

PARTNERS

October 18, 2022

New Mexico Oil Conservation Division Attn: Mr. Bradford Billings 5200 Oakland Avenue, N.E., Suite 100 Albuquerque, New Mexico 87113

RE: <u>Incident Closure Request</u> NTO1423253772-VACUUM GLORIETTA WEST UNIT 118 1RP-3260- Lea County, New Mexico NTO1423253772 @ 30-025-31129

Dear Mr. Billings:

This letter is to request closure of the Vacuum Glorietta West Unit 118 Incident NTO1423253772. The discovery of the poly flow line failure was initially reported on 4/22/12. A site assessment and remediation plan were received and approved on 11/4/2015 NMOCD representative Kellie Jones.

Upon completion of all remediation activities, a site closure request was prepared in April of 2019 by the former operator's consulting group. The report along with the associated final C-141 records were supplied to MorningStar at the time of acquisition. However, these records are unavailable in the NMOCD portal "Incident Files" and it is unclear if this submission had been received or reviewed. As such, the closure request with all supporting data and records are being submitted at this time for NMOCD confirmation that this facility has been granted closure status as requested, with the understanding that this facility requires not further assessments or additional clean up actions.

If you have any questions regarding this request, please contact Alan Kane with Kane Environmental Engineering Inc. at (281) 370-6580 or email: <u>alanjkane@comcast.net</u> or Russell Hamm at (918) 693-4833 or email: <u>rhammenviro@gmail.com</u>.

Respectfully, Guillotte

Manager Environmental Health and Safety

CC: File, Kane Environmental Engineering Inc. Attachments: Chevron/Arcadis Closure Request Report *Received by OCD: 12/5/2022 11:47:56 AM*

Jason Michelson Project Manager Chevron Environmental Management Company 1500 Louisiana Street, #38116 Houston, Texas 77002 Work: 832-854-5601 Cell: 281-660-8564 jmichelson@chevron.com

New Mexico Oil Conservation Division, District 1 1625 N. French Drive Hobbs, NM 88240

Re: Vacuum Glorieta West Unit #118 Site Closure Report NMOCD Case No. 1RP-3260 Lea County, New Mexico

Dear whom it concerns,

Please find enclosed for your files, copies of the following report:

Vacuum Glorieta West Unit #118 - Site Closure Report

The submittal was prepared by Arcadis U.S., Inc. (Arcadis) on behalf of Chevron Environmental Management Company (CEMC) and is being resubmitted by Arcadis per request of the New Mexico Oil Conservation Division.

Please do not hesitate to call Brett Krehbiel with Arcadis at 916-786-5382 or myself at 832-854-5601, should you have any questions.

Sincerely,

Jann Meh-

Jáson Michelson

Encl. Vacuum Glorietta West Unit #118 - Site Closure Report

C.C. Amy Barnhill, Chevron/MCBU

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	nTO1423253772
District RP	1RP-3260
Facility ID	30-025-31129
Application ID	pTO1423253899

Release Notification

Responsible Party

Responsible Party: Chevron USA Inc.	OGRID
Contact Name: Jason Michelson	Contact Telephone: 832-854-5601
Contact email: jmichelson@chevron.com	Incident # (assigned by OCD): nTO1423253772
Contact mailing address: 1500 Louisiana Street Houston, Texas 77002	

Location of Release Source

Latitude <u>32.782150</u>

(NAD 83 in decimal degrees to 5 decimal places)

	Site Name: Vacuum Glorietta West Unit #118	Site Type: Production Well
]	Date Release Discovered: 4/22/2012	API# (<i>if applicable</i>): 30-025-31129

Unit Letter	Section	Township	Range	County
В	6	18S	35E	Lea

Surface Owner: State Federal Tribal Private (Name: _____

Nature and Volume of Release

 Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

 Crude Oil
 Volume Released (bbls): 0.746

Volume Recovered (bbls): 0

Produced Water	Volume Released (bbls): 9.61	Volume Recovered (bbls): 0						
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No						
Condensate	Volume Released (bbls)	Volume Recovered (bbls)						
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)						
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)						
Cause of Release: 1-foot scrape on poly line caused integrity of line to give leading to spill of 9.61 bbls of produced water and 0.746								
bbls of oil. Well shut in on discovery.								

Page 2

Oil Conservation Division

Incident ID	nTO1423253772
District RP	1RP-3260
Facility ID	30-025-31129
Application ID	pTO1423253899

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release? Release was less than 25 barrels.
🗌 Yes 🖾 No	
If VES, was immediate n	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? See Initial C-
141 Form submitted on	

Received by OCD: 12/5/2022 11:47:56 AM Form C-121 State of New Mexico

Oil Conservation Division

Page 5 of 282 Incident ID nTO1423253772 District RP 1RP-3260 30-025-31129 Facility ID

Application ID

pTO1423253899

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>125</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🔀 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. Field data
- Data table of soil contaminant concentration data
- \boxtimes Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- \boxtimes Photographs including date and GIS information - Photographic documentation is included as attachment to this Final C-141 Form.
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Page 3

Received by OCD: 12/5/202	2 11:47:56 AM		Page 6 of 282			
Form C-141	2 11:47:56 AM State of New Mexico		Incident ID	nTO1423253772		
Page 4	Oil Conservation Division	Dil Conservation Division		1RP-3260		
			Facility ID	30-025-31129		
			Application ID	pTO1423253899		
regulations all operators are r public health or the environm failed to adequately investiga addition, OCD acceptance of and/or regulations. Printed Name:Ja Signature:Ja email:jmichelson@cha	mation given above is true and complete to the equired to report and/or file certain release not nent. The acceptance of a C-141 report by the te and remediate contamination that pose a th a C-141 report does not relieve the operator of ason Michelson	otifications and perform co e OCD does not relieve the meat to groundwater, surfa of responsibility for compl Title:Project Date:8/14/2020	orrective actions for rele e operator of liability sh ce water, human health iance with any other fe Manager	eases which may endanger ould their operations have or the environment. In deral, state, or local laws		
OCD Only						
Received by:		Date:				

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following in	tems must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.29.1	1 NMAC
	of the liner integrity if applicable (Note: appropriate OCD District office hic documentation of remediation activities and liner installation is
Laboratory analyses of final sampling (Note: appropriate ODC	C District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of	tions. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in CD when reclamation and re-vegetation are complete.
OCD Only	
Received by:	Date:
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.
Closure Approved by:	Date:
Printed Name:	Title:

New Mexico Oil Conservation Division – District I Environmental Specialist 1625 N French Drive Hobbs, New Mexico 88240

Subject:

Site Closure Report 2018 HES Transfer Site – Vacuum Glorieta West Unit 118 NMOCD Case No. 1RP-3260 Lea County, New Mexico

Dear whom it concerns:

On behalf of Chevron Environmental Management Company (CEMC), Arcadis U.S., Inc. (Arcadis) prepared this Site Closure Report (Report) to document geophysical assessment activities performed at the Vacuum Glorieta West Unit (VGWU) 118, located in Lea County, New Mexico (site; **Figure 1**). The purpose of the Report is summarize the field activities completed and the results of samples collected during soil investigation activities conducted on site in 2012, 2013, 2016 and 2017, present final soil boring locations, results of the samples collected, and the evaluation performed as part of the investigations after the April 22, 2012 release of 9.61 barrels (bbls [42 gallons per bbl]) of produced water and 0.746 bbls of oil.

SITE DESCRIPTION AND BACKGROUND

The following site description and background section provides an overview of the site location and description, as well as the regional setting including geology, hydrogeology, nearby drinking water wells, surface water and climate.

Site Location and Description

The site is located within the Vacuum Glorieta West Unit (VGWU) approximately 14.5 miles southwest of Lovington, New Mexico. New Mexico Highway 238 is located approximately 0.54 mile east of the site. The closest agricultural area is 9 miles east of the site.

The site is located in the western edge of the Permian Basin, a 75,000-squaremile area in west Texas and New Mexico that is populated by numerous oil and Arcadis U.S., Inc. 101 Creekside Ridge Court Suite 200 Roseville California 95678 Tel 916 786 0320 Fax 916 786 0366 www.arcadis.com

ENVIRONMENT

Date: April 8, 2019

Contact: Brett Krehbiel

Phone: 916.786.5382

Email: Brett.Krehbiel@arcadis.com

Our ref: B0048616.0118

ARCADIS U.S., Inc. TX Engineering License # F-533 Geoscientist License # 50158

gas production wells. In New Mexico, the Permian Basin extends to Roosevelt County to the north and Chaves County to the west.

Climate

Monthly average temperatures near the site vary from a minimum of 27.9 degrees Fahrenheit (°F) in January to a maximum of 93.9°F in July (Western Regional Climate Center [WRCC] Hobbs, New Mexico [294026] weather station). Average annual precipitation recorded for the area of the site from the available WRCC period of record between 1912 and 2013 was approximately 15.75 inches per year (WRCC 2014a).

Due to the arid climate, the site experiences low precipitation and high evaporation rates. The average annual evaporation from the available WRCC period of record between 1914 and 2005 was approximately 87.68 inches per year (WRCC 2014b).

Regional Geology and Hydrogeology

The site is located on the Llano Estacado of the Western High Plains, an ecoregion of the Great Plains of North America. The site is positioned immediately east of the Mescalero Ridge, which demarcates the western boundary of the (Miocene to Pliocene) High Plains Ogallala Formation (Reeves 1972). A rapid drop in elevation of 200 to 250 ft occurs west of the northwest-trending Mescalero Ridge. The Ogallala formation is unconfined and is predominantly composed of unconsolidated alluvial fan deposits of sand and gravel near the base, overlain by interbedded sand and clay in the upper portion of the formation (Seni 1980). Repeated depositional events on the High Plains surface beginning approximately 7 million years ago, followed by aerial exposure, generated a thick sequence of caliche horizons that are competent enough to act as a cliff for the expression of Mescalero Ridge. These hard caliche deposits form the upper portion of the stratigraphic sequence. In the site area, the Ogallala Formation is underlain by red beds of the Upper Triassic-age Dockum Group consisting of claystones, sandstones, and siltstones. Aquifers within the Dockum Group are not considered a major fresh groundwater resource in the area due to poor water production rates and elevated natural dissolved solids.

The main source of fresh groundwater in the area comes from the Ogallala aquifer. The Ogallala aquifer has a thickness of approximately 100 ft in the vicinity of the site and is considered the primary source of fresh water in the area. Depth to the groundwater regionally ranges from approximately 120 ft to 135 ft below ground surface (bgs).

Water-supply wells located within the region are completed in the Ogallala aquifer, also known at the High Plains Aquifer (HPA). The HPA consists primarily of the High Plains Ogallala Formation, and in localized areas, alluvial sediment of Quaternary age.

Based on satellite imagery, no surface-water bodies were identified within a radius of approximately 1mile of the site (GoogleEarth 2018). During October 2018, Arcadis reviewed information obtained from the New Mexico Office of the State Engineer (NMOSE) online database (NMOSE 2018). Results of the database inquiry indicated there were no water-supply wells located within a radius of 1,000 feet of the site. In addition, results of the database review indicate average depth to groundwater is 93 ft bgs. Results of the database review are included in **Attachment 1**.

INITIAL RELEASE RESPONSE ACTIVITIES

According to the submitted New Mexico Oil Conservation Division (NMOCD) Notification of Release and Correction Actions (Form C141), a flowline leak resulted in a release of 9.61 bbls of produced water and 0.746 bbls of oil on April 22, 2012. Chevron personnel from the Mid-Continent Business Unit (MCBU) stopped the release and conducted the initial response activities. On July 12, 2012, Chevron MCBU personnel excavated visually affected soil and collected ten discrete confirmation soil samples from the base of the excavation at approximately 2 fet bgs. Information regarding the disposal of the excavated soil was not available for this Report. After collecting the soil samples, the excavated area was reportedly backfilled with imported soil.

Pursuant to NMOCD requirements (NMOCD 1993), a C-141 form (**Attachment 2**) detailing the location, volume of release and initial and planned cleanup efforts were submitted for the site.

2012 AND 2013 SOIL INVESTIGATIONS

Chevron MCBU personnel collected ten soil samples (VGWU #118 SS #1 through VGWU #118 SS #10 on July 12, 2012 to initially assess the impacted area at VGWU-118. Sample locations are presented in **Figure 2**. Soil samples were collected in laboratory provided bottles and submitted to Cardinal Laboratories in Hobbs, NM for the following compounds:

- Benzene, toluene, ethylene, and xylenes (collectively referred to as BTEX) in accordance with United States Environmental Protection Agency (USEPA) Method 8021B
- Chloride in accordance with Standard Method 4500CI-B
- Total petroleum hydrocarbons (TPH) Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) in accordance with USEPA Method 8015M

In May 2013, Arcadis conducted site assessment activities to characterize the lateral and vertical extent of potentially affected soil at the site. Soil boring locations were selected based on the results of confirmation soil sampling completed at the site in July 2012, locations of pipelines and other equipment at the site, and the extent of the release as documented by Chevron MCBU personnel during the initial response activities. Seven soil samples from four soil borings (VGWU118-01 through VGWU118-03 and VGWU118-07) were collected from each boring location (for a total of 28 soil samples) beginning at a depth of 2 ft bgs and continuing at 5-foot intervals from 5 to 30 ft bgs. Additionally, three soil samples were collected at 2 ft bgs from three soil borings (VGWU118-04 through VGWU118-06). Soil samples were placed in laboratory-supplied containers and submitted under appropriate chain of custody protocols to Cardinal Laboratories for the following analyses:

- BTEX in accordance with USEPA Method 8021B
- Chloride in accordance with USEPA Method 4500CI-B
- TPH GRO and TPH DRO in accordance with USEPA Method 8015M
- Percent moisture by ASTM International Method D2216

Following sampling, boreholes were filled with soil cuttings and grouted to ground surface. The ground surface was restored to match the surrounding conditions. Boring locations are shown on **Figure 2**. Boring logs are presented in **Attachment 3**.

The analytical results for BTEX, TPH-GRO, TPH-DRO and chloride for the 10 discrete confirmation soil samples collected in July 2012 and the 31 soil samples collected during the May 2013 site assessment are provided in **Table 1**. The site assessment activities and results are discussed in detail in the *Site Assessment Report: Vacuum Glorieta West Unit #118*, dated December 2, 2014.

2016 SOIL INVESTIGATIONS

Arcadis conducted additional soil assessment activities in June, September and November 2016. A total of twenty-nine soil samples were collected from ten (VGWU118-08 through VGWU118-19) soil borings at the site. Samples were collected at 2 and 4 ft bgs at each boring location. Additional samples were collected at 7 and 10 ft bgs at VGWU118-15 and VGWU118-18 and at 7 ft bgs at VGWU118-19 (**Figure 3**). Following sampling, boreholes were filled with native material to ground surface. The ground surface was restored to match the surrounding conditions.

Soil samples were placed in laboratory-supplied containers and submitted under appropriate chain of custody protocols to Xenco (Xenco) Laboratories in Midland, TX for the following analysis of chloride by USEPA Method 300/300.1. Analysis of soil samples from VGWU118-10, VGWU118-15 (7 and 10 ft bgs only), VGWU118-16, VGWU118-19 (9 fet bgs only) were put on hold pending analysis results. A total of 22 samples from the 2016 soil were analyzed for chloride.

Chloride was detected in 19 of the 22 soil samples analyzed with concentrations ranging from 11.2 milligrams per kilogram (mg/kg) (VGWU118-19 at 2 ft bgs) to 374 mg/kg (VGWU118-12 at 2 ft bgs). Pursuant to the C141 directive published in 1993 by the NMOCD, 2016 chloride results were initially compared to the soil remediation action level of 600 mg/kg required for vertical delineation, and 250 mg/kg required for lateral delineation. Although vertical delineation had been achieved, chloride was detected at concentrations greater than the soil remediation action level of 250 mg/kg for lateral delineation in all surface soil samples, with the exception of surface soil samples collected from VGWU118-08, VGWU118-09, VGWU118-13, VGWU118-15, VGWU118-17 and VGWU118-19. The cumulative analytical results for chloride are provided in **Table 1**. Laboratory analytical results with chain of custody documentation are provided in **Attachment 4**.

2016 AND 2017 SOIL EXCAVATION

Arcadis completed a limited excavation of the chloride affected soil to a maximum depth of 4 ft bgs beginning on November 1, 2016. Five-point composite sidewall samples were collected every 20 ft of sidewall to confirm removal of affected soil. A total of 13 sidewall composite samples (Composite Sample #1 through #13) were collected in laboratory-supplied containers and submitted under appropriate chain of custody protocols to Xenco (Xenco) Laboratories in Midland, TX for the analysis of chloride by USEPA Method 300/300.1. Analytical results are summarized in **Table 1**.

Chloride was detected in each sidewall sample collected in November 2016 with concentrations ranging from 24.3 mg/kg (Composite Sample #10) to 5,000 mg/kg (Composite Sample #12). Chloride concentrations exceeded 250 mg/kg for lateral delineation in 10 of the 13 samples.

In October 2017, excavation was continued to the north and southeast of the 2016 excavation area to complete removal of the affected soil to the extent possible (**Figure 4**). Aboveground and belowground pipeline and utility corridors transect the spill area and border the site to the north, south, and east. The

presence of aboveground and belowground pipeline and utility corridors pose a health and safety risk and prevent additional drilling and other subsurface work in this area. Delineation activities beyond the pipelines and oilfield equipment surrounding the release would not be representative of release area. The limited excavation up to 4 ft bgs was complete in December of 2017. A total of 30 sidewall samples (VGWU-118-001 through VGWU-118-030) were collected 2 ft bgs throughout the 2017 excavation to confirm impacted soil had been removed. Samples were collected in laboratory-supplied containers and submitted under appropriate chain of custody protocols to Xenco for the analysis of chloride by USEPA Method 300/300.1. Seven samples (VGWU-118-008 and VGWU-118-21 through VGWU-118-26) were put on hold with Xenco pending chloride results. Analytical results are summarized in **Table 1**.

Sidewall sample locations and results from the final excavation area are displayed in **Figure 4**. Chloride concentrations detected in sidewall samples collected from the final excavation range from 9.2 mg/kg (VGWU-118-027) to 544 mg/kg (VGWU-118-002).

Title 19, Chapter 15, Part 29 (19.15.29) of the New Mexico Administrative Code (NMAC) concerning natural resources and wildlife, oil and gas, and releases which became effective on August 14, 2018. Closure criteria (CC) for chloride concentrations in the soil remains 600 mg/kg. Shallow soil (up to 4 ft bgs) with chloride concentrations greater than 600 mg/kg was excavated. Soil analytical results presented in this Report support a conclusion that affected soil associated with the release poses no significant threat to groundwater resources.

Following completion of the excavation, a liner was installed within the limits of each excavation footprint and clean fill was used to backfill the excavated areas. Following backfill, the surface was graded, broken up, seeded, and watered to promote revegetation Upon receiving laboratory confirmation, the excavated soil was transported offsite to Sundance Services for disposal in accordance with state and federal regulations.

CONCLUSION

Arcadis completed a limited excavation of chloride affected soil to a maximum depth of 4 ft bgs. Shallow soil (up to 4 ft bgs) with chloride concentrations greater than 600 mg/kg was excavated. The excavated area is presented on **Figure 4**. Sidewall confirmation samples collected from the excavation area and the corresponding soil analytical results confirm removal of affected soil.

Based on the data presented in this Report and concurrence from the NMOCD, no further assessments or additional cleanup actions are required at the site. No Further Action status is being requested for the site.

If you have any questions or comments regarding the information presented in this Report, please contact Brett Krehbiel at 916.786.5382 or at Brett.Krehbiel@arcadis.com.

Received by OCD: 12/5/2022 11:47:56 AM

New Mexico Oil Conservation Division – District I April 8, 2019

Sincerely,

Arcadis U.S., Inc.

at habin

Brett Krehbiel Project Manager

lity Utshall

Greg Cutshall Program Manager

Copies: File

Enclosures:

Tables

- 1 Soil Analytical Results
- Figures
 - 1 Site Location Map
 - 2 Soil Analytical Results

Attachments

- 1 Depth-to-Groundwater Data
- 2 C-141 Form
- 3 Soil Boring Logs
- 4 Laboratory Analytical Results and Chain of Custody

References

- Arcadis U.S., Inc. 2014. Site Assessment Report, Vacuum Glorieta West Unit #118, Lea County New Mexico. December 2.
- Google Earth. 2018. Lovington, New Mexico, 32°47'15.76"N, 103°30'52.71"W, Google Earth Imagery. October 16.
- New Mexico Administrative Code. 2018. Title 19, Chapter 15 of the New Mexico Administrative Code for Natural Resources and Wildlife, Oil and Gas, and Releases, 19.15.29 NMAC. August.
- NMOCD. 1993. Guidelines for Remediation of Leaks, Spills and Releases. August 13.
- NMOSE. 2018a. Water Information, Maps and Data, Geospatial Data, OSE Well Data, http://www.ose.state.nm.us/water info data.html, October.
- NMOSE. 2018b. New Mexico Water Rights Reporting System, http://nmwrrs.ose.state.nm.us/nmwrrs/waterColumn.html, October.
- Reeves, C. C. 1972. Tertiary-Quarternary Stratigraphy and Geomorphology of West Texas and Southeastern New Mexico, New Mexico Geological Society, Guidebook 23 pp. 108-117.
- Seni, S. J. 1980. Sand-Body Geometry and Depositional Systems, Ogallala Formation, Texas, University of Texas, Bureau of Economic Geology, Report of Investigations No. 105, pp. 36.

TABLES

Table 1
Soil Analytical Results
Vacuum Glorieta West Unit #118
Lea County, New Mexico

Boring Location ID	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	TPH-GRO (mg/kg)	TPH-DRO (mg/kg)	Chloride (mg/kg)	% Moisture
	NMAC Clo	osure Criteria ^(ɒ)	10				50	1(00	600	
VGWU #118 SS #1	7/12/2012	0 to 2	<0.050	<0.050	<0.050	<0.150		<10.0	487	16	
VGWU #118 SS #2	7/12/2012	0 to 2	<0.050	<0.050	<0.050	<0.150		<10.0	44	272	
VGWU #118 SS #3	7/12/2012	0 to 2	<0.050	<0.050	<0.050	<0.150		<10.0	123	144	
VGWU #118 SS #4	7/12/2012	0 to 2	<0.050	<0.050	<0.050	<0.150		<10.0	295	16	
VGWU #118 SS #5	7/12/2012	0 to 2	<0.050	<0.050	<0.050	<0.150		<10.0	<10.0	96	
VGWU #118 SS #6	7/12/2012	0 to 2	<0.050	0.221	0.385	0.937		37	2,520	384	
VGWU #118 SS #7	7/12/2012	0 to 2	<0.050	0.841	2.27	3.32		108	6,830	112	
VGWU #118 SS #8	7/12/2012	0 to 2	<0.050	<0.050	<0.050	<0.150		<10.0	50	2,320	
VGWU #118 SS #9	7/12/2012	0 to 2	<0.050	<0.050	0.179	0.384		21	3,050	6,240	
VGWU #118 SS #10	7/12/2012	0 to 2	<0.050	<0.050	<0.050	<0.150		<10.0	28	15,800	
	5/14/2013	2	<0.056	0.047	<0.056	<0.169	0.047	<16.9	102	4,800	11.3
	5/14/2013	5	<0.062	0.016	<0.062	<0.186	0.016	<18.6	<18.6	192	19.2
	5/14/2013	10	<0.061	0.020	<0.061	<0.184	0.020	<18.4	<16.0	32	18.4
VGWU118 - 01	5/14/2013	15	<0.061	0.022	<0.061	<0.184	0.022	<18.4	<18.4	32	18.4
	5/14/2013	20	<0.063	0.022	<0.063	<0.188	0.022	<18.8	<18.8	<16	20.2
	5/14/2013	25	<0.052	0.042	<0.052	<0.155	0.042	<15.5	<15.5	32	2.9
	5/14/2013	30	<0.062	0.023	<0.062	<0.187	0.023	<18.7	<18.7	<16	20.0
	5/14/2013	2	<0.057	<0.057	<0.057	<0.172	<0.344	<17.2	<17.2	10,000	12.8
	5/14/2013	5	<0.054	<0.054	<0.054	<0.162	<0.324	<16.2	<16.2	368	7.3
	5/14/2013	10	<0.054	<0.054	<0.054	<0.161	<0.322	<16.1	<16.1	80	6.9
VGWU118 - 02	5/14/2013	15	<0.052	0.036	<0.052	<0.156	0.036	<15.6	<15.6	112	4.1
	5/14/2013	20	<0.054	0.035	<0.054	<0.162	0.035	<16.2	<16.2	384	7.1
	5/14/2013	25	<0.054	0.039	<0.054	<0.162	0.039	<16.2	<16.2	1,090	7.3
	5/14/2013	30	<0.065	0.031	<0.065	<0.195	0.031	<19.5	<19.5	224	23.0
	5/14/2013	2	<0.054	0.034	<0.054	<0.161	0.034	<16.1	<16.1	832	7.0
	5/14/2013	5	<0.052	0.033	<0.052	<0.157	0.033	<15.7	<15.7	96	4.4
VGWU118 - 03	5/14/2013	10	<0.054	0.028	<0.054	<0.161	0.028	<16.1	<16.1	48	6.9
	5/14/2013	15	<0.054	0.031	<0.054	<0.161	0.031	<16.1	<16.1	48	6.7
	5/14/2013	20	<0.052	0.019	<0.052	<0.157	0.019	<15.7	<15.7	48	4.5
	5/14/2013	25	<0.052	0.041	<0.052	<0.156	0.041	<15.6	<15.6	32	3.6
	5/14/2013	30	<0.051	<0.051	<0.051	<0.153	<0.307	<15.3	<15.3	32	2.2

Received by OCD: 12/5/2022 11:47:56 AM

Table 1
Soil Analytical Results
Vacuum Glorieta West Unit #118
Lea County, New Mexico

Boring Location ID	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	TPH-GRO (mg/kg)	TPH-DRO (mg/kg)	Chloride (mg/kg)	% Moisture
	NMAC CI	osure Criteria 🕬	10				50	1(00	600	
VGWU118 - 04	5/14/2013	2								48	
VGWU118 - 05	5/14/2013	2								64	
VGWU118 - 06	5/14/2013	2								128	
	5/14/2013	2	<0.058	0.025	<0.058	<0.175	0.025	<17.5	<17.5	7,200	14.2
	5/14/2013	5	<0.053	0.026	<0.053	<0.158	0.026	<15.8	<15.8	96	4.9
	5/14/2013	10	<0.051	<0.051	<0.051	<0.154	0.009	<15.4	<15.4	80	2.5
VGWU118 - 07	5/14/2013	15	<0.051	<0.051	<0.051	<0.152	<0.304	<15.2	<15.2	80	1.4
	5/14/2013	20	<0.052	<0.052	<0.052	<0.157	<0.314	<15.7	<15.7	<16	4.4
	5/14/2013	25	<0.052	<0.052	<0.052	<0.157	<0.314	<15.7	<15.7	<16	4.4
	5/14/2013	30	<0.059	<0.059	<0.059	<0.178	<0.357	<17.8	19.7	<16	15.9
VGWU118-08	6/23/2016	2								<10	
VGVVU110-00	6/23/2016	4								<10	
VGWU118-09	6/23/2016	2								42.2	
0000110-09	6/23/2016	4								50.9	
VGWU118-11	6/23/2016	2								28.7	
0000110-11	6/23/2016	4								300	
VGWU118-12	6/23/2016	2								374	
0000110-12	6/23/2016	4								246	
VGWU118-13	6/23/2016	2								13.2	
0000110-13	6/23/2016	4								125	
VGWU118-14	6/23/2016	2								298	
0000110-14	6/23/2016	4								325	
VGWU118-15	9/14/2016	2								18.5	
0000110-13	9/14/2016	4								<10	
VGWU118-17	6/23/2016	2								248	
VGVV0110-17	6/23/2016	4								115	
	9/14/2016	2								91.4	
VGWU118-18	9/14/2016	4								355	
VGVV0110-10	9/14/2016	7								307	
	9/14/2016	10								41.3	

Received by OCD: 12/5/2022 11:47:56 AM

.

Table 1
Soil Analytical Results
Vacuum Glorieta West Unit #118
Lea County, New Mexico

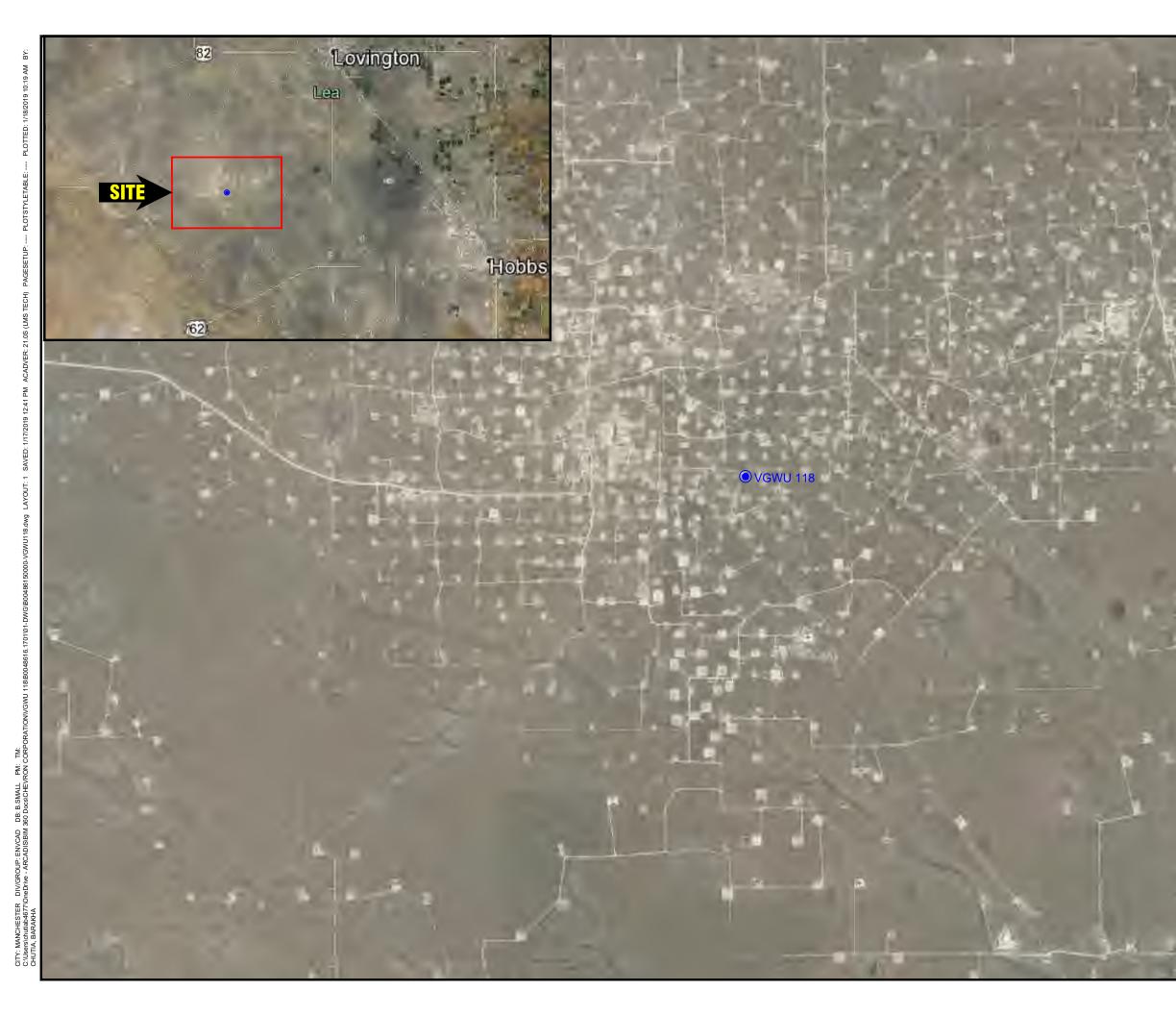
Released to Imaging: 12/5/2022 11:49:05 AM

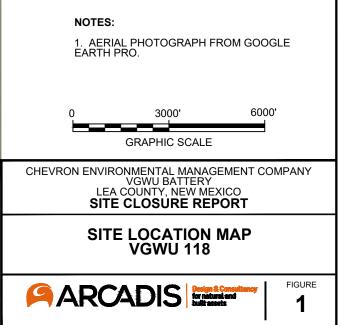
Boring Location ID	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	TPH-GRO (mg/kg)	TPH-DRO (mg/kg)	Chloride (mg/kg)	% Moisture
	NMAC CI	osure Criteria ^(ɒ)	10				50	10	00	600	
	11/8/2016	4								11.2	
VGWU118-19	11/8/2016	7								69.9	
Composite Sample #1 (0'-4')	11/2/2016	0 to 4								220	
Composite Sample #2 (0'-4')	11/2/2016	0 to 4								2370	
Composite Sample #3 (0'-4')	11/2/2016	0 to 4								1400	
Composite Sample #4 (0'-4')	11/7/2016	0 to 4								403	
Composite Sample #5 (0'-4')	11/7/2016	0 to 4								88	
Composite Sample #6 (0'-4')	11/7/2016	0 to 4								3450	
Composite Sample #7 (0'-4')	11/7/2016	0 to 4								4370	
Composite Sample #8 (0'-4')	11/7/2016	0 to 4								433	
Composite Sample #9 (0'-4')	11/7/2016	0 to 4								1140	
Composite Sample #10 (0'-4')	11/7/2016	0 to 4								24.3	
Composite Sample #11 (0'-4')	11/7/2016	0 to 4								4250	
Composite Sample #12 (0'-4')	11/7/2016	0 to 4								5000	
Composite Sample #13 (0'-4')	11/7/2016	0 to 4								1690	
VGWU-118-001	10/5/2017	2								8.1	
VGWU-118-002	10/5/2017	2								544	
VGWU-118-003	10/5/2017	2								2760	
VGWU-118-004	10/5/2017	2								41.3	
VGWU-118-005	10/5/2017	2								67.9	
VGWU-118-006	10/5/2017	2								15.0	
VGWU-118-007	10/6/2017	2								2030	
VGWU-118-009	10/17/2017	2								2150	
VGWU-118-010	10/17/2017	2								13.9	
VGWU-118-011	10/17/2017	2								861	
VGWU-118-012	10/17/2017	2								1530	
VGWU-118-013	10/17/2017	2								12.3	
VGWU-118-014	2								11.1		
VGWU-118-015	10/17/2017	2								7.1	
VGWU-118-016	VGWU-118-016 10/17/2017 2									39.5	
VGWU-118-017	2								14.4		

.

Page 18 of 282

Boring Location ID	Location ID		Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	TPH-GRO (mg/kg)	TPH-DRO (mg/kg)	Chloride (mg/kg)	% Moisture
	NMAC Cle	osure Criteria 👳	10				50	10	00	600	
VGWU-118-018	10/17/2017	2								28.5	
VGWU-118-019	10/17/2017	2								<4.96	
VGWU-118-020	12/4/2017	2								38.5	
VGWU-118-027	12/4/2017	2								9.2	
VGWU-118-028	12/4/2017	2								18.1	
VGWU-118-029	12/4/2017	2								615	
VGWU-118-030	12/6/2017	2								10.5	


Legend:	
VALUE	Analytical value is greater than or equal to NMAC closure criteria
%	Percent
mg/kg	Miligram(s) per kilogram
<	Analyte was not detected above the specified method reporting limit
	Not Analyzed/Not Listed
ft bgs	Feet below ground surface
BTEX	Benzene, toluene, ethylbenzene, and total xylenes
NMAC	New Mexico Administrative Code
TPH-GRO	Total Petroleum Hydrocarbons as Gasoline Range Organics
TPH-DRO	Total Petroleum Hydrocarbons as Diesel Range Organics


(a) Title 19, Chapter 15 of the NMAC for Natural Resources and Wildlife, Oil and Gas, and Releases, 19.15.29 NMAC. August.

Page 4 of 4

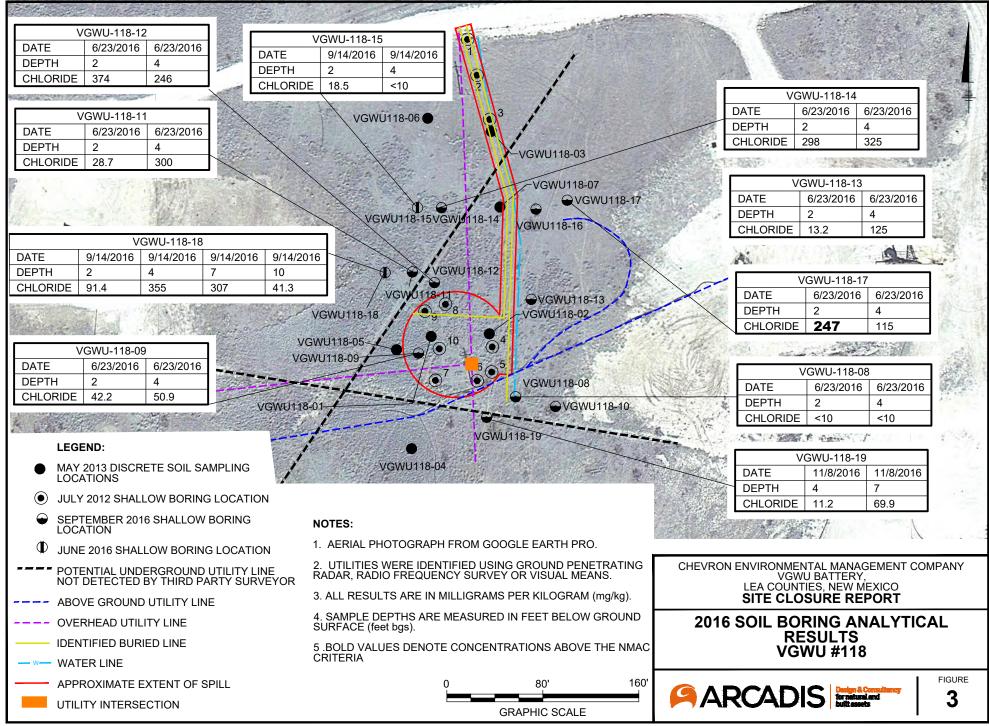
Received by OCD: 12/5/2022 11:47:56 AM

FIGURES

LEGEND: SITE LOCATION

Released to Imaging: 12/5/2022 11:49:05 AM

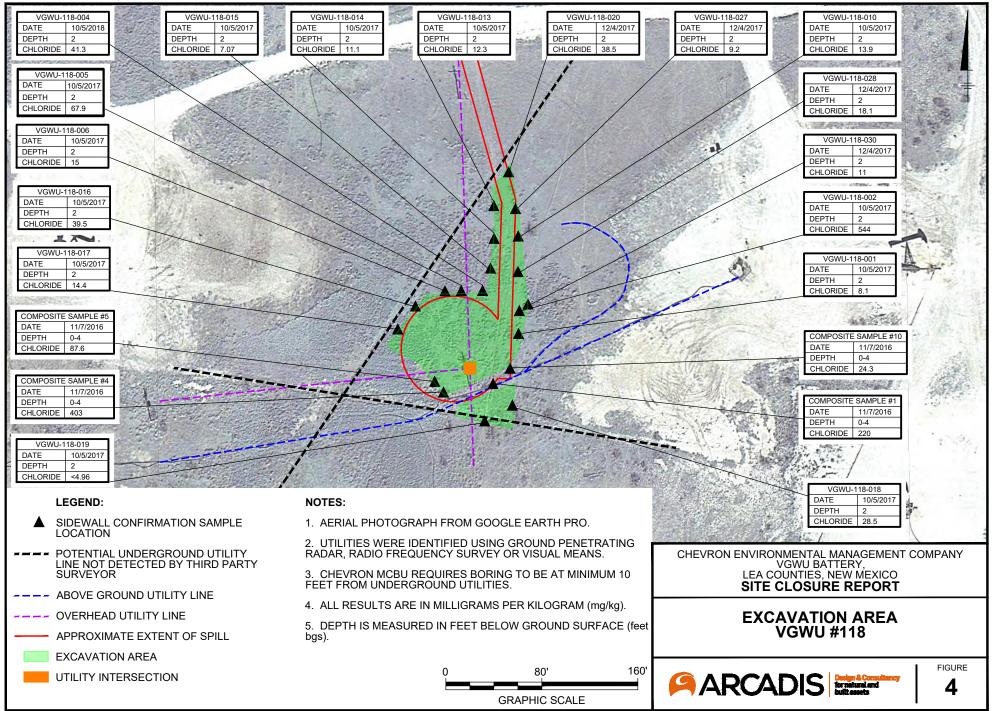
CITY: MANCHESTER DIV/GROUP: ENVCAD DB: B.SMALL PM: TM C:\Users\chutiab4677\OneDrive - ARCADIS\BIM 360 Docs\CHEVRON CORPORATION\VGWU 118\B0048616.1701\01-DWG\B00486111601-VGWU118-2012 and 2013.dwg LAYOUT: 2 SAVED: 1/18/2019 3:23 PM ACADVER: 21.0S (LMS TECH) PAGESETUP: ---- PLOTSTYLETABLE: PLTFULL.CTB PLOTTED:


