Received by OCD: 10/18/2022 8:28:21 AM State of New Mexico

Oil Conservation Division

	Page 1 of 13 .
Incident ID	NAPP2211531680
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>39.96</u> ' (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🔀 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- \boxtimes Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- \boxtimes Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Page 3

Received by OCD: 10/18 Form C-141 Page 4	3/2022 8:28:21 AM State of New Mexico Oil Conservation Divisior	1	Incident ID District RP Facility ID Application ID	Page 2 of 135 NAPP2211531680
regulations all operators a public health or the envir failed to adequately inves	nformation given above is true and complete to the are required to report and/or file certain release no onment. The acceptance of a C-141 report by the stigate and remediate contamination that pose a the e of a C-141 report does not relieve the operator of	otifications and perform co e OCD does not relieve the meat to groundwater, surfa	orrective actions for rele e operator of liability sh ace water, human health	eases which may endanger ould their operations have or the environment. In
Printed Name: <u>Dale V</u>	Voodall	Title:Env. Profess	ional	
Signature: Dale (Voodall	Date: <u>9/21/2022</u>		
email: <u>dale.woodall@</u>	dvn.com	Telephone: <u>575-748</u>	-1838	
OCD Only Received by: Joce	lyn Harimon	Date: _10/1	8/2022	

Received by OCD: 10/18/2022 8:28:21 AM Form C-141 State of New Mexico

Oil Conservation Division

Incident ID	NAPP2211531680
District RP	
Facility ID	
Application ID	

Remediation Plan

<u>Remediation Plan Checklist</u>: *Each of the following items must be included in the plan.*

Detailed description of proposed remediation technique

Scaled sitemap with GPS coordinates showing delineation points

Estimated volume of material to be remediated

Page 5

Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC

Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)

<u>Deferral Requests Only</u> : Each of the following items must be co	nfirmed as part of any request for deferral of remediation.	
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.		
Extents of contamination must be fully delineated.		
Contamination does not cause an imminent risk to human healt	h, the environment, or groundwater.	
Lhereby certify that the information given above is true and complete	ete to the best of my knowledge and understand that pursuant to OCD	
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
Printed Name: Dale Woodall	Title:Env. Professional	
Signature: Dale Woodall	Date:	
email: <u>dale.woodall@dvn.com</u>	Telephone: <u>575-748-1838</u>	
OCD Only		
Received by: Jocelyn Harimon	Date: 10/18/2022	
Approved Approved with Attached Conditions of	Approval Denied Deferral Approved	
Signature:	Date:	

•

Page 6

Oil Conservation Division

Incident ID	NAPP2211531680
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report. A scaled site and sampling diagram as described in 19.15.29.11 NMAC Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) Description of remediation activities I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Title: Env. Professional Printed Name: Dale Woodall Signature: Dale Woodall _____ Date: <u>9/21/2022</u> Telephone: <u>575-748-1838</u> email: dale.woodall@dvn.com **OCD Only** Date: 10/18/2022 Jocelyn Harimon Received by: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: _____ Date: _____ Printed Name: Title:

402 E. Wood Avenue Carlsbad, New Mexico 88220 Tel. 432.701.2159 www.ntgenvironmental.com

September 14, 2022

Mike Bratcher District Supervisor Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Re: Closure Report Rebel 20 CTB Devon Energy Production Company Site Location: Unit B, S20, T24S, R32E (Lat 32.209498, Long -103.696471) Lea County, New Mexico Incident ID: nAPP2211531680

Mr. Bratcher:

On behalf of Devon Energy Production Company (Devon), New Tech Global Environmental, LLC (NTGE) has prepared this letter to document site assessment and remedial action activities at the Rebel 20 CTB (Site). The Site is located approximately 44.1 miles east of Malaga, New Mexico in Eddy County (Figures 1 and 2).

Background

Based on the initial C-141 obtained from the New Mexico Oil Conservation Division (NMOCD), the release was discovered on April 23rd, 2022. The release was a result of equipment failure resulting in the release of approximately eight barrels (bbls) of produced water of which none was recovered. Upon discovery, the equipment was shut-in and the area was secured. The release area is shown on Figure 3. The initial C-141 form is attached.

Site Characterization

The Site is located within a low karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, there are no known water sources within a ½ mile radius of the location. The nearest identified well is located 2.36 miles north-northeast of the site at Latitude 32.224620, Longitude -103.662881. The well was drilled in 2010 and the reported depth to groundwater is 33.96 feet below ground surface (ft bgs). Site characterization information and the associated USGS summary report is attached.

Mr. Mike Bratcher September 14, 2022 Page 2 of 3

Regulatory Criteria

In accordance with the NMOCD regulatory criteria established in 19.15.29.12 NMAC, the following criteria are applicable to the Site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 100 mg/kg (GRO + DRO + MRO).
- Chloride: 600 mg/kg

Site Assessment

On May 3, 2022, NTGE conducted site assessment activities to assess the horizontal and vertical extent of impacts at the Site. Six sample points (S-1 through S-6) where installed within the release area to characterize the vertical impacts. Seven horizontal sample points (H-1 through H-7) were installed to define the horizontal extent of impacts. Soil samples were collected in 0.5 to 1 ft depth intervals from depths ranging from 0.5 - 4.5 ft bgs with a geotechnical handauger. The handauger was decontaminated with Alconox and deionized water between soil borings to prevent cross-contamination. Sample locations are shown on Figure 3.

Soil samples were placed directly into laboratory provided samples containers, placed on ice, and transported under proper chain-of-custody protocol to for chemical analysis. Soil samples were analyzed collected and analyzed for TPH (EPA method 8015 modified), BTEX (EPA Method 8021B), and chloride (EPA method 300.0). Laboratory reports containing analytical methods and chain-of-custody documents are attached.

Initial Analytical results identified impacts across the release area as described below and in Table 1:

- Soil impact were confined to the upper 4.5 ft bgs the area of S1,
- Soil impacts were confined to the upper 3.5 ft bgs the areas of S2,
- Soil impacts were confined to the upper 3 ft bgs the areas of S3 and S4,
- Soil impacts were confined to the upper 4 ft bgs the area of S5, and
- Soil impacts were confined to the upper 2.5 ft bgs the area of S6.

Field Screening results from horizontal delineation indicated sample points H-1 - H-7 were below the regulatory limit for all tested constituents.

Remedial Action Activities and Confirmation Sampling

Based on the analytical results, Devon proceeded with remedial actions activities at the Site to include the excavation and disposal of impacted soils above the regulatory limits. The release area was excavated to a depth of 4ft bgs in the areas of S1, 5ft bgs in the area of S-2, and 3ft bgs in the area of S3 and S4, 4 ft bgs in the area of S5, and 2.5 ft bgs in the area of S6.

The soils were field screened during excavation activities to aide in determining final excavation depths and extents. On July 27, 2022, a total of nine confirmation samples were collected from the excavation base (CS1 - CS9) and 12 confirmation samples were collected from the excavation sidewalls (SW1 - SW12) to ensure impacted soil was removed. Upon receipt of confirmation sampling results, it was noted that TPH concentrations in samples CS6 and CS7 was above the regulatory limits.

Mr. Mike Bratcher September 14, 2022 Page 3 of 3

As a result, the excavation was expanded, the area of CS6 and CS7 was expanded vertically. On August 8, 2022, two additional confirmation samples (CS6 4.5ft bgs and CS7. 4.5 ft bgs) from the expanded excavation and four additional sidewall confirmation samples were collected (i.e., SW13 – SW16) to confirm excavation expansion activities were adequate in removing the impacted soils .

All confirmation samples were collected every 200 square feet in accordance with the regulatory guidelines and analyzed for TPH (EPA method 8015 modified), BTEX (EPA Method 8021B), and chloride (EPA method 300.0). Following receipt of the final analytical results confirming the removal of the impacted soils, the excavation was backfilled and returned to near-natural grade. The final excavation extent and confirmation sample locations are shown on Figure 4. Analytical results of the confirmation samples are included in Table 2.

Closing

Based on the assessment and subsequent remedial action activities, the Site is compliant with the regulatory limits and no further actions are required at the site. A copy of the final C- 141 is attached and Devon formally request a no further action designation for the Site. If you have any questions regarding this report or need additional information, please contact us at 432-701-2159.

Sincerely, NTG Environmental

alun

Ethan Sessums Project Manager

Attachments:

Initial And Final C-141 Site Characterization Information Tables Figures Photographic Log Laboratory Reports and Chain-of-Custody Documents

NTGE Project No.: 225625

Ethan Sessums

From:	Ethan Sessums
Sent:	Monday, July 25, 2022 7:58 AM
То:	New Mexico OCD
Subject:	48hr Sampling Notification

nDHR1914832559	REBEL 20 CTB	10/26/2018
nAB1918455038	REBEL 20 CTB	1/4/19
nAPP2211531680	REBEL 20 CTB	4/25/22

We will be conducting final confirmation sampling at the above-mentioned site on the 27th of July around 10 a.m. MST on behalf of Devon.

Ethan Sessums Environmental Scientist NTGE New Mexico 402 E Wood Ave, Carlsbad, NM 88220 M: (254)-266-5456 W: (432)-701-2159 Email: esessums@ntglobal.com

> Air Quality Compliance | EHS Management | Environmental Due Diligence & Audits | Midstream Compliance | Regulatory Compliance & Permitting | Site Assessment, Remediation & Site Closure | Water Quality & Natural Resources

Ethan Sessums

From:	Ethan Sessums
Sent:	Saturday, August 6, 2022 12:56 PM
То:	New Mexico OCD
Subject:	Sampling Event

nDHR1914832559	REBEL 20 CTB	10/26/2018
nAB1918455038	REBEL 20 CTB	1/4/19
nAPP2211531680	REBEL 20 CTB	4/25/22

We will be conducting final confirmation sampling at the above-mentioned site on the 8th of August around 10 a.m. MST on behalf of Devon.

Ethan Sessums Project Manager NTGE New Mexico 402 E Wood Ave, Carlsbad, NM 88220 M: (254)-266-5456 W: (432)-701-2159 Email: esessums@ntglobal.com

> Air Quality Compliance | EHS Management | Environmental Due Diligence & Audits | Midstream Compliance | Regulatory Compliance & Permitting | Site Assessment, Remediation & Site Closure | Water Quality & Natural Resources

INITIAL AND FINAL C-141

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Page ddeof 135

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	OGRID
Contact Name	Contact Telephone
Contact email	Incident # (assigned by OCD)
Contact mailing address	

Location of Release Source

Longitude

Latitude	

Site Name	Site Type
Date Release Discovered	API# (if applicable)

(NAD 83 in decimal degrees to 5 decimal places)

Unit Letter	Section	Township	Range	County

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

Page	2
rage	4

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major	If YES, for what reason(s) does the responsible party consider this a major release?
release as defined by	
19.15.29.7(A) NMAC?	
Yes No	
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:	Title:
Signature: Kendra Ruiz	Date:
email:	Telephone:
OCD Only	
Received by: Jocelyn Harimon	Date:05/12/2022

Spill Volume(Bbls) Calculator			
Inputs in blue, Outputs in red			
Col	ntaminated S	Soil measurement	
Length(Ft)	Width(Ft)	Depth(Ft)	
<u>44</u>	<u>42.000</u>	<u>0.105</u>	
Cubic Feet of S	oil Impacted	<u>194.040</u>	
Barrels of So	il Impacted	<u>34.59</u>	
Soil T	ype	Clay/Sand	
Barrels of Oil Assuming 100% Saturation		<u>5.19</u>	
Saturation	Fluid present with shovel/backhoe		
Estimated Barrels of Oil Released		5.19	
Free Standi		ing Fluid Only	
Length(Ft)	Width(Ft)	Depth(Ft)	
<u>25</u>	<u>15.000</u>	<u>0.042</u>	
Standing fluid		<u>2.801</u>	
Total fluids spilled		<u>7.989</u>	

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	106327
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By Condition Condition Date 5/12/2022 jharimon None

Page 14eof 135

.

CONDITIONS

Action 106327

Received by OCD: 10/18/2022 8:28:21 AM State of New Mexico

Oil Conservation Division

	Page 15 of 13
Incident ID	NAPP2211531680
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>39.96</u> ' (ft bgs)	
Did this release impact groundwater or surface water?		
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No	
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No	
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No	
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No	
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No	
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No	
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No	
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No	
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No	
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No	
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🔀 No	

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- \boxtimes Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Page 3

Received by OCD: 10/18/202 Form C-141 Page 4	22 8:28:21 AM State of New Mexico Oil Conservation Division		Incident ID District RP Facility ID Application ID	Page 16 of 135 NAPP2211531680
regulations all operators are re public health or the environme failed to adequately investigate		tifications and perform co OCD does not relieve the reat to groundwater, surfa	orrective actions for rele e operator of liability sh ce water, human health liance with any other fe	eases which may endanger ould their operations have or the environment. In
email: <u>dale.woodall@dvn.</u>	.com	Telephone: <u>575-748</u>	-1838	
OCD Only				
Received by:		Date:		

Received by OCD: 10/18/2022 8:28:21 AM Form C-141 State of New Mexico

Oil Conservation Division

Incident ID	NAPP2211531680
District RP	
Facility ID	
Application ID	

Remediation Plan Checklist: Each of the following items must be included in the plan. Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points \boxtimes Estimated volume of material to be remediated \bowtie Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) \boxtimes Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: <u>Dale Woodall</u>	Title: <u>Env. Professional</u>						
Signature: Dale Woodall	Date: <u>9/21/2022</u>						
email: <u>dale.woodall@dvn.com</u>	Telephone: <u>575-748-1838</u>						
OCD Only							
Received by:	Date:						
Approved Approved with Attached Conditions of	Approval Denied Deferral Approved						
Signature:	Date:						

Remediation Plan

Released to Imaging: 11/10/2022 3:35:51 PM

Page 5

Page 6

Oil Conservation Division

Incident ID	NAPP2211531680
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report. A scaled site and sampling diagram as described in 19.15.29.11 NMAC Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) Description of remediation activities I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Title: Env. Professional Printed Name: Dale Woodall Signature: Dale Woodall _____ Date: <u>9/21/2022</u>_____ Telephone: 575-748-1<u>838</u> email: dale.woodall@dvn.com **OCD Only** Received by: Date: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Title: Environmental Specialist A

SITE CHARACTERIZATION INFORMATION

Devon Energy - Rebel 20 CTB Sec 20 T24S R32E Unit C 32.208739, -103.700137 Lea County, New Mexico

Site Characterization
-No water features within specified distances of 1/2 mile radius, drilled within 25 years
-Low Karst
-USGS Groundwater is 33.96' below surface, 2.36 miles North-northeast of the site, 2010 Drilled, Section 10
-USGS Groundwater is 454.43' below surface, 2.98 miles North-northeast of the site, 1976 Drilled, Section 3
-NMSEO Groundwater is 380' below surface, 3.06 miles North of the site, 2013 Drilled, Section 5
-NMSEO Groundwater is 314' below surface, 2.47 miles South-southeast of the site, 2021 Drilled, Section 33

RRALs due to insufficient *RECENT* groundwater data\ -Chlorides 600 mg/kg -TPH GRO+DRO+MRO 100 mg/kg -BTEX 50 mg/kg -Benzene 10 mg/kg

Received by OCD: 10/18/2022 8:28:21 AM LOW Karst

Devon Energy Lea County, NM Site Coordinates: 32.208739, -103.700137

128

Ν

3 mi

Rebel 20 CTB

128

Graces & Fraging 11/10/2022 3:35:51 PM

Received by OCD: 10/18/2022 8:28:21 AM Nearest vvater vveli

Devon Energy Lea County, NM Site Coordinates: 32.208739, -103.700137 380' - Drilled 2013

128

6

454.43' - Drilled 1976 💿

33.96' - Drilled 2010 💽

128

Page 22 of 135

Legend

3

3

0

128

3 mi

1/2 Mile Radius

2.36 Miles NNE

🍰 2.47 Miles SSE

3.06 Miles N

Site Location

2.98 Miles NNE

NMSEO Water Well

USGS Water Well

Rebel 20 CTB

314' - Drilled 2021

Released to Imaging: 11/10/2022 3:35:51 PM

ata de a a a a

New Mexico Office of the State Engineer **Point of Diversion Summary**

		(quarters (quarters					(NAD83 UI			
Well Tag POD	Number	Q64 Q1	6 Q4	Sec	Tws	Rng	Х	Y		
NA C 03	3555 POD1	2 2	2 1	05	24S	32E	622748	3569233 🌍		
Driller License: Driller Name:	1654	Driller C	ompai	ny:		KING FOR STRUC	HIRESIRMA	N DRILLING		
Drill Start Date:	Drill Fin	Drill Finish Date: 10/21/2013				3 Plu	Plug Date:			
Log File Date:	11/07/2013	PCW Rc	v Date	:			So	irce:	Shallow	
Pump Type:		Pipe Disc	harge	Size	:		Est	Estimated Yield: 5 G		
Casing Size:	6.00	Depth W	ell:		60	00 feet	De	pth Water:	380 feet	
Wate	r Bearing Strati	ications:	То	рB	ottom	Descr	iption			
			47	5	550	Sands	tone/Gravel/	ne/Gravel/Conglomerate		
x	Casing Per	forations:	orations: Top							
			46	0	520					

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.
3/31/22 2:25 PM
POINT OF DIVERSION SUMMARY

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW###### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is closed)	(•					2=NE 3 it to larç	=SW 4=5 gest) (SE) NAD83 UTM in n	neters)	(In feet)	
POD Number	POD Sub- Code basin C	ounty		Q 16	_	Sec	Tws	Rng)	K Y	Distance	-	Depth Water	Water Column
C 03530 POD1	С	LE	3				24S	32E	62088	6 3566156 🌍	2452	550		
<u>C 02350</u>	CUB	ED		4	3	10	24S	32E	62582	6 3566333* 🌍	3886	60		
C 04536 POD1	С	LE	1	2	2	33	24S	32E	62501	9 3561244 🌍	3968	500	314	186
C 03528 POD1	С	LE	1	1	2	15	24S	32E	62604	0 3566129 🌍	3974	541		
C 04576 POD1	CUB	ED	1	2	1	23	24S	31E	61770	0 3564324 🌍	4805	910	850	60
C 03555 POD1	С	LE	2	2	1	05	24S	32E	62274	8 3569233 🍯	4925	600	380	220
C 04388 POD1	С	ED	3	2	1	23	24S	31E	61754	6 3564006 🍯	4967	910	868	42
										Aver	age Depth to	Water:	603	feet
											Minimum	Depth:	314	feet
											Maximum	Depth:	868	feet
Record Count: 7														

UTMNAD83 Radius Search (in meters):

Easting (X): 622504.61

Northing (Y): 3564313.97

Radius: 5000

*UTM location was derived from PLSS - see Help

Released to Imaging: 11/10/2022 3:35:51 PM

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Released to Imaging: 11/10/2022 3:35:51 PM

New Mexico Office of the State Engineer Point of Diversion Summary

			(quarters are (quarters a	e small	est to	o larges		JTM in meters)				
Well Tag		Number	Q64 Q16	•			0	X	Y			
20E37	C 04	4536 POD1	1 2	2	33	24S	32E	625019	3561244 🌍			
Driller Lice	ense:	1706	Driller Co	npany	:	EL	ITE DRI	ILLERS CO	ORPORATION			
Driller Nan	ne:	BRYCE WALLA	ACE									
Drill Start	Date:	06/09/2021	Drill Finisl	Drill Finish Date: 06/10/2021						Plug Date:		
Log File Da	PCW Rev	Date:			S	ource:	Shallow					
Ритр Туре	::		Pipe Disch	arge S	ize:	:	Е	Estimated Yield:				
Casing Size	:	4.30	Depth Wel	l:		5	00 feet	D	314 feet			
x	Wate	r Bearing Stratif	ications:	Ton	B	ottom	Descr	intion				
				235		480		•	l/Conglomerate			
x				233		400	Sallus	done/Orave				
		Casing Per	forations:	Тор	в	ottom	t					
				300		500						

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

3/31/22 2:15 PM

POINT OF DIVERSION SUMMARY

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface USGS Water Resources

 Data Category:
 Geographic Area:

 Groundwater
 V
 New Mexico
 GO

Click to hideNews Bulletins

• Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.

• <u>Full News</u> 🔊

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 321312103395601 24S.32E.10.344333

Lea County, New Mexico Latitude 32°13'30.4", Longitude 103°39'52.7" NAD83 Land-surface elevation 3,589.00 feet above NGVD29 The depth of the well is 60 feet below land surface. This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer. **Output formats**

Table of data

Tab-separated data

<u>Graph of data</u>

Reselect period

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level approval status
1950-04-13		D	62610		3555.36	NGVD29	1	Z			
1950-04-13		D	62611		3557.09	NAVD88	1	Z			
1950-04-13		D	72019	33.64			1	Z			
1955-06-03		D	62610		3557.10	NGVD29	Р	Z			
1955-06-03		D	62611		3558.83	NAVD88	Р	Z			
1955-06-03		D	72019	31.90			Р	Z			
1976-01-22		D	62610		3557.20	NGVD29	1	Z			
1976-01-22		D	62611		3558.93	NAVD88	1	Z			
1976-01-22		D	72019	31.80			1	Z			
1981-03-20		D	62610		3569.07	NGVD29	1	Z			
1981-03-20		D	62611		3570.80	NAVD88	1	Z			
1981-03-20		D	72019	19.93			1	Z			
1986-03-18		D	62610		3551.84	NGVD29	1	Z			
1986-03-18		D	62611		3553.57	NAVD88	1	Z			
1986-03-18		D	72019	37.16			1	Z			
1991-05-29		D	62610		3549.36	NGVD29	1	Z			
1991-05-29		D	62611		3551.09	NAVD88	1	Z			
1991-05-29		D	72019	39.64			1	Z			
1996-03-14		D	62610		3550.80	NGVD29	1	S			
1996-03-14		D	62611		3552.53	NAVD88	1	S			
1996-03-14		D	72019	38.20			1	S			
2001-02-27		D	62610		3552.42	NGVD29	1	S			
2001-02-27		D	62611		3554.15	NAVD88	1	S			
2001-02-27		D	72019	36.58			1	S			
2006-02-07	16:30 UTC	c m	62610		3569.60	NGVD29	1	S	USG	S	S .

Released to Imaging: 11/10/2022 3:35:51 PM

Received by OCD: 10/18/2022 8:28:21 AM

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level approval status
2006-02-07	16:30 UTC	m	62611		3571.33	NAVD88	1	S	USGS	S	A
2006-02-07	16:30 UTC	m	72019	19.40			1	S	USGS	S	А
2010-12-16	22:30 UTC	m	62610		3555.04	NGVD29	1	S	USGS	S	А
2010-12-16	22:30 UTC	m	62611		3556.77	NAVD88	1	S	USGS	S	А
2010-12-16	22:30 UTC	m	72019	33.96			1	S	USGS	S	А

		Explanation
Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Water-level date-time accuracy	m	Date is accurate to the Minute
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Status	Р	Pumping
Method of measurement	S	Steel-tape measurement.
Method of measurement	Z	Other.
Measuring agency		Not determined
Measuring agency	USGS	U.S. Geological Survey
Source of measurement		Not determined
Source of measurement	S	Measured by personnel of reporting agency.
Water-level approval status	А	Approved for publication Processing and review completed.

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

 Accessibility
 FOIA
 Privacy
 Policies and Notices

 U.S. Department of the Interior
 | U.S. Geological Survey

 Title:
 Groundwater for New Mexico:
 Water Levels

URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2022-03-31 16:33:21 EDT 0.35 0.31 nadww01 USA.gov

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface USGS Water Resources

 Data Category:
 Geographic Area:

 Groundwater
 V
 New Mexico

✔ GO

Click to hideNews Bulletins

• Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.

• Full News 🔝

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs

site_no list = • 321428103395801

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 321428103395801 24S.32E.03.32124

Lea County, New Mexico Latitude 32°14'28", Longitude 103°39'58" NAD27 Land-surface elevation 3,653 feet above NAVD88 The depth of the well is 550 feet below land surface. This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Santa Rosa Sandstone (231SNRS) local aquifer. **Output formats**

Table of data	
Tab-separated data	
Graph of data	
Reselect period	

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level approval status
1976-01-22		D	62610		3196.84	NGVD29	1	Z			А
1976-01-22		D	62611		3198.57	NAVD88	1	Z			А
1976-01-22		D	72019	454.43			1	Z			А

Explanation									
Section	Code	Description							
Water-level date-time accuracy	D	Date is accurate to the Day							
Parameter code	62610	Groundwater level above NGVD 1929, feet							
Parameter code	62611	Groundwater level above NAVD 1988, feet							
Parameter code	72019	Depth to water level, feet below land surface							
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988							
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929							
Status	1	Static							
Method of measurement	Z	Other.							
Measuring agency		Not determined							
Source of measurement		Not determined							
Water-level approval status	А	Approved for publication Processing and review completed.							

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms

Received by OCD: 10/18/2022 8:28:21 AM

Subscribe for system changes News

Privacy Accessibility FOIA Policies and Notices U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2022-03-31 16:44:42 EDT 0.34 0.3 nadww01

USA.gov

Science for a changing world

USGS Home Contact USGS Search USGS

Help

National Water Information System: Mapper

Site Information

TABLES

Table 1
Devon Energy
Rebel 20 CTB (4.25.22) & (1.03.19)
Lea County, New Mexico

Released to Imaging				Reb	Dev el 20 CTE	Table 1 /on Energy 8 (4.25.22) & nty, New Me						Received by OCD: 1
Sample ID	Date	Sample Depth (ft)	DRO	TPH GRO	(mg/kg) MRO	Total	Benzene (mg/kg)	Toluene (mg/kg)	Ethlybenzene (mg/kg)	Xylene (mg/kg)	Total BTEX (mg/kg)	Chloride (mg/kg)
8-1	5/3/2022	4.5	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	543.0
3 S-2	5/3/2022	3.5	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	1,030 😸
S-3	5/3/2022	3.0	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	545 🎽
S-4	5/3/2022	3.0	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00403	< 0.00403	508 🍃
S -5	5/3/2022	4.0	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	575.0
S-6	5/3/2022	2.5	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	134.0
Regul	atory Limits ^A				•	100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram

TPH- total petroleum hydrocarbons

ft-feet

- exceeds regulatory limits

Table 2 **Devon Energy** Rebel 20 CTB Eddy County, New Mexico

Palancad to Tunor					Re	Table 2 evon Energy ebel 20 CTB punty, New M						Received by OCD:
	Sample ID Date Sample Death (#) TPH (mg/kg) Benzene Toluene Ethlybenzene Xylene Total BTEX (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)											Chloride
		Depth (ft)	DRO	GRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
CS-1	7/27/2022		<50.0	<50.0	<50.0	<50.0	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	36.8
	7/27/2022		<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	10.7 义
CS-3 CS-4	7/27/2022		<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	13.7 Ϋ
CS-4	7/27/2022		<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	47.0
CS-5	7/27/2022		<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	105
CS-6	7/27/2022		115	<49.9	<49.9	115	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	58.0
03-0	8/8/2022	4.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	288
CS-7	7/27/2022		216	<49.9	<49.9	216	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	12.9
03-7	8/8/2022	4.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	256
CS-8	7/27/2022		<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	45.4
CS-9	7/27/2022		<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	16.9
Regula	tory Limits ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

NTGE Project No. 225625

Table 2 **Devon Energy** Rebel 20 CTB Eddy County, New Mexico

					Re	Table 2 evon Energy ebel 20 CTB punty, New I						
Sample ID	Date	Sample Depth (ft)	DRO	TPH GRO	(mg/kg) MRO	Total	Benzene (mg/kg)	Toluene (mg/kg)	Ethlybenzene (mg/kg)	Xylene (mg/kg)	Total BTEX (mg/kg)	Chlo (mg/
SW-1	7/27/2022	~	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	25
SW-2	7/27/2022	~	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	43
SW-3	7/27/2022	~	<50.0	<50.0	<50.0	<50.0	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	41
SW-4	7/27/2022	~	<49.8	<49.8	<49.8	<49.8	<0.00198	<0.00198	<0.00198	<0.00396	< 0.00396	43
SW-5	7/27/2022	~	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	30
SW-6	7/27/2022	~	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	19
SW-7	7/27/2022	~	<49.8	<49.8	<49.8	<49.8	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	25
SW-8	7/27/2022	~	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00201	<0.00402	43
SW-9	7/27/2022	~	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00200	<0.00401	8.
SW-10	7/27/2022	~	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	1:
SW-11	7/27/2022	~	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	49
SW-12	7/27/2022	~	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	29
SW-13	8/8/2022	~	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	30
SW-14	8/8/2022	~	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	6
SW-15	8/8/2022	~	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	24
SW-16	8/8/2022	~	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	9
Regula	tory Limits ^A			<u>.</u>		100 mg/kg	10 mg/kg				50 mg/kg	600 m

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram

TPH- total petroleum hydrocarbons

ft-feet

exceeds regulatory limits

Perpared By:

Page 34 of 135

FIGURES

Released to Imaging: 11/10/2022 3:35:51 PM

Released to Imaging: 11/10/2022 3:35:51 PM

Released to Imaging: 11/10/2022 3:35:51 PM

Released to Imaging: 11/10/2022 3:35:51 PM

Devon Energy Production Company

Photograph No. 1

Facility: REBEL 20 CTB

County: Lea County, New Mexico

Description: View of excavated area

Photograph No. 2

Facility: REBEL 20 CTB

County: Lea County, New Mexico

Description: View of excavated area

Photograph No. 3

Facility: REBEL 20 CTB

County: Lea County, New Mexico

Description: View of excavated area

Devon Energy Production Company

Photograph No. 4

Facility: REBEL 20 CTB

County: Lea County, New Mexico

Description: View of excavated area

Photograph No. 5

Facility: REBEL 20 CTB

County: Lea County, New Mexico

Description: View of excavated area

Photograph No. 6

Facility: REBEL 20 CTB

County: Lea County, New Mexico

Description: View of excavated area

Devon Energy Production Company

Photograph No. 7

Facility: REBEL 20 CTB

County: Lea County, New Mexico

Description: View of excavated area

Photograph No. 8

Facility: REBEL 20 CTB

County: Lea County, New Mexico

Description: View of excavated area

Photograph No. 9

Facility: REBEL 20 CTB

County: Lea County, New Mexico

Description: View of excavated area

LABORATORY REPORTS AND CHAIN-OF-CUSTODY DOCUMENTS

Received by OCD: 10/18/2022 8:28:21 AM

----- Links

Review your project results through

EOL

Have a Question?

www.eurofinsus.com/Env

Released to Imaging: 11/10/2022 3:35:51 PM

Visit us at:

Ask— The Expert

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-14390-1

Laboratory Sample Delivery Group: Lea Co. NM Client Project/Site: Rebel 20 CTB (4.25.22) & (1.3.19) Revision: 1

For:

NT Global 701 Tradewinds Blvd Midland, Texas 79706

Attn: Gordon Banks

RAMER

Authorized for release by: 5/17/2022 2:08:08 PM Jessica Kramer, Project Manager (432)704-5440

Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Laboratory Job ID: 880-14390-1

SDG: Lea Co. NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
	5
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	15
Lab Chronicle	17
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
	24

Definitions/Glossary

Client: NT Global Project/Site: Rebel 20 CTB (4.25.22) & (1.3.19)

Limit of Quantitation (DoD/DOE)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Negative / Absent

Positive / Present

Presumptive

Quality Control

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry)

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Job ID: 880-14390-1

Page 47 of 135

SDG: Lea Co. NM

Qualifiers

LOQ

MCL

MDA

MDC MDL

ML

MPN

MQL

NC

ND

NEG

POS

PQL

QC

RL RPD

TEF TEQ

TNTC

RER

PRES

	<u> </u>
Qualifier Description	Л
•	°
Indicates the analyte was analyzed for but not detected.	5
Α	
Qualifier Description	
Surrogate recovery exceeds control limits, high biased.	
Indicates the analyte was analyzed for but not detected.	
Qualifier Description	8
Indicates the analyte was analyzed for but not detected.	
	<u> </u>
These commonly used abbreviations may or may not be present in this report.	10
Listed under the "D" column to designate that the result is reported on a dry weight basis	
Percent Recovery	
Contains Free Liquid	
Colony Forming Unit	
Contains No Free Liquid	
Duplicate Error Ratio (normalized absolute difference)	4.2
Dilution Factor	13
Detection Limit (DoD/DOE)	
Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
Decision Level Concentration (Radiochemistry)	
Estimated Detection Limit (Dioxin)	
Limit of Detection (DoD/DOE)	
	Qualifier Description Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected. Qualifier Description Indicates the analyte was analyzed for but not detected. These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis Percent Recovery Contains Free Liquid Colony Forming Unit Contains No Free Liquid Duplicate Error Ratio (normalized absolute difference) Dilution Factor Detection Limit (DoD/DOE) Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample Decision Level Concentration (Radiochemistry) Estimated Detection Limit (Dioxin)

Eurofins Midland

Case Narrative

Client: NT Global Project/Site: Rebel 20 CTB (4.25.22) & (1.3.19) Job ID: 880-14390-1

Job ID: 880-14390-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-14390-1

REVISION

The report being provided is a revision of the original report sent on 5/13/2022. The report (revision 1) is being revised due to Per client email, corrected project name.

