Received by OCD: 10/6/2021 1:38:04 PM

October 7, 2021

Ms. Emily Hernandez Bureau Chief, Environmental New Mexico Oil Conservation Division New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe. New Mexico 87505

Subject: Updated Remediation Work Plan San Juan 28-6 Unit #31 Hilcorp Energy Company API #: 30-039-07290 NMOCD Incident Number: NVF1816655680 Rio Arriba County, New Mexico

To Whom it May Concern:

On behalf of Hilcorp Energy Company (Hilcorp), WSP USA Inc. (WSP) has prepared this *Updated Remediation Work Plan* for the San Juan 28-6 Unit #31 (Site) located near Encierro Canyon in Rio Arriba County, New Mexico (Figure 1). Approximately 12 barrels (bbls) of condensate and 2.1 bbls of produced water were released at the Site in 2018 as a result of corrosion at the bottom of the Site production tank (Figure 2). Animas Environmental Services (AES) conducted site characterization and delineation work on behalf of Hilcorp at the Site in 2018 and 2019. Based on multiple sampling events, a *Remediation Plan* (dated November 6, 2018) and subsequent *Revised Site Remediation Plan* (dated December 28, 2018) were submitted to the New Mexico Oil Conservation Division (NMOCD) for review and approval. Hilcorp attempted remediation through soil vapor extraction (SVE) as proposed, but mechanical failures prevented successful startup of the SVE system. The NMOCD issued a notice of violation (NOV) dated September 1, 2021 requiring submittal of delinquent reports, a plan to bring the SVE system into compliance, report of full delineation of impacted soil, and an updated remediation plan detailing and justifying system design, installation, operation, and effectiveness.

Any delinquent reports are submitted under separate cover. This document meets the remaining requirements and documents the following:

- Final delineation sampling events;
- Plan for temporary system installation and permanent system installation as originally designed and approved; and
- Meets the remediation requirements of 19.15.29.11 and 19.15.29.12 of the New Mexico Administrative Code (NMAC) and includes start dates, detailed design with calculations, system operation, system evaluation and verification of performance, proposed closure actions, and estimated remediation timelines.

1.0 SITE BACKGROUND

The *Revised Site Remediation Plan* (dated December 28, 2018 and included as Enclosure A) submitted by AES outlines the release background, site characterization based on potential sensitive receptors and depth to groundwater, site-specific closure criteria, delineation data, and a remediation plan for the Site. Based on the presented information, Hilcorp, the NMOCD, and the Bureau of Land Management (BLM) met on January 31, 2019 to discuss additional sampling requirements for full delineation of the release. Details from this meeting are further discussed below.

1.1 SITE CHARACTERIZATION AND CLOSURE CRITERIA

As documented in the AES reports, the Site was characterized in accordance with *Table 1, Closure Criteria for Soils Impacted by a Release* of 19.15.29.12 of the New Mexico Administrative Code (NMAC). Based on an estimated depth-to-groundwater greater than 250 feet below ground surface (bgs) and no sensitive receptors in close proximity to the Site, the following NMOCD Table 1 Closure

WSP USA 848 EAST 2ND AVENUE DURANGO CO 81301

Tel.: 970-385-1096 wsp.com Released to Imaging: 9/22/2022 2:16:33 PM Accepted - 09/22/2022

Page 1 of 337 NV

Criteria apply: 10 milligrams per kilogram (mg/kg) benzene; 50 mg/kg total benzene, toluene, ethylbenzene, and total xylenes (BTEX); 1,000 mg/kg total petroleum hydrocarbons (TPH) as gasoline range organics (GRO) and diesel range organics (DRO); 2,500 mg/kg TPH as GRO, DRO, and motor oil range organics (MRO); and 20,000 mg/kg chloride.

1.2 NMOCD JANUARY 2019 CONDITIONS OF APPROVAL

Hilcorp, the NMOCD, and the BLM met on January 31, 2019 to discuss the *Revised Site Remediation Plan* (dated December 28, 2018). The NMOCD provided Hilcorp with the following Conditions of Approval (COAs) for the *Revised Site Remediation Plan* via email:

- Hilcorp will have the following items implemented 90 days from meeting (April 30, 2019)
 - A full SVE plan must be submitted, approved by the OCD, installed, and operational by the referenced date above. It is HEC's responsibility to ensure these steps happen timely to ensure compliance with the timeframe provided.
 - By the referenced date the site must also be fully delineated. As discussed at least two additional investigation wells are required to fully delineate the vertical extent of the contamination in the two suspected source areas. These well locations must also be submitted and approved by the OCD prior to implementation to ensure they meet the requirements discussed.
 - Please note below are standard SVE conditions of approval that you may want to include in your plan or they will be added.
 - HEC will maintain a SVE runtime greater than or equal to 90% per quarter.
 - HEC will collect an initial gas sample for laboratory analysis shortly after the startup of SVE Operations and then a quarterly sample thereafter. The gas sample will be analyzed for EPA Method 8260 Full List and include Carbon dioxide and Oxygen.
 - The gas sample port needs to be installed prior to the inlet of the vacuum pump but, after the convergence of all SVE wells.
 - HEC will submit to OCD District III a quarterly update report detailing remediation operations the report will include at a minimum.
 - o Summary of remediation activity for the quarter.
 - o SVE run time
 - o SVE mass removal and product recovery.
 - o Gas Sample Analysis
 - *HEC* will need a full vertical and horizontal delineation of the remediated areas to ensure full remediation. The locations of these wells will be required to be approved by the OCD prior to implementation.

2.0 DELINEATION SAMPLING

On February 12, 2019, the NMOCD approved four additional delineation borings, as proposed by Hilcorp and presented on a map and emailed to NMOCD. AES conducted the final delineation sampling in April and May of 2019 with the advancement of borings SB-25 through SB-29. Full lateral and vertical delineation of the release was achieved. In total, 34 borings were advanced at the Site, of which 15 borings were completed as soil-vapor extraction (SVE) wells for future remediation of the site impacts. Based on analytical results, approximately 2,600 cubic yards of subsurface soil were estimated to have been impacted by the release at the Site.

Soil sample results from AES work are summarized in attached Table 1, with laboratory analytical reports for this April/May 2019 event included as Enclosure B (laboratory analytical reports for previous sampling events are presented in the AES report included as Enclosure A). Soil boring locations advanced by AES are shown on Figure 3. Boring logs prepared by AES for the final soil borings are presented in Enclosure C. Additionally, cross sections prepared by AES are presented in Enclosure D and include lithology, soil sampling results, and SVE well-screen intervals.

3.0 SYSTEM UPDATE AND RECENT REMEDIAL ACTION

As proposed in the AES *Revised Site Remediation Plan* (dated December 28, 2018), AES and Hilcorp purchased an SVE system from Geotech Environmental Equipment, Inc. (Geotech) in Denver, Colorado to remediate hydrocarbon impacted soil identified at the Site.

3.1 SVE SYSTEM INSTALLATION AND PILOT TESTING

A total of 21 SVE wells were installed in 15 of the completed borings advanced at the Site during delineation activities (including six nested SVE wells installed within the same boring). In total, 12 SVE wells were installed in "shallow" zones (indicated with an "S", as in SVE-11S), with screen intervals placed at depths targeting soil impacts between the ground surface and 15 feet bgs. Seven SVE

wells have been installed in "deep" zones (indicated with a "D") with screen intervals placed at depths targeting soil impacts between 15 feet and 30 feet bgs (Figure 3). Additionally, two SVE wells (SVE-1 and SVE-3) have screen intervals that were installed in both zones at depths between 10 and 25 feet bgs. An "as-built"/SVE system layout is presented on Figure 4 showing locations of SVE wells, as well as piping and equipment placement at the Site. SVE well construction information is presented in Table 2, with SVE well construction diagrams included in Enclosure C.

Following successful delineation, Hilcorp and AES presented the design for an SVE system in the December 28, 2018 *Revised Site Remediation Plan* which contained the following components:

- Ametek Rotron model EN656M5XL aluminum fan regenerative blower capable of approximately 100 cubic feet per minute (cfm), 50 inches water column (IWC). The single phase blower is 230 volt/3 horsepower (HP) with thermal overload protection;
- Explosion-proof power disconnect on/off switch;
- Manual dilution air valve;
- Two vacuum gauges;
- Duotec model EI3A-1SL vacuum switch to protect the blower from overheating;
- Moisture separator capable of removing vapor from air flow;
- W.E. Anderson, Flotect model L-6 high liquid level switch system to shut down the blower when the moisture separator is full;
- Metal HazMat Station made with welded steel construction, side vents and added roof vent for passive ventilation;
- 66-gallon sump;
- Onan 20 ES generator with modified Ford, 4-cylinder model LRG-423A natural gas engine to supply electric power.

A schematic of the SVE system, including piping, manifold, knockout tank, vacuum blower, gauges, etc., is presented in Enclosure E. Enclosure E also includes a brochure for the SVE system provided by Geotech, the manual for the Onan generator powering the system, and a photographic log from SVE system installation prepared by AES.

3.1.1 SVE SYSTEM INSTALLATION

AES installed the SVE system with natural gas generator at the Site in June 2019 and startup of the system was attempted in August 2019. At startup, compounding issues with the Ametek Rotron SVE blower were encountered. Throughout winter and spring, multiple repairs, troubleshooting events, and replacement part installations were attempted. A new motor was eventually provided, but also failed. It had to be returned to the manufacturer under warranty. Repairs by the manufacturer required extensive timelines.

WSP began working at the Site to assist Hilcorp with installation of the repaired/new blower in January and started the SVE system in February 2021. Although the blower finally functioned properly, the natural gas generator had not been connected properly, requiring Hilcorp to lock-out-tag-out the system and make electrical repairs. Several parts were needed to correct electrical issues, and repairs were finalized in June 2021. With the generator operational and blower installed, the SVE system was successfully started. Overall, the system functioned and was applying vacuum to the SVE wells at the Site. However, after approximately 1 hour of operation, WSP noticed that the newly repaired blower was making a grinding noise in the fan blades. At that time, the system was shut down and the manufacturer was once again contacted to assess whether further repairs were required. The manufacturer indicated that the blower would have to be shipped back to the factory for assessment. Because of the continued issues, Hilcorp purchased a new regenerative blower and is currently awaiting its arrival. During the manufacture and shipping wait time (expected to be mid- to late-October), Hilcorp has rented a temporary SVE system from Process Technology Support, LLC (Process Tech). consisting of a 2.4 HP regenerative blower capable of producing 71 IWC. The rental SVE system was started on September 28, 2021.

3.2 SVE SYSTEM PILOT TEST

To evaluate the design of the SVE system, WSP conducted a pilot test to determine the flow rate and applied vacuum required to influence the subsurface and cause volatilization of the petroleum hydrocarbons entrained in the soil. Pilot test data was also used to determine specific site design radius-of-influence (ROI) and radius-of-effect (ROE).

3.2.1 SVE PILOT TEST PROCEDURES

SVE-1, screened from 10 feet to 25 feet bgs in the weathered sandstone encountered onsite, was used as the extraction well during the pilot test. A vacuum truck was used to apply a negative pressure to the pilot testing well. The existing equipment manifold was used to control the vacuum being applied and to collect flow, vacuum, and photo-ionization detector (PID) measurements at the extraction well. Observation wells (SVE-3, SVE11D, and SVE13D), having same screened intervals of 10 feet to 25 feet bgs, 25 feet to 30 feet

bgs, and 25 to 30 feet bgs, were used to collect SVE pilot test monitoring data. All wells are screened in the sandstone geology onsite. The SVE well locations are presented on Figure 4. The following list summarizes the procedure of the SVE pilot test:

- Measured the distances from the extraction well to each observation well.
- Collected background VOCs measurements using a PID at the SVE and observation wells.
- Connected the vacuum truck to the extraction well via a flexible hose and manifold. Slowly opened the valve and monitored the vacuum and flow.
- Applied a low vacuum at approximately 5 IWC. Then increasing the vacuum/flow rate until influence is observed
- Tested several vacuums in increasing magnitude based on site response observed. Tested at least three different vacuums for the pilot test.
- Collected at least two rounds of stabilized measurements per vacuum/flow rate. Measured the vacuum and the PID headspace at the observation wells. Recorded readings approximately 15 minutes apart.
- Collected air samples from SVE-1 in 1-Liter Tedlar bag using a high-vacuum air sampler for laboratory analysis.
- All test forms, graphs, and calculations are provided as Enclosure F. The air laboratory analytical reports are provided in Enclosure B and summarized in Table 3.

3.2.2 SVE TEST RESULTS AND CONCLUSIONS

Pilot test data indicates that SVE is a viable technology to remediate the Site. The vacuum response from the pilot test well SVE-1 and observations wells SVE-3, SVE-11D, and SVE-13D is shown below. Observation wells ranged in distance of 25 feet to 50 feet from the SVE test well (SVE-1). Vacuum influence was observed at all the three observation wells as shown on the figure below.

The above figure illustrates that vacuum influence was observed at a distance of 30 feet at 4.7 IWC and 24.7 IWC. When vacuum was increased to 44.2 IWC a vacuum response was observed as a distance of 50 feet. Based on the vacuum observations a ROI of at least 30 feet can be assumed.

Additional calculations were performed to determine the ROE. These calculations are included in Enclosure F. To determine a ROE the annual pore volume exchange was calculated assuming an ROI of 30 feet at two different flow rates of 60 standard cubic feet per minute (scfm) and 80 scfm. Both the pore volumes calculated indicated an annual pore volume exchange of 2,974 and 4,214, respectively. The pore volume exchange meets literature values of at least 500 pore volume exchanges annually. To further verify that the ROE corresponds with the ROI, the pore velocity was calculated at the ROI of 30 feet for both flow rates. The calculated pore velocity was 122 feet per day (ft/day) and 173 ft/day, which is above a recommended velocity of 3 ft/day. Current SVE research

indicates that it is desirable to achieve pore-gas velocities throughout the treatment zone in excess of 0.001 cm/sec or ~3 ft/day (DiGiulo and Ravi 1999).

The blower on order, a 3 horsepower Rotron EN 656, is capable of producing 200 scfm at 5 IWC, which at the site elevation of 5,700 feet above mean sea level (AMSL) is 160 cfm. At the elevation corrected flow rate, with two wells operating at 80 scfm each, the system can achieve an ROE of 30 feet and will achieve the required pore volume exchange and velocity at 3,996 annual exchanges and 163 ft/day, respectively. Based on pilot test results, a relatively high flow rate is required per well to achieve this exchange rate. In order to achieve this flow rate, multiple wells can be operated at once, but not the full system. Throughout the pilot test period, the applied vacuum increased and the measured air flow removal rate decreased. This indicates the overlying clay soil may restrict movement of air from the surface. This will generally improve SVE performance, but cycling between the SVE wells may be beneficial. To be conservative, with five active extraction wells operating at 32 cfm per well(assuming the system can achieve an ROE of 30 feet), the calculated pore volume exchange and velocity are 1,586 annual exchanges and 65 ft/day, respectively.

Based on the pilot test data, WSP suggests a cycled approach to well operation to isolate five to six SVE wells at a time. Wells would then be cycled on a monthly or quarterly basis to target different impacted areas of the Site. Additionally, WSP recommends the retesting of ROI and ROE when the new blower arrives to determine an optimal operational plan. With the new blower, WSP will test if a lower flow rate can achieve at least a 30 foot ROI and ROE over a longer time period. The ROI and ROE for the shallow and deep zones are presented on Figures 5 and 6, respectively. Pilot test information is presented in Enclosure F.

During the pilot test, WSP also collected an air sample from the pilot test manifold, on the influent side attached to the wellhead, via high vacuum air sampler. The air sample was collected in a 1-Liter Tedlar bag and submitted to Hall for analysis of volatile organic compounds (VOCs) by EPA Method 8260, fixed gas analysis of oxygen and carbon dioxide, and TVPH by EPA Method 8015. Prior to collection, the air from the influent side was field screened with a PID for organic vapor monitoring (OVM). The pilot test air sample results indicate a TVPH concentration 250,000 μ g/L. Table 3 presents a summary of analytical data collected during the pilot test, with the full analytical laboratory report included in Enclosure B.

4.0 PLAN FOR COMPLIANCE AND UPDATED REMEDIATION WORK PLAN

The following information is provided to document a plan for compliance with the conditions of approval applied to the initial approved remediation work plan. With the startup of the rental system, the remediation start date for the Site SVE system is September 28, 2021. The new blower for the originally designed system is anticipated to be delivered in October of 2021. Hilcorp will perform installation immediately and anticipates minimal downtime. Hilcorp will also notify NMOCD when installation begins and when it is completed. The as-built SVE system layout is shown on Figure 4, and a schematic of the originally designed SVE system (including piping, manifold, knockout tank, vacuum blower, gauges, etc.) is presented in Enclosure E. Figures 5 and 6 present the estimated ROI and ROE for the shallow and deep zones at the Site based on the pilot testing performed, as described in Section 3.2 above.

4.1 AIR SAMPLING AND REPORTING

Upon startup of the rental system, an air sample was collected on September 28, 2021 from the inlet side of the SVE blower and analyzed for BTEX and TVPH. Analytical results are summarized in Table 3, with the analytical laboratory report included in Enclosure B. During the first three months of operation (October, November, and December 2021), air samples will be collected monthly and submitted for laboratory analysis, then reduced to quarterly for the first year of operation to monitor the effective reduction and remediation of soil impacts. Initial and annual air samples will be submitted for analysis of VOCs, TVPH, oxygen, and carbon dioxide. Additionally, regular quarterly samples will be analyzed for BTEX and TVPH. WSP will submit quarterly reports to the NMOCD presenting analytical results and effective runtime to document hydrocarbon mass recovery, system runtime, and air sample analysis. Based on runtime, airflow, and contaminant concentrations measured during each quarter, Table 4 will be updated to calculate total mass removal and emissions over time.

4.2 OPERATIONS AND MAINTENANCE PLAN

During the operation of the SVE system, regular operation and maintenance (O&M) visits will be conducted semi-monthly (twice per month) by WSP and/or Hilcorp personnel. During O&M visits, personnel will ensure that the generator and SVE system are operating within normal working temperature, pressure, and vacuum range. System runtime will be recorded and vapor concentrations will be measured from a sampling port located on the inlet side of the blower motor using a PID. Vacuum, temperature, and flow measurements indicated on the SVE system gauges will also be recorded. The generator will also be checked for normal operation and

wsp

the following parameters will be recorded: oil pressure, coolant temperature, alternating current (AC) current output, output voltage, and runtime. An initial operational schedule for cycling operations between the wells will be established by evaluating the first quarter of system operational results. Changes to operating wells will be completed during O&M visits. Any deviations from normal operating parameters will be recorded and corrected by onsite personnel, if possible. In addition to routine O&M visits, the SVE system will be connected to Hilcorp's telemetry network. If the system experiences downtime, a Hilcorp environmental manager will be notified via email immediately. Immediate notification will allow for quick response to maximize system runtime. An O&M form to be used during semi-monthly visits is attached in Enclosure G. An *Operations and Maintenance Manual* is also attached in Enclosure G, to be used as guidance for performing O&M.

4.3 FUTURE RUN TIME CALCULATIONS AND PROPOSED REMEDIATION TIMELINE

The SVE system is powered by a dedicated natural gas generator able to run 24 hours per day. Based on 24 hours of available run time, to maintain a 90% runtime, the system will have to operate a minimum of 7,884 hours per year. Using the installed run-time meter on the SVE unit, WSP will report system run time quarterly. The 90% runtime accounts for downtime related to regular maintenance of the generator and SVE system. Downtime outside of Hilcorp's control (i.e., equipment failure) will be accounted for and the total available annual runtime hours will be adjusted. This information will be reported in the quarterly reports.

The US Army Corps of Engineers, *Soil Vapor Extraction and Bioventing – Engineer Manual*, dated June 3, 2002 states 'Unless target cleanup goals are low or initial concentrations are very high, 1,000 to 1,500 pore volumes would be a good estimate of the required air exchanges'. The pilot test results indicate a relatively high flow rate is required for system operation. This will be verified when the new system arrives. If pilot test results are confirmed, operation of the site will be divided into four separate areas, each to be operated independently on a monthly or quarterly rotation. Even with system rotation, the system will be able to achieve 1,500 pore volume exchanges over the entire site within 24 to 36 months. With a system currently operational at the site, and a run time of 90%, the estimated remediation end date is currently September 2024. Based on pore volume exchanges and recommended well rotation, WSP anticipates that system will operate at the Site for 24 to 36 months (6 to 9 months per area). WSP will also assess air concentrations of TVPH from the system and if these become asymptotic before the anticipated closure date, then sampling will commence per the schedule below. The SVE system will remain at the Site full time until remediation is complete.

Based on the above assumption, WSP anticipates that the system will operate at the Site for approximately 3 years to remediate impacted soils to below NMOCD Table 1 Closure Criteria. As additional air samples are collected over the next year, WSP will present an updated remediation timeline after four quarters of monitoring and sampling of the system. However, the following general timeline is proposed with day 0 being the day this document is submitted to the NMOCD. Additionally, quarterly reporting will be conducted to keep the NMOCD informed on major site advancements and SVE system operations.

- Months 1, 2, and 3 Air sample collection monthly, perform system maintenance, and optimize system operation, as necessary;
- Month 3 through Year 1 Semi-monthly O&M visits, quarterly air sample collection to monitor system efficacy, and quarterly system monitoring. Quarterly reporting;
- Years 1 to 3 Assess system performance and collect quarterly air samples to assess system efficacy. Update remediation timeline based on quarterly sampling analytical results after one year of operation. At any point, if air concentrations of TVPH collected from the system become asymptotic and/or are below 1.0 milligrams per liter (mg/L), soil samples will be collected to determine if concentrations are below NMOCD Table 1 Closure Criteria. If soil concentrations are above Closure Criteria, the system will be adjusted to maximize performance and address areas with remaining soil impacts. Continue quarterly air sample collection, monitoring, and reporting as necessary;
- Year 3 Soil confirmation sampling. Request for site closure if soil sample results are below NMOCD Table 1 Closure Criteria. If soil concentrations are above Closure Criteria, the system will be adjusted to maximize performance and address areas with remaining soil impacts. Continue quarterly air sample collection, monitoring, and reporting as necessary.

4.4 CONFIRMATION SOIL SAMPLING

When a significant decline in air sample concentrations is observed, indicating sufficient mass source removal (air concentrations of TVPH collected from the system become asymptotic and/or are below 1.0 milligrams per liter), confirmation soil samples will be collected via hollow-stem auger. Proposed boring/sampling locations are presented on Figure 7 and are generally in areas containing the highest TPH and benzene concentrations encountered during Site delineation. If the soil samples indicate hydrocarbon impacts have been reduced to below Table 1 Closure Criteria, WSP will present the confirmation laboratory analysis data in a report and

request closure of the release. Should the results indicate that analytes in the soil exceed Table 1 Closure Criteria, WSP will continue to operate the system and make operational adjustments based on results of the sampling.

5.0 REFERENCES

DiGiulio, D., Ravi, V., & Brusseau, M., 1999. Evaluation of mass flux to and from ground water using a vertical flux model (VFLUX): application to the soil vacuum extraction closure problem. Ground water monitoring & remediation, 19, 96-104. doi: 10.1111/j.1745-6592.1999.tb00210.x

United States Army Corps of Engineers (USACE), 2002. Engineering and Design, Soil Vapor Extraction and Bioventing - Engineer Manual, Document EM 1110-1-4001. June 3.

WSP appreciates the opportunity to provide this report to you. If you have any questions or comments regarding this report, do not hesitate to contact Stuart Hyde at (970) 903-1607 or at stuart.hyde@wsp.com, or Lindsay Dosescu at (281)-794-9159 or at ldumas@hilcorp.com.

Kind regards,

Stuart Hyde, L.G. Senior Geologist

obert I Rebel

Robert Rebel, P.E. Technical Principal, Lead Consultant

Enclosed:

Figure 1: Site Location Map Figure 2: Site Map Figure 3: Soil Boring and SVE Well Locations Figure 4: SVE System Layout Figure 5: SVE System – Shallow Zone Wells Figure 6: SVE System – Deep Zone Wells Figure 7: Proposed Confirmation Soil Sample Locations

Table 1: Soil Analytical Results Table 2: SVE Well Construction Information Table 3: Soil Vapor Extraction System Analytical Results Table 4: Soil Vapor Extraction System Recovery and Emissions Summary

Enclosure A: Animas Environmental Services Revised Site Remediation Plan

Enclosure B: Analytical Laboratory Reports

Enclosure C: Boring Logs and SVE Well Construction Diagrams

Enclosure D: Animas Environmental Services Cross Sections

Enclosure E: SVE System Diagram, SVE System Brochure, and Generator Manual

Enclosure F: Pilot Test Data

Enclosure G: Operation and Maintenance Form and Manual

Ushley L. Ager

Ashley Ager, M.S., P.G. Managing Director, Geologist

Page 3

Oil Conservation Division

	Page 8 of 337
Incident ID	NVF1816655680
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🔀 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- \square Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- \boxtimes Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 10/6/2021 1:38:04 PM Form C-141 State of	New Mariaa		Page 9 of 337
		Incident ID	NVF1816655680
Page 4 Oil Conse	rvation Division	District RP	
		Facility ID	
		Application ID	
I hereby certify that the information given above is tr regulations all operators are required to report and/or public health or the environment. The acceptance of failed to adequately investigate and remediate contan addition, OCD acceptance of a C-141 report does not and/or regulations. Printed Name:Lindsay Dumas Signature:Lindsay Dumas email:ldumas@hilcorp.com	file certain release notifications and perform co a C-141 report by the OCD does not relieve the nination that pose a threat to groundwater, surfa relieve the operator of responsibility for compl Title:Environm Date:10/5/2021	prrective actions for rele e operator of liability sho ce water, human health liance with any other feo	eases which may endanger ould their operations have or the environment. In deral, state, or local laws
OCD Only			
Received by:	Date:		

Received by OCD: 10/6/2021 1:38:04 PM Form C-141 State of New Mexico

Oil Conservation Division

<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan.

Incident ID	NVF1816655680
District RP	
Facility ID	
Application ID	

Remediation Plan

Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: ____Lindsay Dumas_____ Title: ____Environmental Specialist_____ Signature: ______ Date: __10/5/2021_____ Telephone: _____832-839-4585_____ email: ____ldumas@hilcorp.com_____ OCD Only Received by: Date: Approved Approved with Attached Conditions of Approval Denied Deferral Approved Signature: Date:

FIGURES

Released to Imaging: 9/22/2022 2:16:33 PM

C:\Users\USJG689584\OneDrive - WSP O365\Documents\TE017821011_SAN JUAN 28-6 UNIT_#31\MXD\017821011_FIG01_SJ 28-6_31_SL_2021.mxd

Released to Imaging: 9/22/2022 2:16:33 PM

C:\Users\USJG689584\OneDrive - WSP 0365\Documents\TE017821011_SAN JUAN 28-6 UNIT_#31\WXD\017821011_FIG02_SJ 28-6_31_SITE_2021.mxd

Released to Imaging: 9/22/2022 2:16:33 PM

Released to Imaging: 9/22/2022 2:16:33 PM

C:\Users\USTJ689650\OneDrive - WSP 0365\HILCORP\TE017821011_SAN JUAN 28-6 UNIT_#31\MXD\017821011_FIG04_SJ 28-6_31_SVE_SYSTEM_2021_LS.mxd

Released to Imaging: 9/22/2022 2:16:33 PM

Received by OCD: 10/6/2021 1:38:04 PM

Released to Imaging: 9/22/2022 2:16:33 PM

P:\Hilcorp\GIS\TE017821011_SAN JUAN 28-6 UNIT_#31\MXD\017821011_FIG06_SJ 28-6_31_SVE_DEEP_ZONE_2021.mxd

Released to Imaging: 9/22/2022 2:16:33 PM

C:\Users\USTJ689650\OneDrive - WSP 0365\HILCORP\TE017821011_SAN JUAN 28-6 UNIT_#31\MXD\017821011_FIG07_SJ 28-6_31_PROP_CONF_SS_2021.mxd

TABLES

TABLE 1 SOIL ANALYTICAL RESULTS - SOIL DELINEATION

SAN JUAN 28-6 UNIT #31 RIO ARRIBA COUNTY, NEW MEXICO HILCORP ENERGY COMPANY

Sample ID	Date	Sample Depth (feet)	PID	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH- GRO (mg/kg)	TPH- DRO (mg/kg)	TPH- MRO (mg/kg)	TPH GRO + DRO (mg/kg)	Total TPH (mg/kg)
NMOCD Table 1 C	Closure Criteri	a		10	50	NE	NE	NE	1,000	2,500
		3	5.4	0.000844	0.00421	< 0.112	<4.47	<4.47	<4.47	<4.47
SB-1	5/31/2018	7	0.0	0.00145	0.0200	<0.112	<4.58	<4.58	<4.58	<4.58
SB-2	5/31/2018	7	0.0	0.000724	0.000724	< 0.115	<4.59	<4.59	<4.59	<4.59
CD 2	5/21/2019	1	30.5	0.00115	0.00719	< 0.114	<4.55	<4.55	<4.55	<4.55
SB-3	5/31/2018	7.5	0.0	0.00795	0.0646	< 0.116	<4.64	<4.64	<4.64	<4.64
SB-4	5/31/2018	8.5	2,508	2.26	51.3	626	60.9	<4.70	687	687
SB-4R/ SVE-6	12/5/2018	8	3,232	0.268	2.32	11.2	46	5.1	57.3	57.3
5B-4K/ 5VE-0	12/3/2018	12	3,044	5.45	207	3,940	25	51	4,190	4,190
SB-5	5/31/2018	11.75	2,745	3.02	72.7	1,050	132	<4.36	1,180	1,180
SB-5R/ SVE-7S/	12/5/2018	8.5	4.4	0.00427	0.0166	0.180	<4	.00	0.180	0.180
SVE-7D	12/3/2018	13	2,799	10.8	382	6,020	42	23	6,440	6,440
SB-6	5/31/2018	11	2,440	5.84	184	2,120	331	<4.37	2,450	2,450
SB-6R/ SVE-8	12/5/2018	8	188.0	0.0151	0.480	23.8	9.	93	33.7	33.7
5D-0K/ 5VE-0	12/3/2018	12	4,247	8.70	382	6,970	38	85	7,360	7,360
SB-7	6/27/2018	25	202.6	0.00101	0.0476	0.247	14.2	<4.00	14.4	14.4
		8	1.3	< 0.000500	< 0.0075	<0.100	<4		<4.00	<4.00
SB-7R/ SVE-9	12/5/2018	12	282.1	0.00593	0.0696	3.41		.00	3.41	3.41
SB-8	6/27/2018	15	2,196	0.417	0.495	362	82.6	<4.00	445	445
		4	509.0	0.052	1.55	65.7		84	75.5	75.5
SB-8R/ SVE-10	12/5/2018	12	2,969	6.09	243	4,250	2		4,530	4,530
SB-9	6/27/2018	10	629.4	< 0.0005000	0.0141	0.700	<4.00	<4.00	0.700	0.700
	6/27/2018	10	1,938	19.6	631	10,800	1,330	6.67	12,100	12,100
SB-10		25	615.1	< 0.500	144	1,860	15.7	<4.00	1,880	1,880
SB-11	6/27/2018	10	35.2	0.000664	0.0141	0.119	<4.00	<4.00	0.119	0.119
CD 12		10	2,482	4.12	233	4,970	372	<4.00	5,340	5,340
SB-12	6/27/2018	25	31.5	0.519	23.9	625	11.4	<4.00	636	636
CD 12	6/27/2018	10	2,157	1.65	154	3,270	813	<1.00	4,080	4,080
SB-13		25	360.9	< 0.500	46.2	1,020	6.49	<4.00	1,030	1,030
SB-14	6/27/2018	10	2,173	5.82	342	5,810	932	<4.00	6,740	6,740
5D-14		25	51.0	< 0.500	77.4	1,240	10.4	<4.00	1,250	1,250
SB-15	6/27/2018	10	1,550	4.05	365	6,130	877	<4.00	7,010	7,010
50-15	0/2//2010	25	205.6	< 0.500	109	1,800	4.19	<4.00	1,800	1,800
SB-16	8/22/2018	12	60.8	< 0.00500	0.00176	0.325	6.00	<4.00	6.33	6.33
56-10	0,22,2010	20	33.9	0.000586	0.000586	< 0.100	10.0	<4.00	10.0	10.0
SB-17	8/22/2018	15	0.7	< 0.000500	< 0.0075000	< 0.100	<4.00	<4.00	<4.00	<4.00
52 17	3, 22, 2010	25	NR	< 0.000500	< 0.0075000	< 0.100	10.4	<4.00	10.4	10.4
SB-18	8/22/2018	15	14.0	< 0.000500	0.00321	0.182	10.7	<4.00	10.8	10.8
52 10		25	9.3	< 0.000500	< 0.007500	< 0.100	5.47	<4.00	5.47	5.47
SB-19/ SVE-3	10/2/2018	30	43.7	0.00067	0.000670	< 0.100	50.5	10.3	50.5	60.8
SB-20/ SVE-2	10/8/2018	30	135.0	0.000841	0.00805	0.278	32.5	5.95	32.8	38.7
SB-21/ SVE-1	10/8/2018	30	505.0	0.00102	0.0287	1.42	15.4	<4.00	16.8	16.8
SB-22	10/2/2018	10	0.0	0.000591	0.00111	< 0.100	<4.00	<4.00	<4.00	<4.00
55-22		25	25.9	0.000842	0.00257	<0.100	120	26.5	120	147
SB-23	8/22/2018	15	1,100	0.562	3.16	825	81.1	<4.00	906	906
01 40		30	325.5	0.000883	0.0276	0.988	15.8	<4.00	16.8	16.8
SB-24/ SVE-4	12/5/2018	8	4,750	30.3	1,230	20,200		.6	20,200	20,200
	12/5/2018	12	NR	29.8	1,090	15,500	,	/10	17,200	17,200
OD 35/ OVE 110/		10	2,703	19.2	402	6,970	324	<4.00	7,290	7,290
SB-25/ SVE-11S/	5/1/2019	20	3,127	2.43 <0.0125	151 0.229	2,550	293	<4.00	2,840	2,840
SVE-11D	5,1,2017	30	3,326	<0.0125	0.238	8.75	28.4	<4.00	37.2	37.2

TABLE 1 SOIL ANALYTICAL RESULTS - SOIL DELINEATION

SAN JUAN 28-6 UNIT #31 RIO ARRIBA COUNTY, NEW MEXICO HILCORP ENERGY COMPANY

Sample ID	Date	Sample Depth (feet)	PID	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH- GRO (mg/kg)	TPH- DRO (mg/kg)	TPH- MRO (mg/kg)	TPH GRO + DRO (mg/kg)	Total TPH (mg/kg)
NMOCD Table 1 (Closure Criteria	a		10	50	NE	NE	NE	1,000	2,500
		10	2,042	79.1	1,580	19,900	1,710	9.82	21,600	21,600
SB-26/ SVE-12S/ SVE-12D	4/30/2019	20	2,585	48.1	761	8,750	421	4.08	9,170	9,180
5VE-12D		35	272.0	0.000725	0.0301	1.83	<4.00	<4.00	1.83	1.83
SB-27/ SVE-13S/	5/1/2019	15	3,061	0.467	58.2	1,250	249	<4.00	1,500	1,500
SVE-13D	5/1/2019	30	2,382	< 0.0125	1.07	71.6	23.9	<4.00	95.5	95.5
SB-28/ SVE-14S/	5/1/2019	10	683.9	0.905	17.7	591	61.1	<4.00	652	652
SVE-14D	3/1/2019	30	25.6	0.000577	0.0100	0.437	<4.00	<4.00	0.437	0.437
		10	2,967	3.25	45.6	1,130	17.4	<4.00	1,150	1,150
SB-29/ SVE-15	5/1/2019	20	2,776	0.623	35.4	601	271	<4.00	872	872
		35	47.4	0.000700	0.00846	0.209	<4.00	<4.00	0.209	0.209

Notes:

< - indicates result is less than the stated laboratory reporting limit

BOLD - and highlighted indicates sample concentration exceeding NMOCD Table 1 Closure Criteria

bgs - below ground surface

BTEX - benzene, toluene, ehtylbenzene, and total xylenes

mg/kg -milligrams per kilogram

NMOCD - New Mexico Oil Conservation Division

PID - photoionization detector

ppm - parts per million

TPH-DRO - total petroleum hydrocarbons diesel range organics

TPH-GRO - total petroleum hydrocarbons gasoline range organics

TPH-MRO - total petroleum hydrocarbons motor oil range organics

TABLE 2SVE WELL CONSTRUCTION INFORMATION

SAN JUAN 28-6 UNIT #31 RIO ARRIBA COUNTY, NEW MEXICO HILCORP ENERGY COMPANY

Well Name	Treatment Zone	Impacted Depth (bgs)	SVE Well Screened Interval (bgs)	Total Depth (feet)
SVE-1	Shallow and Deep	7' - 26'	10' - 25'	30.0
SVE-2RS	Shallow	10' - 20'	No Information	30.0
SVE-2RD	Deep	10' - 20'	No Information	30.0
SVE-3	Shallow and Deep	8' - 18'	10' - 25'	30.0
SVE-4	Shallow	7' - 12'	7' - 12'	12.0
SVE-5	Shallow	7' - 12'+	7' - 12'	12.0
SVE-6	Shallow	7' - 12'+	7' - 12'	12.0
SVE-7S	Shallow	8' - 10'+	5' - 10'	10.0
SVE-7D	Shallow	8' - 13'+	8' - 13'	13.0
SVE-8	Shallow	11' - 12'+	7' - 12'	12.0
SVE-9	Shallow	11' - 12'+	7' - 12'	12.0
SVE-10	Shallow	4' - 12'+	7' - 12'	12.0
SVE-11S	Shallow	8' - 30'	10' - 15'	Nested Well
SVE-11D	Deep	8' - 30'	25' - 30'	35.0
SVE-12S	Shallow	8' - 30'	9' - 14'	Nested Well
SVE-12D	Deep	8' - 30'	20' - 25'	35.0
SVE-13S	Deep	8' - 28'	17' - 22'	Nested Well
SVE-13D	Deep	8' - 28'	25' - 30'	35.0
SVE-14S	Shallow		9' - 14'	Nested Well
SVE-14D	Deep		20' - 25'	30.0
SVE-15	Deep	8' - 18'	15' - 20'	35.0

NOTES:

bgs - below ground surface

' - feet

--- - no impacts above NMOCD Table 1 Closure Criteria in soil analytical results

+ - indicates that soil impacts are greater than the total depth of the borings/SVE well

TABLE 3 SOIL VAPOR EXTRACTION SYSTEM ANALYTICAL RESULTS

SAN JUAN 28-6 UNIT #31 RIO ARRIBA COUNTY, NEW MEXICO HILCORP ENERGY COMPANY

Date	Event	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Xylenes (µg/L)	TVPH (µg/L)	PID (ppm)
9/20/2021	Pilot Test	720	1,600	15	320	250,000	1,287
9/28/2021	System Startup	240	720	27	350	53,000	736

Notes:

 $\mu g/L$ - micrograms per Liter

PID - photoionization detector

ppm - parts per million

TVPH - total volatile petroleum hydrocarbons

.

TABLE 4 SOIL VAPOR EXTRACTION SYSTEM RECOVERY & EMISSIONS SUMMARY

SAN JUAN 28-6 UNIT #31 RIO ARRIBA COUNTY, NEW MEXICO HILCORP ENERGY COMPANY

Sample Information and Lab Analysis

			5r	tor mation and La				
Date	Total Flow (cf)	Delta Flow (cf)	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Xylenes (µg/L)	TVPH (µg/L)	PID (ppm)
9/28/2021	17,280	17,280	240	720	27	350	53,000	736
		Average	240	720	27	350	53,000	736
Vapor Extraction Calculations							_	
	Date	Flow Rate (cfm)	Benzene (lb/hr)	Toluene (lb/hr)	Ethylbenzene (lb/hr)	Xylenes (lb/hr)	TVPH (lb/hr)	
	9/28/2021	60	0.1	0.2	0.0	0.1	11.9	

Average

60

Pounds Extracted Over Operating Time

Date	Total Operational Hours	Delta Hours	Benzene (lbs)	Toluene (lbs)	Ethylbenzene (lbs)	Xylenes (lbs)	TVPH (lbs)	TVPH (tons)
9/28/2021	5	5	0.3	0.8	0.0	0.4	57.1	0.0
	Tota	l Extracted to Date	0	1	0	0	57	0

NOTES:

(1) - data extrapolated from PID measurements

(2) - blower not operational for sampling in May and June 2020

cf - cubic feet

cfm - cubic feet per minute

µg/l - micrograms per liter

lbs - pounds

lb/hr - pounds per hour

PID - photo-ionization detector

ppm - part per million

TVPH - total volatile petroleum hydrocarbons

ENCLOSURE A – ANIMAS ENVIRONMENTAL SERVICES *REVISED SITE REMEDIATION PLAN*

December 28, 2018

Lindsay Dumas Hilcorp Energy Company 9 Road 5793, Ste A Farmington, New Mexico 87401 <u>Electronic Mail: Idumas@hilcorp.com</u>

RE: Revised Site Remediation Plan San Juan 28-6 #31 API# 30-039-07290 Incident No. NVF 1816655680 SW¼ SW¼, Section 28, T28N, R6W Rio Arriba County, New Mexico

Dear Ms. Dumas:

Animas Environmental Services, LLC (AES) has prepared this Revised Remediation Plan for a release which occurred May 25, 2018, at the Hilcorp Energy Company (Hilcorp) San Juan 28-6 #31, located in Rio Arriba County, New Mexico. The release consisted of approximately 11.8 barrels (bbls) of condensate and 2.1 bbls of produced water and was the result of corrosion on the bottom of the production tank.

On May 31, June 27, August 22, October 2, and October 8, 2018, AES completed a release assessment and site delineation at the Hilcorp San Juan 28-6 #31. Petroleum hydrocarbon impacted soils were found to be present near the condensate tank, which was the source of the release, but also extended east and south of the containment berm. While concentrations near the condensate tank reflect the recent release, petroleum hydrocarbon concentrations to the east and south appear to be associated with historic contamination at the site. Remediation of petroleum contaminated soils via soil vapor extraction is proposed for the site. No groundwater was encountered during any of the site work; the maximum vertical extent of soil impacts is approximately about 25 ft bgs (in sandstone) in an area east and south of the secondary containment berm.

A Remediation Plan dated November 6, 2018, was submitted to New Mexico Oil Conservation Division (NMOCD) for review, and a project meeting was held with NMOCD, Hilcorp and AES on November 14, 2018, to discuss site conditions and the remedial strategy. Based on those discussions, Hilcorp submitted an 604 W. Piñon St. Farmington, NM 87401 505-564-2281

> 1911 Main, Ste 206 Durango, CO 81301 970-403-3084

www.animasenvironmental.com

Lindsay Dumas San Juan 28-6 #31 Revised Remediation Plan December 28, 2018 Page 2 of 10

Additional Site Delineation Workplan to NMOCD on November 29, 2018. AES completed additional site work on December 5, 2018, and the results of the field work have been incorporated into this Revised Remediation Plan.

1.0 Site Information

1.1 Location

Site Name – San Juan 28-6 #31 API# – 30-039-07290 Legal Description – SW¼ SW¼, Section 28, T28N, R6W, Rio Arriba County, New Mexico Release Latitude/Longitude – N36.62757 and W107.47815, respectively Land Jurisdiction – Bureau of Land Management (BLM) Figure 1. Topographic Site Location Map Figure 2. Aerial Site Location Map, May 2018

1.2 NMOCD Ranking

The subject release occurred in May 2018; however, Hilcorp is complying with NMOCD's request to conform to release regulations that were adopted on August 14, 2018. In accordance with NMAC 19.15.29.12 Table I (August 2018), release closure criteria for this location are based on the minimum depth to groundwater within the horizontal extent of the release area and proximity to sensitive receptors:

- Depth to Groundwater: A cathodic report dated May 1991 reported groundwater at 250 ft below ground surface (bgs).
- Sensitive Receptor Determination: The site does not occur within any of the areas listed within NMAC 19.15.29.12C.4, where releases must be treated as if they occur less than 50 feet bgs to groundwater.

New Action levels are:

- 10 mg/kg benzene and 50 mg/kg total benzene, toluene, ethylbenzene, and xylene (BTEX);
- 1,000 mg/kg total petroleum hydrocarbons (TPH) as gasoline range organics (GRO) and diesel range organics (DRO);
- 2,500 mg/kg TPH as GRO/DRO and motor oil range organics (MRO); and
- 20,000 mg/kg chloride.

Lindsay Dumas San Juan 28-6 #31 Revised Remediation Plan December 28, 2018 Page 3 of 10

2.0 Site Assessment and Delineation

AES was initially contacted by Lindsay Dumas of Hilcorp on May 29, 2018. Subsequent field work is summarized as follows:

- May 31 and June 27, 2018 AES completed the initial release assessment and delineation field work via hand auger.
- August 22, 2018 AES and GeoMat, Inc. (GeoMat) completed four soil borings (SB-16, SB-17, SB-18, and SB-23).
- October 2, 2018 AES and GeoMat completed two borings (SB-19 and SB-22).
- October 8, 2018 AES and GeoMat completed two borings (SB-20 and SB-21).
- December 5, 2018 AES and EarthWorx installed seven additional borings (SB-4R through SB-8R, SB-24/SVE-4, and SVE-5).

Soil borings installed by GeoMat were completed with a hollow stem auger drilling rig and were terminated between 20 and 30 ft; however, note that dense weathered sandstone was encountered between about 12 to 15 feet below grade, with hard, dense sandstone below. Borings were advanced into sandstone to define the vertical extent of contaminant impact, and three soil vapor extraction wells were installed, including SVE-1 (SB-21), SVE-2 (SB-20), and SVE-3 (SB-19).

Borings installed by EarthWorx in December 2018 were advanced with a track-mounted direct push GeoProbe rig to the top of dense weathered sandstone at about 12 feet below grade, where the direct push rods encountered refusal. Five SVE wells (SB-4R through SB-8R) were installed within the earthen berm containment area, each completed with 5-feet of screen, between 7 and 12 feet below grade. Two additional SVE wells were installed between the berm and the separator, SVE-4 and SVE-5.

Groundwater was not encountered during any site assessment or delineation field work. Soil boring locations are presented on Figure 3.

2.1 Subsurface Lithology

Geologic subsurface lithology encountered included poorly graded fine-grained sand from 0 to approximately 7 ft bgs, transitioning to a sand and clayey sand between 7 and 12 ft bgs, weathered sandstone from about 12 to 15 bgs, and dense sandstone extending to the terminal depths of the borings, between 23 and 35 ft bgs. Geological cross sections of the site are included as Figures 4A and 4B.

Lindsay Dumas San Juan 28-6 #31 Revised Remediation Plan December 28, 2018 Page 4 of 10

2.2 Soil Sampling

For field work through October 2018, 50 soil samples from 23 borings (SB-1 through SB-23) were collected during the assessment and delineation field work. All soil samples were field screened for volatile organic compounds (VOCs), and selected samples were also analyzed for TPH. A total of 35 samples were also submitted for confirmation laboratory analysis.

All soil samples collected during the additional delineation work in December 2018 were field screened for VOCs, and 12 soil samples were submitted for laboratory analysis.

2.2.1 Field Screening

Volatile Organic Compounds

Field screening for VOC vapors was conducted with a photo-ionization detector (PID) organic vapor meter (OVM). Before beginning field screening, the PID-OVM was first calibrated with 100 parts per million (ppm) isobutylene gas in accordance with U.S. Environmental Protection Agency (USEPA) Method 3815.

Total Petroleum Hydrocarbons

Select soil samples were also analyzed in the field for TPH per USEPA Method 418.1 using a Buck Scientific Model HC-404 Total Hydrocarbon Analyzer Infrared Spectrometer (Buck). A 3-point calibration was completed prior to conducting soil analyses. Field analytical protocol followed AES' *Standard Operating Procedure: Field Analysis Total Petroleum Hydrocarbons per USEPA Method* 418.1.

2.2.2 Soil Samples for Laboratory Analyses

The samples collected for laboratory analysis were placed into new, clean, laboratorysupplied containers, which were then labeled, placed on ice, and logged onto sample chain of custody records. The samples were maintained on ice until delivery to the analytical laboratory, Pace Analytical Laboratories (Pace).

Laboratory Analyses

The samples were laboratory analyzed for:

- Benzene, toluene, ethylbenzene, and xylene (BTEX) per USEPA Method 8021B; and
- TPH as gasoline range organics (GRO), diesel range organics (DRO), and motor oil range organics (MRO) per USEPA Method 8015M/D.

Lindsay Dumas San Juan 28-6 #31 Revised Remediation Plan December 28, 2018 Page 5 of 10

2.3 Field Screening and Laboratory Analytical Results

2.3.1 Field Screening Results

May and June 2018 release assessment field screening followed standards found in NMOCD *Guidelines for Remediation of Leaks, Spills, and Releases* (August 1993). Field screening results above the NMOCD action level of 100 ppm VOCs and 5,000 mg/kg TPH were reported in SB-4 through SB-10, SB-12 through SB-15, SB-19 through SB-21, and SB-23. The highest VOC concentration was reported in SB-7 at 20 ft with 31,824 ppm, and the highest TPH concentration was reported in SB-12 at 10 ft with 2,000 mg/kg.

2.3.2 Laboratory Analytical Results

Laboratory analyses were used to confirm field screening results.

- Benzene concentrations were reported below the NMOCD action levels of 10 mg/kg in all samples except SB-10 at 10 ft (19.6 mg/kg); SB-5R at 13 ft (10.8 mg/kg); and SB-24 at 8 ft (30.3 mg/kg) and 12 ft (29.8 mg/kg).
- Total BTEX concentrations exceeded the NMOCD action level of 50 mg/kg in SB-4/4R through SB-6/6R, SB-8R, SB-10, SB-12 through SB-15, with the highest BTEX concentration reported in SB-24 at 8 ft (1226 mg/kg).
- TPH concentrations as GRO/DRO were reported above the NMOCD action level of 1,000 mg/kg in SB-4R, SB-5/5R, SB-6/6R, SB-8R, SB-10, SB-12 through SB-15 and SB-24, with the highest concentration reported in SB-24 at 8 ft bgs with 20,242 mg/kg.
- TPH concentrations as GRO/DRO/MRO were reported above the NMOCD action level of 2,500 mg/kg in SB-4R, SB-5R, SB-6R, SB-8R, SB-10 and SB-12 through SB-15, with the highest concentration reported in SB-10 at 10 ft bgs with 20,242 mg/kg.

Field screening results are summarized on the attached AES Field Screening Reports. Laboratory analytical results are included on Figures 3, 4A and 4B, and laboratory analytical reports are attached.

2.4 Vertical and Lateral Extent of Petroleum Hydrocarbon Impacts

The lateral extents of petroleum hydrocarbon impacts (including historic contamination) extend from the condensate tank to the BGT area as well as outside the berm to the east, including between the separator and meter house. Note that contaminant concentrations outside the berm had higher concentrations of DRO at deeper intervals, indicating heavier and possibly older, historic impacts from petroleum hydrocarbons.

Lindsay Dumas San Juan 28-6 #31 Revised Remediation Plan December 28, 2018 Page 6 of 10

The estimated lateral extent of subsurface petroleum hydrocarbon impacts is included on Figure 3.

Vertically, petroleum hydrocarbon contaminant concentrations in excess of the NMOCD action levels were found at about 10 ft bgs within the clayey sand layer but appear to extend to approximately 25 ft bgs (weathered sandstone and dense sandstone) in the area of SB-10, SB-14, and SB-15. The presence of higher BTEX concentrations near the condensate tank (release location) are indicative of impacts from the recent release.

The additional borings advanced inside the berm in December 2018 allowed for collection and laboratory confirmation of the highest VOC concentrations measured during May and June 2018 field work (in the interval just above weathered sandstone at about 10 to 12 ft). However, the use of the direct push GeoProbe rig did not allow for extending boring depths beyond 12 feet, so vertical extent could not be confirmed in these borings (SB-4R through SB-8R). Note that borings SB-7 and SB-8 (installed in June 2018 and which are 25 ft apart), were advanced to between 25 and 35 ft below grade, and vertical extent was confirmed via laboratory analyses in these borings.

No groundwater was encountered during any of the site work, and based on available information, depth to groundwater is anticipated to be at least 100 ft bgs. The estimated vertical extents of petroleum hydrocarbon impacts in soil are found on Figures 4A and 4B.

3.0 Remediation Plan

In October 2018, AES installed three soil vapor extraction (SVE) wells, SVE-1, SVE-2, and SVE-3, as a preliminary mitigation measure. In December 2018, five additional SVE wells were installed inside the secondary containment berm (SB-4R through SB-8R), and two additional SVE wells, SVE-4 and SVE-5, were installed between the berm and the separator. The SVE wells will serve to volatilize and remove contaminants through desorption of contaminants from the surface of soil particles, and through biodegradation of contaminants by moving air through subsurface soil pore spaces.

3.1 Soil Vapor Extraction Well Installation, October 2018

On October 2 and 8, 2018, a CME-75 drill rig was utilized to install three 2-inch diameter PVC SVE wells to a depth of approximately 25 ft bgs in borings SB-19, SB-20 and SB-21. The SVE wells were screened between 10 ft and 25 ft bgs, and the annular space was filled with 10-20 silica sand from the base of the SVE well up to a depth of 8 ft bgs (2 ft above the top of the screened interval). A hydrated bentonite seal was placed from 8 ft

Lindsay Dumas San Juan 28-6 #31 Revised Remediation Plan December 28, 2018 Page 7 of 10

bgs to surface grade. Each SVE was completed with a 3-ft stick up completion with a protective metal shroud.

On December 5, 2018, seven additional SVE wells were installed with a direct push GeoProbe, and each consisted of 2-inch diameter PVC wells screened between 7 and 12 ft bgs (terminal depths of borings, with refusal at top of dense sandstone). SVE well locations are presented on Figure 3, and soil boring logs with SVE well construction details are included as an attachment.

3.2 Soil Vapor Extraction System

Soil vapor extraction (SVE) is proposed to be conducted with an integrated unit which includes the following:

- Ametek Rotron model EN656M5XL (or equivalent), rated for Hazardous Location Class I, Group D, Class II Group F&G; aluminum fan regenerative blower capable of approx 100 CFM (+/- 10%), -50 inches W.C.; blower motor will be XP, 230 volt, 3HP, single phase with thermal overload protection;
- Explosion proof power disconnect on/off switch (NEMA 7 Enclosure);
- Manual dilution air valve;
- Two vacuum gauges;
- Duotec model H3A-1SL vacuum switch to protect the blower from overheating (by detecting a blockage in the line); Rated for Hazardous locations, Class I Group B,C & D and Class II Group E,F& G;
- Moisture separator capable of removing vapor from an air flow of up to 350 SCFM with the following features:
 - Integral Mist Eliminator/Particulate Filter
 - 37 gallon capacity, steel canister with epoxy coated interior.
 - High efficiency cyclonic separation.
 - o Inherent safe collection design.
 - o Outfitted with drain for convenient removal of fluids.
 - W.E. Anderson, Flotect model L-6, high liquid level switch system (will shut down the blower to protect the blower from flooding when the moisture separator is full); rated for Hazardous location, Class I Group A, B, C & D, Class II Group E, F & G.
- Mounted and wired in a metal HazMat Station, with lockable, hinged lid & doors; welded steel construction; 66 gallon sump meets USEPA & NUFC requirements; side vents and added roof vent for passive ventilation; coated with a durable, corrosion and weather resistant finish; four way "forklift-able".

A natural gas generator will be utilized to supply electric power to the SVE System. The anticipated generator will consist of:

Lindsay Dumas San Juan 28-6 #31 Revised Remediation Plan December 28, 2018 Page 8 of 10

 Generac LP/NG generator (*or equivalent*), 3 HP, single phase, 120VAC/240VAC, 3600 RPM, 8kW, 8 NG kVA.

Vapor emission control will be provided by two granulated activated carbon (GAC) drums, connected in series.

3.4 SVE Monitoring and Sampling

AES proposes the following SVE monitoring and sampling plan:

- Baseline Soil Vapor Sampling: AES will conduct initial SVE vapor sampling of each well (SVE-1 through SVE-5 and SB-4R through SB-8R) for field measurement of VOCs using and PID-OVM and for laboratory analysis of BTEX and TPH-GRO. Results will be utilized as baseline readings and help determine remedial progress during SVE operations. Analytical parameters are detailed below.
- 2. Vapor Sampling during SVE Operations: After the initial sampling, AES will measure VOCs from each SVE well twice per month by field screening for VOC concentrations (ppm) using a PID-OVM. VOC readings and total air flow will be also be measured and air samples collected (for total VOCs) pre- and post-GAC.

Samples for laboratory analysis will be collected with Tedlar bags and a vacuum pump and submitted to either Pace Analytical or to Hall Environmental Analysis Laboratory (Hall), Albuquerque, New Mexico, for analysis. Samples will be laboratory analyzed for the following:

Vapor Sampling Laboratory Parameters						
Laboratory Analytical Parameters and Methods	Laboratory Detection Limit	Units				
BTEX - USEPA METHOD 8021B						
Benzene, Toluene, Ethylbenzene &	0.10	μg/L				
Xylenes, Total	0.30	μg/L				
TPH - Gasoline Range Organics (GRO) – USEPA METHOD 8015B	5	μg/L				

Lindsay Dumas San Juan 28-6 #31 Revised Remediation Plan December 28, 2018 Page 9 of 10

3.5 Site Re-Evaluation

After approximately seven months of SVE operations, AES and Hilcorp will evaluate site remedial progress in consultation with NMOCD. If supplemental or alternative remedial measures are warranted, AES will prepare and submit a Supplemental Remedial Plan to NMOCD for review and approval.

4.0 Deliverables

Reports detailing remedial activities will be submitted on a quarterly basis to NMOCD and will include the following information:

- SVE system installation and operations records;
- Updated site maps and figures;
- Tabulated field screening and laboratory analytical results for soil and vapors;
- Laboratory analytical reports; and
- Site photographs.

5.0 Proposed Schedule

SVE is proposed as the remedial method for the site; however, in order to mitigate the potential for freezing lines, it is proposed to run the system during non-freezing months (i.e. April through October). The following schedule is anticipated upon approval of the Revised Remediation Plan:

<i>Month:</i> February and March 2019	<i>Task:</i> Order and obtain SVE Unit, NG generator, and GAC drums;
April 2019	Installation of SVE System; Completion of baseline vapor sampling;
May 2019	Monthly O&M and vapor sampling;
June 2019	Monthly O&M and vapor sampling;
July 2019	Submit Quarterly Remedial Progress Report; Monthly O&M and vapor sampling;
August 2019	Monthly O&M and vapor sampling;

Lindsay Dumas San Juan 28-6 #31 Revised Remediation Plan December 28, 2018 Page 10 of 10

September 2019

Monthly O&M and vapor sampling;

October 2019

Submit Quarterly Remedial Progress Report, with Site Re-Evaluation and possible Supplemental Remediation Plan; and Monthly O&M and vapor sampling.

If you have any questions about site conditions or this Revised Remediation Plan, please do not hesitate to contact me at (505) 564-2281.

Sincerely,

Elizabith V Mindly

Elizabeth McNally, P.E.

