ENSOLUM

April 12, 2022

New Mexico Oil Conservation Division New Mexico Energy, Minerals, and Natural Resources Department 1000 Rio Brazos Road Aztec, New Mexico 87410

Re: First Quarter 2022 – SVE System Update Sullivan GC D #1E San Juan County, New Mexico Hilcorp Energy Company NMOCD Incident Number: NCS1518952648 Ensolum Project No. 07A1988029

OCD 7/6/2022

long his

To Whom it May Concern:

Ensolum, LLC (Ensolum), on behalf of Hilcorp Energy Company (Hilcorp), presents this *First Quarter* 2022 – *SVE System Update* report summarizing the soil vapor extraction (SVE) system performance at the Sullivan GC D #1E natural gas production well (Site), located in Unit F of Section 26 of Township 29 North and Range 11 West in San Juan County, New Mexico (Figure 1) . Specifically, this report summarizes Site activities performed in January, February, and March of 2022 to the New Mexico Oil Conservation Division (NMOCD).

SVE SYSTEM SPECIFICATIONS

The original SVE system was installed at the Site by XTO Energy, the previous Site owner, in April 2016 in response to a release originating from a broken fiberglass line used to transfer natural gas condensate. The original SVE system was purchased from Geotech Environmental Equipment, Inc. (Geotech) and operated successfully until the summer of 2018. Due to a broken SVE blower motor, the SVE system did not operate between 2018 and March of 2022; however, a rental SVE system was brought onto the Site and began operation on December 2, 2021. The blower motor from the original Geotech system was replaced on March 21, 2022 and the Geotech SVE system was put back into service.

The current Geotech SVE system is configured so that vacuum is being applied to wells PR-1, MW-01, MW-02, MW-05, and MW-06 (shown on Figure 2). The SVE system consists of a 3 horsepower Rotron model EN656 regenerative blower capable of producing 212 standard cubic feet per minute (scfm) of flow and 73 inches of water column (IWC) vacuum. The layout of the SVE system and piping is shown on Figure 2.

FIRST QUARTER 2022 ACTIVITIES

During the first quarter of 2022, WSP USA Inc. (WSP, third-party environmental consultant for the Site) and Hilcorp personnel performed bi-weekly operation and maintenance (O&M) visits to verify the system was operating as designed and to perform any required maintenance. Field notes taken during O&M

Hilcorp Energy Company Sullivan GC D#1E April 12, 2022 Page 2 of 31

visits are presented in Appendix A. During the first quarter of 2022, all SVE wells (PR-1, MW-01, MW-02, MW-05, and MW-06) were operated in order to induce air flow in impacted soil within the source area. Between January 10 and March 16, 2022, the rental SVE system operated for 1,557 hours, for a runtime efficiency of 99.81 percent (%). Appendix B presents Photographs 1 and 2 of the runtime meter taken during the first and last field visits of the quarter. Table 1 presents the SVE system operational hours and percent runtime. Additionally, Photographs 3 and 4 were taken of the runtime meters from the rental SVE system and the permanent Geotech SVE system, respectively, to be used to accurately calculate the runtime efficiency during the second quarter of 2022.

A first quarter emissions sample was collected from the rental SVE system on March 16, 2022 from a sample port located between the SVE piping manifold and the SVE blower using a high vacuum air sampler. Prior to collection, the emission sample was field screened with a photoionization detector (PID) for organic vapor monitoring (OVM). The emission sample was collected directly into a 1-Liter Tedlar[®] bag and submitted to Hall Environmental Analysis Laboratory (Hall), located in Albuquerque, New Mexico for analysis of total volatile petroleum hydrocarbons (TVPH, also referred to as total petroleum hydrocarbons – gasoline range organics (TPH-GRO)) following United States Environmental Protection Agency (EPA) Method 8015D, volatile organic compounds (VOCs) following EPA Method 8260B, and fixed gas analysis of oxygen and carbon dioxide following Gas Processor Association (GPS) Method 2261. Table 2 presents a summary of analytical data collected during this sampling event and previous sampling events, with the full laboratory analytical report included in Appendix C.

Of note, the analytical data collected during the March 16, 2022 sampling event indicate substantially lower concentrations of VOCs and TVPH as compared to historical results. While conducting a Site visit on March 21, 2022, it was discovered that there was a broken pipe joint connecting SVE well MW-01 to the manifold. It is believed that fresh air was being pulled through the system, diluting the effluent emissions from the system, and accounted for abnormal analytical results. Since that time, the broken joint has been repaired and the system is operating as designed.

Emission sample data and measured stack flow rates are used to estimate total mass recovered and total emissions generated by the SVE system (Table 3). Based on these estimates, 89,994 pounds (45 tons) of TVPH have been removed by the system to date.

RECOMMENDATIONS

Bi-weekly operation and maintenance (O&M) visits will continue to be performed by Ensolum and/or Hilcorp personnel to verify the SVE system is operating within normal working ranges (i.e., temperature, pressure, and vacuum). Deviations from regular operations will be noted on field logs and included in the following quarterly report. Hilcorp will continue operating the SVE until asymptotic emissions are observed. At that time, an evaluation of residual petroluem hydrocarbons will be assessed and further recommendations for remedial actions, if any, will be provided to NMOCD.

Hilcorp Energy Company Sullivan GC D#1E April 12, 2022

ENSOLUM

We appreciate the opportunity to provide this report to the NMOCD. If you should have any questions or comments regarding this proposal, please contact the undersigned.

Sincerely, Ensolum, LLC

Stuart Hyde, LG Senior Geologist (970) 903-1607 shyde@ensolum.com Daniel R. Moir, PG Senior Managing Geologist (303) 887-2946 dmoir@ensolum.com

Attachments:

- Figure 1Site LocationFigure 2SVE System Layout
- Table 1
 Soil Vapor Extraction System Runtime Calculations
- Table 2
 Soil Vapor Extraction System Emission Analytical Results
- Table 3
 Soil Vapor Extraction System Mass Removal and Emissions
- Appendix A Field Notes
- Appendix B Project Photographs
- Appendix C Laboratory Analytical Reports

FIGURES

Received by OCD: 4/14/2022 1:53:20 PM

Received by OCD: 4/14/2022 1:53:20 PM

Released to Imaging: 9/20/2022 9:51:46 AM

TABLES

TABLE 1

SOIL VAPOR EXTRACTION SYSTEM RUNTIME CALCULATIONS Hilcorp Energy Company - Sullivan GC D#1E San Juan County, New Mexico

Ensolum Project No. 07A1988029

Rental SVE Skid Runtime Operation

Date	Total Operational Hours	Delta Hours	Days	% Runtime
1/10/2022	1,906			
3/16/2022	3,463	1,557	65	99.81%