		Carrie States	12 3 4 3 4 3	1. 19 1. 19 1.		A Property in	and the second	and the second of the second o					VGWU118	- 07		······	······	200	18. M
			VGWU118	- 03					-	DATE	5/14/2013	5/14/2013			5/14/20	13 5/14	4/2013 5	5/14/2013	States.
DATE	5/14/2013		5/14/2013		_		5/14/2013	B	CONTRACT	DEPTH	2	5	10	15	20	25		512	
EPTH	2	5	10	15	20	25	30	and the second s		TOLUENE	0.025	0.025	< 0.051	< 0.051	< 0.052			0.059	Contraction of the
	0.034	0.033	0.028	0.031	0.019	0.041	<0.051			ETHYLBENZENE	_	<0.053	<0.051	<0.051	< 0.052			0.059	1
HYLBENZENE TAL XYLENES	<0.054 <0.161	<0.052 <0.157	<0.054 <0.161	<0.054	<0.052 <0.157	<0.052 <0.156	<0.051 <0.153			TOTAL XYLENES TPH-GRO	<0.175 <17.5	<0.158 <15.8	<0.154 <15.4	<0.152 <15.2	<0.157 <15.7	<0.1		<0.178 <17.8	Che and
H-GRO	<0.161	<15.7	<16.1	<0.161 <16.1	<15.7	<15.6	<15.3		A COLOR	TPH-GRO	<17.5	<15.8	<15.4	<15.2	<15.7	<15		9.7	1000
H-DRO	<16.1	<15.7	<16.1	<16.1	<15.7	<15.6	<15.3		Property and	CHLORIDE	7.200	96	80	80	<16	<16		:16	1
ILORIDE	832	96	48	48	48	32	32		3 .	A CONTRACTOR OF A	THE PARTY NAME	AN THE PARTY AND		1255 N. 110	1210160	STREET, STREET,		and the second	2.34
EPTH 2 HLORIDE 128	/2013			_				VGWU118-06		VU118-03 /GWU118-07			11			in the second se			
TE	5/14/2013	_			3 5/14/2013			3		- Alla		12.255		VCM	VU118 - 02			10. 10 M	
PTH LUENE	2 0.047	5 0.016	10 0.020	15 0.022	20 0.022	25 0.042	30 0.023	himmine o		anti-	DATE	5/14/	2013 5/14			/14/2013	5/14/201	13 5/14/2013	3 5/14/2
HYLBENZENE	<0.047	<0.062	<0.020	<0.022	<0.022	<0.042	<0.023	VGWU118-0	1 1 m	and a second	DEPTH	2	5	10	15		20	25	30
TAL XYLENES	<0.169	<0.186	<0.184	<0.184	<0.188	<0.155	<0.187	STATE TO BE		St. State +	TOLUENE	<0.05				.036	0.035	0.039	0.03
H-GRO	<16.9	<18.6	<18.4	<18.4	<18.8	<15.5	<18.7	19	1 20		ETHYLBENZ					0.052	<0.054	<0.054	<0.0
H-DRO	102	<18.6	<16.0	<18.4	<18.8	<15.5	<18.7		NO	1	TOTAL XYLE					0.156	<0.162	<0.162	<0.1
LORIDE	4,800	192	32	32	<16	32	<16		VG	and the second sec	TPH-GRO TPH-DRO	<17.2				15.6	<16.2	<16.2	<19.
19 9 m 1 1	And the second	1 3 83	1 30	1.1.7		VGWU	118.05		Photo Pa	THE REPORT OF ALL CARD INCOME.	CHLORIDE		2 <16. 000 368	.2 <16. 80	.1 <1 11	15.6	<16.2 384	<16.2 1,090	<19.
HLORIDE 64		Want of the state			and the second second	Teleford State	-	7 100	2			New Y	ERFE						- Sale
	ND: 2013 DIS 2013 DIS TION	SCRETE S			Т	PH- GRC) TOTAL ORGA	L PETROLEUM HYDRO											
TE 5/14 PTH 2 LORIDE 48 LEGE MAY 2 LOCA JULY POTE NOT I	ND: 2013 DIS 2013 DIS TION 2012 DIS NTIAL U		SAMPLIN ROUND L	NG LOCA JTILITY L	T ATIONS LINE N 1	PH- GRC RAN OTES:) TOTAL ORGA) TOTAI IGE ORC HOTOGRAF	L PETROLEUM HYDRO ANICS L PETROLEUM HYDRO GANICS PH FROM GOOGLE EARTH PF	DCARBO	DNS- GASOLIN	IE	СН	EVRONI		VGWU E	BATTE S, NEV	ERY, W MEXI		MPAN
TE 5/14 PTH 2 LORIDE 48 LEGE MAY 2 LOCA JULY POTE SURV	ND: 2013 DIS 2013 DIS TION 2012 DIS 2012 DIS 2012 DIS 2012 DIS 2012 CIS 2012 CIS 2012 CIS 2013 CIS 201	SCRETE	Samplin Round L HIRD Par	NG LOCA JTILITY L RTY	T ATIONS -INE N 1 2 S	PH- GRC RAN OTES: . AERIAL PI . COORDIN, UB METER) TOTAL ORGA) TOTAI IGE ORC HOTOGRAF ATES FOR TRIMBLE C	PETROLEUM HYDRO NNICS L PETROLEUM HYDRO GANICS PH FROM GOOGLE EARTH PF ALL MAY 2013 SAMPLE LOCA 3PS UNIT.	DCARBO RO. ITIONS WEF	DNS- GASOLIN	IE			LEA CO SITE O	VGWU E DUNTIES CLOSI	BATTE S, NEV URE	ERY, W MEXI REPO	ICO RT	
TE 5/14 PTH 2 LORIDE 48 LEGE MAY 2 LOCA JULY POTE SURV ABOV OVEF	ND: 2013 DIS 2013 DIS TION 2012 DIS 2012 DIS 2012 DIS 2012 DIS 2012 DIS 2012 DIS 2012 DIS 2013 DIS 2013 DIS 2013 DIS 2013 DIS 2013 DIS 2013 DIS 2013 DIS 2013 DIS 2013 DIS 2014 DIS 2015 DIS 2015 DIS 2017 DIS 2018 DIS 201	SCRETE INDERGF ED BY TH JND UTIL JTILITY L	Samplin Round L Hird Par Lity Line Ine	NG LOCA JTILITY L RTY	ATIONS LINE N 1. 2 S 3 F	PH- GRC RAN OTES: . AERIAL PI . COORDIN, UB METER . UTILITIES REQUENCY	O TOTAL ORGA O TOTAI IGE ORC HOTOGRAF ATES FOR TRIMBLE C WERE IDE SURVEY (L PETROLEUM HYDRO NNICS L PETROLEUM HYDRO GANICS PH FROM GOOGLE EARTH PF ALL MAY 2013 SAMPLE LOCA	DCARBO RO. ATIONS WEF	DNS- GASOLIN ERE COLLECTED US	IE		2013			BATTE IS, NEV URE SOI	ERY, W MEXI REPO IL SA TEC	ICO	NG
TE 5/14 PTH 2 LORIDE 48 LEGE MAY 2 LOCA JULY POTE NOT I SURV ABOV ABOV IDENT	ND: 2013 DIS TION 2013 DIS TION 2012 DIS 2012 DIS 2012 DIS 2012 DIS 2012 DIS 2012 DIS 2013 DIS 2014 DIS 2015 DIS 2015 DIS 2015 DIS 2017 DI	SCRETE INDERGF ED BY TH JND UTIL	Samplin Round L Hird Par Lity Line Ine	NG LOCA JTILITY L RTY	ATIONS LINE N 1 2 S 3 4 5	PH- GRC RAN OTES: AERIAL PI COORDIN, UB METER . UTILITIES REQUENCY . ALL RESL . SAMPLE I) TOTAL ORGA) TOTAI IGE ORC HOTOGRAF ATES FOR TRIMBLE C WERE IDE SURVEY (JILTS ARE II DEPTHS AF	L PETROLEUM HYDRO NICS L PETROLEUM HYDRO GANICS PH FROM GOOGLE EARTH PF ALL MAY 2013 SAMPLE LOCA SPS UNIT. ENTIFIED USING GROUND PEI OR VISUAL MEANS. N MILLIGRAMS PER KILOGRA RE MEASURED IN FEET BELO	DCARBO RO. ITIONS WEI NETRATING M (mg/kg).	DNS- GASOLIN ERE COLLECTED US IG RADAR, RADIO ID SURFACE (feet b	IE SING A		2013			BATTE IS, NEV URE SOI	ERY, W MEXI REPO IL SA TEC		NG
TE 5/14 TH 2 LORIDE 48 LEGE MAY 2 LOCA JULY T- POTE SURV ABOV OVER IDENT WATE	ND: 2013 DIS 2013 DIS TION 2012 DIS 2012 DIS 2012 DIS 2012 DIS 2012 DIS 2012 DIS 2012 DIS 2013 DIS 2013 DIS 2013 DIS 2013 DIS 2013 DIS 2013 DIS 2013 DIS 2013 DIS 2013 DIS 2014 DIS 2015 DIS 2015 DIS 2016 DIS 2017 DIS 2017 DIS 2017 DIS 2018 DIS 201	SCRETE INDERGF ED BY TH JND UTIL JTILITY L	Samplin Round L Hird Par Lity Line Ine Ine	NG LOCA JTILITY L RTY	ATIONS LINE N 1 2 S 3 4 5	PH- GRC RAN OTES: AERIAL PI COORDIN, UB METER . UTILITIES REQUENCY . ALL RESL . SAMPLE I) TOTAL ORGA) TOTAI IGE ORC HOTOGRAF ATES FOR TRIMBLE C WERE IDE SURVEY (JILTS ARE II DEPTHS AF	PETROLEUM HYDRO ANICS L PETROLEUM HYDRO GANICS PH FROM GOOGLE EARTH PF ALL MAY 2013 SAMPLE LOCA SPS UNIT. ENTIFIED USING GROUND PEI OR VISUAL MEANS. N MILLIGRAMS PER KILOGRA	DCARBO RO. ITIONS WEI NETRATING M (mg/kg). W GROUNE /E THE NM/	DNS- GASOLIN ERE COLLECTED US IG RADAR, RADIO ID SURFACE (feet b	IE SING A		2013 AN			BATTE S, NE\ URE SOI DE U #1	ERY, W MEXI REPO IL SA TEC 118	AMPLII TIONS	NG

Released to Imaging: 12/5/2022 11:49:05 AM

Received by OCD: 12/5/2022 11:47:56 AM

CITT: MANGESTER DIV/GROUP: ENVGAD DD: D.SMALL PW: TW


C/Users/chuitab4677/OneDrive - ARCADIS/BIM 360 Docs/CHEVRON CORPORATION/VGWU 118/B0048616.1701/01-DWG/B00486111601-VGWU118-2016.dwg LAYOUT: 2 SAVED: 1/18/2019 3:23 PM ACADVER: 21.0S (LMS TECH) PAGESETUP: --- PLOTSTYLETABLE: PLTFULL.CTB PLOTTED: 1/21/2019 12:56 PM BY: CHUTIA, BARAKHA

Released to Imaging: 12/5/2022 11:49:05 AM

CITY: MANCHESTER DIV/GROUP: ENVCAD DB: B.SMALL PM: TM

C:\Users\chuttab4677\OneDrive - ARCADIS\BIM 360 Docs\CHEVRON CORPORATION\VGWU 118\B0048616.1701\01-DWG\B00486111601-VGWU118-2017.dwg LAYOUT: 2 SAVED: 1/17/2019 5:51 PM ACADVER: 21.0S (LMS TECH) PAGESETUP: --- PLOTSTYLETABLE: PLTFULL.CTB PLOTTED: 1/18/2019 2:44 PM BY: CHUTIA, BARAKHA

Released to Imaging: 12/5/2022 11:49:05 AM

ATTACHMENT 1

Depth-to-Groundwater Data

Released to Imaging: 12/5/2022 11:49:05 AM

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW###### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is closed)	(2=NE 3 It to larg	3=SW 4=SE gest) (N/) AD83 UTM in me	eters)	(1	n feet)	
	POD			_	_									
POD Number	Sub- Code basin C	Count		Q 16		Sec	Tws	Rna	х	Y	Distance		Depth V Water C	
L 13392 POD20	L	LE					18S		641081	3628000 🌍	200	138	Mator 0	orunn
L 13392 POD15	L	LE	4	1	2	06	18S	35E	641119	3628041 🌍	204	137		
L 13392 POD19	L	LE	3	2	2	06	18S	35E	641155	3628080 🌍	221	138		
L 13392 POD14	L	LE	4	1	2	06	18S	35E	641118	3628007 🌍	223	133		
L 13392 POD18	L	LE	4	1	2	06	18S	35E	641143	3628014 🌍	239	138		
L 13041 POD1	L	LE		2	2	06	18S	35E	641152	3628026 🌍	240	130		
L 13041 POD2	L	LE		2	2	06	18S	35E	641152	3628026 🌍	240	140		
L 13041 POD3	L	LE		2	2	06	18S	35E	641152	3628026 🌍	240	140		
L 13041 POD4	L	LE		2	2	06	18S	35E	641152	3628026 🌍	240	140		
L 13392 POD17	L	LE	4	1	2	06	18S	35E	641149	3627992 🌍	257	138		
L 13392 POD16	L	LE	3	2	2	06	18S	35E	641171	3627989 🌍	276	138		
L 05523	L	LE	3	3	2	06	18S	35E	640855	3627660* 🌍	492	147	85	62
L 07119 S	L	LE	1	2	1	06	18S	35E	640445	3628259* 🌍	510	233	95	138
L 10337	L	LE	4	1	1	06	18S	35E	640268	3628055* 🌍	679	190	100	90
L 07119	L	LE	1	1	1	06	18S	35E	640068	3628255* 🌍	880	233	95	138
										Avera	ge Depth to	Water:	93 fe	et
											Minimum	Depth:	85 fe	et
											Maximum	Depth:	100 fe	et
Record Count: 15			_											
UTMNAD83 Radius S	Search (in mete	rs):												

Easting (X): 640942

Northing (Y): 3628144.44

Radius: 1000

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

1/14/19 1:09 PM

ATTACHMENT 2

C-141 Form

State of New Mexico **Energy Minerals and Natural Resources**

Form C-141 Revised August 8, 2011

Page 28 of 282

Oil Conservation Division 1220 South St. Francis Dr.

1220 S. St. Fran	cis Dr., Santa	1 Fe, NM 87505	5			e, NM 875								
			Rele			,	orrective A	ction						
			NCI		ano			_	1.D					
Name of Co	mnony CL	JEVDON U	S A Inc			OPERA' Contact Day		🖄 Initia	al Report	Final Report				
-				n, NM 88260			0	396-4414 ext 275	Cellular: 5(05-787-9816				
Facility Nar		um Gloriett				Facility Typ			containair b					
Surface Ow	non Stat	e of New M	ariaa	Mineral ()	State of N	Mariaa	API No	20021	21120				
Surface Ow	ner State		exico											
				1		N OF RE								
Unit Letter	Section	Township	Range	Feet from the	North	/South Line	Feet from the	East/West Line	County	Lea				
В	6	18.0S	35.0E							Lou				
		Latitu	de 32.	.782150°		Longitud	e103.49615	7°						
					TUDE			· · · · · · · · · · · · · · · · · · ·						
Type of Rele	ase Produ	iced Water Sp	vill	INA I	UKE	Volume of		bls of Volume R	ecovered					
Type of Rele		ieeu water Sp	2111				Water and 0.746 b		ceovereu					
G (D)	1 337	· • • • •				oil								
Source of Re	lease wa	ter Injection S	station Pui	np		04/22/12 0	Iour of Occurrenc 7:00	e Date and 04/22/12	Hour of Dis 07:00	covery				
Was Immedia	ate Notice C			_		If YES, To	Whom?							
			Yes] No 🗌 Not R	equired		g via voicemail							
By Whom?	David Paga	no				Date and Hour 04/223/12 11:00 AM								
Was a Water	course Reac	hed?				If YES, Volume Impacting the Watercourse.								
			Yes 🛛] No										
If a Watercou	irse was Imj	pacted, Descr	ibe Fully.*	k										
NA														
Describe Cau	se of Proble	em and Reme	dial Actio	n Taken.*										
					to spill	of 9.61bbls of	pw and 0.746 bb	ls of oil. Well shut	in on disco	very.				
Describe Are	a Affected a	and Cleanup	Action Tak	cen *										
			letion ru											
Spill was loca	ated in pastu	ure												
On discovery	vacuum tru	ick contacted	and vacuu	med up the stand	ling flui	ds which were	e sent to disposal.	Next steps are for	the visually	contaminated soil				
to be excavat	ed up to 2 fe	eet and sent o	ff for disp	osal										
I hereby certi	fv that the i	nformation gi	iven above	is true and com	lete to	the best of my	knowledge and u	nderstand that purs	uant to NM	OCD rules and				
regulations al	l operators	are required t	o report ar	nd/or file certain i	elease	notifications a	nd perform correc	tive actions for rele	eases which	may endanger				
								eport" does not reli eat to ground water						
								responsibility for co						
federal, state,	or local law	ws and/or regu	ulations.						•					
							OIL CONS	SERVATION	DIVISIO	<u>DN</u>				
Signature:														
Printed Name	e: David I	Pagano				Approved by Environmental Specialist:								
		onmental Spec	cialist			Approval Date: Expiration Date:								
E-mail Addre	ess: david	.pagano@che	evron.com			Conditions of Approval:								

Date: 04/23/12 Phone: 505-787-9816 * Attach Additional Sheets If Necessary

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised August 8, 2011

Page 29 of 282

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

1220 S. St. Francis Dr., Santa Fe, NM 87505 Santa Fe, NM 87505														
			Rele	ease Notific		,		ction						
						OPERA'			l Report	\boxtimes	Final Report			
Name of Co	mpany: C	HEVRON U	J.S.A. Inc	2.		Contact: Lu			Report		T mai Report			
Address: 56	<u> </u>							3) 372-0292 Mob	ile: (832)	627-91	71			
Facility Nan						<u> </u>	e: Production W		. ,					
	C	CNL M.	•	Maria		CLAR CN.	Marian	A DI NI	2002521	100				
Surface Own	ner: State	of New Mex	100	Mineral C	wher:	er: State of New Mexico API No. 3002531129								
			1			ON OF RELEASE								
Unit Letter	Section	Township	Range	Feet from the	North	/South Line	Feet from the	East/West Line	County					
В	6	18.0S	35.0E						Lea					
			Latitu	ide <u>32.782150°</u>		Longitude	e <u>-103.496157</u> °							
					TIDE	OF REL								
Type of Relea	se Produc	ed Water Snil	11	INAL	UKE		Release: 9.61 bbls	of Volume R	ecovered (bbls				
Type of Relea	ise. I fodue	ed water spin	11				ater and 0.746 bb			0015				
Source of Rel	lease: Wate	r Injection Sta	ation Pum	р		Date and Ho	our of Occurrence			covery				
Was Immedia	ate Notice (Jiven?				04/22/12 07 If YES, To Y		04/22/12 0	7:00					
		X Y	res 🔲 🛛	No 🔲 Not Requ	uired		via voicemail							
By Whom? I						Date and Ho	our: 04/23/12 11:0	00M						
Was a Water	course Read		57			If YES, Volume Impacting the Watercourse.								
			Yes 🛛 🛛											
If a Watercou N/A	rse was Im	pacted, Descr	ibe Fully. ³	*										
Describe Cau	se of Probl	em and Reme	dial Actio	n Taken.*										
1 foot scrape	on poly lin	e caused integ	rity of lin	e to give leading t	o spill (of 9.61 bbls of	nw and 0 746 bb	ls of oil. Well shut i	n on discov	erv				
Describe Are					o spin (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	p. und 0.7 10 00		ii oli uibeo (ery.				
0 '11 1	. 1													
Spill was loca			l and vacu	umed up the stand	ling flu	ids which we	e sent to disposal	. Visually contamin	ated soil w	as exca	vated up to 2			
feet.	, vuotuum ti	uen contactee	i una vuoa	unioù up the stare	<u>6</u>	las, which we	e sent to disposa	. visually containin		us eneu	raioa ap to 2			
Ten discrete s	oil confirm	nation samples	were col	lected from the ba	se of th	e excavation	An additional site	e assessment was co	nducted to	confirm	the extent			
of soil impact		lation samples	s were con	lected from the ba			An additional site	assessment was co.	inducted to	comm	i the extent			
A	14													
Analytical res					lete to t	the best of my	knowledge and u	nderstand that pursu	ant to NM	OCD r	iles and			
								tive actions for release						
								eport" does not relie						
						diate contamination that pose a threat to ground water, surface water, human health rt does not relieve the operator of responsibility for compliance with any other								
or the enviror federal, state,				otance of a C-141	report o	loes not reliev	e the operator of	responsibility for co	mpliance w	71th any	other			
iederai, state,	of local la	ws and/or rege	anations.				OIL CON	SERVATION	DIVISIC)N				
G .							<u></u>			<u> </u>				
Signature:														
Printed Name	: Luke We	lch				Approved by Environmental Specialist:								
Title: Project	Manager					Approval Dat	Approval Date: Expiration Date:							
E-mail Addre	ss: LWelch	@chevron.co	m		Conditions of Approval:									
						Attached								

Date: Phone: (713) 372-0292

* Attach Additional Sheets If Necessary

ATTACHMENT 3

Soil Boring Logs

Dri		Čomj	bany	Wh	ite Dr		:47:56 A R Dallas	M Well/Boring ID: VGWU118 - 01 Client: Chevron EMC Location: Vacuum Glorietta West Unit 118
Sar	npline	g Me	thod:	Sh	ovel			
De	scrip	tions	By:	R Na	anny			
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description
0	0							
	_		AK	2				SILTY SANDY CLAY (Topsoil), Dark Grayish Brown (10YR8/2), firm, blocky, dry, roots in sample, 50% sand, silt to very fine grained, subangular to subrounded, poorly sorted.
	-	1			6.2			CALICHE, Pale Yellow (2.5YR8/4), soft, slightly moist, argillaceous, 90% caliche clay, 10% sand, silt to very fine grained, subangular to subrounded, poorly sorted.
	-		AK	3				
-5	-5 -		AR		7.1	Ж		
	-	2	AR	5				SANDY CALICHE, Pale Yellow (2.5YR8/3), soft, powdery, 75% caliche, 25% sand, very fine to fine grained, subangular, poorly sorted, loose, dry, trace caliche, White (2.5YR8/1), indurated, nodular, 0.3 cm to 0.5 cm.
- 10	-							
- 10	-10 -				2.8	æ		
	-	3	AR	5				
- 15	-15 -				4.0	×		SANDY CALICHE, Pale Yellow (2.5YR8/2), soft, powdery, dry, 80% caliche, 20% sand, very fine to fine grained, subrounded to subangular, poorly sorted, loose, formation contains sandy siliceous caliche, Pale Yellow (7.5YR7/4), fine to very fine grained,
	-	4	AR	5				subargular, poorly sorted, silica cemented, nodular, traces throughout formation.
	-							
- 20	-20 -				4.7			SANDSTONE, Light Gray (10YR7/2), very fine to fine grained, subangular to subrounded, poorly sorted, weakly cemented, calcareous formation.
	-	5	AR	5				
	-							
- 25	-25 -				5.8	×		Same as above, formation sand becomes fine grained, subrounded, well sorted, contained trace indurated sandstone, Pale Yellow (2.5YR7/4), silica cemented, nodules 0.3 cm to 1 cm throughout formation.
	-	6	AR	5				
	-				7.4			Same as above, nodules become 5% to 10% at 30 feet bgs.
- 30-	-30				7.4	×		

Project: B0048611 Template:ChevronSoilBoring.ldfx Data File:VGWU118 - 01 Soil Boring.dat Date: 6/25/2014

e <mark>Dai</mark> t Drii	ing C	y/Fû Comp	GD: bany:	52/4 Wh	ite Dr	3 2 11 illina/		M Well/Boring ID: VGWU118 - 02 Chevro Page 32 of 2
Dril	ling N npling	/letho	od: A	Air Ro	otary			Client: Chevron EMC Location: Vacuum Glorietta West Unit 118
	eholo script							
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description
0							/··/·/·/·	
	-	4	AK	2	3.4	×		SILTY SANDY CLAY (Topsoil), Dark Grayish Brown (10YR4/2), soft, slightly pliable, moist, roots in sample, 50% clay and 50% sand, silt to very fine grained, subangular to subrounded, poorly sorted, trace caliche, White (5YR8/1), soft to firm, nodular, 0.2 cm to 0.3 cm.
-5	-5 -	1	AK	3		×		CALICHE, Pale Yellow (2.5YR8/4), soft, slightly moist, argillaceous, 90% caliche clay, 10% sand, silt to very fine grained, subangular to subrounded, poorly sorted.
			AR		2.9		$\left \right\rangle$	
	-	2	AR	5				SANDY CALICHE, Pale Yellow (2.5YR8/4), soft, powdery, 75% caliche, 25% sand, very fine to fine grained, subangular, poorly sorted, loose, dry. Formation contains trace caliche, White (2.5YR8/1), indurated, nodular, 0.3 cm to 0.5 cm throughout formation.
- 10	-10 -	3	AR	5	4.3			
- 15	-15 - -				4.8	×		Same as above, formation had a slight color change to Pale Yellow (2.5YR8/3), sand increased, grains turned to subrounded.
	-	4	AR	5				
- 20	-20 -	5	AR	5	5.4			SAND, Pale Yellow (2.5YR8/2), fine grained, subrounded, moderately sorted, loose, slightly moist. Formation contains traces sandstone, Light Brown (7.5YR6/4). Sand is same as described above, indurated, nodular, silica cemented.
- 25	-25 - -	6	AR	5	5.3	×		
	-	5			7.9	×		

Project: B0048611 Template:ChevronSoilBoring.ldfx Data File:VGWU118 - 02 Soil Boring.dat Date: 6/25/2014

.

Released to Imaging: 12/5/2022 11:49:05 AM

Drill Drill Sam	ing (ing N pling	Comp Netho g Met	oany: od: <i>F</i> thod:	Wh Air Ro	ite Dr otary ovel	82 11 illing/	R Dallas	M Well/Boring ID: VGWU118 - 03 Chevro Page Client: Chevron EMC Location: Vacuum Glorietta West Unit 118 Chevro Page	33 of 2
Bor Des	ehol cript	e De tions	pth: By:	30' b R Na	igs anny				
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	
0				1	1		///.		٦
	-		AK	2		×		SILTY SANDY CLAY (Topsoil), Dark Grayish Brown (10YR4/2), firm, blocky to slightly friable, dry, roots in sample, 50% clay, 50% sand, silt to very fine grained, trace fine grains in samples, subangular to subrounded, poorly sorted, trace caliche, White (5YR8/1), soft to friable, nodular.	
	_	1			2.7			SANDY CALICHE, White (2.5YR8/1), very firm to indurated, dry, 75% caliche, 25% sand, very fine to fine grained, subangular, poorly	
	-		AK	3				sorted. CLAYEY SAND, Light Gray (2.5YR7/2), very fine to fine grained, subangular, poorly sorted, loose, 70% sand, 40% clay, calcareous clay	-
5	-5 -		AR		2.8			matrix, powdery, arenaceous, trace caliche as described above, nodular, 0.1 to 0.3 cm, firm to indurated.	
	-	2	AR	5					
10	-10 -				6.2	×		Same as above, formation had a slight color change to Light Gray (10YR7/2), loose.	
	-	3	AR	5				SANDY CALICHE, Pale Yellow (2.5YR8/2) firmly cemented, dry, 80% caliche, 20% sand, very fine to fine grained, subangular, poorly sorted, formation contains White (5YR8/1), indurated, sandy caliche nodules, rounded thoughout formation.	_
15	-15 -				6.4				
	-	4	AR	5					
20	-20 -				9.0	×		SANDSTONE, Light Gray (10YR7/2), very fine to fine grained, subangular to subrounded, poorly sorted, weakly cemented, calcareous.	-
0.5	-	5	AR	5					
25	-25 - - -	6	AR	5	5.7	æ		Same as above, formation becomes fine grained, subrounded, well sorted. Formation contains trace indurated sandstone, Pale Yellow (2.5YR7/4), sand is same as above, silica cemented nodules.	
-30	- - 30 -				5.8	×		Same as above, nodules become 10% at 30 feet bgs.	
	50								

Project: B0048611 Template:ChevronSoilBoring.ldfx Data File:VGWU118 - 03 Soil Boring.dat Date: 6/25/2014

Drill Sam Bor	ing M pling ehole cript	/letho g Met e Dei	od: ^A hod: oth:	Air Ro Sho 30' b	otary ovel gs	iiii ig/i	R Dallas	Client: Chevron EMC Location: Vacuum Glorietta West Unit 118
ИЕРІН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description
0	0							
		1	AK	2	4.3	服		SILTY SANDY CLAY (Topsoil), Dark Grayish Brown (10YR4/2), friable, dry, 50% clay and 50% sand, silt to fine grained, subrounded, poorly sorted, roots in sample. Formation contains trace caliche, White (5YR8/1), very fine to indurated, nodular throughout formation.
	_		AK	3				SANDY CALICHE, White (5YR8/1), powdery, arenaceous, dry, 80% caliche, 20% sand, very fine to fine grained, rounded, poorly sorted,
5	-5 -		AR		5.9	×		formation contains trace indurated, siliceous caliche nodules, rounded throughout formation, Yellow (5YR8/3).
		2	AR	5				
10	-10 -	3	AR	5	6.7	×		Same as above, formation becomes slightly softer, sand become 30%.
15	-15 -				6.1	×	= <u>=</u> =	Same as above, formation becomes soft, sand grain content becomes 40%, caliche is powdery within formation.
20	-20	4	AR	5		×		
		5	AR	5	6.1			SANDSTONE, Pale Yellow (2.5YR8/2), fine grained, subangular to subrounded, moderately to poorly sorted, calcareous, weakly cemented, friable, trace indurated, siliceous concretions, Pale Yellow (2.5YR7/4), rounded, throughout formation, formation is slightly calcareous.
25	-25 -	6	AR	5	5.9	×		Same as above, formation sand becomes subrounded and well sorted, dry.
	_							SAND at 30 feet bgs, Pale Yellow (2.5YR8/2), fine grained, subrounded, moderately to well sorted, loose, calcareous, 80% sand, 20%

Project: B0048611 Template:ChevronSoilBoring.ldfx Data File:VGWU118 - 04 Soil Boring.dat Date: 6/25/2014

<i>Re</i> De	i ie@l a illing	by/fü Čom	pany	521/4 Wh	ite Dr	82 11 illing/	:47:56 A R Dallas		282
Di Sa	illing mplir	Meth Ig Me	od: /	Air Ro : Sh	otary ovel			Client: Chevron EMC Location: Vacuum Glorietta West Unit 118	
B D	Borehole Depth: 30' bgs Descriptions By: R Nanny								
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	
-	0	- 1	AK	2	4.0	困		SILTY SANDY CLAY (Topsoil), Dark Grayish Brown (10YR4/2), firm, blocky, dry, roots in sample, 50% clay and 50% sand, silt to very fine grained, trace fine grains in sample, subangular to subrounded, poorly sorted.	
-	-5		AK	3		×		CLAYEY SAND, Light Gray (2.5YR7/2), very fine to fine grained, subangular, poorly sorted, loose, 60% caliche, 40% sand, calcareous clay matrix, powdery, arenaceous, slight moisture, trace caliche, White (2.5YR8/1), firm to indurated, nodular, formation also contains trace siliceous caliche, Very Pale Brown (10YR7/3), indurated, rounded, nodular throughout formation.	
			AR		3.4	A			
-		2	AR	5					
- 10	-10				4.2	×			
-		3	AR	5				SANDSTONE, Very Pale Brown (10YR8/2 to 10YR7/4), fine grained, subangular to subrounded, poorly sorted, indurated, calcite and silica cementation. Same as above, formation softens to friable.	
- 15	-15				5.9	×	•••••		
-		4	AR	5				SANDSTONE, Light Gray (10YR7/2), very fine to fine grained, subangular to subrounded, poorly sorted, weakly cemented, calcareous, formation contains trace caliche, White (2.5YR8/1), indurated, nodular, 0.3 to 0.5 cm throughout formation.	
- 20	-20				4.1	×	•••••		
-		5	AR	5					
- 25	-25				5.0	×			
		6	AR	5					
L_36	-30	1	1	1	6.1	×	• • • •		

Project: B0048611 Template:ChevronSoilBoring.ldfx Data File:VGWU118 - 05 Soil Boring.dat Date: 6/25/2014

er E) eiv Drilli	ala ng (y/Fû Comp	GD: bany:	52/4 Wh	ite Dr	82 11 illing/	:47:56 A R Dallas	M Well/Boring ID: VGWU118 - 06 Client: Chevron EMC	6 of 282
Drilling Method: Air Rotary Location: Vacuum Glorietta West Unit 118 Sampling Method: Shovel										
	Borehole Depth: 30' bgs Descriptions By: R Nanny									
1	Des	cript	ions	By:	R Na	anny				
			nber			PID Headspace (ppm)	Ð	-		
		z	Sample Run Number	Sample/Int/Type	feet)	pace	Sample	Geologic Column		
Ţ	:	ELEVATION	le Ru	le/Int	Recovery (feet)	leads	tical S	gic C	Stratigraphic Description	
DEPTH	- -	ELEV	Samp	Samp	Reco		Analytical	Geolc		
		0								
-		-		AK	2	3.9			SILTY SANDY CLAY (Topsoil), Dark Grayish Brown (10YR4/2), firm, blocky to slightly friable, dry, roots in sample, 50% clay, 50% sand, silt to very fine grained, trace fine grains in sample, subangular to subrounded, poorly sorted.	
F		-	1				×			
Ĺ		-		AK	3			· · · · · · · · · · ·	SANDY CALICHE, White (2.5YR8/1), very firm to indurated, dry, 75% caliche, 25% sand, very fine to fine grained, subangular, poorly sorted.	
-5		-5 -		AR		5.1	×		CLAYEY SAND, Light Gray (2.5YR7/2), very fine to fine grained, subangular, poorly sorted, loose, 60% sand, 40% caliche calcareous clay matrix, powdery arenaceous, dry trace caliche described above, nodules 0.1 cm to 0.3 cm.	
F		-								
ļ		_	2	AR	5					
-		_								
- 1	.0 -	-10 -				5.2	×		Same as above, firm to indurated, slight color change to Light Gray (10YR7/2), loose formation.	
ŀ		_							SANDY CALICHE, Pale Yellow (2.5YR8/2), firmly cemented, dry, 80% caliche, 20% sand, very fine to fine grained, subangular, poorly	
ŀ		-	3	AR	5				sorted. Formation contains White (SYR8/1), inducated sandy caliche nodules, rounded.	
	.5 -	-15 -				4.1	×			
╞		-								
ŀ		_	4	AR	5					
-		_								
- 2	0 -	-20 -				4.1	×		SANDSTONE, Light Gray (10YR7/2), vrey fine to fine grained, subangular to subrounded, poorly sorted, weakly cemented, calcareous.	
ļ		-								
ŀ		-	5	AR	5					
L,	5 -	-25 -					×			
						6.0			Same as above, formation sand becomes fine grained, subrounded, well sorted.	
ŀ		_	6	AR	5					
ļ		-	5						Same as above at 30 feet bas. White (10VD8/1) find are included when extend the view astronomy	
L	0	30				5.9	×	••••	Same as above, at 30 feet bgs, White (10YR8/1), fine grained, subrounded, well sorted, dry, very calcareous.	

Project: B0048611 Template:ChevronSoilBoring.ldfx Data File:VGWU118 - 06 Soil Boring.dat Date: 6/25/2014

Remarks: ags = above ground surface; AK = air knife; amsI = above mean sea level; AR = air rotary; bgs = below ground surface; ppm = parts per million; cm = centimeter;

Drill Drill Sam	ing C ing N pling	Comp Netho g Met	oany: od: / thod:	Wh Air Ro	ite Dr otary ovel	82 11 illing/	:47:56 A R Dallas	M Well/Boring ID: VGWU118 - 07 Client: Chevron EMC Location: Vacuum Glorietta West Unit 118
	eholo cript							
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description
0								SILTY SANDY CLAY, Light Gray (2.5YR7/2), soft, friable, slight moisture, 70% clay, 30% silt to vrey fine grained sand, subrounded, poorly sorted.
	-	1	AK	2	3.4	₩		poorry sofred.
	_		AK	3				CLAYEY SAND, Light Gray (2.5YR7/2), very fine to fine grained, subangular to subrounded, poorly sorted, loose to slightly cemented,
5	-5 -		AR		4.6			80% sand, 20% clay matrix, soft, powdery, dry. SANDY CALICHE, Pale Yellow (2.5YR8/2), very fine to indurated, dry, trace sand, very fine to fine grained, subrounded, poorly sorted,
	-	2	AR	5				formation contained trace concretionary caliche nodules, indurated, calcite and silica cemented, rounded, throughout formation.
10	-10 -				6.6	×		
	-	3	AR	5				
15	-15 -				2.2	×		Same as above, formation has a slight color change to Pale Yellow (2.5YR8/3), sand grain content increased to 30%.
	-	4	AR	5				
20	-20 -				0.4	×	<u>Ξ</u> ΞΞ	SANDSTONE, Very Pale Brown (10YR8/2), very fine to fine grained, subangular to subrounded, poorly sorted, very loosely cemented, calcareous, formation contains trace caliche, White (2.5YR8/1), indurated, nodular, rounded, 0.2 cm to 0.5 cm throughout formation.
	-	5	AR	5				
25	-25 -				4.0	×		
	-	6	AR	5				
30 —	-30			<u> </u>	5.3	×.	• • • •	Same as above, at 30 feet bgs, formation contains trace concretionary siliceous caliche nodules, 0.2 cm to 0.3 cm, rounded.

Remarks: ags = above ground surface; AK = air knife; amsl = above mean sea level; AR = air rotary; bgs = below ground surface; ppm = parts per million; cm = centimeter;

Project: B0048611 Template:ChevronSoilBoring.ldfx Data File:VGWU118 - 07 Soil Boring.dat Date: 6/25/2014

.

-	D ring l me: <u>Cl</u> mber: <u>B(</u>		18		Da	Date Started: ate Completed:	06/23/2016	Logger: Editor: Conditions:	S Ken W NA	No.: <u>VGWU118-(</u> heet: 1 of icks	
Depth (feet)	Sample Interval	Recovery (in.)	Sample ID	PID (ppm)	USCS Class		Description			Construction Details	Well
			SB-08(2') SB-08(4')				silt; poorly graded; dry silt; poorly graded; dry 0 ft bgs.			Borehole bachfilled with	
5 Drilling Co.		CI Drilling					ng Method: <u>Shove</u>	9		1	
Driller: Drilling Me		_	r				ng Interval: <u>NA</u> Level Start (ft. bgs	.): <u>NA</u>			
Drilling Flui	d: <u>No</u>	one				Water	Level Finish (ft. bto	oc.): <u>NA</u>			
Remarks:	<u>'/</u>		= inch; bgs = below g		face;	Conver	ted to Well:	Yes		No	
ppm = parts	per million;	NA = not ava	ilable or not applicable	9.			e Elev.: <u>NA</u>				
							Coor: <u>NA</u>				

	D ring l me: <u>Cl</u> mber: <u>B(</u>		18		D;	Chevron Boring No.: VGWU118-09 Sheet: 1 Date Started: 06/23/2016 Logger: Ken Wicks ate Completed: 06/23/2016 Editor: NA Weather Conditions: NA	
Depth (feet)	Sample Interval	Recovery (in.)	Sample ID	PID (ppm)	USCS Class	Construction	Vell
			SB-09(2') SB-09(4')			SAND, fine; some silt; poorly graded; dry; brown. Borehole SAND, fine; some silt; poorly graded; dry; gray. Borehole bachfilled with Native material End of boring at 4.0 ft bgs.	
5 Drilling Co Driller: Drilling Me Drilling Flu Remarks: ppm = parts	<u>Ke</u> thod: Ai id: <u>No</u>	r Rotary one ft = feet; " / in	r = inch; bgs = below <u>c</u> ilable or not applicable	ground su		Water Level Start (ft. bgs.): <u>NA</u> Water Level Finish (ft. btoc.): <u>NA</u>	

	D ring l me: <u>Ch</u> mber: <u>B(</u>		18		Da	Date Started: ate Completed:	06/23/2016	Logger: Editor: Conditions:	S Ken W NA	No.: <u>VGWU118-</u> heet: 1 of icks	
Depth (feet)	Sample Interval	Recovery (in.)	Sample ID	PID (ppm)	USCS Class		Description			Construction Details	Well
			SB-10(2') SB-10(4')				silt; poorly graded; dry silt; poorly graded; dry			Borehole bachfilled with	
5 Drilling Co Driller:		CI Drilling	r				ng Method: <u>Shove</u> ng Interval: <u>NA</u>				
Drilling Me	thod: <u>Ai</u>	r Rotary				Water	Level Start (ft. bgs.				
Drilling Flu		one		manual and		Water	Level Finish (ft. bto	oc.): <u>NA</u>		No	
Remarks:			<u>= inch; bgs = below g</u> ilable or not applicable		rtace;		rted to Well: e Elev.: <u>NA</u>	_ res	<u>\</u>	INO	
							Coor: <u>NA</u>				
							oor NA				

ARC Soil Bo							Chevror			No. <u>: VGWU118-</u> heet: 1 of	
Project Na	me: <u>Cl</u>	nevron EMC	;		_	Date Started:	06/23/2016	Logger:			1
		0048616.01			_ Da	ate Completed:		Editor:			
Project Loo	cation: <u>HI</u>	<u>ES Transfer</u>	Sites		_		Weather	Conditions:	NA		
Depth (feet)	Sample Interval	Recovery (in.)	Sample ID	PID (ppm)	USCS Class		Description			Construction Details	Well
			SB-11(2') SB-11(4')				silt; poorly graded; dry silt; poorly graded; dry 0 ft bgs.			Borehole bachfilled with— Native material	
5 Drilling Co	. Lı	L Drilling				Somoli	ng Mathad: Shave				
Drilling Co.		CI Drilling					ng Method: <u>Shove</u>	1			
Driller:		enny Coope					ng Interval: <u>NA</u>	\ \			
Drilling Met		r Rotary					Level Start (ft. bgs				
Drilling Flui		one					Level Finish (ft. bt				
Remarks:	<u>'/</u>	ft = feet; " / in	= inch; bgs = below g	round su	rface;	Conver	ted to Well:	Yes	×	No	
ppm = parts			ilable or not applicable				e Elev.: NA				
	,,		· · ·				Coor: <u>NA</u>				
							oor NA				

ARC Soil Bo Project Na	oring l					Date Started: 06/23/2016	Logger: L	SI	lo.: <u>VGWU118-</u> neet: <u>1 of</u>	
Project Nu	mber: <u>B(</u>	0048616.01 S Transfer	18		D: 	ate Completed: <u>06/23/2016</u>	Editor: I	NA		
Depth (feet)	Sample Interval	Recovery (in.)	Sample ID	PID (ppm)	USCS Class	Description			Construction Details	Well
			SB-12(2') SB-12(4')			SAND, fine; some silt; poorly graded; of SAND, fine; some silt; poorly graded; of End of boring at 4.0 ft bgs.			Borehole bachfilled with— Native material	
5 Drilling Co. Driller: Drilling Me	<u>Ke</u>		r							
Drilling Flu Remarks:	id: <u>No</u>	one ft = feet; " / in	= inch; bgs = below g ilable or not applicable	round su		Water Level Finish (ft. b	otoc.): <u>NA</u>	X	No	

ARC Soil Bo	oring L	_og					Chevror		S		13
Project Na		nevron EMC			—	Date Started:		Logger:		icks	
-		048616.01 S Transfer			Da	ate Completed:		Editor: Conditions:			
1 10,000 200							Troution	Conditione.			
Depth (feet)	Sample Interval	Recovery (in.)	Sample ID	PID (ppm)	USCS Class	CAND Frances	Description			Construction Details	Well
1			SB-13(2') SB-13(4')				silt; poorly graded; dry silt; poorly graded; dry			Borehole bachfilled with Native material	
Drilling Co.	: <u>H</u>	CI Drilling				Samplii	ng Method: <u>Shov</u> e	el			
Driller:		-	r				ng Interval: <u>NA</u>				
Drilling Me		_					Level Start (ft. bgs	s.): <u>NA</u>			
Drilling Flui		one					Level Finish (ft. bt	,			
Remarks:			= inch; bgs = below g				ted to Well:		X	No	
			ilable or not applicable				e Elev.: <u>NA</u>				
				•							
						East Co	Coor: <u>NA</u>				

•

							Chevron		Boring I	No.: <u>VGWU118-1</u>	4
Soil Bo Project Na	DIIIG L me: Ch	evron EMC	:			Date Started:	06/23/2016	Logger:			1
Project Nu					Da	ate Completed:		Editor:		lone	
Project Loo	cation: <u>HE</u>	S Transfer	Sites		_		Weather	Conditions:	NA		
Depth (feet)	Sample Interval	Recovery (in.)	Sample ID	PID (ppm)	USCS Class		Description			Construction Details	Well
			SB-14(2') SB-14(4')				rse; few silt; poorly gra rse; few silt; poorly gra			Borehole bachfilled with- Native material	
Drilling Co.	: <u>H</u> C	I Drilling			•	Samplir	ng Method: <u>Shove</u>	el		·	
Driller:		-	r				ng Interval: <u>NA</u>				
Drilling Met		_					Level Start (ft. bgs	.): NA			
Drilling Flui		ne				Water I	Level Finish (ft. bto	.): <u>NA</u>			
Remarks:			= inch; bgs = below g				ted to Well:		X	No	
			ilable or not applicable		,		e Elev.: <u>NA</u>				
			F.F				Coor: <u>NA</u>				
						East Co					

						Chevron	Boring N	lo.: <u>VGWU118-1</u>	5
Soil Bo Project Na		LOG	`			Date Started: 09/14/2016	Si Logger: <u>Melisa</u>	<u>neet: 1 of</u>	1
-		0048616.01				pate Completed: 09/14/2016	_ Editor: <u>NA</u>	Phan	
-		ES Transfer			_ D	-	onditions: <u>NA</u>		
						Weather Co			
Depth (feet)	Sample Interval	Recovery (in.)	Sample ID	PID (ppm)	USCS Class	Description		Construction Details	Well
1						SILT, nonplastic, 10% Caliche nodules, 10% medium grained; dry; moderate reaction to (7.5YR 4/1). Note: Secondary color white(7.5YR 8/1); or (roots).	HCI; dark gray		
2 3 4			VGWU118-15(2') @ 1400			SILT, nonplastic, 10% Caliche nodules, 10 medium grained; dry; moderate reaction to 6/1). Note: Secondary color white(7.5YR 8/1); or (roots).	HCI; gray (7.5YR		
			VGWU118-15(7') @ 1402					Borehole bachfilled with— Native material	
9 9 10			VGWU118-15(9') @ 1401 VGWU118-15(10') @ 1403			End of boring at 10.0 ft bgs.			
						End of borning at 10.0 it bys.			
11 Drilling Co.	<u>.</u> ц		1	1	1	Sampling Mothed: Should		I	
Driller:		CI Drilling							
i i		•	er			· •	ΝΑ		
		-				,			
Drilling Flui		one						No	
Remarks:			<u>n = inch; bgs = below gr</u>						
ppm = parts	per million	; NA = not ava	ailable or not applicable.						
Ş						North Coor: <u>NA</u>			
ŧI.						East Coor: NA			

.

