District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party: Enterprise Field Services, LLC	OGRID: 241602
Contact Name: Thomas Long	Contact Telephone: 505-599-2286
Contact email:tjlong@eprod.com	Incident # (assigned by OCD) nAPP2222735338
Contact mailing address: 614 Reilly Ave, Farmington, NM 87401	

Location of Release Source

Latitude 36.664887

Longitude -107.674524

(NAD 83 in decimal degrees to 5 decimal places)

)

Site Name Jones A LS #7	Site Type Natural Gas Gathering Pipeline	
Date Release Discovered: 08/15/2022	Serial Number (<i>if applicable</i>): N/A	

Unit Letter	Section	Township	Range	County
Е	15	28N	8W	San Juan

Surface Owner: State Federal Tribal Private (Name: BLM

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls): Estimated 10-15 BBLs	Volume Recovered (bbls): None
Natural Gas	Volume Released (Mcf): 1.8 MCF	Volume Recovered (Mcf): None
Other (describe)	Volume/Weight Released (provide units):	Volume/Weight Recovered (provide units)

Cause of Release On June 28, 2022, Enterprise had a release of natural gas from the Jones A LS #7 pipeline. The pipeline was isolated, depressurized, locked and tagged out. No liquids were released to the ground surface. No washes were affected. No fire nor injuries occurred. Due to the road conditions, Enterprise began repairs and remediation on August 12, 2022 and determined that this release was reportable per NMOCD regulation on August 15, 2022, due to the volume of impacted subsurface soil. Remediation and repairs were completed on September 14, 2022. The final excavation dimensions measured approximately 58 feet long by 23 feet wide by 11 feet deep. A total of 672 cubic yards of hydrocarbon impacted soil was excavated and transported to a New Mexico Oil Conservation Division (NMOCD) approved land farm. A third party closure report is included with this "Final" C-141.

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment	Checklist: Each of the following items ma	ust be inclu	ded in the closure report.
A scaled site and sampling	A scaled site and sampling diagram as described in 19.15.29.11 NMAC		
	Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)		
Laboratory analyses of fi	nal sampling (Note: appropriate ODC Distric	ct office mu	ast be notified 2 days prior to final sampling)
Description of remediation	n activities		
and regulations all operators ar may endanger public health or should their operations have fa human health or the environme compliance with any other fed restore, reclaim, and re-vegetat	e required to report and/or file certain releas the environment. The acceptance of a C-14 iled to adequately investigate and remediate ent. In addition, OCD acceptance of a C-141 eral, state, or local laws and/or regulations. The the impacted surface area to the conditions (MAC including notification to the OCD wh	e notification 1 report by contaminat 1 report doe The responses that existent en reclamat	v knowledge and understand that pursuant to OCD rules ons and perform corrective actions for releases which the OCD does not relieve the operator of liability ion that pose a threat to groundwater, surface water, s not relieve the operator of responsibility for sible party acknowledges they must substantially d prior to the release or their final land use in tion and re-vegetation are complete.
Signature:		Date:	<u>11-29-2022</u>
email: tjlong@eprod.com	Telephone <u>: (505) 599-2286</u>		
OCD Only			
Received by:		Date:	
remediate contamination that p		uman healt	their operations have failed to adequately investigate and h, or the environment nor does not relieve the responsible
Closure Approved by:/	Velson Velez	Date:	12/09/2022
Closure Approved by:/ Printed Name:N	Velson Velez	Title: _	Environmental Specialist – Adv

CLOSURE REPORT

Property:

Jones A LS#7 (08/15/22) Unit Letter E, S15 T28N R8W San Juan County, New Mexico

New Mexico EMNRD OCD Incident ID No. NAPP2222735338

November 3, 2022

Ensolum Project No. 05A1226196

Prepared for:

Enterprise Field Services, LLC 614 Reilly Avenue Farmington, NM 87401 Attn: Mr. Thomas Long

Prepared by:

Landon Daniell Staff Geologist

Umm

Kyle Summers Senior Managing Geologist

Ensolum, LLC | Environmental, Engineering & Hydrogeologic Consultants

606 South Rio Grande, Suite A | Aztec, NM 87410 | ensolum.com

TABLE OF CONTENTS

1.0	INTRODUCTION11.1Site Description & Background11.2Project Objective1
2.0	CLOSURE CRITERIA
3.0	SOIL REMEDIATION ACTIVITIES
4.0	SOIL SAMPLING PROGRAM 4
5.0	SOIL LABORATORY ANALYTICAL METHODS
6.0	SOIL DATA EVALUATION
7.0	RECLAMATION AND REVEGETATION
8.0	FINDINGS AND RECOMMENDATION
9.0	STANDARDS OF CARE, LIMITATIONS, AND RELIANCE.79.1Standard of Care.79.2Limitations.79.3Reliance.7

LIST OF APPENDICES

Appendix A –	Figures		
	Figure 1: Topographic Map		
	Figure 2: Site Vicinity Map		
	Figure 3: Site Map with Soil Analytical Results		

- Appendix B Siting Figures and Documentation
 - Figure A: 1.0 Mile Radius Water Well/POD Location Map Figure B: Cathodic Protection Well Recorded Depth to Water Figure C: 300 Foot Radius Watercourse and Drainage Identification Figure D: 300 Foot Radius Occupied Structure Identification Figure E: Water Well and Natural Spring Location Figure F: Wetlands Figure G: Mines, Mills, and Quarries Figure H: 100-Year Flood Plain Map
- Appendix C Executed C-138 Solid Waste Acceptance Form
- Appendix D Photographic Documentation
- Appendix E Regulatory Correspondence
- Appendix F Table 1 Soil Analytical Summary
- Appendix G Laboratory Data Sheets & Chain of Custody Documentation

1.0 INTRODUCTION

1.1 Site Description & Background

Operator:	Enterprise Field Services, LLC / Enterprise Products Operating LLC (Enterprise)
Site Name:	Jones A LS#7 (08/15/22) (Site)
NM EMNRD OCD Incident ID No.	NAPP2222735338
Location:	36.664887° North, 107.674524° West Unit Letter E, Section 15, Township 28 North, Range 8 West San Juan County, New Mexico
Property:	United States Bureau of Land Management (BLM)
Regulatory:	New Mexico (NM) Energy, Minerals and Natural Resources Department (EMNRD) Oil Conservation Division (OCD)

On June 28, 2022, Enterprise was notified by a third party of a possible release on the Jones A LS#7 pipeline. Enterprise personnel confirmed a leak and subsequently isolated and locked the pipeline out of service. On August 10, 2022, Enterprise initiated activities to repair the pipeline and remediate potential petroleum hydrocarbon impact. On August 15, 2022, Enterprise determined the release was "reportable" due to the estimated volume of impacted soil. The NM EMNRD OCD was subsequently notified.

A **Topographic Map** depicting the location of the Site is included as **Figure 1**, and a **Site Vicinity Map** is included as **Figure 2** in **Appendix A**.

1.2 **Project Objective**

The primary objective of the closure activities was to reduce constituent of concern (COC) concentrations in the on-site soils to below the applicable NM EMNRD OCD closure criteria.

2.0 CLOSURE CRITERIA

The Site is subject to regulatory oversight by the New Mexico EMNRD OCD. Ensolum, LLC (Ensolum) referenced New Mexico Administrative Code (NMAC) 19.15.29 *Releases*, which establishes investigation and abatement action requirements for oil and gas release sites that are subject to reporting and/or corrective action, during the evaluation and remediation of the Site. The appropriate closure criteria for sites are determined using the siting requirements outlined in Paragraph (4) of Subsection C of 19.15.29.12 NMAC. Ensolum utilized the general site characteristics and information available from NM state agency databases and federal agency geospatial databases to determine the appropriate closure criteria for the Site. Supporting figures and documentation associated with the following Siting bullets are provided in **Appendix B**.

 The NM Office of the State Engineer (OSE) tracks the usage and assignment of water rights and water well installations and records this information in the Water Rights Reporting System (WRRS) database. Water wells and other points of diversion (PODs) are each assigned POD numbers in the database (which is searchable and includes an interactive map). No PODs were identified in the same Public Land Survey System (PLSS) section as the Site. Five PODs (SJ-02283, SJ-04131-POD1, SJ-04131-POD2, SJ-04131-POD3, SJ-04131-POD4) were identified in an adjacent PLSS section. However, only SJ-02283 had a recorded depth to water. POD SJ-02283 is located approximately 1.7 miles east of the Site with a listed depth

to water of 480 feet and is approximately 33 feet lower in elevation than the Site (**Figure A**, **Appendix B**).

- Nine cathodic protection wells (CPWs) were identified in the NM EMNRD OCD imaging database in the adjacent PLSS sections. The four closest CPWs are depicted on Figure B (Appendix B). Documentation for the cathodic protection well located near the Hardie E #1 well location indicate a depth to water of approximately 340 feet bgs. This cathodic protection well is located approximately 0.48 miles west of the Site and is approximately 68 feet higher in elevation than the Site. Documentation for the cathodic protection well located near the Hardie E #2A well location indicates a depth to water of approximately 60 feet bgs. This cathodic protection well is located approximately 0.56 miles northwest of the Site and is approximately 51 feet lower in elevation than the Site. Documentation for the cathodic protection well located near the Hardie E #1 and #7 well locations indicates a depth to water of approximately 60 feet bgs. This cathodic protection well is located approximately 0.59 miles southwest of the Site and is approximately 528 feet lower in elevation than the Site. Documentation for the cathodic protection well located near the Hardie E #2 and #8 well locations indicates a depth to water of approximately 280 feet bgs. This cathodic protection well is located approximately 0.91 miles northwest of the Site and is approximately 54 feet lower in elevation than the Site.
- The Site is not located within 300 feet of a NM EMNRD OCD-defined continuously flowing watercourse or significant watercourse (**Figure C**, **Appendix B**).
- The Site is not located within 200 feet of a lakebed, sinkhole, or playa lake.
- The Site is not located within 300 feet of a permanent residence, school, hospital, institution, or church (Figure D, Appendix B).
- No springs, or private domestic freshwater wells used by less than five households for domestic or stock watering purposes were identified within 500 feet of the Site (Figure E, Appendix B).
- No freshwater wells or springs were identified within 1,000 feet of the Site (Figure E, Appendix B).
- The Site is not located within incorporated municipal boundaries or within a defined municipal freshwater well field covered under a municipal ordinance adopted pursuant to New Mexico Statutes Annotated (NMSA) 1978, Section 3-27-3.
- Based on information identified in the U.S. Fish & Wildlife Service National Wetlands Inventory Wetlands Mapper, the Site is not within 300 feet of a wetland (**Figure F**, **Appendix B**).
- Based on information identified in the NM Mining and Minerals Division's Geographic Information System (GIS) Maps and Mine Data database, the Site is not within an area overlying a subsurface mine (**Figure G**, **Appendix B**).
- The Site is not located within an unstable area per Paragraph (6) of Subsection U of 19.15.2.7 NMAC.
- Based on information provided by the Federal Emergency Management Agency (FEMA) National Flood Hazard Layer (NFHL) geospatial database, the Site is not within a 100-year floodplain (**Figure H**, **Appendix B**).

Based on the identified siting criteria, Enterprise estimates the depth to water at the Site to be greater than 50 feet bgs, resulting in a Tier II ranking. However, the soil requirements of NMAC 19.15.29.13(D)(1) indicate that a minimum of the upper four feet must contain "uncontaminated" soil and that the soils meet Tier I closure criteria listed in Table 1 of NMAC 19.15.29.12. Applicable closure criteria for Tier I soils and Tier II soils (below four feet) remaining in place at the Site include:

Tier II Closure Criteria for Soils Impacted by a Release			
Constituent ¹ Method		Limit	
Chloride	EPA 300.0 or SM4500 CI B	10,000 mg/kg	
TPH (GRO+DRO+MRO) ²	EPA SW-846 Method 8015	2,500 mg/kg	
TPH (GRO+DRO)	EPA SW-846 Method 8015	1,000 mg/kg	
BTEX ³	EPA SW-846 Method 8021 or 8260	50 mg/kg	
Benzene	EPA SW-846 Method 8021 or 8260	10 mg/kg	

¹ – Constituent concentrations are in milligrams per kilogram (mg/kg).

² – Total Petroleum Hydrocarbons (TPH). Gasoline Range Organics (GRO). Diesel Range Organics (DRO). Motor Oil/Lube Oil Range Organics (MRO).

³ – Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX).

Tier I Closure Criteria for Soils Impacted by a Release			
Constituent ¹ Method		Limit	
Chloride	EPA 300.0 or SM4500 CI B	600 mg/kg	
TPH (GRO+DRO+MRO) ²	EPA SW-846 Method 8015	100 mg/kg	
BTEX ³	EPA SW-846 Method 8021 or 8260	50 mg/kg	
Benzene	EPA SW-846 Method 8021 or 8260	10 mg/kg	

¹ – Constituent concentrations are in milligrams per kilogram (mg/kg).

² – Total Petroleum Hydrocarbons (TPH). Gasoline Range Organics (GRO). Diesel Range Organics (DRO). Motor Oil/Lube Oil Range Organics (MRO).

³ – Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX).

3.0 SOIL REMEDIATION ACTIVITIES

On August 15, 2022, Enterprise initiated activities to remediate petroleum hydrocarbon impact resulting from the release. During the remediation and corrective action activities, Industrial Mechanical Inc (IMI), provided heavy equipment and labor support, while Ensolum provided environmental consulting support.

The final excavation measured approximately 58 feet long and 23 feet wide at the maximum extents. The maximum depth of the excavation measured approximately 11 feet bgs. The lithology encountered during the completion of remediation activities consisted primarily of sandstone and shale.

Approximately 672 cubic yards (yd³) of petroleum hydrocarbon-affected soils and 12 barrels (bbls) of hydro-excavation soil cuttings and water were transported to the Envirotech, Inc., (Envirotech) landfarm near Hilltop, NM for disposal/remediation. The executed C-138 solid waste acceptance form is provided in **Appendix C**. The excavation was backfilled with imported fill and then contoured to the surrounding topography.

Figure 3 is a map that identifies approximate soil sample locations and depicts the approximate dimensions of the excavation with respect to the pipeline (**Appendix A**). Photographic documentation of the field activities is included in **Appendix D**.

4.0 SOIL SAMPLING PROGRAM

Ensolum field screened the soil samples from the excavation utilizing a calibrated Dexsil PetroFLAG[®] hydrocarbon analyzer system and a photoionization detector (PID) fitted with a 10.6 eV lamp to guide excavation extents.

Ensolum's soil sampling program included the collection of 37 composite soil samples (S-1 through S-37) from the excavation for laboratory analysis. In addition, four composite soil samples (SP-1 through SP-4) were collected from a segregated portion of the stockpiled soils to determine if the material was suitable to use as backfill. The composite samples were comprised of five aliquots each and represent an estimated 200 square foot (ft²) or less sample area per guidelines outlined in Section D of 19.15.29.12 NMAC. Hand tools and the excavator bucket were utilized to obtain fresh aliquots from each area of the excavation. Regulatory correspondence is provided in **Appendix E**.

First Sampling Event

On August 11, 2022, the first sampling event was performed at the Site. Composite soil samples S-1 (4'), S-2 (4'), and S-3 (4') were collected from the floor of the excavation. Composite soil samples S-4 (0'-4'), S-5 (0'-4'), S-6 (0'-4'), S-7 (0'-4'), S-8 (0'-4'), and S-9 (0'-4') were collected from the walls of the excavation. Composite soil samples SP-1, SP-2, SP-3, and SP-4 were collected from a segregated portion of the stockpiled soils to determine if the soils were suitable for use as backfill.

Subsequent soil analytical results identified TPH concentrations that exceeded the NM EMNRD OCD closure criteria for composite soil samples S-1, S-2, S-3, S-4, S-5, S-7, S-8, S-9, SP-3, and SP-4. In response to the exceedances the excavation was enlarged. The soils associated with the impacted samples were removed by excavation and transported to the landfarm for disposal/remediation.

Second Sampling Event

On August 16, 2022, the second sampling event was performed at the Site. The NM EMNRD OCD and BLM were notified of the sampling event although no representatives were present during sampling activities. Composite samples S-10 (5.5') and S-11 (5.5') were collected from the floor of the excavation. Composite soil samples S-12 (0'-5.5') and S-13 (0'-5.5') were collected from walls of the excavation.

Third Sampling Event

On August 18, 2022, the third sampling event was performed at the Site. The NM EMNRD OCD and BLM were notified of the sampling event although no representatives were present during sampling activities. Composite sample S-14 (0'-5.5') was collected from a wall of the excavation. Composite soil sample S-15 (5.5') was collected from the floor of the excavation.

Fourth Sampling Event

On August 22, 2022, the fourth sampling event was performed at the Site. The NM EMNRD OCD and BLM were notified of the sampling event although no representatives were present during sampling activities. Composite soil sample S-16 (5.5') was collected from the floor of the excavation. Composite soil sample S-17 (0'-5.5') was collected from a wall of the excavation.

Fifth Sampling Event

On September 2, 2022, the fifth sampling event was performed at the Site. The NM EMNRD OCD and BLM were notified of the sampling event although no representatives were present during sampling activities. Composite soil sample S-18 (11') was collected from the floor of the excavation.