Attachments:

Figure 1. Topographic Site Location Map

Figure 2. Aerial Site Location Map, May 2018

- Figure 3. Release Assessment and Site Delineation Sample Locations and Results— May, June, August, October and December 2018
- Figure 4A. Geological Cross Section, A to A'

Figure 4B. Geological Cross Section, B to B'

AES Field Screening Reports 053118 and 062718

Field Notes and Soil Boring Logs, August 2018

Boring Logs with SVE Well Construction Schematics (SVE-1 - SVE-3), October 2018

Field Notes and Soil Boring Logs, December 2018

Pace Analytical Reports L998202, L1006375, L1008712, L1020740, L1033649, L1040751 SVE System Specifications

C:\Users\emcnally\Dropbox (Animas Environmental)\0000 aes server client projects dropbox\2018 Client Projects\Hilcorp\East Area\SJ 28-6 31\Reports and Workplans\San Juan 28-6 #31 Revised Remediation Plan 122818.docx Received by OCD: 10/6/2021 1:38:04 PM

Released to Imaging: 9/22/2022 2:16:33 PM
Received by OCD: 10/0/2021 1:38:04 PM	4 4 2 2 2 2 2 3		Prige 37 of
and the second		Enan State	LEGEND
		A Martin Bar	SECONDARY CONTAINMENT
		1.14 76	— x — FENCE
200	1 a		— P — APPROXIMATE PIPELINE
	R. P. o - L. R.		and the second se
	200 FEE	T RADIUS	and the second
	ALC: NO	State of the state	
		he with the second	
	A REAL PROPERTY	13 24 27	and the state of the
SAMILLE HOLD	1.0.0	and the second	
I.F.R.		and the second	
DE DE	* 10 m 1 5	-SAN JUAN 2	28-6 UNIT #31 WELLHEAD
		-	
	and the second second		
	BELOW GRADE TAN	K SED	ARATOR
		G SEP	
	Not Par	A	
CONDENSATE	AST		
RELEASE LOCAT N36.62757, W107.47	815		-METER HOUSE
	TOP OF SLOPE	Contraction of	METHANOL TANK
	TOE OF SLOPE	the second	
	TOLOTISLOFE		
	V V		
	N.	à //	
the last of the second		AUCEROLD	and the second second
	Section 19	BV	
	and the state of		
and the second	and the		
	1994		
	Prof.		
A			
<u>SCALE</u>		113	
	and the	Part and	
20 (1 INCH = 60 FEET)	· inter		
	RIAL SOURCE: © 2018 GO	DOGLE EARTH PRO, AERIAL L	DATE: OCTOBER 5, 2016.
	DRAWN BY:	DATE DRAWN:	FIGURE 2
animas	C. Lameman	June 5, 2018	
animas environmental	REVISIONS BY: C. Lameman	DATE REVISED: November 7, 2018	AERIAL SITE LOCATION MAP HILCORP ENERGY
AFS Services	CHECKED BY:	DATE CHECKED:	SAN JUAN 28-6 UNIT #31 API:30-039-07290
Farmington, NM • Durango, CO animasenvironmental.com	E. McNally	November 7, 2018	INCIDENT NO. NVF 1816655680
animasenvironmental.com	APPROVED BY:	DATE APPROVED:	SW¼ SW¼, SECTION 28, T28N, R6W RIO ARRIBA COUNTY, NEW MEXICO
Released to Imaging: 9/22/2022 2:16:33 PM	E. McNally	November 7, 2018	N36.62780, W107.47811

Released to Imaging: 9/22/2022 2:16:33 PM

	-	Dent	Laborato	ry Analytica Benzene	l Results Total	TPH-	TPH-	ТРН-	. SA
nple ID	Date	Depth (ft)	PID - OVM	Benzene (mg/kg)	BTEX (mg/kg)	GRO (mg/kg)	DRO (mg/kg)	MRO (mg/kg)	
NM	10CD ACT	ION LEVEL		10	50	1,0			
SB-1 5	5/31/18	3	5.4	0.000844	0.004214	<0.112	<4.47	<4.47	
		7	0.0	0.00145	0.020007	<0.114	<4.58	<4.58	
SB-2 5	5/31/18	7	0.0	0.000724	0.000724	<0.115	<4.59	<4.59	
SB-3 5	5/31/18	1 7.5	30.5 0.0	0.00115	0.00719	<0.114 <0.116	<4.55 <4.64	<4.55 <4.64	
SB-4 5	5/31/18	8.5	2,508	2.26	51.25	626	<4.04 60.9	<4.04	
		8	3,232	0.268	2.3183	11.2	46	1.14 ⁻⁷	
5B-4R 1	.2/5/18	12	3,044	5.45	207.15	3,940	25		
SB-5 5	5/31/18	11.75	2,745	3.02	72.68	1,050	132	<4.36	
		8.5	4.4	0.00427	0.01657	0.180	<4.		
SB-5R 1	.2/5/18	13	2,799	10.8	381.9	6,020	42		
SB-6 5	5/31/18	11	2,440	5.84	183.94	2,120	331	<4.37	
		8	188	0.0151	0.4797	23.8	9.	1.14 ^m	
SB-6R 1	.2/5/18	12	4,247	8.70	381.5	6,970	38		
SB-7 6	5/27/18	25	202.6	0.00101	0.004759	0.247	14.2	<4.00	
		8	1.3	<0.000500	<0.0075	<0.100	<4.		
SB-7R 1	.2/5/18	12	282.1	0.00593	0.0696	3.41	<4		
SB-8 6	5/27/18	15	2,196	0.417	4.946	362	82.6	<4.00	
		4	509	0.0520	1.546	65.7	9.		
SB-8R 1	.2/5/18	12	2,969	6.09	242.89	4,250	27	777	
SB-9 6	5/27/18	10	629.4	<0.000500	0.008139	0.700	<4.00	<4.00	
		10	1,938	19.6	630.6	10,800	1,330	6.67	
SB-10 6	5/27/18	25	615.1	<0.500	143.5	1,860	15.7	<4.00	N
5B-11 6	5/27/18	10	35.2	0.000664	0.014115	0.119	<4.00	<4.00	
	107/40	10	2,482	4.12	232.92	4,970	372	<4.00	
SB-12 6	5/27/18	25	31.5	0.519	23.949	625	11.4	<4.00	V
5D 4 2	107/10	10	2,157	1.65	154.24	3,270	813	<1.00	
SB-13 6	5/27/18	25	360.9	<0.500	46.16	1,020	6.49	<4.00	_
SD 14	107/10	10	2,173	5.82	342.12	5,810	932	<4.00	X
SB-14 6	5/27/18	25	51.0	<0.500	77.38	1,240	10.4	<4.00	
	127/10	10	1,550	4.05	364.75	6,130	877	<4.00	
SB-15 6	5/27/18	25	205.6	<0.500	109.26	1,800	4.19	<4.00	7///
SB-16 8	3/22/18	12	60.8	<0.000500	0.00176	0.325	6.00	<4.00] // / //
01-10	5/22/10	20	33.9	0.000586	0.000586	<0.100	10.0	<4.00) <u>`</u>
SB-17 8	3/22/18	15	0.7	<0.000500	<0.007500	<0.100	<4.00	<4.00	
0-1/ 0	,, 22, 10	25	NR	<0.000500	<0.007500	<0.100	10.4	<4.00	/ <i>// //</i>
SB-18 8	3/22/18	15	14.0	<0.000500	0.003209	0.182	10.7	<4.00	(
		25	9.3	<0.000500	<0.007500	<0.100	5.47	<4.00	
	.0/2/18	30	43.7	0.000670	0.000670	<0.100	50.5	10.3	\ ⁷
	.0/8/18	30	135	0.000841	0.008052	0.278	32.5	5.95	
SB-21 1	.0/8/18	30	505	0.00102	0.02874	1.42	15.4	<4.00	
SB-22 1	.0/2/18	10	0.0	0.000591	0.001105	<0.100	<4.00	<4.00	
	·, _, _0	25	25.9	0.000842	0.002572	<0.100	120	26.5	
SB-23 8	3/22/18	15	1,100	0.562	3.162	825	81.1	<4.00	
	, _0	30	325.5	0.000883	0.027552	0.988	15.8	<4.00	
5B-24 1	.2/5/18	8	4,750	30.3	1,226.3	20,200	41		
		12	4,594	29.8	1,091.1	15,500	1,7	10	\
ples were ar	nalyzed p	er USEPA N	1ethod 8021	and 8015.]

SAND

CLAYEY SAND

SANDSTONE (WEATHERED)

SANDSTONE (HARD)

INTERPOLATED AREA OF PETROLEUM HYDROCARBON IMPACTS

VERTICAL DELINEATION -LABORATORY CONCENTRATIONS BELOW ACTION LEVELS

NOTE: FOR VISUAL CLARITY SVE WELLS ARE SHOWN ADJACENT TO ORIGINAL BORINGS IN CROSS-SECTION ONLY.

NOTE: ALL LABORATORY ANALYTICAL RESULTS REPORTED IN mg/kg.

FIGURE 4A

GEOLOGICAL CROSS SECTION

A - A' HILCORP ENERGY SAN JUAN 28-6 UNIT #31 API:30-039-07290 INCIDENT NO. NVF 1816655680 SW¼ SW¼, SECTION 28, T28N, R6W RIO ARRIBA COUNTY, NEW MEXICO N36.62780, W107.47811

animas environmental services

Farmington, NM • Durango, CO animasenvironmental.com

DATE DRAWN:

August 21, 2018

DATE REVISED:

December 18, 2018

DATE CHECKED:

December 18, 2018

DATE APPROVED:

December 18, 2018

DRAWN BY:	
C. Lameman	
REVISIONS BY:	
C. Lameman	
CHECKED BY:	
E. McNally	
APPROVED BY:	
E. McNally	

 LEGEND
 DGE OF LOCATION

 SCALE
 SB-30

 (1)NCH = 25 FEET)
 SB-30

 SB-70
 SB-20

 SB-70
 SB-70

 SB-70
 SB-70
 </tr

Page 40 of 337

Received by OCD: 10/6/2021 1:38:04 PM

NOT TO SCALE

SAND

CLAYEY SAND

SANDSTONE (WEATHERED)

SANDSTONE (HARD)

INTERPOLATED AREA OF PETROLEUM HYDROCARBON IMPACTS

VERTICAL DELINEATION -LABORATORY CONCENTRATIONS BELOW ACTION LEVELS

NOTE: FOR VISUAL CLARITY SVE WELLS ARE SHOWN ADJACENT TO ORIGINAL BORINGS IN CROSS-SECTION ONLY.

NOTE: ALL LABORATORY ANALYTICAL RESULTS REPORTED IN mg/kg.

FIGURE 4B

GEOLOGICAL CROSS SECTION

B - B' HILCORP ENERGY SAN JUAN 28-6 UNIT #31 API:30-039-07290 INCIDENT NO. NVF 1816655680 SW¼ SW¼, SECTION 28, T28N, R6W RIO ARRIBA COUNTY, NEW MEXICO N36.62780, W107.47811

animas environmental services

Farmington, NM • Durango, CO animasenvironmental.com

DATE DRAWN:

August 21, 2018

DATE REVISED:

December 18, 2018

DATE CHECKED:

December 18, 2018

DATE APPROVED:

December 18, 2018

DRAWN BY:	
C. Lameman	
REVISIONS BY:	
C. Lameman	
CHECKED BY:	
E. McNally	
APPROVED BY:	

E. McNally

 LEGEND

 SOL BORING SAMPLE

 SE-23

 SE-23

 SE-23

 SE-24

 SE-27

 SE-28

 SE-27

 SE-28

 SE-20

 SE-20

 SE-21

 SE-20

 SE-21

 SE-20

 SE-21

 SE-20

 SE-21

 SE-20

 SE-20

Oil and Gas	Release	Assessment	Field Form

Name of Operator: Hilcorp				Date:	5-31-18
Facility or Pipeline Name: San Juan 28-6 #31	County and State:	Rio Aniba		AES Personnel:	C. Lameman
Onsite Contact Person: Kust Haekstra	Land Jurisdiction:	BLM		-	S. Blasses
Release Source: Condensate tank	Site Rank:	0		Arrival Time:	8:45
				Depart Time:	14:45
Release Lat/Long: <u>36.62757, -107.47815</u>				Begin Miles:	54775
Wellhead Lat/Long: 36. 62780, -107. 47811				End Miles:	
Groundwater Present? 🗆 Yes 🙀 No					
Surface Water present? 🗆 Yes 🕵 No	Regul	atory Representatives:	None		
Excavation prior to arrival? \Box Yes 🕺 No					
Areas affected by release: inside the containment b	erm (
ـــــــــــــــــــــــــــــــــــــ					
Has the release been removed prior to arrival?: \Box	Yes 🕱 No				
Project Details: 13.9 BBLs released from Condu	rsøde tank.				
Project Details: 13.9 BBLs released from condu	rsøde tank.		······································		••••••••••••••••••••••••••••••••••••••
					······································
Project Details: 13.9 BBLs released from condun ite Limitations: Angels refased ranging from					· · ·
					·····
					· · · · · · · · · · · · · · · · · · ·
					· · ·
					· · ·
ite Limitations: Auger refasal ranging from					
					· · · · · · · · · · · · · · · · · · ·
ite Limitations: Auger refasal ranging from					· · · · · · · · · · · · · · · · · · ·
ite Limitations: Auger refasal ranging from					
ite Limitations: Auger refasal ranging from					t Field Form 100117

•

* was in process of propping a.TPH sample when Kuet said that Londsay said no TPH Buck Machine # Facility or Pipeline Name: San Juan 28-6 #31 field, only OVM-PID. confirmed 50 mg/kg |100 mg/kg |500 mg/kg Concentration Date: 5-31-18 looking & email. **Calibration ABS Values** AES personnel: C. Lameman, S. Glasses **Field TPH** Time of Sample Composite NOTES (i.e. Soil Type, Color, Depth PID-OVM **PID-OVM Field TPH** Analysis Sample Collection Sample ABS Odor, Staining) (ft) (mg/kg) Time (ppm) Time Collection Location Date Sample ID NO Strahim 234 * N, of prod. ť 1012 9:30 9:56 Sand Mary, Brown, No Oder M 0.0 SB-1 5-31-18 trak 3" N -9:36 5.4 9:57 -S.A.A. -----_ -5' N 29 9:41 9:58 -S.A.A. Auger refusal. Clarger Sand OK Brown, No clar No Staining 7' ---9:55 0,0 15:16 N Sand , Brown, No Staining , No Can S. J. pred. tank -11 _ N -Garace-Med. Mast SB-2 9:59 0.0 10:17 3' _ 10:33 --5.A.A. 0.0 10:05 'n 51 10:49 -_ N _ S.A.A 0.0 10:11 Auger Reformal. Claycy Sand יר -0.0 10:50 -BK. Brown, Nostashing, No dela 10:25 N -Sandy Brown, NO Staining, Sl. Oda Wob pred. 1' 11:03 30.5 _ SB-3 --Course-Med, Most N 10:20 tank 3' S.AA --N 20,4 -10:36 11:04 Sand, Red-Gram, No Starring, St. 0 da-5' -N -/ 11:05 Fine-Med, Most 10:38 12.5 alay ay Sand, Dk. Bornon, No Staming 75' ~ No odor, Anous Refusal, Moist Sund, Bonn, No Stuning, V. Strong odor, 10.46 N 5.0 11:06 -/ E. & pad. , 1 N 2385 11:22 -SB-4 Canver Med, Mors+ -10:58 tank 3' _ N 2009 -S.A.A. 11:23 11:01 _ Sand, Red-Brown, My Stamon, V. Strong 5' ~ Olar, Fine-Hd, Kinst 1996 11:24 11:68 N -Mayey Sund, Dk. Brown, V. Strong Oder No Staining Augue Refusal Horst ~ 8.5 N 2508 11:34 ~ -11:15 Sand of Smeday, Brown, No Olar Sof BUT 8B-5 N 1 13.6 NUStaining, Nol, Moist 11:41 11:55 Band, Ton Brown, No Odar, Nostan Ned, Morst 5' N 4.1 11:50 12:09 Historic Contam. C.S'. Bran, Clayey 9' 956 N 12:24 12:08 Sund St. Osor, Some Staining Imaging.

2 of _____

Type of Sample collection?:

10/6/2021 1:38:04 PM

<u>ocb:</u>

ĝ

of 337

Page

acility or Pipe	line Name:	LA ADJ. Ch	anderire				Buck	Depender run from 0.0 Step rut. N, W, S			
Date:	N 1 1	Historic pull to know. Ch E o(J? lot D	co know to	be advess		Concer	ntration	50 mg/kg	100 mg/kg	500 mg/kg	
ES personnel	Dellnear	to all ; let u	tress pre al	d.	.	Calibration	ABS Values		[]
Sample ID	Collection Date	Time of Sample Collection	Sample Location	Sample Depth (ft)	Composite	PID-OVM (ppm)	PID-OVM Time	Field TPH (mg/kg)	Field TPH Analysis Time	ABS	NOTES (i.e. Soil Type, Color, Odor, Staining) <u>Augur Rufars</u> (
58-5	5-31-18	12:21	S OB BET	11.75	N	2745	12:53	-	-	-	Odor, Staining) Angur Rufas/ De Lught Braven, Discoloration, Strong & dar, No Staining, motot, At Totart
56-6		12:00	NGBOT	7	N	0.0	12:52	-	-	-	
SB-6			N UBIT	1'	N	7.3	13:36	_	-	-	Sand, Brown, No Over, No Staining Nd, Makt
		13:16		5'	N	0.0	13:37	<u> </u>	-	-	S.A.A.
		13:22		7'	N	0.0	13:38	_	-	_	Clayer Sand, DK. Brown, Norodor Nosdairing, Monst. Brown, Sand, V. Strong oder, No St.
		13:34		9'	N	1949	13:42		-		Bran, Sandy V. Strong oder; No St Moist, History
		13:46		n'	N	2,440	14:00	-			
			•			•	••••••••••••••••••••••••••••••••••••••				
											· ·
							-				
					ļ						
						*			2		
									<u> </u>		
ype of Sample	e collection?:										Assessment Field Form 100117.
mas Environmenta	l Services, LLC; 604 W	Pinon St. Farmingt	on NM 87401.								

SEPAR.

Awf.

- heter House

Released to Imaging: 9/22/2022 2:16:33 PM

•

Oil and Gas Release Assessment Field	Form	
Name of Operator: Hilcorp		Date: 6-27-18
Facility or Pipeline Name: San Juan 28-6 31	County and State: Ro Amba	AES Personnel: C. Lamemon
Onsite Contact Person: Lindsay Dumas	Land Jurisdiction: BLM	
Release Source: Condensate Tank	Site Rank: O	Arrival Time: 900
+ Historic Release		Depart Time: 1815
Release Lat/Long: 36.62757, -167.47815		Begin Miles: 5 709/
Wellhead Lat/Long: 36. 42780, -107. 47811		End Miles: 57/97
Groundwater Present? Yes No		
Surface Water present? Ves No	Regulatory Representatives:	none
Excavation prior to arrival? 🗆 Yes 🕸 No		
Areas affected by release: Inside the containing	ent Berm	
* HISTORIC		
Has the release been removed prior to arrival?	?: □Yes XNo	
Project Details: OCO requested that Hilory Soil drig and orlect of Hollow	p find the extent of Historic Cons Stem Auger and split spoon.	famination. Cerllat on site to
Project Details: OCO requested that Hilory	Stem tuger and split spoon.	famination. Cerllat on site to
Project Details: OCO requested that Hilory Soil drig and collect of Hollow	Stem tuger and split spoon.	Famination. CerMat on site to
Project Details: OCO requested that Hilory Soil drig and orlect of Hollow	Stem tuger and split spoon.	Famination. Ceo Mat on site to
Project Details: OCO requested that Hilory Soil drig and or lect of Hollow	Stem tuger and split spoon.	famination. Cerllat on site to
Project Details: OCO requested that Hilory Soil drig and orlect of Hollow	Stem tuger and split spoon.	tamination. Cerllat on site to
Project Details: OCO requested that Hilory Soil drig and collect of Hollow	Stem tuger and split spoon.	famination. Cerllat on site to
Project Details: OCO requested that Hilory Soil drig and collect of Hollow	Stem tuger and split spoon.	famination. CesMat on site to
Project Details: OCO requested that Hilory Soil drig and collect of Hollow S Site Limitations: Edge of Location, pip	Stem tuger and split spoon.	tamination. Certat on site to
Project Details: OCO requested that Hilory Soil drig and collect of Hollow	Stem tuger and split spoon.	tamination. Ceollat onsite to
Project Details: OCO requested that Hilory Soil drig and collect of Hollow S Site Limitations: Edge of Location, pip	Stem tuger and split spoon.	tamination. Cestlat on site to
Project Details: OCO requested that Hilory Soil drig and collect of Hollow S Site Limitations: Edge of Location, pip	Stem tuger and split spoon.	Dil and Gas Release Assessment Field Form 10011

Page 45 of 337

Alexandra 505-608-6061 Facility or Pipeline Name: San Juan 28-6 #31

Date: 6-27-18 AES personnel: 6 Lamers an

Page 46 of 337

Buck Machine #							
Concentration	50 mg/kg	100 mg/kg	500 mg/kg				
Calibration ABS Values	0.091	0.141	0.725				

Sample ID	Collection Date	Time of Sample Collection	Sample Location	Sample Depth (ft)	Composite	PID-OVM (ppm)	PID-OVM Time	Field TPH (mg/kg)	Field TPH Analysis Time	ABS	NOTES (i.e. Soil Type, Color, Odor, Staining)
8-7	6-27-18	9:45	N 06 58-4	5'	N	31.7	10:16	1	1. <u>—</u> 1	-	Red, Sand No Udar, N. State, Ong
)	1	1:51		10'	N	370.8	10:17	-	-	-	S.Gray, S. O.Jor, Shale or any
		9:59		15'	N	10,427	10:20		-	-	SS, Grag, Oder
		10:07		20'	N	\$1,824	10:25	~	-	-	SS. Gray, Wor
		10:19		25'	N	202.6	10:39		-		55, 6t the Gay, alm
(10:28		30'	N	-	-	-		-	No Recovery
7		10:41	4	35	N	18.8	10:52	221	10:56	.167	SS, U. Gray Sholon Dry
SB-3		1127	NOBET	5'	N	8475	11:53	-	-	-	Red Sand, Song Bur No Stan
2		1135		10'	N	9642	11:59	-	-	-	Clayey Sund, Gray, Shory Oak
)		12:13		15'	N	2196	12:22	-		-	53 Wenthered Strg. Odar, SL Star
4		12:24	¥	25	N	618.2	12:32	168.	12:40	Wh. 0.128	
5B-9		13:09	Nob BAT Outride Fouce	10'	W	629.4	13:22	-	-	-	Clayory Sandy Boy, SI. 6mg
ł		13:15	1	蕃人	h	725.5	13:29	145	14:41	2.113	SS, tan Olar, No Stanry, Da
SBto		13:55	NE COMP onotestaleferace	10	N	1938	14:13		~	-	anyey Sand, Stry. Dew, bray, Muris.
1		1411		25	N	615.1	14:14			-	SI tan, Ober, No Standy, Day
SB-11		M 34	E of sep e edge of localin	10'	N	35.2	14:55	-	1	-	Red Sand to Gray any Sund, Oder
1		14:51	1.1	25'	N	18,7	15:19	-	(-)	-	4 tom, Sloger, No Stain, Day
SB-12		15:17	Sol Bern Become	15	N	2482	15:34	2,000	15:45	1.444	Clever Grey, Olar, Strong
T	7	15:30	T	25'	N	31.5	15:38	-	-	1	bittan, SS, SL. administring

Type of Sample collection?:

Well or Lease Name: Sen Juan 28-6 #31 Date: 6-27-18 AES personnel: C. Laneman

Sample ID	Collection Date	Time of Sample Collection	Sample Location	OVM (ppm)	OVM Time	Field TPH (mg/kg)	Field TPH Analysis Time	ABS	NOTES
5B-13e10	10-27-18	16:02	Sof BET Ontside fence	2157	1620	—	-	~	6ny, Sanda/Way, Oder, Overist SS, Finwhite, Dry, St. Odar, No. Stain
.25'	1-	16:17	T	360.9	16:22	_	-	1	SS. Finchite, Ong, St. Oda, No. Stains
B-14 e 16'		16:41	Nudway of SB-13 f 12	2173	14:59		-	~	
	/	17:15	1	51.0	17:23	-	-	-	
SB-15e/0'	f	17:28'	E JE Bern SE LORNEN	1550	17:35	-	-	-	
· · · · · · · · · · · · · · · · · · ·	1	17:42'	1	205.6	17:49		-		
_									
			1		1 1				
					1 = 1				
		1.0.0.01	1.1.11			1			
			·		1				
			1		1				
							1	1	
			I					_	
	_							-	
			· · · · · · · ·				1		
			1.000.1			1			

*Include Benzene readings in the notes section initially and transfer to Limitations if Benzene is a problem on the location.

Animas Environmental Services, LLC

604 W Pinon St. Farmington, NM 87401 office # 505-564-2281

21911 N Main, Ste 280, Durango, CO 81301

10/6/2021 1:38:04 PM

OCD:

Soil Boring No: 10

Animas Environmental Services

.

604 W. Piñon St., Farmington, NM 87401

	or Well No	14 1:		 Tel. (505) 5	V. PINON S		-		
Projec		·•		Date: 8-22-18		illinasen	vironinei	ital.c	.011
	Hilcorp	· · · · · · · · · · · · · · · · · · ·		Latitude/Longitude:	36.6276	2 -107	4778	3	
		Juan	28-6	Unit 3/ Datum:	200000000			<u> </u>	
Driller	: GeoMa	+ - Kel	lley Pa	tille / Fernando Enriquez Elevation:					
Drillin	g Method:	Contina	us Bri	ing to Split Spron - HSA Logged by: C. La.		1			
Depth	to Water (ft):		Time Recorded: 405 Total Depth (ft): 2	5				
Depth (ft)	Sample Type (SPT, Grab, etc)	Sample Time	Blow Count (per 3x6" intervals)	Soil Description TYPE, density/consistency, color, grain size, moisture, other (i.e. odor, staining)	USCS Symbol	OVM (ppm)	OVM Time	MW Schematic and	Description
0				Very Soft, Red-Tan, Foorty Graded Sund, Dry	SP				
<u>}</u>				Non plastic, noncohesing (0-4') Very Loose, Tan, Poorty Graded Sand, Dry	SN	7.3	••••••••••••••••••••••••••••••••••••••		
				non plastic, noncohesine (4-5')		1.5	9:55		
5		9:05		Loose, Tan, well conded Sand, Ong non plastic, non cohessive (5 7.5')	5₩				
1				Stiff Brown land analyth Sond Advist	a				
10		9:15		Stiff, Brown, lean Uny with Sind, Moist		8.7	aren		
				Medium plasticity, concorre (7.5 - 10')		8.1	9:57		
10				Medium Donse, Red-Tan, well Graded Sand, Dry	รฟ				
				nom plastre, non cohecive (10-11')					
1				Dense, Tan, well londed Sand, Dry, noplast, nraco. (11-12')	511				
12		9:30		Very Dense, Tan- Light Gray, SS, String oda	55	60.8	9:57		İ
				UNABLE TO CONTINUE WITH CONTINIONS					
**************************************							· · · · · · · · · · · · · · · · · · ·		*********
1		9:34		BIRINGS SWITCHING TO SPLIT SPOON	-				
15		1.27		Very Dense, Jan, Sandstone, No Odr, Small Reca.	I SS	5,7	N:02		
20		9:51		S.A.A.	55	33.9	10:03		
25	••••••	NR	· · · · · · · · · · · · · · · · · · ·	No Recovery, Sandstone,	55	NL	NR		
	•••••••••••••••••••••••••••••••••••••••			Total Deptr 25'					
					-				
	· · · ·								
Page1	ot 2						Augus	t 3, 2	201

Soil Boring No: 17 Monitor Well No: - Animas Environmental Services

604 W. Piñon St., Farmington, NM 87401 Tel. (505) 564-2281 animasenvironmental.com

Pag	ie1 c	of 2	· · · · · ·					Augus	t 3, 2	201

******	******									
					Total Depth - 25'					
25			13:30		S.A.A., Very Small Recovery	55	NR	NR		
20			13:20		Rig Briken down C 11:137 Very Dense, Tan-white, Sandstme, Dry	55	18.0	13:34		
					[Rig Briken down C 11:13]					
		-			June peres.					
15			11:07	•	Weathered SS, Dry, Tan-White Small Recar.	55	0.7	11:41		
					SPLIT SPISN					
12			1.01		Vory Pence, Tan, SS Unable to continue CONTINIONS, SWITCH to		3.4	11.70		
, 12			11:01		Vou Dunce Trac 55	<i>5</i> 5	5.2	11:40		
1										
\rightarrow					noncohesine. Weathered 55					MAN (1
/0					Very Dense, Tan, Well Graded Sand, Dny, ronplast.	SW				***
10			10:55	[Med. Plast., cohesire (8-15)		4.5	11:39		
`					Stiff, Brown, Lean day with Sand, Moist	a				
1	ļ									
-1					noncohesire (5-8')					
5					Loose, Tan-Red, Poorly Emded Sand, Day, ronplast.	SP				
5			10:47		non cohesive (4-5')		1.7	11:38		
6					Very Louse, Tan, Poorly Graded Sand, Dry, Nupplastic	SP				
/										
١					Non cohesive (0-14')					
0					Loose, Brown, Poorly braded Sand Day non plustic	5P				
Dept	Sam	Samı (SPT,	Samı	Blow (per	(i.e. odor, staining)	Symbol	(ppm)	Time	MΜ	Desc
Depth (ft)	Sample Interval	Sample Type (SPT, Grab, etc)	Sample Time	Blow Count (per 3x6" intervals)	Soil Description TYPE, density/consistency, color, grain size, moisture, other	USCS	оум	о∨м	MW Schematic and	Description
									pu	-
Dep	th to	o Water (<u>(intini</u> ft): _	ns to	splitSprin - HSALogged by: C. LandTime Recorded:1840Total Depth (ft):	enron				
Drill	er: /	No Ma-	+ - KP	AFE	Elevation:					
-002	ation	<u>Hilcorp</u> 1: San T	Juan 2	28-6	$(n + \frac{1}{3})$ Datum:	90.02T)	7, - 107.	41184		• • • • •
	$\frac{\text{ect:}}{\text{nt} \cdot I}$	tilrara			Date: <u>B-22-18</u> Latitude/Longitude:	3h 1.275	2 /11	117761		···· · ·
		Well No	: -			64-2281 ;	animasen	vironmer	ital.c	om

Animas Environmental Services

604 W. Piñon St., Farmington, NM 87401

Soil Boring No:	18
Monitor Well No:	

Tel. (505) 564-2281 animasenvironmental.com

Droi	oot	WCII NO	•		Date: 8-22-18		unnusci	wironinici	ital.c	.0111
Proj		Hilcorp)		Latitude/Longitude:		+11-11-7	112241	•	
	ation	· Can (4002	81.11	nit #31 Datum:	04.011-	18,-107	· 47 7 7 14	/	
			KP 4		Elevation:					
					plit Spron Logged by: C. Law	lna man				
Dep	th to	Water (ft): —		Time Recorded: 13:49 Total Depth (ft):	25'				
Depth (ft)	Sample Interval	Sample Type (SPT, Grab, etc)	Sample Time	Blow Count (per 3x6" intervals)	Soil Description TYPE, density/consistency, color, grain size, moisture, other (i.e. odor, staining)	USCS Symbol	OVM (ppm)	OVM Time	MW Schematic and	Description
	S	<u>s</u>	<u> </u>				(PP/			
)					Loose, Brown, Poorly graded sand, Dry, nonplast. Non obhesine (6-5')	SP				
~			19					1.1.20		
5			13:58				6.3	14:39		
5					Louse, Brown, Doorly graded sand, Day, nonplast.	SP				
					non cohesive (5-7')					
{						<i>.</i>				9 C 400 M 40 C 40
· ·					Stiff, Brown, Lean day of Sand, Moist, Med. Plast.	a	1.9			
10			14:04		Cohesire (8-10')		4.5	14:40		
<i>10</i>					Strff, Brown, Lean day ul Sond, Morst, Med. Plast Chesine (10-10-5)	a		*****		
1					Very Dense, Jan, New Graded Samel, Bry, non plast. noncohome (10-12')	รฟ				
12'						55				*
·#					Very Dense, SS, Tan Unable to continue CONTINOUS, Switzb to SPLIT SPOIN					
15'			14:12		Weathered SS, Ony, Tan, Very Dense, oder	55	14. 0	14:41		
20	•		14:27		Very Donse, Tan-White, Sundstme, Dry, ada	55	6.1	14:4]		
25'			14:36		Very Donse, Ton-White, Sondstone, Dry, No Odar	55	9.3	14:50		
					Total Deptn - 25'					
							-			
		ļ								
			1							

August 3, 2015

Received	BORING	10/6/2021 LOG	1:38:04 PM
----------	--------	------------------	------------

Animas Environmental Services

			5 B- 19	7 '-3	—	V. Piñon S		•		
		Well No	<u>: BV</u>	-3		64-2281	animasen	vironme	ntal.	com
Proj Clie		Hilcon	0		Latitude/Longitude:	211 625	255 -1	17 47	ma :	 7
				28-0	U Unit #31 Datum:	JU. TA		•7. 17	<u>//</u>	/
Drill	ler: (SOD M	at - 1	Kellen	Padilla + Fernando ErmigenElevation:					
Drill	ling I	Vethod:	Contin	nis t	o Split Spom-HAA Logged by: C. La	memo	m			
Dep	th to	o Water (ft): —		Time Recorded: 10:58 Total Depth (ft): 30	1' Back	fill t	25'		
Depth (ft)	Sample Interval	Sample Type (SPT, Grab, etc)	Sample Time	Blow Count (per 3x6" intervals)	Soil Description TYPE, density/consistency, color, grain size, moisture, other (i.e. odor, staining)	USCS Symbol	OVM (ppm)	OVM Time	MW Schematic and	Description
0					Very Loose, Brown, Porry Graded Sand, Dry	SP			\uparrow	
) 5			11:06		Non plastricity, non cohesire (1-3') Stoff, Brown, Lean clay with Sand, Moist, adar High Plasticity, cohesire (3-5')		340	11:36	3' SALL 4.	
5 }					Stoff, Brown, Lean clay with Sand, Minist, High Plasticity, coherre, Odor (5-8')	CL			PUC Well +	
10			11:13		Soft, Gray, Lean clay with Sand, Monst High Plasticity, crhesive, Strong odor (8-10')	CL P	2,255	11:37	×10' PI	
10					10 S.A.A (10-10.25')	U			1	4
) 15			11:2-0		Loose, Tan, Porry Graded Sand, Dry, Non-Plast, non-cohesive, Strong odor, Light Gray (to. (10.25 - 15')	5P 55	15465	11:38	- W2,	
					UNABLE TO CONTINUE WITH CONTINIONS				5	B
20			11:31		BORING. SWITCHED TO SPLIT SPUDN-I Dense, Tun, Sandstone, Ony, Slight odow Small Recovery	\$\$	35.0	11:48	<u>+ 15' S</u>	
25			11:47		Very Dense, Tun-White, Dry, No Odar No Staining	55	59.2	11:53		
30'	•	•	11:59	***	S.A.A.	55	43.7	12:05		
					Total Depth @ 30'. Backfilled to 25' to set Bottom of well e 25'.					
					17' Sand Pack, 8' Bentinite			- 11- a		
Pag	e1 c	of 2						Augus	st 3, 1	201

•

Received BORFING LUGG2021 1:38:04 PM

Coil Poring No. SR.2

Animas Environmental Services 337

		ng No:			_ 604	W. Piñon S	St., Farmi	ngton, NI	M 87	/401
		Well No	: BV-	2		564-2281	animaser	ivironme	ntal.	com
Proje					Date: /0-8-18					
		41/con			Latitude/Longitude	36.627	140,-10	7.477	70	
Loca	tion	: San	Juan	28-6	Unit #3/ Datum:					
Drille	er: (20 Ma	<u>t - Ke</u>	lley P.	adilla 4 Fornando Enriquez Elevation:					
Drilli	ng N	Viethod:	Centr	ms	to Split Spom - HSA Logged by: C.lan				<u> </u>	
Dept	in to	Water (rt):	1	Time Recorded: //: 44 Total Depth (ft): 3	o' Back	filled	125	, 	
Depth (ft)	Sample Interval	Sample Type (SPT, Grab, etc)	Sample Time	Blow Count (per 3x6" intervals)	Soil Description TYPE, density/consistency, color, grain size, moisture, other (i.e. odor, staining)	USCS Symbol	OVM (ppm)	OVM Time	MW Schematic and	Description
0					Very Loose, Red Tan, Poorly Graded Sand, Moist,	58			Ŷ	Π
)					Naplastic, noncohesire (0-#1)		•••••••••••••••••••••••••••••••••••••••		- do 7245,	
5			11:55		S.A.A	SP	5.6	12:36	+3	
5					S.A.A (5-6.5')	SP			PWC	
					Stiff, Brown, Lean Clay w/ Sand, Moist, Med-Plast,	cr			P	
					Cohesire (6.5-10')		3,053	12:37	Blent	
			11:59		Dense, Tan-Gray, Wenthered Sandstone, Strong	5	3,40	12:38	18.18	
10					Sdar, Dry (10-11.5')				1	
					UNABLE TO CONTINUE W/ CONTINOUS				1	目目
					BORING. SWITCHED TO SPLIT SPOON					B
15'			12:06		Very Dense, Tan, Sandstone, Dry, Strong adar Smay Recovery	55	3,460	12: 38	Scheet	TANAT
20			12:15		Very Dense, Tan, Sandstone, Dry, o dar, "Recovery	55	312	12:39	15'	E
25			12:24		S.A.A.	55	186	/2:4/	×	LA LLA
30			12:33	•••••	S.A.A.	\$5	135	12:43		
					Total Depth @ 30'. Backfilled to 25'					
					to set bottom of well e 25'					
					17' sand Pack, B' Bentonite			· · · · · · · · · · · · · · · · · · ·		
							<u> </u>			<u> </u>
- Page	1 01	5.2			1			Augus		
aye		~						Augus	ι Ο. ,	∠U1:

.

Recgingel BORGNG 10662021 1:38:04 PM

Animas Environmental Services 337

604 W. Piñon St., Farmington, NM 87401

Soil Boring No: 5B-21 Monitor Well No: BY-/ Tel. (505) 564-2281 animasenvironmental.com Project: Date: 10 -8-18 Client: Hilcore Latitude/Longitude: 36.62768, - 107.47802 Location: San Juan 28-6 Unit #31 Datum: Driller: GeoMat-Kelley Padilla & Fornando Enniquez Elevation: Drilling Method: Continuous to Split Spoon - HSA Depth to Water (ft): - Time Recorded: 10:00 Logged by: C. Lameman Total Depth (ft): 30' Back filled 16 25 MW Schematic and per 3x6" intervals) Sample Interval Sample Type (SPT, Grab, etc) Sample Time **Blow Count** Description Depth (ft) Soil Description TYPE, density/consistency, color, grain size, moisture, other USCS OVM OVM (i.e. odor, staining) Symbol (ppm) Time 0 Very Loose, Red-Brown, poorly Ended Sand, Noist sP Non-plastic, non-cohesire, (0-0.5') 3 Stick Stiff, Brown, Lean Clay w/ Sand, Monst, High Plast, 10:48 10:18 U 4.1 5 м́ Conesine, (0.5 + 5') 5 Loose, Brown, Borry Graded Sand, Moist Non-plast 51 PVC non-cohesive, Strong odor (5-7.5') Blank Dense, Brown, Porry Graded Sand uf Clay, Mont, 10:23 SP-5C 2,365 10:49) | | Med-Plast, nonconsiste, V. Strongour, Gray (7.5-10') 10 S.A.A. (10-14') 10 SP-SC Dense, Tan, Weathered Sandstone, V. Strong, Dry 10:28 955 ŚŚ 10:50 Odor (14-15') creen 15 UNABLE TO CONTINUE WITH CONTINOUS 5 BORING. SWITCHED TO SPLIT SPOON Dense, Tan, Neathered Sandstone, Strong odoron 55 20 10:36 2,763 10:51 1111 S.A.A. 25 10:47 55 777 10:52 Very Dense, Tan, Sandstone, Dry, Strong Oder 20 11:07 505 55 11:15 Total Depth & 30'. Backfilled to 25' to set Bottom of Well @ 25'. 17' Sand Pack; 8' Bentonite

Page1 of 2

Received	BORFRG	1 <u>066</u> 2021	1:38:04 PM
6 - 11 B		CO_7-	,

_

Animas Environmental Services

•

			5B-2			N. Piñon S				
		Well No): B V		Tel. (505) 5	564-2281	animaser	nvironme	ntal.	com
Proj		tilcon	2		Date: /o-2-/8 Latitude/Longitude:	210/07	419 1	12 1.70	01	
Loca	ation	: San	Juan	29-10	2 / 4 u + 3 / Datum:	74.471	-1/ -11	17.4/8	01	
Dril	ler:/	20 Ma	+ -Kel	Ley P	dilla and Frenands Emigrez Elevation: Time Recorded: 9:20 Total Depth (ft): 3					
Dril	ling	Method:	Contin	m's B	Fring to Sprit sporn -HSA Logged by: C. La	reman	,			
Dep	th to) Water (ft):		Time Recorded: 9:20 Total Depth (ft): 3	off B				
Depth (ft)	Sample Interval	Sample Type (SPT, Grab, etc)	Sample Time	Blow Count (per 3x6" intervals)	Soil Description TYPE, density/consistency, color, grain size, moisture, other (i.e. odor, staining)	USCS Symbol	OVM (ppm)	OVM Time	MW Schematic and	Description
0					Very Loose, Bown, Pourly Graded Sand, Dry	SP				
)					Very Loose, Bornin, Poury Graded Sand, Dry Non plastic, non cohesire (1-5')					
5			9:35				0.0	10:34		
5					Very Loose, Brown, Porrly Graded Sund, Dry	SP				
)			•		Non plastic, non cohessive (5-6')					
					Stiff, Brown, Lean cluy with Sand, Dry	U				
10			9:41		High Plastiaity cohesine (6-10')		0.0	10:35	********	
10					Dense, Tan-Gray, Well Graded Sand, On	5W				
					non-plasticity, non-cohesire (10-11.0)					
 15			9:48		Very Dense, Tan, Sandstone, Strong adow (11-11.5')	55	17.2	10:35		
		·····			UNABLE TO CONTINUE WITH CONTINOUS					
15			9:56		BORINGS. SWITCHED TO SPLIT SPOON Very Dense, Tan, Sandstone, Dry, Slight oder	55	9.2	10:36		
20			10:10		Fer S.A.A.	55	1. 4	10:36		

25			10:27		Very Dense, Tan-Pink, Sandstone, Dry, No Oder	55	25.9	10:37		
					Total Depth e 25'					
									· · · · · · · · · · · · · · · · · · ·	,
		60			L					
Page	e1 o	t2						Augus	(3.2	2015

10

Animas Environmental Services

		ng No:	15					ngton, NN		
		Well No	:		Tel. (505) 5	64-2281 ;	animasen	vironmer	ntal.c	om
Proj					Date: 8-22-18	<u> </u>	_			
Clie	nt: 7	Hi/con	r		Latitude/Longitude:	36,627-	70,-107	.4780	7	
Loca	ition	: SAN	Juan	20-4	- Unit #31 Datum:					
			+- KP 9		Elevation:					
			Contina	us to		rema	r			
Dep	th to	Water (1	it):	-	Time Recorded: 15:64 Total Depth (ft): 3	0				
Depth (ft)	Sample Interval	Sample Type (SPT, Grab, etc)	Sample Time	er 3x	Soil Description TYPE, density/consistency, color, grain size, moisture, other (i.e. odor, staining)	USCS Symbol	OVM (ppm)	OVM Time	MW Schematic and	Description
0					Loose, Red-Tan, Porty Conded Sand, Moist, ronplet	SP				
)		*****			wn whesine		*********		*** ********	
5			15:15				9.0	15:39		
5					Los Tran America La Lica LA	10		1001		
>					Lorse, Tan, Pooly Graded Sond, Dry, non-plast. run chosne (5-6.5')	SP				
					Loose, Brown, Porly Gradel Sond, Dry, non. plast	SP				
(an clack 11-91					
Ю			15:20		Stiff, Brown, leanday & sand 19-19	CL	9.2	15:39		
10										
10										
					Very Dense, SS, Grey, Strong odor	55				
14										
					Unable to continue CONTINONS, Switch to					
					SPUTSPUDN					
15			1-2-2					و رو بسر د		
			15:30		Very Dense, 55, Gray, Strong Odar	55	1,100	15:41		
20			15:38		Very Dense, 65, Tan-White, Strong Ostor	55	538.4	15:49		
25'			15:47		5. A.A.		1,484	16:05		
_ ,		****					1) 70 1 	76.03		
30			16:09		Very Donse, Tan, 55, Strong o dor	55	325.5	16:12		
					Total Doptn - 30'					
	ľ									
							1			

Page1 of 2

A	ES V) en	nimas ivironm rvices	ental		LOG	OF: SVE	-1	
		Farm	iington, NM • D asenvironmenta	urango, CO I.com					(Page 1 of 1)
	SAN A INCIDEI	JUAN 28 API: 30-03 NT NO. N	ENERGY 3-6 UNIT #3 39-07290 IVK 1816655 C. 28, T28N	5680	Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 10/8/2018 : 10/8/2018 : 7.25 in. : CME 75 HSA : CONTINOUS/SPLIT-SP	Latitud Longitu GPS B Logged	de /	: 36.62768 : -107.47802 : C. Lameman : C. Lameman
Depth in Feet	Surf. Elev.	nscs	GRAPHIC		DESCRI	PTION	PID (ppm)	SVE-1	
0-		SP		Very Loose	e, Red-Brown, Poorly	y Graded Sand, Moist,			
2		SP-SC		Non-Plastic Stiff, Browr	city, Non-Cohesive n, Lean Clay with Sa city, Non-Cohesive				-Bentonite Plug -2" PVC Casing
6-		SP		Loose, Bro Non-Plastic	wn, Poorly Graded S city, Non-Cohesive, S	Sand, Moist, Strong Odor	4.1		
8 10 12 12		SP-SC		Dense, Bro Medium-Pl Gray	wn, Poorly Graded Sasticity, Non-Cohesi	Sand with Clay, Moist, ve, Very Strong Odor,	2,365		
14		SS		Odor UNABLE T		tone, Dry, Very Strong I CONTINOUS BORING. I AT 15 FEET.	955		-2" PVC Screen -Sand Pack
20		SS		Dense, Tar	n, Weathered Sands	tone, Dry, Strong Odor	2,763		
26- 				Very Dense	e, Tan, Sandstone, [Dry, Strong Odor @ 30'	505		-Backfill

	ES V	er	nimas ivironm rvices	ental		LO	G OF: SVE	-2	
			ington, NM • D asenvironmenta	urango, CO I.com					(Page 1 of 1)
	SAN / INCIDEI	JUAN 28 API: 30-03 NT NO. N	ENERGY 3-6 UNIT #3 39-07290 IVK 1816655 C. 28, T28N	5680	Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 10/8/2018 : 10/8/2018 : 7.25 in. : CME 75 HSA : CONTINOUS/SPLIT	Latitu Longi GPS Logge I-SPOON	tude By	: 36.62760 : -107.47790 : C. Lameman : C. Lameman
Depth in Feet	Surf. Elev.	nscs	GRAPHIC		DESCRI	PTION	PID (ppm)	SVE-2	
0- 2- 4- 6-		SP		Very Loose Non-Plastic	e, Red-Tan, Poorly G city, Non-Cohesive	Graded Sand, Moist,	5.6		—Bentonite Plug —2" PVC Casing
8- 		SP-SC		Medium-Pl	n, Lean Clay with Sa asticity, Cohesive	nd, Moist, Sandstone, Dry, Stron	3,050		
12- 		SS		Odor UNABLE T		I CONTINOUS BORI			
16 		SS		Very Dense Recovery	e, Tan, Sandstone, I	Dry, Strong Odor, Poc	or 3,460		—2" PVC Screen —Sand Pack
20				Very Dense	e, Tan, Sandstone, I	Dry, Odor, Poor Reco	very 312		
26-		SS					186		—Backfill
30-							135		

A	ES V) er	imas ivironm rvices ington, NM • D asenvironmenta			LO	G OF: SVE	-3	(Page 1 of 1)
	SAN A INCIDEN	IILCORP JUAN 28 API: 30-03 NT NO. N	asenvironmenta ENERGY 3-6 UNIT #3 39-07290 IVK 1816655 C. 28, T28N	1 5680	Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 10/2/2018 : 10/2/2018 : 7.25 in. : CME 75 HSA : CONTINOUS/SPLIT	Latitud Longiti GPS E Logger	ude V	(Page 1 of 1) : 36.62755 : -107.47797 : C. Lameman : C. Lameman
Depth in Feet	Surf. Elev.	NSCS	GRAPHIC		DESCRI	PTION	PID (ppm)	SVE-3	
0		SP		Very Loose Non-Plastic	e, Brown, Poorly Gra city, Non-Cohesive	ded Sand, Dry,			Bentonite Plug
4		SP-SC		Stiff, Browr High-Plasti	n, Lean Clay with Sar city, Cohesive, Odor	nd, Moist, Odor,	5.6		2" PVC Casing
8- - - 10-		SP-SC		Cohesive,	Strong Odor	d, Moist, High-Plastic	3,050		
12-		SP		Non-Cohes	sive, Strong Odor, Liç				
14— 				SWITCHE	O CONTINUE WITH D TO SPLIT-SPOON n, Sandstone, Dry, S		NG. 3,460		2" PVC Screen Sand Pack
		SS					312		
22-									
26-		SS		Very Dense	e, Tan-White, Sands	tone, Dry, No Odor	186		Backfill
28— 							135		

Soil Boring No: SB-4R

Animas Environmental Services 337

604 W. Piñon St., Farmington, NM 87401

		Well No	B-4R		-			ngton, N wironme		
	ect:	VVEII INO		<u>_ve</u>	Date: 12-5-18	······································	759	.47		
Clie	nt:	Hilch	10		Latitude/Longitude:					
_00	ation	: San	Juan	286-						
Dril	er: (ouis	Truj	illo 1	Earth WOX Elevation:					
		Method:		Probe	Push Rig Logged by: C.lar		<u>n</u>			
Dep	th to) Water (1	rt):	-	Time Recorded: 1/00 - 1/36 Total Depth (ft): 12					
Depth (ft)	Sample Interval	Sample Type (SPT, Grab, etc)	Sample Time	Blow Count (per 3x6" intervals)	Soil Description TYPE, density/consistency, color, grain size, moisture, other (i.e. odor, staining)	USCS Symbol	OVM (ppm)	OVM Time	MW Schematic and	Description
D					Brown, Medium, High Phasticity, Fine Gain,					
\					WI sand, Moist, Cohenire, No odor (0-4')	a				
					na dhi danaanin dha dhacharafa mina badadhaanin far aanna maanna dha farannan maanna maanna dha sanna na ma barannan maanna					
1	3_4'	Cont	11:21		S.A.A (4-5')	CL	32.0	1133		
5	-7	(ANI)	11.21		7.4.A (7-3)	<i>u</i>	52.0			
								<u> </u>	┼┼──	╞
5					Brown, house, Fine Grained, Mrist, Sl. Odor.				 	
1					(5-6.5')	SW				
									山	
1	7, 8'	Grab	11:19		Brown, Medium, Fine Grand & High Plast., Morst		3,232	1134	Ц١	
1)				· · · · · · · · · · · · · · · · · · ·	a	1,052	1	エア	
0		 			Chesive, String Oder. (6.5 - 8')		-	-	<u>H</u> e	-
8									Ηċ	
)					S.A.A. (8-10.5				日)	
									目	
1	11- 12'	Grab	11:16		Dense, Tun Light Gray Staining, Medium Grain	55	3,044	11:35		
12					Dry, Strmg oder (10.5-12')		Ĺ			
					And the 1 of 12' we Can lating		1			
					Anger Refusal e 12' on Sandstone					
										-
					Total Depth e 12'					
					Install well					
					2" Goreen C 12 to 7'					
					Sand Pack C 12 to 6'					
					Bentonite e 6'to surface					
					Dentonice - a roswyace		-	···		-
	a an						-			
	ļ			<u> </u>						
	1									1
									-	-
	1	1	1			1	1	1		1

8 70

.

Received booking1062021 1:38:04 PM

Ø

4

Animas Environmental Services

		mentur	JUIVICES
604 W.	Piñon St	Farmington	NM 87401

			5B-51		604	4 W. Piñon	St., Farm	ington, N	IM 87401
			DISVE -	-5 4) 564-2281			
	ject:				Date: 12-5-18				
		Hilco		0.0.1	Unit #3/ Latitude/Longitud	e: 36. 92	<u>158, -10</u>	7.41	807
Dri	ller	1. Jan	Juan	20-6					.1
Dri	lling	Method:	Tras Pr	abe l					
Dep	oth to	o Water	(ft):	our I	Work Kag Logged by: C. Time Recorded: 1000 - 1057 Total Depth (ft): 1	amem		o'	
			T			2 24	na 1	0	
Depth (ft)	Sample Interval	Sample Type (SPT, Grab, etc)	Sample Time	Blow Count (per 3x6" intervals)	Soil Description TYPE, density/consistency, color, grain size, moisture, other (i.e. odor, staining)	USCS Symbol	OVM (ppm)	OVM Time	MW Schematic and Description
0					Brown, Subt, Five, Med. Plastic., Mast, High				
$ \rangle$			4	1	Plasticiting. (0-5) Clargery Sand	CL			
		4 6	10:34	1	an a the second s		1.7		
			10 34			••••	1.1	16:41	
7.5					Brown, Loose, File Soud, Mrist, Non Plant (5-7.5')	SW			
1.5			wh		Brown, Stop, High Planticity, Murit,				
		75 C -8.5	10:32		all is all chains for the fill is				
$ \rightarrow $		- • , ;	10.012		Cohesine, Blk Stainin (7.5' - 8.5') odor	CL	4.4	10:40	LFO
1/-									月1日门
					Brown, Stap, High Plasticity, Moist, Cohesine	cr			EFT
10.7	5				(8.5-10,75') Odor	0.0			
10.7									₹.K
10.7									E SE
					Tan, Dense, Slight Grey, Medium Grained,				Hèn VI
		د ا	ab		Dry, Non Plastic, Non acherine, 55				
13	MA	12 -73'	10:19		(10.75 -13')	55	a - a a	1	311-1
	11-51		10111			53	2,799	10:39	71
 					Anger Refusal. Stop Geopobe. Install				
					well.				۲.
									SVE
					Tible Area to a 12' in the Constant of the Con				\$
					Total Depth = 13 into 55				
					well construction				
					2" screen e # 13' to 8'				
								·····	
					Sand Pack e 13' to 7'				
		A 4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1			Bentraite e 7' to surface.				
					· · · · · · · · · · · · · · · · · · ·				
					Additional 2" screen installed as				
					SVE. 2" screen e lo to 5'				
					Sand Pack @ 10 to 64'				
					Bentruite @ 4 to surface				
							***	·····	
Page	1 of	2							2 2015

Released to Imaging: 9/22/2022 2:16:33 PM

August 3, 2015

•

Soil Boring No: SB-6R

Monitor Well No: SVE-6

Animas Environmental Services

604 W. Piñon St., Farmington, NM 87401

Project:

Tel. (505) 564-2281 animasenvironmental.com Date: 12 - 5 - 18

Project:			Date: 12-5-18					
Client: Hilcor	<u>p</u>	<u> </u>	Latitude/Longitude	: 36.670	3,-10-	7.4781	0	
Location: Snu								
Driller: Louis Drilling Method	: Georgin by	e arri	h Rig Logged by: C. Lan	22.00 0 10				
Depth to Water	(ft):	c 7765	Time Recorded: /230 - Total Depth (ft): /	2'				<u>. </u>
 Depth (ft) Sample Interval Sample Type (SPT, Grab, etc) 	Sample Time	er 3x	Soil Description TYPE, density/consistency, color, grain size, moisture, other (i.e. odor, staining)	USCS Symbol	OVM (ppm)	OVM Time	MW Schematic and	Description
	· · · · · · · · · · · · · · · · · · ·		Strface. Gravel \$4 Very Stoft, Brown, Fire Grained Sound, High Plast., Moist, High Plast, Cohesine, (0-4) No Obler	CL				
4.5 4 Grab	12:51		5. A.A. (4-4,5')	OL	3.7	12:55		
4.5			Louse, Brown, Fine Grained, Moist, Non Plast., Non cohestie, No 6 der (4.5-5.5')	5W				
8 Rf brah	/2:52		Stiff, Brown, Fine Grained Sand, High Plast, Motst, Crhesnie (5.5 - 8')	a	188	12:56		
) 12 "12" Grab	12:46	-	S.A.A (8-11') strong odor Dense, Tan light bray, Medium brasied, Bry hon cohesine, strong odor (11-12')	5 S	4,247	12:59	11111111	
			Total Depth e 12' on Sandshue Muger Refinond Install Well 2" Scheen e 12' to 7' Sand Pack e 12' to 6' Bentmite o 6' to subace.					
Page1 of 2						Δυσιο		

Page1 of 2

THE PLANE AND

¥

#

August 3, 2015

•

Soil Boring No: SB -7R

4

4

Monitor Well No: SVE-7

Page 62 of 337 Animas Environmental Services

604 W. Piñon St., Farmington, NM 87401 Tel. (505) 564-2281 animasenvironmental.com

Project: Date: 12-5-18 Client: Hilcorp Location: San Juan 28-6 #31 Latitude/Longitude: 36.62761, -107. 47812 Datum: Driller: Lorz Trujullo N/ Barth Worx Elevation: Drilling Method: Geofribe Push King Logged by: C. Lameman Time Recorded: /135 - 11:58 Depth to Water (ft): Total Depth (ft): ノみ MW Schematic and per 3x6" intervals) Sample Type (SPT, Grab, etc) Sample Interval ample Time **Blow Count** Description Depth (ft) Soil Description USCS OVM OVM TYPE, density/consistency, color, grain size, moisture, other Symbol (i.e. odor, staining) (ppm) Time Medium, Brown, Fine Crain Sand High Plast, 3-4 Cm5 Morst, Cohesine, No odar (0-4) CL 11:36 8.1 11:53 S.A.A. (4-5') 5' СЛ 5 Loose, Find Grain, Moist, Non Plastic, Non chemire, By, No Odar (5-5.5') SW Brown, Medrum, High Plus heity, Minst, Coheroise, N. odor (5.5-8') 8 8' Gnb a 1.3 11:54 月1 11:40 8 S.A.A. C 10' Slight Gray staining oder a (8 - 11)11 Dense, Tan light Gray, Medium Grain, Dry, Non plastic, won cohemie, Strong of 55 12 "-12" 6mb 11:45 11:55] (11-12') 2821 Total Depth @ 12' on Sandstone Anger Refacal Install well 2" Screin e 12' h 7' Sand pack e 12' to 6' Bentorite C 6' to surface Page1 of 2 August 3, 2015

4

Soil Boring No: SB-BR

Page 63 of 337 Animas Environmental Services

604 W. Piñon St., Farmington, NM 87401

Proje Client Locat Drille Drillir Dept	ect: t: tion er: ng N	Hilory : Son 3 Louis 1, Method: Water (<u>Juan 1</u> njillo beofrop	le te U Earth i	Nnx Elevation:	26.427				
Depth (ft)	tion er: ng N h to	: Šan (Lorús 1) Method: Water (<u>Juan 1</u> njillo beofrop	Easth 1	nit 31 Datum: NTVx Elevation:		165,-10	7.4780	36	
Depth (ft)	er: ng N h to	Vethod: Water (njillo beofnop	Easth 1	Navx Elevation:					
Depth (ft)	ng N h to	Vethod: Water (beofrap							
Depth (ft)	h to	Water (- -						
Depth (ft)	_	(;	,		Time Recorded: 12:56 - 12:27 Total Depth (ft): 12			<u> </u>		
	Ē	Sample Type (SPT, Grab, etc	Sample Time	Blow Count (per 3x6" intervals)	Soil Description TYPE, density/consistency, color, grain size, moisture, other	USCS	ονΜ	ovm	W Schematic and	Description
0	Sa	S a (S	Sa	8 8	(i.e. odor, staining)	Symbol	(ppm)	Time	Σ	<u> </u>
					Medium-Soft, Brown, High Plasticity, Mrist, Cohesive, Finc Gramed Sound, No Otar (0-4)	CL.	24 - 402 - 40 - 41 - 41 - 41 - 41 - 41 - 41 - 41			
() 5	4'	Grab	13:05		S.A.A. (4-5') Staining, Oder	a	509	13:25		
5					\$. Loose, Tun, Medium Grained, Moist, non-plast. non'clohestice, Strong Odow (5-6')	5W		•••••••••••••••••••••••••••••••••••••••		
97		Grab	13:22		Stiff, Brown, Fre Grained Sama, High Plasticity, Moist, Strong Oder, Cohesine (6-9)	CL	394	13:26	141 1.7	
9	-	0			Mars), Airong Oder, constre (6-4)		777	1524	31	
$\dot{)}$					S.A.A. Gray staining, Strong Odw (9-11)	a			111111	
1 12 "	1 72	1. AND	13:18		Dense, Medium Grashed, Gray, Bry, Strong 6 for, Non Plastic, Non cohesine (11-12')	55	2,969	13:27		
		•••			Total Depth 12' on Sandstone					
					Anger Refusal Instrue well					
					2" sorren e 12' to 7'					
					Sand pack e 12' to b'					
					Bentonite C 6' 4 surface					
Page1								Augu		

Released to Imaging: 9/22/2022 2:16:33 PM

Rele		BORING	-		SVE-9								Rec
eased		eline Name: H_{7}	Korp ST:	23 te Un	it 31			Buck	Machine #_				eived
to In	Date: /2 -5-	0					Conce	ntration	50 mg/kg	100 mg/kg	500 mg/kg		by C
maging:	AES personnel	: C. lamemo	in				Calibration	ABS Values				,)CD:
ıg: 9/22/2022	Sample ID	Collection Date	Time of Sample Collection	Sample Location	Sample Depth (ft)	Composite	PID-OVM (ppm)	PID-OVM Time	Field TPH (mg/kg)	Field TPH Analysis Time	ABS	NOTES (i.e. Soil Type, Color, Odor, Staining)	10/6/2021 T:
2:16:33	PAU SB-24	12-5-18							born, M	edium, Fin	e Grained Sa	nd, High Plastizity, Moist	38:02
:331										, Strong Od			PM
PM					3-4	<u> </u>		- 					
			13:50		13:50		324	13:52				Most, Gray Sturning	
									Cohenire,	String of	w (4-6	<u></u>	
¥			13:48		7-8 13:45		4,750	13:53				Non Plasticity, Morst, may Staining (6-8')	
												Mist, Gray Stuning	1112
									Cohesiry,	Extremely	strmy 6 .	ur e 9-11.5 (8-11.5')	
													,
				10-11.					Dense, Ta	n bray Sta	iring, Me	dium Gained, non cohesine	
		· · · · · · · · · · · · · · · · · · ·		····					Bry, V.St	nony odar	(11.5-12	()	_Ħ,
Þ			13:46		11-12'		4,594	13:54	TAHIA	note a 12	in Sun	dstone, Anger Refusal	
					11 12		.,	.,.,	l' Wen		UT ONIG	isione, ingui repuent	
										@ 12' h	. 7'		
		· · · · · · · · · · · · · · · · · · ·							Sand par	1c e12'	6 6'; B	intonite C 6' to Surface	旧

Type of Sample collection?:

Page 64

	line Name: 50	in Juan	28-6 #	31			Buck	Machine #_]
ate: 12-5-1						Conce	ntration	50 mg/kg	100-mg/kg	500 mg/kg	
S personnel	C.Lamem	м				Calibration	ABS Values				
Sample ID	Collection Date	Time of Sample Collection	Sample Location	Sample Depth (ft)	Composite	PID-OVM (ppm)	PID-OVM Time	Field TPH (mg/kg)	Field TPH Analysis Time	ABS	NOTES (i.e. Soil Type, Color, Odor, Staining)
SVE-IR	12-5-18	NS	NS	NS	N	NA	NA	No Boi	KING. LO	6S.	
								Total De I" h		ned e	12' Deep
										12' +0 7	,
				· · · · · · · · · · · · · · · · · · ·				San Ben	Seen C d Pack brite C	e 17 h	G'
								NO L	-ABS		
					_						
				·							