							Chevror		Boring N	No.: <u>VGWU118-1</u>	16
Soil Bo Project Na	DIING L	LOG	<u></u>			Date Started:	06/23/2016	Logger:			1
		048616.01			Da	ate Completed:		Editor:			
		S Transfer			_	·		Conditions:			
Depth (feet)	Sample Interval	Recovery (in.)	Sample ID	PID (ppm)	USCS Class		Description			Construction Details	Well
						SAND, fine; some	silt; dry; tan.			Borehole bachfilled with— Native material	
Drilling Co.	: НС	CI Drilling	·		·	Samplir	ng Method: <u>Shove</u>	el		· [
Driller:		enny Coope	r				ng Interval: <u>NA</u>				
Drilling Met			-				_evel Start (ft. bgs	s.): <u>NA</u>			
Drilling Flui		one					_evel Finish (ft. bt				
Remarks:			i = inch; bgs = below g				ted to Well:		×	No	
			ailable or not applicable				e Elev.: <u>NA</u>				
	,						Coor: NA				
						East Co					

-	D ring me: <u>C</u> mber: <u>B</u>		18		D:	Date Started: <u>06/23/2</u> ate Completed: <u>06/23/2</u>		Logger: _ Editor: conditions:	SI <u>Ken W</u> NA	No.: <u>VGWU118-</u> heet: 1 of icks	
Depth (feet)	Sample Interval	Recovery (in.)	Sample ID	PID (ppm)	USCS Class	De	escription			Construction Details	Well
			SB-17(2') SB-17(4')			SAND, fine; some silt; poorly SAND, coarse; some silt; we End of boring at 4.0 ft bgs.				Borehole bachfilled with- Native material	
5											
Drilling Co. Driller:		<u>CI Drilling</u>	r			Sampling Meth					
Drilling Me		•	<u>r</u>					: NA			
Drilling Flui		one				Water Level Fir					
Remarks:			= inch; bgs = below g	round su	rface;				X	No	
			ilable or not applicable		,	Surface Elev.: I					
		,				North Coor:I					
						East Coor:					

.

ARC	ADIS	Design & Consultancy for natural and built assets				Chevron	Boring N	No.: VGWU118-1	8
Soil Bo									
Project Na		nevron EMC	2			Date Started: 09/14/2016	Logger: <u>Melisa</u>	<u>heet: 1 of</u> Phan	1
		0048616.01			D	ate Completed: 09/14/2016	Editor: <u>NA</u>		
Project Loo	cation: <u>HI</u>	<u>ES Transfer</u>	Sites		_	-	onditions: <u>NA</u>		
Depth (feet)	Sample Interval	Recovery (in.)	Sample ID	PID (ppm)	USCS Class	Description		Construction Details	Well
1						SILT, nonplastic, 10% Caliche nodules, 10 medium grained; dry; moderate reaction to (7.5YR 4/1). Note: Secondary color white(7.5YR 8/1); or (roots).	HCI; dark gray		
2 3 4 4 5			VGWU118-18(2') @ 1430			SILT, nonplastic, 10% Caliche nodules, 10 medium grained; dry; moderate reaction to 6/1). Note: Secondary color white(7.5YR 8/1); or (roots).	HCl; gray (7.5YR	Borehole bachfilled with— Native material	
			VGWU118-18(7') @ 1431	L					
9 9			VGWU118-18(9') @ 1432						
10	/ \	N	VGWU118-18(10') @ 1433						
						End of boring at 10.0 ft bgs.			
11 Drilling Co									
Drilling Co. Driller:		CI Drilling	er						
Driller: Drilling Met		•					· NA		
Drilling Me		n Rolary Dhe							
Remarks:			n = inch; bgs = below gr					No	
i l			ailable or not applicable.		1400,				
	· · · · · · · · · · · · · · · · · · ·					North Coor: <u>NA</u>			
11.						East Coor: NA			

ATTACHMENT 4

Laboratory Analytical Results and chain of Custody

July 18, 2012

DAVID PAGANO Chevron - Lovington HCR 60 Box 423 Lovington, NM 88260

RE: SOIL SAMPLES

Enclosed are the results of analyses for samples received by the laboratory on 07/12/12 17:07.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-11-3. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

		DAVID PA HCR 60 Bo			
		Fax To:	None		
Received:	07/12/2012			Sampling Date:	07/12/2012
Reported:	07/18/2012			Sampling Type:	Soil
Project Name:	SOIL SAMPLES			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Jodi Henson
Project Location:	NOT GIVEN				

Sample ID: VGWU #118 SS #1 (H201602-01)

BTEX 8021B	mg	′kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/17/2012	ND	1.88	93.9	2.00	2.82	
Toluene*	<0.050	0.050	07/17/2012	ND	1.89	94.5	2.00	3.09	
Ethylbenzene*	<0.050	0.050	07/17/2012	ND	1.94	97.1	2.00	4.36	
Total Xylenes*	<0.150	0.150	07/17/2012	ND	5.85	97.4	6.00	4.60	
Surrogate: 4-Bromofluorobenzene (PID	105	% 89.4-12	6						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	07/17/2012	ND	400	100	400	0.00	
TPH 8015M	mg,	′kg	Analyze	d By: AM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	07/17/2012	ND	166	83.1	200	6.45	
DRO >C10-C28	487	10.0	07/17/2012	ND	173	86.6	200	8.21	
Surrogate: 1-Chlorooctane	74.0	% 65.2-14	0						
Surrogate: 1-Chlorooctadecane	99.6	% 63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Chevron - DAVID PA HCR 60 Bo Lovington	GANO		
		Fax To:	None		
Received:	07/12/2012			Sampling Date:	07/12/2012
Reported:	07/18/2012			Sampling Type:	Soil
Project Name:	SOIL SAMPLES			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Jodi Henson
Project Location:	NOT GIVEN				

Sample ID: VGWU #118 SS #2 (H201602-02)

BTEX 8021B	mg/kg		Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/17/2012	ND	1.88	93.9	2.00	2.82	
Toluene*	<0.050	0.050	07/17/2012	ND	1.89	94.5	2.00	3.09	
Ethylbenzene*	<0.050	0.050	07/17/2012	ND	1.94	97.1	2.00	4.36	
Total Xylenes*	<0.150	0.150	07/17/2012	ND	5.85	97.4	6.00	4.60	
Surrogate: 4-Bromofluorobenzene (PID	108	% 89.4-12	6						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	272	16.0	07/17/2012	ND	400	100	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: AM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	07/17/2012	ND	166	83.1	200	6.45	
DRO >C10-C28	43.7	10.0	07/17/2012	ND	173	86.6	200	8.21	
Surrogate: 1-Chlorooctane	81.4	% 65.2-14	0						
Surrogate: 1-Chlorooctadecane	105	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Chevron - DAVID PA HCR 60 Bo Lovington	GANO		
		Fax To:	None		
Received:	07/12/2012			Sampling Date:	07/12/2012
Reported:	07/18/2012			Sampling Type:	Soil
Project Name:	SOIL SAMPLES			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Jodi Henson
Project Location:	NOT GIVEN				

Sample ID: VGWU #118 SS #3 (H201602-03)

BTEX 8021B	mg/kg		Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/17/2012	ND	1.88	93.9	2.00	2.82	
Toluene*	<0.050	0.050	07/17/2012	ND	1.89	94.5	2.00	3.09	
Ethylbenzene*	<0.050	0.050	07/17/2012	ND	1.94	97.1	2.00	4.36	
Total Xylenes*	<0.150	0.150	07/17/2012	ND	5.85	97.4	6.00	4.60	
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 89.4-12	6						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AP						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	07/17/2012	ND	400	100	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: AM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	07/17/2012	ND	166	83.1	200	6.45	
DRO >C10-C28	123	10.0	07/17/2012	ND	173	86.6	200	8.21	
Surrogate: 1-Chlorooctane	85.0	% 65.2-14	0						
Surrogate: 1-Chlorooctadecane	112 9	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Chevron - DAVID PA HCR 60 Bo Lovington	GANO		
		Fax To:	None		
Received:	07/12/2012			Sampling Date:	07/12/2012
Reported:	07/18/2012			Sampling Type:	Soil
Project Name:	SOIL SAMPLES			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Jodi Henson
Project Location:	NOT GIVEN				

Sample ID: VGWU #118 SS #4 (H201602-04)

BTEX 8021B	mg/	'kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/17/2012	ND	1.88	93.9	2.00	2.82	
Toluene*	<0.050	0.050	07/17/2012	ND	1.89	94.5	2.00	3.09	
Ethylbenzene*	<0.050	0.050	07/17/2012	ND	1.94	97.1	2.00	4.36	
Total Xylenes*	<0.150	0.150	07/17/2012	ND	5.85	97.4	6.00	4.60	
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 89.4-12	6						
Chloride, SM4500Cl-B	mg/	mg/kg Analyzed By: AP		d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	07/17/2012	ND	400	100	400	3.92	
TPH 8015M	mg/	'kg	Analyze	d By: AM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	07/17/2012	ND	166	83.1	200	6.45	
DRO >C10-C28	295	10.0	07/17/2012	ND	173	86.6	200	8.21	
Surrogate: 1-Chlorooctane	86.1	% 65.2-14	0						
Surrogate: 1-Chlorooctadecane	110 9	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Chevron - DAVID PA HCR 60 Bo Lovington	GANO		
		Fax To:	None		
Received:	07/12/2012			Sampling Date:	07/12/2012
Reported:	07/18/2012			Sampling Type:	Soil
Project Name:	SOIL SAMPLES			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Jodi Henson
Project Location:	NOT GIVEN				

Sample ID: VGWU #118 SS #5 (H201602-05)

BTEX 8021B	mg/kg		Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/17/2012	ND	1.88	93.9	2.00	2.82	
Toluene*	<0.050	0.050	07/17/2012	ND	1.89	94.5	2.00	3.09	
Ethylbenzene*	<0.050	0.050	07/17/2012	ND	1.94	97.1	2.00	4.36	
Total Xylenes*	<0.150	0.150	07/17/2012	ND	5.85	97.4	6.00	4.60	
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 89.4-12	6						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	Analyzed By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	07/17/2012	ND	400	100	400	3.92	
TPH 8015M	mg/	'kg	Analyze	d By: AM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	07/17/2012	ND	166	83.1	200	6.45	
DRO >C10-C28	<10.0	10.0	07/17/2012	ND	173	86.6	200	8.21	
Surrogate: 1-Chlorooctane	82.7	% 65.2-14	0						
Surrogate: 1-Chlorooctadecane	103 9	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

	DAVID PAG HCR 60 Bc	GANO ox 423		
	Fax To:	None		
07/12/2012			Sampling Date:	07/12/2012
07/18/2012			Sampling Type:	Soil
SOIL SAMPLES			Sampling Condition:	Cool & Intact
NONE GIVEN NOT GIVEN			Sample Received By:	Jodi Henson
	07/18/2012 SOIL SAMPLES NONE GIVEN	DAVID PAG HCR 60 BG Lovington Fax To: 07/12/2012 07/18/2012 SOIL SAMPLES NONE GIVEN	07/12/2012 07/18/2012 SOIL SAMPLES NONE GIVEN	DAVID PAGANO HCR 60 Box 423 Lovington NM, 88260 Fax To: None 07/12/2012 Sampling Date: 07/18/2012 Sampling Type: SOIL SAMPLES Sampling Condition: NONE GIVEN Sample Received By:

Sample ID: VGWU #118 SS #6 (H201602-06)

BTEX 8021B	mg,	/kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2012	ND	1.91	95.7	2.00	0.781	
Toluene*	0.221	0.050	07/18/2012	ND	1.94	97.1	2.00	2.18	
Ethylbenzene*	0.385	0.050	07/18/2012	ND	1.98	99.0	2.00	1.91	
Total Xylenes*	0.937	0.150	07/18/2012	ND	5.99	99.9	6.00	2.45	
Surrogate: 4-Bromofluorobenzene (PID	117	% 89.4-12	6						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AP						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	384	16.0	07/17/2012	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: AM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	36.8	10.0	07/17/2012	ND	166	83.1	200	6.45	
DRO >C10-C28	2520	10.0	07/17/2012	ND	173	86.6	200	8.21	
Surrogate: 1-Chlorooctane	91.8 % 65.2-140		0						
Surrogate: 1-Chlorooctadecane	154	% 63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Chevron - DAVID PA HCR 60 Bc Lovington	GANO		
		Fax To:	None		
Received:	07/12/2012			Sampling Date:	07/12/2012
Reported:	07/18/2012			Sampling Type:	Soil
Project Name:	SOIL SAMPLES			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Jodi Henson
Project Location:	NOT GIVEN				

Sample ID: VGWU #118 SS #7 (H201602-07)

BTEX 8021B	BTEX 8021B mg/kg		Analyzed By: AP						S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2012	ND	1.91	95.7	2.00	0.781	
Toluene*	0.841	0.050	07/18/2012	ND	1.94	97.1	2.00	2.18	
Ethylbenzene*	2.27	0.050	07/18/2012	ND	1.98	99.0	2.00	1.91	
Total Xylenes* 3.32 0.150		07/18/2012	ND	5.99	99.9	6.00	2.45		
Surrogate: 4-Bromofluorobenzene (PID	134	% 89.4-12	6						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AP						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	07/17/2012	ND	400	100	400	3.92	
TPH 8015M	mg	/kg	Analyze	d By: AM					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	108	10.0	07/17/2012	ND	166	83.1	200	6.45	
DRO >C10-C28	6830	10.0	07/17/2012	ND	173	86.6	200	8.21	
Surrogate: 1-Chlorooctane	106	% 65.2-14	0						
Surrogate: 1-Chlorooctadecane	228	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Chevron - DAVID PA HCR 60 Bo Lovington	GANO		
		Fax To:	None		
Received:	07/12/2012			Sampling Date:	07/12/2012
Reported:	07/18/2012			Sampling Type:	Soil
Project Name:	SOIL SAMPLES			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Jodi Henson
Project Location:	NOT GIVEN				

Sample ID: VGWU #118 SS #8 (H201602-08)

BTEX 8021B	mg/	/kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2012	ND	1.91	95.7	2.00	0.781	
Toluene*	<0.050	0.050	07/18/2012	ND	1.94	97.1	2.00	2.18	
Ethylbenzene*	<0.050	0.050	07/18/2012	ND	1.98	99.0	2.00	1.91	
Total Xylenes*	<0.150	0.150	07/18/2012	ND	5.99	99.9	6.00	2.45	
Surrogate: 4-Bromofluorobenzene (PID	107 9	% 89.4-12	6						
Chloride, SM4500Cl-B	mg/kg		Analyze	Analyzed By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2320	16.0	07/17/2012	ND	400	100	400	3.92	
TPH 8015M	mg/	/kg	Analyze	Analyzed By: AM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	07/17/2012	ND	166	83.1	200	6.45	
DRO >C10-C28	49.5	10.0	07/17/2012	ND	173	86.6	200	8.21	
Surrogate: 1-Chlorooctane	82.8 % 65.2-140		0						
Surrogate: 1-Chlorooctadecane	111 9	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Chevron - DAVID PA HCR 60 Bc Lovington	GANO		
		Fax To:	None		
Received:	07/12/2012			Sampling Date:	07/12/2012
Reported:	07/18/2012			Sampling Type:	Soil
Project Name:	SOIL SAMPLES			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Jodi Henson
Project Location:	NOT GIVEN				

Sample ID: VGWU #118 SS #9 (H201602-09)

BTEX 8021B	mg/	/kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2012	ND	1.91	95.7	2.00	0.781	
Toluene*	<0.050	0.050	07/18/2012	ND	1.94	97.1	2.00	2.18	
Ethylbenzene*	0.179	0.050	07/18/2012	ND	1.98	99.0	2.00	1.91	
tal Xylenes* 0.384 0.150		07/18/2012	ND	5.99	99.9	6.00	2.45		
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 89.4-12	6						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AP						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	6240	16.0	07/18/2012	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: AM					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	20.6	10.0	07/17/2012	ND	166	83.1	200	6.45	
DRO >C10-C28	3050	10.0	07/17/2012	ND	173	86.6	200	8.21	
Surrogate: 1-Chlorooctane	86.3 % 65.2-140		0						
Surrogate: 1-Chlorooctadecane	163	% 63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Chevron - DAVID PA HCR 60 Bo Lovington	GANO		
		Fax To:	None		
Received:	07/12/2012			Sampling Date:	07/12/2012
Reported:	07/18/2012			Sampling Type:	Soil
Project Name:	SOIL SAMPLES			Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN			Sample Received By:	Jodi Henson
Project Location:	NOT GIVEN				

Sample ID: VGWU #118 SS #10 (H201602-10)

BTEX 8021B	mg/	g/kg Analyzed By: A		d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2012	ND	1.91	95.7	2.00	0.781	
Toluene*	<0.050	0.050	07/18/2012	ND	1.94	97.1	2.00	2.18	
Ethylbenzene*	<0.050	0.050	07/18/2012	ND	1.98	99.0	2.00	1.91	
Total Xylenes*	<0.150	0.150	07/18/2012	ND	5.99	99.9	6.00	2.45	
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 89.4-12	6						
Chloride, SM4500Cl-B	mg/	mg/kg		Analyzed By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	15800	16.0	07/18/2012	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: AM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	07/17/2012	ND	166	83.1	200	6.45	
DRO >C10-C28	28.4	10.0	07/17/2012	ND	173	86.6	200	8.21	
Surrogate: 1-Chlorooctane	77.3 % 65.2-140		0						
Surrogate: 1-Chlorooctadecane	103 9	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Company Name	(675) 393-2326 FAX (575) 393-24 Chevron			BILL TO					ANALYSIS REQUEST						
	" David Pagason _			P.0. #:			T	T	1	TT		T	T	1	
Address: 56	Texas Loop Rd			Company: (hevran					1					
City: L=1	state N/M	Zip:	88260		Moschetti									1 1	
	5 7.87 9816 Fax #:	- Server	e. 2		6 TEROS GAP Sd.			1.10							
Project #:	Project Own	er:		City: 6	Contraction of the second s								1		
Project Name:		-		State: N/M	ZID: ESJED								1		
Project Location	15				5-396-9914 x201										
Sampler Name:				Fax #:	a a fam fam f March			_					1	11	
FOR LAB LISE COLLA		TT	MATRIX	PRESERV	SAMPLING			(al							
Lab 1.D. H201602 - 7 NN - 5 6 7 89	Sample I.D. Votion #118 SS#1 Votion #118 SS#1 Votion #118 SS#3 Votion #118 SS#3 Votion #118 SS#5 Votion #118 SS#5 Votion #118 SS#7 Votion #118 SS#7 Votion #118 SS#7 Votion #118 SS#7	# CONTAINERS	GROUNDWATER WASTEWATER SOIL	OTHER ACIDIBASE ICE / COOL	DATE TIME 7/12/12 4:00 4:01 4:06 4:09 4:18 4:18 4:18 4:20 4:20 4:20 4:20 4:20 4:20 4:20 4:20	Hat the	PIEX	Chlan - Chlan							
IQ.	VOUR HILL SSALL	11	1 1 1 1		4:26	1			-			-			
PLEASE NOTE, _ works a	of One ages. Cardenti's intellity and client's gesturity aroundly for		they whether match a second in the unless model to endogen	et as teer, shall tor a minut redecement by a array mid a	to your armstimityment fly more climit for	The same at a	-	de color		-		Cross clarks how	-	a de la constante de la consta	
of to Mu un nut a weaks with	ana ang kabin ang kab	us walking De-	nellers Rectings Retenups ou needless of when us also date	lasedias mineoint	alle e dire i ny ristri i volution n'anyo n'agen manaisi aj ginitaja	Hen.		-				140.00			
Relinquished B Relinquished B Delivered By Sampler - UPS	Pajano Time: Date: Time: (Circle One)	Bece 30	Sample Condit Cool - Initiat D'res D're	(Init		ts T	Yes Yes			Phone #			-		

Page 62 of 282

Page 13 of 13

Received by OCD: 12/5/2022 11:47:56 AM

June 10, 2013

JONATHAN OLSEN ARCADIS U.S., INC. - HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH, CO 80129

RE: CHEVRON BUCKEYE

Enclosed are the results of analyses for samples received by the laboratory on 05/15/13 17:00.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-11-3. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129	Project: CHE Project Number: B004 Project Manager: JON/ Fax To: (713	ATHAN OLSEN	Reported: 10-Jun-13 10:43
--	---	-------------	------------------------------

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
VGW U118 - 07 (10')	H301174-01	Soil	14-May-13 15:25	15-May-13 17:00
VGW U118 - 07 (15')	H301174-02	Soil	14-May-13 15:30	15-May-13 17:00
VGW U118 - 07 (20')	H301174-03	Soil	14-May-13 15:35	15-May-13 17:00
VGW U118 - 07 (25')	H301174-04	Soil	14-May-13 15:40	15-May-13 17:00
VGW U118 - 07 (30')	H301174-05	Soil	14-May-13 15:50	15-May-13 17:00
VGW U118 - 02 (2')	H301174-06	Soil	14-May-13 16:02	15-May-13 17:00
VGW U118 - 02 (5')	H301174-07	Soil	14-May-13 16:07	15-May-13 17:00
VGW U118 - 02 (10')	H301174-08	Soil	14-May-13 16:14	15-May-13 17:00
VGW U118 - 02 (15')	H301174-09	Soil	14-May-13 16:20	15-May-13 17:00
VGW U118 - 02 (20')	H301174-10	Soil	14-May-13 16:25	15-May-13 17:00
VGW U118 - 02 (25')	H301174-11	Soil	14-May-13 16:28	15-May-13 17:00
VGW U118 - 02 (30')	H301174-12	Soil	14-May-13 16:32	15-May-13 17:00
VGW U118 - 04 (2')	H301174-13	Soil	14-May-13 16:57	15-May-13 17:00
VGW U118 - 06 (2')	H301174-20	Soil	14-May-13 12:32	15-May-13 17:00
VGW U118 - 05 (2')	H301174-27	Soil	14-May-13 13:17	15-May-13 17:00
VGW U118 - 01 (2')	H301174-34	Soil	14-May-13 13:54	15-May-13 17:00
VGW U118 - 01 (5')	H301174-35	Soil	14-May-13 13:57	15-May-13 17:00
VGW U118 - 01 (10')	H301174-36	Soil	14-May-13 14:00	15-May-13 17:00
VGW U118 - 01 (15')	H301174-37	Soil	14-May-13 14:05	15-May-13 17:00
VGW U118 - 01 (20')	H301174-38	Soil	14-May-13 14:12	15-May-13 17:00
VGW U118 - 01 (25')	H301174-39	Soil	14-May-13 14:17	15-May-13 17:00
VGW U118 - 01 (30')	H301174-40	Soil	14-May-13 14:25	15-May-13 17:00
VGW U118 - 03 (2')	H301174-41	Soil	14-May-13 14:32	15-May-13 17:00
VGW U118 - 03 (5')	H301174-42	Soil	14-May-13 14:37	15-May-13 17:00
VGW U118 - 03 (10')	H301174-43	Soil	14-May-13 14:40	15-May-13 17:00
VGW U118 - 03 (15')	H301174-44	Soil	14-May-13 14:45	15-May-13 17:00
VGW U118 - 03 (20')	H301174-45	Soil	14-May-13 14:50	15-May-13 17:00

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

ARCADIS U.S., INC HO 630 PLAZA DRIVE, SUIT HIGHLANDS RANCH CO,	E 600		Project: CHEVRON BUCKEYE t Number: B004860.0000 Manager: JONATHAN OLSEN Fax To: (713) 977-4620	Reported: 10-Jun-13 10:43
VGW U118 - 03 (25')	H301174-46	Soil	14-May-13 15:00	15-May-13 17:00
VGW U118 - 03 (30')	H301174-47	Soil	14-May-13 15:03	15-May-13 17:00
VGW U118 - 07 (2')	H301174-48	Soil	14-May-13 15:17	15-May-13 17:00
VGW U118 - 07 (5')	H301174-49	Soil	14-May-13 15:20	15-May-13 17:00

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project:CHEVRON BUCKEYEReported:Project Number:B004860.000010-Jun-13 10:43Project Manager:JONATHAN OLSENFax To:(713) 977-4620							0:43
			J 118 - 07	` '					
		H301	174-01 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardina	al Laborat	ories					
Inorganic Compounds									
% Solids	97.6	0.100	%	1	3051612	DW	17-May-13	D2216	
% Moisture	2.45	0.100	%	1	3051612	DW	17-May-13	D2216	
Chloride	80.0	16.0	mg/kg	4	3051610	DW	16-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	15.4	mg/kg dry	1	3052411	СК	20-May-13	8015M	
DRO >C10-C28	ND	15.4	mg/kg dry	1	3052411	CK	20-May-13	8015M	
Surrogate: 1-Chlorooctane		96.2 %	70-1	30	3052411	СК	20-May-13	8015M	
Surrogate: o-Terphenyl		105 %	70-1	30	3052411	CK	20-May-13	8015M	
Volatile Organic Compounds by EPA M	lethod 8021								
Benzene*	ND	0.051	mg/kg dry	50	3051601	AP	16-May-13	8021B	
Toluene*	ND	0.051	mg/kg dry	50	3051601	AP	16-May-13	8021B	
Ethylbenzene*	ND	0.051	mg/kg dry	50	3051601	AP	16-May-13	8021B	
Total Xylenes*	ND	0.154	mg/kg dry	50	3051601	AP	16-May-13	8021B	
Total BTEX	0.009	0.308	mg/kg dry	50	3051601	AP	16-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		112 %	89.4-	126	3051601	AP	16-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Mana		1860.0000 Athan Ol	.SEN		Reported: 10-Jun-13 10:43				
			J118 - 07 174-02 (Soi	` ´							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
		Cardina	al Laborato	ories							
Inorganic Compounds											
% Moisture	1.39	0.100	%	1	3051612	DW	17-May-13	D2216			
% Solids	98.6	0.100	%	1	3051612	DW	17-May-13	D2216			
Chloride	80.0	16.0	mg/kg	4	3051610	DW	16-May-13	4500-Cl-B			
Organic Compounds									SUB-PBE		
GRO C6-C10	ND	15.2	mg/kg dry	1	3052411	СК	20-May-13	8015M			
DRO >C10-C28	ND	15.2	mg/kg dry	1	3052411	СК	20-May-13	8015M			
Surrogate: 1-Chlorooctane		94.0 %	70-1	30	3052411	СК	20-May-13	8015M			
Surrogate: o-Terphenyl		103 %	70-1	30	3052411	СК	20-May-13	8015M			
Volatile Organic Compounds by EPA Metho	d 8021										
Benzene*	ND	0.051	mg/kg dry	50	3051601	AP	16-May-13	8021B			
Toluene*	ND	0.051	mg/kg dry	50	3051601	AP	16-May-13	8021B			
Ethylbenzene*	ND	0.051	mg/kg dry	50	3051601	AP	16-May-13	8021B			
Total Xylenes*	ND	0.152	mg/kg dry	50	3051601	AP	16-May-13	8021B			
Total BTEX	ND	0.304	mg/kg dry	50	3051601	AP	16-May-13	8021B			
Surrogate: 4-Bromofluorobenzene (PID)		113 %	89.4-	126	3051601	AP	16-May-13	8021B			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Mana		1860.0000 Athan Ol	SEN		Reported: 10-Jun-13 10:43				
			J118 - 07 174-03 (Soi	· /							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
		Cardina	al Laborato	ories							
Inorganic Compounds											
% Moisture	4.35	0.100	%	1	3051612	DW	17-May-13	D2216			
% Solids	95.6	0.100	%	1	3051612	DW	17-May-13	D2216			
Chloride	ND	16.0	mg/kg	4	3051610	DW	16-May-13	4500-Cl-B			
Organic Compounds									SUB-PBE		
GRO C6-C10	ND	15.7	mg/kg dry	1	3052411	СК	20-May-13	8015M			
DRO >C10-C28	ND	15.7	mg/kg dry	1	3052411	СК	20-May-13	8015M			
Surrogate: 1-Chlorooctane		96.2 %	70-1	30	3052411	СК	20-May-13	8015M			
Surrogate: o-Terphenyl		107 %	70-1	30	3052411	СК	20-May-13	8015M			
Volatile Organic Compounds by EPA Me	thod 8021										
Benzene*	ND	0.052	mg/kg dry	50	3051601	AP	17-May-13	8021B			
Toluene*	ND	0.052	mg/kg dry	50	3051601	AP	17-May-13	8021B			
Ethylbenzene*	ND	0.052	mg/kg dry	50	3051601	AP	17-May-13	8021B			
Total Xylenes*	ND	0.157	mg/kg dry	50	3051601	AP	17-May-13	8021B			
Total BTEX	ND	0.314	mg/kg dry	50	3051601	AP	17-May-13	8021B			
Surrogate: 4-Bromofluorobenzene (PID)		112 %	89.4-	126	3051601	AP	17-May-13	8021B			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Mana		4860.0000 Athan Ol	SEN		Reported: 10-Jun-13 10:43				
			J118 - 07 174-04 (So	` ´							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
		Cardina	al Laborat	ories							
Inorganic Compounds											
% Moisture	4.41	0.100	%	1	3051612	DW	17-May-13	D2216			
% Solids	95.6	0.100	%	1	3051612	DW	17-May-13	D2216			
Chloride	ND	16.0	mg/kg	4	3051610	DW	17-May-13	4500-Cl-B			
Organic Compounds									SUB-PBE		
GRO C6-C10	ND	15.7	mg/kg dry	1	3052411	СК	20-May-13	8015M			
DRO >C10-C28	ND	15.7	mg/kg dry	1	3052411	CK	20-May-13	8015M			
Surrogate: 1-Chlorooctane		107 %	70-1	30	3052411	СК	20-May-13	8015M			
Surrogate: o-Terphenyl		99.9 %	70-1	30	3052411	СК	20-May-13	8015M			
Volatile Organic Compounds by EPA M	ethod 8021										
Benzene*	ND	0.052	mg/kg dry	50	3051601	AP	17-May-13	8021B			
Toluene*	ND	0.052	mg/kg dry	50	3051601	AP	17-May-13	8021B			
Ethylbenzene*	ND	0.052	mg/kg dry	50	3051601	AP	17-May-13	8021B			
Total Xylenes*	ND	0.157	mg/kg dry	50	3051601	AP	17-May-13	8021B			
Total BTEX	ND	0.314	mg/kg dry	50	3051601	AP	17-May-13	8021B			
Surrogate: 4-Bromofluorobenzene (PID)		111 %	89.4-	126	3051601	AP	17-May-13	8021B			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Mana		1860.0000 Athan Ol	SEN		Reported: 10-Jun-13 10:43				
			J118 - 07 174-05 (So	. /							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
		Cardina	al Laborate	ories							
Inorganic Compounds											
% Moisture	15.9	0.100	%	1	3051612	DW	17-May-13	D2216			
% Solids	84.1	0.100	%	1	3051612	DW	17-May-13	D2216			
Chloride	ND	16.0	mg/kg	4	3051610	DW	17-May-13	4500-Cl-B			
Organic Compounds									SUB-PBE		
GRO C6-C10	ND	17.8	mg/kg dry	1	3052411	СК	20-May-13	8015M			
DRO >C10-C28	19.7	17.8	mg/kg dry	1	3052411	СК	20-May-13	8015M			
Surrogate: 1-Chlorooctane		94.0 %	70-1	30	3052411	СК	20-May-13	8015M			
Surrogate: o-Terphenyl		103 %	70-1	30	3052411	СК	20-May-13	8015M			
Volatile Organic Compounds by EPA Metho	d 8021										
Benzene*	ND	0.059	mg/kg dry	50	3051601	AP	17-May-13	8021B			
Toluene*	ND	0.059	mg/kg dry	50	3051601	AP	17-May-13	8021B			
Ethylbenzene*	ND	0.059	mg/kg dry	50	3051601	AP	17-May-13	8021B			
Total Xylenes*	ND	0.178	mg/kg dry	50	3051601	AP	17-May-13	8021B			
Total BTEX	ND	0.357	mg/kg dry	50	3051601	AP	17-May-13	8021B			
Surrogate: 4-Bromofluorobenzene (PID)		112 %	89.4-	126	3051601	AP	17-May-13	8021B			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Mana		1860.0000 Athan Ol	SEN		Reported: 10-Jun-13 10:43			
			U118 - 02 174-06 (Soi	. ,						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
		Cardina	al Laborato	ories						
Inorganic Compounds										
% Solids	87.2	0.100	%	1	3051612	DW	17-May-13	D2216		
% Moisture	12.8	0.100	%	1	3051612	DW	17-May-13	D2216		
Chloride	10000	16.0	mg/kg	4	3051610	DW	17-May-13	4500-Cl-B		
Organic Compounds									SUB-PBE	
GRO C6-C10	ND	17.2	mg/kg dry	1	3052411	СК	20-May-13	8015M		
DRO >C10-C28	ND	17.2	mg/kg dry	1	3052411	СК	20-May-13	8015M		
Surrogate: 1-Chlorooctane		89.4 %	70-1	30	3052411	СК	20-May-13	8015M		
Surrogate: o-Terphenyl		101 %	70-1	30	3052411	СК	20-May-13	8015M		
Volatile Organic Compounds by EPA Met	hod 8021									
Benzene*	ND	0.057	mg/kg dry	50	3051601	AP	17-May-13	8021B		
Toluene*	ND	0.057	mg/kg dry	50	3051601	AP	17-May-13	8021B		
Ethylbenzene*	ND	0.057	mg/kg dry	50	3051601	AP	17-May-13	8021B		
Total Xylenes*	ND	0.172	mg/kg dry	50	3051601	AP	17-May-13	8021B		
Total BTEX	ND	0.344	mg/kg dry	50	3051601	AP	17-May-13	8021B		
Surrogate: 4-Bromofluorobenzene (PID)		113 %	89.4-	126	3051601	AP	17-May-13	8021B		

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Mana		4860.0000 Athan Ol	.SEN		Reported: 10-Jun-13 10:43				
			U118 - 02 174-07 (So	. ,							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
		Cardin	al Laborat	ories							
Inorganic Compounds											
% Moisture	7.33	0.100	%	1	3051612	DW	17-May-13	D2216			
% Solids	92.7	0.100	%	1	3051612	DW	17-May-13	D2216			
Chloride	368	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B			
Organic Compounds									SUB-PBE		
GRO C6-C10	ND	16.2	mg/kg dry	1	3052411	СК	20-May-13	8015M			
DRO >C10-C28	ND	16.2	mg/kg dry	1	3052411	CK	20-May-13	8015M			
Surrogate: 1-Chlorooctane		96.3 %	70-1	30	3052411	СК	20-May-13	8015M			
Surrogate: o-Terphenyl		107 %	70-1	30	3052411	СК	20-May-13	8015M			
Volatile Organic Compounds by EPA Metl	10d 8021										
Benzene*	ND	0.054	mg/kg dry	50	3051601	AP	17-May-13	8021B			
Toluene*	ND	0.054	mg/kg dry	50	3051601	AP	17-May-13	8021B			
Ethylbenzene*	ND	0.054	mg/kg dry	50	3051601	AP	17-May-13	8021B			
Total Xylenes*	ND	0.162	mg/kg dry	50	3051601	AP	17-May-13	8021B			
Total BTEX	ND	0.324	mg/kg dry	50	3051601	AP	17-May-13	8021B			
Surrogate: 4-Bromofluorobenzene (PID)		113 %	89.4-	126	3051601	AP	17-May-13	8021B			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTONProject:CHEVRON BUCKEYEReported:630 PLAZA DRIVE, SUITE 600Project Number:B004860.000010-Jun-13 10:43HIGHLANDS RANCH CO, 80129Project Manager:JONATHAN OLSEN Fax To:Fax To:(713) 977-4620										
			J118 - 02 174-08 (Soi	` ´						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
		Cardin	al Laborato	ories						
Inorganic Compounds										
% Moisture	6.93	0.100	%	1	3051612	DW	17-May-13	D2216		
% Solids	93.1	0.100	%	1	3051612	DW	17-May-13	D2216		
Chloride	80.0	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B		
Organic Compounds									SUB-PBE	
GRO C6-C10	ND	16.1	mg/kg dry	1	3052411	СК	20-May-13	8015M		
DRO >C10-C28	ND	16.1	mg/kg dry	1	3052411	CK	20-May-13	8015M		
Surrogate: 1-Chlorooctane		93.7 %	70-1	30	3052411	СК	20-May-13	8015M		
Surrogate: o-Terphenyl		107 %	70-1	30	3052411	CK	20-May-13	8015M		
Volatile Organic Compounds by EPA M	ethod 8021									
Benzene*	ND	0.054	mg/kg dry	50	3051601	AP	17-May-13	8021B		
Toluene*	ND	0.054	mg/kg dry	50	3051601	AP	17-May-13	8021B		
Ethylbenzene*	ND	0.054	mg/kg dry	50	3051601	AP	17-May-13	8021B		
Total Xylenes*	ND	0.161	mg/kg dry	50	3051601	AP	17-May-13	8021B		
Total BTEX	ND	0.322	mg/kg dry	50	3051601	AP	17-May-13	8021B		
Surrogate: 4-Bromofluorobenzene (PID)		112 %	89.4-	126	3051601	AP	17-May-13	8021B		

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTONProject:CHEVRON BUCKEYEReported:630 PLAZA DRIVE, SUITE 600Project Number:B004860.000010-Jun-13 10:43HIGHLANDS RANCH CO, 80129Project Manager:JONATHAN OLSENFax To:(713) 977-4620										
			U118 - 02 174-09 (So							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
		Cardin	al Laborate	ories						
Inorganic Compounds										
% Moisture	4.06	0.100	%	1	3051612	DW	17-May-13	D2216		
% Solids	95.9	0.100	%	1	3051612	DW	17-May-13	D2216		
Chloride	112	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B		
Organic Compounds									SUB-PBE	
GRO C6-C10	ND	15.6	mg/kg dry	1	3052411	СК	20-May-13	8015M		
DRO >C10-C28	ND	15.6	mg/kg dry	1	3052411	СК	20-May-13	8015M		
Surrogate: 1-Chlorooctane		98.8 %	70-1	30	3052411	СК	20-May-13	8015M		
Surrogate: o-Terphenyl		105 %	70-1	30	3052411	СК	20-May-13	8015M		
Volatile Organic Compounds by EPA M	ethod 8021									
Benzene*	ND	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B		
Foluene*	0.036	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B		
Ethylbenzene*	ND	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B		
Fotal Xylenes*	ND	0.156	mg/kg dry	50	3052011	AP	21-May-13	8021B		
Fotal BTEX	0.036	0.313	mg/kg dry	50	3052011	AP	21-May-13	8021B		
Surrogate: 4-Bromofluorobenzene (PID)		114 %	89.4-	126	3052011	AP	21-May-13	8021B		

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTONProject:CHEVRON BUCKEYEReported:630 PLAZA DRIVE, SUITE 600Project Number:B004860.000010-Jun-13 10:43HIGHLANDS RANCH CO, 80129Project Manager:JONATHAN OLSEN Fax To:Fax To:(713) 977-4620											
			J118 - 02 174-10 (Soi	` ´							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
		Cardina	al Laborato	ories							
Inorganic Compounds											
% Moisture	7.13	0.100	%	1	3051612	DW	17-May-13	D2216			
% Solids	92.9	0.100	%	1	3051612	DW	17-May-13	D2216			
Chloride	384	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B			
Organic Compounds									SUB-PBE		
GRO C6-C10	ND	16.2	mg/kg dry	1	3052411	СК	20-May-13	8015M			
DRO >C10-C28	ND	16.2	mg/kg dry	1	3052411	CK	20-May-13	8015M			
Surrogate: 1-Chlorooctane		104 %	70-1	30	3052411	СК	20-May-13	8015M			
Surrogate: o-Terphenyl		104 %	70-1	30	3052411	СК	20-May-13	8015M			
Volatile Organic Compounds by EPA M	ethod 8021										
Benzene*	ND	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Toluene*	0.035	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Ethylbenzene*	ND	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Total Xylenes*	ND	0.162	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Total BTEX	0.035	0.323	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Surrogate: 4-Bromofluorobenzene (PID)		113 %	89.4-	126	3052011	AP	21-May-13	8021B			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129	E 600 Project Number: B004860.0000 10-Jun-13 10:43										
			J 118 - 02	· /							
		H301	174-11 (So	11)							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
		Cardin	al Laborate	ories							
Inorganic Compounds											
% Moisture	7.33	0.100	%	1	3051612	DW	17-May-13	D2216			
% Solids	92.7	0.100	%	1	3051612	DW	17-May-13	D2216			
Chloride	1090	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B			
Organic Compounds									SUB-PBE		
GRO C6-C10	ND	16.2	mg/kg dry	1	3052411	СК	20-May-13	8015M			
DRO >C10-C28	ND	16.2	mg/kg dry	1	3052411	CK	20-May-13	8015M			
Surrogate: 1-Chlorooctane		102 %	70-1	30	3052411	CK	20-May-13	8015M			
Surrogate: o-Terphenyl		103 %	70-1	30	3052411	CK	20-May-13	8015M			
Volatile Organic Compounds by EPA M	lethod 8021										
Benzene*	ND	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Toluene*	0.039	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Ethylbenzene*	ND	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Total Xylenes*	ND	0.162	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Total BTEX	0.039	0.324	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Surrogate: 4-Bromofluorobenzene (PID)		113 %	89.4-	126	3052011	AP	21-May-13	8021B			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		oject: CHE nber: B004 ager: JON/ x To: (713	1860.0000 Athan Ol	SEN		Reported: 10-Jun-13 10:43			
			J118 - 02 174-12 (Soi	· /					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardina	al Laborato	ories					
Inorganic Compounds									
% Moisture	23.0	0.100	%	1	3051612	DW	17-May-13	D2216	
% Solids	77.0	0.100	%	1	3051612	DW	17-May-13	D2216	
Chloride	224	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	19.5	mg/kg dry	1	3052411	СК	20-May-13	8015M	
DRO >C10-C28	ND	19.5	mg/kg dry	1	3052411	СК	20-May-13	8015M	
Surrogate: 1-Chlorooctane		96.7 %	70-1	30	3052411	СК	20-May-13	8015M	
Surrogate: o-Terphenyl		107 %	70-1	30	3052411	СК	20-May-13	8015M	
Volatile Organic Compounds by EPA M	ethod 8021								
Benzene*	ND	0.065	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Toluene*	0.031	0.065	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.065	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.195	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	0.031	0.390	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		114 %	89.4-	126	3052011	AP	21-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

	ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129	30 PLAZA DRIVE, SUITE 600 Project Number: B004860.0000										
			VGW U2 H30117		. ,							
	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
			Cardinal	Labora	tories							
In	organic Compounds											
C	hloride	48.0	16.0	mg/kg	4	3060505	DW	05-Jun-13	4500-Cl-B			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

· · · · · · · · · · · · · · · · · · ·		VGW U	,	. ,	0				
nalyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

	ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129	1	Reported: 0-Jun-13 10	:43						
			VGW U H3011'	118 - 03 74-27 (S	. ,					
	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardinal	Labora	tories					
In	organic Compounds									
C	hloride	64.0	16.0	mg/kg	4	3060505	DW	05-Jun-13	4500-Cl-B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTONProject:CHEVRON BUCKEYEReported:630 PLAZA DRIVE, SUITE 600Project Number:B004860.000010-Jun-13 10:43HIGHLANDS RANCH CO, 80129Project Manager:JONATHAN OLSENFax To:(713) 977-4620										
			U118 - 01 174-34 (Soi	. ,						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
		Cardina	al Laborato	ories						
Inorganic Compounds										
% Solids	88.7	0.100	%	1	3051612	DW	17-May-13	D2216		
% Moisture	11.3	0.100	%	1	3051612	DW	17-May-13	D2216		
Chloride	4800	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B		
Organic Compounds									SUB-PBE	
GRO C6-C10	ND	16.9	mg/kg dry	1	3052411	СК	20-May-13	8015M		
DRO >C10-C28	102	16.9	mg/kg dry	1	3052411	CK	20-May-13	8015M		
Surrogate: 1-Chlorooctane		95.7 %	70-1	30	3052411	СК	20-May-13	8015M		
Surrogate: o-Terphenyl		105 %	70-1	30	3052411	СК	20-May-13	8015M		
Volatile Organic Compounds by EPA M	ethod 8021									
Benzene*	ND	0.056	mg/kg dry	50	3052011	AP	21-May-13	8021B		
Foluene*	0.047	0.056	mg/kg dry	50	3052011	AP	21-May-13	8021B		
Ethylbenzene*	ND	0.056	mg/kg dry	50	3052011	AP	21-May-13	8021B		
Fotal Xylenes*	ND	0.169	mg/kg dry	50	3052011	AP	21-May-13	8021B		
Total BTEX	0.047	0.338	mg/kg dry	50	3052011	AP	21-May-13	8021B		
Surrogate: 4-Bromofluorobenzene (PID)		113 %	89.4-	126	3052011	AP	21-May-13	8021B		

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTONProject:CHEVRON BUCKEYEReported:630 PLAZA DRIVE, SUITE 600Project Number:B004860.000010-Jun-13 10:43HIGHLANDS RANCH CO, 80129Project Manager:JONATHAN OLSEN Fax To:Fax To:(713) 977-4620										
			U118 - 01 174-35 (Soi	. ,						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
		Cardina	al Laborato	ories						
Inorganic Compounds										
% Moisture	19.2	0.100	%	1	3051612	DW	17-May-13	D2216		
% Solids	80.8	0.100	%	1	3051612	DW	17-May-13	D2216		
Chloride	192	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B		
Organic Compounds									SUB-PBE	
GRO C6-C10	ND	18.6	mg/kg dry	1	3052411	СК	20-May-13	8015M		
DRO >C10-C28	ND	18.6	mg/kg dry	1	3052411	СК	20-May-13	8015M		
Surrogate: 1-Chlorooctane		95.6 %	70-1	30	3052411	СК	20-May-13	8015M		
Surrogate: o-Terphenyl		103 %	70-1	30	3052411	СК	20-May-13	8015M		
Volatile Organic Compounds by EPA M	ethod 8021									
Benzene*	ND	0.062	mg/kg dry	50	3052011	AP	21-May-13	8021B		
Foluene*	0.016	0.062	mg/kg dry	50	3052011	AP	21-May-13	8021B		
Ethylbenzene*	ND	0.062	mg/kg dry	50	3052011	AP	21-May-13	8021B		
Total Xylenes*	ND	0.186	mg/kg dry	50	3052011	AP	21-May-13	8021B		
Total BTEX	0.016	0.371	mg/kg dry	50	3052011	AP	21-May-13	8021B		
Surrogate: 4-Bromofluorobenzene (PID)		112 %	89.4-	126	3052011	AP	21-May-13	8021B		

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTONProject:CHEVRON BUCKEYEReported630 PLAZA DRIVE, SUITE 600Project Number:B004860.000010-Jun-13HIGHLANDS RANCH CO, 80129Project Manager:JONATHAN OLSENFax To:(713) 977-4620									
			J118 - 01 174-36 (Soi	` ´					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardin	al Laborato	ories					
Inorganic Compounds									
% Moisture	18.4	0.100	%	1	3051612	DW	17-May-13	D2216	
% Solids	81.6	0.100	%	1	3051612	DW	17-May-13	D2216	
Chloride	32.0	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	18.4	mg/kg dry	1	3052411	СК	20-May-13	8015M	
DRO >C10-C28	ND	18.4	mg/kg dry	1	3052411	CK	20-May-13	8015M	
Surrogate: 1-Chlorooctane		102 %	70-1	30	3052411	СК	20-May-13	8015M	
Surrogate: o-Terphenyl		107 %	70-1	30	3052411	СК	20-May-13	8015M	
Volatile Organic Compounds by EPA M	ethod 8021								
Benzene*	ND	0.061	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Toluene*	0.020	0.061	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.061	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.184	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	0.020	0.368	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		112 %	89.4-	126	3052011	AP	21-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTONProject:CHEVRON BUCKEYEReported:630 PLAZA DRIVE, SUITE 600Project Number:B004860.000010-Jun-13 10:43HIGHLANDS RANCH CO, 80129Project Manager:JONATHAN OLSENFax To:(713) 977-4620										
			J118 - 01 174-37 (Soi							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
		Cardin	al Laborato	ories						
Inorganic Compounds										
% Moisture	18.4	0.100	%	1	3051612	DW	17-May-13	D2216		
% Solids	81.6	0.100	%	1	3051612	DW	17-May-13	D2216		
Chloride	32.0	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B		
Organic Compounds									SUB-PBE	
GRO C6-C10	ND	18.4	mg/kg dry	1	3052411	СК	20-May-13	8015M		
DRO >C10-C28	ND	18.4	mg/kg dry	1	3052411	СК	20-May-13	8015M		
Surrogate: 1-Chlorooctane		86.0 %	70-1	30	3052411	СК	20-May-13	8015M		
Surrogate: o-Terphenyl		94.7 %	70-1	30	3052411	СК	20-May-13	8015M		
Volatile Organic Compounds by EPA M	ethod 8021									
Benzene*	ND	0.061	mg/kg dry	50	3052011	AP	21-May-13	8021B		
Foluene*	0.022	0.061	mg/kg dry	50	3052011	AP	21-May-13	8021B		
Ethylbenzene*	ND	0.061	mg/kg dry	50	3052011	AP	21-May-13	8021B		
Fotal Xylenes*	ND	0.184	mg/kg dry	50	3052011	AP	21-May-13	8021B		
Fotal BTEX	0.022	0.368	mg/kg dry	50	3052011	AP	21-May-13	8021B		
Surrogate: 4-Bromofluorobenzene (PID)		113 %	89.4-	126	3052011	AP	21-May-13	8021B		

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project: CHEVRON BUCKEYE Project Number: B004860.0000 Project Manager: JONATHAN OLSEN Fax To: (713) 977-4620							0:43
			J118 - 01 174-38 (Soi						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardin	al Laborato	ories					
Inorganic Compounds									
% Solids	79.8	0.100	%	1	3051612	DW	17-May-13	D2216	
% Moisture	20.2	0.100	%	1	3051612	DW	17-May-13	D2216	
Chloride	ND	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	18.8	mg/kg dry	1	3052411	СК	20-May-13	8015M	
DRO >C10-C28	ND	18.8	mg/kg dry	1	3052411	СК	20-May-13	8015M	
Surrogate: 1-Chlorooctane		97.5 %	70-1	30	3052411	СК	20-May-13	8015M	
Surrogate: o-Terphenyl		108 %	70-1	30	3052411	СК	20-May-13	8015M	
Volatile Organic Compounds by EPA Me	ethod 8021								
Benzene*	ND	0.063	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Toluene*	0.022	0.063	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.063	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.188	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	0.022	0.376	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		112 %	89.4-	126	3052011	AP	21-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project: CHEVRON BUCKEYE Project Number: B004860.0000 Project Manager: JONATHAN OLSEN Fax To: (713) 977-4620							Reported: 10-Jun-13 10:43		
			J118 - 01 174-39 (Soi	. /							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
		Cardina	al Laborato	ories							
Inorganic Compounds											
% Solids	97.1	0.100	%	1	3051612	DW	17-May-13	D2216			
% Moisture	2.93	0.100	%	1	3051612	DW	17-May-13	D2216			
Chloride	32.0	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B			
Organic Compounds									SUB-PBE		
GRO C6-C10	ND	15.5	mg/kg dry	1	3052411	СК	20-May-13	8015M			
DRO >C10-C28	ND	15.5	mg/kg dry	1	3052411	СК	20-May-13	8015M			
Surrogate: 1-Chlorooctane		99.8 %	70-1	30	3052411	СК	20-May-13	8015M			
Surrogate: o-Terphenyl		107 %	70-1	30	3052411	СК	20-May-13	8015M			
Volatile Organic Compounds by EPA M	ethod 8021										
Benzene*	ND	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Toluene*	0.042	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Ethylbenzene*	ND	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Total Xylenes*	ND	0.155	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Total BTEX	0.042	0.309	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Surrogate: 4-Bromofluorobenzene (PID)		113 %	89.4-	126	3052011	AP	21-May-13	8021B			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTONProject:CHEVRON BUCKEYE630 PLAZA DRIVE, SUITE 600Project Number:B004860.000010HIGHLANDS RANCH CO, 80129Project Manager:JONATHAN OLSENFax To:(713) 977-4620											
			U118 - 01 174-40 (So	. ,							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
		Cardin	al Laborat	ories							
Inorganic Compounds											
% Moisture	20.0	0.100	%	1	3051612	DW	17-May-13	D2216			
% Solids	80.0	0.100	%	1	3051612	DW	17-May-13	D2216			
Chloride	ND	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B			
Organic Compounds									SUB-PBE		
GRO C6-C10	ND	18.7	mg/kg dry	1	3052411	СК	20-May-13	8015M			
DRO >C10-C28	ND	18.7	mg/kg dry	1	3052411	CK	20-May-13	8015M			
Surrogate: 1-Chlorooctane		99.6 %	70-1	30	3052411	СК	20-May-13	8015M			
Surrogate: o-Terphenyl		108 %	70-1	30	3052411	СК	20-May-13	8015M			
Volatile Organic Compounds by EPA M	lethod 8021										
Benzene*	ND	0.062	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Foluene*	0.023	0.062	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Ethylbenzene*	ND	0.062	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Fotal Xylenes*	ND	0.187	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Fotal BTEX	0.023	0.375	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Surrogate: 4-Bromofluorobenzene (PID)		113 %	89.4-	126	3052011	AP	21-May-13	8021B			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		VRON BUC 1860.0000 ATHAN OL 2) 977-462	N OLSEN						
			U118 - 03 174-41 (So	. ,					
		11501	.174-41 (50	ii)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardin	al Laborat	ories					
Inorganic Compounds									
% Moisture	6.98	0.100	%	1	3051612	DW	17-May-13	D2216	
% Solids	93.0	0.100	%	1	3051612	DW	17-May-13	D2216	
Chloride	832	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	16.1	mg/kg dry	1	3052411	СК	20-May-13	8015M	
DRO >C10-C28	ND	16.1	mg/kg dry	1	3052411	CK	20-May-13	8015M	
Surrogate: 1-Chlorooctane		91.9 %	70-1	30	3052411	СК	20-May-13	8015M	
Surrogate: o-Terphenyl		98.8 %	70-1	30	3052411	СК	20-May-13	8015M	
Volatile Organic Compounds by EPA Me	thod 8021								
Benzene*	ND	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Toluene*	0.034	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.161	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	0.034	0.323	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		111 %	89.4-	126	3052011	AP	21-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Mana		1860.0000 Athan Ol	SEN	Reported: 10-Jun-13 10:43			
			U118 - 03 174-42 (So	. ,					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardina	al Laborate	ories					
Inorganic Compounds									
% Moisture	4.43	0.100	%	1	3051613	DW	17-May-13	D2216	
% Solids	95.6	0.100	%	1	3051613	DW	17-May-13	D2216	
Chloride	96.0	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	15.7	mg/kg dry	1	3052412	СК	21-May-13	8015M	
DRO >C10-C28	ND	15.7	mg/kg dry	1	3052412	CK	21-May-13	8015M	
Surrogate: 1-Chlorooctane		105 %	70-1	30	3052412	СК	21-May-13	8015M	
Surrogate: o-Terphenyl		107 %	70-1	30	3052412	СК	21-May-13	8015M	
Volatile Organic Compounds by EPA Method 8	021								
Benzene*	ND	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Toluene*	0.033	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.157	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	0.033	0.314	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		113 %	89.4-	126	3052011	AP	21-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129	Project Nur Project Man Project Man Fa	Reported: 10-Jun-13 10:43						
		U118 - 03 174-43 (So	` '					
Analyte Resu	Reporting lt Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
	Cardin	al Laborat	ories					
Inorganic Compounds								
% Moisture 6.8	8 0.100	%	1	3051613	DW	17-May-13	D2216	
% Solids 93.	1 0.100	%	1	3051613	DW	17-May-13	D2216	
Chloride 48.	0 16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B	
Organic Compounds								SUB-PBE
GRO C6-C10 NI	D 16.1	mg/kg dry	1	3052412	СК	21-May-13	8015M	
DRO >C10-C28 NI	D 16.1	mg/kg dry	1	3052412	CK	21-May-13	8015M	
Surrogate: 1-Chlorooctane	101 %	70-1	30	3052412	СК	21-May-13	8015M	
Surrogate: o-Terphenyl	107 %	70-1	30	3052412	СК	21-May-13	8015M	
Volatile Organic Compounds by EPA Method 8021								
Benzene* NI	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Foluene* 0.02	8 0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene* NI	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes* NI	0.161	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Fotal BTEX 0.02	8 0.322	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)	113 %	89.4-	126	3052011	AP	21-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project: CHEVRON BUCKEYE Project Number: B004860.0000 Project Manager: JONATHAN OLSEN Fax To: (713) 977-4620							Reported: 10-Jun-13 10:43		
			J 118 - 03 174-44 (Soi	· /							
			174-44 (50								
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
		Cardina	al Laborato	ories							
Inorganic Compounds											
% Moisture	6.72	0.100	%	1	3051613	DW	17-May-13	D2216			
% Solids	93.3	0.100	%	1	3051613	DW	17-May-13	D2216			
Chloride	48.0	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B			
Organic Compounds									SUB-PBE		
GRO C6-C10	ND	16.1	mg/kg dry	1	3052412	СК	21-May-13	8015M			
DRO >C10-C28	ND	16.1	mg/kg dry	1	3052412	СК	21-May-13	8015M			
Surrogate: 1-Chlorooctane		106 %	70-1	30	3052412	СК	21-May-13	8015M			
Surrogate: o-Terphenyl		107 %	70-1	30	3052412	СК	21-May-13	8015M			
Volatile Organic Compounds by EPA M	ethod 8021										
Benzene*	ND	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Toluene*	0.031	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Ethylbenzene*	ND	0.054	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Total Xylenes*	ND	0.161	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Total BTEX	0.031	0.322	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Surrogate: 4-Bromofluorobenzene (PID)		114 %	89.4-	126	3052011	AP	21-May-13	8021B			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Nun Project Mana	nber: B004	ATHAN OL	.SEN			Reported: 10-Jun-13 10:43	
			J118 - 03 174-45 (Soi	` ´					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardina	al Laborato	ories					
Inorganic Compounds									
% Moisture	4.54	0.100	%	1	3051613	DW	17-May-13	D2216	
% Solids	95.5	0.100	%	1	3051613	DW	17-May-13	D2216	
Chloride	48.0	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	15.7	mg/kg dry	1	3052412	СК	21-May-13	8015M	
DRO >C10-C28	ND	15.7	mg/kg dry	1	3052412	СК	21-May-13	8015M	
Surrogate: 1-Chlorooctane		105 %	70-1	30	3052412	СК	21-May-13	8015M	
Surrogate: o-Terphenyl		106 %	70-1	30	3052412	СК	21-May-13	8015M	
Volatile Organic Compounds by EPA M	ethod 8021								
Benzene*	ND	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Foluene*	0.019	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.157	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	0.019	0.314	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		115 %	89.4-	126	3052011	AP	21-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project: CHEVRON BUCKEYE Project Number: B004860.0000 Project Manager: JONATHAN OLSEN Fax To: (713) 977-4620							Reported: 10-Jun-13 10:43		
			J118 - 03 174-46 (Soi	` ´							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
		Cardina	al Laborato	ories							
Inorganic Compounds											
% Solids	96.4	0.100	%	1	3051613	DW	17-May-13	D2216			
% Moisture	3.57	0.100	%	1	3051613	DW	17-May-13	D2216			
Chloride	32.0	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B			
Organic Compounds									SUB-PBE		
GRO C6-C10	ND	15.6	mg/kg dry	1	3052412	СК	21-May-13	8015M			
DRO >C10-C28	ND	15.6	mg/kg dry	1	3052412	СК	21-May-13	8015M			
Surrogate: 1-Chlorooctane		98.8 %	70-1	30	3052412	СК	21-May-13	8015M			
Surrogate: o-Terphenyl		108 %	70-1	30	3052412	СК	21-May-13	8015M			
Volatile Organic Compounds by EPA Me	ethod 8021										
Benzene*	ND	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Toluene*	0.041	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Ethylbenzene*	ND	0.052	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Total Xylenes*	ND	0.156	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Total BTEX	0.041	0.311	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Surrogate: 4-Bromofluorobenzene (PID)		114 %	89.4-	126	3052011	AP	21-May-13	8021B			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129	Project: CHEVRON BUCKEYE Project Number: B004860.0000 Project Manager: JONATHAN OLSEN Fax To: (713) 977-4620							Reported: 10-Jun-13 10:43		
			J118 - 03 174-47 (Soi	. /						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
		Cardina	al Laborato	ories						
Inorganic Compounds										
% Solids	97.8	0.100	%	1	3051613	DW	17-May-13	D2216		
% Moisture	2.20	0.100	%	1	3051613	DW	17-May-13	D2216		
Chloride	32.0	16.0	mg/kg	4	3051701	DW	17-May-13	4500-Cl-B		
Organic Compounds									SUB-PBE	
GRO C6-C10	ND	15.3	mg/kg dry	1	3052412	СК	21-May-13	8015M		
DRO >C10-C28	ND	15.3	mg/kg dry	1	3052412	CK	21-May-13	8015M		
Surrogate: 1-Chlorooctane		94.3 %	70-1	30	3052412	СК	21-May-13	8015M		
Surrogate: o-Terphenyl		104 %	70-1	30	3052412	CK	21-May-13	8015M		
Volatile Organic Compounds by EPA Method	8021									
Benzene*	ND	0.051	mg/kg dry	50	3052011	AP	21-May-13	8021B		
Toluene*	ND	0.051	mg/kg dry	50	3052011	AP	21-May-13	8021B		
Ethylbenzene*	ND	0.051	mg/kg dry	50	3052011	AP	21-May-13	8021B		
Total Xylenes*	ND	0.153	mg/kg dry	50	3052011	AP	21-May-13	8021B		
Total BTEX	ND	0.307	mg/kg dry	50	3052011	AP	21-May-13	8021B		
Surrogate: 4-Bromofluorobenzene (PID)		112 %	89.4-	126	3052011	AP	21-May-13	8021B		

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project: CHEVRON BUCKEYE Project Number: B004860.0000 Project Manager: JONATHAN OLSEN Fax To: (713) 977-4620							Reported: 10-Jun-13 10:43		
			U118 - 07 174-48 (Soi	` ´							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
		Cardin	al Laborato	ories							
Inorganic Compounds											
% Solids	85.8	0.100	%	1	3051613	DW	17-May-13	D2216			
% Moisture	14.2	0.100	%	1	3051613	DW	17-May-13	D2216			
Chloride	7200	16.0	mg/kg	4	3051702	DW	17-May-13	4500-Cl-B			
Organic Compounds									SUB-PBE		
GRO C6-C10	ND	17.5	mg/kg dry	1	3052412	СК	21-May-13	8015M			
DRO >C10-C28	ND	17.5	mg/kg dry	1	3052412	CK	21-May-13	8015M			
Surrogate: 1-Chlorooctane		85.0 %	70-1	30	3052412	СК	21-May-13	8015M			
Surrogate: o-Terphenyl		92.2 %	70-1	30	3052412	СК	21-May-13	8015M			
Volatile Organic Compounds by EPA M	ethod 8021										
Benzene*	ND	0.058	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Foluene*	0.025	0.058	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Ethylbenzene*	ND	0.058	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Total Xylenes*	ND	0.175	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Total BTEX	0.025	0.349	mg/kg dry	50	3052011	AP	21-May-13	8021B			
Surrogate: 4-Bromofluorobenzene (PID)		113 %	89.4-	126	3052011	AP	21-May-13	8021B			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project: CHEVRON BUCKEYE Project Number: B004860.0000 Project Manager: JONATHAN OLSEN Fax To: (713) 977-4620							0:43
			U118 - 07	` ´					
		H301	174-49 (So	II)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
		Cardin	al Laborate	ories					
Inorganic Compounds									
% Solids	95.1	0.100	%	1	3051613	DW	17-May-13	D2216	
% Moisture	4.94	0.100	%	1	3051613	DW	17-May-13	D2216	
Chloride	96.0	16.0	mg/kg	4	3051702	DW	17-May-13	4500-Cl-B	
Organic Compounds									SUB-PBE
GRO C6-C10	ND	15.8	mg/kg dry	1	3052412	СК	21-May-13	8015M	
DRO >C10-C28	ND	15.8	mg/kg dry	1	3052412	CK	21-May-13	8015M	
Surrogate: 1-Chlorooctane		93.9 %	70-1	30	3052412	СК	21-May-13	8015M	
Surrogate: o-Terphenyl		102 %	70-1	30	3052412	СК	21-May-13	8015M	
Volatile Organic Compounds by EPA M	ethod 8021								
Benzene*	ND	0.053	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Toluene*	0.026	0.053	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Ethylbenzene*	ND	0.053	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total Xylenes*	ND	0.158	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Total BTEX	0.026	0.316	mg/kg dry	50	3052011	AP	21-May-13	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		113 %	89.4-	126	3052011	AP	21-May-13	8021B	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129	Project Number: Project Manager:	CHEVRON BUCKEYE B004860.0000 JONATHAN OLSEN (713) 977-4620	Reported: 10-Jun-13 10:43
--	-------------------------------------	---	------------------------------

Inorganic Compounds - Quality Control

		Cardir	nal Lab	oratories						
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3051610 - 1:4 DI Water										
Blank (3051610-BLK1)				Prepared &	Analyzed:	16-May-13	3			
Chloride	ND	16.0	mg/kg							
LCS (3051610-BS1)				Prepared &	analyzed:	16-May-13	3			
Chloride	432	16.0	mg/kg	400		108	80-120			
LCS Dup (3051610-BSD1)				Prepared &	k Analyzed:	16-May-13	3			
Chloride	432	16.0	mg/kg	400		108	80-120	0.00	20	
Duplicate (3051610-DUP1)	Sou	rce: H301164-	-04	Prepared & Analyzed: 16-May-13						
Chloride	528	16.0	mg/kg		560			5.88	20	
Matrix Spike (3051610-MS1)	Sou	rce: H301164-	•04	Prepared & Analyzed: 16-May-13						
Chloride	944	16.0	mg/kg	400	560	96.0	80-120			
Batch 3051612 - General Prep - Wet Chem										
Blank (3051612-BLK1)				Prepared: 1	16-May-13	Analyzed: 1	7-May-13			
% Moisture	ND	0.100	%							
% Solids	100	0.100	%							
Duplicate (3051612-DUP1)	Sou	rce: H301174-	-01	Prepared: 16-May-13 Analyzed: 17-May-13			7-May-13			
% Solids	97.8	0.100	%		97.6			0.215	20	
% Moisture	2.24	0.100	%		2.45			8.96	200	
Batch 3051613 - General Prep - Wet Chem										
Blank (3051613-BLK1)				Prepared: 1	16-May-13	Analyzed: 1	7-May-13			
% Moisture	ND	0.100	%							
% Solids	100	0.100	%							

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project No Project Ma	umber: mager:	CHEVRON BUCKEYE B004860.0000 JONATHAN OLSEN (713) 977-4620			Reported: 10-Jun-13 10:43			
	Inorg	ganic Com	pounds	- Quality	Control					
		Cardiı	nal Lab	oratories						
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3051613 - General Prep - Wet Chem										
Duplicate (3051613-DUP1)	Source: H301174-42			Prepared: 1	Analyzed: 1					
% Solids	95.5	0.100	%		95.6			0.0837	20	
% Moisture	4.51	0.100	%		4.43			1.79	200	
Batch 3051701 - 1:4 DI Water										
Blank (3051701-BLK1)				Prepared &	Analyzed:	17-May-13				
Chloride	ND	16.0	mg/kg							
LCS (3051701-BS1)				Prepared &	Analyzed:	17-May-13				
Chloride	432	16.0	mg/kg	400		108	80-120			
LCS Dup (3051701-BSD1)				Prepared &	Analyzed:	17-May-13				
Chloride	432	16.0	mg/kg	400		108	80-120	0.00	20	
Duplicate (3051701-DUP1)	Sour	ce: H301174-	-07	Prepared &	Analyzed:	17-May-13				
Chloride	336	16.0	mg/kg		368			9.09	20	
Matrix Spike (3051701-MS1)	Sour	ce: H301174-	-07	Prepared &	Analyzed:	17-May-13				
Chloride	640	16.0	mg/kg	400	368	68.0	80-120			QM-07
Batch 3051702 - 1:4 DI Water										
Blank (3051702-BLK1)				Prepared & Analyzed: 17-May-13						
Chloride	ND	16.0	mg/kg							
LCS (3051702-BS1)				Prepared &	Analyzed:	17-May-13				
Chloride	432	16.0	mg/kg	400		108	80-120			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129		Project Ni Project Ma	umber: inager:	CHEVRON BUCKEYE B004860.0000 JONATHAN OLSEN (713) 977-4620			Reported: 10-Jun-13 10:43			
	Ino	rganic Com	pound	s - Quality	Control					
		Cardir	nal Lal	ooratories						
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3051702 - 1:4 DI Water										
LCS Dup (3051702-BSD1)				Prepared &	Analyzed:	17-May-13				
Chloride	416	16.0	mg/kg	400		104	80-120	3.77	20	
Duplicate (3051702-DUP1)	Source: H301174-48			Prepared &	Analyzed:	17-May-13				
Chloride	8400	16.0	mg/kg		7200			15.4	20	
Matrix Spike (3051702-MS1)	Source: H301174-48			Prepared &	Analyzed:	17-May-13				
Chloride	9040	16.0	mg/kg	400	7200	460	80-120			QM-07
Batch 3060505 - 1:4 DI Water										
Blank (3060505-BLK1)				Prepared & Analyzed: 05-Jun-13						
Chloride	ND	16.0	mg/kg							
LCS (3060505-BS1)				Prepared &	Analyzed:	05-Jun-13				
Chloride	432	16.0	mg/kg	400		108	80-120			
LCS Dup (3060505-BSD1)				Prepared &	Analyzed:	05-Jun-13				
Chloride	432	16.0	mg/kg	400		108	80-120	0.00	20	
Duplicate (3060505-DUP1)	Sou	rce: H301196-	44	Prepared &	Prepared & Analyzed: 05-Jun-13					
Chloride	592	16.0	mg/kg		528			11.4	20	
Matrix Spike (3060505-MS1)	Sou	rce: H301196-	44	Prepared &	& Analyzed: 05-Jun-13					
Chloride	1020	16.0	mg/kg	400	528	124	80-120			QM-07

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129	Project Number: Project Manager:	CHEVRON BUCKEYE B004860.0000 JONATHAN OLSEN (713) 977-4620	Reported: 10-Jun-13 10:43
--	-------------------------------------	---	------------------------------

Organic Compounds - Quality Control

Cardinal Laboratories

	D I	Reporting	T T 1	Spike	Source	AVDEC.	%REC	DDD	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3052411 - General Prep										
Blank (3052411-BLK1)				Prepared &	k Analyzed:	20-May-13	5			
GRO C6-C10	ND	15.0	mg/kg wet							
DRO >C10-C28	ND	15.0	mg/kg wet							
Surrogate: 1-Chlorooctane	116		mg/kg	100		116	70-130			
Surrogate: o-Terphenyl	63.8		mg/kg	50.0		128	70-130			
LCS (3052411-BS1)				Prepared &	Analyzed:	20-May-13	1			
GRO C6-C10	1220	15.0	mg/kg wet	1000		122	75-125			
DRO >C10-C28	1230	15.0	mg/kg wet	1000		123	75-125			
Surrogate: 1-Chlorooctane	112		mg/kg	100		112	70-130			
Surrogate: o-Terphenyl	53.5		mg/kg	50.0		107	70-130			
Matrix Spike (3052411-MS1)	Source: H301174-41		Prepared &	analyzed:	20-May-13	;				
GRO C6-C10	1180	16.1	mg/kg dry	1080	ND	110	75-125			
DRO >C10-C28	1170	16.1	mg/kg dry	1080	ND	109	75-125			
Surrogate: 1-Chlorooctane	113		mg/kg	100		113	70-130			
Surrogate: o-Terphenyl	54.5		mg/kg	50.0		109	70-130			
Matrix Spike Dup (3052411-MSD1)	Sou	rce: H301174	-41	Prepared & Analyzed: 20-May-13			;			
GRO C6-C10	1130	16.1	mg/kg dry	1080	ND	105	75-125	4.65	20	
DRO >C10-C28	1250	16.1	mg/kg dry	1080	ND	116	75-125	6.22	20	
Surrogate: 1-Chlorooctane	109		mg/kg	100		109	70-130			
Surrogate: o-Terphenyl	55.6		mg/kg	50.0		111	70-130			
Batch 3052412 - General Prep										
Blank (3052412-BLK1)				Prepared: 2	20-May-13	Analyzed: 2	21-May-13			
GRO C6-C10	ND	15.0	mg/kg wet							
DRO >C10-C28	ND	15.0	mg/kg wet							
Surrogate: 1-Chlorooctane	123		mg/kg	100		123	70-130			
Surrogate: o-Terphenyl	61.2		mg/kg	50.0		122	70-130			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129	Project Number: Project Manager:	CHEVRON BUCKEYE B004860.0000 JONATHAN OLSEN (713) 977-4620	Reported: 10-Jun-13 10:43
--	-------------------------------------	---	------------------------------

Organic Compounds - Quality Control

Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3052412 - General Prep										
LCS (3052412-BS1)				Prepared: 2	20-May-13	Analyzed: 2	21-May-13			
GRO C6-C10	1160	15.0	mg/kg wet	1000		116	75-125			
DRO >C10-C28	1200	15.0	mg/kg wet	1000		120	75-125			
Surrogate: 1-Chlorooctane	126		mg/kg	100		126	70-130			
Surrogate: o-Terphenyl	59.8		mg/kg	50.0		120	70-130			
LCS Dup (3052412-BSD1)				Prepared: 2	20-May-13	Analyzed: 2	21-May-13			
GRO C6-C10	1200	15.0	mg/kg wet	1000		120	75-125	3.39	20	
DRO >C10-C28	1230	15.0	mg/kg wet	1000		123	75-125	2.47	20	
Surrogate: 1-Chlorooctane	125		mg/kg	100		125	70-130			
Surrogate: o-Terphenyl	63.3		mg/kg	50.0		127	70-130			
Matrix Spike (3052412-MS1)	Sou	·ce: H301174	-49	Prepared: 20-May-13 Analyzed: 21-May-13			21-May-13			
GRO C6-C10	1120	15.8	mg/kg dry	1050	ND	106	75-125			
DRO >C10-C28	1260	15.8	mg/kg dry	1050	ND	120	75-125			
Surrogate: 1-Chlorooctane	128		mg/kg	100		128	70-130			
Surrogate: o-Terphenyl	57.6		mg/kg	50.0		115	70-130			
Matrix Spike Dup (3052412-MSD1)	Sou	ce: H301174	-49	Prepared: 2	20-May-13	Analyzed: 2	21-May-13			
GRO C6-C10	1200	15.8	mg/kg dry	1050	ND	114	75-125	7.27	20	
DRO >C10-C28	1300	15.8	mg/kg dry	1050	ND	124	75-125	3.28	20	
Surrogate: 1-Chlorooctane	126		mg/kg	100		126	70-130			
Surrogate: o-Terphenyl	57.1		mg/kg	50.0		114	70-130			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129	Project: CHEV Project Number: B0048 Project Manager: JONA Fax To: (713)	860.0000 THAN OLSEN	Reported: 10-Jun-13 10:43
--	--	------------------------	------------------------------

Volatile Organic Compounds by EPA Method 8021 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3051601 - Volatiles										
Blank (3051601-BLK1)				Prepared &	Analyzed:	16-May-1	3			
Benzene	ND	0.050	mg/kg wet							
Toluene	0.011	0.050	mg/kg wet							
Ethylbenzene	ND	0.050	mg/kg wet							
Total Xylenes	ND	0.150	mg/kg wet							
Total BTEX	0.011	0.300	mg/kg wet							
Surrogate: 4-Bromofluorobenzene (PID)	0.0555		mg/kg wet	0.0500		111	89.4-126			
LCS (3051601-BS1)				Prepared &	Analyzed:	16-May-1	3			
Benzene	2.08	0.050	mg/kg wet	2.00		104	76.4-135			
Toluene	1.88	0.050	mg/kg wet	2.00		94.2	80.2-135			
Ethylbenzene	2.01	0.050	mg/kg wet	2.00		101	78.5-133			
Total Xylenes	5.93	0.150	mg/kg wet	6.00		98.8	80.1-135			
Surrogate: 4-Bromofluorobenzene (PID)	0.0538		mg/kg wet	0.0500		108	89.4-126			
LCS Dup (3051601-BSD1)				Prepared &	Analyzed:	16-May-1	3			
Benzene	2.17	0.050	mg/kg wet	2.00		109	76.4-135	4.20	16.4	
Toluene	1.95	0.050	mg/kg wet	2.00		97.7	80.2-135	3.70	16.6	
Ethylbenzene	2.10	0.050	mg/kg wet	2.00		105	78.5-133	4.30	16.1	
Total Xylenes	6.15	0.150	mg/kg wet	6.00		102	80.1-135	3.69	15.8	
Surrogate: 4-Bromofluorobenzene (PID)	0.0538		mg/kg wet	0.0500		108	89.4-126			
Batch 3052011 - Volatiles										
Blank (3052011-BLK1)				Prepared: 2	0-May-13	Analyzed: 2	21-May-13			
Benzene	ND	0.050	mg/kg wet							
Foluene	0.011	0.050	mg/kg wet							
Ethylbenzene	ND	0.050	mg/kg wet							
Total Xylenes	ND	0.150	mg/kg wet							
Total BTEX	0.011	0.300	mg/kg wet							
Surrogate: 4-Bromofluorobenzene (PID)	0.0555		mg/kg wet	0.0500		111	89.4-126			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ARCADIS U.S., INC HOUSTON 630 PLAZA DRIVE, SUITE 600 HIGHLANDS RANCH CO, 80129	Project Number: Project Manager:	CHEVRON BUCKEYE B004860.0000 JONATHAN OLSEN (713) 977-4620	Reported: 10-Jun-13 10:43	
--	-------------------------------------	---	------------------------------	--

Volatile Organic Compounds by EPA Method 8021 - Quality Control Cardinal Laboratories

		0		1						
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3052011 - Volatiles										
LCS (3052011-BS1)				Prepared &	Analyzed:	20-May-12	3			
Benzene	2.37	0.050	mg/kg wet	2.00		119	76.4-135			
Toluene	2.12	0.050	mg/kg wet	2.00		106	80.2-135			
Ethylbenzene	2.29	0.050	mg/kg wet	2.00		115	78.5-133			
Total Xylenes	6.67	0.150	mg/kg wet	6.00		111	80.1-135			
Surrogate: 4-Bromofluorobenzene (PID)	0.0533		mg/kg wet	0.0500		107	89.4-126			
LCS Dup (3052011-BSD1)	Prepared: 20-May-13 Analyzed: 21-May-13									
Benzene	2.32	0.050	mg/kg wet	2.00		116	76.4-135	2.27	16.4	
Toluene	2.10	0.050	mg/kg wet	2.00		105	80.2-135	1.17	16.6	
Ethylbenzene	2.28	0.050	mg/kg wet	2.00		114	78.5-133	0.595	16.1	
Total Xylenes	6.75	0.150	mg/kg wet	6.00		112	80.1-135	1.17	15.8	
Surrogate: 4-Bromofluorobenzene (PID)	0.0555		mg/kg wet	0.0500		111	89.4-126			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

SUB-PBE	Analysis subcontracted to Permian Basin Environmental Lab, NELAP accreditation # T104704156-12-1.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Samp	CD: 12/5/2022 Relinquished By:	Address: 2929 /Bris City: Howston: Deroject Manager: Je no Project Name: Charles Project Location: Buch Sampler Name: Lab I.D. H30/174 H30/174 H30/174 H30/174 Subscript Subscri	Page 10
rered By: (Circle One) Cool Intact (Multiple - UPS - Bus - Other: 30 Cool Intact (Multiple - UPS - Bus - Other: 30 Cool Intact (Multiple - UPS - Bus - Other: 30 Cool Intact - Other -	S Time:	To an then Olympic State The State	Aboratorie 101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (675) 393-2476 ARCADIS-US
3 c Cool Intact Gool Intact I No No No	Received By: Received By:	COCOCOCIONE CARONA CONTAINERS GROUNDWATER WASTEWATER KKKKKKKKK SOIL OIL SLUDGE	D S
No. CHECKED BY	lenson	P.O. #: Company: Address: City: State: Phone #: Fax #: Fax #: Fax #: PRESERV ACID/BASE DATE	BILL TO
	Phone Result U Yes D Fex Result U Yes D REMARKS	TIME Chloridas 300,1 1530 - 1 1530 - 1 1550 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CHAIN-OF-CUSTO
	□ No Add'l Phone #: □ No Add'l Fax #:		TODY AND ANALYSIS REQUEST
			IS REQUEST

Laboratories

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 44 of 47

Project #: 1980" 860 . Core Sampler Name: Project Location: Core hay 2 Project Name: Charlent Phone #: Relinquished By: Relinquished By H301174 Lab I.D Sampler - UPS - Bus - Other: Delivered By: (Circle One) EASE NOTE: k Cardinal cannot accept verbal changes. Please fax written changes to (575) 393-2326 198 213.4530 THEWN = ā 3140 NPMM 118-24(39) 16-1112-04(15 NOW 1119 04 (5. VGuu 118 - 04 UG= 4 118-04 (20 VGw4118 02(25 NPM 118-01 (10, 16mu 113 .09625 U644113-02 Sample I.D 4824 Alter Buchaya 0 N Fax #: Project Owner: Church Times do Date Bate (3 Time 1 firdd 713,977.46 20 ing Bener Received By: 0.0 00 00 00 OG (G)RAB OR (C)OMP Received By NNNN # GONTAINERS 10 N 2 GROUNDWATER Yes Yes Yes WASTEWATER Sample Condition MATRIX DOE IN MEND AN SOIL 8242X KXX OIL SLUDGE Fax #: City: OTHER State: Phone #: Address: ACID/BASE PRESERV Day Causarial websy 30 days after ex-ICE / COOL CHECKED BY: time of proble OTHER Nen-× 3 8 K 8 X muuals Zip: 5-14-13 5-14-123 5-14-13 5-14-13 5-14-13 5-14-13 214-12 5-14-13 5-14-13 DATE SAMPLING 1632 8291 plant, \$4 110 1728 1710 Fax Result: REMARKS: 1700 1657 Yoy the classifier the 1720 1705 Phone Result: 1715 TIME Hold Me sui lo mi Me. Sture + Childred = 5 usEPA 201 i. Norra 118-04 Jug/23 TPHBOIS & BTEX BOZIB Tes Hold XXX XXX ¥ D No added Add'l Phone # Add'l Fax #: 5/31 113 \boldsymbol{X}

City:

Heattern

Address:

2929 Biles frett

Vi Sucta

500

State: To Zip:

J

7402

Attn:

Company

Project Manager:

JONATULAN

015-5

P.O. #:

BILL TO

ANALYSIS

REQUEST

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

Delivered By: (Circle One) Sample Condition CHECKER Sampler - UPS - Bus - Other: Se Cool Intact (initial No	CD: 12/5/2022 Relinquished By:	Joan 9 Ball 9 Ball 9 Ball 9652. 1 960 L 160 L 16	Page 107 CARL 101 East Maria (575) 393-2326
	Timer Date:	a the $0 4 + 1$ a fact $0 4 + 1$ sate $1 4 + 1$ sate $1 4 + 1$ sate $1 4 + 1$ sate $1 4$ 1 7 + 1 + 1 1 7 + 1 + 1 1 7 + 1 + 1 1 7 + 1 + 1 + 1 1 7 + 1 + 1 + 1 1 7 + 1 + 1 + 1 + 1 1 7 + 1 + 1 + 1 + 1 + 1 1 7 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	ARDOLATOLIC ADOLATOLIC 101 East Mariand, Hobbs, NM 88240 (575) 393-2326 FAX (675) 393-2476 AR (101)14-1/5
Se Cool Intact Cool Intact Pres Pres	Received By:	And a	IN BE240
dition CHECKED BY:	Genson	P.O. #: Company: Attn: Attn: Address: Zip: State: Zip: PRESERV SAMPLING OTHER: Zip: PRESERV SAMPLING ADD/BASE Zip: V SHITH:	BILL TO
	Hold U Gulu 118-06 & U Gulu 118-05	The server and s	CHAIN-OF-CUSTODY AND ANALYSIS REQUEST
	5-1 Jus 20-8		ALYSIS REQUEST

Delivered By: (Circle One) Sampler - UPS - Bus - Other: † Cardinal cannot accept verbal changes. Plea:	telingwished By telinguished By	Project Manager: J_{old} and the - $O(4 - m)$ Address: 2727 (Bring Jac R. $D(1, 50)$) City: Have ten State: The Phone 8, 713, 953, 4874 Fax 8, 713, Project Name: $Chaptelle, even Project Owner Project Name: Chaptelle, even Project Owner Project Location: Bud R = 0 (Ling + Project Owner Project Location: Bud R = v = evil find Sample Name: Interpret Name: Sample I.D. Lab I.D. Sample I.D. HSDITH Uburn 118 - 05(15') 35 Uburn 118 - 05(25') 35 Uburn 118 - 01(25') 36 Uburn 118 - 01(25') 37 Uburn 118 - 01(25') 38 Uburn 118 - 01(25') 39 Uburn 118 - 01(25') 3$	Page 10 Laboratories 101 East Marland, Hobbs, NM 88240 (576) 393-2326 FAX (675) 393-2476 Company Name: ARCADIS - 4/5
Sample Condition CHECKED BY: Cool Intest (Initials) Cool Intest (Initials) Pres Pres (Initials) So fax written changes to (\$75) 393-2326	107	Index Product State: THE Zip: State: THE Zip: 7 140 2 Attm: Fax #: 213, 977, 146 2 e Address: City: Finald Image: State City: State: Zip: Finald Image: State Zip: Phone #: Zip: Finald Image: State Zip: Presserv State: Finald Image: State Presserv State: Zip: Finald Image: State Presserv State: Zip: Finald Image: State Presserv State Dotte: Finald Image: State Presserv State Dotte: Finald Finald Image: State Presserv State State Fina	ι Γ
	UGULU 112-05 Smyltz 3	THE BOLD AND AND AND AND AND AND AND AND AND AN	OF-CUSTODY AND ANALYSIS REQUEST

Analytical Report 532328

for ARCADIS

Project Manager: Arti Patel

Chevron Sites

713.953.4841

20-JUL-16

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Received by OCD: 12/5/2022 11:47:56 AM

20-JUL-16

Project Manager: **Arti Patel ARCADIS** 1004 N. Big Spring St. Midland, TX 79701

Reference: XENCO Report No(s): **532328** Chevron Sites Project Address: Hobbs, NM

Arti Patel:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 532328. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 532328 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kuns Hon

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Page 2 of 31

Sample Id

Sumpro ra
VGWU61-08B 80'
VGWU61-09B 80'
VGWU118-17 2'
VGWU118-17 4'
VGWU118-13 2'
VGWU118-13 4'
VGWU118-14 2'
VGWU118-14 4'
VGWU118-11 2'
VGWU118-11 4'
VGWU118-12 2'
VGWU118-12 4'
VGWU118-09 2'
VGWU118-09 4'
VGWU85-8 2'
VGWU85-8 4'
VGWU85-7 2'
VGWU85-7 4'
VGWU85-5 2'
VGWU85-5 4'
VGWU85-4B 30'
VGWU85-3B 30'
VGWU85-9 2'
VGWU85-9 4'
VGWU85-10 2'
VGWU85-10 4'
VGWU61-4B 30'
VGWU118-08 2'
VGWU118-08 4'
VGWU040-02B 80'
VGWU61-09B 30'
VGWU61-09B 35'
VGWU61-09B 40'
VGWU61-09B 45'
VGWU61-09B 55'
VGWU61-09B 65'
VGWU118-16 2'
VGWU118-16 4'
VGWU85-4B 35'
VGWU85-3B 35'
VGWU85-3B 40'
VGWU85-3B 45'
VGWU85-4B 40'

Sample Cross Reference 532328

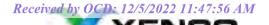
Page 112 of 282

Chevron Sites

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	06-22-16 00:00	- 80 ft	532328-001
S	06-22-16 00:00	- 80 ft	532328-008
S	06-23-16 00:00	- 2 ft	532328-009
S	06-23-16 00:00	- 4 ft	532328-010
S	06-23-16 00:00	- 2 ft	532328-013
S	06-23-16 00:00	- 4 ft	532328-014
S	06-23-16 00:00	- 2 ft	532328-015
S	06-23-16 00:00	- 4 ft	532328-016
S	06-23-16 00:00	- 2 ft	532328-017
S	06-23-16 00:00	- 4 ft	532328-018
S	06-23-16 00:00	- 2 ft	532328-019
S	06-23-16 00:00	- 4 ft	532328-020
S	06-23-16 00:00	- 2 ft	532328-021
S	06-23-16 00:00	- 4 ft	532328-022
S	06-21-16 00:00	- 2 ft	532328-023
S	06-21-16 00:00	- 4 ft	532328-024
S	06-21-16 00:00	- 2 ft	532328-025
S	06-21-16 00:00	- 4 ft	532328-026
S	06-21-16 00:00	- 2 ft	532328-027
S	06-21-16 00:00	- 4 ft	532328-028
S	06-21-16 00:00	- 30 ft	532328-029
S	06-21-16 00:00	- 30 ft	532328-031
S	06-21-16 00:00	- 2 ft	532328-033
S	06-21-16 00:00	- 4 ft	532328-034
S	06-21-16 00:00	- 2 ft	532328-035
S	06-21-16 00:00	- 4 ft	532328-036
S	06-22-16 00:00	- 30 ft	532328-042
S	06-23-16 00:00	- 2 ft	532328-056
S	06-23-16 00:00	- 4 ft	532328-058
S	06-23-16 00:00	- 80 ft	532328-062
S	06-22-16 00:00	- 30 ft	Not Analyzed
S	06-22-16 00:00	- 35 ft	Not Analyzed
S	06-22-16 00:00	- 40 ft	Not Analyzed
S	06-22-16 00:00	- 45 ft	Not Analyzed
S	06-22-16 00:00	- 55 ft	Not Analyzed
S	06-22-16 00:00	- 65 ft	Not Analyzed
S	06-23-16 00:00	- 2 ft	Not Analyzed
S	06-23-16 00:00	- 4 ft	Not Analyzed
S	06-21-16 00:00	- 35 ft	Not Analyzed
S	06-21-16 00:00	- 35 ft	Not Analyzed
S	06-21-16 00:00	- 40 ft	Not Analyzed
S	06-21-16 00:00	- 45 ft	Not Analyzed
S	06-21-16 00:00	- 40 ft	Not Analyzed

Released to Imaging: 12/5/2022 11:49:05 AM

.


