

On February 18, 2020, the second sampling event was performed at the site. Composite soil samples CS-8 (16'), CS-9 (14'), and CS-10 (14') were collected from the floor of the excavation. Composite soil samples

CS-11 (0'-8.5'), CS-12 (8.5'-17'), CS-13 (0'-8.5'), CS-14 (8.5'-17'), CS-15 (0'-8.5'), CS-16 (8.5'-17'), CS-17 (0'-8.5'), and CS-18 (8.5'-17') were collected from the sidewalls of the excavation.

The soil samples were collected and placed in laboratory prepared glassware, labeled and sealed using the laboratory supplied labels and custody seals, and stored on ice in a cooler. The samples were relinquished to the courier for Hall Environmental Analysis Laboratory of Albuquerque, New Mexico, under proper chain-of-custody procedures.

5.0 SOIL LABORATORY ANALYTICAL METHODS

The composite soil samples were analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX) using Environmental Protection Agency (EPA) SW-846 Method #8021/8260, total petroleum hydrocarbon (TPH) gasoline range organics (GRO), diesel range organics (DRO), and motor oil/lube oil range organics (MRO) using EPA SW-846 Method #8015, and chlorides using EPA Method #300.0.

The laboratory analytical results are summarized in **Table 1** in **Appendix E**. The laboratory data sheets and executed chain-of-custody forms are provided in **Appendix F**.

6.0 DATA EVALUATION

Ensolum compared the BTEX, TPH, and chloride laboratory analytical results or laboratory practical quantitation limits (PQLs) / reporting limits (RLs) associated with composite soil samples (CS-2 through CS-18, SP-1, and SP-3 through SP-6) to the applicable New Mexico EMNRD OCD closure criteria. The soil associated with composite samples CS-1 and SP-2 was transported to Envirotech landfarm for disposal/remediation and these samples are not included in the following discussion.

- The laboratory analytical results for the composite soil samples collected from soils remaining at the Site indicate benzene is not present at concentrations greater than the laboratory PQLs/RLs, which are less than the applicable New Mexico EMNRD OCD closure criteria of 10 milligrams per kilogram (mg/kg).
- The laboratory analytical results for the composite soil samples collected from soils remaining at the Site indicate total BTEX is not present at concentrations greater than the laboratory PQLs/RLs, which are less than the applicable New Mexico EMNRD OCD closure criteria of 50 mg/kg.
- The laboratory analytical results for the composite soil samples collected from soils remaining at the Site indicate combined TPH GRO/DRO/MRO is not present at concentrations greater than the laboratory PQLs/RLs, which are less than the applicable New Mexico EMNRD OCD closure criteria of 100 mg/kg.
- The laboratory analytical results for the composite soil samples collected from soils remaining at the Site indicate chloride is not present at concentrations greater than laboratory PQLs/RLs, which are less than the applicable New Mexico EMNRD OCD closure criteria of 600 mg/kg for chlorides.

The laboratory analytical results are summarized in **Table 1** (Appendix E).

7.0 RECLAMATION AND REVEGETATION

The excavation was backfilled with a combination of imported fill and segregated, laboratory-confirmed, unaffected stockpiled soils and was then contoured to match the surrounding grade. Enterprise will re-seed the Site with an approved seeding mixture.

Enterprise Field Services, LLC Closure Report Quinn #340S Pipeline Release June 12, 2020

Page 9 of 95

8.0 FINDINGS AND RECOMMENDATION

- A total of 18 composite soil samples were collected from the excavation for laboratory analyses. In addition, six (6) composite soil samples were collected from the excavated stockpiled soils. Based on laboratory analytical results, the soils remaining at the Site do not exhibit COC concentrations above the applicable New Mexico EMNRD OCD closure criteria.
- A total of approximately 84 cubic yards of petroleum hydrocarbon affected soils were transported to the Envirotech landfarm near Hilltop, New Mexico for disposal/remediation. The excavation was backfilled with a combination of imported fill and segregated, laboratory-confirmed, unaffected stockpiled soils and was then contoured to match the surrounding grade.

Based on field observations and laboratory analytical results, no additional investigation or corrective action appears warranted at this time.

9.0 STANDARDS OF CARE, LIMITATIONS, AND RELIANCE

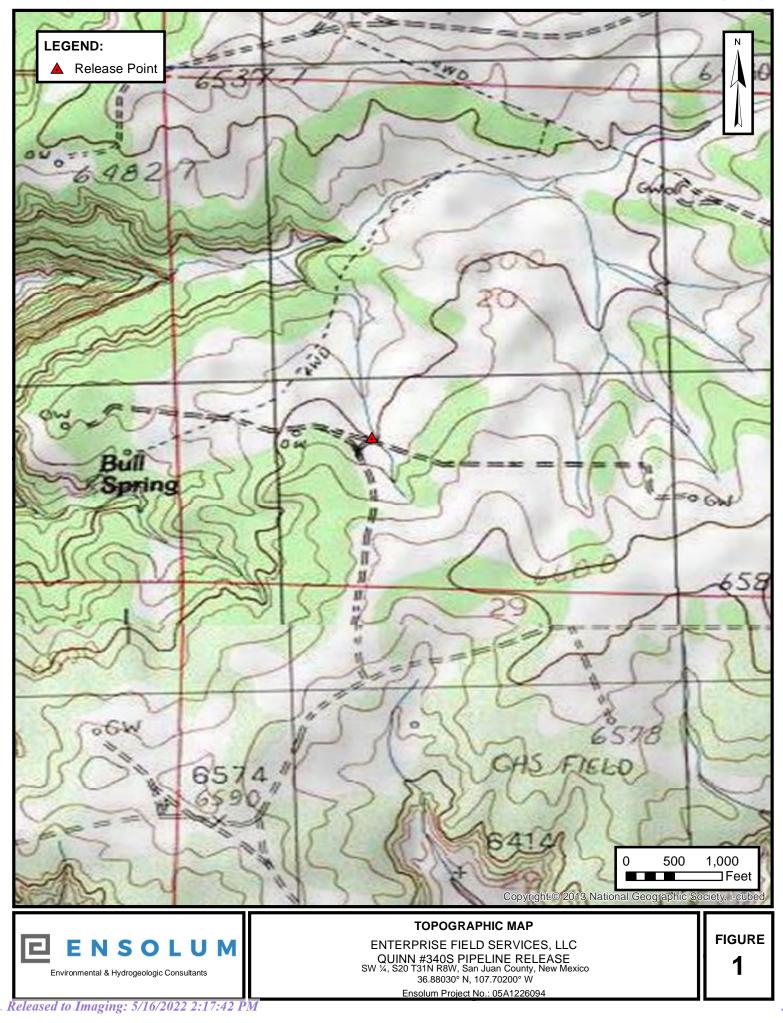
9.1 Standard of Care

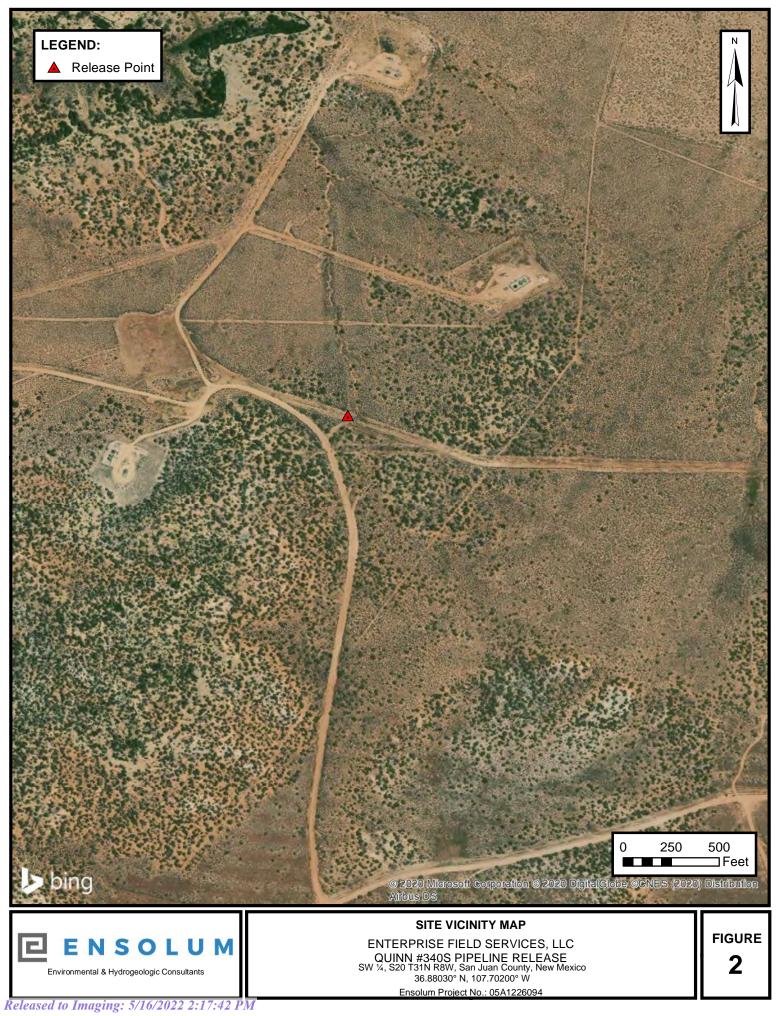
Ensolum's services were performed in accordance with standards customarily provided by a firm rendering the same or similar services in the area during the same time period. Ensolum makes no warranties, express or implied, as to the services performed hereunder. Additionally, Ensolum does not warrant the work of third parties supplying information used in the report (e.g. laboratories, regulatory agencies, or other third parties).

9.2 Additional Limitations

Findings, conclusions, and recommendations resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work and it should be noted that this information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, or not present during these services, and Ensolum cannot represent that the Site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during the investigation. Environmental conditions at other areas or portions of the Site may vary from those encountered at actual sample locations. Ensolum's findings and recommendation are based solely upon data available to Ensolum at the time of these services.

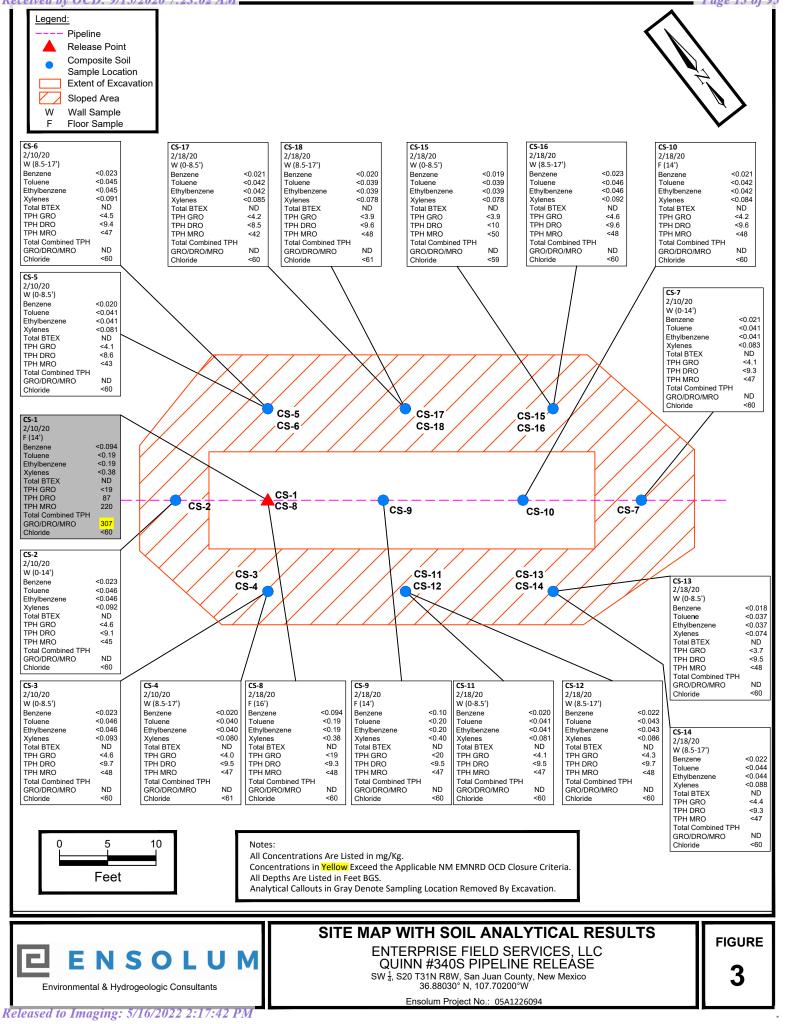
9.3 Reliance


This report has been prepared for the exclusive use of Enterprise, and any authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the Site) is prohibited without the express written authorization of Enterprise and Ensolum. Any unauthorized distribution or reuse is at the client's sole risk. Notwithstanding the foregoing, reliance by authorized parties will be subject to the terms, conditions and limitations stated in the report, and Ensolum's Master Services Agreement. The limitation of liability defined in the agreement is the aggregate limit of Ensolum's liability to the client.



APPENDIX A

Figures


Received by OCD: 9/15/2020 7:23:02 AM

Received by OCD: 9/15/2020 7:23:02 AM

APPENDIX B

Siting Documentation

. Released to Imaging: 5/16/2022 2:17:42 PM

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is closed)	(quarters				,	3 UTM in meters)		(In feet	t)
POD Number	POD Sub- Code basin C		Q Q 6 4 Sec	: Tws	Rng	x	Y	-	Depth Water	Water Column
SJ 00012	SJ	SJ	2 30	31N	08W	258218	4084189* 🜍 Average Depth to	1021 Water:	475 475 f	546 eet
							Minimum Maximum	n Depth:	475 f	eet
Becard County 1										

Record Count: 1

PLSS Search:

Section(s): 20, 16, 17, 18,	Township: 31N	Range: 08W
19, 30, 29, 28,		
21		

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

у <mark>ОСD: 9/15/2</mark> ЧФФ	020 /.23.02 /111		#130	0-045-	108
		-	# 33	9-045- 1 30-049	5-28-09
	DATA SHEET FOR (Submi		N NEW MEXICO		WELLS
Operator	MERIDIAN OIL INC		Location: Un	itSec.20)TwpR
Name of	Well/Wells or Pi	ipeline Servi	ced QUINN #1	, #339	
			<u> </u>		cps
Elevatio	on_N/A_Completion	Date 12/4/90	Total Depth	500' Lan	d Type*
Casing,	Sizes, Types & D	epths	20' OF 8	" PVC CASING	<u> </u>
If Casir	g is cemented, s	show amounts	& types used_	5 BAGS SAC	KRETE
	g is cemented, s t or Bentonite P N/A				
If Cemer	t or Bentonite P	'lugs have be	en placed, sh	ow depths	& amounts
If Cemer Depths &	t or Bentonite P N/A	Plugs have be ter zones wi	en placed, sh th descriptio	ow depths	& amounts
If Cemer Depths & Fresh, C	t or Bentonite P N/A thickness of wa	Plugs have been the second sec	en placed, sh th descriptio	ow depths	& amounts
If Cemer Depths & Fresh, C Depths g	t or Bentonite P N/A thickness of wa lear, Salty, Sul	Plugs have been the second sec	en placed, sh th descriptio 270'	ow depths	& amounts when pos
If Cemer Depths & Fresh, C Depths g Type & a	t or Bentonite P N/A thickness of wa lear, Salty, Sul as encountered:	Plugs have been the second sec	en placed, sh th description 270' 2000 lbs	ow depths n of water ; CARBON COKE	& amounts when pos
If Cemer Depths & Fresh, C Depths g Type & a Depths a	t or Bentonite P N/A thickness of wa lear, Salty, Sul as encountered: mount of coke br	Plugs have been the solution of the solution o	en placed, sh th descriptic 270' 2000 1b 400', 395', 390	ow depths n of water ; CARBON COKE	& amounts when pos
If Cemer Depths & Fresh, C Depths g Type & a Depths a Depths v	t or Bentonite P N/A thickness of wa lear, Salty, Sul as encountered:_ mount of coke br nodes placed: 415	Plugs have been the solution of the solution o	en placed, sh th descriptic 270' 2000 1b 400', 395', 390	ow depths n of water cARBON COKE	& amounts when pos
If Cemer Depths & Fresh, C Depths g Type & a Depths a Depths v	t or Bentonite P N/A thickness of wa lear, Salty, Sul as encountered: mount of coke br nodes placed:415 ent pipes placed e perforations:	Plugs have been eter zones with phur, Etc	en placed, sh th descriptic 270' 2000 1b 400', 395', 390	ow depths n of water cARBON COKE	& amounts when pos

logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

*Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number. \square

Drilling Log (Astach Hereto)

M WELL CASING CATHE C PROTECTION CONSTRUCTION REPORT DAILY LOG

Completion Date 12-4-9

G.G. G Al JCB. FO C BECTIFIER

JGB. FOR QUINN # 1

N

and maked to be the

J&1'

. .

GUINN #339

K 1.55	Well Name	, Line or Plant:		Work C	ndes #	Static:		Ins. Union Ched	<u>،</u>
6232 W		QUIND	339					WELLIN UNIC	
	1	Ande Sim:		Type:		Size Bit:	. 3. 11		
EC. 20, T-31N .		2"X 6		ANOTE			63/4"		
Septh Dailed	Depth L	495	Drilling Aug	lime To	2900#		nian Mer'i Und-	No. Socio Mud	Und:
Anode Depth 1 415 # 2	410	1 3 405	84 40 0	* 5 375	#6390	#7 385	10380	1 1 375	N 10 370
Anode Output (Ampe)		1	1	1	1	1		
1 3.3 42	3,4	#3 3,8	14 4,1	#5 3.9	#6 3,8	#73,3	18 3.4	10 3.2	# 10 2,6
Anode Depth			1	1		1	1	# 19	!# 20
Anode Output (Amps		# 13	# 14	# 15	# 16	# 17	# 18		# 20
r 11 // // //		# 13	# 14	i # 15	,# 16	1 .# 17	1 .# 18	n 19	# 20
Total Circuit Resis	ance			17-12	No. & C.P. C			No. 2 C.P. C	able Used
<u>PVS , PE</u> 330'	<u>RForm</u>	TEO BO	<u>576:73</u>	00 ¹ , PV 3	SCINTS	CLUED .	SAMPLE A AND JUINETE	æ ₽0, RÁN	CORE TO
	NOTE! OUINN ^{II} REATIFIER PISCON		<u>ن برن sc</u>	ECTED (USED QUI				
dda'l Depth epth Credit: ntra Cable: bitch & 1 Cable:					· (,	5.	All Constan	uction Comple	led
5'Meter Pole: Meter Pole:						•	(\$	ignature) 🛝	

334

Received by OCD: 9/15/2020 7:23:02 AMO-TE DRILLING, INC. Page 18 of 95 Exhibit DAN Tusday DRILLER LEFT TOWN ARRIVED FIELD 60 HELPER EFT FIELD ARRIVED TOWN HELPER FOOTAGE TODAY CLIENT / DATE/ 1. 1.1 RIG NO BEGIN WORK ON HOLE NO, FEET BEGIN WORK ON HOLE NO. FEET TIME ACTIVITY FROM то 40 Ro Mer sand r. Phal \cap 40 3 (1) Λ And 211 2:00 3.50 420 L. Vic 420 500 ny sin State .. . • • . . . BIT RECORD SIZE & MAKE FOOTAGE SERIAL NO. 63/ £, : CIRCULATION MATERIAL QUAN MATERIAL \$ 25 ē. 1 . . . SOURCE NO. OF LOADS OF WATER 11:10 farm,nm Form 219-6

. Released to Imag

Received by	, OCD :	· 9/15/2020	7:23:02 AM
-------------	----------------	-------------	------------

TOTAL VOLIS:

CONSTRUCTION LOGGING MEADINGS

1

12-4-90

4.7.