Enterprise Field Services, LLC Jones A LS#7 (08/15/22)

Sixth Sampling Event

On September 8, 2022, the sixth sampling event was performed at the Site. The NM EMNRD OCD and BLM were notified of the sampling event although no representatives were present during sampling activities. Composite soil samples S-19 (11') and S-20 (11') were collected from the floor of the excavation. Composite soil samples S-21 (5.5'-11'), S-22 (0'-4'), S-23 (4'-11'), S-24 (0'-4'), and S-25 (4'-11') were collected from walls of the excavation.

Seventh Sampling Event

On September 12, 2022, the seventh sampling event was performed at the Site. The NM EMNRD OCD and BLM were notified of the sampling event although no representatives were present during sampling activities. Composite soil samples S-26 (11') and S-27 (11') were collected from the floor of the excavation. Composite soil samples S-28 (0'-4'), S-29 (4'-11'), S-30 (0'-4'), S-31 (4'-11'), S-32 (0'-4'), and S-33 (4'-10') were collected from walls of the excavation. Subsequent soil analytical results identified TPH concentrations that exceeded the NM EMNRD OCD closure criteria for composite soil sample S-28. In response to the excavation was enlarged. The impacted soil associated with composite sample S-28 was removed by excavation and transported to the landfarm for disposal/remediation.

Eighth Sampling Event

On September 14, 2022, the eighth sampling event was performed at the Site. The NM EMNRD OCD and BLM were notified of the sampling event although no representatives were present during sampling activities. Composite soil sample S-34 (4') was collected from the floor of the excavation. Composite soil samples S-35 (0'-4'), S-36 (0'-4'), and S-37 (0'-4') were collected from walls of the excavation.

All soil samples were collected and placed in laboratory-prepared glassware. The containers were labeled and sealed using the laboratory-supplied labels and custody seals and were stored on ice in a cooler. The samples were relinquished to the courier for Hall Environmental Analysis Laboratory of Albuquerque, NM, under proper chain-of-custody procedures.

5.0 SOIL LABORATORY ANALYTICAL METHODS

The composite soil samples were analyzed for BTEX using Environmental Protection Agency (EPA) SW-846 Method #8021; TPH GRO/DRO/MRO using EPA SW-846 Method #8015; and chlorides using EPA Method #300.0.

The laboratory analytical results are summarized in **Table 1** (**Appendix F**). The laboratory data sheets and executed chain-of-custody forms are provided in **Appendix G**.

6.0 SOIL DATA EVALUATION

Ensolum compared the benzene, BTEX, TPH, and chloride laboratory analytical results or laboratory practical quantitation limits (PQLs) / reporting limits (RLs) associated with the composite soil samples S-6, S-10 through S-27, S-29 through S-37, SP-1, and SP-2 to the applicable NM EMNRD OCD closure criteria. The soils associated with composite soil samples S-1 through S-5, S-7 through S-9, S-28, SP-3, and SP-4 were removed (due to COC exceedances) from the Site, and therefore, are not included in the following discussion.

• The laboratory analytical results for all composite soil samples associated with soils remaining at the Site indicate benzene is not present at concentrations greater than the laboratory PQLs/RLs, which are less than the applicable NM EMNRD OCD criteria of 10 mg/kg.

- The laboratory analytical results for composite soil samples S-16, S-23, S-26, S-27, S-29, S-31, S-32, and S-34 indicate total BTEX concentrations ranging from 0.084 mg/kg (S-27) to 6.2 mg/kg (S-31), which are less than the applicable NM EMNRD OCD closure criteria of 50 mg/kg. The laboratory analytical results for all other composite soil samples associated with soils remaining at the Site indicate that total BTEX is not present in concentrations greater than the laboratory PQLs/RLs, which are less than the applicable NM EMNRD OCD closure criteria of 50 mg/kg.
- The laboratory analytical results for composite soil samples S-11, S-16, S-19, S-23, S-26, S-29, and S-31 through S-34 indicate combined TPH GRO/DRO concentrations ranging from 6.4 mg/kg (S-16) to 260 mg/kg (S-33), which are less than the applicable NM EMNRD OCD closure criteria of 100 mg/kg or 1,000 mg/kg (depending on the depth of the represented soil). The laboratory analytical results for all other composite soil samples associated with soils remaining at the Site indicate combined TPH GRO/DRO is not present at concentrations greater than the laboratory PQLs/RLs, which are less than the applicable NM EMNRD OCD closure criteria of 100 mg/kg or 1,000 mg/kg (depending on the depth of the represented soil).
- The laboratory analytical results for composite soil samples S-11, S-16, S-19, S-23, S-26, S-29, and S-31 through S-34 indicate combined TPH GRO/DRO concentrations ranging from 6.4 mg/kg (S-16) to 420 mg/kg (S-33), which are less than the applicable NM EMNRD OCD closure criteria of 100 mg/kg or 2,500 mg/kg (depending on the depth of the represented soil.) The laboratory analytical results for all other composite soil samples associated with soils remaining at the Site indicate combined TPH GRO/DRO/MRO is not present at concentrations greater than the laboratory PQLs/RLs, which are less than the applicable NM EMNRD OCD closure criteria of 100 mg/kg or 2,500 mg/kg (depending on the depth of the represented soil.)
- The laboratory analytical results for all composite soil samples indicate chloride is not present at concentrations greater than the laboratory PQLs/RLs, which are less than the applicable NM EMNRD OCD closure criteria of 600 mg/kg or 10,000 mg/kg (depending on the depth of the represented soil).

7.0 RECLAMATION AND REVEGETATION

The excavation was backfilled with imported fill and then contoured to the surrounding topography. Enterprise will re-seed the Site with an approved seeding mixture.

8.0 FINDINGS AND RECOMMENDATION

- Forty-one composite soil samples were collected from the Site. Based on laboratory analytical results, no benzene, BTEX, chloride, or combined TPH GRO/DRO/MRO exceedances were identified in the soils remaining at the Site.
- Approximately 672 yd³ of petroleum hydrocarbon-affected soils and 12 bbls of hydroexcavation soil cuttings and water were transported to the Envirotech landfarm for disposal/remediation. The excavation was backfilled with imported fill and then contoured to the surrounding topography.

Based on field observations and laboratory analytical results, no additional investigation or corrective action appears warranted at this time.

9.0 STANDARDS OF CARE, LIMITATIONS, AND RELIANCE

9.1 Standard of Care

Ensolum's services were performed in accordance with standards customarily provided by a firm rendering the same or similar services in the area during the same time period. Ensolum makes no warranties, express or implied, as to the services performed hereunder. Additionally, Ensolum does not warrant the work of third parties supplying information used in the report (e.g., laboratories, regulatory agencies, or other third parties).

9.2 Limitations

Findings, conclusions, and recommendations resulting from these services are based upon information derived from the on-Site activities and other services performed under this scope of work, and it should be noted that this information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, or not present during these services, and Ensolum cannot represent that the Site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during the investigation. Environmental conditions at other areas or portions of the Site may vary from those encountered at actual sample locations. Ensolum's findings and recommendation are based solely upon data available to Ensolum at the time of these services.

9.3 Reliance

This report has been prepared for the exclusive use of Enterprise, and any authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the Site) is prohibited without the express written authorization of Enterprise and Ensolum. Any unauthorized distribution or reuse is at the client's sole risk. Notwithstanding the foregoing, reliance by authorized parties will be subject to the terms, conditions, and limitations stated in the Closure Report and Ensolum's Master Services Agreement. The limitation of liability defined in the agreement is the aggregate limit of Ensolum's liability to the client.

APPENDIX A

Figures

Received by OCD: 11/29/2022 7:12:34 AM

Received by OCD: 11/29/2022 7:12:34 AM

Page 15 of 162

APPENDIX B

Siting Figures and Documentation

Received by OCD: 11/29/2022 7:12:34 AM

Page 17 of 162

Received by OCD: 11/29/2022 7:12:34 AM

Released to Imaging: 12/9/2022 10:52:17 AM

PROJECT NUMBER: 05A1226196

Received by OCD: 11/29/2022 7:12:34 AM

Received by OCD: 11/29/2022 7:12:34 AM

Received by OCD: 11/29/2022 7:12:34 AM

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is closed)	(quar					NE 3=SW b largest)	,	3 UTM in meters)		(In feet)
POD Number	POD Sub- Code basin C	county	Q Q 64 16	-		: Tws	Rng	х	Y	-	Depth Water	Water Column
SJ 02283	SJ	SJ	12	4	14	28N	08W	263604	4060474* 🌍	540	480	60
SJ 04131 POD1	SJ	SJ	2	4	22	28N	08W	262050	4058670 🌍	36		
SJ 04131 POD2	SJ	SJ	2	4	22	28N	08W	262058	4058673 🌍	32		
SJ 04131 POD3	SJ	SJ	2	4	22	28N	08W	262041	4058664 🌍	32		
SJ 04131 POD4	SJ	SJ	2	4	22	28N	08W	262041	4058654 🌍	28		
									Average Depth to	o Water:	480 f	eet
									Minimun	n Depth:	480 f	eet
									Maximum	n Depth:	480 f	eet
Record Count: 5												

PLSS Search:

Section(s): 15, 9, 10, 11, 14, 16, 21, 22, 23

0, 11, **Township:** 28N 21, 22,

Range: 08W

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

e (*	2022 7:12:44 AM ~ = ^H =	30-045- 30-045	07538 21146	4781	Page 26 of 162
		FOR DEEP GROUN NORTHWEST Submit 3 copies	ERN NEW MEXIC	0	ELLS
Operator	MERIDIAN	N OIL	Location:	Unit_SW_Sec.9	wp_28_Rng_8
Name of	Well/Wells	or Pipeline Ser	viced <u>HARDIE</u>	<u>E #2, #8</u>	
<u></u>					cps 649w
Elevatio	on <u>6227'</u> Comple	etion Date <u>8/5/8</u>	7Total Dep	th <u>500'</u> Land T	Type*_N/A
Casing,	Sizes, Type:	s & Depths <u>N</u>	/A		
If Casir	ng is cemente	ed, show amount	s & types use	d <u>N/A</u>	
	nt or Benton: /A	ite Plugs have	been placed,	show depths & a	amounts used
N	<u>/A</u>	ite Plugs have of water zones			
N	/A thickness of		with descript	ion of water wh	
N Depths & Fresh, C	/A a thickness of Clear, Salty	of water zones	with descript	ion of water wh	
N Depths & Fresh, C Depths g	/A thickness of Clear, Salty gas encounter	of water zones , Sulphur, Etc.	with descript 280'_SAMP	ion of water wh	
N Depths & Fresh, C Depths g Type & a	/A thickness of lear, Salty as encounter mount of col	of water zones , Sulphur, Etc. red: <u>N/A</u>	with descript 280'_SAMP N/A	ion of water wh	nen possible:
N Depths & Fresh, C Depths g Type & a Depths a	A thickness of thickness of thickness of thickness of the	of water zones , Sulphur, Etc. red:N/A ke breeze used:	with descript 280'_SAMP N/A	ion of water wh	nen possible:
N, Depths & Fresh, C Depths g Type & a Depths a Depths v	A thickness of thickness of thickness of thickness of the	of water zones , Sulphur, Etc. red:N/A ke breeze used: d:465', 455', 43 Laced:N/A	with descript 280'_SAMP N/A	ion of water wh <u>E TAKEN</u> <u>395', 340', 330'</u>	nen possible:

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

*Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

. .

ceived by OCD: 11/29/2022 7;12:34 AM Page 27 of 162 File 07-0238 (Rev. 10-82) WELL CASING CATHODIC PROTECTION CONSTRUCTION REPORT already in computer DAILY LOG Completion Date 8-5-87 Drilling Log (Attach Hereto) m.m. CPS # Work Order # Well Name, Line or Plant Ins. Union Check 09-28-08 .82E m P Com 649W M 09-28-08 .82 E Location Size Bit: Anode Type: 2" ×60" 6 3/4" 569-28-8 Duriron Drilling Rig Time Total Lbs. Goke Used Lost Circulation Mat'l Used Depth Dnilled Depth Logged No. Sacks Mud Used 480' Eleu, 6227 500 Anode Depth *3430 *4420 *5405 *6395 *7340 *8330 *9320 * 103A *1465 *2455 Anode Output (Amps) #3 1.7 #41.6 *52.6 *63.1 17 2.8 3.9 * 2 *** 3** * 93, 5 |* 103, a *12.6 Anode Depth # 11 # 13 # 14 # 15 # 16 # 17 # 18 # 19 # 20 # 12 Anode Output (Amps) # 15 # 11 # 12 # 13 # 14 # 16 a 18 # 17 # 19 # 20 No. 8 C.P. Cable Used **Total Circuit Resistance** No. 2 C.P. Cable Used Amps 12.1 Volts 12,85 Ohms 1,04 Remarks: Priller said water was at 280', Jent up to 150, from slight te tara is pri sater. at 150'. Water sample was 04 an earlier date Laten α 4300.00 Rectifier Size:____ _V All Construction Completed -80.1 Addn'l Depth_ 201 Depth Credit:___ 2.50 10' Extra Cable:__ 11.70 30" Ditch & 1 Cable:__ (Signature) Ditch & 2 Cable: 40.00 25' Meter Pole: 4274.20 20' Heter Pole: 213.71 10' Stub Pole: 4487.911 Junction Box: 40 00 lie E 60# 2 Hardie E#8 6490 Released to Imaging: 12/9/2022 10:52:17 AM a serie de la constante de la c

2 47		Restary.		man	e 20
	BURGE	CORROSIO	NSYSTEM	SINC	
		P.O. BOX 1359 - PH AZTEC, NEW M	10NE 334-6141		CPS 649
COMPANY Meric	dian	DAiL	Y DRILLING REPORT	8-3	; <u>19~~</u>
WELL NAME:		WELL NUMBER:	SECTION:	TOWNSHIP:	RANGE:
Hardie	Έ`	2	9	28N	84
	WATER AT:	FEET:	HOLE MADE:	500 ft	,
approx.	200 ft	DESCRIPTION OF	EORMATION	10044	,
FROM	то		FORMATION IS	<u>. </u>	COLOR
0	100	Sand	Stone	۰.	401
IND	140	Sand	Stone		Gra
140	180	Sand.	Shale		Glev
180	200	Sind	Skane	- 1	Crev
200	20	Sanche	Shale		Grel
240	- 290 - 290	Sond	ton e		Cr6
2%0 290	990 310	Sha T	e !		Grép
310	320	Sand	Stone		Onley
320	4/20	Shq	<u>le</u>		Crey
420	440	Sandy	shale		Grey
440	460	Sand's	fone		Grey
460	500	Shal	<u>e</u>		urex
				-	· · · · ·
· · · · ·					
			4t0	·	
~	, <u>,</u>			ne ar • • • • • • •	
	l		an in the second se	n n n n n n n n n n n n n n n n n n n	
				· · · ·	
		······································			•••
· · · ·	J		4.2.4		<u> </u>
REMARKS:	<u> </u>	· · · · · · · · · · · · · · · · · · ·	an di Marina Ma		· ·· ·
			1 m 1 1 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2	· · · ·	