2 of _____

Type of Sample collection?:

Received by OCD: 10/6/2021 1:38:04 PM

ANALYTICAL REPORT

Page 66 of 337

HilCorp-Farmington, NM

Sample Delivery Group: Samples Received: Project Number: L998202 06/01/2018 AFE# 1851542 Hilcorp San Juan 28-6 #31

Report To:

Description:

Lindsay Dumas 382 Road 3100 Aztec, NM 87401

Entire Report Reviewed By:

Naphne R Richards

Daphne Richards Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
SB-1 3' L998202-01	6
SB-1 7' L998202-02	7
SB-2 7' L998202-03	8
SB-3 1' L998202-04	9
SB-3 7.5' L998202-05	10
SB-4 8.5' L998202-06	11
SB-5 11.75' L998202-07	12
SB-6 11' L998202-08	13
Qc: Quality Control Summary	14
Total Solids by Method 2540 G-2011	14
Wet Chemistry by Method 300.0	15
Volatile Organic Compounds (GC) by Method 8015/8021	16
Semi-Volatile Organic Compounds (GC) by Method 8015	19
GI: Glossary of Terms	20
Al: Accreditations & Locations	21
Sc: Sample Chain of Custody	22

SDG: L998202

DATE/TIME: 06/04/18 16:42

PAGE: 2 of 22 Received by OCD: 10/6/2021 1:38:04 PM

SAMPLE SUMMARY

ONE LAB. NAT Rage 68 of 37

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

	SAMI LL SC		X I		
SB-1 3' L998202-01 Solid			Collected by CL / SG	Collected date/time 05/31/18 09:36	Received date/time 06/01/18 08:45
Nethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	,
Total Solids by Method 2540 G-2011	WG1118680	1	06/01/18 13:11	06/01/18 13:22	JD
/olatile Organic Compounds (GC) by Method 8015/8021	WG1118855	1	06/01/18 11:10	06/01/18 23:52	LRL
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1118768	1	06/01/18 19:24	06/02/18 00:29	DMW
			Collected by	Collected date/time	Received date/time
SB-1 7' L998202-02 Solid			CL / SG	05/31/18 09:55	06/01/18 08:45
N ethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
otal Solids by Method 2540 G-2011	WG1118680	1	06/01/18 13:11	06/01/18 13:22	JD
/olatile Organic Compounds (GC) by Method 8015/8021	WG1118855	1	06/01/18 11:10	06/02/18 00:14	LRL
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1118768	1	06/01/18 19:24	06/02/18 02:17	DMW
			Collected by	Collected date/time	Received date/tim
			CL / SG	05/31/18 10:25	06/01/18 08:45
SB-2 7' L998202-03 Solid			62736	00/01/10 10:20	00/01/10 00:13
Nethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1118680	1	06/01/18 13:11	06/01/18 13:22	JD
/olatile Organic Compounds (GC) by Method 8015/8021	WG1118855	1	06/01/18 11:10	06/02/18 00:37	LRL
emi-Volatile Organic Compounds (GC) by Method 8015	WG1118768	1	06/01/18 19:24	06/02/18 02:29	DMW
			Collected by	Collected date/time	Received date/tim
SB-3 1' L998202-04 Solid			CL / SG	05/31/18 10:30	06/01/18 08:45
Nethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	,
otal Solids by Method 2540 G-2011	WG1118680	1	06/01/18 13:11	06/01/18 13:22	JD
/olatile Organic Compounds (GC) by Method 8015/8021	WG1118855-1	1	06/01/18 11:10	06/04/18 00:28	DWR
emi-Volatile Organic Compounds (GC) by Method 8015	WG1118768	1	06/01/18 19:24	06/02/18 02:41	DMW
			Collected by	Collected date/time	Received date/tim
SB-3 7.5' L998202-05 Solid			CL / SG	05/31/18 10:46	06/01/18 08:45
Nethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	,
otal Solids by Method 2540 G-2011	WG1118680	1	06/01/18 13:11	06/01/18 13:22	JD
olatile Organic Compounds (GC) by Method 8015/8021	WG1118855	1	06/01/18 11:10	06/02/18 01:21	LRL
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1118768	1	06/01/18 19:24	06/02/18 02:53	DMW
			Collected by	Collected data him -	Decoived data #
			Collected by CL / SG	Collected date/time 05/31/18 11:15	Received date/tim
SB-4 8.5' L998202-06 Solid			UL / 30	05/51/18 11:15	06/01/18 08:45
Aethod	Batch	Dilution	Preparation	Analysis data/time	Analyst
	11/0///0000	A	date/time	date/time	10
otal Solids by Method 2540 G-2011	WG1118680	1	06/01/18 13:11	06/01/18 13:22	JD
Vet Chemistry by Method 300.0	WG1118594	1	06/01/18 11:11	06/01/18 20:02	MAJ
/olatile Organic Compounds (GC) by Method 8015/8021	WG1118855	500	06/01/18 11:10	06/02/18 01:44	LRL
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1118768	1	06/01/18 19:24	06/02/18 03:05	DMW

PROJECT: AFE# 1851542

SDG: L998202 DATE/TIME: 06/04/18 16:42

PAGE: 3 of 22 Received by OCD: 10/6/2021 1:38:04 PM

SAMPLE SUMMARY

ONE LAB. NAT Rage 69 of 337

GI

ΆI

Sc

SB-5 11.75' L998202-07 Solid			Collected by CL / SG	Collected date/time 05/31/18 12:21	Received date/time 06/01/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1118680	1	06/01/18 13:11	06/01/18 13:22	JD
Volatile Organic Compounds (GC) by Method 8015/8021	WG1118855	500	06/01/18 11:10	06/02/18 05:05	LRL
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1118768	1	06/01/18 19:24	06/02/18 03:17	DMW
			Collected by	Collected date/time	Received date/time
SB-6 11' L998202-08 Solid			CL / SG	05/31/18 13:02	06/01/18 08:45
N ethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1118680	1	06/01/18 13:11	06/01/18 13:22	JD
	WC11100FF	1000	06/01/18 11:10	06/02/18 05:27	I RI
Volatile Organic Compounds (GC) by Method 8015/8021	WG1118855	1000	00/01/18 11.10	00/02/10 03.27	LILL

SDG: L998202

DATE/TIME: 06/04/18 16:42 PAGE: 4 of 22

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Japhne R Richards

Daphne Richards Technical Service Representative

SDG: L998202

DATE/TIME: 06/04/18 16:42

PAGE: 5 of 22

Repeived by OCD: 10/6/2021 1:38:04 PM

SAMPLE RESULTS - 01

Collected date/time: 05/31/18 09:36

(S) o-Terphenyl

71.8

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Total Solids	89.4		1	06/01/2018 13:22	WG1118680		
Volatile Organic Comp	ounds (GC)	by Metho	d 8015,	/8021			
	Result (dry)	Qualifier	RDL (c	lry) Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	0.000844		0.000	559 1	06/01/2018 23:52	WG1118855	
Toluene	ND		0.005	59 1	06/01/2018 23:52	<u>WG1118855</u>	
Ethylbenzene	ND		0.000	559 1	06/01/2018 23:52	<u>WG1118855</u>	
Total Xylene	0.00337		0.0016	68 1	06/01/2018 23:52	<u>WG1118855</u>	
TPH (GC/FID) Low Fraction	ND		0.112	1	06/01/2018 23:52	WG1118855	
(S) a,a,a-Trifluorotoluene(FID)	96.1		77.0-12	20	06/01/2018 23:52	<u>WG1118855</u>	
(S) a,a,a-Trifluorotoluene(PID)	96.6		75.0-1.	28	06/01/2018 23:52	WG1118855	
Semi-Volatile Organic	Compounds	s (GC) by	Method	1 8015			
	Result (dry)	Qualifier	RDL (c	lry) Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	ND	J6	4.47	1	06/02/2018 00:29	WG1118768	
C28-C40 Oil Range	ND		4.47	1	06/02/2018 00:29	WG1118768	

18.0-148

SDG: L998202 DATE/TIME: 06/04/18 16:42

WG1118768

06/02/2018 00:29

Repeired by OCD: 10/6/2021 1:38:04 PM

SAMPLE RESULTS - 02

Тс

Ss

Sc

Collected date/time: 05/31/18 09:55

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%		date / time				
Total Solids	87.4		1	06/01/2018 13:22	WG1118680		
Volatile Organic	Compounds (GC) by Metho	d 8015,	/8021			
	Result (dry)	Qualifier	RDL (d	lry) Dilution	Analysis	Batch	

	Result (dry)	Qualifier	RDL (ary)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		– ⁴ Cn
Benzene	0.00145		0.000572	1	06/02/2018 00:14	WG1118855	
Toluene	0.00684		0.00572	1	06/02/2018 00:14	WG1118855	5
Ethylbenzene	0.000917		0.000572	1	06/02/2018 00:14	WG1118855	⁵Sr
Total Xylene	0.0108		0.00172	1	06/02/2018 00:14	WG1118855	
TPH (GC/FID) Low Fraction	ND		0.114	1	06/02/2018 00:14	WG1118855	⁶ Qc
(S) a,a,a-Trifluorotoluene(FID)	96.3		77.0-120		06/02/2018 00:14	WG1118855	QC
(S) a,a,a-Trifluorotoluene(PID)	97.0		75.0-128		06/02/2018 00:14	WG1118855	⁷ Gl
Semi-Volatile Organic	Compounds	(GC) by N	lethod 80 [°]	15			
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	- ⁸ Al
Analyte	mg/kg		mg/kg		date / time		

Analyte	шу/ку	шу/ку		uale / time			
C10-C28 Diesel Range	ND	4.58	1	06/02/2018 02:17	WG1118768	9	
C28-C40 Oil Range	ND	4.58	1	06/02/2018 02:17	WG1118768		
(S) o-Terphenyl	62.7	18.0-148		06/02/2018 02:17	WG1118768		
Repeized by OCD: 10/6/2021 1:38:04 PM

SAMPLE RESULTS - 03

Collected date/time: 05/31/18 10:25

Total Solids by Metho	d 2540 G-20	D11					1
	Result	Qualifier	Dilution Anal	ysis	Batch		
Analyte	%		date	/ time			2
Total Solids	87.2		1 06/0	1/2018 13:22	WG1118680		2
Volatile Organic Com	pounds (GC)	by Method	d 8015/802	21			3
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	L
Analyte	mg/kg		mg/kg		date / time		4
Benzene	0.000724		0.000574	1	06/02/2018 00:37	WG1118855	
Toluene	ND		0.00574	1	06/02/2018 00:37	WG1118855	5
Ethylbenzene	ND		0.000574	1	06/02/2018 00:37	WG1118855	5
Total Xylene	ND		0.00172	1	06/02/2018 00:37	WG1118855	
TPH (GC/FID) Low Fraction	ND		0.115	1	06/02/2018 00:37	WG1118855	6
(S) a,a,a-Trifluorotoluene(FID)	96.6		77.0-120		06/02/2018 00:37	WG1118855	
(S) a,a,a-Trifluorotoluene(PID)	97.1		75.0-128		06/02/2018 00:37	WG1118855	7
Semi-Volatile Organic	Compounds	s (GC) by N	/lethod 80)15			Ĺ
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	8
Analyte	mg/kg		mg/kg		date / time		L
C10-C28 Diesel Range	ND		4.59	1	06/02/2018 02:29	WG1118768	9
C28-C40 Oil Range	ND		4.59	1	06/02/2018 02:29	WG1118768	
(S) o-Terphenyl							

SDG: L998202 DATE/TIME: 06/04/18 16:42

Repeized by OCD: 10/6/2021 1:38:04 PM

SAMPLE RESULTS - 04

Collected date/time: 05/31/18 10:30

(S) o-Terphenyl

69.5

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Total Solids	87.9		1	06/01/2018 13:22	WG1118680		
Volatile Organic Comp	oounds (GC)	by Metho	d 8015,	/8021			
	Result (dry)	Qualifier	RDL (c	lry) Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	0.00115		0.000	569 1	06/04/2018 00:28	WG1118855-1	
Toluene	ND		0.005	69 1	06/04/2018 00:28	WG1118855-1	
Ethylbenzene	ND		0.000	569 1	06/04/2018 00:28	WG1118855-1	
Total Xylene	0.00604		0.0017	71 1	06/04/2018 00:28	WG1118855-1	
TPH (GC/FID) Low Fraction	ND		0.114	1	06/04/2018 00:28	WG1118855-1	
(S) a,a,a-Trifluorotoluene(FID)	99.6		77.0-12	20	06/04/2018 00:28	WG1118855-1	
(S) a,a,a-Trifluorotoluene(PID)	104		75.0-1.	28	06/04/2018 00:28	<u>WG1118855-1</u>	
Semi-Volatile Organic	Compounds	G (GC) by	Method	d 8015			
	Result (dry)	Qualifier	RDL (c	lry) Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	ND		4.55	1	06/02/2018 02:41	<u>WG1118768</u>	
C28-C40 Oil Range	ND		4.55	1	06/02/2018 02:41	WG1118768	

18.0-148

SDG: L998202 DATE/TIME: 06/04/18 16:42

WG1118768

06/02/2018 02:41

Repeized #y OCD: 10/6/2021 1:38:04 PM

SAMPLE RESULTS - 05

Collected date/time: 05/31/18 10:46

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Total Solids	86.3		1	06/01/2018 13:22	WG1118680		
Volatile Organic Comp	oounds (GC)	by Metho	d 8015/	8021			
	Result (dry)	Qualifier	RDL (d	ry) Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	0.00795		0.000	580 1	06/02/2018 01:21	<u>WG1118855</u>	
Toluene	0.0280		0.005	80 1	06/02/2018 01:21	WG1118855	
Ethylbenzene	0.00226		0.000	580 1	06/02/2018 01:21	WG1118855	
Total Xylene	0.0264		0.0017	4 1	06/02/2018 01:21	<u>WG1118855</u>	
TPH (GC/FID) Low Fraction	ND		0.116	1	06/02/2018 01:21	WG1118855	
(S) a,a,a-Trifluorotoluene(FID)	96.2		77.0-12	0	06/02/2018 01:21	<u>WG1118855</u>	
(S) a,a,a-Trifluorotoluene(PID)	96.7		75.0-12	8	06/02/2018 01:21	WG1118855	
Semi-Volatile Organic	Compounds	s (GC) by l	Vethoo	8015			
	Result (dry)	Qualifier	RDL (d		Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	ND		4.64	1	06/02/2018 02:53	WG1118768	
C28-C40 Oil Range	ND		4.64	1	06/02/2018 02:53	WG1118768	
czo-c+o oli Nalige	NB		1.01	1	00/02/2010 02:00	10110700	

SDG: L998202 DATE/TIME: 06/04/18 16:42

SAMPLE RESULTS - 06 L998202

⁵Sr

Total Solids by Method 2540 G-2011

Collected date/time: 05/31/18 11:15

	Re	sult Qualifie	r Dilution	Analysis	Batch	`Ср
Analyte	%			date / time		2
Total Solids	85	.2	1	06/01/2018 13:22	WG1118680	¯Тс

Wet Chemistry by Method 300.0

Wet Chemistry by	Method 300.0						³Ss
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		⁴ Cn
Chloride	67.0		11.7	1	06/01/2018 20:02	WG1118594	CII

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
analyte	mg/kg		mg/kg		date / time	
enzene	2.26		0.293	500	06/02/2018 01:44	WG1118855
Jene	12.9		2.93	500	06/02/2018 01:44	WG1118855
ylbenzene	4.09		0.293	500	06/02/2018 01:44	WG1118855
al Xylene	32.0		0.880	500	06/02/2018 01:44	WG1118855
(GC/FID) Low Fraction	626		58.7	500	06/02/2018 01:44	WG1118855
a,a,a-Trifluorotoluene(FID)	84.4		77.0-120		06/02/2018 01:44	WG1118855
) a,a,a-Trifluorotoluene(PID)	98.7		75.0-128		06/02/2018 01:44	WG1118855

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	60.9		4.70	1	06/02/2018 03:05	WG1118768
C28-C40 Oil Range	ND		4.70	1	06/02/2018 03:05	WG1118768
(S) o-Terphenyl	74.5		18.0-148		06/02/2018 03:05	WG1118768

ND

71.8

SAMPLE RESULTS - 07

Collected date/time: 05/31/18 12:21

C28-C40 Oil Range

(S) o-Terphenyl

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	91.8		1	06/01/2018 13:22	WG1118680	
Volatile Organic Comp	oounds (GC)	by Metho	d 8015/	/8021		
	Result (dry)	Qualifier	RDL (d	ry) Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	3.02		0.272	500	06/02/2018 05:05	WG1118855
Toluene	21.0		2.72	500	06/02/2018 05:05	WG1118855
Ethylbenzene	5.06		0.272	500	06/02/2018 05:05	WG1118855
Total Xylene	43.6		0.817	500	06/02/2018 05:05	WG1118855
TPH (GC/FID) Low Fraction	1050		54.5	500	06/02/2018 05:05	WG1118855
(S) a,a,a-Trifluorotoluene(FID)	76.9	<u>J2</u>	77.0-12	?0	06/02/2018 05:05	WG1118855
(S) a,a,a-Trifluorotoluene(PID)	97.0		75.0-12	28	06/02/2018 05:05	WG1118855
Semi-Volatile Organic	Compound	s (GC) by	Method	8015		
	Result (dry)	Qualifier	RDL (d	ry) Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	132		4.36	1	06/02/2018 03:17	WG1118768
C28-C40 Oil Pange	ND		136	1	06/02/2018 02:17	WG1118768

1

06/02/2018 03:17

06/02/2018 03:17

4.36

18.0-148

WG1118768

WG1118768

Repeiped by OCD: 10/6/2021 1:38:04 PM

SAMPLE RESULTS - 08

أحد

Collected date/time: 05/31/18 13:02

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	91.5		1	06/01/2018 13:22	<u>WG1118680</u>	Tc

Volatile Organic Compounds (GC) by Method 8015/8021

Benzene 5.84 0.546 1000 06/02/2018 05:27 WG1118855 Toluene 49.3 5.46 1000 06/02/2018 05:27 WG1118855 Ethylbenzene 12.8 0.546 1000 06/02/2018 05:27 WG1118855 Total Xylene 116 1.64 1000 06/02/2018 05:27 WG1118855	Benzene 5.84 0.546 1000 06/02/2018 05:27 WG1118855 Toluene 49.3 5.46 1000 06/02/2018 05:27 WG1118855 Ethylbenzene 12.8 0.546 1000 06/02/2018 05:27 WG1118855 Total Xylene 116 1.64 1000 06/02/2018 05:27 WG1118855 TPH (GC/FID) Low Fraction 2120 109 1000 06/02/2018 05:27 WG1118855 (S) a,a,a-Trifluorotoluene(FID) 79.3 77.0-120 06/02/2018 05:27 WG1118855	ry) <u>Qualifier</u> RDL (dry) Dilution Analysis <u>Batch</u>	DL (dry) Dil	Qualifier	Result (dry)	
Toluene 49.3 5.46 1000 06/02/2018 05:27 WG1118855 Ethylbenzene 12.8 0.546 1000 06/02/2018 05:27 WG1118855 Total Xylene 116 1.64 1000 06/02/2018 05:27 WG1118855 TPH (GC/FID) Low Fraction 2120 109 1000 06/02/2018 05:27 WG1118855 (S) a,a,a-Trifluorotoluene(FID) 79.3 77.0-120 06/02/2018 05:27 WG1118855	Toluene 49.3 5.46 1000 06/02/2018 05:27 WG1118855 Ethylbenzene 12.8 0.546 1000 06/02/2018 05:27 WG1118855 Total Xylene 116 1.64 1000 06/02/2018 05:27 WG1118855 TPH (GC/FID) Low Fraction 2120 109 1000 06/02/2018 05:27 WG1118855 (S) a,a,a-Trifluorotoluene(FID) 79.3 77.0-120 06/02/2018 05:27 WG1118855	mg/kg date / time	ıg/kg		mg/kg	Analyte
Ethylbenzene 12.8 0.546 1000 06/02/2018 05:27 WG1118855 Total Xylene 116 1.64 1000 06/02/2018 05:27 WG1118855 TPH (GC/FID) Low Fraction 2120 109 1000 06/02/2018 05:27 WG1118855 (S) a,a,a-Trifluorotoluene(FID) 79.3 77.0-120 06/02/2018 05:27 WG1118855	Ethylbenzene 12.8 0.546 1000 06/02/2018 05:27 WG1118855 Total Xylene 116 1.64 1000 06/02/2018 05:27 WG1118855 TPH (GC/FID) Low Fraction 2120 109 1000 06/02/2018 05:27 WG1118855 (S) a,a,a-Trifluorotoluene(FID) 79.3 77.0-120 06/02/2018 05:27 WG1118855	0.546 1000 06/02/2018 05:27 WG1118855	.546 100		5.84	Benzene
Total Xylene 116 1.64 1000 06/02/2018 05:27 WG1118855 TPH (GC/FID) Low Fraction 2120 109 1000 06/02/2018 05:27 WG1118855 (S) a,a,a-Trifluorotoluene(FID) 79.3 77.0-120 06/02/2018 05:27 WG1118855	Total Xylene 116 1.64 1000 06/02/2018 05:27 WG1118855 TPH (GC/FID) Low Fraction 2120 109 1000 06/02/2018 05:27 WG1118855 (S) a,a,a-Trifluorotoluene(FID) 79.3 77.0-120 06/02/2018 05:27 WG1118855	5.46 1000 06/02/2018 05:27 WG1118855	.46 100		49.3	Toluene
TPH (GC/FID) Low Fraction 2120 109 1000 06/02/2018 05:27 WG1118855 (S) a,a,a-Trifiuorotoluene(FID) 79.3 77.0-120 06/02/2018 05:27 WG1118855	TPH (GC/FID) Low Fraction 2120 109 1000 06/02/2018 05:27 WG1118855 (S) a,a,a-Trifluorotoluene(FID) 79.3 77.0-120 06/02/2018 05:27 WG1118855	0.546 1000 06/02/2018 05:27 <u>WG1118855</u>	.546 100		12.8	Ethylbenzene
(S) a, a, a-Trifluorotoluene(FID) 79.3 77.0-120 06/02/2018 05:27 WG1118855	(S) a, a, a-Trifluorotoluene(FID) 79.3 77.0-120 06/02/2018 05:27 WG1118855	1.64 1000 06/02/2018 05:27 <u>WG1118855</u>	.64 100		116	Total Xylene
		109 1000 06/02/2018 05:27 <u>WG1118855</u>	09 100		2120	TPH (GC/FID) Low Fraction
(S) a,a,a-Trifluorotoluene(PID) 98.4 75.0-128 06/02/2018 05:27 WG1118855	(S) a,a,a-Trifluorotoluene(PID) 98.4 75.0-128 06/02/2018 05:27 WG1118855	77.0-120 06/02/2018 05:27 WG1118855	7.0-120		79.3	(S) a,a,a-Trifluorotoluene(FID)
		75.0-128 06/02/2018 05:27 WG1118855	5.0-128		98.4	(S) a,a,a-Trifluorotoluene(PID)
	Semi-Volatile Organic Compounds (GC) by Method 8015	nds (GC) by Method 8015	hod 8015	(GC) by M	Compounds (Semi-Volatile Organic (

							8
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	Ă
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	331		4.37	1	06/02/2018 03:29	WG1118768	9 S C
C28-C40 Oil Range	ND		4.37	1	06/02/2018 03:29	WG1118768	50
(S) o-Terphenyl	73.3		18.0-148		06/02/2018 03:29	WG1118768	

Reserved \$50000010/6/2021 1:38:04 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L998202-01,02,03,04,05,06,07,08

[°]Qc

Gl

Â

Sc

Method Blank (MB)

esult <u>MB Qualifier</u> MB MDL	MB RDL	
%	К	
)		
		% %

L998202-01 Original Sample (OS) • Duplicate (DUP)

L998202-01 Orig	inal Sample	(OS) • Dup	olicate (l	DUP)				
(OS) L998202-01 06/01/18 13:22 • (DUP) R3315059-3 06/01/18 13:22								
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		
Analyte	%	%		%		%		
Total Solids	89.4	89.2	1	0.193		5		

Laboratory Control Sample (LCS)

(LCS) R3315059-2 06/	/01/18 13:22				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L998202

DATE/TIME: 06/04/18 16:42

PAGE: 14 of 22

Referred \$5000410/6/2021 1:38:04 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L998202-06

Тс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3314607-1 06	/01/18 11:37			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		0.795	10.0

L998025-02 Original Sample (OS) • Duplicate (DUP)

(OS) L998025-02 06/01/	18 14:17 • (DUP) I	R3314607-4 (06/01/18 14	33		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	55.3	51.4	1	7.30		20

L998025-13 Original Sample (OS) • Duplicate (DUP)

L998025-13 C	L998025-13 Original Sample (OS) • Duplicate (DUP)										
(OS) L998025-13 0	6/01/18 18:24 • (DUP)	R3314607-7 (06/01/18 18	:40							
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		⁸ A			
Analyte	mg/kg	mg/kg		%		%					
Chloride	267	240	1	10.4		20		°S(

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3314607-2 06/01/18 11:52 • (LCSD) R3314607-3 06/01/18 12:08											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Chloride	500	527	522	105	104	90.0-110			1.02	20	

L998025-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L998025-06 06/01/1	(OS) L998025-06 06/01/18 15:35 • (MS) R3314607-5 06/01/18 15:50 • (MSD) R3314607-6 06/01/18 16:05												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Chloride	500	369	977	956	122	117	1	80.0-120	J5		2.19	20	

Released to	Imaging ^A 9/22/2022	2:16:33 PM
	HilCorp-Farmington, N	Λ

PROJECT: AFE# 1851542

SDG: L998202

DATE/TIME: 06/04/18 16:42

PAGE: 15 of 22

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) R3314803-5 06/01/	MB) R3314803-5 06/01/18 18:18								
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/kg		mg/kg	mg/kg					
Benzene	U		0.000120	0.000500					
Toluene	U		0.000150	0.00500					
Ethylbenzene	U		0.000110	0.000500					
Total Xylene	U		0.000460	0.00150					
TPH (GC/FID) Low Fraction	U		0.0217	0.100					
(S) a,a,a-Trifluorotoluene(FID)	99.9			77.0-120					
(S) a,a,a-Trifluorotoluene(PID)	99.6			75.0-128					

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

LCS) R3314803-2 06/01/18 16:48 • (LCSD) R3314803-1 06/01/18 14:32											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.0500	0.0521	0.0519	104	104	71.0-121			0.323	20	
Toluene	0.0500	0.0538	0.0534	108	107	72.0-120			0.615	20	
Ethylbenzene	0.0500	0.0537	0.0532	107	106	76.0-121			0.951	20	
Total Xylene	0.150	0.163	0.162	108	108	75.0-124			0.246	20	
(S) a,a,a-Trifluorotoluene(FID)				99.2	98.9	77.0-120					
(S) a,a,a-Trifluorotoluene(PID)				98.6	97.9	75.0-128					

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3314803-3 06/01	LCS) R3314803-3 06/01/18 17:11 • (LCSD) R3314803-4 06/01/18 17:33									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) Low Fraction	5.50	4.97	4.82	90.3	87.6	70.0-136			3.08	20
(S) a,a,a-Trifluorotoluene(FID)				102	102	77.0-120				
(S) a,a,a-Trifluorotoluene(PID)				107	107	75.0-128				

Released to	Imaging? 9/22/2022 2:16:33 PM	
	HilCorp-Farmington, NM	

PROJECT: AFE# 1851542 SDG: L998202 DATE/TIME: 06/04/18 16:42

PAGE: 16 of 22

QUALITY CONTROL SUMMARY

Ср

Τс

Ss

Cn

Sr

[´]Qc

GI

AI

Sc

L998202-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L998202-06 06/02/18 01:44 • (MS) R3314803-6 06/02/18 09:10 • (MSD) R3314803-7 06/02/18 09:33

	. ,			. ,								
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.0587	2.26	32.2	31.8	102	101	500	10.0-146			1.22	29
Toluene	0.0587	12.9	42.6	42.1	101	99.6	500	10.0-143			1.19	30
Ethylbenzene	0.0587	4.09	34.4	33.5	103	100	500	10.0-147			2.85	31
Total Xylene	0.176	32.0	122	119	102	99.0	500	10.0-149			2.05	30
(S) a,a,a-Trifluorotoluene(FID)					91.7	91.8		77.0-120				
(S) a,a,a-Trifluorotoluene(PID)					98.3	98.8		75.0-128				

L998202-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L998202-06 06/02/1	(OS) L998202-06 06/02/18 01:44 • (MS) R3314803-8 06/02/18 09:56 • (MSD) R3314803-9 06/02/18 10:18											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	6.46	626	4130	4390	108	116	500	10.0-147			6.06	30
(S) a,a,a-Trifluorotoluene(FID)					103	104		77.0-120				
(S) a,a,a-Trifluorotoluene(PID)					110	111		75.0-128				

DATE/TIME: 06/04/18 16:42 PAGE: 17 of 22

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3315019-5 06/03/	18 20:52			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000120	0.000500
Toluene	0.000406	J	0.000150	0.00500
Ethylbenzene	U		0.000110	0.000500
Total Xylene	U		0.000460	0.00150
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120
(S) a,a,a-Trifluorotoluene(PID)	107			75.0-128

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3315019-1 06/03/1	18 19:07 • (LCSD) R3315019-2	06/03/18 19:28								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.0500	0.0494	0.0494	98.9	98.8	71.0-121			0.0431	20	
Toluene	0.0500	0.0489	0.0486	97.8	97.2	72.0-120			0.598	20	
Ethylbenzene	0.0500	0.0540	0.0539	108	108	76.0-121			0.335	20	
Total Xylene	0.150	0.164	0.163	109	108	75.0-124			0.736	20	
(S) a,a,a-Trifluorotoluene(FID)				97.9	98.5	77.0-120					
(S) a,a,a-Trifluorotoluene(PID)				103	103	75.0-128					

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3315019-3 06/03	(LCS) R3315019-3 06/03/18 19:49 • (LCSD) R3315019-4 06/03/18 20:10										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
TPH (GC/FID) Low Fraction	5.50	5.34	5.34	97.0	97.2	70.0-136			0.159	20	
(S) a,a,a-Trifluorotoluene(FID)				94.2	92.9	77.0-120					
(S) a,a,a-Trifluorotoluene(PID)				114	114	75.0-128					

SDG: L998202 DATE/TIME: 06/04/18 16:42 Â

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

¹Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

	10)				
(MB) R3314806-1 06/01	1/18 23:54				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	
(S) o-Terphenyl	74.3			18.0-148	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3314806-2 06/0	02/18 00:06 • (LCS	SD) R3314806	5-3 06/02/18 00):17							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
C10-C28 Diesel Range	50.0	27.6	27.3	55.2	54.6	50.0-150			1.08	20	
(S) o-Terphenyl				102	103	18.0-148					

L998202-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L998202-01 06/02	2/18 00:29 • (MS)	R3314806-4 0	6/02/18 00:41 •	(MSD) R33148	306-5 06/02/1	8 00:53							
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
C10-C28 Diesel Range	55.9	ND	26.4	30.4	47.3	54.4	1	50.0-150	<u>J6</u>		13.9	20	
(S) o-Terphenyl					78.3	88.2		18.0-148					

DATE/TIME: 06/04/18 16:42

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality contro sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resure reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.

PROJECT: AFE# 1851542

SDG: L998202

Received by OCD: 10/6/2021 1:38:04 PM CCREDITATIONS & LOCATIONS

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report. * Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

State Accreditations

Alabama	40660	1
Alaska	17-026	١
Arizona	AZ0612	١
Arkansas	88-0469	١
California	2932	١
Colorado	TN00003	١
Connecticut	PH-0197	1
Florida	E87487	١
Georgia	NELAP	١
Georgia ¹	923	1
Idaho	TN00003	(
Illinois	200008	(
Indiana	C-TN-01	(
lowa	364	F
Kansas	E-10277	F
Kentucky 16	90010	S
Kentucky ²	16	9
Louisiana	AI30792	1
Louisiana ¹	LA180010	1
Maine	TN0002	1
Maryland	324	l
Massachusetts	M-TN003	1
Michigan	9958	1
Minnesota	047-999-395	1
Mississippi	TN00003	\
Missouri	340	
Montana	CERT0086	\

lew Hampshire 2975 lew Hampshire 2975 lew Jersey–NELAP TN002 lew Mexico ¹ n/a lew York 11742 lorth Carolina Env375 lorth Carolina ¹ DW21704 lorth Carolina ³ 41 lorth Carolina ³ 41 lorth Dakota R-140 Dhio–VAP CL0069 Dhio–VAP CL0069 Dregon TN200002 tennsylvania 68-02979 thode Island LA000356 iouth Dakota n/a iouth Dakota n/a iouth Dakota n/a iouth Carolina 84004 iouth Dakota n/a iouth Dakota n/a iouth Dakota n/a iouth Dakota Na iouth Dakota Na iouth Dakota Na iouth Carolina 84004 iouth Carolina 84004 iouth Carolina 84004 iouth C	lebraska	NE-OS-15-05
New Jersey–NELAP TN002 New Mexico 1 n/a New York 11742 North Carolina Env375 North Carolina 1 DW21704 North Carolina 3 41 North Carolina 3 41 North Dakota R-140 Dhio–VAP CL0069 Dklahoma 9915 Oregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Carolina 84004 South Dakota n/a Tennessee 1 ⁴ 2006 Texas T 104704245-17-14 Texas 5 LAB0152 Jtah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Nevada	TN-03-2002-34
New Mexico 1 n/a New York 11742 North Carolina Env375 North Carolina 1 DW21704 North Carolina 3 41 North Carolina 3 41 North Dakota R-140 Dhio–VAP CL0069 Dklahoma 9915 Dregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Carolina 84004 South Dakota n/a Fennessee 1.4 2006 Texas T 104704245-17-14 Texas 5 LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	New Hampshire	2975
New York 11742 New York 11742 North Carolina Env375 North Carolina ¹ DW21704 North Carolina ³ 41 North Carolina ³ 41 North Dakota R-140 Dhio-VAP CL0069 Dklahoma 9915 Dregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Carolina 84004 South Dakota n/a Tennessee ^{1,4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Jtah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	New Jersey-NELAP	TN002
North Carolina In Ya North Carolina 1 DW21704 North Carolina 3 41 North Dakota R-140 Dhio-VAP CL0069 Dklahoma 9915 Dregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Dakota n/a Tennessee 1 ⁴ 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Jtah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	New Mexico ¹	n/a
North Carolina 1 DW21704 North Carolina 3 41 North Carolina 3 41 North Dakota R-140 Dhio-VAP CL0069 Dklahoma 9915 Dregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Carolina 84004 Fennessee 1 ⁴ 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Jtah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	New York	11742
Att 41 North Dakota R-140 Dhio–VAP CL0069 Dkian 9915 Oregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Carolina 84004 Fennessee ^{1,4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Jtah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	North Carolina	Env375
North Dakota R-140 North Dakota R-140 Dhio–VAP CL0069 Dklahoma 9915 Dregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Dakota n/a Fennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Jtah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	North Carolina ¹	DW21704
Dhio-VAP CL0069 Dkahoma 9915 Dregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Carolina 84004 South Dakota n/a Fennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Jtah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	North Carolina ³	41
bits of Ma 9905 Oklahoma 9915 Oregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Dakota n/a Tennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Jtah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	North Dakota	R-140
Oregon TN200002 Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Carolina 84004 South Dakota n/a Tennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Jtah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Ohio-VAP	CL0069
Pennsylvania 68-02979 Rhode Island LA000356 South Carolina 84004 South Dakota n/a Tennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Jtah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Oklahoma	9915
Rhode Island LA000356 South Carolina 84004 South Dakota n/a Tennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Oregon	TN200002
South Carolina 84004 South Carolina 84004 South Dakota n/a Fennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Pennsylvania	68-02979
South Dakota n/a Fennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Rhode Island	LAO00356
Fennessee ^{1 4} 2006 Texas T 104704245-17-14 Texas ⁵ LAB0152 Utah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	South Carolina	84004
Total Total Texas T 104704245-17-14 Texas LAB0152 Jtah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	South Dakota	n/a
Texas 5 LAB0152 Jtah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Tennessee 1 4	2006
Jtah TN00003 Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Texas	T 104704245-17-14
Vermont VT2006 Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Texas ⁵	LAB0152
Virginia 460132 Washington C847 West Virginia 233 Wisconsin 9980939910	Utah	TN00003
Washington C847 West Virginia 233 Wisconsin 9980939910	Vermont	VT2006
West Virginia 233 Wisconsin 9980939910	Virginia	460132
Wisconsin 9980939910	Washington	C847
	West Virginia	233
Wyoming A2LA	Wisconsin	9980939910
	Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

Released to Imaging: 9/22/2022 2:16:33 PM HilCorp-Farmington, NM

PROJECT: AFE# 1851542

SDG: L998202

DATE/TIME: 06/04/18 16:42

eived by OCD: 10/6/2021 1			Billing Info	rmation:				-	1	Analysis / Co	ontainer	/ Preservativ	/e		Chair	n of Custody	Page 87
			Bill to H DUMAS		L LINDSAY	Pres Chk		-								KE SIG	ESC
Report to: Lindsay Dumas			Email To:	ahilcorp.co	m										12065 Moun	S Lebanon Rd nt Juliet, TN 371	
Project Description: Hilcorp San Juan 2	28-6 #31		1	City/State Collected: N	ew Mexico	3	No.	2	and a						Phone	e: 615-758-585 e: 800-767-585 615-758-5859	
Phone: 832-839-4585 Fax:	Client Project	t#		Lab Project #				- 801							L#	998; A01	PROPERTY AND ADDRESS OF THE OWNER.
Collected by (print): Corwin Lameman, Sam	Site/Facility I	D#		P.O. #				/MRO	0						Acct	tnum:	
Collected by (signature):	Same D	(Lab MUST Be Dəy Five I	Dav	Quote #			21	TPH (GRO/DRO/MRO)	- 300.0						10.25	oplate: login:	
Immediately Packed on Ice N YX	Two Da	ay5 Day ay10 Da Day	y (Rad Only) ay (Rad Only)	Date R June 4, 20	tesults Needed	No. of	(-8021	(GRO	Chlorides						TSR: P8:		
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	BTEX	TPH	Chlo						and the second second	ped Via: Remarks	Sample # (lab only)
5B-1 @ 3 ft	Grab	SS	з	5/31/18	9:36	2	×	×									01
6B-1 @ 7 ft	Grab	SS	7	5/31/18	9:55	2	×	X									07
iB-2 @ 7 ft	Grab	SS	7	5/31/18	10:25	2	×	X				1 Land					63
6B-3 @ 1 ft	Grab	SS	1	5/31/18	10:30	2	×	×							-		64
iB-3 @ 7.5 ft	Grab	SS	7.5	5/31/18	10:46	2	×	X									
6B-4 @ 8.5 ft	Grab	SS	8.5	5/31/18	11:15	2	×	×	X								15
iB-5 @ 11.75 ft	Grab	SS	11.75	5/31/18	12:21	2	X	X					-				A Company and the second
5B-6 @ 11 ft	Grab	SS	11	5/31/18	13:02	2	×	×		-	1.00		_				5
' Mətrix:					-								. 8				
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks: Email resu	ilts to Eliza	beth Mc	Nally - emc	nally@animase	enviro	nmen	ital.co	m	pH		emp		COC Sea COC Sig Bottles	l Present med/Accus marrive	intact:	NP Y N
DW - Drinking Water DT - Other	Samples return UPSFe	irned via: edExCou	rier		Tracking # 73	05	8	941	74	Flow_		Other	124	Suffici		me sent: Applicabl	
Relinquished by : (Signature)		Date: 5-31-			Received by: (Signa						and the second of	Yes No HeL/N	еон		o Headspiration Con	ace: prrect/Che	cked: _Y _N
telinquished by : (Signature)		Date:			Received by: (Signa	ature)				Temp:	°C	TBR Bottles Recei	ved:	If preserv	ation requ	rired by Log	in: Date/Time
Relinquished by : (Signature)		Date:	T	ime:	Received for lab by	v: (Signat				Date: 573///		Time: 843		Hold:			Condition: NCF / QC

Received by OCD: 10/6/2021 1:38:04 PM

ANALYTICAL REPORT

HilCorp-Farmington, NM

Sample Delivery Group: Samples Received: Project Number: L1006375 06/29/2018

Description:

Hilcomp San Juan 28-6 #31

Report To:

Kurt Hoekstra and Lindsay Dumas 382 Road 3100 Aztec, NM 87401

Entire Report Reviewed By:

Dapline R Richards

Daphne Richards Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
SB-7 25' L1006375-01	6
SB-8 15' L1006375-02	7
SB-9 10' L1006375-03	8
SB-10 10' L1006375-04	9
SB-11 10' L1006375-05	10
SB-12 10' L1006375-06	11
SB-13 10' L1006375-07	12
SB-14 10' L1006375-08	13
SB-15 10' L1006375-09	14
Qc: Quality Control Summary	15
Volatile Organic Compounds (GC) by Method 8015/8021	15
Semi-Volatile Organic Compounds (GC) by Method 8015	19
GI: Glossary of Terms	20
Al: Accreditations & Locations	21
Sc: Sample Chain of Custody	22

Received by OCD: 10/6/2021 1:38:04 PM

SAMPLE SUMMARY

ONE LAB. NAT Rage 90 of 337

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

	SAMFLE SU	JIVIIVIAI		OIV	
SB-7 25' L1006375-01 Solid			Collected by CL	Collected date/time 06/27/18 10:19	Received date/time 06/29/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Volatile Organic Compounds (GC) by Method 8015/8021	WG1133929	1	07/03/18 10:08	07/05/18 13:03	LRL
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1135023	1	07/07/18 00:01	07/08/18 20:13	MTJ
			Collected by	Collected date/time	Received date/time
SB-8 15' L1006375-02 Solid			CL	06/27/18 12:13	06/29/18 08:45
Nethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
/olatile Organic Compounds (GC) by Method 8015/8021	WG1133929	100	07/03/18 10:08	07/05/18 15:33	LRL
iemi-Volatile Organic Compounds (GC) by Method 8015	WG1135023	1	07/07/18 00:01	07/08/18 20:53	MTJ
			Collected by	Collected date/time	Received date/time
SB-9 10' L1006375-03 Solid			CL	06/27/18 13:09	06/29/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
/olatile Organic Compounds (GC) by Method 8015/8021	WG1133929	1	07/03/18 10:08	07/05/18 13:24	LRL
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1135023	1	07/07/18 00:01	07/08/18 21:07	MTJ
			Collected by	Collected date/time	Received date/time
SB-10 10' L1006375-04 Solid			CL	06/27/18 14:11	06/29/18 08:45
M ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
/olatile Organic Compounds (GC) by Method 8015/8021	WG1133929	1000	07/03/18 10:08	07/05/18 16:16	LRL
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1135023	1	07/07/18 00:01	07/08/18 21:20	CLG
emi-Volatile Organic Compounds (GC) by Method 8015	WG1135023	20	07/07/18 00:01	07/09/18 18:27	MG
			Collected by CL	Collected date/time 06/27/18 14:34	Received date/time 06/29/18 08:45
SB-11 10' L1006375-05 Solid				00/27/10 11.31	00/23/10 00.13
N ethod	Batch	Dilution	Preparation	Analysis	Analyst
alatile Organic Compounds (CC) by Mathed 2015/2021	WG1133929	1	date/time 07/03/18 10:08	date/time 07/05/18 13:45	LRL
/olatile Organic Compounds (GC) by Method 8015/8021 Semi-Volatile Organic Compounds (GC) by Method 8015	WG1135023	1	07/07/18 00:01	07/08/18 21:34	MTJ
			Collected by	Collected date/time	Received date/time
SB-12 10' L1006375-06 Solid			CL	06/27/18 15:17	06/29/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
/olatile Organic Compounds (GC) by Method 8015/8021	WG1134677	2000	07/03/18 10:08	07/09/18 14:48	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1135023	1	07/07/18 00:01	07/08/18 21:47	MTJ
iemi-Volatile Organic Compounds (GC) by Method 8015	WG1135023	5	07/07/18 00:01	07/09/18 16:25	MTJ
SB-13 10' L1006375-07 Solid			Collected by CL	Collected date/time 06/27/18 16:02	Received date/time 06/29/18 08:45
	Dotat	Dillotten:	Droparation	Apolysia	Analist
Method .	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Volatile Organic Compounds (GC) by Method 8015/8021	WG1133929	1000	07/03/18 10:08	07/05/18 16:37	LRL
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1135023	1	07/07/18 00:01	07/08/18 22:01	MTJ
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1135023	10	07/07/18 00:01	07/09/18 16:38	MTJ

PROJECT:

SDG: L1006375

0

PAGE: 3 of 23 Received by OCD: 10/6/2021 1:38:04 PM

SAMPLE SUMMARY

ONE LAB. NAT Rage 91 of 337

GI

ΆI

Sc

			Collected by	Collected date/time	Received date/time
SB-14 10' L1006375-08 Solid			CL	06/27/18 16:41	06/29/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method 8015/8021	WG1133929	1000	07/03/18 10:08	07/05/18 16:58	LRL
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1135023	1	07/07/18 00:01	07/08/18 22:14	MTJ
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1135023	10	07/07/18 00:01	07/09/18 16:52	MTJ
			Collected by	Collected date/time	Received date/time
SB-15 10' L1006375-09 Solid			CL	06/27/18 17:15	06/29/18 08:45
	Batch	Dilution	Preparation	Analysis	Analyst
	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Method	Batch WG1133929	Dilution 1000	•	,	Analyst
Method Volatile Organic Compounds (GC) by Method 8015/8021 Semi-Volatile Organic Compounds (GC) by Method 8015			date/time	date/time	

PAGE:

4 of 23

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Japhne R Richards

Daphne Richards Technical Service Representative

SDG: L1006375

DATE/TIME: 07/10/18 13:50

PAGE: 5 of 23 Collected date/time: 06/27/18 10:19

SAMPLE RESULTS - 01

Śr

Qc

Gl

AI

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	0.00101	B	0.000500	1	07/05/2018 13:03	WG1133929
Toluene	ND		0.00500	1	07/05/2018 13:03	WG1133929
Ethylbenzene	0.000669	B	0.000500	1	07/05/2018 13:03	WG1133929
Total Xylene	0.00308	B	0.00150	1	07/05/2018 13:03	WG1133929
TPH (GC/FID) Low Fraction	0.247		0.100	1	07/05/2018 13:03	WG1133929
(S) a,a,a-Trifluorotoluene(FID)	99.7		77.0-120		07/05/2018 13:03	WG1133929
(S) a,a,a-Trifluorotoluene(PID)	104		75.0-128		07/05/2018 13:03	WG1133929

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	14.2		4.00	1	07/08/2018 20:13	WG1135023
C28-C40 Oil Range	ND		4.00	1	07/08/2018 20:13	WG1135023
(S) o-Terphenyl	77.5		18.0-148		07/08/2018 20:13	WG1135023

Sr

Qc

Gl

Â

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	0.417		0.0500	100	07/05/2018 15:33	WG1133929
Toluene	ND		0.500	100	07/05/2018 15:33	WG1133929
Ethylbenzene	0.339		0.0500	100	07/05/2018 15:33	WG1133929
Total Xylene	4.19		0.150	100	07/05/2018 15:33	WG1133929
TPH (GC/FID) Low Fraction	362		10.0	100	07/05/2018 15:33	WG1133929
(S) a,a,a-Trifluorotoluene(FID)	94.9		77.0-120		07/05/2018 15:33	WG1133929
(S) a,a,a-Trifluorotoluene(PID)	105		75.0-128		07/05/2018 15:33	WG1133929

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	82.6		4.00	1	07/08/2018 20:53	WG1135023
C28-C40 Oil Range	ND		4.00	1	07/08/2018 20:53	WG1135023
(S) o-Terphenyl	78.8		18.0-148		07/08/2018 20:53	WG1135023

1

Qc

Gl

AI

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	ND		0.000500	1	07/05/2018 13:24	WG1133929
Toluene	ND		0.00500	1	07/05/2018 13:24	WG1133929
Ethylbenzene	0.000649	В	0.000500	1	07/05/2018 13:24	WG1133929
Total Xylene	0.00749		0.00150	1	07/05/2018 13:24	WG1133929
TPH (GC/FID) Low Fraction	0.700		0.100	1	07/05/2018 13:24	WG1133929
(S) a,a,a-Trifluorotoluene(FID)	101		77.0-120		07/05/2018 13:24	WG1133929
(S) a,a,a-Trifluorotoluene(PID)	104		75.0-128		07/05/2018 13:24	WG1133929

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	ND		4.00	1	07/08/2018 21:07	WG1135023
C28-C40 Oil Range	ND		4.00	1	07/08/2018 21:07	WG1135023
(S) o-Terphenyl	87.5		18.0-148		07/08/2018 21:07	WG1135023

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	19.6		0.500	1000	07/05/2018 16:16	WG1133929
Toluene	178		5.00	1000	07/05/2018 16:16	WG1133929
Ethylbenzene	33.0		0.500	1000	07/05/2018 16:16	WG1133929
Total Xylene	400		1.50	1000	07/05/2018 16:16	WG1133929
TPH (GC/FID) Low Fraction	10800		100	1000	07/05/2018 16:16	WG1133929
(S) a,a,a-Trifluorotoluene(FID)	90.1		77.0-120		07/05/2018 16:16	WG1133929
(S) a,a,a-Trifluorotoluene(PID)	101		75.0-128		07/05/2018 16:16	WG1133929

	Result	Qualifier	RDL	Dilution	Analysis	Batch
nalyte	mg/kg		mg/kg		date / time	
10-C28 Diesel Range	1330		80.0	20	07/09/2018 18:27	WG1135023
28-C40 Oil Range	6.67		4.00	1	07/08/2018 21:20	WG1135023
(S) o-Terphenyl	84.4		18.0-148		07/08/2018 21:20	WG1135023
(S) o-Terphenyl	73.2	<u>J7</u>	18.0-148		07/09/2018 18:27	WG1135023

Qc

Gl

AI

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	0.000664	B	0.000500	1	07/05/2018 13:45	WG1133929
Toluene	ND		0.00500	1	07/05/2018 13:45	WG1133929
Ethylbenzene	0.000751	B	0.000500	1	07/05/2018 13:45	WG1133929
Total Xylene	0.0127		0.00150	1	07/05/2018 13:45	WG1133929
TPH (GC/FID) Low Fraction	0.119		0.100	1	07/05/2018 13:45	WG1133929
(S) a,a,a-Trifluorotoluene(FID)	100		77.0-120		07/05/2018 13:45	WG1133929
(S) a,a,a-Trifluorotoluene(PID)	104		75.0-128		07/05/2018 13:45	WG1133929

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	ND		4.00	1	07/08/2018 21:34	WG1135023
C28-C40 Oil Range	ND		4.00	1	07/08/2018 21:34	WG1135023
(S) o-Terphenyl	92.7		18.0-148		07/08/2018 21:34	WG1135023

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	4.12		1.00	2000	07/09/2018 14:48	WG1134677
Toluene	25.6		10.0	2000	07/09/2018 14:48	WG1134677
Ethylbenzene	14.2		1.00	2000	07/09/2018 14:48	WG1134677
Total Xylene	189		3.00	2000	07/09/2018 14:48	WG1134677
TPH (GC/FID) Low Fraction	4970		200	2000	07/09/2018 14:48	WG1134677
(S) a,a,a-Trifluorotoluene(FID)	96.3		77.0-120		07/09/2018 14:48	WG1134677
(S) a,a,a-Trifluorotoluene(PID)	106		75.0-128		07/09/2018 14:48	WG1134677

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	372		20.0	5	07/09/2018 16:25	WG1135023
C28-C40 Oil Range	ND		4.00	1	07/08/2018 21:47	WG1135023
(S) o-Terphenyl	79.3		18.0-148		07/08/2018 21:47	WG1135023
(S) o-Terphenyl	70.0		18.0-148		07/09/2018 16:25	WG1135023

1

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	1.65	В	0.500	1000	07/05/2018 16:37	WG1133929
Toluene	16.6		5.00	1000	07/05/2018 16:37	WG1133929
Ethylbenzene	7.99		0.500	1000	07/05/2018 16:37	WG1133929
Total Xylene	128		1.50	1000	07/05/2018 16:37	WG1133929
TPH (GC/FID) Low Fraction	3270		100	1000	07/05/2018 16:37	WG1133929
(S) a,a,a-Trifluorotoluene(FID)	102		77.0-120		07/05/2018 16:37	WG1133929
(S) a,a,a-Trifluorotoluene(PID)	105		75.0-128		07/05/2018 16:37	WG1133929

	Result	Qualifier	RDL	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	813		40.0	10	07/09/2018 16:38	WG1135023	7
C28-C40 Oil Range	ND		4.00	1	07/08/2018 22:01	<u>WG1135023</u>	,
(S) o-Terphenyl	83.9		18.0-148		07/09/2018 16:38	WG1135023	L
(S) o-Terphenyl	101		18.0-148		07/08/2018 22:01	WG1135023	8

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	5.82		0.500	1000	07/05/2018 16:58	WG1133929
Toluene	69.2		5.00	1000	07/05/2018 16:58	WG1133929
Ethylbenzene	18.1		0.500	1000	07/05/2018 16:58	WG1133929
Total Xylene	249		1.50	1000	07/05/2018 16:58	WG1133929
TPH (GC/FID) Low Fraction	5810		100	1000	07/05/2018 16:58	WG1133929
(S) a,a,a-Trifluorotoluene(FID)	88.2		77.0-120		07/05/2018 16:58	WG1133929
(S) a,a,a-Trifluorotoluene(PID)	104		75.0-128		07/05/2018 16:58	WG1133929

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	932		40.0	10	07/09/2018 16:52	WG1135023
C28-C40 Oil Range	ND		4.00	1	07/08/2018 22:14	WG1135023
(S) o-Terphenyl	89.1		18.0-148		07/08/2018 22:14	WG1135023
(S) o-Terphenyl	81.4		18.0-148		07/09/2018 16:52	WG1135023

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	4.05		0.500	1000	07/05/2018 17:19	WG1133929
Toluene	52.2		5.00	1000	07/05/2018 17:19	WG1133929
Ethylbenzene	19.5		0.500	1000	07/05/2018 17:19	WG1133929
Total Xylene	289		1.50	1000	07/05/2018 17:19	WG1133929
TPH (GC/FID) Low Fraction	6130		100	1000	07/05/2018 17:19	WG1133929
(S) a,a,a-Trifluorotoluene(FID)	93.4		77.0-120		07/05/2018 17:19	WG1133929
(S) a,a,a-Trifluorotoluene(PID)	105		75.0-128		07/05/2018 17:19	WG1133929

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	877		40.0	10	07/09/2018 17:06	WG1135023	[
C28-C40 Oil Range	ND		4.00	1	07/08/2018 22:28	WG1135023	
(S) o-Terphenyl	98.6		18.0-148		07/08/2018 22:28	WG1135023	l
(S) o-Terphenyl	87.7		18.0-148		07/09/2018 17:06	WG1135023	

QUALITY CONTROL SUMMARY 1006375-01,02,03,04,05,07,08,09

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3323705-5 07/05	/18 12:07			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	0.000217	J	0.000120	0.000500
Toluene	0.000315	J	0.000150	0.00500
Ethylbenzene	0.000122	J	0.000110	0.000500
Total Xylene	U		0.000460	0.00150
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-120
(S) a,a,a-Trifluorotoluene(PID)	105			75.0-128

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3323705-1 07/05	/18 10:22 • (LCS	D) R3323705-	-6 07/05/18 10:	43							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
TPH (GC/FID) Low Fraction	5.50	5.23	5.15	95.0	93.6	70.0-136			1.54	20	
(S) a,a,a-Trifluorotoluene(FID)				85.8	88.7	77.0-120					
(S) a,a,a-Trifluorotoluene(PID)				113	113	75.0-128					

Laboratory Control Sample (LCS)

(LCS) R3323705-2 07/05	5/18 10:43				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.15	93.6	70.0-136	
(S) a,a,a-Trifluorotoluene(FID)			88.7	77.0-120	
(S) a,a,a-Trifluorotoluene(PID)			113	75.0-128	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
	Spike Anount	LOO RESUL	LCOD RESult				LCO Qualmer	LCOD Qualifier			
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.0500	0.0456	0.0472	91.1	94.5	71.0-121			3.59	20	
Toluene	0.0500	0.0480	0.0494	96.0	98.9	72.0-120			2.93	20	
Ethylbenzene	0.0500	0.0552	0.0569	110	114	76.0-121			3.07	20	
Total Xylene	0.150	0.169	0.174	113	116	75.0-124			2.74	20	
Released to Imag	ging?9/22/2022 2	:16:33 PM		PR	OJECT:		SDG:			DATE/TIME:	PAGE:
-	HilCorp-Farmington, NM						L10063	75		07/10/18 13:50	15 of 23

QUALITY CONTROL SUMMARY L1006375-01,02,03,04,05,07,08,09

Sr

[°]Qc

GI

AI

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
nalyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
(S) ,a,a-Trifluorotoluene(FID)				99.9	99.5	77.0-120					
(S) ,a,a-Trifluorotoluene(PID)				104	104	75.0-128					

Laboratory Control Sample (LCS)

5/18 11:25				
Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
mg/kg	mg/kg	%	%	
0.0500	0.0472	94.5	71.0-121	
0.0500	0.0494	98.9	72.0-120	
0.0500	0.0569	114	76.0-121	
0.150	0.174	116	75.0-124	
		99.5	77.0-120	
		104	75.0-128	
	mg/kg 0.0500 0.0500 0.0500	Spike Amount LCS Result mg/kg 0.0500 0.0472 0.0500 0.0494 0.0500 0.0569	Spike Amount LCS Result LCS Rec. mg/kg mg/kg % 0.0500 0.0472 94.5 0.0500 0.0494 98.9 0.0500 0.0569 114 0.150 0.174 16 99.5 94.5 94.5	Spike Amount LCS Result LCS Rec. Rec. Limits mg/kg mg/kg % % 0.0500 0.0472 94.5 71.0-121 0.0500 0.0494 98.9 72.0-120 0.0500 0.0569 114 76.0-121 0.150 0.174 116 75.0-124

L1006064-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1006064-01 07/05/	18 15:55 • (MS) I	R3323705-8 0	7/05/18 17:40 •	(MSD) R33237	05-9 07/05/18	8 18:01						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.0500	0.587	8.69	10.7	32.4	40.4	500	10.0-146			20.6	29
Toluene	0.0500	ND	9.30	11.3	35.0	42.9	500	10.0-143			19.2	30
Ethylbenzene	0.0500	2.61	13.0	15.4	41.4	51.3	500	10.0-147			17.4	31
Total Xylene	0.150	1.81	33.4	40.5	42.1	51.6	500	10.0-149	<u>J6</u>	<u>J6</u>	19.2	30
(S) a,a,a-Trifluorotoluene(FID)					101	101		77.0-120				
(S) a,a,a-Trifluorotoluene(PID)					106	106		75.0-128				

L1006064-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1006064-01 07/05/1	18 15:55 • (MS) F	R3323705-10 (07/05/18 18:22	• (MSD) R3323	3705-11 07/05/	18 18:43						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	5.50	152	678	753	19.1	21.8	500	10.0-147			10.5	30
(S) a,a,a-Trifluorotoluene(FID)					103	101		77.0-120				

Released to Imaging 9/22/2022 2:16:33 PM HilCorp-Farmington, NM PROJECT:

SDG: L1006375 DATE/TIME: 07/10/18 13:50 PAGE: 16 of 23

Regeired by 305 D. 90/6/2021 1:38:04 PM

Volatile Organic Compounds (GC) by Method 8015/8021

QUALITY CONTROL SUMMARY

ONE LAB. NARage 104 of 327

Τс

Ss

Cn

Sr

[°]Qc

GI

ΆI

Sc

L1006064-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1006064-01 07/05	/18 15:55 • (MS)	R3323705-10 (07/05/18 18:22	2 • (MSD) R3323	3705-11 07/0	5/18 18:43							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
(S) a.a.a-Trifluorotoluene(PID)					108	107		75.0-128					[

SDG: L1006375 DATE/TIME: 07/10/18 13:50 PAGE: 17 of 23

QUALITY CONTROL SUMMARY

Ср

Τс

Ss

Cn

Sr

[´]Qc

GI

AI

Sc

Method Blank (MB)

(MB) R3324099-5 07/09	/18 13:13			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000120	0.000500
Toluene	U		0.000150	0.00500
Ethylbenzene	0.000134	J	0.000110	0.000500
Total Xylene	U		0.000460	0.00150
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120
(S) a,a,a-Trifluorotoluene(PID)	107			75.0-128

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3324099-1 07/09	/18 11:02 • (LCSE) R3324099-2	2 07/09/18 11:23	3						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Benzene	0.0500	0.0489	0.0510	97.7	102	71.0-121			4.25	20
Toluene	0.0500	0.0482	0.0498	96.4	99.5	72.0-120			3.21	20
Ethylbenzene	0.0500	0.0523	0.0539	105	108	76.0-121			2.94	20
Total Xylene	0.150	0.158	0.163	106	108	75.0-124			2.74	20
(S) a,a,a-Trifluorotoluene(FID)				98.0	97.8	77.0-120				
(S) a,a,a-Trifluorotoluene(PID)				102	102	75.0-128				

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3324099-3 07/09	9/18 12:10 • (LCSI	D) R3324099	-4 07/09/18 12:	31							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
TPH (GC/FID) Low Fraction	5.50	5.41	5.22	98.3	94.9	70.0-136			3.55	20	
(S) a,a,a-Trifluorotoluene(FID)				88.8	88.1	77.0-120					
(S) a,a,a-Trifluorotoluene(PID)				111	113	75.0-128					