Report revision history

Receipt

The samples were received on 5/3/2022 5:08 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.4°C

Receipt Exceptions

The following sample S6 (2.5') was submitted for analysis; however, it was not listed on the Chain-of-Custody (COC) contacted client via phone to add sample.

GC VOA

Method 8021B: The matrix spike (MS) recoveries for preparation batch 880-25279 and analytical batch 880-25476 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: (LCSD 880-24946/3-A) and (MB 880-24946/1-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

SDG: Lea Co. NM

RL

MDL Unit

D

Prepared

Client: NT Global Project/Site: Rebel 20 CTB (4.25.22) & (1.3.19)

Method: 8021B - Volatile Organic Compounds (GC)

Result Qualifier

Client Sample ID: S1 (4.5') Date Collected: 05/03/22 00:00 Date Received: 05/03/22 17:08

Analyte

Analyte	Result	Quaimer	RL.		Unit	U	Flepaleu	Analyzeu	DIFAC
Benzene	<0.00200	U F1	0.00200		mg/Kg		05/10/22 13:49	05/12/22 19:53	1
Toluene	<0.00200	U	0.00200		mg/Kg		05/10/22 13:49	05/12/22 19:53	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		05/10/22 13:49	05/12/22 19:53	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		05/10/22 13:49	05/12/22 19:53	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		05/10/22 13:49	05/12/22 19:53	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		05/10/22 13:49	05/12/22 19:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130				05/10/22 13:49	05/12/22 19:53	1
1,4-Difluorobenzene (Surr)	103		70 - 130				05/10/22 13:49	05/12/22 19:53	1
Method: Total BTEX - Total B	TEX Calcula	tion							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			05/13/22 10:27	1
Method: 8015 NM - Diesel Ra	nge Organic	s (DRO) (G	iC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			05/09/22 12:05	1
Method: 8015B NM - Diesel R	ango Organ								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		05/06/22 08:55	05/07/22 14:16	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		05/06/22 08:55	05/07/22 14:16	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		05/06/22 08:55	05/07/22 14:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	118		70 - 130				05/06/22 08:55	05/07/22 14:16	1
o-Terphenyl	131	S1+	70 - 130				05/06/22 08:55	05/07/22 14:16	1
Method: 300.0 - Anions, Ion (· ·							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Chloride	543		4.99		mg/Kg			05/06/22 15:34	1
Client Sample ID: S2 (3.5	5')					L	ab Sample	e ID: 880-14	390-6
0ate Collected: 05/03/22 00:00 0ate Received: 05/03/22 17:08								Matrix	: Solid
Method: 8021B - Volatile Org Analyte		unds (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201		0.00201		mg/Kg		05/10/22 13:49	05/12/22 20:13	1
Toluene	<0.00201		0.00201		mg/Kg		05/10/22 13:49	05/12/22 20:13	1
Ethylbenzene	<0.00201		0.00201		mg/Kg			05/12/22 20:13	1
m-Xylene & p-Xylene	< 0.00402		0.00402		mg/Kg			05/12/22 20:13	1
o-Xylene	< 0.00201		0.00201		mg/Kg			05/12/22 20:13	1
Xylenes, Total	<0.00402		0.00402		mg/Kg			05/12/22 20:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 130				05/10/22 13:49		1

05/10/22 13:49 05/12/22 20:13

Eurofins Midland

1

Page 49 of 135

Matrix: Solid

Dil Fac

5

13

Job ID: 880-14390-1 SDG: Lea Co. NM

Lab Sample ID: 880-14390-4

Analyzed

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

70 - 130

70 - 130

96

Client: NT Global Project/Site: Rebel 20 CTB (4.25.22) & (1.3.19)

Client Sample ID: S2 (3.5') Date Collected: 05/03/22 00:00

Date Received: 05/03/22 17:08

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			05/13/22 10:27	1
Method: 8015 NM - Diesel Rar	ige Organic	s (DRO) (0	SC)						
Analyte		Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			05/09/22 12:05	1
Method: 8015B NM - Diesel Ra	ange Organ	ics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		05/06/22 08:55	05/07/22 14:38	1
GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		05/06/22 08:55	05/07/22 14:38	
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		05/06/22 08:55	05/07/22 14:38	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	92		70 - 130				05/06/22 08:55	05/07/22 14:38	
o-Terphenyl	97		70 - 130				05/06/22 08:55	05/07/22 14:38	
Method: 300.0 - Anions, Ion C	hromatoora	phy - Solu	ıble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	1030		4.98		mg/Kg			05/06/22 16:01	

Client Sample ID: S3 (3') Date Collected: 05/03/22 00:00 Date Received: 05/03/22 17:08

Method: 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier MDL Unit Prepared RL D Analyzed Dil Fac Benzene <0.00200 U 0.00200 05/10/22 13:49 05/12/22 20:34 mg/Kg 1 Toluene <0.00200 U 0.00200 mg/Kg 05/10/22 13:49 05/12/22 20:34 1 Ethylbenzene <0.00200 U 0.00200 mg/Kg 05/10/22 13:49 05/12/22 20:34 1 m-Xylene & p-Xylene <0.00399 U 0.00399 mg/Kg 05/10/22 13:49 05/12/22 20:34 1 o-Xylene <0.00200 U 0.00200 mg/Kg 05/10/22 13:49 05/12/22 20:34 1 Xylenes, Total <0.00399 U 0.00399 mg/Kg 05/10/22 13:49 05/12/22 20:34 1 %Recovery Qualifier Limits Prepared Analyzed Dil Fac Surrogate 4-Bromofluorobenzene (Surr) 70 - 130 05/10/22 13:49 05/12/22 20:34 113 1 1,4-Difluorobenzene (Surr) 98 70 - 130 05/10/22 13:49 05/12/22 20:34 1 Method: Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			05/13/22 10:27	1
Method: 8015 NM - Diesel Ra	nge Organic	s (DRO) (G	C)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		05/06/22 08:55	05/07/22 15:00	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		05/06/22 08:55	05/07/22 15:00	1
C10-C28)									

Eurofins Midland

Page 50 of 135

5

Job ID: 880-14390-1 SDG: Lea Co. NM

Lab Sample ID: 880-14390-6

Matrix: Solid

Matrix: Solid

RL

50.0

RL

5.04

Limits

70 - 130

70 - 130

MDL Unit

MDL Unit

mg/Kg

mg/Kg

D

D

Prepared

Prepared

Prepared

Client: NT Global Project/Site: Rebel 20 CTB (4.25.22) & (1.3.19)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Method: 300.0 - Anions, Ion Chromatography - Soluble

%Recovery

Result Qualifier

Result Qualifier

Qualifier

<50.0 U

102

116

545

Client Sample ID: S3 (3') Date Collected: 05/03/22 00:00 Date Received: 05/03/22 17:08

Oll Range Organics (Over C28-C36)

Analyte

Surrogate

o-Terphenyl

Analyte

Chloride

1-Chlorooctane

Job	ID:	880-
-	-	

14390-1 SDG: Lea Co. NM

Page 51 of 135

Dil Fac

Dil Fac

1

1

Lab Sample ID: 880-14390-8 Matrix: Solid

05/06/22 08:55 05/07/22 15:00

05/06/22 08:55 05/07/22 15:00

05/06/22 08:55 05/07/22 15:00

Analyzed

Analyzed

Analyzed

05/06/22 16:09

Dil Fac 1 Lab Sample ID: 880-14390-10 Matrix: Solid

Client Sample ID: S4 (3') Date Collected: 05/03/22 00:00 Date Received: 05/03/22 17:08

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00202	U	0.00202		mg/Kg		05/10/22 13:49	05/12/22 20:55	1
Toluene	<0.00202	U	0.00202		mg/Kg		05/10/22 13:49	05/12/22 20:55	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		05/10/22 13:49	05/12/22 20:55	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		05/10/22 13:49	05/12/22 20:55	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		05/10/22 13:49	05/12/22 20:55	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		05/10/22 13:49	05/12/22 20:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130				05/10/22 13:49	05/12/22 20:55	1
1,4-Difluorobenzene (Surr)	99		70 - 130				05/10/22 13:49	05/12/22 20:55	1
Method: Total BTEX - Total B	TEX Calcula	tion							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00403	U	0.00403		mg/Kg			05/13/22 10:27	1
Method: 8015 NM - Diesel Rai	nge Organic	s (DRO) (0	3C)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	40.0						
			49.9		mg/Kg			05/09/22 12:05	1
Method: 8015B NM - Diesel R	ange Organ	ics (DRO)			mg/Kg			05/09/22 12:05	1
	• •	<mark>ics (DRO)</mark> Qualifier		MDL	mg/Kg Unit	D	Prepared	05/09/22 12:05 Analyzed	Dil Fac
Analyte	• •	Qualifier	(GC)	MDL		<u>D</u>	Prepared 05/06/22 08:55		
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U	(GC)	MDL	Unit	D	05/06/22 08:55	Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.9	Qualifier U U	(GC) 	MDL	Unit mg/Kg	<u>D</u>	05/06/22 08:55 05/06/22 08:55	Analyzed 05/07/22 15:22	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9	Qualifier U U U	(GC) <u>RL</u> 49.9 49.9	MDL	Unit mg/Kg mg/Kg	D	05/06/22 08:55 05/06/22 08:55	Analyzed 05/07/22 15:22 05/07/22 15:22	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9 <49.9 <49.9	Qualifier U U U	(GC) <u>RL</u> 49.9 49.9 49.9	MDL	Unit mg/Kg mg/Kg	<u>D</u>	05/06/22 08:55 05/06/22 08:55 05/06/22 08:55	Analyzed 05/07/22 15:22 05/07/22 15:22 05/07/22 15:22	Dil Fac 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.9 <49.9 <49.9 <49.9 %Recovery	Qualifier U U U	(GC) <u>RL</u> 49.9 49.9 49.9 Limits	MDL	Unit mg/Kg mg/Kg	D	05/06/22 08:55 05/06/22 08:55 05/06/22 08:55 Prepared 05/06/22 08:55	Analyzed 05/07/22 15:22 05/07/22 15:22 05/07/22 15:22 Analyzed	Dil Fac 1 1 Dil Fac
Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <49.9	Qualifier U U Qualifier	(GC) <u>RL</u> 49.9 49.9 <u>49.9</u> <u>Limits</u> 70 - 130 70 - 130	MDL	Unit mg/Kg mg/Kg	D	05/06/22 08:55 05/06/22 08:55 05/06/22 08:55 Prepared 05/06/22 08:55	Analyzed 05/07/22 15:22 05/07/22 15:22 05/07/22 15:22 Analyzed 05/07/22 15:22	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <49.9	Qualifier U U Qualifier	(GC) <u>RL</u> 49.9 49.9 <u>49.9</u> <u>Limits</u> 70 - 130 70 - 130	MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	05/06/22 08:55 05/06/22 08:55 05/06/22 08:55 Prepared 05/06/22 08:55	Analyzed 05/07/22 15:22 05/07/22 15:22 05/07/22 15:22 Analyzed 05/07/22 15:22	Dil Fac

RL

0.00200

0.00200

MDL Unit

mg/Kg

mg/Kg

D

Prepared

05/10/22 13:49 05/12/22 21:16

05/10/22 13:49 05/12/22 21:16

Client: NT Global Project/Site: Rebel 20 CTB (4.25.22) & (1.3.19)

Method: 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<0.00200 U

<0.00200 U

Client Sample ID: S5 (4') Date Collected: 05/03/22 00:00 Date Received: 05/03/22 17:08

Analyte

Benzene

Toluene

Toluelle	<0.00200	0	0.00200		mg/rxg		05/10/22 15.49	03/12/22 21.10	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		05/10/22 13:49	05/12/22 21:16	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		05/10/22 13:49	05/12/22 21:16	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		05/10/22 13:49	05/12/22 21:16	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		05/10/22 13:49	05/12/22 21:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 130				05/10/22 13:49	05/12/22 21:16	1
1,4-Difluorobenzene (Surr)	108		70 - 130				05/10/22 13:49	05/12/22 21:16	1
Method: Total BTEX - Total B	TEX Calcula	tion							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			05/13/22 10:27	1
Method: 8015 NM - Diesel Ra	nge Organic	s (DRO) (0	C)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9		49.9		mg/Kg			05/09/22 12:05	1
Method: 8015B NM - Diesel R	ange Organ	ics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		05/06/22 08:55	05/07/22 15:44	1
(GRO)-C6-C10									
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		05/06/22 08:55	05/07/22 15:44	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		05/06/22 08:55	05/07/22 15:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	112		70 - 130				05/06/22 08:55		1
o-Terphenyl	118		70 - 130				05/06/22 08:55	05/07/22 15:44	1
Mothody 200.0 Aniona Ion (bromotogra	như Colu	blo						
Method: 300.0 - Anions, Ion C Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	575		4.99		mg/Kg		·	05/06/22 16:45	1
Client Sample ID: S6 (2.5')					1 2	h Samnla	ID: 880-143	90-14
Date Collected: 05/03/22 00:00	/								: Solid
Date Received: 05/03/22 00:00								Watib	. 30110
Method: 8021B - Volatile Orga	anic Compo	unde (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		05/10/22 13:49	05/12/22 21:36	1
Toluene	<0.00199	U	0.00199		mg/Kg		05/10/22 13:49	05/12/22 21:36	1
Ethylbenzene	<0.00199		0.00199		mg/Kg			05/12/22 21:36	1
m-Xylene & p-Xylene	<0.00398		0.00398		mg/Kg			05/12/22 21:36	1
o-Xylene	<0.00199		0.00199		mg/Kg			05/12/22 21:36	1
Xylenes, Total	<0.00398		0.00398		mg/Kg			05/12/22 21:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130				05/10/22 13:49		1

1

05/10/22 13:49 05/12/22 21:36

Job ID: 880-14390-1 SDG: Lea Co. NM

Lab Sample ID: 880-14390-13

Analyzed

Matrix: Solid

5

12 13

Dil Fac

1

1

Page 52 of 135

1,4-Difluorobenzene (Surr)

70 - 130

Client: NT Global Project/Site: Rebel 20 CTB (4.25.22) & (1.3.19)

Lab Sample ID: 880-14390-14

Client Sample ID: S6 (2.5') Date Collected: 05/03/22 00:00

Date	conected.	03/03/22 00.00	
Date	Received:	05/03/22 17:08	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Total BTEX	<0.00398	U	0.00398		mg/Kg			05/13/22 10:27	1	
Method: 8015 NM - Diesel Rar	nge Organic	s (DRO) (0	SC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total TPH	<50.0	U	50.0		mg/Kg			05/09/22 12:05	1	
Method: 8015B NM - Diesel Ra	ange Organi	ics (DRO)	(GC)							8
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		05/06/22 08:55	05/07/22 16:06	1	2
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		05/06/22 08:55	05/07/22 16:06	1	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		05/06/22 08:55	05/07/22 16:06	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1-Chlorooctane	110		70 - 130				05/06/22 08:55	05/07/22 16:06	1	
o-Terphenyl	120		70 - 130				05/06/22 08:55	05/07/22 16:06	1	
Method: 300.0 - Anions, Ion C	hromatogra	phy - Solu	ıble							1
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Chloride	134		4.98		mg/Kg			05/06/22 16:54	1	

Released to Imaging: 11/10/2022 3:35:51 PM

Job ID: 880-14390-1 SDG: Lea Co. NM

Matrix: Solid

Surrogate Summary

Client: NT Global Project/Site: Rebel 20 CTB (4.25.22) & (1.3.19)

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

			Perce	nt Surrogate Reco
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
380-14390-4	<u>S1 (4.5')</u>	92	103	
880-14390-4 MS	S1 (4.5')	114	98	
880-14390-4 MSD	S1 (4.5')	92	106	
880-14390-6	S2 (3.5')	96	103	
880-14390-8	S3 (3')	113	98	
880-14390-10	S4 (3')	109	99	
880-14390-13	S5 (4')	93	108	
880-14390-14	S6 (2.5')	105	98	
LCS 880-25279/1-A	Lab Control Sample	105	104	
LCSD 880-25279/2-A	Lab Control Sample Dup	105	102	
MB 880-25279/5-A	Method Blank	93	98	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

			Per
		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-14390-4	S1 (4.5')	118	131 S1+
880-14390-6	S2 (3.5')	92	97
880-14390-8	S3 (3')	102	116
880-14390-10	S4 (3')	103	111
880-14390-13	S5 (4')	112	118
880-14390-14	S6 (2.5')	110	120
880-14397-A-11-E MS	Matrix Spike	102	95
880-14397-A-11-F MSD	Matrix Spike Duplicate	96	90
LCS 880-24946/2-A	Lab Control Sample	114	123
LCSD 880-24946/3-A	Lab Control Sample Dup	136 S1+	145 S1+
MB 880-24946/1-A	Method Blank	120	141 S1+

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Midland

Page 54 of 135

Job ID: 880-14390-1 SDG: Lea Co. NM

Prep Type: Total/NA

Prep Type: Total/NA

Lab Sample ID: MB 880-25279/5-A

Matrix: Solid

QC Sample Results

Client: NT Global Project/Site: Rebel 20 CTB (4.25.22) & (1.3.19)

Method: 8021B - Volatile Organic Compounds (GC)

Analysis Batch: 25476								Prep Batch:	25279
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		05/10/22 13:49	05/12/22 19:31	1
Toluene	<0.00200	U	0.00200		mg/Kg		05/10/22 13:49	05/12/22 19:31	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		05/10/22 13:49	05/12/22 19:31	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		05/10/22 13:49	05/12/22 19:31	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		05/10/22 13:49	05/12/22 19:31	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		05/10/22 13:49	05/12/22 19:31	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 130				05/10/22 13:49	05/12/22 19:31	1
1,4-Difluorobenzene (Surr)	98		70 - 130				05/10/22 13:49	05/12/22 19:31	1

Lab Sample ID: LCS 880-25279/1-A Matrix: Solid Analysis Batch: 25476

Analysis Batch: 25476							Prep Batch: 2	5279
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09308		mg/Kg		93	70 - 130	
Toluene	0.100	0.09346		mg/Kg		93	70 - 130	
Ethylbenzene	0.100	0.1022		mg/Kg		102	70 - 130	
m-Xylene & p-Xylene	0.200	0.2154		mg/Kg		108	70 - 130	
o-Xylene	0.100	0.1053		mg/Kg		105	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	105		70 - 130
1,4-Difluorobenzene (Surr)	104		70 - 130

Lab Sample ID: LCSD 880-25279/2-A Matrix: Solid

Analysis Batch: 25476

Analysis Batch: 25476							Prep Batch: 25279		
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.08522		mg/Kg		85	70 - 130	9	35
Toluene	0.100	0.08397		mg/Kg		84	70 - 130	11	35
Ethylbenzene	0.100	0.08828		mg/Kg		88	70 - 130	15	35
m-Xylene & p-Xylene	0.200	0.1875		mg/Kg		94	70 - 130	14	35
o-Xylene	0.100	0.09295		mg/Kg		93	70 - 130	12	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	105		70 - 130
1,4-Difluorobenzene (Surr)	102		70 - 130

Lab Sample ID: 880-14390-4 MS Matrix: Solid

Analysis Batch: 25476

Analysis Batch: 25476									Prep Batch: 25279
	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	<0.00200	U F1	0.0998	0.06525	F1	mg/Kg		65	70 - 130
Toluene	<0.00200	U	0.0998	0.07114		mg/Kg		71	70 - 130

Eurofins Midland

Client Sample ID: S1 (4.5')

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Lab Sample ID: 880-14390-4 MS

Matrix: Solid

Analyte

o-Xylene

Surrogate

Matrix: Solid

Ethylbenzene

m-Xylene & p-Xylene

Analysis Batch: 25476

4-Bromofluorobenzene (Surr)

Lab Sample ID: 880-14390-4 MSD

1,4-Difluorobenzene (Surr)

QC Sample Results

Spike

Added

0.0998

0.200

0.0998

Limits

70 - 130

70 - 130

Client: NT Global Project/Site: Rebel 20 CTB (4.25.22) & (1.3.19)

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Sample Sample

MS MS

%Recovery Qualifier

114

98

<0.00200 U

<0.00401 U

<0.00200 U

Result Qualifier

Job ID: 880-14390-1 SDG: Lea Co. NM

Prep Type: Total/NA Prep Batch: 25279

Client Sample ID: S1 (4.5')

%Rec

Limits

70 - 130

70 - 130

70 - 130

5	
7	
8	
9	

35

1

1

14

Client Sample ID: S1 (4.5') **Prep Type: Total/NA** 5279

Analysis Batch: 25476									Prep E	Batch: 2	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U F1	0.0994	0.08395		mg/Kg		84	70 - 130	25	35
Toluene	<0.00200	U	0.0994	0.07509		mg/Kg		76	70 - 130	5	35
Ethylbenzene	<0.00200	U	0.0994	0.07445		mg/Kg		75	70 - 130	6	35
m-Xylene & p-Xylene	<0.00401	U	0.199	0.1499		mg/Kg		75	70 - 130	13	35

0.07442

MS MS

0.07910

0.1707

0.08545

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D %Rec

79

86

86

75

70 - 130

Client Sample ID: Method Blank

05/06/22 08:55 05/07/22 12:08

05/06/22 08:55 05/07/22 12:08

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 24946

o-Xylene	<0.00200	U	0.0994
	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	92		70 - 130
1,4-Difluorobenzene (Surr)	106		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-24946/1-A **Matrix: Solid** Analysis Batch: 25017

	MB	МВ						-	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		05/06/22 08:55	05/07/22 12:08	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		05/06/22 08:55	05/07/22 12:08	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		05/06/22 08:55	05/07/22 12:08	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

	·····,		
1-Chlorooctane	120		70 - 130
o-Terphenyl	141	S1+	70 - 130

Lab Sample ID: LCS 880-24946/2-A Matrix: Solid Analysis Batch: 25017

Analysis Batch: 25017							Prep E	Batch: 24946
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	1181		mg/Kg		118	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	1078		mg/Kg		108	70 - 130	
C10-C28)								

Eurofins Midland

Prep Type: Total/NA

Released to Imaging: 11/10/2022 3:35:51 PM

Lab Sample ID: LCS 880-24946/2-A

Lab Sample ID: LCSD 880-24946/3-A

Lab Sample ID: 880-14397-A-11-E MS

Matrix: Solid

Surrogate

o-Terphenyl

Analyte

C10-C28)

Surrogate

o-Terphenyl

1-Chlorooctane

1-Chlorooctane

Matrix: Solid

(GRO)-C6-C10

Analysis Batch: 25017

Analysis Batch: 25017

Gasoline Range Organics

Diesel Range Organics (Over

QC Sample Results

Limits

70 - 130

70 - 130

Spike

Added

1000

1000

Limits

70 - 130 70 - 130

Client: NT Global Project/Site: Rebel 20 CTB (4.25.22) & (1.3.19)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

LCS LCS %Recovery Qualifier

LCSD LCSD

136 S1+

145 S1+

%Recovery Qualifier

114

123

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 24946

RPD

10

11

RPD

Limit

20

20

Prep Batch: 24946

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

130

120

5
7
8
9

%Rec

Limits

70 - 130

70 - 130

Client Sample ID: Matrix Spike Pren Type: Total/NA

D %Rec

Matrix: Solid Analysis Batch: 25017									Prep Type: Total/N Prep Batch: 2494
	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	1000	1147		mg/Kg		115	70 - 130
Diesel Range Organics (Over C10-C28)	<50.0	U	1000	996.2		mg/Kg		100	70 - 130
	MS	MS							

LCSD LCSD

1303

1203

Result Qualifier

Unit

mg/Kg

mg/Kg

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	102		70 - 130
o-Terphenyl	95		70 - 130

Lab Sample ID: 880-14397-A-11-F MSD Matrix: Solid Analysis Batch: 25017

Analysis Batch: 25017									Prep E	atch: 2	24946
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	998	1137		mg/Kg		114	70 - 130	1	20
Diesel Range Organics (Over C10-C28)	<50.0	U	998	868.4		mg/Kg		87	70 - 130	14	20

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	96		70 - 130
o-Terphenyl	90		70 - 130

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Eurofins Midland

QC Sample Results

Client: NT Global Project/Site: Rebel 20 CTB (4.25.22) & (1.3.19) Page 58 of 135

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-248 Matrix: Solid	812/1-A								Cli	ent Sa	mple ID: N Prep T	lethod ype: So	
Analysis Batch: 24863													
	Ν	MB MB											
Analyte	Res	ult Qualifier		RL	I	MDL	Unit		DI	Prepared	Analy	zed	Dil Fac
Chloride	<5.	00 U		5.00		I	mg/Kg	9			05/05/22	18:59	1
Lab Sample ID: LCS 880-24	812/2-A							Clie	ent Sa	mple I	D: Lab Co		
Matrix: Solid											Prepi	ype: So	oluble
Analysis Batch: 24863			Spike		1.00	LCS					%Rec		
Analyta			Added		Result		fior	Unit	D	%Rec	Limits		
Analyte Chloride			250		261.5	Quali	lilei	mg/Kg		105	90 - 110		
Chionde			250		201.5			mg/Kg		105	90-110		
Lab Sample ID: LCSD 880-2	24812/3-A						С	lient S	ample	D: La	b Control	Sample	e Dup
Matrix: Solid												ype: So	
Analysis Batch: 24863												,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			Spike		LCSD	LCSE)				%Rec		RPD
Analyte			Added		Result	Quali	ifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			250		251.5			mg/Kg		101	90 - 110	4	20
 Lab Sample ID: 880-14390-/	4 MS									Clie	nt Sample	ID: S1	(4.5')
Matrix: Solid												ype: So	
Analysis Batch: 24863												,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
· ·····, ··· · · · · · · · · · · · · ·	Sample S	Sample	Spike		MS	MS					%Rec		
Analyte	Result C	Qualifier	Added		Result	Quali	ifier	Unit	D	%Rec	Limits		
Chloride	543		250		778.4			mg/Kg		94	90 - 110		
 Lab Sample ID: 880-14390-	4 MSD									Clie	nt Sample	ID: S1	(4.5')
Matrix: Solid										•		ype: So	
Analysis Batch: 24863													
	Sample S	Sample	Spike		MSD	MSD					%Rec		RPD
Analyte	Result C	-	Added		Result	Quali	ifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	543												

QC Association Summary

Client: NT Global Project/Site: Rebel 20 CTB (4.25.22) & (1.3.19) Job ID: 880-14390-1 SDG: Lea Co. NM

GC VOA

Prep Batch: 25279

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-14390-4	S1 (4.5')	Total/NA	Solid	5035	
880-14390-6	S2 (3.5')	Total/NA	Solid	5035	
880-14390-8	S3 (3')	Total/NA	Solid	5035	
880-14390-10	S4 (3')	Total/NA	Solid	5035	
880-14390-13	S5 (4')	Total/NA	Solid	5035	
880-14390-14	S6 (2.5')	Total/NA	Solid	5035	
MB 880-25279/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-25279/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-25279/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-14390-4 MS	S1 (4.5')	Total/NA	Solid	5035	
880-14390-4 MSD	S1 (4.5')	Total/NA	Solid	5035	

Analysis Batch: 25476

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
880-14390-4	S1 (4.5')	Total/NA	Solid	8021B	25279	
880-14390-6	S2 (3.5')	Total/NA	Solid	8021B	25279	
880-14390-8	S3 (3')	Total/NA	Solid	8021B	25279	
880-14390-10	S4 (3')	Total/NA	Solid	8021B	25279	
880-14390-13	S5 (4')	Total/NA	Solid	8021B	25279	
880-14390-14	S6 (2.5')	Total/NA	Solid	8021B	25279	
MB 880-25279/5-A	Method Blank	Total/NA	Solid	8021B	25279	
LCS 880-25279/1-A	Lab Control Sample	Total/NA	Solid	8021B	25279	
LCSD 880-25279/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	25279	
880-14390-4 MS	S1 (4.5')	Total/NA	Solid	8021B	25279	
880-14390-4 MSD	S1 (4.5')	Total/NA	Solid	8021B	25279	

Analysis Batch: 25521

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-14390-4	S1 (4.5')	Total/NA	Solid	Total BTEX	
880-14390-6	S2 (3.5')	Total/NA	Solid	Total BTEX	
880-14390-8	S3 (3')	Total/NA	Solid	Total BTEX	
880-14390-10	S4 (3')	Total/NA	Solid	Total BTEX	
880-14390-13	S5 (4')	Total/NA	Solid	Total BTEX	
880-14390-14	S6 (2.5')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 24946

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-14390-4	S1 (4.5')	Total/NA	Solid	8015NM Prep	
880-14390-6	S2 (3.5')	Total/NA	Solid	8015NM Prep	
880-14390-8	S3 (3')	Total/NA	Solid	8015NM Prep	
880-14390-10	S4 (3')	Total/NA	Solid	8015NM Prep	
880-14390-13	S5 (4')	Total/NA	Solid	8015NM Prep	
880-14390-14	S6 (2.5')	Total/NA	Solid	8015NM Prep	
MB 880-24946/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-24946/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-24946/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-14397-A-11-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-14397-A-11-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Eurofins Midland

4 5 6

QC Association Summary

Client: NT Global Project/Site: Rebel 20 CTB (4.25.22) & (1.3.19)

GC Semi VOA

Analysis Batch: 25017

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
880-14390-4	S1 (4.5')	Total/NA	Solid	8015B NM	24946	
880-14390-6	S2 (3.5')	Total/NA	Solid	8015B NM	24946	5
880-14390-8	S3 (3')	Total/NA	Solid	8015B NM	24946	
880-14390-10	S4 (3')	Total/NA	Solid	8015B NM	24946	
880-14390-13	S5 (4')	Total/NA	Solid	8015B NM	24946	
880-14390-14	S6 (2.5')	Total/NA	Solid	8015B NM	24946	
MB 880-24946/1-A	Method Blank	Total/NA	Solid	8015B NM	24946	
LCS 880-24946/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	24946	8
LCSD 880-24946/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	24946	
880-14397-A-11-E MS	Matrix Spike	Total/NA	Solid	8015B NM	24946	9
880-14397-A-11-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	24946	
Analysis Batch: 2509	2					

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
880-14390-4	S1 (4.5')	Total/NA	Solid	8015 NM		
880-14390-6	S2 (3.5')	Total/NA	Solid	8015 NM		
880-14390-8	S3 (3')	Total/NA	Solid	8015 NM		
880-14390-10	S4 (3')	Total/NA	Solid	8015 NM		
880-14390-13	S5 (4')	Total/NA	Solid	8015 NM		
880-14390-14	S6 (2.5')	Total/NA	Solid	8015 NM		

HPLC/IC

Leach Batch: 24812

Lab Sample ID 880-14390-4	Client Sample ID S1 (4.5')	Prep Type Soluble	Matrix Solid	Method DI Leach	Prep Batch
880-14390-6	S2 (3.5')	Soluble	Solid	DI Leach	
880-14390-8	S3 (3')	Soluble	Solid	DI Leach	
880-14390-10	S4 (3')	Soluble	Solid	DI Leach	
880-14390-13	S5 (4')	Soluble	Solid	DI Leach	
880-14390-14	S6 (2.5')	Soluble	Solid	DI Leach	
MB 880-24812/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-24812/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-24812/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-14390-4 MS	S1 (4.5')	Soluble	Solid	DI Leach	
880-14390-4 MSD	S1 (4.5')	Soluble	Solid	DI Leach	