DATE:

-

Meridion Oil

inn

CP9: /

TOTAL ANPS:

WELL NAME:

339 10CATION: 20-31-8 in Tite in man OINS RESISTANCE:~

EEP		ANODE	DEEP	100 ANODE	ANODE NO.		LOG ANODI	ANODE No.	DEEP	LOG ANODE	VIODE No.		DEFLII DEFLII	lio Coke	W1TH COKE
5_			185			365	.60		545			1	415	1.1	3.
10			190			370	41	10	550			2	410	-1.4_	3.4
15			195			375	1.4	9	555			3	<u>405</u>	1.4	_3.8
20			200	.50		380	7.4	8	<u>560</u>		<u> </u>	4	400	1.5	4
25	·		205	.80		385	12	7	565			5	395	1:5	3
30			210	16		390	L.L	6	570			6	390	1.3	<u></u>
35.			215.	<u>30</u>		_395	10	5	575	·		17	385	.1.4_	. 3
40			220	.20		100		4	<u>500</u>			8	380	1.8	-1
45			225	10		405	1.3		585		┨────	17	375		3.
50			230	ιiυ	┠────	410	_	2	<u>590</u>	<u> </u>	·]	110	370	<u>it</u>	<u></u>
55			235	120		415	.50	1	595	{	<u> </u>	.			-
<u>60</u>			240	40		420		1	600		·[<u> </u>		
<u>65</u>			245	:30		425		1	605	<u> </u>			-		
70			250	.30		430		1	610						-{
75			255	.30	 	435			615	 		-{			
80			260	.20		440	30		620	1.	• •		 		
85			265	<u>,30</u>		445	-20		625	<u>.</u>			 	1.7.5	┥़
90			270	.10		450	1.30	l	630			.			_]
<u>95</u>			275	.20		455	148	<u>}</u>	635		.	-			
.00			280	.20	 	460	77	4	640	<u> </u>	·			-	
.05			285	.30		465			645	<u> </u>		-			_ _
10			290	30		470			650	<u> </u>	.	-			_
15			295	.30		475	30		655	<u> </u>				-	
20			300	,30		480	140	<u> </u>	660	<u> </u>					
25			305	.10	<u> </u>	485	141		665					-	
30			310	.10		490	,30	2	670			r			
35			315	.10		499	30		675						
40			320	,10		500			680						
45			325	.20		505	1	·	605						
150			330	20		510			690						
55			335	.40		515	5		695						
60			340	150		520			700					_	
165			345	.30		52'	2		705						
170			350	,40		530			710						
175			355	.30		53			715		1		1		
80			360	151		540		1	720						
التنبين	KB:	0			-	-	1				1			270'.	

.**.** '

2900# AAN 330' TO

:•

Received by OCD: 9/15/2020 7:23:02 AM 30-045-283 DATA SHEET FOR DEEP GROUND BED CATHODIC, PROTECTION WELLS NORTHWESTERN NEW MEXICO Operator Mischen Oil Location: Unit A Sec. 20 Twp 3/ Rng S Name of Well/Wells or Pipeline Serviced Junn Elevation 6537 Completion Date 3-2-9/ Total Depth 480' Land Type Casing Strings, Sizes, Types & Depths 100 ach. 40 8 If Casing Strings are cemented, show amounts & types used_____ sacke of Coment If Cement or Bentonite Plugs have been placed, show depths & amounts used NO Depths & thickness of water zones with description of water, Eresh R Salty, Sulphur, Etc. Fresh major FEB2 41992 OIL CON. DIV. Depths gas encountered: NO DIST. S Ground bed depth with type & amount of coke breeze used: Ashusia 72 da Depths anodes placed: 164 454 445 436 427 Depths vent pipes placed: _____480 Vent pipe perforations: i apart perforated hottom Remarks:

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number. Received by OCD: 9/15/2020 7:23:02 AM

--

Page 21 of 95

•

CPS#	240-0-	P/L NA	ME (.) . P			un.	<u>*</u> 2	*	341			
w. #	317	TOTAL	VOLTS //.	92	амра 10.	0 - "	онма <u>1.19</u>	8	TE - <u>2-9/</u>	NAME	1.5. <i>E</i> .	
					on log;						and the second sec	-
			, ź		- 400	1						
<u></u>		\mathcal{D}	an e a -	<u> </u>	- 400 Latte		leo'	» (4			<u> </u>
		<u></u> [prin	<u>.</u>	<u>L'ANC</u>	7 777 4		<u>f Cc</u>	and y	Dife.		
DEPTH	LOG	ANODE	DEPTH	LOG	ANODE	DEPTH	LOG	ANODE	DEPTH	LOG	ANODE	
	ANODE	•		ANODE	•		ANODE	+		ANODE	יי עייעניל 🏟	
100			295	. 3		490			685			- ¹ •
105			300	. 3		495			690			
110			305	.1		500			695			
115			310	. 4		505			700			
120			315	. 4		510	<u> </u>		ANODE	DEPTH	NO	FULL
125			_320_			515					COKE	COK.
130			325			520			1	464	1.0	2.6
135			330	-e_		525				454	1.6	3.8
140			335	- lici		530			3	445	1.9	4.0
145			340	1.7	· · · · · · · · · · · · · · · · · · ·	535			<u>4</u> 5	436 427	2.1	4.Z
<u>150</u> 155			<u>345</u> 350			<u>540</u> 545			6	418	2.0	3.7
233			355			550			7	419	1.6	<u> </u>
<u>v</u>			360			555			8	400		<u>, 2.1</u> <u>3.1</u>
170			365			560			9	391	<u> </u>	<u> </u>
175			370			565			10	382	1.2	2.7
180			375		0	570			11	345	1.5	2.8
185			380	7		575			12	337	1.5	2.9
190			385	12	7	580			13	<u>ser</u>		- <u></u>
195			390	1.6		585-			14		· · ·	
200			395	4.0		590			15			
205			400	· .		595			16			
210			405	1.2.	/	600			17			
215			410	1.2		605_						
220			415	1.5		610			_19			
225			420	1.9		_615_			_20			
230			425	1.9		620			21			
235			430	20		625			22			
240			435	2.1		630			23			
245			440	1.9		635			24			
<u>250</u> 255			<u>445</u> 450	1.7		640			<u>25</u> 26			
260			450	13	·	<u>645</u> 650			27	<u>.</u>		
265			450	10	ć	655			28			
270			465	-16-		660			29			[
275	. 2		470	.9		665			30			
280	. 3		475	. 9		670]	
_ 3_	, 3		480	T.D.	480	675						
6.2	.3		485			680						
	BUTION	اليوجيون			ا <u>لے مسلم مسلم</u>				<u> </u>			`r

. Released to Imaging: 5/16/2022 2:17:42 PM

Received l	by OCD: 9/15/2020 7:23:02 A	M		SIS NERUNI		624000	Page 22
	Laboratory No. 2591080 Company	. B		Sa	mple No.	Date Sampled	n Tonis Late of the
	Field		al Description		County or Parish	8-2-9/ State	
		A	-20-31-8	3	SAN JUH	N N.M.	
	Lease or Unit	Well	6,340		Formation	Water, B/D	TECH, Inc.
	Type of Water (Produced, Supp	Ply, etc.)	Sampling F		unic Thole	Sampled By	333 East Main
	GR. BET	2				LSE	Farmington New Mexico
	DISSOLVED SOLIDS			OTHER PROPER	TIES		87401
	CATIONS	mg/l	me/l	pH		8,8	505/327-3311
	Sodium, Na (calc.) Calcium, Ca	6000	260	Specific Gravity, 6 Resistivity (ohm-rr		8,8 1,0138 0,60	
	Magnesium, Mg		0.9	·····			
	Barium, Ba		·····				
			, 		Total Dissolved Solids	(calc.)	
	ANIONS					20,000	
	Chloride, Cl	1100			Iron, Fe (total)		
	Sulfate, So₄ Carbonate, CO₃	570	<u> </u>		Sulfide, as H ₂ S	·	
	Bicarbonate, HCO ₃	12000	200		COMMENDATIONS:		
				nemaniko a nec	Sommendations.		
	- <u>1</u> (
	n. 25 20	15 10	5 0	5	1,0 1,5	20 2 <u>5</u>	. 4
	20					10	·
			<i>†††††††††††††</i>				
	Ca	╶╁┟╤┟┽┟┥┝┥┝┥				<u>нсо</u> з	
	Mg					304	
						10	
	· ·					co,	
	Date	Preserved		Date Analyze	<u> </u>	Ap alyz ed By	\frown
· · · · · · · · · · · · · · · · · · ·	8-8-91	10		8-16-	91	E	

of 95

t

. Released to Imaging: 5/16/2022 2:17:42 PM

ceived i	by OCD: 9/15/2020 7:23:02 AM Pag	ze 23 of 9
	ISION 1 DATA SHEET FOR DEEP BED CATHODIC PROTECTION WELLS NORTHWESTERN NEW MEXICO (SUBMIT 2 COPIES TO OCD AZTEC OFFICE)	
OF	PCO DESIGNATION: FM-458 PERATOR: PHILLIPS PETROLEUM COMPANY LOCATION: M 21 31 8 FARMINGTON, N.M. 87401 LEASE NUMBER: 650117 (505) 599-3400	• ••• ••
NA	(505) 549-3400 AME OF WELL/S OR PIPELINE SERVED: (1) SJ 32-8 UNIT #12 MV 30-045-10 (2) 32-8#234 30-045-28 329	0460
EL	LEVATION:NA COMPLETION DATE: 05/09/63 DTAL DEPTH: 530 FT. LAND: FEDERAL	
Cł	ASING INFO.; SIZE: NA IN. TYPE: NA DEPTH: NA FT. CEMENT USED: NA	
IF	F CEMENT OR BENTONITE PLUGS HAVE BEEN PLACED, SHOW DEPTHS & AMOUNTS: Plug Depth: None Plug Amount: None	
Wf	ATER INFORMATION: WATER DEPTH (FT): (1) 310 (2) -0- WATER INFORMATION: NA	
DE	EPTHS GAS ENCOUNTERED (FT): NA	
TY	YPE AND AMOUNT OF COKE BREEZE USED: COKE TYPE: METALLURGICAL COKE BREEZE COKE AMOUNT: 9970 LBS.	
DE	EPTHS ANDDES PLACED (FT): 95,110,200,385,430,455,470,480,495,505	,
DE	EPTH VENT PIPE PLACED (FT): 530	
VE	ENT PIPE PERFORATIONS (FT): TOP 85 BOTTOM 530	·
R	EMARKS: REVISION 11/93	

IF ANY OF THE ABOVE DATA IS UNAVAILABLE, PLEASE INDICATE SO. COPIES OF ALL LOGS, INCLUDING DRILLERS LOG, WATER ANALYSIS & WELL BORE SCHEMATICS SHOULD BE SUBMITTED WHEN AVAILABLE. UNPLUGGED ABANDONED WELLS ARE TO BE INCLUDED.

* - LAND TYPE MAY BE SHOWN: F-FEDERAL; I-INDIAN; S-STATE; P-FEE IF FEDERAL OR INDIAN, ADD LEASE NUMBER.

NA-INFORMATION NOT AVAILABLE

CC: CP FILE--FARMINGTON HOUSTON

by OCL): 9/15/2020	0 7:23:02 AM	30-04	5 - 230-	<i>F</i> - <u>+</u>		Page
10	14-	#9	30-04 30-04	5-2371	1 .		
				-			
				- 4 5			
		DATA SHE		GROUND BED THWESTERN NI Copies to O(EW MEXICO		ION WELLS
Op	erator_	MERIDIAN	OIL INC.	Loc	cation: Uni	t <u>P</u> Sec	2.21 Twp 30 R
Nai	me of W	ell/Wells	s or Pipelin	ne Serviced_	QUINN #6A	, #9	
	· <u></u>						cps
Ele	evation	<u>N/A</u> Com	pletion Date	e 10/27/86 To	otal Depth	<u> 500' </u> I	Land Type*
Ca	sing, S	izes, Typ	pes & Depths	5	N/A		
If	Casing	is cemer	nted, show a	amounts & ty	pes used	N/A	
							ns & amounts
If	Cement	or Bento N/A	onite Plugs	have been p	blaced, sho	w depth	ns & amounts ter when pos
If Dep	Cement	or Bento N/A thickness	onite Plugs s of water z	have been p zones with d	elaced, sho	w depth	
If Dep	Cement	or Bento N/A thickness	onite Plugs	have been p zones with d	elaced, sho	w depth	
If Dep Fre	Cement pths & esh, Cl	or Bento N/A thickness ear, Salt	onite Plugs s of water z	have been p cones with d Etc	elaced, sho	w depth	
If Dep Fre	Cement pths & esh, Cl pths ga	or Bento N/A thickness ear, Salt s encount	onite Plugs s of water z zy, Sulphur,	have been p cones with d Etc N/A	elaced, sho	w depth	
If Dep Fre Dep Typ	Cement pths & esh, Cl pths ga pe & am	or Bento N/A thickness ear, Salt s encount ount of c	onite Plugs s of water z cy, Sulphur, cered:	have been p zones with d Etc N/A used:	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	w depth	
If Dep Fre Dep Typ Dep	Cement pths & esh, Cl pths ga pe & am pths an	or Bento N/A thickness ear, Salt s encount ount of c odes plac	onite Plugs s of water z cy, Sulphur, cered: coke breeze	have been p zones with d Etc N/A used:	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	w depth	ter when pos
If Dep Fre Dep Typ Dep Dep	Cement oths & esh, Cl oths ga oths an oths ve	or Bento N/A thickness ear, Salt s encount ount of c odes plac	onite Plugs s of water z cy, Sulphur, cered: coke breeze ced: <u>460',450</u> placed:	have been p zones with d Etc N/A used: ', 440', 430'	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	w depth	ter when pos

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

*Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

113			
Received by OCD:	9/15/2020	7:23:02	AM

2

P.O. Drawer G Aztec, New Mexico 87410

Neli Name	Attach Hereto,		62	Location						1				
Qu	inn #6-1	A & #9			nion Tex	as	Petro	leur	n					• •
Type & Size Bit	Used	······································		<u>, </u>				~~~~		Wo	rk Order	No.	,	
O Anode Hole De	3/4 incl	N Total Drilling Rig	71	Tanti	bs. Coke Used		ost Circul		las'l Llead	No	. Secks M	hurd 1.4m	eri	۰
500 1		6 hou			2300 #			ation w			. 38645 M			- T
Anode Dépth	1	1	1		· · · · · · · · · · · · · · · · · · ·	1		1		1		1	. دري .	1 .
, 460	450	440	4	130	• 420	 _ #6	405	 #7	340]]##	330	149		1.033
Anode Output		1	1	1		1		I I	_	1		ł	,	1
1.8	2.4	3.7		3.8	<u>•</u> 5 4.0	e	4.7	107	4.4	<u>i #8 .</u>	4.6	<u>i#9.</u>	4.8	10104
Anode Depth		i i	i I	i		i		i I		1		1		1
#11 Anode Output	1#12 (Amps)	<u>i#13</u>	1#14	<u> </u> 	#15	#16		1#17		1#18		1#19		<u> # 20</u>
#11	 _ #12	i #13	 #14	l	#15	i #16		1		 #18		i #19	1	i 1#20
Total Circuit R	The second se		1				B C.P. Cab			1	······			able Used
volts 12	2.1 /Am	16.S	 Ohr	ms • 7	72		46	67 <u>1</u>	eet			1		
			,						۵	Cons	truction		mieted	
									All	Cons	etruction	n Con	npleted	
									All	+ 7	Num	kr	npleted	
		Duin # 9							All	+ 7	struction <u>Marrie</u> (Signati	kr	npleted	
	·	QHINN #9 Well	,	GROU	ND BED LA	You	SKEIC	<u>с</u>	All	+ 7	Num	kr	npleted	
		Well	·	GROU	ND BED LA	YOUŢ	SKEIC		All	+ 7	Num	kr	npleted	
	,	Well Head		GROU	ND BED LA	YOUŢ	SKEIC	H 7	All	+ 7	Num	kr	npleted Lat	
	QuiNN	Well Head		GROU	ND BED LA	Υουτ	SKEIS J	H 7	All	+ 7	Num	kr	npleted	
	QuiNN	Well		GROU			¢ [H T T	All	+ 7	Num	kr	npleted	
	QuiNN	Well Head		GROU			¢ [H T T	All	+ 7	Num	kr	npleted	
	QuiNN	Well Head	· ·	GROU		¥9)202 ∦9)202	¢ [H T	All	+ 7	Num	kr	npleted	
	QuiNN	Well Head		GROU			¢ [H 7 7	All	+ 7	Num	kr	npleted	
	Quinn We	Well Head	· ·	GROU			¢ [H T	All	+ 7	Num	kr	npleted عيب	
	Quinn We	Well Head		GROU			¢ [H 7 1-+	All	+ 7	Num	kr	npleted	
÷.	Quinn We #6-A Meter	Well Head	·	GROU			¢ [H 7 7	All	+ 7	Num	kr	npleted	
÷.	Quinn We	Well Head	·	GROU			¢ [H 7 7	All	+ 7	Num	kr	npleted	
÷.	Quinn We #6-A Meter	Well Head	·	GROU			¢ [H T t t	All	+ 7	Num	kr	npleted	
÷.	Quinn We #6-A Meter	Well Head	· ·	GROU	#	± 9)272 N	¢ [H T T	All	+ 7	Num	kr	npleted	
÷.	Quinn We #6-A Meter	Well Head		GROU	# 55' DRI	49 Me N	¢ [H T T	All	+ 7	Num	kr	npleted	
÷.	Quinn We #6-A Meter	Well Head	·	GROU	#	49 Me N	¢ [H T	All		Num	<u>k</u> ure)		

COMPANYOIVIOI	TEXAS	DLEOM DAIL	Y DRILLING REPOR	OCT. 26	
WELL NAME:		WELL NUMBER:	SECTION:	TOWNSHIP:	RANGE:
OUINN 6	<u>5-A & 9</u>	6-A & 9	20	31	8
	WATER AT	FEET	HOLE MADE:		
Moisture	e 160'	······································	500'		· · ·
FROM		DESCRIPTION OF		~	COLOR
	то		FORMATION IS	>	
00	40	clay			brown
40	140	shale			red/blue
140	160	moisture-			blue
160	180	bentonite	·····		white
180	300	sandy ber	ntonite		white
300	340	shale- be	entonite		blue/whit
340	400	sandy ber	ntonite		white
400	500	shale sar	nd streamer	S	blue
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		
				·	
				·	
REMARKS:	Went to inje	ection at 360	due to th	e powder con	ditions.
	24				
4	-				
·	6		-		-
Brian &	- Burge	Driller	· · · · · · · · · · · · · · · · · · ·	· · · · · ·	Tool Dresser
		-		·	
			· · .		· ·