el d'Arte an C	. .	٠		- '		ŕ . ,						P.O							-614		NS,										
 3	÷					'	1			, , ,		A	ZTE	EC, N	IEM	ME	XICO	874	410					Da'	te _'	<u>8</u> ·	<u>ک </u>		Þ	2	
ىت. مەربىر		· ⁻ .	•	÷ ·		1	• • • •	•••	Ĩ	1	•		~	WEL	L ĢI	lOU	INDBE	ÐĽ	OG.					-		-	-	-			
	Ç	ļom	par	iy _		<u>11</u>	<u>e i</u>	<u>· / ·</u>	~	<u></u>	1																				
1212	Ŷ	Veli	i No						- Lor	ुः cation	1	bri	<u>¥</u> ,	<u>: e</u>	Ē	2	' <i>Ť</i> .	Ē	8	Vol	its A	noli	- be	/2.8	15		- A	mpr	ere:	<u>/2</u> ,	$\cdot \cdot$
	0'	F	F	=	—	F		<u> </u>	Ē				Ŧ		Π	7		F	3	Ť		<u> </u>	(2)	V	<u> </u>		1 T	-		_	Ì
	j 5'	\vdash	\vdash	H	Į	\vdash	┢╌┙	┢╧┥	\mathbf{H}	230	Η	- +-	╋	+-'	\vdash		455	K	2	+	+	+	42	1	4	1 1		5	- (<u>a</u> . 1	4
1.2.	. ²⁰ ,10		├ '	\vdash	\vdash	\vdash	\vdash	\vdash	LL,	235 240	H	-+-	╋	╉┙	┢╾┥	1	460 465	4	片	+	╧	╧	ଚ୍ଚ	685	23	4 4	5	5	Ť	4	5
1.2	15				 			\vdash		-240	H		╋	+-	\vdash		465 470	5	片	+	+	+	10	690 695	1	Ħ		6	1	4	à
1 ·	20 25			H _a		H	\vdash	\vdash		250	2	. †	+.		\vdash	1	475	ß	2	7	.+-	+	+	695 700	5	H	0	5	-+	汁	겆
				7 7 (*)	i-	\vdash		<u>t</u>		255	5	125	+-	+	\vdash	1	475 480	-41	竹	-+	<u></u>	古	+	700	6	7 3	9	5	Ť	<u></u>	$\frac{2}{7}$
· · · · ·,	30 35				de la constante da la constante La constante da la constante da	F ,		H		¥ 260*		7	1.		H		480 485	\vdash		十	Ť	F	+	705	7	2	12	Ь		計	5
	35 40	1111	2							265	53				\square		490	H	\vdash	+	+	+	+	710	4	2	3	0	Ī	才	ट्र
	40 -45		. †			. Lynd	<u> </u> '	<u>F</u>	\square	270					\vdash		495	H	ht.		+	+	+	720	9	3		6	1	沅	الجُ
· · · ·	50				1.52				\square	275			1:				500		H+	+	+-	+	+	725	-		1 1	6	-1	<i>i</i> T	ষ্ঠ
	55				1				\Box	280	11	2			Ê		505			1	+	+		730	Ļ	M	ί†	٦Ť	1	Ť	Ĥ
	60							\square	\Box	285		<u>B</u>	۶.	1. 1.	Π		510		\square	1	+	\mathbf{T}	+	1	5	5	17	1.		2.4	6
Ę	65	· · ·		<u>[]</u>	\Box			口	\Box	290	• •	3	5	1			515		\Box	T	1	1	1	740	5	17.	٢	[:.]		-+-	3
2 - 1 - 2 -	70	1.1.1	\Box	\Box	\Box			\Box		295		20		下	\Box		520		\square	T	1_			745	B	D.I	9	[:\]	T	Ī	7
*	75			$[\cdot]$	\Box			\Box		300		4			3		525		Π	T	T	t		750	K	•	9	\Box	T	7.1	$\overline{\zeta}$
	ः <i>ः सः</i> है। सः 80		[]	[<u></u>]	\Box'	\Box'	\Box'	\Box		305	5	55	Λ	1 30			530		\Box	\Box	T			755	Ø	朷	Π	\Box	Т	2.4	6
	- 85				\Box'	\Box'	E.'			310		K	<u>۶</u>		10		535		\Box	I	T	T		760	Ø			\Box	Т	3,	Ĺ
			<u>[`'</u>		[]	\Box	\Box'		Ē	315		M					540			T	T	Ŀ	Ľ	765	2	D				2, 2	8
	95	Sec.	<u>[-</u> '	1	[.]	2	\Box'			320	1.2	72				\Box	545		\Box	Ţ	Ι		\Box'	770	Ø	\Box				3. 4	
	100	1	62	10	(in the second	<u>[] '</u>	[_]	Ĺ	Ī	325		13		Ŀ	L		550		\Box			Γ	Ľ	775	E		\Box	\Box			5
	105		1.22% a	िंहा		\Box	Ľ'	Ĺ	Ĺ.	330		13			B		555	Ľ	ĨЦ.			l	\Box'	780	6	Ð	Ū			3 2	٢
	110	<u>i</u>		- 4		Ľ	<u> </u> '	Ц	\square	335	Ŀ	113		1.1	Ĺ	Ĩ	560		ĨЦ	4		\mathbf{L}	Ľ'	785		\Box	\Box		\square		_
	115	<u></u>		Ś.,		1_'	₽'	Ц	\vdash	340		13			Ø	4	565		Ĺ.	4		\downarrow	\perp '	790		ĹЦ	Гļ	Ĩ	<u> </u>	1	_
	120				Ŀ	↓ _′	₽'	Ц	\square	345	6	1.0		¥. 14	Ц	\dashv	670		4	_	1	1	<u> </u> _'	795		Ц	Ц	<u>ل</u>	, ¹		
	125					Ľ	\square	\square	₩	350		X 6		<u> </u> '	Ļ	_	575		4	\downarrow	4	\bot	<u> </u> _'	800		Ц	H	4	<u>_</u> +	95	
	130			Ę		<u> </u>	<u> _</u> _	₽	Ĥ.	. 355		6	_	<u> </u> '	.भू ह इ.स.च्	-	580	Ľ	<u></u>	4	_	\bot	<u> ''</u>	805		Ц	Ц	Ľ.	4		
	135		P	鬥	P	S (2)	<u>l'</u>			360	L4	46		\perp		2	585 \	Ч		-+	+	+	<i></i>	810		Ц				<u></u>	;.
	1140		<u> </u>	Ð		1	Ŀ	I ∏	Щ.	365	Ŀң	- 3		+'	┟┈┦	- - -	. 590	Ľ	4	+	+	<u></u>	+_'	815	-	H			4	4	
Ser Hes West			<u>[</u> 23] 1339		P)	₽\$J -	لتــل	H	H	370	┢╧┥	10		╧╋	╞╌╽	.,1 	595 595	لنب ا		+	+	<u>+</u>	<u> </u> '	820	Ŀ		Ĥ	<u> </u>		+	_
	180 1. 1. 190	教室	R	1997) 1997 - 1997 1997 - 1997	ind.	μ	Ł	2011		375	H	8		+	1-1		600	1		-+	-+-	╇	\vdash	825%		┥┥		┝─┼	<u> </u>	-+	
	155						<u></u> ↓ ↓ ↓ ↓ ↓			380	<u></u> ⊢+	8		+	⊢┤		605	H	H	+	+-		+-	, 830		H-		÷	+	+	
	160						H		r f	385		<u>.</u>	2 -		⊢-}		. 610	,2 e	Ë 🕂	. +		╋		835		l i	77 - 1 27 - 1	in t		+	
	165				F		, i S		ा 	390		1/2	2 -	_	6		615 420	H		+	- -	+		840	: 	Ĥ	Ĥ	\dashv	+		_
	170		1943) 1944)	374 1927		14968 34 m	2 <u>22.</u> 2 2 1			295 400	268 1831	44	\mathbf{A}		٢	÷	620 625	- 7 - 2	Ĥ	+		╋	4	845	÷	H	<u> </u>				1.2 - 1.2 - 1.0
		H	<u> </u>			1		\vdash		the second second	899. 1. 19	15			6		625			Ŧ	+	+	<u>+</u> -/	850		ŝ	1999 - 1998 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	÷.			े इंड्र
	110		H.	5. 病		52		H	÷ ا	405	F†	10		Tiris Vi€g		÷	630 635				+-	╀		855			9 % 253				
A	185	1412Pr (1.179) (1.179)			- 3.2 (H			H	17	1				635 640				1		H	860			Ē.		÷	+	5
	190		Ê			िल्ल	je Kali	巖		∖415. 420		19	行		Ø	24.9 13 5 1	645	H	Êŧ.					865	F	H	हैं।	Ť	<u>_</u>		
	195	aine. Sing	1997 - 19 1971 - 19		Rep:				Altan Ka	425	1	79	椮		ि		650	H	- 20 11 - 20	44			(* ***	870 876	3	H	5.07 (307	<u>.</u> 55.,	3		2 2
		筆:? 1			and Byge	Vera Str.				420		39			3	1	1997 B		1					875					-	<u></u>	<u> </u>
	205	34-3 34-3 34-3					H		2 4	430			_		鬥	-	1		1	-		ł		880		F	20	2	+	-	-
	210 210	100					13.		्यः कृतः	435 440		88	_		ʆ		660 665		L.	Ť	Ť	1		885	5	Ë †	5.0		-		
L. ALLANDER M. P. St.	215					<u>-</u>	H	-		440	34 A. 325	8			Ȇ	÷	670							890							1
	- 200	1.12 2.142	No. 1		15 (an			ti n ti		445	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1974 1980	<u>'</u> ley	e Ak	1000 1000	0/4	100	206 A 梁 &		<u> (सर्</u> दे कि कि विक्वे कि क	ः देवम् - २२४	1999		- 9:4: 116-2	820	े (ही) जिल्ला		<u>**</u> - ::::::::::::::::::::::::::::::::::::	819 64 1943 64	1

5 649W

API WATER ANALYSIS REPORT FORM

ര

Company MERIDIAN OIL COMPA	NY	Sample No. 3 Date Sampled U8-03-87	
Field Blanco	Legal Description	Gounty or Parish State NM	
Lease or Unit M9-28-8 Wel	Hardie E2 Depth 200	1 Formation Water, B/D Mesa Verde	
Type of Water (Produced, Supply Around Ded	y, etc.) Sampling Point	200 Sampled By M. R.W.	
DISSOLVED SOLIDS	OTHER	PROPERTIES	
CATIONS mg/l Bodium, Na (calc.) 147 Calcium, Ca	Decine -	Gravity, 60/60 F	
Calcium, Ca Magnesium, Mg Barium, Ba	2.4 Conduct		
		Total Dissolved Solids (calc.)	<u></u>
ANIONS		Iron, Pe (total)	
Chloride, Cl Sulfate, SO4 Carbonate, CO3	$\frac{0.8}{14.4}$	Suläde, as H2S	••••••••••••••••••••••••••••••••••••••
Bicarbonate, HCO: 155		REMARKS & RECOMMENDATIO	ons
25 20 15	10 \$ 0 5	10 15 20 25	·
20 %			
		HCO3	
Уд		SOL/	10
Te - Humanite and - 1		co ⁵ /	'4

Page 31 of 162

30-045-22079

DATA SHEET FOR DEEP GROUND BED CATHODIC PROTECTION WELLS NORTHWESTERN NEW MEXICO (Submit 3 copies to OCD Aztec Office)

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

*Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

Page 32 of 162

		rage

4921

DATA SHEET FOR DEEP GROUND BED CATHODIC PROTECTION WELLS NORTHWESTERN NEW MEXICO (Submit 3 copies to OCD Aztec Office) Operator <u>MERIDIAN OIL</u> Location: Unit <u>SE</u> Sec. <u>16</u> Twp <u>28</u> Rng8 Name of Well/Wells or Pipeline Serviced <u>HARDIE E #4, #1A</u>____ cps 406w Elevation 5851' Completion Date 8/24/81 Total Depth 360' Land Type* N/A Casing, Sizes, Types & Depths N/A If Casing is cemented, show amounts & types used N/A If Cement or Bentonite Plugs have been placed, show depths & amounts used N/A Depths & thickness of water zones with description of water when possible: Fresh, Clear, Salty, Sulphur, Etc. 60' SAMPLE TAKEN Depths gas encountered: N/A Type & amount of coke breeze used: N/A Depths anodes placed: 320', 300', 280', 260', 230', 210', 180', 145', 125', 105' Depths vent pipes placed: 320' Vent pipe perforations: _____280' Remarks: <u>qb #2</u> MAY 3 1 1991 OIL CON, DIV If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included

*Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

Received by OCD: 11/29/202

1= 30 045 - 07433

1A= 30-045-23720

Received by OCD: 11/29/2022 7:12:34 AM

Ť

El Paso Natural Gas Company Form 7-238 (Rev. 11-71) .

WELL CASING CATHODIC PROTECTION CONSTRUCTION REPORT

÷ ,

.

Page 33 of 162

.

Drilling Log (Attach Her	eto).				Cc	empletion Dat	te 8-2	24-81
Weli Nahe		14	ation SE	16 28		CPS No.	/	'ou
Type & Size Bit Used	Ē			16 40		Work Order	No.	21-50-20
Anode Hole Depth	Total Drilling	Rig Time 1	otal Lbs. Coke U	sed Lost Circ	rulation Mat ⁺ l Us	ed No. Sacks M	4ud Used 🔔	9-50-20
<u>VRIL 3606 3 Anode Depth</u>		260	720	210	190			
= 1 3.20 = 2300 Anode Output (Amps) $= 1 3.25 = 2.77$							1	
Anode Depth		1		* 0 - 0		≈ 18	∽∽∽	# 20
: 11 # 12 Anode Output (Amps)	# 13	<u>* 14</u>	* 15 I					÷ 20
# 11 # 12 Total Circuit Resistance	# 13	14 Ohms	. 7 Z	# 16 No. 8 C.P. Cal	¦≈ 17 ole Used	* 18	# 19 No. 2 C.P. Co	
	Amps 1614			+	02.1.	55		
emarks: KEDRIL		·	•	· .		i la ca	· · · · · · · · · · · · · · · · · · ·	E /A = .87E
WATER D			mpLE)	<u>40</u>	TGAIN			ALANCE
YERFORAT	_		<u> </u>	71.		· • • •		······································
NEGATIVE	······································	مر و من المرجوع الم ¹¹ مد ا		<u> </u>	ED	μν	<u>72160</u>	WHEN.
CLEAR	W BL	<u>m</u>						
						· _ • '		
	بالباد ستشتد الدبداد	ويعتر والمتحديد والمتكر	an an star digen star.	e Ne Sie Alle Suuce	್ರ ಗ್ರಥಗಳು ಶ್ರೇ	All Constru	ction Complet	ed Seven and sevenas
Diren +1	CABLE	= 100 1			and a second s and a second s and a second s and a second seco	67		
			GROUND BED	LAYOUT SKEI	гсн	The second	anature)	C *OT
HOLE =	- 141 v			9 GB # 2			-24 8	2.
					st.i			
				65				
	.,					. A 11 1		オル
	<i>.</i>	159'			9			Ň
	68 0							
an a the states	an en en ante ante	2014.940 ANE.ora C. Back a Card	adistriante régénéritet	เลาซึ่งใน สิ่งสารแส โมชร์ - พระราย -	ا پېمر، کې مقادې د		nt to according on providencial	· · · · · · · · · · · · · · · · · · ·
	a an	i an	an ing parana sa	ng nang nang nang nang nang nang nang n	- 1	a da ante a Ante a da ante a da an Ante a da ante a da a	τι λ. γαν, κα ^τ α τ − ^α εξ ^α ()	
DISTRIBUTION: WHITE - Division C	Corrosion Office		ter da segura de la composición de la c	· · · · ·		a the second second	n an Alfred States - 17 1920 - The States - 17 	
YELLOW – Area Corro PINK – Originator	osion Office							
	- 110							· ·

		A									<u> </u>			Y DRILLING	
LEASE		ORNING.). <i>50</i> . Me	IC NO:		REPO	RT NO.	EVENIN	DATE	
Driller		Total Me						Totolin In		-	Driller	<u></u>	EVENIN		Ciero Santa
FROM	TO	FORMATION				TO.**		FORMATION		R.P.M.	FROM	то		FORMATION	WT-BIT
										1	······································				~ 法经营理
								······ ···· ··· ··· ···		1					
ì.		2	1.00				;	·····		+		+			
			ا حر مانيو الاشتر الاشتر		A. "你就是你了?	; . ₽= .									
3 g. e.	1	NO. DCS	ZE	LENG.				NO. DCSIZE_	LE	N G			·	NO. DCSIZE	LENG
<u>віт но.</u>	3 111 1216	NO. DC S	IZE	ENG.	BITINO			NO. DCSIZE	LE	N G	BIT NO.			NO. DCSIZE	
AL NO.		STAND			SERIAL NO.			STANDS			SERIAL NO.			STANDS	
SIZE	<u> </u>	SINGLE			511E			SINGLES			SIZE			SINGLES	
TYPE		DOWN ON KEL			TYPE			DOWN ON KELLY			TYPE			DOWN ON KELLY	
MAKE		MUD. ADDITIVES U		1	NARE MUD RE		<u> </u>	TOTAL DEPTH			MAKE			TOTAL DEPTH	
MUD REC Time W	t. Vis.	MUD, ADDITIVES U		CRIVED		WL. VIB.		JD, ADDITIVES USED	AND RECE	IVED	Time	Wt. Vis.	MUD	ADDITIVES USED	AND RECEIVE
						N1 - 2	·								
		n sign an an a				,x ·								 .	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		.	ar wi Caracteria											-	
				÷.		·. ·									
FROM T	•	TIME BREA	KDOWN		Contraction of the second s			TINE BREAKDO	*N		FROM	то		TIME BREAKDO	WN
	مم المن ا				240-30		mf.	Shale			 				
60 80	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	19		ă	300 30		half.	2- + - * +			ļ	· · ·			
80 90) for			5 8	340 3	60 da	nd				<u>↓</u>				2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 12	C Aque	p shale									<u> </u>				
180 24			- بي م 												
• • • • • • • • • • • • • • • • • • • •	<u>. /)ami</u>		17.	2. 	REMARKS-	-ia									
REMARKS-	60	5 Jallon	711		REMARKS -						REMARKS	_		· · · · ·	
- yrane.	<u>60</u>							· · · · · · · · · · · ·							
Dille	360	TO 3.				2-5- 	·····	· · ·	- · · ·					·····	
<u>FX / 14 / 14 / 14 / 14 / 14 / 14 / 14 / 1</u>	i sur		میں میں اور			51%		- · · · · · · · · · · · · · · · · · · ·			1				4433 4433
	·i			a An the state									· · · · ·		
	1.	· · · · · · · · · · · · · · · · · · ·	2	· · · ·		0									
	:	4. 		7. 7.	the White States and			· · ·							
		· · · · · · · · · · · · · · · · · · ·			ED: Toolpusher		-++								
						++									بې د بې د بې د