SDG: L1006375 DATE/TIME: 07/10/18 13:50 PAGE: 18 of 23 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY L1006375-01,02,03,04,05,06,07,08,09

Τс

Ss

Cn

Sr

[°]Qc

GI

Â

Method Blank (MB)

(MB) R3324028-1 07/08	3/18 19:32			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	97.0			18.0-148

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3324028-2 07/0	_CS) R3324028-2 07/08/18 19:45 • (LCSD) R3324028-3 07/08/18 19:59										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
C10-C28 Diesel Range	50.0	39.6	44.1	79.2	88.1	50.0-150			10.6	20	
(S) o-Terphenyl				88.7	98.3	18.0-148					

L1006375-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1006375-01 07/08/18 20:13 • (MS) R3324028-4 07/08/18 20:26 • (MSD) R3324028-5 07/08/18 20:40														
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		9
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%		Sc
C10-C28 Diesel Range	50.0	14.2	59.1	56.9	89.8	85.3	1	50.0-150			3.84	20		
(S) o-Terphenyl					70.7	77.1		18.0-148						

DATE/TIME: 07/10/18 13:50 PAGE: 19 of 23

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

SDG: L1006375

Received by OCD: 10/6/2021 1:38:04 PM CCREDITATIONS & LOCATIONS

Page 108 of 337 ONE LAB. NATIONWIDE.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	AI30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

lebraska	NE-OS-15-05
levada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 9/22/2022 2:16:33 PM HilCorp-Farmington, NM PROJECT:

SDG: L1006375 DATE/TIME: 07/10/18 13:50
			Billing Infor	mation:					Analysis / Co	ontainer /	Preservative	_	-	Chain of Custody	Page _ of 2
			Bill			Pres Chk		Contraction of the second				-		*	SC
eport to:	1		Email To:	11 V										12065 Lebanon Rd Mount Juliet, TN 3713	B 1612
ind say Dunas			Iduma	s C hilcory	.com	1	3							Phone: 615-758-5858 Phone: 800-767-5859	Sec. 13
escription: Hilcorp San;	Juan 28-1	, #31		City/State Collected: New										Fax: 615-758-5859	
none: 832-839-4585 ex:	Client Project #	1		Lab Project #										F207	515
ollected by (print):	Site/Facility ID	#		P.O.#			1614				1000		220	Acctnum:	
onvintameman				0			Rent	1		-	- Andrew	_		Template:	
ollected by (signature):		ab MUST Be		Quote #			0.5	10					- 100	Prelogin:	
mmediately racked on Ice N _ Y X	Next Day Two Day	y <u>x</u> Five (5 Day 10 Day 9 STAN	(Rad Only) iy (Rad Only)	Date Res	ults Needed	No. of	M	5						TSR: PB:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	Boal	80						Shipped Via: Remarks	Sample # (lab on)
5B-7 @ 25 ft	Grab	55	25	6-27-18	10:19	1	X	X						444	0
SB-7 @ 35 ft	Grab	55	35	6-27-18	10:41	2	X	X						Hold	
5B-8 C 15 ft	Grab	55	15	6-27-18	12:13	1	X	X			1. 1. 1. 1.			1010	02
5B-8 e 25ft	Grab	55	25	6-27-18	12:24	1	X	X			1			Hob	
5B-9 C 10A	Grab	55	10	10-27-18	13:09	2	X	X			1000		200	1	63
5B-9 e 25 ft	Grab	55	25	6-27-18	13:15	1	X	X		100		_		Hold	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
58-10 e 10 ft	6mb	55	10	6-27-18	13:55	2	×	X							04
5B-10 @ 25ft	Grab	55	25	6-27-18	14:11	1	X	X						Hold	
5B-11 C 10 Ft	Grab	55	10	6-27-1	8 14:34	2	X	X							ON
SB-11 C 25Ft	lab	55	25	1-27-18	14:51	2		X						Hold	1000
Matrix: S - Soil AIR - Air F - Filter SW - Groundwater B - Bioassay	Remarks:S	ome San mited	mples n neconel	y from d	teby ful a	ger.	to		pH . Flow		Temp	-	COC Seal COC Signe Bottles a	mple Receipt Ch Present/Intact d/Accurate: rrive intact: octles used:	- ZZ
WW - WasteWater DW - Drinking Water DT - Other	Samples retu	rned via: edExCo	urier		Tracking #	305	5 9	3947	4816	1			Sufficien	t volume sent: <u>If Applicab</u> Headspace: ion Correct/Cha	Y
Relinquished by : (Signature)	1	Date:		Time:	Received by: (Sign	ature)			Trip Blan		I: Yes/No HCL/N TBR	leoH			
Relinquished by : (Signature)		Date:		Time:	Received by: (Sign	ature)			Temp: 2.7 (Bottles Recei	2-40	1	ion required by Lo	jin: Date/Time
Relinquished by : (Signature) leased to Imaging: 9/22/2		Date:		Time:	Received for lab b	y: (Sign	ature)		Date:	2110.	Time:	15	6-	183	Condition: NCF / OF

			Billing Infor	mation:					Analysis /	Contain	er / Preservative	-	Chain of Custody	Page Zol Z
						Pres Chk								SC
						_							LIA-B_SIC	I.E.N.C.E.B
Report to:			Email To:	as chilconp.com									12065 Lebanon Rd Mount Juliet, TN 373 Phone: 615-758-585	
Lindsay Mimas			Idum	City/State	mp.arm		1263		1	-22		10000	Phone: 800-767-585 Fax: 615-758-5859	
Project Description: Hildrew San J	inan 28-	6 #31		Collected: N	ew Mexico	15		1				123	Contraction of the local division of the loc	
Project Description: Hilcorp San J Phone: 832-839-4585 Fax:	Client Project #			Lab Project #				3		TO AND			L# (0067 Table #	13
Collected by (print):	Site/Facility ID	#		P.O. #									Acctnum:	Dig Call
Convin Lamenan Collected by (signature):		ab MUST Be		Quote #									Template: Prelogin:	
Immediately Packed on Ice N_ Y_X	Same Da Next Day Two Day Three Da	V Five C 5 Day 10 Da	Rad Only) (Rad Only) (Rad Only)	Date Re:	ults Needed	No. of	17	6					TSR: PB;	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	100	8015					Shipped Via: Remarka	Sample # (lab only)
5B-12 e 16 ft	Gab	55	10	627-18	15:17	12	×	*					in words	06
		55	25	10-27-18	15:30	-	X	X		1266	775 - 24		Hall	
SB-12 e 25 ft	Grab	35	16	6-27-14		1.1	X	X						.7
5B-13 C 16 ft		55	25	6-27-18	and the second se	1	X	X		192		1000	14/1	
58-13 @ 25 ft	Grab	1		6-27-18	and the second se	2	X	X	1	2253	200			R
SB-14 C 6.Ft	Grab	55	10 25			1	X	X		10.200			Hold	
5B-14 C 25ft	Grab	55		6-27-18	No. Contraction	-	X	X		19-30			1110	>7
SB-15 @ 10 ft SB-15 @ 25 ft	Grab	55 55	10	6-27-18	state second to share of the state of		-	X		124			Hold	
10 10 0 0.1													_	
* Matrix: SS - Soll AIR - Air F - Filter GW - Groundwater B - Bloassay	Remarks:GU	me sa	mpics v vecores	ut comple y from d	tely filled	due ger.	. to		pt		Temp	Bottles	Sample Receipt S 1 Present/Intact med/Accurate: arrive intact: bottles used:	hecklist
WW - WasteWater DW - Drinking Water OT - Other	Samples retu UPSF	rned via: edExCo	urler		Tracking #		23		13/6	13.7%		Suffici VOA Zer	ent volume sent: <u>If Applicat</u> o Headspace:	<u></u>
Relinquished by : (Signature)		Date:		Time:	Received by: (Sign	ature)			Trip B	lank Reci	eived: Yes (No) HCL / MeoH TBR	and the second	ation Correct/Ch	ecked: _Y _}
Reilogrished by : (Signature)		Date:		Time:	Received by: (Sigr	nature)	-	-	Temp 2=	TIL	°C Bottles Received:	If preserv	ration required by Lo	gin: Date/Time
Relinquished by : (Signature) Released to Imaging: 9/22/20	22 2.16.22	Date:		Time:	Received for lab b	y: (Sign	ature)		Date:	19/19	Time:	Hold:		Condition: NCF / OK

ANALYTICAL REPORT

HilCorp-Farmington, NM

Sample Delivery Group: Samples Received: Project Number: L1008712 06/29/2018

Description:

Hilcomp San Juan 28-6 #31

Report To:

Kurt Hoekstra and Lindsay Dumas 382 Road 3100 Aztec, NM 87401

Entire Report Reviewed By:

Dapline R Richards

Daphne Richards Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Ср

Ss

Cn

Sr

Qc

Gl

Â

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
SB-10 25FT L1008712-01	5
SB-12 25FT L1008712-02	6
SB-13 25FT L1008712-03	7
SB-14 25FT L1008712-04	8
SB-15 25FT L1008712-05	9
Qc: Quality Control Summary	10
Volatile Organic Compounds (GC) by Method 8015/8021	10
Semi-Volatile Organic Compounds (GC) by Method 8015	11
GI: Glossary of Terms	12
Al: Accreditations & Locations	13
Sc: Sample Chain of Custody	14

SAMPLE SUMMARY

ONE LAB. NAPagev113 of 337

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

			Collected by	Collected date/time	Received date/time
SB-10 25FT L1008712-01 Solid			CL	06/27/18 14:11	06/29/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method 8015/8021	WG1137283	1000	07/12/18 15:40	07/13/18 01:36	RAS
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1137313	1	07/12/18 21:38	07/13/18 15:30	KLM
			Collected by	Collected date/time	Received date/time
SB-12 25FT L1008712-02 Solid			CL	06/27/18 15:30	06/29/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method 8015/8021	WG1137283	1000	07/12/18 15:40	07/13/18 01:58	RAS
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1137313	1	07/12/18 21:38	07/13/18 15:44	KLM
			Collected by	Collected date/time	Received date/tim
SB-13 25FT L1008712-03 Solid			CL	06/27/18 16:17	06/29/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method 8015/8021	WG1137283	1000	07/12/18 15:40	07/13/18 02:20	RAS
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1137313	1	07/12/18 21:38	07/13/18 15:57	KLM
			Collected by	Collected date/time	Received date/time
SB-14 25FT L1008712-04 Solid			CL	06/27/18 17:15	06/29/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method 8015/8021	WG1137283	1000	07/12/18 15:40	07/13/18 02:43	RAS
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1137313	1	07/12/18 21:38	07/13/18 16:11	KLM
			Collected by	Collected date/time	Received date/time
SB-15 25FT L1008712-05 Solid			CL	06/27/18 17:42	06/29/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
Valatila Organia Compounds (CC) by Mathed 2015/2021	W/C1177000	1000	date/time	date/time	DAC
Volatile Organic Compounds (GC) by Method 8015/8021	WG1137283 WG1137313	1000 1	07/12/18 15:40 07/12/18 21:38	07/13/18 03:05 07/13/18 16:24	RAS KLM
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1137313	I	U//1Z/18 Z1.38	07/13/18 10:24	KLIVI

SDG: L1008712 DATE/TIME: 07/16/18 09:57 PAGE: 3 of 16

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Japhne R Richards

Daphne Richards Project Manager

1

Sr

Qc

Gl

Â

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	ND	<u>T8</u>	0.500	1000	07/13/2018 01:36	WG1137283
Toluene	21.1	T8	5.00	1000	07/13/2018 01:36	WG1137283
Ethylbenzene	13.4	T8	0.500	1000	07/13/2018 01:36	WG1137283
Total Xylene	109	T8	1.50	1000	07/13/2018 01:36	WG1137283
TPH (GC/FID) Low Fraction	1860	<u>T8</u>	100	1000	07/13/2018 01:36	WG1137283
(S) a,a,a-Trifluorotoluene(FID)	89.4		77.0-120		07/13/2018 01:36	WG1137283
(S) a,a,a-Trifluorotoluene(PID)	98.9		75.0-128		07/13/2018 01:36	WG1137283

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	15.7	<u>T8</u>	4.00	1	07/13/2018 15:30	WG1137313
C28-C40 Oil Range	ND	<u>T8</u>	4.00	1	07/13/2018 15:30	WG1137313
(S) o-Terphenyl	111		18.0-148		07/13/2018 15:30	WG1137313

1

Sr

Qc

Gl

AI

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	0.519	<u>T8</u>	0.500	1000	07/13/2018 01:58	WG1137283
Toluene	ND	<u>T8</u>	5.00	1000	07/13/2018 01:58	WG1137283
Ethylbenzene	3.73	<u>T8</u>	0.500	1000	07/13/2018 01:58	WG1137283
Total Xylene	19.7	<u>T8</u>	1.50	1000	07/13/2018 01:58	WG1137283
TPH (GC/FID) Low Fraction	625	<u>T8</u>	100	1000	07/13/2018 01:58	WG1137283
(S) a,a,a-Trifluorotoluene(FID)	97.5		77.0-120		07/13/2018 01:58	WG1137283
(S) a,a,a-Trifluorotoluene(PID)	100		75.0-128		07/13/2018 01:58	WG1137283

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	11.4	<u>T8</u>	4.00	1	07/13/2018 15:44	WG1137313
C28-C40 Oil Range	ND	<u>T8</u>	4.00	1	07/13/2018 15:44	WG1137313
(S) o-Terphenyl	110		18.0-148		07/13/2018 15:44	WG1137313

ONE LAB. NAPagev117 of 327

1

Sr

Qc

Gl

Â

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	ND	<u>T8</u>	0.500	1000	07/13/2018 02:20	WG1137283
Toluene	ND	<u>T8</u>	5.00	1000	07/13/2018 02:20	WG1137283
Ethylbenzene	5.76	<u>T8</u>	0.500	1000	07/13/2018 02:20	WG1137283
Total Xylene	40.4	<u>T8</u>	1.50	1000	07/13/2018 02:20	WG1137283
TPH (GC/FID) Low Fraction	1020	<u>T8</u>	100	1000	07/13/2018 02:20	WG1137283
(S) a,a,a-Trifluorotoluene(FID)	95.1		77.0-120		07/13/2018 02:20	WG1137283
(S) a,a,a-Trifluorotoluene(PID)	99.0		75.0-128		07/13/2018 02:20	WG1137283

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	6.49	<u>T8</u>	4.00	1	07/13/2018 15:57	WG1137313
C28-C40 Oil Range	ND	<u>T8</u>	4.00	1	07/13/2018 15:57	WG1137313
(S) o-Terphenyl	109		18.0-148		07/13/2018 15:57	WG1137313

1

Śr

*Q*c

Gl

AI

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	ND	<u>T8</u>	0.500	1000	07/13/2018 02:43	WG1137283
Toluene	5.02	<u>T8</u>	5.00	1000	07/13/2018 02:43	WG1137283
Ethylbenzene	8.26	<u>T8</u>	0.500	1000	07/13/2018 02:43	WG1137283
Total Xylene	64.1	<u>T8</u>	1.50	1000	07/13/2018 02:43	WG1137283
TPH (GC/FID) Low Fraction	1240	<u>T8</u>	100	1000	07/13/2018 02:43	WG1137283
(S) a,a,a-Trifluorotoluene(FID)	94.6		77.0-120		07/13/2018 02:43	WG1137283
(S) a,a,a-Trifluorotoluene(PID)	99.4		75.0-128		07/13/2018 02:43	WG1137283

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	10.4	<u>T8</u>	4.00	1	07/13/2018 16:11	WG1137313
C28-C40 Oil Range	ND	<u>T8</u>	4.00	1	07/13/2018 16:11	WG1137313
(S) o-Terphenyl	108		18.0-148		07/13/2018 16:11	WG1137313

1

Sr

Qc

Gl

Â

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	ND	<u>T8</u>	0.500	1000	07/13/2018 03:05	WG1137283
Toluene	6.76	T8	5.00	1000	07/13/2018 03:05	WG1137283
Ethylbenzene	11.6	T8	0.500	1000	07/13/2018 03:05	WG1137283
Total Xylene	90.9	T8	1.50	1000	07/13/2018 03:05	WG1137283
TPH (GC/FID) Low Fraction	1800	T8	100	1000	07/13/2018 03:05	WG1137283
(S) a,a,a-Trifluorotoluene(FID)	96.0		77.0-120		07/13/2018 03:05	WG1137283
(S) a,a,a-Trifluorotoluene(PID)	100		75.0-128		07/13/2018 03:05	WG1137283

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	4.19	<u>T8</u>	4.00	1	07/13/2018 16:24	WG1137313
C28-C40 Oil Range	ND	<u>T8</u>	4.00	1	07/13/2018 16:24	WG1137313
(S) o-Terphenyl	110		18.0-148		07/13/2018 16:24	WG1137313

Volatile Organic Compounds (GC) by Method 8015/8021

QUALITY CONTROL SUMMARY

Ср

Τс

Ss

Cn

Sr

[´]Qc

GI

AI

Sc

Method Blank (MB)

(MB) R3325329-4 07/12/18 22:09						
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/kg		mg/kg	mg/kg		
Benzene	U		0.000120	0.000500		
Toluene	U		0.000150	0.00500		
Ethylbenzene	U		0.000110	0.000500		
Total Xylene	U		0.000460	0.00150		
TPH (GC/FID) Low Fraction	U		0.0217	0.100		
(S) a,a,a-Trifluorotoluene(FID)	99.4			77.0-120		
(S) a,a,a-Trifluorotoluene(PID)	99.9			75.0-128		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3325329-1 07/12/	CS) R3325329-1 07/12/18 20:18 • (LCSD) R3325329-5 07/13/18 10:30									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Benzene	0.0500	0.0494	0.0499	98.7	99.8	71.0-121			1.07	20
Toluene	0.0500	0.0511	0.0507	102	101	72.0-120			0.924	20
Ethylbenzene	0.0500	0.0512	0.0499	102	99.7	76.0-121			2.60	20
Total Xylene	0.150	0.155	0.151	103	101	75.0-124			2.81	20
(S) a,a,a-Trifluorotoluene(FID)				99.6	99.4	77.0-120				
(S) a,a,a-Trifluorotoluene(PID)				98.1	98.3	75.0-128				

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3325329-2 07/12	.CS) R3325329-2 07/12/18 21:03 • (LCSD) R3325329-3 07/12/18 21:25									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) Low Fraction	5.50	5.00	5.24	90.9	95.3	70.0-136			4.75	20
(S) a,a,a-Trifluorotoluene(FID)				103	103	77.0-120				
(S) a,a,a-Trifluorotoluene(PID)				106	108	75.0-128				

SDG: L1008712 DATE/TIME: 07/16/18 09:57 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

Method Blank (MB)

Method Bidlik (M	D)			
(MB) R3325389-1 07/13	3/18 10:33			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	119			18.0-148

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3325389-2 07/1	13/18 10:46 • (LCSI	D) R3325389-	3 07/13/18 11:00	C						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
C10-C28 Diesel Range	50.0	50.8	47.8	102	95.7	50.0-150			6.07	20
(S) o-Terphenyl				123	116	18.0-148				

DATE/TIME: 07/16/18 09:57

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

ADDIEVIALIONS and	
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

Qualifier	Description
T8	Sample(s) received past/too close to holding time expiration.

.

SDG: L1008712

Received by OCD: 10/6/2021 1:38:04 PM CCREDITATIONS & LOCATIONS

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ¹⁶	90010
Kentucky ²	16
Louisiana	AI30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP.LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 9/22/2022 2:16:33 PM HilCorp-Farmington, NM

PROJECT:

SDG: L1008712

DATE/TIME: 07/16/18 09:57

			silling inform	ation:		-	-	1	Analy	ss/Containe	t/PTESKIVAL	I		M.T.	CO
			Bill			Fres Chil					181			RE	X
				1										12055 Labarido Ré	
1 10:	21172		Email To:	abile			1			125			State of the local sectors in	Mould Jule1, 3N 27122 Phone: 625-758-5818 Phone: 602-767-5818	14 A
dsay Durnas		-		Chilcorp.			179			133				Fee: 813-798-5858	
d Libro San Ju	un 28-6	, #31		Collected: New MEXICO						100		12	11 /006	15	
Hikonp San Ju 832-839-4585	Client Project #			Lab Project.#										09712	
cted by (print)	Site/Facility ID I	U		P.O.#			1257		in the	1000	10			Acctnume	au ray
			COMPOSITION OF	Quote #			STO-	1		1				Template:	
win Lameman cted by (signature):	Rush? (La	ID MUST BO	Notified) Day				1							Prelogin: TSR:	
vite 1	Report Time	5 Da	y (Rad Only) by (Rad Only)	Date Resul	its Needed	No	-	10					193	PR.	ing in the second
ediately v_v_x	Three Da	" STAR	DALD			_ of	1×0	8015						Shipped Via:	Sample # Juli unital
 Sample ID 	Comp/Grab	Matrix *	Depth	Date	Time	-	8	00	1.1	1.00		-		Burnaria.	
	Grass	55	25	6-27-18	10:19	1	X	X						Hold	ot
B-7 @ 75 ft	Grab	55	35	6-27-18	10:41	2	X	X		1000	1	-	100	Burner	\$2
B-7 @ 35 ft	Gab	55	15	6-27-18	12:13	1	X	X			10		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hull	Ray Chief
6-8C15A	Grab	55	25	6-27-18	12:24		X	X	1	1000				Tress	4
B-8 e 25ft	Grab	55	10	6-27-18	13:09		1.1.1.1.1.1.1.1	X						Hold	
6-9 e 25 ft	Grab	55	25	6-27-18			X	X	-				100	1.0.0	of
8-10 e 10 ft	Gub	55	10	6-27-18				X	1000				2002	Hald	- 01
B-10 @ 25 ft	Grab	55	25				X	and the second second		-		12-			t
6B-11 C 10 Ft		55	10	6-27-19	8 14:34	2	XX		1000					Hald	Harris .
5B-11 C 25Ft	Grab	55	25	6-27-18	14:51 Told Gil	dul	to	A	1	1			Lanz and	sple Receipt C	heditakist y
Matrix: i-Soil AIR Air F-Filter W-Groundwater B-Bioassay	Remarks:	Some S Imiter	amples i d vecore	4-27-18 not complet in from d	uilling a	nge.	r.			pH	Temp Other		Correct t	Arrive intact: portion used:	72
W - WasteWater W - Drinking Water	Samples ret			2011-22-22	Tracking #	30	5	894	74	BILD			a state of the second	It Applica Headspace: Lon Correct/C	118
nt - Other		Date:		Time:	Received by (5	griature	1			Trip Elank Re	the second second	ICL/MeoH			
P In	-					monthe	J		-	Temp	aut. Rottle	BA Is Received:	dif preserva	ition required by L	ogin: Diste/Time
Relinquished by : (Signature)		Oate:		Time:	Received by: (5	-Busicia				2.7%	12. 21	200			
Relinquished by : (Signature)		Date:	-	Time	Received for to	tb.by: (5)	gruture	Ny .	1	Date: 10/29/	Timie		6	-183	Condition NCF / O

100

		6	lling inform	ation:		F	-	Ar	alysis / Contain	er / Preservative			In of custody	140 201 Z
						Pres. Chis						-	RE	X
												11	2005 Letterson Pd Rourd Juliet, TN 97122	
rtto:		1	Idu no	is chilcon	am	-						1	turner 615-758-5858 Nurse: 800-767-5859 at 615-758-5859	高速
indsay Dumas		itai		Collected: New Maxico									and the specific sectors	4
within 161, 40 Savi Ju	Client Project #	1 12 21		Lab Project #									rable # 100	\$712
	Site/Facility ID #			P.O. #									Acctnum: Template:	
onuin Lamemon	Rush? (La	NUST BE	Notified)	Quote #			THE CAL						Preiogin: TSR:	
Cuile reduceiv x			(Rad Only) ry (Rad Only) Ry (Rad Only)		its Needed	No. el	12	8015					PB: Shipped Vial:	
sample 10	Comp/Grab	Matrix *	Depth	Date	Time	Entrs	8	8					Itemacks	Sample # Dels only
	Gab	55	10	627-18	15:17		×	×					Hall	- 02
B-12 e 16 ft B-12 e 25 ft	Grab	55	25	6-27-18	15:30		X	X						A
18-13 C 10 ft	Grab	35	16	6-27-10		F d	X	X					14/1	- 03 - A
5B-13 @ 25 ft	Grab	55	10	6-27-18	Contraction of the second	12	X	X				-	Hold	-04
3B-14 C loft 5B-14 C 25 ft	Grab	55	25	6-27-18	17:15	1	X	X					Hale	-2-
513-14 e 25-17 513-15 e 10 ft	Grab	55	10	6-27-18			the second s	States and the second second					4+14	- 05
5B-15 @ 25 ft	Grab	55	25	6-27-18	11.1									
* Matroc SS - Soli AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks:G	iome s imited	amples	nut comple	tchy fille riking o	d du	2 +8		pH Flow _	Temp Other	0.8	OC Seal OC Signe Nottles a	ncis Encelpt. Present/Intec d/Accurate: prive intect ottlem used: it volume sont	NACHARINE I
WW - WasteWater DW - Drinking Water OT - Other	Eamoles ch	FedEx	Counter _	and the second se	Tracking # Received by: (Signature	1		Trip Blank	Received: Yes	The I		If Applica Mesdapace tion Correct/C	the state of the s
Relinquished by : (Signature)		Dates		Time:	Received by:				Temp	°C Bottles	Received	if preserva	tion required by I	ogin: Date/Tim
Releasished by : (Signature)		Date:		Tune	Received for			1	2.7 °C	Time:	6	Hold:		Conditik NCF /
Relinquished by : (Signature)		Oute:		Time:	Received for	VA	m		1029	18 9	345	Sug-	9% 31823	

From: Sent: To:

Released to Imaging: 9/22/2022 2:16:33 PM

ü

Subject:

Taking samples off HOLD L1006375 HILCORANM RUSH R3 Thursday, July 12, 2018 12:29 PM Chris Johnson; Brian Gwaltney Login

Daphne Richards

Please refer to 6-183 from L1006375

Log sample id's SB-13 25FT SB-10 25FT SB-12 25FT SB-14 25FT SB-15 25FT For BTEXGRO, DRORLA. Log as R3 due 7/16

Thanks

Daphne Richards

Project Manager

Pace Analytical National Center for Testing & Innovation drichards@pacenational.com| pacenational.com 12065 Lebanon Road | Mt. Juliet, TN 37122 615.773.9653 | Cell 615.418.1495

ESC Lab Sciences is now Pace Analytical National Center for Testing & Innovation! Please make note of my new email address and website.

ANALYTICAL REPORT

HilCorp-Farmington, NM

Sample Delivery Group: Samples Received:

Project Number: Description: L1020740 08/25/2018

Hilcorp San Juan 28-6 #31

Report To:

Lindsay Dumas 382 Road 3100 Aztec, NM 87401

Entire Report Reviewed By:

Olivia Studebaker Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
SB-16 @ 12 FT L1020740-01	6
SB-16 @ 20 FT L1020740-02	7
SB-17 @ 15 FT L1020740-03	8
SB-17 @ 25 FT L1020740-04	9
SB-18 @ 15 FT L1020740-05	10
SB-18 @ 25 FT L1020740-06	11
SB-23 @ 15 FT L1020740-07	12
SB-23 @ 30 FT L1020740-08	13
Qc: Quality Control Summary	14
Total Solids by Method 2540 G-2011	14
Volatile Organic Compounds (GC) by Method 8015/8021	16
Semi-Volatile Organic Compounds (GC) by Method 8015	18
GI: Glossary of Terms	19
Al: Accreditations & Locations	20
Sc: Sample Chain of Custody	21

SDG: L1020740

DATE/TIME: 08/30/18 08:32

PAGE: 2 of 21

SAMPLE SUMMARY

ONE LAB. NAPagev129 of 337

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

			Collected by	Collected date/time	Received date/time
SB-16 @ 12 FT L1020740-01 Solid			Corwin Lameman	08/22/18 09:30	08/25/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1157976	1	08/27/18 15:28	08/27/18 15:35	KDW
Volatile Organic Compounds (GC) by Method 8015/8021	WG1157682	1	08/25/18 13:47	08/27/18 01:20	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1157633	1	08/26/18 22:33	08/27/18 18:19	MTJ
			Collected by	Collected date/time	Received date/tim
SB-16 @ 20 FT L1020740-02 Solid			Corwin Lameman	08/22/18 09:57	08/25/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
	WC44E 707C	1	date/time	date/time	KDW
Total Solids by Method 2540 G-2011	WG1157976	1	08/27/18 15:28	08/27/18 15:35	KDW
Volatile Organic Compounds (GC) by Method 8015/8021	WG1157682	1	08/25/18 13:47	08/27/18 01:41	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1157633	1	08/26/18 22:33	08/27/18 19:46	MTJ
			Collected by	Collected date/time	Received date/tim
SB-17@15FT L1020740-03 Solid			Corwin Lameman	08/22/18 11:07	08/25/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1158017	1	08/28/18 07:10	08/28/18 07:18	JD
Volatile Organic Compounds (GC) by Method 8015/8021	WG1157682	1	08/25/18 13:47	08/27/18 02:02	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1157633	1	08/26/18 22:33	08/27/18 19:59	MTJ
			Collected by	Collected date/time	Received date/tim
SB-17 @ 25 FT L1020740-04 Solid			Corwin Lameman	08/22/18 13:30	08/25/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1158017	1	08/28/18 07:10	08/28/18 07:18	JD
Volatile Organic Compounds (GC) by Method 8015/8021	WG1157682	1	08/25/18 13:47	08/27/18 02:22	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1157633	1	08/26/18 22:33	08/27/18 20:13	MTJ
			Collected by	Collected date/time	Received date/tim
SB-18 @ 15 FT L1020740-05 Solid			Corwin Lameman	08/22/18 14:12	08/25/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
	Wolferste	· ·	date/time	date/time	
Total Solids by Method 2540 G-2011	WG1158017	1	08/28/18 07:10	08/28/18 07:18	JD
Volatile Organic Compounds (GC) by Method 8015/8021	WG1157682	1	08/25/18 13:47	08/27/18 02:43	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1157633	1	08/26/18 22:33	08/27/18 20:26	MTJ
			Collected by	Collected date/time	Received date/tim
SB-18 @ 25 FT L1020740-06 Solid			Corwin Lameman	08/22/18 14:36	08/25/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1158017	1	08/28/18 07:10	08/28/18 07:18	JD
	W01130017	I	50/20/10 07.10	00/20/10 07.10	JD
Volatile Organic Compounds (GC) by Method 8015/8021	WG1157682	1	08/25/18 13:47	08/27/18 03:04	DWR

PROJECT:

SDG: L1020740 DATE/TIME: 08/30/18 08:32 PAGE: 3 of 21

SAMPLE SUMMARY

ONE LAB. NAPagev130 of 37

			Collected by Corwin Lameman	Collected date/time 08/22/18 15:30	Received date/time 08/25/18 08:45
SB-23 @ 15 FT L1020740-07 Solid			Corwin Editionan	00/22/10 15:50	00/23/10 00.43
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1158017	1	08/28/18 07:10	08/28/18 07:18	JD
Volatile Organic Compounds (GC) by Method 8015/8021	WG1157682	500	08/25/18 13:47	08/27/18 03:25	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1157633	1	08/26/18 22:33	08/27/18 20:53	MTJ
			Collected by	Collected date/time	Received date/time
SB-23 @ 30 FT L1020740-08 Solid			Corwin Lameman	08/22/18 16:09	08/25/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1158017	1	08/28/18 07:10	08/28/18 07:18	JD
Volatile Organic Compounds (GC) by Method 8015/8021	WG1157682	1	08/25/18 13:47	08/27/18 03:46	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1157633	1	08/26/18 22:33	08/27/18 21:07	MTJ

A

Sc

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Olivia Studebaker Project Manager

PAGE: 5 of 21

SAMPLE RESULTS - 01 L1020740

Sc

Total Solids by Method 2540 G-2011

C28-C40 Oil Range

(S) o-Terphenyl

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	90.1		1	08/27/2018 15:35	<u>WG1157976</u>	Tc

Volatile Organic Compounds (GC) by Method 8015/8021

ND

72.7

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	ND		0.000500	1	08/27/2018 01:20	WG1157682	
Toluene	ND		0.00500	1	08/27/2018 01:20	WG1157682	
Ethylbenzene	0.00176		0.000500	1	08/27/2018 01:20	WG1157682	
Total Xylene	ND		0.00150	1	08/27/2018 01:20	WG1157682	
TPH (GC/FID) Low Fraction	0.325		0.100	1	08/27/2018 01:20	WG1157682	
(S) a,a,a-Trifluorotoluene(FID)	95.1		77.0-120		08/27/2018 01:20	WG1157682	
(S) a,a,a-Trifluorotoluene(PID)	99.8		72.0-128		08/27/2018 01:20	WG1157682	
Semi-Volatile Organic	Compound	ls (GC) by	Method 8	3015			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	6.00	J3	4.00	1	08/27/2018 18:19	WG1157633	

08/27/2018 18:19

08/27/2018 18:19

4.00

18.0-148

1

WG1157633

WG1157633

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	96.8		1	08/27/2018 15:35	<u>WG1157976</u>	Tc

Volatile Organic Compounds (GC) by Method 8015/8021

ND

61.1

C28-C40 Oil Range

(S) o-Terphenyl

	Result	Qualifier	RDL	Dilution	Analysis	Batch	L
Analyte	mg/kg		mg/kg		date / time		-
Benzene	0.000586	B	0.000500	1	08/27/2018 01:41	WG1157682	
Toluene	ND		0.00500	1	08/27/2018 01:41	WG1157682	
Ethylbenzene	ND		0.000500	1	08/27/2018 01:41	WG1157682	
Total Xylene	ND		0.00150	1	08/27/2018 01:41	WG1157682	
TPH (GC/FID) Low Fraction	ND		0.100	1	08/27/2018 01:41	WG1157682	
(S) a,a,a-Trifluorotoluene(FID)	91.1		77.0-120		08/27/2018 01:41	WG1157682	
(S) a,a,a-Trifluorotoluene(PID)	93.8		72.0-128		08/27/2018 01:41	WG1157682	
Semi-Volatile Organic	Compound	s (GC) by	Method 8	8015			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	10.0		4.00	1	08/27/2018 19:46	WG1157633	
C29 C40 Oil Bango	ND		1.00	1	00/27/2010 10.46	WC11E7COO	

08/27/2018 19:46

08/27/2018 19:46

4.00

18.0-148

WG1157633

WG1157633

SAMPLE RESULTS - 03 L1020740

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		 2
Total Solids	91.6		1	08/28/2018 07:18	WG1158017	Tc

Volatile Organic Compounds (GC) by Method 8015/8021

ND

72.6

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	ND		0.000500	1	08/27/2018 02:02	WG1157682	
Toluene	ND		0.00500	1	08/27/2018 02:02	<u>WG1157682</u>	
Ethylbenzene	ND		0.000500	1	08/27/2018 02:02	WG1157682	
Total Xylene	ND		0.00150	1	08/27/2018 02:02	WG1157682	
TPH (GC/FID) Low Fraction	ND		0.100	1	08/27/2018 02:02	WG1157682	
(S) a,a,a-Trifluorotoluene(FID)	91.2		77.0-120		08/27/2018 02:02	WG1157682	
(S) a,a,a-Trifluorotoluene(PID)	94.7		72.0-128		08/27/2018 02:02	WG1157682	
Semi-Volatile Organic	Compound	ds (GC) by	Method 8	8015			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	ND		4.00	1	08/27/2018 19:59	WG1157633	

08/27/2018 19:59

08/27/2018 19:59

4.00

18.0-148

1

WG1157633

WG1157633

C28-C40 Oil Range

(S) o-Terphenyl

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	97.7		1	08/28/2018 07:18	WG1158017	Тс

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	ND		0.000500	1	08/27/2018 02:22	WG1157682	
Toluene	ND		0.00500	1	08/27/2018 02:22	WG1157682	
Ethylbenzene	ND		0.000500	1	08/27/2018 02:22	WG1157682	
Total Xylene	ND		0.00150	1	08/27/2018 02:22	WG1157682	
TPH (GC/FID) Low Fraction	ND		0.100	1	08/27/2018 02:22	WG1157682	
(S) a,a,a-Trifluorotoluene(FID)	91.4		77.0-120		08/27/2018 02:22	WG1157682	
(S) a,a,a-Trifluorotoluene(PID)	94.6		72.0-128		08/27/2018 02:22	WG1157682	
Semi-Volatile Organic	Compound	ds (GC) by	Method 8	3015			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		

Analyte	mg/kg	mg/kg		date / time		
C10-C28 Diesel Range	10.4	4.00	1	08/27/2018 20:13	WG1157633	9 SC
C28-C40 Oil Range	ND	4.00	1	08/27/2018 20:13	WG1157633	50
(S) o-Terphenyl	60.1	18.0-148		08/27/2018 20:13	WG1157633	

SAMPLE RESULTS - 05 L1020740

Sc

Total Solids by Method 2540 G-2011

C28-C40 Oil Range

(S) o-Terphenyl

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	93.0		1	08/28/2018 07:18	WG1158017	Tc

Volatile Organic Compounds (GC) by Method 8015/8021

ND

63.6

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	ND		0.000500	1	08/27/2018 02:43	WG1157682	
Toluene	ND		0.00500	1	08/27/2018 02:43	WG1157682	
Ethylbenzene	0.000929	B	0.000500	1	08/27/2018 02:43	WG1157682	
Total Xylene	0.00228		0.00150	1	08/27/2018 02:43	WG1157682	
TPH (GC/FID) Low Fraction	0.182		0.100	1	08/27/2018 02:43	WG1157682	
(S) a,a,a-Trifluorotoluene(FID)	92.1		77.0-120		08/27/2018 02:43	WG1157682	
(S) a,a,a-Trifluorotoluene(PID)	<i>95.2</i>		72.0-128		08/27/2018 02:43	WG1157682	
Semi-Volatile Organic	Compound	s (GC) by	Method 8	8015			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	10.7		4.00	1	08/27/2018 20:26	WG1157633	

08/27/2018 20:26

08/27/2018 20:26

4.00

18.0-148

1

WG1157633

WG1157633

Repeired by QCDF 10/6/2021 1:38:04 PM Collected date/time: 08/22/18 14:36

SAMPLE RESULTS - 06 L1020740

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	96.7		1	08/28/2018 07:18	<u>WG1158017</u>	Tc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	ND		0.000500	1	08/27/2018 03:04	WG1157682
Toluene	ND		0.00500	1	08/27/2018 03:04	WG1157682
Ethylbenzene	ND		0.000500	1	08/27/2018 03:04	WG1157682
Total Xylene	ND		0.00150	1	08/27/2018 03:04	WG1157682
TPH (GC/FID) Low Fraction	ND		0.100	1	08/27/2018 03:04	WG1157682
(S) a,a,a-Trifluorotoluene(FID)	91.1		77.0-120		08/27/2018 03:04	WG1157682
(S) a,a,a-Trifluorotoluene(PID)	93.5		72.0-128		08/27/2018 03:04	WG1157682
Semi-Volatile Organic	Compoun	ds (GC) by	Method 8	3015		
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	

Analyte	mg/kg	mg/kg		date / time		
C10-C28 Diesel Range	5.47	4.00	1	08/27/2018 20:40	WG1157633	⁹ SC
C28-C40 Oil Range	ND	4.00	1	08/27/2018 20:40	WG1157633	50
(S) o-Terphenyl	67.3	18.0-148		08/27/2018 20:40	WG1157633	

SAMPLE RESULTS - 07 L1020740

Gl

AI

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	— Ср
Analyte	%			date / time		2
Total Solids	92.0		1	08/28/2018 07:18	WG1158017	Tc

Volatile Organic Compounds (GC) by Method 8015/8021

Volatile Organic Compounds (GC) by Method 8015/8021								
	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg		date / time		⁴ Cn	
Benzene	0.562	B	0.250	500	08/27/2018 03:25	WG1157682		
Toluene	ND		2.50	500	08/27/2018 03:25	WG1157682	5	
Ethylbenzene	ND		0.250	500	08/27/2018 03:25	WG1157682	ဳSr	
Total Xylene	2.60		0.750	500	08/27/2018 03:25	WG1157682		
TPH (GC/FID) Low Fraction	825		50.0	500	08/27/2018 03:25	WG1157682	⁶ Qc	
(S) a,a,a-Trifluorotoluene(FID)	85.6		77.0-120		08/27/2018 03:25	WG1157682	QC	
(S) a,a,a-Trifluorotoluene(PID)	94.0		72.0-128		08/27/2018 03:25	WG1157682	7	

Sample Narrative:

L1020740-07 WG1157682: Elevated RL do to Sample matrix. Non-target compounds too high to run at a lower dilution.

							2
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Sc
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	81.1		4.00	1	08/27/2018 20:53	WG1157633	
C28-C40 Oil Range	ND		4.00	1	08/27/2018 20:53	WG1157633	
(S) o-Terphenyl	61.2		18.0-148		08/27/2018 20:53	WG1157633	

SAMPLE RESULTS - 08 L1020740

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	98.0		1	08/28/2018 07:18	WG1158017	Tc

Volatile Organic Compounds (GC) by Method 8015/8021

67.2

(S) o-Terphenyl

Volatile Organic Compounds (GC) by Method 8015/8021												
	Result	Qualifier	RDL	Dilution	Analysis	Batch						
Analyte	mg/kg		mg/kg		date / time							
Benzene	0.000883	B	0.000500	1	08/27/2018 03:46	WG1157682						
Toluene	0.00585		0.00500	1	08/27/2018 03:46	<u>WG1157682</u>						
Ethylbenzene	0.00612		0.000500	1	08/27/2018 03:46	WG1157682						
Total Xylene	0.0147		0.00150	1	08/27/2018 03:46	<u>WG1157682</u>						
TPH (GC/FID) Low Fraction	0.988		0.100	1	08/27/2018 03:46	WG1157682						
(S) a,a,a-Trifluorotoluene(FID)	95.7		77.0-120		08/27/2018 03:46	WG1157682						
(S) a,a,a-Trifluorotoluene(PID)	102		72.0-128		08/27/2018 03:46	<u>WG1157682</u>						
Semi-Volatile Organic	Compound	s (GC) by	Method 8	8015								
	Result	Qualifier	RDL	Dilution	Analysis	Batch						
Analyte	mg/kg		mg/kg		date / time							
C10-C28 Diesel Range	15.8		4.00	1	08/27/2018 21:07	WG1157633						
C28-C40 Oil Range	ND		4.00	1	08/27/2018 21:07	WG1157633						

18.0-148

08/27/2018 21:07

WG1157633

Reserved by 7057 610/6/2021 1:38:04 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Cn

Sr

[°]Qc

Gl

Â

Sc

Method Blank (MB)

NL Contraction of the second se								
L								

L1020740-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1020740-01 08/2	27/18 15:35 • (DUF) R3337136-3	08/27/18 1	5:35		
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	90.1	90.1	1	0.0189		10

Laboratory Control Sample (LCS)

(LCS) R3337136-2 08	(LCS) R3337136-2 08/27/18 15:35											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier							
Analyte	%	%	%	%								
Total Solids	50.0	50.0	100	85.0-115								

DATE/TIME: 08/30/18 08:32 PAGE: 14 of 21

Reg & d by 8 G D 7 10/6/2021 1:38:04 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1020740-03,04,05,06,07,08

Cn

Sr

ິQc

Gl

Â

Sc

Method Blank (MB)

Method Blank	(IVIB)				
(MB) R3337295-1 08	8/28/18 07:18				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	%		%	%	
Total Solids	0.00100				

L1020758-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1020758-01 08/2	(OS) L1020758-01 08/28/18 07:18 • (DUP) R3337295-3 08/28/18 07:18										
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits					
Analyte	%	%		%		%					
Total Solids	93.6	93.6	1	0.0213		10					

Laboratory Control Sample (LCS)

(LCS) R3337295-2 08	LCS) R3337295-2 08/28/18 07:18											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier							
Analyte	%	%	%	%								
Total Solids	50.0	50.0	100	85.0-115								

DATE/TIME: 08/30/18 08:32

PAGE: 15 of 21 Volatile Organic Compounds (GC) by Method 8015/8021

QUALITY CONTROL SUMMARY

Ср

Тс

Ss

Cn

Sr

[´]Qc

GI

ΆI

Sc

Method Blank (MB)

(MB) R3336862-4 08/26	MB) R3336862-4 08/26/18 21:29								
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/kg		mg/kg	mg/kg					
Benzene	0.000261	J	0.000120	0.000500					
Toluene	0.000366	J	0.000150	0.00500					
Ethylbenzene	0.000167	J	0.000110	0.000500					
Total Xylene	U		0.000460	0.00150					
TPH (GC/FID) Low Fraction	U		0.0217	0.100					
(S) a,a,a-Trifluorotoluene(FID)	93.0			77.0-120					
(S) a,a,a-Trifluorotoluene(PID)	96.4			72.0-128					

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3336862-2 08/26	(LCS) R3336862-2 08/26/18 20:26 • (LCSD) R3336862-3 08/26/18 20:47									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) Low Fraction	5.50	5.62	5.05	102	91.8	72.0-127			10.7	20
(S) a,a,a-Trifluorotoluene(FID)				107	106	77.0-120				
(S) a,a,a-Trifluorotoluene(PID)				108	107	72.0-128				

Laboratory Control Sample (LCS)

(LCS) R3336862-1 08/26	CS) R3336862-1 08/26/18 20:04								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
Benzene	0.0500	0.0527	105	76.0-121					
Toluene	0.0500	0.0551	110	80.0-120					
Ethylbenzene	0.0500	0.0541	108	80.0-124					
Total Xylene	0.150	0.163	108	37.0-160					
(S) a,a,a-Trifluorotoluene(FID)			91.7	77.0-120					
(S) a,a,a-Trifluorotoluene(PID)			93.8	72.0-128					

SDG: L1020740 DATE/TIME: 08/30/18 08:32

Volatile Organic Compounds (GC) by Method 8015/8021

QUALITY CONTROL SUMMARY L1020740-01,02,03,04,05,06,07,08

L1020425-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1020425-02 08/27/18 04:49 • (MS) R3336862-5 08/27/18 05:10 • (MSD) R3336862-6 08/27/18 05:30

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.0655	1.10	15.9	16.9	90.4	96.3	250	10.0-155			5.89	32
Toluene	0.0655	3.14	24.8	25.7	132	137	250	10.0-160			3.24	34
Ethylbenzene	0.0655	22.3	33.2	34.0	66.5	71.9	250	10.0-160			2.64	32
Total Xylene	0.197	33.3	82.4	85.0	100	105	250	10.0-160			3.13	32
(S) a,a,a-Trifluorotoluene(FID)					107	104		77.0-120				
(S) a,a,a-Trifluorotoluene(PID)					107	106		72.0-128				

L1020425-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1020425-02 08/27/	(OS) L1020425-02 08/27/18 04:49 • (MS) R3336862-7 08/27/18 05:51 • (MSD) R3336862-8 08/27/18 06:12												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	8
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
TPH (GC/FID) Low Fraction	7.21	3060	3690	3690	35.2	35.0	250	10.0-151	E	E	0.125	28	
(S) a,a,a-Trifluorotoluene(FID)					112	113		77.0-120					g
(S) a,a,a-Trifluorotoluene(PID)					113	113		72.0-128					

DATE/TIME: 08/30/18 08:32 GI

Sr

Sc

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY L1020740-01,02,03,04,05,06,07,08

Method Blank (MB)

(MB) R3337086-1 08/27	7/18 17:36			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	78.2			18.0-148

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3337086-2 08/2	27/18 17:49 • (LCS	D) R3337086	-3 08/27/18 18:0	03							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
C10-C28 Diesel Range	50.0	40.0	40.8	80.0	81.6	50.0-150			1.98	20	
(S) o-Terphenyl				73.6	74.3	18.0-148					

L1020740-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1020740-01 08/27/18 18:19 • (MS) R3337086-4 08/27/18 18:33 • (MSD) R3337086-5 08/27/18 19:32													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	9
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	Sc
C10-C28 Diesel Range	50.0	6.00	42.2	33.5	72.4	55.0	1	50.0-150		<u>J3</u>	23.0	20	
(S) o-Terphenyl					62.6	44.7		18.0-148					

DATE/TIME: 08/30/18 08:32 Â
Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.

SDG: L1020740

Received by OCD: 10/6/2021 1:38:04 PM CCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

lebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 9/22/2022 2:16:33 PM HilCorp-Farmington, NM

PROJECT:

SDG: L1020740

DATE/TIME: 08/30/18 08:32

Τс Ss Cn Sr Qc Gl AI Sc

Bill		Billing Info	rmation:	11		Analysis / Container / Preservative					Chain of Custor	ty Pageof			
			Rill to H	ilcorp - CAL		Pres Chk						FID:	me.T	ESC	
D															
						2								B OF CHOICE	
Report to: Lindsay Dumas			Email To: Idumas(hilcorp.co	m				in.				12065 Lebanon R Mount Juliet, TN Phone: 615-758-5	37122	
Project Description: Hilcorp San Juan 2	8-6 #31			City/State Collected: Ne	ew Mexico			2					Phone: 615-758-585 Fax: 615-758-585	859 2.575 F.C	
Phone: 832-839-4585 Fax:	Client Project	L#		Lab Project #				- 801					LI LIO	20740	
Collected by (print): Corwin Lameman	Site/Facility I	D #		P.O. #	-			(GRO/DRO/MRO)					Acctnum:		
Collected by (signature):	Same £	Lab MUST Be Day Five	Day	Quote #			E	DRO					Template: Prelogin:		
Immediately Packed on Ice N Y Y	Next D		y (Rad Only) ay (Rad Only)	Date R August 29	esults Needed , 2018	No.	- 8021	(GRO,					TSR: PB:		
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	BTEX	TPH					Shipped Via: Remarks	Sample # (lab only	
SB-16 @ 12 ft	Grab	SS	12	8/22/18	9:30	2	×	X					1	-01	
5B-16 @ 20 ft	Grab	SS	20	8/22/18	9:57	1	X	X						-02	
SB-17 @ 15 ft	Grab	SS	15	8/22/18	11:07	1	×	X		12-2	1990			-03	
SB-17 @ 25 ft	Grab	SS	25	8/22/18	13:30	1	×	X						-ou	
SB-18 @ 15 ft	Grab	SS	15	8/22/18	14:12	1	X	X			10000			Contraction of the local distance	
SB-18 @ 25 ft	Grab	SS	25	8/22/18	14:36	1	X	X			10000	1000		-010	
SB-23 @ 15 ft	Grab	SS	15	8/22/18	15:30	2	X	X		12.00	BAD SOL			-07	
SB-23 @ 30 ft	Grab	SS	30	8/22/18	16:09	1	×	×				REEN: <0.5	mR/hr	-08	
* Matrix:	Remarks:												ple Receipt		
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bloassay WW - WasteWater	Samples v				resulting in sn nally@animas				pH Flow		mp	COC Seal P COC Signed Bottles ar	resent/Intac /Accurate: rive intact:	t: NP _Y _	
DW - Drinking Water OT - Other	Samples per	irned vla: edExCo	urier		Tracking# 7	305	1.1	844-		124		Sufficient	ttles used: volume sent <u>If Applica</u> eadspace:		
Relinquished by : (Signature)		Date: 8-20	NY 10220	Time: 13:05	Received by: (Sign	ature)		- Constant		Trip Blank Received: Yes No HCL / MeoH TBR			VOA Zero Headupace:Y Preservation Correct/Checked:Y		
Relinquished by : (Signature)		Date:		lime:	Received by: (Sign	ature)			Temp: 2,3	Ke °C B	ottles Received: LO = 40	A CONTRACTOR OF A CONTRACTOR O	on required by L	ogin: Date/Time	
Relinquished by : (Signature)		Date:		Time:	Received for table	y: (Signar	ture		Date:	Т	ime: 17845	Hold:		Conditioner	

ANALYTICAL REPORT

HilCorp-Farmington, NM

Sample Delivery Group: Samples Received:

Project Number:

L1033649 10/10/2018

Hilcorp San Juan 28-6 #31

Report To:

Description:

Lindsay Dumas 382 Road 3100 Aztec, NM 87401

Entire Report Reviewed By:

Olivia Studebaker Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1						
Tc: Table of Contents							
Ss: Sample Summary	3						
Cn: Case Narrative	4						
Sr: Sample Results	5						
SB-19 @ 30FT L1033649-01	5						
SB-20 @ 30FT L1033649-02	6						
SB-21 @ 30FT L1033649-03	7						
SB-22 @ 10FT L1033649-04	8						
SB-22 @ 25FT L1033649-05	9						
Qc: Quality Control Summary	10						
Total Solids by Method 2540 G-2011	10						
Volatile Organic Compounds (GC) by Method 8015/8021	12						
Semi-Volatile Organic Compounds (GC) by Method 8015	14						
GI: Glossary of Terms	15						
Al: Accreditations & Locations	16						
Sc: Sample Chain of Custody							

SAMPLE SUMMARY

ONE LAB. NAPage 150 of 337

Ср

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

SB-19@30FT L1033649-01 Solid			Collected by Corwin Lameman	Collected date/time 10/02/18 11:59	Received date/time 10/10/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1180558	1	10/15/18 11:31	10/15/18 11:36	JAV
Volatile Organic Compounds (GC) by Method 8015/8021	WG1179895	1	10/11/18 11:30	10/12/18 13:38	LRL
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1180944	1	10/14/18 16:37	10/16/18 19:01	AAT
			Collected by	Collected date/time	Received date/time
SB-20@30FT L1033649-02 Solid			Corwin Lameman	10/08/18 12:33	10/10/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
		''	date/time	date/time	- ,
Total Solids by Method 2540 G-2011	WG1180558	1	10/15/18 11:31	10/15/18 11:36	JAV
Volatile Organic Compounds (GC) by Method 8015/8021	WG1179895	1	10/11/18 11:30	10/12/18 13:59	LRL
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1180944	1	10/14/18 16:37	10/16/18 19:14	AAT
			Collected by	Collected date/time	Received date/time
SB-21@30FT L1033649-03 Solid			Corwin Lameman	10/08/18 11:07	10/10/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
	11/2/1005.00		date/time	date/time	146
Total Solids by Method 2540 G-2011	WG1180560	1	10/16/18 12:16	10/16/18 12:21	KS
Volatile Organic Compounds (GC) by Method 8015/8021	WG1179895	1	10/11/18 11:30	10/12/18 14:20	LRL
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1180944	1	10/14/18 16:37	10/16/18 19:28	AAT
			Collected by	Collected date/time	Received date/time
SB-22@10FT L1033649-04 Solid			Corwin Lameman	10/02/18 09:41	10/10/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1180560	1	10/16/18 12:16	10/16/18 12:21	KS
Volatile Organic Compounds (GC) by Method 8015/8021	WG1179895	1	10/11/18 11:30	10/12/18 14:41	LRL
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1180944	1	10/14/18 16:37	10/16/18 19:41	AAT
			Collected by	Collected date/time	Received date/time
SB-22@25FT L1033649-05 Solid			Corwin Lameman	10/02/18 10:27	10/10/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
Total Calida hu Mathad 2540 C 2014	WC11005.00	4	date/time	date/time	1/6
Total Solids by Method 2540 G-2011	WG1180560	1	10/16/18 12:16	10/16/18 12:21	KS
Volatile Organic Compounds (GC) by Method 8015/8021	WG1179895	1	10/11/18 11:30	10/12/18 15:02	LRL
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1180944	1	10/14/18 16:37	10/16/18 19:55	AAT

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Olivia Studebaker Project Manager

PAGE: 4 of 17

SAMPLE RESULTS - 01 L1033649

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	97.2		1	10/15/2018 11:36	WG1180558	Tc

	Result	Qualifier	RDL	Dilution	Analysis	Batch	l
Analyte	mg/kg		mg/kg		date / time		
Benzene	0.000670	В	0.000500	1	10/12/2018 13:38	<u>WG1179895</u>	
Toluene	ND		0.00500	1	10/12/2018 13:38	WG1179895	
Ethylbenzene	ND		0.000500	1	10/12/2018 13:38	<u>WG1179895</u>	
Total Xylene	ND		0.00150	1	10/12/2018 13:38	<u>WG1179895</u>	
TPH (GC/FID) Low Fraction	ND		0.100	1	10/12/2018 13:38	<u>WG1179895</u>	
(S) a,a,a-Trifluorotoluene(FID)	92.1		77.0-120		10/12/2018 13:38	<u>WG1179895</u>	
(S) a,a,a-Trifluorotoluene(PID)	87.1		72.0-128		10/12/2018 13:38	<u>WG1179895</u>	
Semi-Volatile Organic	Compound	s (GC) by	Method 8	3015			l
	Result	Qualifier	RDL	Dilution	Analysis	Batch	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	AI
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	50.5		4.00	1	10/16/2018 19:01	WG1180944	9 SC
C28-C40 Oil Range	10.3		4.00	1	10/16/2018 19:01	WG1180944	00
(S) o-Terphenyl	51.4		18.0-148		10/16/2018 19:01	WG1180944	

SAMPLE RESULTS - 02

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	97.3		1	10/15/2018 11:36	<u>WG1180558</u>	Tc

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	0.000842	В	0.000500	1	10/12/2018 13:59	WG1179895
Toluene	ND		0.00500	1	10/12/2018 13:59	<u>WG1179895</u>
Ethylbenzene	0.00213		0.000500	1	10/12/2018 13:59	<u>WG1179895</u>
Total Xylene	0.00508		0.00150	1	10/12/2018 13:59	<u>WG1179895</u>
TPH (GC/FID) Low Fraction	0.278		0.100	1	10/12/2018 13:59	<u>WG1179895</u>
(S) a,a,a-Trifluorotoluene(FID)	95.7		77.0-120		10/12/2018 13:59	<u>WG1179895</u>
(S) a,a,a-Trifluorotoluene(PID)	90.6		72.0-128		10/12/2018 13:59	<u>WG1179895</u>
Semi-Volatile Organic	Compound	s (GC) by	Method 8	3015		
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	

Analyte	mg/kg	mg/kg		date / time		
C10-C28 Diesel Range	32.5	4.00	1	10/16/2018 19:14	WG1180944	9 22
C28-C40 Oil Range	5.95	4.00	1	10/16/2018 19:14	WG1180944	30
(S) o-Terphenyl	50.0	18.0-148		10/16/2018 19:14	WG1180944	

SAMPLE RESULTS - 03

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		ſ	2
Total Solids	97.5		1	10/16/2018 12:21	WG1180560		Tc

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	0.00102	В	0.000500	1	10/12/2018 14:20	WG1179895	
Toluene	0.00932		0.00500	1	10/12/2018 14:20	<u>WG1179895</u>	
Ethylbenzene	0.00885		0.000500	1	10/12/2018 14:20	<u>WG1179895</u>	
Total Xylene	0.00955		0.00150	1	10/12/2018 14:20	<u>WG1179895</u>	
TPH (GC/FID) Low Fraction	1.42		0.100	1	10/12/2018 14:20	<u>WG1179895</u>	
(S) a,a,a-Trifluorotoluene(FID)	107		77.0-120		10/12/2018 14:20	<u>WG1179895</u>	
(S) a,a,a-Trifluorotoluene(PID)	103		72.0-128		10/12/2018 14:20	<u>WG1179895</u>	
Semi-Volatile Organic	Compound	ls (GC) by	v Method 8	8015			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		

Anal	yte	mg/kg	mg/kg		date / time		
C10-	C28 Diesel Range	15.4	4.00	1	10/16/2018 19:28	WG1180944	⁹ Sc
C28-	C40 Oil Range	ND	4.00	1	10/16/2018 19:28	WG1180944	50
(S)	o-Terphenyl	54.7	18.0-148		10/16/2018 19:28	WG1180944	

SAMPLE RESULTS - 04 L1033649

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	87.0		1	10/16/2018 12:21	<u>WG1180560</u>	Tc

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	0.000591	В	0.000500	1	10/12/2018 14:41	WG1179895
Toluene	ND		0.00500	1	10/12/2018 14:41	WG1179895
Ethylbenzene	0.000514		0.000500	1	10/12/2018 14:41	WG1179895
Total Xylene	ND		0.00150	1	10/12/2018 14:41	WG1179895
TPH (GC/FID) Low Fraction	ND		0.100	1	10/12/2018 14:41	WG1179895
(S) a,a,a-Trifluorotoluene(FID)	93.1		77.0-120		10/12/2018 14:41	WG1179895
(S) a,a,a-Trifluorotoluene(PID)	88.1		72.0-128		10/12/2018 14:41	WG1179895
Semi-Volatile Organic	Compound	s (GC) by	Method 8	8015		
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ma/ka		ma/ka		date / time	

				,			
Analyte	mg/kg	mg/kg		date / time			1
C10-C28 Diesel Range	ND	4.00	1	10/16/2018 19:41	WG1180944	9 50	
C28-C40 Oil Range	ND	4.00	1	10/16/2018 19:41	WG1180944	50	
(S) o-Terphenyl	46.3	18.0-148		10/16/2018 19:41	WG1180944		

SAMPLE RESULTS - 05

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	96.6		1	10/16/2018 12:21	WG1180560	Tc

Volatile Organic Compounds (GC) by Method 8015/8021

26.5

55.1

C28-C40 Oil Range

(S) o-Terphenyl

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	0.000842	B	0.000500	1	10/12/2018 15:02	<u>WG1179895</u>	
Toluene	ND		0.00500	1	10/12/2018 15:02	<u>WG1179895</u>	
Ethylbenzene	ND		0.000500	1	10/12/2018 15:02	WG1179895	
Total Xylene	0.00173		0.00150	1	10/12/2018 15:02	<u>WG1179895</u>	
TPH (GC/FID) Low Fraction	ND		0.100	1	10/12/2018 15:02	WG1179895	
(S) a,a,a-Trifluorotoluene(FID)	94.7		77.0-120		10/12/2018 15:02	WG1179895	
(S) a,a,a-Trifluorotoluene(PID)	89.1		72.0-128		10/12/2018 15:02	<u>WG1179895</u>	
Semi-Volatile Organic	Compound	s (GC) by	Method 8	8015			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	120		4.00	1	10/16/2018 19:55	WG1180944	
C29 C40 Oil Dango	26 5		1.00	1	10/16/2019 10·FE	WC1100044	

10/16/2018 19:55

10/16/2018 19:55

4.00

18.0-148

1

WG1180944

WG1180944

Reserved by OGB: 30/6/2021 1:38:04 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

[°]Qc

Gl

Â

Sc

Method Blank (MB)

(MB) R3351004-1 10/15	5/18 11:36			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

L1033649-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1033649-01 10/15	5/18 11:36 • (DUP) R	3351004-3 1	0/15/18 11:3	6		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	97.2	97.1	1	0.107		10

Laboratory Control Sample (LCS)

(LCS) R3351004-2 10/15	5/18 11:36				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1033649 DATE/TIME: 10/19/18 09:22

PAGE: 10 of 17

Regeired by OGB: 00/6/2021 1:38:04 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1033649-03,04,05

⁺Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

Method Blank	(IVIB)				
(MB) R3351355-1 10	/16/18 12:21				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	%		%	%	
Total Solids	0.000				

L1034191-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1034191-01 10/16/18	8 12:21 • (DUP) R3	3351355-3 10,	/16/18 12:21			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	82.1	82.8	1	0.762		10

Laboratory Control Sample (LCS)

(LCS) R3351355-2 10/1	16/18 12:21				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1033649

DATE/TIME: 10/19/18 09:22

PAGE: 11 of 17 Volatile Organic Compounds (GC) by Method 8015/8021

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3350068-5 10/12/	18 07:16			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	0.000203	J	0.000120	0.000500
Toluene	0.000245	J	0.000150	0.00500
Ethylbenzene	U		0.000110	0.000500
Total Xylene	U		0.000460	0.00150
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	95.1			77.0-120
(S) a,a,a-Trifluorotoluene(PID)	90.6			72.0-128

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3350068-1 10/12/1	8 05:31 • (LCSD) R3350068-2	10/12/18 05:52	2						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Benzene	0.0500	0.0464	0.0463	92.8	92.5	76.0-121			0.331	20
Toluene	0.0500	0.0469	0.0463	93.7	92.5	80.0-120			1.28	20
Ethylbenzene	0.0500	0.0467	0.0466	93.4	93.1	80.0-124			0.323	20
Total Xylene	0.150	0.144	0.144	96.2	96.1	37.0-160			0.139	20
(S) a,a,a-Trifluorotoluene(FID)				96.1	95.7	77.0-120				
(S) a,a,a-Trifluorotoluene(PID)				90.0	89.7	72.0-128				

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3350068-3 10/12	/18 06:13 • (LCSE	D) R3350068-	4 10/12/18 06:3	34						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) Low Fraction	5.50	5.03	5.60	91.4	102	72.0-127			10.7	20
(S) a,a,a-Trifluorotoluene(FID)				107	109	77.0-120				
(S) a,a,a-Trifluorotoluene(PID)				101	102	72.0-128				

SDG: L1033649 DATE/TIME: 10/19/18 09:22

Â

Sc

Regine d ty 080510/6/2021 1:38:04 PM

Volatile Organic Compounds (GC) by Method 8015/8021

QUALITY CONTROL SUMMARY

Ср

Τс

Ss

Cn

Śr

Qc

GI

A

Sc

L1033803-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1033803-01 10/12/18	3 10:08 • (MS) R	3350068-6 10	/12/18 15:44 • (MSD) R335006	68-7 10/12/18	16:05						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.0500	21.6	62.0	64.1	80.8	84.9	1000	10.0-155			3.28	32
Toluene	0.0500	185	213	216	56.7	62.3	1000	10.0-160			1.29	34
Ethylbenzene	0.0500	33.1	75.9	76.9	85.8	87.8	1000	10.0-160			1.31	32
Total Xylene	0.150	438	533	530	63.3	61.3	1000	10.0-160	<u>J6</u>	<u>J6</u>	0.564	32
(S) a,a,a-Trifluorotoluene(FID)					93.7	94.1		77.0-120				
(S) a,a,a-Trifluorotoluene(PID)					92.6	92.5		72.0-128				

L1033803-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1033803-01 10/12/18	8 10:08 • (MS) R	3350068-8 10	/12/18 16:25 •	(MSD) R33500	68-9 10/12/18	16:46						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	5.50	6440	10700	10800	76.6	79.6	1000	10.0-151			1.53	28
(S) a,a,a-Trifluorotoluene(FID)					103	104		77.0-120				
(S) a,a,a-Trifluorotoluene(PID)					101	102		72.0-128				

DATE/TIME: 10/19/18 09:22

PAGE: 13 of 17 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

Method Blank (MB)

Method Blank (M	D)				
(MB) R3351310-1 10/16/1	8 18:06				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	
(S) o-Terphenyl	74.2			18.0-148	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3351310-2 10/16	/18 18:20 • (LCSD)) R3351310-3	10/16/18 18:34								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
C10-C28 Diesel Range	50.0	35.4	33.3	70.8	66.6	50.0-150			6.11	20	
(S) o-Terphenyl				86.3	76.1	18.0-148					

Sc

DATE/TIME: 10/19/18 09:22

PAGE: 14 of 17

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.