	DCD: 9/15/2020 7:23:02 AM Page 2 1467
	30-045-24347-
	DATA SHEET FOR DEEP GROUND_BED CATHODIC PROTECTION WELLS NORTHWESTERN NEW MEXICO (Submit 3 copies to OCD Aztec Office)
(Operator <u>MERIDIAN OIL INC.</u> Location: Unit <u>I</u> Sec. <u>19</u> Twp <u>31</u> Rn
1	Name of Well/Wells or Pipeline Serviced QUINN #4A
_	cps 62
I	Elevation N/A Completion Date 10/30/86 Total Depth 500' Land Type* N
(Casing, Sizes, Types & DepthsN/A
-	
]	If Casing is cemented, show amounts & types used <u>N/A</u>
_	
- [[If Cement or Bentonite Plugs have been placed, show depths & amounts
 I F	If Cement or Bentonite Plugs have been placed, show depths & amounts N/A Depths & thickness of water zones with description of water when poss
- - - - - - - - -	If Cement or Bentonite Plugs have been placed, show depths & amounts N/A Depths & thickness of water zones with description of water when poss Fresh, Clear, Salty, Sulphur, Etc. 140'
 1 1 1 1 1 1	If Cement or Bentonite Plugs have been placed, show depths & amounts N/A Depths & thickness of water zones with description of water when poss Fresh, Clear, Salty, Sulphur, Etc. 140' Depths gas encountered: N/A Type & amount of coke breeze used: 3500 lbs.
 I I I I I I I I I I I I I I I I I	If Cement or Bentonite Plugs have been placed, show depths & amounts N/A Depths & thickness of water zones with description of water when poss Fresh, Clear, Salty, Sulphur, Etc. 140' Depths gas encountered: N/A Type & amount of coke breeze used: 3500 lbs.
	If Cement or Bentonite Plugs have been placed, show depths & amounts N/A Depths & thickness of water zones with description of water when poss Fresh, Clear, Salty, Sulphur, Etc. 140' Depths gas encountered: N/A Type & amount of coke breeze used: 3500 lbs. Depths anodes placed: 480', 455', 445', 420', 410', 400', 350', 275', 195', 185'
	If Cement or Bentonite Plugs have been placed, show depths & amounts N/A Depths & thickness of water zones with description of water when poss Fresh, Clear, Salty, Sulphur, Etc. 140' Depths gas encountered: N/A Type & amount of coke breeze used: 3500 lbs. Depths anodes placed: 480', 455', 445', 420', 410', 400', 350', 275', 195', 185' Depths vent pipes placed: 490' RECEIVED

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

*Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

•

	V	P.O. Draw	er G	5 101	ı Sys	stems			
h Hereto).	Q3 (023	7w			Compl	etion Date_	<u>October</u>	30,198
uinn #4			cation	exas	Petr	oleum			
'3/4 in	.ch		· · · · · · · · · · · · · · · · · · ·	·· •			Work Orde	nr No.	· .
		· · · · · · · · · · · · · · · · · · ·		a 1	Lost Circul	ation Mat'l Used	No. Sacks	Mud Used	
ļ		1	1		400	1	1	1	 #10] 8
(a)		1	1			i I	1	1	 #10 2
i i		 	1	l		l 	1	1	1 20
	 	1	 	 		1	1	1	 #20
the second s		l l (Ohms	. 89		8 C.P. Cat				
	455 2.1	th Hereto). \square (uinn #4-A 3/4 inch Total Drilling Rig t 10 hou 455 $ _{e3}$ 445 2.1 $ _{e3}$ 2.1 2.1 $ _{e3}$ 2.1 1 2.1 $ _{e3}$ 2.1 1 2 _{e13}	P.O. Drawn Aztec. New Aztec. New Aztec. New Aztec. New Aztec. New Aztec. New 455 ($a=3$) 455 ($a=4$) 456 ($a=4$) ($a=4$) 456 ($a=4$) ($a=4$) 456 ($a=4$) ($a=4$	P.O. Drawer G Aztec. New Mexico 87410 The Hereto). \square	P.O. Drawer G Aztec. New Mexico 87410 The Hereto). \square	P.O. Drawer G Aztec. New Mexico 87410 The Hereto). \square	Aztec, New Mexico 87410 Total Location ainn #4-A ainn Texas Petroleum ainn Tex	P.O. Drawer G Aztec. New Mexico 87410 The Hereto). The formation of the	P.O. Drawer G Aztec, New Mexico 87410 Th Hereto). \square (237) Completion Date October uinn #4-A Union Texas Petroleum 3/4 inch Total Drilling Rig Time Total Lbs. Coke Used Lost Circulation Mat'l Used No. Sacks Mud Used 10 hours 3500# 455 e3 445 e4 420 es 410 es 400 er 350 es 275 es 195 2.1 e3 2.1 es 2.5 es 2.6 es 2.4 er 1.9 es 2.6 es 2.4 e 13 esta esta esta esta esta esta esta esta

All Construction Completed

Muneres (Signature)

GROUND

GROUND BED LAYOUT SKETCH

,

Well Head Meter Run-۶Ø -Drip TANK 327

	TEXAS TROL				19
WELL NAME:		WELL NUMBER:	SECTION:	TOWNSHIP:	RANGE: 8
Quinn		4 - A	19	31	0
çî. îv	WATER AT	FEET	HOLE MADE:	2	
· · · · · · · · · · · · · · · · · · ·		DESCRIPTION OF			
FROM	то		FORMATION	IS	COLOR
0	40	clay / sam	ndstone		brown
40	60	sandstone			yellow
60	80	chalo			blue
80	140		/ water		vellow
140	160	sandstone			vellow/blu
160	180	shale	, 5		blue
180	200	shale			blue
200	260		/ sand		green/ blu
260	280		le		blue
280	340	_	ndstone /b		white/blue
340	360		le		blue
360	380	_	······································		green
380		bentonite			white
395	450	shale			blue/red
450	470	bentonite	/ sand		white
470	490		le streame		blue
490	500	sand			white
				<u> </u>	
REMARKS:	Had to go to	injection at	140'. Dri	lled hole to	500'
	·			·····	· · · · · · · · · · · · · · · · · · ·
• 					
		····			,
		······································			
Brian E	Burge	Driller	t		Tool Dresser
	1				

Released to Imaging: 5/16/2022 2:17:42 PM

با الاشر موجود المعلي الم . بر میں میں م 1 37

APPENDIX C

Executed C-138 Solid Waste Acceptance Form

. Released to Imaging: 5/16/2022 2:17:42 PM

Received by OCD: 9/15/2020 7:23:02 AM

District I 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

9 705 7-1089 Form C-138 Revised 08/01/11

*Surface Waste Management Facility Operator and Generator shall maintain and make this documentation available for Division inspection.

REQUEST FOR APPROVAL TO ACCEPT SOLID WASTE
1. Generator Name and Address: Enterprise Field Services, LLC, 614 Reilly Ave, Farmington NM 87401
2. Originating Site: Quinn #340S
3. Location of Material (Street Address, City, State or ULSTR): UL K Section 20 T31N R8W; 36.880300, -107.702000 Feb. 2020
4. Source and Description of Waste: Hydrocarbon impacted soil/sludge. Source: Remediation activities associated with a natural gas pipeline leak. Description: Hydrocarbon/Condensate impacted soil/sludge associated natural gas pipeline release. Estimated Volume (50)yd ³ / bbls Known Volume (to be entered by the operator at the end of the haul) <u>54</u> (yd ³) bbls
5. GENERATOR CERTIFICATION STATEMENT OF WASTE STATUS
I, Thomas Long from Lay, representative or authorized agent for Enterprise Products Operating do hereby Generator Signature
certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination, the above described waste is: (Check the appropriate classification)
RCRA Exempt: Oil field wastes generated from oil and gas exploration and production operations and are not mixed with non- exempt waste. <u>Operator Use Only: Waste Acceptance Frequency Monthly Weekly Per Load</u>
RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24, or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items)
🗖 MSDS Information 🔲 RCRA Hazardous Waste Analysis 🔲 Process Knowledge 🔲 Other (Provide description in Box 4)
GENERATOR 19.15.36.15 WASTE TESTING CERTIFICATION STATEMENT FOR LANDFARMS
I, Thomas Long 2-5-2020, representative for Enterprise Products Operating authorizes Envirotech, Inc. to complete Generator Signature the required testing/sign the Generator Waste Testing Certification.
I, <u>Greg Crubbre</u> , representative for <u>Envirotech. Inc.</u> do hereby certify that representative samples of the oil field waste have been subjected to the paint filter test and tested for chloride content and that the samples have been found to conform to the specific requirements applicable to landfarms pursuant to Section 15 of 19.15.36 NMAC. The results of the representative samples are attached to demonstrate the above-described waste conform to the requirements of Section 15 of 19.15.36 NMAC.
5. Transporter: TBD West States OCD Permitted Surface Waste Management Facility
Name and Facility Permit #: Envirotech Inc. Soil Remediation Facility * Permit #: NM 01-0011 Address of Facility: Hilltop, NM Method of Treatment and/or Disposal: Evaporation Injection Treating Plant Infarm Landfill Other
Waste Acceptance Status:
PRINT NAME: Image: Complexity of the c

•

APPENDIX D

Photographic Documentation

Enterprise Field Services, LLC Closure Report Quinn #340S Pipeline Release Ensolum Project No. 05A1226094

Photograph 1 Photograph Description: View of in-process excavation activities. Photograph 2 Photograph Description: View of the initial excavation. Photograph 3 Photograph Description: View of the final excavation.

Enterprise Field Services, LLC Closure Report Quinn #340S Pipeline Release Ensolum Project No. 05A1226094

Photograph 4 Photograph Description: View of the final excavation. Photograph 5 Photograph Description: View of final excavation after initial restoration.

APPENDIX E

Table 1 – Soil Analytical Summary

. Released to Imaging: 5/16/2022 2:17:42 PM

ENSOLUM

Sample I.D. Date Sample Type C- Composite G - Grab Sample Depth (Feet) Benzene (mg/kg) Toluene (mg/kg) Ethylbenzene (mg/kg) Xylenes (mg/kg) Total E (mg/kg) New Mexico Energy, Minera & Natural Resources Department Oil Conservation Division Closure Criteria 10 NE NE NE S6 Composite Soil Samples Removed by Excavation and Transported to the Lanfarm CS-1 2.10.20 C 14 <0.094 <0.19 <0.19 <0.38 NE SP-2 2.10.20 C Stockpile <0.023 <0.045 <0.045 <0.090 NE SP-1 2.10.20 C Stockpile <0.023 <0.045 <0.045 <0.090 NE SP-3 2.18.20 C Stockpile <0.022 <0.044 <0.087 NE SP-4 2.18.20 C Stockpile <0.023 <0.045 <0.041 <0.083 NE SP-4 2.18.20 C Stockpile <0.023 <0.046 <0.048 <0.096 NE SP-6 2.18.20 C<	(mg/kg)	TPH DRO (mg/kg)	TPH MRO	Total Combined		
Oil Conservation Division Closure Criteria 10 NE NE NE NE State Composite Soil Samples Removed by Excavation and Transported to the Lanfarm CS-1 2.10.20 C 14 <0.094 <0.19 <0.19 <0.38 NE SP-2 2.10.20 C Stockpile <0.023 <0.045 <0.045 <0.090 NE Stockpiled Soil Samples Stockpile <0.023 <0.045 <0.045 <0.090 NE Stockpile <0.023 <0.045 <0.045 <0.090 NE Stockpile <0.023 <0.045 <0.045 <0.090 NE Stockpile <0.021 <0.044 <0.087 NE SP-4 2.18.20 C Stockpile <0.021 <0.041 <0.083 NE SP-5 2.18.20 C Stockpile <0.023 <0.045 <0.048 <0.090 NE Excavation Composite Soil Samples	50		(mg/kg)	TPH (GRO/DRO/MRO) (mg/kg)	Chloride (mg/kg)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(33)	(100	600	
SP-2 2.10.20 C Stockpile <0.023	m for Dispoal/Remediation			<u> </u>		
SP-1 2.10.20 C Stockpile <0.023	ND <19	87	220	307	<60	
SP-1 2.10.20 C Stockpile <0.023 <0.045 <0.045 <0.090 NI SP-3 2.18.20 C Stockpile <0.022	ND <4.5	33	98	131	<60	
SP-3 2.18.20 C Stockpile <0.022 <0.044 <0.044 <0.087 NI SP-4 2.18.20 C Stockpile <0.021						
SP-4 2.18.20 C Stockpile <0.021 <0.041 <0.041 <0.083 NE SP-5 2.18.20 C Stockpile <0.023	ND <4.5	<8.9	<44	ND	<61	
SP-5 2.18.20 C Stockpile <0.023 <0.045 <0.045 <0.091 NI SP-6 2.18.20 C Stockpile <0.024	<td>ND <4.4</td> <td><10</td> <td><50</td> <td>ND</td> <td><60</td>	ND <4.4	<10	<50	ND	<60
SP-6 2.18.20 C Stockpile <0.024 <0.048 <0.048 <0.096 NI Excavation Composite Soil Samples CS-2 2.10.20 C 0 to 14 <0.023 <0.046 <0.046 <0.092 NI CS-3 2.10.20 C 0 to 8.5 <0.023 <0.046 <0.046 <0.092 NI CS-3 2.10.20 C 0 to 8.5 <0.023 <0.046 <0.046 <0.093 NI CS-4 2.10.20 C 8.5 to 17 <0.020 <0.041 <0.040 <0.080 NI CS-5 2.10.20 C 8.5 to 17 <0.020 <0.041 <0.041 <0.081 NI CS-6 2.10.20 C 8.5 to 17 <0.023 <0.045 <0.045 <0.091 NI CS-6 2.10.20 C 8.5 to 17 <0.023 <0.045 <0.045 <0.091 NI CS-7 2.10.20 C 0 to 14 <0.021 <0.041	ND <4.1	<10	<50	ND	<60	
CS-2 2.10.20 C 0 to 14 <0.023 <0.046 <0.046 <0.092 NI CS-2 2.10.20 C 0 to 14 <0.023	ND <4.5	<10	<50	ND	<61	
CS-2 2.10.20 C 0 to 14 <0.023 <0.046 <0.046 <0.092 NI CS-3 2.10.20 C 0 to 8.5 <0.023	ND <4.8	<9.1	<46	ND	<60	
CS-3 2.10.20 C 0 to 8.5 <0.023 <0.046 <0.046 <0.093 NI CS-4 2.10.20 C 8.5 to 17 <0.020		-	_			
CS-4 2.10.20 C 8.5 to 17 <0.020 <0.040 <0.040 <0.080 NI CS-5 2.10.20 C 0 to 8.5 <0.020	ND <4.6	<9.1	<45	ND	<60	
CS-5 2.10.20 C 0 to 8.5 <0.020 <0.041 <0.041 <0.081 NI CS-6 2.10.20 C 0 to 8.5 <0.020	ND <4.6	<9.7	<48	ND	<60	
CS-6 2.10.20 C 8.5 to 17 <0.023 <0.045 <0.045 <0.091 NE CS-7 2.10.20 C 0 to 14 <0.021	ND <4.0	<9.5	<47	ND	<61	
CS-7 2.10.20 C 0 to 14 <0.021 <0.041 <0.041 <0.083 NI CS-8 2.18.20 C 16 <0.094		<8.6	<43	ND	<60	
CS-8 2.18.20 C 16 <0.094 <0.19 <0.19 <0.38 NI CS-9 2.18.20 C 14 <0.10	-	<9.4	<47	ND	<60	
CS-9 2.18.20 C 14 <0.10 <0.20 <0.20 <0.40 NE CS-10 2.18.20 C 14 <0.021		<9.3	<47	ND	<60	
CS-10 2.18.20 C 14 <0.021 <0.042 <0.042 <0.084 NE CS-11 2.18.20 C 0 to 8.5 <0.020		<9.3	<46	ND	<60	
CS-11 2.18.20 C 0 to 8.5 <0.020 <0.041 <0.041 <0.081 NE		<9.5	<47	ND	<60	
		<9.6	<48	ND	<60	
CS-12 Z.10.20 C 8.5 TO 17 <0.022 <0.043 <0.086 NL		< 9.5	<47	ND	<60	
		<9.7	<48	ND	<60	
CS-13 2.18.20 C 0 to 8.5 <0.018 <0.037 <0.037 <0.074 NE CS-14 2.18.20 C 8.5 to 17 <0.022		<9.5 <9.3	<48 <47	ND ND	<60	
		<9.3 <10	<47 <50	ND	<60 <59	
		<10 <9.6	<50 <48	ND	<59	
CS-10 2.18.20 C 6.5 to 17 <0.023 <0.046 <0.046 <0.092 NL CS-17 2.18.20 C 0 to 8.5 <0.021	ND <3.9	<9.0	<48	ND	<60	
CS-17 2.18.20 C 0.10 6.5 <0.021 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <0.042 <td>ND <4.6</td> <td><0.5 <9.6</td> <td><42</td> <td>ND</td> <td><00</td>	ND <4.6	<0.5 <9.6	<42	ND	<00	

Note: Concentrations in **bold** and yellow exceed the applicable NM EMNRD Closure Criteria

ND = Not Detected above the Practical Quantitation Limits or Reporting Limits

NA = Not Analyzed

NE = Not Established

mg/kg = milligram per kilogram

BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes

TPH = Total Petroleum Hydrocarbon

GRO = Gasoline Range Organics

DRO = Diesel Range Organics

MRO = Motor Oil/Lube Oil Range Organics

APPENDIX F

Laboratory Data Sheets & Chain of Custody Documentation

February 12, 2020

Kyle Summers ENSOLUM 606 S. Rio Grande Suite A Aztec, NM 87410 TEL: (903) 821-5603 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

RE: Quinn 340S

OrderNo.: 2002404

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 7 sample(s) on 2/11/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002404

Date Reported: 2/12/2020

CLIENT: ENSOLUM Project: Quinn 340S			ient Sample II Collection Dat		-1 0/2020 3:40:00 PM	
Lab ID: 2002404-001	Matrix: SOIL				1/2020 8:05:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	CAS
Chloride	ND	60	mg/Kg	20	2/11/2020 1:51:40 PM	50382
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	CLP
Diesel Range Organics (DRO)	87	8.7	mg/Kg	1	2/11/2020 2:25:38 PM	50375
Motor Oil Range Organics (MRO)	220	44	mg/Kg	1	2/11/2020 2:25:38 PM	50375
Surr: DNOP	93.0	55.1-146	%Rec	1	2/11/2020 2:25:38 PM	50375
EPA METHOD 8015D: GASOLINE RANGE	E				Analyst	RAA
Gasoline Range Organics (GRO)	ND	19	mg/Kg	5	2/11/2020 12:46:16 PM	R66461
Surr: BFB	81.0	66.6-105	%Rec	5	2/11/2020 12:46:16 PM	R66461
EPA METHOD 8021B: VOLATILES					Analyst	RAA
Benzene	ND	0.094	mg/Kg	5	2/11/2020 12:46:16 PM	B66461
Toluene	ND	0.19	mg/Kg	5	2/11/2020 12:46:16 PM	B66461
Ethylbenzene	ND	0.19	mg/Kg	5	2/11/2020 12:46:16 PM	B66461
Xylenes, Total	ND	0.38	mg/Kg	5	2/11/2020 12:46:16 PM	B66461
Surr: 4-Bromofluorobenzene	90.9	80-120	%Rec	5	2/11/2020 12:46:16 PM	B66461