Analysis Batch: 24863

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-14390-4	S1 (4.5')	Soluble	Solid	300.0	24812
880-14390-6	S2 (3.5')	Soluble	Solid	300.0	24812
880-14390-8	S3 (3')	Soluble	Solid	300.0	24812
880-14390-10	S4 (3')	Soluble	Solid	300.0	24812
880-14390-13	S5 (4')	Soluble	Solid	300.0	24812
880-14390-14	S6 (2.5')	Soluble	Solid	300.0	24812
MB 880-24812/1-A	Method Blank	Soluble	Solid	300.0	24812
LCS 880-24812/2-A	Lab Control Sample	Soluble	Solid	300.0	24812
LCSD 880-24812/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	24812
880-14390-4 MS	S1 (4.5')	Soluble	Solid	300.0	24812
880-14390-4 MSD	S1 (4.5')	Soluble	Solid	300.0	24812

Eurofins Midland

Page 60 of 135

Job ID: 880-14390-1 SDG: Lea Co. NM

Lab Chronicle

Initial

Amount

4.99 g

5 mL

10.02 g

5.01 g

Dil

1

1

1

1

1

Factor

Run

Client: NT Global Project/Site: Rebel 20 CTB (4.25.22) & (1.3.19)

Batch

5035

8021B

Total BTEX

8015NM Prep

8015 NM

8015B NM

DI Leach

300.0

Method

Client Sample ID: S1 (4.5') Date Collected: 05/03/22 00:00 Date Received: 05/03/22 17:08

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Leach

Analysis

Prep

Job ID: 880-14390-1 SDG: Lea Co. NM

Lab Sample ID: 880-14390-4

Analyst

MR

Lab Sample ID: 880-14390-6

Lab Sample ID: 880-14390-8

Lab Sample ID: 880-14390-10

Prepared

or Analyzed

05/10/22 13:49

05/12/22 19:53 MR

05/13/22 10:27 SM

05/09/22 12:05 AJ

05/06/22 08:55 DM

05/07/22 14:16 AJ

05/04/22 12:02 SC

05/06/22 15:34 SC

Batch

25279

25476

25521

25092

24946

25017

24812

24863

Number

Final

Amount

5 mL

5 mL

10 mL

50 mL

Matrix: Solid

Lab

XEN MID

Matrix: Solid

9 10

Matrix: Solid

Client Sample ID: S2 (3.5') Date Collected: 05/03/22 00:00 Date Received: 05/03/22 17:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	25279	05/10/22 13:49	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	25476	05/12/22 20:13	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25521	05/13/22 10:27	SM	XEN MID
Total/NA	Analysis	8015 NM		1			25092	05/09/22 12:05	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	24946	05/06/22 08:55	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25017	05/07/22 14:38	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	24812	05/04/22 12:02	SC	XEN MID
Soluble	Analysis	300.0		1			24863	05/06/22 16:01	SC	XEN MID

Client Sample ID: S3 (3') Date Collected: 05/03/22 00:00 Date Received: 05/03/22 17:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	25279	05/10/22 13:49	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	25476	05/12/22 20:34	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25521	05/13/22 10:27	SM	XEN MID
Total/NA	Analysis	8015 NM		1			25092	05/09/22 12:05	AJ	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.01 g	10 mL	24946 25017	05/06/22 08:55 05/07/22 15:00		XEN MID XEN MID
Soluble Soluble	Leach Analysis	DI Leach 300.0		1	4.96 g	50 mL	24812 24863	05/04/22 12:02 05/06/22 16:09		XEN MID XEN MID

Client Sample ID: S4 (3') Date Collected: 05/03/22 00:00 Date Received: 05/03/22 17:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	25279	05/10/22 13:49	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	25476	05/12/22 20:55	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25521	05/13/22 10:27	SM	XEN MID

Eurofins Midland

Matrix: Solid

Lab Chronicle

Client: NT Global Project/Site: Rebel 20 CTB (4.25.22) & (1.3.19)

Client Sample ID: S4 (3') Date Collected: 05/03/22 00:00 Date Received: 05/03/22 17:08

Prep Type Total/NA	Batch Type Analysis	Batch Method 8015 NM	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 25092	Prepared or Analyzed 05/09/22 12:05	Analyst AJ	Lab XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.02 g	10 mL	24946 25017	05/06/22 08:55 05/07/22 15:22		XEN MID XEN MID
Soluble Soluble	Leach Analysis	DI Leach 300.0		1	5.03 g	50 mL	24812 24863	05/04/22 12:02 05/06/22 16:36		XEN MID XEN MID

Client Sample ID: S5 (4') Date Collected: 05/03/22 00:00 Date Received: 05/03/22 17:08

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	25279	05/10/22 13:49	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	25476	05/12/22 21:16	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			25521	05/13/22 10:27	SM	XEN MID
Total/NA	Analysis	8015 NM		1			25092	05/09/22 12:05	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	24946	05/06/22 08:55	DM	XEN MID
Total/NA	Analysis	8015B NM		1			25017	05/07/22 15:44	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	24812	05/04/22 12:02	SC	XEN MID
Soluble	Analysis	300.0		1			24863	05/06/22 16:45	SC	XEN MID

Client Sample ID: S6 (2.5') Date Collected: 05/03/22 00:00 Date Received: 05/03/22 17:08

Leach

Analysis

Dil Initial Batch Batch Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Total/NA Prep 5035 5.02 g 5 mL 25279 05/10/22 13:49 MR Total/NA Analysis 8021B 1 5 mL 5 mL 25476 05/12/22 21:36 MR Total/NA Analysis Total BTEX 25521 05/13/22 10:27 SM 1 Total/NA 8015 NM 25092 Analysis 1 05/09/22 12:05 AJ Total/NA Prep 8015NM Prep 24946 05/06/22 08:55 DM 10.01 g 10 mL 25017 Total/NA Analysis 8015B NM 1 05/07/22 16:06 AJ

1

5.02 g

50 mL

24812

24863

05/04/22 12:02 SC

05/06/22 16:54 SC

Laboratory References:

Soluble

Soluble

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

DI Leach

300.0

Job ID: 880-14390-1

Page 62 of 135

Lab Sample ID: 880-14390-10 Matrix: Solid

Lab Sample ID: 880-14390-13 Matrix: Solid

Lab Sample ID: 880-14390-14

Matrix: Solid

Lab

XEN MID

SDG: Lea Co. NM

Accreditation/Certification Summary

Client: NT Global Project/Site: Rebel 20 CTB (4.25.22) & (1.3.19) Job ID: 880-14390-1 SDG: Lea Co. NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Pr	ogram	Identification Number	Expiration Date
exas	NE	ELAP	T104704400-21-22	06-30-22
The following analytes the agency does not c	•	ort, but the laboratory is n	ot certified by the governing authority.	This list may include analytes for whic
0,	•	ort, but the laboratory is n Matrix	ot certified by the governing authority. Analyte	This list may include analytes for whic
the agency does not o	offer certification.			This list may include analytes for whic

Eurofins Midland

Page 63 of 135

Method Summary

Client: NT Global Project/Site: Rebel 20 CTB (4.25.22) & (1.3.19) Job ID: 880-14390-1 SDG: Lea Co. NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: NT Global Project/Site: Rebel 20 CTB (4.25.22) & (1.3.19)

Job ID: 880-1439	90-1
SDG: Lea Co.	
0D0. L00 00.	

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-14390-4	S1 (4.5')	Solid	05/03/22 00:00	05/03/22 17:08
880-14390-6	S2 (3.5')	Solid	05/03/22 00:00	05/03/22 17:08
880-14390-8	S3 (3')	Solid	05/03/22 00:00	05/03/22 17:08
880-14390-10	S4 (3')	Solid	05/03/22 00:00	05/03/22 17:08
880-14390-13	S5 (4')	Solid	05/03/22 00:00	05/03/22 17:08
880-14390-14	S6 (2.5')	Solid	05/03/22 00:00	05/03/22 17:08

			i c	-							5
			2 2 2 4 2	100	512	K	R.		1 A	429	3 Nich
Date/Time	Received by: (Signature)	Relinquished by (Signature)	me	Date/Time			Received by. (Signature)	Receive		(Signature)	Relinquished by
	d tre control stiated.	of Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	nalyzed. These	but not a	ed to Xenco,	ch sample submitt	charge of \$5 for ea	project and a	applied to each	arge of \$85.00 will be	of Xenco. A minimum ch
	(conditions	ubcontractors. It assigns standard terms and conditions such losses are due to circumstances beyond the costo	affiliates and s	Xenco, its	company to	order from client bility for any losse	tes a valid purchase sume any responsi) bles constitu i shall not a	uishment of samp ost of samples and	Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors ice. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses a	Notice Signature of this of service. Xenco will be
										Additional Comments:	Additic
			× ×	×		6	×		5/3/2022	3")	S4 (3')
	×		× ×	×		G	×		5/3/2022	2')	S4 (2')
			×	×		G	×		5/3/2022	3"	S3 (3')
	X		×	×		G	×		5/3/2022	5')	S3 (2 5')
			×	×		G	×		5/3/2022	5')	S2 (3 5')
	×		×	×	_	G	×		5/3/2022	5')	S2 (2 5')
			×	×		G	×		5/3/2022	5')	S1 (4 5')
	× :		××	×		G	×		5/3/2022	(1)	S1 (4')
	×		××	×		G	×		5/3/2022	(3')	S1 (3')
	X		××	×	1	Ð	×		5/3/2022	[2]	S1 (2')
Sample Comments			TF		- Cont	Water Comp	Soil	Time	Date	tification	Sample Identification
NaOH+Ascorbic Acid SAPC	-	880-14390 Cham of Correct	PH 80			24	Corrected Temperature	Corrected			Total Containers
Zn Acetate+NaOH Zn		In the transformer of Custody		loperty		»(? {€	I emperature Keading		AIN ON	IS.	Tabl Cost in the
Na ₂ S ₂ O ₃ NaSO ₃			-	BTE	F	-11-	1 Factor	Correction Factor	r	*	Sample Custody Seals
	OLD NaH			X 80	Para	Tr D	eter ID:	I nermometer ID			Cooler Chietody Cool
H₃PO₄ HP			+ DR 4500	21B	Imel	Tes No	Wet loe:	Yes No			Deceived Intent
H ₂ S0 ₄ , H ₂ NaOH Na	H ₂ SC		0+1			ed by 4 optin	19.3		21025271 & 21019308		
	HCL		/IRO)			TAT starts the day received by the	TAT starts the di		Nick Hart	_	Sampler's Name:
_	Cool				L		Due Date		Lea Co NM	Le	Project Location
None NO DI Water: H ₂ O	None				Pres. Code	Rush	マ Routine		225625		Project Number
Preservative Codes		ANALYSIS REQUEST			11111111111111111111111111111111111111	Turn Around	Turn	(3 28 22)	₽	Rebel 20 CTB (4 25 22)	Project Name:
Other	bles EDD ADaPT D	Deliverables		com	ws@dvn	Wesley Mathews@dvn com	Email			254-266-5456	Phone
	Reporting Level II CLevel III PST/UST		Artesia, NM 88210	Artesia		City, State ZIP	0		38220	Carlsbad, NM 88220	City, State ZIP
	State of Project:		6488 Seven Rivers Highway	6488 S		Address.			Ve	402 E Wood Ave	Address.
is RRC uperfund	Program UST/PST PRP Brownfields RRC	Program	Energy	Devon Energy		Company Name	0		ental	NTG Environmental	Company Name
nents	Work Order Comments		Wesley Mathews	Wesley		Bill to: (if different)			S	Ethan Sessums	Project Manager
Page () () () () () () () () () (Work Order No:								FG		
2001		ę		ini C	C Q				<u>_</u>	Į	\geq

Page 66 of 135

Chain of Custody

	5		Nich F	Keling	or service. Yence, will be liable only for the cost of samples constitutes and and purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$85.00 will be applied by each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.		Addition					S5 (4')	S5 (3')	S5 (2')			Total Containers.	Sample Custody Seals.	Cooler Custody Seals.	Received Intact:	SAMPLE RECEIPT	PO#	Sampler's Name	Project Location	Project Number	Project Name: F	Phone. 28	City, State ZIP C	Address: 4(Company Name: N	Project Manager E			
			tar	Signature)	e only for the co of \$85.00 will be	northing continuents.									cation			Yes	Yes	Yes		210252	7	Le		Rebel 20 CTB (4 25 22) &	254-266-5456	Carlsbad, NM 88220	402 E Wood Ave	NTG Environmental	Ethan Sessums	ENVIRONMENTA		AND INCOMENTATION OF A DESCRIPTION OF A
			A		at of samples and applied to each p							5/3/2022	5/3/2022	5/3/2022	Date		10	No N/A	No N/A	s No	Temp Blank:	21025271 & 21019308	Nick Hart	Lea Co NM	225625			18220	le	ental	5	F N		,
			6	Received by:	les constitute shall not ass roject and a c										Time	and the second se	Corrected	Temperature Reading	Correction Factor		Yes No					(3 28 22)								
			1 PN	by' (Signature)	s a valid purchas ume any respons harge of \$5 for e							×	×	×	Soil		Corrected Temperature	re Reading	Factor	ter ID:	Wet Ice:	lab if received by 4 30pm	TAT starts the	Due Date.	Routine	Tum	Email							
		-	5	re)	e order from cl ibility for any to ach sample sut										Water c	1 0					Yes No	ived by 4 30pm	day received b		Rush	Turn Around	Dale.Woddall@dvn com	City, State ZIP	Address.	Company Name	Bill to: (if different)			
		1	5		ient company osses or expe omitted to Xer			_				G 1	G 1	G 1	Comp Cont	638V			Pa	Iram			y the		Pres. Code		lall@dvn c	P	C 1111 Q 144 - 147 Q 147 - 147 Q 147 - 147 Q 144 - 147 Q 147 - 147	ame	rent)			
			310	Date	to Xenco, nses incu aco, but no					 		×	×	×	<u>a</u> 2			вт		8021		<u></u>		-	* *		om	Arte	648	Dev	Dale			
	ł	して	N	Date/Time	its affillat rred by th t analyze							×	×	×	T	PH	801	5M (GRO) + C	DRO	+ MI	RO)					Artesia, NM 88210	6488 Seven Rivers Highway	Devon Energy	Dale Woodall			
	6	¥ 4	2		tes and su e client if d. These t					_		×	×	×				Chl	lorid	le 45	00							88210	Rivers	gy	=			
				Relino	ibcontrac such loss erms will					 																			lighway					18. 18.
				Relinquished	lors. It as es are du be enforc			-			+															ANAL								
					signs sta e to circu ed unles:																					LYSIS								
				by [.] (Signature)	indard tei mstances s previous					 																YSIS REQUEST		77	s	-10				
-	+			9	rms and c beyond t sly negoti			+		 	+													\rightarrow		EST	eliverab	leporting	State of Project.	rogram	and the second se			
				Rec	onditions he contro ated.				$\left \right $	+-	+													-			Deliverables EDD	Reporting Level II Level III PST/UST	^o roject.	- UST/P			5	
				Received by, (Signature)																								Leve		ST	Wo		Work Order No: _	
				/. (Sign						+					· <u></u>									_			A	Ť		ອັ 	rk Ord)rder	
				nature)				 		 			×	<u>X</u>			Z I		HOL		Ţ,	H, G	H	3 6	S		ADaPT	Þst/us		ownfie	er Con		No:	
Re	+											. (Samj		OH+Aer	7n Acetate+NaOH 7n	Na-S-O- NaSO-	NaHSO, NARIS	Č H	H,S04. H,			None NO	Pres			l	Program UST/PST PRP Brownfields RRC	Work Order Comments	Page	Ē	
vised Date 0				Da							1439n	Loc: R			ple Coi		orhic Ar	+NPOH	laSO,	IARIS			r 2	× r	- -	ervativ	Other			_	v	\sim	14390	
Revised Date 05012020 Rev 2020.1			a da se a da se da s	Date/Time							9 8 	20		1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -	Sample Comments			7n				NaOH Na	HND HN		11 Water H O	Preservative Codes			l - r			of 2		

Chain of Custody

Job Number: 880-14390-1 SDG Number: Lea Co. NM

List Source: Eurofins Midland

Login Sample Receipt Checklist

Client: NT Global

<6mm (1/4").

Eurofins Midland

Login Number: 14390 List Number: 1 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Received extra samples not listed on COC.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Received by OCD: 10/18/2022 8:28:21 AM

----- Links

Review your project results through

EOL

Have a Question?

www.eurofinsus.com/Env

Released to Imaging: 11/10/2022 3:35:51 PM

Visit us at:

Ask— The Expert

eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2672-1

Laboratory Sample Delivery Group: Lea County NM Client Project/Site: Rebel 20 CTB (Spill #1)

For:

NT Global 701 Tradewinds Blvd Midland, Texas 79706

Attn: Gordon Banks

VRAMER

signature.

Authorized for release by: 8/1/2022 8:33:08 AM

Jessica Kramer, Project Manager (432)704-5440 Jessica.Kramer@et.eurofinsus.com

Results relate only to the items tested and the sample(s) as received by the laboratory.

Laboratory Job ID: 890-2672-1 SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	21
QC Sample Results	23
QC Association Summary	33
Lab Chronicle	39
Certification Summary	46
Method Summary	47
Sample Summary	48
Chain of Custody	49
Receipt Checklists	52

2

Client: NT Global	
Project/Site: Rebel 20 CTB (Spill #1)	

Page 71 of 135

Job ID: 890-2672-1
SDG: Lea County NM

Qualifiers

Qualifiers	<u>S</u>	3
GC VOA		
Qualifier	Qualifier Description	
*_	LCS and/or LCSD is outside acceptance limits, low biased.	
*+	LCS and/or LCSD is outside acceptance limits, high biased.	5
`1	LCS/LCSD RPD exceeds control limits.	
S1-	Surrogate recovery exceeds control limits, low biased.	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi V	'OA	
Qualifier	Qualifier Description	
*1	LCS/LCSD RPD exceeds control limits.	8
F1	MS and/or MSD recovery exceeds control limits.	•
S1+	Surrogate recovery exceeds control limits, high biased.	C
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
	Indicates the analyte was analyzed for but not detected.	

Glossary

Clossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 890-2672-1 SDG: Lea County NM

Page 72 of 135

Job ID: 890-2672-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-2672-1

Receipt

The samples were received on 7/28/2022 9:50 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.4°C

GC VOA

Method 8021B: The laboratory control sample (LCS) associated with preparation batch 880-30988 and 880-31011 and analytical batch 880-30959 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

Method 8021B: Surrogate recovery for the following sample was outside control limits: CS-6 (890-2672-18). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-31009 and analytical batch 880-31049 recovered outside control limits for the following analytes: Gasoline Range Organics (GRO)-C6-C10.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (LCS 880-31009/2-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-31010 and analytical batch 880-31085 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.
Page 73 of 135

Matrix: Solid

Job ID: 890-2672-1 SDG: Lea County NM

Lab Sample ID: 890-2672-1

Client Sample ID: SW-1

Project/Site: Rebel 20 CTB (Spill #1)

Client: NT Global

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		07/29/22 10:37	07/30/22 21:54	1
Toluene	<0.00202	U	0.00202		mg/Kg		07/29/22 10:37	07/30/22 21:54	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		07/29/22 10:37	07/30/22 21:54	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		07/29/22 10:37	07/30/22 21:54	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		07/29/22 10:37	07/30/22 21:54	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		07/29/22 10:37	07/30/22 21:54	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130				07/29/22 10:37	07/30/22 21:54	1
1,4-Difluorobenzene (Surr)	103		70 - 130				07/29/22 10:37	07/30/22 21:54	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			07/30/22 18:57	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			07/31/22 10:33	1
Method: 8015B NM - Diesel Rang									
	ie Ordanics (D								
			Ы	MDI	11		Dremened	Amelymed	
Analyte	Result	Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	
Analyte Gasoline Range Organics		Qualifier	RL 49.9	MDL	Unit mg/Kg	<u>D</u>	Prepared 07/29/22 13:05	Analyzed 07/31/22 11:29	
Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.9	Qualifier U	49.9	MDL	mg/Kg	<u>D</u>	07/29/22 13:05	07/31/22 11:29	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U		MDL		<u> </u>	·		1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9	Qualifier U U F1	49.9	MDL	mg/Kg	<u> </u>	07/29/22 13:05	07/31/22 11:29	,
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.9 <49.9	Qualifier U U F1	49.9	MDL	mg/Kg mg/Kg	<u> </u>	07/29/22 13:05 07/29/22 13:05	07/31/22 11:29 07/31/22 11:29	1 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <49.9 <49.9 <49.9	Qualifier U U F1 U	49.9 49.9 49.9	MDL	mg/Kg mg/Kg	<u> </u>	07/29/22 13:05 07/29/22 13:05 07/29/22 13:05	07/31/22 11:29 07/31/22 11:29 07/31/22 11:29	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <49.9 <49.9 <49.9 <49.9 %Recovery	Qualifier U U F1 U	49.9 49.9 49.9 Limits	MDL	mg/Kg mg/Kg	<u>D</u>	07/29/22 13:05 07/29/22 13:05 07/29/22 13:05 07/29/22 13:05 Prepared	07/31/22 11:29 07/31/22 11:29 07/31/22 11:29 07/31/22 11:29 Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.9	Qualifier U U F1 U Qualifier	49.9 49.9 49.9 <u>Limits</u> 70 - 130	MDL	mg/Kg mg/Kg	<u> </u>	07/29/22 13:05 07/29/22 13:05 07/29/22 13:05 07/29/22 13:05 Prepared 07/29/22 13:05	07/31/22 11:29 07/31/22 11:29 07/31/22 11:29 07/31/22 11:29 <u>Analyzed</u> 07/31/22 11:29	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <49.9	Qualifier U U F1 U Qualifier	49.9 49.9 49.9 <u>Limits</u> 70 - 130	MDL	mg/Kg mg/Kg mg/Kg	D	07/29/22 13:05 07/29/22 13:05 07/29/22 13:05 07/29/22 13:05 Prepared 07/29/22 13:05	07/31/22 11:29 07/31/22 11:29 07/31/22 11:29 07/31/22 11:29 <u>Analyzed</u> 07/31/22 11:29	Dil Fac

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/30/22 22:20	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/30/22 22:20	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/30/22 22:20	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		07/29/22 10:37	07/30/22 22:20	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/30/22 22:20	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		07/29/22 10:37	07/30/22 22:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	77		70 - 130				07/29/22 10:37	07/30/22 22:20	1
1,4-Difluorobenzene (Surr)	105		70 - 130				07/29/22 10:37	07/30/22 22:20	1

Eurofins Carlsbad

2672-1

5

Client Sample Results

Job ID: 890-2672-1 SDG: Lea County NM

Client Sample ID: SW-2

Project/Site: Rebel 20 CTB (Spill #1)

Client: NT Global

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			07/30/22 18:57	1
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			07/31/22 10:33	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		07/29/22 13:05	07/31/22 12:33	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		07/29/22 13:05	07/31/22 12:33	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		07/29/22 13:05	07/31/22 12:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	89		70 - 130				07/29/22 13:05	07/31/22 12:33	1
o-Terphenyl	99		70 - 130				07/29/22 13:05	07/31/22 12:33	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	431		4.99		mg/Kg			07/29/22 22:58	1

Client Sample ID: SW-3

Date Collected: 07/27/22 00:00

Date Received: 07/28/22 09:50

Method: 8021B - Volatile Organ	nic Compounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		07/29/22 10:37	07/30/22 22:46	1
Toluene	<0.00198	U	0.00198		mg/Kg		07/29/22 10:37	07/30/22 22:46	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		07/29/22 10:37	07/30/22 22:46	1
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		07/29/22 10:37	07/30/22 22:46	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		07/29/22 10:37	07/30/22 22:46	1
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		07/29/22 10:37	07/30/22 22:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		70 - 130				07/29/22 10:37	07/30/22 22:46	1
1,4-Difluorobenzene (Surr)	109		70 - 130				07/29/22 10:37	07/30/22 22:46	1

Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397		mg/Kg			07/30/22 18:57	1
Method: 8015 NM - Diesel Rang	e Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			07/31/22 10:33	1
_ Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		07/29/22 13:05	07/31/22 12:55	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		07/29/22 13:05	07/31/22 12:55	1
C10-C28)									

Eurofins Carlsbad

Matrix: Solid

Lab Sample ID: 890-2672-2 Matrix: Solid

Matrix: Solid

Matrix: Solid

5

Client Sample Results

Job ID: 890-2672-1 SDG: Lea County NM

Lab Sample ID: 890-2672-3

Client Sample ID: SW-3

Project/Site: Rebel 20 CTB (Spill #1)

Client: NT Global

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/29/22 13:05	07/31/22 12:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130				07/29/22 13:05	07/31/22 12:55	1
o-Terphenyl	122		70 - 130				07/29/22 13:05	07/31/22 12:55	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	412		5.00		mg/Kg			07/29/22 23:06	1

Client Sample ID: SW-4

Date Collected: 07/27/22 00:00

Date Received: 07/28/22 09:50

Method: 8021B - Volatile Orga	nic Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00198	U	0.00198		mg/Kg		07/29/22 10:37	07/30/22 23:13	1
Toluene	<0.00198	U	0.00198		mg/Kg		07/29/22 10:37	07/30/22 23:13	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		07/29/22 10:37	07/30/22 23:13	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		07/29/22 10:37	07/30/22 23:13	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		07/29/22 10:37	07/30/22 23:13	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		07/29/22 10:37	07/30/22 23:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130				07/29/22 10:37	07/30/22 23:13	1
1,4-Difluorobenzene (Surr)	112		70 - 130				07/29/22 10:37	07/30/22 23:13	1

Method: Total BTEX - Total BTEX C	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00396	U	0.00396		mg/Kg			07/30/22 18:57	1
Method: 8015 NM - Diesel Range C	organics (DR	0) (GC)							

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8 U	49.8	mg/Kg			07/31/22 10:33	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		07/29/22 13:05	07/31/22 13:17	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		07/29/22 13:05	07/31/22 13:17	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		07/29/22 13:05	07/31/22 13:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	83		70 _ 130				07/29/22 13:05	07/31/22 13:17	1
o-Terphenyl	93		70 - 130				07/29/22 13:05	07/31/22 13:17	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	43.1		4.96		mg/Kg			07/29/22 23:14	1

Job ID: 890-2672-1 SDG: Lea County NM

Lab Sample ID: 890-2672-5

Client Sample ID: SW-5

Project/Site: Rebel 20 CTB (Spill #1)

Client: NT Global

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199		mg/Kg		07/29/22 10:37	07/30/22 23:39	
Toluene	<0.00199	U	0.00199		mg/Kg		07/29/22 10:37	07/30/22 23:39	
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		07/29/22 10:37	07/30/22 23:39	
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		07/29/22 10:37	07/30/22 23:39	
o-Xylene	<0.00199	U	0.00199		mg/Kg		07/29/22 10:37	07/30/22 23:39	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		07/29/22 10:37	07/30/22 23:39	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	92		70 - 130				07/29/22 10:37	07/30/22 23:39	
1,4-Difluorobenzene (Surr)	105		70 - 130				07/29/22 10:37	07/30/22 23:39	
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			07/30/22 18:57	
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0		mg/Kg			07/31/22 10:33	
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		07/29/22 13:05	07/31/22 13:39	
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		07/29/22 13:05	07/31/22 13:39	
C10-C28) Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/29/22 13:05	07/31/22 13:39	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane			70 - 130				07/29/22 13:05	07/31/22 13:39	
o-Terphenyl	125		70 - 130				07/29/22 13:05	07/31/22 13:39	
		Solublo							
Method: 300.0 - Anions, Ion Chr	omatography -				11	D	. .		
Method: 300.0 - Anions, Ion Chro Analyte		Qualifier	RL	MDL	Unit	U	Prepared	Analyzed	Dil Fa
			RL 5.01	MDL	mg/Kg		Prepared	Analyzed 07/29/22 23:22	Dil Fa
Analyte	Result			MDL					

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/31/22 00:04	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/31/22 00:04	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/31/22 00:04	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		07/29/22 10:37	07/31/22 00:04	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/31/22 00:04	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		07/29/22 10:37	07/31/22 00:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		70 - 130				07/29/22 10:37	07/31/22 00:04	1
1,4-Difluorobenzene (Surr)	103		70 - 130				07/29/22 10:37	07/31/22 00:04	1

Eurofins Carlsbad

Matrix: Solid

5

Page 8 of 53

Job ID: 890-2672-1 SDG: Lea County NM

Lab Sample ID: 890-2672-6

Client Sample ID: SW-6

Project/Site: Rebel 20 CTB (Spill #1)

Client: NT Global

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			07/30/22 18:57	1
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			07/31/22 10:33	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		07/29/22 13:05	07/31/22 14:00	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		07/29/22 13:05	07/31/22 14:00	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/29/22 13:05	07/31/22 14:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130				07/29/22 13:05	07/31/22 14:00	1
o-Terphenyl	120		70 - 130				07/29/22 13:05	07/31/22 14:00	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	19.0		5.03		mg/Kg			07/29/22 23:45	1

Client Sample ID: SW-7

Date Collected: 07/27/22 00:00

Date Received: 07/28/22 09:50

Method: 8021B - Volatile Organ	nic Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		07/29/22 10:37	07/31/22 00:30	1
Toluene	<0.00201	U	0.00201		mg/Kg		07/29/22 10:37	07/31/22 00:30	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		07/29/22 10:37	07/31/22 00:30	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		07/29/22 10:37	07/31/22 00:30	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		07/29/22 10:37	07/31/22 00:30	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		07/29/22 10:37	07/31/22 00:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 130				07/29/22 10:37	07/31/22 00:30	1
1,4-Difluorobenzene (Surr)	104		70 - 130				07/29/22 10:37	07/31/22 00:30	1

Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			07/30/22 18:57	1
Method: 8015 NM - Diesel Rang	e Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			07/31/22 10:33	1
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		07/29/22 13:05	07/31/22 14:22	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		07/29/22 13:05	07/31/22 14:22	1
C10-C28)									

Eurofins Carlsbad

Page 77 of 135

Matrix: Solid

Matrix: Solid

5

Released to Imaging: 11/10/2022 3:35:51 PM

Matrix: Solid

Matrix: Solid

5

Client Sample Results

Job ID: 890-2672-1 SDG: Lea County NM

Lab Sample ID: 890-2672-7

Lab Sample ID: 890-2672-8

Client Sample ID: SW-7

Project/Site: Rebel 20 CTB (Spill #1)

Client: NT Global

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		07/29/22 13:05	07/31/22 14:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	93		70 - 130				07/29/22 13:05	07/31/22 14:22	1
o-Terphenyl	103		70 - 130				07/29/22 13:05	07/31/22 14:22	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	25.1		4.97		mg/Kg			07/29/22 23:53	1

Client Sample ID: SW-8

Date Collected: 07/27/22 00:00

Date Received: 07/28/22 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		07/29/22 10:37	07/31/22 00:55	1
Toluene	<0.00201	U	0.00201		mg/Kg		07/29/22 10:37	07/31/22 00:55	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		07/29/22 10:37	07/31/22 00:55	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		07/29/22 10:37	07/31/22 00:55	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		07/29/22 10:37	07/31/22 00:55	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		07/29/22 10:37	07/31/22 00:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130				07/29/22 10:37	07/31/22 00:55	1
1.4-Difluorobenzene (Surr)	108		70 - 130				07/29/22 10:37	07/31/22 00:55	1

	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total BTEX	<0.00402	U	0.00402		mg/Kg			07/30/22 18:57	1
1										
	Method: 8015 NM - Diesel Range C		U) (GC)				_			

	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total TPH	<49.9	U	49.9		mg/Kg			07/31/22 10:33	1
1										