Permanent Geotech SVE Skid Runtime Operation

Date	Total Operational Hours	Delta Hours	Days	% Runtime
3/21/2022	1.6			

ENSOLUM

TABLE 2 SOIL VAPOR EXTRACTION SYSTEM EMISSIONS ANALYTICAL RESULTS Hilocorp Energy Company - Sullivan GC D #1E San Juan County, New Mexico

Ensolum Project No. 07A1988029

Date	PID (ppm)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)	TVPH/GRO (μg/L)	Oxygen (%)	Carbon Dioxide (%)
4/18/2016		840	1,900	87	840	140,000		
4/20/2016	2,375	840	1,900	87	840	140,000		
4/29/2017	3,520	280	1,000	64	630	65,000		
8/11/2016	4,215	92	700	90	910	23,000		
1/24/2018	2,837	46	140	<5.0	410	21,000		
6/29/2018	3,000	63	210	<5.0	410	27,000		
12/2/2021	741	15	<5.0	<5.0	99	33,000		
3/16/2022 (1)	982	<0.10	<0.10	<0.10	1.1	64	19.4	1.23

Notes:

(1): piping to SVE well MW-01 was disconnected allowing fresh air to be pulled into the system and biasing analytical results low, issue was discovered March 21, 2022

GRO: gasoline range hydrocarbons

μg/L: microgram per liter

PID: photoionization detector

ppm: parts per million

TVPH: total volatile petroleum hydrocarbons

%: percent

--: not sampled

<0.037: gray indicates result less than the stated laboratory reporting limit (RL)

.

ENSOLUM

TABLE 3 SOIL VAPOR EXTRACTION SYSTEM MASS REMOVAL AND EMISSIONS Hilcorp Energy Company - Sullivan GC D #1E San Juan County, New Mexico

Ensolum Project No. 07A1988029

Flow and Laboratory Analysis

				-		
Date	PID (ppm)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)	TVPH (μg/L)
4/18/2016		840	1,900	87	840	140,000
4/20/2016	2,375	840	1,900	87	840	140,000
4/29/2017	3,520	280	1,000	64	630	65,000
8/11/2016	4,215	92	700	90	910	23,000
1/24/2018	2,837	46	140	5.0	410	21,000
6/29/2018	3,000	63	210	5.0	410	27,000
12/2/2021	741	15	5.0	5.0	99	33,000
3/16/2022 (1)	982	0.10	0.10	0.10	1.1	64
Average	2,524	272	732	43	518	56,133

Vapor Extraction Summary

Date	Flow Rate (cfm)	Total System Flow (cf)	Delta Flow (cf)	Benzene (Ib/hr)	Toluene (lb/hr)	Ethylbenzene (lb/hr)	Total Xylenes (lb/hr)	TVPH (lb/hr)
4/18/2016	90	0	0	0.283	0.640	0.029	0.283	47.13
4/20/2016	109	313,920	313,920	0.342	0.775	0.035	0.342	57.07
4/29/2017	90	1,480,320	1,166,400	0.189	0.488	0.025	0.247	34.50
8/11/2016	70	6,923,520	5,443,200	0.049	0.223	0.020	0.202	11.52
1/24/2018	60			0.015	0.094	0.011	0.148	4.94
6/29/2018	41	53,246,160	46,322,640	0.008	0.027	0.001	0.063	3.68
12/2/2021				Rental SVE S	ystem Startup			
12/2/2021	49	53,246,160	0	0	0	0	0	0
3/16/2022 (1)	49	60,581,754	7,335,594	0.0014	0.00047	0.00047	0.0092	3.0
			Average	0.111	0.281	0.015	0.162	20.233

Flow and Laboratory Analysis

Date	Total SVE System Hours	Delta Hours	Benzene (pounds)	Toluene (pounds)	Ethylbenzene (pounds)	Total Xylenes (pounds)	TVPH (pounds)	TVPH (tons)
4/18/2016	0	0	0.0	0.0	0.0	0.0	0.0	0.0
4/20/2016	48	48	16.4	37.2	1.7	16.4	2,739.5	1.4
4/29/2017	264	216	40.7	105.4	5.5	53.4	7,452.5	3.7
8/11/2016	1,560	1,296	63.1	288.4	26.1	261.3	14,929.2	7.5
1/24/2018								
6/29/2018	16,848	15,288	127.8	410.3	11.7	961.2	56,263.6	28.1
12/2/2021				Rental SVE S	ystem Startup			
12/2/2021	968	0	0.0	0.0	0.0	0.0	0.0	0.0
3/16/2022 (1)	3,463	2,495	3.5	1.2	1.2	22.9	7,559.5	3.8
	Total Mas	ss Recovery to Date	251	842	46	1,315	88,944	44

Notes:

(1): piping to SVE well MW-01 was disconnected allowing fresh air to be pulled into the system and biasing analytical results low, issue was discovered March 21, 2022 cf: cubic feet

cfm: cubic feet per minute µg/L: micrograms per liter lb/hr: pounds per hour --: not sampled PID: photoionization detector ppm: parts per million TVPH: total volatile petroleum hydrocarbons gray: laboratory reporting limit used for calculating emissions

Ensolum

.

APPENDIX A

Field Notes

Received by OCD: 4/14/2022 1:53:20 PM

-10-22 Location Sullivan GC DHIE Date 1/10/22 141 Project / Client 121001p D. Burns, R Harson T-125 mk ofter lines exhemst. 1455 - on site for system Ot M - system running noon arrival 1500 - SVE Blower hows: 1906.4 Tens: 90°F No liquids observed in process Skill KOfenk emoter total FLaw: 124 cfm Ko tenki vaci - 19 EWC Post KO Kuki vaci - 21 EWC Leg I vac: -11 Iwc Leg I Flow: 50 scfm Green KO tank vacum! -18 Twc WELL PLD MW-06 288 MW-01 289.4 PR-1 221 MW-02 181 MW-En 82.0-SVE disconnected Q PID-2, Fluit LEGHI: 491 hose clange SID- exhaust shok : 287 (son f. - 9 Rite in the Rais