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 13

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002404

Date Reported: 2/12/2020

CLIENT: ENSOLUM		Cl	ient Sa	mple II	D: CS	-2	
Project: Quinn 340S		(Collecti	ion Dat	e: 2/1	0/2020 3:45:00 PM	
Lab ID: 2002404-002	Matrix: SOIL		Receiv	ed Dat	e: 2/1	1/2020 8:05:00 AM	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	CAS
Chloride	ND	60		mg/Kg	20	2/11/2020 2:04:05 PM	50382
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS					Analyst	CLP
Diesel Range Organics (DRO)	ND	9.1		mg/Kg	1	2/11/2020 2:34:52 PM	50375
Motor Oil Range Organics (MRO)	ND	45		mg/Kg	1	2/11/2020 2:34:52 PM	50375
Surr: DNOP	88.3	55.1-146		%Rec	1	2/11/2020 2:34:52 PM	50375
EPA METHOD 8015D: GASOLINE RANGE	E					Analyst	RAA
Gasoline Range Organics (GRO)	ND	4.6		mg/Kg	1	2/11/2020 1:09:37 PM	R66461
Surr: BFB	78.8	66.6-105		%Rec	1	2/11/2020 1:09:37 PM	R66461
EPA METHOD 8021B: VOLATILES						Analyst	RAA
Benzene	ND	0.023		mg/Kg	1	2/11/2020 1:09:37 PM	B66461
Toluene	ND	0.046		mg/Kg	1	2/11/2020 1:09:37 PM	B66461
Ethylbenzene	ND	0.046		mg/Kg	1	2/11/2020 1:09:37 PM	B66461
Xylenes, Total	ND	0.092		mg/Kg	1	2/11/2020 1:09:37 PM	B66461
Surr: 4-Bromofluorobenzene	88.1	80-120		%Rec	1	2/11/2020 1:09:37 PM	B66461

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 13

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002404

Date Reported: 2/12/2020

CLIENT: ENSOLUM		Cl	lient Sa	mple II	D: CS	5-3	
Project: Quinn 340S			Collect	ion Dat	e: 2/1	0/2020 3:50:00 PM	
Lab ID: 2002404-003	Matrix: SOIL		Receiv	ed Dat	e: 2/1	1/2020 8:05:00 AM	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	CAS
Chloride	ND	60		mg/Kg	20	2/11/2020 2:16:30 PM	50382
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS					Analyst	: CLP
Diesel Range Organics (DRO)	ND	9.7		mg/Kg	1	2/11/2020 2:44:02 PM	50375
Motor Oil Range Organics (MRO)	ND	48		mg/Kg	1	2/11/2020 2:44:02 PM	50375
Surr: DNOP	84.2	55.1-146		%Rec	1	2/11/2020 2:44:02 PM	50375
EPA METHOD 8015D: GASOLINE RANGE						Analyst	RAA
Gasoline Range Organics (GRO)	ND	4.6		mg/Kg	1	2/11/2020 1:33:03 PM	R66461
Surr: BFB	81.8	66.6-105		%Rec	1	2/11/2020 1:33:03 PM	R66461
EPA METHOD 8021B: VOLATILES						Analyst	RAA
Benzene	ND	0.023		mg/Kg	1	2/11/2020 1:33:03 PM	B66461
Toluene	ND	0.046		mg/Kg	1	2/11/2020 1:33:03 PM	B66461
Ethylbenzene	ND	0.046		mg/Kg	1	2/11/2020 1:33:03 PM	B66461
Xylenes, Total	ND	0.093		mg/Kg	1	2/11/2020 1:33:03 PM	B66461
Surr: 4-Bromofluorobenzene	90.7	80-120		%Rec	1	2/11/2020 1:33:03 PM	B66461

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range RL Reporting Limit
- Page 3 of 13

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002404

Date Reported: 2/12/2020

CLIENT: ENSOLUM		Cl	ient Sample II	D:CS	5-4	
Project: Quinn 340S		(Collection Dat	e: 2/1	10/2020 3:55:00 PM	
Lab ID: 2002404-004	Matrix: SOIL		Received Dat	e: 2/1	1/2020 8:05:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	CAS
Chloride	ND	61	mg/Kg	20	2/11/2020 2:28:55 PM	50382
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	CLP
Diesel Range Organics (DRO)	ND	9.5	mg/Kg	1	2/11/2020 2:53:11 PM	50375
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	2/11/2020 2:53:11 PM	50375
Surr: DNOP	83.6	55.1-146	%Rec	1	2/11/2020 2:53:11 PM	50375
EPA METHOD 8015D: GASOLINE RANGE	E				Analyst	RAA
Gasoline Range Organics (GRO)	ND	4.0	mg/Kg	1	2/11/2020 1:56:24 PM	R66461
Surr: BFB	82.2	66.6-105	%Rec	1	2/11/2020 1:56:24 PM	R66461
EPA METHOD 8021B: VOLATILES					Analyst	RAA
Benzene	ND	0.020	mg/Kg	1	2/11/2020 1:56:24 PM	B66461
Toluene	ND	0.040	mg/Kg	1	2/11/2020 1:56:24 PM	B66461
Ethylbenzene	ND	0.040	mg/Kg	1	2/11/2020 1:56:24 PM	B66461
Xylenes, Total	ND	0.080	mg/Kg	1	2/11/2020 1:56:24 PM	B66461
Surr: 4-Bromofluorobenzene	92.1	80-120	%Rec	1	2/11/2020 1:56:24 PM	B66461

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 4 of 13

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002404

Date Reported: 2/12/2020

CLIENT: ENSOLUM		Cl	ient Sample	ID: C	S-5	
Project: Quinn 340S		(Collection D	ate: 2/	/10/2020 4:00:00 PM	
Lab ID: 2002404-005	Matrix: SOIL		Received D	ate: 2/	/11/2020 8:05:00 AM	
Analyses	Result	RL	Qual Unit	s DI	F Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	CAS
Chloride	ND	60	mg/k		2/11/2020 11:23:09 AM	50383
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	CLP
Diesel Range Organics (DRO)	ND	8.6	mg/k	g 1	2/11/2020 3:02:21 PM	50375
Motor Oil Range Organics (MRO)	ND	43	mg/k	g 1	2/11/2020 3:02:21 PM	50375
Surr: DNOP	89.8	55.1-146	%Re	c 1	2/11/2020 3:02:21 PM	50375
EPA METHOD 8015D: GASOLINE RANGE	E				Analyst	RAA
Gasoline Range Organics (GRO)	ND	4.1	mg/k	g 1	2/11/2020 3:06:25 PM	R66461
Surr: BFB	80.0	66.6-105	%Re	c 1	2/11/2020 3:06:25 PM	R66461
EPA METHOD 8021B: VOLATILES					Analyst	: RAA
Benzene	ND	0.020	mg/k	g 1	2/11/2020 3:06:25 PM	B66461
Toluene	ND	0.041	mg/k	.g 1	2/11/2020 3:06:25 PM	B66461
Ethylbenzene	ND	0.041	mg/k	g 1	2/11/2020 3:06:25 PM	B66461
Xylenes, Total	ND	0.081	mg/k	.g 1	2/11/2020 3:06:25 PM	B66461
Surr: 4-Bromofluorobenzene	88.6	80-120	%Re	c 1	2/11/2020 3:06:25 PM	B66461

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 5 of 13

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002404

Date Reported: 2/12/2020

CLIENT: ENSOLUM		Cl	ient Sample II	D: CS	5-6	
Project: Quinn 340S		(Collection Dat	e: 2/1	10/2020 4:05:00 PM	
Lab ID: 2002404-006	Matrix: SOIL		Received Dat	e: 2/1	1/2020 8:05:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	CAS
Chloride	ND	60	mg/Kg	20	2/11/2020 11:35:30 AM	50383
EPA METHOD 8015D MOD: GASOLIN	IE RANGE				Analyst	RAA
Gasoline Range Organics (GRO)	ND	4.5	mg/Kg	1	2/11/2020 2:32:12 PM	R66465
Surr: BFB	98.2	70-130	%Rec	1	2/11/2020 2:32:12 PM	R66465
EPA METHOD 8015M/D: DIESEL RAN	IGE ORGANICS				Analyst	: CLP
Diesel Range Organics (DRO)	ND	9.4	mg/Kg	1	2/11/2020 3:11:32 PM	50375
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	2/11/2020 3:11:32 PM	50375
Surr: DNOP	89.0	55.1-146	%Rec	1	2/11/2020 3:11:32 PM	50375
EPA METHOD 8260B: VOLATILES SH	IORT LIST				Analyst	: RAA
Benzene	ND	0.023	mg/Kg	1	2/11/2020 2:32:12 PM	R66465
Toluene	ND	0.045	mg/Kg	1	2/11/2020 2:32:12 PM	R66465
Ethylbenzene	ND	0.045	mg/Kg	1	2/11/2020 2:32:12 PM	R66465
Xylenes, Total	ND	0.091	mg/Kg	1	2/11/2020 2:32:12 PM	R66465
Surr: 1,2-Dichloroethane-d4	91.4	70-130	%Rec	1	2/11/2020 2:32:12 PM	R66465
Surr: 4-Bromofluorobenzene	103	70-130	%Rec	1	2/11/2020 2:32:12 PM	R66465
Surr: Dibromofluoromethane	97.5	70-130	%Rec	1	2/11/2020 2:32:12 PM	R66465
Surr: Toluene-d8	90.9	70-130	%Rec	1	2/11/2020 2:32:12 PM	R66465

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 6 of 13

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002404

Date Reported: 2/12/2020

CLIENT: ENSOLUM		Cl	ient Sample II	D: CS	5-7	
Project: Quinn 340S		(Collection Dat	e: 2/1	10/2020 4:10:00 PM	
Lab ID: 2002404-007	Matrix: SOIL		Received Dat	e: 2/1	1/2020 8:05:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	CAS
Chloride	ND	60	mg/Kg	20	2/11/2020 12:00:11 PM	50383
EPA METHOD 8015D MOD: GASOLIN	IE RANGE				Analyst	RAA
Gasoline Range Organics (GRO)	ND	4.1	mg/Kg	1	2/11/2020 3:00:38 PM	R66465
Surr: BFB	92.7	70-130	%Rec	1	2/11/2020 3:00:38 PM	R66465
EPA METHOD 8015M/D: DIESEL RAN	IGE ORGANICS				Analyst	CLP
Diesel Range Organics (DRO)	ND	9.3	mg/Kg	1	2/11/2020 3:20:40 PM	50375
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	2/11/2020 3:20:40 PM	50375
Surr: DNOP	109	55.1-146	%Rec	1	2/11/2020 3:20:40 PM	50375
EPA METHOD 8260B: VOLATILES SH	IORT LIST				Analyst	RAA
Benzene	ND	0.021	mg/Kg	1	2/11/2020 3:00:38 PM	R66465
Toluene	ND	0.041	mg/Kg	1	2/11/2020 3:00:38 PM	R66465
Ethylbenzene	ND	0.041	mg/Kg	1	2/11/2020 3:00:38 PM	R66465
Xylenes, Total	ND	0.083	mg/Kg	1	2/11/2020 3:00:38 PM	R66465
Surr: 1,2-Dichloroethane-d4	93.0	70-130	%Rec	1	2/11/2020 3:00:38 PM	R66465
Surr: 4-Bromofluorobenzene	96.0	70-130	%Rec	1	2/11/2020 3:00:38 PM	R66465
Surr: Dibromofluoromethane	99.9	70-130	%Rec	1	2/11/2020 3:00:38 PM	R66465
Surr: Toluene-d8	90.7	70-130	%Rec	1	2/11/2020 3:00:38 PM	R66465

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 7 of 13

	WO#:	2002404
Iall Environmental Analysis Laboratory, Inc.		12-Feb-20

Client:	ENSOLU	Μ									
Project:	Quinn 34	OS									
Sample ID:	MB-50382	SampT	ype: mk	olk	TestCode: EPA Method 300.0: Anions						
Client ID:	PBS	Batch	ID: 50	382	F	RunNo: 6	6467				
Prep Date:	2/11/2020	Analysis D	ate: 2/	11/2020	S	SeqNo: 2	284146	Units: mg/K	g		
Analyte Chloride		Result ND	PQL 1.5	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sample ID:	LCS-50382	SampT	ype: Ics	5	Tes	tCode: El	PA Method	300.0: Anion	S		
Client ID:	LCSS	Batch	ID: 50	382	F	RunNo: 6	6467				
Prep Date:	2/11/2020	Analysis D	ate: 2/	11/2020	S	SeqNo: 2	284148	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	93.1	90	110			
		14	1.5	15.00	0	35.1	90	110			
Sample ID:	MB-50383	SampT	-		-			300.0: Anion:	s		
•	MB-50383 PBS	SampT	-	olk	Tes		PA Method		s		
•	PBS	SampT	ype: mt	olk 383	Tes	tCode: El	PA Method 6464		-		
Client ID:	PBS	SampT Batch	ype: mt	olk 383 /11/2020	Tes	tCode: El RunNo: 6 SeqNo: 2	PA Method 6464	300.0: Anion	-	RPDLimit	Qual
Client ID: Prep Date:	PBS	SampT Batch Analysis D	ype: mk ID: 50: ate: 2/	olk 383 /11/2020	Tes F S	tCode: El RunNo: 6 SeqNo: 2	PA Method 6464 284361	300.0: Anion: Units: mg/K	g	RPDLimit	Qual
Client ID: Prep Date: Analyte	PBS 2/11/2020	SampT Batch Analysis D Result	ype: mt ID: 50: ate: 2/ PQL 1.5	olk 383 11/2020 SPK value	Tes F S SPK Ref Val	tCode: El RunNo: 6 SeqNo: 2 %REC	PA Method 6464 284361 LowLimit	300.0: Anion: Units: mg/K	g %RPD	RPDLimit	Qual
Client ID: Prep Date: Analyte Chloride Sample ID:	PBS 2/11/2020	SampT Batch Analysis D Result ND SampT	ype: mt ID: 50: ate: 2/ PQL 1.5	blk 383 11/2020 SPK value	Tes F SPK Ref Val Tes	tCode: El RunNo: 6 SeqNo: 2 %REC	PA Method 6464 284361 LowLimit PA Method	300.0: Anions Units: mg/K HighLimit	g %RPD	RPDLimit	Qual
Client ID: Prep Date: Analyte Chloride Sample ID:	PBS 2/11/2020 LCS-50383	SampT Batch Analysis D Result ND SampT	ype: mb ID: 50; ate: 2/ PQL 1.5 ype: Ics ID: 50;	blk 383 11/2020 SPK value	Tes F SPK Ref Val Tes F	tCode: El RunNo: 6 SeqNo: 2 %REC tCode: El	PA Method 6464 284361 LowLimit PA Method 6464	300.0: Anions Units: mg/K HighLimit	g %RPD s	RPDLimit	Qual
Client ID: Prep Date: Analyte Chloride Sample ID: Client ID:	PBS 2/11/2020 LCS-50383 LCSS	SampT Batch Analysis D Result ND SampT Batch	ype: mb ID: 50; ate: 2/ PQL 1.5 ype: Ics ID: 50;	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Tes F SPK Ref Val Tes F	tCode: El RunNo: 6 SeqNo: 2 %REC tCode: El RunNo: 6	PA Method 6464 284361 LowLimit PA Method 6464	300.0: Anion: Units: mg/K HighLimit 300.0: Anion:	g %RPD s	RPDLimit	Qual

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 8 of 13

Client: Project:	ENSOLUI Quinn 340										
Sample ID: MB-50375 SampType: MBLK					Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: PB	S	Batch	n ID: 50	375	F	RunNo: 6	6445				
Prep Date: 2/	11/2020	Analysis D	ate: 2/	11/2020	S	SeqNo: 2	283399	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Orgar	nics (DRO)	ND	10								
Motor Oil Range Org	ganics (MRO)	ND	50								
Surr: DNOP		11		10.00		108	55.1	146			
Sample ID: LC	S-50375	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: LC:	SS	Batch	n ID: 50	375	F	RunNo: 6	6445				
Prep Date: 2/	11/2020	Analysis D	ate: 2/	11/2020	S	SeqNo: 2	283414	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Orgar	nics (DRO)	48	10	50.00	0	95.2	70	130			
Surr: DNOP		4.2		5.000		83.5	55.1	146			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 13

2002404

12-Feb-20

ENSOLUM

Client:

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Project: Quinn	340S									
Sample ID: 2.5ug gro Ics	SampT	ype: LC	S	Tes	TestCode: EPA Method 8015D: Gasoline Range					
Client ID: LCSS	Batch	n ID: R6	6461	F	RunNo: 6	6461				
Prep Date:	Analysis D	0ate: 2/	11/2020	S	SeqNo: 2	283811	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	23	5.0	25.00	0	92.3	80	120			
Surr: BFB	900		1000		90.4	66.6	105			
Sample ID: mb	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015D: Gaso	oline Rang	е	
Client ID: PBS	Batch	n ID: R6	6461	F	RunNo: 6	6461				
Prep Date:	Analysis D	0ate: 2/	11/2020	S	SeqNo: 2	283821	Units: mg/ #	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	5.0								
Surr: BFB	910		1000		90.6	66.6	105			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 13

2002404

12-Feb-20

Quinn 340S

Client:

Project:

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

innentai A	111119515	Labor	ator y,	, 1
ENSOLUM				

Sample ID: 100ng btex Ics	SampT	ype: LC	S	TestCode: EPA Method 8021B: Volatiles						
Client ID: LCSS	Batc	h ID: B6	6461	F	RunNo: 6	6461				
Prep Date:	Analysis E	Date: 2/	11/2020	S	SeqNo: 22	283825	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.99	0.025	1.000	0	99.0	80	120			
Toluene	1.0	0.050	1.000	0	102	80	120			
Ethylbenzene	1.0	0.050	1.000	0	103	80	120			
Xylenes, Total	3.1	0.10	3.000	0	103	80	120			
Surr: 4-Bromofluorobenzene	0.92		1.000		91.8	80	120			
Sample ID: mb	Samp	Гуре: МЕ		Tes	tCode: F	PA Method	8021B: Volat	iles		
)po				/ mounea	00210. 00101			
Client ID: PBS	•	h ID: B6			RunNo: 6					
Client ID: PBS Prep Date:	•	h ID: B6	6461	F		6461	Units: mg/K			
	Batcl	h ID: B6	6461 11/2020	F	RunNo: 6	6461			RPDLimit	Qual
Prep Date:	Batcl Analysis [h ID: B6 Date: 2/	6461 11/2020	F S	RunNo: 60 SeqNo: 22	6461 283835	Units: mg/K	g	RPDLimit	Qual
Prep Date: Analyte	Batcl Analysis I Result	h ID: B6 Date: 2/ PQL	6461 11/2020	F S	RunNo: 60 SeqNo: 22	6461 283835	Units: mg/K	g	RPDLimit	Qual
Prep Date: Analyte Benzene	Batcl Analysis E Result ND	h ID: B6 Date: 2/ PQL 0.025	6461 11/2020	F S	RunNo: 60 SeqNo: 22	6461 283835	Units: mg/K	g	RPDLimit	Qual
Prep Date: Analyte Benzene Toluene	Batch Analysis E Result ND ND	h ID: B6 Date: 2/ PQL 0.025 0.050	6461 11/2020	F S	RunNo: 60 SeqNo: 22	6461 283835	Units: mg/K	g	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 13

WO#: 2002404 12-Feb-20

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client:	ENSOLUM
Project:	Quinn 340S