Sample Cross Reference 532328

ARCADIS, Midland, TX

Chevron Sites

S	06-21-16 00:00	- 45 ft	Not Analyzed
S	06-22-16 00:00		Not Analyzed
S	06-22-16 00:00	- 35 ft	Not Analyzed
S	06-22-16 00:00	- 40 ft	Not Analyzed
S	06-22-16 00:00	- 45 ft	Not Analyzed
S	06-22-16 00:00	- 30 ft	Not Analyzed
S	06-22-16 00:00	- 35 ft	Not Analyzed
S	06-22-16 00:00	- 40 ft	Not Analyzed
S	06-22-16 00:00	- 45 ft	Not Analyzed
S	06-22-16 00:00	- 50 ft	Not Analyzed
S	06-22-16 00:00	- 55 ft	Not Analyzed
S	06-22-16 00:00	- 60 ft	Not Analyzed
S	06-22-16 00:00	- 65 ft	Not Analyzed
S	06-22-16 00:00	- 70 ft	Not Analyzed
S	06-22-16 00:00	- 75 ft	Not Analyzed
S	06-23-16 00:00	- 2 ft	Not Analyzed
S	06-23-16 00:00	- 4 ft	Not Analyzed
S	06-23-16 00:00	- 45 ft	Not Analyzed
S	06-23-16 00:00	- 55 ft	Not Analyzed
S	06-23-16 00:00	- 65 ft	Not Analyzed
S	06-23-16 00:00	- 75 ft	Not Analyzed

Page 113 of 282

CASE NARRATIVE

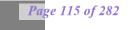
Client Name: ARCADIS Project Name: Chevron Sites

 Project ID:
 713.953.4841

 Work Order Number(s):
 532328

Report Date:20-JUL-16Date Received:06/24/2016

Sample receipt non conformances and comments:


Sample receipt non conformances and comments per sample:

None

Certificate of Analysis Summary 532328

ARCADIS, Midland, TX Project Name: Chevron Sites

Date Received in Lab:Fri Jun-24-16 10:05 amReport Date:20-JUL-16Project Manager:Kelsey Brooks

	Lab Id:	532328-0	01	532328-0	08	532328-009		532328-0	10	532328-0	013	532328-0)14
Analysis Requested	Field Id:	VGWU61-08B 80'		VGWU61-09B 80'		VGWU118-17 2'		VGWU118-17 4'		VGWU118-13 2'		VGWU118-	13 4'
Analysis Kequestea	Depth:	80 ft		80 ft		2 ft		4 ft		2 ft		4 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Jun-22-16 (00:00	Jun-22-16 00:00		Jun-23-16 00:00		Jun-23-16 00:00		Jun-23-16 00:00		Jun-23-16 00:00	
Inorganic Anions by EPA 300/300.1	Extracted:	Jun-30-16	17:00	Jul-06-16 10:00		Jun-28-16 19:58		Jun-28-16 20:05		Jun-28-16 20:13		Jun-28-16 20:21	
	Analyzed:	Jun-30-16 2	21:26	Jul-06-16 1	6:07	Jun-28-16 1	9:58	Jun-28-16 2	0:05	Jun-28-16 2	20:13	Jun-28-16 2	20:21
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		374	10.0	1440	100	248	10.0	115	10.0	13.2	10.0	125	10.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah

Kelsey Brooks Project Manager

Page 6 of 31

Certificate of Analysis Summary 532328

ARCADIS, Midland, TX Project Name: Chevron Sites

Date Received in Lab:Fri Jun-24-16 10:05 amReport Date:20-JUL-16Project Manager:Kelsey Brooks

	Lab Id:	532328-0	15	532328-0	016	532328-0	17	532328-0	18	532328-0	19	532328-0	20
Analysis Requested	Field Id:	VGWU118-14 2'		VGWU118-14 4'		VGWU118-11 2'		VGWU118-11 4'		VGWU118-12 2'		VGWU118-12	
Analysis Kequestea	Depth:	2 ft		4 ft		2 ft		4 ft		2 ft		4 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Jun-23-16 (00:00	Jun-23-16 00:00		Jun-23-16 00:00		Jun-23-16 00:00		Jun-23-16 00:00		Jun-23-16 00:00	
Inorganic Anions by EPA 300/300.1	Extracted:	Jun-28-16 2	20:44	Jun-28-16 20:52		Jul-18-16 14:00		Jul-18-16 14:00		Jun-28-16 2	21:00	Jun-28-16 2	1:08
	Analyzed:	Jun-28-16 2	20:44	Jun-28-16 2	20:52	Jul-18-16 2	0:50	Jul-18-16 2	1:13	Jun-28-16 2	21:00	Jun-28-16 2	1:08
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		298 10.0		325	50.0	28.7	10.0	300	50.0	374	50.0	246	50.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah

Kelsey Brooks Project Manager

Page 7 of 31

Certificate of Analysis Summary 532328

ARCADIS, Midland, TX Project Name: Chevron Sites

Date Received in Lab:Fri Jun-24-16 10:05 amReport Date:20-JUL-16Project Manager:Kelsey Brooks

	Lab Id:	532328-0	21	532328-0	22	532328-0	23	532328-024		532328-0	25	532328-0	26
Analysis Requested	Field Id:	VGWU118-	VGWU118-09 2'		VGWU118-09 4'		VGWU85-8 2'		VGWU85-8 4'		VGWU85-7 2'		7 4'
Analysis Kequestea	Depth:	2 ft		4 ft		2 ft		4 ft		2 ft		4 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Jun-23-16 0	0:00	Jun-23-16 00:00		Jun-21-16 00:00		Jun-21-16 00:00		Jun-21-16 00:00		Jun-21-16 00:00	
Inorganic Anions by EPA 300/300.1	Extracted:	Jun-28-16 2	1:16	Jun-28-16 21:23		Jun-28-16 21:47		Jun-28-16 21:55		Jun-28-16 22:18		Jun-28-16 22:20	
	Analyzed:	Jun-28-16 2	1:16	Jun-28-16 2	Jun-28-16 21:23		Jun-28-16 21:47		1:55	Jun-28-16 2	2:18	Jun-28-16 2	2:26
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		42.2	10.0	50.9	10.0	100	10.0	53.0	10.0	533	50.0	879	50.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah

Kelsey Brooks Project Manager

Page 8 of 31

Certificate of Analysis Summary 532328

ARCADIS, Midland, TX Project Name: Chevron Sites

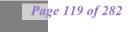
Date Received in Lab:Fri Jun-24-16 10:05 amReport Date:20-JUL-16Project Manager:Kelsey Brooks

	Lab Id:	532328-0	27	532328-0	28	532328-0	29	532328-0	31	532328-0)33	532328-0	34
Analysis Requested	Field Id:	VGWU85-	VGWU85-5 2'		VGWU85-5 4'		VGWU85-4B 30'		VGWU85-3B 30'		VGWU85-9 2'		9 4'
Analysis Kequestea	Depth:	2 ft	2 ft			30 ft		30 ft		2 ft		4 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Jun-21-16 0	0:00	Jun-21-16 (00:00	Jun-21-16 00:00		Jun-21-16 00:00		Jun-21-16 00:00		Jun-21-16 00:00	
Inorganic Anions by EPA 300/300.1	Extracted:	Jul-18-16 1	4:00	Jul-18-16 14:00		Jun-28-16 22:34		Jun-28-16 22:41		Jun-28-16 22:49		Jun-29-16 1	1:00
	Analyzed:	Jul-18-16 2	1:21	Jul-18-16 2	1:44	Jun-28-16 22:34		Jun-28-16 2	2:41	Jun-28-16	22:49	Jun-29-16 1	4:08
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		4220	500	1840	100	66.7	10.0	57.5	10.0	279	50.0	523	50.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah


Kelsey Brooks Project Manager

Page 9 of 31

Certificate of Analysis Summary 532328

ARCADIS, Midland, TX Project Name: Chevron Sites

Date Received in Lab:Fri Jun-24-16 10:05 amReport Date:20-JUL-16Project Manager:Kelsey Brooks

	Lab Id:	532328-0	35	532328-0)36	532328-0	42	532328-0	56	532328-0	58	532328-0	62
Analysis Requested	Field Id:	VGWU85-	VGWU85-10 2'		VGWU85-10 4' VGWU6		VGWU61-4B 30'		VGWU118-08 2'		VGWU118-08 4'		2B 80'
Analysis Kequestea	Depth:	2 ft	2 ft			30 ft		2 ft		4 ft		80 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Jun-21-16 (00:00	Jun-21-16 (00:00	Jun-22-16 00:00		Jun-23-16 00:00		Jun-23-16 00:00		Jun-23-16 00:00	
Inorganic Anions by EPA 300/300.1	Extracted:	Jul-18-16 1	4:00	Jul-18-16 14:00		Jun-29-16 11:00		Jun-29-16 11:00		Jun-29-16 11:00		Jun-30-16 1	7:00
	Analyzed:	Jul-18-16 2	21:52	Jul-18-16 2	2:00	Jun-29-16 1	4:16	Jun-29-16 1	4:39	Jun-29-16 1	4:47	Jun-30-16 2	1:42
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		85.1	10.0	495	50.0	50.1	10.0	<10.0	10.0	<10.0	10.0	93.3	10.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah

Kelsey Brooks Project Manager

Page 10 of 31

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDL Sample Detection LimitLOD Limit of DetectionPQL Practical Quantitation LimitMQL Method Quantitation LimitLOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	гах
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200 (281)	281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300 (2	214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334 (2	210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800 (4	432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

BS / BSD Recoveries

Project Name: Chevron Sites

Work Order #: 532328							Pro	ject ID: ´	713.953.484	41	
Analyst: MNR	D	ate Prepar	red: 06/28/20	16			Date A	nalyzed: (06/28/2016		
Lab Batch ID: 997156 Sample: 710442-1-	BKS	Batc	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE /]	BLANK	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<10.0	250	226	90	250	230	92	2	90-110	20	
Analyst: MNR	D	ate Prepar	red: 06/29/20	16			Date A	nalyzed: (6/29/2016		
Lab Batch ID: 997207 Sample: 710482-1-	BKS	Batc	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Sample Result	Added	Spike Result	Spike %R	Added	Spike Duplicate	Dup. %R		Limits	Limits	Flag
Analytes	Sample Result [A] <10.0	Added [B] 250	Spike Result [C]	Spike % R [D] 97	Added [E]	Spike Duplicate Result [F]	Dup. %R [G] 99	%	Limits %R	Limits %RPD	Flag
Analytes Chloride	Sample Result [A] <10.0 D	Added [B] 250 ate Prepar	Spike Result [C] 242	Spike % R [D] 97	Added [E]	Spike Duplicate Result [F]	Dup. %R [G] 99	%	Limits %R 90-110 06/30/2016	Limits %RPD	Flag
Analytes Chloride Analyst: MNR	Sample Result [A] <10.0 D	Added [B] 250 ate Prepar Batc	Spike Result [C] 242 red: 06/30/20	Spike % R [D] 97 16	Added [E] 250	Spike Duplicate Result [F] 248	Dup. %R [G] 99 Date A	% 2 nalyzed: (Matrix: S	Limits %R 90-110 06/30/2016 Solid	Limits %RPD 20	Flag
Analytes Chloride Analyst: MNR Lab Batch ID: 997412 Sample: 710538-1-	Sample Result [A] <10.0 D	Added [B] 250 ate Prepar Batc	Spike Result [C] 242 red: 06/30/20. h #: 1	Spike % R [D] 97 16	Added [E] 250	Spike Duplicate Result [F] 248	Dup. %R [G] 99 Date A	% 2 nalyzed: (Matrix: S	Limits %R 90-110 06/30/2016 Solid	Limits %RPD 20	Flag

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: Chevron Sites

Work Order #: 532328								Proj	ect ID:	713.953.48	41	
Analyst: MNR		Da	ate Prepar	ed: 07/06/201	16			Date A	nalyzed: (07/06/2016		
Lab Batch ID: 997589	Sample: 710653-1-BK	S	Batc	h #: 1					Matrix: S	Solid		
Units: mg/kg			BLAN	K /BLANK S	SPIKE / 1	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUI	DY	
Inorganic Anions by E		Blank ample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes												
Chloride		<10.0	250	236	94	250	232	93	2	90-110	20	
Analyst: MNR		Da	ate Prepar	red: 07/18/201	16			Date A	nalyzed: (07/18/2016		
Lab Batch ID: 998310	Sample: 711075-1-BK	S	Batc	h #: 1					Matrix: S	Solid		
Units: mg/kg			BLAN	K /BLANK S	SPIKE / 1	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUI	DY	
Inorganic Anions by E Analytes	PA 300/300.1 Sa	Blank ample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride		<10.0	250	246	98	250	250	100	2	90-110	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

LA	BORATORIES Proje	ect Name: (Chevron S	Sites				
Work Order #	: 532328							
Lab Batch #:	997156				Proje	ect ID: 7	13.953.4841	
Date Analyzed:	06/28/2016	Date Pr	epared: 06/2	8/2016	A	.nalyst: N	1NR	
QC- Sample ID:			Batch #: 1			Matrix: S		
Reporting Units:		Г	маті		TRIX SPIKE	PECO	VEDV STI	IDV
					1	KECO	1	
]	Inorganic Anions by EPA 300		Parent Sample Result	Spike	Spiked Sample Result	%R	Control Limits	Flag
	Analytes		[A]	Added [B]	[C]	[D]	%R	
Chloride			50.9	250	272	88	80-120	1
Lab Batch #:	997156				· · ·			
Date Analyzed:	06/28/2016	Date Pr	epared: 06/2	8/2016	А	nalyst: N	INR	
QC- Sample ID:	532432-001 S	E	Batch #: 1		ľ	Matrix: S	oil	
Reporting Units:	: mg/kg		MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	JDY
]	Inorganic Anions by EPA 300		Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
	Analytes		[A]	[B]	[0]	[2]		
Chloride			5010	12500	16800	94	80-120	
Lab Batch #:	997207			I				
Date Analyzed:	06/29/2016	Date Pr	epared: 06/2	9/2016	А	nalyst: N	INR	
QC- Sample ID:	532377-004 S	E	Batch #: 1		N	Matrix: S	oil	
Reporting Units:	g mg/kg	Γ	MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	JDY
]	Inorganic Anions by EPA 300		Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
	Analytes							
Chloride Lab Batch #:	997207		<10.6	266	241	91	80-120	
		Data Dr	ananad. 06/2	0/2016		nolvate N	IND	
Date Analyzed: QC- Sample ID:			epared: 06/2 Batch #: 1			.nalyst: N Matrix: S		
		ſ						
Reporting Units :	; mg/kg		MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	JDY
			Parent		Spiked Sample		Control	
]	Inorganic Anions by EPA 300		Sample Result [A]	Spike Added [B]	Result [C]	%R [D]	Limits %R	Flag

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

	BORATORIES		3 - MS					
	Proje	ect Name:	Chevron S	Sites				
Work Order #	: 532328					_	10.050 40.41	
Lab Batch #:	997412				Proje	ect ID: 7	13.953.4841	
Date Analyzed:	06/30/2016	Date P	repared: 06/3	0/2016	А	nalyst: N	INR	
QC- Sample ID:	532336-008 S		Batch #: 1		Γ	Matrix: S	oil	
Reporting Units:	mg/kg		MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	JDY
]	norganic Anions by EPA 300		Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
	Analytes							
Chloride	007412		1910	2500	4260	94	80-120	
Lab Batch #:	997412			0/2016			010	
Date Analyzed:	06/30/2016	Date P	repared: 06/3			nalyst: N		
QC- Sample ID:			Batch #: 1			Matrix: S		
Reporting Units:	mg/Kg		MATI	RIX / MA	ATRIX SPIKE	RECO	VERY STU	JDY
]	norganic Anions by EPA 300		Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
	Analytes		[A]	[B]				
Chloride			44.4	305	326	92	80-120	
Lab Batch #:	997589				1 1		1	1
Date Analyzed:	07/06/2016	Date P	repared: 07/0	6/2016	А	nalyst: N	INR	
QC- Sample ID:	532769-001 S		Batch #: 1		Γ	Matrix: S	oil	
Reporting Units:	mg/kg		MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	JDY
]	norganic Anions by EPA 300 Analytes		Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
	Anarytes		0.45		2210	01	00.120	
Chloride Lab Batch #:	997589		945	2500	3210	91	80-120	
Date Analyzed:		Data I	repared: 07/0	6/2016		.nalyst: N	IND	
QC- Sample ID:		Dater	Batch #: 1			Matrix: S		
Reporting Units:								
Kenariino i mile	ing/kg		MATI	RIX / MA	ATRIX SPIKE	RECO	VERY STU	JDY
			Parent		Spiked Sample		Control	
	norganic Anions by EPA 300 Analytes		Sample Result [A]	Spike Added [B]	Result [C]	%R [D]	Limits %R	Flag

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

	Form 3 - MS t Name: Chevron S		veries			Page 125 o
Work Order #: 532328 Lab Batch #: 998310			Proj	ect ID: 7	13.953.4841	
Date Analyzed: 07/18/2016	Date Prepared: 07/1	8/2016		analyst: N		
QC- Sample ID: 532328-017 S	Batch #: 1	0/2010		Matrix: S		
Reporting Units: mg/kg	MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	JDY
Inorganic Anions by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Analytes	[A]	[B]				
Chloride	28.7	250	258	92	80-120	
Lab Batch #: 998310						·
Date Analyzed: 07/18/2016	Date Prepared: 07/1	8/2016	A	Analyst: N	MNR	
QC- Sample ID: 533521-001 S	Batch #: 1		1	Matrix: S	Soil	
Reporting Units: mg/kg	MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	JDY
Inorganic Anions by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Chloride	<10.0	250	274	110	80-120	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference $[E] = 200^{*}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

7:56 AM Sample Duplicate Recovery

Project Name: Chevron Sites

Work Order #: 532328						
Lab Batch #: 997156				Project I	D: 713.953.4	4841
Date Analyzed: 06/28/2016 21:31	Date Prepar	ed: 06/28/2016	Ana	lyst:MNR		
QC- Sample ID: 532328-022 D	Batch	-		t rix: Soil		
Reporting Units: mg/kg		SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300/3 Analyte	300.1	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride		50.9	44.2	14	20	
Lab Batch #: 997156		<u> </u>				
Date Analyzed: 06/28/2016 19:42	Date Prepar	ed: 06/28/2016	5 Ana	lyst:MNR		
QC- Sample ID: 532432-001 D	Batch	1	Mat	t rix: Soil		
Reporting Units: mg/kg		SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300/3	800.1	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Analyte						
Chloride		5010	4940	1	20	
Lab Batch #: 997207		- 06/20/2014				
•		ed: 06/29/2016		lyst:MNR		
QC- Sample ID: 532377-004 D	Batch			trix: Soil		
Reporting Units: mg/kg		SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300/3 Analyte	800.1	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride		<10.6	<10.6	0	20	U
Lab Batch #: 997207						
Date Analyzed: 06/29/2016 13:37	Date Prepar	ed: 06/29/2016	5 Ana	lyst:MNR		
QC- Sample ID: 532470-001 D	Batch	1	Mat	t rix: Soil		
Reporting Units: mg/kg		SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300/3 Analyte	800.1	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride		108	108	0	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) |

All Results are based on MDL and validated for QC purposes.

BRL - Below Reporting Limit

7:56 AM Sample Duplicate Recovery

Project Name: Chevron Sites

Work Order #: 532328					
Lab Batch #: 997412			Project I	D: 713.953.4	4841
Date Analyzed: 06/30/2016 20:08 Date Pre	epared: 06/30/2016	i Ana	lyst:MNR		
QC- Sample ID: 532336-008 D B	atch #: 1	Mat	trix: Soil		
Reporting Units: mg/kg	SAMPLE /	/ SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300/300.1 Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride	1910	1910	0	20	
Lab Batch #: 997412	'				
	epared: 06/30/2016	j Ana	lyst:MNR		
-	atch #: 1	Mat	trix: Soil		
Reporting Units: mg/kg	SAMPLE /	/ SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300/300.1	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Analyte	44.4		17	20	
Chloride	44.4	37.4	17	20	
Lab Batch #: 997589	- 07/06/2016	-			
e e e e e e e e e e e e e e e e e e e	epared: 07/06/2016		lyst:MNR		
Que sumple int service soir n	atch #: 1		trix: Soil	· TE DEC	~~ ~~~~~~~~~~~~~
Reporting Units: mg/kg	SAMPLE /	/ SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300/300.1 Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride	945	943	0	20	
Lab Batch #: 997589 Date Analyzed: 07/06/2016 14:03 Date Pre	epared: 07/06/2016	Ana	lyst:MNR	<u> </u>	<u> </u>
	Satch #: 1		trix: Soil		
Reporting Units: mg/kg	SAMPLE /	/ SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300/300.1 Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride	1190	1240	4	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) |

All Results are based on MDL and validated for QC purposes.

BRL - Below Reporting Limit

Sample Duplicate Recovery

Project Name: Chevron Sites

Work Order #: 532328

Lab Batch #: 998310			Project I	D: 713.953.	4841
Date Analyzed: 07/18/2016 20:57 Date Prepa	red: 07/18/2010	5 Anal	yst:MNR		
QC- Sample ID: 532328-017 D Bate	h #: 1	Mat	rix: Soil		
Reporting Units: mg/kg	SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300/300.1	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Analyte		[D]			
Chloride	28.7	25.5	12	20	
Lab Batch #: 998310					
Date Analyzed: 07/18/2016 19:08 Date Prepa	red: 07/18/2010	6 Ana	yst:MNR		
QC- Sample ID: 533521-001 D Bate	h #: 1	Mat	rix: Soil		
Reporting Units: mg/kg	SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300/300.1	Dament Carryla	Sample		Control	
Analyte	Parent Sample Result [A]	Duplicate Result [B]	RPD	Limits %RPD	Flag

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit Received by OCD: 12/5/2022 11:47:56 AM

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client:	ARCADIS	

Work Order #: 532328

Date/ Time Received: 06/24/2016 10:05:00 AM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used :

Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?	3.2	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seal present on shipping container/ cooler?	Yes	
#5 *Custody Seals intact on shipping container/ cooler?	Yes	
#6 Custody Seals intact on sample bottles?	Yes	
#7 *Custody Seals Signed and dated?	Yes	
#8 *Chain of Custody present?	Yes	
#9 Sample instructions complete on Chain of Custody?	Yes	
#10 Any missing/extra samples?	No	
#11 Chain of Custody signed when relinquished/ received?	Yes	
#12 Chain of Custody agrees with sample label(s)?	Yes	
#13 Container label(s) legible and intact?	Yes	
#14 Sample matrix/ properties agree with Chain of Custody?	Yes	
#15 Samples in proper container/ bottle?	Yes	
#16 Samples properly preserved?	Yes	
#17 Sample container(s) intact?	Yes	
#18 Sufficient sample amount for indicated test(s)?	Yes	
#19 All samples received within hold time?	Yes	
#20 Subcontract of sample(s)?	Yes	
#21 VOC samples have zero headspace (less than 1/4 inch bubble)?	N/A	
#22 <2 for all samples preserved with HNO3,HCL, H2SO4? Except for samples for the analysis of HEM or HEM-SGT which are verified by the analysts.	N/A	
#23 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH?	N/A	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Mary Negron Checklist reviewed by: Kelsey Brooks

Date: 06/24/2016

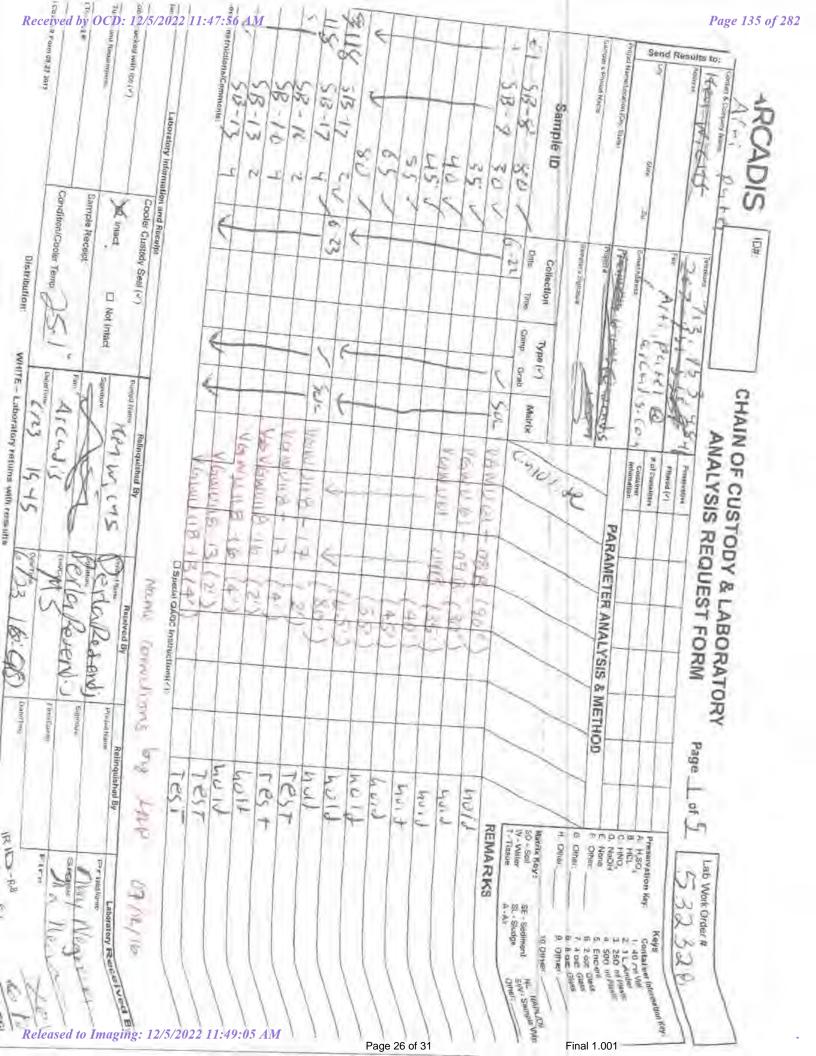
Date: 06/24/2016

Martin Martin Analysis REQUEST FORM Page	In ID.R.8 a , Wold	Datestime Cr23 1545 Carolina 16:00 Datestime	Date Time (123 1545	Continuity Codier Temp:	0825 ColC AR Form 08 27 2015
ANALYSIS REQUEST FORM Page L of 1 Standard Page	im XoWIC	AN S	Arcuis	Condition/Contes Terres	ping Tracking #
ANALYSIS REQUEST FORM Page _ of _ 53 _ m	N	(la Resentis)		Sample Receipt:	cify Turnaround Requirements
Part Hole ANALYSIS REQUEST FORM Page 1 of 1 53 and 1 Image: Part of the standard Image: Part of the stan	Marine Moanon	extance sondi	Not Intact Signature	X Intact	Cooler packed with ice (
Put Hol ANALYSIS REQUEST FORM Page L of 1 53 Mark Part I Control Instruction Instruction Instruction Mark Part I Control Instruction Instruction Instruction Mark Part I Control Mark Part I Control Instruction Instruction Mark Part I Control Mark Part I Control Instruction Instruction Mark Part I Control Mark Part I Control Mark Part I Control Instruction Mark Part I Control Mark Part I Control Mark Part I Control Part I		Received By	Printed Name:	Laboratory Information and Receipt Cooler Custody Seal (*)	Name
AndLYSIS REQUEST FORM Page 1 of 1 53 Image: Transmit of the second of the sec		Special QA/QC Instructions(*):			
ANALYSIS REQUEST FORM Page L of 1 53 Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image </td <td> I</td> <td></td> <td>* *</td> <td>ments:</td> <td>ecial Instructions/Com</td>	I		* *	ments:	ecial Instructions/Com
Purch ANALYSIS REQUEST FORM Page _ of _ 53 Marking Instruction Instruction Instruction Instruction Image Image Instruction Instruction Instruction Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image <thimage< th=""> Image Image<</thimage<>	Test				15 5
And Lysis Request FORM Page 1 of 1 53 Band Result Grant The Total of 1 The Total of 1 Total of 1 Band Result Grant The Total of 1 Total of 1 Total of 1 Band Result Grant Total of 1 Total of 1 Total of 1 Band Result Grant Total of 1 Total of 1 Total of 1 Band Result Grant Total of 1 Total of 1 Total of 1 Band Result Grant Total of 1 Total of 1 Total of 1 Band Result Grant Total of 1 Total of 1 Total of 1 Total of 1 Band Result Grant Total of 1 Total of 1 Total of 1 Total of 1 Band Result Grant Total of 1 Total of 1 Total of 1 Total of 1 Band Result Grant Total of 1 Total of 1 Total of 1 Total of 1 Band Result Grant Band Result Grant Total of 1 Total of 1 Total of 1 Band Result Grant Band Result Grant Band Result Grant Band Result Grant Band Result Grant Band Result Grant Band Result Grant Band Result Grant Band Result Grant Band Result Grant Band Result Grant <tr< td=""><td>hold</td><td></td><td></td><td>NIC</td><td>50</td></tr<>	hold			NIC	50
MALYSIS REQUEST FORM Page 1 of 1 53 Boom Bannoli II Bannoli III Bannoli III Bannoli III Bannoli IIII Bannoli IIII Bannoli IIIII Bannoli IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Initial ANALYSIS REQUEST FORM Page L of ½ 5 3 ample ID formed and fo	TPot			11-1	X
Init Price ANALYSIS REQUEST FORM Page _ of Source Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation Initial formation	TOCT		1 500	-17 CV 6-	SIS SI14
Initial Structure ANALYSIS REQUEST FORM Page 1 of 1 53 and 1 Initial Structure Initial Structure Initial Structure Initial Structure			¢		V V
Initial State ANALYSIS REQUEST FORM Page _ of _ 5 3 and Initial State Initial State Initial State Initial State Initial State Initial State Initial State Initial State Initial State Initial State Initial State Initial State Initial State Initial State Initial State Initial State Initial State Initial State Initial State Initial State <t< td=""><td>4014</td><td></td><td></td><td>53</td><td></td></t<>	4014			53	
International AMALYSIS REQUEST FORM Page L of £ 5 3 2 % International International International International International International International International International International International International International International International International International International International International <t< td=""><td>heid</td><td></td><td></td><td>155</td><td></td></t<>	heid			155	
Image	incid			1 SH	
Image: Normal State Image: Normal St	huid			40/	
Image: Second	hold			1	
Image	hold	(80%)	AMC A-	1 20 1 0	1 533-
Image: State Tellore ANALYSIS REQUEST FORM Page 1 of 2 5 32 Name Tellore Tellore Tellore Tellore 5 32 Name Tellore Tellore Tellore Tellore 5 32 Name Tellore Tellore Tellore S 32 Name Tellore Tellore Tellore S 32 Name Tellore Tellore S 32 S 32 Name Tellore S 32 S 32 S 32 Name S 32 S 32 S 32 S 32 Name S 32 S 32 S 32 S 32	REMARKS	4	Grab	XD / Lat Time	
Image: Provide the second s	SE - Sediment SL - Sludge A - Air	111	e (V) Matrix	Collection	Sar
Product	10 91	1111	1/2/	Şampler's Signature	Sampler's Printed Name
Analysis Request form Page of 2 532 Convariant Name Temptone	x 7 0	IN MINALT SIS &		State) Project #	Project Name/Location (City,
A/Fi PL/F PL/F Page _ of _ 5.32 Contails & Company Name Telephone Telephone Telephone 5.32 Reprint Telephone Telephone Telephone Telephone 5.32 Reprint Telephone T	01 A 1	DANALYCIC O	information		
AT Fill Preservation Key:			HI @	Arti	
Contact & Company Name: Pict Preptione: 712 53 484 Preservers			Fillered (*)	1-202 -41	21
	532	FORM	ANALYSIS REQ	in puter Teeptone 712	Contact & Compe

5B-11 4 6/23 5B-11 2 V 5B-11 4 5B-11 5B-11 4 5B-11 4 5B-11 4 5B-11 4 5B-11 5B-110 5B-11 5B-11 5B-11 5B-11 5B-11 5B-11 5B-11 5B-1
101

Page 22 of 31

Mark First 1 Table 1 T	Date/Times	Creates, mana	10141 9110019	1 2/11 11 (M/M)		the second second	A Destanting and a dest	
The second sec				10:0	D C Dater	ler Temm	Condition/Con	g Tracking #:
Image: Disc Conserved	(inter-	Firm/Courier:	Counter		Ferre	pt	Sample Rece	Turnaround Requirements:
Name Name <th< td=""><td>Signature</td><td>Signature</td><td>Mach 1</td><td></td><td>_</td><td>1</td><td>N miaci</td><td>onier banken with (ce (*)</td></th<>	Signature	Signature	Mach 1		_	1	N miaci	onier banken with (ce (*)
Mag Final (1) The initial (1)	reintited (Naming)		ena hes	ten wichs	_	1	¥m	
The first of the firs	7	Relinqui	Partice Name	THE:	Pratte	ty Seal (V)	Cooler Custor	Laboratory information
Mail Transform Transform Transform Mail Mail </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>I also and any Information</td>								I also and any Information
Mark True(1) True(1) True(1) Arrows Parameter Arrows Parameter Arrows Ar			□ Special QA/QC Instructions(*):	-				Special Instructions/Comments:
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					4			
Image: State	-					-	+	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Clat 1	140					1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								04 gh- 215
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	T	ħ.						51. 21 2-215
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	bld .	5					-	-313 4
Image: Signed	017	5						h 01-95
Image: Sec. Tenes(1)	rlay	4				-		-10
Star Op Filter(1) Filter(1) Filter(1) Filter(1) Filter(1) Preservation Key Continue Preservation Key Conter	Test	1				-		-7
Base Sp. Filende (1) Filende (1) Filende (1) Preservation Key: Constant Base Sp. EmmilAddress: Filende (1) Generative Generative Generative EmmilAddress: Filende (1) EmmilAddress: EmmilAddress: Filende (1) EmmilAddress: Filende (1) EmmilAddress: EmmilAddres: EmmilAddress: Emmi	Test					-	-	4
Image: State Zip Filler (1) Filler (1) Filler (1) Preservation Key: Container Preservationer Preservationer Preservatione	did.	5						-58
State Zip Filled (1) Filled (1) Alt (2) Preservation Key: Container State Zip Ennil Address: State Zip Ennil Address: PARAMETER ANALYSIS & METHOD Ennil Address: Ennil	Test Test	5					-	-515
Image: State Zip Finite	*	5						44
Instruction File (i) File (i) File (i) Preservation Key Container State Zip Emmil Address: Zip Emmil Address: <	T Te	-			V Soc	1	120	SL-
Interval Fillend (v) Fillend (v) Fillend (v) Preservation Key: Preservati		11	1 1 1	1 - 1	-	-	-	2
State Zp Fined (r) Filend (r) Fil	SL - Sludge A - Ali	/ /	/ / /	-	_	-	Collecti	Sample ID
State Zip File Filered (1) Preservation Key: State Zip Filered (2) Viol Container Viol Container State Zip Email Address: Viol Container Container Polject #: Polject #: Polject #: Polject #: Polject #:	10. Other: SE - Sediment	/	/ / /	1/04/		æ	Sampler's Signatu	Sampter's Printed Name
State Zip Final Address: File/red (v) Preservation Key: State Zip Email Address: Wol Container Information Mol Container Information PARAMETER ANALYSIS & METHOD Preservation Key: B. HACL B. H	Other 9.	/	111	12			Project #:	Project Name/Location (City, State)
State Zn Final (V) Preservation Key: State Zn Final Address: Viol Container Information Co	10	D		PARAMI			and the second second	
Factor Fillend (r) Preservation Key: Factor # of Containers 8. H/CL	u de la			-			E-mail Address:	
Tothy Tarriel 201 and CESA Fillend (v) Preservation Key:				# of Containers			Far	woores
1				Filtered (*')		14-1-15	107	t
Art: 0. Di Biephone 713,453, 4841 Preservative	Keys			Proservative	124. 1241	13.95	Talephone -7	Contact & Company Name: Art: Parte
	Lab Work Order #	2	& LABORATORY	CHAIN OF CUSIODY & L	CHAIN		3	ARCADIS


Page 23 of 31

Send Results to: Contact & Cayvonry Namer, P. 47 KI Address: City State Zp	Fac E-mail Address:	3.753.484	Preservative Filtered (*) # of Container Information PARAMETE	METER ANALYSIS & METHOD		on Key: C 1 2 3 5 5 6
Project Name/Location (City, State))	Project #		- 12	111	G. Other H. Other	
Sampier's Printed Name	Sampler's Signature,		100	1 1 1 1	Matrix Ke	10, Other, SF - Sediment
Sample ID	Collection Date Time	Type (\checkmark) Comp Grab	11x / 0510 /	111	W- Water T - Tissue	A-Air Other
61 58-4 30	16.22		-			EST
1 513-4 350	5				haid	
58-4 40	2				hald	
54 4-25	5				Terr 1	old
28-8 30	1				hold	
52 25	1				hald	
404	~				hold	
-15					haid	
50	<				Loy	
55	~				hult	
59		-			hold	
70 4	-					
V 1 75	Y	W W			haid	
				☐ Special QA/QC Instructions(✓):		
Laboratory Inform	Laboratory Information and Receipt		-		Relinquished By	Laboratory Received By
Lannar	Vooler Custody Seal		101 WICHS	Yoyla Kejendi	Printed Name:	Printed Name:
Cooler packed with ice (v')	A Intact	Not Intact s	Signature	Some In Ro Horn.	Signature:	Signature
by Operative Turnaround Requirements:	Sample Receipt:	2 - 7	Arcadi's	FirmCourier	Firm/Courier	Fim
	Condition/Cooler Temp:	QU.	Date/Tiple: 7	Date/The	/ w/ DatsTime	Date/Tress