SDG: L1033649

Received by OCD: 10/6/2021 1:38:04 PM CCREDITATIONS & LOCATIONS

Page 163 of 337 ONE LAB. NATIONWIDE.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN-03-2002-34
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	n/a
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
ldaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	90010	South Carolina	84004
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana ¹	LA180010	Texas	T 104704245-17-14
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	TN00003
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	460132
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 9/20/2022 2:16:33 PM HilCorp-Farmington, NM

:CT:

SDG: L1033649 DATE/TIME: 10/19/18 09:22

¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al ⁹ Sc

Received by OCD: 10/6/2	021 1:38:04	РМ	Billing Inf	formation:		13	1		Analysis / C	ontainer / Preser	vative		Chain of Custo	Page 164 of
					£2	Pres							The state of the s	
			Bill to I		ALL LINDSAY	Chk	-							
				-								-	L-A-B S	-C-I-E-N-C-E-
Report to:			Email To:			- 2						12-11	YOUR LA	
Lindsay Dumas			Idumas	@hilcorp.c	com								12065 Lebanon i Mount Juliet, TN	37122 200 200
Project Description: Hilcorp San Juan	28-6 #31			City/State Collected:	New Mexico			5			1		Phone: 615-758- Phone: 800-767- Fax: 615-758-585	1859 222 10
hone: 832-839-4585 ax:	Client Project	t#		Lab Project	:#			- 801					L# LIC	33649
ollected by (print): orwin Lameman	Site/Facility I	D #	Jels	P.O. #	1. 1. 1			MRO)					Acctnum:	02
ollected by (signature):		Lab MUST Be		Quote #		22		RO/			1		Template:	
nmediately acked on Ice N YX		y 5 Day y 10 Da		Date Oct 15, 2	Results Needed	No. of	- 8021	TPH (GRO/DRO/MRO)					Prelogin: TSR: PB:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	BTEX	Hd	1			1.20	Shipped Via:	
B-19@30ft	Grab	SS	30	10/2/1	8 11:59	1	×	×					Remarks	Sample # (lab only)
8-20 @ 30 ft	Grab	SS	30	10/8/1	8 12:33	1	×	X			-	-		-01
3-21 @ 30 ft	Grab	SS	30	10/8/1	8 11:07	1	X	X			-	-		-02
B-22 @ 10 ft	Grab	SS	10	10/2/1		2	X	X			-			-03
B-22 @ 25 ft	Grab	SS	25	10/2/1		1	×	X			-		d h hake	-04
		1.					~				-			-05
1000					EEN: 20.5 mPJhr		1.9				1			
And the second s				-nSCR	EEN: CU.									
	1.1.1.1.1.1.1			RAU	1 260	1			12				1 Marian	
Matrix:	Deserved as	1.1.1.1	1 3										1.	1
- Soil AIR - Air F - Filter V - Groundwater B - Bioassay N - WasteWater	Remarks: Samples w Email resul	ere on vei Its to Eliza	y dense beth Mc	sandstone Nally - emo	resulting in sm nally@animase	all rec	overy	/. tal.com	рН	Temp		COC Se	Sample Receipt C al Present/Intact gned/Accurate:	I NP Y N
V - Drinking Water - Other	Samples return					1	-	20,30	Flow	Other		Correct	s arrive intact: t bottles used: ient volume sent: If Applicat	
linguished by : (Signature)		Date:		ime: 16:42	Received by: (Signat	ture)	/ (1065	Trip Blank Re		Меон	VOA Zer Preserv	ro Headspace: vation Correct/Ch	V N
linquished by : (Signature)	a hu	Date:		ime:	Received by: (Signat	ture)			Tempjor 1.1 4.2.4.4	*C Bottles Rei		If preser	vation required by Lo	;in: Date/Time
Inquished by : (Signature) Released to Imaging: 9/2	2/2022 2:16:	Date: 33 PM	T	ime:	Received for lab by:	(Signatu	re)	2	Date: 10/10/18	Time:	5	Hold:		Condition: NCF / ØR

ANALYTICAL REPORT

December 13, 2018

HilCorp-Farmington, NM

Sample Delivery Group: Samples Received:

Project Number: Description:

L1050751 12/07/2018

Hilcorp San Juan 28-6 #31

Report To:

Lindsay Dumas 382 Road 3100 Aztec, NM 87401

Entire Report Reviewed By:

Napline R Richards

Daphne Richards Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Carl Carlor Page	1
Cp: Cover Page	
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
SB-4R @ 8 FT L1050751-01	6
SB-4R @ 12 FT L1050751-02	7
SB-5R @ 8.5 FT L1050751-03	8
SB-5R @ 12 FT L1050751-04	9
SB-6R @ 8 FT L1050751-05	10
SB-6R @ 12 FT L1050751-06	11
SB-7R @ 8 FT L1050751-07	12
SB-7R @ 12 FT L1050751-08	13
SB-8R @ 4 FT L1050751-09	14
SB-8R @ 12 FT L1050751-10	15
SB-24 @ 8 FT L1050751-11	16
SB-24 @ 12 FT L1050751-12	17
Qc: Quality Control Summary	18
Total Solids by Method 2540 G-2011	18
Volatile Organic Compounds (GC) by Method 8015/8021	21
Semi-Volatile Organic Compounds (GC) by Method 8015	27
GI: Glossary of Terms	29
Al: Accreditations & Locations	30
Sc: Sample Chain of Custody	31

SDG: L1050751 DATE/TIME: 12/13/18 17:27

E: 27 PAGE: 2 of 33

SAMPLE SUMMARY

ONE LAB. NAPage 167 of 327

SB-4R @ 8 FT L1050751-01 Solid			Collected by Corwin Lameman	Collected date/time 12/05/18 11:19	Received date/time 12/07/18 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
otal Solids by Method 2540 G-2011	WG1207678	1	12/10/18 14:10	12/10/18 14:21	JD
/olatile Organic Compounds (GC) by Method 8015/8021	WG1209024	25	12/07/18 16:41	12/11/18 17:52	CAH
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1208013	1	12/10/18 08:11	12/10/18 20:13	AAT
SB-4R @ 12 FT L1050751-02 Solid			Collected by Corwin Lameman	Collected date/time 12/05/18 11:16	Received date/time 12/07/18 09:00
<i>M</i> ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
otal Solids by Method 2540 G-2011	WG1207678	1	12/10/18 14:10	12/10/18 14:21	JD
/olatile Organic Compounds (GC) by Method 8015/8021	WG1209024	500	12/07/18 16:41	12/11/18 18:14	CAH
emi-Volatile Organic Compounds (GC) by Method 8015	WG1208013	5	12/10/18 08:11	12/11/18 01:30	AAT
			Collected by	Collected date/time	Received date/time
SB-5R @ 8.5 FT L1050751-03 Solid			Corwin Lameman	12/05/18 10:32	12/07/18 09:00
/lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
otal Solids by Method 2540 G-2011	WG1207678	1	12/10/18 14:10	12/10/18 14:21	JD
/olatile Organic Compounds (GC) by Method 8015/8021	WG1207972	1	12/07/18 16:41	12/09/18 15:41	ACG
emi-Volatile Organic Compounds (GC) by Method 8015	WG1208013	1	12/10/18 08:11	12/10/18 21:04	AAT
			Collected by	Collected date/time	Received date/time
SB-5R @ 12 FT L1050751-04 Solid			Corwin Lameman	12/05/18 10:19	12/07/18 09:00
fethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
otal Solids by Method 2540 G-2011	WG1207678	1	12/10/18 14:10	12/10/18 14:21	JD
olatile Organic Compounds (GC) by Method 8015/8021	WG1209667	2500	12/07/18 16:41	12/12/18 11:45	BMB
olatile Organic Compounds (GC) by Method 8021	WG1209024	500	12/07/18 16:41	12/11/18 18:35	CAH
emi-Volatile Organic Compounds (GC) by Method 8015	WG1208013	5	12/10/18 08:11	12/11/18 12:22	DMW
			Collected by	Collected date/time	Received date/time
SB-6R @ 8 FT L1050751-05 Solid			Corwin Lameman	12/05/18 12:50	12/07/18 09:00
/lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
otal Solids by Method 2540 G-2011	WG1207678	1	12/10/18 14:10	12/10/18 14:21	JD
/olatile Organic Compounds (GC) by Method 8015	WG1209150	25	12/07/18 16:41	12/11/18 20:46	DWR
/olatile Organic Compounds (GC) by Method 8021	WG1207972	1	12/07/18 16:41	12/09/18 16:02	ACG
emi-Volatile Organic Compounds (GC) by Method 8015	WG1208013	1	12/10/18 08:11	12/10/18 22:15	AAT
			Collected by	Collected date/time	Received date/time
SB-6R @ 12 FT L1050751-06 Solid			Corwin Lameman	12/05/18 12:46	12/07/18 09:00
<i>l</i> ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
otal Solids by Method 2540 G-2011	WG1207678	1	12/10/18 14:10	12/10/18 14:21	JD
/olatile Organic Compounds (GC) by Method 8015	WG1209667	2500	12/07/18 16:41	12/12/18 12:06	BMB
/olatile Organic Compounds (GC) by Method 8021	WG1209024	500	12/07/18 16:41	12/11/18 19:22	CAH
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1208013	5	12/10/18 08:11	12/11/18 12:34	DMW

Released to Imaging: 22/2022 2:16:33 PM HilCorp-Farmington, NM

PROJECT:

SDG: L1050751

DATE/TIME: 12/13/18 17:27 PAGE: 3 of 33

SAMPLE SUMMARY

ONE LAB. NAPagev168 of 377

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

	SAMI LE SC		X I		
SB-7R @ 8 FT L1050751-07 Solid			Collected by Corwin Lameman	Collected date/time 12/05/18 11:40	Received date/tim 12/07/18 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1207678	1	12/10/18 14:10	12/10/18 14:21	JD
Volatile Organic Compounds (GC) by Method 8015/8021	WG1207972	1	12/07/18 16:41	12/09/18 16:22	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1208013	1	12/10/18 08:11	12/10/18 22:51	AAT
			Collected by	Collected date/time	Received date/tim
SB-7R @ 12 FT L1050751-08 Solid			Corwin Lameman	12/05/18 11:45	12/07/18 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1207678	1	12/10/18 14:10	12/10/18 14:21	JD
Volatile Organic Compounds (GC) by Method 8015/8021	WG1207972	1	12/07/18 16:41	12/09/18 16:43	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1208013	1	12/10/18 08:11	12/10/18 23:03	AAT
			Collected by	Collected date/time	Received date/tim
SB-8R @ 4 FT L1050751-09 Solid			Corwin Lameman	12/05/18 13:05	12/07/18 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1207678	1	12/10/18 14:10	12/10/18 14:21	JD
Volatile Organic Compounds (GC) by Method 8015/8021	WG1207678 WG1209667	25	12/10/18 14:10	12/10/18 14.21	BMB
	WG1209667 WG1208013	25	12/10/18 08:11	12/10/18 23:15	AAT
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1208013	I	12/10/18 08:11	12/10/18 23:15	AAT
			Collected by	Collected date/time	Received date/tim
SB-8R @ 12 FT L1050751-10 Solid			Corwin Lameman	12/05/18 13:18	12/07/18 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1207678	1	12/10/18 14:10	12/10/18 14:21	JD
Volatile Organic Compounds (GC) by Method 8015/8021	WG1209024	500	12/07/18 16:41	12/11/18 20:04	CAH
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1208013	1	12/10/18 08:11	12/10/18 23:26	AAT
			Collected by	Collected date/time	Received date/tim
SB-24 @ 8 FT L1050751-11 Solid			Corwin Lameman	12/05/18 13:48	12/07/18 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1207679	1	12/10/18 13:48	12/10/18 14:01	JD
Volatile Organic Compounds (GC) by Method 8015/8021	WG1209150	10000	12/07/18 16:41	12/11/18 21:08	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1208013	1	12/10/18 08:11	12/10/18 23:38	AAT
			Collected by	Collected date/time	Received date/tim
SB-24 @ 12 FT L1050751-12 Solid			Corwin Lameman	12/05/18 13:46	12/07/18 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1210135	1	12/13/18 08:29	12/13/18 08:37	JD
Volatile Organic Compounds (GC) by Method 8015/8021	WG1210228	5000	12/12/18 14:04	12/13/18 16:47	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1210039	20	12/12/18 18:57	12/13/18 11:10	DMW

Released to Imaging: 22/2022 2:16:33 PM HilCorp-Farmington, NM PROJECT:

SDG: L1050751 DATE/TIME: 12/13/18 17:27

PAGE: 4 of 33

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Japline R Richards

Daphne Richards Project Manager

SAMPLE RESULTS - 01 L1050751

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	2
Total Solids	86.6		1	12/10/2018 14:21	WG1207678		Тс

Benzene 0.268 0.0125 25 12/11/2018 17:52 WG1209024 Toluene 0.921 0.125 25 12/11/2018 17:52 WG1209024 Ethylbenzene 0.0993 0.0125 25 12/11/2018 17:52 WG1209024 Total Xylene 1.03 0.0375 25 12/11/2018 17:52 WG1209024		Result	Qualifier	RDL	Dilution	Analysis	Batch
Toluene 0.921 0.125 25 12/11/2018 17:52 WG1209024 Ethylbenzene 0.0993 0.0125 25 12/11/2018 17:52 WG1209024 Total Xylene 1.03 0.0375 25 12/11/2018 17:52 WG1209024 TPH (GC/FID) Low Fraction 11.2 2.50 25 12/11/2018 17:52 WG1209024 (S) a,a,a-Trifluorotoluene(FID) 102 77.0-120 12/11/2018 17:52 WG1209024	Analyte	mg/kg		mg/kg		date / time	
Ethylbenzene 0.0993 0.0125 25 12/11/2018 17:52 WG1209024 Total Xylene 1.03 0.0375 25 12/11/2018 17:52 WG1209024 TPH (GC/FID) Low Fraction 11.2 2.50 25 12/11/2018 17:52 WG1209024 (S) a,a,a-Trifluorotoluene(FID) 102 77.0-120 12/11/2018 17:52 WG1209024	Benzene	0.268		0.0125	25	12/11/2018 17:52	WG1209024
Total Xylene 1.03 0.0375 25 12/11/2018 17:52 WG1209024 TPH (GC/FID) Low Fraction 11.2 2.50 25 12/11/2018 17:52 WG1209024 (S) a,a,a-Trifluorotoluene(FID) 102 77.0-120 12/11/2018 17:52 WG1209024	Toluene	0.921		0.125	25	12/11/2018 17:52	WG1209024
TPH (GC/FID) Low Fraction 11.2 2.50 25 12/11/2018 17:52 WG1209024 (S) a,a,a-Trifluorotoluene(FID) 102 77.0-120 12/11/2018 17:52 WG1209024	Ethylbenzene	0.0993		0.0125	25	12/11/2018 17:52	WG1209024
(S) a, a, a-Trifluorotoluene(FID) 102 77.0-120 12/11/2018 17:52 WG1209024	Total Xylene	1.03		0.0375	25	12/11/2018 17:52	WG1209024
	TPH (GC/FID) Low Fraction	11.2		2.50	25	12/11/2018 17:52	WG1209024
(S) a,a,a-Trifluorotoluene(PID) 98.0 72.0-128 12/11/2018 17:52 WG1209024	(S) a,a,a-Trifluorotoluene(FID)	102		77.0-120		12/11/2018 17:52	WG1209024
	(S) a,a,a-Trifluorotoluene(PID)	98.0		72.0-128		12/11/2018 17:52	WG1209024
	emi-Volatile Organic	Compound	ds (GC) by	Method 8	3015		

	Result	Qualifier	RDL	Dilution	Analysis	Batch	̈́ΑΙ
Analyte	mg/kg		mg/kg		date / time	L	
TPH (GC/FID) High Fraction	46.1	<u>J5</u>	4.00	1	12/10/2018 20:13	WG1208013	9 22
(S) o-Terphenyl	71.9		18.0-148		12/10/2018 20:13	WG1208013	50

SAMPLE RESULTS - 02 L1050751

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	91.9		1	12/10/2018 14:21	WG1207678	Tc

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	5.45		0.250	500	12/11/2018 18:14	WG1209024
Toluene	35.3		2.50	500	12/11/2018 18:14	WG1209024
Ethylbenzene	10.4		0.250	500	12/11/2018 18:14	WG1209024
Total Xylene	156		0.750	500	12/11/2018 18:14	WG1209024
TPH (GC/FID) Low Fraction	3940		50.0	500	12/11/2018 18:14	WG1209024
(S) a,a,a-Trifluorotoluene(FID)	86.7		77.0-120		12/11/2018 18:14	WG1209024
(S) a,a,a-Trifluorotoluene(PID)	98.4		72.0-128		12/11/2018 18:14	WG1209024

	Result	Qualifier	RDL	Dilution	Analysis	Batch		°AI
Analyte	mg/kg		mg/kg		date / time		L	
TPH (GC/FID) High Fraction	251	<u>J3</u>	20.0	5	12/11/2018 01:30	WG1208013	!	9 22
(S) o-Terphenyl	79.5		18.0-148		12/11/2018 01:30	WG1208013		50

SAMPLE RESULTS - 03

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	86.5		1	12/10/2018 14:21	WG1207678	Tc

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	0.00427		0.000500	1	12/09/2018 15:41	WG1207972
Toluene	0.00736		0.00500	1	12/09/2018 15:41	<u>WG1207972</u>
Ethylbenzene	ND		0.000500	1	12/09/2018 15:41	WG1207972
Total Xylene	0.00494		0.00150	1	12/09/2018 15:41	WG1207972
TPH (GC/FID) Low Fraction	0.180		0.100	1	12/09/2018 15:41	WG1207972
(S) a,a,a-Trifluorotoluene(FID)	101		77.0-120		12/09/2018 15:41	WG1207972
(S) a,a,a-Trifluorotoluene(PID)	94.4		72.0-128		12/09/2018 15:41	<u>WG1207972</u>
Semi-Volatile Organic	Compound	ds (GC) by	v Method 8	3015		
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	

Analyte	mg/kg		mg/kg		date / time	—		
TPH (GC/FID) High Fraction	ND	J3	4.00	1	12/10/2018 21:04	WG1208013	9	SC
(S) o-Terphenyl	47.6		18.0-148		12/10/2018 21:04	WG1208013		90

SAMPLE RESULTS - 04 L1050751

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	91.0		1	12/10/2018 14:21	WG1207678	Tc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
alyte	mg/kg		mg/kg		date / time	
nzene	10.8		0.250	500	12/11/2018 18:35	WG1209024
uene	140		12.5	2500	12/12/2018 11:45	WG1209667
ylbenzene	15.1		0.250	500	12/11/2018 18:35	WG1209024
al Xylene	216		0.750	500	12/11/2018 18:35	WG1209024
H (GC/FID) Low Fraction	6020		250	2500	12/12/2018 11:45	WG1209667
'S) a,a,a-Trifluorotoluene(FID)	74.7	J2	77.0-120		12/11/2018 18:35	WG1209024
'S) a,a,a-Trifluorotoluene(FID)	90.6		77.0-120		12/12/2018 11:45	WG1209667
'S) a,a,a-Trifluorotoluene(PID)	95.6		72.0-128		12/11/2018 18:35	WG1209024
'S) a,a,a-Trifluorotoluene(PID)	102		72.0-128		12/12/2018 11:45	WG1209667

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch 9	
Analyte	mg/kg		mg/kg		date / time		SC
TPH (GC/FID) High Fraction	423	<u>J3</u>	20.0	5	12/11/2018 12:22	WG1208013	
(S) o-Terphenyl	80.0		18.0-148		12/11/2018 12:22	WG1208013	

SAMPLE RESULTS - 05 L1050751

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	89.8		1	12/10/2018 14:21	WG1207678	Tc

Volatile Organic Compounds (GC) by Method 8015/8021

Volatile Organic Comp	oounds (GC	c) by Meth	od 8015/80	021			^³ S
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		4
Benzene	0.0151		0.000500	1	12/09/2018 16:02	WG1207972	
Toluene	0.0956		0.00500	1	12/09/2018 16:02	WG1207972	5
Ethylbenzene	0.0470		0.000500	1	12/09/2018 16:02	WG1207972	⁵ S
Total Xylene	0.322		0.00150	1	12/09/2018 16:02	WG1207972	
TPH (GC/FID) Low Fraction	23.8		2.50	25	12/11/2018 20:46	WG1209150	⁶ G
(S) a,a,a-Trifluorotoluene(FID)	83.0		77.0-120		12/09/2018 16:02	WG1207972	G
(S) a,a,a-Trifluorotoluene(FID)	103		77.0-120		12/11/2018 20:46	WG1209150	7
(S) a,a,a-Trifluorotoluene(PID)	95.7		72.0-128		12/09/2018 16:02	WG1207972	í G
(S) a,a,a-Trifluorotoluene(PID)	97.0		72.0-128		12/11/2018 20:46	WG1209150	
							۵ ۵

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch	⁹ Cc
Analyte	mg/kg		mg/kg		date / time		SC
TPH (GC/FID) High Fraction	9.93	<u>J3</u>	4.00	1	12/10/2018 22:15	WG1208013	
(S) o-Terphenyl	77.9		18.0-148		12/10/2018 22:15	WG1208013	

SAMPLE RESULTS - 06 L1050751

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	90.7		1	12/10/2018 14:21	WG1207678	Tc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	8.70		0.250	500	12/11/2018 19:22	<u>WG1209024</u>	
Foluene	98.5		2.50	500	12/11/2018 19:22	<u>WG1209024</u>	
Ethylbenzene	17.3		0.250	500	12/11/2018 19:22	<u>WG1209024</u>	
Fotal Xylene	257		0.750	500	12/11/2018 19:22	<u>WG1209024</u>	
FPH (GC/FID) Low Fraction	6970		250	2500	12/12/2018 12:06	WG1209667	
(S) a,a,a-Trifluorotoluene(FID)	82.1		77.0-120		12/11/2018 19:22	WG1209024	
(S) a,a,a-Trifluorotoluene(FID)	91.8		77.0-120		12/12/2018 12:06	WG1209667	
(S) a,a,a-Trifluorotoluene(PID)	97.5		72.0-128		12/11/2018 19:22	WG1209024	
(S) a,a,a-Trifluorotoluene(PID)	104		72.0-128		12/12/2018 12:06	WG1209667	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch	⁹ Cc
Analyte	mg/kg		mg/kg		date / time		SC
TPH (GC/FID) High Fraction	385	<u>J3</u>	20.0	5	12/11/2018 12:34	WG1208013	
(S) o-Terphenyl	76.3		18.0-148		12/11/2018 12:34	WG1208013	

SAMPLE RESULTS - 07 L1050751

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	85.7		1	12/10/2018 14:21	WG1207678	Tc

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	ND		0.000500	1	12/09/2018 16:22	WG1207972	
Toluene	ND		0.00500	1	12/09/2018 16:22	WG1207972	
Ethylbenzene	ND		0.000500	1	12/09/2018 16:22	WG1207972	
Total Xylene	ND		0.00150	1	12/09/2018 16:22	WG1207972	
TPH (GC/FID) Low Fraction	ND		0.100	1	12/09/2018 16:22	WG1207972	
(S) a,a,a-Trifluorotoluene(FID)	102		77.0-120		12/09/2018 16:22	<u>WG1207972</u>	
(S) a,a,a-Trifluorotoluene(PID)	93.8		72.0-128		12/09/2018 16:22	<u>WG1207972</u>	
Semi-Volatile Organic	Compound	ds (GC) by	Method 8	8015			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	

	Result	Quaimer	NDL	Dilution	Analysis	Daten		L
Analyte	mg/kg		mg/kg		date / time			1
TPH (GC/FID) High Fraction	ND	<u>J3</u>	4.00	1	12/10/2018 22:51	WG1208013	9 SC	1
(S) o-Terphenyl	47.6		18.0-148		12/10/2018 22:51	WG1208013		

SAMPLE RESULTS - 08 L1050751

Sc

Total Solids by Method 2540 G-2011

TPH (GC/FID) High Fraction

(S) o-Terphenyl

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	88.6		1	12/10/2018 14:21	WG1207678	Tc

Volatile Organic Compounds (GC) by Method 8015/8021

ND

73.8

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	0.00593		0.000500	1	12/09/2018 16:43	WG1207972	
Toluene	0.00977		0.00500	1	12/09/2018 16:43	WG1207972	
Ethylbenzene	0.0119		0.000500	1	12/09/2018 16:43	WG1207972	
Total Xylene	0.0420		0.00150	1	12/09/2018 16:43	WG1207972	
TPH (GC/FID) Low Fraction	3.41		0.100	1	12/09/2018 16:43	WG1207972	
(S) a,a,a-Trifluorotoluene(FID)	86.5		77.0-120		12/09/2018 16:43	WG1207972	
(S) a,a,a-Trifluorotoluene(PID)	94.4		72.0-128		12/09/2018 16:43	<u>WG1207972</u>	
Semi-Volatile Organic	Compound	ds (GC) by	v Method 8	3015			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		

12/10/2018 23:03

12/10/2018 23:03

WG1208013

WG1208013

1

4.00

18.0-148

J3

SAMPLE RESULTS - 09 L1050751

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	88.8		1	12/10/2018 14:21	WG1207678	Tc

Benzene 0.0 Toluene 0.2	g/kg 0520 204	mg/kg 0.0125	25	date / time		
Toluene 0.2		0.0125	25			
	704		25	12/12/2018 12:27	WG1209667	
E-1 -1		0.125	25	12/12/2018 12:27	WG1209667	
Ethylbenzene ND)	0.0125	25	12/12/2018 12:27	WG1209667	
Total Xylene 1.2	9	0.0375	25	12/12/2018 12:27	<u>WG1209667</u>	
TPH (GC/FID) Low Fraction 65	.7	2.50	25	12/12/2018 12:27	WG1209667	
(S) a,a,a-Trifluorotoluene(FID) 92	.1	77.0-120		12/12/2018 12:27	<u>WG1209667</u>	
(S) a,a,a-Trifluorotoluene(PID) 102	2	72.0-128		12/12/2018 12:27	WG1209667	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	AI	
Analyte	mg/kg		mg/kg		date / time	I		1
TPH (GC/FID) High Fraction	9.84	<u>J3</u>	4.00	1	12/10/2018 23:15	WG1208013	°Sc	1
(S) o-Terphenyl	62.7		18.0-148		12/10/2018 23:15	WG1208013	50	

SAMPLE RESULTS - 10 L1050751

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	89.8		1	12/10/2018 14:21	WG1207678	Tc

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	6.09		0.250	500	12/11/2018 20:04	WG1209024
Toluene	52.5		2.50	500	12/11/2018 20:04	WG1209024
Ethylbenzene	11.3		0.250	500	12/11/2018 20:04	WG1209024
Total Xylene	173		0.750	500	12/11/2018 20:04	WG1209024
TPH (GC/FID) Low Fraction	4250		50.0	500	12/11/2018 20:04	WG1209024
(S) a,a,a-Trifluorotoluene(FID)	85.6		77.0-120		12/11/2018 20:04	WG1209024
(S) a,a,a-Trifluorotoluene(PID)	98.1		72.0-128		12/11/2018 20:04	WG1209024

	Result	Qualifier	RDL	Dilution	Analysis	Batch	- AI
Analyte	mg/kg		mg/kg		date / time		
TPH (GC/FID) High Fraction	277	J3	4.00	1	12/10/2018 23:26	WG1208013	9 5 6
(S) o-Terphenyl	76.6		18.0-148		12/10/2018 23:26	WG1208013	50

SAMPLE RESULTS - 11 L1050751

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		- -	2
Total Solids	93.1		1	12/10/2018 14:01	WG1207679		Tc

	Result	Qualifier	RDL	Dilution	Analysis	Batch	L
Analyte	mg/kg		mg/kg		date / time		4
Benzene	30.3		5.00	10000	12/11/2018 21:08	WG1209150	
Toluene	241		50.0	10000	12/11/2018 21:08	WG1209150	
Ethylbenzene	58.0		5.00	10000	12/11/2018 21:08	WG1209150	5
Total Xylene	897		15.0	10000	12/11/2018 21:08	WG1209150	
TPH (GC/FID) Low Fraction	20200		1000	10000	12/11/2018 21:08	<u>WG1209150</u>	6
(S) a,a,a-Trifluorotoluene(FID)	101		77.0-120		12/11/2018 21:08	<u>WG1209150</u>	
(S) a,a,a-Trifluorotoluene(PID)	98.4		72.0-128		12/11/2018 21:08	WG1209150	7
Semi-Volatile Organic	Compoun	ds (GC) by	Method 8	3015			L
	Result	Qualifier	RDL	Dilution	Analysis	Batch	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	A	Т
Analyte	mg/kg		mg/kg		date / time			1
TPH (GC/FID) High Fraction	41.6	<u>J3</u>	4.00	1	12/10/2018 23:38	WG1208013	9 50	1
(S) o-Terphenyl	69.1		18.0-148		12/10/2018 23:38	<u>WG1208013</u>	50	
SAMPLE RESULTS - 12 L1050751

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	86.1		1	12/13/2018 08:37	WG1210135	Tc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	29.8		2.50	5000	12/13/2018 16:47	WG1210228	
Toluene	341		25.0	5000	12/13/2018 16:47	WG1210228	
Ethylbenzene	74.3		2.50	5000	12/13/2018 16:47	WG1210228	
Total Xylene	646		7.50	5000	12/13/2018 16:47	<u>WG1210228</u>	
TPH (GC/FID) Low Fraction	15500		500	5000	12/13/2018 16:47	WG1210228	
(S) a,a,a-Trifluorotoluene(FID)	89.7		77.0-120		12/13/2018 16:47	WG1210228	
(S) a,a,a-Trifluorotoluene(PID) Semi-Volatile Organic	104		72.0-128		12/13/2018 16:47	WG1210228	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Al	l
Analyte	mg/kg		mg/kg		date / time	I		1
TPH (GC/FID) High Fraction	1710		80.0	20	12/13/2018 11:10	WG1210039	9 22 ^e	l
(S) o-Terphenyl	0.000	<u>J7</u>	18.0-148		12/13/2018 11:10	WG1210039	SC	

Regeiredby 960, 80/6/2021 1:38:04 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1050751-01,02,03,04,05,06,07,08,09,10

Cn

Sr

ິQc

Gl

AI

Sc

Method Blank (MB)

					Cr
2/10/18 14:21					
MB Result	MB Qualifier	MB MDL	MB RDL		2
%		%	6		Tc
0.000					
					³ S
	12/10/18 14:21 MB Result %	12/10/18 14:21 MB Result <u>MB Qualifier</u> %	12/10/18 14:21 MB Result <u>MB Qualifier</u> MB MDL % % %	12/10/18 14:21 MB Result MB Qualifier MB MDL MB RDL % % %	12/10/18 14:21 MB Result MB Qualifier MB MDL MB RDL % % %

L1050751-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1050751-05 12/10)/18 14:21 • (DUP) R	3367032-3	12/10/18 14:2	21		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	89.8	89.8	1	0.0546		10

Laboratory Control Sample (LCS)

(LCS) R3367032-2 12/	/10/18 14:21				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

DATE/TIME: 12/13/18 17:27 PAGE: 18 of 33

Regeiredby 960, 30/6/2021 1:38:04 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

ONE LAB. NAPagev183 of 337

Cn

Sr

Qc

Gl

Â

Sc

Method Blank (MB)

vietnoù biank					
VB) R3367031-1 12	2/10/18 14:01				
	MB Result	MB Qualifier	MB MDL	MB RDL	
nalyte	%		%	%	
otal Solids	0.00200				

L1050766-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1050766-05 12/10/	18 14:01 • (DUP)	R3367031-3 1	2/10/18 14:	01		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	90.1	87.4	1	3.02		10

Laboratory Control Sample (LCS)

(LCS) R3367031-2 12/1	10/18 14:01				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

DATE/TIME: 12/13/18 17:27 PAGE: 19 of 33

Reservedby OF3510/6/2021 1:38:04 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1050751-12

[°]Qc

Gl

Â

Sc

Method Blank (MB)

					1^{1}
(MB) R3368002-1	12/13/18 08:37				- C
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	%		%	%	T
Total Solids	0.000				
					3

L1050948-02 Original Sample (OS) • Duplicate (DUP)

L1050948-02 C	riginal Sampl	e (OS) • Du	uplicate	(DUP)			⁴ Cr
(OS) L1050948-02 12	2/13/18 08:37 • (DUI	P) R3368002-3	3 12/13/18 (08:37			— Cr
	Original Resu	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁵ Cr
Analyte	%	%		%		%	5
Total Solids	97.5	97.7	1	0.179		10	6

Laboratory Control Sample (LCS)

(LCS) R3368002-2 12	2/13/18 08:37				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1050751 DATE/TIME: 12/13/18 17:27

PAGE: 20 of 33

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

Qc

GI

AI

Sc

Method Blank (MB)

(MB) R3367191-5 12/09/18	3 14:57				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000120	0.000500	
Toluene	U		0.000150	0.00500	
Ethylbenzene	U		0.000110	0.000500	
Total Xylene	U		0.000460	0.00150	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120	
(S) a,a,a-Trifluorotoluene(PID)	95.8			72.0-128	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3367191-1 12/09/18	13:15 • (LCSD) F	R3367191-2 12	/09/18 13:35							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Benzene	0.0500	0.0458	0.0447	91.6	89.5	76.0-121			2.30	20
Toluene	0.0500	0.0489	0.0469	97.8	93.7	80.0-120			4.21	20
Ethylbenzene	0.0500	0.0506	0.0490	101	97.9	80.0-124			3.32	20
Total Xylene	0.150	0.150	0.145	100	96.6	37.0-160			3.66	20
(S) a,a,a-Trifluorotoluene(FID)				103	103	77.0-120				
(S) a,a,a-Trifluorotoluene(PID)				96.5	96.3	72.0-128				

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3367191-3 12/09/	18 13:55 • (LCSD) R3367191-4	12/09/18 14:16							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) Low Fraction	5.50	5.54	5.63	101	102	72.0-127			1.70	20
(S) a,a,a-Trifluorotoluene(FID)				104	104	77.0-120				
(S) a,a,a-Trifluorotoluene(PID)				103	103	72.0-128				

SDG: L1050751 DATE/TIME: 12/13/18 17:27

PAGE: 21 of 33

QUALITY CONTROL SUMMARY

L1050751-01,02,04,06,10

Ср

[°]Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3367481-3 12/11/18	13:39				- (
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	T
Benzene	U		0.000120	0.000500	
Toluene	0.000778	J	0.000150	0.00500	35
Ethylbenzene	0.000140	J	0.000110	0.000500	Ľ
Total Xylene	U		0.000460	0.00150	4
TPH (GC/FID) Low Fraction	U		0.0217	0.100	Ċ
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-120	5
(S) a,a,a-Trifluorotoluene(PID)	98.7			72.0-128	

Laboratory Control Sample (LCS)

(LCS) R3367481-1 12/11/18	12:14				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.0500	0.0486	97.2	76.0-121	
Toluene	0.0500	0.0492	98.5	80.0-120	
Ethylbenzene	0.0500	0.0490	97.9	80.0-124	
Total Xylene	0.150	0.145	96.7	37.0-160	
(S) a,a,a-Trifluorotoluene(FID)			101	77.0-120	
(S) a,a,a-Trifluorotoluene(PID)			98.5	72.0-128	

Laboratory Control Sample (LCS)

(LCS) R3367481-2 12/11/1	8 12:57				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.44	98.9	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			90.9	77.0-120	
(S) a,a,a-Trifluorotoluene(PID)			106	72.0-128	

SDG: L1050751 DATE/TIME: 12/13/18 17:27

PAGE: 22 of 33

Res cire 2 10/6/2021 1:38:04 PM

Volatile Organic Compounds (GC) by Method 8015/8021

QUALITY CONTROL SUMMARY

L1050751-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1050751-01 12/11/18	17:52 • (MS) R33	367481-4 12/12	/18 07:50 • (M	SD) R3367481-9	5 12/12/18 08:1	1						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.0500	0.268	1.24	1.14	77.5	70.0	25	10.0-155			7.95	32
Toluene	0.0500	0.921	1.98	1.88	84.6	76.3	25	10.0-160			5.36	34
Ethylbenzene	0.0500	0.0993	1.14	1.04	83.2	75.5	25	10.0-160			8.77	32
Total Xylene	0.150	1.03	4.07	3.79	81.0	73.6	25	10.0-160			7.12	32
(S) a,a,a-Trifluorotoluene(FID)					103	102		77.0-120				
(S) a,a,a-Trifluorotoluene(PID)					99.9	99.2		72.0-128				

L1050751-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1050751-01 12/11/18	17:52 • (MS) R3	367481-6 12/12	/18 08:32 • (N	ISD) R3367481-	7 12/12/18 08:5	53						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	5.50	11.2	104	114	67.5	74.8	25	10.0-151			9.21	28
(S) a,a,a-Trifluorotoluene(FID)					96.8	96.5		77.0-120				
(S) a,a,a-Trifluorotoluene(PID)					104	104		72.0-128				

DATE/TIME: 12/13/18 17:27 PAGE: 23 of 33

³Qc GI AI

Ср

Τс

Ss

Cn

Sr

Sc

QUALITY CONTROL SUMMARY

L1050751-05,11

(MB) R3367482-3 12/11/18	3 13:39			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000120	0.000500
Toluene	0.000778	J	0.000150	0.00500
Ethylbenzene	0.000140	J	0.000110	0.000500
Total Xylene	U		0.000460	0.00150
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-120
(S) a,a,a-Trifluorotoluene(PID)	98.7			72.0-128

Laboratory Control Sample (LCS)

Laboratory Contro	n Sample (L	_5)			7	7
(LCS) R3367482-1 12/11/18	3 12:14					GI
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%	8	⁸ Al
Benzene	0.0500	0.0486	97.2	76.0-121		
Toluene	0.0500	0.0492	98.5	80.0-120		°Sc
Ethylbenzene	0.0500	0.0490	97.9	80.0-124		SC
Total Xylene	0.150	0.145	96.7	37.0-160		
(S) a,a,a-Trifluorotoluene(FID)			101	77.0-120		
(S) a,a,a-Trifluorotoluene(PID)			98.5	72.0-128		

Laboratory Control Sample (LCS)

(LCS) R3367482-2 12/11/1	18 12:57				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.44	98.9	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			90.9	77.0-120	
(S) a,a,a-Trifluorotoluene(PID)			106	72.0-128	

DATE/TIME: 12/13/18 17:27 Ср

⁶Qc

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) R3367641-3 12/12/18	3 01:47			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	0.000151	J	0.000120	0.000500
Toluene	U		0.000150	0.00500
Ethylbenzene	0.000112	J	0.000110	0.000500
Total Xylene	U		0.000460	0.00150
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	93.5			77.0-120
(S) a,a,a-Trifluorotoluene(PID)	104			72.0-128

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

LCS) R3367641-1 12/12/18 00:44 • (LCSD) R3367641-2 12/12/18 01:05										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) Low Fraction	5.50	5.72	5.28	104	96.0	72.0-127			7.96	20
(S) a,a,a-Trifluorotoluene(FID)				109	107	77.0-120				
(S) a,a,a-Trifluorotoluene(PID)				117	116	72.0-128				

Laboratory Control Sample (LCS)

(LCS) R3367641-4 12/12/18 04:37								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/kg	mg/kg	%	%				
Benzene	0.0500	0.0457	91.5	76.0-121				
Toluene	0.0500	0.0472	94.4	80.0-120				
Ethylbenzene	0.0500	0.0476	95.1	80.0-124				
Total Xylene	0.150	0.139	92.9	37.0-160				
(S) a,a,a-Trifluorotoluene(FID)			93.3	77.0-120				
(S) a,a,a-Trifluorotoluene(PID)			102	72.0-128				

SDG: L1050751 DATE/TIME: 12/13/18 17:27 PAGE: 25 of 33

QUALITY CONTROL SUMMARY L1050751-12

Тс

Ss

Cn

Sr

[´]Qc

GI

AI

Sc

Method Blank (MB)

(MB) R3368054-5 12/13/	18 13:34			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	0.000139	J	0.000120	0.000500
Toluene	0.000321	J	0.000150	0.00500
Ethylbenzene	0.000220	J	0.000110	0.000500
Total Xylene	U		0.000460	0.00150
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	93.9			77.0-120
(S) a,a,a-Trifluorotoluene(PID)	105			72.0-128

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

LCS) R3368054-1 12/13/18 10:59 • (LCSD) R3368054-2 12/13/18 11:20										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Benzene	0.0500	0.0454	0.0443	90.8	88.6	76.0-121			2.37	20
Toluene	0.0500	0.0474	0.0456	94.8	91.2	80.0-120			3.77	20
Ethylbenzene	0.0500	0.0482	0.0455	96.5	90.9	80.0-124			5.94	20
Total Xylene	0.150	0.142	0.133	94.5	88.8	37.0-160			6.25	20
(S) a,a,a-Trifluorotoluene(FID)				93.4	93.6	77.0-120				
(S) a,a,a-Trifluorotoluene(PID)				103	102	72.0-128				

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3368054-3 12/13/18 11:41 • (LCSD) R3368054-4 12/13/18 12:02										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) Low Fraction	5.50	5.29	4.95	96.1	90.0	72.0-127			6.52	20
(S) a,a,a-Trifluorotoluene(FID)				107	106	77.0-120				
(S) a,a,a-Trifluorotoluene(PID)				116	115	72.0-128				

SDG: L1050751 DATE/TIME: 12/13/18 17:27

26 of 33

PAGE:

Reg & adby 8 CD: 30/6/2021 1:38:04 PM

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY L1050751-01,02,03,04,05,06,07,08,09,10,11

⁺Cn

Sr

Qc

GI

Method Blank (MB)

)				
MB) R3367035-1 12/10/18	3 18:45				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) High Fraction	U		0.769	4.00	
(S) o-Terphenyl	74.5			18.0-148	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3367035-2 12/10/18 18:57 • (LCSD) R3367035-3 12/10/18 19:09										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) High Fraction	50.0	35.0	44.0	70.0	88.0	50.0-150		<u>J3</u>	22.8	20
(S) o-Terphenyl				86.3	109	18.0-148				

L1050751-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1050751-01 12/10/18	20:13 • (MS) R3	3367035-4 12/	10/18 20:25 • (MSD) R336703	5-5 12/10/18 2	20:50							⁸ Al
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	9
TPH (GC/FID) High Fraction	50.0	46.1	129	113	166	134	1	50.0-150	<u>J5</u>		13.2	20	SC
(S) o-Terphenyl					86.5	86.0		18.0-148					

DATE/TIME: 12/13/18 17:27 PAGE: 27 of 33

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

)				
(MB) R3367780-1 12/13/18	01:35				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) High Fraction	U		0.769	4.00	
(S) o-Terphenyl	81.4			18.0-148	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3367780-2 12/13/	18 01:47 • (LCSD) R3367780-3	3 12/13/18 01:58								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
TPH (GC/FID) High Fraction	25.1	24.4	24.8	97.2	98.8	50.0-150			1.63	20	
(S) o-Terphenyl				77.8	79.7	18.0-148					

DATE/TIME: 12/13/18 17:27 PAGE: 28 of 33

Τс

Ss

Cn

Sr

*Q*c

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

Released to	Imaging: 9/22/2022	2:16:33	PM
	HilCorp-Farmington, NM		

Received by OCD: 10/6/2021 1:38:04 PM CCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	
Alaska	17-026	
Arizona	AZ0612	
Arkansas	88-0469	
California	2932	
Colorado	TN00003	
Connecticut	PH-0197	
Florida	E87487	
Georgia	NELAP	
Georgia ¹	923	
Idaho	TN00003	
Illinois	200008	
Indiana	C-TN-01	
lowa	364	
Kansas	E-10277	
Kentucky ¹⁶	90010	
Kentucky ²	16	
Louisiana	AI30792	
Louisiana ¹	LA180010	
Maine	TN0002	
Maryland	324	
Massachusetts	M-TN003	
Michigan	9958	
Minnesota	047-999-395	
Mississippi	TN00003	
Missouri	340	
Montana	CERT0086	

Vebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Dregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
/ermont	VT2006
/irginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 9/22/2022 2:16:33 PM HilCorp-Farmington, NM

PROJECT:

SDG: L1050751 DATE/TIME: 12/13/18 17:27

Τс Ss Cn Sr Qc Gl AI Sc

11			Billing Inform	nation:					Analysis	/ Containe	er / Pres	ervative	11-1	- Indi	in of Custody	Page 195
			100008 5 000000	corp - CALL L	INDSAY	Pres Chk								1	X E	SC.
port to: ndsay Dumas			Email To: Idumas@	hilcorp.com		-								Mo Pho Pho	65 Lebanon Rd unt Juliet, TN 3713 ane: 615-758-5858 ane: 800-767-5859	35413
oject escription: Hilcorp San Juan 28	-6 #31		1	City/State Collected: New	Mexico	8		15						Fax	:: 615-758-5859	0.29 1079
none: 832-839-4585	Client Project I			Lab Project #			ALL ALL	0) - 801						Ć	F117	
ollected by (print): orwin Lameman	Site/Facility ID	#		P.O. #				TPH (GRO/DRO/MRO)						- 10	cctnum: emplate:	A State
ollected by (signature):	Rush? (L Same Da		Day	Quote #	the Manuford	_	8021	D/DR(relogin: SR:	
nmediately YX	Next Da Two Day Three D	10 0	y (Rad Only) Jay (Rad Only)	Date Res Dec 10, 201	ults Needed B	No. of	1	H (GR(100	B: hipped Via:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	BTEX	in case of the second						_	Remarks	Sample # (lab only)
B-4R @ 8 ft	Grab	SS	8	12/5/18	11:19	2	×	X						-		02
B-4R @ 12 ft	Grab	SS	12	12/5/18	11:16	2	×	X				1005				03
B-5R @ 8.5 ft	Grab	SS	8.5	12/5/18	10:32	2	×	X			-					OL
B-5R @ 12 ft	Grab	SS	12	12/5/18	10:19	2	×	×						-		85
B-6R @ 8 ft	Grab	SS	8	12/5/18	12:50	2	×	×	1		-					01
B-6R @ 12 ft	Grab	SS	12	12/5/18	12:46	2	×	×			-					6
B-7R @ 8 ft	Grab	SS	8	12/5/18	11:40	2	1000	×			-					0
6B-7R @ 12 ft	Comp	SS	12	12/5/18	11:45	2	10000	X		-	-		R	D SC	REEN: <0	
5B-8R @ 4 ft	Comp	SS	8	12/5/18	13:05	2	-	20 000 1 m			-					1
5B-8R @ 12 ft	Grab	SS	12	12/5/18	13:18	2	X	X		the second				Samp	le Receipt	Checklist
Matrix: iS - Soil AIR - Air F - Filter SW - Groundwater B - Bioassay WW - WasteWater	Remarks: Email res	186 ults to El	2 izabeth M	cNally - emcr	nally@anima	senvir	onme	ental.con	1	pH Flow		emp	COC S Bottl Corre	Seal Pr Signed/ les ari sct bot	Accurate: Accurate: tive intact tles used: volume sen	T NKKKI
WW - Wastewater DW - Drinking Water OT - Other	Samples of	urned via: FedExC	Courier		Tracking# 4			3422	- 5	Blank Re		Yes/@	1000	Sero He	It Applic sadspace: on Correct/	able y
Relinquished by : (Signature)		Date:	-18	Time: 15:00	Received by: (Si	d						HCL/MeoH TBR Bottles Received:	If pre	servatio	in required by	Login: Date/Time
Relinquished by : (Signature)		Date:		Time:	Received by: (Si	gnature)	X		те:	mp: 1+.4=0	5 AM	24=40	20	il and		Condition
Relinquished by : (Signature)		Date:		Time:	Received for lat	Lby: (Sig	nature)	>	Da	te:	8	Time: 9100	Hold			NOF 10

			Billing Infor	mation:			_		Ana	alysis / C	Container	/ Preservat	ive			Chain of Custody	Page 196
			Bill to Hi DUMAS	ilcorp - CALL	LINDSAY	Pres Chk											SC
Report to:			Email To: Idumas@hilcorp.com													12065 Lebanon Rd Mount Juliet, TN 37	
Lindsay Dumas Project			laumase	G - 70		- 21-12	127		11							Phone: 615-758-585 Phone: 800-767-585	
Project. Description: Hilcorp San Juan 2	28-6 #31			City/State Collected: Net	w Mexico			5		- 1		1.11		The state		Fax: 615-758-5859	CARCH
Phone: 832-839-4585 Fax:	Client Project	#		Lab Project #				0) - 801								L#O Table#	60761
Collected by (print): Corwin Lameman	Site/Facility II) #		P.O. #				/MRC								Acctnum:	
Collected by (signature):	Same D	ab MUST 8e	Day	Quote #	with Needed	-	8021	(GRO/DRO/MRO)								Template: Prelogin: TSR:	
Immediately Packed on Ice N YX	Two Da	y5 Da y10 D ay	ay (Rad Only)	Dec 10, 201	sults Needed	No. of	1.	I (GR(PB: Shipped Via:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	BTEX	TPH		- 1						Remarks	Sample # (lab only)
SB-24 @ 8 ft	Grab	SS	8	12/5/18	13:48	2	×	X	SIL S		șinșini,						- []
SB-24 @ 12 ft	Grab	SS	12	12/5/18	13:46	2	×	X				-					17
																	E
							210				開発式	TIT					
												100					
							121					1				1.	
						-								100000	_		
						1					2	-	-	institute a	-		
					_	-					1.12	-	-		DAD	CODEEN	0 EmDhe
						1	100					1000					<0.5 mP.hr
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks: Email resu	2 06 ults to Eliz	abeth Mo	Nally - emcr	ally@animas	envir	onme	ntal.co	n	pH Flow		Temp	2	Bott1	ligned, les art	Accurate: rive intact:	hecklist
DW - Drinking Water OT - Other	Samples refu	rned via: edExCo	urier		Tracking#	14	30	34	22	4	83	86	4	Correct bottles used: Sufficient volume sent: <u>If Applicable</u> VOA Eero Headspace: <u>Y</u>			
Relinquished by : (Signature)	<	Date: 12-0	1-18	Time: 15:00	Received by: (Sigr	nature)				Trip Blai	nk Receiv		No) /MeoH			on Correct/Cl	
Relinquished by : (Signature)		Date:		Time:	Received by: (Sig	nature)				Temp: 0.1+.41	°(:05%	Bottles R	=40	alf pres	servatio	n required by Lo	ogin: Date/Time
Relinquished by : (Signature)		Date:		Time:	Received for lab-	by: (Sign	ature)	>		Date:	117	Time:	-0	Hold:			NOF OK

Pace Analytical Mational Center for Testing & Innovation

Received by OCD: 10/6/2021 1:38:04

PM

Login #: L1050751	Client: HILCORANM	Date: 12/7/18	Evaluated by: Jeremy	
Non-Conformance (ch	heck applicable items)			1000
Sample Integrity	Chain of Custody Clarificat	ion		and

	Chain of Custody Clarification	
Parameter(s) past holding time	x Login Clarification Needed	If Broken Container:
Temperature not in range	Chain of custody is incomplete	Insufficient packing material around container
Improper container type	Please specify Metals requested.	Insufficient packing material inside cooler
pH not in range.	Please specify TCLP requested.	Improper handling by carrier (FedEx / UPS / Courie
Insufficient sample volume.	Received additional samples not listed on coc.	Sample was frozen
Sample is biphasic.	Sample ids on containers do not match ids on coc	Container lid not intact
Vials received with headspace.	Trip Blank not received.	If no Chain of Custody:
Broken container	Client did not "X" analysis.	Received by:
Broken container:	Chain of Custody is missing	Date/Time:
Sufficient sample remains		Temp./Cont. Rec./pH:
		Carrier:
		Tracking#

Login Comments: For SB-24 @ 12 FT received 2 different colored samples on the lighter looking sample the Out the depth and time and changed them. See pictures for reference. client marked

Client informed by:	Call	Email x	Voice Mail	Date:	Time:	
'SR Initials: 05	Client Cont	act: Lindsav Du	mas			1

Client confirmed both containers are for SB-24 @ 12ft. Please continue as received.

Page 197 of 337

Soil Vapor Extraction Systems

Geotech SVE

The Geotech Soil Vapor Extraction system is designed to remove hazardous vapors from the subsurface by drawing air through contaminated soil, and volatilizing adsorbed phase pollutants. Geotech SVE systems are ideal for well point or trench type vapor barriers.

FEATURES

- Compact, durable design
- Skid Mounted with moisture separator drum/mist eliminator
 - 37 gallon (140 liters) liquid holding capacity
 - Hi Water level switch
 - Hi Vacuum switch
- Continuous reliable operation
- Many blower types are available to meet your requirements:
 - Regenerative
 - Rotary Claw
 - Positive Displacement (Rotary Lobe)
 - Rotary Vane
 - Centrifugal Fan
- Thermal overload protection
- Influent dilution air valve
- Two vacuum gauges
- Optional NEC code available (Class 1, Div. 1, or Div. 2)
- Non-explosive units are available

OPERATION

The Geotech SVE system works by pulling air through soil that has been saturated with hydrocarbons or other volatile organic compounds, causing these compounds to volatilize. The vapors are then discharged to the atmosphere, through carbon polishing or vapor oxidation.

These systems are deployed with a moisture separator and mist eliminator filter to protect blower and end treatment from corrosion particulates and debris.

Every Geotech SVE system is factory assembled and fully tested for function, performance, and safety to meet the design conditions of each site application.

Regenerative Blower SVE inside optional hazmat enclosure

Regenerative Blower SVE

CALL GEOTECH TODAY (800) 833-7958

Geotech Environmental Equipment, Inc. 2650 East 40th Avenue • Denver, Colorado 80205 (303) 320-4764 • (800) 833-7958 • FAX (303) 322-7242 email: sales@geotechenv.com website: www.geotechenv.com

<u>geotech</u>

Soil Vapor Extraction Systems

Regenerative Type Blower Soil Vapor Extraction System Selection Curve 1 through 10 HP

Note: Higher flow and vacuum versions are available.

SPECIFICATIONS

Geotech SVE

Applications:	Well point or trench type vapor barriers
Product Recovery:	Volatile Organic Compounds (VOCs)
Dimensions:	40" L x 48" W x 65" H (101.6 cm L x 121.9 cm W x 165.1 cm)
Options:	Geotech Environmental Control Module Telemetry package Influent or effluent silencer Effluent sample port Effluent temperature gauge Local CFM display Auto-Drain (this option features automatic water level control inside the moisture separator with an effluent transfer pump)

Power Requirements:

НР	Voltage	Phase	CFM/CMM	Inches H ₂ O Vacuum
1	115/230	1	0-95/0-2.7	50"
1.5	230	1	0-115/0-3.3	58"
2	230	1	80-145/2.3-4.1	55"
2	230	3	80-145/2.3-4.1	55"
3	230	1 or 3	30-185/.85-5.2	72"
5	230	3	85-280/2.4-7.9	82"
7.5	230	3	80-325/2.3-9.2	93"
10	230	3	125-380/3.5-10.8	93"

CALL GEOTECH TODAY (800) 833-7958

Geotech Environmental Equipment, Inc. 2650 East 40th Avenue • Denver, Colorado 80205 (303) 320-4764 • (800) 833-7958 • FAX (303) 322-7242 email: sales@geotechenv.com website: www.geotechenv.com

Regenerative Blower SVE with optional Geotech Environmental Control Module

RE: A 3 HP Soil Vapor Extraction System TM

As the premier supplier of environmental sampling, monitoring, remediation equipment and associated field supplies since 1978, Geotech Environmental Equipment is pleased to provide you with this quotation for equipment and supplies:

Geotech will supply a 3 HP ORS, XP Soil Vapor Extraction System with the following features:

- Ametek Rotron model EN656M5XL rated for Hazardous Location Class I, Group D, Class II Group F&G, Aluminum fan regenerative blower capable of Approx 100 ICFM (+/- 10%) - 50 inches W.C. Blower motor will be XP, 230 volt, 3HP, single phase with thermal overload protection.
- Explosion proof power disconnect on/off switch (NEMA 7 Enclosure)
- Manual dilution air valve
- Two vacuum gauges.
- Duotec Model H3A-1SL, Vacuum switch to protect the blower from overheating by detecting a blockage in the line. Rated for Hazardous locations, Class I Group B,C & D and Class II Group E,F& G
- Moisture Separator capable of removing vapor from an air flow of up to 350

SCFM with the following features:

- * Integral Mist Eliminator/Particulate Filter
- * 37 gallon capacity, steel canister with epoxy coated interior.
- * High efficiency cyclonic separation.
- * Inherent safe collection design.

* Outfitted with drain for convenient removal of fluids.