Released to Imaging: 9/20/2022 9:51:46 AM

SULLIVAN GC D#1E SVE SYSTEM (RENTAL UNIT) BIWEEKLY O&M FORM

		BIWEEKLY O&M FORM		
- -	2/4/22	OAM BEDEONNEL	Reace Haven	
DATE TIME ONSITE	100 -	TIME OFFSITE	Keece Hum	
TIME ONST C	<u> </u>			
		SVE SYSTEM - MONTHLY O&M		
E CONTRACTOR E CONTRA			······	
SVE ALARMS		HIGH/LOW VACUUM KO TANK HIGH LEVEL		
(check if applicable)		HIGH EXHAUST TEMPERATURE		
L				
Product Skimmer				TIME
Hours (take photo)		Blower Hours (take photo)	2502.0	1635
Volume in bbl	<u></u>	Pre K/O Vacuum (IWC)	26.5	1037
Volume removed		Post K/O Vacuum (IWC) Total Flow (cfm)		
Volume removed to date		Zone I/ Leg A Flow (scfm)	46	
		Inici PID	12.9	1040
		Exhaust Post GAC PID	10.6	1042
		Liquid in K/O Sight Tube (Y/N)	N	
		K/O Liquid Drained (gallons)		
HOUSEKEEPING		leas		
	Checkel, Looky C	action of the second se		
Clean tank level alarm on skimmer]		
		~~~~		
	SVE	SYSTEM - QUARTERLY SAMPLING		
SAMPLE ID:		SAMPLE TIME:		
	TVPH (8015), VOCs (8260), F	xed Gas (CO/CO2/O2)		
OPERATING WELLS	<u></u>			
				1
ZONES				
Change in Well Operation:				
Zone I/ Leg A	VACUUM (IWC)	PID HEADSPACE (PPM)	FLOW (CFM)	ADJUSTMENTS
LOCATION MW+01	VACUUM (IWC)	PID READSTACE (FFM)	FLOW (CTM)	<u></u>
MW-01 MW-02		22.0		
MW-05		14-14-74.0		
MW-06				
PR-2 <b>PR-1</b>		35.9		
				1
Product Recovery				
Well				
LOCATION	Product thickness	Product removed from Sock (volume and color)	Volume removed total (gal or oz?)	Replace Sock? (Y/N0
		· · · · · · · · · · · · · · · · · · ·		
		······································	·	
		· · · · · · · · · · · · · · · · · · ·		
COMMENTS/OTHER MAINTENANCE				

	- 1- 1	BIWEEKLY OWN FORM	<b>•</b> • •	
DATE:	3/3/22	O&M PERSONNEL:	Reece Honson	
TIME ONSITE:	1235	- TIME OFFSITE	1:19	
		SVE SYSTEM - MONTHLY O&M		
SVE ALARMS:	[	HIGH/LOW VACUUM		
(check if applicable)		KO TANK HIGH LEVEL		
(enex a apprendet		RIGH EXHAUST TEMPERATURE		
	L			
Product Skimmer		SVE SYSTEM	READING	TIME
Hours (take photo)		Blower Hours (take photo)	3152.0	1237
Volume in bbl		Pre K/O Vacuum (IWC)	-22.5	
Volume removed		Post K/O Vacuum (IWC)	-24,5	
Volume removed to date		Total Flow (cfm)		
Geen T	an111: 34" :n -13":nH20	Zone I/ Leg A Flow (scfm) Inlet PID		
		Exhaust Post GAC PID	TIA LI	
*	-13 3 Ha Q	Liquid in K/O Sight Tube (Y/N)		
287		K/O Liquid Drained (gallons)		
HOUSEKEEPING	Check	Blowerston	- 4 ¹ 144 ² -	
Inline Filter Clean		] Blower Tem	100 F	
Clean tank level alarm on skimmer				
	SVE	SYSTEM - QUARTERLY SAMPLING		
SAMPLE 1D:	316	SAMPLE TIME:		
1226 PAR LAR 104				
Analytes:	TVPH (8015). VOCs (8260). Fi	ixed Gas (CO/CO2/O2)		
	TVPH (8015), VOCs (8260), Fi	ized Gas (CO/CO2/O2)		
Analytes: OPERATING WELLS		ired Gas (CO/CO2/O2)		
		iyed Gas (CO/CO2/O2)		
OPERATING WELLS		iyed Gas (CO/CO2/O2)		
OPERATING WELLS		iyed Gas (CO/CO2/O2)		
OPERATING WELLS ZONES Change in Well Operation: Zone 1/ Leg A	2-00- 1/ Leg (	4-		
OPERATING WELLS ZONES Change in Well Operation: Zone 1/ Leg A LOCATION		PID HEADSPACE (PPM)	FLOW (CFM)	ADJUSTMENTS
OPERATING WELLS ZONES Change in Well Operation: Zone 1/ Leg A LOCATION MW-01	2-00- 1/ Leg (	4-	FLOW (CFM)	ADJUSTMENTS
OPERATING WELLS ZONES Change in Well Operation: Zone 1/ Leg A LOCATION MW-01 MW-02	2-00- 1/ Leg (	4-	FLOW (CFM)	ADJUSTMENTS
OPERATING WELLS ZONES Change in Well Operation: Zone 1/ Leg A LOCATION MW-01 MW-02 	2-00- 1/ Leg (	4-	FLOW (CFM)	ADJUSTMENTS
OPERATING WELLS ZONES Change in Well Operation: Zone 1/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06	2-00- 1/ Leg (	4-	FLOW (CFM)	ADJUSTMENTS
OPERATING WELLS ZONES Change in Well Operation: Zone 1/ Leg A LOCATION MW-01 MW-02 	2-00- 1/ Leg (	4-	FLOW (CFM)	ADJUSTMENTS
OPERATING WELLS ZONES Change in Well Operation: Zone 1/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06	2-00- 1/ Leg (	4-	FLOW (CFM)	ADJUSTMENTS
OPERATING WELLS	2-00- 1/ Leg (	4-	FLOW (CFM)	ADJUSTMENTS
OPERATING WELLS  Change in Well Operation: Zone 1/ Leg A  LOCATION MW-02 MW-05 MW-06 PR-2  Product Recovery	2-00- 1/ Leg (	4-	FLOW (CFM)	ADJUSTMENTS Replace Sock ⁹ (Y/N0
OPERATING WELLS ZONES Change in Well Operation: Zone 1/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 Product Recovery Well	VACUUM (IWC)	PID HEADSPACE (PPM)		
OPERATING WELLS ZONES Change in Well Operation: Zone 1/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 Product Recovery Well	VACUUM (IWC)	PID HEADSPACE (PPM)		
OPERATING WELLS ZONES Change in Well Operation: Zone 1/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 Product Recovery Well	VACUUM (IWC)	PID HEADSPACE (PPM)		
OPERATING WELLS ZONES Change in Well Operation: Zone 1/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 Product Recovery Well	VACUUM (IWC)	PID HEADSPACE (PPM)		
OPERATING WELLS ZONES Change in Well Operation: Zone 1/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 Product Recovery Well	VACUUM (IWC)	PID HEADSPACE (PPM)		
OPERATING WELLS ZONES Change in Well Operation: Zone 1/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 Product Recovery Well	VACUUM (IWC)	PID HEADSPACE (PPM)		