Page 24 of 31

CD: Laboratory Information and Receipt Cooler packed with ice (✓) Cooler Custody Seal (✓) Cooler packed with ice (✓) Intact	.ab Name:			2 11:4	17:55 Special Instructions/Comments:		040 58-02 75 6-23	040 5B-02 65 6-23 V Soil	< Ka 9 84 61	. <	<	1.1.2	1 5 5 6 2 5 V	10 40 543	-17	< 2 - 2 + 80- 2 >	53-102623 15	5	Date Time Comp Grab	Sample ID Collection Type (*)	Sampler's Printed Name Sampler's Signature	Project NameLocalion (Chy, State) Project #		end F Crty State Ztp E-mail Address:	Pax	Atlase	8
FIM ALCONIS MUSCOMEN	Signature Signature Children of	ms (primely Name)	Refinquished By Received By	□ Special QA/QC Instructions(//):				1 Contraction of the second se	302	201	200			8		1	Soc	26	Matrix / U / / / / / /	1.10///////////////////////////////////	- / - / - / / /	12/1/1	ARAMETER ANALYSIS &		# of Containers	-	(4) Preservative
Fim/Cauler: Fim	Signature Signature	Printed Nam	Relinguished By Laboratory B						inoit test may	then TEST MAN	1011	haid	7010	flore	-	TICT	tick	Test	RKS	W-Water SL-Sediment T-Tissue A-Air	Matrix Key: 10.0ther:	Other 9.	Other 6.	D. NaOH E None	ωN:	eservation Key: C.	Keys

Page 25 of 31

Filtered (r) Filtered (r) Freestration Key: Kit Value Value Value A 1/50 B 1/50 Value PARAMETER ANALYSIS & METHOD C 1400 B 1/50 Value C 1400 C 1400 B 1/50 Value C 1400 C 1400 C 1400 Value C 1400 C 1400 C 1400	Masse rev. Masse rev. B0 - Solit Rev. B0 - Solit Rev. B0 - Solit Rev. B0 - Solit Rev. In Tomain B0 - Solit Rev. In Tomain B0 - Solit Rev. In Telepine B0 - Solit Rev. In Telepine Telepine In Telepine Telepine In Telepine Telepine In Telepine Telepine In Telepine Final Rev.	Markin (Survey and a survey of the survey	Time Came on	Sample ID Sample ID con 112 56 11 2 123 113 58 11 12 123 114 58 11 2 123 115 58 12 2 123 116 58 12 2 123 116 58 12 2 123 116 58 12 2 123 116 58 12 2 123 116 58 12 2 123 116 58 12 2 123 117 58 12 2 123 118 58 12 2 123 118 58 13 2 12 118 58 13 2 14 118 58 2 14 14 118 58 2 14 14 118 58 2 14 14 119 58 2 14 14 119 119 110 110 14 119 110 110 14 14 119 111 <
	& METHOD	PARAMETER	Fran E-mai Addro Filopeta () Sempler () Stypenus	City City 6 Manufassarian (City) States on's Printed Name

Page 27 of 31

KCADIS	0	CHAIN OF CUSTODY & LABORATORY ANALYSIS REQUEST FORM	Page 4 of L Lab Work Order
	Telephone 713-753.	1.	+ + + 532
Addition	Fast 1 1 - 199	Fitnered (Preservation Kay: Contailer Information Key:
State Zu	E-mail Address	Container Information	
	det transfer manne and	PARAMETER ANALYSIS &	METHOD E None
Sampler a Printed Name	Bridlect #	111	G. Other
	sampers signature.	11/1/11	10
Sample ID	Collection Type (V)	Matrix 105 1 1	SO - Soli SE - Sediment NL - NAPLON W- Walter SL - Shudge SW Sample Wipe
61 58-4 30-	-		6
1 513-4 35	1	VE	THE FOST
0h h= 85	5	(1.55/ Sh. 1000000)	hoid
· 5h h - 85		D.MIC.	huid
102 8-85		0 0 0 0 1 -	tory test
1 25		1001 -	huld
404		N C 0 +	huid
154		19 48 19 0	hold
502		1/ Suc 190 M	heid
r 55		11901-8	hold
600		W UBI -	helt
159		10101-12	
70 /		15	heid
scial Instructions/Comments: 75 V	J V	Vannal Se izel	haid
11:4		1 OD 0 T	sev): Laid
oratory Informatic	on and Receipt	Relinquisted By Martin Civil Chions	MS A. Autur LAP 14/12/16
	Voorer Custody Seal (V)	Anne Nany	Printed Name Printed Name Printed Name
services backed with ICB (*)	M Intact D Not Intact	0 [
	Sample Receipt:	AD Verluke	HORUS Signature Signature
5 mg Tracking #	Condition/Cooler Term	Aller J: S My	FinntCouncel Firm
		10/23/16 100 100/23/16 1/2	16 MUDalis/Time Date/Time

AMALYSIS & METHOD	Laboratory Information and Receipt Laboratory Information and Receipt Cooler Custody Seal (v) A Intact Sample Receipt: Condition/Cooler Temp: 26	158111	V SAC VENUL	ne Comp Grab Matrix	E-mail Address: E-mail Address: Container Information PAR Project P Sampler's Signaliue	Telephone TIS-153. A84/ Preservative Trace
quinned By	15	0-028(450)	10(2) 10			AUCOL FORM Page 5

Received by OCD: 12/5/2022 11:47:56 AM

Work Order #: 532328

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: ARCADIS Date/ Time Received: 06/24/2016 10:05:00 AM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Comments

Temperature Measuring device used :

	Sample Receipt Checklist		
#1 *Temperature of cooler(s)?		3.2	
#2 *Shipping container in good condition?		Yes	
#3 *Samples received on ice?		Yes	
#4 *Custody Seal present on shipping contai	ner/ cooler?	Yes	
#5 *Custody Seals intact on shipping contain	er/ cooler?	Yes	
#6 Custody Seals intact on sample bottles?		Yes	
#7 *Custody Seals Signed and dated?		Yes	
#8 *Chain of Custody present?		Yes	
#9 Sample instructions complete on Chain o	f Custody?	Yes	
#10 Any missing/extra samples?		No	
#11 Chain of Custody signed when relinquisl	hed/ received?	Yes	
#12 Chain of Custody agrees with sample la	bel(s)?	Yes	
#13 Container label(s) legible and intact?		Yes	
#14 Sample matrix/ properties agree with Ch	ain of Custody?	Yes	
#15 Samples in proper container/ bottle?		Yes	
#16 Samples properly preserved?		Yes	
#17 Sample container(s) intact?		Yes	
#18 Sufficient sample amount for indicated to	est(s)?	Yes	
#19 All samples received within hold time?		Yes	
#20 Subcontract of sample(s)?		Yes	
#21 VOC samples have zero headspace (les	s than 1/4 inch bubble)?	N/A	
#22 <2 for all samples preserved with HNO3 samples for the analysis of HEM or HEM-SG ⁻ analysts.	· · ·	N/A	
#23 >10 for all samples preserved with NaAs	SO2+NaOH, ZnAc+NaOH?	N/A	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Mary Negron Checklist reviewed by: Kelsev Brooks

Date: 06/24/2016

Date: 06/24/2016

Analytical Report 536864

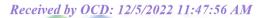
for Arcadis - Houston

Project Manager: Jonathan Olsen

HES Transfer

11-OCT-16

Collected By: Client



1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Table of Contents

Cover Page	1
Cover Letter	3
Sample ID Cross Reference	4
Case Narrative	5
Certificate of Analysis Summary	6
Explanation of Qualifiers (Flags)	11
LCS / LCSD Recoveries	12
MS / MSD Recoveries	14
Chain of Custody	17
Sample Receipt Conformance Report	21

11-OCT-16

Project Manager: **Jonathan Olsen Arcadis - Houston** 2929 Briarpark Dr., Ste 300 Houston, TX 77042

Reference: XENCO Report No(s): **536864 HES Transfer** Project Address: Lovington NM

Jonathan Olsen:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 536864. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 536864 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kuns Hon

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Page 3 of 21

Sample Id

-
VGWUO40-12 (2')
VGWUO40-12 (4')
VGWUO40-17 (2')
VGWUO40-17 (4')
VGWUO40-16 (2')
VGWUO40-16 (4')
VGWUO40-16 (50')
VGWUO40-19 (2')
VGWUO40-19 (4')
VGWUO40-18 (2')
VGWUO40-18 (4')
VGWUO40-18 (70')
VGWU85-06 (2')
VGWU85-06 (4')
VGWU85-06 (10')
VGWU85-06 (50')
VGWU85-11 (2')
VGWU85-11 (4')
VGWUSAT3-03 (4')
VGWUSAT3-03 (40')
VGWUSAT3-05 (4')
VGWUSAT3-05 (40')
VGWU118-15 (2')
VGWU118-15 (4')
VGWU118-18 (2')
VGWU118-18 (4')
VGWU118-18 (7')
VGWU118-18 (10')
VGWU85-06 (7')
VGWU85-11 (7')
VGWU85-11 (10')
VGWU85-11 (11')
VGWU118-15 (7')
VGWU118-15 (10')

Sample Cross Reference 536864

Page 144 of 282

Arcadis - Houston, Houston, TX

HES Transfer

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	09-13-16 08:50		536864-001
S	09-13-16 08:55		536864-002
S	09-13-16 10:30		536864-003
S	09-13-16 10:34		536864-004
S	09-13-16 09:58		536864-005
S	09-13-16 10:00		536864-006
S	09-13-16 10:48		536864-007
S	09-13-16 11:46		536864-008
S	09-13-16 11:50		536864-009
S	09-13-16 12:14		536864-010
S	09-13-16 12:16		536864-011
S	09-13-16 13:23		536864-012
S	09-13-16 14:41		536864-013
S	09-13-16 14:42		536864-014
S	09-13-16 14:44		536864-016
S	09-13-16 15:27		536864-017
S	09-13-16 16:00		536864-018
S	09-13-16 16:01		536864-019
S	09-14-16 09:49		536864-023
S	09-14-16 10:40		536864-024
S	09-14-16 11:11		536864-025
S	09-14-16 11:55		536864-026
S	09-14-16 14:00		536864-027
S	09-14-16 14:01		536864-028
S	09-14-16 14:30		536864-031
S	09-14-16 14:31		536864-032
S	09-14-16 14:32		536864-033
S	09-14-16 14:33		536864-034
S	09-13-16 14:43		Not Analyzed
S	09-13-16 16:02		Not Analyzed
S	09-13-16 16:05		Not Analyzed
S	09-13-16 16:21		Not Analyzed
S	09-14-16 14:02		Not Analyzed
S	09-14-16 14:03		Not Analyzed

CASE NARRATIVE

Client Name: Arcadis - Houston Project Name: HES Transfer

Project ID: Work Order Number(s): 536864 Report Date: *11-OCT-16* Date Received: *09/15/2016*

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Certificate of Analysis Summary 536864

Arcadis - Houston, Houston, TX Project Name: HES Transfer

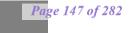
Date Received in Lab:Thu Sep-15-16 11:30 amReport Date:11-OCT-16Project Manager:Kelsey Brooks

	Lab Id:	536864-0	01	536864-0	02	536864-0	03	536864-0	04	536864-0	005	536864-0	06
Analysis Requested	Field Id:	VGWUO40-	12 (2')	VGWUO40-	12 (4')	VGWUO40-	17 (2')	VGWUO40-	17 (4')	VGWUO40-	16 (2')	VGWUO40-	16 (4')
Analysis Kequestea	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Sep-13-16 (08:50	Sep-13-16 (08:55	Sep-13-16 1	0:30	Sep-13-16 1	0:34	Sep-13-16	09:58	Sep-13-16 1	0:00
Inorganic Anions by EPA 300/300.1	Extracted:	Sep-20-16 (08:00	Sep-20-16 (08:00	Sep-20-16 0	8:00	Sep-20-16 0	8:00	Sep-20-16	08:00	Sep-20-16 0	8:00
	Analyzed:	Sep-20-16	4:44	Sep-20-16 1	4:51	Sep-20-16 1	4:59	Sep-20-16 1	5:07	Sep-20-16	15:15	Sep-20-16 1	5:23
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		86.6	10.0	54.0	10.0	52.8	10.0	34.8	10.0	329	10.0	881	10.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah


Kelsey Brooks Project Manager

Page 6 of 21

Certificate of Analysis Summary 536864

Arcadis - Houston, Houston, TX Project Name: HES Transfer

Date Received in Lab:Thu Sep-15-16 11:30 amReport Date:11-OCT-16Project Manager:Kelsey Brooks

	Lab Id:	536864-0	07	536864-0	08	536864-0	09	536864-0	10	536864-0	11	536864-0	12
Analysis Requested	Field Id:	VGWUO40-1	6 (50')	VGWUO40-	19 (2')	VGWUO40-	19 (4')	VGWUO40-	18 (2')	VGWUO40-	18 (4')	VGWUO40-1	8 (70')
Analysis Kequestea	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Sep-13-16 1	0:48	Sep-13-16 1	1:46	Sep-13-16 1	1:50	Sep-13-16 1	2:14	Sep-13-16	2:16	Sep-13-16 1	3:23
Inorganic Anions by EPA 300/300.1	Extracted:	Sep-30-16 (09:00	Sep-21-16 1	0:00	Sep-21-16 1	0:00	Sep-21-16 1	0:00	Sep-21-16	0:00	Sep-30-16 0	9:00
	Analyzed:	Sep-30-16 1	3:18	Sep-21-16 1	2:10	Sep-21-16 1	2:33	Sep-21-16 1	2:41	Sep-21-16	2:49	Sep-30-16 1	3:26
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		16.4	5.00	54.2	10.0	59.6	10.0	65.3	10.0	318	10.0	142	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah

Kelsey Brooks Project Manager

Page 7 of 21

Certificate of Analysis Summary 536864

Arcadis - Houston, Houston, TX Project Name: HES Transfer

Date Received in Lab:Thu Sep-15-16 11:30 amReport Date:11-OCT-16Project Manager:Kelsey Brooks

	Lab Id:	536864-0	13	536864-0	14	536864-0	16	536864-0	17	536864-0	18	536864-0	19
Analysis Requested	Field Id:	VGWU85-0	6 (2')	VGWU85-0	6 (4')	VGWU85-06	5 (10')	VGWU85-06	5 (50')	VGWU85-1	1 (2')	VGWU85-1	1 (4')
Analysis Kequestea	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Sep-13-16 1	4:41	Sep-13-16 1	4:42	Sep-13-16 1	4:44	Sep-13-16 1	5:27	Sep-13-16	6:00	Sep-13-16 1	6:01
Inorganic Anions by EPA 300/300.1	Extracted:	Sep-21-16 1	0:00	Sep-21-16 1	0:00	Sep-30-16 0	9:00	Oct-10-16 0	9:35	Sep-21-16	0:00	Sep-21-16 1	0:00
	Analyzed:	Sep-21-16 1	2:57	Sep-21-16 1	7:46	Sep-30-16 1	3:47	Oct-10-16 1	9:19	Sep-21-16	3:28	Sep-21-16 1	3:36
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		6120	100	2540	50.0	3760	50.0	37.8	5.00	14.0	10.0	31.1	10.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah

Kelsey Brooks Project Manager

Page 8 of 21

Certificate of Analysis Summary 536864

Arcadis - Houston, Houston, TX Project Name: HES Transfer

Date Received in Lab:Thu Sep-15-16 11:30 amReport Date:11-OCT-16Project Manager:Kelsey Brooks

	Lab Id:	536864-0	23	536864-0	24	536864-0	25	536864-0	26	536864-0)27	536864-0	28
Analysis Requested	Field Id:	VGWUSAT3-	03 (4')	VGWUSAT3-	03 (40')	VGWUSAT3-	05 (4')	VGWUSAT3-(05 (40')	VGWU118-	15 (2')	VGWU118-1	15 (4')
Analysis Kequestea	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Sep-14-16 ()9:49	Sep-14-16	10:40	Sep-14-16	1:11	Sep-14-16 1	1:55	Sep-14-16	14:00	Sep-14-16 1	4:01
Inorganic Anions by EPA 300/300.1	Extracted:	Sep-21-16	10:00	Sep-30-16 ()9:00	Sep-30-16 (9:00	Oct-10-16 0	9:35	Sep-21-16	10:00	Sep-21-16 1	0:00
	Analyzed:	Sep-21-16	13:44	Sep-30-16 1	3:54	Sep-30-16 1	4:01	Oct-10-16 1	9:26	Sep-21-16	13:51	Sep-21-16 1	3:59
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		454	10.0	12.0	5.00	943	5.00	ND	5.00	18.5	10.0	ND	10.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah

Kelsey Brooks Project Manager

Page 9 of 21

Certificate of Analysis Summary 536864

Arcadis - Houston, Houston, TX Project Name: HES Transfer

Date Received in Lab:Thu Sep-15-16 11:30 amReport Date:11-OCT-16Project Manager:Kelsey Brooks

	Lab Id:	536864-0	31	536864-0	32	536864-0	33	536864-0	34		
Analysis Requested	Field Id:	VGWU118-1	18 (2')	VGWU118-	18 (4')	VGWU118-1	18 (7')	VGWU118-1	8 (10')		
Analysis Kequestea	Depth:										
	Matrix:	SOIL		SOIL		SOIL		SOIL			
	Sampled:	Sep-14-16 1	14:30	Sep-14-16	4:31	Sep-14-16 1	4:32	Sep-14-16	4:33		
Inorganic Anions by EPA 300/300.1	Extracted:	Sep-21-16 1	10:00	Sep-21-16 1	0:00	Sep-30-16 0	9:00	Oct-10-16 0	9:35		
	Analyzed:	Sep-21-16 1	14:23	Sep-21-16 1	4:46	Sep-30-16 1	4:08	Oct-10-16 1	9:33		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		91.4	10.0	355	10.0	307	5.00	41.3	5.00		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah

Kelsey Brooks Project Manager

Page 10 of 21

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDL Sample Detection LimitLOD Limit of DetectionPQL Practical Quantitation LimitMQL Method Quantitation LimitLOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	гах
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

BS / BSD Recoveries

Project Name: HES Transfer

Work Order #: 536864							Proj	ject ID:			
Analyst: MNR	D	ate Prepar	ed: 09/20/201	6			Date A	nalyzed: (9/20/2016		
Lab Batch ID: 3000344 Sample: 713949-1-	BKS	Batcl	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K/BLANK	SPIKE / 1	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUI	ЭY	
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<10.0	250	250	100	250	257	103	3	90-110	20	
Analyst: MNR	D	ate Prepar	ed: 09/21/201	6			Date A	nalyzed: (9/21/2016		
Lab Batch ID: 3000445 Sample: 713999-1-	BKS	Batcl	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K/BLANK	SPIKE / 1	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUI)Y	
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride											1
	<10.0	250	246	98	250	250	100	2	90-110	20	
Analyst: MNR					250	250				20	
Analyst: MNR Lab Batch ID: 3001120 Sample: 714399-1-2	D	ate Prepar	246 red: 09/30/201 h #: 1		250	250	Date A)9/30/2016	20	
	D	ate Prepar Batcl	ed: 09/30/201	6			Date A	nalyzed: (Matrix: S	09/30/2016 Solid		
Lab Batch ID: 3001120 Sample: 714399-1-	D	ate Prepar Batcl	ed: 09/30/201	6			Date A	nalyzed: (Matrix: S	09/30/2016 Solid		Flag

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: HES Transfer

Work Order #: 536864							Proj	ect ID:			
Analyst: MNR	D	ate Prepa	red: 10/10/201	6			Date A	nalyzed: 1	0/10/2016		
Lab Batch ID: 3001741 Sample: 714723-1-B	KS	Batc	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K /BLANK S	SPIKE / I	BLANK S	SPIKE DUPI	LICATE	RECOVI	ERY STUD	PΥ	
Inorganic Anions by EPA 300/300.1	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Chloride	<5.00	250	250	100	250	262	105	5	90-110	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Project Name: HES Transfer

Work Order # :	536864						Project II) :				
Lab Batch ID:	3000344	QC- Sample ID:	536602	-002 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	09/20/2016	Date Prepared:	09/20/2	016	An	alyst: N	MNR					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorgai	nic Anions by EPA 300/300.1	Parent Sample Result	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
	Analytes	[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Chloride		2780	1250	4000	98	1250	4030	100	1	90-110	20	
Lab Batch ID:	3000344	QC- Sample ID:	536660	-002 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	09/20/2016	Date Prepared:	09/20/2	016	An	alyst: N	MNR					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorgai	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	L - J	[D]	[E]		[G]				
Chloride		1970	1250	3230	101	1250	3210	99	1	90-110	20	
Lab Batch ID:	3000445	QC- Sample ID:	536864	-008 S	Ba	tch #:	1 Matrix	k: Soil				-
Date Analyzed:	09/21/2016	Date Prepared:	09/21/2	016	An	alyst: N	MNR					
Reporting Units:	mg/kg		Ν	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorgai	nic Anions by EPA 300/300.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	-	54.2	250	298	98	250	294	96	1	90-110	20	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Page 14 of 21

Project Name: HES Transfer

.

Work Order # :	536864						Project II):				
Lab Batch ID:	3000445	QC- Sample ID:	536864	-028 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	09/21/2016	Date Prepared:	09/21/2	016	An	alyst: N	MNR					
Reporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorgai	nic Anions by EPA 300/300.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride		<10.0	250	250	100	250	244	98	2	90-110	20	
Lab Batch ID:	3001120	QC- Sample ID:	536657	-006 S	Ba	tch #:	1 Matrix	k: Soil		1		
Date Analyzed:	09/30/2016	Date Prepared:	09/30/2	016	An	alyst: N	MNR					
Reporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorgai	nic Anions by EPA 300/300.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Anarytes											
Chloride		920	250	1160	96	250	1150	92	1	90-110	20	
Lab Batch ID:	3001120	QC- Sample ID:	537439	-001 S		tch #:	1 Matrix	k: Soil				
Date Analyzed:	09/30/2016	Date Prepared:	09/30/2	016	An	alyst: N	MNR					
Reporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorgai	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]		[D]	[E]		[G]				
Chloride		4120	2500	6760	106	2500	6650	101	2	90-110	20	1

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Page 15 of 21

Project Name: HES Transfer

Work Order # :	536864						Project II):				
Lab Batch ID:	3001741	QC- Sample ID:	538189	-001 S	Ba	tch #:	1 Matrix	: Soil				
Date Analyzed:	10/10/2016	Date Prepared:	10/10/2	016	An	alyst: N	MNR					
Reporting Units:	mg/kg		N	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorgan	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[0]	[D]	[E]	Result [1]	[G]				
Chloride		1720	250	1980	104	250	1970	100	1	90-110	20	
Lab Batch ID:	3001741	QC- Sample ID:	538316	-006 S	Ba	tch #:	1 Matrix	: Soil				
Date Analyzed:	10/10/2016	Date Prepared:	10/10/2	016	An	alyst: N	MNR					
Reporting Units:	mg/kg		N	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorgan	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]		⁷ 0K [D]	E]	Result [F]	%K [G]	/0	/0K	70KPD	
Chloride		258	250	501	97	250	493	94	2	90-110	20	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Page 16 of 21

GARCADIS DI	PM RODSP CHAI	AL F IN OF CUSTODY & LABORATORY ANALYSIS REGITEST FORM Page 1 of 2 F331,001,014
Contract & Company Name: B. J. O. P. A. A. M. A. C. A.	Tatephone: 713,953,4874	
ROGER BUILD SULL 300	Fex	
Send Cave same 24 Houstin TX 77042	Emiladross. Jonathan, Olsen@avegalis.	PARAMETER ANALYSIS & METHOD E. None E. PARAMETER ANALYSIS & METHOD F. Other 6 / / / /
Project Normer Coardion (CM) States): LUVING TON, NM (HES) Sergetis Privide Name:	Project #: COVY Sempler's Signature: I.	
FMENISA Fham Sample ID	2	Work
NGWUND401-17(21)	Date Time Comp Grab	
~~	× ×	
VGWU046-17(2')	1/14/16/1030 X SO	
VGWU040-17(4)	X	X
NGWMO40-16(2')		
		Crieft I
$i \sim i$	×	
9	×	
	×	× ·
VGWW040-18(4')		
NGWW040-12(J0)	09 × 679191616	X Houd
NGWURS - D/0 (2')	alialie Muli X SO	
Standary Thy		Special QA'QC Instructions(<):
Laboratory Information and Receipt Lab Nama: Cooler Cust	ody Seal (v)	inquished By Relinquished By Relinquished By Labor
Cooler packed with ice (*)	Intact D Not Intact Segment	ENTSA MAAN JAUDANATABOO OM2 Martine Samarine AMATAGO OxOF Signature Samarine Samarine
Specify Turnaround Requirements:	Sample Receipt	/
Shipping Tracking #:	Condition/Coder Temp:	14/16/1600 0000000000000000000000000000000
* 20730828 CorC AR Form 06.27.2015	DAM FINGON: WHITE-	eturms with results
-)	

Received by OCD: 12/5/2022 11:47:56 AM

Released to Imaging: 12/5/2022 11:49:05 AM

Page 157 of 282

Final 1.002

	r2 Lab Work Order #	Preservation Key: Contained information Key: A H SO 1 000-000	B. HCL 2. L. MINAR C. HNO, 3. 250 mi Plastc D. NaOH 4. 500 mi Plastc	None Other Other		Mathix Keyr SO - Soil SE - Sediment NL - NAPL/Oil W - Wates SI - Stindes CN - Service Mine	A-Air KS		Hard	Hord	(July)	HOLEG		Houo	Houb	Hold		OLD	tor D	0LD			thed By A Laboratory Received By	Principal and CAM OR	Signature:	TLANCO	0000015161138	PINK Retained by Arcadis
	はLABORATORY EST FORM Page Z of 乏			PARAMETER ANALYSIS & METHOD														Har	Ĭ	Hol Hol		Special QA/QC Instructions(/):	Received By severation in Relinquished By	Protect Name, Process VYOUR (ODP)	Cora	FirmCourter: MS Firm/Courter:	Description of the of the province	\sim
- Pub Speer	CHAIN OF CUSTODY & LABORATORY ANALYSIS REQUEST FORM	74 Presenter BYB	¢ of Containers	s.cm//	1	/ 2.20 / Lov:	(1) Matrix / F	X SO X	X So X	X SO X	X S X	X S X	X So X	X SS X	× 8 ×	X So X	X So X	× 8	× S ×	× So ×	X SO X		Relinquished By	PHORA NAME	Signature:	c Firm Arcadis	21	5
Chevron PM- RUD Speer	D#:	15 713 953, 4874	S Fax:	Emell Address: Drugh an Oisch aveadt		Sempler's Stone and	Collection Type (v) Date Time Comp Gra	9/13/14/2	Phally 1443	aliality lycyd) 9/13/14/527	9/13/16 (600)	9/13/16/1001	7113/16/1602	9/19/1/ei/b	Analive Re21	1) 9/14/14949			9/14/161155		1400	Laboratory Information and Receipt	Cooler Custody Seal (v)	Mintact Dot Intact	Sample Receipt	Condition/Cooler Temp:) C	Distribution
-	G ARCADIS	Contact & Cumpany Name: Arcadis	Rosents Switc 30 Rog29 Razerbart	Send Struckton TX 11047	Project Name Location (City, State): (HES)	Samply's Phinted hame. Welli Sa Pha.M	Sample ID	VGWURS-the(4')	VGWM85-B10(7)	VGWU35-06(10)	VENNES - OG (50')	VGWU 85-11 (2')	VGWM85-11(4')	VGWU85-11(7')	VGWN 85- 11 (18')	VGWURS - 11 (40)	VGWUSAT3-03(4')		NGWUSAT3-U5(4')	NGWUSAT3-05(40')	MGMMIIS-IS(2')	_		Leb Name:	Cooler packed with ice (1)	Specify Turnaround Requirements:	Shipping Tracking #:	20720636 ColC AR Form 08.27.2016

Received by OCD: 12/5/2022 11:47:56 AM

Final 1.002

¥

Page 2 of 2 Lab Work Order #	Reservation Key: Container Information Key: A. H.SO. C. HNO. B. HCL. 2. 1L Amber C. HNO. 3. 200 ml Pastic D. NaOH 4. 500 ml Pastic D. NaOH 5. Encore E. Other 6. 201 ellass H. Other 7. 4. 200 ml Pastic D. NaOH 7. 4. 200 ml Pastic E. Other 8. 8. 200 ml Pastic H. Other 1. 2.00 ml Pastic Matrix Key: 5. Encore So - Soli 9. Other W. Waler 5Studge W. Waler 5Sudge W. Waler 5Studge W. Waler 5Studge W. Matrix KAY 5Studge	Hord Hord Hord Hord Hord Hord Hord Hord	Relinquished By Malboratory Received By Name: Printed By Printed By Printed By
rory	Parameter analysis & method		Special QA/QC Instructions(v): Special QA/QC Instructions(v): Phined Name, Phined N
SPELT SPELT CHAIN OF CUSTODY & LABORAT ANALYSIS REQUEST FORM	Preservative Filenot(r) Element(r) Contrainer Elemention		Project Nume: Project Nume: Relinquished By Renture: Rent
An Lon	S Telephone: Telephone: D Fax: D Fax: Former Address: Former Address: Former Address: Former Address: Propect #: Propect #: Propect #: Collection Type Date Time Comp	9114/16 [401 9114/16 [402 9114/16 [432 9114/14 [432 9114/14 [432 9114/16 [433 9114/16 [433 9114/16 [433	Laborationy information and Receipt Laborationy information and Receipt Cooler Custody Seal (*) Prined Name: A Intact Sample Receipt Sample Receipt Condition/Cooler Temp: 10 Distribution, WHTE - Laborator
AARCADIS 14	Contact à Company Name: Contact à Company Name: Address: Send Resources: Send Resources: Send Resources: Priser Name Contro Rano: Priser Name Cont	VGWUII8-15(7') VGWUI18-15(7') VGWU118-18(2') VGWU118-18(4') VGWU118-18(10')	Special Instructions/Comments: SPecial Instructions/Comments: SFAMAUNATM Laboratory Information and Laboratory Information and Laboratory Information and Laboratory Information and Second Requirements: Specify Tumaround Requirements: Stantis & Cond Subpling Treating # Cond Subpling Treating # Cond


and to Imaging: 12/5/2022 11:49:05 AM

Final 1.002

Page 159 of 282

Received by OCD: 12/5/2022 11:47:56 AM

۴

Received by OCD: 12/5/2022 11:47:56 AM

Work Order #: 536864

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Arcadis - Houston Date/ Time Received: 09/15/2016 11:30:00 AM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Comments

Temperature Measuring device used : R8

Sample Receipt Checklist	
#1 *Temperature of cooler(s)?	6.3
#2 *Shipping container in good condition?	Yes
#3 *Samples received on ice?	Yes
#4 *Custody Seal present on shipping container/ cooler?	Yes
#5 *Custody Seals intact on shipping container/ cooler?	Yes
#6 Custody Seals intact on sample bottles?	Yes
#7 *Custody Seals Signed and dated?	Yes
#8 *Chain of Custody present?	Yes
#9 Sample instructions complete on Chain of Custody?	Yes
#10 Any missing/extra samples?	No
#11 Chain of Custody signed when relinquished/ received?	Yes
#12 Chain of Custody agrees with sample label(s)?	Yes
#13 Container label(s) legible and intact?	Yes
#14 Sample matrix/ properties agree with Chain of Custody?	Yes
#15 Samples in proper container/ bottle?	Yes
#16 Samples properly preserved?	Yes
#17 Sample container(s) intact?	Yes
#18 Sufficient sample amount for indicated test(s)?	Yes
#19 All samples received within hold time?	Yes
#20 Subcontract of sample(s)?	N/A
#21 VOC samples have zero headspace (less than 1/4 inch bubble)?	N/A
#22 <2 for all samples preserved with HNO3,HCL, H2SO4? Except for samples for the analysis of HEM or HEM-SGT which are verified by the analysts.	N/A
#23 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH?	N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Jessica Kramer

Date: 09/15/2016

Checklist reviewed by: Mmg Hoah Kelsey Brooks

Date: 09/16/2016

Analytical Report 539912

for Arcadis - Houston

Project Manager: Jonathan Olsen

HES Transfer Sites

B0048611.1601

09-NOV-16

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Received by OCD: 12/5/2022 11:47:56 AM

09-NOV-16

Project Manager: **Jonathan Olsen Arcadis - Houston** 2929 Briarpark Dr., Ste 300 Houston, TX 77042

Reference: XENCO Report No(s): **539912 HES Transfer Sites** Project Address: Buckeye NM

Jonathan Olsen:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 539912. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 539912 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kurs Ho

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Id

Composite Soil #4 (0'-4')
Composite Soil #5 (0'-4')
Composite Soil #6 (0'-4')
Composite Soil #7 (0'-4')
Composite Soil #8 (0'-4')
Composite Soil #9 (0'-4')
Composite Soil #10 (0'-4')
Composite Soil #11 (0'-4')
Composite Soil #12 (0'-4')
Composite Soil #13 (0'-4')

Sample Cross Reference 539912

Arcadis - Houston, Houston, TX

HES Transfer Sites

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	11-07-16 08:35	0 - 4 ft	539912-001
S	11-07-16 08:48	0 - 4 ft	539912-002
S	11-07-16 08:52	0 - 4 ft	539912-003
S	11-07-16 09:06	0 - 4 ft	539912-004
S	11-07-16 09:08	0 - 4 ft	539912-005
S	11-07-16 09:12	0 - 4 ft	539912-006
S	11-07-16 09:15	0 - 4 ft	539912-007
S	11-07-16 12:17	0 - 4 ft	539912-008
S	11-07-16 12:20	0 - 4 ft	539912-009
S	11-07-16 12:23	0 - 4 ft	539912-010

CASE NARRATIVE

Client Name: Arcadis - Houston Project Name: HES Transfer Sites

 Project ID:
 B0048611.1601

 Work Order Number(s):
 539912

Report Date: 09-NOV-16 Date Received: 11/08/2016

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Project Id:B0048611.1601Contact:Jonathan OlsenProject Location:Buckeye NM

Certificate of Analysis Summary 539912

Arcadis - Houston, Houston, TX Project Name: HES Transfer Sites

Date Received in Lab:Tue Nov-08-16 10:11 amReport Date:09-NOV-16Project Manager:Kelsey Brooks

	Lab Id:	539912-0	01	539912-0	02	539912-0	03	539912-0	04	539912-0)05	539912-0	06
Analysis Requested	Field Id:	Composite Soil #4 (0'-4')		Composite Soil	#5 (0'-4')	Composite Soil	#6 (0'-4')	Composite Soil	#7 (0'-4')	Composite Soil	#8 (0'-4')	Composite Soil #	#9 (0'-4')
Analysis Kequestea	Depth:	0-4 ft		0-4 ft		0-4 ft		0-4 ft		0-4 ft		0-4 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Nov-07-16 (08:35	Nov-07-16 (08:48	Nov-07-16 (08:52	Nov-07-16 (9:06	Nov-07-16	09:08	Nov-07-16 (09:12
Inorganic Anions by EPA 300/300.1	Extracted:	Nov-08-16	16:05	Nov-08-16 1	6:27	Nov-08-16 1	6:34	Nov-08-16 1	6:55	Nov-08-16	17:02	Nov-08-16 1	7:09
	Analyzed:	Nov-08-16	16:05	Nov-08-16 1	6:27	Nov-08-16 1	6:34	Nov-08-16 1	6:55	Nov-08-16	17:02	Nov-08-16 1	7:09
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		403	5.00	87.6	5.00	3450	25.0	4370	50.0	433	5.00	1140	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kunshoah

Kelsey Brooks Project Manager

Page 5 of 12

Project Id:B0048611.1601Contact:Jonathan OlsenProject Location:Buckeye NM

Certificate of Analysis Summary 539912

Arcadis - Houston, Houston, TX Project Name: HES Transfer Sites

Date Received in Lab:Tue Nov-08-16 10:11 amReport Date:09-NOV-16Project Manager:Kelsey Brooks

	Lab Id:	539912-0	07	539912-0	08	539912-0	09	539912-0	10		
Analysis Requested	Field Id:	Composite Soil #	10 (0'-4')	Composite Soil #	#11 (0'-4')	Composite Soil #	12 (0'-4')	Composite Soil #	#13 (0'-4')		
Analysis Kequestea	Depth:	0-4 ft		0-4 ft		0-4 ft		0-4 ft			
	Matrix:	SOIL		SOIL		SOIL		SOIL			
	Sampled:	Nov-07-16 (9:15	Nov-07-16	12:17	Nov-07-16 1	12:20	Nov-07-16	12:23		
Inorganic Anions by EPA 300/300.1	Extracted:	Nov-08-16	17:30	Nov-08-16 1	17:37	Nov-08-16 1	7:44	Nov-08-16	17:51		
	Analyzed:	Nov-08-16	17:30	Nov-08-16 1	17:37	Nov-08-16 1	7:44	Nov-08-16	17:51		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		24.3	5.00	4250	50.0	5000	50.0	1690	25.0		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kunshoah

Kelsey Brooks Project Manager

Page 6 of 12

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDL Sample Detection LimitLOD Limit of DetectionPQL Practical Quantitation LimitMQL Method Quantitation LimitLOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Dhone

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	FIIOIIC	Tax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

BS / BSD Recoveries

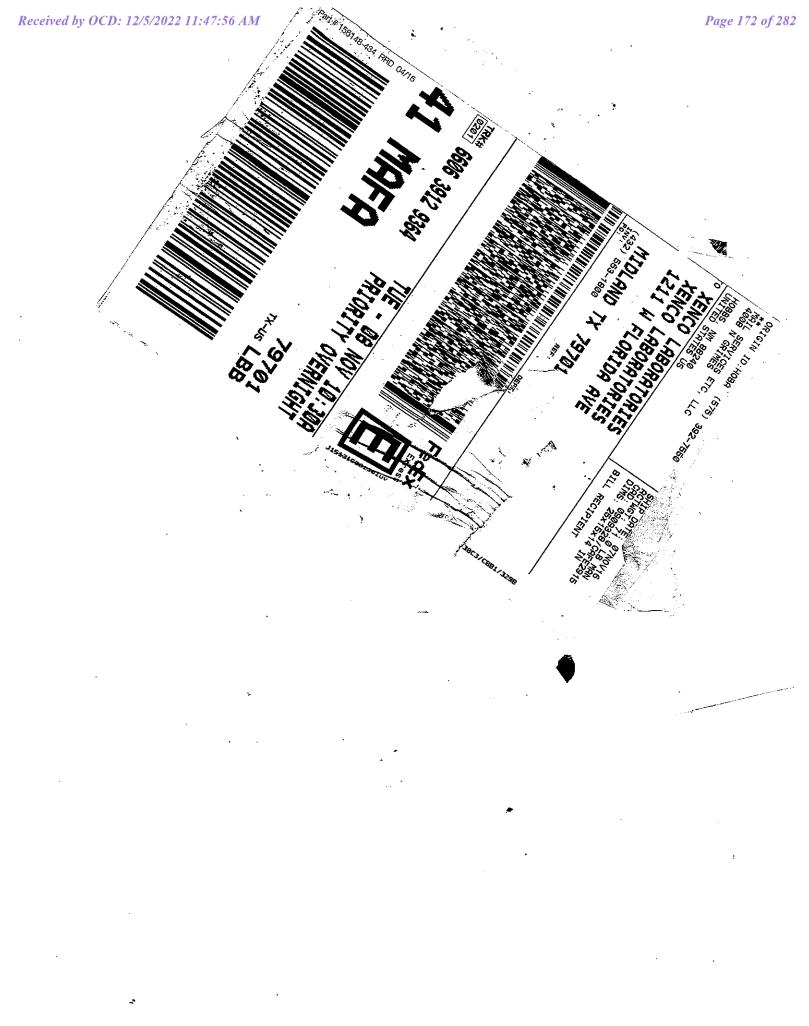
Project Name: HES Transfer Sites

Work Order #: 539912, 539912							Proj	ject ID:]	B0048611.	1601	
Analyst: MNR	D	ate Prepar	red: 11/08/201	.6			Date A	nalyzed: 1	11/08/2016		
Lab Batch ID: 3003523 Sample: 715859-1-B	KS	Bate	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K /BLANK S	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
Inorganic Anions by EPA 300/300.1	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Chloride	<5.00	250	237	95	250	246	98	4	90-110	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Project Name: HES Transfer Sites

Work Order # :	539912						Project II	D: B0048	611.1601			
Lab Batch ID:	3003523	QC- Sample ID:	539906	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	11/08/2016	Date Prepared:	11/08/2	016	An	alyst: N	MNR					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorgai	nic Anions by EPA 300/300.1	Parent Sample Result	Spike	Spiked Sample Result	Spiked Sample %R	Spike	Duplicate Spiked Sample	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	Added [B]	[C]	%K [D]	Added [E]	Result [F]	%K [G]	70	%K	%KPD	
Chloride		1300	250	1550	100	250	1560	104	1	90-110	20	
Lab Batch ID:	3003523	QC- Sample ID:	539912	-003 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	11/08/2016	Date Prepared:	11/08/2	016	An	alyst: N	MNR					
Reporting Units:	mg/kg		Ν	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorgai	nic Anions by EPA 300/300.1	Parent Sample Result	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	-	RPD	Control Limits	Control Limits	Flag
	Analytes	[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Chloride		3450	1250	4610	93	1250	4690	99	2	90-110	20	


Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Page 9 of 12

Stafford,Texas (281-240-4200)			
Dallas, Texas (214-902-0300)		Odessa, Texas (432-563-1800)	Lakeland, Florida (863-646-8526)
Service Center - San Antonio, Texas (210-509-3334)		Norcross, Georgia (770-449-8800)	Tampa, Florida (813-620-2000)
			29912
Client / Reporting Information	Prolect Information	Analytical Information	
Company Name / Branch:	1. woill		
4 P	- 1°		S = Soil/Sed/Solid
7642			GW =Ground Water DW = Drinking Water
1014thun, 015, n@accels.com			P = Product SW = Surface water
Project Contact:			SL = Sludge WW= Waste Water
Samplers's Name:		<u> </u>	W = Wipe
le d	Soliection States		WW= Waste Water
No. Field ID / Point of Collection			
	Sample Depth Date Time Matrix bottles HCI VaOHZ Accetate IACOH		
1 (empsit + Soit # 4(0'-4')	5 1 5		Field Comments
2 Composite to: 1#56-41	6-4' 11-2.16 8480 11-9		
3 Confosite Soil #610'-4')	6-4 11-7-16 0852 5 1		
_	0'-4' 11-218 0806 > 1		
1.22 21.12 June	806091-2-11	××	
0 10-10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	211991-2-11	XX	
1.(00,00	11-2-160715		
o Composite 201 # 11 (0-7)	11-7-11 11-11-1		
10 (an loc 4 5.1 412 ()	11-2-14 1-2-0		
Turneround Time (Business days)	Dita Deliverable Information		
Same Day TAT S Day TAT	Level II Std QC	Notes: Page	
Next Day EMERGENCY	Level III Std QC+ Forms TRRP Level IV	+ - 1 - 1 + - + - + - + - + - + - +	
2 Day EMERGENCY Contract TAT	Level 3 (CLP Forms) UST / RG -411		
3 Day EMERGENCY	TRRP Checklist		
TAT Starts Day received by Lab, if received by 3:00 pm	100 pm	FED-EX / UPS: Tracking #	
Relinquished by Sampler:	Date Time: Received By Received By Relinquished By:	ERY Date Time:	
Senfrquished by:		91-1	91-2-11 2mm
Heimquished by:	relinquished by: 0ate Time: Received By: 04 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Preserved where applicable On /ce	cr Temp: IR ID:R-8