Analyte	Posult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
/				WDL			<u> </u>		DirFac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		07/29/22 13:05	07/31/22 14:44	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		07/29/22 13:05	07/31/22 14:44	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		07/29/22 13:05	07/31/22 14:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	101		70 - 130				07/29/22 13:05	07/31/22 14:44	1
o-Terphenyl	110		70 - 130				07/29/22 13:05	07/31/22 14:44	1
- Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte									

Page 79 of 135

Job ID: 890-2672-1 SDG: Lea County NM

Client Sample ID: SW-9

Project/Site: Rebel 20 CTB (Spill #1)

Client: NT Global

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
<0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/31/22 01:21	
<0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/31/22 01:21	
<0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/31/22 01:21	
<0.00401	U	0.00401		mg/Kg		07/29/22 10:37	07/31/22 01:21	
<0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/31/22 01:21	
<0.00401	U	0.00401		mg/Kg		07/29/22 10:37	07/31/22 01:21	
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
82		70 - 130				07/29/22 10:37	07/31/22 01:21	
102		70 - 130				07/29/22 10:37	07/31/22 01:21	
Calculation								
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
<0.00401	U	0.00401		mg/Kg			07/30/22 18:57	
Organics (DR	O) (GC)							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
<49.9	U	49.9		mg/Kg			07/31/22 10:33	
e Organics (D	RO) (GC)							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
<49.9	U	49.9		mg/Kg		07/29/22 13:05	07/31/22 15:06	
.10.0		40.0		117		07/00/00 40 05	07/04/00 45 00	
<49.9	U	49.9		mg/Kg		07/29/22 13:05	07/31/22 15:06	
<49.9	U	49.9		mg/Kg		07/29/22 13:05	07/31/22 15:06	
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
102		70 - 130				07/29/22 13:05	07/31/22 15:06	
115		70 - 130				07/29/22 13:05	07/31/22 15:06	
matography -	Soluble							
		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
8.19		4.99		mg/Kg			07/30/22 00:09	
						Lah Sam	ple ID: 890-2	672 1(
						Lau Jaili	pie iD. 030-2	012-10
	 <0.00200 <0.00200 <0.00401 <0.00200 <0.00401 <i>%Recovery</i> 82 102 Calculation Result <0.00401 Organics (DR) Result <49.9 <102 102 115 omatography - Result 	<0.00401 U %Recovery Qualifier 82 102 (Calculation Result Qualifier <0.00401 U Organics (DRO) (GC) Result Qualifier <49.9 U <49.9 U <49.9 U <49.9 U <49.9 U <49.9 U <90 Crganics (DRO) (GC) Result Qualifier <49.9 U <49.9 U <40.00 (GC) Comparison 						

Method: 8021B - Volatile Orga	nic Compounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		07/29/22 10:37	07/31/22 01:46	1
Toluene	<0.00202	U	0.00202		mg/Kg		07/29/22 10:37	07/31/22 01:46	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		07/29/22 10:37	07/31/22 01:46	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		07/29/22 10:37	07/31/22 01:46	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		07/29/22 10:37	07/31/22 01:46	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		07/29/22 10:37	07/31/22 01:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		70 - 130				07/29/22 10:37	07/31/22 01:46	1
1,4-Difluorobenzene (Surr)	102		70 - 130				07/29/22 10:37	07/31/22 01:46	1

Eurofins Carlsbad

Matrix: Solid

5

Lab Sample ID: 890-2672-9

Released to Imaging: 11/10/2022 3:35:51 PM

Job ID: 890-2672-1 SDG: Lea County NM

Client Sample ID: SW-10

Project/Site: Rebel 20 CTB (Spill #1)

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

Client: NT Global

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			07/30/22 18:57	1
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			07/31/22 10:33	1
Method: 8015B NM - Diesel Rang	e Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		07/29/22 13:05	07/31/22 15:28	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		07/29/22 13:05	07/31/22 15:28	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/29/22 13:05	07/31/22 15:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	81		70 - 130				07/29/22 13:05	07/31/22 15:28	1
o-Terphenyl	91		70 - 130				07/29/22 13:05	07/31/22 15:28	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	134		4.97		mg/Kg			07/30/22 00:17	1

Client Sample ID: SW-11

Date Collected: 07/27/22 00:00

Date Received: 07/28/22 09:50

nic Compounds (GC)							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/31/22 03:29	1
<0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/31/22 03:29	1
<0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/31/22 03:29	1
<0.00400	U	0.00400		mg/Kg		07/29/22 10:37	07/31/22 03:29	1
<0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/31/22 03:29	1
<0.00400	U	0.00400		mg/Kg		07/29/22 10:37	07/31/22 03:29	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
121		70 - 130				07/29/22 10:37	07/31/22 03:29	1
104		70 - 130				07/29/22 10:37	07/31/22 03:29	1
	Result <0.00200	121	Result Qualifier RL <0.00200	Result Qualifier RL MDL <0.00200	Result Qualifier RL MDL Unit <0.00200	Result Qualifier RL MDL Unit D <0.00200	Result Qualifier RL MDL Unit D Prepared <0.00200	Result Qualifier RL MDL Unit D Prepared Analyzed <0.00200

Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			07/30/22 18:57	1
Method: 8015 NM - Diesel Range	e Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			07/31/22 10:33	1
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		07/29/22 13:05	07/31/22 16:11	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		07/29/22 13:05	07/31/22 16:11	1
C10-C28)									

Eurofins Carlsbad

Lab Sample ID: 890-2672-10 Matrix: Solid 5

Matrix: Solid

Job ID: 890-2672-1 SDG: Lea County NM

Lab Sample ID: 890-2672-11

Client Sample ID: SW-11

Project/Site: Rebel 20 CTB (Spill #1)

Client: NT Global

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/29/22 13:05	07/31/22 16:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	107		70 - 130				07/29/22 13:05	07/31/22 16:11	1
o-Terphenyl	118		70 - 130				07/29/22 13:05	07/31/22 16:11	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	490		4.99		mg/Kg			07/30/22 00:25	1

Client Sample ID: SW-12

Date Collected: 07/27/22 00:00

Date Received: 07/28/22 09:50

Method: 8021B - Volatile Organ	nic Compounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		07/29/22 10:37	07/31/22 03:54	1
Toluene	<0.00199	U	0.00199		mg/Kg		07/29/22 10:37	07/31/22 03:54	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		07/29/22 10:37	07/31/22 03:54	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		07/29/22 10:37	07/31/22 03:54	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		07/29/22 10:37	07/31/22 03:54	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		07/29/22 10:37	07/31/22 03:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	70		70 - 130				07/29/22 10:37	07/31/22 03:54	1
1,4-Difluorobenzene (Surr)	114		70 - 130				07/29/22 10:37	07/31/22 03:54	1

Method: Total BTEX - Total BTEX C	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			07/30/22 18:57	1
Method: 8015 NM - Diesel Range C	Organics (DR	0) (GC)							

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			07/31/22 10:33	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		07/29/22 13:05	07/31/22 16:32	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		07/29/22 13:05	07/31/22 16:32	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/29/22 13:05	07/31/22 16:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	90		70 - 130				07/29/22 13:05	07/31/22 16:32	1
o-Terphenyl	101		70 - 130				07/29/22 13:05	07/31/22 16:32	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	29.9		5.01		mg/Kg		. <u></u> .	07/30/22 00:48	1

Eurofins Carlsbad

Matrix: Solid

Matrix: Solid

5

|2 |3

07/30/22 00:48 29.9 5.01 mg/Kg Chloride

5

Job ID: 890-2672-1 SDG: Lea County NM

Client Sample ID: CS-1 Date Collected: 07/27/22 00:00

Project/Site: Rebel 20 CTB (Spill #1)

Client: NT Global

Date Received: 07/28/22 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		07/29/22 10:37	07/31/22 04:20	
Toluene	<0.00198	U	0.00198		mg/Kg		07/29/22 10:37	07/31/22 04:20	
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		07/29/22 10:37	07/31/22 04:20	
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		07/29/22 10:37	07/31/22 04:20	
o-Xylene	<0.00198	U	0.00198		mg/Kg		07/29/22 10:37	07/31/22 04:20	
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		07/29/22 10:37	07/31/22 04:20	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	90		70 - 130				07/29/22 10:37	07/31/22 04:20	
1,4-Difluorobenzene (Surr)	102		70 - 130				07/29/22 10:37	07/31/22 04:20	-
Method: Total BTEX - Total BTEX	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397		mg/Kg			07/30/22 18:57	
Method: 8015 NM - Diesel Range	e Organics (DR	0) (GC)							
Analyte	• · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0		mg/Kg		·	07/31/22 10:33	
Mathematic 004 CD NIM Discoul Daw	na Ormanica (D								
Method: 8015B NM - Diesei Rang	ge Organics (D								
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Gasoline Range Organics		Qualifier	RL	MDL	Unit mg/Kg	<u>D</u>	Prepared 07/29/22 13:05	Analyzed 07/31/22 16:54	
Analyte Gasoline Range Organics (GRO)-C6-C10	Result	Qualifier U		MDL		<u> </u>	·		
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.0	Qualifier U	50.0	MDL	mg/Kg	<u> </u>	07/29/22 13:05	07/31/22 16:54	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0	Qualifier U U	50.0	MDL	mg/Kg	<u> </u>	07/29/22 13:05	07/31/22 16:54	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0 <50.0	Qualifier U U	50.0	MDL	mg/Kg mg/Kg	<u> </u>	07/29/22 13:05 07/29/22 13:05	07/31/22 16:54 07/31/22 16:54	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <50.0 <50.0 <50.0	Qualifier U U U	50.0 50.0 50.0	MDL	mg/Kg mg/Kg	<u> </u>	07/29/22 13:05 07/29/22 13:05 07/29/22 13:05	07/31/22 16:54 07/31/22 16:54 07/31/22 16:54	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <50.0 <50.0 <50.0 <50.0 %Recovery	Qualifier U U U	50.0 50.0 50.0 <i>Limits</i>	MDL	mg/Kg mg/Kg	<u> </u>	07/29/22 13:05 07/29/22 13:05 07/29/22 13:05 07/29/22 13:05 Prepared	07/31/22 16:54 07/31/22 16:54 07/31/22 16:54 Analyzed	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <50.0	Qualifier U U Qualifier	50.0 50.0 50.0 <u>Limits</u> 70 - 130	MDL	mg/Kg mg/Kg	<u> </u>	07/29/22 13:05 07/29/22 13:05 07/29/22 13:05 07/29/22 13:05 Prepared 07/29/22 13:05	07/31/22 16:54 07/31/22 16:54 07/31/22 16:54 07/31/22 16:54 07/31/22 16:54	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <50.0	Qualifier U U Qualifier	50.0 50.0 50.0 <u>Limits</u> 70 - 130	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	07/29/22 13:05 07/29/22 13:05 07/29/22 13:05 07/29/22 13:05 Prepared 07/29/22 13:05	07/31/22 16:54 07/31/22 16:54 07/31/22 16:54 07/31/22 16:54 07/31/22 16:54	Dil Fa

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

Method: 8021B - Volatile Organ	nic Compounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00202	U	0.00202		mg/Kg		07/29/22 10:37	07/31/22 04:46	1
Toluene	<0.00202	U	0.00202		mg/Kg		07/29/22 10:37	07/31/22 04:46	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		07/29/22 10:37	07/31/22 04:46	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		07/29/22 10:37	07/31/22 04:46	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		07/29/22 10:37	07/31/22 04:46	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		07/29/22 10:37	07/31/22 04:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		70 - 130				07/29/22 10:37	07/31/22 04:46	1
1,4-Difluorobenzene (Surr)	103		70 - 130				07/29/22 10:37	07/31/22 04:46	1

Eurofins Carlsbad

Lab Sample ID: 890-2672-13

Matrix: Solid

Released to Imaging: 11/10/2022 3:35:51 PM

Job ID: 890-2672-1 SDG: Lea County NM

Lab Sample ID: 890-2672-14

Client Sample ID: CS-2

Project/Site: Rebel 20 CTB (Spill #1)

Client: NT Global

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			07/30/22 18:57	1
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			07/31/22 10:33	1
Method: 8015B NM - Diesel Rang	e Organics (DI	RO) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		07/29/22 13:05	07/31/22 17:16	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		07/29/22 13:05	07/31/22 17:16	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		07/29/22 13:05	07/31/22 17:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	99		70 - 130				07/29/22 13:05	07/31/22 17:16	1
o-Terphenyl	110		70 - 130				07/29/22 13:05	07/31/22 17:16	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	10.7		4.96		mg/Kg			07/30/22 01:20	1

Client Sample ID: CS-3

Date Collected: 07/27/22 00:00

Date Received: 07/28/22 09:50

Method: 8021B - Volatile Organ	nic Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00202	U	0.00202		mg/Kg		07/29/22 10:37	07/31/22 05:11	1
Toluene	<0.00202	U	0.00202		mg/Kg		07/29/22 10:37	07/31/22 05:11	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		07/29/22 10:37	07/31/22 05:11	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		07/29/22 10:37	07/31/22 05:11	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		07/29/22 10:37	07/31/22 05:11	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		07/29/22 10:37	07/31/22 05:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130				07/29/22 10:37	07/31/22 05:11	1
1,4-Difluorobenzene (Surr)	106		70 - 130				07/29/22 10:37	07/31/22 05:11	1

A.u.a.k.da	Desult	0	D 1		11	_	Durana	Ameliand	D!!
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			07/30/22 18:57	1
- Method: 8015 NM - Diesel Range	e Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			07/31/22 10:33	1
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		07/29/22 13:05	07/31/22 17:37	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		07/29/22 13:05	07/31/22 17:37	1
C10-C28)									

Eurofins Carlsbad

Page 83 of 135

Matrix: Solid

Matrix: Solid

Job ID: 890-2672-1 SDG: Lea County NM

Lab Sample ID: 890-2672-15

Client Sample ID: CS-3

Project/Site: Rebel 20 CTB (Spill #1)

Client: NT Global

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/29/22 13:05	07/31/22 17:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	98		70 - 130				07/29/22 13:05	07/31/22 17:37	1
o-Terphenyl	108		70 - 130				07/29/22 13:05	07/31/22 17:37	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	13.7		4.98		mg/Kg			07/30/22 01:28	1
Client Sample ID: CS-4							Lab Sam	ple ID: 890-2	672-16
- Date Collected: 07/27/22 00:00									x: Solid

Date Collected: 07/27/22 00:00

Date Received: 07/28/22 09:50

Total TPH

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		07/29/22 10:37	07/31/22 05:37	1
Toluene	<0.00199	U	0.00199		mg/Kg		07/29/22 10:37	07/31/22 05:37	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		07/29/22 10:37	07/31/22 05:37	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		07/29/22 10:37	07/31/22 05:37	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		07/29/22 10:37	07/31/22 05:37	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		07/29/22 10:37	07/31/22 05:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130				07/29/22 10:37	07/31/22 05:37	1
1,4-Difluorobenzene (Surr)	99		70 - 130				07/29/22 10:37	07/31/22 05:37	1

	Method: Total BTEX - Total BTEX Ca	alculation								
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total BTEX	<0.00398	U	0.00398		mg/Kg			07/30/22 18:57	1
Ì	_									
	Method: 8015 NM - Diesel Range Or	rganics (DR	O) (GC)							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

50.0

mg/Kg

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

<50.0 U

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		07/29/22 13:05	07/31/22 17:59	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		07/29/22 13:05	07/31/22 17:59	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/29/22 13:05	07/31/22 17:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130				07/29/22 13:05	07/31/22 17:59	1
o-Terphenyl	120		70 - 130				07/29/22 13:05	07/31/22 17:59	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	47.0		4.99		mg/Kg			07/30/22 01:35	1

Eurofins Carlsbad

07/31/22 10:33

1

Page 84 of 135

Matrix: Solid

Job ID: 890-2672-1 SDG: Lea County NM

Client Sample ID: CS-5

Project/Site: Rebel 20 CTB (Spill #1)

Client: NT Global

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/31/22 06:03	
Toluene	<0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/31/22 06:03	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/31/22 06:03	
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		07/29/22 10:37	07/31/22 06:03	
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/31/22 06:03	
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		07/29/22 10:37	07/31/22 06:03	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	78		70 - 130				07/29/22 10:37	07/31/22 06:03	
1,4-Difluorobenzene (Surr)	111		70 - 130				07/29/22 10:37	07/31/22 06:03	-
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00400	U	0.00400		mg/Kg			07/30/22 18:57	
Method: 8015 NM - Diesel Range	e Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9		mg/Kg			07/31/22 10:33	
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	
			••=					•	Dil Fa
Gasoline Range Organics	<49.9		49.9		mg/Kg		07/29/22 13:05	07/31/22 18:21	
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<49.9	U			mg/Kg mg/Kg		07/29/22 13:05 07/29/22 13:05	07/31/22 18:21 07/31/22 18:21	Dil Fa
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)		U	49.9						
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<49.9	บ บ บ	49.9		mg/Kg		07/29/22 13:05	07/31/22 18:21	
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<49.9 <49.9	บ บ บ	49.9 49.9 49.9		mg/Kg		07/29/22 13:05 07/29/22 13:05	07/31/22 18:21 07/31/22 18:21	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.9 <49.9 %Recovery	บ บ บ	49.9 49.9 49.9 Limits		mg/Kg		07/29/22 13:05 07/29/22 13:05 Prepared	07/31/22 18:21 07/31/22 18:21 Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<49.9 <49.9 <u>%Recovery</u> 85 95	U U Qualifier	49.9 49.9 49.9 <u>Limits</u> 70 - 130		mg/Kg		07/29/22 13:05 07/29/22 13:05 Prepared 07/29/22 13:05	07/31/22 18:21 07/31/22 18:21 <u>Analyzed</u> 07/31/22 18:21	
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<49.9 <49.9 %Recovery 85 95 omatography -	U U Qualifier	49.9 49.9 49.9 <u>Limits</u> 70 - 130	MDL	mg/Kg		07/29/22 13:05 07/29/22 13:05 Prepared 07/29/22 13:05	07/31/22 18:21 07/31/22 18:21 <u>Analyzed</u> 07/31/22 18:21	Dil Fa

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/31/22 06:29	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/31/22 06:29	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/31/22 06:29	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		07/29/22 10:37	07/31/22 06:29	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/31/22 06:29	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		07/29/22 10:37	07/31/22 06:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	69	S1-	70 - 130				07/29/22 10:37	07/31/22 06:29	1
1,4-Difluorobenzene (Surr)	89		70 - 130				07/29/22 10:37	07/31/22 06:29	1

Eurofins Carlsbad

Page 85 of 135

5

Lab Sample ID: 890-2672-17

Matrix: Solid

5

Client Sample Results

Job ID: 890-2672-1 SDG: Lea County NM

Client Sample ID: CS-6

Project/Site: Rebel 20 CTB (Spill #1)

Client: NT Global

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			07/30/22 18:57	1
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	115		49.9		mg/Kg			07/31/22 10:33	1
Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		07/29/22 13:05	07/31/22 18:42	1
(GRO)-C6-C10									
Diesel Range Organics (Over	115		49.9		mg/Kg		07/29/22 13:05	07/31/22 18:42	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		07/29/22 13:05	07/31/22 18:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	88		70 - 130				07/29/22 13:05	07/31/22 18:42	1
o-Terphenyl	99		70 - 130				07/29/22 13:05	07/31/22 18:42	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	58.0		4.97		mg/Kg			07/30/22 01:51	1

Client Sample ID: CS-7

Date Collected: 07/27/22 00:00

Date Received: 07/28/22 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		07/29/22 10:37	07/31/22 06:55	1
Toluene	<0.00198	U	0.00198		mg/Kg		07/29/22 10:37	07/31/22 06:55	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		07/29/22 10:37	07/31/22 06:55	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		07/29/22 10:37	07/31/22 06:55	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		07/29/22 10:37	07/31/22 06:55	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		07/29/22 10:37	07/31/22 06:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130				07/29/22 10:37	07/31/22 06:55	1
1,4-Difluorobenzene (Surr)	106		70 - 130				07/29/22 10:37	07/31/22 06:55	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			07/30/22 18:57	1
- Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	216		49.9		mg/Kg			07/31/22 10:33	1
_ Method: 8015B NM - Diesel Rang	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		07/29/22 13:05	07/31/22 19:04	1
(GRO)-C6-C10									
Diesel Range Organics (Over	216		49.9		mg/Kg		07/29/22 13:05	07/31/22 19:04	1
C10-C28)									

Eurofins Carlsbad

Matrix: Solid

Lab Sample ID: 890-2672-18

Matrix: Solid

Page 87 of 135

Job ID: 890-2672-1 SDG: Lea County NM

Client Sample ID: CS-7

Project/Site: Rebel 20 CTB (Spill #1)

Client: NT Global

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		07/29/22 13:05	07/31/22 19:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	85		70 - 130				07/29/22 13:05	07/31/22 19:04	1
o-Terphenyl	100		70 - 130				07/29/22 13:05	07/31/22 19:04	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	12.9		5.02		mg/Kg			07/30/22 01:59	1
lient Sample ID: CS-8							Lab Sam	ple ID: 890-2	672-20
ate Collected: 07/27/22 00:00								-	x: Solid

Date Received: 07/28/22 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00202	U	0.00202		mg/Kg		07/29/22 10:37	07/31/22 07:22	1
Toluene	<0.00202	U	0.00202		mg/Kg		07/29/22 10:37	07/31/22 07:22	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		07/29/22 10:37	07/31/22 07:22	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		07/29/22 10:37	07/31/22 07:22	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		07/29/22 10:37	07/31/22 07:22	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		07/29/22 10:37	07/31/22 07:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	77		70 - 130				07/29/22 10:37	07/31/22 07:22	1
1,4-Difluorobenzene (Surr)	105		70 - 130				07/29/22 10:37	07/31/22 07:22	1
Method: Total BTEX - Total BT	EX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00404	U	0.00404		mg/Kg			07/30/22 18:57	1

inetheur eere run Breeer runge e							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9 U	49.9	mg/Kg			07/31/22 10:33	1

Method: 8015B NM - Diesel Rang	je Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		07/29/22 13:05	07/31/22 19:26	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		07/29/22 13:05	07/31/22 19:26	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		07/29/22 13:05	07/31/22 19:26	1
•		• • • •							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	108		70 - 130				07/29/22 13:05	07/31/22 19:26	1
o-Terphenyl	117		70 - 130				07/29/22 13:05	07/31/22 19:26	1
o-Terphenyl Method: 300.0 - Anions, Ion Chro		Soluble	70 - 130				07/29/22 13:05	07/31/22 19:26	1
	omatography -	Soluble Qualifier	70 - 130 RL	MDL	Unit	D	07/29/22 13:05 Prepared	07/31/22 19:26 Analyzed	1 Dil Fac

Eurofins Carlsbad

Lab Sample ID: 890-2672-19 Matrix: Solid

5

Job ID: 890-2672-1 SDG: Lea County NM

Client Sample ID: CS-9

Project/Site: Rebel 20 CTB (Spill #1)

Client: NT Global

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U *-	0.00202		mg/Kg		07/29/22 10:52	07/29/22 20:04	1
Toluene	<0.00202	U	0.00202		mg/Kg		07/29/22 10:52	07/29/22 20:04	1
Ethylbenzene	<0.00202	U *-	0.00202		mg/Kg		07/29/22 10:52	07/29/22 20:04	1
m-Xylene & p-Xylene	<0.00403	U *1 *-	0.00403		mg/Kg		07/29/22 10:52	07/29/22 20:04	1
o-Xylene	<0.00202	U *+ *1	0.00202		mg/Kg		07/29/22 10:52	07/29/22 20:04	1
Xylenes, Total	<0.00403	U *+ *1	0.00403		mg/Kg		07/29/22 10:52	07/29/22 20:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130				07/29/22 10:52	07/29/22 20:04	1
1,4-Difluorobenzene (Surr)	105		70 - 130				07/29/22 10:52	07/29/22 20:04	1
Method: Total BTEX - Total BTEX	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00403	U	0.00403		mg/Kg			07/30/22 18:57	1
Analyta						-	- ·		B 11 F
Analyte		Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	RL 50.0	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 07/31/22 10:33	Dil Fac
Total TPH Method: 8015B NM - Diesel Ran	<50.0 ge Organics (D	U RO) (GC)	50.0		mg/Kg		<u>.</u>	07/31/22 10:33	1
Total TPH Method: 8015B NM - Diesel Ran Analyte	<pre><50.0 ge Organics (D Result</pre>	U RO) (GC) Qualifier	50.0		mg/Kg Unit	D	Prepared	07/31/22 10:33 Analyzed	1
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics	<50.0 ge Organics (D	U RO) (GC) Qualifier	50.0		mg/Kg		<u>.</u>	07/31/22 10:33	1
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (D Result <50.0	U RO) (GC) Qualifier U *1	50.0 RL 50.0		mg/Kg		Prepared 07/29/22 13:01	07/31/22 10:33 Analyzed 07/30/22 13:21	1
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<pre><50.0 ge Organics (D Result</pre>	U RO) (GC) Qualifier U *1	50.0		mg/Kg Unit		Prepared	07/31/22 10:33 Analyzed	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (D Result <50.0	U RO) (GC) Qualifier U *1 U	50.0 RL 50.0		mg/Kg		Prepared 07/29/22 13:01	07/31/22 10:33 Analyzed 07/30/22 13:21	1 Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (D Result <50.0 <50.0	U RO) (GC) Qualifier U*1 U	50.0 RL 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 07/29/22 13:01 07/29/22 13:01	07/31/22 10:33 Analyzed 07/30/22 13:21 07/30/22 13:21	1
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	ge Organics (D Result <50.0 <50.0 <50.0	U RO) (GC) Qualifier U*1 U	50.0 RL 50.0 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 07/29/22 13:01 07/29/22 13:01 07/29/22 13:01	07/31/22 10:33 Analyzed 07/30/22 13:21 07/30/22 13:21 07/30/22 13:21	1
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	ge Organics (D Result <50.0 <50.0 <50.0 <50.0	U RO) (GC) Qualifier U*1 U	50.0 RL 50.0 50.0 50.0 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 07/29/22 13:01 07/29/22 13:01 07/29/22 13:01 07/29/22 13:01 Prepared	07/31/22 10:33 Analyzed 07/30/22 13:21 07/30/22 13:21 07/30/22 13:21 Analyzed	Dil Fac 1 1 1 Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<50.0	U RO) (GC) Qualifier U*1 U U U	RL 50.0 RL 50.0 50.0 50.0 50.0 50.0 50.0 50.0 70.130		mg/Kg Unit mg/Kg mg/Kg		Prepared 07/29/22 13:01 07/29/22 13:01 07/29/22 13:01 Prepared 07/29/22 13:01	07/31/22 10:33 Analyzed 07/30/22 13:21 07/30/22 13:21 07/30/22 13:21 Analyzed 07/30/22 13:21	Dil Fac
Total TPH Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl		U RO) (GC) Qualifier U*1 U U U	RL 50.0 RL 50.0 50.0 50.0 50.0 50.0 50.0 50.0 70.130		mg/Kg Unit mg/Kg mg/Kg mg/Kg		Prepared 07/29/22 13:01 07/29/22 13:01 07/29/22 13:01 Prepared 07/29/22 13:01	07/31/22 10:33 Analyzed 07/30/22 13:21 07/30/22 13:21 07/30/22 13:21 Analyzed 07/30/22 13:21	Dil Fac

Eurofins Carlsbad

Lab Sample ID: 890-2672-21 Matrix: Solid 5

Released to Imaging: 11/10/2022 3:35:51 PM

Project/Site: Rebel 20 CTB (Spill #1)

Job ID: 890-2672-1 SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

Client: NT Global

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-17511-A-1-A MS	Matrix Spike	104	99	
880-17511-A-1-B MSD	Matrix Spike Duplicate	100	100	
890-2665-A-1-C MS	Matrix Spike	104	100	
890-2665-A-1-D MSD	Matrix Spike Duplicate	103	103	
890-2672-1	SW-1	96	103	
890-2672-1 MS	SW-1	97	103	
890-2672-1 MSD	SW-1	98	106	
890-2672-2	SW-2	77	105	
890-2672-3	SW-3	89	109	
890-2672-4	SW-4	95	112	
890-2672-5	SW-5	92	105	
890-2672-6	SW-6	90	103	
890-2672-7	SW-7	93	104	
890-2672-8	SW-8	103	108	
890-2672-9	SW-9	82	102	
890-2672-10	SW-10	88	102	
890-2672-11	SW-11	121	104	
890-2672-12	SW-12	70	114	
890-2672-13	CS-1	90	102	
890-2672-14	CS-2	88	103	
890-2672-15	CS-3	94	106	
890-2672-16	CS-4	101	99	
890-2672-17	CS-5	78	111	
890-2672-18	CS-6	69 S1-	89	
890-2672-19	CS-7	91	106	
890-2672-20	CS-8	77	105	
890-2672-21	CS-9	98	105	
LCS 880-30987/1-A	Lab Control Sample	94	111	
LCS 880-30988/1-A	Lab Control Sample	98	101	
LCS 880-31011/1-A	Lab Control Sample	104	97	
LCSD 880-30987/2-A	Lab Control Sample Dup	89	113	
LCSD 880-30988/2-A	Lab Control Sample Dup	129	79	
LCSD 880-31011/2-A	Lab Control Sample Dup	104	99	
MB 880-30987/5-A	Method Blank	73	94	
MB 880-30988/5-A	Method Blank	95	101	
MB 880-31011/5-A	Method Blank	96	101	
		50	.01	
Surrogate Legend				

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

		Percent Surrogate Recovery (Acceptance Limits)							
		1CO1	OTPH1						
Lab Sample ID	Client Sample ID	(70-130)	(70-130)						
890-2670-A-1-B MS	Matrix Spike	110	108						
890-2670-A-1-C MSD	Matrix Spike Duplicate	104	97						
890-2672-1	SW-1	79	89						

Eurofins Carlsbad

Prep Type: Total/NA 5 6

Page 89 of 135

Prep Type: Total/NA

Job ID: 890-2672-1 SDG: Lea County NM

Prep Type: Total/NA

Client: NT Global Project/Site: Rebel 20 CTB (Spill #1)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		1CO1	OTPH1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		_
890-2672-1 MS	SW-1	73	80		
890-2672-1 MSD	SW-1	90	89		
890-2672-2	SW-2	89	99		
890-2672-3	SW-3	110	122		
890-2672-4	SW-4	83	93		
890-2672-5	SW-5	111	125		
890-2672-6	SW-6	109	120		
890-2672-7	SW-7	93	103		
890-2672-8	SW-8	101	110		
890-2672-9	SW-9	102	115		
890-2672-10	SW-10	81	91		
890-2672-11	SW-11	107	118		
890-2672-12	SW-12	90	101		
890-2672-13	CS-1	79	88		
890-2672-14	CS-2	99	110		
890-2672-15	CS-3	98	108		
890-2672-16	CS-4	109	120		
890-2672-17	CS-5	85	95		
890-2672-18	CS-6	88	99		
890-2672-19	CS-7	85	100		
890-2672-20	CS-8	108	117		
890-2672-21	CS-9	91	99		
LCS 880-31009/2-A	Lab Control Sample	115	133 S1+		
LCS 880-31010/2-A	Lab Control Sample	109	115		
LCSD 880-31009/3-A	Lab Control Sample Dup	103	117		
LCSD 880-31010/3-A	Lab Control Sample Dup	97	111		
MB 880-31009/1-A	Method Blank	104	117		
MB 880-31010/1-A	Method Blank	101	123		

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Client: NT Global Project/Site: Rebel 20 CTB (Spill #1)

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-30987/5-A Matrix: Solid Analysis Batch: 31071							Client Sa	mple ID: Metho Prep Type: 1 Prep Batch	otal/NA
	MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/30/22 21:27	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/30/22 21:27	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/30/22 21:27	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		07/29/22 10:37	07/30/22 21:27	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/29/22 10:37	07/30/22 21:27	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		07/29/22 10:37	07/30/22 21:27	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	73		70 - 130				07/29/22 10:37	07/30/22 21:27	1
1,4-Difluorobenzene (Surr)	94		70 - 130				07/29/22 10:37	07/30/22 21:27	1