Received by	OCD:	11/29/2022	7:12:34 AM

EL PASO NATURAL-GAS COMPANY-SAN JUAN DIVISION-FARMINGTON, NEW MEXICO PRODUCTION DEPARTMENT WATER ANALYSIS

Analysis No. 1-10308 Date 9-11-81 Operator El Paso Natural Gas Well Name Hardie E-1A CPS 406 W *** Location SE 16-28-8 County San Juan State New Mexico Field Blanco Formation		
Location SE 16-28-8 County San Juan State New Mexico Field Blanco Formation Sampled From 60' By B.T. Date Sampled *8-24-81 By B.T. Thg. Press. Csg. ppm epm Sodium 1403 1403 61.0 Chloride 18 Sodium 1403 61.0 Chloride Calcium 342 17.1 Bicarbonate Bicarbonate 0 Rg R Rg R Sulfate 3750 78.0 Registion Reg Bydroxide Sp. Gr. .9993 At O PH 7.8 Sp. Gr. .9993 At .00 Breistivity 152 No .01 Sp. Gr. .9993 At .00 T Breistivity .01 Sp. .05	Analysis No. 1-10308	Date
Field Blanco Formation Sampled From 60' Date Sampled *8-24-81 By B.T. Thg. Press. Cag, Surface Cag. Press. ppm epm organization Sodium 1403 61.0 Chloride 18 0.5 Calcium 342 17.1 Bicarbonate 81 1.3 Magnesium 21 1.7 Sulfate 3750 78.0 Iron Carbonate 0 0 0 Rg Hydroxide 0 0 0 res: R. A. Ullrich Bydroxide 5,520 9 R. Paulek J. W. McCarthy J. Bevans 9 Sp. Gr9993 At 6007 J. D. Evans W. B. Shropshire D. Grist Sp. Gr9993 At 730F HC03 taken to 4.0 Dennis P. Bird GrZ f Chemist Na 25 20 15 10 5 0 10 15 20 25 C1 Na 40 10 10	Operator El Paso Natural Gas	Well Name Hardie E-1A CPS 406 W
Sampled From 60' Date Sampled *8-24-81 By B.T. Thg. Press. Csg. Surface Csg. Press. ppm epm Sodium 1403 61.0 Chloride 18 0.5 Sodium 1403 61.0 Chloride 18 0.5 Sodium 1403 61.0 Chloride 18 0.5 Calcium 342 17.1 Bicarbonate 81 1.3 Magnesium 21 1:7 Sulfate 3750 78.0 Iron Carbonate 0 0 0 Hg 11:7 Sulfate 3750 78.0 Iron Carbonate 0 0 0 Hg 78.0 0 0 Se: R. A. Ullrich E. R. Paulek 5,520 E. J. D. Evans Sp. Gr9993 At	Location SE 16-28-8	County San Juan State New Mexico
Date Sampled *8-24-81 By B.T. Fbg. Press. Csg. Surface Csg. Press. epm Sodium 1403 61.0 Chloride 18 0.5 Sodium 1403 61.0 Chloride 18 0.5 Calcium 342 17.1 Bicarbonate 81 1.3 Magnèsium 21 1:7 Sulfate 3750 78.0 Iron Carbonate 0 0 0 Hg 3750 78.0 0 0 Resistivite 0 0 0 0 Hg 7.8 5,520 0 5,520 Sp. Gr. 9993 At 60°F N. B. Shropshire Sp. Gr. 9993 At 73°F HC03 taken to 4.0 Dennis P. Bird (7.25' Chemist 73°F 10 15 20 25 Cl Sa 4 4 4 4 4 4 4 Ag 4 4 4 4 4 4 4 Solution 15 10 15 20 25 Cl	FieldBlanco	Formation
Thg. Press. Csg. Surface Csg. Press. ppm epm 0.5 Sodium_1403 61.0 Chloride_18 0.5 Calcium_342 17.1 Bicarbonate_81 1.3 Magnesium 21 1.7 Sulface 3750 78.0 Iron Carbonate_0 0 H2S Bidarbonate 0 0 H2S Bydroxide 0 0 Lo EVans By. Gr9993 At 60°P HCO3 taken to 4.0 Dennis P. Bird (7.2.5) Na 25 20 15 10 15 20 25 cl Na 25 20 15 10 15 20 25 cl Na 25 20 15 10 15 20 25 cl Na Ga Ga Ga	Sampled From 60'	
Charlen Big Case,	Date Sampled *8-24-81	By B.T.
ppm. epm. ppm. epm. o.5 Calcium342 17.1 Bicarbonate0 0. 1.3 3	The Press. Coo	g. Surface Csg. Press.
Calcium 342 17.1 Bicarbonate 81 1.3 Magnèsium 21 1.7 Sulfate 3750 78.0 Iron Carbonate 0 0 Magnèsium 21 1.7 Sulfate 3750 78.0 Iron Carbonate 0 0 Magnèsium 21 1.7 Sulfate 3750 78.0 Iron Carbonate 0 0 Magnèsium 21 1.7 Sulfate 3750 78.0 Iron Carbonate 0 0 0 Magnèsium 21 Bicarbonate 0 0 0 Magnèsium 21 Intropic 10 Carbonate 0 0 Magnèsium 20 Bicarbonate 10 0 0 N. B. Shropshire P. Gr 9993 At 60°F D. C. Adams File Resistivity 152 ohm-cm at 73°F HCO3 taken to 4.0 Dennis P. Bird (7.2 \$ Ia 25 15 10 5 10 15 20 25 C1 Ia 4 4 4 4 4 4 4 4 4 4	ppm epm epm sodium 1403 61.0	Chloride · 18 • 0.5
Magnesium 21 1:7 Sulfate 3750 78.0 Iron Carbonate 0 0 Magnesium 21 1:7 Sulfate 3750 78.0 Iron Carbonate 0 0 Magnesium 21 1:7 Sulfate 3750 78.0 Iron Carbonate 0 0 Magnesium 21 1:7 Sulfate 3750 78.0 Magnesium 21 Iron 0 0 Magnesium 21 Iron 0 0 Magnesium 21 Iron 0 0 Magnesium 21 Iron 1:7 Sulfate 0 0 Magnesium 21 Iron Total Solids Dissolved 5,520 5,520 PH 7.8 5p. Gr9993 At	· · · · ·	
Iron Carbonate 0 0 H2S Hydroxide 0 0 H2S Total Solids Dissolved 5,520 H2S Paulek J. W. McCarthy PH 7.8 J. D. Evans Sp. Gr. .9993 At 60°F W. B. Shropshire Sp. Gr. .9993 At 60°F D. C. Adams File Resistivity 152 ohm-cm at 73°F HCO3 taken to 4.0 Dennis P. Bird CZ £ Classical formula f		
$H_{2}S = 0 0$ c: R. A. Ullrich E. R. Paulek J. W. McCarthy J. D. Evans W. B. Shropshire D. C. Adams File HCO ₃ taken to 4.0 $Ia = 25 20 15 10 5 0 5 10 15 20 25 c1$ $Ia = 25 20 15 10 5 0 5 10 15 20 25 c1$ $Ia = 25 20 15 10 5 0 5 10 15 20 25 c1$ $HCO_{3} = 10 5 0 5 10 15 20 25 c1$ $HCO_{3} = 10 5 0 5 10 15 20 25 c1$ $HCO_{3} = 10 5 0 5 10 15 20 25 c1$ $HCO_{3} = 10 5 0 5 10 15 20 25 c1$ $HCO_{3} = 10 5 0 5 10 15 20 c5$ $HCO_{3} = 10 5 0 5 10 15 20 c5$ $HCO_{3} = 10 5 0 5 10 15 20 c5$		
c: R. A. Ullrich E. R. Paulek J: W. McCarthy J. D. Evans W. B. Shropshire D. C. Adams File HCO ₃ taken to 4.0 25 20 15 10 5 0 5 10 15 20 25 cl a 25 20 15 10 5 0 5 10 15 20 25 cl a a b a a b b a b a b a b a b a b a b a b a b a b c a b a b c b a b c c a b c c c c a b c c c c c c c c c c c c c	· · · · · · · · · · · · · · · · · · ·	
E. R. Paulek J: W. McCarthy J. D. Evans W. B. Shropshire D. C. Adams File HCO ₃ taken to 4.0 152 0 15 10 5 0 5 10 15 20 25 Cl 1a 25 20 15 10 5 0 5 10 15 20 25 Cl 1a 16 16 10 15 20 25 Cl 1a 16 10 15 20 25 Cl 1a 16 10 15 20 25 Cl 1a 10 15 20 25 Cl 10 15 20 25 Cl 10 15 20 25 Cl 10 15 20 25 Cl 10 10 10 10 10 10 10 10	•	Section 2.
J. D. Evans W. B. Shropshire D. C. Adams File HCO_3 taken to 4.0 $Ia = \frac{25}{10} = 20$ 15 10 5 0 5 10 15 20 25 C1 $Ia = \frac{25}{10} = 20$ 15 10 5 0 5 10 15 20 25 C1 $Ia = \frac{25}{10} = 15$ 10 5 0 5 10 15 20 25 C1 $Ia = \frac{25}{10} = 15$ 10 5 0 5 10 15 20 25 C1 $Ia = \frac{10}{10} = 15$ 20 25 C1 HCO_3 SOL HCO_3 SOL	E. R. Paulek	
W. B. Shropshire D. C. Adams File HCO_3 taken to 4.0 ICO_3 taken take	J. D. Evans	and the second se
HCO ₃ taken to 4.0 $\frac{\text{Dennis P. Bird}}{\text{Chemist}}$ $\frac{25}{10} = \frac{20}{15} = \frac{10}{10} = \frac{5}{10} = \frac{0}{15} = \frac{10}{10} = \frac{15}{10} = \frac{25}{10} = \frac{10}{15} = \frac{20}{10} = \frac{25}{10} = \frac{10}{10} $	D. C. Adams	
$ \frac{25}{10} = \frac{20}{15} = \frac{10}{10} = \frac{5}{10} = \frac{0}{15} = \frac{10}{10} = \frac{15}{10} = \frac{20}{15} = \frac{25}{10} = \frac{10}{10} = \frac{15}{10} = \frac{20}{10} = \frac{25}{10} = \frac{10}{10} = \frac{10}$		
Ia - III + IIII + IIIII + IIIIII	····· 3 ······	and the second
$a = \frac{1}{1000} + \frac{1}{1000} +$		
$\mathbf{x}_{\mathbf{x}} = \frac{1}{1} + $		5 0 5 10 15 20 25
se - Co ₃		
re - Hull and the second secon		
	e -tomonologian	

Released to Imaging: 12/9/2022 10:52:17 AM

Received by 706D9-11/29/2022 7:12:34 AM

El Paso Natural Gas Company ENGINEERING CALCULATION Page 36 76262

SE-16-29-8 406 W EIA 57651-21-50-20 HARDIE HARDIE 54215-19-500 WATERAT 60 WATER SAND AT 200 40' PLAIN VENT PIPE BALANCE PERFORATED MW oals/mol 16.04 C1 8.4 DRACED TO 360' LOGED TO 359 7 30.07 10.12 C₂ 44.10 C3 10.42 58.12 IC4 12.38 58.12 nCa 11.93 72.15 (Ca 13.85 72.15 nCa 13.71 86.18 15.50 ICe 66.18 15.57 Ce 60 <u>146</u> ビエ 1 Z I 60 100.21 iC7 17.2 100.21 17.48 C7 146 160 119 65 65 65 114.23 Ca 19.39 163 142 28.05 9.64 70 111 70 7 Co 42.08 Cri 9.67 141 25 103 75 155 75 181 80 143 141 80 80 15 139 158 85 181 85 130 138 90 90 165 10 132 95 107 95 81 129 107 130 2.00 102 100 800 5 109 141 5 186 - ID \$ 267 D 150 10 10 140 288 135 158 15 15 15 Z89 136 Z13 20 ZD ZD 25 ____ Z76 140 191 25 25 9-142 180 Z69 30 30 30 S. 163 1.88 157 35 3 35 MISC. gals/mol мw 1.33 133 40 145 40 40 32.00 02 3.37 186 16Z 120 45 45 45= 28.01 CO 4.19 -8 44.01 CO2 6.38 SO: 175 150 .60 50 50 64.08 SO2 5.50 **1** 359 7D 34.08 H₂S 5.17 28.01 N₂ 4.16 2.02 3.38 H₂ VOL 75= 11.92 AMPS= 16.4 Sm = .72 320' 221 3.25]: 275 300' - 1.76 Z: 3. 280 1.45. 2.60 260' 4: Z.73 1.63 5= 230' 1.50 2.70 280 158 6 = 2.62 1,75 180 7. 3.04 1.11 8 = 140 3.05 9 : 2.96 125 4.63 1.76 105 10 = 3.00 TOTAL
Page 3	37 of	<i>162</i>
--------	-------	------------

Received by OCD:	11/29/2022 7	:12:34 AM		
•		1.3	<u> </u>	

#1 = 30-045-07496 #7 = 30-045-20918 4785

DATA SHEET FOR DEEP GROUND BED CATHODIC PROTECTION WELLS NORTHWESTERN NEW MEXICO (Submit 3 copies to OCD Aztec Office)

Operator <u>MERIDIAN OIL</u>	Location: Unit <u>NE</u> Sec. <u>16_Twp_28_Rng_8</u>
Name of Well/Wells or Pipeline Serv:	iced <u>HARDIE E #1, #7</u>
·	cps 652w
Elevation_6441 Completion Date_8/10/73	Total Depth <u>560'</u> Land Type*N/A
Casing, Sizes, Types & Depths <u>N/A</u>	
If Casing is cemented, show amounts	& types used <u>N/A</u>
If Cement or Bentonite Plugs have be	een placed, show depths & amounts used
	th description of water when possible:
Depths gas encountered:N/A	
Type & amount of coke breeze used:	8600 lbs.
Depths anodes placed: 537', 529', 521	<u>, 513', 505', 497', 489', 481', 473', 390', 37</u>
Depths vent pipes placed: N/A	<u> </u>
Vent pipe perforations: 200'	MAY 27 1001
Remarks:	OIL CON. DIV
	DIST_2

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

*Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

Page 38 of 162 ceived by OCD: 11/29/2022 7:12:34 AM El Paso Natural Gas Company WELL CASING Form 7-238 (Rev. 1-69) CATHODIC PROTECTION CONSTRUCTION REPOR DAILY LOG 0-75 ompletion Date Drilling Log (Attach Hereto). CPS No. Location NE16-28-8 65ZU Edl EE#1 Type & Size Bit Used Work Order No 674 53169855166 Total Drilling Rig Time otal Lbs, Coke Used Lost Circulation Mat'l Used No. Sacks Mud Us # 2 S Z 9 # 3 S Z / # 4 S I 3 # 5 S O S # 6 4 9 7 # 7 4 8 9 # 8 4 8 1 # 9 4 7 3 # 10 3 9 8 #21.6. #31.4 #41.1 #51.5 #61.6 #71.5 #81.2 #91.1 # 10**/, /** 370 # 12360 # 13 # 20 # 14 # 15 # 16 # 17 # 18 # 19 Anode Output (Amps 1.5 |# 12 *|.5* # 14 # 15 # 16 # 17 # 18 # 19 # 20 Total Circuit Resistand No. 8 C.P. Cable Used No. 2 C.P. Cable Used Amps 6.5 Ohms 1.75 Volts Remarks: Vent Perf. 200; Pump 63 Slurry 23 Total 86 Driller Said wet at 340-360, Drill to 440, Return Stopped Pull up & Remove Boot at 340, Blew water out at 40. ON way Back to Bottom, Driller Said Coming From 340 wtr. injection to 550, Change to Mody Drill to 560 Lost Circ. All Construction Completed (Signature) GROOND BED LAYOUT SKETCH 2230-×#1 3358 134 34 Ta 5492,94 Original & 1 Copy All Reports

Released to Imaging: 12/9/2022 10:52:17 AM

LEASE	Hordi	WELL NO.	E#/ #	ATCON	ITRACTOR	m	Man	/	F	RIG NO.		REPO	DRT N	0.	DAT	re 🐅 🗄	10
	•	MORNING				•	D	AYLIGHT						Ę	VENING		201
Driller		Total Men In			Driller				Total Men Ir	Crew		Dtiller				Total Men	In Cre
FROM	to	FORMATION	WT-BIT	R.P.M.	FROM		то <u>(;)</u>		FORMATION	WT-BIT	R.P.M.	FROM		то	FO	RMATION	
0		By Sand Wat Sand (Wand			531	5	60	5-	L	_		ļ			_	े । 	
740		Wit Sout (Weak	Hot)						·								· . · · ·
360	500	South						· · · · · · · · · · · · · · · · · · ·		_	ļ						•
300	530	_ shk														-	
		NO. OCSIZE	L	ENG	·			N	10. OCSIZE	LEN	1G	·				D. DCSI2	
NT NO.		NO. DC SIZE	L{	ENG	BIT NO.			N	10. DCSIZE	LEN	IG	BIT NO.			NC	D. DCSI	ZE
ERIAL NO.		STANDS			SERIAL NO	•			STANDS			SERIAL NO.				STANDS	<u></u>
<u>NZE</u>		SINGLES			SIZE TYPE				SINGLES	.		SIZE				SINGLES	بمبحب
		DOWN ON KELLY			1				OWN ON KELLY			TYPE				WN ON KELL	
	RECORD	MUD, ADDITIVES USED		EIVED	MAKE	RECORD			TOTAL DEPTH		¥50	MAKE	RECORD			TOTAL DEPT	
Time	Wt. Vis.		AND REC		Time	Wt.	Vis.	MOD, /	ADDITIVES USED	ANDRECEI	VED	Time	Wt.	Vis.	MUD, AL	DITIVESUSE	ED AN
																. ·	
																	. ar),
			_														
																	2
FROM	то		WN		FROM	то			TIME BREAKDO	WN		FROM	то		•	TIME BREAK	DOWN
										·····				_		î	-
																· · · ·	
					 		-							1		·.	
											<i>,</i>					·	
					<u> </u>							ļl	· · · · · · · · · · · · · · · · · · ·				<u></u>
REMARKS	-			• • • • • • • • • • • • • • • • • • •	REMARK	s –			-			REMARKS	5		,	<u> </u>	· · ·
										*		[,
		·····, ·······························															
·										· · · · ·							
			•	· · · · · ·													<u>ei .</u>
										<u> </u>							Š
										 ,	·· ··						
	<u>. </u>									<u>.</u>				• •		24	<u></u>
		<u></u>		.	J)					I			•		
				SIGN	ED: Toolpust		-	m	r		C	Company Superv	/isor				
																•	