OPERATING WELLS ZONES Change in Well Operation: Zone 1/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 Product Recovery Well	VACUUM (IWC)	PID HEADSPACE (PPM)		
OPERATING WELLS ZONES Change in Well Operation: Zone 1/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 Product Recovery Well	VACUUM (IWC)	PID HEADSPACE (PPM)		
OPERATING WELLS ZONES Change in Well Operation: Zone 1/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 Product Recovery Well	VACUUM (IWC)	PID HEADSPACE (PPM)		

to some property of the sent the sent to some the possible broken sent

Page 14 of 31

•

# SULLIVAN GC D#1E SVE SYSTEM (RENTAL UNIT) BIWEEKLY O&M FORM

		DIWEEKLI OGM FORM		
	3/16/22		ECANI	
DATE:	5/10/12	O&M PERSONNEL:	E. curroli	
TIME ONSITE:	15:00	TIME OFFSITE	E. carrol/	
180. 197 L.C.		1.5		
	\$	VE SYSTEM - MONTHLY O&M		
20 800				
SVE ALARMS:		HIGH/LOW VACUUM		
(check (l'applicable)	1	KO TANK HIGH LEVEL		
	1	HIGH EXHAUST TEMPERATURE		
		· · · · ·		
Product Skimmer		SVE SYSTEM	READING	TIME
Hours (tyle photo)	91:20:45? Emply	Blower Hours (take photo)	24/34	1302
Volume in hh	<u> </u>	Pre K/O Vacuum (IWC)		1307-
Values and a	E PP 6 7		25	
volume removed		Post K/O Vacuum (IWC)		
Volume removed to date		Total Flow (cfm)	1160	
		Zone 1/ Leg A Flow (sefin)		
		Inlet PID	982	
		Exhaust Post GAC PID		
		Liquid in K/O Sight Tube (Y/N)	N	
		K/O Liquid Drained (gallons)	MA	
HOUSEKEEPING	Check			
Inline Filter Clean				
Clean tank level alarm on skimmer				
CROIT MIR TOTOL MAILTER				
	ENIE 6	VETEN ALLAPTEDI V SIMO INO		
	SVES	SYSTEM - QUARTERLY SAMPLING		
SAMPLE ID:		SAMPLE TIME:	13:31	
	TVPH (8015), VOCs (8260), Fixe	ed Gas (CO CO2/O2)		
OPERATING WELLS				
ZONES				
ZONES				
ZONES				
ZONES Change in Well Operation:				
Change in Well Operation:	VACUUM (IWC)	PID HEADSPACE (PPM)	FLOW (CFM)	ADJUSTMENTS
Change in Well Operation: Zone 1/ Leg A LOCATION			FLOW (CFM)	ADJUSTMENTS
Change in Well Operation: Zone 1/ Leg A LOCATION MW-01	VACUUM (IWC)	PID HEADSPACE (PPM)	FLOW (CFM)	ADJUSTMENTS
Change in Well Operation: Zone I/ Leg A LOCATION MW-01 MW-02			FLOW (CFM)	ADJUSTMENTS
Change In Well Operation: Zone I/ Leg A LOCATION MW-01 MW-02 MW-05		20.5 His	FLOW (CFM)	ADJUSTMENTS
Change in Well Operation: Zone 1/ Leg A <u>LOCATION</u> MW-01 MW-02 MW-05 MW-06		20.5 418 45.6	FLOW (CFM)	ADJUSTMENTS
Change In Well Operation: Zone I/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2		20.5 418 45.6 132	FLOW (CFM)	ADJUSTMENTS
Change In Well Operation: Zone I/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2		20.5 418 45.6	FLOW (CFM)	ADJUSTMENTS
Change In Well Operation: Zone I/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2		20.5 418 45.6 132	FLOW (CFM)	ADJUSTMENTS
Change In Well Operation: Zone I/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 PR-2 Product Recovery	6.4 5.8 87 5.7 6.5 6.6	20.5 418 45.6 132	FLOW (CFM)	ADJUSTMENTS
Change In Well Operation: Zone I/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 PR-2 PR-2 Product Recovery Well COM	6.4 5.8 0775.7 6.5 6.C Plated 3-10-73	20.5 418 45.6 132 100		
Change In Well Operation: Zone I/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 PR-2 Product Recovery	6.4 5.8 87 5.7 6.5 6.6	20.5 418 45.6 132	FLOW (CFM)	ADJUSTMENTS Replace Sock? (Y/N0
Change In Well Operation: Zone I/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 PR-2 PR-2 Product Recovery Well COM	6.4 5.8 0775.7 6.5 6.C Plated 3-10-73	20.5 418 45.6 132 100		
Change In Well Operation: Zone I/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 PR-2 PR-2 Product Recovery Well COM	6.4 5.8 0775.7 6.5 6.C Plated 3-10-73	20.5 418 45.6 132 100		
Change In Well Operation: Zone I/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 PR-2 PR-2 Product Recovery Well COM	6.4 5.8 0775.7 6.5 6.C Plated 3-10-73	20.5 418 45.6 132 100		
Change In Well Operation: Zone I/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 PR-2 PR-2 Product Recovery Well COM	6.4 5.8 0775.7 6.5 6.C Plated 3-10-73	20.5 418 45.6 132 100		
Change In Well Operation: Zone I/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 PR-2 PR-2 Product Recovery Well COM	6.4 5.8 0775.7 6.5 6.C Plated 3-10-73	20.5 418 45.6 132 100		
Change In Well Operation: Zone I/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 PR-2 PR-2 Product Recovery Well COM	6.4 5.8 0775.7 6.5 6.C Plated 3-10-73	20.5 418 45.6 132 100		
Change In Well Operation: Zone I/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 PR-2 PR-2 Product Recovery Well COM	6.4 5.8 0775.7 6.5 6.C Plated 3-10-73	20.5 418 45.6 132 100		
Change In Well Operation: Zone I/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 PR-2 PR-2 Product Recovery Well COM	6.4 5.8 0775.7 6.5 6.C Plated 3-10-73	20.5 418 45.6 132 100		
Change In Well Operation: Zone I/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 PR-2 PR-2 Product Recovery Well COM	6.4 5.8 0775.7 6.5 6.C Plated 3-10-73	20.5 418 45.6 132 100		
Change In Well Operation: Zone I/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 PR-2 PR-2 Product Recovery Well COM	6.4 5.8 0775.7 6.5 6.C Plated 3-10-73	20.5 418 45.6 132 100		