Sample ID: 100ng Ics	SampT	Гуре: LC	S	Tes	TestCode: EPA Method 8260B: Volatiles Short List					
Client ID: LCSS	Batc	h ID: R6	6465	F	RunNo: 6	6465				
Prep Date:	Analysis E	Date: 2/	11/2020	S	SeqNo: 2	283860	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.98	0.025	1.000	0	97.5	70	130			
Toluene	0.91	0.050	1.000	0	91.0	70	130			
Surr: 1,2-Dichloroethane-d4	0.48		0.5000		96.6	70	130			
Surr: 4-Bromofluorobenzene	0.49		0.5000		97.5	70	130			
Surr: Dibromofluoromethane	0.50		0.5000		100	70	130			
Surr: Toluene-d8	0.47		0.5000		95.0	70	130			
				TestCode: EPA Method 8260B: Volatiles Short List						
Sample ID: mb	SampT	Гуре: МЕ	BLK	Tes	tCode: El	PA Method	8260B: Volat	iles Short	List	
Sample ID: mb Client ID: PBS	•	Гуре: МЕ h ID: R6			tCode: El RunNo: 6		8260B: Volat	iles Short	List	
-	•	h ID: R6	6465	F		6465	8260B: Volat Units: mg/K		List	
Client ID: PBS	Batcl	h ID: R6	6465 11/2020	F	RunNo: 6	6465			List RPDLimit	Qual
Client ID: PBS Prep Date:	Batcl Analysis I	h ID: R6 Date: 2/	6465 11/2020	F S	RunNo: 6 SeqNo: 2	6465 283867	Units: mg/K	g		Qual
Client ID: PBS Prep Date: Analyte Benzene	Batcl Analysis I Result	h ID: R6 Date: 2/ PQL	6465 11/2020	F S	RunNo: 6 SeqNo: 2	6465 283867	Units: mg/K	g		Qual
Client ID: PBS Prep Date: Analyte	Batcl Analysis E Result ND	h ID: R6 Date: 2/ PQL 0.025	6465 11/2020	F S	RunNo: 6 SeqNo: 2	6465 283867	Units: mg/K	g		Qual
Client ID: PBS Prep Date: Analyte Benzene Toluene	Batcl Analysis E Result ND ND	h ID: R6 Date: 2/ PQL 0.025 0.050	6465 11/2020	F S	RunNo: 6 SeqNo: 2	6465 283867	Units: mg/K	g		Qual
Client ID: PBS Prep Date: Analyte Benzene Toluene Ethylbenzene	Batch Analysis E Result ND ND ND	h ID: R6 Date: 2/ <u>PQL</u> 0.025 0.050 0.050	6465 11/2020	F S	RunNo: 6 SeqNo: 2	6465 283867	Units: mg/K	g		Qual
Client ID: PBS Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total	Analysis E Result ND ND ND ND ND	h ID: R6 Date: 2/ <u>PQL</u> 0.025 0.050 0.050	6465 11/2020 SPK value	F S	RunNo: 6 GeqNo: 2 %REC	6465 283867 LowLimit	Units: mg/K HighLimit	g		Qual
Client ID: PBS Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 1,2-Dichloroethane-d4	Analysis E Result ND ND ND ND 0.48	h ID: R6 Date: 2/ <u>PQL</u> 0.025 0.050 0.050	6465 11/2020 SPK value 0.5000	F S	RunNo: 6 SeqNo: 2 %REC 95.6	6465 283867 LowLimit	Units: mg/K HighLimit 130	g		Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 13

.

2002404

12-Feb-20

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

	ISOLUM 11nn 340S									
Sample ID: 2.5ug Ics	Samp	Type: LC	s	Tes	tCode: El	PA Method	8015D Mod:	Gasoline	Range	
Client ID: LCSS	Bat	ch ID: R6	6465	F	RunNo: 6	6465				
Prep Date:	Analysis	Date: 2/	11/2020	S	SeqNo: 2	283869	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (G	RO) 20	5.0	25.00	0	79.8	70	130			
Surr: BFB	460		500.0		91.6	70	130			
Sample ID: mb	Samp	Type: ME	BLK	Tes	tCode: El	PA Method	8015D Mod:	Gasoline	Range	
Client ID: PBS	Bat	ch ID: R6	6465	F	RunNo: 6	6465				
Prep Date:	Analysis	Date: 2/	11/2020	S	SeqNo: 2	283876	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (G	RO) ND	5.0								
Surr: BFB	470		500.0		94.3	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 13

2002404

12-Feb-20

HALL ENVIRONN ANALYSIS LABORATO		Hall Environmenta All TEL: 505-345-397. Website: www.h	4901 Hav ouquerque, N 5 FAX: 505-3	vkins NE M 87109 S 845-4107	amp	le Log-In Cl	neck List
Client Name: ENS	OLUM AZTEC	Work Order Number	2002404			RcptNo:	1
Received By: And	ly Freeman	2/11/2020 8:05:00 AM	1	andy	\mathcal{L}		
Completed By: Lea	h Baca	2/11/2020 8:09:20 AM	1	and go	Baen		
Reviewed By:	0	02/11/20		Leav ye			
Chain of Custody							
1. Is Chain of Custody	sufficiently complete?		Yes 🗸	No 🗌		Not Present	
2. How was the sampl	e delivered?		Client				
Log In 3. Was an attempt ma	de to cool the samples	?	Yes 🗸	No 🗌		NA 🗌	
4. Were all samples re	ceived at a temperature	e of >0° C to 6.0°C	Yes 🗹	No 🗌		NA 🗌	
5. Sample(s) in proper	container(s)?		Yes 🗹	No 🗌			
6. Sufficient sample vo	lume for indicated test(s)?	Yes 🗹	No 🗌			
7. Are samples (except	VOA and ONG) prope	rly preserved?	Yes 🗸	No 🗌			
8. Was preservative ac	ded to bottles?		Yes 🗌	No 🔽		NA 🗌	11
9. Received at least 1	/ial with headspace <1/	4" for AQ VOA?	Yes 🗌	No 🗌		NA 🔽	of 2/11/202
10. Were any sample co	ontainers received brok	en?	Yes 🗌	No 🔽	#	of preserved	
11. Does paperwork mai (Note discrepancies			Yes 🗹	No		ottles checked r pH:	12 unless noted)
12. Are matrices correct		f Custody?	Yes 🗸	No 🗌		Adjusted?	· · · · · · · · · · · · · · · · · · ·
13. Is it clear what analy		- an an an an an an an a	Yes 🗸	No 🗌			
14. Were all holding time (If no, notify custome			Yes 🗸	No		Checked by:	
<u>Special Handling (i</u>	f annlicable)						
15. Was client notified of		this order?	Yes 🗌	No 🗌		NA 🗸	
Person Notifie	d:	Date:			-		
By Whom:		Via:	eMail] Phone 🗌 F	ax 🗌	In Person	
Regarding:	[
Client Instruct	ons:						
16. Additional remarks:							
17. Cooler Information							
			Seal Date	Signed By			
1 1.8 2 1.6	Good Ye Good Ye						