CHAIN OF CUSTODY

Received by OCD: 12/5/2022 11:47:56 AM

Work Order #: 539912

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Arcadis - Houston Date/ Time Received: 11/08/2016 10:11:00 AM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Comments

Temperature Measuring device used : R8

Sample Receipt Checklist	
#1 *Temperature of cooler(s)?	3.3
#2 *Shipping container in good condition?	Yes
#3 *Samples received on ice?	Yes
#4 *Custody Seal present on shipping container/ cooler?	Yes
#5 *Custody Seals intact on shipping container/ cooler?	Yes
#6 Custody Seals intact on sample bottles?	No
#7 *Custody Seals Signed and dated?	No
#8 *Chain of Custody present?	Yes
#9 Sample instructions complete on Chain of Custody?	Yes
#10 Any missing/extra samples?	No
#11 Chain of Custody signed when relinquished/ received?	Yes
#12 Chain of Custody agrees with sample label(s)?	Yes
#13 Container label(s) legible and intact?	Yes
#14 Sample matrix/ properties agree with Chain of Custody?	Yes
#15 Samples in proper container/ bottle?	Yes
#16 Samples properly preserved?	Yes
#17 Sample container(s) intact?	Yes
#18 Sufficient sample amount for indicated test(s)?	Yes
#19 All samples received within hold time?	Yes
#20 Subcontract of sample(s)?	N/A
#21 VOC samples have zero headspace (less than 1/4 inch bubble)?	N/A
#22 <2 for all samples preserved with HNO3,HCL, H2SO4? Except for samples for the analysis of HEM or HEM-SGT which are verified by the analysts.	N/A
#23 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH?	N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Jessica Kramer

Date: 11/08/2016

Checklist reviewed by: Mmg Hoah Kelsey Brooks

Date: 11/08/2016

Analytical Report 540193

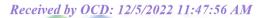
for Arcadis - Houston

Project Manager: Jonathan Olsen

HES Transfer

17-NOV-16

Collected By: Client



1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Table of Contents

Cover Page	1
Cover Letter	3
Sample ID Cross Reference	4
Case Narrative	5
Certificate of Analysis Summary	6
Explanation of Qualifiers (Flags)	7
LCS / LCSD Recoveries	8
MS / MSD Recoveries	9
Chain of Custody	10
Sample Receipt Conformance Report	11

17-NOV-16

Project Manager: **Jonathan Olsen Arcadis - Houston** 2929 Briarpark Dr., Ste 300 Houston, TX 77042

Reference: XENCO Report No(s): 540193 HES Transfer Project Address: Buckeye NM

Jonathan Olsen:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 540193. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 540193 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kuns Hon

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Page 3 of 11

Sample Cross Reference 540193

Arcadis - Houston, Houston, TX

HES Transfer

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	11-08-16 13:37		540193-001
S	11-08-16 13:45		540193-002
S	11-08-16 14:02		Not Analyzed

Page 177 of 282

Sample Id

VGWU118-19 (4') VGWU118-19 (7') VGWU118-19 (9')

Version: 1.%

CASE NARRATIVE

Client Name: Arcadis - Houston Project Name: HES Transfer

Project ID: Work Order Number(s): 540193 Report Date: *17-NOV-16* Date Received: *11/10/2016*

Sample receipt non conformances and comments:

Level II Reporting

Sample receipt non conformances and comments per sample:

None

Project Id:Contact:Jonathan OlsenProject Location:Buckeye NM

Certificate of Analysis Summary 540193

Arcadis - Houston, Houston, TX Project Name: HES Transfer

Date Received in Lab:Thu Nov-10-16 06:50 pmReport Date:17-NOV-16Project Manager:Kelsey Brooks

Analysis Requested	Lab Id:	540193-0	01	540193-0	02		
	Field Id:	VGWU118-1	19 (4')	VGWU118-	19 (7')		
	Depth:						
	Matrix:	SOIL		SOIL			
	Sampled:	Nov-08-16	13:37	Nov-08-16	13:45		
Inorganic Anions by EPA 300/300.1	Extracted:	<i>l:</i> Nov-16-16 12:59		Nov-16-16 12:59			
	Analyzed:	Nov-16-16 20:37		Nov-16-16 20:44			
	Units/RL:	mg/kg	RL	mg/kg	RL		
Chloride		11.2	5.00	69.9	5.00		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

Kuns Moah

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDL Sample Detection LimitLOD Limit of DetectionPQL Practical Quantitation LimitMQL Method Quantitation LimitLOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Dhone

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	FIIOIIC	Tax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

BS / BSD Recoveries

Project Name: HES Transfer

Work Order #: 540193							Proj	ject ID:			
Analyst: SLU	D	ate Prepa	red: 11/16/201	6			Date A	nalyzed: 1	11/17/2016		
Lab Batch ID: 3004056 Sample: 716177-1-B	KS	Batc	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K /BLANK S	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	ЭY	
Inorganic Anions by EPA 300/300.1	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Chloride	<5.00	250	265	106	250	259	104	2	90-110	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Version: 1.%

Form 3 - MS / MSD Recoveries

Project Name: HES Transfer

W	ork Order # :	540193						Project II):				
L	ab Batch ID:	3004056	QC- Sample ID:	540433	-001 S	Ba	tch #:	1 Matrix	k: Soil				
D	ate Analyzed:	11/16/2016	Date Prepared:	11/16/2	016	An	alyst: S	SLU					
R	eporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
	Inorganic Anions by EPA 300/300.1		Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample		RPD	Control Limits	Control Limits	Flag
	Analytes		Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
	Chloride		3840	2500	6490	106	2500	6310	99	3	90-110	20	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Page 9 of 11

Lab reme: C	* 5	July 1	A.K.W	1 ~ 1			Sample ID	11044		nerkowd	Conset & Company Name (Serverther of Olenna Hickord's	ARCADIS ID#:
Laboratory Information and Receards Cooler Custody Seal (*) I Infact Temp: IR ID:R-8 I (*			/		11-2-16 1337 V 50 11-2-16 1345 V 50	ື ຂ	Collection Type (1)		nn (713)977-4620	1000000 (713)953-4874	CHAIN O
Keindhaanee ah Afrika ha Afrika	Lowal 11 Reporting *							and the second sec	PARAMETER ANALYSIS &	1 1	Preservation XE	& LABORATO
HAGNA BURNELLAND UN Printed Harres	magnetic second s				Hold X-		REMARKS	Y: SE-Soda A-Ar	S METHOD F. other C. 2 ac Gass		∘÷ç¥	RY Page of Lab Work Order #

Page 10 of 11

Final 1.000

Received by OCD: 12/5/2022 11:47:56 AM

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Comments

Client: Arcadis - Houston Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 11/10/2016 06:50:00 PM Temperature Measuring device used : R8 Work Order #: 540193 Sample Receipt Checklist

1.3 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? N/A #3 *Samples received on ice? Yes #4 *Custody Seal present on shipping container/ cooler? N/A #5 *Custody Seals intact on shipping container/ cooler? N/A N/A #6 Custody Seals intact on sample bottles? #7 *Custody Seals Signed and dated? N/A #8 *Chain of Custody present? Yes #9 Sample instructions complete on Chain of Custody? Yes #10 Any missing/extra samples? No #11 Chain of Custody signed when relinguished/ received? Yes #12 Chain of Custody agrees with sample label(s)? Yes #13 Container label(s) legible and intact? Yes #14 Sample matrix/ properties agree with Chain of Custody? Yes #15 Samples in proper container/ bottle? Yes #16 Samples properly preserved? Yes #17 Sample container(s) intact? Yes #18 Sufficient sample amount for indicated test(s)? Yes #19 All samples received within hold time? Yes #20 Subcontract of sample(s)? N/A #21 VOC samples have zero headspace (less than 1/4 inch bubble)? N/A #22 <2 for all samples preserved with HNO3,HCL, H2SO4? Except for N/A samples for the analysis of HEM or HEM-SGT which are verified by the analysts. #23 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Jessica Veamer Jessica Kramer Checklist reviewed by: Mung Moak Kelsey Brooks

Date: 11/11/2016

Date: 11/11/2016

Analytical Report 540846

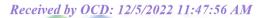
for Arcadis - Houston

Project Manager: Jonathan Olsen

Midland Odessa Discounted Fee Schedule

02-DEC-16

Collected By: Client



1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Table of Contents

Cover Page	1
Cover Letter	3
Sample ID Cross Reference	4
Case Narrative	5
Certificate of Analysis Summary	6
Explanation of Qualifiers (Flags)	7
LCS / LCSD Recoveries	8
MS / MSD Recoveries	9
Chain of Custody	10
Sample Receipt Conformance Report	11

02-DEC-16

Project Manager: **Jonathan Olsen Arcadis - Houston** 2929 Briarpark Dr., Ste 300 Houston, TX 77042

Reference: XENCO Report No(s): 540846 Midland Odessa Discounted Fee Schedule Project Address: Buckeye NM

Jonathan Olsen:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 540846. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 540846 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kursho

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Page 3 of 11

Sample Id

VGWU-118 #1 VGWU-118 #2 VGWU-118 #3

Sample Cross Reference 540846

Arcadis - Houston, Houston, TX

Midland Odessa Discounted Fee Schedule

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	11-21-16 14:26		540846-001
S	11-21-16 15:00		540846-002
S	11-21-16 15:10		540846-003

CASE NARRATIVE

Client Name: Arcadis - Houston Project Name: Midland Odessa Discounted Fee Schedule

Project ID: Work Order Number(s): 540846
 Report Date:
 02-DEC-16

 Date Received:
 11/22/2016

Sample receipt non conformances and comments:

Level II Reporting

Sample receipt non conformances and comments per sample:

None

Project Id:Contact:Jonathan OlsenProject Location:Buckeye NM

Certificate of Analysis Summary 540846

Arcadis - Houston, Houston, TX

Project Name: Midland Odessa Discounted Fee Schedule

 Date Received in Lab:
 Tue Nov-22-16 03:53 pm

 Report Date:
 02-DEC-16

 Project Manager:
 Kelsey Brooks

Page 190 of 282

	Lab Id:	540846-0	01	540846-0	02	540846-0	03			
Analysis Requested	Field Id:	VGWU-11	8 #1	VGWU-11	8 #2	VGWU-118	3 #3			
Analysis Kequestea	Depth:									
	Matrix:	SOIL		SOIL		SOIL				
	Sampled:	Nov-21-16	14:26	Nov-21-16	15:00	Nov-21-16 1	5:10			
Inorganic Anions by EPA 300/300.1	Extracted:	Nov-30-16 09:04		Nov-30-16	09:04	Nov-30-160	9:04			
	Analyzed:	Nov-30-16	14:25	Nov-30-16	14:32	Nov-30-16 1	4:39			
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL			
Chloride		220	5.00	2370	25.0	1400	5.00			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kunshoah

Kelsey Brooks Project Manager

•

Released to Imaging: 12/5/2022 11:49:05 AM

Page 6 of 11

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDL Sample Detection LimitLOD Limit of DetectionPQL Practical Quantitation LimitMQL Method Quantitation LimitLOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

rioie ra	ix.
4147 Greenbriar Dr, Stafford, TX 77477 (281) 240-4200 (281) 24	0-4280
9701 Harry Hines Blvd , Dallas, TX 75220 (214) 902 0300 (214) 35	1-9139
5332 Blackberry Drive, San Antonio TX 78238 (210) 509-3334 (210) 50)9-3335
1211 W Florida Ave, Midland, TX 79701 (432) 563-1800 (432) 56	53-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282 (602) 437-0330	

BS / BSD Recoveries

Project Name: Midland Odessa Discounted Fee Schedule

Work Order #: 540846							Pro	ect ID:			
Analyst: MNR	D	ate Prepa	red: 11/30/201	6			Date A	nalyzed:	1/30/2016		
Lab Batch ID: 3004723 Sample: 716623-1-E	KS	Batc	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K /BLANK S	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUE	ΟY	
Inorganic Anions by EPA 300/300.1	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Chloride	<5.00	250	241	96	250	238	95	1	90-110	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Work Order # :	540846						Project II):				
Lab Batch ID:	3004723	QC- Sample ID:	540677	-034 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	11/30/2016	Date Prepared:	11/30/2	016	An	alyst: N	MNR					
Reporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorgan	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[0]	[D]	[E]	Kesun [F]	[G]	70		/orr D	
Chloride		10.9	273	285	100	273	292	103	2	90-110	20	
Lab Batch ID:	3004723	QC- Sample ID:	541018	-001 S	Ba	tch #:	1 Matrix	k: Sludge				
Date Analyzed:	11/30/2016	Date Prepared:	11/30/2	016	An	alyst: N	MNR					
Reporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorgai	nic Anions by EPA 300/300.1	Parent Sample Result	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
	Analytes	[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Chloride		1130	250	1360	92	250	1380	100	1	90-110	20	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Page 9 of 11

Received by OCD: 12/5/2022 11:47:56 AM

Relinquished by: Relinquished by: Date Time: State Stat	Date Time:	Relinquished by Sampler:	TAT Starts Day received by Lab, if received by 3:00 pm sample custoov must be poclam	3 Day EMERGENCY	2 Day EMERGENCY	Next Day EMERGENCY	Same Day TAT S Day TAT	Turnaround Time (Business days)	~				11/211 × 11/3 + 3 / 11/2114	1/2/14 - 118 #2 / 11/2/14	sight / 2# Str- mask	Field JD / Polint of Collection Sample Depth Da	Collection	198~	read: sicon	12 300	NS S	ormation		Stafford,Texas (281-240-4200) Dallas, Texas (214-902-0300) Service Center - San Antonio, Texas (210-509-3334)	Setting the Standard succe 1990
3 Received By 5 5	scelved By:	PH Miles	DOCUMENTED BELOW EACH THE SAMPLES OFFANGE POSSE	TRAP Checklist	Level 3 (CLP Forms)	Level III Std QC+ Forms	Level II Std QC	Data Deliverable Information			AC		14 1510 5 1	114,500 5 1	1925	Time Maths bottles E		PO Number:		Project Location Just Just ye	Project Name/Number:	Project Information	-Cheen lood Trace lood	WWW.Sence con-	
a Gustody Seal # Preserved where applicable and and anglins XENCO's standard turns and conditioned to the second s	Relinquished By: Date Time:	Date Time; //-22-/	PED		UST/HG-411	TRRP Level IV	Level IV (Full Data Pkg /raw data)					V	< -	~ 1	1	H2SC4 NaDH NaHBO4 MECH NONE	Number of preserved bottles						Ansiviral Information	Odessa, Texas (432-563-1800) Norcross, Georgia (770-449-8800) Xenco Guote # Xe	
Preserved where applicable On ice CF:+ 0.1 / 6 Corrected Temp: /.70 Corrected Temp: /.70	eceived By: Temp:	SST Received By:	FED-EX / UPS: Tracking #					Notes:								Field Comments		O = Oil WW= Wast			~		0100	3-1800) Lakeland, Florida (863-646-6526) -449-8800) Tampa, Florida (813-620-2000) [Xenco Job # 5, CH () G, CH ()	

Final 1.000

Received by OCD: 12/5/2022 11:47:56 AM

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Arcadis - Houston Date/ Time Received: 11/22/2016 03:53:00 PM Work Order #: 540846

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Comments

Temperature Measuring device used : R8

Sample Receipt Checklist	
#1 *Temperature of cooler(s)?	1.7
#2 *Shipping container in good condition?	N/A
#3 *Samples received on ice?	Yes
#4 *Custody Seal present on shipping container/ cooler?	N/A
#5 *Custody Seals intact on shipping container/ cooler?	N/A
#6 Custody Seals intact on sample bottles?	N/A
#7 *Custody Seals Signed and dated?	N/A
#8 *Chain of Custody present?	Yes
#9 Sample instructions complete on Chain of Custody?	Yes
#10 Any missing/extra samples?	No
#11 Chain of Custody signed when relinquished/ received?	Yes
#12 Chain of Custody agrees with sample label(s)?	Yes
#13 Container label(s) legible and intact?	Yes
#14 Sample matrix/ properties agree with Chain of Custody?	Yes
#15 Samples in proper container/ bottle?	Yes
#16 Samples properly preserved?	Yes
#17 Sample container(s) intact?	Yes
#18 Sufficient sample amount for indicated test(s)?	Yes
#19 All samples received within hold time?	Yes
#20 Subcontract of sample(s)?	N/A
#21 VOC samples have zero headspace (less than 1/4 inch bubble)?	N/A
#22 <2 for all samples preserved with HNO3,HCL, H2SO4? Except for samples for the analysis of HEM or HEM-SGT which are verified by the analysts.	N/A
#23 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH?	N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Jessica Kramer

Date: 11/23/2016

Checklist reviewed by: Mmg Hoah Kelsey Brooks

Date: 11/23/2016

Certificate of Analysis Summary 570197 ARCADIS, Midland, TX

Project Name: HES

Project Id:Contact:Brett KrehbielProject Location:Buckeye NM

Date Received in Lab:Mon Dec-04-17 04:00 pmReport Date:05-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	570197-0	01	570197-0	08	570197-0	09	570197-0	10		
Analysis Requested	Field Id:	VGWu-118-	-020	VGWu-118	-027	VGWu-118	-028	VGWu-118	-029		
Analysis Kequestea	Depth:										
	Matrix:	SOIL		SOIL		SOIL		SOIL			
	Sampled:	Dec-04-17 0	9:07	Dec-04-17 1	1:51	Dec-04-17 1	1:58	Dec-04-17	13:09		
Chloride by EPA 300	Extracted:	Dec-05-17 1	Dec-05-17 16:00		6:00	Dec-05-17 1	6:00	Dec-05-17 1	6:00		
	Analyzed:	Dec-05-17 1	Dec-05-17 16:19		6:25	Dec-05-17 1	6:31	Dec-05-17 1	6:36		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		38.5	4.96	9.15	4.96	18.1	4.97	615	4.96		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mike Kimmel Client Services Manager

Page 1 of 13

Analytical Report 570197

for ARCADIS

Project Manager: Brett Krehbiel

HES

05-DEC-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-17-23), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-17-15), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-17-13) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

05-DEC-17

Project Manager: **Brett Krehbiel ARCADIS** 1004 N. Big Spring St. Midland, TX 79701

Reference: XENCO Report No(s): **570197 HES** Project Address: Buckeye NM

Brett Krehbiel:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 570197. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 570197 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Mike Kimmel Client Services Manager

> Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Page 3 of 13

Sample Cross Reference 570197

ARCADIS, Midland, TX

HES

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
VGWu-118-020	S	12-04-17 09:07		570197-001
VGWu-118-027	S	12-04-17 11:51		570197-008
VGWu-118-028	S	12-04-17 11:58		570197-009
VGWu-118-029	S	12-04-17 13:09		570197-010
VGWu-118-021	S	12-04-17 09:13		Not Analyzed
VGWu-118-022	S	12-04-17 10:02		Not Analyzed
VGWu-118-023	S	12-04-17 10:12		Not Analyzed
VGWu-118-024	S	12-04-17 10:34		Not Analyzed
VGWu-118-025	S	12-04-17 11:12		Not Analyzed
VGWu-118-026	S	12-04-17 11:35		Not Analyzed

.

CASE NARRATIVE

Client Name: ARCADIS Project Name: HES

Project ID: Work Order Number(s): 570197 Report Date: 05-DEC-17 Date Received: 12/04/2017

Sample receipt non conformances and comments:

12/05/17: Per Brett only run samples 020,027,028,and 029.

Sample receipt non conformances and comments per sample:

None

1

ARCADIS, Midland, TX

HES

Sample Id: Lab Sample Id	VGWu-118-020 l: 570197-001		Matrix: Date Collect	Soil ed: 12.04.17 09.07		Date Received	1:12.04.1	7 16.00	
Analytical Me	thod: Chloride by EPA	300				Prep Method:	E300P		
Tech:	MNV					% Moisture:			
Analyst:	MNV		Date Prep:	12.05.17 16.00		Basis:	Wet W	eight	
Seq Number:	3035034								
Parameter		Cas Number	Result	RL	Units	Analysis D	ate F	lag	Dil

Chloride

16887-00-6 **38.5**

4.96

mg/kg

12.05.17 16.19

1

ARCADIS, Midland, TX

HES

Sample Id: Lab Sample Id	VGWu-118-027 d: 570197-008		Matrix: Date Collect	Soil ed: 12.04.17 11.51		Date Received	:12.04.17 16.0	00
Analytical Me Tech:	ethod: Chloride by EPA 3	300				Prep Method: % Moisture:	E300P	
Analyst: Seq Number:	MNV		Date Prep:	12.05.17 16.00		Basis:	Wet Weight	
Parameter	2022021	Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil

16887-00-6 **9.15**

4.96

mg/kg

12.05.17 16.25

ARCADIS, Midland, TX

HES

Sample Id: VGWu-118-028 Lab Sample Id: 570197-009		Matrix: Date Collecte	Soil ed: 12.04.17 11.58		Date Received	:12.04.17 16.00)
Analytical Method: Chloride by EPA	300				Prep Method:	E300P	
Tech: MNV Analyst: MNV		Date Prep:	12.05.17 16.00		% Moisture: Basis:	Wet Weight	
Seq Number: 3035034							
Parameter	Cas Number	Result I	RL	Units	Analysis Da	ite Flag	Dil

Chloride

16887-00-6 **18.1**

4.97

1

12.05.17 16.31

mg/kg

1

.

ARCADIS, Midland, TX

HES

Sample Id: VGWu-118-029 Lab Sample Id: 570197-010		Matrix: Date Collecte	Soil ed: 12.04.17 13.09	1	Date Received:1	2.04.17 16.00)
Analytical Method: Chloride by EPA Tech: MNV	. 300				Prep Method: E % Moisture:	2300P	
Analyst: MNV		Date Prep:	12.05.17 16.00	1	Basis: V	Vet Weight	
Seq Number: 3035034							
Parameter	Cas Number	Result F	RL	Units	Analysis Date	Flag	Dil

Chloride

16887-00-6 615

4.96

mg/kg

12.05.17 16.36

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDL Sample Detection LimitLOD Limit of DetectionPQL Practical Quantitation LimitMQL Method Quantitation LimitLOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

QC Summary 570197

ARCADIS

HES

Analytical Method:	Chloride by EPA 3	00						Pr	ep Metho	d: E30	0P	
Seq Number:	3035034			Matrix:	Solid				Date Pre	ep: 12.0	5.17	
MB Sample Id:	7635433-1-BLK		LCS Sar	nple Id:	7635433-	1-BKS		LCSI	D Sample	Id: 763	5433-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	< 5.00	250	254	102	249	100	90-110	2	20	mg/kg	12.05.17 14:02	

Analytical Method:	Chloride by EPA 30)0	Prep Method: E300P					0P				
Seq Number:	3035034			Matrix:	Soil				Date Pre	ep: 12.0	5.17	
Parent Sample Id:	569375-044		MS Sar	nple Id:	569375-04	14 S		MS	D Sample	Id: 5693	375-044 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	623	247	847	91	852	93	90-110	1	20	mg/kg	12.05.17 14:20	

Analytical Method:	Chloride by EPA 30	0						Pr	ep Metho	od: E300	OP	
Seq Number:	3035034			Matrix:	Soil				Date Pre	ep: 12.0	5.17	
Parent Sample Id:	569375-046		MS San	nple Id:	569375-04	46 S		MSI	O Sample	Id: 5693	375-046 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	967	246	1140	70	1130	66	90-110	1	20	mg/kg	12.05.17 15:43	Х

.

Received by OCD: 12/5/2022 11:47:56 AM

Content & Contenty Nam	Taliphones	ANALYSIS REQUEST F	ORM	Page of
Bruk Kedble	1ce	Filered(+)		Preservation A 11 SO
REEL JOOYJ. BISSPILLS	492-613-540/	R of Containers		B HCL C HNO D NAOH
othe XL CIPIIN See	Druth Kut biels arec	1 4	ER ANALYSIS & METHOD	
HES Buching "	Projec 2	_	1 1 1	H Diner
Okry S. Low Swell	OP Control of the		1 1 1	Matrix Key:
Sample ID	lisction	Matrix / W/	111	W- Water T- Tissue
	Time Comp G	111	1111	REMARKS
NEADU-118-070	X 6060 61/1/1	SV		
V604-11-021	X 230 UIAN	SJ		
1600-118-022	C	SV		
1400-111-023	X DIOT UNA	SJ		
A20-81-1109A		2 2		
NG101-118-025	Inc	S		
1600- M -026	1135	S V		
New 118-027	-1151	SV		
160H-117-0H		SC		
1600 - 115- 029	12/1 208 ×	SV		
		Jar V		Tem: 12.3
Special Instructions/Comments:			☐ Special DA/DC (instructions(<'):	Corrected Temp:
Laboratory Information and Receipt	ration and Receipt	Relinguistnet B.	Restational Do	
Last Name	Cooler Custody Seal (vr)	ruch	Printed Name	Printed Name
Cooler packed with ice (v)	Intact Intact	61	Summer Aller Har	intention of the Hunter
Speerly Tuto escent Realingers	Sample Recalpt.	SICHTUR	enices	Fundation Fred Total
of Buschell Management	Condition/Cooler Temp:	CSI HIPPE		5

Released to Imaging: 12/5/2022 11:49:05 AM-

Page 12 of 13

Final 1.000

Page 207 of 282

Received by OCD: 12/5/2022 11:47:56 AM

IE B

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: ARCADIS	Acceptable Temperature Range: 0 - 6 degC
Date/ Time Received: 12/04/2017 04:00:00 PM	Air and Metal samples Acceptable Range: Ambient
Work Order #: 570197	Temperature Measuring device used : R8
Sample Rec	eipt Checklist Comments
#1 *Temperature of cooler(s)?	1.4
#2 *Shipping container in good condition?	Yes
#3 *Samples received on ice?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	Νο
#5 Custody Seals intact on sample bottles?	N/A
#6*Custody Seals Signed and dated?	N/A
#7 *Chain of Custody present?	Yes
#8 Any missing/extra samples?	Νο
#9 Chain of Custody signed when relinquished/ received?	Yes
#10 Chain of Custody agrees with sample labels/matrix?	Yes
#11 Container label(s) legible and intact?	Yes
#12 Samples in proper container/ bottle?	Yes
#13 Samples properly preserved?	Yes
#14 Sample container(s) intact?	Yes
#15 Sufficient sample amount for indicated test(s)?	Yes
#16 All samples received within hold time?	Yes
#17 Subcontract of sample(s)?	Νο
#18 Water VOC samples have zero headspace?	N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Shawnee Smith

Date: 12/05/2017

Checklist reviewed by:

200.01 Mike Kimmel

Date: 12/05/2017

Project Id:VGWUContact:Brett KrehbielProject Location:Buckeye NM

Certificate of Analysis Summary 570432

ARCADIS, Midland, TX Project Name: HES Transfer

Date Received in Lab:Thu Dec-07-17 11:15 amReport Date:07-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	570432-001			
Analysis Requested	Field Id:	VGWU-118-030			
Anulysis Kequesieu	Depth:				
	Matrix:	SOIL			
	Sampled:	Dec-06-17 13:05			
Chloride by EPA 300	Extracted:	Dec-07-17 12:30			
	Analyzed:	Dec-07-17 15:18			
	Units/RL:	mg/kg RL			
Chloride		10.5 4.93			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mike Kimmel Client Services Manager

Page 1 of 11

Analytical Report 570432

for ARCADIS

Project Manager: Brett Krehbiel

HES Transfer

VGWU

07-DEC-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-17-23), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-17-15), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-17-13) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Received by OCD: 12/5/2022 11:47:56 AM

07-DEC-17

Project Manager: **Brett Krehbiel ARCADIS** 1004 N. Big Spring St. Midland, TX 79701

Reference: XENCO Report No(s): **570432 HES Transfer** Project Address: Buckeye NM

Brett Krehbiel:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 570432. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 570432 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

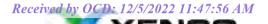
Respectfully,

Mike Kimmel Client Services Manager

> Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Page 3 of 11


Sample Cross Reference 570432

ARCADIS, Midland, TX

HES Transfer

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
VGWU-118-030	S	12-06-17 13:05		570432-001

CASE NARRATIVE

Client Name: ARCADIS Project Name: HES Transfer

Project ID: VGWU Work Order Number(s): 570432
 Report Date:
 07-DEC-17

 Date Received:
 12/07/2017

Sample receipt non conformances and comments:

12/05/17: Per Brett only run samples 020,027,028,and 029.

Sample receipt non conformances and comments per sample:

None

ARCADIS, Midland, TX

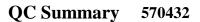
HES Transfer

Chloride		16887-00-6	10.5	4.93	mg/kg	12.07.17 15.18		1
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Seq Number:	3035238							
Analyst:	MNV		Date Prep:	12.07.17 12.30]	Basis: We	t Weight	
Tech:	MNV				Ģ	% Moisture:		
Analytical Mo	ethod: Chloride by EPA	A 300			I	Prep Method: E30)0P	
Lab Sample I	d: 570432-001		Date Colle	cted: 12.06.17 13.05				
Sample Id:	VGWU-118-030		Matrix:	Soil	1	Date Received:12.	07.17 11.1	5

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDL Sample Detection LimitLOD Limit of DetectionPQL Practical Quantitation LimitMQL Method Quantitation LimitLOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.


Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

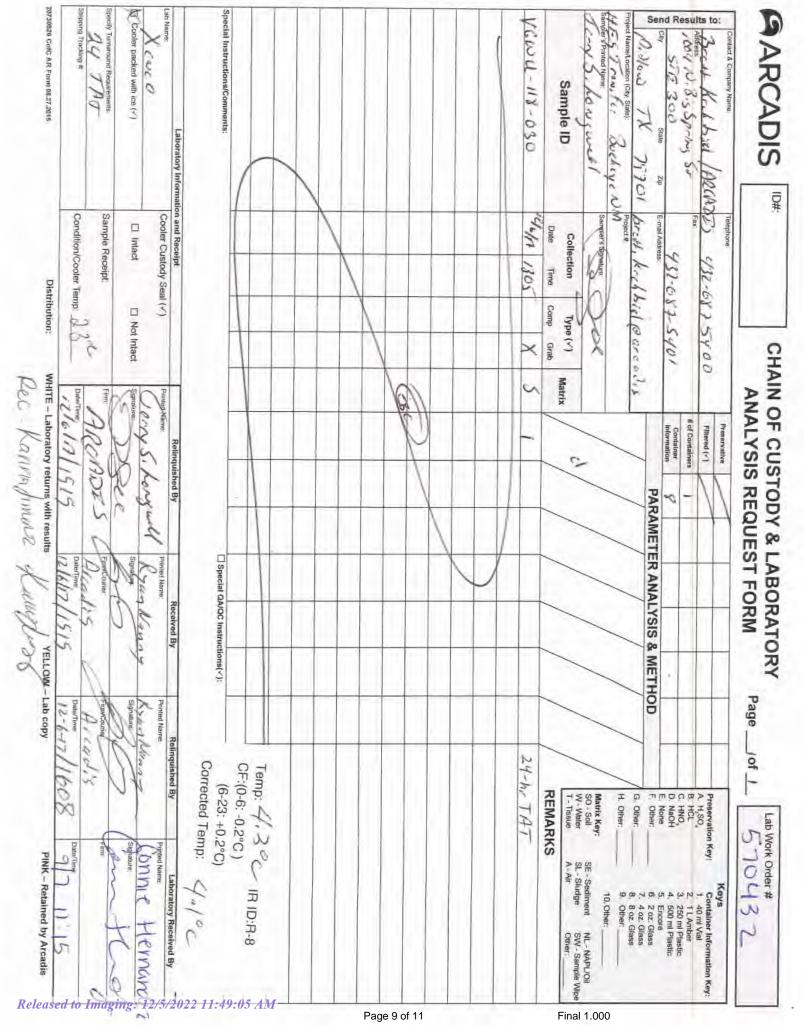
Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

ARCADIS

HES Transfer

Analytical Method:	Chloride by EPA 3	00						Pre	ep Metho	d: E30	0P	
Seq Number:	3035238 Matrix:				Solid Date Prep: 12.07.17					7.17		
MB Sample Id:	7635585-1-BLK LCS Samp				7635585-	LCSD Sample Id: 7635585-1-BSE			5585-1-BSD			
Parameter	MB	Spike	LCS	LCC		T GGD	T ::4-			TT		
1 al ameter	Result	Amount	Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%KPD 1	RPD Limi	Units	Analysis Date	Flag


Analytical Method:	Chloride by EPA 30	00						Pr	ep Metho	d: E30	OP		
Seq Number:	3035238			Matrix:	Soil				Date Pre	ep: 12.0	7.17		
Parent Sample Id:	566199-021 MS Sample Id:				566199-02	566199-021 S MSD Sample Id:				Id: 5661	: 566199-021 SD		
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limi	t Units	Analysis Date	Flag	
Chloride	53.4	248	307	102	303	101	90-110	1	20	mg/kg	12.07.17 14:07		

Analytical Method:	Chloride by EPA 3	00						P	rep Meth	od: E30	0P	
Seq Number:	3035238			Matrix:	Soil				Date Pr	ep: 12.0	7.17	
Parent Sample Id:	569852-001		MS Sar	nple Id:	569852-00	01 S		MS	D Sample	e Id: 5698	352-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	484	250	730	98	722	95	90-110	1	20	mg/kg	12.07.17 12:44	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 8 of 11

Page 217 of 282

Contact & Company Marne:		ANALYSIS REQUEST FORM		Pagelof	570432
Dentad & Company Name.	Telephone: 20) 432-6875400	Preservative Filterod (-)		Preservat A. H.SO	ion Keys Container Information Key: 1. 40 ml Vial
Result 10011 10. Bis Spring Sa	1045+50-154	# of Containers Container Information		D. NAOH	
Mylew TX	79701 breff, Keelbid Bareelis		ER ANALYSIS & METHOD		ga 74 68 ¢
ion (City, State):	Project #.		1 1 1	H. Other:	9. Other
025	Samplars Signaure		1 1 1	Matrix Key: SO - Solt	SE-Se
Sample ID	llection Type (*)	Matrix / C/ /	1 1 1	T-Tasue	A-Air
100001-118-040	alla mart X			1 1 1 1 T 1	
100-01	1001			~1711 1111	1
		G			
/					
				CF:(0-6: -0.2°C)	1.3 °C IR ID:R-8
Special Instructions/Comments:			☐ Special QA/QC Instructions(√);	(6-23: +0.2°C) Corrected Temp:	
Laboratory Information and Receipt	tion and Receipt	Relinquished By	Received By	Relinquished By	Laboratory Received By
X CNC O	Cooler Custody Seal (*)	Con S. Largueld	Printed Name	Printed Name	Conne Hernance
Cooler packed with ice (*)	Intact INtact Intact	6 3 1	Signafus,	Signature	
Specify Turnaround Requirements	Sample Receipt:	Em ARCHORS C	Providenter Alcalts	Arcyd's	
and the second s	Condition/Cooler Temp: 22	12/6/10/1515	12/K/17/1515	12-6-17/1608	Date/Time:
20730825 CofC AR Form 08.27.2015	Distribution: V	MHITE - Laboratory returns with results	from the	YELLOW - Lab copy	- Retaine
		Lec - Kanna Junior	20 Man Va		Ro

Page 218 of 282

age

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: ARCADIS	Acceptable Temperature Range: 0 - 6 degC		
Date/ Time Received: 12/07/2017 11:15:00 AM	Air and Metal samples Acceptable I	Range: Ambient	
Work Order #: 570432	Temperature Measuring device use	d: R8	
Sample Rece	pt Checklist Comm	ents	
#1 *Temperature of cooler(s)?	4.1		
#2 *Shipping container in good condition?	Yes		
#3 *Samples received on ice?	Yes		
#4 *Custody Seals intact on shipping container/ cooler?	No		
#5 Custody Seals intact on sample bottles?	N/A		
#6*Custody Seals Signed and dated?	N/A		
#7 *Chain of Custody present?	Yes		
#8 Any missing/extra samples?	No		
#9 Chain of Custody signed when relinquished/ received?	Yes		
#10 Chain of Custody agrees with sample labels/matrix?	Yes		
#11 Container label(s) legible and intact?	Yes		
#12 Samples in proper container/ bottle?	Yes		
#13 Samples properly preserved?	Yes		
#14 Sample container(s) intact?	Yes		
#15 Sufficient sample amount for indicated test(s)?	Yes		
#16 All samples received within hold time?	Yes		
#17 Subcontract of sample(s)?	No		
#18 Water VOC samples have zero headspace?	N/A		

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Date: 12/07/2017

Checklist reviewed by:

Mike Kimmel

Date: 12/07/2017

Project Id: Contact: Brett Krehbiel Project Location:

Certificate of Analysis Summary 564892

Arcadis - Houston, Houston, TX Project Name: HES Transfer VGWU-118

Date Received in Lab:Fri Oct-06-17 10:30 amReport Date:09-OCT-17Project Manager:Kelsey Brooks

	Lab Id:	564892-0	01	564892-0	02	564892-0	03	564892-0	04	564892-0	05	564892-0	06
Analysis Requested	Field Id:	VGWU-118	3-001	VGWU-118	-002	VGWU-118	8-003	VGWU-118	-004	VGWU-118	-005	VGWU-118	-006
Analysis Kequestea	Depth:	2- In		2- In		2- In		2- In		2- In		2- In	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-05-17 (07:41	Oct-05-17 0	7:42	Oct-05-17 0	07:44	Oct-05-17 0	7:45	Oct-05-17 0	7:46	Oct-05-17 0	7:47
Inorganic Anions by EPA 300/300.1	Extracted:	Oct-06-17 1	17:00	Oct-06-17 1	7:00	Oct-06-17 1	7:00	Oct-06-17 1	7:00	Oct-06-17 1	7:00	Oct-06-17 1	7:00
	Analyzed:	Oct-06-17 2	22:55	Oct-06-17 2	3:18	Oct-06-17 2	3:25	Oct-06-17 2	3:33	Oct-06-17 2	3:41	Oct-07-17 0	0:04
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		8.11	4.96	544	4.99	2760	24.7	41.3	4.94	67.9	4.92	15.0	4.94

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kunshoah

Kelsey Brooks Project Manager

Page 1 of 15

Analytical Report 564892

for Arcadis - Houston

Project Manager: Brett Krehbiel

HES Transfer VGWU-118

09-OCT-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

09-OCT-17

Project Manager: **Brett Krehbiel Arcadis - Houston** 10205 Westheimer Rd., Suite 800 Houston, TX 77042

Reference: XENCO Report No(s): 564892 HES Transfer VGWU-118 Project Address:

Brett Krehbiel:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 564892. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 564892 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kuns Hon

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Page 3 of 15

Sample Id

VGWU-118-001
VGWU-118-002
VGWU-118-003
VGWU-118-004
VGWU-118-005
VGWU-118-006

Sample Cross Reference 564892

Arcadis - Houston, Houston, TX

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	10-05-17 07:41	2 In	564892-001
S	10-05-17 07:42	2 In	564892-002
S	10-05-17 07:44	2 In	564892-003
S	10-05-17 07:45	2 In	564892-004
S	10-05-17 07:46	2 In	564892-005
S	10-05-17 07:47	2 In	564892-006

CASE NARRATIVE

Client Name: Arcadis - Houston Project Name: HES Transfer VGWU-118

Project ID: Work Order Number(s): 564892
 Report Date:
 09-OCT-17

 Date Received:
 10/06/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Arcadis - Houston, Houston, TX

Sample Id: Lab Sample Id	VGWU-118-001 d: 564892-001		Matrix: Date Collec	Soil cted: 10.05.17 07.41		Date Received: Sample Depth: 2)
•	ethod: Inorganic Anions	s by EPA 300/300.1				Prep Method: 1	E300P	
Tech: Analyst:	MNV MNV		Date Prep:	10.06.17 17.00		% Moisture: Basis:	Wet Weight	
Seq Number:	3029837							
Parameter		Cas Number	Result	RL	Units	Analysis Dat	e Flag	Dil
Chloride		16887-00-6	8.11	4.96	mg/kg	10.06.17 22.5	5	1

Arcadis - Houston, Houston, TX

Sample Id: Lab Sample I	VGWU-118-002 d: 564892-002		Matrix: Date Collec	Soil cted: 10.05.17 07.42		Date Received: Sample Depth:		0
Analytical Mo	ethod: Inorganic Anions	by EPA 300/300.1				Prep Method:	E300P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	10.06.17 17.00		Basis:	Wet Weight	
Seq Number:	3029837							
Parameter		Cas Number	Result	RL	Units	Analysis Dat	te Flag	Dil
Chloride		16887-00-6	544	4.99	mg/kg	10.06.17 23.1	8	1

Arcadis - Houston, Houston, TX

Sample Id: Lab Sample Id	VGWU-118-003 d: 564892-003		Matrix: Date Collec	Soil cted: 10.05.17 07.44	-	Date Received:10 Sample Depth: 2)
Analytical Me Tech:	ethod: Inorganic Anions MNV	by EPA 300/300.1				Prep Method: E3 % Moisture:	300P	
Analyst: Seq Number:	MNV		Date Prep:	10.06.17 17.00			et Weight	
Parameter	5027057	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	2760	24.7	mg/kg	10.06.17 23.25		5

Arcadis - Houston, Houston, TX

Sample Id: Lab Sample Id	VGWU-118-004 d: 564892-004		Matrix: Date Colle	Soil cted: 10.05.17 07.45		Date Received: Sample Depth: 2		0
Analytical Me	ethod: Inorganic Anions	by EPA 300/300.1			1	Prep Method:	E300P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	10.06.17 17.00	1	Basis:	Wet Weight	
Seq Number:	3029837							
Parameter		Cas Number	Result	RL	Units	Analysis Dat	te Flag	Dil
Chloride		16887-00-6	41.3	4.94	mg/kg	10.06.17 23.3	3	1

Arcadis - Houston, Houston, TX

Sample Id: Lab Sample Id	VGWU-118-005 d: 564892-005		Matrix: Date Collec	Soil cted: 10.05.17 07.46		Date Received:10. Sample Depth: 2 In		0
Analytical Me Tech:	ethod: Inorganic Anions MNV	by EPA 300/300.1				Prep Method: E30 % Moisture:	00P	
Analyst:	MNV		Date Prep:	10.06.17 17.00			t Weight	
Seq Number: Parameter	3029837	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	67.9	4.92	mg/kg	10.06.17 23.41		1