Change In Well Operation: Zone I/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 PR-2 PR-2 Product Recovery Well COM	6.4 5.8 0775.7 6.5 6.C Plated 3-10-73	20.5 418 45.6 132 100		
Change In Well Operation: Zone I/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 PR-2 PR-2 Product Recovery Well COM	6.4 5.8 0775.7 6.5 6.C Plated 3-10-73	20.5 418 45.6 132 100		
Change In Well Operation: Zone I/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 PR-2 PR-2 Product Recovery Well COM	6.4 5.8 0775.7 6.5 6.C Plated 3-10-73	20.5 418 45.6 132 100		
Change In Well Operation: Zone I/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 PR-2 PR-2 Product Recovery Well COM	6.4 5.8 0775.7 6.5 6.C Plated 3-10-73	20.5 418 45.6 132 100		
Change in Well Operation: Zone I/ Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-2 PR-2 PR-2 Product Recovery Well COM	6.4 5.8 0775.7 6.5 6.C Plated 3-10-73	20.5 418 45.6 132 100		

Blower Temp 92°F

Released to Imaging: 9/20/2022 9:51:46 AM

•



APPENDIX B

**Project Photographs** 



Page 17 of 31





APPENDIX C

Laboratory Analytical Reports



March 28, 2022

Mitch Killough HILCORP ENERGY PO Box 4700 Farmington, NM 87499 TEL: (505) 564-0733 FAX: Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

OrderNo.: 2203923

Dear Mitch Killough:

**RE:** Sullivan GC D1E

Hall Environmental Analysis Laboratory received 1 sample(s) on 3/18/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

**CLIENT: HILCORP ENERGY** 

2203923-001

Sullivan GC D1E

Project:

Lab ID:

Analytical Report Lab Order 2203923

## Hall Environmental Analysis Laboratory, Inc.

Matrix: AIR

Date Reported: 3/28/2022

Client Sample ID: Influent 3-16-22 Collection Date: 3/16/2022 1:30:00 PM Received Date: 3/18/2022 8:05:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015D: GASOLINE RANGE						Analyst: NSB
Gasoline Range Organics (GRO)	64	10		µg/L	2	3/21/2022 10:22:57 AM
Surr: BFB	218	37.3-213	S	%Rec	2	3/21/2022 10:22:57 AM
EPA METHOD 8260B: VOLATILES						Analyst: CCN
Benzene	ND	0.10		µg/L	1	3/22/2022 2:10:00 PM
Toluene	ND	0.10		µg/L	1	3/22/2022 2:10:00 PM
Ethylbenzene	ND	0.10		µg/L	1	3/22/2022 2:10:00 PM
Methyl tert-butyl ether (MTBE)	ND	0.10		μg/L	1	3/22/2022 2:10:00 PM
1,2,4-Trimethylbenzene	0.56	0.10		μg/L	1	3/22/2022 2:10:00 PM
1,3,5-Trimethylbenzene	0.37	0.10		μg/L	1	3/22/2022 2:10:00 PM
1,2-Dichloroethane (EDC)	ND	0.10		μg/L	1	3/22/2022 2:10:00 PM
1,2-Dibromoethane (EDB)	ND	0.10		μg/L	1	3/22/2022 2:10:00 PM
Naphthalene	ND	0.20		μg/L	1	3/22/2022 2:10:00 PM
1-Methylnaphthalene	ND	0.40		μg/L	1	3/22/2022 2:10:00 PM
2-Methylnaphthalene	ND	0.40		μg/L	1	3/22/2022 2:10:00 PM
Acetone	ND	1.0		μg/L	1	3/22/2022 2:10:00 PM
Bromobenzene	ND	0.10		μg/L	1	3/22/2022 2:10:00 PM
Bromodichloromethane	ND	0.10		μg/L	1	3/22/2022 2:10:00 PM
Bromoform	ND	0.10		μg/L	1	3/22/2022 2:10:00 PM
Bromomethane	ND	0.20		μg/L	1	3/22/2022 2:10:00 PM
2-Butanone	ND	1.0		μg/L	1	3/22/2022 2:10:00 PM
Carbon disulfide	ND	1.0		μg/L	1	3/22/2022 2:10:00 PM
Carbon tetrachloride	ND	0.10		μg/L	1	3/22/2022 2:10:00 PM
Chlorobenzene	ND	0.10		μg/L	1	3/22/2022 2:10:00 PM
Chloroethane	ND	0.20		μg/L	1	3/22/2022 2:10:00 PM
Chloroform	ND	0.10		μg/L	1	3/22/2022 2:10:00 PM
Chloromethane	ND	0.10		μg/L	1	3/22/2022 2:10:00 PM
2-Chlorotoluene	ND	0.10		μg/L	1	3/22/2022 2:10:00 PM
4-Chlorotoluene	ND	0.10		μg/L	1	3/22/2022 2:10:00 PM
cis-1,2-DCE	ND	0.10		μg/L	1	3/22/2022 2:10:00 PM
cis-1,3-Dichloropropene	ND	0.10		μg/L	1	3/22/2022 2:10:00 PM
1,2-Dibromo-3-chloropropane	ND	0.20		μg/L	1	3/22/2022 2:10:00 PM
Dibromochloromethane	ND	0.10		μg/L	1	3/22/2022 2:10:00 PM
Dibromomethane	ND	0.20		μg/L	1	3/22/2022 2:10:00 PM
1,2-Dichlorobenzene	ND	0.10		μg/L	1	3/22/2022 2:10:00 PM
1,3-Dichlorobenzene	ND	0.10		µg/L	1	3/22/2022 2:10:00 PM
1,4-Dichlorobenzene	ND	0.10		µg/L	1	3/22/2022 2:10:00 PM
Dichlorodifluoromethane	ND	0.10		µg/L	1	3/22/2022 2:10:00 PM
1,1-Dichloroethane	ND	0.10		µg/L	1	3/22/2022 2:10:00 PM
1,1-Dichloroethene	ND	0.10		µg/L	1	3/22/2022 2:10:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit

Р

Page 1 of 2

**CLIENT: HILCORP ENERGY** 

Sullivan GC D1E

Project:

**Analytical Report** Lab Order 2203923

## Hall Environmental Analysis Laboratory, Inc.

Date Reported: 3/28/2022 Client Sample ID: Influent 3-16-22 Collection Date: 3/16/2022 1:30:00 PM Received Date: 3/18/2022 8:05:00 AM

Lab ID: 2203923-001	Matrix: AIR	Recei	ived Date	: 3/18/2	022 8:05:00 AM
Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: CCM
1,2-Dichloropropane	ND	0.10	µg/L	1	3/22/2022 2:10:00 PM
1,3-Dichloropropane	ND	0.10	μg/L	1	3/22/2022 2:10:00 PM
2,2-Dichloropropane	ND	0.10	μg/L	1	3/22/2022 2:10:00 PM
1,1-Dichloropropene	ND	0.10	μg/L	1	3/22/2022 2:10:00 PM
Hexachlorobutadiene	ND	0.10	μg/L	1	3/22/2022 2:10:00 PM
2-Hexanone	ND	1.0	µg/L	1	3/22/2022 2:10:00 PM
Isopropylbenzene	ND	0.10	μg/L	1	3/22/2022 2:10:00 PM
4-Isopropyltoluene	ND	0.10	μg/L	1	3/22/2022 2:10:00 PM
4-Methyl-2-pentanone	ND	1.0	μg/L	1	3/22/2022 2:10:00 PM
Methylene chloride	ND	0.30	μg/L	1	3/22/2022 2:10:00 PM
n-Butylbenzene	ND	0.30	µg/L	1	3/22/2022 2:10:00 PM
n-Propylbenzene	ND	0.10	µg/L	1	3/22/2022 2:10:00 PM