Page 1 of 1

Time: SAME DAY HALLENNTRONMENTAL	X Rush 1002 ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	See notes Tel. 505-345-3975 Fax 505-345-4107	Analysis Request	KSummer D D D = 10	S (4) S (4) S (5) S (7) S (7)S	V OS Della D	720 echilly (120 ese	□ No 202 3/2: 202 01 20 20 20 20 20 20 20 20 20 20 20 20 20	ア ・ 、 、 、 、 、 、 、 、 、 、 、 、 、	(Including CF): / + 0, > / (C (°C) AT 0 estic 9 8 Me 1 8 Me 1 1 5 0 1 1 1 5 0 1 1 1 5 0 1 1 1 1 1 1	# Type 2003 4 02 (N	Coal -Oan XX	X X X X X X	EN COD - OUS X W	1001	ar coul -ous XX	zich CDN - UOG X X X X X				Via: Date Time Remarks: PM - Tow	Date Ti Date Ti 2/11/2020
			4901 Ha	Tel. 505		(c			2808	8/s:	əbi	oitee	9 1808	X	\langle		~	X	K	X		+	arks:	Eler I
														- CC - C	X	X	X X	X	XV	X			Remé	E
YACI SAMES			0	1. 1. da - 1. 1 1.		mer					+0.25 1.85	29:127	HEAL No.	100-	- 007	200-	- 000	-005	- 00%	5,400-			Time	
		+ ~~~	+	satona					11	⊠ Yes ∕	0003225	(including CF): /	Preservative Type	601	6001	COD	1001	COU	COV	(00)			Via:	Via:
Turn-Around	□ Standard	Project Name:	3	Project #: 😪		Project Manager:	8		Sampler: 7	On Ice:	# of Coolers:	Cooler Temp	Container Type and #	1×462 Jur	1×402 JUL	1×402JV	1 x yuz Jur	1×402Jar	1×462 Jur	1×402 Jar			Received by:	Received by:
Chain-of-Custody Record			Rio Grando SuiteA			email or Fax#: KSummuss ensolum . Com		Level 4 (Full Validation)	Az Compliance				Sample Name	CS-1	CS-2	cs-3	cs - 4	CS - 5	d-57	CS-7			ed by:	Time: Relinquished by: Via: 1961 Muart LDUL Confection Via:
of-Cu	Ium,LL		100 lo S	CINTS		SUIMM			🗆 Az Co	□ Other			Matrix	S	\$	5	\sim	S	S	5			Relinquished by	Relinquished by:
hain-	Enselum		Mailing Address: 000 5 1210	Artec, NIM		r Fax#: ∖	QA/QC Package:	Standard		AC	EDD (Type)_		Time	1540	1545	1550	1555	1600	1005	01910			Time:	
0	Client:		Mailing	Atto	Phone #:	email o	QA/QC	Stan	Accreditation:	□ NELAC			Date	2/10/20	2/10/20	2/10/20	2/10/20	2/10/20	2/10/20	21030	-		Date:	2 9

February 14, 2020

Kyle Summers ENSOLUM 606 S. Rio Grande Suite A Aztec, NM 87410 TEL: (903) 821-5603 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

RE: Quinn 340S

OrderNo.: 2002407

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 2 sample(s) on 2/11/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002407

Date Reported: 2/14/2020

CLIENT: ENSOLUM		Client Sample ID: SP-1									
Project: Quinn 340S		(Collection Dat	e: 2/1	10/2020 4:15:00 PM						
Lab ID: 2002407-001	Matrix: SOIL		1/2020 8:05:00 AM								
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch					
EPA METHOD 300.0: ANIONS					Analyst	CAS					
Chloride	ND	61	mg/Kg	20	2/11/2020 2:03:38 PM	50383					
EPA METHOD 8015D MOD: GASOL	INE RANGE				Analyst	DJF					
Gasoline Range Organics (GRO)	ND	4.5	mg/Kg	1	2/11/2020 12:10:27 PN	GS6645					
Surr: BFB	92.0	70-130	%Rec	1	2/11/2020 12:10:27 PM	GS6645					
EPA METHOD 8015M/D: DIESEL RA	ANGE ORGANICS				Analyst	: CLP					
Diesel Range Organics (DRO)	ND	8.9	mg/Kg	1	2/11/2020 11:21:14 AN	50375					
Motor Oil Range Organics (MRO)	ND	44	mg/Kg	1	2/11/2020 11:21:14 AM	50375					
Surr: DNOP	89.2	55.1-146	%Rec	1	2/11/2020 11:21:14 AN	50375					
EPA METHOD 8260B: VOLATILES	SHORT LIST				Analyst	DJF					
Benzene	ND	0.023	mg/Kg	1	2/11/2020 12:10:27 PN	SS66459					
Toluene	ND	0.045	mg/Kg	1	2/11/2020 12:10:27 PN	SS66459					
Ethylbenzene	ND	0.045	mg/Kg	1	2/11/2020 12:10:27 PM	SS66459					
Xylenes, Total	ND	0.090	mg/Kg	1	2/11/2020 12:10:27 PN	SS66459					
Surr: 4-Bromofluorobenzene	92.9	70-130	%Rec	1	2/11/2020 12:10:27 PM	SS66459					
Surr: Toluene-d8	96.2	70-130	%Rec	1	2/11/2020 12:10:27 PN	SS66459					

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 6

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002407

Date Reported: 2/14/2020

CLIENT:	ENSOLUM		Client Sample ID: SP-2								
Project:	Quinn 340S		(Collection Dat	e: 2/1	0/2020 4:20:00 PM					
Lab ID:	2002407-002	Matrix: SOIL		Received Date: 2/11/2020 8:05:00 AM							
Analyses		Result	RL	Qual Units	DF	Date Analyzed	Batch				
EPA MET	HOD 300.0: ANIONS					Analyst	CAS				
Chloride		ND	60	mg/Kg	20	2/11/2020 2:15:59 PM	50383				
EPA MET	HOD 8015D MOD: GASC	LINE RANGE				Analyst	DJF				
Gasoline	Range Organics (GRO)	ND	4.5	mg/Kg	1	2/11/2020 12:39:34 PM	GS6645				
Surr: E	BFB	94.2	70-130	%Rec	1	2/11/2020 12:39:34 PM	GS6645				
EPA MET	HOD 8015M/D: DIESEL	RANGE ORGANICS				Analyst	: CLP				
Diesel R	ange Organics (DRO)	33	9.5	mg/Kg	1	2/11/2020 11:30:21 AM	50375				
Motor Oi	I Range Organics (MRO)	98	47	mg/Kg	1	2/11/2020 11:30:21 AM	50375				
Surr: [ONOP	88.3	55.1-146	%Rec	1	2/11/2020 11:30:21 AM	50375				
EPA MET	HOD 8260B: VOLATILES	S SHORT LIST				Analyst	: DJF				
Benzene)	ND	0.023	mg/Kg	1	2/11/2020 12:39:34 PM	SS66459				
Toluene		ND	0.045	mg/Kg	1	2/11/2020 12:39:34 PM	SS66459				
Ethylben	zene	ND	0.045	mg/Kg	1	2/11/2020 12:39:34 PM	SS66459				
Xylenes,	Total	ND	0.090	mg/Kg	1	2/11/2020 12:39:34 PM	SS66459				
Surr: 4	4-Bromofluorobenzene	97.0	70-130	%Rec	1	2/11/2020 12:39:34 PM	SS66459				
Surr: 1	Toluene-d8	96.7	70-130	%Rec	1	2/11/2020 12:39:34 PM	SS66459				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 6

Client:	ENSOLU										
Project:	Quinn 34	02									
Sample ID:	MB-50383	SampT	ype: m l	olk	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID:	PBS	Batch	n ID: 50	383	F	RunNo: 6	6464				
Prep Date:	2/11/2020	Analysis D	Date: 2/	/11/2020	5	SeqNo: 2	284361	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								
Sample ID:	LCS-50383	SampT	ype: Ics	6	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID:	LCSS	Batch	n ID: 50	383	F	RunNo: 6	6464				
Prep Date:	2/11/2020	Analysis D	Date: 2/	11/2020	5	SeqNo: 2	284364	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	91.6	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

2002407

14-Feb-20

	SOLUM										
Project: Qui	nn 340S										
Sample ID: MB-50375	Samp	Type: ME	BLK	TestCode: EPA Method 8015M/D: Diesel Range Organics							
Client ID: PBS	Bate	ch ID: 50	375	F	RunNo: 6	6445					
Prep Date: 2/11/2020	Analysis	nalysis Date: 2/11/2020 SeqNo:				No: 2283399 Units: mg/Kg					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Organics (DRO)	ND	10									
Motor Oil Range Organics (MR	0) ND	50									
Surr: DNOP	11		10.00		108	55.1	146				
Sample ID: LCS-50375	Samp	Type: LC	s	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics		
Client ID: LCSS	Bate	ch ID: 50	375	F	RunNo: 6	6445					
Prep Date: 2/11/2020	Analysis	Date: 2/	/11/2020	S	SeqNo: 2	283414	Units: mg/k	٢g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Organics (DRO)	48	10	50.00	0	95.2	70	130				
Surr: DNOP	4.2		5.000		83.5	55.1	146				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 6

2002407

14-Feb-20

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

2002407	WO#:	
14-Feb-20		

Client: E	NSOLUM									
Project: (uinn 340S									
Sample ID: mb1	Sam	рТуре: М	BLK	Tes	tCode: El	PA Method	8260B: Volat	tiles Short	t List	
Client ID: PBS	Ва	tch ID: SS	66459	F	RunNo: 6	6459				
Prep Date:	Analysis	a Date: 2/	11/2020	S	SeqNo: 2	284118	Units: mg/K	ζg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 1,2-Dichloroethane	d4 0.48		0.5000		95.3	70	130			
Surr: 4-Bromofluorobenz	ene 0.48		0.5000		96.8	70	130			
Surr: Dibromofluorometh	ane 0.53		0.5000		106	70	130			
Surr: Toluene-d8	0.50		0.5000		101	70	130			
Sample ID: 100ng Ic:	s Sam	рТуре: LC	s	Tes	tCode: El	PA Method	8260B: Volat	tiles Short	t List	
Client ID: LCSS	Ва	tch ID: SS	66459	F	RunNo: 6	6459				
Prep Date:	Analysis	a Date: 2/	11/2020	S	SeqNo: 2	284119	Units: mg/K	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.99	0.025	1.000	0	99.0	70	130			
Toluene	0.97	0.050	1.000	0	97.4	70	130			
Surr: 1,2-Dichloroethane	d4 0.45		0.5000		90.4	70	130			
Surr: 4-Bromofluorobenz	ene 0.47		0.5000		93.3	70	130			
Surr: Dibromofluorometh	ane 0.48		0.5000		95.8	70	130			
Surr: Toluene-d8	0.50		0.5000		99.2	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

Analyte detected in the associated Method Blank в

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 5 of 6

	NSOLUM									
Project: Q	uinn 340S									
Sample ID: mb1	Samp	туре: М	BLK	Tes	tCode: El	PA Method	8015D Mod:	Gasoline	Range	
Client ID: PBS	Bat	ch ID: G	66459	F	RunNo: 6	6459				
Prep Date:	Analysis	Date: 2/	11/2020	S	SeqNo: 2	284342	Units: mg/#	٤g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (G	RO) ND	5.0								
Surr: BFB	480		500.0		95.8	70	130			
Sample ID: 2.5ug gro	lcs Samp	Type: LC	s	Tes	tCode: El	PA Method	8015D Mod:	Gasoline	Range	
Client ID: LCSS	Bat	ch ID: G	666459	F	RunNo: 6	6459				
Prep Date:	Analysis	Date: 2/	11/2020	5	SeqNo: 2	284343	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (G	GRO) 21	5.0	25.00	0	84.8	70	130			
Surr: BFB	460		500.0		92.9	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 6

2002407

14-Feb-20

Page	61	0	f 95
	~ -	~	

	RONMENTAL YSIS Ratory	Hall Environmental Alb. TEL: 505-345-3975 Website: www.ha	4901 Hawki uquerque, NM FAX: 505-345	ns NE 87109 Sai -4107	nple Log-In Ch	eck List
Client Name:	ENSOLUM AZTEC	Work Order Number	2002407		RcptNo: 1	
Received By:	Andy Freeman	2/11/2020 8:05:00 AM		andy	-	
Completed By:	Leah Baca	2/11/2020 8:18:32 AM		and Bac	A	
Reviewed By:	TO	2/11/20		Fran Ja		
Chain of Cus	tody					
1. Is Chain of C	ustody sufficiently comple	te?	Yes 🗹	No 🗌	Not Present	
2. How was the	sample delivered?		<u>Client</u>			
<u>Log In</u> 3. Was an atten	npt made to cool the sam;	bles?	Yes 🗹	No 🗌	NA 🗌	
4. Were all sam	ples received at a tempera	ature of >0° C to 6.0°C	Yes 🔽	No 🗌	NA 🗌	
5. Sample(s) in	proper container(s)?		Yes 🗹	No 🗌		
	nple volume for indicated t		Yes 🗹	No 🗌		
	(except VOA and ONG) pr	operly preserved?	Yes 🗹	No 🛄	_	
8. Was preserva	tive added to bottles?		Yes 🗌	No 🗹	NA 🗌	,
9. Received at le	east 1 vial with headspace	<1/4" for AQ VOA?	Yes 🗌	No 🗌	NA 🔽	d 2
10. Were any sar	nple containers received l	proken?	Yes	No 🗹	# of preserved bottles checked	7
	ork match bottle labels? ancies on chain of custody	()	Yes 🗹	Νο 🗌	for pH:	12 unless noted)
12. Are matrices	correctly identified on Cha	in of Custody?	Yes 🔽	No 🗌	Adjusted?	
	t analyses were requested	1?	Yes 🗹	No 🗌		
	ng times able to be met? ustomer for authorization.)	Yes 🗹	No 🗌	Checked by:	· · · · ·
	ling (if applicable)			_		
15. Was client no	otified of all discrepancies	with this order?	Yes	No 🗌	NA 🗹	
Person	Notified:	Date:			İ	
By Who		Via: [eMail	Phone 🗌 Fax	🗍 In Person	
Regard						
	nstructions:			·····		
16. Additional re	marks:					
17. <u>Cooler Info</u> Cooler No	3	Seal Intact Seal No S	Seal Date	Signed By		
2	1.6 Good	Yes	· · · · · · · · · · · · · · · · · · ·			

---- -- - ---

•

Page 1 of 1

Hall ENVIRONMENTAL ANALYSIS LABORATORY ANALYSIS LABORATORY Analysis Request Analysis Request	EDB (Method 504.1) PAHs by 8310 or 8270SIMS RCRA 8 Metals CI, F, Br, NO ₃ , NO ₂ , PO ₄ , SO ₄ 8260 (VOA) 8270 (Semi-VOA) Total Coliform (Present/Absent) Total Coliform (Present/Absent)		Date lime Remarks: PM-TGM Long (BPCO) $\frac{7}{10}/20$ 1754 SAVE PAN KM - 29 31 20 2 Date Time SAVE NTH AFE NUT 031 2/11/2020 0305 DNM ME NTH AFE NUT 031 This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
4901 - Tel. 5	BTEX / МТВЕ / ТМВ's (8021) ТРН:8015D(GRO / DRO / МRO) 8081 Pesticides/8082 PCB's		SANE SANE Possibility. Any si
Turn-Around Time: SAME DAY □ Standard & Rush 100% Project Name: @winn #340S Project #: See notes	Project Manager: KSwmmUS Sampler: Z. R. M. Mo On Ice: B Yes On No # of Coolers: 2. 1, 4, 202, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2		Received by: Via: Uate Time Received by: Via: Date Time Received by: Via: Date Time Date Time boontracted to other accredited laboratories. This serves as notice of this p
Client: Encolumn LLC Mailing Address: 6010 S, E10 6 a me Suite A Azter NM S7410 Phone #:	email or Fax#: KSummess QA/QC Package: Date Level 4 (Full Validation) Accreditation: Accompliance NELAC Other EDD (Type) Active Date Time Matrix Sample Name	Deller Maurx	Parte: Inne: Relinquished by: Phylor 754 AMMA Date: Time: Relinquished by: Received by: Via: Received by: Via: Received by: Via: Innecessar, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories.

February 20, 2020

Kyle Summers ENSOLUM 606 S. Rio Grande Suite A Aztec, NM 87410 TEL: (903) 821-5603 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

RE: Quinn 340S

OrderNo.: 2002740

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 11 sample(s) on 2/19/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002740

Date Reported: 2/20/2020

CLIENT:	ENSOLUM	Client Sample ID: CS-8
Project:	Quinn 340S	Collection Date: 2/18/2020 11:45:00 AM
Lab ID:	2002740-001	Matrix: MEOH (SOIL) Received Date: 2/19/2020 8:11:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	CAS
Chloride	ND	60	mg/Kg	20	2/19/2020 11:41:14 AM	50534
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst	CLP
Diesel Range Organics (DRO)	ND	9.3	mg/Kg	1	2/19/2020 9:51:56 AM	50531
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	2/19/2020 9:51:56 AM	50531
Surr: DNOP	89.9	55.1-146	%Rec	1	2/19/2020 9:51:56 AM	50531
EPA METHOD 8015D: GASOLINE RANGE					Analyst	NSB
Gasoline Range Organics (GRO)	ND	19	mg/Kg	5	2/19/2020 9:20:29 AM	G66649
Surr: BFB	82.2	66.6-105	%Rec	5	2/19/2020 9:20:29 AM	G66649
EPA METHOD 8021B: VOLATILES					Analyst	NSB
Benzene	ND	0.094	mg/Kg	5	2/19/2020 9:20:29 AM	B66649
Toluene	ND	0.19	mg/Kg	5	2/19/2020 9:20:29 AM	B66649
Ethylbenzene	ND	0.19	mg/Kg	5	2/19/2020 9:20:29 AM	B66649
Xylenes, Total	ND	0.38	mg/Kg	5	2/19/2020 9:20:29 AM	B66649
Surr: 4-Bromofluorobenzene	90.3	80-120	%Rec	5	2/19/2020 9:20:29 AM	B66649

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002740

Date Reported: 2/20/2020

CLIENT	ENSOLUM	Client Sample ID: CS-9
Project:	Quinn 340S	Collection Date: 2/18/2020 11:50:00 AM
Lab ID:	2002740-002	Matrix: MEOH (SOIL) Received Date: 2/19/2020 8:11:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	CAS
Chloride	ND	60	mg/Kg	20	2/19/2020 11:53:35 AM	50534
EPA METHOD 8015M/D: DIESEL RANGE ORG/	ANICS				Analyst	CLP
Diesel Range Organics (DRO)	ND	9.5	mg/Kg	1	2/19/2020 10:00:51 AM	50531
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	2/19/2020 10:00:51 AM	50531
Surr: DNOP	92.1	55.1-146	%Rec	1	2/19/2020 10:00:51 AM	50531
EPA METHOD 8015D: GASOLINE RANGE					Analyst	NSB
Gasoline Range Organics (GRO)	ND	20	mg/Kg	5	2/19/2020 9:43:51 AM	G66649
Surr: BFB	81.8	66.6-105	%Rec	5	2/19/2020 9:43:51 AM	G66649
EPA METHOD 8021B: VOLATILES					Analyst	NSB
Benzene	ND	0.10	mg/Kg	5	2/19/2020 9:43:51 AM	B66649
Toluene	ND	0.20	mg/Kg	5	2/19/2020 9:43:51 AM	B66649
Ethylbenzene	ND	0.20	mg/Kg	5	2/19/2020 9:43:51 AM	B66649
Xylenes, Total	ND	0.40	mg/Kg	5	2/19/2020 9:43:51 AM	B66649
Surr: 4-Bromofluorobenzene	90.4	80-120	%Rec	5	2/19/2020 9:43:51 AM	B66649

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order **2002740** Date Reported: **2/20/2020**

CLIENT:	ENSOLUM	Client Sample ID: CS-10
Project:	Quinn 340S	Collection Date: 2/18/2020 11:55:00 AM
Lab ID:	2002740-003	Matrix: MEOH (SOIL) Received Date: 2/19/2020 8:11:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	CAS
Chloride	ND	60	mg/Kg	20	2/19/2020 12:05:55 PM	50534
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst	: CLP
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	2/19/2020 10:09:52 AM	50531
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	2/19/2020 10:09:52 AM	50531
Surr: DNOP	90.5	55.1-146	%Rec	1	2/19/2020 10:09:52 AM	50531
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.2	mg/Kg	1	2/19/2020 10:07:15 AN	G66649
Surr: BFB	79.7	66.6-105	%Rec	1	2/19/2020 10:07:15 AM	G66649
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.021	mg/Kg	1	2/19/2020 10:07:15 AN	B66649
Toluene	ND	0.042	mg/Kg	1	2/19/2020 10:07:15 AM	B66649
Ethylbenzene	ND	0.042	mg/Kg	1	2/19/2020 10:07:15 AM	B66649
Xylenes, Total	ND	0.084	mg/Kg	1	2/19/2020 10:07:15 AM	B66649
Surr: 4-Bromofluorobenzene	87.3	80-120	%Rec	1	2/19/2020 10:07:15 AN	B66649

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order **2002740** Date Reported: **2/20/2020**

CLIENT:	ENSOLUM	Client Sample ID: CS-11
Project:	Quinn 340S	Collection Date: 2/18/2020 12:00:00 PM
Lab ID:	2002740-004	Matrix: MEOH (SOIL) Received Date: 2/19/2020 8:11:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	CAS
Chloride	ND	60	mg/Kg	20	2/19/2020 12:18:16 PM	50534
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst	CLP
Diesel Range Organics (DRO)	ND	9.5	mg/Kg	1	2/19/2020 10:18:56 AM	50531
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	2/19/2020 10:18:56 AM	50531
Surr: DNOP	82.9	55.1-146	%Rec	1	2/19/2020 10:18:56 AM	50531
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.1	mg/Kg	1	2/19/2020 10:30:42 AM	G66649
Surr: BFB	78.9	66.6-105	%Rec	1	2/19/2020 10:30:42 AM	G66649
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.020	mg/Kg	1	2/19/2020 10:30:42 AM	B66649
Toluene	ND	0.041	mg/Kg	1	2/19/2020 10:30:42 AM	B66649
Ethylbenzene	ND	0.041	mg/Kg	1	2/19/2020 10:30:42 AM	B66649
Xylenes, Total	ND	0.081	mg/Kg	1	2/19/2020 10:30:42 AM	B66649
Surr: 4-Bromofluorobenzene	86.7	80-120	%Rec	1	2/19/2020 10:30:42 AM	B66649

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002740

Date Reported: 2/20/2020

CLIENT	ENSOLUM	Client Sample ID: CS-12
Project:	Quinn 340S	Collection Date: 2/18/2020 12:05:00 PM
Lab ID:	2002740-005	Matrix: MEOH (SOIL) Received Date: 2/19/2020 8:11:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	CAS
Chloride	ND	60	mg/Kg	20	2/19/2020 12:30:37 PM	50534
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst	CLP
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	2/19/2020 10:28:02 AM	50531
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	2/19/2020 10:28:02 AM	50531
Surr: DNOP	85.4	55.1-146	%Rec	1	2/19/2020 10:28:02 AM	50531
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.3	mg/Kg	1	2/19/2020 10:54:12 AM	G66649
Surr: BFB	82.5	66.6-105	%Rec	1	2/19/2020 10:54:12 AM	G66649
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.022	mg/Kg	1	2/19/2020 10:54:12 AM	B66649
Toluene	ND	0.043	mg/Kg	1	2/19/2020 10:54:12 AM	B66649
Ethylbenzene	ND	0.043	mg/Kg	1	2/19/2020 10:54:12 AM	B66649
Xylenes, Total	ND	0.086	mg/Kg	1	2/19/2020 10:54:12 AM	B66649