* W.E. Anderson, Flotect Model L-6, high liquid level switch system that will shut down the blower to protect the blower from flooding when the moisture separator is full. Rated for Hazardous location, Class I Group A, B, C & D, Class II Group E, F & G.

• Mounted and wired in a metal Haz Mat Station, with lockable, hinged lid & doors. Welded steel construction, 66 gallon sump meets EPA &n UFC requirements. Side vents and added Roof Vent for passive ventilation. Coated with a durable, corrosion and weather resistant finished. Four way "forklift able"

ENCLOSURE B -ANALYTICAL LABORATORY REPORTS

Received by OCD: 10/6/2021 1:38:04 PM

ANALYTICAL REPORT

HilCorp-Farmington, NM

Sample Delivery Group:	L1095085
Samples Received:	05/03/2019
Project Number:	HILCORP SAN JUAN 28-
Description:	Hilcorp San Juan 28-6 #31
Site:	HILCORP SAN JUAN 28-6 #31
Report To:	Lindsay Dumas
	382 Road 3100
	Aztec, NM 87401

Entire Report Reviewed By:

Dapline R Richards

Daphne Richards Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

PROJECT: HILCORP SAN JUAN 28SDG: L1095085 DATE/TIME: 05/15/19 17:37 PAGE: 1 of 26 Тс

Ss

Cn

Śr

*Q*c

Gl

ΆI

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
SB-25 @ 10FT L1095085-01	6
SB-25 @ 20FT L1095085-02	7
SB-25 @ 30FT L1095085-03	8
SB-25 @ 35FT L1095085-04	9
SB-26 @ 10FT L1095085-05	10
SB-26 @ 20FT L1095085-06	11
SB-26 @ 35FT L1095085-07	12
SB-27 @ 15FT L1095085-08	13
SB-27 @ 30FT L1095085-09	14
SB-28 @ 10FT L1095085-10	15
SB-28 @ 30FT L1095085-11	16
SB-29 @ 10FT L1095085-12	17
SB-29 @ 20FT L1095085-13	18
SB-29 @ 35FT L1095085-14	19
Qc: Quality Control Summary	20
Volatile Organic Compounds (GC) by Method 8015/8021	20
Semi-Volatile Organic Compounds (GC) by Method 8015	22
GI: Glossary of Terms	23
Al: Accreditations & Locations	24
Sc: Sample Chain of Custody	25

Released to Imaging: 22/2022 2:16:33 PM HilCorp-Farmington, NM

PROJECT: HILCORP SAN JUAN 28-

SDG: L1095085

DATE/TIME: 05/15/19 17:37

PAGE: 2 of 26 Received by OCD: 10/6/2021 1:38:04 PM

SAMPLE SUMMARY

ONE LAB. NAPage 205 of 37

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

	SAMPLES		IARI		ONLI	
SB-25@10FT L1095085-01 Solid			Collected by Corwin Lameman	Collected date/time 05/01/19 12:27	Received da 05/03/19 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method 8015/8021	WG1276442	1000	05/03/19 21:23	05/05/19 21:37	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1276358	1	05/05/19 17:35	05/06/19 01:43	KME	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1276358	5	05/05/19 17:35	05/06/19 08:58	KME	Mt. Juliet, TN
SB-25 @ 20FT L1095085-02 Solid			Collected by Corwin Lameman	Collected date/time 05/01/19 12:39	Received da 05/03/19 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method 8015/8021	WG1276442	500	05/03/19 21:23	05/05/19 22:02	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1276358	1	05/05/19 17:35	05/06/19 02:00	KME	Mt. Juliet, TN
SB-25@30FT L1095085-03 Solid			Collected by Corwin Lameman	Collected date/time 05/01/19 12:53	Received da 05/03/19 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method 8015/8021	WG1276603	25	05/03/19 21:23	05/06/19 15:16	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1276358	1	05/05/19 17:35	05/06/19 02:14	KME	Mt. Juliet, TN
SB-25@35FT L1095085-04 Solid			Collected by Corwin Lameman	Collected date/time 05/01/19 13:01	Received da 05/03/19 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method 8015/8021	WG1276603	1	05/03/19 21:23	05/06/19 14:01	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1276358	1	05/05/19 17:35	05/06/19 02:30	KME	Mt. Juliet, TN
SB-26 @ 10FT L1095085-05 Solid			Collected by Corwin Lameman	Collected date/time 04/30/19 15:08	Received da 05/03/19 08	
Method	Batch	Dilution	Proparation	Applycic	Applyct	Location
wethod	Datch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method 8015/8021	WG1276603	10000	05/03/19 21:23	05/06/19 15:40	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8021	WG1276442	500	05/03/19 21:23	05/05/19 23:13	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1276358	1	05/05/19 17:35	05/06/19 02:47	KME	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1276358	25	05/05/19 17:35	05/06/19 09:28	KME	Mt. Juliet, TN
			Collected by	Collected date/time 04/30/19 15:29	Received da 05/03/19 08	
SB-26 @ 20FT L1095085-06 Solid	Datab	Dilution	Corwin Lameman			
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method 8015/8021	WG1276442	1000	05/03/19 21:23	05/05/19 23:37	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8021	WG1276603	10000	05/03/19 21:23	05/06/19 16:04	BMB	Mt. Juliet, TN
			05/05/19 17:35	05/06/19 03:03	KME	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1276358	1				· · · · -
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1276358 WG1276358	1 5	05/05/19 17:35	05/06/19 09:12	KME	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015 Semi-Volatile Organic Compounds (GC) by Method 8015			05/05/19 17:35 Collected by	05/06/19 09:12 Collected date/time	Received da	ite/time
Semi-Volatile Organic Compounds (GC) by Method 8015 Semi-Volatile Organic Compounds (GC) by Method 8015 SB-26 @ 35FT L1095085-07 Solid	WG1276358	5	05/05/19 17:35 Collected by Corwin Lameman	05/06/19 09:12 Collected date/time 04/30/19 16:11	Received da 05/03/19 08	ite/time :45
Semi-Volatile Organic Compounds (GC) by Method 8015 Semi-Volatile Organic Compounds (GC) by Method 8015 SB-26 @ 35FT L1095085-07 Solid Method			05/05/19 17:35 Collected by	05/06/19 09:12 Collected date/time	Received da	ite/time
Semi-Volatile Organic Compounds (GC) by Method 8015 Semi-Volatile Organic Compounds (GC) by Method 8015 SB-26 @ 35FT L1095085-07 Solid	WG1276358	5	05/05/19 17:35 Collected by Corwin Lameman Preparation	05/06/19 09:12 Collected date/time 04/30/19 16:11 Analysis	Received da 05/03/19 08	:45

Released to Imaging: 22/2022 2:16:33 PM HilCorp-Farmington, NM PROJECT: HILCORP SAN JUAN 28SDG: L1095085 DATE/TIME: 05/15/19 17:37

PAGE: 3 of 26 Received by OCD: 10/6/2021 1:38:04 PM

SAMPLE SUMMARY

ONE LAB. NAPage 206 of 37

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

SB-27@15FT L1095085-08 Solid			Collected by Corwin Lameman	Collected date/time 05/01/19 14:14	Received da 05/03/19 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method 8015/8021 Semi-Volatile Organic Compounds (GC) by Method 8015	WG1276603 WG1276358	250 1	05/03/19 21:23 05/05/19 17:35	05/06/19 16:27 05/06/19 03:35	BMB KME	Mt. Juliet, TN Mt. Juliet, TN
SB-27 @ 30FT L1095085-09 Solid			Collected by Corwin Lameman	Collected date/time 05/01/19 14:36	Received da 05/03/19 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method 8015/8021 Semi-Volatile Organic Compounds (GC) by Method 8015	WG1276603 WG1276358	25 1	05/03/19 21:23 05/05/19 17:35	05/06/19 16:51 05/06/19 03:52	BMB KME	Mt. Juliet, TN Mt. Juliet, TN
SB-28@10FT L1095085-10 Solid			Collected by Corwin Lameman	Collected date/time 05/01/19 08:05	Received da 05/03/19 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method 8015/8021 Semi-Volatile Organic Compounds (GC) by Method 8015	WG1276442 WG1276358	500 1	05/03/19 21:23 05/05/19 17:35	05/06/19 00:49 05/06/19 04:08	ACG KME	Mt. Juliet, TN Mt. Juliet, TN
SB-28 @ 30FT L1095085-11 Solid			Collected by Corwin Lameman	Collected date/time 05/01/19 08:50	Received da 05/03/19 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method 8015/8021 Semi-Volatile Organic Compounds (GC) by Method 8015	WG1276442 WG1276358	1 1	05/03/19 21:23 05/05/19 17:35	05/05/19 20:50 05/06/19 04:24	ACG KME	Mt. Juliet, TN Mt. Juliet, TN
SB-29@10FT L1095085-12 Solid			Collected by Corwin Lameman	Collected date/time 05/01/19 10:06	Received da 05/03/19 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method 8015/8021 Semi-Volatile Organic Compounds (GC) by Method 8015	WG1276442 WG1276358	200 1	05/03/19 21:23 05/05/19 17:35	05/06/19 01:13 05/06/19 05:12	ACG KME	Mt. Juliet, TN Mt. Juliet, TN
SB-29@20FT L1095085-13 Solid			Collected by Corwin Lameman	Collected date/time 05/01/19 10:20	Received da 05/03/19 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method 8015/8021 Semi-Volatile Organic Compounds (GC) by Method 8015	WG1276603 WG1276358	1000 1	05/03/19 21:23 05/05/19 17:35	05/06/19 17:15 05/06/19 05:27	BMB KME	Mt. Juliet, TN Mt. Juliet, TN
SB-29@35FT L1095085-14 Solid			Collected by Corwin Lameman	Collected date/time 05/01/19 10:45	Received da 05/03/19 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method 8015/8021 Semi-Volatile Organic Compounds (GC) by Method 8015	WG1276442 WG1276358	1 1	05/03/19 21:23 05/05/19 17:35	05/05/19 21:14 05/06/19 05:44	ACG KME	Mt. Juliet, TN Mt. Juliet, TN

PROJECT: HILCORP SAN JUAN 28SDG: L1095085 DATE/TIME: 05/15/19 17:37

ie: :37 PAGE: 4 of 26

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Japline R Richards

Daphne Richards Project Manager

DATE/TIME: 05/15/19 17:37 PAGE:

5 of 26

1

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
nalyte	mg/kg		mg/kg		date / time		
nzene	19.2		0.500	1000	05/05/2019 21:37	WG1276442	
oluene	99.0		5.00	1000	05/05/2019 21:37	WG1276442	
hylbenzene	21.6		0.500	1000	05/05/2019 21:37	WG1276442	
otal Xylene	262		1.50	1000	05/05/2019 21:37	WG1276442	
PH (GC/FID) Low Fraction	6970		100	1000	05/05/2019 21:37	WG1276442	
(S) a,a,a-Trifluorotoluene(FID)	94.4		77.0-120		05/05/2019 21:37	WG1276442	
(S) a,a,a-Trifluorotoluene(PID)	100		72.0-128		05/05/2019 21:37	WG1276442	

<u> </u>	· · · · · · · · · · · · · · · · · · ·						
	Result	Qualifier	RDL	Dilution	Analysis	Batch	⁶ Qc
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	324		20.0	5	05/06/2019 08:58	WG1276358	7
C28-C40 Oil Range	ND		4.00	1	05/06/2019 01:43	WG1276358	GI
(S) o-Terphenyl	89.3		18.0-148		05/06/2019 08:58	WG1276358	
(S) o-Terphenyl	70.7		18.0-148		05/06/2019 01:43	WG1276358	8

SAMPLE RESULTS - 02 L1095085

1

ΆI

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	2.43		0.250	500	05/05/2019 22:02	WG1276442
Toluene	28.3		2.50	500	05/05/2019 22:02	WG1276442
Ethylbenzene	9.77		0.250	500	05/05/2019 22:02	WG1276442
Total Xylene	110		0.750	500	05/05/2019 22:02	WG1276442
TPH (GC/FID) Low Fraction	2550		50.0	500	05/05/2019 22:02	WG1276442
(S) a,a,a-Trifluorotoluene(FID)	96.3		77.0-120		05/05/2019 22:02	WG1276442
(S) a,a,a-Trifluorotoluene(PID)	101		72.0-128		05/05/2019 22:02	WG1276442

	Result	Qualifier	RDL	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg		date / time		Qc
C10-C28 Diesel Range	293		4.00	1	05/06/2019 02:00	WG1276358	7
C28-C40 Oil Range	ND		4.00	1	05/06/2019 02:00	WG1276358	GI
(S) o-Terphenyl	43.8		18.0-148		05/06/2019 02:00	WG1276358	

SAMPLE RESULTS - 03 L1095085

1

Å

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	ND		0.0125	25	05/06/2019 15:16	WG1276603
Toluene	ND		0.125	25	05/06/2019 15:16	WG1276603
Ethylbenzene	ND		0.0125	25	05/06/2019 15:16	WG1276603
Total Xylene	0.238		0.0375	25	05/06/2019 15:16	WG1276603
TPH (GC/FID) Low Fraction	8.75	<u>J3</u>	2.50	25	05/06/2019 15:16	WG1276603
(S) a,a,a-Trifluorotoluene(FID)	101		77.0-120		05/06/2019 15:16	WG1276603
(S) a,a,a-Trifluorotoluene(PID)	102		72.0-128		05/06/2019 15:16	WG1276603

Semi-Volatile Orga	nic Compoun	ds (GC) by	Method 8	8015			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		QC
C10-C28 Diesel Range	28.4		4.00	1	05/06/2019 02:14	WG1276358	7
C28-C40 Oil Range	ND		4.00	1	05/06/2019 02:14	WG1276358	GI
(S) o-Terphenyl	73.2		18.0-148		05/06/2019 02:14	WG1276358	

1

A

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	0.000928		0.000500	1	05/06/2019 14:01	WG1276603
Toluene	ND		0.00500	1	05/06/2019 14:01	WG1276603
Ethylbenzene	0.0123		0.000500	1	05/06/2019 14:01	WG1276603
Total Xylene	0.0176		0.00150	1	05/06/2019 14:01	WG1276603
TPH (GC/FID) Low Fraction	1.49	<u>J3</u>	0.100	1	05/06/2019 14:01	WG1276603
(S) a,a,a-Trifluorotoluene(FID)	102		77.0-120		05/06/2019 14:01	WG1276603
(S) a,a,a-Trifluorotoluene(PID)	106		72.0-128		05/06/2019 14:01	WG1276603

	Result	Qualifier	RDL	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg		date / time		Q
C10-C28 Diesel Range	ND		4.00	1	05/06/2019 02:30	WG1276358	7
C28-C40 Oil Range	ND		4.00	1	05/06/2019 02:30	WG1276358	G
(S) o-Terphenyl	82.9		18.0-148		05/06/2019 02:30	WG1276358	

°Qc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	79.1		0.250	500	05/05/2019 23:13	WG1276442
Toluene	565		50.0	10000	05/06/2019 15:40	WG1276603
Ethylbenzene	68.4		0.250	500	05/05/2019 23:13	WG1276442
Total Xylene	869		15.0	10000	05/06/2019 15:40	WG1276603
TPH (GC/FID) Low Fraction	19900	<u>J3</u>	1000	10000	05/06/2019 15:40	WG1276603
(S) a,a,a-Trifluorotoluene(FID)	88.5		77.0-120		05/05/2019 23:13	WG1276442
(S) a,a,a-Trifluorotoluene(FID)	95.9		77.0-120		05/06/2019 15:40	WG1276603
(S) a,a,a-Trifluorotoluene(PID)	98.3		72.0-128		05/05/2019 23:13	WG1276442
(S) a,a,a-Trifluorotoluene(PID)	102		72.0-128		05/06/2019 15:40	WG1276603

	Result	Qualifier	RDL	Dilution	Analysis	Batch	7
Analyte	mg/kg		mg/kg		date / time		[′] Gl
C10-C28 Diesel Range	1710		100	25	05/06/2019 09:28	WG1276358	
C28-C40 Oil Range	9.82		4.00	1	05/06/2019 02:47	WG1276358	8
(S) o-Terphenyl	89.0	<u>J7</u>	18.0-148		05/06/2019 09:28	WG1276358	A
(S) o-Terphenyl	68.3		18.0-148		05/06/2019 02:47	WG1276358	9
(S) 0-Terprienyl	68.3		18.0-148		05/06/2019 02:47	<u>WG1270358</u>	

°Qc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	48.1		0.500	1000	05/05/2019 23:37	WG1276442
Toluene	348		50.0	10000	05/06/2019 16:04	WG1276603
Ethylbenzene	30.0		0.500	1000	05/05/2019 23:37	WG1276442
Total Xylene	335		1.50	1000	05/05/2019 23:37	WG1276442
TPH (GC/FID) Low Fraction	8750		100	1000	05/05/2019 23:37	WG1276442
(S) a,a,a-Trifluorotoluene(FID)	87.6		77.0-120		05/05/2019 23:37	WG1276442
(S) a,a,a-Trifluorotoluene(FID)	96.9		77.0-120		05/06/2019 16:04	WG1276603
(S) a,a,a-Trifluorotoluene(PID)	97.0		72.0-128		05/05/2019 23:37	WG1276442
(S) a,a,a-Trifluorotoluene(PID)	102		72.0-128		05/06/2019 16:04	WG1276603

	Result	Qualifier	RDL	Dilution	Analysis	Batch	7
Analyte	mg/kg		mg/kg		date / time		΄GΙ
C10-C28 Diesel Range	421		20.0	5	05/06/2019 09:12	WG1276358	
C28-C40 Oil Range	4.08		4.00	1	05/06/2019 03:03	WG1276358	8
(S) o-Terphenyl	63.9		18.0-148		05/06/2019 03:03	WG1276358	A
(S) o-Terphenyl	43.7		18.0-148		05/06/2019 09:12	WG1276358	9
							ľsa

1

Sr

Qc

Gl

Â

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	0.000725		0.000500	1	05/05/2019 20:26	WG1276442
Toluene	0.00528	В	0.00500	1	05/05/2019 20:26	WG1276442
Ethylbenzene	0.00910		0.000500	1	05/05/2019 20:26	WG1276442
Total Xylene	0.0150		0.00150	1	05/05/2019 20:26	WG1276442
TPH (GC/FID) Low Fraction	1.83		0.100	1	05/05/2019 20:26	WG1276442
(S) a,a,a-Trifluorotoluene(FID)	103		77.0-120		05/05/2019 20:26	WG1276442
(S) a,a,a-Trifluorotoluene(PID)	108		72.0-128		05/05/2019 20:26	WG1276442

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	ND		4.00	1	05/06/2019 03:19	WG1276358
C28-C40 Oil Range	ND		4.00	1	05/06/2019 03:19	WG1276358
(S) o-Terphenyl	62.0		18.0-148		05/06/2019 03:19	WG1276358

SAMPLE RESULTS - 08 L1095085

1

ΆI

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	0.467		0.125	250	05/06/2019 16:27	WG1276603
Toluene	9.52		1.25	250	05/06/2019 16:27	WG1276603
Ethylbenzene	3.80		0.125	250	05/06/2019 16:27	WG1276603
Total Xylene	44.4		0.375	250	05/06/2019 16:27	WG1276603
TPH (GC/FID) Low Fraction	1250	<u>J3</u>	25.0	250	05/06/2019 16:27	WG1276603
(S) a,a,a-Trifluorotoluene(FID)	96.0		77.0-120		05/06/2019 16:27	WG1276603
(S) a,a,a-Trifluorotoluene(PID)	99.4		72.0-128		05/06/2019 16:27	WG1276603

	Result	Qualifier	RDL	Dilution	Analysis	Batch	⁶ Qc
Analyte	mg/kg		mg/kg		date / time		 QC
C10-C28 Diesel Range	249		4.00	1	05/06/2019 03:35	WG1276358	7
C28-C40 Oil Range	ND		4.00	1	05/06/2019 03:35	WG1276358	GI
(S) o-Terphenyl	64.6		18.0-148		05/06/2019 03:35	WG1276358	

SAMPLE RESULTS - 09 L1095085

1

ΆI

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	ND		0.0125	25	05/06/2019 16:51	WG1276603
Toluene	ND		0.125	25	05/06/2019 16:51	WG1276603
Ethylbenzene	0.0731		0.0125	25	05/06/2019 16:51	WG1276603
Total Xylene	0.993		0.0375	25	05/06/2019 16:51	WG1276603
TPH (GC/FID) Low Fraction	71.6	<u>J3</u>	2.50	25	05/06/2019 16:51	WG1276603
(S) a,a,a-Trifluorotoluene(FID)	99.4		77.0-120		05/06/2019 16:51	WG1276603
(S) a,a,a-Trifluorotoluene(PID)	100		72.0-128		05/06/2019 16:51	WG1276603

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch	6
Analyte	mg/kg	quamo	mg/kg	2	date / time	<u></u>	Qc
C10-C28 Diesel Range	23.9		4.00	1	05/06/2019 03:52	WG1276358	7
C28-C40 Oil Range	ND		4.00	1	05/06/2019 03:52	WG1276358	Í GI
(S) o-Terphenyl	58.8		18.0-148		05/06/2019 03:52	WG1276358	

Released to Imaging: 322/2022 2:16:33 PM HilCorp-Farmington, NM
SAMPLE RESULTS - 10 L1095085

1

ΆI

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	0.905		0.250	500	05/06/2019 00:49	WG1276442
Toluene	ND		2.50	500	05/06/2019 00:49	WG1276442
Ethylbenzene	1.08		0.250	500	05/06/2019 00:49	WG1276442
Total Xylene	15.7		0.750	500	05/06/2019 00:49	WG1276442
TPH (GC/FID) Low Fraction	591		50.0	500	05/06/2019 00:49	WG1276442
(S) a,a,a-Trifluorotoluene(FID)	98.0		77.0-120		05/06/2019 00:49	WG1276442
(S) a,a,a-Trifluorotoluene(PID)	103		72.0-128		05/06/2019 00:49	WG1276442

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg		date / time		Q
C10-C28 Diesel Range	61.1		4.00	1	05/06/2019 04:08	WG1276358	7
C28-C40 Oil Range	ND		4.00	1	05/06/2019 04:08	WG1276358	GI
(S) o-Terphenyl	33.8		18.0-148		05/06/2019 04:08	WG1276358	

SAMPLE RESULTS - 11

1

Sr

Qc

Gl

Â

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	0.000577		0.000500	1	05/05/2019 20:50	WG1276442
Toluene	ND		0.00500	1	05/05/2019 20:50	WG1276442
Ethylbenzene	0.00366		0.000500	1	05/05/2019 20:50	WG1276442
Total Xylene	0.00576		0.00150	1	05/05/2019 20:50	WG1276442
TPH (GC/FID) Low Fraction	0.437		0.100	1	05/05/2019 20:50	WG1276442
(S) a,a,a-Trifluorotoluene(FID)	98.6		77.0-120		05/05/2019 20:50	WG1276442
(S) a,a,a-Trifluorotoluene(PID)	99.2		72.0-128		05/05/2019 20:50	WG1276442

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	ND		4.00	1	05/06/2019 04:24	WG1276358
C28-C40 Oil Range	ND		4.00	1	05/06/2019 04:24	WG1276358
(S) o-Terphenyl	63.4		18.0-148		05/06/2019 04:24	WG1276358

SAMPLE RESULTS - 12

1

Sr

Qc

Gl

Â

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	3.25		0.100	200	05/06/2019 01:13	WG1276442
Toluene	12.0		1.00	200	05/06/2019 01:13	WG1276442
Ethylbenzene	1.65		0.100	200	05/06/2019 01:13	WG1276442
Total Xylene	28.7		0.300	200	05/06/2019 01:13	WG1276442
TPH (GC/FID) Low Fraction	1130		20.0	200	05/06/2019 01:13	WG1276442
(S) a,a,a-Trifluorotoluene(FID)	94.8		77.0-120		05/06/2019 01:13	WG1276442
(S) a,a,a-Trifluorotoluene(PID)	100		72.0-128		05/06/2019 01:13	WG1276442

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	17.4		4.00	1	05/06/2019 05:12	WG1276358
C28-C40 Oil Range	ND		4.00	1	05/06/2019 05:12	WG1276358
(S) o-Terphenyl	27.8		18.0-148		05/06/2019 05:12	WG1276358

SAMPLE RESULTS - 13 L1095085

1

Å

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	0.623		0.500	1000	05/06/2019 17:15	WG1276603	
Foluene	6.43		5.00	1000	05/06/2019 17:15	<u>WG1276603</u>	
Ethylbenzene	1.99		0.500	1000	05/06/2019 17:15	WG1276603	
Fotal Xylene	26.4		1.50	1000	05/06/2019 17:15	<u>WG1276603</u>	
TPH (GC/FID) Low Fraction	601	<u>J3</u>	100	1000	05/06/2019 17:15	WG1276603	
(S) a,a,a-Trifluorotoluene(FID)	98.5		77.0-120		05/06/2019 17:15	<u>WG1276603</u>	
(S) a,a,a-Trifluorotoluene(PID)	103		72.0-128		05/06/2019 17:15	WG1276603	

Semi-Volatile Organic Compounds (GC) by Method 8015

Semi-Volatile Orga	nic Compoun	ds (GC) by	Method 8	8015			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	⁶ Qc
Analyte	mg/kg		mg/kg		date / time		QC
C10-C28 Diesel Range	271		4.00	1	05/06/2019 05:27	WG1276358	7
C28-C40 Oil Range	ND		4.00	1	05/06/2019 05:27	WG1276358	GI
(S) o-Terphenyl	61.7		18.0-148		05/06/2019 05:27	WG1276358	

L1095085

PROJECT:

HILCORP SAN JUAN 28-

SAMPLE RESULTS - 14

1

Sr

Qc

Gl

AI

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	0.000700		0.000500	1	05/05/2019 21:14	WG1276442
Toluene	ND		0.00500	1	05/05/2019 21:14	WG1276442
Ethylbenzene	0.00315		0.000500	1	05/05/2019 21:14	WG1276442
Total Xylene	0.00461		0.00150	1	05/05/2019 21:14	WG1276442
TPH (GC/FID) Low Fraction	0.209		0.100	1	05/05/2019 21:14	WG1276442
(S) a,a,a-Trifluorotoluene(FID)	98.4		77.0-120		05/05/2019 21:14	WG1276442
(S) a,a,a-Trifluorotoluene(PID)	100		72.0-128		05/05/2019 21:14	WG1276442

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	ND		4.00	1	05/06/2019 05:44	WG1276358
C28-C40 Oil Range	ND		4.00	1	05/06/2019 05:44	WG1276358
(S) o-Terphenyl	86.2		18.0-148		05/06/2019 05:44	WG1276358

Released to Imaging: 322/2022 2:16:33 PM HilCorp-Farmington, NM Volatile Organic Compounds (GC) by Method 8015/8021

QUALITY CONTROL SUMMARY

L1095085-01,02,05,06,07,10,11,12,14

Тс

Ss

Cn

Sr

[´]Qc

GI

AI

Sc

Method Blank (MB)

(MB) R3408416-5 05/05/	19 16:07			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000120	0.000500
Toluene	0.000537	J	0.000150	0.00500
Ethylbenzene	U		0.000110	0.000500
Total Xylene	U		0.000460	0.00150
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	98.5			77.0-120
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3408416-1 05/05/1	CS) R3408416-1 05/05/19 14:07 • (LCSD) R3408416-2 05/05/19 14:31												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits			
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%			
Benzene	0.0500	0.0517	0.0456	103	91.1	76.0-121			12.6	20			
Toluene	0.0500	0.0533	0.0469	107	93.8	80.0-120			12.9	20			
Ethylbenzene	0.0500	0.0549	0.0485	110	96.9	80.0-124			12.5	20			
Total Xylene	0.150	0.162	0.143	108	95.3	37.0-160			12.8	20			
(S) a,a,a-Trifluorotoluene(FID)				98.3	98.1	77.0-120							
(S) a,a,a-Trifluorotoluene(PID)				102	100	72.0-128							

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3408416-3 05/05/19 14:55 • (LCSD) R3408416-4 05/05/19 15:19										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) Low Fraction	5.50	5.48	5.41	99.7	98.4	72.0-127			1.31	20
(S) a,a,a-Trifluorotoluene(FID)				105	105	77.0-120				
(S) a,a,a-Trifluorotoluene(PID)				107	107	72.0-128				

SDG: L1095085

DATE/TIME: 05/15/19 17:37

PAGE: 20 of 26 Volatile Organic Compounds (GC) by Method 8015/8021

QUALITY CONTROL SUMMARY

ONE LAB. NARage 223 of 327

Тс

Ss

Cn

Sr

ິQc

GI

A

Sc

Method Blank (MB)

(MB) R3408632-5 05/06	(MB) R3408632-5 05/06/19 11:01									
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/kg		mg/kg	mg/kg						
Benzene	U		0.000120	0.000500						
Toluene	0.000346	J	0.000150	0.00500						
Ethylbenzene	U		0.000110	0.000500						
Total Xylene	U		0.000460	0.00150						
TPH (GC/FID) Low Fraction	U		0.0217	0.100						
(S) a,a,a-Trifluorotoluene(FID)	99.2			77.0-120						
(S) a,a,a-Trifluorotoluene(PID)	102			72.0-128						

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3408632-1 05/06/19 08:46 • (LCSD) R3408632-2 05/06/19 09:10										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Benzene	0.0500	0.0456	0.0522	91.2	104	76.0-121			13.4	20
Toluene	0.0500	0.0474	0.0543	94.9	109	80.0-120			13.6	20
Ethylbenzene	0.0500	0.0487	0.0556	97.3	111	80.0-124			13.3	20
Total Xylene	0.150	0.144	0.165	95.9	110	37.0-160			13.5	20
(S) a,a,a-Trifluorotoluene(FID)				99.3	98.7	77.0-120				
(S) a,a,a-Trifluorotoluene(PID)				103	102	72.0-128				

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3408632-3 05/06/19 09:50 • (LCSD) R3408632-4 05/06/19 10:13											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
TPH (GC/FID) Low Fraction	5.50	4.59	6.01	83.5	109	72.0-127		<u>J3</u>	26.8	20	
(S) a,a,a-Trifluorotoluene(FID)				104	106	77.0-120					
(S) a,a,a-Trifluorotoluene(PID)				107	108	72.0-128					

Released to	Imaging? 9/22/2022 2:16:33 PM	
	HilCorp-Farmington, NM	

PROJECT: HILCORP SAN JUAN 28SDG: L1095085 DATE/TIME: 05/15/19 17:37 PAGE: 21 of 26

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY L1095085-01,02,03,04,05,06,07,08,09,10,11,12,13,14

¹Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

	10)				
(MB) R3408360-1 05/0	6/19 00:58				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	
(S) o-Terphenyl	78.8			18.0-148	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3408360-2 05/0	(LCS) R3408360-2 05/06/19 01:11 • (LCSD) R3408360-3 05/06/19 01:27									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Extractable Petroleum Hydrocarbon	50.0	ND	ND	0.000	0.000	50.0-150	<u>J4</u>	<u>J4</u>	0.000	20
Misc. TPH (C10-C40)	50.0	ND	ND	0.000	0.000	50.0-150	<u>J4</u>	<u>J4</u>	0.000	20
C10-C28 Diesel Range	50.0	37.2	38.9	74.4	77.8	50.0-150			4.47	20
(S) o-Terphenyl				99.5	105	18.0-148				

L1095085-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1095085-11 05/06/19 04:24 • (MS) R3408360-4 05/06/19 04:40 • (MSD) R3408360-5 05/06/19 04:57												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	47.3	ND	31.0	31.5	65.5	65.6	1	50.0-150			1.60	20
(S) o-Terphenyl					76.3	79.2		18.0-148				

PROJECT: HILCORP SAN JUAN 28SDG: L1095085 DATE/TIME: 05/15/19 17:37 PAGE: 22 of 26

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

SDG: L1095085

Received by OCD: 10/6/2021 1:38:04 PM CCREDITATIONS & LOCATIONS

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN-03-2002-34
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	n/a
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio–VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	90010	South Carolina	84004
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana 1	LA180010	Texas	T104704245-18-15
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	TN00003
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	460132
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 9/22/2022 2:16:33 PM HilCorp-Farmington, NM PROJECT: HILCORP SAN JUAN 28SDG: L1095085 DATE/TIME: 05/15/19 17:37

Received by OCD: 10/6/202	1 1:38:04 P	М	Billing Infor	mation:					Analysis / Cor	tainer / Pres	servative	Chain of Custod Pages 227 of 33			
				ilcorp - CALL	LINDSAY	Pres Chk								ESC	
Report to:			Email To:	philcorp.com									12065 Lebanor Mount Juliet, T	IN 37122	
Lindsay Dumas			laumas@	City/State									Phone: 615-75 Phone: 800-76 Fax: 615-758-5	7-5859	
Project Description: Hilcorp San Juan 20	8-6 #31			Collected: Nev	w Mexico		10	15						095085	
Phone: 832-839-4585 Fax:	Client Project	#		Lab Project #				0) - 801				-	L	G109	
Collected by (print): Corwin Lameman	Site/Facility I	D #	- 10 M	P.O. #				(GRO/DRO/MRO)					Acctnum: Template:		
Collected by (signature):	Same D	Lab MUST Be ay Five	Day	Quote #	Quote #			/DRC					Prelogin:		
Immediately Packed on Ice N Y	Next Da Two Da Three D	ay5 Da y10 D Day	y (Rad Only) ay (Rad Only)	Date Res May 7, 2019	sults Needed 9	No. of	X - 8021	I (GRO					TSR: PB: Shipped Vi	a.	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	BTEX	TPH					Remarks		
SB-25 @ 10 ft	Grab	SS	10	5/1/19	12:27	2	×	X						-01	
SB-25 @ 20 ft	Grab	SS	20	5/1/19	12:39	1	×	X						-02	
SB-25 @ 30 ft	Grab	SS	30	5/1/19	12:53	1	×	X	RADO					-03	
SB-25 @ 35 ft	Grab	SS	35	5/1/19	13:01	1	×	X		···).5 mR/h	•		-04	
SB-26 @10 ft	Grab	SS	10	4/30/19	15:08	2	×	X						-05	
SB-26 @ 20 ft	Grab	SS	20	4/30/19	15:29	2	×	X		10000				-104	
SB-26 @ 35 ft	Grab	SS	35	4/30/19	16:11	2	×	X						-61	
SB-27 @ 15 ft	Comp	SS	15	5/1/19	14:14	1	×	×						-076	
SB-27 @ 30 ft	Comp	SS	30	5/1/19	14:36	1	×	×						-09 /	
and the second state		1.0												- /	
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Email res	ults to Eli	15 ¹ had zabeth M	/ bery sm cNally-emcr	all re csia nally@anima	er) senviro	onme	ntal.com	pH Flow	Tem		COC S: Bottle Correc	Sample Receip eal Present/Int igned/Accurate es arrive intac ct bottles used cient volume se	tact:NP /_YN :YN ct:YN d:YN	
DW - Drinking Water OT - Other	Samples ret	urned via: FedExCo	ourier		Tracking #	Ţ				Desertion 1	100 / 110	VOA Z	If Appl: ero Headspace: rvation Correct	icableYN	
Relipquished by : (Jignature)		Date: Time: Receive			Received by: (Sig	gnature)			Trip Blank	Received: \	HCL / Meol TBR	4			
Relinquished by : (Signature)		Date:		Time: Received by: (Signa			gnature)			1.2 Ar	tles Received:	If prese	If preservation required by Login: Date/Time		
Relinquished by : (Signature) Released to Imaging: 9/22/2	2022 2:16:33	Date:		Time:	Received for lab	by: (Sign	ature)		Date: 5/3	Tin	18:45	Hold:		Condition: NCF / OK	

Received by OCD: 10/6/2021	1 1:38:04 PM	Ν	Billing Infor	mation:		TI			Analysis / Co	ntainer /	/ Preserva	tive	1. S.	Chain of Custody	Page 2 <u>28 of 3</u> 3											
				Icorp - CALL	LINDSAY	Pres Chk								- A-B 5-0	ESC I.E.N.C.E.S cubedary of Pressures											
leport to: .indsay Dumas		Email To: Idumas@hilcorp.com		ldumas@hilcorp.com)hilcorp.com			@hilcorp.com																12065 Lebanon Rd Mount Juliet, TN 371 Phone: 615-758-585 Phone: 800-767-585	
Project Description: Hilcorp San Juan 28	6 #31			City/State Collected: New	w Mexico			15						Fax: 615-758-5859												
Phone: 832-839-4585 Fax:	Client Project	#		Lab Project #) Project #			0) - 801						Table #	15085											
Collected by (print): Corwin Lameman	Site/Facility ID)#		P.O. #	P.O. #			J/MR						Acctnum: Template:												
Collected by (signature):	Same Da	ab MUST Be ay Five y 5 Da y 10 D	Day y (Rad Only)			nly) Date Results Needed		No. of	- 8021	TPH (GRO/DRO/MRO)						Prelogin: TSR: PB:										
Packed on Ice N Y X Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	втех	TPH						Shipped Via: Remarks	Sample # (lab only)											
SB-28 @ 10 ft	Grab	SS	10	5/1/19	8:05	2	×	X				775			-10											
SB-28 @ 30 ft	Grab	SS	30	5/1/19	8:50	1	×	×							-11											
SB-29 @ 10 ft	Grab	SS	10	5/1/19	10:06	2	×	X						te destroyed	-12											
SB-29 @ 20 ft	Grab	SS	20	5/1/19	10:20	1	×	X	3			5.26			-13											
SB-29 @ 35 ft	Grab	SS	35	5/1/19	10:45	1	×	×	BADS	CDEE					-14											
	e tearaine de	ter and and a second	el Parla 1 and 2 de	and a second					RADS	UNCE	¥: <0.5	mR/hr														
									2.74																	
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks: Email res	ults to Eli	zabeth M	cNally - emo	nally@anima	senvir	onme	ntal.com	pH Flow		_ Temp _ _ Other _		COC Sea COC Sig Bottles Correct	Sample Receipt al Present/Intac gned/Accurate: s arrive intact; t bottles used: icat wolume sent												
WW - WasteWater DW - Drinking Water OT - Other	Samples retu UPSF	urned via: FedExC	ourier	4				15				VOA Ze	ient volume sent <u>If Applic</u> ro Headspace: vation Correct/0	able Y												
Relinquished by : (Signature)		Date:	-19	Time: /L:0D Received by: (Signal					Trip Blar		TB	CL / MeoH														
Rehnquished by : (Signature)		Date:		Time:	Received by: (Sig	gnature)			Temp: °C Bottles Received: 1.2 + 0:1.2 pr 20			If prese	If preservation required by Login: Date/Time													
Released to maging: 9/22/2	022 2:16:33	PM Date:		Time:	Received for lab	by: (Sign	ature)		Date:		-	:45	Hold:		Condition: NCF / OK											

Project:

Lab ID:

CLIENT: HILCORP ENERGY

San Juan 28 6 31

2109E87-001

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Matrix: AIR

Lab Order 2109E87 Date Reported:

0	Client Sample ID: Influent Pilot Test
	Collection Date: 9/20/2021 4:20:00 PM
	Received Date: 9/25/2021 8:48:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015D: GASOLINE RANGE	1.00					Analyst: NSE
Gasoline Range Organics (GRO)	250000	500	E	µg/L	100	9/27/2021 11:48:59 AM
Surr: BFB	288	37.3-213		%Rec	100	9/27/2021 11:48:59 AM
EPA METHOD 8260B: VOLATILES						Analyst: CCM
Benzene	720	10		µg/L	100	9/28/2021 2:47:00 PM
Toluene	1600	10		µg/L	100	9/28/2021 2:47:00 PM
Ethylbenzene	15	10		µg/L	100	9/28/2021 2:47:00 PM
Methyl tert-butyl ether (MTBE)	ND	10		µg/L	100	9/28/2021 2:47:00 PM
1,2,4-Trimethylbenzene	ND	10		µg/L	100	9/28/2021 2:47:00 PM
1,3,5-Trimethylbenzene	ND	10		µg/L	100	9/28/2021 2:47:00 PM
1,2-Dichloroethane (EDC)	19	10		μg/L	100	9/28/2021 2:47:00 PM
1,2-Dibromoethane (EDB)	ND	10		μg/L	100	9/28/2021 2:47:00 PM
Naphthalene	ND	20		μg/L	100	9/28/2021 2:47:00 PM
1-Methylnaphthalene	ND	40		µg/L	100	9/28/2021 2:47:00 PM
2-Methylnaphthalene	ND	40		µg/L	100	
Acetone	1500	100		µg/L	100	9/28/2021 2:47:00 PM
Bromobenzene	ND	10		μg/L	100	9/28/2021 2:47:00 PM
Bromodichloromethane	ND	10			100	9/28/2021 2:47:00 PM
Bromoform	ND	10		µg/L		9/28/2021 2:47:00 PM
Bromomethane	ND	20		µg/L	100 100	9/28/2021 2:47:00 PM
2-Butanone	ND	100		µg/L	100	9/28/2021 2:47:00 PM
Carbon disulfide	ND	100		µg/L		9/28/2021 2:47:00 PM
Carbon tetrachloride	ND	10		µg/L	100	9/28/2021 2:47:00 PM
Chlorobenzene	ND	10		µg/L	100	9/28/2021 2:47:00 PM
Chloroethane	ND	20		µg/L	100	9/28/2021 2:47:00 PM
Chloroform	ND	10		µg/L	100	9/28/2021 2:47:00 PM
Chloromethane	22			µg/L	100	9/28/2021 2:47:00 PM
2-Chlorotoluene	ND	10		µg/L	100	9/28/2021 2:47:00 PM
4-Chlorotoluene	ND	10		µg/L	100	9/28/2021 2:47:00 PM
cis-1,2-DCE	ND	10		µg/L	100	9/28/2021 2:47:00 PM
cis-1,3-Dichloropropene	ND	10		µg/L	100	9/28/2021 2:47:00 PM
1,2-Dibromo-3-chloropropane	ND	10		µg/L	100	9/28/2021 2:47:00 PM
Dibromochloromethane	ND	20		µg/L	100	9/28/2021 2:47:00 PM
Dibromomethane		10		µg/L	100	9/28/2021 2:47:00 PM
1,2-Dichlorobenzene	ND	20		µg/L	100	9/28/2021 2:47:00 PM
1,3-Dichlorobenzene	ND	10		µg/L	100	9/28/2021 2:47:00 PM
1.4-Dichlorobenzene	ND	10		µg/L	100	9/28/2021 2:47:00 PM
Dichlorodifluoromethane	ND	10		µg/L	100	9/28/2021 2:47:00 PM
	ND	10		µg/L	100	9/28/2021 2:47:00 PM
						9/28/2021 2:47:00 PM
1,1-Dichloroethane 1,1-Dichloroethane	ND ND ND	10 10 10		µg/L µg/L µg/L	100 100 100	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix

D н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit ND

Practical Quanitative Limit PQL

S % Recovery outside of range due to dilution or matrix В Analyte detected in the associated Method Blank

E Value above quantitation range

1 Analyte detected below quantitation limits P Sample pH Not In Range

Reporting Limit RL

.

CLIENT: HILCORP ENERGY

Project: San Juan 28 6 31

Analytical Report Lab Order 2109E87

Hall	Environmental	Analysis	Laboratory,	Inc.

Date Reported: Client Sample ID: Influent Pilot Test Collection Date: 9/20/2021 4:20:00 PM

Lab ID: 2109E87-001	Matrix: AIR	Reco	eived Date	9/25/20	021 8:48:00 AM
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: CCM
1,2-Dichloropropane	110	10	µg/L	100	9/28/2021 2:47:00 PM
1,3-Dichloropropane	ND	10	µg/L	100	9/28/2021 2:47:00 PM
2,2-Dichloropropane	ND	10	µg/L	100	9/28/2021 2:47:00 PM
1,1-Dichloropropene	ND	10	µg/L	100	9/28/2021 2:47:00 PM
Hexachlorobutadiene	ND	10	µg/L	100	9/28/2021 2:47:00 PM
2-Hexanone	ND	100	µg/L	100	9/28/2021 2:47:00 PM
Isopropylbenzene	ND	10	µg/L	100	9/28/2021 2:47:00 PM
4-Isopropyltoluene	ND	10	µg/L	100	9/28/2021 2:47:00 PM
4-Methyl-2-pentanone	ND	100	µg/L	100	9/28/2021 2:47:00 PM
Methylene chloride	ND	30	µg/L	100	9/28/2021 2:47:00 PM
n-Butylbenzene	ND	30	µg/L	100	9/28/2021 2:47:00 PM
n-Propylbenzene	ND	10	µg/L	100	9/28/2021 2:47:00 PM
sec-Butylbenzene	ND	10	µg/L	100	9/28/2021 2:47:00 PM
Styrene	ND	10	µg/L	100	9/28/2021 2:47:00 PM
tert-Butylbenzene	ND	10	µg/L	100	9/28/2021 2:47:00 PM
1,1,1,2-Tetrachloroethane	ND	10	µg/L	100	9/28/2021 2:47:00 PM
1,1,2,2-Tetrachloroethane	ND	10	µg/L	100	9/28/2021 2:47:00 PM
Tetrachloroethene (PCE)	ND	10	µg/L	100	9/28/2021 2:47:00 PM
trans-1,2-DCE	ND	10	µg/L	100	9/28/2021 2:47:00 PM
trans-1,3-Dichloropropene	ND	10	µg/L	100	9/28/2021 2:47:00 PM
1,2,3-Trichlorobenzene	ND	10	µg/L	100	9/28/2021 2:47:00 PM
1,2,4-Trichlorobenzene	ND	10	µg/L	100	9/28/2021 2:47:00 PM
1,1,1-Trichloroethane	ND	10	µg/L	100	9/28/2021 2:47:00 PM
1,1,2-Trichloroethane	16	10	µg/L	100	9/28/2021 2:47:00 PM
Trichloroethene (TCE)	ND	10	µg/L	100	9/28/2021 2:47:00 PM
Trichlorofluoromethane	ND	10	µg/L	100	9/28/2021 2:47:00 PM
1,2,3-Trichloropropane	ND	20	µg/L	100	9/28/2021 2:47:00 PM
Vinyl chloride	ND	10	µg/L	100	9/28/2021 2:47:00 PM
Xylenes, Total	320	15	µg/L	100	9/28/2021 2:47:00 PM
Surr: Dibromofluoromethane	89.8	70-130	%Rec	100	9/28/2021 2:47:00 PM
Surr: 1,2-Dichloroethane-d4	77.9	70-130	%Rec	100	9/28/2021 2:47:00 PM
Surr: Toluene-d8	115	70-130	%Rec	100	9/28/2021 2:47:00 PM
Surr: 4-Bromofluorobenzene	104	70-130	%Rec	100	9/28/2021 2:47:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- ٠ Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- 1 Analyte detected below quantitation limits
 - P Sample pH Not In Range
 - RL Reporting Limit

Trust our People. Trust our Data.

Billings, MT 800.735.4489 = Casper, WY 888.235.0515 Gillette, WY 866.686.7175 + Helena, MT 877.472.0711

LABORATORY ANALYTICAL REPORT

Prepared by Gillette, WY Branch

Client:Hall EnvironmentalProject:Not IndicatedLab ID:G21090430-001Client Sample ID:2109E87-001B; Influent Pilot Test

Report Date: 09/28/21 Collection Date: 09/20/21 16:20 DateReceived: 09/28/21 Matrix: Gas

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
NATURAL GAS CHROMATOGRAPH	IC ANALYSIS	REPORT	г			5 mil 1 1 1 1	
Oxygen		Mol %		0.001		GPA 2261	09/28/21 14:22 / blb
Nitrogen	78.259	Mol %		0.001		GPA 2261	09/28/21 14:22 / blb
Carbon Dioxide	2.054	Mol %		0.001		GPA 2261	09/28/21 14:22 / blb
Hydrogen Sulfide	< 0.001	Mol %		0.001		GPA 2261	09/28/21 14:22 / blb
Methane	< 0.001			0.001		GPA 2261	09/28/21 14:22 / blb
Ethane	< 0.001	Mol %		0.001		GPA 2261	09/28/21 14:22 / blb
Propane	< 0.001	Mol %		0.001		GPA 2261	09/28/21 14:22 / blb
Isobutane	0.004	Mol %		0.001		GPA 2261	09/28/21 14:22 / blb
n-Butane	0.022	Mol %		0.001		GPA 2261	09/28/21 14:22 / blb
Isopentane	0.107	Mol %		0.001		GPA 2261	09/28/21 14:22 / blb
n-Pentane	0.133	Mol %		0.001		GPA 2261	09/28/21 14:22 / blb
Hexanes plus	1.551	Mol %		0.001		GPA 2261	09/28/21 14:22 / blb
GPM @ STD COND/1000 CU.FT., MC	STURE FRE	E GAS					
GPM Ethane	< 0.0003			0.0003		GPA 2261	09/28/21 14:22 / blb
GPM Propane	< 0.0003			0.0003		GPA 2261	09/28/21 14:22 / blb
GPM Isobutane		gal/MCF		0.0003		GPA 2261	09/28/21 14:22 / blb
GPM n-Butane		gal/MCF		0.0003		GPA 2261	09/28/21 14:22 / blb
GPM Isopentane		gal/MCF		0.0004		GPA 2261	09/28/21 14:22 / blb
GPM n-Pentane		gal/MCF		0.0004		GPA 2261	09/28/21 14:22 / blb
GPM Hexanes plus		gal/MCF		0.0004		GPA 2261	09/28/21 14:22 / blb
GPM Pentanes plus		gal/MCF		0.0004		GPA 2261	09/28/21 14:22 / blb
GPM Total		gal/MCF		0.0004		GPA 2261	09/28/21 14:22 / blb
CALCULATED PROPERTIES							
Calculation Pressure Base	14.730	psia				GPA 2261	09/28/21 14:22 / blb
Calculation Temperature Base	60					GPA 2261	09/28/21 14:22 / blb
Compressibility Factor, Z	0.99900	unitless		0.00001		GPA 2261	09/28/21 14:22 / blb
Iolecular Weight	30.16	unitless		0.01		GPA 2261	09/28/21 14:22 / blb
Pseudo-critical Pressure, psia	547			1		GPA 2261	09/28/21 14:22 / blb
Pseudo-critical Temperature, deg R		deg R		1		GPA 2261	09/28/21 14:22 / blb
Specific Gravity (air=1.000)		unitless		0.0001		GPA 2261	09/28/21 14:22 / blb
Gross BTU per cu ft @ std cond, dry		BTU/cu ft		0.01		GPA 2261	09/28/21 14:22 / blb
Gross BTU per cu ft @ std cond, wet		BTU/cu ft		0.01		GPA 2261	09/28/21 14:22 / blb

Report Definitions: RL - Analyte Reporting Limit QCL - Quality Control Limit

MCL - Maximum Contaminant Level ND - Not detected at the Reporting Limit (RL)

October 05, 2021

Danny Burns HILCORP ENERGY PO Box 4700 Farmington, NM 87499 TEL: (505) 564-0733 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

RE: San Juan 28 6 31

OrderNo.: 2109H13

Dear Danny Burns:

Hall Environmental Analysis Laboratory received 1 sample(s) on 9/30/2021 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report
Lab Order 2109H13

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/5/2021

CLIENT: HILCORP ENERGY Project: San Juan 28 6 31			Sample ID: ction Date:		nt A+B 021 4:00:00 PM
Lab ID: 2109H13-001	Matrix: AIR	Rece	eived Date:	9/30/20	021 7:10:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015D: GASOLINE RANG	E				Analyst: NSB
Gasoline Range Organics (GRO)	53000	500	µg/L	100	10/1/2021 10:03:13 AM
Surr: BFB	183	37.3-213	%Rec	100	10/1/2021 10:03:13 AM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	240	10	µg/L	100	10/1/2021 10:03:13 AM
Toluene	720	10	µg/L	100	10/1/2021 10:03:13 AM
Ethylbenzene	27	10	µg/L	100	10/1/2021 10:03:13 AM
Xylenes, Total	350	20	µg/L	100	10/1/2021 10:03:13 AM
Surr: 4-Bromofluorobenzene	95.6	70-130	%Rec	100	10/1/2021 10:03:13 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 3

Client: Project:	HILCOR San Juan	P ENERGY 28 6 31								
Sample ID: 2109	H13-001ADU	SampType	DUP	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID: Influ	ent A+B	Batch ID:	G81717	F	RunNo: 8	1717				
Prep Date:		Analysis Date:	10/1/2021	S	SeqNo: 2	889360	Units: µg/L			
Analyte		Result P	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	C
Gasoline Range Organics (GRO)	48000	500						9.64	20	
Surr: BFB	380000		200000		189	37.3	213	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank в
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

2109H13

05-Oct-21

WO#:

	WO#:	2109H13
, Inc.		05-Oct-21

Client:	HILCORP ENERGY
Project:	San Juan 28 6 31

Sample ID: 2109H13-001AD	UP SampT	ype: DL	IP	TestCode: EPA Method 8021B: Volatiles						
Client ID: Influent A+B	Batch	n ID: B8	1717	F	RunNo: 8 ′	1717				
Prep Date:	Analysis D	ate: 10)/1/2021	S	SeqNo: 28	889363	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	210	10						12.5	20	
Toluene	650	10						11.0	20	
Ethylbenzene	27	10						1.42	20	
Xylenes, Total	340	20						1.75	20	
Surr: 4-Bromofluorobenzene	200		200.0		98.4	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 3

.

ANAL	CONMENTAL YSIS RATORY	Hall Environmenta Alb TEL: 505-345-397 Website: clients.h	4901 Haw puquerque, NN 5 FAX: 505-3-	kins NE 1 87109 San 45-4107	nple Log-In C	heck List
Client Name:	HILCORP ENERGY	Work Order Number	2109H13		RcptNo:	1
Received By:	Cheyenne Cason	9/30/2021 7:10:00 AM	1	Chent		
Completed By:	Sean Livingston	9/30/2021 8:04:40 AM	1	S-L	note	
Reviewed By:	THE	9/30/21	\bigcirc			
Chain of Cus	<u>tody</u>		\square			
1. Is Chain of Cu	ustody complete?		Yes 🗹	No 🗌	Not Present	
2. How was the	sample delivered?		<u>Courier</u>			
Log In 3. Was an attem	pt made to cool the samp	les?	Yes	No 🗌	NA 🔽	
4. Were all samp	oles received at a tempera	ture of >0° C to 6.0°C	Yes 🗌	No 🗌	NA 🔽	
5. Sample(s) in p	proper container(s)?		Yes 🖌	No 🗌		
6. Sufficient sam	ple volume for indicated te	est(s)?	Yes 🗹	No 🗌		
	except VOA and ONG) pro		Yes 🗹	No 🗌		
	tive added to bottles?		Yes	No 🗹	NA 🗌	
9. Received at lea	ast 1 vial with headspace	<1/4" for AQ VOA?	Yes 🗌	No 🗌	NA 🗹	
	ple containers received b		Yes	No 🗹		
11. Does paperwo	rk match bottle labels? ncies on chain of custody		Yes 🗹	No 🗆	# of preserved bottles checked for pH: (<2 or >	12 unless noted)
12. Are matrices c	orrectly identified on Chair	n of Custody?	Yes 🗹	No 🗌	Adjusted?	
	analyses were requested	?	Yes 🗹	No 🗌		
	ng times able to be met? stomer for authorization.)		Yes 🗹	No 🗌	Checked by: J	19130/21
Special Handli	ng (if applicable)			U		
15. Was client not	tified of all discrepancies v	vith this order?	Yes	No 🗌	NA 🗹	
Person I	Notified:	Date:				
By Who	1	Via:	eMail	Phone 🗌 Fax	In Person	
Regardir Client In	ng: structions:					
16. Additional ren	• • • • • • • • • • • • • • • • • • • •					
17. <u>Cooler Inform</u> Cooler No	Temp °C Condition	Seal Intact Seal No S	eal Date	Signed By		
1	NA Good			original Dy		

Page 1 of 1

Received by OCD: 10/6/2021 1	38:04 PM	Page 237 of 337
HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request	EDB (Method 504.1)	Stuart. hyde wrp.com in . hencimanne wsp.com
4901 Tel. 5	8081 Pesticides/8082 PCB's	irks: 5 fu levin
	BIEX+ WIRE / LWB-R (8051)	Remarks: CC: °CC: °CC: °CC: °CC: °CC: °CC: °CC:
Turn-Around Time: EOD Standard 文Rush 9-30-21 Project Name: San Juan 28-6 拝31 Project #:	Project Manager: USP-Daviny Bum P Sampler: DB Container: DB # of Coolers: I Cooler Temp(including cF): MA Container Type and # Type P-TeMer P-TeMer P-TeMer P-Stog H(3) P-TeMer P-Stog H(3) P-TeMer P-Stog H(3) P-Stog H(3) P-	Time: Relinquished by Received by: Via: Date Time Remarks: 1700 1700 0.0 0.0 0.0 0.0 0.0 1700 0.0 0.0 0.0 0.0 0.0 0.0 1700 0.0 0.0 0.0 0.0 0.0 0.0 1700 0.0 0.0 0.0 0.0 0.0 0.0 1700 0.0 0.0 0.0 0.0 0.0 0.0 1700 0.0 0.0 0.0 0.0 0.0 0.0 1700 0.0 0.0 0.0 0.0 0.0 0.0 1800 0.0 0.0 0.0 0.0 0.0 0.0 1600 0.0 0.0 0.0 0.0 0.0 0.0 1600 0.0 0.0 0.0 0.0 0.0 0.0 1600 0.0 0.0 0.0 0.0 0.0 0.0
Client: Hil Cor P Client: Hil Cor P Lindsay Dunes Billy Ginn Mailing Address:	email or Fax#: QA/QC Package: CA/QC Package:	Date: Time: Refinguished by 9-29-31 1760 Date: Date: Time: Relinquished by. 124/L 187.v M.H. A. If necessary, samples submitted to Hall Environmental may be sub-

ENCLOSURE C – BORING LOGS AND SVE WELL CONSTRUCTION DIAGRAMS

Facility or Pipe	line Name: San	Juan 28	-6 #31	Ŭ.			Buck	Machine #_			* was in process of proppin a TPH sample when Kuet that Londsay said no TI		
Date: 5-31-18						Concer	ntration	50 mg/kg	100 mg/kg	500 mg/kg	field, only OVM-PID. confi		
	:C.Lameman	, S. Glasses				Calibration	ABS Values				looking & email.		
Sample ID	Collection Date	Time of Sample Collection	Sample Location	Sample Depth (ft)	Composite	PID-OVM (ppm)	PID-OVM Time	Field TPH (mg/kg)	Field TPH Analysis Time	ABS	NOTES (i.e. Soil Type, Color, Odor, Staining)		
SB-1	5-31-18	9:30	N, of prod. tank	1'	M	0.0	9:56	234*	1012		No Struchi Sand May, Brown, No Oder		
		9:36)	3*	N	5.4	9:57		-	-	S.A.A.		
		9:41		5'	N	2.9	9:58	-	-	-	S.A.A.		
		9:55	L	7'	N	0.0	15:16	-	-		Auger refrach. Clarger Sand Ot Brown, No Odar No Staining Sand , Brown, No Staining, No Oda		
58-2		9:59	S. of pnd. tank.	11	N	0.0	10:17	-	-	-	Sand , Brown, No Staining , No CUT		
		10:05		3'	k	9.0	10:33	-	-		S.A. A .		
<u></u>		10:11		5'	N	0.0	10:49	-	-	-	S.A.A		
		10:25	1	ר 'ר	N	0.0	10:50	-	-	-	Augor Refinent. Clay cy Sand Bt. Brown, Nostarius, No bel a		
SB-3		10:30	Wob pred. tank	1'	N	30.5	11:03		-	<i></i>	Sandy Brown, alo Staining, Sl. Odar Course-Med, Morst		
		10:36		3'	N	20.4	11:04	-	-	-	S.A.A.		
		10:38		5'	N	12.5	11:05	-	-		Sand, Red-Gram, No Starning, St. 0 da Fine-Med, Mast		
		10:46	4	7.5'	N	5.0	11:06		-		any of Sand, Dk. Brown, No sta ming No odor, Augus Refusal, Moist		
SB-4		10:58	E. & pad. tank	<u>ı'</u>	N	2385	11:22	-	-	-	Sand, trong, No Strang, V. Strong Odr Canter Med, Mors +		
<u></u>		11:01		3'	N	2009	11:23		-	-	S.A.A. Sand, Red-Brown, My Stamong, V. Stra		
		11:68	_/	5'	~	1996	11:24	-			Olar. Fine-Hd. Most		
		11:15		8 .5 °	N	2508	11:34	-	-	-	Clayer Sund, Dk. Brown, V. Strong oder No Staining Augus Refusal Moss		
\$B-5		11:41	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	<u>'</u>	N	13.6	11:55				Sand Staning, Nd, Norst		
		11:50		5'	N	4.1	12:09				Band Tan Brown, No Oder, Nostan Md, Morss Historic Contane C 8' Emme Clayer		
		12:08		9'	N	956	12:24				Sind St. Stor, Som Staring		
Type of Sampl	e collection?: al Services, LLC; 604 W										Sund, St. Gurr, Som, Staining Assessment Field Form 100117.xl		

acility or Pipe	line Name:	pistone put	Anderize		1		Buck	Machine #_			Defendo-run from 0,0 fr step rut. N, W, S		
Date:	_	Historic pull to know. Ch E old? lot D	co know to	be advess	ed.	Concei	ntration	50 mg/kg	100 mg/kg	500 mg/kg			
ES personnel:	Delineat	t old : let u	fress pre al	j .		Calibration	ABS Values]		
Sample ID	Collection Date	Time of Sample Collection	Sample Location	Sample Depth (ft)	Composite	PID-OVM (ppm)	PID-OVM Time	Field TPH (mg/kg)	Field TPH Analysis Time	ABS	NOTES (i.e. Soil Type, Color, Odor, Staining) Augur Rudars Dec		
58-5	5-31-18	12:21	S OB BLT	11.75	N	2745	12:53		-	-	Odor, Staining) Anger Rufers/ Des Ungost Braum, Discoloristim, Sarrong & dar, No Staining, pusket, Historic		
56-6		12:00	NGBOT	7	N		12:52	-	-	-			
SB-6	• · · · · · · · · · · · · · · · · · · ·		NUBIT	ľ	N	7.3	13:36	_	-	-	Sand, Brown, No Over, No Staining Nd, Makt		
		13:16		5'	N	0.0	13:37	-	-	-	S.A.A.		
		13:22		7'	N	0.0	13:38	_	-		Clay cy Sand, DK. Brown, Notodor Nostairing, Most. Brown, Sand, V. Strong oder, No Sta		
		13:34		9'	N	1949	13:42		-	-	Bran, Sindy V. Strong oder, No Sta Moist, History		
		13:46		n'	N	2,440	14:00	-		-			
			•				••••••••••••••••••••••••••••••••••••••						
											·		
							-						
					ļ								
						•	-		2				
· · · · · · · · · · · · · · · · · · ·													
ype of Sample	e collection?:										Assessment Field Form 100117.		
mas Environmental	Services, LLC; 604 W	Pinon St. Farmingt	on. NM 87401;			2 of							

Alexandra 505-608-6061 Facility or Pipeline Name: San Juan 28-6 #31

Date: 6-27-18 AES personnel: 6 Lamers an

Page 241 of 337

Buck Machine #									
Concentration	50 mg/kg	100 mg/kg	500 mg/kg						
Calibration ABS Values	0.091	0.141	0.725						

Sample ID	Collection Date	Time of Sample Collection	Sample Location	Sample Depth (ft)	Composite	PID-OVM (ppm)	PID-OVM Time	Field TPH (mg/kg)	Field TPH Analysis Time	ABS	NOTES (i.e. Soil Type, Color, Odor, Staining)
8-7	4-27-18	9:45	N 06 58-4	5'	N	31.7	10:16	-	1. 	-	Red, Sand, No Udar, N. Star, Om
)		1:51		10'	N	370.8	10:17	-	-	-	S.Gray, S. Odor, Shale or alan
		9:59		15'	N	10,427	10:20		-		SS, Grag, Oder
		10:57		20'	N	\$1,824	10:25	-	-		SS. Gray, Wor
/		10:19		25'	N	202.6	10:39		-		s, it the Goy, odor
(10:28		30'	N	•	-	-		-	No Recovery
7		10:41	4	35	N	18.8	10:52	221	10:58	.167	SS, U. Gray Sholon any
SB-8		1127	NOBET	5'	N	8475	11:53	-	-	-	Red Sand, Song Bur No Skin
2		1135		10'	N	9642	11:59	-	-	-	Comen Sand lang Show Only
		12:13		15'	N	2196	12:22	-		-	S3, Weathered, Strg. Odar, SL Star
4		12:24	*	25	N	618.2	12:32	168.	12:40	Wh. 0.128	55, the Odar No Staining
5B-9		13:09	Nob BET Outride Fonce	10'	N	629.4	13:22	-	-	-	Clayory South ozor, SI. 6mg
7		13:15		3 K	N	725.5	13:29	145	14:41	2.113	SS, tan Olar, No Stanry, Day
SBTO		13:55	NE COMP onterstefence	10	N	1938	14:13		~		anyey Sand, Stry. Der, Gray, Muris 1
1		14:11	L	25	2	615.1	14:14	-			SI tan, OBar, No Standy, Day
SB-11		1434	E ob sep e edge do localin	10'	N	35.2	14:55	-	-	-	Red Sand to Gray any Sund, Oder
1		14:51	1.1	25'	N	18,7	15,19	-	-	~	ct tom, Sloger, No Stain, Day
SB-12		15:17	Sob Bern Becomes	15	N	2482	15:34	2,000	15:45	1.444	Cleve, Grey, Olm, Staring
	1	15:30	T	25'	7	31.5	15:38	-	-	1	bottom, SS, 81. administring

Type of Sample collection?:

Well or Lease Name: Seen Juan 28-6 #31 Date: 6-27-18 AES personnel: C. Lameman

Sample ID	Collection Date	Time of Sample Collection	Sample Location	OVM (ppm)	OVM Time	Field TPH (mg/kg)	Field TPH Analysis Time	ABS	NOTES
5B-13e10	10-27-18	16:02	Sof BET Ontride fence	2157	1620	—	-	~	Gry, Sanda/Way, Oder, Overist SS, Furwhite, Ony, St. Odar, No. Stain
.25'	1-	16:17	Ľ	360.9	16:22	-	-	1	SS, Fin-White, Ong, St. Oda, No. Stain
B-14 e 16'		16:41	Nodway of SB-13 f 12	2173	14:59	-	-	~	
	/	17:15	1	51.0	17:23	~	-	-	
SB-15e/0'	f	17:28'	E JE BOTH	1550	17:35	-	-	-	
	1	17:42'	1	205.6	17:49		-		
_			10004		1.				
			· · · ·						
-			1.000						
			1	1					
				1.				1.2.3	
			· · · · ·					_	
					-				
			l.;				-		
			1.2.1.	1					

Include Benzene readings in the notes section initially and transfer to Limitations if Benzene is a problem on the location.