sec-Butylbenzene	ND	0.10	μg/L	1	3/22/2022 2:10:00 PM
Styrene	ND	0.10	μg/L	1	3/22/2022 2:10:00 PM
tert-Butylbenzene	ND	0.10	µg/L	1	3/22/2022 2:10:00 PM
1,1,1,2-Tetrachloroethane	ND	0.10	µg/L	1	3/22/2022 2:10:00 PM
1,1,2,2-Tetrachloroethane	ND	0.10	μg/L	1	3/22/2022 2:10:00 PM
Tetrachloroethene (PCE)	ND	0.10	μg/L	1	3/22/2022 2:10:00 PM
trans-1,2-DCE	ND	0.10	µg/L	1	3/22/2022 2:10:00 PM
trans-1,3-Dichloropropene	ND	0.10	µg/L	1	3/22/2022 2:10:00 PM
1,2,3-Trichlorobenzene	ND	0.10	µg/L	1	3/22/2022 2:10:00 PM
1,2,4-Trichlorobenzene	ND	0.10	μg/L	1	3/22/2022 2:10:00 PM
1,1,1-Trichloroethane	ND	0.10	µg/L	1	3/22/2022 2:10:00 PM
1,1,2-Trichloroethane	ND	0.10	μg/L	1	3/22/2022 2:10:00 PM
Trichloroethene (TCE)	ND	0.10	µg/L	1	3/22/2022 2:10:00 PM
Trichlorofluoromethane	ND	0.10	μg/L	1	3/22/2022 2:10:00 PM
1,2,3-Trichloropropane	ND	0.20	µg/L	1	3/22/2022 2:10:00 PM
Vinyl chloride	ND	0.10	μg/L	1	3/22/2022 2:10:00 PM
Xylenes, Total	1.1	0.15	µg/L	1	3/22/2022 2:10:00 PM
Surr: Dibromofluoromethane	103	70-130	%Rec	1	3/22/2022 2:10:00 PM
Surr: 1,2-Dichloroethane-d4	101	70-130	%Rec	1	3/22/2022 2:10:00 PM
Surr: Toluene-d8	92.8	70-130	%Rec	1	3/22/2022 2:10:00 PM
Surr: 4-Bromofluorobenzene	93.8	70-130	%Rec	1	3/22/2022 2:10:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

**Qualifiers:** 

Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix

D н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix interference S

Analyte detected in the associated Method Blank в

Е Estimated value

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit Page 2 of 2

*



## ANALYTICAL SUMMARY REPORT

March 25, 2022

Hall Environmental 4901 Hawkins St NE Ste D Albuquerque, NM 87109-4372

Work Order: G22030363

Project Name: Not Indicated

Energy Laboratories Inc. Gillette WY received the following 1 sample for Hall Environmental on 3/22/2022 for analysis.

Lab ID	Client Sample ID	Collect Date F	Receive Date	Matrix	Test
G22030363-001	2203923-001B; Influent 3-16-22	03/16/22 13:30	03/22/22	Air	Natural Gas Analysis - BTU Natural Gas Analysis - Compressibility Factor Natural Gas Analysis - GPM Natural Gas Analysis - Molecular Weight Natural Gas Analysis - Routine Natural Gas Analysis - Pressure Base Natural Gas Analysis - Psuedo- Critical Pressure Natural Gas Analysis - Psuedo- Critical Temperature Natural Gas Analysis - Specific Gravity Natural Gas Analysis - Temperature Base

The analyses presented in this report were performed by Energy Laboratories, Inc., 400 W. Boxelder Rd., Gillette, WY 82718, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these tests results, please contact your Project Manager.

Report Approved By:



 Page 24 of 31

 Billings, MT 800.735.4489 • Casper, WY 888.235.0515

 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

#### LABORATORY ANALYTICAL REPORT

Prepared by Gillette, WY Branch

Client:	Hall Environmental			
Project:	Not Indicated		Report D	ate: 03/25/22
Client Sample ID:	2203923-001B; Influent 3-16-22		Collection D	ate: 03/16/22 13:30
Location:			Date Receiv	red: 03/22/22
Lab ID:	G22030363-001		Sampled	By: Not Indicated
Analyses		<b>Result Units</b>	Qualifier Method	Analysis Date / By
NATURAL GAS CH	ROMATOGRAPHIC ANALYSIS REPORT			
Oxygen		19.445 Mol %	GPA 2261	03/24/22 13:49 / blb
Nitrogen		78.851 Mol %	GPA 2261	03/24/22 13:49 / blb
Carbon Monoxide		< 0.001 Mol %	GPA 2261	03/24/22 13:49 / blb
Carbon Dioxide		1.228 Mol %	GPA 2261	03/24/22 13:49 / blb
Hydrogen Sulfide		< 0.001 Mol %	GPA 2261	03/24/22 13:49 / blb
Methane		0.398 Mol %	GPA 2261	03/24/22 13:49 / blb
Ethane		0.042 Mol %	GPA 2261	03/24/22 13:49 / blb
Propane		0.014 Mol %		03/24/22 13:49 / blb
Isobutane		0.004 Mol %		03/24/22 13:49 / blb
n-Butane		0.004 Mol %		03/24/22 13:49 / blb
Isopentane		0.002 Mol %		03/24/22 13:49 / blb
n-Pentane		0.001 Mol %		03/24/22 13:49 / blb
Hexanes plus		0.011 Mol %	GPA 2261	03/24/22 13:49 / blb
GPM @ STD COND	0/1000 CU.FT., MOISTURE FREE GAS			
GPM Ethane		0.0110 gal/MCF	GPA 2261	03/24/22 13:49 / blb
GPM Propane		0.0040 gal/MCF	GPA 2261	03/24/22 13:49 / blb
GPM Isobutane		0.0010 gal/MCF		03/24/22 13:49 / blb
GPM n-Butane		0.0010 gal/MCF		03/24/22 13:49 / blb
GPM Isopentane		0.0010 gal/MCF		03/24/22 13:49 / blb
GPM n-Pentane		< 0.0004 gal/MCF		03/24/22 13:49 / blb
GPM Hexanes plus		0.0050 gal/MCF		03/24/22 13:49 / blb
GPM Pentanes plus		0.0060 gal/MCF		03/24/22 13:49 / blb
GPM Total		0.0240 gal/MCF	GPA 2261	03/24/22 13:49 / blb
CALCULATED PRO	DPERTIES			
Calculation Pressure E	Base	14.730 psia	GPA 2261	03/24/22 13:49 / blb
Calculation Temperatu	ire Base	60 °F	GPA 2261	03/24/22 13:49 / blb
Compressibility Factor	r, Z	1.0000 unitless	GPA 2261	03/24/22 13:49 / blb
Molecular Weight		28.95 unitless	GPA 2261	03/24/22 13:49 / blb
Pseudo-critical Pressu	ıre, psia	548 psia	GPA 2261	03/24/22 13:49 / blb
Pseudo-critical Tempe	erature, deg R	242 deg R		03/24/22 13:49 / blb
Specific Gravity (air=1.	.000)	1.003 unitless		03/24/22 13:49 / blb
Gross BTU per cu ft @	2 std cond, dry	6.10 BTU/cu ft		
Gross BTU per cu ft @	2 std cond, wet	5.99 BTU/cu ft	GPA 2261	03/24/22 13:49 / blb