Released to Imaging: 12/9/2022 10:52:17 AM

EL PASO NATURAL GAS COMPANY

ENGINEERING DEPARTMENT

			_	,	<u> </u>			<u>a</u>																				
	·	0	<u>5 (</u>	<u>. u</u>	_	-	1	8-	10	<u></u>	3	T			1				-		1		_	<u>) ()</u>			L	
	3	50		5	ļ		5	30	1	7								11								Pet.		
				8.	ŀ				2	Z	h.,						C,	hNg	+0	w	418	N	ed.	10	55	to;	<u>To 5</u>	6
26.455		60	1	0	+-			40	2	ī							(100	1/0	(u'I	4	ee,	p C	ic	-			
	· • ·		1	1:				43	1	8									p,				1	\$ 6	1	1.		ļ
		70		9	·			44	1.0										109				21	1				Γ
				1					-						,		ſ		1.7		ai	, I		mf	17	139	30'	T
		80		.6		1		>,	bi	10	5	10	7 6	4/7	4			h.,	11	44		F	1.11	F	1		em	
			: : • . *	.8												1		B				1	0.	har	Ĩ	34	1	Ť
		90		.8	<u> </u>			1	<u> </u>									1	w			1	TT			90		Ţ
		10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7			+	· · · ·	<u> </u>	+									ck						1	N.	1 1	ŧ١.
	Ų	00		7			<u> </u>	<u> </u>	-									20	C/C	-			m	6	1	ky 10	1	<u>n</u>
		1127) 1127) 1127)		7	<u>†</u>	+	<u> </u>		<u>r</u>	+								$\frac{w}{1}$	ř		nn		<u>F</u>	10 %	<u>n</u> a	40	<u> </u>	+
		10		7		-			-		ļ	 .				>			nt				<u> </u> _	-		17	1	┢
		N	<u> </u>		<u> </u>		-			ļ					<i></i>	Un	קי	6	3		5/0	"	7 2	3	Z	0+0		8
	/	2	<u>.</u>	.7										[/	<u> </u>	+	<u> </u>	 	 	╞
	~	20	1.1	7	. 							 		ļ		12		60		ŀΔ'	· ·	J:2	 	15	Ľ	┣	<u> </u>	+
			 	6	<u> </u>	/					<u> </u>	. 				[]		70	ļ	_9		1.0	_	1.5	 	<u> </u>	<u> </u>	╞
	3 3 3 5 1	30		6	<u> </u>	1	<u> </u>		-	-						Ю	3	90		8		8		Į. Ľ		.	<u> </u>	╞
			1 () 1 () 1 ()	b	ļ	<u> </u>		-					ļ			9:	4	73		8		. 8	_	1.1			ļ	╞
		40		6		ļ	ļ	ļ				 				8	4	81)-		1.0		.9	\vdash	1.Z	. 	ļ	<u> </u>	
		3.4 		6	ļ											7	.ġ	89		11		1.0		1.5				
All Constants		50		6	Ľ						ļ					6	4	97		1.2		1.1		1.6				
			·	.6				-								1	5	05		.\$		1.0		1.5				
	3. 1	60		.7												Ļ	5	13		.8		.7		1.1				
	ر. وروانی کاری	2 2010-14-14	ς	.8	k											3		zr	;	10		9		1.4			, ,	ļ
		12	i.	.8												Ľ	Ŝ	29	۰.	1,6		10	,	1.6	·			1.
			•	.9	-				•							Ţ.		37	۰.	21		19		25	1			5
		60	1	0.										•													1 · 7	
Sec.	• •		1	1-	1												1. 1.	11.	4	V	6.2	1	q .	F ,	1.	25	ح	
		90	1	2-		1		<i>•</i> .												•								12.25
			1.	2	+			, î.									•	÷.			: .			1			3	
	-	00	<u>,</u>	Ö	<u> </u>	1	 							•				,					<u>†</u>					
				8			••				<u>`</u>						.7	5					†	+	•	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		5
		3		8	\downarrow		<u> </u>	,					3		1.,		<u>.</u>	<u>, </u>			_	,	┢──	<u> </u>	L Í			
	<u> </u>	V .V 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		8	-	ŀ							6	ب لد	11	45		•.				-	┢──					
		10	2. 1	· •		 								.: 		90								· ·				
		20	1	0	1				₩ °**•						<u>۲</u>	<u>'</u> ''			rie Stor		2 (2) 2011		1.1.1.					
	56		4	1:,	<u> </u> ≺∵			1.84		1					<u>, h</u> 7	يخي	3	F 0	23) 23 - 53 23 - 53				2	<u> </u>	¥.,14			12

Released to Imaging: 12/9/2022 10:52:17 AM

APPENDIX C

Executed C-138 Solid Waste Acceptance Form Received by OCD: 11/29/2022 7:12:34 AM

District I 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

*Surface Waste Management Facility Operator and Generator shall maintain and make this documentation available for Division inspection.

1220 S. St. Francis Dr., Santa Fe, NM 87505	Santa Fe, NM 87505	97057-1125
REQUES	T FOR APPROVAL TO ACC	EPT SOLID WASTE
1. Generator Name and Address: Enterprise Field Services, LLC, 614	Reilly Ave, Farmington NM 87401	PayKey: EM20767 PM: ME Eddleman AFE: A60143
2. Originating Site: Jones ALS #7		
 Location of Material (Street Add UL E Section 15 T28N R8W; 36. 	ress, City, State or ULSTR): 664887, -107.674524	Aug /Sup 2022
4. Source and Description of Waste Source: Remediation activities assoc Description: Hydrocarbon/Condensate Estimated Volume <u>50</u> yd ³ / bbls K	: iated with a natural gas pipeline leak. impacted soil associated natural gas pipeline nown Volume (to be entered by the operator a	J
5. GENER	RATOR CERTIFICATION STATEMENT	OF WASTE STATUS
Generator Signature certify that according to the Resource C regulatory determination, the above des	scribed waste is: (Check the appropriate classi	he US Environmental Protection Agency's July 1988 fication)
	es generated from oil and gas exploration and nly: Waste Acceptance Frequency [] Mont	production operations and are not mixed with non- thly Weekly Per Load
characteristics established in RCRA	A regulations, 40 CFR 261.21-261.24, or listed	xceed the minimum standards for waste hazardous by d hazardous waste as defined in 40 CFR, part 261, e the above-described waste is non-hazardous. (Check
□ MSDS Information □ RCRA Ha	azardous Waste Analysis 🛛 🗆 Process Knowl	edge D Other (Provide description in Box 4)
GENERATOR 19.15.36.1	5 WASTE TESTING CERTIFICATION S	TATEMENT FOR LANDFARMS
I, Thomas Long 2-9-2022, r Generator Signature the required testing/sign the Generator	epresentative for Enterprise Products Operatir Waste Testing Certification.	ng authorizes Envirotech, Inc. to complete
친구님이 바다 가슴을 가슴을 가 들었다.		
have been found to conform to the spec	ntative for <u>Envirotech. Inc.</u> vaste have been subjected to the paint filter tes ific requirements applicable to landfarms purs ed to demonstrate the above-described waste c	do hereby certify that t and tested for chloride content and that the samples suant to Section 15 of 19.15.36 NMAC. The results conform to the requirements of Section 15 of
5. Transporter: TBD IME,	Rolling P, Sierra, CFAN	7
OCD Permitted Surface Waste Mana	gement Facility	
Address of Facility: Hilltop, NM Method of Treatment and/or Disposa	otech Inc. Soil Remediation Facility * Perm al: ajection 🔲 Treating Plant 🖾 Landfarm	
Waste Acceptance Status:		
	APPROVED D	ENIED (Must Be Maintained As Permanent Record)
PRINT NAME: Greg Crab SIGNATURE:	TELEPHONE NO.:	no MANAGUR DATE: 8/10/22
Surface waste Management	Facility Authorized Agent	505-632-0615

Form C-138 Revised 08/01/11

APPENDIX D

Photographic Documentation

Released to Imaging: 12/9/2022 10:52:17 AM

Closure Report Enterprise Field Services, LLC Jones A LS #7 (08/15/22) Ensolum Project No. 05A1226196

Photograph 1 Photograph Description: View of the excavation (first sampling event). Photograph 3 Photograph Description: View of the excavation (fourth sampling event).

Photograph 2

Photograph Description: View of the excavation (second sampling event).

Photograph 4

Photograph Description: View of the excavation (fifth and sixth sampling event).

Photograph 5

Photograph Description: View of the excavation (seventh sampling event).

Photograph 6

Photograph Description: View of the excavation (eighth sampling event).

Closure Report Enterprise Field Services, LLC Jones A LS #7 (08/15/22) Ensolum Project No. 05A1226196

Photograph 7

Photograph Description: View of the site after initial restoration.

APPENDIX E

Regulatory Correspondence

Released to Imaging: 12/9/2022 10:52:17 AM

From:	Kyle Summers
To:	Landon Daniell
Cc:	Ranee Deechilly
Subject:	FW: [EXTERNAL] Jones A LS#7 - UL E Section 15 T28N R8W; 36.664887, -107.674524; Incident # nAPP2222735338
Date:	Wednesday, September 14, 2022 8:45:37 AM

Kyle Summers Principal 903-821-5603 Ensolum, LLC

-----Original Message-----From: Velez, Nelson, EMNRD <Nelson.Velez@state.nm.us> Sent: Wednesday, September 14, 2022 8:45 AM To: Long, Thomas <tjlong@eprod.com> Cc: Ryan Joyner <rjoyner@blm.gov>; Kyle Summers <ksummers@ensolum.com>; Stone, Brian <bmstone@eprod.com> Subject: RE: [EXTERNAL] Jones A LS#7 - UL E Section 15 T28N R8W; 36.664887, -107.674524; Incident # nAPP2222735338

[**EXTERNAL EMAIL**]

Tom,

Thank you for the notice. Your variance request is approved.

If an OCD representative is not on-site on the date &/or time given, please sample per 19.15.29 NMAC. For whatever reason, if the sampling timeframe is altered, please notify the OCD as soon as possible so we may adjust our schedule(s). Failure to notify the OCD of this change may result in the closure sample(s) not being accepted.

Please keep a copy of this communication for inclusion within the appropriate report submittal.

Regards

Nelson Velez • Environmental Specialist - Adv Environmental Bureau | EMNRD - Oil Conservation Division 1000 Rio Brazos Road | Aztec, NM 87410 (505) 469-6146 | nelson.velez@state.nm.us

Office Hrs.: 7:00am – 12:00pm & 1:00 – 3:30 pm Mon.–Thur. 7:00am – 12:00pm & 1:00 – 4:00 pm Fri.

-----Original Message-----From: Long, Thomas <tjlong@eprod.com> Sent: Tuesday, September 13, 2022 4:00 PM To: Velez, Nelson, EMNRD <Nelson.Velez@state.nm.us> Cc: Ryan Joyner <rjoyner@blm.gov>; Kyle Summers <ksummers@ensolum.com>; Stone, Brian

stone@eprod.com>
Subject: RE: [EXTERNAL] Jones A LS#7 - UL E Section 15 T28N R8W; 36.664887, -107.674524; Incident #
nAPP2222735338

Nelson/Ryan,

This email is a notification and a variance request. Enterprise is requesting a variance for required 48 hour notification per 19.15.29.12D (1a) NMAC. Enterprise would like to collect partial closure samples tomorrow September 14, 2022 at 10:00 a.m. at the Jones A LS#7 excavation. Please acknowledge acceptance of this variance request. If you have any questions, please call or email.

Thomas J. Long Senior Environmental Scientist Enterprise Products Company 614 Reilly Ave. Farmington, New Mexico 87401 505-599-2286 (office) 505-215-4727 (Cell) tjlong@eprod.com

-----Original Message-----From: Velez, Nelson, EMNRD <Nelson.Velez@state.nm.us> Sent: Friday, September 9, 2022 1:21 PM To: Long, Thomas <tjlong@eprod.com> Cc: Ryan Joyner <rjoyner@blm.gov>; Kyle Summers <ksummers@ensolum.com>; Stone, Brian <bmstone@eprod.com> Subject: RE: [EXTERNAL] Jones A LS#7 - UL E Section 15 T28N R8W; 36.664887, -107.674524; Incident # nAPP2222735338

[Use caution with links/attachments]

Tom,

Thank you for the notice. If an OCD representative is not on-site on the date &/or time given, please sample per 19.15.29 NMAC. For whatever reason, if the sampling timeframe is altered, please notify the OCD as soon as possible so we may adjust our schedule(s). Failure to notify the OCD of this change may result in the closure sample(s) not being accepted.

Please keep a copy of this communication for inclusion within the appropriate report submittal.

Regards

Nelson Velez • Environmental Specialist - Adv Environmental Bureau | EMNRD - Oil Conservation Division 1000 Rio Brazos Road | Aztec, NM 87410 (505) 469-6146 | nelson.velez@state.nm.us

Office Hrs.: 7:00am – 12:00pm & 1:00 – 3:30 pm Mon.–Thur. 7:00am – 12:00pm & 1:00 – 4:00 pm Fri.

-----Original Message-----From: Long, Thomas <tjlong@eprod.com> Sent: Friday, September 9, 2022 12:14 PM To: Velez, Nelson, EMNRD <Nelson.Velez@state.nm.us> Cc: Ryan Joyner <rjoyner@blm.gov>; Kyle SummersCc: Ryan Joyner <rjoyner@blm.gov>; Kyle Summers<bmstone@eprod.com>Subject: Re: [EXTERNAL] Jones A LS#7 - UL E Section 15 T28N R8W; 36.664887, -107.674524; Incident #
nAPP2222735338

Nelson/Ryan,

This email is a notification that Enterprise will be collecting closure samples on September 12, 2022 at 1:00 p.m. at the Jones A LS#7 excavation. If you have any questions, please call or email.