Lab Sample ID: LCS 880-30987/1-A Matrix: Solid

Analysis Batch: 31071

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1063		mg/Kg		106	70 - 130	
Toluene	0.100	0.09658		mg/Kg		97	70 - 130	
Ethylbenzene	0.100	0.09658		mg/Kg		97	70 - 130	
m-Xylene & p-Xylene	0.200	0.1962		mg/Kg		98	70 - 130	
o-Xylene	0.100	0.1050		mg/Kg		105	70 - 130	

	LCS		
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	94		70 - 130
1,4-Difluorobenzene (Surr)	111		70 - 130

Lab Sample ID: LCSD 880-30987/2-A

Matrix: Solid

Analysis Batch: 31071							Prep	Batch:	30987
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1065		mg/Kg		106	70 - 130	0	35
Toluene	0.100	0.09627		mg/Kg		96	70 - 130	0	35
Ethylbenzene	0.100	0.09296		mg/Kg		93	70 - 130	4	35
m-Xylene & p-Xylene	0.200	0.1890		mg/Kg		95	70 - 130	4	35
o-Xylene	0.100	0.1036		mg/Kg		104	70 - 130	1	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	89		70 - 130
1,4-Difluorobenzene (Surr)	113		70 - 130

Lab Sample ID: 890-2672-1 MS Matrix: Solid

Analysis Batch: 31071

Analysis Batch: 31071									Prep Batch: 30987
	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	<0.00202	U	0.101	0.09519		mg/Kg		94	70 - 130
Toluene	<0.00202	U	0.101	0.08797		mg/Kg		87	70 - 130

Eurofins Carlsbad

Client Sample ID: SW-1

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 30987

Released to Imaging: 11/10/2022 3:35:51 PM

MS MS

0.09825

0.08606

0.08190

Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Result

0.08884

0.1823

0.09994

Spike

Added

0.101

0.202

0.101

Limits

70 - 130

70 - 130

Spike

Added

0.100

0.100

0.100

Client: NT Global Project/Site: Rebel 20 CTB (Spill #1)

Lab Sample ID: 890-2672-1 MS

Analysis Batch: 31071

4-Bromofluorobenzene (Surr)

Analysis Batch: 31071

Lab Sample ID: 890-2672-1 MSD

1,4-Difluorobenzene (Surr)

Matrix: Solid

Analyte

o-Xylene

Surrogate

Matrix: Solid

Analyte

Benzene

Toluene

Ethylbenzene

Ethylbenzene

m-Xylene & p-Xylene

Sample Sample

<0.00202

< 0.00404

%Recovery

<0.00202 U

Result Qualifier

U

U

MS MS

Sample Sample

<0.00202 U

<0.00202 U

<0.00202 U

Result Qualifier

101

97

103

Qualifier

Client Sample ID: SW-1

%Rec

Limits

70 - 130

70 - 130

70 - 130

%Rec

88

90

99

D

Prep Type: Total/NA

Prep Batch: 30987

35

35

35

8

7

7

Prep Type: Total/NA

Prep Batch: 30988

Client Sample ID: SW-1
Prep Type: Total/NA
Prep Batch: 30987

					Fiep Type. Total/NA					
					Prep Batch: 30987					
MSD	MSD				%Rec		RPD			
Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit			
0.09825		mg/Kg		98	70 - 130	3	35			
0.08606		mg/Kg		86	70 - 130	2	35	ï		

70 - 130

Client Sample ID: Method Blank

07/29/22 13:46

Client Sample ID: Lab Control Sample

82

07/29/22 10:52

-							
m-Xylene & p-Xylene	<0.00404	U	0.200	0.1693	mg/Kg	84	70 - 130
o-Xylene	<0.00202	U	0.100	0.09342	mg/Kg	93	70 - 130
	MSD	MSD					
Surrogate	%Recovery	Qualifier	Limits				
4-Bromofluorobenzene (Surr)	98		70 - 130				
1,4-Difluorobenzene (Surr)	106		70 - 130				

Lab Sample ID: MB 880-30988/5-A Matrix: Solid Analysis Batch: 30959

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/29/22 10:52	07/29/22 13:46	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/29/22 10:52	07/29/22 13:46	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/29/22 10:52	07/29/22 13:46	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		07/29/22 10:52	07/29/22 13:46	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/29/22 10:52	07/29/22 13:46	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		07/29/22 10:52	07/29/22 13:46	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130				07/29/22 10:52	07/29/22 13:46	1

70 - 130

1,4-Difluorobenzene (Surr)	

Lab Sample ID: LCS 880-30988/1-A Matrix: Solid Analysis Batch: 30959

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09249		mg/Kg		92	70 - 130	
Toluene	0.100	0.09887		mg/Kg		99	70 - 130	
Ethylbenzene	0.100	0.08511		mg/Kg		85	70 - 130	
m-Xylene & p-Xylene	0.200	0.1718		mg/Kg		86	70 - 130	

Eurofins Carlsbad

Prep Type: Total/NA

Prep Batch: 30988

Client: NT Global Project/Site: Rebel 20 CTB (Spill #1)

Lab Sample ID: LCS 880-30988/1-A

Job ID: 890-2672-1 SDG: Lea County NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 660-30	900/ I-A						Client				
Matrix: Solid									Prep T	Type: Tot	tal/NA
Analysis Batch: 30959									Prep	Batch:	30988
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
o-Xylene			0.100	0.1010		mg/Kg		101	70 - 130		
		LCS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	98		70 - 130								
1,4-Difluorobenzene (Surr)	101		70 - 130								
Lab Sample ID: LCSD 880-3	30988/2-A					Clie	nt Sam	ple ID: I	_ab Contro	Sample	e Dur
Matrix: Solid								•		· Type: Tot	
Analysis Batch: 30959										Batch:	
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Benzene			0.100	0.07256		mg/Kg		73	70 - 130	24	35
Toluene			0.100	0.1122		mg/Kg		112	70 - 130	13	35
Ethylbenzene			0.100	0.1177		mg/Kg		118	70 - 130	32	3
m-Xylene & p-Xylene			0.200	0.2567	*1	mg/Kg		128	70 - 130	40	3
o-Xylene			0.100	0.1484		mg/Kg		148	70 - 130	38	3
						0 0					
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	129		70 - 130								
	79		70 - 130								
1,4-Difluorobenzene (Surr)	79							Client	Sample ID	· Motrix	Spike
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-J	79							Client	Sample ID		
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid	79							Client	Prep T	Type: Tot	tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid	79 A-1-A MS	Sample	70 - 130	MS	MS			Client	Prep T Prep		tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid Analysis Batch: 30959	79 A-1-A MS Sample	Sample	70 ₋ 130 Spike	MS Result	MS	Unit	Р		Prep T Prep %Rec	Type: Tot	tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-J Matrix: Solid Analysis Batch: 30959 Analyte	79 A-1-A MS Sample Result	Qualifier	70 - 130 Spike Added	Result	MS Qualifier	Unit	<u>D</u>	%Rec	Prep 1 Prep %Rec Limits	Type: Tot	tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid Analysis Batch: 30959 Analyte Benzene	79 A-1-A MS <u>Sample</u> 	Qualifier U *-	70 - 130 Spike Added 0.101	Result 0.07857		mg/Kg	<u>D</u>	%Rec 78	Prep T Prep %Rec Limits 70 - 130	Type: Tot	tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-J Matrix: Solid Analysis Batch: 30959 Analyte Benzene Toluene	79 A-1-A MS 	Qualifier U *- U	70 - 130 Spike Added 0.101 0.101	Result 0.07857 0.09503		mg/Kg mg/Kg	D	%Rec 78 94	Prep T Prep %Rec Limits 70 - 130 70 - 130	Type: Tot	tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid Analysis Batch: 30959 Analyte Benzene Toluene Ethylbenzene	79 A-1-A MS Sample Result <0.00200 <0.00200 <0.00200	Qualifier U *- U U *-	70 - 130 Spike Added 0.101 0.101 0.101	Result 0.07857 0.09503 0.08459		mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 78 94 84	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: Tot	tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid Analysis Batch: 30959 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	79 A-1-A MS Sample Result <0.00200 <0.00200 <0.00200 <0.00200 <0.00401	Qualifier U *- U U *- U *1 *-	70 - 130 Spike Added 0.101 0.101 0.101 0.201	Result 0.07857 0.09503 0.08459 0.1735		mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 78 94 84 86	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid Analysis Batch: 30959 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	79 A-1-A MS Sample Result <0.00200 <0.00200 <0.00200	Qualifier U *- U U *- U *1 *-	70 - 130 Spike Added 0.101 0.101 0.101	Result 0.07857 0.09503 0.08459		mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 78 94 84	Prep 7 Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: Tot	tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid Analysis Batch: 30959 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	79 A-1-A MS Sample Result <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	Qualifier U *- U U *- U *1 *-	70 - 130 Spike Added 0.101 0.101 0.101 0.201	Result 0.07857 0.09503 0.08459 0.1735		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 78 94 84 86	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid Analysis Batch: 30959 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	79 A-1-A MS Sample Result <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	Qualifier U *- U *- U *1 *- U *+ *1 MS	70 - 130 Spike Added 0.101 0.101 0.101 0.201	Result 0.07857 0.09503 0.08459 0.1735		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 78 94 84 86	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid Analysis Batch: 30959 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate	79 A-1-A MS Sample Result <0.00200 <0.00200 <0.00200 <0.00401 <0.00200 MS	Qualifier U *- U *- U *1 *- U *+ *1 MS	Spike Added 0.101 0.101 0.101 0.201 0.101	Result 0.07857 0.09503 0.08459 0.1735		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 78 94 84 86	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid Analysis Batch: 30959 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	79 A-1-A MS Sample Result <0.00200 <0.00200 <0.00200 <0.00401 <0.00200 MS %Recovery	Qualifier U *- U *- U *1 *- U *+ *1 MS	70 - 130 Spike Added 0.101 0.101 0.201 0.101 0.101 Limits	Result 0.07857 0.09503 0.08459 0.1735		mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 78 94 84 86	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	tal/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid Analysis Batch: 30959 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	79 A-1-A MS Sample Result <0.00200 <0.00200<!--</td--><td>Qualifier U *- U *- U *1 *- U *+ *1 MS</td><td>70 - 130 Spike Added 0.101 0.101 0.201 0.101 0.101 <u>Limits</u> 70 - 130</td><td>Result 0.07857 0.09503 0.08459 0.1735</td><td></td><td>mg/Kg mg/Kg mg/Kg mg/Kg</td><td></td><td>%Rec 78 94 84 86 99</td><td>Prep 1 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130</td><td>Type: Tot Batch: :</td><td>tal/NA 30988</td>	Qualifier U *- U *- U *1 *- U *+ *1 MS	70 - 130 Spike Added 0.101 0.101 0.201 0.101 0.101 <u>Limits</u> 70 - 130	Result 0.07857 0.09503 0.08459 0.1735		mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 78 94 84 86 99	Prep 1 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot Batch: :	tal/NA 30988
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid Analysis Batch: 30959 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/	79 A-1-A MS Sample Result <0.00200 <0.00200<!--</td--><td>Qualifier U *- U *- U *1 *- U *+ *1 MS</td><td>70 - 130 Spike Added 0.101 0.101 0.201 0.101 0.101 <u>Limits</u> 70 - 130</td><td>Result 0.07857 0.09503 0.08459 0.1735</td><td></td><td>mg/Kg mg/Kg mg/Kg mg/Kg</td><td></td><td>%Rec 78 94 84 86 99</td><td>Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130</td><td>Type: Tot Batch: : </td><td>tal/NA 30988</td>	Qualifier U *- U *- U *1 *- U *+ *1 MS	70 - 130 Spike Added 0.101 0.101 0.201 0.101 0.101 <u>Limits</u> 70 - 130	Result 0.07857 0.09503 0.08459 0.1735		mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 78 94 84 86 99	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot Batch: : 	tal/NA 30988
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid Analysis Batch: 30959 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid	79 A-1-A MS Sample Result <0.00200 <0.00200<!--</td--><td>Qualifier U *- U *- U *1 *- U *+ *1 MS</td><td>70 - 130 Spike Added 0.101 0.101 0.201 0.101 0.101 <u>Limits</u> 70 - 130</td><td>Result 0.07857 0.09503 0.08459 0.1735</td><td></td><td>mg/Kg mg/Kg mg/Kg mg/Kg</td><td></td><td>%Rec 78 94 84 86 99</td><td>Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130</td><td>Dike Dup</td><td>tal/NA 30988</td>	Qualifier U *- U *- U *1 *- U *+ *1 MS	70 - 130 Spike Added 0.101 0.101 0.201 0.101 0.101 <u>Limits</u> 70 - 130	Result 0.07857 0.09503 0.08459 0.1735		mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 78 94 84 86 99	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Dike Dup	tal/NA 30988
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid Analysis Batch: 30959 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid	79 A-1-A MS Sample Result <0.00200 <0.00200<	Qualifier U *- U *- U *1 *- U *+ *1 MS Qualifier	70 - 130 Spike Added 0.101 0.101 0.101 0.201 0.101 0.201 0.101 0.201 0.101 0.201 0.101 0.201 0.101 0.201 0.101	Result 0.07857 0.09503 0.08459 0.1735 0.09960	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 78 94 84 86 99	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep T Prep T	Type: Tot Batch: : 	blicate tal/NA 30988
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid Analysis Batch: 30959 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid Analysis Batch: 30959	79 A-1-A MS Sample Result <0.00200 <0.00200 <0.00200 <0.00401 <0.00200 MS %Recovery 104 99 A-1-B MSD Sample	Qualifier U *- U *1 *- U *1 *- U *+ *1 MS Qualifier	70 - 130 Spike Added 0.101 0.101 0.201 0.101 Limits 70 - 130 70 - 130 70 - 130	Result 0.07857 0.09503 0.08459 0.1735 0.09960 MSD	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg	ient Sa	%Rec 78 94 84 86 99	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep T Prep T Prep %Rec	Dike Dup Dike Tot Dike Dup Dype: Tot Batch:	blicate tal/NA 30988 30988 tal/NA 30988 RPD
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid Analysis Batch: 30959 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid Analysis Batch: 30959 Analyte	79 A-1-A MS Sample Result <0.00200 <0.00200 <0.00200 <0.00401 <0.00200 MS %Recovery 104 99 A-1-B MSD Sample Result	Qualifier U *- U *1 *- U *1 *- U *+ *1 MS Qualifier Sample Qualifier	70 - 130 Spike Added 0.101 0.101 0.101 0.201 0.101 0.201 0.101 0.201 0.101 0.201 0.101 0.201 0.101 Spike Added	Result 0.07857 0.09503 0.08459 0.1735 0.09960	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg Cl		%Rec 78 94 84 86 99	Prep T Prep %Rec Limits 70 - 130 70 - 190 70 - 130 70 - 130	Dike Dup Dike Dup Dype: Tot Batch:	blicate tal/NA 30988 tal/NA 30988 RPE Limi
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid Analysis Batch: 30959 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid Analysis Batch: 30959 Analyte Benzene	79 A-1-A MS Sample Result <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <i>MS</i> <i>%Recovery</i> 104 99 A-1-B MSD Sample Result <0.00200 	Qualifier U *- U *1 *- U *1 *- U *+ *1 MS Qualifier Qualifier U *-	70 - 130 Spike Added 0.101 0.101 0.101 0.101 0.101 0.201 0.101 0.101 0.101 0.101 0.101 Spike Added 0.101	Result 0.07857 0.09503 0.08459 0.1735 0.09960 MSD Result 0.08310	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg Cl Unit mg/Kg	ient Sa	%Rec 78 94 84 86 99 99 mple ID	Prep T Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep 7 Prep 7 %Rec Limits 70 - 130	Dike Dup Type: Tot Batch: 3 Dike Dup Type: Tot Batch: 3 RPD 6	blicate tal/NA 30988 blicate tal/NA 30988 RPE Limi 35
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid Analysis Batch: 30959 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid Analysis Batch: 30959 Analyte Benzene Toluene	79 A-1-A MS Sample Result <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <i>MS</i> <i>%Recovery</i> <i>104</i> <i>99</i> A-1-B MSD Sample Result <0.00200 	Qualifier U *- U *1 *- U *1 *- U *+ *1 MS Qualifier U *- U *- U	70 - 130 Spike Added 0.101 0.101 0.101 0.101 0.201 0.101 0.101 0.101 0.201 0.101 0.101 Spike Added 0.101 0.101	Result 0.07857 0.09503 0.08459 0.1735 0.09960 MSD Result 0.08310 0.09709	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	ient Sa	%Rec 78 94 84 86 99	Prep T Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 %Rec Limits 70 - 130 70 - 130	Dike Dup Type: Tot Batch: 3 Type: Tot Batch: 3 RPD 6 2	blicate tal/NA 30988 Dlicate tal/NA 30988 RPD Limit 35 35
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid Analysis Batch: 30959 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid Analysis Batch: 30959 Analyte Benzene Toluene Ethylbenzene	79 A-1-A MS Sample Result <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 MS %Recovery 104 99 A-1-B MSD Sample Result <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 	Qualifier U *- U *1 *- U *1 *- U *+ *1 MS Qualifier Qualifier U *- U *- U *-	70 - 130 Spike Added 0.101 0.101 0.101 0.101 0.201 0.101 0.201 0.101 0.101 0.101 Spike Added 0.101 0.101 0.101 0.101	Result 0.07857 0.09503 0.08459 0.1735 0.09960 MSD Result 0.08310 0.09709 0.08542	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	ient Sa	%Rec 78 94 84 86 99 ample ID %Rec 82 96 85	Prep T Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	Dike Dup Type: Tot Batch: 3 Type: Tot Batch: 3 RPD 6 2 1	blicate tal/NA 30988 blicate tal/NA 30988 RPD Limit 35 35 35 35
1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid Analysis Batch: 30959 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-17511-/ Matrix: Solid Analysis Batch: 30959 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	79 A-1-A MS Sample Result <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <i>MS</i> <i>%Recovery</i> <i>104</i> <i>99</i> A-1-B MSD Sample Result <0.00200 	Qualifier U *- U *1 *- U *1 *- U *+ *1 MS Qualifier U *- U *- U *- U *- U *- U *1 *-	70 - 130 Spike Added 0.101 0.101 0.101 0.101 0.201 0.101 0.101 0.101 0.201 0.101 0.101 Spike Added 0.101 0.101	Result 0.07857 0.09503 0.08459 0.1735 0.09960 MSD Result 0.08310 0.09709	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	ient Sa	%Rec 78 94 84 86 99	Prep T Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 %Rec Limits 70 - 130 70 - 130	Dike Dup Type: Tot Batch: 3 Type: Tot Batch: 3 RPD 6 2	blicate tal/NA 30988 Dlicate tal/NA 30988 RPD Limit 35 35

Released to Imaging: 11/10/2022 3:35:51 PM

Client: NT Global Project/Site: Rebel 20 CTB (Spill #1)

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-17511-A-1-B MSD Matrix: Solid

Analysis Batch: 30959

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: MB 880-31011/5-A Matrix: Solid

Analysis Batch: 30959

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/29/22 13:17	07/30/22 01:37	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/29/22 13:17	07/30/22 01:37	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/29/22 13:17	07/30/22 01:37	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		07/29/22 13:17	07/30/22 01:37	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/29/22 13:17	07/30/22 01:37	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		07/29/22 13:17	07/30/22 01:37	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130				07/29/22 13:17	07/30/22 01:37	1
1,4-Difluorobenzene (Surr)	101		70 - 130				07/29/22 13:17	07/30/22 01:37	1

Lab Sample ID: LCS 880-31011/1-A Matrix: Solid

Analysis Batch: 30959

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.07777		mg/Kg		78	70 - 130	
Toluene	0.100	0.09255		mg/Kg		93	70 - 130	
Ethylbenzene	0.100	0.08154		mg/Kg		82	70 - 130	
m-Xylene & p-Xylene	0.200	0.1658		mg/Kg		83	70 - 130	
o-Xylene	0.100	0.09992		mg/Kg		100	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	104		70 - 130
1,4-Difluorobenzene (Surr)	97		70 - 130

Lab Sample ID: LCSD 880-31011/2-A Matrix: Solid

Analysis Batch: 30959

			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			0.100	0.06253	*_	mg/Kg		63	70 - 130	22	35
Toluene			0.100	0.07063		mg/Kg		71	70 - 130	27	35
Ethylbenzene			0.100	0.06380	*_	mg/Kg		64	70 - 130	24	35
m-Xylene & p-Xylene			0.200	0.1309	*-	mg/Kg		65	70 - 130	24	35
o-Xylene			0.100	0.07995		mg/Kg		80	70 - 130	22	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	104		70 - 130								

Job ID: 890-2672-1 SDG: Lea County NM

Page 94 of 135

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 31011

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 31011

Client Sample ID: Lab Control Sample Dup

Eurofins Carlsbad

Prep Type: Total/NA

Prep Batch: 31011

Released to Imaging: 11/10/2022 3:35:51 PM

Client: NT Global Project/Site: Rebel 20 CTB (Spill #1)

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-3 Matrix: Solid	31011/2-A					Clie	nt San	nple ID: I	Lab Contro Pren 1	l Sampl ype: To	-
Analysis Batch: 30959										Batch:	
											•••••
	LCSD										
Surrogate	%Recovery	Qualifier	Limits								
1,4-Difluorobenzene (Surr)	99		70 - 130								
Lab Sample ID: 890-2665-A	-1-C MS							Client	Sample ID	: Matrix	Spike
Matrix: Solid										ype: To	
Analysis Batch: 30959										Batch:	
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	-	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene	<0.00202		0.101	0.08983		mg/Kg		89	70 - 130		
Toluene	<0.00202		0.101	0.09393		mg/Kg		93	70 - 130		
Ethylbenzene	< 0.00202		0.101	0.08053		mg/Kg		80	70 - 130		
m-Xylene & p-Xylene	<0.00404	U *-	0.202	0.1598		mg/Kg		79	70 - 130		
o-Xylene	< 0.00202		0.101	0.09468		mg/Kg		94	70 - 130		
,						3. 3					
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	104		70 - 130								
1,4-Difluorobenzene (Surr)	100		70 - 130								
Lab Sample ID: 890-2665-A	-1-D MSD					CI	ient S	ample IC): Matrix Sp	oike Dup	olicate
Matrix: Solid									Prep 1	ype: To	tal/NA
Analysis Batch: 30959									Prep	Batch:	31011
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	< 0.00202	U *-	0.100	0.08740		mg/Kg		87	70 - 130	3	35
Toluene	<0.00202	U	0.100	0.09226		mg/Kg		92	70 - 130	2	35
Ethylbenzene	<0.00202	U *-	0.100	0.07873		mg/Kg		79	70 - 130	2	35
m-Xylene & p-Xylene	<0.00404	U *-	0.200	0.1573		mg/Kg		79	70 - 130	2	35
o-Xylene	<0.00202	U	0.100	0.09257		mg/Kg		92	70 - 130	2	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	103		70 - 130								
1,4-Difluorobenzene (Surr)	103		70 - 130								
Aethod: 8015B NM - Die	sel Range Or	ganics (E	ORO) (GC)								
-		Ja									
Lab Sample ID: MB 880-310	09/1-A							Client S	ample ID:	Method	Blank
Matrix: Solid									Prep 1	ype: To	tal/NA
Analysis Batch: 31049									_	Batch:	

Analysis Batch: 31049								Prep Batch	n: 31009
	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		07/29/22 13:01	07/30/22 10:06	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		07/29/22 13:01	07/30/22 10:06	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/29/22 13:01	07/30/22 10:06	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	104		70 - 130				07/29/22 13:01	07/30/22 10:06	1
o-Terphenyl	117		70 - 130				07/29/22 13:01	07/30/22 10:06	1

Eurofins Carlsbad

Job ID: 890-2672-1

SDG: Lea County NM

Page 96 of 135

Job ID: 890-2672-1 SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-310 Matrix: Solid							enem	Cample	ID: Lab Co Prop 1	Type: To	
Analysis Batch: 31049			Califo	1.00	1.00					Batch:	3100
Analysis			Spike		LCS	l lasié		0/ Dee	%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics GRO)-C6-C10			1000	1166		mg/Kg		117	70 - 130		
Diesel Range Organics (Over			1000	1043		mg/Kg		104	70 - 130		
C10-C28)			1000	1040		iiig/itg		104	70-100		
		LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	115		70 - 130								
p-Terphenyl	133	S1+	70 - 130								
											_
Lab Sample ID: LCSD 880-3	1009/3-A					Clier	nt San	ipie iD: I	Lab Contro		
Matrix: Solid										Type: To	
Analysis Batch: 31049										Batch:	
			Spike		LCSD				%Rec		RP
Analyte			Added		Qualifier	Unit	<u>D</u>	%Rec	Limits	RPD	Lim
Gasoline Range Organics			1000	932.2	*1	mg/Kg		93	70 - 130	22	2
(GRO)-C6-C10 Diesel Range Organics (Over			1000	919.7		malla		92	70 - 130	10	2
Diesel Range Organics (Over C10-C28)			1000	919.7		mg/Kg		92	10 - 130	13	2
510-020j											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	103		70 - 130								
p-Terphenyl	117		70 _ 130								
Matrix: Solid Analysis Batch: 31049	Sample	Sample	Spike	MS	MS					Spe: To Batch:	
Analyta		•	Added	Result		Unit	D	%Rec	Limits		
Analyte		Qualifier	999	871.8	Quaimer			85			
Gasoline Range Organics GRO)-C6-C10	\$49.9	0 1	999	0/1.0		mg/Kg		60	70 - 130		
Diesel Range Organics (Over	<49.9	U	999	772.9		mg/Kg		77	70 - 130		
C10-C28)		•									
,											
	MS										
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	110		70 - 130								
o-Terphenyl	108		70 - 130								
	4.0.000										1
Lab Sample ID: 890-2670-A-	T-C WISD					Cli	ient Sa	ampie IE): Matrix Sp		
										Type: To	
			.							Batch:	
	. .	•	Spike	MSD	MSD		_	a/ -	%Rec		RP
Analysis Batch: 31049	Sample	-	-	-		Unit	D	%Rec	Limits	RPD	Lim
Analysis Batch: 31049	Result	Qualifier	Added	Result	Quaimer						
Analysis Batch: 31049 Analyte Gasoline Range Organics	-	Qualifier	-	Result 995.4	Quaimer	mg/Kg		98	70 - 130	13	2
Matrix: Solid Analysis Batch: 31049 Analyte Gasoline Range Organics (GRO)-C6-C10		Qualifier U *1	Added	995.4	Quaimer	mg/Kg		98	70 - 130	13	
Analysis Batch: 31049 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U *1	Added		Quaimer						
Analysis Batch: 31049 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over		Qualifier U *1	Added	995.4	Quaimer	mg/Kg		98	70 - 130	13	
Analysis Batch: 31049 Analyte Gasoline Range Organics		Qualifier U *1 U	Added	995.4	Quaimer	mg/Kg		98	70 - 130	13	
Analysis Batch: 31049 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over		Qualifier U *1 U	Added	995.4	Quaimer	mg/Kg		98	70 - 130	13	2

Client: NT Global Project/Site: Rebel 20 CTB (Spill #1)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-2670-A-1-0	C MSD							•	Clie	nt Sa	mple ID:	Matrix Spike		
Matrix: Solid Analysis Batch: 31049												Prep Typ Prep Ba		
Analysis Balch. 51049												гіер Ба	iten.	5100
	MSD													
Surrogate	%Recovery	Qual	ifier	Limits										
p-Terphenyl	97			70 - 130										
Lab Sample ID: MB 880-31010/	/1- A										Client Sa	mple ID: Me	thod	Blan
Matrix: Solid												Prep Typ		
Analysis Batch: 31085												Prep Ba		
		ΜВ	MB											
Analyte	Re	sult	Qualifier	RL		MDL	Unit		D	Pr	epared	Analyzed		Dil Fa
Gasoline Range Organics	<5	50.0	U	50.0			mg/Kg			07/29	9/22 13:05	07/31/22 10:2	23	
(GRO)-C6-C10				50.0						07/00	100 40 05	07/04/00 40 0		
Diesel Range Organics (Over C10-C28)	<5	50.0	U	50.0			mg/Kg			07/29	9/22 13:05	07/31/22 10:2	23	
Oll Range Organics (Over C28-C36)	<5	50.0	U	50.0			mg/Kg			07/29	9/22 13:05	07/31/22 10:2	23	
		ΜВ	МВ											
Surrogate			Qualifier	Limits						Pr	epared	Analyzed		Dil Fa
1-Chlorooctane		101		70 - 130							9/22 13:05	07/31/22 10:2	23 —	
o-Terphenyl		123		70 - 130						07/29	9/22 13:05	07/31/22 10:2		
Matrix: Solid	0/2-A			Spike	LCS	LCS			С	lient	Sample	ID: Lab Cont Prep Typ Prep Ba %Rec	e: To	tal/N
Matrix: Solid	D/2-A			Spike	LCS	LCS			С	lient	Sample	Prep Typ Prep Ba	e: To	tal/N
Matrix: Solid Analysis Batch: 31085	D/2-A			Spike Added	LCS Result			Unit	С	lient D	Sample %Rec	Prep Typ Prep Ba	e: To	tal/N
Matrix: Solid Analysis Batch: 31085 Analyte Gasoline Range Organics	D/2-A			•				Unit mg/Kg	C		-	Prep Typ Prep Ba %Rec	e: To	tal/N
Matrix: Solid Analysis Batch: 31085 Analyte Gasoline Range Organics GRO)-C6-C10	D/2-A			Added	Result 918.4			mg/Kg	C		%Rec92	Prep Typ Prep Ba %Rec Limits 70 - 130	e: To	tal/N
Matrix: Solid Analysis Batch: 31085 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	D/2-A			Added	Result				C		%Rec	Prep Typ Prep Ba %Rec Limits	e: To	tal/N
Matrix: Solid Analysis Batch: 31085 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over		LCS		Added	Result 918.4			mg/Kg	С		%Rec92	Prep Typ Prep Ba %Rec Limits 70 - 130	e: To	tal/N
Matrix: Solid Analysis Batch: 31085 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	D/2-A 		ifier	Added	Result 918.4			mg/Kg	С		%Rec92	Prep Typ Prep Ba %Rec Limits 70 - 130	e: To	tal/N
Matrix: Solid Analysis Batch: 31085 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	LCS		ifier	Added 1000	Result 918.4			mg/Kg	С		%Rec92	Prep Typ Prep Ba %Rec Limits 70 - 130	e: To	tal/N
Matrix: Solid Analysis Batch: 31085 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane	LCS %Recovery		ifier	Added 1000 1000 <i>Limits</i>	Result 918.4			mg/Kg	с 		%Rec92	Prep Typ Prep Ba %Rec Limits 70 - 130	e: To	tal/N
Matrix: Solid Analysis Batch: 31085 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl	LCS %Recovery 109 115		ifier	Added 1000 1000 <i>Limits</i> 70 - 130	Result 918.4			mg/Kg mg/Kg		<u>D</u> .	%Rec 92 82	Prep Typ Prep Ba %Rec Limits 70 - 130 70 - 130	e: To atch:	tal/N 3101
Matrix: Solid Analysis Batch: 31085 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-310	LCS %Recovery 109 115		ifier	Added 1000 1000 <i>Limits</i> 70 - 130	Result 918.4			mg/Kg mg/Kg		<u>D</u> .	%Rec 92 82	Prep Typ Prep Ba %Rec Limits 70 - 130 70 - 130	e: To atch:	tal/N 3101
Matrix: Solid Analysis Batch: 31085 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-310 Matrix: Solid	LCS %Recovery 109 115		ifier	Added 1000 1000 <i>Limits</i> 70 - 130	Result 918.4			mg/Kg mg/Kg		<u>D</u> .	%Rec 92 82	Prep Typ Prep Ba %Rec Limits 70 - 130 70 - 130 70 - 130	e: To atch: ampl e: To	e Du tal/N
Matrix: Solid Analysis Batch: 31085 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane D-Terphenyl Lab Sample ID: LCSD 880-310 Matrix: Solid	LCS %Recovery 109 115		ifier	Added 1000 1000 <u>Limits</u> 70 - 130 70 - 130	Result 918.4 821.5	Qual	lifier	mg/Kg mg/Kg		<u>D</u> .	%Rec 92 82	Prep Typ Prep Ba %Rec Limits 70 - 130 70 - 130 70 - 130 Prep Typ Prep Ba	e: To atch: ampl e: To	tal/N 3101 ue Du tal/N 3101
Matrix: Solid Analysis Batch: 31085 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate A-Chlorooctane D-Terphenyl Lab Sample ID: LCSD 880-310 Matrix: Solid Analysis Batch: 31085	LCS %Recovery 109 115		ifier	Added 1000 1000 <i>Limits</i> 70 - 130	Result 918.4	Qual	lifier	mg/Kg mg/Kg		<u>D</u> .	%Rec 92 82	Prep Typ Prep Ba %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 8 Prep Typ Prep Ba %Rec	e: To atch: ampl e: To	e Du tal/N 3101
Matrix: Solid Analysis Batch: 31085 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: LCSD 880-310 Matrix: Solid Analysis Batch: 31085 Analyte Basoline Range Organics	LCS %Recovery 109 115		ifier	Added 1000 1000 <u>Limits</u> 70 - 130 70 - 130 Spike	Result 918.4 821.5 LCSD	Qual	lifier	mg/Kg mg/Kg Cli		D Sam	%Rec 92 82 ple ID: La	Prep Typ Prep Ba %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 8 Prep Typ Prep Ba %Rec	ampl e: To atch:	le Du tal/N 3101 4 5 101 5 101 8 7 8 101 8 7 8 101 8 7 8 101 101 101 101 101 101 101 101 101 1
Matrix: Solid Analysis Batch: 31085 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-310 Matrix: Solid Analysis Batch: 31085 Analyte Gasoline Range Organics (GRO)-C6-C10	LCS %Recovery 109 115		ifier	Added 1000 1000 1000 1000 1000 1000 5pike Added 1000	Result 918.4 821.5 LCSD Result 822.9	Qual	lifier	mg/Kg mg/Kg Cli mg/Kg		D Sam	%Rec 92 82 ple ID: La %Rec 82	Prep Typ Prep Ba %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 8 Prep Typ Prep Ba %Rec Limits 70 - 130	ampl e: Tor e: Tor atch: RPD 11	e Du tal/N 3101 tal/N 3101 RF Lin
Matrix: Solid Analysis Batch: 31085 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-310 Matrix: Solid Analysis Batch: 31085 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	LCS %Recovery 109 115		ifier	Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130	Result 918.4 821.5 LCSD Result	Qual	lifier	mg/Kg mg/Kg Cli		D Sam	%Rec 92 82 ple ID: La	Prep Typ Prep Ba %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 Prep Typ Prep Ba %Rec Limits	ampl e: To e: To ttch:	le Du tal/N 3101 tal/N 3101 RF Lin
Matrix: Solid Analysis Batch: 31085 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-310 Matrix: Solid Analysis Batch: 31085 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	LCS %Recovery 109 115 10/3-A	Qual		Added 1000 1000 1000 1000 1000 1000 5pike Added 1000	Result 918.4 821.5 LCSD Result 822.9	Qual	lifier	mg/Kg mg/Kg Cli mg/Kg		D Sam	%Rec 92 82 ple ID: La %Rec 82	Prep Typ Prep Ba %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 8 Prep Typ Prep Ba %Rec Limits 70 - 130	ampl e: Tor e: Tor atch: RPD 11	le Du tal/N 3101 tal/N 3101 RP Lim
Matrix: Solid Analysis Batch: 31085 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane 0-Terphenyl Lab Sample ID: LCSD 880-310 Matrix: Solid Analysis Batch: 31085 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	LCS %Recovery 109 115 10/3-A	Qual		Added 1000 1000 1000 1000 1000 70 - 130 70 - 130 70 - 130 1000 1000 1000	Result 918.4 821.5 LCSD Result 822.9	Qual	lifier	mg/Kg mg/Kg Cli mg/Kg		D Sam	%Rec 92 82 ple ID: La %Rec 82	Prep Typ Prep Ba %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 8 Prep Typ Prep Ba %Rec Limits 70 - 130	ampl e: Tor e: Tor atch: RPD 11	e Du tal/N
Lab Sample ID: LCS 880-31010 Matrix: Solid Analysis Batch: 31085 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-310 Matrix: Solid Analysis Batch: 31085 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	LCS %Recovery 109 115 10/3-A	Qual		Added 1000 1000 1000 1000 1000 1000 5pike Added 1000	Result 918.4 821.5 LCSD Result 822.9	Qual	lifier	mg/Kg mg/Kg Cli mg/Kg		D Sam	%Rec 92 82 ple ID: La %Rec 82	Prep Typ Prep Ba %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 8 Prep Typ Prep Ba %Rec Limits 70 - 130	ampl e: Tor e: Tor atch: RPD 11	le Du tal/N 3101 tal/N 3101 RP Lim