Animas Environmental Services, LLC

604 W Pinon St. Farmington, NM 87401 office # 505-564-2281

21911 N Main, Ste 280, Durango, CO 81301

10/6/2021 1:38:04 PM

OCD:

SOIL BORING LOG

Soil Boring No: 10

Page 243 of 337

Animas Environmental Services

604 W. Piñon St., Farmington, NM 87401 Tel. (505) 564-2281 animasenvironmental.com

Monitor Well No: -Project:

Client: Hilcorp

Location: San Juan 28-6 Unit 31 Datum: Driller: GeoMat - Kelley Padulle / Fernando Envignez Elevation: Drilling Method: Continnes Bring to Split Spron - HSA

Latitude/Longitude: 36.42742, -117. 47788

Date:

8-22-18

Logged by: C. Lameman Total Depth (ft): 25

Depth (ft)	Sample Interval	Sample Type (SPT, Grab, etc)	Sample Time	Blow Count (per 3x6" intervals)	Soil Description TYPE, density/consistency, color, grain size, moisture, other (i.e. odor, staining)	USCS Symbol	OVM (ppm)	OVM Time	MW Schematic and Description
0					Very Soft, Red-Tan, Foorg Ended Sund, Dry Non plastic, noncohesire, (0-4')	SIA			
(5					Very Loose, Tan, Poorly Gracked Sand, Dry non plastic, non cohesine (4-5')	SW	7.3	9:55	
5			9:05		Loose, Tan, Well Gonded Sand, Ong non plastic, non cohesine (5. 7.5')	SW			
10			9:15		Stiff, Brown, lean any with Sind, Moist Medium plasticity, concerne (7.5 - 10')	CL	8.7	9:52	
10					Medium Dense, Red-Tan, well Gorded Sand, Dry	SW			
)					nom plastic, non coherive (10-11') Dense, Tan, well bonded Sand, Dry, noplast, nonco. (11-12')	5N			
12			9:30		Very Dense, Tan-Light Gray, SS, String odar UNABLE TO CONTINUE WITH CONTINOUS	55	60.8	9:57	
15			9:34		UNABLE TO CONTINUE WITH CONTINOUS BREINGS. SWITCHING TO SPLIT SPOON Very Dense, Jan, Sandstone, No Odw, Small Recov.	S	5.7	10:02	
20			9:51		S.A.A.	55	33.9	10:03	
25		a (ar	NR		No Recovery, Sandstone,	55	NR	NR	
					Total Depth 25'			·····	
		4.4500							

Page 244 of 337

MW Schematic and

11:39

NR

Description

Animas Environmental Services

604 W. Piñon St., Farmington, NM 87401

Soil Boring No: 17 Monitor Well No: -Tel. (505) 564-2281 animasenvironmental.com Project: Date: 8-22-18 Latitude/Longitude: 36. 62757 -167.47784 Client: Hilcorp Location: San Juan 28-6 Unit #31 Datum: Driller: 600 Mat - KPAFE Elevation: Drilling Method: Continuous to split Sprin - HSA Depth to Water (ft): - Time Recorded: 1040 Logged by: C. Lamennon Total Depth (ft): 25 per 3x6" intervals) Sample Interval Sample Type (SPT, Grab, etc) Sample Time Blow Count Depth (ft) Soil Description OVM USCS OVM TYPE, density/consistency, color, grain size, moisture, other Time Symbol (ppm) (i.e. odor, staining) Loose, Brown, Poorly braded Sand, Dry, non plustic SP 0 Noncohesive (0-14) SP Very Louse, Tan, Poorly Graded Sand, Dry, nupplastic 5 non cohesive (4-5') 1.7 10:47 11:38 Louse, Tan-Red, Porry Emded Sand, Dy, roplast. SP 5 noncohesive (5-8') L Stoff, Brown, Lean day with Sand, Must a Med. Plast., cohesire (8-10') 4.5 10 10:55 Very Dense, Tan, Well Graded Sand, Dny, popplast. SW 10 noncohesive. Weathered 55 Vory Dense, Tan, SS 55 12 5.2 11:40 11:01 unable to continue CONTINONS, SWITCH to SPLIT SPOON Neathered SS, Dry, Tan-White, Swall Recar. 15 55 0.7 11:41 11:07 Rig Briken down e 11:137 Very Dense, Taxi-White, Sandstone, Dry 13:20 18.0 20 55 13:34 55 25 S.A.A., Very Small Recovery NR 13:30 Total Depth - 25'

Page1 of 2

Received by OCD: 10/6/2021 1:3

14:04

14:12

14:27

14:36

Ę

10

10

(

12'

15

20

25

ed by ()CD: 10/	6/2021 1	:38:04 1	PM			Page	e 245	of.
SOIL E	ORING	LOG		Anim	nas Envir	ronme	ntal Se	ervio	ces
Soil Bo	ring No:	18		604	W. Piñon S	St., Farmi	ngton, N	M 87	401
	r Well No				564-2281	animaser	vironme	ntal.	com
Project	:			Date: 8-22-1					
Client:	Hilcorp	2		Latitude/Longitude	:36.6274	18,-107	. 47791	6	
Locatio	n: SAN O	Than 2	8-4 U	n + #31 Datum:					
Driller:	bes Mat	1: KP 4	FE	Elevation:			_		
			is to S	plit Span Logged by: C.La.		_			
Depth 1	o Water (ft): —		Time Recorded: 13:49 Total Depth (ft):	25'				_
Depth (ft) Sample Interval	Sample Type (SPT, Grab, etc)	Sample Time	Blow Count (per 3x6" intervals)	Soil Description TYPE, density/consistency, color, grain size, moisture, other (i.e. odor, staining)	USCS Symbol	OVM (ppm)	OVM Time	MW Schematic and	Description
0				Loose, Brown, Poorly graded sand, Dry, nonplast. non Abhasire (6-5')	SP				
5		13:58				4.3	14:39	++++	
5				Louse, Brown, Doorly graded sand, Day, nonpluss non cohes we (5-7')	. sp			-	

a

a

SW

55

55

55

55

4.5

14.0

6.1

9.3

14:40

14:41

14:42

14:50

Stiff, Brown, Lean day of Sand, Monst, Med. Plast.

Strff, Brown, Lean day ul Sond, Moist, Med. Plast

Very Dense, Jan, Well Graded Samel, My, non plast.

Unable to continue CONTINENS, Switch to

Weathered SS, Ony, Tan, Very Dense, odor

Very Dense, Tan-White, Sundstone, Dry, odar

Very Dense, Ton-White, Sondstone, Dry, No Odar

Total Deptn - 25'

cohesive (8-10')

chesine (10-10.5)

noncohome (10-12')

SPLIT SPOIN

Very Dense, SS, Tan

Page1 of 2

Animas Environmental Services SOIL BORING LOG Soil Boring No: 23 604 W. Piñon St., Farmington, NM 87401 Monitor Well No: -Tel. (505) 564-2281 animasenvironmental.com Project: Date: 8-22-18 Client: Hilcorp Location: SAN Turn 26-4 Unit #31 Latitude/Longitude: 36,62770,-167.47807 Datum: Driller: GeoMat - KP 9 FE Elevation: Drilling Method: Continuos to Split Spron - HA Logged by: C. Lameman Depth to Water (ft): Time Recorded: 15:64 Total Depth (ft): 30 MW Schematic and per 3x6" intervals) Sample Interval Sample Type (SPT, Grab, etc) Sample Time Blow Count Description Depth (ft) Soil Description USCS OVM OVM TYPE, density/consistency, color, grain size, moisture, other Symbol (ppm) Time (i.e. odor, staining) Loose, Red-Tan, Porry Graded Saved, Noist, ropplet SP 0 non whey ire (5 9.0 15:15 15:39 5 Louse, Tan, Pooly Graded Sand, Dry, non-plast. SP non cohosne (5-6.5) SP Loose, Brown, Porly Graded Sond, Dry, non. plast nm. cahesire (6-9) Stiff, Brown, leanday I sand Marst, med. plast., cohesine. CL 9.2 D 15:20 15:39 10 Very Dense, SS, Grey, Strong odor 55 14 Unable to continue CONTINONS, Switch to SPUTSPOON Very Dense, 55, Grey, Strong Odar 15 15:30 55 1,100 15:41 Very Dense, 55, Tan-Winte, Strong Olor 55 20 15:38 538.4 15:49 S.A.A. 25 15:47 1,484 16:05 Very Donse, Tan, 55, Strong & dor 325.5 16:12 30 16:09 55 Total Deptn - 30'

Page1 of 2

SOIL BORING LOG

Soil Boring No: SB-19

BV-3

Page 247 of 337

Schematic and

cription

Animas Environmental Services

604 W. Piñon St., Farmington, NM 87401 Tel. (505) 564-2281 animasenvironmental.com

Latitude/Longitude: 30. 62755, -107. 47797

C. Lameman Total Depth (ft): 30' Back fill to 25'

Date: 10-2-18

Datum:

Logged by:

Monitor Well No:

th (ft)

Project: Location: San

Client: Hi Com

Drilling Method: Continous to split spom - HEA Time Recorded: 10:58 Depth to Water (ft): 3x6" intervals) ple Interval Grab, etc) ple Type ple Time v Count Soil Description TYPE, density/consistency, color, grain size, moisture, other

Driller: Goo Mat - Kelley Padilla & Fernando Emigrantelevation:

Juan 28-6 Unit #31

Depth (Sample	Sample (SPT, Gr	Sample	Blow Co (per 3x6	TYPE, density/consistency, color, grain size, moisture, other (i.e. odor, staining)	USCS Symbol	OVM (ppm)	OVM Time	MW Sch	Descrip
0					Very Loose, Brown, Porry Graded Sand, Dry	SP			1	
)					Non plasticity, non cohesire (1-3')				ky.	
15			11:06		Stoff, Brown, Lean clay with Sand, Moist, odar High Plasticity. cohesire (3-5')	CL	340	11:36	3' 542	
5)					Stiff, Brown, Lean clay with Sand, Moist, High Plasticity, coherne, odor (5-8')	CL			C Well +	
1			11:13		Soft, Gray, Lean clay with Saud, Monst	CL	2,255	11:37	nd ,	T
D					High Plasticity, Cohesive, Strong odar (8-10')	0			1/2	
10			-		AN S.A.A (10-10.25')	UL			1	1
)			11:20		Luose, Tan, Porty Graded Sand, Dry, Non-Plast, non-cohesive, Strong oder, Light bray to.	5P F	13465	11:38		VIIV
15					(10.25 - 15')				- 43	111
13	-				UNABLE TO CANTINDE WITH CONTINIONS BORING. SWITCHED TO SPLIT SPUDN-1				r' Scre	1/1/1
20			11:31		Dense, Tun, Sandstone, Ony, Slight odow Small Recovery	55	35.0	11:48	5/	IN ICCUTIN
25			11:47		Very Dense, TAM-White, Dry, No Odar No Staining	55	59.2	11:53	1	R
30'			11:59		S.A.A.	55	43.7	12:05	-	
					Total Depth @ 30'. Backfilled to 25'					
-					to set Bottom of well e 25'.					-
					17' Sand Pack, 8' Bentonite					
200								Augus		

Page1 of 2

Soil Boring No: 5B-22

SOIL BORING LOG

Page 248 of 337

Animas Environmental Services

604 W. Piñon St., Farmington, NM 87401 Tel. (505) 564-2281 animasenvironmental.com

Monitor Well No: 50-Project:

Client: H	Icm	2			
Location:	San	Juan	29-6	Unit	#31
D 0				1 11	

Date: /0-2-18 Latitude/Longitude: 36.67749, -167.47801 Datum:

Dep	th to	water (ft):	1	Time Recorded: 9:20 Total Depth (ft): 30	oft B	_		p
Depth (ft)	Sample Interval	Sample Type (SPT, Grab, etc)	Sample Time	Blow Count (per 3x6" intervals)	Soil Description TYPE, density/consistency, color, grain size, moisture, other (i.e. odor, staining)	USCS Symbol	OVM (ppm)	OVM Time	MW Schematic and Description
0					Very Loose, Brown, Pourly Graded Sand, Dry	SP			
)			1		Very Loose, Brown, Poury Ended Sand, Dry Non plastic, non cohesire. (1-5')				
1					1 C				
(
5			9:35				0.0	10:34	
5	-				Very Loose, Brown, Porrly Graded Sund, Dry	SP			
1					Non plastic, non cohesire (5-6')				
1									
(1			1	Stiff, Brown, Lean cluy with Sand, Dry	U			
10			9:41		High Plastiaity, cohesire (6-10')		0.0	10:35	
10					Dense, Tan-Gray, Well Graded Sand, Dry	SW			
)					non-plasticity, non-cohesire (10-11.5)				
1			9:48		Very Dense, Tan, Sandstone, Strong adow	55	17.2	10:35	
15					(11-11.5')				
_					UNABLE TO CONTINUE WITH CONTINOUS				
					BORINGS. SWITCHED TO SPLIT SPOON				-
15			9:56	·	Very Dense, Tan, Sandstme, Dry, Slight öder	55	9.2	10:36	
20			10:10		Ver S.A.A.	55	1.4	10:36	
25			16:27		Very Dense, tan-Pink, Sandstone, Dry, No Oder	55	25.9	10:37	
					Total Depth e 25'				
_					,				
-									
1							1		

SOIL BORING LOG Soil Boring No: SB-20 Page 249 of 337

Animas Environmental Services

604 W. Piñon St., Farmington, NM 87401

Monitor Well No: BV-2 Tel. (505) 564-2281 animasenvironmental.com Project: Date: 10-8-18 Latitude/Longitude: 36. 62760, -107. 47790 Client: Hilcorp Location: San Juan 28-6 Unit #31 Datum: Driller: Coo Mat - Kelley Padilla & Fornando Enriquez Drilling Method: Centrums to Split Scom - HSA Depth to Water (ft): — Time Recorded: //:44 Elevation: Logged by: C. lameman Total Depth (ft): 30' Backfilled to 25' MW Schematic and 3x6" intervals) Sample Interval SPT, Grab, etc) Sample Type Sample Time Blow Count (per 3x6" inte Description Depth (ft) Soil Description OVM USCS OVM TYPE, density/consistency, color, grain size, moisture, other Symbol Time (ppm) (i.e. odor, staining) Very Losse, Red Tan, Poorly Graded Sand, Moist, 1 0 SP Naplastic, uncohesive (0-5) 00 Stak +3' 5 SP 12:36 11:55 S.A.A 5.6 SP S.A.A (5-6.5') 5 DND Stiff, Brown, Lean Clay w/ Sand, Morst, Med-Plast, ch Blank Cohesire (4.5-10') 3,050 12:37 Dense, Tan-Gray, Wenthered Sindstone, Strong 11:59 55 2440 10 10 1 Sdar, Dry (10-11.5') UNABLE TO CONTINUE W/ CONTINOUS THE CAN WAT TOWN BORING. SWITCHED TO SPLIT SPOON Scheen 15 Very Dense, Tan, Sandstone, Dry, Strong odar Smay Recovery 12:06 55 3,460 12:38 Very Dense, Tan, Sandstone, Dry, o dav, "Recovery 151 20 12:15 12:39 55 312 KARLA 25 12:24 S.A.A. 55 186 12:41 30 S. A.A. 12:43 55 12:33 135 Total Depth @ 30'. Backfilled to 25' to set bottom of well c 25' 17' Sand Pack, S' Bentonite

Page1 of 2

SOIL BORING LOG

Soil Boring No: 5B-21

Page 250 of 337

Animas Environmental Services

604 W. Piñon St., Farmington, NM 87401

Monitor Well No: BV-1 Tel. (505) 564-2281 animasenvironmental.com Project: Date: 10-8-18 Client: Hilcorp Latitude/Longitude: 36. 62768, -107. 47802 Location: San Juan 28-6 Unit #31 Datum: Driller: GeoMat-Kelley Padilla & Fornando Enriquez Elevation: Drilling Method: Continons to Split Spoon - HSA Depth to Water (ft): - Time Recorded: 10:00 Logged by: C. Lameman Total Depth (ft): 30 ' Backfilled 16 25 MW Schematic and 3x6" intervals) Sample Interval Sample Type (SPT, Grab, etc) Sample Time **Blow Count** Description Depth (ft) Soil Description USCS OVM OVM TYPE, density/consistency, color, grain size, moisture, other per Symbol Time (ppm) (i.e. odor, staining) 1 Very Loose, Red-Brown, Poorly Ended Sand, Noist SP 0 Non-plastic, non-cohesire, (0-0.5') do Stick Stiff, Brown, Lean Clay W/ Sand, Morst, High Plast, 4.1 10:18 U 10:48 5 Cohesine, (0.5 + 5') m Losse, Brown, Poorly Graded Sand, Moist Non-plast 58 5 PVC non-cohesive, Strong oder (5-7.5) Blank Dense, Brown, Porry Graded Sand uf Clay, Month, SP-52 2,365 10:23 10:49 10/ Med-Plast, nonconsise, V. Strongolor, Gray (7.5-10') 10 S.A.A. (10-14') SP-SC N ILTILLL WAY LIT 10 Dense, Tan, Weathered Sandstine, V. Strong, Dry 10:28 55 955 10:50 Odor (14-15') creen 15 The content to the content of UNABLE TO CONTINUE WITH CONTINOUS 2 BORING. SWITCHED TO SPLIT SPOON Dense, Tan, Neathered Sandstone, Strong & dow, on 55 2,763 10:51 20 10:36 S.A.A 55 25 10:47 777 10:52 Very Dense, Tan, Sandstone, Dry, Strong Odor 30 11:07 505 11:15 55 Total Depth @ 30'. Backfilled to 25' to set Bottom of Well @ 25'. 17' Sand Pack; 8' Bentonite

Page1 of 2

SOIL BORING LOG

Animas Environmental Services

Page 251 of 337

_	ect:	vven wo	: when C	sve-	Tel. (505) 5 Date: 12-5-18		759	.47	
		tilcn	m		Latitude/Longitude:				
			Juan	28-1		20.071	501 10	1-110	
			Truj		Earth Worx Elevation:				
Drill	ing N	Aethod:	Geo	Probe		nema	n		
Dep	th to	Water (ft): —	-	Time Recorded: 1100 - 1136 Total Depth (ft): 12	_'			
Depth (ft)	Sample Interval	Sample Type (SPT, Grab, etc)	Sample Time	Blow Count (per 3x6" intervals)	Soil Description TYPE, density/consistency, color, grain size, moisture, other (i.e. odor, staining)	USCS Symbol	OVM (ppm)	OVM Time	MW Schematic and
0					Brown, Medium, High Phosticity, Fine Gain,				ΠΤ
)					wi sand, Moist, Cohenive, No odor (0-4')	Ce			
	3_4'	Comb	11:21		S.A.A (4-5')	Cr	32.0	1133	-
5		-							
5					Brown, wose, Fine Grained, Mrist, Sl. Odar.				
1					(5-6.5')	SW			
1					13 6.37				EA
-	7.8							3.21	51
1	8	Grab	11:19		Brown, Medium, Fine Granhed & High Plast, Monst		3,232	1134	7,1
B					(shesive, Soma odor. (6.5 - 8')	a			Er
8					, , , , , , , , , , , , , , , , , , ,				ELS!
1					5. A. A. 18-10.5				E1
1	-								目
1	11'-	1 1	7				12	1	FY
1	12'	Grab	11:16		Dense, Tun Light Gray Staining, Medium Grain	55	3,044	11:35	
12					Dry, String oder (10.5 - 12')		-		
_	-				Auger Refusal c 12' on Sandstone			1	
		() 	* 1 1	· · · · · ·	Total Depth e 12'			1 () (1 4)	
					Install well				
					2" Screen C 12 to 7'				
					Sand Pack C 12 to 6'				
					Bentonite e 6'to surface				
	-				Dentonite - 6 ro surgace			f + 1	
				-					

Released to Imaging: 9/22/2022 2:16:33 PM

SOIL BORING LOG

Page 252 of 337

Animas Environmental Services

Mo	nitor	Well No	SVE -	5 \$	SVE-5R Tel. (505)	564-2281	animaser	nvironme	ntal.co
	ject:				Date: 12-5-18	0.10		- /17	
		Hilcon			Latitude/Longitude	2:36.427	58,-10	7.41	107
					Unit #31 Datum:				×
Dril	ler: /	ous	Truji	110 4	Earth Worx Elevation:				
		Water (she p		amen		. /	
Deb	T	valer (<u> </u>	-	Time Recorded: $/000 - /057$ Total Depth (ft): /-	s a	nd 1	0	-
Depth (ft)	Sample Interval	Sample Type (SPT, Grab, etc)	Sample Time	Blow Count (per 3x6" intervals)	Soil Description TYPE, density/consistency, color, grain size, moisture, other (i.e. odor, staining)	USCS Symbol	OVM (ppm)	OVM Time	MW Schematic and
0				1	Brown, Subt, Five, Med. Plastic., Maist, High				
1					Plasticitiz. (0-5) Clarger Sund	CL			
+		4 6	1		100 11 cing. () Changey sund	100	17		1
1	-	*	10:34		D		1.7	10:41	
-					Brown, Loose, Fire Smd, Mrist, Non Plant	SW			
7:5					(5-7.5')				
1.5			ab		Brown, Still, High Planter 2, MUTT,				IF
1		7.5 -8.5	10:32		Cohesine, Blk Stamin (7.5' - 8.5') oder	OL	4.4	10:40	
)	i i se si i	-1.)	10.72		Concerne, Mic so Minor (1.5 - 8.5) Oder	OL	1.4	10.90	HAF
1									HE
ţ					Brown, Styp, High Plasticity, Moist, Cohesire	cr			E
10.7	\$				(8.5-10,75') Odor				EL
16.7	F								Tor
>	1		10000	+	T. A. Children in Anna	-			143
1			·		Tan, Dense, Slight Grey, Medium brained,				100
(166-	12 6	ab		Dry, Non Plastic, non achesine, 55				HI
13	MA	12 6	10:19		(10.75-13')	55	2,799	10:39	11
	1				Anger Refresal. Stop Geopobe. Install				
					weu.				5
-					Ney.	-			2
									SVC
-					Total Depth = 13' into 55	-			
					2" screen c # 13' to 8'				
-	-				2" sorech e # 13' to 8'				
					Sand Pack e 13' to 7'				
_					Bentraite e 7' to surface.				
					Additional 2" screen installed as				
100					SVE. 2" Screen & lo'to 5'				
					Sand Pack & 10 to by				
					Bentmite C 4 to surface				

Page1 of 2
Soil	Bori	ng No:	5B-6	R	604	W. Piñon S	it., Farmi	ngton, N	M 87
Mor	nitor	Well No	: SVE	-6		564-2281 a	animaser	vironme	ntal.
Proj					Date: 12 - 5-18				
Clier	nt: /	tilcon	0		Latitude/Longitude	: 36.6270	3, -10-	7-4781	0
			nijillo			- 0. A. A A			
Dep	th to	Water (Geopril	e in	Time Recorded: /230 - Total Depth (ft): /				
Depth (ft)	Sample Interval	Sample Type (SPT, Grab, etc)	Sample Time	Blow Count (per 3x6" intervals)	Soil Description TYPE, density/consistency, color, grain size, moisture, other (i.e. odor, staining)	USCS Symbol	OVM (ppm)	OVM Time	MW Schematic and
0					Surface. Gravel				
)					Ste Very Stot, Brown, Tire Grained Sound, High Plast., Maist, High Plast, Cohesitre, (0-4) No Oder	CL			
4.5	4	Grab	12:51		S.A.A. (4-4,5')	OL	3.7	12:55	
4.5		Unis				-		1000	
415		()			Louse, Brown, Fine Grained, Moist, Non Plast,				
)	-				non cohesite, No 6 der (4,5-5.5')	SW			
1	75				Stiff, Brown, Fire Grained Sand, High Plast,				
8	7-18	brah	12:50		Motst, Cohesite (5.5-8')	a	188	12:56	=A
8									11
)					S. A. A (8 - 11') strong odor				11
1					Dense Tan light bran Medding branied Ana				22
12	12'	Grab	12:46	-	Dense, Tan light bray, Medium Grained, Dry hon cohesing, strong oder (11-12')	55	4,247	12:59	うちょ
					Total Depth e 12' on Sandshie				
				1					
-					Muger Reprised				
					Install Well				
					2' screen e 12' to 7'				
					Sand Pack e 12' 56'				
	_				Bentinite e 6' to subace.				
								1.1	
			1.1 + 0.1						
									1
-									-
-									
								-	
_						-			
1.1.1									

Page1 of 2

August 3, 2015

4

A

		DRING				as Envir			
		ng No: S				W. Piñon S			
		Well No	: Sve	-7-		564-2281 ;	animaser	vironme	ntal.co
roje	_	10			Date: 12-5-18	21-12-	71 / /		212
		tilcorp		2 1 11	Latitude/Longitude	:30.61	161, -10	01.41	812
			Juan 2						
			GeoPri						
		Water (of mo	Time Recorded: /135 - /1:58 Total Depth (ft): /				
	Sample Interval	Sample Type (SPT, Grab, etc)	Sample Time	Blow Count (per 3x6" intervals)	Soil Description TYPE, density/consistency, color, grain size, moisture, other (i.e. odor, staining)	USCS Symbol	OVM (ppm)	OVM Time	MW Schematic and
0					Medium, Brown, Fine Grain Sand High Plast,		100		7
	-4	Crab	11:36		Morst, Chestire, No odor (0-4)	CL	8.1	11:53	
1					5.A.A. (4-5')				
5'						a			
5					looke Find wais Mont Ma Plantic				
					Loose, Find Grain, Moist, Non Plastic,	1			1
	-	1-1			Non achenire, bry, No Oder (5-5.5')	SW			
					Brown, Medrum, High Plasticity, Minst,				1
8 8	ŝ	Grap	11:40		Coheroise, N. Odor (5.5-8')	a	1.3	11:54	AE
8									BIL
1	-				CAA - HICHOLD - 12 (a			Tichtan 4. C
					S.A.A. C 10' Slight Gray Staining oder	00			3.1
1					(8 - 11)				TE
1								1	44
11					Nearlo Tan 1424 from Martin long	55			1a
	-				Dense, Tan Light Gray, Medium Grain, Dry, non plastic, won cohemic, Stight of	12			51
11, 11	,					-			E
12 11	-12'	6mb	11:45		(11-12')		282-1	11:55	Et.
					Total Deptrie 12' an Sandstone Anger Refacal				
					Install well	1			
					2" Screin @ 12' to 7'				
-					Sand pack & 12' to 6'				
					Bentonite C 6' to surface				
-	-	. ja							
	-						-// +k 1		
-	-	0.50000							
	_			1		1.000		1	

•

Animas Environmental Services SOIL BORING LOG Soil Boring No: SB-8R 604 W. Piñon St., Farmington, NM 87401 Monitor Well No: SVE -8 Tel. (505) 564-2281 animasenvironmental.com Project: Date: 12-5-18 Client: Hilcorp Location: San Juan 28 to Unit 31 Latitude/Longitude: 36.42765, -/07.47806 Datum: Driller: Louis Trujillo Barth Worx Elevation: Logged by: C. Lamemer Drilling Method: beo Probe Push Rig Time Recorded: 12:56 - 13:27 Depth to Water (ft): Total Depth (ft): 12' Blow Count (per 3x6" intervals) MW Schematic and Sample Interval Sample Type (SPT, Grab, etc) Sample Time Description Depth (ft) Soil Description USCS OVM OVM TYPE, density/consistency, color, grain size, moisture, other Symbol (ppm) Time (i.e. odor, staining) 0 Medium-Soft, Brown, High Plasticity, Moist, CL Chegive, Fine Gramed Sound, No Oter (0-4) S.A.A. (4-5') Staining, Odor 4' Grab 13:05 a 509 13:25 5 5 S. Loose, Tun, Medium Grained, Moist, non-plast. non elphesine, Strong odow (5-6') SW 141 1.11 Shiff, Brown, Fine Grained Sand, High Plasticity, 7.8 Grab 9 Moist, Strong Oder, Cohesine (6-9) CL 394 13:26 13:22 1111111111 9 r S.A.A. Gray staining, Strong Oder (9-11) CL 4 5 Dense, Medium Grained, Gray, Dry, Strong 12 1/2 H 55 12mb 13:18 2,969 13:27 6 dor, Non Plastic, Non cohesme (11-12') Total Depth 12' on Sandstone Anger Refusal Instru well 2" sorren e 12" to 7' Sand pack & 12' to b' Bentonite C 6' to surface

Page1 of 2

\$

4

August 3, 2015

acility or Pipe	line Name: Hal	loop ST2	28 te Uni	731		-	Buck	Machine #_			
Date: /2 -5-	13					Concer	ntration	50 mg/kg	100 mg/kg	500 mg/kg	
ES personnel	C. Lamemo	m				Calibration	ABS Values]
Sample ID	Collection Date	Time of Sample Collection	Sample Location	Sample Depth (ft)	Composite	PID-OVM (ppm)	PID-OVM Time	Field TPH (mg/kg)	Field TPH Analysis Time	ABS	NOTES (i.e. Soil Type, Color, Odor, Staining)
BU SB-24	12-5-18							Brown, M	edium, Fin	e Grained Sa	nd, High Plasticity, Moist
1									, Strong Od		
_				3-4							
		13:50		3-4 +3:50	-	324	13:52				Most bray Sturing
					-			Chenive,	Strong old	w (4-6	
				~ 6				Tan, Wos	e, Medium	brained	Non Playbicity, Morst,
		13:48		7-8 13:49		4,750	13:53	non coh	esire, 5th	mgoler, i	may Staining (6-8')
								Tan Voru	shiff that	Olastrit	Mist, Gray Stuining
								Cohesire,	Extremely	stmy 6	ur e 9-11.5 (8-11.5')
								Duran T	an han ch	ining M	dium Gained, non cohesive
									hory oly		1
		13:46		11-12'	-	4,594	13:54		1	in San	dstone. Anger Refusal
								1" Wu	e 12' h	. 7'	
											intonite C 6' to Surface

as

Type of Sample collection ?:

*

Animas Environmental Services, LLC; 604 W Pinon St. Farmington, NM 87401; Main Office # 505-564-2281 Page 256 of 337

Suil Boring Log: SVE - IR Facility or Pipeline Name: San Juan 28-6 #31

Date: 12-5-18

AES personnel: C.Lameman

Buck	Machine #_		
Concentration	50 mg/kg	100-mg/kg	500 mg/kg
Calibration ABS Values			

Sample ID	Collection Date	Time of Sample Collection	Sample Location	Sample Depth (ft)	Composite	PID-OVM (ppm)	PID-OVM Time	Field TPH (mg/kg)		ABS	NOTES (i.e. Soil Type, Color, Odor, Staining)
SVE-IR	12-5-18	NS	NS	NS	N	NA	NA	No Bo	RING. LO	65.	
								Total D	epth in sta	med e	12' Deep
								1" b	seen c	12' to -	
								San	d Pack tonite c	e 17' to	6'
					\vdash			Ben	tonite c	6' to s	inface
								NO	ABS		
			-								

0

Type of Sample collection?:

Animas Environmental Services, LLC; 604 W Pinon St. Farmington, NM 87401; Main Office # 505-564-2281

Released to Imaging: 9/22/2022 2:16:33 PM

	ES V) en	nimas ivironm rvices	ental	LOG OF: SVE-1						
1			ington, NM • D asenvironmenta	urango, CO I.com					(Page 1 of 1)		
	SAN A INCIDE	JUAN 28 API: 30-03 NT NO. N	ENERGY 3-6 UNIT #3 ⁻ 39-07290 IVK 1816655 C. 28, T28N,	5680	Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 10/8/2018 : 10/8/2018 : 7.25 in. : CME 75 HSA : CONTINOUS/SPLIT-	GPS Logg	gitude	: N36.62768 : W107.47802 : C. Lameman : C. Lameman		
Depth in Feet	Surf. Elev.	NSCS	GRAPHIC		DESC	CRIPTION		PID (ppm)	Well: SVE-1		
0-		SP		VervLoose	Red-Brown Poorly	/ Graded Sand, Moist,					
2		SP-SC		Non-Plastic	city, Non-Cohesive n, Lean Clay with Sa	/		—Bentonite Plug —2" PVC Casing			
6-		SP		Loose, Bro Non-Cohes	wn, Poorly Graded S sive, Strong Odor	Sand, Moist, Non-Plas	ticity,	4.1			
8- 		SP-SC		Dense, Bro Medium-Pl	wn, Poorly Graded Sasticity, Non-Cohesi	Sand with Clay, Moist, ve, Very Strong Odor,	Gray	2,365			
14 		SS		UNABLE T	n, Weathered Sands O CONTINUE WITH SPOON AT 15 FEET	tone, Dry, Very Strong I CONTINOUS BORIΝ Γ.	g Odor NG. SWITCHED	955			
20- 				Dense, Tar	n, Weathered Sands	tone, Dry, Strong Odo	r	2,763			
26- 		SS		Very Dense	e, Tan, Sandstone, [Dry, Strong Odor @ 30)'	505	—Backfill		

A	ESV) er	nimas ivironm rvices	ental		LOC	G OF: SVE	E-2		
		Farm	ington, NM • D asenvironmenta	urango, CO I.com					(Pag	e 1 of 1)
	SAN A INCIDEI	JUAN 28 API: 30-03 NT NO. N	ENERGY 3-6 UNIT #3 39-07290 IVK 1816655 C. 28, T28N	5680	Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 10/8/2018 : 10/8/2018 : 7.25 in. : CME 75 HSA : CONTINOUS/SPLIT-		itude	: W : C	36.62760 /107.47790 Lameman Lameman
Depth in Feet	Surf. Elev.	NSCS	GRAPHIC		DESC	RIPTION		PID (ppm)	Well: S'	√E-2
0- 2- 4- 6-		SP		Very Loose Non-Plastic	e, Red-Tan, Poorly G city, Non-Cohesive	raded Sand, Moist,		5.6		—Bentonite Plug —2" PVC Casing
8- - - - - - - -		SP-SC		Cohesive		nd, Moist, Medium-Pla		3,050		
12 12 14		SS		Dense, Tar UNABLE T TO SPLIT	n-Gray, Weathered S O CONTINUE WITH SPOON AT 11.5 FEI	Sandstone, Dry, Strong I CONTINOUS BORIN ET.	g Odor IG. SWITCHED	-,		
16-		SS		Very Dense	e, Tan, Sandstone, E	Dry, Strong Odor, Poor	r Recovery	3,460		—2" PVC Screen —Sand Pack
18				Very Dense	e, Tan, Sandstone, E)ry, Odor, Poor Recov	ery	312		
22- 24- 26- 28-		SS						186		—Backfill
30-								135		

A	ES V) en	imas ivironm rvices ington, NM • D asenvironmenta			LOC	G OF: SVI	Ξ-3	(Pog	e 1 of 1)
	SAN / INCIDEI	IILCORP JUAN 28 API: 30-03 NT NO. N	ENERGY 3-6 UNIT #3 ⁻	1 5680	Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 10/2/2018 : 10/2/2018 : 7.25 in. : CME 75 HSA : CONTINOUS/SPLIT-		itude	: N : V : C	2 F 0F F) 136.62755 V107.47797 2. Lameman 2. Lameman
Depth in Feet	Surf. Elev.	USCS	GRAPHIC		DESC	CRIPTION		PID (ppm)	Well: S	VE-3
0- 2-		SP		Very Loose Non-Cohes		ded Sand, Dry, Non-P	lasticity,			—Bentonite Plug
4		SP-SC		Stiff, Browr Cohesive, (ı, Lean Clay with Sa Odor	nd, Moist, Odor, High-	Plasticity,	5.6		—2" PVC Casing
8		SP-SC		Soft, Gray, Cohesive, S	Lean Clay with San Strong Odor	d, Moist, High-Plasticit	y,	3,050		
12-		SP		Non-Cohes	ive, Strong Odor, Li					
14— 				TO SPLIT-	O CONTINUE WITH SPOON AT 15 FEE n, Sandstone, Dry, S			3,460		—2" PVC Screen —Sand Pack
18		SS						312		
22				Verv Dense	e, Tan-White, Sands	tone. Drv. No Odor		186		
26		SS			, ran winte, Ganus	ano, 21, no Odor				—Backfill
30-								135		

A	ESV) er	nimas nvironm rvices	ental		LOC	G OF: S	SVE-4	
		Farm	iington, NM • D asenvironmenta	urango, CO I.com					(Page 1 of 1)
	SAN A INCIDE	JUAN 28 API: 30-03 NT NO. N	ENERGY 8-6 UNIT #3 [:] 39-07290 IVK 1816655 C. 28, T28N	5680	Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 12/5/2018 : 12/5/2018 : 4 in. : GEOPROBE : PUSH RIG/SPLIT-SP		Latitude Longitude GPS By Logged By	: N36.62764 : W107.47800 : C. Lameman : C. Lameman
Depth in Feet	Surf. Elev.	nscs	GRAPHIC		DESC	CRIPTION		PID (ppm)	Well: SVE-4
0		SC		Clayey Sar Moist, Coh	nd, Very Soft, Brown esive, No Odor, No S	, Fine Grained, High P Staining	Plasticity,		-Bentonite Plug -2" PVC Casing
4		SC		Clayey Sar Moist, Coh	nd, Very Soft, Brown esive, Strong Odor, I	, Fine Grained, High P Staining	Plasticity,	324	
6		SC		Clayey Sar Cohesive,	nd, Stiff, Brown, Fine Strong Odor, Gray S	e Grained, High Plastici Itaining	ity, Moist,		
8		sc		Clayey Sar Cohesive,	nd, Stiff, Brown, Fine Strong Odor, Gray S	e Grained, High Plastici itaining	ity, Moist,	4,750	2" PVC Screen
		SS		Dry, Strong	andstone, Dense, Ta g Odor, Slight Stainir stone at 12 feet, Aug	-	n Grained,	4,594	

A	ES) en	imas ivironm rvices			LO	G OF: SV	E-5	
	SAN A INCIDEI	IILCORP JUAN 28 API: 30-03 NT NO. N	ington, NM + D asenvironmenta ENERGY 3-6 UNIT #3 39-07290 IVK 1816655 C. 28, T28N	1 5680	Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 12/5/2018 : 12/5/2018 : 4 in. : GEOPROBE : PUSH RIG/SPLIT-SI	Lon GPS Log	tude gitude S By ged By	(Page 1 of 1) : N36.62767 : W107.47802 : C. Lameman : C. Lameman
Depth in Feet 0-	Surf. Elev.	nscs	GRAPHIC			CRIPTION		PID (ppm)	Well: SVE-5
					IG LOG RECORDEI	D - WELL INSTALLAT ger refusal.	ION ONLY.	324 4,750 4,594	-Bentonite Plug -1" PVC Casing -1" PVC Screen -Sand Pack

A	ESP	en	nimas ivironm rvices	ental		LOG	OF: SVE	-6	
		Farm	iington, NM • Di asenvironmenta	urango, CO I.com					(Page 1 of 1)
	SAN A INCIDE	JUAN 28 API: 30-03 NT NO. N	ENERGY 3-6 UNIT #31 39-07290 IVK 1816655 C. 28, T28N,	680	Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 12/5/2018 : 12/5/2018 : 4 in. : GEOPROBE : PUSH RIG/SPLIT-SPO	Latituc Longit GPS E Logge ON	ude By	: N36.62759 : W107.47811 : C. Lameman : C. Lameman
Depth in Feet	Surf. Elev.	nscs	GRAPHIC		DESCRI	PTION	PID (ppm)	Well: SVE	6
		SC		Moist, Coh	Sand, Brown, High P esive, No Odor, No S Sand, Brown, High P esive, Slight Odor, N			Bentonite Plug 2" PVC Casing	
		SC SC SS		Sandstone	Sand, Brown, High Pl esive, Strong Odor, f , Dense, Tan-Light G g Odor, No Staining	lasticity, Fine Grain, No Staining	3,232		2" PVC Screen Sand Pack

A	ES) er	nimas nvironm rvices			LOG	G OF: SVI	E-7D		
1		Farm	nington, NM • D asenvironmenta	urango, CO Il.com					(Page 1 of 1)	
	SAN A INCIDE	JUAN 2 API: 30-0 NT NO. N	ENERGY 8-6 UNIT #3 39-07290 IVK 1816655 C. 28, T28N	5680	Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 12/5/2018 : 12/5/2018 : 4 in. : GEOPROBE : PUSH RIG/SPLIT-SI	Lor GP Log	itude ngitude 'S By gged By	: N36.62758 : W107.47807 : C. Lameman : C. Lameman	
Depth in Feet	Surf. Elev.	nscs	GRAPHIC		DESC	CRIPTION		PID (ppm)	Well: SVE-7D	
0_ - - 1_ - 2_ - - - - - - - - - - - - - - - - -		SC		Conhesive	, No Odor, No Staini			1.7	—Bentonite Plug —2" PVC Casing	
6 - 7 - - - -		SW				ned, Moist, No Odor, I	-			
- - 8_ - -		CL		Staining, C)dor	ty, Moist, Cohesive, B Grained, High Plastic		4.4		
9_ - - 10_ - -		SC		Cohesive,	Odor, Staining					١
11 12		SS		Weatherd Strong Odd	Sandstone, Dense, S or, Slight Staining	Slight Gray, Medium G	Grained, Dry,	2,799		
- - 13—				Hard Sand	stone at 13 feet, Aug	ger Refusal		2,700		

A	AES AES Farmington, NM - Durango, CO animasenvironmental.com				LOG	OF: SVE-8		
	HILCORP ENERGY SAN JUAN 28-6 UNIT #31 API: 30-039-07290 INCIDENT NO. NVK 1816655680 SW1/4 SW1/4, SEC. 28, T28N, R6W			Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 12/5/2018 : 12/5/2018 : 4 in. : GEOPROBE : PUSH RIG/SPLIT-SPO	Latitude Longitude GPS By Logged By ON	(Page 1 of 1) : N36.62763 : W107.47810 : C. Lameman : C. Lameman	
Depth in Feet	Surf. Elev.	NSCS	GRAPHIC		DESC	CRIPTION	PID (ppm)	Well: SVE-8
0-			2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0	Gravel on	Surface			
2 		SC		Moist, Coh	esive, No Odor, No		3.2	-Bentonite Plug
		SW		Sand, Loos	se, Brown, Fine Grai	ined, Moist, No Odor, No	Staining	
6		SC		Cohesive,	Strong Odor, No Sta		188	2" PVC Screen — Sand Pack
- - - 12-		SS		Dry, Strono	andstone, Dense, Ta g Odor, Slight Stainir Istone at 12 feet, Aug		Grained, 4,247	

A	ES V) er	nimas nvironm rvices			LOG	OF: SVE-	·10	
1		Farm	nington, NM • D asenvironmenta	urango, CO I.com					(Page 1 of 1)
	HILCORP ENERGY SAN JUAN 28-6 UNIT #31 API: 30-039-07290 INCIDENT NO. NVK 1816655680 SW1/4 SW1/4, SEC. 28, T28N, R6W			Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 12/5/2018 : 12/5/2018 : 4 in. : GEOPROBE : PUSH RIG/SPLIT-SPO	Latituc Longiti GPS E Logge	ude 3y	: N36.62765 : W107.47806 : C. Lameman : C. Lameman	
Depth in Feet	Surf. Elev.	USCS	GRAPHIC		DESCRI	PTION	PID (ppm)	Well: SVI	E-10
0		SC		Clayey Sar Plasticity, I	nd, Very Soft, Brown Moist, Cohesive, No	, Fine Grained, High Odor, No Staining			-Bentonite Plug -2" PVC Casing
4		SC		Plasticity, I	nd, Very Soft, Brown Moist, Cohesive, Odo	or, Staining	509		
- - - 6—		SW		Sand, Loos Staining	se, Brown, Fine Grai	ned, Moist, No Odor, No			
8 		SC		Clayey Sa Moist, Coh	nd, Stiff, Brown, Fine lesive, Strong Odor, I	Grained, High Plasticity No Staining	394		-2" PVC Screen -Sand Pack
- - - - 10 - - - -		SC		Clayey Sar Moist, Coh	nd, Stiff, Brown, Fine lesive, Strong Odor, i	Grained, High Plasticity Gray Staining	/,		
- - - 12-		SS		Grained, D	andstone, Dense, Ta Dry, Strong Odor, Slig Istone at 12 feet, Aug	-	2,969		

A	ESV) er	nimas nvironm ervices			LOG OF: SV	E-11S ar	nd SV	′E-11D	
		Farmanim	nington, NM • D nasenvironmenta	ourango, CO al.com					(Page 1 c	of 1)
	HILCORP ENERGY SAN JUAN 28-6 UNIT #31 API: 30-039-07290 INCIDENT NO. NVK 1816655680 SW1/4 SW1/4, SEC. 28, T28N, R6W			Date Started: 5/1/2019Latitude: N36.6276Date Completed: 5/1/2019Longitude: W107.47Hole Diameter: 7.25 in.GPS By: C. LamerDrilling Method: CME H.S.A.Logged By: C. LamerSampling Method: SPLIT-SPOON			47803 ieman			
Depth in Feet	Surf. Elev.	NSCS	GRAPHIC		DESCRIPTION			PID (ppm)	Well1: SVE- Well2: SVE-	
0		SC			ayey Sand, Soft, Brown, Fine Grained, High Plasticity, oist, No Odor, No Staining					-Bentonite Plug
		SW			se, Brown, Fine Grai	ned, Moist, Strong Odo	r,			-1" PVC Casing
		SC		Clayey Sar	Staining Clayey Sand, Sodt, Brown, Medium Plasticity, Moist, Strong Odor, Staining			86.4		
		SS			Weathered Sandstone, Loose, Light Gray, Fine Grained, Dry, Strong Odor			2,703		-Sand Pack - 1" PVC Screen
15		SS		Sandstone Dry, Strong		Fine to Medium Graine	d, 1/50	2,067		-Bentonite Plug
20		SS		Sandstone Strong Odo	, Very Dense, Light (or, No Staining	Gray, Fine Grained, Dry	1/50	3,127		-1" PVC Casing
25		SS		Sandstone Odor, No S		Fine Grained, Dry, Stror	1/50	3,210		-Sand Pack - 1" PVC Screen
30		SS		Sandstone Grained, D	, Very Dense, Tan-S ry, Strong Odor, No	light Green, Fine Staining	1/50	3,326		-Bentonite Plug
35-		SS		Sandstone Strong Odd	, Very Dense, Tan-V or, No Staining, Auge	Vhite, Fine Grained, Dry er Refusal and Small	/, 1/50	213.3		
				Recovery.	PTH 35 FEET.					

A	ES V) er	nimas vironm rvices nington, NM • D			LOG OF: SV	E-12S a	nd SV	/E-12D (Page 1 d	of 1)
	HILCORP ENERGY SAN JUAN 28-6 UNIT #31 API: 30-039-07290 INCIDENT NO. NVK 1816655680 SW1/4 SW1/4, SEC. 28, T28N, R6W				Date Started : 4/30/2019 Latitude Date Completed : 4/30/2019 Longitud Hole Diameter : 7.25 in. GPS By Drilling Method : CME H.S.A. Logged Sampling Method : CONTINOUS			ngitude 'S By	: N36.62762 : W107.47802 : C. Lameman : C. Lameman	
Depth in Feet	Surf. Elev.	USCS	GRAPHIC		DESCRIPTION			PID (ppm)	Well1: SVE- Well2: SVE-	
0		GW		Sand and (Backfill - Below Grade Tank and Cribbing Removed. Sand and Gravel, Moist. Slight Odor, Some Staining. 0-5 feet hand augered. Sand, Loose, Brown, Fine Grained, Moist, Strong Odor, Gray Staining					-Bentonite Plug -1" PVC Casing
5		SW						0.0		
10		SC SH SS		Plasticity, N Shale, Gra	Clayey Sand, Soft, Gray, Fine Grained, Medium Plasticity, Moist, Strong Odor, Staining Shale, Gray, Loose, Strong Odor, Staining, Moist Weathered Sandstone, Loose, Gray, Fine Grained, Dry,			2,403		- Sand Pack - 1" PVC Screen
15		SS			, Very Dense, Tan, I	Fine to Medium Grained	I,	1,991		-Bentonite Plug -1" PVC Casing
20		SS		Sandstone Odor, No S	, Very Dense, Tan, f Staining	Fine Grained, Dry, Stror	ng	2,585		-Sand Pack -1" PVC Screen
25-		SS		Sandstone Odor, No S	Sandstone, Very Dense, Tan, Fine Grained, Dry, Strong Odor, No Staining			2,558		
30		SS			Sandstone, Very Dense, Tan-White, Fine Grained, Dry, Odor, No Staining			338		-Bentonite Plug
35-	35 - SS Sandstone, Very Dense, Tan-White, Fine G Odor, No Staining. Auger Refusal and Sma TOTAL DEPTH 35 FEET.				Vhite, Fine Grained, Dry sal and Small Recovery	/,	272			

A	AES AES AND			LOG OF: SVE-13S and SVE-13D						
1		Farm	nington, NM • D nasenvironmenta	urango, CO Il.com	(Page 1 of 1)					1)
	HILCORP ENERGY SAN JUAN 28-6 UNIT #31 API: 30-039-07290 INCIDENT NO. NVK 1816655680 SW1/4 SW1/4, SEC. 28, T28N, R6W			Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 5/1/2019 : 5/1/2019 : 7.25 in. : CME H.S.A. : SPLIT SPOON	GPS	gitude	: N36.627 : W107.47 : C. Lame : C. Lame	7798 eman	
Depth in Feet	Surf. Elev.	NSCS	GRAPHIC		DESCRIPTION			PID (ppm)	Well1: SVE-1 Well2: SVE-1	
0		SC		Plasticity, N	Clayey Sand, Loose, Brown, Fine Grained, High Plasticity, Moist, No Odor, No Staining. 0 to 5 feet hand augered on 4/30/2019.					
5		SW		Sand, Loos Gray Staini	Sand, Loose, Brown, Fine Grained, Moist, Strong Odor, Gray Staining			6.5		Bentonite Plug 1" PVC Casing
10		SC SS		Moist, Stro Weathered	Clayey Sand, Soft, Brown, Fine Grained, Low Plasticity, Moist, Strong Odor, No Staining Weathered Sandstone, Loose, Light Gray, Fine Grained, Dry, Strong Odor			2,581		
				Sandstone Grained, D	, Very Dense, Tan-G ry, Strong Odor	Gray, Fine to Medium	1/55	3,061		
20-		SS		Sandstone Odor. No S	, Very Dense, Tan, F staining, Small Reco	Fine Grained, Dry, Stro	ng 1/55	2,033		Sand Pack 1" PVC Screen
25-		SS					1/55	2,151		Bentonite Plug 1" PVC Casing
		SS			, Very Dense, Tan-V or, No Staining, Sma	Vhite, Fine Grained, Dr Il Recovery	у,			Sand Pack 1" PVC Screen
30		SS		Sandstone Odor, No S		Vhite, Fine Grained, Dr	y, 1/55	2,382		Bentonite Plug
35-	SS Sandstone Odor, No S Recovery.			, Very Dense, Tan-W staining. Auger Refus PTH 35 FEET.	Vhite, Fine Grained, Dr sal and Little to No	y, 1/55	24.8			

A	ES V) er	nimas nvironm ervices nington, NM • D			LOG OF: SV	′E-14S ar	nd SV	'E-14D (Page 1	of 1)
	Farmington, NM + Durango, CO animasenvironmental.com HILCORP ENERGY SAN JUAN 28-6 UNIT #31 API: 30-039-07290 INCIDENT NO. NVK 1816655680 SW1/4 SW1/4, SEC. 28, T28N, R6W				Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 5/1/2019 : 5/1/2019 : 7.25 in. : CME H.S.A. : SPLIT SPOON	GPS	gitude	: N36.6 : W107 : C. Lai : C. Lai	2766 .47796 neman
Depth in Feet	Surf. Elev.	NSCS	GRAPHIC		DESCRIPTION			PID (ppm)	Well1: SVE Well2: SVE	
-0 		SC		Plasticity, N	Clayey Sand, Loose, Brown, Fine Grained, High Plasticity, Moist, No Odor, No Staining. 0 to 5 feet hand nugered on 4/30/2019.					– Bentonite Plug
5— - - - - - -		SW		Sand, Loos Gray Stain	se, Brown, Fine Grai ing	ned, Moist, Strong Odc	pr, NA	0.0		-1" PVC Casing
		SC		Clayey Sar Moist, Stro	nd, Soft, Brown, Fine ng Odor, Gray Stain	e Grained, Low Plasticit ing	ty, 5, 7, 9	683.9		− Sand Pack − 1" PVC Screen
15- - - - - - - -		SS			Sandstone, Loose, Odor, Slight Stainir	Light Gray, Fine Graind	ed, 1/55	23.3		−Bentonite Plug −1" PVC Casing
		SS		Sandstone Strong Odd	, Very Dense, Tan-V or, No Staining	Vhite, Fine Grained, Dr	y, 1/55	69.2		– Sand Pack
- - - 25- - -				Sandstone Slight Odor	Sandstone, Very Dense, Tan-White, Fine Grained, Dry, Slight Odor, No Staining		y, 1/55	89.0		– 1" PVC Screen
- - - - - 30-		SS 						25.6		– Bentonite Plug
00				Odor, No S	, Very Dense, Tan, F staining PTH 30 FEET.	Fine Grained, Dry, Sligh	nt	20.0		

	FS) en	nimas ivironm rvices	ental		LOG	G OF: SV	E-15	
A	LO		ington, NM • D asenvironmenta	urango, CO I.com					(Page 1 of 1)
HILCORP ENERGY SAN JUAN 28-6 UNIT #31 API: 30-039-07290 INCIDENT NO. NVK 1816655680 SW1/4 SW1/4, SEC. 28, T28N, R6W			Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 5/1/2019 : 5/1/2019 : 7.25 in. : CME H.S.A. : SPLIT SPOON	Lor GP	itude ngitude S By gged By	: N36.62758 : W107.47807 : C. Lameman : C. Lameman		
Depth in Feet	Surf. Elev.	USCS	GRAPHIC		DESCRI	PTION	Blow Count	PID (ppm)	Well1: SVE-15
0		SC			nd, Loose, Brown, Fi Moist, No Odor, No S		5, 7, 9	2.6	-Bentonite Plug
10		SC SH		Moist, Stro Shale, Soft	Clayey Sand, Soft, Brown, Fine Grained, Low Plasticity, Moist, Strong Odor, Gray Staining Shale, Soft, Gray, Dry, Strong Odor, Staining Weathered Sandstone, Loose, Light Gray, Fine Grained,			2,967	
15		SS		Dry, Strong	g Odor, Slight Stainin	ig	32, 55	2,870	Sand Pack
20		SS		Sandstone Odor, No S	, Very Dense, Tan, F Staining	ine Grained, Dry, Stro	ng 1/55	2,776	
25- - - - - - -		SS		Sandstone Odor, No S		Fine Grained, Dry, Stro	ong 1/55	195.9	-Bentonite Plug
30- - - - - -		SS		Sandstone Slight Odor	, Very Dense, Tan-W r, No Staining	/hite, Fine Grained, D	ry, 1/55	229.9	
- - 35—		SS		Slight Odor	, Very Dense, Tan-W r, No Staining PTH 35 FEET.	Vhite, Fine Grained, D	ry, 1/55	47.4	

ENCLOSURE D – ANIMAS ENVIRONMENTAL SERVICES CROSS SECTIONS

5 275 Page

SAND

CLAYEY SAND

SANDSTONE (WEATHERED)

SANDSTONE (HARD)

INTERPOLATED AREA OF PETROLEUM HYDROCARBON IMPACTS

VERTICAL DELINEATION -LABORATORY CONCENTRATIONS **BELOW ACTION LEVELS**

NOTE: FOR VISUAL CLARITY SVE WELLS ARE SHOWN ADJACENT TO ORIGINAL BORINGS

NOTE: ALL LABORATORY ANALYTICAL RESULTS REPORTED IN mg/kg.

FIGURE 4A

GEOLOGICAL CROSS SECTION

A - A' HILCORP ENERGY SAN JUAN 28-6 UNIT #31 API:30-039-07290 INCIDENT NO. NVF 1816655680 SW¹/₄ SW¹/₄, SECTION 28, T28N, R6W **RIO ARRIBA COUNTY, NEW MEXICO** N36.62780, W107.47811

animas environmental services

Farmington, NM • Durango, CO animasenvironmental.com

DRAWN BY:	DATE DRAWN:
C. Lameman	August 21, 2018
REVISIONS BY:	DATE REVISED:
C. Lameman	May 15, 2019
CHECKED BY:	DATE CHECKED:
E. McNally	May 15, 2019
APPROVED BY:	DATE APPROVED:
E. McNally	May 15, 2019
	•

of 337 276 Page

IN CROSS-SECTION ONLY.