Surr: 4-Bromofluorobenzene	90.9	80-120	%Rec	1	2/19/2020 10:54:12 AM	B66649

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002740

Date Reported: 2/20/2020

CLIENT	ENSOLUM	Client Sample ID: CS-13
Project:	Quinn 340S	Collection Date: 2/18/2020 12:10:00 PM
Lab ID:	2002740-006	Matrix: MEOH (SOIL) Received Date: 2/19/2020 8:11:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	CAS
Chloride	ND	60	mg/Kg	20	2/19/2020 12:42:58 PM	50534
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst	CLP
Diesel Range Organics (DRO)	ND	9.5	mg/Kg	1	2/19/2020 10:37:10 AM	50531
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	2/19/2020 10:37:10 AM	50531
Surr: DNOP	89.4	55.1-146	%Rec	1	2/19/2020 10:37:10 AM	50531
EPA METHOD 8015D: GASOLINE RANGE					Analyst	NSB
Gasoline Range Organics (GRO)	ND	3.7	mg/Kg	1	2/19/2020 11:17:30 AM	G66649
Surr: BFB	82.6	66.6-105	%Rec	1	2/19/2020 11:17:30 AM	G66649
EPA METHOD 8021B: VOLATILES					Analyst	NSB
Benzene	ND	0.018	mg/Kg	1	2/19/2020 11:17:30 AM	B66649
Toluene	ND	0.037	mg/Kg	1	2/19/2020 11:17:30 AM	B66649
Ethylbenzene	ND	0.037	mg/Kg	1	2/19/2020 11:17:30 AM	B66649
Xylenes, Total	ND	0.074	mg/Kg	1	2/19/2020 11:17:30 AM	B66649
Surr: 4-Bromofluorobenzene	91.8	80-120	%Rec	1	2/19/2020 11:17:30 AM	B66649

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002740

Date Reported: 2/20/2020

CLIENT:	ENSOLUM	Client Sample ID: CS-14
Project:	Quinn 340S	Collection Date: 2/18/2020 12:15:00 PM
Lab ID:	2002740-007	Matrix: MEOH (SOIL) Received Date: 2/19/2020 8:11:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	CAS
Chloride	ND	60	mg/Kg	20	2/19/2020 11:40:02 AM	50534
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst	CLP
Diesel Range Organics (DRO)	ND	9.3	mg/Kg	1	2/19/2020 10:46:19 AM	50531
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	2/19/2020 10:46:19 AM	50531
Surr: DNOP	90.5	55.1-146	%Rec	1	2/19/2020 10:46:19 AM	50531
EPA METHOD 8015D: GASOLINE RANGE					Analyst	NSB
Gasoline Range Organics (GRO)	ND	4.4	mg/Kg	1	2/19/2020 11:40:56 AM	G66649
Surr: BFB	82.3	66.6-105	%Rec	1	2/19/2020 11:40:56 AM	G66649
EPA METHOD 8021B: VOLATILES					Analyst	NSB
Benzene	ND	0.022	mg/Kg	1	2/19/2020 11:40:56 AM	B66649
Toluene	ND	0.044	mg/Kg	1	2/19/2020 11:40:56 AM	B66649
Ethylbenzene	ND	0.044	mg/Kg	1	2/19/2020 11:40:56 AM	B66649
Xylenes, Total	ND	0.088	mg/Kg	1	2/19/2020 11:40:56 AM	B66649
Surr: 4-Bromofluorobenzene	91.8	80-120	%Rec	1	2/19/2020 11:40:56 AM	B66649

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002740

Date Reported: 2/20/2020

CLIENT:	ENSOLUM	Client Sample ID: CS-15
Project:	Quinn 340S	Collection Date: 2/18/2020 12:20:00 PM
Lab ID:	2002740-008	Matrix: MEOH (SOIL) Received Date: 2/19/2020 8:11:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	CAS
Chloride	ND	59	mg/Kg	20	2/19/2020 11:52:26 AM	50534
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst	CLP
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	2/19/2020 10:55:27 AM	50531
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	2/19/2020 10:55:27 AM	50531
Surr: DNOP	84.1	55.1-146	%Rec	1	2/19/2020 10:55:27 AM	50531
EPA METHOD 8015D: GASOLINE RANGE					Analyst	NSB
Gasoline Range Organics (GRO)	ND	3.9	mg/Kg	1	2/19/2020 12:04:32 PM	G66649
Surr: BFB	82.1	66.6-105	%Rec	1	2/19/2020 12:04:32 PM	G66649
EPA METHOD 8021B: VOLATILES					Analyst	NSB
Benzene	ND	0.019	mg/Kg	1	2/19/2020 12:04:32 PM	B66649
Toluene	ND	0.039	mg/Kg	1	2/19/2020 12:04:32 PM	B66649
Ethylbenzene	ND	0.039	mg/Kg	1	2/19/2020 12:04:32 PM	B66649
Xylenes, Total	ND	0.078	mg/Kg	1	2/19/2020 12:04:32 PM	B66649
Surr: 4-Bromofluorobenzene	90.5	80-120	%Rec	1	2/19/2020 12:04:32 PM	B66649

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002740

Date Reported: 2/20/2020

CLIENT:	ENSOLUM	Client Sample ID: CS-16
Project:	Quinn 340S	Collection Date: 2/18/2020 12:25:00 PM
Lab ID:	2002740-009	Matrix: MEOH (SOIL) Received Date: 2/19/2020 8:11:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	CAS
Chloride	ND	60	mg/Kg	20	2/19/2020 12:04:51 PM	50534
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst	CLP
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	2/19/2020 11:04:34 AM	50531
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	2/19/2020 11:04:34 AM	50531
Surr: DNOP	79.0	55.1-146	%Rec	1	2/19/2020 11:04:34 AM	50531
EPA METHOD 8015D: GASOLINE RANGE					Analyst	NSB
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	2/19/2020 12:28:05 PM	G66649
Surr: BFB	81.6	66.6-105	%Rec	1	2/19/2020 12:28:05 PM	G66649
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.023	mg/Kg	1	2/19/2020 12:28:05 PM	B66649
Toluene	ND	0.046	mg/Kg	1	2/19/2020 12:28:05 PM	B66649
Ethylbenzene	ND	0.046	mg/Kg	1	2/19/2020 12:28:05 PM	B66649
Xylenes, Total	ND	0.092	mg/Kg	1	2/19/2020 12:28:05 PM	B66649
Surr: 4-Bromofluorobenzene	90.4	80-120	%Rec	1	2/19/2020 12:28:05 PM	B66649

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order **2002740** Date Reported: **2/20/2020**

CLIENT:	ENSOLUM	Client Sample ID: CS-17
Project:	Quinn 340S	Collection Date: 2/18/2020 12:30:00 PM
Lab ID:	2002740-010	Matrix: MEOH (SOIL) Received Date: 2/19/2020 8:11:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	CAS
Chloride	ND	60	mg/Kg	20	2/19/2020 12:17:15 PM	50534
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst	CLP
Diesel Range Organics (DRO)	ND	8.5	mg/Kg	1	2/19/2020 11:13:44 AN	50531
Motor Oil Range Organics (MRO)	ND	42	mg/Kg	1	2/19/2020 11:13:44 AM	50531
Surr: DNOP	117	55.1-146	%Rec	1	2/19/2020 11:13:44 AM	50531
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.2	mg/Kg	1	2/19/2020 12:51:38 PM	G66649
Surr: BFB	82.0	66.6-105	%Rec	1	2/19/2020 12:51:38 PM	G66649
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.021	mg/Kg	1	2/19/2020 12:51:38 PM	B66649
Toluene	ND	0.042	mg/Kg	1	2/19/2020 12:51:38 PM	B66649
Ethylbenzene	ND	0.042	mg/Kg	1	2/19/2020 12:51:38 PM	B66649
Xylenes, Total	ND	0.085	mg/Kg	1	2/19/2020 12:51:38 PM	B66649
Surr: 4-Bromofluorobenzene	90.5	80-120	%Rec	1	2/19/2020 12:51:38 PM	B66649

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Limit

Page 10 of 16

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002740

Date Reported: 2/20/2020

CLIENT:	ENSOLUM	Client Sample ID: CS-18
Project:	Quinn 340S	Collection Date: 2/18/2020 12:35:00 PM
Lab ID:	2002740-011	Matrix: MEOH (SOIL) Received Date: 2/19/2020 8:11:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	CAS
Chloride	ND	61	mg/Kg	20	2/19/2020 12:29:39 PM	50534
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst	CLP
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	2/19/2020 11:22:54 AM	50531
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	2/19/2020 11:22:54 AM	50531
Surr: DNOP	90.6	55.1-146	%Rec	1	2/19/2020 11:22:54 AM	50531
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	3.9	mg/Kg	1	2/19/2020 1:38:41 PM	G66649
Surr: BFB	79.7	66.6-105	%Rec	1	2/19/2020 1:38:41 PM	G66649
EPA METHOD 8021B: VOLATILES					Analyst	NSB
Benzene	ND	0.020	mg/Kg	1	2/19/2020 1:38:41 PM	B66649
Toluene	ND	0.039	mg/Kg	1	2/19/2020 1:38:41 PM	B66649
Ethylbenzene	ND	0.039	mg/Kg	1	2/19/2020 1:38:41 PM	B66649
Xylenes, Total	ND	0.078	mg/Kg	1	2/19/2020 1:38:41 PM	B66649
Surr: 4-Bromofluorobenzene	87.7	80-120	%Rec	1	2/19/2020 1:38:41 PM	B66649

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- JAnalyte detected below quantitation limitsPSample pH Not In Range
- P Sample pH Not In RL Reporting Limit

Page 11 of 16

ll Environmental Analysis Laboratory, Inc.		20-Feb-20
	WO#:	2002740

Client: ENSO	LUM		
Project: Quinn	340S		
Sample ID: MB-50534	SampType: mblk	TestCode: EPA Method 300.0: Anions	
Client ID: PBS	Batch ID: 50534	RunNo: 66643	
Prep Date: 2/19/2020	Analysis Date: 2/19/2020	SeqNo: 2291762 Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD	RPDLimit Qual
Chloride	ND 1.5		
Sample ID: LCS-50534	SampType: Ics	TestCode: EPA Method 300.0: Anions	
Client ID: LCSS	Batch ID: 50534	RunNo: 66643	
Prep Date: 2/19/2020	Analysis Date: 2/19/2020	SeqNo: 2291763 Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD	RPDLimit Qual
Chloride	14 1.5 15.00	0 91.9 90 110	
Sample ID: MB-50534	SampType: mblk	TestCode: EPA Method 300.0: Anions	
Client ID: PBS	Batch ID: 50534	RunNo: 66646	
Prep Date: 2/19/2020	Analysis Date: 2/19/2020	SeqNo: 2291851 Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD	RPDLimit Qual
Chloride	ND 1.5		
Chloride Sample ID: LCS-50534	ND 1.5 SampType: Ics	TestCode: EPA Method 300.0: Anions	
		TestCode: EPA Method 300.0: Anions RunNo: 66646	
Sample ID: LCS-50534	SampType: Ics		
Sample ID: LCS-50534 Client ID: LCSS	SampType: Ics Batch ID: 50534 Analysis Date: 2/19/2020	RunNo: 66646	RPDLimit Qual

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 12 of 16

QC SUMMARY REPORT Ha

Page	76	of 95	
------	----	-------	--

C SUMMART REFORT	WO#:	2002740	
all Environmental Analysis Laboratory, Inc.		20-Feb-20	

Client: ENSOL	-								
Project: Quinn 3	340S								
Sample ID: MB-50531	SampType: ME	BLK	Test	tCode: EP	A Method	8015M/D: Die	esel Range	e Organics	
Client ID: PBS	Batch ID: 50	531	R	RunNo: 66	632				
Prep Date: 2/19/2020	Analysis Date: 2/	19/2020	S	SeqNo: 22	89788	Units: mg/K	g		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND 10								
Notor Oil Range Organics (MRO)	ND 50								
Surr: DNOP	8.8	10.00		88.0	55.1	146			
Sample ID: LCS-50531 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics									
Client ID: LCSS	Batch ID: 50	531	R	RunNo: 66	632				
Prep Date: 2/19/2020	Analysis Date: 2/	19/2020	S	SeqNo: 22	89789	Units: mg/K	(g		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	48 10	50.00	0	95.2	70	130			
Surr: DNOP	4.4	5.000		88.9	55.1	146			
Sample ID: 2002740-001AM	S SampType: MS	6	Test	tCode: EP	A Method	8015M/D: Die	esel Range	e Organics	
Client ID: CS-8	Batch ID: 50	531	R	RunNo: 66	632				
Prep Date: 2/19/2020	Analysis Date: 2/	19/2020	S	SeqNo: 22	90307	Units: mg/K	(g		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	43 9.0	45.25	2.307	89.4	47.4	136			
Surr: DNOP	3.8	4.525		84.7	55.1	146			
Sample ID: 2002740-001AM	SD SampType: MS	SD	Test	tCode: EP	A Method	8015M/D: Die	esel Range	e Organics	
Client ID: CS-8	Batch ID: 50	531	R	RunNo: 66	632				
Prep Date: 2/19/2020	Analysis Date: 2/	19/2020	S	SeqNo: 22	90308	Units: mg/K	íg		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	49 9.8	48.88	2.307	94.7	47.4	136	12.8	43.4	
Surr: DNOP	4.3	4.888		87.2	55.1	146	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Client:

QC SUMMARY REPORT Hall Environm

	WO#:	2002740
onmental Analysis Laboratory, Inc.		20-Feb-20
ENSOLUM		

Project: Qui	inn 340S					
Sample ID: mb1	SampType: MBLK	Te	TestCode: EPA Method 8015D: Gasoline Range			
Client ID: PBS	Batch ID: G66649)	RunNo: 66649			
Prep Date:	Analysis Date: 2/19/20	020	SeqNo: 2290656	Units: mg/Kg		
Analyte	Result PQL SPI	K value SPK Ref Va	I %REC LowLimi	t HighLimit %RPI	D RPDLimit	Qual
Gasoline Range Organics (GR						
Surr: BFB	780	1000	77.9 66.6	§ 105		
Sample ID: 2.5ug gro lo	SampType: LCS	Te	estCode: EPA Metho	d 8015D: Gasoline Ra	nge	
Client ID: LCSS	Batch ID: G66649		RunNo: 66649			
Prep Date:	Analysis Date: 2/19/20	020	SeqNo: 2290657	Units: mg/Kg		
Analyte	Result PQL SPI	K value SPK Ref Va	I %REC LowLimi	t HighLimit %RPI	D RPDLimit	Qual
Gasoline Range Organics (GR		25.00 0	97.2 80	-		
Surr: BFB	930	1000	93.3 66.6	5 105		
Sample ID: 2002740-00	1ams SampType: MS	Te	estCode: EPA Metho	d 8015D: Gasoline Ra	nge	
Client ID: CS-8	Batch ID: G66649)	RunNo: 66649			
Prep Date:	Analysis Date: 2/20/20	020	SeqNo: 2290658	Units: mg/Kg		
Analyte	Result PQL SPI	K value SPK Ref Va	I %REC LowLimi	t HighLimit %RPI	D RPDLimit	Qual
Gasoline Range Organics (GR	,	94.34 0	84.0 69.1			
Surr: BFB	3400	3774	91.0 66.6	5 105		
Sample ID: 2002740-00	1amsd SampType: MSD	Te	estCode: EPA Metho	d 8015D: Gasoline Ra	nge	
Client ID: CS-8	Batch ID: G66649		RunNo: 66649			
Prep Date:	Analysis Date: 2/20/20	020	SeqNo: 2290659	Units: mg/Kg		
Analyte	Result PQL SPI	K value SPK Ref Va	I %REC LowLimi	t HighLimit %RPI	D RPDLimit	Qual
Gasoline Range Organics (GR		94.34 0	84.4 69.1			
Surr: BFB	3400	3774	91.3 66.6	S 105	0 0	
Sample ID: mb-50488	SampType: MBLK	Те	estCode: EPA Metho	d 8015D: Gasoline Ra	nge	
Client ID: PBS	Batch ID: 50488		RunNo: 66649			
Prep Date: 2/17/2020	Analysis Date: 2/19/20	020	SeqNo: 2290660	Units: %Rec		
Analyte	Result PQL SPI	K value SPK Ref Va	I %REC LowLimi	t HighLimit %RPI	D RPDLimit	Qual
Surr: BFB	810	1000	81.4 66.6	5 105		
Sample ID: Ics-50488	SampType: LCS	Te	estCode: EPA Metho	d 8015D: Gasoline Ra	nge	
Client ID: LCSS	Batch ID: 50488		RunNo: 66649			
Prep Date: 2/17/2020	Analysis Date: 2/19/20	020	SeqNo: 2290661	Units: %Rec		
Analyte	Result PQL SPI	K value SPK Ref Va	I %REC LowLimi	t HighLimit %RPI	D RPDLimit	Qual
Surr: BFB	930	1000	93.1 66.6	-		

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#:	2002740
	20-Feb-20

		·	/		•						20100
Client:	ENSOLUM	[
Project:	Quinn 340S										
	Quini 0.105										
Sample ID: mb1		SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8021B: Volat	tiles		
Client ID: PBS		Batch	n ID: B6	6649	F	RunNo: 6	6649				
Prep Date:	A	nalysis D	ate: 2/	19/2020	Ś	SeqNo: 2	290689	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	0.025								
Toluene		ND	0.050								
Ethylbenzene		ND	0.050								
Xylenes, Total		ND	0.10								
Surr: 4-Bromofluoro	obenzene	0.86		1.000		85.6	80	120			
Sample ID: 100n	g btex lcs	SampT	ype: LC	:S	Tes	tCode: El	PA Method	8021B: Volat	tiles		
Client ID: LCS	S	Batch	n ID: B6	6649	F	RunNo: 6	6649				
Prep Date:	A	nalysis D	ate: 2/	19/2020	5	SeqNo: 2	290690	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.92	0.025	1.000	0	91.8	80	120			
Toluene		0.96	0.050	1.000	0	95.5	80	120			
Ethylbenzene		0.97	0.050	1.000	0	97.0	80	120			
Xylenes, Total		2.9	0.10	3.000	0	97.9	80	120			
Surr: 4-Bromofluoro	obenzene	0.92		1.000		92.4	80	120			
Sample ID: 2002	740-002ams	SampT	ype: M	3	Tes	tCode: El	PA Method	8021B: Volat	tiles		
Client ID: CS-9	1	Batch	n ID: B6	6649	F	RunNo: 6	6649				
Prep Date:	A	nalysis D	ate: 2/	20/2020	S	SeqNo: 2	290691	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		2.8	0.10	4.045	0	69.0	78.5	119			S
Toluene		2.8	0.20	4.045	0	69.7	75.7	123			S
Ethylbenzene		2.8	0.20	4.045	0	69.0	74.3	126			S
Xylenes, Total		8.5	0.40	12.14	0	70.0	72.9	130			S
Surr: 4-Bromofluoro	benzene	3.8		4.045		93.7	80	120			
Sample ID: 2002	740-002amsd	SampT	ype: M S	SD	Tes	tCode: El	PA Method	8021B: Volat	tiles		
Client ID: CS-9			n ID: B6			RunNo: 6					
Prep Date:	A	nalysis D	ate: 2/	20/2020	S	SeqNo: 2	290692	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		1.9	0.10	4.045	0	47.1	78.5	119	37.7	20	RS
		1.8	0.20	4.045	0	45.7	75.7	123	41.6	20	RS
Toluene											
		1.8	0.20	4.045	0	43.5	74.3	126	45.4	20	RS
Toluene		1.8 5.3	0.20 0.40	4.045 12.14	0 0	43.5 43.7	74.3 72.9	126 130	45.4 46.2	20 20	RS RS

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Analyte

Prep Date:

2/17/2020

Surr: 4-Bromofluorobenzene

Analysis Date: 2/19/2020

Result 0.97 PQL

1.000

Client: Project:	ENSOLUM Quinn 340	. –									
Sample ID: mb-50	488	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: PBS		Batcl	h ID: 50	488	R	RunNo: 6	6649				
Prep Date: 2/17/	2020	Analysis D	Date: 2/	19/2020	S	SeqNo: 2	290693	Units: %Red	;		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorob	enzene	0.90		1.000		89.9	80	120			
Sample ID: LCS-5	0488	SampT	ype: LC	s	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: LCSS		Batcl	h ID: 50	488	R	RunNo: 6	6649				

SeqNo: 2290694

96.7

SPK value SPK Ref Val %REC LowLimit

Units: %Rec

120

HighLimit

80

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 16 of 16

2002740

20-Feb-20

WO#:

RPDLimit

Qual

%RPD

		TEL: 505-345	ntal Analysis Labor. 4901 Hawkir. Albuquerque, NM 8 3975 FAX: 505-345- Mallenvironmental	ns NE 87109 Sar 4107	nple Log-In Cheo	ck List
Client Name: ENS	OLUM AZTEC	Work Order Num	ber: 2002740		RcptNo: 1	
Received By: Isai	ah Ortiz	2/19/2020 8:11:00	AM	Inc	24	
Completed By: Isai	ah Ortiz	2/19/2020 8:20:07	АМ	I_C I_C	2-x	
Reviewed By:	3	zhalzo				
Chain of Custody						
1. Is Chain of Custody	sufficiently complet	e?	Yes 🔽	No 🗌	Not Present	
2. How was the sample	e delivered?		Courier			
Log In 3. Was an attempt ma	do to cool the server			No 🗌		
o. was an attempt ma	de to cool the samp	esr	Yes 🗹		NA	
4. Were all samples re-	ceived at a temperat	ure of >0° C to 6.0°C	Yes 🗹	No 🗌		
5. Sample(s) in proper	container(s)?		Yes 🔽	No 🗌		
6. Sufficient sample vo	ume for indicated te	st(s)?	Yes 🔽	No 🗌		
7. Are samples (except	VOA and ONG) pro	perly preserved?	Yes 🗹	No 🗌		
8. Was preservative ad	ded to bottles?		Yes	No 🔽	NA 🗌	
9. Received at least 1 v	ial with headspace	<1/4" for AQ VOA?	Yes 🗌	No 🗌	NA 🗹	/
10. Were any sample co	ontainers received b	roken?	Yes	No 🗹	# of preserved bottles checked	
11. Does paperwork mat (Note discrepancies			Yes 🔽	No 🗌	for pH: (<2.or >12 u	nless noted)
12. Are matrices correctl	y identified on Chair	of Custody?	Yes 🔽	No 🗌	Adjusted?	
13. Is it clear what analy	÷.	?	Yes 🔽	No 🗌	20	1.0/00
14. Were all holding time (If no, notify custome	V. Der d		Yes 🗹	No 🗌	Checked by: JP 2	2/19/20
Special Handling (i	f applicable)					
15. Was client notified o	f all discrepancies w	vith this order?	Yes	No 🗌	NA 🔽	
Person Notifie	d:	Date		and the first and the part of the state of the		
By Whom:		Via:	eMail P	hone 🗌 Fax	In Person	
Regarding:			ACCURATE CONTRACTOR DOUBLE SO	anan manana kata kata kata kata kata kata kata	ne de la faire de la company de la compa	
Client Instructi	ons:		na na se dina na na dina na dina na nangina kata na		nanda Sata Balananga Managunan diparta Sa	
16. Additional remarks:					A second s	
17. Cooler Information						
provide the second seco	np °C Condition	Seal Intact Seal No	Seal Date	Signed By		
1 1.4	Good	Yes				

Page 1 of 1

HALL ENVIRONMENTAL ANALYSIS LABORATORY	allenvironmental.com	4901 Hawkins NE - Albuqueique, Nim of 109 Tel. 505-345-3975 Fax 505-345-4107	Analysis Request	¢O≳ (îne	} ,₄Oʻ	дuе 502) 70N 285) or 3, 3, 9	010 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	38 Vc 8 M 70A 40V	EDB (A PAHs F RCRA CI, F, 8250 (8250 (20 Ch Ch	×	×	×	×	×	×	×	×	×	×	×		ONY PAN- TOM LONG (EPRON)	AFE- NUJO3)	1743 Martin Wille I - C conner 2 2010 2011