Arcadis - Houston, Houston, TX

Sample Id: Lab Sample Id	VGWU-118-006 d: 564892-006		Matrix: Date Collec	Soil cted: 10.05.17 07.47	-	Date Received: Sample Depth:)
Analytical Me	ethod: Inorganic Anions	s by EPA 300/300.1]	Prep Method:	E300P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	10.06.17 17.00]	Basis:	Wet Weight	
Seq Number:	3029837							
Parameter		Cas Number	Result	RL	Units	Analysis Dat	te Flag	Dil
Chloride		16887-00-6	15.0	4.94	mg/kg	10.07.17 00.0	4	1

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Dhone

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	FIIOIIC	Гах
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

Arcadis - Houston

Analytical Method:	Inorganic Anions b	y EPA 300	/300.1					Pr	ep Metho	od: E300)P	
Seq Number:	3029837			Matrix:	Solid				Date Pre	ep: 10.0	6.17	
MB Sample Id:	7632227-1-BLK		LCS Sar	nple Id:	7632227-2	I-BKS		LCSI	O Sample	Id: 7632	227-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	<5.00	250	247	99	251	100	90-110	2	20	mg/kg	10.06.17 22:39	

Analytical Method:	Inorganic Anions b	y EPA 300/	300.1					Pr	ep Metho	d: E30	0P	
Seq Number:	3029837			Matrix:	Soil				Date Pre	ep: 10.0	6.17	
Parent Sample Id:	564892-001		MS Sar	nple Id:	564892-00	01 S		MS	D Sample	Id: 564	892-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	8.11	248	262	102	269	105	90-110	3	20	mg/kg	10.06.17 23:02	

Analytical Method:	Inorganic Anions b	y EPA 300/	/300.1					Pr	ep Metho	d: E30	OP	
Seq Number:	3029837			Matrix:	Soil				Date Pre	ep: 10.0	6.17	
Parent Sample Id:	564959-005		MS Sar	nple Id:	564959-00)5 S		MSI	O Sample	Id: 5649	959-005 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	5.15	249	253	100	253	100	90-110	0	20	mg/kg	10.07.17 00:50	

10

Page 233 of 282

CHAIN OF CUSTODY

Stationu, Jesus (281-240-4200) Dallus Texus (214-902-0306) Service Center - San Antonio, Texas (210-509-3334)	509-3334)			WWW XE	www.xenco.com				Norcross, Georgia (770-449-88 Xence Quote # Q_14208	, Georgia (770 e# 0_14208	Norcross, Georgia (770-449-8800) Xence Quote # Q_14208 Xe	0) Xenca Job #	1	DA, Florida	Tampa, Florida (813-620-2000)
										Analytic	Analytical Information	on			Matrix Codes
Client / Reporting Information			Project	Project Information	-										
Company Name / Branch: Arcadis - Houston		Project Name/Number: HES Transfer	5							_		_			S = Soil/Sed/Solid
Company Addrese: 10205 Westheimer Rd., Suite 800 Hiouston TX 77042		Project Location:	1GLA	- 11	119					_	_	_			GW =Ground Water DW = Drinking Water
Email: brett.krehbiel@arcadis.com	Phone No:	Invoice To:						_			_	_			SW = Surface water SL = Sludge
Project Contact:						F			_						W = Wipe
Samplera'a Name		PO Number:							_	_		_			O = Oil WW= Waste Water
		Collection		-	Nur	nber of on	Number of preserved bottle		S		_	_			A = Air
No. Field ID / Point of Collection	00			2	ł/Zn	i 14	1	-	oride			_			
	Depth	Date T	Time Ma	Matrix bottles	HC	HN0 H25	Nat	ME	CI						Field Comments
1 14000-118-001	2	Kolsta is	1	-				-	×						
2 VGWIL-118-CCZ	2'	1.00	0742 S	1	111			Y	x		-	_			
3 YGWW-118-003	2'	6	> H++0	-				×	×	-		-			
4 VGuell-118-001	2 "	0	5 2460	×.		-		×	X			-			
5 VGWW 118-005	2.	4 6	-			_		×	×						
V	12	10/2/17 0	Stri	-		_	-	×	~						
7			1	-	-	-	-		-						
œ				-											
			_	-											
10				H											
	1		-	Data Dei	Data Deliverable Intofficiend	dometro			-		1		Q		
Same Day TAT	5 Day TAT	X	Level II Std QC	Std QC			Level IV (Full Data Pkg	Data Pig	/raw data)		2 -0	Lemp: (9	IR	IR ID:R-8
Next Day EMERGENCY	7 Day TAT	П	Level I	Level III Std QC+ Forms	Forms		TRRP Level IV	V			9	(R-22-	(6-23, 10 2°C)		
2 Day EMERGENCY	Contract TAT	Π	Level 3	Level 3 (CLP Forms)	(sm		UST / RG -411	1			00	rrected	Corrected Temp:	T	
Da Day EMERGENCY		П	TRRP	TRRP Checklist									- curip.	10	
TAT Starts Day received by Lab, If received by 5:00 pm	eceived by 5:00 pm										FED-EX / UPS: Tracking #	IPS: Track	# Bu		
D Hanna fact - L fra D Tana	SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY	CUMENTED BEL	OW EACH	TIME SAMP	LES CHANGE	E POSSESS	ION, INCLUE	ING COURI	ER DELIVER				1 A A	n A r	
Relinquished by Sumpler:	Date Time:	10:50	Received By:	alta	ME	N.	Relinquished By: 2 Relinquished By:	By:		Date Time:	5 4	Received by:	WW	ANT	X
						4									
Relinquished by: Date Time: Received By: Custody Seal # Preserved where applicable On Ice Cooler Temp. Thermo. Corr. Fac	Date Time:	Re	Received By:			Cu	Custody Seal #	*	Pre	served wher	Preserved where applicable		Onice	Cooler Temp.	emp. Thermo. Corr. Factor

Final 1.000

Received by OCD: 12/5/2022 11:47:56 AM

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Arcadis - Houston	Acceptable Temperature Range: 0 - 6 degC
Date/ Time Received: 10/06/2017 10:30:00 AM	Air and Metal samples Acceptable Range: Ambient
Work Order #: 564892	Temperature Measuring device used : R8
Sample Rece	ipt Checklist Comments
#1 *Temperature of cooler(s)?	1
#2 *Shipping container in good condition?	Yes
#3 *Samples received on ice?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	N/A
#5 Custody Seals intact on sample bottles?	N/A
#6*Custody Seals Signed and dated?	N/A
#7 *Chain of Custody present?	Yes
#8 Any missing/extra samples?	Νο
#9 Chain of Custody signed when relinquished/ received?	Yes
#10 Chain of Custody agrees with sample labels/matrix?	Yes
#11 Container label(s) legible and intact?	Yes
#12 Samples in proper container/ bottle?	Yes
#13 Samples properly preserved?	Yes
#14 Sample container(s) intact?	Yes
#15 Sufficient sample amount for indicated test(s)?	Yes
#16 All samples received within hold time?	Yes
#17 Subcontract of sample(s)?	Νο
#18 Water VOC samples have zero headspace?	N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Date: 10/06/2017

Checklist completed by: Shawnee Smith
Checklist reviewed by: Mary Moak
Kelsey Brooks

Date: 10/06/2017

Project Id:Contact:Brett KrehbielProject Location:VGWU-118-0

Certificate of Analysis Summary 565002

Arcadis - Houston, Houston, TX Project Name: HES Transfer

Date Received in Lab:Fri Oct-06-17 04:04 pmReport Date:12-OCT-17Project Manager:Kelsey Brooks

	Lab Id:	565002-001			
Analysis Requested	Field Id:	VGWU-118-007			
Anulysis Requested	Depth:	2- ft			
	Matrix:	SOIL			
	Sampled:	Oct-06-17 14:34			
Chloride by EPA 300	Extracted:	Oct-10-17 17:50	Î		
	Analyzed:	Oct-11-17 04:01			
	Units/RL:	mg/kg RL			
Chloride		2030 25.0			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah

Kelsey Brooks Project Manager

Analytical Report 565002

for Arcadis - Houston

Project Manager: Brett Krehbiel

HES Transfer

12-OCT-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

12-OCT-17

Project Manager: **Brett Krehbiel Arcadis - Houston** 10205 Westheimer Rd., Suite 800 Houston, TX 77042

Reference: XENCO Report No(s): 565002 HES Transfer Project Address: VGWU-118-0

Brett Krehbiel:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 565002. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 565002 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kuns Hor

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Page 3 of 10

Sample Cross Reference 565002

Arcadis - Houston, Houston, TX

HES Transfer

I	Matrix	Date Collected	Sample Depth	Lab Sample Id
	S	10-06-17 14:34	2 ft	565002-001
	S	10-06-17 14:36	2 ft	Not Analyzed

Client Name: Arcadis - Houston Project Name: HES Transfer

Project ID: Work Order Number(s): 565002 Report Date: *12-OCT-17* Date Received: *10/06/2017*

Sample receipt non conformances and comments:

VGWU-118-008 Placed on hold Per Melisa Darrow's e-mail 10/09/17-- KB

Sample receipt non conformances and comments per sample:

None

5

Arcadis - Houston, Houston, TX

HES Transfer

Sample Id: Lab Sample Id	VGWU-118-007 l: 565002-001		Matrix: Date Collec	Soil cted: 10.06.17 14.34	-	Date Received:10 Sample Depth: 2		1
Analytical Me Tech:	ethod: Chloride by EPA 3 MNV	00				Prep Method: E	300P	
Analyst:	MNV		Date Prep:	10.10.17 17.50]	Basis: W	et Weight	
Seq Number:	3030189							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil

16887-00-6 2030 25.0

10.11.17 04.01

mg/kg

Released to Imaging: 12/5/2022 11:49:05 AM

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDL Sample Detection LimitLOD Limit of DetectionPQL Practical Quantitation LimitMQL Method Quantitation LimitLOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Dhone

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	FIIOIIC	Tax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

QC Summary 565002

Arcadis - Houston HES Transfer

Analytical Method:	Chloride by EPA 30)0						Pr	ep Metho	od: E30	OP	
Seq Number:	3030189			Matrix:	Solid				Date Pre	ep: 10.1	0.17	
MB Sample Id:	7632428-1-BLK		LCS Sar	nple Id:	7632428-	1-BKS		LCSI	D Sample	d: 763	2428-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	< 5.00	250	245	98	246	98	90-110	0	20	mg/kg	10.11.17 00:26	

Analytical Method:	Chloride by EPA 30)0						Pr	ep Metho	d: E30	OP	
Seq Number:	3030189			Matrix:	Soil				Date Pre	ep: 10.1	0.17	
Parent Sample Id:	565168-005		MS Sar	nple Id:	565168-00)5 S		MS	D Sample	Id: 5651	168-005 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	42.2	249	294	101	295	102	90-110	0	20	mg/kg	10.11.17 00:49	

Analytical Method:	Chloride by EPA 30	00						Pr	ep Metho	od: E300)P	
Seq Number:	3030189	Matrix: Ground Water					Date Prep: 10.10.17					
Parent Sample Id:	565207-002		MS Sar	nple Id:	565207-00	02 S		MSI	O Sample	d: 5652	07-002 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	<4.99	250	252	101	253	101	90-110	0	20	mg/kg	10.11.17 02:36	

.

6	2
	-
10	5
BO	n
RAT	Z
Da	7
E.	

Page + of +

5 Relin	1 JA	Relin	T		3 0			10	9	00	7	8	5	4	ω	N	4	No	Bample	bren.k	Hous	Arcac				Pallar Treat (11) 007 0100
Relinquished by:	Rolinguished by:	Relinquiabed by Sampler:	J DAY EMERGENCY	2 Day EMERGENCY	ment way saishound	Same Day TAT	Turnaround Tima (Business days)									-110-	16WU-118-0	Field ID / Point of Collection	Project Contect: Brott Krehbiel Semplers's Name	omain: birath Ar ainbiai(Grancadis com	company Address: 10205 Westheimer Rd., Suite 800 Hiouston TX 77042	Company Name / Branch: Arcadis - Houston	Client / Reporting Information	section section - sect eliteratio, rexas (210-808-3334)	Service Conter Service (14-902-0300)	The second second is a second second
	0	ab, If received by 5:0		Contract TAT	I Day TAT	5 Day TAT]									COR	500	Collection		Phone No:				(na (∠10-008-3334)		
Date Time:	Date Time:	0 pm		-					1						010.		21 10/12	Coci v Sample Depth Date	PON	Invoice To:	Proje	Proje				
Received By: 5	Received By: Received By: Received By:	COIVED by 5:00 pm	TRRP Checklist	Level 3 (CLP Forms)	Level III Std QC+ Forms	Level II Std QC	Data Deliver								1276	- h-		ertiert Time Matrie Botter	PO Number:	19 To:	VGWLL-	Project Name/Number: HES Transfer	Project Information	WWW KOULD CON		
Relinquished by: Oate Time: Received By: Image: Custody Seal # Preserved where applicable On ice Cooler Temp: Thermo. Corr, Fac 5 5 5 5 5 5 5 5 5	DENTA 182 2 CALLA CH	CHANGE PO35ESSION, INCLUDI		UST/RG-411	TRRP Level IV	Level IV (Full Data	Data Deliverable Information					AL					ZA I I Z	ACI IaOH/Zn Icetate INCS ISSO4 INCS ISSO4 IC ISSO4	-		118-0			000 0000		
Pre	Just a	IG COURIER DELIVE				Data Pkg /raw data)			-		-		V		XX	-	C N	one Chlorides	5 = 1		_		-	Xenco Guole #	Norcro	
Preserved where applicable	Date Time:					-		-		-									_				Analytical Information	uote# Q_14208	Norcross, Georgia (770-449-8800)	Mante and much some of
Icable	4:04 2 Raceived By:	FED-EX / UPS: Thacking #					Notes:																viormation	Xenco Job #	449-8800)	10001
On Ice Cooler	MAM	# D													71005	WC								2000	Tampa, Flo	Langiana, i
er Tamp. Thermo. Corr. Factor	UNC 10.71														il am 4to	West woll	Field Comments	A = Air	OW = Ocean/Sea Water W = W/pe O = O/I	P = Product SW = Surface water SL = Sludge	S = Soll/Sed/Solid GW =Ground Water DW = Drinking Water		Matrix Codes	82	Tampa, Florida (813-620-2000)	Lanetallu, FIUINIA (003-040-8520)

Released to Imaging: 12/5/2022 11:49:05 AM

Final 1.000

Page 243 of 282

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Arcadis - Houston Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 10/06/2017 04:04:00 PM Temperature Measuring device used : R8 Work Order #: 565002 Comments Sample Receipt Checklist 2.1 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? N/A #5 Custody Seals intact on sample bottles? N/A #6*Custody Seals Signed and dated? N/A #7 *Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinquished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes #12 Samples in proper container/ bottle? Yes #13 Samples properly preserved? Yes #14 Sample container(s) intact? Yes #15 Sufficient sample amount for indicated test(s)? Yes #16 All samples received within hold time? Yes #17 Subcontract of sample(s)? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

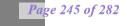
PH Device/Lot#:

#18 Water VOC samples have zero headspace?

Date: 10/10/2017

N/A

Checklist completed by: Jessica Vramer Jessica Kramer Checklist reviewed by: Mung Moak Kelsey Brooks


Date: 10/10/2017

Project Id:Contact:Brett KrehbielProject Location:VGWU-118

Certificate of Analysis Summary 565799

Arcadis - Houston, Houston, TX Project Name: HES Transfer

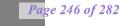
Date Received in Lab:Tue Oct-17-17 06:05 pmReport Date:19-OCT-17Project Manager:Kelsey Brooks

	Lab Id:	565799-0	001	565799-0	02	565799-0	03	565799-0	04	565799-0	05	565799-0	006
Analysis Requested	Field Id:	VGWU-118	VGWU-118-009		VGWU-118-010		VGWU-118-011		VGWU-118-012		3-013	VGWU-118	8-014
Anulysis Kequesieu	Depth:	2- ft	2- ft		2- ft		2- ft		2- ft		2- ft		
	Matrix:	SOIL	SOIL		SOIL		SOIL			SOIL		SOIL	
	Sampled:	Oct-17-17	11:41	Oct-17-17	1:43	Oct-17-17 1	1:46	Oct-17-17 1	1:48	Oct-17-17 1	1:49	Oct-17-17 1	11:52
Chloride by EPA 300	Extracted:	Oct-18-17	Oct-18-17 10:20		0:20	Oct-18-17 1	0:20	Oct-18-17 1	0:20	Oct-18-17 1	0:20	Oct-18-17 1	10:20
	Analyzed:	Analyzed: Oct-18-17 12:2:		Oct-18-17 12:33		Oct-18-17 12:41		Oct-18-17 13:04		Oct-18-17 1	3:11	Oct-18-17 1	13:34
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		2150	24.7	13.9	4.92	861	5.00	1530	25.0	12.3	4.92	11.1	4.91

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah


Kelsey Brooks Project Manager

Project Id:Contact:Brett KrehbielProject Location:VGWU-118

Certificate of Analysis Summary 565799

Arcadis - Houston, Houston, TX Project Name: HES Transfer

Date Received in Lab:Tue Oct-17-17 06:05 pmReport Date:19-OCT-17Project Manager:Kelsey Brooks

	Lab Id:	565799-0	07	565799-0	08	565799-0	09	565799-0	10	565799-0	11	
Analysis Requested	Field Id:	VGWU-118	3-015	VGWU-118	8-016	VGWU-118	3-017	VGWU-118	3-018	VGWU-118	8-019	
Anulysis Kequesleu	Depth:	2- ft		2- ft		2- ft		2- ft		2- ft		
	Matrix:	SOIL	SOIL		SOIL		SOIL		SOIL			
	Sampled:	Oct-17-17 1	1:53	Oct-17-17 1	1:56	Oct-17-17 1	1:57	Oct-17-17 1	1:38	Oct-17-17 1	1:39	
Chloride by EPA 300	Extracted:	Oct-18-17	0:20	Oct-18-17 1	0:20	Oct-18-17 1	0:20	Oct-18-17 1	0:20	Oct-18-17 1	0:20	
	Analyzed:	Oct-18-17	Oct-18-17 13:42		3:50	Oct-18-17 1	3:57	Oct-18-17 1	4:05	Oct-18-17 1	4:13	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	
Chloride		7.07	4.95	39.5	4.92	14.4	4.90	28.5	4.90	<4.96	4.96	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kuns Moah

Kelsey Brooks Project Manager

Page 2 of 21

Analytical Report 565799

for Arcadis - Houston

Project Manager: Brett Krehbiel

HES Transfer

19-OCT-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-17-23), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-17-15), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-17-13) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

19-OCT-17

Project Manager: **Brett Krehbiel Arcadis - Houston** 10205 Westheimer Rd., Suite 800 Houston, TX 77042

Reference: XENCO Report No(s): 565799 HES Transfer Project Address: VGWU-118

Brett Krehbiel:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 565799. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 565799 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kuns Hon

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Page 4 of 21

Sample Id

VGWU-118-009 VGWU-118-010 VGWU-118-012 VGWU-118-013 VGWU-118-014 VGWU-118-015 VGWU-118-016 VGWU-118-017 VGWU-118-018 VGWU-118-019

Sample (Cross	Reference	565799
----------	-------	-----------	--------

Arcadis - Houston, Houston, TX

HES Transfer

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	10-17-17 11:41	2 ft	565799-001
S	10-17-17 11:43	2 ft	565799-002
S	10-17-17 11:46	2 ft	565799-003
S	10-17-17 11:48	2 ft	565799-004
S	10-17-17 11:49	2 ft	565799-005
S	10-17-17 11:52	2 ft	565799-006
S	10-17-17 11:53	2 ft	565799-007
S	10-17-17 11:56	2 ft	565799-008
S	10-17-17 11:57	2 ft	565799-009
S	10-17-17 11:38	2 ft	565799-010
S	10-17-17 11:39	2 ft	565799-011

Client Name: Arcadis - Houston Project Name: HES Transfer

Project ID: Work Order Number(s): 565799 Report Date: *19-OCT-17* Date Received: *10/17/2017*

Sample receipt non conformances and comments:

VGWU-118-008 Placed on hold Per Melisa Darrow's e-mail 10/09/17-- KB

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3030835 Chloride by EPA 300

Lab Sample ID 565799-003 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Chloride recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 565799-001, -002, -003, -004, -005, -006, -007, -008, -009, -010, -011.

The Laboratory Control Sample for Chloride is within laboratory Control Limits, therefore the data was accepted.

5

Arcadis - Houston, Houston, TX

HES Transfer

Sample Id: Lab Sample Id	VGWU-118-009 l: 565799-001		Matrix: Date Collec	Soil ted: 10.17.17 11.41		Date Received:10 Sample Depth: 2		5
	ethod: Chloride by EPA 3	600				Prep Method: E	300P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	10.18.17 10.20		Basis: W	et Weight	
Seq Number:	3030835							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil

2150

16887-00-6

24.7

mg/kg

10.18.17 12.25

Arcadis - Houston, Houston, TX

HES Transfer

Sample Id: Lab Sample Id	VGWU-118-010 d: 565799-002		Matrix: Date Collect	Soil ed: 10.17.17 11.43	Date Received:10.17.17 18.05 Sample Depth: 2 ft					
Analytical Me Tech:	ethod: Chloride by EPA 3 MNV	800				Prep Method: % Moisture:	E30	0 P		
Analyst:	MNV		Date Prep:	10.18.17 10.20		Basis:	Wet	Weight		
Seq Number:	3030835									
Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil	

Chloride

13.9

16887-00-6

4.92

mg/kg 10.18.17 12.33

1

Arcadis - Houston, Houston, TX

HES Transfer

Seq Number: 3	3030835						
Analyst: N	MNV		Date Prep:	10.18.17 10.20	Basis:	Wet Weight	
Tech: N	MNV				% Moisture:		
Analytical Meth	nod: Chloride by EPA 30	0			Prep Method:	E300P	
Sample Id: Lab Sample Id:	VGWU-118-011 565799-003		Matrix: Date Collect	Soil ted: 10.17.17 11.46	Date Received Sample Depth:	:10.17.17 18.0 :2 ft	5

16887-00-6 **861**

5.00

mg/kg 10.18.17 12.41

1

5

Arcadis - Houston, Houston, TX

HES Transfer

Sample Id: Lab Sample Id	VGWU-118-012 l: 565799-004		Matrix: Date Collec	Soil eted: 10.17.17 11.48		Date Received:10.17.17 18.0 Sample Depth: 2 ft		
Analytical Me Tech:	ethod: Chloride by EPA 3 MNV	00				Prep Method: I % Moisture:	E300P	
Analyst:	MNV		Date Prep:	10.18.17 10.20		Basis: V	Wet Weight	
Seq Number:	3030835							
Parameter		Cas Number	Result	RL	Units	Analysis Dat	e Flag	Dil

16887-00-6 1530

25.0

10.18.17 13.04

mg/kg

Arcadis - Houston, Houston, TX

HES Transfer

Sample Id: VGWU-118-0 Lab Sample Id: 565799-005	013	Matrix: Date Collecte	Soil ed: 10.17.17 11.49	-	Date Received:10.17.17 18.0 Sample Depth: 2 ft		
Analytical Method: Chloride Tech: MNV	by EPA 300				Prep Method: E % Moisture:	E300P	
Analyst: MNV		Date Prep:	10.18.17 10.20			Vet Weight	
Seq Number: 3030835 Parameter	Cas Number	Result F	RL	Units	Analysis Date	e Flag	Dil

Chloride

12.3 4

16887-00-6

4.92

10.18.17 13.11

mg/kg

1

Arcadis - Houston, Houston, TX

HES Transfer

Parameter		Cas Number	Result	RL	Units	Analysis Dat	te Flag	Dil
Seq Number:	3030835							
Analyst:	MNV		Date Prep:	10.18.17 10.20		Basis:	Wet Weight	
Tech:	MNV					% Moisture:		
Analytical Me	ethod: Chloride by EPA 3	00				Prep Method:	E300P	
Sample Id: Lab Sample Id	VGWU-118-014 1: 565799-006		Matrix: Date Collect	Soil ted: 10.17.17 11.52		Date Received: Sample Depth:		5

11.1

16887-00-6

4.91

mg/kg 10.18.17 13.34

1

1

Arcadis - Houston, Houston, TX

HES Transfer

Sample Id: Lab Sample Id	VGWU-118-015 d: 565799-007		Matrix: Date Collect	Soil ted: 10.17.17 11.53		Date Received:10.17.17 18.05 Sample Depth: 2 ft			
Analytical Me Tech:	ethod: Chloride by EPA 3 MNV	600				Prep Method: % Moisture:	E300P		
Analyst:	MNV		Date Prep:	10.18.17 10.20		Basis:	Wet Weight		
Seq Number:	3030835								
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil	

16887-00-6 **7.07**

4.95

10.18.17 13.42

mg/kg

1

Arcadis - Houston, Houston, TX

HES Transfer

Sample Id: VGWU-118-016 Lab Sample Id: 565799-008		Matrix: Date Collecte	Soil ed: 10.17.17 11.56	-	Date Received:10.17.17 18.05 Sample Depth: 2 ft		
Analytical Method: Chloride by EPA Tech: MNV	A 300				Prep Method: H % Moisture:	E300P	
Analyst: MNV		Date Prep:	10.18.17 10.20			Wet Weight	
Seq Number: 3030835	Cas Number	Result 4	RL	Units	Analysis Date	e Flag	Dil

Chloride

16887-00-6 **39.5**

4.92

mg/kg 10.18.17 13.50

1

Arcadis - Houston, Houston, TX

HES Transfer

Sample Id: Lab Sample Id	VGWU-118-017 l: 565799-009		Matrix: Date Collec	Soil ted: 10.17.17 11.57		Date Received:10.17.17 18.05 Sample Depth: 2 ft		
•	ethod: Chloride by EPA 3	00				Prep Method:	E300P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	10.18.17 10.20		Basis:	Wet Weig	ght
Seq Number:	3030835							
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Fla	g Dil

16887-00-6 **14.4**

4.90

mg/kg 10.18.17 13.57

1

Arcadis - Houston, Houston, TX

HES Transfer

	030835							
Seq Number: 30								
Analyst: M	INV		Date Prep:	10.18.17 10.20		Basis:	Wet Weight	
Tech: M	INV					% Moisture:		
Analytical Metho	od: Chloride by EPA 30	0			I	Prep Method:	E300P	
Sample Id: V Lab Sample Id: 5	VGWU-118-018 565799-010		Matrix: Date Collecte	Soil ed: 10.17.17 11.38		Date Received Sample Depth:	:10.17.17 18.05 :2 ft	

16887-00-6 **28.5**

4.90

mg/kg

10.18.17 14.05

Arcadis - Houston, Houston, TX

HES Transfer

Sample Id: VGWU-118-019 Lab Sample Id: 565799-011		Matrix: Date Collecte	Soil d: 10.17.17 11.39		Date Received:10.17.17 18.05 Sample Depth: 2 ft		
Analytical Method: Chloride by E	EPA 300				Prep Method:	E300P	
Tech: MNV					% Moisture:		
Analyst: MNV		Date Prep:	10.18.17 10.20		Basis:	Wet Weight	
Seq Number: 3030835							
Parameter	Cas Number	Result F	L	Units	Analysis Da	ate Flag	Dil

Chloride

16887-00-6

<4.96 4.96

10.18.17 14.13

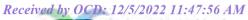
mg/kg

U

1

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDL Sample Detection LimitLOD Limit of DetectionPQL Practical Quantitation LimitMQL Method Quantitation LimitLOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation


Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	гах
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	
		(432) 563-1713

Arcadis - Houston HES Transfer

Analytical Method:	Chloride by EPA 3	00						Pr	ep Metho	od: E300	OP	
Seq Number:	3030835			Matrix:	Solid				Date Pre	ep: 10.1	8.17	
MB Sample Id:	7632811-1-BLK		LCS San	nple Id:	7632811-1	I-BKS		LCSI	D Sample	Id: 7632	2811-1-BSD	
Parameter	MB	Spike	LCS	LCS	LCSD	LCSD	Limits	%RPD	RPD	Units	Analysis	
	Result	Amount	Result	%Rec	Result	%Rec	2	,	Limit	cints	Date	Flag

Analytical Method:	Chloride by EPA 30)0						Pr	ep Metho	od: E30	0P	
Seq Number:	3030835			Matrix:	Soil				Date Pre	ep: 10.1	8.17	
Parent Sample Id:	565762-002		MS Sar	nple Id:	565762-00	02 S		MS	D Sample	Id: 565'	762-002 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	885	249	1100	86	1110	90	90-110	1	20	mg/kg	10.18.17 11:01	Х

Analytical Method:	Chloride by EPA 3	00						Pr	ep Metho	od: E300)P	
Seq Number:	3030835			Matrix:	Soil				Date Pre	ep: 10.1	8.17	
Parent Sample Id:	565799-003	MS Sar	nple Id:	565799-00)3 S		MSI	O Sample	Id: 5657	99-003 SD		
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	861	250	1070	84	1060	80	90-110	1	20	mg/kg	10.18.17 12:48	Х

.

Softing the Standard since 1990

CHAIN OF CUSTODY

Samplers's Name 1000 d THEFE 10205 Westhelmer Rd., Suite 800 Hiouston TX 77042 Company Address: Arcadis - Houston No brett.krehblel@arcadis.com delicer Signature of this document and relinquishment of samplet constitutes a valid purchase order from client company to XENCO Laboratories and its affiliates, subcontractors and ussigns XENCO's standard terms and conditions of service unless previously neglotated under a faily executed client contractor œ, ¢4 N 10 roject Contact; Relinquished by: 3 Day EMERGENCY Next Day EMERGENCY mpany Name / Branch; Relinquished by: Relinquished by Sampler Same Day TAT Service Center - San Antonio, Texas (210-509-3334) Dallas Texas (214-902-0300) 2 Day EMERGENCY TAT Starts Day received by Lab, if received by 5:00 pm **Client / Reporting Information** VGWU-VGmu -116-010 NAWW-118- DI NOWN NE-CIS Newa - 118-013 16W4-118-012 VIGWILL-HE-CIL 1644 118-018 16 WIL - 118 - 047 NEWIG-118-014 Turnaround Time (Business days) 118-Field ID / Point of Collection Brett Krehblel 009 Contract TAT 7 Day TAT 5 Day TAT SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY
Date Time:
Recoived By:
Refinquished B Phone No: Date Time: Date Time: 10-17-17/005 Sample Depth N 14 N N N N U U N Project Name/Number: HES Transfer Project Location: 10-17.1 PO Number: Involce To: Collection 101217 Date 19: 05 Received By: VIGWUL- 118 1139 11385 2511 1153 11SUS 4149 11 48 143 146 Received By: 1152 1141 Time 101 2 **Project Information** Level 3 (CLP Forms) Level II Std QC **TRRP** Checklist Level III Std QC+ Forms Matrix V 5 (in) in 1A ہرا in. in Data Deliverable Information WWW.XEDED.COM e of 1314-2 HCI NaOH/Zn Acetate Number of preserved bottle HNO3 Custody Seal # Ralinquished By: UST / RG -411 12504 Level IV (Full Data Pkg /raw data) TRRP Level IV NaOH NaHSO4 MEOH ONE Xenco Quote # Norcross, Georgia (770-449-8800) Chlorides ÷ ÷ × Ż 2 < ÷, × * Preserved where applicable Date Time; Date Time: Analytical Information Q_14208 FED-EX / UPS: Tracking # Temp: 4.8 CF:(0-6: -0.2°C) Corrected Temp: 4.10 Xenco Job # Received By: Received By: (6-23: +0.2°C) On Ice Tampa, Florida (813-620-2000) Cooler Temp. IR ID:R-8 Field Comments SW = Surface water DW = Drinking Water P = Product WW= Waste Water 0=01 W = Wipe OW =Ocean/Sea Water SL = Sludge GW =Ground Water S = SoiVSed/Solid A = Air Thermo, Corr. Factor Matrix Codes

Received by OCD: 12/5/2022 11:47:56 AM

Released to Imaging.

Page 1 Of 1

Odessa, Texas (432-563-1800)

Lakeland, Florida (863-646-8526)

Final 1.000

Page 264 of 282

Stafford, Texas (281-240-4200)

Received by OCD: 12/5/2022 11:47:56 AM

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Arcadis - Houston Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 10/17/2017 06:05:00 PM Temperature Measuring device used : R8 Work Order #: 565799 Sample Receipt Checklist #1 *Temperature of cooler(s)?

4.6 #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? N/A #5 Custody Seals intact on sample bottles? N/A #6*Custody Seals Signed and dated? N/A #7 *Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinquished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes #12 Samples in proper container/ bottle? Yes #13 Samples properly preserved? Yes #14 Sample container(s) intact? Yes #15 Sufficient sample amount for indicated test(s)? Yes #16 All samples received within hold time? Yes #17 Subcontract of sample(s)? No #18 Water VOC samples have zero headspace? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Date: 10/18/2017

Comments

Checklist completed by: Shawnee Smith Checklist reviewed by: Mark Moak Kelsey Brooks

Date: 10/18/2017

Released to Im	aging: 12/5/	/2022 11:49	:05 AM

Certificate of Analysis Summary 570197 ARCADIS, Midland, TX

Project Name: HES

Project Id:Contact:Brett KrehbielProject Location:Buckeye NM

Date Received in Lab:Mon Dec-04-17 04:00 pmReport Date:05-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	570197-0	01	570197-0	08	570197-0	09	570197-0	10		
Analysis Requested	Field Id:	VGWu-118-	-020	VGWu-118-027		VGWu-118-028		VGWu-118-029			
Analysis Kequestea	Depth:										
	Matrix:	SOIL	SOIL			SOIL		SOIL			
	Sampled:	Dec-04-17 0	Dec-04-17 09:07		1:51	Dec-04-17	1:58	Dec-04-17	13:09		
Chloride by EPA 300	Extracted:	Dec-05-17 1	Dec-05-17 16:00		6:00	Dec-05-17 1	6:00	Dec-05-17	6:00		
	Analyzed:	Dec-05-17 1	Dec-05-17 16:19		6:25	Dec-05-17 1	6:31	Dec-05-17	6:36		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		38.5	4.96	9.15	4.96	18.1	4.97	615	4.96		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mike Kimmel Client Services Manager

Page 1 of 13

Analytical Report 570197

for ARCADIS

Project Manager: Brett Krehbiel

HES

05-DEC-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-17-23), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-17-15), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-17-13) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

05-DEC-17

Project Manager: **Brett Krehbiel ARCADIS** 1004 N. Big Spring St. Midland, TX 79701

Reference: XENCO Report No(s): **570197 HES** Project Address: Buckeye NM

Brett Krehbiel:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 570197. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 570197 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Mike Kimmel Client Services Manager

> Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Page 3 of 13

Sample Cross Reference 570197

ARCADIS, Midland, TX

HES

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
VGWu-118-020	S	12-04-17 09:07		570197-001
VGWu-118-027	S	12-04-17 11:51		570197-008
VGWu-118-028	S	12-04-17 11:58		570197-009
VGWu-118-029	S	12-04-17 13:09		570197-010
VGWu-118-021	S	12-04-17 09:13		Not Analyzed
VGWu-118-022	S	12-04-17 10:02		Not Analyzed
VGWu-118-023	S	12-04-17 10:12		Not Analyzed
VGWu-118-024	S	12-04-17 10:34		Not Analyzed
VGWu-118-025	S	12-04-17 11:12		Not Analyzed
VGWu-118-026	S	12-04-17 11:35		Not Analyzed

CASE NARRATIVE

Client Name: ARCADIS Project Name: HES

Project ID: Work Order Number(s): 570197 Report Date: 05-DEC-17 Date Received: 12/04/2017

Sample receipt non conformances and comments:

12/05/17: Per Brett only run samples 020,027,028,and 029.

Sample receipt non conformances and comments per sample:

None

ARCADIS, Midland, TX

HES

Sample Id: Lab Sample Id	VGWu-118-020 l: 570197-001		Matrix: Date Collect	Soil ed: 12.04.17 09.07		Date Received	1:12.04.17	16.00
Analytical Me	thod: Chloride by EPA 3	300				Prep Method:	E300P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	12.05.17 16.00		Basis:	Wet Weig	ht
Seq Number:	3035034							
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	g Dil

16887-00-6 38.5

4.96

12.05.17 16.19

mg/kg

1

ARCADIS, Midland, TX

HES

Sample Id: Lab Sample Id:	VGWu-118-027 : 570197-008		Matrix: Date Collect	Soil ed: 12.04.17 11.51		Date Received	1:12.04.	.17 16.00	
2	thod: Chloride by EPA 3	600				Prep Method:	E300F	2	
	MNV					% Moisture:			
Analyst:	MNV		Date Prep:	12.05.17 16.00		Basis:	Wet W	Veight	
Seq Number:	3035034								
Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil

16887-00-6 9.15

4.96

12.05.17 16.25 mg/kg

1

Released to Imaging: 12/5/2022 11:49:05 AM

Page 7 of 13

Final 1.000

ARCADIS, Midland, TX

HES

Sample Id: Lab Sample Id	VGWu-118-028 d: 570197-009		Matrix: Date Collect	Soil ed: 12.04.17 11.58]	Date Received	:12.04.17 16.	00
Analytical Me	ethod: Chloride by EPA 3	800]	Prep Method:	E300P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	12.05.17 16.00]	Basis:	Wet Weight	
Seq Number:	3035034							
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil

Chloride

16887-00-6 **18.1**

4.97

mg/kg

12.05.17 16.31

1

ARCADIS, Midland, TX

HES

Sample Id:	VGWu-118-029 d: 570197-010		Matrix:	Soil ed: 12.04.17 13.09		Date Received:	12.04.17 16.00	0
•	ethod: Chloride by EPA 3	300	Date Collect	eu. 12.04.17 13.09		Prep Method:	E300P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	12.05.17 16.00		Basis:	Wet Weight	
Seq Number:	3035034							
Parameter		Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil

Chloride

16887-00-6 615

4.96

12.05.17 16.36

mg/kg

1

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDL Sample Detection LimitLOD Limit of DetectionPQL Practical Quantitation LimitMQL Method Quantitation LimitLOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

QC Summary 570197

ARCADIS

HES

Analytical Method:	Chloride by EPA 3	00						Pr	ep Metho	d: E30	0P		
Seq Number:	3035034		Matrix: Solid				Date Prep: 12.05.17						
MB Sample Id:	7635433-1-BLK		LCS Sar	nple Id:	7635433-	1-BKS		LCSI	D Sample	Id: 763	7635433-1-BSD		
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag	
Chloride	< 5.00	250	254	102	249	100	90-110	2	20	mg/kg	12.05.17 14:02		

Analytical Method:	Chloride by EPA 30)0						Pr	ep Metho	d: E30	0P		
Seq Number:	3035034 Matrix:				Soil				Date Pre	ep: 12.0	12.05.17		
Parent Sample Id:	569375-044	569375-04	14 S		MS	D Sample	Id: 5693	: 569375-044 SD					
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag	
Chloride	623	247	847	91	852	93	90-110	1	20	mg/kg	12.05.17 14:20		

Analytical Method:	Chloride by EPA 30	0						Pr	ep Metho	od: E300	OP	
Seq Number:	3035034			Matrix:	rix: Soil				Date Prep: 12.05.17			
Parent Sample Id:	569375-046		MS San	nple Id:	569375-04	46 S		MSD Sample Id: 569375-046 SD				
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	967	246	1140	70	1130	66	90-110	1	20	mg/kg	12.05.17 15:43	Х

.

Received by OCD: 12/5/2022 11:47:56 AM

Contract & Contactory Maxm	Taliphones	ANALYSIS REQUEST F	ORM	rage 1 of 1
-	Cr.	Proservative //		Preservation Key: Cont
SU STIE	492.617-5V0/	# of Continues		D NAOH
othe XL C-oppin a	Multanes	1.1	ER ANALYSIS & METHOD	
HES Buckeye N	Chubica E		111	H Dine:
Oliny Sitor swell	A Contraction of the second		1 1 1	Matrix Key:
Sample ID	flaction Type	Matrix / W/	111	W-Water SL-Sludge T-Tissue A-Air
10 11 11 11 11 11 11 11 11 11 11 11 11 1	Why was comp Grat	e		REMARKS
111 -				
16004-118-022	C	SV		
1400-111-023	tore)	5 1		
A20-118-054		S <		
NG101-118-025	In	5		
120-61 -009A	1135	S V		
120-811-118-013-	-1151	SV		
160H-117-0H	X REVICED	SU		
1600 - 11- 029	1/2 100 N/201	SV		
		Jac V		Temp: /./.ª C IBID:D.0
	Λ			-0,2°C)
Special Instructions/Comments:			☐ Special DA/DC (nstructions(<'):	Corrected Temp: //
Laboratory Information and Receipt	ation and Receipt	Rollinguistned B.	Ranuford Do	
Last Name	Cooler Custody Seal (+)	ruel	Protect Name	Pointed Name A A Printed Name Printed Name
Cooler pecked with ice (*)	Intact Intact	61	Summer Aluch Har	Sanalury The Signature
24 TBO	Sample Receipt.	Szciente	enice)	Fundament Park Fell Fell Fin You
4 Browney Characteric Annuneuro	Condition/Cooler Temp:	2221 HINE 1225	hunkal .	Landine Landine

Released to Imaging: 12/5/2022 11:49:05 AM-

Page 12 of 13

Final 1.000

Page 277 of 282

Received by OCD: 12/5/2022 11:47:56 AM

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: ARCADIS	Acceptable Temperature Range: 0 - 6 degC	
Date/ Time Received: 12/04/2017 04:00:00 PM	Air and Metal samples Acceptable Range: Am	bient
Work Order #: 570197	Temperature Measuring device used : R8	
Sample Rec	eipt Checklist Comments	
#1 *Temperature of cooler(s)?	1.4	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	Νο	
#5 Custody Seals intact on sample bottles?	N/A	
#6*Custody Seals Signed and dated?	N/A	
#7 *Chain of Custody present?	Yes	
#8 Any missing/extra samples?	Νο	
#9 Chain of Custody signed when relinquished/ received?	Yes	
#10 Chain of Custody agrees with sample labels/matrix?	Yes	
#11 Container label(s) legible and intact?	Yes	
#12 Samples in proper container/ bottle?	Yes	
#13 Samples properly preserved?	Yes	
#14 Sample container(s) intact?	Yes	
#15 Sufficient sample amount for indicated test(s)?	Yes	
#16 All samples received within hold time?	Yes	
#17 Subcontract of sample(s)?	No	
#18 Water VOC samples have zero headspace?	N/A	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Shawnee Smith

Date: 12/05/2017

Checklist reviewed by:

and the Mike Kimmel

Date: 12/05/2017

VGWU 118 / 1RP-3260

Photo 1. View of hydro excavation activities.

Photo 2. View of excavation area.

VGWU 118 / 1RP-3260

Photo 3. Additional view of excavation activities.

Photo. 4 Continued excavation activities.

VGWU 118 / 1RP-3260

Photo 5. View of liner installation.

Photo 6. View of excavation backfill activities.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
MorningStar Operating LLC	330132
400 W 7th St	Action Number:
Fort Worth, TX 76102	163814
	Action Type:
	[IM-SD] Incident File Support Doc (ENV) (IM-BNF)

CONDITIONS

Created By		Condition Date
jnobui	upload closure report	12/5/2022

.

Action 163814