NOT TO SCALE

SAND

CLAYEY SAND

SANDSTONE (WEATHERED)

SANDSTONE (HARD)

INTERPOLATED AREA OF PETROLEUM HYDROCARBON IMPACTS

VERTICAL DELINEATION -LABORATORY CONCENTRATIONS BELOW ACTION LEVELS

NOTE: FOR VISUAL CLARITY SVE WELLS ARE SHOWN ADJACENT TO ORIGINAL BORINGS

NOTE: ALL LABORATORY ANALYTICAL RESULTS REPORTED IN mg/kg.

FIGURE 4B

GEOLOGICAL CROSS SECTION

B - B' HILCORP ENERGY SAN JUAN 28-6 UNIT #31 API:30-039-07290 INCIDENT NO. NVF 1816655680 SW¹/₄ SW¹/₄, SECTION 28, T28N, R6W **RIO ARRIBA COUNTY, NEW MEXICO** N36.62780, W107.47811

animas environmental services

Farmington, NM • Durango, CO animasenvironmental.com

DRAWN BY:	DATE DRAWN:
C. Lameman	August 21, 2018
REVISIONS BY:	DATE REVISED:
C. Lameman	May 16, 2019
CHECKED BY:	DATE CHECKED:
E. McNally	May 16, 2019
APPROVED BY:	DATE APPROVED:
E. McNally	May 16, 2019

NOT TO SCALE

SAND

CLAYEY SAND

SANDSTONE (WEATHERED)

SANDSTONE (HARD)

INTERPOLATED AREA OF PETROLEUM HYDROCARBON IMPACTS

VERTICAL DELINEATION -LABORATORY CONCENTRATIONS BELOW ACTION LEVELS

NOTE: FOR VISUAL CLARITY SVE WELLS ARE SHOWN ADJACENT TO ORIGINAL BORINGS IN CROSS-SECTION ONLY.

NOTE: ALL LABORATORY ANALYTICAL RESULTS REPORTED IN mg/kg.

FIGURE 4C

GEOLOGICAL CROSS SECTION

C - C' HILCORP ENERGY SAN JUAN 28-6 UNIT #31 API:30-039-07290 INCIDENT NO. NVF 1816655680 SW¼ SW¼, SECTION 28, T28N, R6W RIO ARRIBA COUNTY, NEW MEXICO N36.62780, W107.47811

animas environmental services

Farmington, NM • Durango, CO animasenvironmental.com

DRAWN BY:	DATE DRAWN:
C. Lameman	May 15, 2019
REVISIONS BY:	DATE REVISED:
C. Lameman	May 15, 2019
CHECKED BY:	DATE CHECKED:
E. McNally	May 15, 2019
APPROVED BY:	DATE APPROVED:
E. McNally	May 15, 2019

ENCLOSURE E – SVE SYSTEM DIAGRAM, SVE SYSTEM BROCHURE, AND GENERATOR MANUAL

```
Received by OCD: 10/6/2021 1:38:04 PM
```

s.c.

CLEAR

(V-4)

Legend

Ъ GATE VALVE

- s.c. SAMPLING CONNECTION/ PORT
- - UNION

TD **TEMPERATURE INDICATOR**

(V-1)

FS PITOT TUBE FLOW SENSOR

VACUUM GAUGE

- DPD DIFFERENTIAL PRESSURE INDICATOR
- HHL HIGH HIGH LEVEL SWITH (INTRINSICALLY SAFE)

Radius of Influence

Released to Imaging: 9/22/2022 2:16:33 PM

<u>geotech</u>

Soil Vapor Extraction Systems

Geotech SVE

The Geotech Soil Vapor Extraction system is designed to remove hazardous vapors from the subsurface by drawing air through contaminated soil, and volatilizing adsorbed phase pollutants. Geotech SVE systems are ideal for well point or trench type vapor barriers.

FEATURES

- Compact, durable design
- Skid Mounted with moisture separator drum/mist eliminator
 - 37 gallon (140 liters) liquid holding capacity
 - Hi Water level switch
 - Hi Vacuum switch
- Continuous reliable operation
- Many blower types are available to meet your requirements:
 - Regenerative
 - Rotary Claw
 - Positive Displacement (Rotary Lobe)
 - Rotary Vane
 - Centrifugal Fan
- Thermal overload protection
- Influent dilution air valve
- Two vacuum gauges
- Optional NEC code available (Class 1, Div. 1, or Div. 2)
- Non-explosive units are available

OPERATION

The Geotech SVE system works by pulling air through soil that has been saturated with hydrocarbons or other volatile organic compounds, causing these compounds to volatilize. The vapors are then discharged to the atmosphere, through carbon polishing or vapor oxidation.

These systems are deployed with a moisture separator and mist eliminator filter to protect blower and end treatment from corrosion particulates and debris.

Every Geotech SVE system is factory assembled and fully tested for function, performance, and safety to meet the design conditions of each site application.

Regenerative Blower SVE inside optional hazmat enclosure

Regenerative Blower SVE

CALL GEOTECH TODAY (800) 833-7958

Geotech Environmental Equipment, Inc. 2650 East 40th Avenue • Denver, Colorado 80205 (303) 320-4764 • (800) 833-7958 • FAX (303) 322-7242 email: sales@geotechenv.com website: www.geotechenv.com

Soil Vapor Extraction Systems

Regenerative Type Blower Soil Vapor Extraction System Selection Curve 1 through 10 HP Note: Higher flow and vacuum versions

SPECIFICATIONS

are available.

Geotech SVE

Applications:	s: Well point or trench type vapor barriers		
Product Recovery:	Volatile Organic Compounds (VOCs)		
Dimensions:	40" L x 48" W x 65" H		
	(101.6 cm L x 121.9 cm W x 165.1 cm)		
Options:	Geotech Environmental Control Module		
	Telemetry package		
	Influent or effluent silencer		
	Effluent sample port		
	Effluent temperature gauge		
	Local CFM display		
	Auto-Drain (this option features automatic water level control inside the moisture separator with an effluent transfer pump)		

Power Requirements:

HP	Voltage	Phase	CFM/CMM	Vacuum
1	115/230	1	0-95/0-2.7	50"
1.5	230	1	0-115/0-3.3	58"
2	230	1	80-145/2.3-4.1	55"
2	230	3	80-145/2.3-4.1	55"
3	230	1 or 3	30-185/.85-5.2	72"
5	230	3	85-280/2.4-7.9	82"
7.5	230	3	80-325/2.3-9.2	93"
10	230	3	125-380/3.5-10.8	93"

CALL GEOTECH TODAY (800) 833-7958

Geotech Environmental Equipment, Inc. 2650 East 40th Avenue • Denver, Colorado 80205 (303) 320-4764 • (800) 833-7958 • FAX (303) 322-7242 email: sales@geotechenv.com website: www.geotechenv.com

Regenerative Blower SVE with optional Geotech Environmental Control Module

RE: A 3 HP Soil Vapor Extraction System TM

As the premier supplier of environmental sampling, monitoring, remediation equipment and associated field supplies since 1978, Geotech Environmental Equipment is pleased to provide you with this quotation for equipment and supplies:

Geotech will supply a 3 HP ORS, XP Soil Vapor Extraction System with the following features:

- Ametek Rotron model EN656M5XL rated for Hazardous Location Class I, Group D, Class II Group F&G, Aluminum fan regenerative blower capable of Approx 100 ICFM (+/- 10%) - 50 inches W.C. Blower motor will be XP, 230 volt, 3HP, single phase with thermal overload protection.
- Explosion proof power disconnect on/off switch (NEMA 7 Enclosure)
- Manual dilution air valve
- Two vacuum gauges.
- Duotec Model H3A-1SL, Vacuum switch to protect the blower from overheating by detecting a blockage in the line. Rated for Hazardous locations, Class I Group B,C & D and Class II Group E,F& G
- Moisture Separator capable of removing vapor from an air flow of up to 350

SCFM with the following features:

- * Integral Mist Eliminator/Particulate Filter
- * 37 gallon capacity, steel canister with epoxy coated interior.
- * High efficiency cyclonic separation.
- * Inherent safe collection design.

* Outfitted with drain for convenient removal of fluids. * W.E. Anderson, Flotect Model L-6, high liquid level switch system that will shut down the blower to protect the blower from flooding when the moisture separator is full. Rated for Hazardous location, Class I Group A, B, C & D, Class II Group E, F & G.

 Mounted and wired in a metal Haz Mat Station, with lockable, hinged lid & doors. Welded steel construction, 66 gallon sump meets EPA &n UFC requirements. Side vents and added Roof Vent for passive ventilation. Coated with a durable, corrosion and weather resistant finished. Four way "forklift able"

Installation Manual

20 ES GENERATOR SET

Printed in U.S.A.

928-0601 5-95

Table of Contents

SECTION	TITLE	PAGE
	SAFETY PRECAUTIONS	
1		1-1
	About This Manual	
2	SPECIFICATIONS	2-1
3	MOUNTING THE GENERATOR SET	3-1
	General Location Mounting Access to Set Vibration Isolators	
4		4-1
	General Fuel System Exhaust System Ventilation and Cooling	
5		5-1
	General Transfer Switch AC Wiring DC Wiring	
6	PRESTART PREPARATIONS	6-1
	General Lubrication Coolant Fuel Ventilation Exhaust System Electrical System Mechanical Checks	6-1 6-1 6-1 6-1 6-1 6-1 6-1 6-1

•

SECTION	TITLE	PAGE
7	INITIAL START AND CHECKS	
	Starting	
	Engine Gauges	
	AC Meters (If Equipped)	
	Exhaust System	
	Engine Monitor Indicator Lamps	
	Fuel System	
	DC Electrical System	
	Cooling System	
	Lubrication System	
8	INSTALLATION CHECKLIST	8-1
	General	
	Genset Support	
	Cooling Air Flow	
	Fuel System	
	Exhaust System	8-2
	AC and DC Wiring	8-2
	Genset Prestart	8-2

Safety Precautions

Before operating the generator set, read the Operator's Manual and become familiar with it and the equipment. Safe and efficient operation can be achieved only if the equipment is properly operated and maintained. Many accidents are caused by failure to follow fundamental rules and precautions.

The following symbols, found throughout this manual, alert you to potentially dangerous conditions to the operator, service personnel, or the equipment.

A DANGER This symbol warns of immediate hazards which will result in severe personal injury or death.

<u>AWARNING</u> This symbol refers to a hazard or unsafe practice which can result in severe personal injury or death.

A CAUTION This symbol refers to a hazard or unsafe practice which can result in personal injury or product or property damage.

FUEL AND FUMES ARE FLAMMABLE

Fire, explosion, and personal injury or death can result from improper practices.

- DO NOT fill fuel tanks while engine is running, unless tanks are outside the engine compartment. Fuel contact with hot engine or exhaust is a potential fire hazard.
- DO NOT permit any flame, cigarette, pilot light, spark, arcing equipment, or other ignition source near the generator set or fuel tank.
- Fuel lines must be adequately secured and free of leaks. Fuel connection at the engine should be made with an approved flexible line. Do not use copper piping on flexible lines as copper will become brittle if continuously vibrated or repeatedly bent.
- Be sure all fuel supplies have a positive shutoff valve.

• Be sure battery area has been well-ventilated prior to servicing near it. Lead-acid batteries emit a highly explosive hydrogen gas that can be ignited by arcing, sparking, smoking, etc..

EXHAUST GASES ARE DEADLY

- Provide an adequate exhaust system to properly expel discharged gases away from enclosed or sheltered areas and areas where individuals are likely to congregate. Visually and audibly inspect the exhaust daily for leaks per the maintenance schedule. Ensure that exhaust manifolds are secured and not warped. Do not use exhaust gases to heat a compartment.
- Be sure the unit is well ventilated.
- Engine exhaust and some of its constituents are known to the state of California to cause cancer, birth defects, and other reproductive harm.

MOVING PARTS CAN CAUSE SEVERE PERSONAL INJURY OR DEATH

- Keep your hands, clothing, and jewelry away from moving parts.
- Before starting work on the generator set, disconnect battery charger from its AC source, then disconnect starting batteries, negative (-) cable first. This will prevent accidental starting.
- Make sure that fasteners on the generator set are secure. Tighten supports and clamps, keep guards in position over fans, drive belts, etc.
- Do not wear loose clothing or jewelry in the vicinity of moving parts, or while working on electrical equipment. Loose clothing and jewelry can become caught in moving parts. Jewelry can short out electrical contacts and cause shock or burning.
- If adjustment must be made while the unit is running, use extreme caution around hot manifolds, moving parts, etc.

ELECTRICAL SHOCK CAN CAUSE SEVERE PERSONAL INJURY OR DEATH

- Remove electric power before removing protective shields or touching electrical equipment. Use rubber insulative mats placed on dry wood platforms over floors that are metal or concrete when around electrical equipment. Do not wear damp clothing (particularly wet shoes) or allow skin surface to be damp when handling electrical equipment.
- Use extreme caution when working on electrical components. High voltages can cause injury or death. DO NOT tamper with interlocks.
- Follow all applicable state and local electrical codes. Have all electrical installations performed by a qualified licensed electrician. Tag and lock open switches to avoid accidental closure.
- DO NOT CONNECT GENERATOR SET DI-RECTLY TO ANY BUILDING ELECTRICAL SYSTEM. Hazardous voltages can flow from the generator set into the utility line. This creates a potential for electrocution or property damage. Connect only through an approved isolation switch or an approved paralleling device.

HIGH VOLTAGE GENERATOR SETS

(1.9kV to 15kV)

- High voltage acts differently than low voltage. Special equipment and training is required to work on or around high voltage equipment. Operation and maintenance must be done only by persons trained and qualified to work on such devices. Improper use or procedures will result in severe personal injury or death.
- Do not work on energized equipment. Unauthorized personnel must not be permitted near energized equipment. Due to the nature of high voltage electrical equipment, induced voltage remains even after the equipment is disconnected from the power source. Plan the time for maintenance with authorized personnel so that the equipment can be de-energized and safely grounded.

GENERAL SAFETY PRECAUTIONS

- Coolants under pressure have a higher boiling point than water. DO NOT open a radiator or heat exchanger pressure cap while the engine is running. Allow the generator set to cool and bleed the system pressure first.
- Benzene and lead, found in some gasoline, have been identified by some state and federal agencies as causing cancer or reproductive toxicity. When checking, draining or adding gasoline, take care not to ingest, breathe the fumes, or contact gasoline.
- Used engine oils have been identified by some state or federal agencies as causing cancer or reproductive toxicity. When checking or changing engine oil, take care not to ingest, breathe the fumes, or contact used oil.
- Provide appropriate fire extinguishers and install them in convenient locations. Consult the local fire department for the correct type of extinguisher to use. Do not use foam on electrical fires. Use extinguishers rated ABC by NFPA.
- Make sure that rags are not left on or near the engine.
- Remove all unnecessary grease and oil from the unit. Accumulated grease and oil can cause overheating and engine damage which present a potential fire hazard.
- Keep the generator set and the surrounding area clean and free from obstructions. Remove any debris from the set and keep the floor clean and dry.
- Do not work on this equipment when mentally or physically fatigued, or after consuming any alcohol or drug that makes the operation of equipment unsafe.
- Substances in exhaust gases have been identified by some state or federal agencies as causing cancer or reproductive toxicity. Take care not to breath or ingest or come into contact with exhaust gases.

KEEP THIS MANUAL NEAR THE GENSET FOR EASY REFERENCE
1. Introduction

ABOUT THIS MANUAL

This manual provides installation instructions for the ES generator set. This includes the following information:

Mounting Recommendations - Provides instructions for fastening generator set to base and space requirements for normal operation and service.

Mechanical Connections - Shows location of connection points for fuel, exhaust, ventilation, and cooling.

Electrical Connections – Shows location of electrical connection points for the control, generator, and starting system.

Prestart – Provides checklist of items or procedures needed to prepare generator set for operation.

Initial Startup – Describes test complete system to confirm proper installation, satisfactory performance, and proper operation. Refer to Operators Manual for troubleshooting information.

Installation Checklist - Provides reference checks upon completion of installation.

This manual DOES NOT provide application information for selecting a generator set or designing the complete installation. If it is necessary to design the various integrated systems (fuel, exhaust, cooling, etc.), review standard installation practices, or specify system materials, additional information is required. For engineering data specific to the generator set, refer to the specification and product data sheets. For application information, refer to Application Manual T-030, "Liquid Cooled Generator Sets", available from Onan.

INSTALLATION OVERVIEW

These installation recommendations apply to typical installations with standard model generator sets. Whenever possible, these recommendations also cover factory designed options or modifications. However, because of the many variables in any installation, it is not possible to provide specific recommendations for every situation. If there are any questions not answered by this manual, contact your nearest Cummins/Onan dealer or distributor for assistance.

Application and Installation

A standby power system must be carefully planned and correctly installed for proper operation. This involves two essential elements: application and installation.

Application (as it applies to generator set installations) refers to the design of the complete standby power system that usually includes power distribution equipment, transfer switches, ventilation equipment, mounting pads, and cooling, exhaust, and fuel systems. Each component must be correctly designed so the complete system will function as intended. Application and design is an engineering function generally done by specifying engineers or other trained specialists. Specifying engineers are responsible for the design of the complete standby system and for selecting the materials and products required.

Installation refers to the actual set-up and assembly of the standby power system. The installers set up and connect the various components of the system as specified in the system design plan. The complexity of the standby system normally requires the special skills of qualified electricians, plumbers, sheetmetal workers, etc. to complete the various segments of the installation. This is necessary so all components are assembled using standard methods and practices.

Safety Considerations

The generator set has been carefully designed to provide safe and efficient service when properly installed and operated. However, the overall safety and reliability of the complete system is dependent on many factors outside the control of the generator set manufacturer. To avoid possible safety hazards, make all mechanical and electrical connections to the generator set exactly as specified in this manual. All systems external to the generator (fuel, exhaust, electrical, etc.) must comply with all applicable codes. Make certain all required inspections and tests have been completed and all code requirements have been satisfied before certifying the installation is complete and ready for service. *Received by OCD: 10/6/2021 1:38:04 PM*

•

2. Specifications

ENGINE C	Dnan Modified Ford, 4-cylinder, LRG-423
FUEL	
Fuel Natural gas, Propane, Unleaded	Gasoline, or a combination of two fuels
Natural Gas Consumption at Full Load	
60 Hz	301 cfh (8.5 m/h)
50 Hz	250 cfh (7.1 m/h)
Propane (Vapor) Consumption at Full Load	
60 Hz	103 cfh (2.9 m/h)
50 Hz	85 cfh (2.4 m/h)
Gasoline Consumption at Full Load	
60 Hz	2.7 US gph (10.2 L/h)
50 Hz	2.5 US gph (9.5 L/h)
Maximum Natural Gas or LPG Supply Pressure	12 inches (305 mm) Water Column
Natural Gas Supply Connection	3/4 inch NPT
Propane Vapor Supply Connection	3/4 inch NPT
LPG Liquid Supply Connection	1/4 inch NPT
Maximum Gasoline Fuel Pump Lift	
Gasoline Supply Hose I. D.	5/16 inch
BATTERY	
Required Battery Voltage	
Recommended Battery Rating - Cold Cranking A	mps 660
OIL AND COOLANT CAPACITY	
Engine Oil Capacity (Includes Filter)	4.5 U.S. quarts (4.0 L)
Engine Coolant Capacity	11.5 U.S. quarts (11.0 L)
TUNE-UP SPECS	
Spark Plug Gap	. 0.032 to 0.036 inches (0.8 to 0.9 mm)

IMPORTANT!

DEPENDING ON YOUR LOCATION AND INTENDED USE, FEDERAL, STATE OR LOCAL LAWS AND REGULATIONS MAY REQUIRE YOU TO OBTAIN AN AIR QUALITY EMISSIONS PERMIT BEFORE BEGINNING INSTALLATION OF YOUR GENERATOR SET. BE SURE TO CONSULT LOCAL POLLUTION CONTROL OR AIR QUALITY AUTHORITIES BEFORE COMPLETING YOUR CONSTRUCTION PLANS. Received by OCD: 10/6/2021 1:38:04 PM

•

3. Mounting the Generator Set

GENERAL

Most generator set installations must be engineered so the generator set will function properly under the expected load conditions. Use these instructions as a general guide only. Follow the instructions of the consulting engineer when locating or installing any components. The complete installation must comply with all local and state building codes, fire ordinances, and other applicable regulations.

Requirements to be considered prior to installation:

- Level mounting surface
- Adequate cooling air
- Adequate fresh induction air
- Discharge of circulated air

- Discharge of exhaust gases
- Electrical connections
- Accessibility for operation and servicing
- Noise levels
- Vibration isolation

LOCATION

Generator set location is decided mainly by related systems such as ventilation, wiring, fuel, and exhaust. The set should be located as near as possible to the main power fuse box.

Provide a location away from extreme ambient temperatures and protect the generator set from adverse weather conditions. An optional housing is available for outside operation.

MOUNTING

Generator sets are mounted on a steel skid that provides proper support. The engine-generator assembly is isolated from the skid frame by rubber mounts that provide adequate vibration isolation for normal installations. For critical installations, install vibration isolators between the skid base and foundation.

Mount the genset on a substantial and level base such as a concrete pad.

Use 3/4-inch diameter, anchored mounting bolts to secure the generator set skid to the floor to prevent movement. Secure the skid using a flat washer and a hex nut for each bolt (Figure 3-1).

FIGURE 3-1. BOLT DIAGRAM

FIGURE 3-2. TYPICAL INSTALLATION

ACCESS TO SET

Plan for access to the genset for servicing and provide adequate lighting around the unit. For convenience in general servicing such as the radiator, fan belt and changing the crankcase oil, the surface of the mounting base should be at least 6 inches (152 mm) above the floor.

VIBRATION ISOLATORS

Installation and Adjustment Procedure

- 1. Place the vibration isolators (Figure 3-3) on the genset support structure. The isolators should be shimmed or grouted to ensure that all of the isolator bases are within 0.25 inch (6 mm) elevation of each other. The surface that the isolator bases rest on must also be flat.
- 2. Loosen the side snubber lock nuts so that the top plate of the isolator is free to move vertically and horizontally. Be sure that the top plate is correctly aligned with the base and springs.
- 3. Place the genset onto the isolators while aligning the skid's mounting with the threaded isolator hole. The top plates will move down and approach the base of the isolator as load is applied.

4. Once the genset is in position, the isolators may require adjusting so that the set is level. The isolators are adjusted by inserting the leveling bolt through the skid and into the isolator (the leveling bolt's locking nut should be threaded up towards the bolt head).

The leveling bolt will adjust the clearance between the top plate and the isolator base. A nominal clearance of 0.25 inch (6 mm) or greater is desired. This will provide sufficient clearance for the rocking that occurs during startup and shutdown. If the 0.25 inch (6 mm) clearance is not present, turn the leveling bolt until the desired clearance is achieved.

- 5. The genset may not be level yet; therefore, adjust the leveling bolts until the set is level and sufficient clearance still remains. Once all isolators have been set, lock the leveling bolt in place with the lock nut.
- 6. The snubber nuts may remain loose and therefore provide better isolation between the genset and support structure.

FIGURE 3-3. VIBRATION ISOLATORS

4. Mechanical Connections

GENERAL

The generator set mechanical system installation includes connecting the fuel, exhaust, ventilation and cooling systems. Before starting any type of fuel installation, all pertinent state and local codes must be complied with and the installation must be inspected before the unit is put in service.

FUEL SYSTEM

Sets can be equipped to operate on gasoline only, LPG (propane), gasoline/natural gas, gasoline/ LPG and LPG/natural gas combinations. Figures 4-1 and 4-2 illustrate the fuel system components for various generator set configurations. A fuel selector switch may be provided for fuel changeover. (The position of the switch determines which fuel valve will open when the set is operated.)

The following items should be considered when installing a fuel supply system:

- Install an approved flexible fuel line at the fuel inlet to allow the set to rock on its mounts. Do not use copper tubing as a flexible fuel line it will crack and spill gasoline.
- The highest fuel level in the fuel tank must be lower than the inlet of the fuel pump to prevent spillage of fuel if a leak occurs (because of a faulty connection, ruptured pump diaphragm, etc.).
- Provide a separate fuel line for each set served by the same fuel tank to prevent either set from being starved for fuel.

- Install a manual fuel shut-off valve at the outlet of an above-ground fuel tank to facilitate service.
- For a combination gas/gasoline set, provide a manual shut-off valve in each fuel line. Plug unused fuel inlet. The air/fuel ratio will be upset if both fuels are available at the same time or if air enters an unused fuel inlet, resulting in poor performance.
- Do not use galvanized piping, fittings or tanks. The zinc coating reacts with elements in the fuel, resulting in contamination of the fuel.

Gasoline Fuel

AWARNING Fuel presents the hazard of fire or explosion which can result in severe personal injury or death. Do not smoke or allow any flame, spark, pilot light, arc-producing equipment, or switch, or other ignition sources around fuel or fuel components, or in the installation area or areas with shared ventilation. Keep a type ABC fire extinguisher nearby.

The gasoline-carbureted fuel system delivers a mixture of fuel and air to the combustion chamber. The system draws fuel from a tank, delivers it through a filter and fuel pump, to the carburetor float chamber. Air passing through the carburetor venturi draws fuel from the the float chamber.

See *Specifications* section for gasoline inlet size. Fuel lift should not exceed 3 feet (0.9 m). The recommendations in Onan publication T030, the Application Manual for *Liquid-Cooled Generator Sets*, should be followed in regard to fuel supply system pipe sizes and manual shutoff valves.

Natural Gas/LPG Vapor/LPG Liquid Fuel System

AWARNING Natural gas and LPG vapor are highly flammable. LPG vapor is heavier than air. Do not bleed lines so fumes can collect in low areas. Do not smoke or allow any flame, spark, arcing switch or equipment, pilot light, or other source of ignition around fuel lines.

A combination gasoline-gaseous fuel carburetor or straight gaseous fuel carburetors are available for use with gaseous fuels. A gaseous fuel system uses a fuel regulator to control the flow of gas from the lines to the carburetor. At the carburetor, the gaseous fuel is mixed with the incoming air.

Gaseous-fuel supply system design, materials, components, fabrication, assembly, installation, testing, inspection, operation and maintenance must comply with the applicable codes. See MFPA Standards No. 37, No. 54 and No. 58.

See *Specifications* section for natural gas/LPG fuel inlet size. The recommendations in Onan publication T030, the Application Manual for *Liquid-Cooled Generator Sets*, should be followed in regard to fuel supply system pipe sizes,manual shutoff valves, fuel filters and gas pressure regulators.

Gas Pressure: The fuel regulators in each line provide constant gas pressure at the gas mixer under varying load conditions (approximately 5 inches WC for natural gas and -1.5 inches WC for LPG). There is a pressure test port on the supply side of the gas mixer for measuring fuel inlet pressure.

The maximum permissible fuel supply pressure is 20 inches WC (water column) and the minimum is 10 inches WC. This applies to LPG as well as to natural gas. The minimum pressure refers to supply pressure under rated load (maximum gas flow). There is a pressure test port on the supply side of each fuel regulator for measuring fuel supply pressure.

FIGURE 4-1. GASOLINE/NATURAL GAS/LPG VAPOR FUEL SYSTEM

FIGURE 4-2. GASOLINE/NATURAL GAS/LPG LIQUID FUEL SYSTEM

EXHAUST SYSTEM

Pipe exhaust gases to the outside of any enclosure. Locate the exhaust outlets away from any air inlets to avoid gases re-entering the enclosure. Exhaust installations are subject to various detrimental conditions such as extreme heat, infrequent operation and light loads. Regularly inspect the exhaust system both visually and audibly to see that the entire system remains fume tight and safe for operation.

AWARNING Inhalation of exhaust gases can result in severe personal injury or death. Use extreme care during installation to provide a tight exhaust system. Terminate exhaust pipe away from enclosed areas, windows, doors and vents.

Use an approved thimble (Figure 4-3) where exhaust pipes pass through wall or partitions. Refer to NFPA 37, Section 6-3. "Stationary Combustion Engines and Gas Turbines" for accepted design practices. Build according to the code requirements in effect at the installation site.

AWARNING Inhalation of exhaust gases can result in severe personal injury or death. Do not use exhaust heat to warm a room, compartment or storage area.

Rain caps are available for the discharge end of vertical exhaust pipes. The rain cap clamps onto the end of the pipe and opens due to exhaust discharge force from the generator set. When the generator set is stopped, the rain cap automatically closes, protecting the exhaust system from rain, snow, etc. Check the rain cap periodically for proper operation (cap is not stuck closed).

Use a section of flexible exhaust pipe between the engine and remainder of exhaust system. Support exhaust system to eliminate weight applied to engine exhaust outlet elbow/turbocharger connection. **A** CAUTION Weight applied to the engine manifold can result in turbocharger damage. Support the muffler and exhaust piping so no weight or stress is applied to engine exhaust elbow.

FIGURE 4-3. MOUNTING EXHAUST THIMBLE

Avoid sharp bends by using sweeping, long radius elbows and provide adequate support for muffler and tailpipe. Pitch a horizontal run of exhaust pipe DOWNWARD to allow any moisture condensation to drain away from the engine. If an exhaust pipe must be turned upward, install a condensation trap at the point where the rise begins (Figure 4-4).

Shield or insulate exhaust lines if there is danger of personal contact. Allow at least 12 inches (305 mm) of clearance if the pipes pass close to a combustible wall or partition.

AWARNING Exhaust pipes are very hot and they can cause severe personal injury or death from direct contact or from fire hazard. Shield or insulate exhaust pipes if there is danger of personal contact or when routed through walls or near other combustible materials.

VENTILATION AND COOLING

Generator sets create considerable heat that must be removed by proper ventilation. Outdoor installations rely on natural air circulation but indoor installations need properly sized and positioned vents for required airflow.

Vents and Ducts

For indoor installations, locate vents so incoming air passes through the immediate area of the installation before exhausting. Install the air outlet higher than the air inlet to allow for convection air movement.

Size the vents and ducts so they are large enough to allow the required flow rate of air. The "free area" of ducts must be as large as the exposed area of the radiator. Refer to the ES series Product Data Sheets for the airflow requirements.

Wind will restrict free airflow if it blows directly into the air outlet vent. Locate the outlet vent so the effects of wind are eliminated. See Figure 4-5.

FIGURE 4-4. CONDENSATION TRAP

FIGURE 4-5. WIND BARRIER

Dampers

Dampers or louvres protect the genset and equipment room from the outside environment. Their operation of opening and closing should be controlled by operation of the genset.

In cooler climates movable or discharge dampers are used. These dampers allow the air to be recirculated back to the equipment room. This enables the equipment room to be heated by the generator set when operating.

Radiator Set Requirements

Radiator set cooling air is drawn past the rear of the set by a pusher fan that blows air through the radiator (Figure 4-6). Locate the air inlet to the rear of the set. Make the inlet vent opening 1-1/2 times larger than the radiator area. It is important that the inlet and outlet (louvers) do not restrict the cooling air flow beyond the capability of the engine cooling fan. If this capability is exceeded, engine will overheat.

Locate the cooling air outlet directly in front of the radiator and as close as possible. The outlet opening must be at least as large as the radiator area. Length and shape of the air outlet duct should offer minimum restriction to airflow.

The radiator has an air discharge duct adapter flange. Attach a canvas or sheet metal duct to the flange and the air outlet opening using screws and nuts so duct can be removed for maintenance purposes. The duct prevents recirculation of heated air. Before installing the duct, remove the radiator core guard. **Standard Radiator Cooling** uses a set mounted radiator and engine pusher fan to cool engine water jacket. Air travels from the generator end of the set, across the engine and out through the radiator. An integral discharge duct adapter flange surrounds the radiator grille.

Set Mounted Heat Exchanger Cooling uses a liquid-to-liquid heat exchanger that requires a connection to a supply of pressurized cold water and to a drain to discharge the water when it has passed through the heat exchanger. The engine coolant pump pumps coolant through the closed, pressurized loop between the engine and heat exchanger.

The cold water supply line should have a manual shutoff valve, water strainer and 12 VDC water solenoid valve to shut off the water supply when the engine is not running. A thermostatic water flow valve is also recommended. See Application Manual T-030 for more information.

A powered ceiling vent will probable be required for ventilating the generator room.

Remote Radiator Cooling (Optional) substitutes a remote mounted radiator and an electrically driven fan for the set mounted components. Removal of the radiator and the fan from the set reduces noise levels without forcing dependence on a continuous cooling water supply. The remote radiator installation must be completely protected against freezing.

Remote radiator plumbing will vary with installation. Follow recommendations given in Application Manual T-030. See product data sheet for friction head and static head limits.

Before filling cooling system, check all hardware for security. This includes hose clamps, capscrews, fittings and connections. Use flexible coolant lines with heat exchanger, standpipe or remote mounted radiator.

FIGURE 4-6. TYPICAL RADIATOR SET INSTALLATION

5. Electrical Connections

GENERAL

The genset electrical system includes connecting the load, installing the control wiring and connecting the batteries. Connect the batteries last to avoid accidental starting of the unit during installation.

ACAUTION To prevent arcing, always disconnect a battery charger from its AC source before disconnecting the battery cables. Otherwise, disconnecting the cables can result in voltage spikes high enough to damage the DC control circuits of the set.

AWARNING Accidental starting of the generator set while working on it can cause severe personal injury or death. Prevent accidental starting by disconnecting the starting battery cables (negative [–] first).

Arcing can ignite the explosive hydrogen gas given off by batteries, causing severe personal injury. Arcing can occur if the negative (–) battery cable is connected and a tool being used to connect or disconnect the positive (+) battery cable accidentally touches the frame or other grounded metal part of the set. To prevent arcing, always remove the negative (–) cable first, and reconnect it last.

Most local regulations require that wiring connections be made by a licensed electrician and the installation be inspected and approved before operation. All connections, wire sizes, etc. must conform to the requirements of all electrical codes in effect at the installation site.

AWARNING Improper wiring can cause a fire or electrocution, resulting in severe personal injury or death and/or property and equipment damage.

TRANSFER SWITCH

If the installation is for standby service, a transfer switch is required for switching the load from the normal power source to the generator set (Figure 5-1). Either a manual or automatic switch can be used. Follow the installation instructions provided with the transfer switch when connecting the load and control wiring.

FIGURE 5-1. TYPICAL LOAD TRANSFER SWITCH

AC WIRING

Generator Voltage Connections

The generator output voltage and maximum current rating are specified on the generator set nameplate. Line-to-neutral voltage is always the lower voltage shown and line-to-line voltage is the higher rating.

These generators can be configured for the voltages shown in the Reconnection Diagram. Most of these voltages must be reconnected by the installer to give the voltage required by the installation. Before shipping, the factory tests the generator set output by connecting the generator to produce a particular test voltage. The generator may be connected at the factory to produce a specified voltage per customer order. The installer must always check the stator lead terminal connections and perform any necessary reconnect to obtain the voltage desired. Note that some voltages are available only on certain specific generators.

Refer to Reconnection Diagram when reviewing the voltage connection information and use the electrical schematic supplied with your generator set when actually performing load connections.

ACAUTION Reconnecting factory connected generator sets to lower voltages can reduce set ratings, and also render line circuit breakers too small. Consult with your distributor before performing reconnection for a different voltage.

Load Connections

Flexible conduit and stranded conductors must be used for connections to take up movement of the set.

When installing sets with AC meters, the generator output leads must be routed through current transformers for proper meter operation. The transformers are labeled CT21, CT22 and CT23. Refer to Reconnection Diagram to identify the output leads that must be routed through each current transformer, and also appropriate transformer post selection for meter sensing leads.

Load Balancing

When connecting loads to the generator set, balance the loads so the current flow from each line terminal (L1, L2 and L3) is about the same. This is especially important if both single phase and three phase loads are connected. Any combination of single phase and three phase loading can be used as long as each line current is within 10 percent of median value and no line current exceeds the nameplate rating of the generator. Check the current flow from each line by observing the control panel ammeter.

Grounding

Grounding involves making a conducting connection between the metal parts of the generator set or one of its electrical circuits and the earth. The design and installation of a grounding system is affected by many factors such as the use of multiple transformers, ground fault protection requirements and physical location of the generator. Follow the recommendations of the consulting engineer when installing the grounding system.

AWARNING Contact with electrical equipment can result in severe personal injury or death. It is extremely important that bonding and equipment grounding be properly done. All metallic parts that could become energized under abnormal conditions must be properly grounded.

Typical requirements for bonding and grounding are given in the National Electrical Code, Article 250. All connections, wire sizes, etc. must conform to the requirements of the electrical codes in effect at the installation site.

DC WIRING

Remote Control Connections

Provisions are made inside the control box for adding optional remote starting stations, alarms and remote monitoring of genset. Refer to DC wiring diagram shipped with genset for remote connections.

If the distance between the generator set and remote stations is less than 1000 feet (305 m), use 18 gauge stranded copper wire. If the distance is 1000 to 2000 feet (305 to 610 m), use 16 gauge stranded copper wire. Always run control circuit wiring in a separate conduit from the AC power cables to avoid inducing currents that could cause problems within the control.

ACAUTION Do not install DC control wiring in the same conduit as the AC power. AC voltage induced currents can create operational problems with electronic solid-state devices.

FIGURE 5-1. CONNECTIONS FOR REMOTE CONTROL AND ANNUNCIATION

Battery Connections

Starting the unit requires 12 volt battery current. Necessary battery cables and rack are on the unit. Service batteries as necessary. Infrequent use (as in emergency standby service), may allow battery to self-discharge to the point where it cannot start the unit. If installing an automatic transfer switch that has no built-in charge circuit, connect a separate trickle charger. Onan automatic transfer switches include such a battery charging circuit.

<u>AWARNING</u> Ignition of explosive battery gases can cause severe personal injury. Always connect battery negative (-) last to prevent arcing.

AWARNING Do not smoke while servicing the batteries. Explosive gases are emitted from batteries in operation. Ignition of these gases can cause severe personal injury.

6. Prestart Preparations

GENERAL

Before attempting the initial start of the generator set, be sure it is serviced and ready for operation. Refer to the Maintenance section of the Operator's Manual for the recommended procedures for adding oil, coolant or fuel.

Gensets are shipped with oil and coolant added. Be sure to check these systems to make sure they are at proper operating levels before starting.

LUBRICATION

Before starting, check engine dipstick and if required, fill the crankcase with the recommended oil.

COOLANT

Before starting, check the coolant level in the radiator and if required, fill the radiator with the recommended coolant.

FUEL

Open all manual shutoff valves. Be sure manual changeover switch is moved to desired fuel. Check for leaks. If any are suspected, do not start set until fixed.

VENTILATION

Verify all air vents and ducts are open and free from any obstructions.

EXHAUST SYSTEM

Check the exhaust system for proper installation. Verify there is at least 12 inches (305 mm) clearance between exhaust pipes and combustible materials. Check for leaks. If any are suspected, do not start set until fixed.

ELECTRICAL SYSTEM

Verify all electrical connections are secure and all wiring is complete and inspected. Replace and secure any access panels that may have been removed during installation.

Battery Connections

The battery is connected for a negative (–) ground system. Connect positive (+) battery cable before connecting negative (–) battery cable to prevent arcing. Verify that battery connections are secure

Service the battery as necessary.

MECHANICAL CHECKS

Check the generator set for loose or damaged components and repair or replace as required. Received by OCD: 10/6/2021 1:38:04 PM

•

7. Initial Start and Checks

Before putting the generator set under load conditions, verify the set will perform correctly by checking the following areas.

STARTING

Press the panel Start/Stop/Remote switch to the **Run** position. The starter should crank the engine and the engine should start within a few seconds.

The engine control automatically disconnects the starter when the engine gets to about 500 RPM.

Cranking continues if the engine does not start right away. Cranking periods of 15 seconds are alternated with rest periods of 15 seconds until the engine starts. The engine control will shut down the set in approximately 75 seconds if the engine does not start. This is indicated by the fault lamp on the control panel. See *Troubleshooting* charts in the Operator's Manual.

FIGURE 7-1. CONTROL PANEL

ENGINE GAUGES

Check the following while the genset is operating:

Oil Pressure Gauge

The oil pressure should be in the range of 40 to 65 psi (275 to 448 kPa) when the engine is at operating temperature.

Water Temperature Gauge

The water temperature should be in the range of 180° to $195^{\circ}F$ (83° to $91^{\circ}C$) depending on the load and ambient temperature.

DC Ammeter/DC Voltmeter

The maximum charge rate for the set mounted battery charging alternator is 65 amperes. Charge rate should taper to zero following start-up as battery becomes charged. The DC voltmeter should read between 12 and 14 volts.

AC METERS (IF EQUIPPED)

Note the AC instruments on the control panel. The frequency meter and voltmeter should indicate rated nameplate frequency and voltage at no load. Turn the control panel Output Voltage Trimmer (if equipped) for nameplate voltage. Use the Phase Selector Switch to read each of the line-to-line voltages.

Frequency Meter

The generator frequency should be stable and the reading should be the same as the nameplate rating.

AC Voltmeter

Turn the phase selector switch to each line-to-line phase selection shown on the volts scale (L1-L2 on

single phase sets; L1-L2, L2-L3 and L3-L1 on three phase sets). Read the AC voltmeter using the upper or lower scale as indicated by the scale indicator light. At no load, the line-to-line voltage should be the same as the set nameplate rating.

AC Ammeter

Turn the phase selector switch to each phase selection shown on the amperes scale (L1and L2 on single phase sets; L1, L2 and L3 on three phase sets). Read the ammeter using the upper or lower scale as indicated by the scale indicator light. At no load, the current readings should be zero. With a load applied, each line current should be approximately the same and no line current should exceed the set nameplate reading

EXHAUST SYSTEM

With the genset operating, inspect the entire exhaust system including the exhaust manifold, muffler and exhaust pipe. Visually and audibly check for leaks at all connections, welds, gaskets and joints. Make sure exhaust pipes are not heating surrounding areas excessively. If any leaks are detected, have them corrected immediately.

AWARNING Inhalation of exhaust gases can result in severe injury or death. Inspect exhaust system visually and audibly for leaks daily. Shut down generator set and repair any leaks immediately.

ENGINE MONITOR INDICATOR LAMPS

Move the Run/Stop/Remote switch on the engine panel to the Stop position. Hold the Reset/Lamp Test switch in the Test position. All indicator lamps should light. Verify all the lamps are on and then release the switch. Contact your authorized service center if any lamps require replacement.

FUEL SYSTEM

With the genset operating, inspect the fuel supply lines, filters and fittings for leaks. Check any flexible sections for cuts, cracks and abrasions and make sure they are not rubbing against any sharp, abrasive or hot surface.

AWARNING Leaking fuel creates a fire hazard that can result in severe personal injury or death. Shut off set and repair any leaks immediately.

DC ELECTRICAL SYSTEM

With the generator set off, check the terminals on the battery for clean and tight connections. Loose or corroded connections create resistance that can hinder starting. Turn off the battery charger before removing battery cables. Clean and reconnect the battery cables if loose. Always connect the negative battery cable last. **AWARNING** Ignition of explosive gases can cause severe personal injury. Do not smoke while servicing the batteries.

COOLING SYSTEM

With the generator stopped, check for loose belts and fittings, leaking gaskets and hoses, or any signs of mechanical damage. Before removing any fan guards or safety guards, turn off the battery charger (if equipped) and remove battery cables to prevent accidental startup. If any problems or coolant leaks are found, have them corrected immediately.

With the set running, listen for any unusual noises that can indicate mechanical problems. Refer to Operator's or Service Manual for required adjustments.

LUBRICATION SYSTEM

Open access doors and inspect entire engine for oil leaks. When engine has been stopped for at least 10 minutes, check the oil level.

Received by OCD: 10/6/2021 1:38:04 PM

•

8. Installation Checklist

GENERAL

	GenSet wattage capacity is sufficient to handle maximum anticipated load.
Π	At least 3 feet of clearance is provided around entire genset for servicing and ventilation.

- GenSet is located in an area not subject to flooding.
- All operating personnel have read and are familiar with Operator's Manual.
- All operators have been thoroughly briefed on correct operation and exercise procedures.
- All operators have been thoroughly briefed on preventive maintenance procedures.

All operators have read and understand all Safety Precautions in Operator's Manual.

GENSET SUPPORT

Floor, roof or earth on which the genset rests is strong enough and will not allow shifting or movement. Observe local codes on soil bearing capacity due to freezing and thawing.

- GenSet is properly supported and retained to approved base which is separate and independent of the surface on which it sits. Vibration isolators are installed between base and set.
- Supporting base is large enough extends 12-inches all around set.

COOLING AIR FLOW

GenSet air inlet is faced into direction of strongest, prevailing winds.

Air inlet openings are unrestricted and at least 1-1/2 times larger than air outlet area.

Cooling air outlet is on downwind side of building (if not, wind barrier is constructed).

Proper ducting material (sheet metal, canvas) is used between radiator and air outlet.

FUEL SYSTEM

Fuel tanks meet or exceed all Local, State or National codes.
Fuel lines are properly installed, supported and protected against damage.
Flexible fuel line is installed between main fuel supply line and genset to protect against vibration, expansion and contraction.
Fuel line shutoff valves are installed to prevent fuel flow in case of leaks.
External fuel pumps are connected and operated to be turned On when genset is started and turned Off when genset is shut down.
No fuel leaks are found in supply line or engine fuel system.

•

EXHAUST SYSTEM
Operators are thoroughly briefed on the dangers of carbon monoxide gas, preventing the buildup of this gas in inhabited areas.
Areas around set are well ventilated. No possibility of exhaust fumes entering building doors, windows, or intake fans.
Exhaust gases are piped safely outside and away from building.
The correct length of approved rigid pipe is connected to the genset flexible pipe using approved securing methods with no weight resting on engine exhaust components. There are no bends in flex section.
Condensation drain is provided in lowest section of exhaust piping.
Exhaust piping is insulated to guard against burns to personnel.
Exhaust piping passing through walls or ceilings have approved fire-proof materials and are in compliance with all codes.
Exhaust piping is large enough in diameter to prevent back pressure on engine.
AC AND DC WIRING
AC AND DC WIRING Wire sizes, insulation, conduits and connection methods all meet applicable codes.
Wire sizes, insulation, conduits and connection methods all meet applicable codes.
Wire sizes, insulation, conduits and connection methods all meet applicable codes. AC and DC wires are separated in their own conduit to prevent electrical induction.
Wire sizes, insulation, conduits and connection methods all meet applicable codes. AC and DC wires are separated in their own conduit to prevent electrical induction.
Wire sizes, insulation, conduits and connection methods all meet applicable codes. AC and DC wires are separated in their own conduit to prevent electrical induction. All load, line and generator connections are proper and correct.
Wire sizes, insulation, conduits and connection methods all meet applicable codes. AC and DC wires are separated in their own conduit to prevent electrical induction. All load, line and generator connections are proper and correct. GENSET PRESTART
Wire sizes, insulation, conduits and connection methods all meet applicable codes. AC and DC wires are separated in their own conduit to prevent electrical induction. All load, line and generator connections are proper and correct. GENSET PRESTART GenSet engine is properly serviced with oil and coolant.
Wire sizes, insulation, conduits and connection methods all meet applicable codes. AC and DC wires are separated in their own conduit to prevent electrical induction. All load, line and generator connections are proper and correct. GENSET PRESTART GenSet engine is properly serviced with oil and coolant. Batteries are properly installed, serviced and charged.
Wire sizes, insulation, conduits and connection methods all meet applicable codes. AC and DC wires are separated in their own conduit to prevent electrical induction. All load, line and generator connections are proper and correct. GENSET PRESTART GenSet engine is properly serviced with oil and coolant. Batteries are properly installed, serviced and charged. Battery charger and engine coolant heater are connected and operational.

Received by OCD: 10/6/2021 1:38:04 PM

Cummins Power Generation 1400 73rd Avenue N.E. Minneapolis, MN 55432 1-800-888-6626 763-574-5000 International Use Fax: 763-528-7229

Cummins is a registered trademark of Cummins Inc.

.

Photo 1: Trenching for piping lay down.

Photo 2: SVE piping install.

Photo 3: SVE piping connection setup to SVE wells.

Photo 4: SVE piping connection setup to SVE wells.

Photo 5: Backfilling trenches.

Photo 6: SVE installation complete.

ENCLOSURE F – PILOT TEST DATA
•

SOIL VAPOR EXTRACTION SYSTEM PILOT TEST DATA

SAN JUAN 28-6 UNIT #31 RIO ARRIBA COUNTY, NEW MEXICO HILCORP ENERGY COMPANY

Extraction Test We SVE-1										
	Pi	lot Test Extraction W	ell			Observation Wells		Observation Wells		
Time	Wellhead	Well	Well	PID at	SVE-3	SVE-13D	SVE-11D	SVE-3	SVE-13D SVE-11	
	Vacuum	Velocity	Flow	Stack		ance From Test Well			ance From Test Well	
	(in. wc)	(fpm)	(cfm)	(ppm)	50	25	30	50	25	30
						Vacuum (in. wc)		PID Measurement (ppm)		n)
13:55	0.0	0	0	0.0						
14:25	5.5	40	110	1,293	-6.3	0.3	0.2	0.0	0.0	0.0
14:50	4.7	52	80	1,194	-6	0.2	0.1	0.0	0.0	0.0
15:25	4.3	60	80	1,146	-6.2	0.1	0.1	0.0	0.0	0.0
15:36	24.5	220	85	1,115	-6.3	0.3	0.1	0.0	0.0	0.0
15:40	24.7	210	85	1,108	-6.7	0.4	0.2	0.0	0.0	0.0
15:50	24.9	220	85	1,120	-6.6	0.3	0.2	0.0	0.0	0.0
15:56	52	570	60	1,287	0.1	0.4	1.4	0.0	0.0	0.0
16:02	42.4	300	60	1,193	0.1	0.4	1.3	0.0	0.0	0.0
16:10	79	620	60	1,049	0.3	0.9	1.8	0.0	0.0	0.0

Notes:

ND - not detected in. wc - inches of water column ppm - parts per million PID - photoionization detector fpm - feet per minute acfm - actual cubic feet per minute

NM - not measured

.

RADIUS OF EFFECT CALCULATIONS- ESTIMATED FOR SYSTEM

SAN JUAN 28-6 UNIT #31 RIO ARRIBA COUNTY, NEW MEXICO HILCORP ENERGY COMPANY

Site Specific Information		
Test Well	SVE-1	
SVE Screen Length (H)	15	ft
Soil Type	weathered sandstone	
Porosity (n)	25%	percent
Theoretical Specific Information		
Radius of Influence (ROI)	30	feet - 0.2 IWC observed in SVE11D at distance of 30 feet
Flow Rate (1)	32	SCFM 5 active wells 160/5=32 cfm per well
Wellhead Vacuum (1)	40	IWC blower flow at 40 in wc is 120 scfm
Flow Rate (2)	40	SCFM 3 active wells
Wellhead Vacuum (2)	40	IWC
Calculations (Flowrate 1 - 85 SCFM		
Total Volume (ft ³)	42,412	= PI * ROI * ROI * H
Volume Pore Space (ft^3)	10,603	= Total Volume * n
Pore Volume Exchange Rate	0.23	days
Annual Pore Volume Exchanges	1,586	>500 Required
Velocity at ROI (ft/min)	0.045	= Flowrate/(2*PI * ROI * H * n)
Velocity at ROI (ft/day)	65	> 3 ft/day recommended
Calculations (Flowrate 2 -40 SCFM		
Total Volume (ft ³)		= PI * ROI * ROI * H
	42,412	= PI * ROI * ROI * H = Total Volume * n
Volume Pore Space (ft^3)	10,603	
Pore Volume Exchange Rate	0.18	days
Annual Pore Volume Exchanges	1,983	>500 Required
Velocity at ROI (ft/min)	0.057	= Flowrate/(2*PI*ROI*H*n)
Velocity at ROI (ft/day)	81	> 3 ft/day recommended

Conclusions

At the elevation corrected flow rate, assuming 5 active extraction wells at 32 cfm per well, the system can achieve an ROE of 30 feet and will achieve the required pore volume exchange and velocity at 1,586 annual exchanges and 65 ft/day, respectively.

Notes:

ft - feet ROI - radius of influence IWC - inches water column min - minute s - second SCFM - standard cubic feet per minute

ENCLOSURE G – OPERATION AND MAINTENANCE FORM AND MANUAL

•

SVE SYSTEM BIWEEKLY O&M FORM

DATE:			O&M PERSONNEL:	
TIME ONSITE:				
SVE STATUS:		SVE SYSTEM	SVE BLOWER HOURS: GENERATOR HOURS:	
SVE ALARMS: (check if applicable)		HIGH/LOW VACUUM KO TANK HIGH LEVEL		
(•••••••		HIGH EXHAUST TEMPER		
	LD INLET VACUUM: ER FILTER VACUUM:			
EXHAU	JST TEMPERATURE: XHAUST PRESSURE:	BLOWER GREASE: GENERATOR GREASE:		
	EXHAUST FLOW:		INLINE FILTER CLEAN:	
EXHAUST PID:		SVE SYSTEM	IR SAMPLE COLLECTION:	
MANIFOLD	VACUUM (IWC)	PID HEADSPACE (PPM)	FLOW (CFM)	ADJUSTMENTS
INLET				
COMMENTS/OTHE	R MAINTENANCE:			

OPERATIONS AND MAINTENANCE MANUAL

SAN JUAN BASIN, NEW MEXICO SVE SYSTEMS

OCTOBER 2021

Prepared for:

HILCORP ENERGY COMPANY 1111 TRAVIS STREET HOUSTON, TEXAS

Prepared by:

WSP USA, INC 848 EAST 2ND AVENUE DURANGO, COLORADO (970) 385-1096

Released to Imaging: 9/22/2022 2:16:33 PM

SECTION 1.0

INTRODUCTION

1.0 INTRODUCTION

This Operations and Maintenance (O&M) Manual has been prepared for the Hilcorp Energy Company (Hilcorp) for the purpose of successfully operating the soil vapor extraction (SVE) systems remediating subsurface hydrocarbon impacts in the San Juan Basin, New Mexico. The O&M manual is the base guide for all O&M personnel to follow at sites throughout the basin. This O&M manual is intended to serve as a guide to assist in the routine day-to-day operation and maintenance of the remediation systems. This manual also outlines the remediation system monitoring schedules to comply with regulatory agencies and to document the effectiveness of the systems. Successful operation of the systems will ensure that the environment is protected, the public welfare is promoted, and that federal/state and local laws/regulations are met.

1.2 SVE Process Equipment

A vacuum is applied to the wells and subsurface piping using a regenerative blower system electrified either by solar panels and batteries or directly connected to the power grid. Each system includes a manifold to control flow from each well or group of wells, and the SVE blower system. The manifold includes control valves, sample ports, and a tap plug for obtaining air velocity measurements in the individual lines. The initial flow and applied vacuum settings will be determined during pilot testing, system startup, and initial O&M procedures. As subsurface conditions change, adjustment of the flow rates and applied vacuum to each SVE well may be required. Typically, adjustments will be required to balance the air flowing from the various wells.

Starting from the manifold, the SVE skid generally contains:

- a control valve;
- a vacuum indicator;
- a sample port;
- an air/water separator with storage tank, fluid sight tube and fluid level switch;
- an additional vacuum indicator;
- a dilution air valve;
- a particulate filter;
- a vacuum relief valve;
- a regenerative blower driven by an electric motor;

- a high temperature switch;
- a temperature indicator;
- a pressure indicator;
- a SVE stack drain/sampling valve; and
- a flow indicator.

An SVE system diagram is attached.

SECTION 2.0

SYSTEM OPERATION

Operational procedures are summarized below. These procedures describe the adjustments needed for full system operation. Manufacturer's information for the specific system components shall be examined when seeking information regarding a particular system component. The equipment supplier provided O&M Manuals should also be consulted during operation and maintenance procedures.

2.1 ROUTINE O&M SITE VISITS

O&M site visits will occur as needed to achieve near continuous operation of the systems. Typically, system operation checks will be performed every other weekly (twice monthly). Site visits which shall include more involved tasks will be performed monthly, quarterly, semiannually, annually, and on an as-needed basis. Specific O&M tasks have been determined for each of the above frequencies, and these tasks should be used as a reference guide for determining what actions are necessary for proper system operation. The O&M tasks are summarized on the site specific Monitoring Schedules. The monitoring schedule indicates the frequency required for each of the O&M tasks. The monitoring schedule also shows the monitoring required at individual wells.

Records kept during the O&M procedures shall be recorded in a field book and scanned onto the WSP server each day after returning to the office. WSP will review the site data and log book prior to each site visit to determine what O&M actions occurred during the last site visit and identify any special equipment or maintenance actions required for the planned site visit.

Semi-Monthly System Check

A typical system check during the weekly O&M site visit will consist of the following tasks, in sequential order beginning with arrival on site:

- 1. Note if the systems are running.
- 2. Inspect the control panel to determine if any alarms have occurred (if applicable).
- 3. Record any alarm conditions and the hour meter values for applicable remediation equipment onsite.
- 4. Note the inlet vacuum for the SVE blower.
- 5. Record all gauge and flow indicator values for the SVE system.
- 6. Record vacuum or pressure readings on the manifold assembly and perform minor valve adjustments as needed to optimize system operation.
- 7. Check air/water separation tank levels and transfer fluid as needed.

- 8. Lubricate the appropriate generators and blowers, check and add oil/grease as required.
- 9. Examine/check operation of building heaters and exhaust fans (if applicable).
- 10. Perform simple adjustments to correct any system operational problems.
- 11. Perform general housekeeping inside and outside of the equipment area, such as picking up trash or debris surrounding the site. Note any damage or vandalism requiring attention.
- 12. Collect influent samples per quarterly and annual requirements.

Monthly System Checks

Monthly site visits shall include the following additional efforts:

- 1. Collect any required air samples.
- 2. Monitor the SVE exhaust using a photoionization detector (PID).
- 3. Following the recording of measurements, adjustments of system operation may be made based on the measurements.
- 4. Perform any required equipment maintenance (See O&M Manual for specific maintenance requirements).
- 5. Check and clean filters.

Quarterly Site Checks

Quarterly site visits shall include:

- 1. Measure and record vacuum in each SVE line.
- 2. Measure and adjust vacuum and measure vapor concentrations using a PID at the SVE wellheads.
- 3. Clean and replace filters as required by manufacturer's O&M manual or as needed through visual inspection, and perform all required maintenance items, as required.
- 4. Clean all fluid level switches.
- 5. Change and check oil and oil filters, where applicable.

Semi-annual System Checks

Semi-annual site visits shall include:

1. Change generator and SVE blower oil. Replace with oil recommended by the equipment manufacturer or equivalent.

2. Tighten all wire terminals and check connections.

Annual

Annual requirements include:

1. Replace SVE blower air inlet filter elements.

Periodic

The following items will need to be conducted as remediation progresses. The timing of these activities is site dependent and cannot be predicted. These activities shall be performed as soon as possible following discovery of conditions affecting or limiting system performance.

1. Drain the SVE air/water separation or knockout (KO) tank fluid.

2. Clean sludge from the SVE air/water separation tanks.

2.2 SVE SYSTEM PERFORMANCE ADJUSTMENTS

On a routine basis, WSP will evaluate site monitoring data and may complete performance adjustments to the remediation system operation. It may be beneficial to adjust the remediation system's operation over time, and as specific areas of a site require less effort than other areas. Remediation efforts will be characterized by system monitoring information.

For example, as the concentration of contaminants in SVE wells decreases to asymptotic conditions, flow and vacuum in these areas may be adjusted in attempts to increase volatilization and contaminant removal. Additionally, as contaminant concentrations decrease to below 1 milligram per liter (mg/L), flow in individual SVE wells may be decreased and/or shut off to induce higher flow in other wells and target specific areas of the site.

2.2.1 SVE Flow Adjustment

Proper operation of the SVE systems entails applying an optimum vacuum at the screened interval of the SVE well such that the maximum air flow rate through the well is achieved. The SVE systems are designed to run at a specific vacuum and air flow rate, however, due to variable subsurface conditions, the air flow through the subsurface may need to be reduced by opening the blower inlet bypass valve and/or restricting flow from certain wells.

The air flow rate may be measured at the flow lines using a portable air velocity device, such as a thermal anemometer. The air flow rate and applied vacuum can be adjusted by opening/closing ball valves on the individual lines. Typically, these adjustments will be made quarterly. Ideal operation of the SVE system entails balancing flow rates from each well. To balance flow from all SVE wells, minor calculations may be required for sites with different sizes of SVE lines.

To balance the SVE system, follow the following procedure:

- 1. Measure the air velocity in each line using the thermal anemometer.
- 2. Calculate the total flow from the SVE wells using the equation Flowrate = Cross Sectional Area X Velocity. Area for the SVE pipes is calculated using the formula Area = $\pi *$ Diameter²/4.
- 3. Divide the total flow by the number of wells to be balanced. This number equals the average flow rate.
- 4. Back calculate the air velocity required to achieve the average flowrate for each pipe size using the equation: Velocity = Average Flowrate / Area.
- 5. Starting at the well yielding the highest flowrate, use the control valve for each line to reduce the flowrate to the average flowrate by lowering the air velocity measured with the thermal anemometer to the velocity calculated in Step #4.
- 6. Check lower flow wells to ensure an increase in airflow.

Note that the thermal anemometer yields a rough field estimate, and there may be a large inaccuracy inherent to the instrument. It is therefore only necessary to achieve a balance within 25% of the average flowrate. The system will also change flows as the higher flow wells are reduced and system vacuum is increased. This is another reason why it is not necessary to balance the SVE wells to closer than 25% of the calculated average flow. Also note that most SVE systems have the same sized pipes for all SVE lines, which allows for fewer calculations when balancing the SVE system.

For sites with the same size SVE lines, the average flowrate calculation and velocity back calculations are not necessary. Rather, measure the velocity from each well, calculate the average velocity, and attempt to achieve the average velocity from each well by reducing flow/velocity from the higher flow wells. As with the flowrate calculation method, velocities within 25% of the average velocity do not need adjustment.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	54485
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date			
nvelez	Accepted for the record. See App ID 125935 for most updated status.	9/22/2022			

Action 54485