Tom Long

> Regards

```
> On Sep 7, 2022, at 11:06 AM, Velez, Nelson, EMNRD <Nelson.Velez@state.nm.us> wrote:
> [Use caution with links/attachments]
> Tom,
> Tom,
> Thank you for the notice. Your variance request is approved.
> If an OCD representative is not on-site on the date &/or time given, please sample per 19.15.29 NMAC. For whatever reason, if the sampling timeframe is altered, please notify the OCD as soon as possible so we may adjust our schedule(s). Failure to notify the OCD of this change may result in the closure sample(s) not being accepted.
> Please keep a copy of this communication for inclusion within the appropriate report submittal.
```

> >> > Nelson Velez • Environmental Specialist - Adv Environmental Bureau | > EMNRD - Oil Conservation Division > 1000 Rio Brazos Road | Aztec, NM 87410 > (505) 469-6146 | nelson.velez@state.nm.us > > Office Hrs.: > 7:00am - 12:00pm & 1:00 - 3:30 pm Mon.-Thur. > 7:00am - 12:00pm & 1:00 - 4:00 pm Fri. > > ----- Original Message-----> From: Long, Thomas <tjlong@eprod.com> > Sent: Wednesday, September 7, 2022 10:31 AM > To: Velez, Nelson, EMNRD < Nelson. Velez@state.nm.us>; Ryan Joyner > <rjoyner@blm.gov> > Cc: Kyle Summers <ksummers@ensolum.com>; Stone, Brian > <bmstone@eprod.com> > Subject: RE: [EXTERNAL] Jones A LS#7 - UL E Section 15 T28N R8W; > 36.664887, -107.674524; Incident # nAPP2222735338 >> Nelson/Ryan, >

> This email is a notification and a variance request. Enterprise is requesting a variance for required 48 hour notification per 19.15.29.12D (1a) NMAC. Enterprise would like to collect partial closure samples tomorrow September 8, 2022 at 9:00 a.m. at the Jones A LS#7 excavation. Please acknowledge acceptance of this variance

request. If you have any questions, please call or email. > > Thomas J. Long > Senior Environmental Scientist > Enterprise Products Company > 614 Reilly Ave. > Farmington, New Mexico 87401 > 505-599-2286 (office) > 505-215-4727 (Cell) > tjlong@eprod.com > > > > > ----- Original Message-----> From: Velez, Nelson, EMNRD < Nelson. Velez@state.nm.us> > Sent: Thursday, September 1, 2022 12:08 PM > To: Long, Thomas <tjlong@eprod.com>; Ryan Joyner <rjoyner@blm.gov> > Cc: Kyle Summers <ksummers@ensolum.com>; Stone, Brian > <bmstone@eprod.com> > Subject: RE: [EXTERNAL] Jones A LS#7 - UL E Section 15 T28N R8W; > 36.664887, -107.674524; Incident # nAPP2222735338 > > [Use caution with links/attachments] > > Tom. > > Thank you for the notice. Your variance request is approved. > > If an OCD representative is not on-site on the date &/or time given, please sample per 19.15.29 NMAC. For whatever reason, if the sampling timeframe is altered, please notify the OCD as soon as possible so we may adjust our schedule(s). Failure to notify the OCD of this change may result in the closure sample(s) not being accepted. > > Please keep a copy of this communication for inclusion within the appropriate report submittal. > > Regards >> > Nelson Velez • Environmental Specialist - Adv Environmental Bureau | > EMNRD - Oil Conservation Division > 1000 Rio Brazos Road | Aztec, NM 87410 > (505) 469-6146 | nelson.velez@state.nm.us >> Office Hrs.: > 7:00am - 12:00pm & 1:00 - 3:30 pm Mon.-Thur. > 7:00am - 12:00pm & 1:00 - 4:00 pm Fri. > > ----- Original Message-----> From: Long, Thomas <tilong@eprod.com> > Sent: Thursday, September 1, 2022 12:04 PM > To: Velez, Nelson, EMNRD < Nelson. Velez@state.nm.us>; Ryan Joyner > <rjoyner@blm.gov> > Cc: Kyle Summers <ksummers@ensolum.com>; Stone, Brian > <bmstone@eprod.com> > Subject: Fwd: [EXTERNAL] Jones A LS#7 - UL E Section 15 T28N R8W; > 36.664887, -107.674524; Incident # nAPP2222735338 >

>

>

> >

>

>

>

>

> > > >

>

>

>

```
> Nelson/Ryan,
> This email is a notification and a variance request. Enterprise is
> requesting a variance for required 48 hour notification per
> 19.15.29.12D (1a) NMAC. Enterprise would like to collect partial
> closure samples tomorrow September 2, 2022 at 9:00 a.m. at the Jones A
> LS#7 excavation. Please acknowledge acceptance of this variance
> request. If you have any questions, please call or email
> Tom Long
> Begin forwarded message:
> From: "Long, Thomas" <tilong@eprod.com>
> Date: August 25, 2022 at 11:05:00 AM MDT
> To: "Velez, Nelson, EMNRD" <Nelson.Velez@state.nm.us>
> Cc: Ryan Joyner <rjoyner@blm.gov>, "Stone, Brian" <br/> <br/>bmstone@eprod.com>,
> Kyle Summers <ksummers@ensolum.com>
> Subject: RE: [EXTERNAL] Jones A LS#7 - UL E Section 15 T28N R8W;
> 36.664887, -107.674524; Incident # nAPP2222735338
> Nelson/Ryan,
> This email is a notification and a variance request. Enterprise is requesting a variance for required 48 hour
notification per 19.15.29.12D (1a) NMAC. Enterprise would like to collect partial closure samples tomorrow
August 26, 2022 at 10:00 a.m. at the Jones A LS#7 excavation. Please acknowledge acceptance of this variance
request. If you have any questions, please call or email.
> Thomas J. Long
> Senior Environmental Scientist
> Enterprise Products Company
> 614 Reilly Ave.
> Farmington, New Mexico 87401
> 505-599-2286 (office)
> 505-215-4727 (Cell)
> tjlong@eprod.com
>-----Original Message-----
> From: Velez, Nelson, EMNRD < Nelson. Velez@state.nm.us>
> Sent: Friday, August 19, 2022 3:08 PM
> To: Long, Thomas <tjlong@eprod.com>
> Cc: Ryan Joyner <rjoyner@blm.gov>; Stone, Brian <br/>bmstone@eprod.com>;
> Kyle Summers <ksummers@ensolum.com>
> Subject: RE: [EXTERNAL] Jones A LS#7 - UL E Section 15 T28N R8W;
> 36.664887, -107.674524; Incident # nAPP2222735338
> [Use caution with links/attachments]
> Tom,
```

> Thank you for the notice. If an OCD representative is not on-site on the date &/or time given, please sample per 19.15.29 NMAC. For whatever reason, if the sampling timeframe is altered, please notify the OCD as soon as

possible so we may adjust our schedule(s). Failure to notify the OCD of this change may result in the closure sample(s) not being accepted. > > Please keep a copy of this communication for inclusion within the appropriate report submittal. > > Regards > >> > Nelson Velez • Environmental Specialist - Adv Environmental Bureau | > EMNRD - Oil Conservation Division > 1000 Rio Brazos Road | Aztec, NM 87410 > (505) 469-6146 | nelson.velez@state.nm.us >> Office Hrs.: > 7:00am - 12:00pm & 1:00 - 3:30 pm Mon.-Thur. > 7:00am - 12:00pm & 1:00 - 4:00 pm Fri. > > ----- Original Message-----> From: Long, Thomas <tilong@eprod.com> > Sent: Friday, August 19, 2022 12:51 PM > To: Velez, Nelson, EMNRD <Nelson.Velez@state.nm.us> > Cc: Ryan Joyner <rjoyner@blm.gov>; Stone, Brian
bmstone@eprod.com>; > Kyle Summers <ksummers@ensolum.com> > Subject: Re: [EXTERNAL] Jones A LS#7 - UL E Section 15 T28N R8W; > 36.664887, -107.674524; Incident # nAPP2222735338 > > Nelson/Ryan, > > The email is a notification that Enterprise will be collecting soil samples at the Jone A LS #7 excavation on Monday August 22, 2022 at 10:00 a.m. If you have any questions, please call or email. > > Tom Long > > > On Aug 17, 2022, at 1:45 PM, Velez, Nelson, EMNRD <Nelson.Velez@state.nm.us> wrote: > > [Use caution with links/attachments] > > Tom, > > Thank you for the notice. Your variance request is approved. > If an OCD representative is not on-site on the date &/or time given, please sample per 19.15.29 NMAC. For whatever reason, if the sampling timeframe is altered, please notify the OCD as soon as possible so we may adjust our schedule(s). Failure to notify the OCD of this change may result in the closure sample(s) not being accepted. > > Please keep a copy of this communication for inclusion within the appropriate report submittal. > > The OCD requires a copy of all correspondence relative to remedial activities be included in all proposals and/or final closure reports. Correspondence required to be included in reports may include, but not limited to, notifications for liner inspections, sample events, spill/release/fire, and request for time extensions or variances. >

> Regards

- >
- >
- >

>

>

>

>

>

> >

>

> >

>

>

>

>

>> >

> Nelson Velez • Environmental Specialist - Adv Environmental Bureau | > EMNRD - Oil Conservation Division > 1000 Rio Brazos Road | Aztec, NM 87410 > (505) 469-6146 | nelson.velez@state.nm.us > Office Hrs.: > 7:00am - 12:00pm & 1:00 - 3:30 pm Mon.-Thur. > 7:00am - 12:00pm & 1:00 - 4:00 pm Fri. > ----- Original Message-----> From: Long, Thomas <tilong@eprod.com> > Sent: Wednesday, August 17, 2022 12:41 PM > To: Velez, Nelson, EMNRD < Nelson. Velez@state.nm.us>; Ryan Joyner > <rjoyner@blm.gov>; Stone, Brian <bmstone@eprod.com>; Kyle Summers > <ksummers@ensolum.com> > Subject: Fwd: [EXTERNAL] Jones A LS#7 - UL E Section 15 T28N R8W; > 36.664887, -107.674524; Incident # nAPP2222735338 > Nelson/Ryan > This email is a notification and a variance request. Enterprise is requesting a variance for required 48 hour notification per 19.15.29.12D (1a) NMAC. Enterprise would like to collect partial closure samples tomorrow August 18, 2022 at 11:00 a.m. at the Jones A LS#7 excavation. Please acknowledge acceptance of this variance request. If you have any questions, please call or email. > Tom Long > Begin forwarded message: > From: "Velez, Nelson, EMNRD" < Nelson.Velez@state.nm.us> > Date: August 15, 2022 at 3:44:35 PM MDT > To: "Long, Thomas" <tjlong@eprod.com>, rjoyner@blm.gov > Cc: "Stone, Brian" <bmstone@eprod.com>, Kyle Summers > <ksummers@ensolum.com> > Subject: RE: [EXTERNAL] Jones A LS#7 - UL E Section 15 T28N R8W; > 36.664887, -107.674524; Incident # nAPP2222735338 > [Use caution with links/attachments] > Tom, > Thank you for the notice. Your variance request is approved. > If an OCD representative is not on-site on the date &/or time given, please sample per 19.15.29 NMAC. For whatever reason, if the sampling timeframe is altered, please notify the OCD as soon as possible so we may adjust our schedule(s). Failure to notify the OCD of this change may result in the closure sample(s) not being accepted. > Please keep a copy of this communication for inclusion within the appropriate report submittal. > Regards > Nelson Velez • Environmental Specialist - Adv Environmental Bureau | > EMNRD - Oil Conservation Division

> 1000 Rio Brazos Road | Aztec, NM 87410

> (505) 469-6146

> nelson.velez@state.nm.us<<u>mailto:nelson.velez@state.nm.us</u>>

- >
- > Office Hrs.:
- > 7:00am 12:00pm & 1:00 3:30 pm Mon.-Thur.
- > 7:00am 12:00pm & 1:00 4:00 pm Fri.
- >
- > From: Long, Thomas <tjlong@eprod.com>
- > Sent: Monday, August 15, 2022 2:52 PM
- > To: Velez, Nelson, EMNRD <Nelson.Velez@state.nm.us>; rjoyner@blm.gov
- > Cc: Stone, Brian

 bmstone@eprod.com>; Kyle Summers
- > <ksummers@ensolum.com>
- > Subject: [EXTERNAL] Jones A LS#7 UL E Section 15 T28N R8W;
- > 36.664887, -107.674524; Incident # nAPP2222735338

>

> CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

> Nelson/Ryan

>

> This email is a notification and a variance request. Enterprise is requesting a variance for required 48 hour notification per 19.15.29.12D (1a) NMAC. Enterprise would like to collect partial closure samples tomorrow August 16, 2022 at 2:00 p.m. at the Jones A LS#7 excavation. Please acknowledge acceptance of this variance request. If you have any questions, please call or email.

```
>
>
> Thomas J. Long
> Senior Environmental Scientist
> Enterprise Products Company
> 614 Reilly Ave.
> Farmington, New Mexico 87401
> 505-599-2286 (office)
> 505-215-4727 (Cell)
> tjlong@eprod.com<<u>mailto:tjlong@eprod.com</u>>
>
> [image001.jpg]
>
>
>
>
>
```

> This message (including any attachments) is confidential and intended for a specific individual and purpose. If you are not the intended recipient, please notify the sender immediately and delete this message.

APPENDIX F

Table 1 – Soil Analytical Summary

Released to Imaging: 12/9/2022 10:52:17 AM

E N S O L U M

							TADLE	1						
							TABLE ones A LS#7 (
							L ANALYTICA							
Sample I.D.	Date	Sample Type	Sample Depth	Benzene	Toluene	Ethylbenzene	Xylenes	Total BTEX ¹	TPH GRO	TPH DRO	TPH MRO	Total Combined TPH	Total Combined TPH	Chloride
		C- Composite G - Grab	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(GRO/DRO) ¹ (mg/kg)	(GRO/DRO/MRO) ¹ (mg/kg)	(mg/kg)
	Depa Inservation Div	eral & Natural I rtment rision Closure C nd Tier II)		10	NE	NE	NE	50	NE	NE	NE	Tier II - 1,000	Tier I (<4 feet) - 100 Tier II - 2,500	Tier I (<4 feet) - 600 Tier II - 10,000
				Composite So	oil Samples Re	moved by Exca	vation and Tra	nsported to the	Landfarm for I	Disposal/Reme	diation			
S-1	8.11.22	С	4	2.6	43	11	86	140	1,400	300	350	1,700	2,100	210
S-2	8.11.22	С	4	0.83	15	4.8	47	68	840	1,200	2,000	2,000	4,000	<60
S-3	8.11.22	С	4	<0.090	<0.18	<0.18	<0.36	ND	<18	<14	<47	ND	ND	<60
S-4	8.11.22	С	0 to 4	0.92	20	8.9	76	110	1,100	850	1,900	2,000	3,900	<60
S-5	8.11.22	С	0 to 4	<0.095	0.28	0.55	4.5	5.3	100	160	330	260	590	<60
S-7	8.11.22	С	0 to 4	<0.018	0.11	0.15	1.1	1.4	44	89	240	130	370	<60
S-8	8.11.22	С	0 to 4	0.31	9.0	3.8	36	49	660	260	270	920	1,200	<60
S-9	8.11.22	С	0 to 4	<0.015	0.099	0.14	4.9	5.1	90	210	150	300	450	<60
S-28	9.12.22	С	0 to 4	<0.017	<0.035	<0.035	0.16	0.16	4.5	130	100	130	230	<60
SP-3	8.11.22	С	Stockpile	<0.018	<0.036	0.043	0.47	0.51	9.8	43	220	53	270	<60
SP-4	8.11.22	С	Stockpile	<0.083	2.4	1.3	22	26	340	390	1,400	730	2,100	<60
					C	omposite Soil S	amples Collec	ted from Stockp	iled Soils					
SP-1	8.11.22	С	Stockpile	<0.018	<0.037	<0.037	<0.074	ND	<3.7	<14	<47	ND	ND	<60
SP-2	8.11.22	С	Stockpile	<0.016	<0.032	<0.032	<0.064	ND	<3.2	<15	<49	ND	ND	<60
						Excava	tion Composit	e Soil Samples						
S-6	8.11.22	С	0 to 4	<0.020	<0.039	<0.039	<0.079	ND	<3.9	<15	<49	ND	ND	<60
S-10	8.16.22	С	5.5	<0.017	<0.034	<0.034	<0.069	ND	<3.4	<15	<50	ND	ND	<61
S-11	8.16.22	С	5.5	<0.018	<0.035	<0.035	<0.071	ND	<3.5	22	<50	22	22	<60
S-12	8.16.22	С	0 to 5.5	<0.025	<0.051	<0.051	<0.10	ND	<5.1	<14	<48	ND	ND	<61
S-13	8.16.22	С	0 to 5.5	<0.019	<0.038	<0.038	<0.075	ND	<3.8	<14	<47	ND	ND	<60
S-14	8.18.22	С	0 to 5.5	<0.097	<0.19	<0.19	<0.39	ND	<19	<15	<49	ND	ND	<60
S-15	8.18.22	С	5.5	<0.077	<0.15	<0.15	<0.31	ND	<15	<15	<50	ND	ND	<59
S-16	8.22.22	С	5.5	<0.019	0.058	<0.038	0.27	0.33	6.4	<14	<47	6.4	6.4	<60
S-17	8.22.22	С	0 to 5.5	<0.018	<0.036	<0.036	<0.072	ND	<3.6	<14	<47	ND	ND	<60
S-18	9.02.22	С	11	<0.12	<0.24	<0.24	<0.48	ND	<24	<14	<46	ND	ND	<61
S-19	9.08.22	С	11	<0.089	<0.18	<0.18	<0.35	ND	<18	18	79	18	97	<60
S-20	9.08.22	С	11	<0.097	<0.19	<0.19	<0.39	ND	<19	<15	<49	ND	ND	<60
S-21	9.08.22	С	5.5 to 11	<0.091	<0.18	<0.18	<0.36	ND	<18	<14	<47	ND	ND	<60

ENSOLUM

							TABLE nes A LS#7 ANALYTICA	(08/15/22)						
Sample I.D.	Date	Sample Type C- Composite G - Grab	Sample Depth (feet)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	Total BTEX ¹ (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH MRO (mg/kg)	Total Combined TPH (GRO/DRO) ¹ (mg/kg)	Total Combined TPH (GRO/DRO/MRO) ¹ (mg/kg)	Chloride (mg/kg)
	Department	eral & Natural F rtment ision Closure C nd Tier II)		10	NE	NE	NE	50	NE	NE	NE	Tier II - 1,000	Tier I (<4 feet) - 100 Tier II - 2,500	Tier I (<4 feet) - 600 Tier II - 10,000
S-22	9.08.22	С	0 to 4	<0.098	<0.20	<0.20	<0.39	ND	<20	<15	<49	ND	ND	<60
S-23	9.08.22	С	4 to 11	<0.10	<0.20	<0.20	1.3	1.3	42	<14	<47	42	42	<60
S-24	9.08.22	С	0 to 4	<0.019	<0.038	<0.038	<0.075	ND	<3.8	<15	<49	ND	ND	<60
S-25	9.08.22	С	4 to 11	<0.018	<0.035	<0.035	<0.071	ND	<3.5	<14	<47	ND	ND	<60
S-26	9.12.22	С	11	<0.10	0.64	0.42	4.7	5.8	96	88	<49	180	180	<60
S-27	9.12.22	С	11	<0.019	<0.039	< 0.039	0.084	0.084	<3.9	<14	<48	ND	ND	<60
S-29	9.12.22	С	4 to 11	<0.091	<0.18	<0.18	0.46	0.46	<18	37	140	37	180	<60
S-30	9.12.22	С	0 to 4	<0.018	<0.035	<0.035	<0.071	ND	<3.5	<14	<48	ND	ND	<60
S-31	9.12.22	С	4 to 11	<0.10	1.3	0.45	4.4	6.2	77	56	<47	130	130	<60
S-32	9.12.22	С	0 to 4	<0.10	0.50	<0.20	1.7	2.2	36	62	<50	98	98	<60
S-33	9.12.22	С	4 to 11	<0.016	<0.033	<0.033	<0.065	ND	<3.3	260	160	260	420	<61
S-34	9.14.22	С	4	<0.10	0.48	0.21	2.0	2.7	42	<15	<49	42	42	<60
S-35	9.14.22	С	0 to 4	<0.018	<0.035	<0.035	<0.071	ND	<3.5	<15	<49	ND	ND	<60
S-36	9.14.22	С	0 to 4	<0.019	<0.038	<0.038	<0.076	ND	<3.8	<14	<47	ND	ND	<60
S-37	9.14.22	С	0 to 4	<0.018	<0.037	<0.037	<0.074	ND	<3.7	<15	<50	ND	ND	<60

Note: Concentrations in **bold** and yellow exceed the applicable NM EMNRD Closure Criteria

¹ = Total combined concentrations are rounded to two (2) significant figures to match the laboratory resolution of the individual constituents.