MS MS

1078

591.7 F1

Result Qualifier

Unit

mg/Kg

mg/Kg

D

%Rec

108

59

Spike

Added

999

999

Client: NT Global Project/Site: Rebel 20 CTB (Spill #1)

Lab Sample ID: 890-2672-1 MS

Analysis Batch: 31085

Gasoline Range Organics

Diesel Range Organics (Over

Matrix: Solid

(GRO)-C6-C10

Analyte

C10-C28)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Sample Sample

<49.9 U

<49.9 UF1

MS MS

Result Qualifier

Job ID: 890-2672-1 SDG: Lea County NM

Client Sample ID: SW-1

%Rec

Limits

70 - 130

70 - 130

Prep Type: Total/NA

Prep Batch: 31010

Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	73		70 - 130								
o-Terphenyl	80		70 - 130								
Lab Sample ID: 890-2672-1 MS	D								Client Sa	mple ID:	SW-1
Matrix: Solid									Prep 1	Type: Tot	tal/NA
Analysis Batch: 31085									Prep	Batch:	31010
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.9	U	999	1004		mg/Kg		100	70 - 130	7	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.9	U F1	999	660.1	F1	mg/Kg		66	70 - 130	11	20
C10-C28)											
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	90		70 - 130								
o-Terphenyl	89		70 - 130								

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-30994/1-A Matrix: Solid Analysis Batch: 31032										C	Client S	ample ID: Prep	Method Type: S	
	МВ	МВ												
Analyte	Result	Qualifier		RL		MDL	Unit		D	Pre	epared	Analyz	ed	Dil Fac
Chloride	<5.00	U		5.00			mg/Kg					07/29/22	22:11	1
Lab Sample ID: LCS 880-30994/2-A									Clie	nt S	Sample	ID: Lab Co	ontrol S	ample
Matrix: Solid												Prep	Type: S	oluble
Analysis Batch: 31032														
-			Spike		LCS	LCS						%Rec		
Analyte			Added		Result	Qual	ifier	Unit	I	D	%Rec	Limits		
Chloride			250		262.0			mg/Kg			105	90 - 110		
Lab Sample ID: LCSD 880-30994/3-A								CI	ient Sa	amp	ole ID: I	Lab Contro	l Sampl	e Dup
Matrix: Solid										- 1		Prep	Type: S	oluble
Analysis Batch: 31032														
-			Spike		LCSD	LCS	D					%Rec		RPD
Analyte			Added		Result	Qual	ifier	Unit	I	D	%Rec	Limits	RPD	Limit
Chloride			250		266.2			mg/Kg			106	90 - 110	2	20

Client: NT Global Project/Site: Rebel 20 CTB (Spill #1)

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 890-2672-1 MS									Client Sam	-	
Matrix: Solid									Prep	Type: So	oluble
Analysis Batch: 31032	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Chloride	251		252	507.6		mg/Kg		102	90 - 110		
-											
Lab Sample ID: 890-2672-1 MSD									Client Sam	-	
Matrix: Solid									Prep 1	Type: So	oluble
Analysis Batch: 31032	Sampla	Comple	Spike	MSD	MSD				%Rec		RPD
Analyte	-	Sample Qualifier	Spike Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	251		252	509.3	quantor	mg/Kg		103	90 - 110	0	20
						0 0					
Lab Sample ID: 890-2672-11 MS									Client Sam	ole ID: S	SW-11
Matrix: Solid									Prep 1	Type: So	oluble
Analysis Batch: 31032											
		Sample	Spike	MS	MS				%Rec		
Analyte		Qualifier	Added		Qualifier	Unit	<u>D</u>	%Rec	Limits		
Chloride	490		250	722.6		mg/Kg		93	90 - 110		
Lab Sample ID: 890-2672-11 MSD)								Client Sam	ole ID: S	SW-11
Matrix: Solid										Type: So	
Analysis Batch: 31032										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
					Qualifian	11	D	%Rec	Limits	RPD	Limi
Analyte	Result	Qualifier	Added	Result	Quaimer	Unit		/01100	Linits		
-	Result 490	Qualifier	Added 250	721.0	Quaimer	mg/Kg		93	90 - 110	0	
-	490	Qualifier			Quaimer		<u> </u>	93	90 - 110	0	20
Chloride Lab Sample ID: MB 880-30995/1-/	490	Qualifier			Quaimer		<u> </u>	93	90 - 110 Sample ID: N	0 Aethod	20 Blank
Chloride Lab Sample ID: MB 880-30995/1-, Matrix: Solid	490	Qualifier			Quaimer			93	90 - 110 Sample ID: N	0	20 Blank
Analyte Chloride Lab Sample ID: MB 880-30995/1-, Matrix: Solid Analysis Batch: 31033	490							93	90 - 110 Sample ID: N	0 Aethod	20 Blank
Chloride Lab Sample ID: MB 880-30995/1-, Matrix: Solid Analysis Batch: 31033	490 A	MB MB		721.0				93 Client	90 - 110 Sample ID: N Prep 1	0 Nethod Type: So	20 Blank oluble
Chloride Lab Sample ID: MB 880-30995/1-, Matrix: Solid Analysis Batch: 31033 Analyte	490 A			721.0	MDL Unit	mg/Kg		93	90 - 110 Sample ID: N	0 Nethod Type: So	20 Blank oluble Dil Fac
Chloride Lab Sample ID: MB 880-30995/1-, Matrix: Solid Analysis Batch: 31033 Analyte	490 A	MB MB esult Qualifier		721.0		mg/Kg		93 Client	90 - 110 Sample ID: N Prep 1 Analyze	0 Nethod Type: So	20 Blank oluble Dil Fac
Chloride Lab Sample ID: MB 880-30995/1-, Matrix: Solid Analysis Batch: 31033 Analyte Chloride	490 A 	MB MB esult Qualifier		721.0	MDL Unit	mg/Kg	<u> </u>	93 Client	90 - 110 Sample ID: N Prep 1 Analyze	0 Nethod Type: So ed 2:18	20 Blank oluble Dil Fac
Chloride Lab Sample ID: MB 880-30995/1-, Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCS 880-30995/2 Matrix: Solid	490 A 	MB MB esult Qualifier		721.0	MDL Unit	mg/Kg	<u> </u>	93 Client	90 - 110 Sample ID: N Prep 7 Analyze 07/29/22 2 e ID: Lab Co	0 Nethod Type: So ed 2:18	20 Blank oluble Dil Fac 1 ample
Chloride Lab Sample ID: MB 880-30995/1-, Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCS 880-30995/2 Matrix: Solid	490 A 	MB MB esult Qualifier		721.0 RL 5.00	MDL Unit mg/K	mg/Kg	<u> </u>	93 Client	90 - 110 Sample ID: N Prep 1 Analyze 07/29/22 2 e ID: Lab Co Prep 1	Iethod Type: So ed 2:18 -	20 Blank oluble Dil Fac 1 ample
Chloride Lab Sample ID: MB 880-30995/1-, Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCS 880-30995/2 Matrix: Solid Analysis Batch: 31033	490 A 	MB MB esult Qualifier	250	721.0 RL 5.00	MDL Unit mg/K	g	<u> </u>	93 Client Prepared t Sampl	90 - 110 Sample ID: N Prep 1 	Iethod Type: So ed 2:18 -	20 Blank oluble Dil Fac 1 ample
Chloride Lab Sample ID: MB 880-30995/1-, Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCS 880-30995/2 Matrix: Solid Analysis Batch: 31033 Analyte	490 A 	MB MB esult Qualifier	250 Spike	721.0 RL 5.00 LCS Result	MDL Unit mg/K	g Unit	<u> </u>	93 Client Prepared t Sampl	90 - 110 Sample ID: N Prep 1 	Iethod Type: So ed 2:18 -	20 Blank oluble Dil Fac 1 ample
Chloride Lab Sample ID: MB 880-30995/1-, Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCS 880-30995/2 Matrix: Solid Analysis Batch: 31033 Analyte	490 A 	MB MB esult Qualifier	250	721.0 RL 5.00	MDL Unit mg/K	g	D P Client	93 Client Prepared t Sampl	90 - 110 Sample ID: N Prep 1 	Iethod Type: So ed 2:18 -	20 Blank oluble Dil Fac 1 ample
Chloride Lab Sample ID: MB 880-30995/1-, Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCS 880-30995/2 Matrix: Solid Analysis Batch: 31033 Analyte Chloride	490 A < -A	MB MB esult Qualifier	250 Spike	721.0 RL 5.00 LCS Result	MDL Unit mg/K	g Unit mg/Kg	D P Client	93 Client Prepared t Sampl <u>%Rec</u> 103	90 - 110 Sample ID: N Prep 1 	0 Alethod Fype: So ad 2:18 - ntrol Sa Fype: So	20 Blank oluble Dil Fac 1 ample oluble
Chloride Lab Sample ID: MB 880-30995/1-, Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCS 880-30995/2 Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCSD 880-30995	490 A < -A	MB MB esult Qualifier	250 Spike	721.0 RL 5.00 LCS Result	MDL Unit mg/K	g Unit mg/Kg	D P Client	93 Client Prepared t Sampl <u>%Rec</u> 103	90 - 110 Sample ID: N Prep 1 Analyze 07/29/22 2 e ID: Lab Co Prep 1 %Rec Limits 90 - 110 Lab Control	0 flethod fype: So ad 2:18 	20 Blank oluble Dil Fac 1 ample oluble e Dup
Chloride Lab Sample ID: MB 880-30995/1-, Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCS 880-30995/2 Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCSD 880-30995, Matrix: Solid	490 A < -A	MB MB esult Qualifier	250 Spike	721.0 RL 5.00 LCS Result	MDL Unit mg/K	g Unit mg/Kg	D P Client	93 Client Prepared t Sampl <u>%Rec</u> 103	90 - 110 Sample ID: N Prep 1 Analyze 07/29/22 2 e ID: Lab Co Prep 1 %Rec Limits 90 - 110 Lab Control	0 Alethod Fype: So ad 2:18 - ntrol Sa Fype: So	20 Blank oluble Dil Fac 1 ample oluble e Dup
Chloride Lab Sample ID: MB 880-30995/1-, Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCS 880-30995/2 Matrix: Solid Analyte Chloride Lab Sample ID: LCSD 880-30995, Matrix: Solid	490 A < -A	MB MB esult Qualifier	250 Spike	RL 5.00 LCS Result 257.8	MDL Unit mg/K	g Unit mg/Kg	D P Client	93 Client Prepared t Sampl <u>%Rec</u> 103	90 - 110 Sample ID: N Prep 1 Analyze 07/29/22 2 e ID: Lab Co Prep 1 %Rec Limits 90 - 110 Lab Control	0 flethod fype: So ad 2:18 	20 Blank oluble Dil Fac 1 ample oluble
Chloride Lab Sample ID: MB 880-30995/1-, Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCS 880-30995/2 Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCSD 880-30995, Matrix: Solid Analysis Batch: 31033	490 A < -A	MB MB esult Qualifier	250 Spike Added 250 -	RL 5.00 LCS Result 257.8	MDL Unit mg/K LCS Qualifier	g Unit mg/Kg	D P Client	93 Client Prepared t Sampl <u>%Rec</u> 103	90 - 110 Sample ID: N Prep 1 Analyze 07/29/22 2 e ID: Lab Co Prep 1 %Rec Limits 90 - 110 Lab Control Prep 1	0 flethod fype: So ad 2:18 	20 Blank oluble Dil Fac 1 ample oluble e Dup oluble RPD
Chloride Lab Sample ID: MB 880-30995/1 Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCS 880-30995/2 Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCSD 880-30995. Matrix: Solid Analysis Batch: 31033 Analysis Batch: 31033 Analyte	490 A < -A	MB MB esult Qualifier	250 Spike Added 250 Spike	RL 5.00 LCS Result 257.8	MDL Unit mg/K LCS Qualifier	g Unit mg/Kg Cli	D P Client D ent San	93 Client Prepared t Sampl t Sampl 103 nple ID:	90 - 110 Sample ID: N Prep 7 Analyze 07/29/22 2 e ID: Lab Co Prep 7 %Rec Limits 90 - 110 Lab Control Prep 7 %Rec	0 Nethod Type: So 2:18 ntrol Sa Type: So Sampl Type: So	20 Blank oluble Dil Fac 1 ample oluble e Dup oluble RPD Limit
Chloride Lab Sample ID: MB 880-30995/1-, Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCS 880-30995/2 Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCSD 880-30995, Matrix: Solid Analysis Batch: 31033 Analyte Chloride Chloride Chloride	490 A 	MB MB esult Qualifier	250 Spike Added 250 Spike Added	RL 5.00 LCS Result 257.8 LCSD Result	MDL Unit mg/K LCS Qualifier	g Unit mg/Kg Cli Unit	D P Client D ent San	93 Client Prepared t Sampl t Sampl 103 mple ID: <u>%Rec</u> 103	90 - 110 Sample ID: N Prep 1 	0 Aethod Type: So ad 2:18 	20 Blank oluble Dil Fac 1 ample oluble e Dup oluble RPD Limit 20
Chloride Lab Sample ID: MB 880-30995/1-, Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCS 880-30995/2 Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCSD 880-30995, Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCSD 880-30995, Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: 880-17511-A-1-E	490 A 	MB MB esult Qualifier	250 Spike Added 250 Spike Added	RL 5.00 LCS Result 257.8 LCSD Result	MDL Unit mg/K LCS Qualifier	g Unit mg/Kg Cli Unit	D P Client D ent San	93 Client Prepared t Sampl t Sampl 103 mple ID: <u>%Rec</u> 103	90 - 110 Sample ID: N Prep 1 	0 Method Fype: So ad 2:18 	20 Blank oluble Dil Fac 1 ample oluble RPD Limit 20 Spike
Chloride Lab Sample ID: MB 880-30995/1-, Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCS 880-30995/2 Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCSD 880-30995, Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCSD 880-30995, Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: 880-17511-A-1-E Matrix: Solid	490 A 	MB MB esult Qualifier	250 Spike Added 250 Spike Added	RL 5.00 LCS Result 257.8 LCSD Result	MDL Unit mg/K LCS Qualifier	g Unit mg/Kg Cli Unit	D P Client D ent San	93 Client Prepared t Sampl t Sampl 103 mple ID: <u>%Rec</u> 103	90 - 110 Sample ID: N Prep 1 	0 Aethod Type: So ad 2:18 	20 Blank oluble Dil Fac 1 ample oluble RPD Limit 20 Spike
Chloride Lab Sample ID: MB 880-30995/1-, Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCS 880-30995/2 Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCSD 880-30995/ Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCSD 880-30995/ Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: 880-17511-A-1-E Matrix: Solid	490 A A /3-A MS	MB MB esult Qualifier 55.00 U	250 Spike Added 250 Spike Added 250	RL 721.0 5.00 LCS Result 257.8 LCSD Result 257.5 257.5	MDL Unit mg/K LCS Qualifier	g Unit mg/Kg Cli Unit	D P Client D ent San	93 Client Prepared t Sampl t Sampl 103 mple ID: <u>%Rec</u> 103	90 - 110 Sample ID: N Prep 1 Analyze 07/29/22 2 e ID: Lab Co Prep 1 %Rec Limits 90 - 110 Lab Control Prep 1 %Rec Limits 90 - 110 t Sample ID: Prep 1	0 Method Fype: So ad 2:18 	20 Blank oluble Dil Fac 1 ample oluble e Dup oluble RPD Limit 20 Spike
Chloride Lab Sample ID: MB 880-30995/1-, Matrix: Solid Analysis Batch: 31033 Analyte Chloride Lab Sample ID: LCS 880-30995/2 Matrix: Solid Analysis Batch: 31033 Analyte	490 A Ri -A /3-A /3-A MS Sample	MB MB esult Qualifier	250 Spike Added 250 Spike Added	RL - 5.00 - LCS Result 257.8 - LCSD Result 257.5 MS	MDL Unit mg/K LCS Qualifier	g Unit mg/Kg Cli Unit	D P Client D ent San	93 Client Prepared t Sampl t Sampl 103 mple ID: <u>%Rec</u> 103	90 - 110 Sample ID: N Prep 1 	0 Method Fype: So ad 2:18 	20 Blank oluble Dil Fac 1 ample oluble e Dup oluble RPD Limit 20 Spike

Job ID: 890-2672-1 SDG: Lea County NM

QC Sample Results

Client: NT Global Project/Site: Rebel 20 CTB (Spill #1)

_

Job ID: 890-2672-1 SDG: Lea County NM

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 880-17511-A-1 Matrix: Solid	-F MSD					CI	ient S	ample IC): Matrix Sp Prep	oike Dup Type: So	
Analysis Batch: 31033	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	22.3		249	249.4		mg/Kg		91	90 - 110	3	20
- Lab Sample ID: 890-2673-A-1-(CMS							Client	Sample ID	: Matrix	Spike
Matrix: Solid									Prep	Type: So	oluble
Analysis Batch: 31033											
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	25.7		250	261.6		mg/Kg		95	90 _ 110		
- Lab Sample ID: 890-2673-A-1-F						CI	ient S	ample IC): Matrix Sp	oike Dur	olicate
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 31033									· · · · ·		
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	25.7		250	274.0		mg/Kg		99	90 - 110	5	20

Client: NT Global Project/Site: Rebel 20 CTB (Spill #1)

5 6 7

Job ID: 890-2672-1 SDG: Lea County NM

GC VOA

Analysis Batch: 30959

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2672-21	CS-9	Total/NA	Solid	8021B	30988
MB 880-30988/5-A	Method Blank	Total/NA	Solid	8021B	30988
MB 880-31011/5-A	Method Blank	Total/NA	Solid	8021B	31011
LCS 880-30988/1-A	Lab Control Sample	Total/NA	Solid	8021B	30988
LCS 880-31011/1-A	Lab Control Sample	Total/NA	Solid	8021B	31011
LCSD 880-30988/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	30988
LCSD 880-31011/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	31011
880-17511-A-1-A MS	Matrix Spike	Total/NA	Solid	8021B	30988
880-17511-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	30988
890-2665-A-1-C MS	Matrix Spike	Total/NA	Solid	8021B	31011
890-2665-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	31011

Prep Batch: 30987

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2672-1	SW-1	Total/NA	Solid	5035	
890-2672-2	SW-2	Total/NA	Solid	5035	
890-2672-3	SW-3	Total/NA	Solid	5035	
890-2672-4	SW-4	Total/NA	Solid	5035	
890-2672-5	SW-5	Total/NA	Solid	5035	
890-2672-6	SW-6	Total/NA	Solid	5035	
890-2672-7	SW-7	Total/NA	Solid	5035	
890-2672-8	SW-8	Total/NA	Solid	5035	
890-2672-9	SW-9	Total/NA	Solid	5035	
890-2672-10	SW-10	Total/NA	Solid	5035	
890-2672-11	SW-11	Total/NA	Solid	5035	
890-2672-12	SW-12	Total/NA	Solid	5035	
890-2672-13	CS-1	Total/NA	Solid	5035	
890-2672-14	CS-2	Total/NA	Solid	5035	
890-2672-15	CS-3	Total/NA	Solid	5035	
890-2672-16	CS-4	Total/NA	Solid	5035	
890-2672-17	CS-5	Total/NA	Solid	5035	
890-2672-18	CS-6	Total/NA	Solid	5035	
890-2672-19	CS-7	Total/NA	Solid	5035	
890-2672-20	CS-8	Total/NA	Solid	5035	
MB 880-30987/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-30987/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-30987/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-2672-1 MS	SW-1	Total/NA	Solid	5035	
890-2672-1 MSD	SW-1	Total/NA	Solid	5035	

Prep Batch: 30988

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2672-21	CS-9	Total/NA	Solid	5035	
MB 880-30988/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-30988/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-30988/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-17511-A-1-A MS	Matrix Spike	Total/NA	Solid	5035	
880-17511-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Client: NT Global Project/Site: Rebel 20 CTB (Spill #1)

GC VOA

Prep Batch: 31011

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
MB 880-31011/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-31011/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-31011/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-2665-A-1-C MS	Matrix Spike	Total/NA	Solid	5035	
890-2665-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 31071

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	8
890-2672-1	SW-1	Total/NA	Solid	8021B	30987	
890-2672-2	SW-2	Total/NA	Solid	8021B	30987	9
890-2672-3	SW-3	Total/NA	Solid	8021B	30987	
890-2672-4	SW-4	Total/NA	Solid	8021B	30987	
890-2672-5	SW-5	Total/NA	Solid	8021B	30987	
890-2672-6	SW-6	Total/NA	Solid	8021B	30987	
890-2672-7	SW-7	Total/NA	Solid	8021B	30987	
890-2672-8	SW-8	Total/NA	Solid	8021B	30987	
890-2672-9	SW-9	Total/NA	Solid	8021B	30987	
890-2672-10	SW-10	Total/NA	Solid	8021B	30987	
890-2672-11	SW-11	Total/NA	Solid	8021B	30987	13
890-2672-12	SW-12	Total/NA	Solid	8021B	30987	
890-2672-13	CS-1	Total/NA	Solid	8021B	30987	
890-2672-14	CS-2	Total/NA	Solid	8021B	30987	
890-2672-15	CS-3	Total/NA	Solid	8021B	30987	
890-2672-16	CS-4	Total/NA	Solid	8021B	30987	
890-2672-17	CS-5	Total/NA	Solid	8021B	30987	
890-2672-18	CS-6	Total/NA	Solid	8021B	30987	
890-2672-19	CS-7	Total/NA	Solid	8021B	30987	
890-2672-20	CS-8	Total/NA	Solid	8021B	30987	
MB 880-30987/5-A	Method Blank	Total/NA	Solid	8021B	30987	
LCS 880-30987/1-A	Lab Control Sample	Total/NA	Solid	8021B	30987	
LCSD 880-30987/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	30987	
890-2672-1 MS	SW-1	Total/NA	Solid	8021B	30987	
890-2672-1 MSD	SW-1	Total/NA	Solid	8021B	30987	

Analysis Batch: 31072

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2672-1	SW-1	Total/NA	Solid	Total BTEX	
890-2672-2	SW-2	Total/NA	Solid	Total BTEX	
890-2672-3	SW-3	Total/NA	Solid	Total BTEX	
890-2672-4	SW-4	Total/NA	Solid	Total BTEX	
890-2672-5	SW-5	Total/NA	Solid	Total BTEX	
890-2672-6	SW-6	Total/NA	Solid	Total BTEX	
890-2672-7	SW-7	Total/NA	Solid	Total BTEX	
890-2672-8	SW-8	Total/NA	Solid	Total BTEX	
890-2672-9	SW-9	Total/NA	Solid	Total BTEX	
890-2672-10	SW-10	Total/NA	Solid	Total BTEX	
890-2672-11	SW-11	Total/NA	Solid	Total BTEX	
890-2672-12	SW-12	Total/NA	Solid	Total BTEX	
890-2672-13	CS-1	Total/NA	Solid	Total BTEX	
890-2672-14	CS-2	Total/NA	Solid	Total BTEX	
890-2672-15	CS-3	Total/NA	Solid	Total BTEX	

Eurofins Carlsbad

Page 102 of 135

Job ID: 890-2672-1 SDG: Lea County NM

Client: NT Global Project/Site: Rebel 20 CTB (Spill #1)

GC VOA (Continued)

Analysis Batch: 31072 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2672-16	CS-4	Total/NA	Solid	Total BTEX	
890-2672-17	CS-5	Total/NA	Solid	Total BTEX	
890-2672-18	CS-6	Total/NA	Solid	Total BTEX	
890-2672-19	CS-7	Total/NA	Solid	Total BTEX	
890-2672-20	CS-8	Total/NA	Solid	Total BTEX	
890-2672-21	CS-9	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 31009

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2672-21	CS-9	Total/NA	Solid	8015NM Prep	
MB 880-31009/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-31009/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-31009/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-2670-A-1-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-2670-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Prep Batch: 31010

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2672-1	SW-1	Total/NA	Solid	8015NM Prep	
890-2672-2	SW-2	Total/NA	Solid	8015NM Prep	
890-2672-3	SW-3	Total/NA	Solid	8015NM Prep	
890-2672-4	SW-4	Total/NA	Solid	8015NM Prep	
890-2672-5	SW-5	Total/NA	Solid	8015NM Prep	
890-2672-6	SW-6	Total/NA	Solid	8015NM Prep	
890-2672-7	SW-7	Total/NA	Solid	8015NM Prep	
890-2672-8	SW-8	Total/NA	Solid	8015NM Prep	
890-2672-9	SW-9	Total/NA	Solid	8015NM Prep	
890-2672-10	SW-10	Total/NA	Solid	8015NM Prep	
890-2672-11	SW-11	Total/NA	Solid	8015NM Prep	
890-2672-12	SW-12	Total/NA	Solid	8015NM Prep	
890-2672-13	CS-1	Total/NA	Solid	8015NM Prep	
890-2672-14	CS-2	Total/NA	Solid	8015NM Prep	
890-2672-15	CS-3	Total/NA	Solid	8015NM Prep	
890-2672-16	CS-4	Total/NA	Solid	8015NM Prep	
890-2672-17	CS-5	Total/NA	Solid	8015NM Prep	
890-2672-18	CS-6	Total/NA	Solid	8015NM Prep	
890-2672-19	CS-7	Total/NA	Solid	8015NM Prep	
890-2672-20	CS-8	Total/NA	Solid	8015NM Prep	
MB 880-31010/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-31010/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-31010/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-2672-1 MS	SW-1	Total/NA	Solid	8015NM Prep	
890-2672-1 MSD	SW-1	Total/NA	Solid	8015NM Prep	

Analysis Batch: 31049

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2672-21	CS-9	Total/NA	Solid	8015B NM	31009
MB 880-31009/1-A	Method Blank	Total/NA	Solid	8015B NM	31009
LCS 880-31009/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	31009

Eurofins Carlsbad

Job ID: 890-2672-1 SDG: Lea County NM

Client: NT Global Project/Site: Rebel 20 CTB (Spill #1)

GC Semi VOA (Continued)

Analysis Batch: 31049 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-31009/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	31009
890-2670-A-1-B MS	Matrix Spike	Total/NA	Solid	8015B NM	31009
890-2670-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	31009

Analysis Batch: 31085

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2672-1	SW-1	Total/NA	Solid	8015B NM	31010
890-2672-2	SW-2	Total/NA	Solid	8015B NM	31010
890-2672-3	SW-3	Total/NA	Solid	8015B NM	31010
890-2672-4	SW-4	Total/NA	Solid	8015B NM	31010
890-2672-5	SW-5	Total/NA	Solid	8015B NM	31010
890-2672-6	SW-6	Total/NA	Solid	8015B NM	31010
890-2672-7	SW-7	Total/NA	Solid	8015B NM	31010
890-2672-8	SW-8	Total/NA	Solid	8015B NM	31010
890-2672-9	SW-9	Total/NA	Solid	8015B NM	31010
890-2672-10	SW-10	Total/NA	Solid	8015B NM	31010
890-2672-11	SW-11	Total/NA	Solid	8015B NM	31010
890-2672-12	SW-12	Total/NA	Solid	8015B NM	31010
890-2672-13	CS-1	Total/NA	Solid	8015B NM	31010
890-2672-14	CS-2	Total/NA	Solid	8015B NM	31010
890-2672-15	CS-3	Total/NA	Solid	8015B NM	31010
890-2672-16	CS-4	Total/NA	Solid	8015B NM	31010
890-2672-17	CS-5	Total/NA	Solid	8015B NM	31010
890-2672-18	CS-6	Total/NA	Solid	8015B NM	31010
890-2672-19	CS-7	Total/NA	Solid	8015B NM	31010
890-2672-20	CS-8	Total/NA	Solid	8015B NM	31010
MB 880-31010/1-A	Method Blank	Total/NA	Solid	8015B NM	31010
LCS 880-31010/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	31010
LCSD 880-31010/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	31010
890-2672-1 MS	SW-1	Total/NA	Solid	8015B NM	31010
890-2672-1 MSD	SW-1	Total/NA	Solid	8015B NM	31010