		Tel. 50		(0)	IM /	оя	I	oЯ)(GI 185		ВТЕХ / 7PH:80 9 1808	XX	××	XX	XX	\times \times	××	×	×	×	××	XX		Remarks:		1100
SAME DAY	Š	 A formula (a) a formula (b) a f		Ser		The second second second	A STATE OF	ON D		.zke 1.4. (°C)	L OOLTUO	100-	100-	-203	-004	200-	- 000	100-	800-	-000-	-010-	-011	on on the second succession of the second	Date Time $2/k_{L}$ 1<35	3	er 2 2010 0011
Rus	Soust nn	encies		Jer: KSUMMess		A LANSA A LANA	R Decchi lly	🛢 Yes 🕇	1	Cooler Temp(including CF): 1.240.2 kc	Preservative Type	COUL	CON	COOL	Cool	(00)	Cool	cool	cool	cool	COOI	cool		-	Via:	CONUMIEN
Turn-Around Time:	Project Name:	Project #: See		Project Manager			Sampler: R	On Ice:	# of Coolers:	Cooler Temp	Container Type and #	1×402Jur	1×402 Jar	1x402Jar	1×402Jar	1x412 Jar	1x402 Jar	1x402 Jur	1×402 Jur	1×402 Jul	1x402Jur	1×402 Jur		Received by:	Received by:	K V
Chain-of-Custody Record ^{t:} בהבסונותן עבל		Kio Cerande Suite A		eso enselumicom		Level 4 (Full Validation)	npliance	the second s			Sample Name	C5-8:	C.S-9	C.S 10	(2-1)	CS-12	CS-13	CS-14	CS-15	02-16	CS-17	CS-18	a la service concelle a la	ed by:	id by:	stan Walks
Hain-of-Cus		1501091		KSUMMezo			□ Az Compliance	□ Other	A sound of a		Matrix	5	S	S	5	5	S	S	5	S	5	S	N 19 1 9	Relinquished by	Relinquished by	S/UN
Clien	Mailing Address		Phone #:	Fax#:	AVQC Package:	C Standard	Accreditation:	D NELAC	□ EDD (Type)		Date	2/18/20 1145	2/18/20 1150		2/18/20 1260	alistan 1205	alis/20 1210	3			0/12/00/31/e	2/18/20 1235		Date: Time:		Plished MY3

February 20, 2020

Kyle Summers ENSOLUM 606 S. Rio Grande Suite A Aztec, NM 87410 TEL: (903) 821-5603 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 2002741

Dear Kyle Summers:

RE: Ouinn 340S

Hall Environmental Analysis Laboratory received 4 sample(s) on 2/19/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002741

Date Reported: 2/20/2020

CLIENT: ENSOLUM		Cl	ient Sample II	D: SP	D-3	
Project: Quinn 340S		(Collection Dat	e: 2/1	18/2020 12:45:00 PM	
Lab ID: 2002741-001	Matrix: SOIL		Received Dat	e: 2/1	19/2020 8:11:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	CAS
Chloride	ND	60	mg/Kg	20	2/19/2020 12:42:04 PM	50534
EPA METHOD 8015M/D: DIESEL RAN	GE ORGANICS				Analyst	CLP
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	2/19/2020 11:32:06 AM	50531
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	2/19/2020 11:32:06 AM	50531
Surr: DNOP	96.5	55.1-146	%Rec	1	2/19/2020 11:32:06 AN	50531
EPA METHOD 8015D: GASOLINE RAM	NGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.4	mg/Kg	1	2/19/2020 2:02:08 PM	G66649
Surr: BFB	82.5	66.6-105	%Rec	1	2/19/2020 2:02:08 PM	G66649
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.022	mg/Kg	1	2/19/2020 2:02:08 PM	B66649
Toluene	ND	0.044	mg/Kg	1	2/19/2020 2:02:08 PM	B66649
Ethylbenzene	ND	0.044	mg/Kg	1	2/19/2020 2:02:08 PM	B66649
Xylenes, Total	ND	0.087	mg/Kg	1	2/19/2020 2:02:08 PM	B66649
Surr: 4-Bromofluorobenzene	90.4	80-120	%Rec	1	2/19/2020 2:02:08 PM	B66649

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 8

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002741

Date Reported: 2/20/2020

CLIENT: ENSOLUM		Cl	ient Sample II	D: SP	9-4	
Project: Quinn 340S		(Collection Dat	e: 2/1	18/2020 12:50:00 PM	
Lab ID: 2002741-002	Matrix: SOIL		Received Dat	e: 2/1	19/2020 8:11:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	CAS
Chloride	ND	60	mg/Kg	20	2/19/2020 12:55:19 PM	50534
EPA METHOD 8015M/D: DIESEL RANGE	E ORGANICS				Analyst	CLP
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	2/19/2020 11:41:16 AM	50531
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	2/19/2020 11:41:16 AM	50531
Surr: DNOP	91.0	55.1-146	%Rec	1	2/19/2020 11:41:16 AM	50531
EPA METHOD 8015D: GASOLINE RANG	E				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.1	mg/Kg	1	2/19/2020 2:25:26 PM	G66649
Surr: BFB	87.7	66.6-105	%Rec	1	2/19/2020 2:25:26 PM	G66649
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.021	mg/Kg	1	2/19/2020 2:25:26 PM	B66649
Toluene	ND	0.041	mg/Kg	1	2/19/2020 2:25:26 PM	B66649
Ethylbenzene	ND	0.041	mg/Kg	1	2/19/2020 2:25:26 PM	B66649
Xylenes, Total	ND	0.083	mg/Kg	1	2/19/2020 2:25:26 PM	B66649
Surr: 4-Bromofluorobenzene	98.4	80-120	%Rec	1	2/19/2020 2:25:26 PM	B66649

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 8

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002741

Date Reported: 2/20/2020

CLIENT: ENSOLUM		Cl	ient Sample II): SP	9-5	
Project: Quinn 340S		(Collection Date	e: 2/1	8/2020 12:55:00 PM	
Lab ID: 2002741-003	Matrix: SOIL		Received Date	e: 2/1	19/2020 8:11:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst:	CAS
Chloride	ND	61	mg/Kg	20	2/19/2020 1:07:39 PM	50534
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst:	CLP
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	2/19/2020 11:55:18 AM	50531
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	2/19/2020 11:55:18 AM	50531
Surr: DNOP	88.9	55.1-146	%Rec	1	2/19/2020 11:55:18 AM	50531
EPA METHOD 8015D: GASOLINE RANGE					Analyst:	NSB
Gasoline Range Organics (GRO)	ND	4.5	mg/Kg	1	2/19/2020 2:48:43 PM	G66649
Surr: BFB	89.2	66.6-105	%Rec	1	2/19/2020 2:48:43 PM	G66649
EPA METHOD 8021B: VOLATILES					Analyst:	NSB
Benzene	ND	0.023	mg/Kg	1	2/19/2020 2:48:43 PM	B66649
Toluene	ND	0.045	mg/Kg	1	2/19/2020 2:48:43 PM	B66649
Ethylbenzene	ND	0.045	mg/Kg	1	2/19/2020 2:48:43 PM	B66649
Xylenes, Total	ND	0.091	mg/Kg	1	2/19/2020 2:48:43 PM	B66649
Surr: 4-Bromofluorobenzene	98.5	80-120	%Rec	1	2/19/2020 2:48:43 PM	B66649

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 3 of 8

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2002741

Date Reported: 2/20/2020

CLIENT: ENSOLUM		Cl	ient Sample I	D: SP	2-6				
Project: Quinn 340S		(Collection Dat	te: 2/1	18/2020 1:00:00 PM				
Lab ID: 2002741-004	Matrix: SOIL Received Date: 2/19/2020 8:11:00 AM								
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS					Analysi	CAS			
Chloride	ND	60	mg/Kg	20	2/19/2020 1:44:41 PM	50534			
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	: CLP			
Diesel Range Organics (DRO)	ND	9.1	mg/Kg	1	2/19/2020 12:04:25 PM	50531			
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	2/19/2020 12:04:25 PN	50531			
Surr: DNOP	88.8	55.1-146	%Rec	1	2/19/2020 12:04:25 PN	50531			
EPA METHOD 8015D: GASOLINE RANGE	E				Analyst	: NSB			
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	2/19/2020 3:12:08 PM	G66649			
Surr: BFB	83.3	66.6-105	%Rec	1	2/19/2020 3:12:08 PM	G66649			
EPA METHOD 8021B: VOLATILES					Analyst	: NSB			
Benzene	ND	0.024	mg/Kg	1	2/19/2020 3:12:08 PM	B66649			
Toluene	ND	0.048	mg/Kg	1	2/19/2020 3:12:08 PM	B66649			
Ethylbenzene	ND	0.048	mg/Kg	1	2/19/2020 3:12:08 PM	B66649			
Xylenes, Total	ND	0.096	mg/Kg	1	2/19/2020 3:12:08 PM	B66649			
Surr: 4-Bromofluorobenzene	92.9	80-120	%Rec	1	2/19/2020 3:12:08 PM	B66649			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 4 of 8

ENSOLUM

Client:

	WO#:	2002741
all Environmental Analysis Laboratory, Inc.		20-Feb-20

Project: Qu	inn 340S		
Sample ID: MB-50534	SampType: mblk	TestCode: EPA Method 300.0: Anions	
Client ID: PBS	Batch ID: 50534	RunNo: 66643	
Prep Date: 2/19/2020	Analysis Date: 2/19/2020	SeqNo: 2291762 Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit	Qual
Chloride	ND 1.5		
Sample ID: LCS-50534	SampType: Ics	TestCode: EPA Method 300.0: Anions	
Client ID: LCSS	Batch ID: 50534	RunNo: 66643	
Prep Date: 2/19/2020	Analysis Date: 2/19/2020	SeqNo: 2291763 Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit	Qual
Chloride	14 1.5 15.00	0 91.9 90 110	
Sample ID: MB-50534	SampType: mblk	TestCode: EPA Method 300.0: Anions	
Client ID: PBS	Batch ID: 50534	RunNo: 66646	
Prep Date: 2/19/2020	Analysis Date: 2/19/2020	SeqNo: 2291851 Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit	Qual
Chloride	ND 1.5		
Sample ID: LCS-50534	SampType: Ics	TestCode: EPA Method 300.0: Anions	
Client ID: LCSS	Batch ID: 50534	RunNo: 66646	
Prep Date: 2/19/2020	Analysis Date: 2/19/2020	SeqNo: 2291852 Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit	Qual
Chloride	14 1.5 15.00	0 90.9 90 110	

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 5 of 8

Page 8	88	of	95
--------	----	----	----

2002741

WO#:

Hall Environme	ntal Anal	ysis I	Laborat	ory, Inc.						20-Feb-2
	DLUM n 340S									
Sample ID: MB-50531		ype: ME	BLK	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: PBS	Batcl	h ID: 50	531	F	RunNo: 6	6632		-	-	
Prep Date: 2/19/2020	Analysis D	Date: 2/	19/2020	S	SeqNo: 2	289788	Units: mg/k	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Notor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	8.8		10.00		88.0	55.1	146			
Sample ID: LCS-50531	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015M/D: Die	esel Rang	e Organics	

Client ID: LCSS	Batch	ID: 50	531	R	unNo: 6	6632				
Prep Date: 2/19/2020	Analysis D	ate: 2/	19/2020	S	eqNo: 2	289789	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	48	10	50.00	0	95.2	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 8

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc

	WO#:	2002741
onmental Analysis Laboratory, Inc.		20-Feb-20

Client: ENSOI	-						
Project: Quinn 3	340S						
Sample ID: mb1	SampType: MBLK	Te	stCode: EPA Method	8015D: Gasol	ine Rang	e	
Client ID: PBS	Batch ID: G66649		RunNo: 66649				
Prep Date:	Analysis Date: 2/19/2020	D	SeqNo: 2290656	Units: mg/Kg	9		
Analyte	Result PQL SPK v	value SPK Ref Val	%REC LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND 5.0						
Surr: BFB	780	1000	77.9 66.6	105			
Sample ID: 2.5ug gro Ics	SampType: LCS	Te	stCode: EPA Method	8015D: Gasol	ine Rang	e	
Client ID: LCSS	Batch ID: G66649		RunNo: 66649				
Prep Date:	Analysis Date: 2/19/2020	C	SeqNo: 2290657	Units: mg/Kg	9		
Analyte	Result PQL SPK v	value SPK Ref Val	%REC LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	24 5.0 2	25.00 0	97.2 80	120			
Surr: BFB	930	1000	93.3 66.6	105			
Sample ID: mb-50488	SampType: MBLK	Te	stCode: EPA Method	8015D: Gasol	ine Rang	e	
Client ID: PBS	Batch ID: 50488		RunNo: 66649				
Prep Date: 2/17/2020	Analysis Date: 2/19/2020	D	SeqNo: 2290660	Units: %Rec			
Analyte	Result PQL SPK v	value SPK Ref Val	%REC LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: BFB	810	1000	81.4 66.6	105			
Sample ID: Ics-50488	SampType: LCS	Te	stCode: EPA Method	8015D: Gasol	ine Rang	e	
Client ID: LCSS	Batch ID: 50488		RunNo: 66649				
Prep Date: 2/17/2020	Analysis Date: 2/19/2020	0	SeqNo: 2290661	Units: %Rec			
Analyte	Result PQL SPK v	value SPK Ref Val	%REC LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: BFB	930	1000	93.1 66.6	105			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 8

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc

Page	90	of 95

	WO#:	2002741
ental Analysis Laboratory, Inc.		20-Feb-20

Client:	ENSOLUM									
Project:	Quinn 340S									
Sample ID: mb1	Samp	Туре: М	BLK	Tes	tCode: EF	PA Method	8021B: Volati	les		
Client ID: PBS	Bate	ch ID: B6	6649	F	RunNo: 66	6649				
Prep Date:	Analysis	Date: 2/	19/2020	S	SeqNo: 22	290689	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorober	zene 0.86		1.000		85.6	80	120			
Sample ID: 100ng k	Sample ID: 100ng btex Ics SampType: LCS TestCode: EPA Method 8021B: Volatiles									
Client ID: LCSS	Bate	Batch ID: B66649 RunNo: 66649								
Prep Date:	Analysis	Date: 2/	19/2020	S	SeqNo: 22	290690	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.92	0.025	1.000	0	91.8	80	120			
Toluene	0.96	0.050	1.000	0	95.5	80	120			
Ethylbenzene	0.97	0.050	1.000	0	97.0	80	120			
Xylenes, Total	2.9	0.10	3.000	0	97.9	80	120			
Surr: 4-Bromofluorober	zene 0.92		1.000		92.4	80	120			
Sample ID: mb-504	88 Samp	Туре: М	BLK	Tes	tCode: EF	PA Method	8021B: Volati	les		
Client ID: PBS	Bate	ch ID: 50	488	F	RunNo: 66	6649				
Prep Date: 2/17/2	Analysis	Date: 2/	19/2020	S	SeqNo: 22	290693	Units: %Rec			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorober	zene 0.90		1.000		89.9	80	120			
Sample ID: LCS-50	188 Samp	Type: LC	s	Tes	tCode: EF	PA Method	8021B: Volati	les		
Client ID: LCSS	Bato	ch ID: 50	488	F	RunNo: 66	6649				
Prep Date: 2/17/2	Analysis	Date: 2/	19/2020	S	SeqNo: 22	290694	Units: %Rec			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorober	zene 0.97		1.000		96.7	80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Limit

ENVIRONMENTAL ANALYSIS LABORATORY	TEL: 505-345-3	ntal Analysis Labor 4901 Hawkin Albuquerque, NM 8 8975 FAX: 505-345- whallenvironmenta	ns NE 27109 Sar 4107	nple Log-In Check Lis	st
Client Name: ENSOLUM AZTEC	Work Order Num	ber: 2002741		RcptNo: 1	
Received By: Isaiah Ortiz	2/19/2020 8:11:00	АМ	ILC	2×	
Completed By: Leah Baca	2/19/2020 8:23:06	AM	In Bac	3	
Reviewed By:	2/19/2020		Lungs		
Chain of Custody					
1. Is Chain of Custody sufficiently comp	ete?	Yes 🔽	No 🗌	Not Present	
2. How was the sample delivered?		Courier			
Log In					
3. Was an attempt made to cool the sam	iples?	Yes 🖌	No 🗌	NA	
4. Were all samples received at a tempe	rature of >0° C to 6.0°C	Yes 🗹	No 🗌		
5. Sample(s) in proper container(s)?		Yes 🔽	No 🗌		
6. Sufficient sample volume for indicated	test(s)?	Yes 🔽	No 🗌		
$7_{\rm \cdot}$ Are samples (except VOA and ONG) μ	properly preserved?	Yes 🗹	No 🗌		
8. Was preservative added to bottles?		Yes	No 🔽	NA 🗌	
9. Received at least 1 vial with headspace	e <1/4" for AQ VOA?	Yes	No 🗌	NA 🗹	~
10. Were any sample containers received	broken?	Yes 🗌	No 🗹	# of preserved bottles checked	
11. Does paperwork match bottle labels? (Note discrepancies on chain of custor	ly)	Yes 🗹	No 🗌	for pH: (52 or >12 unless no	ted)
12. Are matrices correctly identified on Ch		Yes 🗹	No 🗌	Adjusted?	-
13. Is it clear what analyses were requeste		Yes 🗹	No 🗌	10 11	120
14. Were all holding times able to be met? (If no, notify customer for authorization		Yes 🗹	No 🗌	Checked by: JR 2/19	1/20
Special Handling (if applicable)					
15. Was client notified of all discrepancies	with this order?	Yes	No 🗌	NA 🗹	
Person Notified:	Date:	ſ			
By Whom:	Via:	eMail F	Phone 🗌 Fax	In Person	
Regarding: Client Instructions:					
16. Additional remarks:					
17. <u>Cooler Information</u> Cooler No. Temp °C. Condition	Seal Intact Soci No.	Seal Date	Signed Bu	1	
Cooler NoTemp °CCondition11.4Good	Yes Seal Intact Seal No	Seal Date	Signed By		

Page 1 of 1

Hall ENVIRONMENTAL ANALYSIS LABORATORY ANALYSIS LABORATORY ANW.hallenvironmental.com www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Tel. 505-345-3975 Fax 505-345-4107	201 Pesticides/8082 PCB's 2018 (Method 504.1) 2014 by 8310 or 8270SIMS 21, F, Br, NO ₃ , NO ₂ , PO ₄ , SO ₄ 21, F, Br, NO ₃ , NO ₂ , PO ₄ , SO ₄ 220 (YOA) 220 (YOA) 2210 (Semi-VOA) 2210 (Semi-VOA)		Time: Relinquished by: Received by: Via: Date Time Remarks: P.M Tom Long (EPRop) 1535 P.M. M. M.M. M. M.M. M. M.M. M. P.M Tom Long (EPRop) 1535 P.M. M. M.M. M. M.M. M. M.M. + O.S. SAME DAY P.M Tom Long (EPRop) 1743 M.M. M. M.M. M. M.M. + O.S. Date Time No. AFE- N.47.03 Sam 1743 M.M. M. M.M. M. M.M. + O.S. No. AFE- N.47.03 Sam Sam Sam 1743 M.M. M. M.M. M. M.M. + O.S. No. AFE- N.47.03 Sam Sam Sam 1743 M.M. + M. M.M. + O.S. No. AFE- N.47.03 Sam Sam Sam Sam 1743 M.M. + M. M.M. + O.S. No. AFE- N.47.03 Sam Sam Sam Sam Sam 1743 M.M. + M. M.M. + M. M.M. + M. Sam Sam Sam Sam Sam Sam 1743 M.M. + M. M.M. + M. M.M. + M. Sam No. + M. Sam Sam Sam Sam 1743 M.M. + M. M.M. + M. M.M. + M.
4901 Tel.	91EX / МТВЕ / ТМВ 's (8021)		SAME SAME
SAME DAY Ish 100% tos	<u>іч-с (°C)</u> 77140.	202 202 202	Date Time Re $\frac{\partial \beta \rangle_{LD}}{\partial \beta \rangle_{LD}}$ $\int S S$ Date Time $\frac{\partial \beta \beta \rangle_{LD}}{\partial \delta \beta \rangle}$
R. R.	ager: KSUMMERS	Cool Cool Cool	via: Via: Correction
Turn-Around Time:	Project Manager: KSUMMess Sampler: RDeechilly On Ice: TYESEChilly On Ice: TYESECHILLY Monor Coolers: I Yes No # of Coolers: I Yes No Cooler Temp(Including CF): 1,2 -10.2[cr		Received by: Received by:
Client: Ensulum ULC Client: Ensulum ULC Mailing Address: Loolo S. Rib Controle SuiteA Astec NM 87410 Phone #:	email or Fax#: <u>VSUMMES® Enselum.(Cm</u> QA/QC Package: Standard	5P-3 5P-3 5P-5 5P-6	ed by: A M ed by: M M M M M M M M M M M M M M M M M M M
Hain-of-Cus Ensulum, U.C. Address: 606 5, ec / NM 87410	Z Col Az Col Other		Relinquished by: Relinquished by:
Chain-o ent: Ensului iling Address: (Aztec NM one #:	email or Fax#: QA/QC Package: Candard Accreditation: Catal (Type)	2/18/20 1245 2/18/20 1250 2/18/20 1255	Time: 1 1)535 Time: 1 1)743 1)743
Client:	email or Fax QA/QC Packs Candard Accreditation Accreditation Data Data	2/18/20 2/18/20 2/18/20	Date: Date: Z/18/20

)

APPENDIX G

Regulatory Correspondence

From:	Long, Thomas
To:	"Smith, Cory, EMNRD (Cory.Smith@state.nm.us)"; "njaramillo@slo.state.nm.us"
Cc:	Stone, Brian
Subject:	Quinn 340S - UL K Section 20 T31N R8W; 36.880300, -107.702000
Date:	Friday, February 14, 2020 2:26:00 PM
Attachments:	Quinn 340S Site Map.PDF
	Rpt 2002404 Quinn 340S Final v1.pdf
	Quipp 3405 pdf

Cory/Nick,

This email is to notify you that Enterprise had a release on the Quinn 340S on February 3, 2020. No liquids were observed on the ground surface and no washes were affected. The repairs were initiated on February 11, 2020 and Enterprise determined the release reportable per NMOCD regulation on February 12, 2020 after receipt and review of laboratory analysis and due to the volume of impacted subsurface soil . The release is located UL K Section 20 T31N R8W; 36.880300, -107.702000. As per the attachments, additional soil is required to be removed to meet NMOCD Tier I remediation standards. This email is also a notification that Enterprise will be collecting soil samples for laboratory analysis on Tuesday, February 18, 2020 at 10:00 a.m. If you have any questions, please call or email.

Thomas J. Long Senior Environmental ScientistEnterprise Products Company 614 Reilly Ave. Farmington, New Mexico 87401 505-599-2286 (office) 505-215-4727 (Cell) <u>tjlong@eprod.com</u>

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
Enterprise Field Services, LLC	241602
PO Box 4324	Action Number:
Houston, TX 77210	10181
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
nvelez	None	5/16/2022

Page 95 of 95

Action 10181