ND = Not Detected above the Practical Quantitation Limits (PQLs) or Reporting Limits (RLs)

NA = Not Analyzed

NE = Not established

mg/kg = milligram per kilogram

BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes

TPH = Total Petroleum Hydrocarbons

GRO = Gasoline Range Organics

DRO = Diesel Range Organics

MRO = Motor Oil/Lube Oil Range Organics

APPENDIX G

Laboratory Data Sheets & Chain of Custody Documentation

Released to Imaging: 12/9/2022 10:52:17 AM

August 17, 2022

Kyle Summers ENSOLUM 606 S. Rio Grande Suite A Aztec, NM 87410 TEL: (903) 821-5603 FAX: Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

RE: Jones A LS 7

OrderNo.: 2208799

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 13 sample(s) on 8/12/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report Lab Order 2208799

Hall Environmental Analysis Laboratory, Inc. Date Reported: 8/17/2022

CLIENT: ENSOLUM	Client Sample ID: S-1												
Project: Jones A LS 7		(Collec	tion Dat	e: 8/1	1/2022 12:00:00 PM							
Lab ID: 2208799-001	Matrix: SOIL		Rece	ived Dat	e: 8/1	2/2022 6:25:00 AM							
Analyses	Result	RL	Qua	l Units	DF	Date Analyzed	Batch						
EPA METHOD 300.0: ANIONS						Analyst	: ЈМТ						
Chloride	210	60		mg/Kg	20	8/12/2022 11:27:26 AM	69461						
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS					Analyst	: SB						
Diesel Range Organics (DRO)	300	15		mg/Kg	1	8/12/2022 1:19:31 PM	69457						
Motor Oil Range Organics (MRO)	350	49		mg/Kg	1	8/12/2022 1:19:31 PM	69457						
Surr: DNOP	113	21-129		%Rec	1	8/12/2022 1:19:31 PM	69457						
EPA METHOD 8015D: GASOLINE RANGE	E					Analyst	BRM						
Gasoline Range Organics (GRO)	1400	160		mg/Kg	50	8/13/2022 12:02:00 PM	A90227						
Surr: BFB	198	37.7-212		%Rec	50	8/13/2022 12:02:00 PM	A90227						
EPA METHOD 8021B: VOLATILES						Analyst	BRM						
Benzene	2.6	0.080		mg/Kg	5	8/12/2022 11:01:00 AM	B90227						
Toluene	43	1.6		mg/Kg	50	8/13/2022 12:02:00 PM	B90227						
Ethylbenzene	11	0.16		mg/Kg	5	8/12/2022 11:01:00 AM	B90227						
Xylenes, Total	86	3.2		mg/Kg	50	8/13/2022 12:02:00 PM	B90227						
Surr: 4-Bromofluorobenzene	173	70-130	S	%Rec	5	8/12/2022 11:01:00 AM	B90227						

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: *

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 20

Analytical Report

Liun Lin in onnonium innun jois Liuboi uvoi jų inci	Hall	Environmental	Analysis	Laboratory,	Inc.
---	------	---------------	----------	-------------	------

Lab Order 2208799

Date Reported: 8/17/2022

CLIENT: ENSOLUM		Cl	ient Sa	ample II	D: S-2	2	
Project: Jones A LS 7		(Collect	ion Dat	e: 8/1	1/2022 12:05:00 PM	
Lab ID: 2208799-002	Matrix: SOIL		Recei	ved Dat	e: 8/1	2/2022 6:25:00 AM	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analys	t: JMT
Chloride	ND	60		mg/Kg	20	8/12/2022 11:39:47 AM	69461
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS					Analys	t: SB
Diesel Range Organics (DRO)	1200	150		mg/Kg	10	8/13/2022 4:08:41 AM	69457
Motor Oil Range Organics (MRO)	2000	490		mg/Kg	10	8/13/2022 4:08:41 AM	69457
Surr: DNOP	0	21-129	S	%Rec	10	8/13/2022 4:08:41 AM	69457
EPA METHOD 8015D: GASOLINE RAN	GE					Analys	t: BRM
Gasoline Range Organics (GRO)	840	16		mg/Kg	5	8/12/2022 11:21:00 AM	A90227
Surr: BFB	399	37.7-212	S	%Rec	5	8/12/2022 11:21:00 AM	A90227
EPA METHOD 8021B: VOLATILES						Analys	t: BRM
Benzene	0.83	0.078		mg/Kg	5	8/12/2022 11:21:00 AM	B90227
Toluene	15	0.16		mg/Kg	5	8/12/2022 11:21:00 AM	B90227
Ethylbenzene	4.8	0.16		mg/Kg	5	8/12/2022 11:21:00 AM	B90227
Xylenes, Total	47	3.1		mg/Kg	50	8/13/2022 12:22:00 PM	B90227
Surr: 4-Bromofluorobenzene	157	70-130	S	%Rec	5	8/12/2022 11:21:00 AM	B90227

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 20

Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 2208799

Date Reported: 8/17/2022

CLIENT: ENSOLUM	Client Sample ID: S-3							
Project: Jones A LS 7	Collection Date: 8/11/2022 12:10:00 PM							
Lab ID: 2208799-003	Matrix: SOIL Received Date: 8/12/2022 6:25:00 AM							
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch		
EPA METHOD 300.0: ANIONS					Analys	t: JMT		
Chloride	ND	60	mg/Kg	20	8/12/2022 11:52:07 AM	69461		
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analys	t: SB		
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	8/12/2022 5:54:39 PM	69457		
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	8/12/2022 5:54:39 PM	69457		
Surr: DNOP	116	21-129	%Rec	1	8/12/2022 5:54:39 PM	69457		
EPA METHOD 8015D: GASOLINE RANGE	E				Analys	t: BRM		
Gasoline Range Organics (GRO)	ND	18	mg/Kg	5	8/12/2022 11:40:00 AM	A90227		
Surr: BFB	130	37.7-212	%Rec	5	8/12/2022 11:40:00 AM	A90227		
EPA METHOD 8021B: VOLATILES					Analys	t: BRM		
Benzene	ND	0.090	mg/Kg	5	8/12/2022 11:40:00 AM	B90227		
Toluene	ND	0.18	mg/Kg	5	8/12/2022 11:40:00 AM	B90227		
Ethylbenzene	ND	0.18	mg/Kg	5	8/12/2022 11:40:00 AM	B90227		
Xylenes, Total	ND	0.36	mg/Kg	5	8/12/2022 11:40:00 AM	B90227		
Surr: 4-Bromofluorobenzene	93.5	70-130	%Rec	5	8/12/2022 11:40:00 AM	B90227		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: *

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 20

Analytical Report

Lab Order 2208799

Date Reported: 8/17/2022

CLIENT: ENSOLUM Project: Jones A LS 7	Client Sample ID: S-4 Collection Date: 8/11/2022 12:15:00 PM							
Lab ID: 2208799-004	Matrix: SOIL Received Date: 8/12/2022 6:25:00 AM							
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch	
EPA METHOD 300.0: ANIONS						Analyst	JMT	
Chloride	ND	60		mg/Kg	20	8/12/2022 12:04:28 PM	69461	
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS					Analyst	: SB	
Diesel Range Organics (DRO)	850	150		mg/Kg	10	8/12/2022 6:43:47 PM	69457	
Motor Oil Range Organics (MRO)	1900	490		mg/Kg	10	8/12/2022 6:43:47 PM	69457	
Surr: DNOP	0	21-129	S	%Rec	10	8/12/2022 6:43:47 PM	69457	
EPA METHOD 8015D: GASOLINE RAN	GE					Analyst	BRM	
Gasoline Range Organics (GRO)	1100	160		mg/Kg	50	8/13/2022 12:42:00 PM	A90227	
Surr: BFB	226	37.7-212	S	%Rec	50	8/13/2022 12:42:00 PM	A90227	
EPA METHOD 8021B: VOLATILES						Analyst	BRM	
Benzene	0.92	0.081		mg/Kg	5	8/12/2022 12:00:00 PM	B90227	
Toluene	20	1.6		mg/Kg	50	8/13/2022 12:42:00 PM	B90227	
Ethylbenzene	8.9	0.16		mg/Kg	5	8/12/2022 12:00:00 PM	B90227	
Xylenes, Total	76	3.2		mg/Kg	50	8/13/2022 12:42:00 PM	B90227	
Surr: 4-Bromofluorobenzene	185	70-130	S	%Rec	5	8/12/2022 12:00:00 PM	B90227	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 4 of 20

Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 2208799

Date Reported: 8/17/2022

CLIENT: ENSOLUM	Client Sample ID: S-5 Collection Date: 8/11/2022 12:20:00 PM							
Project: Jones A LS 7								
Lab ID: 2208799-005	Matrix: SOIL Received Date: 8/12/2022 6:25:00 AI							
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch		
EPA METHOD 300.0: ANIONS					Analyst	: JMT		
Chloride	ND	60	mg/Kg	20	8/12/2022 12:16:49 PM	69461		
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	: SB		
Diesel Range Organics (DRO)	160	14	mg/Kg	1	8/12/2022 3:18:55 PM	69457		
Motor Oil Range Organics (MRO)	330	48	mg/Kg	1	8/12/2022 3:18:55 PM	69457		
Surr: DNOP	124	21-129	%Rec	1	8/12/2022 3:18:55 PM	69457		
EPA METHOD 8015D: GASOLINE RANGE	E				Analyst	BRM		
Gasoline Range Organics (GRO)	100	19	mg/Kg	5	8/12/2022 12:20:00 PM	A90227		
Surr: BFB	164	37.7-212	%Rec	5	8/12/2022 12:20:00 PM	A90227		
EPA METHOD 8021B: VOLATILES					Analyst	BRM		
Benzene	ND	0.095	mg/Kg	5	8/12/2022 12:20:00 PM	B90227		
Toluene	0.28	0.19	mg/Kg	5	8/12/2022 12:20:00 PM	B90227		
Ethylbenzene	0.55	0.19	mg/Kg	5	8/12/2022 12:20:00 PM	B90227		
Xylenes, Total	4.5	0.38	mg/Kg	5	8/12/2022 12:20:00 PM	B90227		
Surr: 4-Bromofluorobenzene	117	70-130	%Rec	5	8/12/2022 12:20:00 PM	B90227		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 20

Analytical Report

Hall Environmental	Analysis	Laboratory, I	nc.

Lab Order 2208799

Date Reported: 8/17/2022

CLIENT: ENSOLUM		Cli	ient Sample II	D:S-6	5				
Project: Jones A LS 7	Collection Date: 8/11/2022 12:25:00 PM								
Lab ID: 2208799-006	Matrix: SOIL		Received Dat	e: 8/1	2/2022 6:25:00 AM				
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS					Analyst	: JMT			
Chloride	ND	60	mg/Kg	20	8/12/2022 12:29:09 PM	69461			
EPA METHOD 8015M/D: DIESEL RANG	GE ORGANICS				Analyst	:: SB			
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	8/12/2022 4:30:28 PM	69457			
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	8/12/2022 4:30:28 PM	69457			
Surr: DNOP	115	21-129	%Rec	1	8/12/2022 4:30:28 PM	69457			
EPA METHOD 8015D: GASOLINE RAN	GE				Analyst	BRM			
Gasoline Range Organics (GRO)	ND	3.9	mg/Kg	1	8/12/2022 12:39:00 PM	A90227			
Surr: BFB	92.7	37.7-212	%Rec	1	8/12/2022 12:39:00 PM	A90227			
EPA METHOD 8021B: VOLATILES					Analyst	BRM			
Benzene	ND	0.020	mg/Kg	1	8/12/2022 12:39:00 PM	B90227			
Toluene	ND	0.039	mg/Kg	1	8/12/2022 12:39:00 PM	B90227			
Ethylbenzene	ND	0.039	mg/Kg	1	8/12/2022 12:39:00 PM	B90227			
Xylenes, Total	ND	0.079	mg/Kg	1	8/12/2022 12:39:00 PM	B90227			
Surr: 4-Bromofluorobenzene	76.2	70-130	%Rec	1	8/12/2022 12:39:00 PM	B90227			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 6 of 20

Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 2208799

Date Reported: 8/17/2022

CLIENT: ENSOLUM	Client Sample ID: S-7							
Project: Jones A LS 7	Collection Date: 8/11/2022 12:30:00 PM							
Lab ID: 2208799-007	Matrix: SOIL Received Date: 8/12/2022 6:25:00 AM							
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch		
EPA METHOD 300.0: ANIONS					Analyst	: ЈМТ		
Chloride	ND	60	mg/Kg	20	8/12/2022 12:41:29 PM	69461		
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	: SB		
Diesel Range Organics (DRO)	89	14	mg/Kg	1	8/12/2022 5:03:16 PM	69457		
Motor Oil Range Organics (MRO)	240	47	mg/Kg	1	8/12/2022 5:03:16 PM	69457		
Surr: DNOP	117	21-129	%Rec	1	8/12/2022 5:03:16 PM	69457		
EPA METHOD 8015D: GASOLINE RANGE	E				Analyst	BRM		
Gasoline Range Organics (GRO)	44	3.6	mg/Kg	1	8/12/2022 12:59:00 PM	A90227		
Surr: BFB	185	37.7-212	%Rec	1	8/12/2022 12:59:00 PM	A90227		
EPA METHOD 8021B: VOLATILES					Analyst	BRM		
Benzene	ND	0.018	mg/Kg	1	8/12/2022 12:59:00 PM	B90227		
Toluene	0.11	0.036	mg/Kg	1	8/12/2022 12:59:00 PM	B90227		
Ethylbenzene	0.15	0.036	mg/Kg	1	8/12/2022 12:59:00 PM	B90227		
Xylenes, Total	1.1	0.071	mg/Kg	1	8/12/2022 12:59:00 PM	B90227		
Surr: 4-Bromofluorobenzene	96.8	70-130	%Rec	1	8/12/2022 12:59:00 PM	B90227		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 20

Analytical Report

Lab Order 2208799

Date Reported: 8/17/2022

CLIENT: ENSOLUM Project: Jones A LS 7	Client Sample ID: S-8 Collection Date: 8/11/2022 12:35:00 PM						
Lab ID: 2208799-008	Matrix: SOIL Received Date: 8/12/2022 6:25:00 AM						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analys	t: JMT
Chloride	ND	60		mg/Kg	20	8/12/2022 12:53:50 PM	69461
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS					Analys	t: SB
Diesel Range Organics (DRO)	260	15		mg/Kg	1	8/12/2022 2:52:22 PM	69457
Motor Oil Range Organics (MRO)	270	48		mg/Kg	1	8/12/2022 2:52:22 PM	69457
Surr: DNOP	104	21-129		%Rec	1	8/12/2022 2:52:22 PM	69457
EPA METHOD 8015D: GASOLINE RANG	GE					Analys	t: BRM
Gasoline Range Organics (GRO)	660	16		mg/Kg	5	8/12/2022 1:19:00 PM	A90227
Surr: BFB	309	37.7-212	S	%Rec	5	8/12/2022 1:19:00 PM	A90227
EPA METHOD 8021B: VOLATILES						Analys	t: BRM
Benzene	0.31	0.080		mg/Kg	5	8/12/2022 1:19:00 PM	B90227
Toluene	9.0	0.16		mg/Kg	5	8/12/2022 1:19:00 PM	B90227
Ethylbenzene	3.8	0.16		mg/Kg	5	8/12/2022 1:19:00 PM	B90227
Xylenes, Total	36	0.32		mg/Kg	5	8/12/2022 1:19:00 PM	B90227
Surr: 4-Bromofluorobenzene	129	70-130		%Rec	5	8/12/2022 1:19:00 PM	B90227