ReportRL - Analyte Reporting LimitDefinitions:QCL - Quality Control Limit



Page-25 of 31 Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

## **QA/QC Summary Report**

Prepared by Gillette, WY Branch

Client:	Hall Environmental			Work Order:	G2203	80363	Repo	ort Date:	03/25/22	
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261							Ar	alytical Run	R270004
Lab ID:	CCV-2203241254	Continuing Ca	alibration Ve	erification Standa	rd				03/24	1/22 12:5
Oxygen		0.637	Mol %	0.001	106	90	110			
Nitrogen		1.378	Mol %	0.001	98	85	110			
Carbon Dic	oxide	0.954	Mol %	0.001	95	90	110			
Hydrogen S	Sulfide	0.025	Mol %	0.001	100	70	130			
Methane		93.438	Mol %	0.001	100	90	110			
Ethane		1.014	Mol %	0.001	101	90	110			
Propane		1.009	Mol %	0.001	101	90	110			
Isobutane		0.495	Mol %	0.001	99	90	110			
n-Butane		0.495	Mol %	0.001	99	90	110			
Isopentane	)	0.200	Mol %	0.001	100	90	110			
n-Pentane		0.201	Mol %	0.001	100	90	110			
Hexanes pl	lus	0.154	Mol %	0.001	103	90	110			
Lab ID:	ICV-2203241303	Initial Calibrat	ion Verifica	tion Standard					03/24	4/22 13:04
Oxygen		0.391	Mol %	0.001	97	75	110			
Nitrogen		5.154	Mol %	0.001	103	90	110			
Carbon Dic	oxide	4.900	Mol %	0.001	99	90	110			
Hydrogen S	Sulfide	0.130	Mol %	0.001	131	100	136			
Methane		73.196	Mol %	0.001	100	90	110			
Ethane		4.997	Mol %	0.001	101	90	110			
Propane		4.993	Mol %	0.001	100	90	110			
sobutane		1.984	Mol %	0.001	99	90	110			
n-Butane		1.965	Mol %	0.001	98	90	110			
sopentane	9	0.986	Mol %	0.001	99	90	110			
n-Pentane		0.997	Mol %	0.001	100	90	110			
Hexanes pl	lus	0.307	Mol %	0.001	102	90	110			
Lab ID:	ICV1-2203241325	Initial Calibrat	ion Verifica	tion Standard					03/24	4/22 13:2:
Nitrogen		98.951	Mol %	0.001	100	90	110			
Carbon Mo	noxide	1.049	Mol %	0.001	103	90	110			
_ab ID:	CCV1-2203241334	Continuing Ca	alibration Ve	erification Standa	rd				03/24	4/22 13:3
Nitrogen		99.904	Mol %	0.001	100	85	110			
Carbon Mo	noxide	0.096	Mol %	0.001	95	90	110			
Lab ID:	CCV-2203241628	Continuing Ca	alibration Ve	erification Standa	rd				03/24	4/22 16:28
Oxygen		0.609	Mol %	0.001	102	90	110			
Nitrogen		1.288	Mol %	0.001	92	85	110			
Carbon Dic	oxide	0.965	Mol %	0.001	97	90	110			
Hydrogen S	Sulfide	0.021	Mol %	0.001	84	70	130			
Methane		93.560	Mol %	0.001	100	90	110			
Ethane		1.015	Mol %	0.001	101	90	110			
Propane		1.006	Mol %	0.001	101	90	110			
Isobutane		0.492	Mol %	0.001	98	90	110			
n-Butane		0.492	Mol %	0.001	98	90	110			

**Qualifiers:** 

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)



Page-26 of 31 Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

## **QA/QC Summary Report**

Prepared by Gillette, WY Branch

Client:	Hall Environmental			Work Order:	G2203	30363	Repor	t Date:	: 03/25/22	
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261							Ar	nalytical Run:	R270004
Lab ID:	CCV-2203241628	Continuing Ca	alibration V	erification Standa	ırd				03/24	/22 16:28
Isopentane	e	0.199	Mol %	0.001	99	90	110			
n-Pentane		0.200	Mol %	0.001	100	90	110			
Hexanes p	lus	0.153	Mol %	0.001	102	90	110			
Method:	GPA 2261								Batch:	R270004
Lab ID:	G22030363-001ADUP	Sample Dupli	cate			Run: Varia	n GC_220324A		03/24	/22 13:58
Oxygen		19.447	Mol %	0.001				0.0	10	
Nitrogen		78.839	Mol %	0.001				0.0	10	
Carbon Mo	onoxide	< 0.001	Mol %	0.001					10	
Carbon Die	oxide	1.228	Mol %	0.001				0.0	10	
Hydrogen	Sulfide	< 0.001	Mol %	0.001					10	
Methane		0.409	Mol %	0.001				2.7	10	
Ethane		0.042	Mol %	0.001				0.0	10	
Propane		0.014	Mol %	0.001				0.0	10	
Isobutane		0.004	Mol %	0.001				0.0	10	
n-Butane		0.004	Mol %	0.001				0.0	10	
Isopentane	e	0.002	Mol %	0.001				0.0	10	
n-Pentane		0.001	Mol %	0.001				0.0	10	
Hexanes p	blus	0.010	Mol %	0.001				9.5	10	

**ENERGY** Trust our People. Trust our Data. www.energylab.com

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

# Work Order Receipt Checklist

## Hall Environmental

Login completed by:	Jill S. Jeffress		Date	Received: 3/22/2022
Reviewed by:	Misty Stephens		Re	eceived by: jsj
Reviewed Date:	3/22/2022		Car	rrier name: FedEx
Shipping container/cooler in	good condition?	Yes 🗹	No 🗌	Not Present
Custody seals intact on all s	hipping container(s)/cooler(s)?	Yes 🗹	No 🗌	Not Present
Custody seals intact on all s	ample bottles?	Yes 🗌	No 🗌	Not Present 🗹
Chain of custody present?		Yes 🗹	No 🗌	
Chain of custody signed wh	en relinquished and received?	Yes 🗹	No 🗌	
Chain of custody agrees wit	h sample labels?	Yes 🗹	No 🗌	
Samples in proper container	r/bottle?	Yes 🗹	No 🗌	
Sample containers intact?		Yes 🗹	No 🗌	
Sufficient sample volume for	r indicated test?	Yes 🗹	No 🗌	
All samples received within (Exclude analyses that are of such as pH, DO, Res CI, Su	considered field parameters	Yes 🗸	No 🗌	
Temp Blank received in all s	hipping container(s)/cooler(s)?	Yes	No 🗌	Not Applicable
Container/Temp Blank temp	erature:	°C		
Containers requiring zero he bubble that is <6mm (1/4").	eadspace have no headspace or	Yes 🗌	No 🗌	No VOA vials submitted
Water - pH acceptable upon	receipt?	Yes 🗌	No 🗌	Not Applicable