Analysis Batch: 31113

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
890-2672-1	SW-1	Total/NA	Solid	8015 NM	
890-2672-2	SW-2	Total/NA	Solid	8015 NM	
890-2672-3	SW-3	Total/NA	Solid	8015 NM	
890-2672-4	SW-4	Total/NA	Solid	8015 NM	
890-2672-5	SW-5	Total/NA	Solid	8015 NM	
890-2672-6	SW-6	Total/NA	Solid	8015 NM	
890-2672-7	SW-7	Total/NA	Solid	8015 NM	
890-2672-8	SW-8	Total/NA	Solid	8015 NM	
890-2672-9	SW-9	Total/NA	Solid	8015 NM	
890-2672-10	SW-10	Total/NA	Solid	8015 NM	
890-2672-11	SW-11	Total/NA	Solid	8015 NM	
890-2672-12	SW-12	Total/NA	Solid	8015 NM	
890-2672-13	CS-1	Total/NA	Solid	8015 NM	
890-2672-14	CS-2	Total/NA	Solid	8015 NM	
890-2672-15	CS-3	Total/NA	Solid	8015 NM	
890-2672-16	CS-4	Total/NA	Solid	8015 NM	
890-2672-17	CS-5	Total/NA	Solid	8015 NM	

Eurofins Carlsbad

Page 104 of 135

Job ID: 890-2672-1 SDG: Lea County NM

Client: NT Global Project/Site: Rebel 20 CTB (Spill #1)

GC Semi VOA (Continued)

Analysis Batch: 31113 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2672-18	CS-6	Total/NA	Solid	8015 NM	
890-2672-19	CS-7	Total/NA	Solid	8015 NM	
890-2672-20	CS-8	Total/NA	Solid	8015 NM	
890-2672-21	CS-9	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 30994

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2672-1	SW-1	Soluble	Solid	DI Leach	
890-2672-2	SW-2	Soluble	Solid	DI Leach	
890-2672-3	SW-3	Soluble	Solid	DI Leach	
890-2672-4	SW-4	Soluble	Solid	DI Leach	
890-2672-5	SW-5	Soluble	Solid	DI Leach	
890-2672-6	SW-6	Soluble	Solid	DI Leach	
890-2672-7	SW-7	Soluble	Solid	DI Leach	
890-2672-8	SW-8	Soluble	Solid	DI Leach	
390-2672-9	SW-9	Soluble	Solid	DI Leach	
890-2672-10	SW-10	Soluble	Solid	DI Leach	
390-2672-11	SW-11	Soluble	Solid	DI Leach	
90-2672-12	SW-12	Soluble	Solid	DI Leach	
90-2672-13	CS-1	Soluble	Solid	DI Leach	
90-2672-14	CS-2	Soluble	Solid	DI Leach	
90-2672-15	CS-3	Soluble	Solid	DI Leach	
90-2672-16	CS-4	Soluble	Solid	DI Leach	
90-2672-17	CS-5	Soluble	Solid	DI Leach	
90-2672-18	CS-6	Soluble	Solid	DI Leach	
90-2672-19	CS-7	Soluble	Solid	DI Leach	
90-2672-20	CS-8	Soluble	Solid	DI Leach	
IB 880-30994/1-A	Method Blank	Soluble	Solid	DI Leach	
CS 880-30994/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
CSD 880-30994/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
90-2672-1 MS	SW-1	Soluble	Solid	DI Leach	
90-2672-1 MSD	SW-1	Soluble	Solid	DI Leach	
90-2672-11 MS	SW-11	Soluble	Solid	DI Leach	
90-2672-11 MSD	SW-11	Soluble	Solid	DI Leach	

Leach Batch: 30995

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2672-21	CS-9	Soluble	Solid	DI Leach	
MB 880-30995/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-30995/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-30995/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-17511-A-1-E MS	Matrix Spike	Soluble	Solid	DI Leach	
880-17511-A-1-F MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
890-2673-A-1-C MS	Matrix Spike	Soluble	Solid	DI Leach	
890-2673-A-1-F MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
Analysis Batch: 31032					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2672-1	SW-1	Soluble	Solid	300.0	30994

Eurofins Carlsbad

Page 105 of 135

Job ID: 890-2672-1 SDG: Lea County NM

Client: NT Global Project/Site: Rebel 20 CTB (Spill #1)

HPLC/IC (Continued)

Analysis Batch: 31032 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2672-2	SW-2	Soluble	Solid	300.0	30994
890-2672-3	SW-3	Soluble	Solid	300.0	30994
890-2672-4	SW-4	Soluble	Solid	300.0	30994
890-2672-5	SW-5	Soluble	Solid	300.0	30994
890-2672-6	SW-6	Soluble	Solid	300.0	30994
890-2672-7	SW-7	Soluble	Solid	300.0	30994
890-2672-8	SW-8	Soluble	Solid	300.0	30994
890-2672-9	SW-9	Soluble	Solid	300.0	30994
890-2672-10	SW-10	Soluble	Solid	300.0	30994
890-2672-11	SW-11	Soluble	Solid	300.0	30994
890-2672-12	SW-12	Soluble	Solid	300.0	30994
890-2672-13	CS-1	Soluble	Solid	300.0	30994
890-2672-14	CS-2	Soluble	Solid	300.0	30994
890-2672-15	CS-3	Soluble	Solid	300.0	30994
890-2672-16	CS-4	Soluble	Solid	300.0	30994
890-2672-17	CS-5	Soluble	Solid	300.0	30994
890-2672-18	CS-6	Soluble	Solid	300.0	30994
890-2672-19	CS-7	Soluble	Solid	300.0	30994
890-2672-20	CS-8	Soluble	Solid	300.0	30994
MB 880-30994/1-A	Method Blank	Soluble	Solid	300.0	30994
LCS 880-30994/2-A	Lab Control Sample	Soluble	Solid	300.0	30994
LCSD 880-30994/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	30994
890-2672-1 MS	SW-1	Soluble	Solid	300.0	30994
890-2672-1 MSD	SW-1	Soluble	Solid	300.0	30994
890-2672-11 MS	SW-11	Soluble	Solid	300.0	30994
890-2672-11 MSD	SW-11	Soluble	Solid	300.0	30994

Analysis Batch: 31033

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2672-21	CS-9	Soluble	Solid	300.0	30995
MB 880-30995/1-A	Method Blank	Soluble	Solid	300.0	30995
LCS 880-30995/2-A	Lab Control Sample	Soluble	Solid	300.0	30995
LCSD 880-30995/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	30995
880-17511-A-1-E MS	Matrix Spike	Soluble	Solid	300.0	30995
880-17511-A-1-F MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	30995
890-2673-A-1-C MS	Matrix Spike	Soluble	Solid	300.0	30995
890-2673-A-1-F MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	30995

Project/Site: Rebel 20 CTB (Spill #1)

Job ID: 890-2672-1 SDG: Lea County NM

Lab Sample ID: 890-2672-1 Matrix: Solid

Client Sample ID: SW-1 Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

Client: NT Global

Prep Туре	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Туре	Method	Run Fa	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	30987	07/29/22 10:37	EL	XEN MID
Total/NA	Analysis	8021B		1			31071	07/30/22 21:54	AJ	XEN MID
Total/NA	Analysis	Total BTEX		1			31072	07/30/22 18:57	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			31113	07/31/22 10:33	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	31010	07/29/22 13:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			31085	07/31/22 11:29	SM	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	30994	07/29/22 11:20	SMC	XEN MID
Soluble	Analysis	300.0		1			31032	07/29/22 22:35	СН	XEN MID

Client Sample ID: SW-2

Date Collected: 07/27/22 00:00

Date Received: 07/28/22 09:50

Ргер Туре	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	30987	07/29/22 10:37	EL	XEN MID
Total/NA	Analysis	8021B		1			31071	07/30/22 22:20	AJ	XEN MID
Total/NA	Analysis	Total BTEX		1			31072	07/30/22 18:57	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			31113	07/31/22 10:33	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	31010	07/29/22 13:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			31085	07/31/22 12:33	SM	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	30994	07/29/22 11:20	SMC	XEN MID
Soluble	Analysis	300.0		1			31032	07/29/22 22:58	СН	XEN MID

Client Sample ID: SW-3

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

Ргер Туре	Batch	Batch	Run	Dil	Initial	Final	Batch	Prepared		
	Туре	Method		Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	30987	07/29/22 10:37	EL	XEN MID
Total/NA	Analysis	8021B		1			31071	07/30/22 22:46	AJ	XEN MID
Total/NA	Analysis	Total BTEX		1			31072	07/30/22 18:57	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			31113	07/31/22 10:33	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	31010	07/29/22 13:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			31085	07/31/22 12:55	SM	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	30994	07/29/22 11:20	SMC	XEN MID
Soluble	Analysis	300.0		1			31032	07/29/22 23:06	СН	XEN MID

Client Sample ID: SW-4 Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	30987	07/29/22 10:37	EL	XEN MID
Total/NA	Analysis	8021B		1			31071	07/30/22 23:13	AJ	XEN MID
Total/NA	Analysis	Total BTEX		1			31072	07/30/22 18:57	AJ	XEN MID

Eurofins Carlsbad

Matrix: Solid

Lab Sample ID: 890-2672-2 Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-2672-3

Lab Sample ID: 890-2672-4

9

Project/Site: Rebel 20 CTB (Spill #1)

Job ID: 890-2672-1 SDG: Lea County NM

Lab Sample ID: 890-2672-4 Matrix: Solid

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

Client Sample ID: SW-4

Client: NT Global

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			31113	07/31/22 10:33	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	31010	07/29/22 13:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			31085	07/31/22 13:17	SM	XEN MID
Soluble	Leach	DI Leach			5.04 g	50 mL	30994	07/29/22 11:20	SMC	XEN MID
Soluble	Analysis	300.0		1			31032	07/29/22 23:14	СН	XEN MID

Client Sample ID: SW-5 Date Collected: 07/27/22 00:00

Date Received: 07/28/22 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	30987	07/29/22 10:37	EL	XEN MID
Total/NA	Analysis	8021B		1			31071	07/30/22 23:39	AJ	XEN MID
Total/NA	Analysis	Total BTEX		1			31072	07/30/22 18:57	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			31113	07/31/22 10:33	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	31010	07/29/22 13:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			31085	07/31/22 13:39	SM	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	30994	07/29/22 11:20	SMC	XEN MID
Soluble	Analysis	300.0		1			31032	07/29/22 23:22	СН	XEN MID

Client Sample ID: SW-6

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	30987	07/29/22 10:37	EL	XEN MID
Total/NA	Analysis	8021B		1			31071	07/31/22 00:04	AJ	XEN MID
Total/NA	Analysis	Total BTEX		1			31072	07/30/22 18:57	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			31113	07/31/22 10:33	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	31010	07/29/22 13:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			31085	07/31/22 14:00	SM	XEN MID
Soluble	Leach	DI Leach			4.97 g	50 mL	30994	07/29/22 11:20	SMC	XEN MID
Soluble	Analysis	300.0		1			31032	07/29/22 23:45	CH	XEN MID

Client Sample ID: SW-7

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	30987	07/29/22 10:37	EL	XEN MID
Total/NA	Analysis	8021B		1			31071	07/31/22 00:30	AJ	XEN MID
Total/NA	Analysis	Total BTEX		1			31072	07/30/22 18:57	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			31113	07/31/22 10:33	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	31010	07/29/22 13:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			31085	07/31/22 14:22	SM	XEN MID

Eurofins Carlsbad

Matrix: Solid

5

9

Lab Sample ID: 890-2672-6

Lab Sample ID: 890-2672-7

Matrix: Solid

Matrix: Solid
Matrix: Solid

Matrix: Solid

Matrix: Solid

Lab Chronicle

Job ID: 890-2672-1 SDG: Lea County NM

Lab Sample ID: 890-2672-7

Lab Sample ID: 890-2672-8

Lab Sample ID: 890-2672-9

Client Sample ID: SW-7

Project/Site: Rebel 20 CTB (Spill #1)

Client: NT Global

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.03 g	50 mL	30994	07/29/22 11:20	SMC	XEN MID
Soluble	Analysis	300.0		1			31032	07/29/22 23:53	СН	XEN MID

Client Sample ID: SW-8

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	30987	07/29/22 10:37	EL	XEN MID
Total/NA	Analysis	8021B		1			31071	07/31/22 00:55	AJ	XEN MID
Total/NA	Analysis	Total BTEX		1			31072	07/30/22 18:57	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			31113	07/31/22 10:33	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	31010	07/29/22 13:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			31085	07/31/22 14:44	SM	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	30994	07/29/22 11:20	SMC	XEN MID
Soluble	Analysis	300.0		1			31032	07/30/22 00:01	СН	XEN MID

Client Sample ID: SW-9 Date Collected: 07/27/22 00:00

Date Received: 07/28/22 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	30987	07/29/22 10:37	EL	XEN MID
Total/NA	Analysis	8021B		1			31071	07/31/22 01:21	AJ	XEN MID
Total/NA	Analysis	Total BTEX		1			31072	07/30/22 18:57	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			31113	07/31/22 10:33	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	31010	07/29/22 13:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			31085	07/31/22 15:06	SM	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	30994	07/29/22 11:20	SMC	XEN MID
Soluble	Analysis	300.0		1			31032	07/30/22 00:09	СН	XEN MID

Client Sample ID: SW-10 Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

Lab Sample ID: 890-2672-10 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	30987	07/29/22 10:37	EL	XEN MID
Total/NA	Analysis	8021B		1			31071	07/31/22 01:46	AJ	XEN MID
Total/NA	Analysis	Total BTEX		1			31072	07/30/22 18:57	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			31113	07/31/22 10:33	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	31010	07/29/22 13:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			31085	07/31/22 15:28	SM	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	30994	07/29/22 11:20	SMC	XEN MID
Soluble	Analysis	300.0		1			31032	07/30/22 00:17	СН	XEN MID

Eurofins Carlsbad

Project/Site: Rebel 20 CTB (Spill #1)

Job ID: 890-2672-1 SDG: Lea County NM

Lab Sample ID: 890-2672-11

Lab Sample ID: 890-2672-12

Matrix: Solid

Matrix: Solid

5

9

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

Client Sample ID: SW-11

Client: NT Global

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	30987	07/29/22 10:37	EL	XEN MID
Total/NA	Analysis	8021B		1			31071	07/31/22 03:29	AJ	XEN MID
Total/NA	Analysis	Total BTEX		1			31072	07/30/22 18:57	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			31113	07/31/22 10:33	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	31010	07/29/22 13:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			31085	07/31/22 16:11	SM	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	30994	07/29/22 11:20	SMC	XEN MID
Soluble	Analysis	300.0		1			31032	07/30/22 00:25	СН	XEN MID

Client Sample ID: SW-12

Date Collected: 07/27/22 00:00

Date Received: 07/28/22 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	30987	07/29/22 10:37	EL	XEN MID
Total/NA	Analysis	8021B		1			31071	07/31/22 03:54	AJ	XEN MID
Total/NA	Analysis	Total BTEX		1			31072	07/30/22 18:57	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			31113	07/31/22 10:33	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	31010	07/29/22 13:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			31085	07/31/22 16:32	SM	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	30994	07/29/22 11:20	SMC	XEN MID
Soluble	Analysis	300.0		1			31032	07/30/22 00:48	СН	XEN MID

Client Sample ID: CS-1

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	30987	07/29/22 10:37	EL	XEN MID
Total/NA	Analysis	8021B		1			31071	07/31/22 04:20	AJ	XEN MID
Total/NA	Analysis	Total BTEX		1			31072	07/30/22 18:57	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			31113	07/31/22 10:33	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	31010	07/29/22 13:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			31085	07/31/22 16:54	SM	XEN MID
Soluble	Leach	DI Leach			4.96 g	50 mL	30994	07/29/22 11:20	SMC	XEN MID
Soluble	Analysis	300.0		1			31032	07/30/22 00:56	СН	XEN MID

Client Sample ID: CS-2 Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	30987	07/29/22 10:37	EL	XEN MID
Total/NA	Analysis	8021B		1			31071	07/31/22 04:46	AJ	XEN MID
Total/NA	Analysis	Total BTEX		1			31072	07/30/22 18:57	AJ	XEN MID

Eurofins Carlsbad

Matrix: Solid

Page 110 of 135

Lab Sample ID: 890-2672-13 Matrix: Solid

Lab Sample ID: 890-2672-14

Project/Site: Rebel 20 CTB (Spill #1)

Job ID: 890-2672-1 SDG: Lea County NM

Lab Sample ID: 890-2672-14 Matrix: Solid

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

Client Sample ID: CS-2

Client: NT Global

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			31113	07/31/22 10:33	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	31010	07/29/22 13:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			31085	07/31/22 17:16	SM	XEN MID
Soluble	Leach	DI Leach			5.04 g	50 mL	30994	07/29/22 11:20	SMC	XEN MID
Soluble	Analysis	300.0		1			31032	07/30/22 01:20	СН	XEN MID

Client Sample ID: CS-3 Date Collected: 07/27/22 00:00

Date Received: 07/28/22 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	30987	07/29/22 10:37	EL	XEN MID
Total/NA	Analysis	8021B		1			31071	07/31/22 05:11	AJ	XEN MID
Total/NA	Analysis	Total BTEX		1			31072	07/30/22 18:57	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			31113	07/31/22 10:33	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	31010	07/29/22 13:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			31085	07/31/22 17:37	SM	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	30994	07/29/22 11:20	SMC	XEN MID
Soluble	Analysis	300.0		1			31032	07/30/22 01:28	СН	XEN MID

Client Sample ID: CS-4

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	30987	07/29/22 10:37	EL	XEN MID
Total/NA	Analysis	8021B		1			31071	07/31/22 05:37	AJ	XEN MID
Total/NA	Analysis	Total BTEX		1			31072	07/30/22 18:57	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			31113	07/31/22 10:33	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	31010	07/29/22 13:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			31085	07/31/22 17:59	SM	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	30994	07/29/22 11:20	SMC	XEN MID
Soluble	Analysis	300.0		1			31032	07/30/22 01:35	CH	XEN MID

Client Sample ID: CS-5

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	30987	07/29/22 10:37	EL	XEN MID
Total/NA	Analysis	8021B		1			31071	07/31/22 06:03	AJ	XEN MID
Total/NA	Analysis	Total BTEX		1			31072	07/30/22 18:57	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			31113	07/31/22 10:33	AJ	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.02 g	10 mL	31010 31085	07/29/22 13:05 07/31/22 18:21	DM SM	XEN MID XEN MID

Eurofins Carlsbad

5 9 Matrix: Solid

Lab Sample ID: 890-2672-16

Lab Sample ID: 890-2672-17

Matrix: Solid

Matrix: Solid

Lab Chronicle

Job ID: 890-2672-1 SDG: Lea County NM

Lab Sample ID: 890-2672-17

Lab Sample ID: 890-2672-18

Lab Sample ID: 890-2672-19

Client Sample ID: CS-5

Project/Site: Rebel 20 CTB (Spill #1)

Client: NT Global

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.05 g	50 mL	30994	07/29/22 11:20	SMC	XEN MID
Soluble	Analysis	300.0		1			31032	07/30/22 01:43	СН	XEN MID

Client Sample ID: CS-6

Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	30987	07/29/22 10:37	EL	XEN MID
Total/NA	Analysis	8021B		1			31071	07/31/22 06:29	AJ	XEN MID
Total/NA	Analysis	Total BTEX		1			31072	07/30/22 18:57	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			31113	07/31/22 10:33	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	31010	07/29/22 13:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			31085	07/31/22 18:42	SM	XEN MID
Soluble	Leach	DI Leach			5.03 g	50 mL	30994	07/29/22 11:20	SMC	XEN MID
Soluble	Analysis	300.0		1			31032	07/30/22 01:51	СН	XEN MID

Client Sample ID: CS-7 Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	30987	07/29/22 10:37	EL	XEN MID
Total/NA	Analysis	8021B		1			31071	07/31/22 06:55	AJ	XEN MID
Total/NA	Analysis	Total BTEX		1			31072	07/30/22 18:57	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			31113	07/31/22 10:33	AJ	XEN MIC
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	31010	07/29/22 13:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			31085	07/31/22 19:04	SM	XEN MID
Soluble	Leach	DI Leach			4.98 g	50 mL	30994	07/29/22 11:20	SMC	XEN MID
Soluble	Analysis	300.0		1			31032	07/30/22 01:59	СН	XEN MID

Client Sample ID: CS-8 Date Collected: 07/27/22 00:00 Date Received: 07/28/22 09:50

Lab Sample ID: 890-2672-20

Matrix: Solid

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	30987	07/29/22 10:37	EL	XEN MID
Total/NA	Analysis	8021B		1			31071	07/31/22 07:22	AJ	XEN MID
Total/NA	Analysis	Total BTEX		1			31072	07/30/22 18:57	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			31113	07/31/22 10:33	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	31010	07/29/22 13:05	DM	XEN MID
Total/NA	Analysis	8015B NM		1			31085	07/31/22 19:26	SM	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	30994	07/29/22 11:20	SMC	XEN MID
Soluble	Analysis	300.0		1			31032	07/30/22 02:07	СН	XEN MID

Eurofins Carlsbad

Matrix: Solid

Matrix: Solid

Matrix: Solid

9

Released to Imaging: 11/10/2022 3:35:51 PM

9

Job ID: 890-2672-1 SDG: Lea County NM

Lab Sample ID: 890-2672-21

Matrix: Solid

Client Sample ID: CS-9 Date Collected: 07/27/22 00:00

Project/Site: Rebel 20 CTB (Spill #1)

Client: NT Global

Date	Received:	07/28/22	09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	30988	07/29/22 10:52	EL	XEN MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	30959	07/29/22 20:04	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			31072	07/30/22 18:57	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			31113	07/31/22 10:33	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	31009	07/29/22 13:01	DM	XEN MID
Total/NA	Analysis	8015B NM		1			31049	07/30/22 13:21	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	30995	07/29/22 11:23	SMC	XEN MID
Soluble	Analysis	300.0		1			31033	07/30/22 00:45	СН	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 11/10/2022 3:35:51 PM

		Accreditation/C	ertification Summary		
Client: NT Global Project/Site: Rebel 20	CTB (Spill #1)			Job ID: 890-26 SDG: Lea County	
Laboratory: Eurof					3
Unless otherwise noted, all a	analytes for this laboratory	y were covered under each acc	reditation/certification below.		_
Authority		Program	Identification Number	Expiration Date	
Texas		NELAP	T104704400-22-24	06-30-23	
The following analytes	are included in this repor	t. but the laboratory is not certif	ied by the governing authority. This list ma	v include analytes for which	5
the agency does not of	-	,		,	
Analysis Method	Prep Method	Matrix	Analyte		
8015 NM		Solid	Total TPH		
Total BTEX		Solid	Total BTEX		
					8
					9
					10
					13

Eurofins Carlsbad

Method Summary

Client: NT Global Project/Site: Rebel 20 CTB (Spill #1) Job ID: 890-2672-1 SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
5035	Closed System Purge and Trap	SW846	XEN MID
8015NM Prep	Microextraction	SW846	XEN MID
DI Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Sample Summary

Client: NT Global Project/Site: Rebel 20 CTB (Spill #1)

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
890-2672-1	SW-1	Solid	07/27/22 00:00	07/28/22 09:50
890-2672-2	SW-2	Solid	07/27/22 00:00	07/28/22 09:50
890-2672-3	SW-3	Solid	07/27/22 00:00	07/28/22 09:50
890-2672-4	SW-4	Solid	07/27/22 00:00	07/28/22 09:50
890-2672-5	SW-5	Solid	07/27/22 00:00	07/28/22 09:50
890-2672-6	SW-6	Solid	07/27/22 00:00	07/28/22 09:50
890-2672-7	SW-7	Solid	07/27/22 00:00	07/28/22 09:50
890-2672-8	SW-8	Solid	07/27/22 00:00	07/28/22 09:50
890-2672-9	SW-9	Solid	07/27/22 00:00	07/28/22 09:50
890-2672-10	SW-10	Solid	07/27/22 00:00	07/28/22 09:50
890-2672-11	SW-11	Solid	07/27/22 00:00	07/28/22 09:50
890-2672-12	SW-12	Solid	07/27/22 00:00	07/28/22 09:50
890-2672-13	CS-1	Solid	07/27/22 00:00	07/28/22 09:50
890-2672-14	CS-2	Solid	07/27/22 00:00	07/28/22 09:50
890-2672-15	CS-3	Solid	07/27/22 00:00	07/28/22 09:50
890-2672-16	CS-4	Solid	07/27/22 00:00	07/28/22 09:50
890-2672-17	CS-5	Solid	07/27/22 00:00	07/28/22 09:50
890-2672-18	CS-6	Solid	07/27/22 00:00	07/28/22 09:50
890-2672-19	CS-7	Solid	07/27/22 00:00	07/28/22 09:50
890-2672-20	CS-8	Solid	07/27/22 00:00	07/28/22 09:50
890-2672-21	CS-9	Solid	07/27/22 00:00	07/28/22 09:50