#### **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

#### **Contact and Corrective Action Comments:**

None

ADDRESS 400 W Boxelder Rd CITY STATE ZIP Cillette, WY 82718	ACCOUNT# (866) 686-7175	175 EMAIL
ITEM SAMPLE CLIENT SAMPLE ID TYPE MATRIX	CONTAINERS	ANALYTICAL COMMENTS
2203923-0018 Influent 3-16-22	0 PM 1 FIXED	GASES 02, CO2, CO
		C 220 30 30 30 3
SPECIAL INSTRUCTIONS / COMMENTS;		
Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental com. Please return all coolers and blue ice. Thank you	@hallenvironmental com Please re	turn all coolers and blue ice. Thank you.
Relinquished By CUC Date Time, 12:02 PM Received By M. Kuy St2/20 Relinquished By Date Time Received By Date Date	8/12/2022 Time 1/09 HA	REPORT TRANSMITTAL DESIRED HARDCOPV (evita cost) FAX EMAIL ONLINE
Date Time Received By		FOR LAB USE OWL Y
TAT: Standard 🎾 RUSH Next BD 2nd BD 3n	3rd BD Comments	

175

HALL

CHAIN OF CUSTODY RECORD

LABORATORY

ANALYSIS

sub contrator Energy Labs-Gillette

COMPANY

**Energy Laboratories** 

PHONE

FAX

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque NM 87109 TEL 505-345-3975

Website clients hallenvironmental.com

FAX 505-345-4107

HALL ENVIRONMENTAL ANALYSIS LABORATORY	TEL: 505-345-3	ntal Analysis Labor. 4901 Hawkin Albuquerque, NM 8 975 FAX: 505-345- ts.hallenvironmenta	ns NE 87109 <b>Sar</b> 4107	nple Log-In Check Li
Client Name: HILCORP ENERGY	Work Order Num	ber: 2203923		RcptNo: 1
Received By: Cheyenne Cason	3/18/2022 8:05:00	АМ	Chul	
Completed By: Cheyenne Cason	3/17/2022 8:12:03	АМ	Chul Chul	
Reviewed By: 3-18-22 774 3-18-22	JR3/18/72			
Chain of Custody				
1. Is Chain of Custody complete?		Yes 🗹	No 🗌	Not Present
2. How was the sample delivered?		Courier		
Log In 3. Was an attempt made to cool the same	nples?	Yes 🗌	No 🗌	NA 🗹
4. Were all samples received at a tempe	erature of >0° C to 6.0°C	Yes 🗌	No 🗌	NA 🔽
5. Sample(s) in proper container(s)?		Yes 🗹	No 🗌	
6. Sufficient sample volume for indicated	test(s)?	Yes 🗸	No 🗌	
7. Are samples (except VOA and ONG)	properly preserved?	Yes 🔽	No 🗌	
8. Was preservative added to bottles?		Yes	No 🗹	NA 🗌
9. Received at least 1 vial with headspace	e <1/4" for AQ VOA?	Yes	No 🗌	NA 🗹
<ol> <li>Were any sample containers received</li> </ol>	l broken?	Yes	No 🔽	# of preserved
11. Does paperwork match bottle labels? (Note discrepancies on chain of custor	dy)	Yes 🗸	No 🗌	bottles checked for pH: (<2 or >12 unless no
12. Are matrices correctly identified on Ch	ain of Custody?	Yes 🖌	No 🗌	Adjusted?
13. Is it clear what analyses were requested	ed?	Yes 🗹	No 🗌	
14. Were all holding times able to be met? (If no, notify customer for authorization)		Yes 🔽	No 🗌	Checked by: 3-18-
Special Handling (if applicable)				
15. Was client notified of all discrepancies	s with this order?	Yes	No 🗌	NA 🔽
Person Notified:	Date:		and a second	
By Whom:	Via:	🗌 eMail 🗌 P	hone 🗌 Fax	In Person
Regarding:	andan dalam dalam dalam dalam ana dalam			
Client Instructions:				Hereine and an operation of the second se
16. Additional remarks:				
17. <u>Cooler Information</u> Cooler No Temp °C Condition 1 NA Good	n Seal Intact Seal No Yes	Seal Date	Signed By	

Page 1 of 1

•

Received b	-	CD: 4/	/14/2	022	1: <u>53</u>	<u>3:20 PM</u>														1	Page 30 o	f 31
ENVIRONMENTAL	ANALYSIS LABORATOR	COM	Ecv. EDE 24E 4402	rax 303-343-4107 ysis Request	7	00 ¹⁻⁶ 0	<u>, 100</u>			by it	×								1			rves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
IRC	5	www.hallenvironmental.com	hue,	Analysis Request	. (+	nəsdAV			000000000	2) 0728	1	-	-								~	tated o
	S	onno	ianhi	sis R				0/1		A) 0928	5	+		 -	-	-		_			eric. corroit @ WSP. com	arly no
Ĩ	ΥS	lenvir	n ù	nalys	*⊂	PO₄, S(	' ^z ON	^{'8} O				-					-		_		sp.	II be cle
	AL	v.hall	1 - 076	A						ARDF		-									3 (2)	data wi
HALL	Z	www.	15.30	0-0+		SMIS	or 8270	01	y 83	d sHAc	1										110	acted o
		hwel	05_3	200						N) 803											CON	ib-conti
		4901 Hawkins NE	Tel 505-345-3075	0.0	-				State -	9 1808 P										'n	. C.	Any su
		4			2						1.00						 			rellialks.		sibility.
			Т		-	1208) s	I I I I	35		X TEX /							 	$\square$			120	is poss
	Project Name:	Sullivan 6C DIE	Project #:		Project Manager:	Devin Hencmany	Sampler: <i>É, Carroil</i> On Ice: 図 Yes DO	olers: ( M/	Cooler Temp(Induding CF): 0, 8+0, f	Container Preservative HEAL No. Type and # Type	8								Received bv: Vía: Date Time	When Juba	Received by: Via: Date Time 3/18/20 08:05 JM COM 3/17/20 0700	This se
Chain-of-Custody Record	+-	مويكان لحرم الار الملاحية Mailing Address:		Phone #:	email or Fax#: nrk i llough @ hiliorp. com	QA/QC Package:	Accreditation:	EDD (Type)		Date Time Matrix Sample Name	3/16 13:30 Air Influent 3-16-72								Date: Time: Relinquished by:	1547 Elde mail	Relinquished by:	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

## **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 98719

CONDIT	IONS
Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	98719
	Action Type: [UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

#### CONDITIONS

Created By	Condition	Condition Date
csmith	Quarterly Report Approved, Continue Operating as previously approved.	7/6/2022