Job ID: 890-2672-1

SDG: Lea County NM

Minigare (ny Name an ZP Ethan Sessimins (a) ZE (2005) Bartic, planewolf, (a) Carbon Mane (a) ZE (2005) Mane (a) Carbon Mane (b) Signa Functs Hallowy Feature (b) Carbon Mane (b) Signa Functs Hallowy Feature (b) Carbon Mane (b) Carbon Mane (c)				950	28.20	1.2		C	le (A	fort
Work Order Comments ST PRP Brownfields RRC I Level III PST/UST Preservati ADaPT Other: Other: I ADaPT Other: I ADaPT Other: I None: NO I Nalso Nalso I Nalso Nalso I Nalso Sample C I I I	_	Received by: (Sign:	telinquished by: (Signature))ate/Time		e)	by:	Received		by: (Signature	Relinquished
Manager Effan Sessurits Garlinger Annees Market Sessurits		d conditions nd the control otlated.	ontractors. It assigns standard terms an h losses are due to circumstances beyon will be enforced unless previously nego	iliates and subc the client if suc yzed. These terr	enco, its aff incurred by sut not anal	npany to X r expenses to Xenco, L	 order from client cor bility for any losses o ich sample submitted 	es a valid purchase sume any responsi charge of \$5 for ea	ples constitut d shall not as: project and a	relinquishment of samp the cost of samples and will be applied to each	his document and i be liable only for t charge of \$85.00 v	Notice: Signature of th of service. Xenco will of Xenco. A minimum
Manager Ethan Sessums Balt or, if amening company Name Windley Mahnes Work Order Comments sis 254-266-265 Emolitic Company Name Devon Entry Program: UST/RE [] Per [ents:	tional Comm	Addi
Manager Enrign Sessions Outgrame values Dates of university Weakly Mathews Feedback Mathews Wood of comments Wood of comments sis as 22 Company Name But to or university But to or univers						_	Comp	×		7/27/2022	V-10	SV
Manager Ethan Sessuris Mit C Environmental Company Name Devon Energy Manager Manager Relation mental Company Name Devon Energy Presentation Work Order Comments as ZIP Carbabadi, Mi 82:0 Ennal: Katte Size Address: Address: Antension State of Project: Reprint: USTRET ["PRP []"Rep []"Rep State of Project: Reprint: USTRET ["PRP []"Rep State of Project: Reprint: USTRET []"Rep State of Project: Reprin: USTRET [] Rep State of Project: Reprint: USTRE				+-	+	-	Comp	×		7/27/2022	6-N	IS
Manager: Ethan Sessums Ball (c, raineven) Westey Mathews Beau Work Order Comments ss 402 E Wood Ave 234-266-346 Cambod (k) Address: Address: <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>Comp</td> <td>×</td> <td></td> <td>712712022</td> <td>N-8</td> <td>SI</td>					-		Comp	×		712712022	N-8	SI
Manager Ethan Sessum Bill G. (rafeeno) Westey Mathews Money Work Order Comments s. 402 E-Wood Ave Company Name Devon Energy Program: USTPST PPP Drownfields PRC Program: USTPST PPP Drownfields PRC State of Projet: State of Projet: Program: USTPST PPP Drownfields PRC State of Projet: Reporting Level III Level III Drovine Company Name Frage State of Projet: Reporting Level III Level III Drovine Reporting Level IIII Drovine Reporting Level III Dro					-		Comp	×		7/27/2022	N-7	IS
Manager: Ethan Sessums Omy Name NTG Environmental Company Name Devon Energy Parogram: Ustrest Work Order Comments s: 402 E Wood Ave Carisbad, NM 86220 Enal Waley Mathews@dv Address. 6488 Siven Rivers Highway State of Polect: State of Polect: State of Polect: State of Polect: Parogram: USTPST [PRP Program: USTPST				-	-		Comp	×		7/27/2022	9-N	IS
Manager Ethan Sessums Mark order Comments Work Order Comments Work Order Comments sr 402 E Wood Ave Campany Name Devon Energy Seven Rivers Highway Program: USTPST [PRP]brownfields [RRC sate ZIP: Carlsbad, NM 88220 Email Wesley Mathews@un com State of Project: State				-	-		Comp	×		7/27/2022	N-5	IS
Manager Ethan Sessums Bill to, of dimenti Wesley Mathews Work Order Comments sr 402 E Wood Are Address: Address: Bill to, of dimenti Bill to, of dimenti Program: UST/PST PRP Prommitelds TRC Number 254/266-5456 Enail Usesitor Club State Program: UST/PST PRP Noner Noner Noner Noner Noner Program: UST/PST PRP Noner Noner </td <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>Comp</td> <td>×</td> <td></td> <td>7/27/2022</td> <td>N-4</td> <td>IS</td>					-		Comp	×		7/27/2022	N-4	IS
Marager: Ethan Sessums Bill to: (trafferen) Wesley Mathews work Order Comments sv 402 E Wood Are Company Name: Devon Energy Program: UST/PST PRP Program: US				-	-		Comp	×		7/27/2022	N-3	IS
Manager: Ethan Sessums Bill to: (r drivern) Wesley Mathews Work Order Comments sv: 402 E Wood Ave Company Name Devon Energy Program: UST/PST PRP Program: US				-	-		Comp	×		7/27/2022	N-2	IS
Manager: Ethan Sessums Bill to: (if different) Wesley Mathews Monte Sessums Work Order Comments s. 402 E Wood Ave Address: Address: Bill to: (if different) Devon Energy Program: USTPST PRP Prownfields RRC ate ZIP: Caritsbad, NM 88220 Ernall Wesley Mathews@dvn.com Address: Address: Reporting Level II Level III Level III PST/UST PRP Prownfields PRC Number 254-266-5456 Ernall Wesley Mathews@dvn.com Analysis REOUEST Reporting Level II DST/UST PRP Prownfields PRC Number 254-266-5456 Ernall Wesley Mathews@dvn.com Analysis REOUEST Reporting Level II DST/UST PRP Prownfields PRC Number 254-266-5456 Franell Wesley Mathews@dvn.com Analysis REOUEST None NO Location Lea Co NM Due Date: 24Hr One None NO Location Lea Co NM Due Date: 24Hr One None NO Cool Cool Location Ves. No Thermometer.D: T/////////////// Proservati None NO Cool Cool Location Ves. No Thermometer.D: T/////////// Proservati None NO Cool Cool				-	-	-	Comp	×		7/27/2022	N-1	IS
Manager. Ethan Sessums Bill to: (f afferent) Wesley Mathews Work Order Comments ny Name NTG Environmental Company Name Devon Energy Program: UST/PST [PRP Prownfields [PRC ss 212 Carlsbad, NM 88220 Email: Wesley Mathews@dvn.com Artesia, NM 88210 State of Project: 254-266-5456 Email: Wesley Mathews@dvn.com 225511 Tum Around Pres. Artesia, NM 88210 Devon Energy State of Project: Reporting: Level III [Level III] [Level III [Leve	Sample Comments				ТР	# of Cont		Soil	Time	Date	entification	Sample Id
Manager. Ethan Sesums Bill to: (if direren) Wesley Mathews Work Order Comments ny Name NTG Environmental Company Name Devon Energy Province Energy	NaUH+Ascorbic Acid. SAFC	-			- 80		D.4	Temperature:	Corrected	21	-	Total Containers:
Manager Ethan Sessums Bill to: (if different) Wesley Mathews Work Order Comments ny Name NTG Environmental Company Name: Devon Energy Program: USTPST [PRP] Brownfields [RRC s: 402 E Wood Ave Address: 6488 Seven Rivers Highway State of Project: aile ZIP: Carlsbad, NM 88220 Email Wesley Mathews@dvn.com State of Project: 254-266-5456 Email Wesley Mathews@dvn.com Address: EDD ADaPT Other: Name: Rebel 20 CTB (spill #1) Turn Around Pres. Arresia, NM 88210 Deliverables: EDD ADaPT Other: Number: 225511 Icea Co NM Due Date: 24Hr Cool None: NO Cool Cool Location Lea Co NM Due Date: 24Hr Cool Cool Cool Cool Cool Cool Cool Cool Cool VER RECEIPT Temp Blank: Yes, No Thermometer ID: N.M. Dorrection Factor: N.M. Dorrection Factor: N.D. Dor Parameters Mad H,PO;. HP Vestory Seals: Yes, No Thermometer ID: N.M. So; NaSO; ANALYSIS MalSO; NaSO; <td>Zn Acetate+NaUH: Zn</td> <td>Land the state burner was and the inclusion of the</td> <td>)-2672</td> <td>_</td> <td>-</td> <td></td> <td>2.6</td> <td>ire Reading:</td> <td>Temperatu</td> <td>No</td> <td>+</td> <td>Sample Custody S</td>	Zn Acetate+NaUH: Zn	Land the state burner was and the inclusion of the)-2672	_	-		2.6	ire Reading:	Temperatu	No	+	Sample Custody S
Manager: Ethan Sessums Bill to: (if different) Wesley Mathews Work Order Comments nry Name: NTG Environmental Company Name: Devon Energy Program: UST/PST [PRP]srownfields [RRC s: 402 E Wood Ave Address: 6488 Seven Rivers Highway Reporting: Level II [Devonfields [RRC atat ZIP: Carlsbad, NM 88220 Email: Wesley Mathews@dvn com Adressi, NM 88210 State of Project: name: Rebel 20 CTB (spill #1) Turn Around Artesia, NM 88210 Pres. Reporting: Level III [DestrUST [DRP] Brownfields [RRC Number: 225511 I Routine Routine Rush Come Ant_VSIS REQUEST ADaPT Other: NO Location Lea Co NM Due Date: 24Hr None: NO Cool: Cool Cool: Cool Cool: Cool Cool: Cool Cool: Cool Cool: Cool Ho Ho: Ho HoSO; H2 Ho; Ho; H2 HasO; H2 <td< td=""><td></td><td></td><td></td><td>-</td><td></td><td>P</td><td>0.2</td><td>Factor:</td><td>Correction</td><td>No</td><td></td><td>Cooler Custody Se</td></td<>				-		P	0.2	Factor:	Correction	No		Cooler Custody Se
Manager: Ethan Sessums Bil to: (if different) Wesley Mathews Work Order Comments ny Name: NTG Environmental Company Name: Devon Energy Program: UST/PST PRP Prownfields PRC s: 402 E Wood Ave Address: 6488 Seven Rivers Highway Fragram: UST/PST PRP Prownfields PRC state ZIP: Carlsbad, NM 88220 Email: Vesley Mathews@dvn.com State of Project: Reporting: Level III Pst/UST PRP vame: Rebel 20 CTB (spill #1) Turn Around Arlesia, NM 88210 ADaPT Other: Number: Lea Co NM Due Date: 24Hr Free: None: NO Location Lea Co NM Due Date: 24Hr Pres: None: NO Leo Z1025271 Lab, if received by 4.30pm MR PR MR Provide HCL: HC Holt: Hock: Yes (vol) Vest Ice: Ves No MR MR MR H				_	-	araı	Par-WN	4	Thermome	Yes No		Received Intact:
Manager: Ethan Sessums Bill to: (if different) Wesley Mathews Work Order Comments ny Name: NTG Environmental Company Name: Devon Energy Program: UST/PST \PRP Brownfields \RRC s: 402 E Wood Ave Address: 6488 Seven Rivers Highway Forgram: UST/PST \PRP Brownfields \RRC ate ZIP: Carlsbad, NM 88220 City, State ZIP: Artesia, NM 88210 State of Project: 254-266-5456 Email: Wesley Mathews@dvn.com Preside of Project: Reporting:Level III \Level III \Dig Strust \Dig Stru	-			-	-	nete	N .			Temp Blank:	EIPT	SAMPLE RECI
Manager: Ethan Sessums Bill to: (r diferent) Wesley Mathews Work Order Comments ny Name: NTG Environmental Company Name: Devon Energy Program: UST/PST \prp Program: UST/PST \prp Prownfields \prownfields \pr					0 + 1	ers	ed by 4:30pm	lab, if receiv)	21025271		PO#
Manager. Ethan Sessums Bill to: (If different) Wesley Mathews Work Order Comments ny Name: NTG Environmental Company Name: Devon Energy Program: UST/PST \program: UST/UST \program: UST/US					MRO		ay received by the	TAT starts the d		Jordan Tyner		Sampler's Name:
Manager. Ethan Sessums Bill to: (If different) Wesley Mathews Work Order Comments ny Name: NTG Environmental Company Name: Devon Energy Program: UST/PST PR Prownfields RRC s: 402 E Wood Ave Address: 6488 Seven Rivers Highway State of Project: State of Project: State of Project: Program: UST/PST PR Prownfields PRC iate ZIP: Carlsbad, NM 88220 Email: Vesley Mathews@dvn.com Artesia. NM 88210 Bevon Energy State of Project: Apprt Deliverables: EDD Preservati Name: Rebel 20 CTB (spill #1) Tun Around Pres. AnALYSIS REQUEST Preservati Number: 225511 Proutine Rush Com AnALYSIS REQUEST None: NO							24Hr	Due Date:		Lea Co NM		Project Location
Manager. Ethan Sessums Bill to: (fr different) Wesley Mathews Work Order Comments ny Name: NTG Environmental Company Name: Devon Energy Program: UST/PST PRP Brownfields RRC s: 402 E Wood Ave Address: 6488 Seven Rivers Highway State of Project: ate ZIP: Carlsbad, NM 88220 City, State ZIP: Artesia, NM 88210 Reporting:Level II Level III PST/UST FRP 254-266-5456 Email: Wesley Mathews@dvn.com AnALYSIS REQUEST Preservati Name: Rebel 20 CTB (spill #1) Turn Around AnALYSIS REQUEST Preservati					-	Code	Rush	Routine		225511		Project Number:
Manager: Ethan Sessums Bill to: (if different) Wesley Mathews Work Order Comments ny Name: NTG Environmental Company Name: Devon Energy Program: UST/PST PRP brownfields RRC s: 402 E Wood Ave Address: 6488 Seven Rivers Highway State of Project: ate ZIP: Carlsbad, NM 88220 City, State ZIP: Artesia, NM 88210 Reporting: Level III Level III PST/UST FRRP 254-266-5456 Email: Wesley. Mathews@dvn.com Deliverables: EDD ADaPT Other:	Preservative Codes						Around	Turn	¥1)	el 20 CTB (spill #	Reb	^o roject Name:
Ethan Sessums Bill to: (if different) Wesley Mathews Work Order Comments NTG Environmental Company Name: Devon Energy Program: UST/PST \PRP \Brownfields \RRC 402 E Wood Ave Address: 6488 Seven Rivers Highway State of Project: Carlsbad, NM 88220 City, State ZIP: Artesia, NM 88210 Reporting:Level II Level III PST/UST \PRP			Delivert		m	@dvn.co	Nesley.Mathews			156	254-266-54	Phone:
Ethan Sessums Bill to: (If afferent) Wesley Mathews Work Order Comments NTG Environmental Company Name: Devon Energy Program: UST/PST PRP Brownfields RRC 402 E Wood Ave Address: 6488 Seven Rivers Highway State of Project:			Reporti	M 88210	Artesia, N		City, State ZIP:			VM 88220	Carlsbad, N	City, State ZIP:
Ethan Sessums Bill to: (f different) Wesley Mathews Work Order Comments NTG Environmental Company Name: Devon Energy Program: UST/PST PRP Brownfields RRC		of Project:		en Rivers Hig	6488 Sev		Address:			d Ave	402 E Woo	Address:
Ethan Sessums Bill to: (if different) Wesley Mathews	ownfields RRC uperfund		Progra	ergy	Devon En		Company Name:			onmental	NTG Enviro	Company Name:
	er Comments	Work Orde		athews	Wesley M		Sill to: (if different)			sums	Ethan Sess	Project Manager:
	1/>·	Mort Order N										
Work Order No:						The second se)

Received by OCD: 10/18/2022 8:28:21 AM

13

Chain of Custody

Released to Imaging: 11/10/2022 3:35:51 PM Page 49 of 53

8/1/2022

Bill to: (If different) Wesley Mathe Company Name: Devon Energy Address: 6488 Seven Ri City, State ZIP: Artesia, NM 88 City, State ZIP: Artesia, NM 88 Turn Around Pres. Ing Rush Code Code If received by the Code If received by 4:30pm Pres. If received by 4:30pm Parameters If comp Comp 1 If received by 4:30pm Parameters If comp Comp 1 If received by 4:30pm Pres. If received by 4:3
Vork
Wesley Mathews Work Devon Energy 6486 Seven Rivers Highway Antesia, NM 88210 Program: UST/PST Pres Antesia, NM 88210 Parameters Antesia, NM 88210 Deliverables: EDD Deliverables: EDD Deliverables: EDD Deliverables: EDD Pres Antesia, NM 88210 Antesia, NM 88210 Antesia, NM 88210 Antesia, NM 88210 Antesia, NM 88210 Deliverables: EDD Deliverables: EDD Deliverables: EDD Deliverables: EDD Deliverables: Anterial Structure Highway Antesia, NM 88210 Antesia, NM 88210 Antesia, NM 88210 <td< td=""></td<>
Mork i Program: UST/PST []PRP State of Project: Reporting: Level II] Level II Deliverables: EDD] I AMALYSIS REQUEST I Analysis I Image: Standard terms and conditions are due to circumstances beyond the control enforced unless previously negotiated. Image: Standard terms and conditions are due to circumstances beyond the control enforced unless previously negotiated.
. It assigne standard terms and conditions are due to circumstances beyond the control enforced unless previously negotiated. Work (Signature)
AMALYSIS REQUEST Work in the conditions of project: Amalysis and conditions are due to circumstances beyond the control enforced unless previously negotiated.
Image: State of Program: UST/PST [PRP] State of Project: Reporting: Level II [Level II] Deliverables: EDD [] ANALYSIS REQUEST AMALYSIS requires the standard terms and conditions are due to circumstances beyond the control enforced unless previously negotiated. Shed by: (Signature)
Image: state of the state o

Received by OCD: 10/18/2022 8:28:21 AM

Page 118 of 135

5

13

Chain of Custody

Released to Imaging: 11/10/2022 3:35:51 PM

Work Order No: _

Additional Comments:	CS-9	Sample Identification	Sample Custody Seals: Total Containers:	Received Intact: Cooler Custody Seals:	SAMPLE RECEIPT	Sampler's Name: PO #:	Project Location	эř.	Project Name: R	Phone: 254-266-5456	te ZIP:			Project Manager: Ethan Sessums
nments:	7/27/2022		No No	Yes No Yes No N/A	Temp Blank:	Jordan Tyner 21025271	Lea Co NM	225511	Rebel 20 CTB (spill #1)	3-5456	Carlsbad, NM 88220	402 E Wood Ave	NTG Environmental	essums
Notce: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the cof Xenco. A minimum charge of \$55.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed.		Time	-1154	Thermometer ID Correction Factor	Yes No		D		#1)					
tes a valid purchase o sume any responsibil charge of \$5 for each	×		Beading:	action	Wet Ice:	TAT starts the day received by the lab, if received by 4:30pm	Due Date:	Routine	Turn /	Email: V	0	Þ	0	
order from clien illity for any loss in sample submi	Comp	Water Grab/ Comp		_	Yes No	starts the day received by the lab, if received by 4:30pm	24Hr	Rush	Turn Around	Wesley.Mathews@dvn.com	City, State ZIP:	Address:	Company Name:	Bill to: (if different)
t company to the or expension thed to Xenco	np 1	b/ #of 1p Cont		Para	nete		_	Code		ews@dvn			<u>e</u>	0
, Xenco, its affi es incurred by , but not analy Date/Time	×			TEX 802						.com	Artesia,	6488 Se	Devon Energy	Wesley Mathews
fillates and s by the client if alyzed. These NC 2	×	трн	8015M (GRO +) + MR() 				Artesia, NM 88210	6488 Seven Rivers Highway	nergy	Mathews
Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$55.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated. Relinquished by: (Signature) // Received by: (Signature) Date/Time 2 Relinquished by: (Signature) // Received with the control of Xenco. Such as the control of Xenco. Such as the section of the control of Xenco. Such as the control of Xenco. Such as the section of the control of Xenco. Such as the control of Xenco. S									ANALYSIS REQUEST			Highway		
ived by:										Deliverables: EDD	Reporting:Level II Level III PST/UST	State of Project:	Program: UST/PST PRP Brownfields RRC	Work Ord
(Signature) Date/Time		Sample Comments	Zn Acetate+NaOH: Zn NaOH+Ascorbic Acid: SAPC	H NaHSO4: NABIS	H ₃ PO ₄ ; HP	HCL: HC HNO3; HN H2S04: H2 NaOH: Na	<u>o</u>	None: NO DI Water: H ₂ O	Preservative Codes	ADaPT Other:)	rownfields RRC uperfund [Work Order Comments

Received by OCD: 10/18/2022 8:28:21 AM

8/1/2022

Work Order No:

Chain of Custody

13

Job Number: 890-2672-1 SDG Number: Lea County NM

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: NT Global

Login Number: 2672 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Job Number: 890-2672-1 SDG Number: Lea County NM

List Source: Eurofins Midland

List Creation: 07/29/22 10:24 AM

Login Sample Receipt Checklist

Client: NT Global

Login Number: 2672 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

September 15, 2022

ETHAN SESSUMS NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUITE C MIDLAND, TX 79706

RE: REBEL 20 CTB

Enclosed are the results of analyses for samples received by the laboratory on 08/09/22 11:44.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Total Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Cardinal Laboratories is accredited through the State of New Mexico Environment Department for:

Method SM 9223-B	Total Coliform and E. coli (Colilert MMO-MUG)
Method EPA 524.2	Regulated VOCs and Total Trihalomethanes (TTHM)
Method EPA 552.2	Total Haloacetic Acids (HAA-5)

Accreditation applies to public drinking water matrices for State of Colorado and New Mexico.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUITE C MIDLAND TX, 79706	Project Number:	REBEL 20 CTB 225511 ETHAN SESSUMS	Reported: 15-Sep-22 15:50
--	-----------------	---	------------------------------

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SW - 13	H223557-01	Soil	08-Aug-22 00:00	09-Aug-22 11:44
SW - 14	H223557-02	Soil	08-Aug-22 00:00	09-Aug-22 11:44
SW - 15	H223557-03	Soil	08-Aug-22 00:00	09-Aug-22 11:44
SW - 16	H223557-04	Soil	08-Aug-22 00:00	09-Aug-22 11:44
CS - 6 (4.5')	H223557-05	Soil	08-Aug-22 00:00	09-Aug-22 11:44
CS - 7 (4.5')	H223557-06	Soil	08-Aug-22 00:00	09-Aug-22 11:44

08/25/22 - Client changed the sample IDs for -05 and -06 (see COC). This is the revised report and will replace the one sent on 08/10/22.

08/31/22 - Client changed the sample depth on -06 (see COC). This is the 2nd revision of the report and will replace the one sent on 08/25/22.

09/15/22 - Client changed the sample depth on -05 and -06 to 4.5' (see COC). This is the 3rd revision of the report and will replace the one sent on 08/31/22.

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706		Project: REBEL 20 CTB Project Number: 225511 Project Manager: ETHAN SESSUMS Fax To:					Reported: 15-Sep-22 15:50				
SW - 13 H223557-01 (Soil)											
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds	204		16.0		4	2081018	GM	10 4 22	4500-Cl-B		
Chloride	304		16.0	mg/kg	4	2081018	GM	10-Aug-22	4500-CI-B		
Volatile Organic Compound	ls by EPA Method 8	021									
Benzene*	< 0.050		0.050	mg/kg	50	2080912	JH	09-Aug-22	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	2080912	ЈН	09-Aug-22	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	2080912	JH	09-Aug-22	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	2080912	ЈН	09-Aug-22	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	2080912	ЛН	09-Aug-22	8021B		
Surrogate: 4-Bromofluorobenzene (P	PID)		115 %	69.9	-140	2080912	JH	09-Aug-22	8021B		
Petroleum Hydrocarbons by	y GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	2080915	MS	10-Aug-22	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	2080915	MS	10-Aug-22	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	2080915	MS	10-Aug-22	8015B		
Surrogate: 1-Chlorooctane			80.0 %	43-	149	2080915	MS	10-Aug-22	8015B		
Surrogate: 1-Chlorooctadecane			93.0 %	42.5	-161	2080915	MS	10-Aug-22	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706		Project: REBEL 20 CTB Project Number: 225511 Project Manager: ETHAN SESSUMS Fax To:					Reported: 15-Sep-22 15:50			
			~	W - 14 557-02 (So	sin					
			11223.	557-02 (50	,m)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	64.0		16.0	mg/kg	4	2081018	GM	10-Aug-22	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	2080912	JH	09-Aug-22	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	2080912	JH	09-Aug-22	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	2080912	JH	09-Aug-22	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	2080912	JH	09-Aug-22	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	2080912	JH	09-Aug-22	8021B	
Surrogate: 4-Bromofluorobenzene (PI	D)		116 %	69.9	-140	2080912	ЈН	09-Aug-22	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	2080915	MS	10-Aug-22	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	2080915	MS	10-Aug-22	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	2080915	MS	10-Aug-22	8015B	
Surrogate: 1-Chlorooctane			87.4 %	43-	149	2080915	MS	10-Aug-22	8015B	
Surrogate: 1-Chlorooctadecane			100 %	42.5	-161	2080915	MS	10-Aug-22	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. S MIDLAND TX, 79706	SUITE C		Project: REBEL 20 CTB Project Number: 225511 Project Manager: ETHAN SESSUMS Fax To:					Reported: 15-Sep-22 15:50		
			~	W - 15	.:1)					
			H223:	557-03 (So))					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	240		16.0	mg/kg	4	2081018	GM	10-Aug-22	4500-Cl-B	
Volatile Organic Compounds	by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	2080912	ЛН	09-Aug-22	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	2080912	ЛН	09-Aug-22	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	2080912	JH	09-Aug-22	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	2080912	JH	09-Aug-22	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	2080912	ЛН	09-Aug-22	8021B	
Surrogate: 4-Bromofluorobenzene (PII))		116 %	69.9	-140	2080912	ЛН	09-Aug-22	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	2080915	MS	10-Aug-22	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	2080915	MS	10-Aug-22	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	2080915	MS	10-Aug-22	8015B	
Surrogate: 1-Chlorooctane			89.8 %	43-	149	2080915	MS	10-Aug-22	8015B	
Surrogate: 1-Chlorooctadecane			104 %	42.5	-161	2080915	MS	10-Aug-22	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. S MIDLAND TX, 79706	SUITE C		Project: REBEL 20 CTB Project Number: 225511 Project Manager: ETHAN SESSUMS Fax To:					Reported: 15-Sep-22 15:50		
			~	SW - 16	•••					
			H223	557-04 (So	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	96.0		16.0	mg/kg	4	2081018	GM	10-Aug-22	4500-Cl-B	
Volatile Organic Compounds	by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	2080912	JH	09-Aug-22	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	2080912	JH	09-Aug-22	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	2080912	JH	09-Aug-22	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	2080912	ЛН	09-Aug-22	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	2080912	ЛН	09-Aug-22	8021B	
Surrogate: 4-Bromofluorobenzene (PIL))		117 %	69.9	-140	2080912	JH	09-Aug-22	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	2080915	MS	10-Aug-22	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	2080915	MS	10-Aug-22	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	2080915	MS	10-Aug-22	8015B	
Surrogate: 1-Chlorooctane			85.5 %	43-	149	2080915	MS	10-Aug-22	8015B	
Surrogate: 1-Chlorooctadecane			102 %	42.5	-161	2080915	MS	10-Aug-22	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project: REBEL 20 CTB Project Number: 225511 Project Manager: ETHAN SESSUMS Fax To:						Reported: 15-Sep-22 15:50		
CS - 6 (4.5') H223557-05 (Soil)											
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds Chloride	288		16.0	mg/kg	4	2081018	GM	10-Aug-22	4500-Cl-B		
Volatile Organic Compounds		8021	1010	6 6							
Benzene*	< 0.050		0.050	mg/kg	50	2080912	ЛН	09-Aug-22	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	2080912	ЛН	09-Aug-22	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	2080912	ЛН	09-Aug-22	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	2080912	ЛН	09-Aug-22	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	2080912	JH	09-Aug-22	8021B		
Surrogate: 4-Bromofluorobenzene (PI	'D)		116 %	69.9	-140	2080912	ЈН	09-Aug-22	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	2080915	MS	10-Aug-22	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	2080915	MS	10-Aug-22	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	2080915	MS	10-Aug-22	8015B		
Surrogate: 1-Chlorooctane			77.0 %	43-	149	2080915	MS	10-Aug-22	8015B		
Surrogate: 1-Chlorooctadecane			90.1 %	42.5	-161	2080915	MS	10-Aug-22	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. MIDLAND TX, 79706	SUITE C		Project: REBEL 20 CTB Project Number: 225511 Project Manager: ETHAN SESSUMS Fax To:						Reported: 15-Sep-22 15:50		
				- 7 (4.5') 557-06 (Sc							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
<u>Inorganic Compounds</u> Chloride	256		16.0	mg/kg	4	2081018	GM	10-Aug-22	4500-Cl-B		
Volatile Organic Compound	s by EPA Method	8021									
Benzene*	< 0.050		0.050	mg/kg	50	2080912	JH	09-Aug-22	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	2080912	JH	09-Aug-22	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	2080912	JH	09-Aug-22	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	2080912	ЈН	09-Aug-22	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	2080912	ЛН	09-Aug-22	8021B		
Surrogate: 4-Bromofluorobenzene (P.	ID)		116 %	69.9	-140	2080912	ЛН	09-Aug-22	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	2080915	MS	10-Aug-22	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	2080915	MS	10-Aug-22	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	2080915	MS	10-Aug-22	8015B		
Surrogate: 1-Chlorooctane			84.6 %	43-	149	2080915	MS	10-Aug-22	8015B		
Surrogate: 1-Chlorooctadecane			99.2 %	42.5	-161	2080915	MS	10-Aug-22	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUITE C MIDLAND TX, 79706	Project Number:	REBEL 20 CTB 225511 ETHAN SESSUMS	Reported: 15-Sep-22 15:50
--	-----------------	---	------------------------------

Inorganic Compounds - Quality Control

		Cardir	nal Lab	oratories						
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2081018 - 1:4 DI Water										
Blank (2081018-BLK1)				Prepared &	analyzed:	10-Aug-22	!			
Chloride	ND	16.0	mg/kg							
LCS (2081018-BS1)				Prepared &	analyzed:	10-Aug-22	!			
Chloride	416	16.0	mg/kg	400		104	80-120			
LCS Dup (2081018-BSD1)				Prepared &	z Analyzed:	10-Aug-22				
Chloride	416	16.0	mg/kg	400		104	80-120	0.00	20	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

NTG ENVIRONMENTAL 701 TRADEWINDS BLVD. SUITE C MIDLAND TX, 79706	Project Number:	REBEL 20 CTB 225511 ETHAN SESSUMS	Reported: 15-Sep-22 15:50
--	-----------------	---	------------------------------

Volatile Organic Compounds by EPA Method 8021 - Quality Control

Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2080912 - Volatiles										
Blank (2080912-BLK1)				Prepared &	Analyzed:	09-Aug-22	2			
Benzene	ND	0.050	mg/kg							
Toluene	ND	0.050	mg/kg							
Ethylbenzene	ND	0.050	mg/kg							
Total Xylenes	ND	0.150	mg/kg							
Total BTEX	ND	0.300	mg/kg							
Surrogate: 4-Bromofluorobenzene (PID)	0.0572		mg/kg	0.0500		114	69.9-140			
LCS (2080912-BS1)				Prepared &	Analyzed:	09-Aug-22	2			
Benzene	1.92	0.050	mg/kg	2.00		95.9	83.4-122			
Toluene	2.01	0.050	mg/kg	2.00		101	84.2-126			
Ethylbenzene	2.05	0.050	mg/kg	2.00		103	84.2-121			
m,p-Xylene	4.27	0.100	mg/kg	4.00		107	89.9-126			
o-Xylene	2.05	0.050	mg/kg	2.00		103	84.3-123			
Total Xylenes	6.32	0.150	mg/kg	6.00		105	89.1-124			
Surrogate: 4-Bromofluorobenzene (PID)	0.0566		mg/kg	0.0500		113	69.9-140			
LCS Dup (2080912-BSD1)				Prepared &	Analyzed:	09-Aug-22	2			
Benzene	1.88	0.050	mg/kg	2.00		94.1	83.4-122	1.95	12.6	
Toluene	1.98	0.050	mg/kg	2.00		99.0	84.2-126	1.71	13.3	
Ethylbenzene	2.02	0.050	mg/kg	2.00		101	84.2-121	1.64	13.9	
m,p-Xylene	4.19	0.100	mg/kg	4.00		105	89.9-126	1.85	13.6	
o-Xylene	2.02	0.050	mg/kg	2.00		101	84.3-123	1.72	14.1	
Total Xylenes	6.21	0.150	mg/kg	6.00		103	89.1-124	1.81	13.4	
Surrogate: 4-Bromofluorobenzene (PID)	0.0554		mg/kg	0.0500		111	69.9-140			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Petroleum Hydrocarbons by GC FID - Quality Control

Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2080915 - General Prep - Organics										
Blank (2080915-BLK1)				Prepared &	z Analyzed:	09-Aug-22	2			
GRO C6-C10	ND	10.0	mg/kg							
DRO >C10-C28	ND	10.0	mg/kg							
EXT DRO >C28-C36	ND	10.0	mg/kg							
Surrogate: 1-Chlorooctane	40.3		mg/kg	50.0		80.5	43-149			
Surrogate: 1-Chlorooctadecane	45.8		mg/kg	50.0		91.6	42.5-161			
LCS (2080915-BS1)				Prepared &	z Analyzed:	09-Aug-22	2			
GRO C6-C10	214	10.0	mg/kg	200		107	78.5-128			
DRO >C10-C28	202	10.0	mg/kg	200		101	75.8-135			
Total TPH C6-C28	417	10.0	mg/kg	400		104	81.5-127			
Surrogate: 1-Chlorooctane	46.8		mg/kg	50.0		93.6	43-149			
Surrogate: 1-Chlorooctadecane	54.4		mg/kg	50.0		109	42.5-161			
LCS Dup (2080915-BSD1)				Prepared &	Analyzed:	09-Aug-22	2			
GRO C6-C10	230	10.0	mg/kg	200		115	78.5-128	7.29	21.4	
DRO >C10-C28	211	10.0	mg/kg	200		105	75.8-135	4.14	17.9	
Total TPH C6-C28	441	10.0	mg/kg	400		110	81.5-127	5.77	17.6	
Surrogate: 1-Chlorooctane	50.5		mg/kg	50.0		101	43-149			
Surrogate: 1-Chlorooctadecane	57.6		mg/kg	50.0		115	42.5-161			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Chain of Custody

Received by	OCD :	10/18/2022	8:28:21 AM

																Page	1 of 1
Project Manager: Ethan Sessums				Bill to: (if different)	(fferent)	We	Wesley Mathews	hews						Wor	k Order (Work Order Comments	
Company Name: NTG Environmental	ntal			Company N	Name:	Dei	Devon Energy	<u>ay</u>				Progra	m: UST/P	ST DPR	P Brown	Program: UST/PST DRP Brownfields RRC	C Duperfund
402 E Wood Ave	Ð		2	Address:		648	8 Seven	6488 Seven Rivers Highway	lighway			State o	State of Project:				
City, State ZIP: Carlsbad, NM 88220	3220			City, State ZIP.	: ZIP:	Arti	Artesia, NM 88210	88210	7			Reporti	ng:Level	I 🗌 Level	Reporting:Level II Cevel III PST/UST		
254-266-5456			Email:	Wesley.M	Aathews (athews@dvn.com						Deliverables:	ables: EDD		ADaPT	r 🗆 other	er:
Reb	Rebel 20 CTB	-	Turn	Turn Around						ANALY	ANALYSIS REQUEST	QUEST				Preser	Preservative Codes
Project Number: 2	225511		C Routine	L Rush		Pres. Code										None: NO	DI Water: H ₂ O
Project Location	Lee Co		Due Date:	24HR	R		(Cool: Cool	MeOH: Me
Sampler's Name: Jord	Jordan Tyner		TAT starts the day received by the lab. if received by 4:30pm	starts the day received by lab. if received by 4:30pm	d by the		мво								(HCL: HC	HNO3: HN
	Z1U252/11 Temn Riank	Vac	Mat Ira	(Var	No	a sters	+ 08	00								H DO HD	NAUH: Na
	No	Thermometer ID:	ter ID:	2		1201	3 + 0	6 42							a	NaHSO .: NABIS	BIS
Seals: Yes	0	Correction Factor:	Factor:	- 0.10			อยอ	orido							юн	Na.S.O.: NaSO.	50,
r Yes	n	Temperatu	Temperature Reading:	3.1%		18) WS	140								Zn Acetate+NaOH: Zn	JaOH: Zn
	9	Corrected 7	Corrected Temperature:	3.50			108								-	NaOH+Asco	NaOH+Ascorbic Acid: SAPC
Sample Identification	Date	Time	Soil	Water	Grab/ Comp	# of Cont	НЧТ					~				Sampl	Sample Comments
SW-13	8/8/2022		×		Comp	1 X	×	×	-								
SW-14	8/8/2022		×		Comp	1 X	×	×			-		-				
SW-15	8/8/2022		×		Comp	1 X	×	×	-								
SW-16	8/8/2022		×	~	Comp	1 X	×	×			-						
CS-YOM H.S. X.	8/8/2022		×		Comp	1 X	×	×			-		~				
CS-N(5) 4 *	8/8/2022		×	. 6	Comp	1 X	×	×									
7 4.5'**																	
Te. 8 26 22																	
Additional Comments:	Ň	Sumole de	At 1 cur	sed as	Je 1	Than	18 1	131/22	0								
	AX Sau	sample de	oth cha	anged	as pu	Ethan	N.	9/12	1020	Jr .							
totice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the contro of service. Aminimum charge of \$5:00 will be applied to sach project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	ishment of sam t of samples an applied to each	nples constitute nd shall not ass project and a (es a valid purchas sume any respon charge of \$5 for e	se order from sibility for an ach sample	client comp y losses or e submitted to	Silent company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions losses or expenses incurred by the client if such losses are due to circumstances beyond the control binitied to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	, its affilia rred by th ot analyze	tes and si e client if d. These t	bcontractor such losses erms will be	s. It assig are due to enforced i	ns standar circumsta unless prev	d terms an nces beyon riousiy negr	d condition. d the contr otiated.				
Relinquished by: (Signature)		Received	Received by: (Signature)	re)		Date	Date/Time		Relinqui	shed by	Relinquished by: (Signature)	ture)	Rec	ceived by	Received by: (Signature)	(e)	Date/Time
Mat N	S	duon	row	X		de la	122	1UU2									
)	-			14									

- CUTWD-

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	151545
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jnobui	Closure Report Approved.	11/10/2022

Page 135 of 135

Action 151545

.