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:**

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 8 of 20

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2208799

Date Reported: 8/17/2022

CLIENT: ENSOLUM	Client Sample ID: S-9							
Project: Jones A LS 7	Collection Date: 8/11/2022 12:40:00 PM							
Lab ID: 2208799-009	Matrix: SOIL Received Date: 8/12/2022 6:25:00							
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch	
EPA METHOD 300.0: ANIONS						Analyst	t: JMT	
Chloride	ND	60		mg/Kg	20	8/12/2022 1:30:52 PM	69461	
EPA METHOD 8015M/D: DIESEL RAM	NGE ORGANICS					Analyst	t: SB	
Diesel Range Organics (DRO)	210	14		mg/Kg	1	8/12/2022 3:41:01 PM	69457	
Motor Oil Range Organics (MRO)	150	48		mg/Kg	1	8/12/2022 3:41:01 PM	69457	
Surr: DNOP	115	21-129		%Rec	1	8/12/2022 3:41:01 PM	69457	
EPA METHOD 8015D: GASOLINE RA	NGE					Analyst	t: BRM	
Gasoline Range Organics (GRO)	90	3.1		mg/Kg	1	8/12/2022 1:39:00 PM	A90227	
Surr: BFB	231	37.7-212	S	%Rec	1	8/12/2022 1:39:00 PM	A90227	
EPA METHOD 8021B: VOLATILES						Analyst	t: BRM	
Benzene	ND	0.015		mg/Kg	1	8/12/2022 1:39:00 PM	B90227	
Toluene	0.099	0.031		mg/Kg	1	8/12/2022 1:39:00 PM	B90227	
Ethylbenzene	0.14	0.031		mg/Kg	1	8/12/2022 1:39:00 PM	B90227	
Xylenes, Total	4.9	0.061		mg/Kg	1	8/12/2022 1:39:00 PM	B90227	
Surr: 4-Bromofluorobenzene	103	70-130		%Rec	1	8/12/2022 1:39:00 PM	B90227	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range RL Reporting Limit

Page 9 of 20

Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 2208799

Date Reported: 8/17/2022

CLIENT: ENSOLUM	Client Sample ID: SP-1 Collection Date: 8/11/2022 12:45:00 PM Matrix: SOIL Received Date: 8/12/2022 6:25:00 AM						
Project: Jones A LS 7							
Lab ID: 2208799-010							
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch	
EPA METHOD 300.0: ANIONS					Analys	t: JMT	
Chloride	ND	60	mg/Kg	20	8/12/2022 1:43:13 PM	69461	
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analys	t: SB	
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	8/12/2022 4:29:36 PM	69457	
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	8/12/2022 4:29:36 PM	69457	
Surr: DNOP	108	21-129	%Rec	1	8/12/2022 4:29:36 PM	69457	
EPA METHOD 8015D: GASOLINE RANGE	E				Analys	t: BRM	
Gasoline Range Organics (GRO)	ND	3.7	mg/Kg	1	8/12/2022 1:59:00 PM	A90227	
Surr: BFB	101	37.7-212	%Rec	1	8/12/2022 1:59:00 PM	A90227	
EPA METHOD 8021B: VOLATILES					Analys	t: BRM	
Benzene	ND	0.018	mg/Kg	1	8/12/2022 1:59:00 PM	B90227	
Toluene	ND	0.037	mg/Kg	1	8/12/2022 1:59:00 PM	B90227	
Ethylbenzene	ND	0.037	mg/Kg	1	8/12/2022 1:59:00 PM	B90227	
Xylenes, Total	ND	0.074	mg/Kg	1	8/12/2022 1:59:00 PM	B90227	
Surr: 4-Bromofluorobenzene	79.5	70-130	%Rec	1	8/12/2022 1:59:00 PM	B90227	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: *

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- JAnalyte detected below quantitation limitsPSample pH Not In Range
- r Sample pri Not in I RL Reporting Limit

Page 10 of 20

Analytical Report

Lab Order 2208799

Date Reported: 8/17/2022

CLIENT: ENSOLUM Project: Jones A LS 7	Client Sample ID: SP-2 Collection Date: 8/11/2022 12:50:00 PM								
Lab ID: 2208799-011	Matrix: SOIL Received Date: 8/12/2022 6:25:00 AM								
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS					Analyst	: JMT			
Chloride	ND	60	mg/Kg	20	8/12/2022 1:55:33 PM	69461			
EPA METHOD 8015M/D: DIESEL RANGE ORGANICS					Analyst	: DGH			
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	8/12/2022 1:31:50 PM	69457			
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	8/12/2022 1:31:50 PM	69457			
Surr: DNOP	97.5	21-129	%Rec	1	8/12/2022 1:31:50 PM	69457			
EPA METHOD 8015D: GASOLINE RANGI	E				Analyst	: NSB			
Gasoline Range Organics (GRO)	ND	3.2	mg/Kg	1	8/12/2022 12:10:35 PM	G90220			
Surr: BFB	109	37.7-212	%Rec	1	8/12/2022 12:10:35 PM	G90220			
EPA METHOD 8021B: VOLATILES					Analyst	: NSB			
Benzene	ND	0.016	mg/Kg	1	8/12/2022 12:10:35 PM	B90220			
Toluene	ND	0.032	mg/Kg	1	8/12/2022 12:10:35 PM	B90220			
Ethylbenzene	ND	0.032	mg/Kg	1	8/12/2022 12:10:35 PM	B90220			
Xylenes, Total	ND	0.064	mg/Kg	1	8/12/2022 12:10:35 PM	B90220			
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1	8/12/2022 12:10:35 PM	B90220			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 20

Analytical Report Lab Order 2208799

Date Reported: 8/17/2022

CLIENT: ENSOLUM	Client Sample ID: SP-3								
Project: Jones A LS 7 Lab ID: 2208799-012	Collection Date: 8/11/2022 12:55:00 PM Matrix: SOIL Received Date: 8/12/2022 6:25:00 AM								
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS					Analys	: JMT			
Chloride	ND	60	mg/Kg	20	8/12/2022 2:07:54 PM	69461			
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS				Analys	: DGH			
Diesel Range Organics (DRO)	43	15	mg/Kg	1	8/12/2022 1:45:35 PM	69457			
Motor Oil Range Organics (MRO)	220	49	mg/Kg	1	8/12/2022 1:45:35 PM	69457			
Surr: DNOP	101	21-129	%Rec	1	8/12/2022 1:45:35 PM	69457			
EPA METHOD 8015D: GASOLINE RANG	GE				Analys	: NSB			
Gasoline Range Organics (GRO)	9.8	3.6	mg/Kg	1	8/12/2022 12:34:14 PM	G90220			
Surr: BFB	187	37.7-212	%Rec	1	8/12/2022 12:34:14 PM	G90220			
EPA METHOD 8021B: VOLATILES					Analys	: NSB			
Benzene	ND	0.018	mg/Kg	1	8/12/2022 12:34:14 PM	B90220			
Toluene	ND	0.036	mg/Kg	1	8/12/2022 12:34:14 PM	B90220			
Ethylbenzene	0.043	0.036	mg/Kg	1	8/12/2022 12:34:14 PM	B90220			
Xylenes, Total	0.47	0.072	mg/Kg	1	8/12/2022 12:34:14 PM	B90220			
Surr: 4-Bromofluorobenzene	107	70-130	%Rec	1	8/12/2022 12:34:14 PM	B90220			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 12 of 20
Analytical Report

Hall Environmental Analysis Laboratory, Inc	Hall	Environment	tal Ana	lysis	Laboratory,	Inc.
---	------	-------------	---------	-------	-------------	------

Lab Order 2208799

Date Reported: 8/17/2022

CLIENT: ENSOLUM Project: Jones A LS 7		Client Sample ID: SP-4 Collection Date: 8/11/2022 1:00:00 PM								
Project: Jones A LS 7 Lab ID: 2208799-013	Matrix: SOIL	,				2/2022 6:25:00 AM				
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS						Analys	t: JMT			
Chloride	ND	60		mg/Kg	20	8/12/2022 2:20:15 PM	69461			
EPA METHOD 8015M/D: DIESEL RAN	GE ORGANICS					Analys	t: SB			
Diesel Range Organics (DRO)	390	150		mg/Kg	10	8/13/2022 4:33:21 AM	69457			
Motor Oil Range Organics (MRO)	1400	490		mg/Kg	10	8/13/2022 4:33:21 AM	69457			
Surr: DNOP	0	21-129	S	%Rec	10	8/13/2022 4:33:21 AM	69457			
EPA METHOD 8015D: GASOLINE RAM	IGE					Analys	t: NSB			
Gasoline Range Organics (GRO)	340	17		mg/Kg	5	8/12/2022 12:58:00 PM	G90220			
Surr: BFB	538	37.7-212	S	%Rec	5	8/12/2022 12:58:00 PM	G90220			
EPA METHOD 8021B: VOLATILES						Analys	t: NSB			
Benzene	ND	0.083		mg/Kg	5	8/12/2022 12:58:00 PM	B90220			
Toluene	2.4	0.17		mg/Kg	5	8/12/2022 12:58:00 PM	B90220			
Ethylbenzene	1.3	0.17		mg/Kg	5	8/12/2022 12:58:00 PM	B90220			
Xylenes, Total	22	0.33		mg/Kg	5	8/12/2022 12:58:00 PM	B90220			
Surr: 4-Bromofluorobenzene	121	70-130		%Rec	5	8/12/2022 12:58:00 PM	B90220			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 13 of 20

.

Client: Project:		OLUM A LS 7									
Sample ID:	MB-69461	TestCode: EPA Method 300.0: Anions									
Client ID:	PBS	PBS Batch ID: 69461				RunNo: 90236					
Prep Date:	8/12/2022	Analysis D	Date: 8/ *	12/2022	S	SeqNo: 32	219286	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								
Sample ID:	LCS-69461	SampT	ype: Ics		Tes	tCode: EF	PA Method	300.0: Anions	;		
Client ID:	LCSS	Batch	Batch ID: 69461			RunNo: 90236					
Prep Date:	8/12/2022	Analysis D	Date: 8/ *	12/2022	5	SeqNo: 32	219287	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		15	1.5	15.00	0	97.3	90	110			

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL

2208799

17-Aug-22

WO#:

Reporting Limit

Client: Project:	ENSOLU. Jones A L											
Sample ID:	MB-69457	Samp	Гуре: МВ	LK	Tes	TestCode: EPA Method 8015M/D: Diesel Range Organics						
Client ID:	PBS	Batcl	h ID: 694	57	F	RunNo: 90218						
Prep Date:	8/12/2022	Analysis I	Date: 8/ 1	2/2022	S	SeqNo: 32	218061	Units: mg/K	g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
	Organics (DRO)	ND	15									
Surr: DNOP	ge Organics (MRO)	ND 9.7	50	10.00		97.3	21	129				
			_									
	LCS-69457		Type: LC:					8015M/D: Die:	sel Range	Organics		
Client ID:	LCSS		h ID: 694			RunNo: 90						
	8/12/2022	Analysis [SeqNo: 32		Units: mg/K	-			
Analyte	Organics (DRO)	Result 48	PQL 15		SPK Ref Val	%REC	LowLimit	HighLimit 127	%RPD	RPDLimit	Qual	
Surr: DNOP	• • • •	40 4.7	15	50.00 5.000	0	96.7 94.3	64.4 21	127				
Comple ID:	2200700 004 AMC	Comp]			Taa	+Codo: FF	A Mathad		a l Danaa	Ormaniaa		
Client ID:	2208799-001AMS S-1		Гуре: МS h ID: 694			RunNo: 90		8015M/D: Die:	sei Range	Organics		
Prep Date:	8/12/2022	Analysis Date: 8/12/2022				SeqNo: 32		Units: mg/K	a			
	0/12/2022							-	-		Qual	
Analyte	Organics (DRO)	Result 350	PQL 15	SPK value 49.46	SPK Ref Val 303.8	%REC 94.0	LowLimit 36.1	HighLimit 154	%RPD	RPDLimit	Qual	
Surr: DNOP		6.0		4.946	00010	120	21	129				
Sample ID:	2208799-001AMSD	Samp	Гуре: МS	D	Tes	tCode: FF	PA Method	8015M/D: Die	sel Range	Organics		
Client ID:	S-1		h ID: 694		TestCode: EPA Method 8015M/D: Diesel Range Organics RunNo: 90218							
Prep Date:	8/12/2022	Analysis [Date: 8/1	2/2022	SeqNo: 3218454 Units: mg/Kg							
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
	Organics (DRO)	300	13	43.90	303.8	-12.9	36.1	154	16.1	33.9	S	
Surr: DNOP		5.3		4.390		121	21	129	0	0		
Sample ID:	LCS-69454	Samp	Гуре: LC	S	Tes	tCode: EF	PA Method	8015M/D: Die:	sel Range	Organics		
Client ID:	LCSS	Batcl	h ID: 694	54	F	RunNo: 90)247					
Prep Date:	8/11/2022	Analysis [Date: 8/ 1	3/2022	S	SeqNo: 32	218544	Units: %Rec				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Surr: DNOP		3.9		5.000		78.7	21	129				
Sample ID:	MB-69454	SampT	Гуре: МВ	LK	Tes	tCode: EF	PA Method	8015M/D: Die:	sel Range	Organics		
Client ID:	PBS	Batcl	h ID: 694	54	F	RunNo: 90)247		5	-		
Prep Date:	8/11/2022	Analysis [Date: 8/ 1	3/2022	S	SeqNo: 32	218546	Units: %Rec				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
<u> </u>												

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 15 of 20

Page 75 of 162

2208799

17-Aug-22

WO#:

·	Hall Environmental Analysis Laboratory, Inc.								
Client:	ENSOLUM								
Project:	Jones A LS 7								

Sample ID: MB-69454	SampType: MBLK	TestCode: EPA Method 8015M/D: Diesel Range Organics					
Client ID: PBS	Batch ID: 69454	RunNo: 90247					
Prep Date: 8/11/2022	Analysis Date: 8/13/2022	SeqNo: 3218546	Units: %Rec				
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit	Qual			
Surr: DNOP	9.2 10.00	92.3 21	129				

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 16 of 20

.

WO#:	2208799
	17 4

17-Aug-22

Sample ID: 2203799-003ams SampType: IN TestCode: EPA Method 8015D: Gasoline Range Client ID: S-3 Batch ID: A00227 RunNo: 90227 RunNo: 90227 Prep Date: Analysis Date: 8/12/2022 SeqNo: 3218826 Units: mg/Kg Analyse Result POL SPK value SPK Ref Val %REC LowLinit HighLinit %RPD RPDLinit Qual Gasoline Range Organics (GRO) 87 18 90.25 TestCode: EPA Method 8015D: Gasoline Range Client ID: S-3 Batch ID: A90227 RunNo: 90227 Units: mg/Kg Analyte Result POL SPK Kef Val %REC LowLinit %KPD RPDLinit Qual SampType: MS2 RunNo: 90227 RunNo: 90287 Units: mg/Kg Analyte Result POL SPK Kef Val %REC LowLinit HighLinit %RPD	Client: Project:	ENSOLU. Jones A L											
Client ID: S-3 Batch ID: Avalysis Date: 8/1/20021 RunNo: 9021 Units: mg/Kg Analysis Date: 8/12/2002 SeqN: 3218828 Units: mg/Kg MRD RPD Imit Qual Geneine Range: Organics (GRO) 8/10 902 13.47 81.9 7.00 100 RPD Imit Qual Geneine Range: Organics (GRO) SampType: MRD 8/12/2022 SeqN: 3218827 Units: mg/Kg Katch Katch <td< th=""><th>Floject:</th><th>Jolles A L</th><th>ລ /</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	Floject:	Jolles A L	ລ /										
Prep Date:Analysis Date:8/12/2022SeqN: 3:1862Nith:Indit:MMPDRPDLinitQualAnalyteResultPQLSPK valueSPK Rel Val%RECLowLinitHighLinit%RPDRPDLinitQualGascine Range Organics (GRO)871890.2513.4781.97013.0	Sample ID:	2208799-003ams	SampT	ype: MS	6	Tes	TestCode: EPA Method 8015D: Gasoline Range						
Analyte Result PQL SPK Ref Value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Gascine Range Organics (GRO) 87 18 90.25 13.47 81.9 70 130 330 196 37.7 212 21 21 Sample ID: 2208799-003amad SampType: MSD TestCode: EPA Method 8015D: Gasoline Range East 70 130 301 196 37.7 212 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 21 21 21 21 20	Client ID:	S-3	Batch	n ID: A9	0227	F	RunNo: 90227						
Gasoline Range Organics (GR0) 87 18 90.25 13.47 81.9 70 130 Surr. BFB 7100 3610 196 37.7 212 Sample ID: 208799-003amsd SampType: MSD TestCode: EPA Method 8015D: Gasoline Range Client ID: S-3 Batch ID: Analysis Date: 8/12/2022 SeqNo: 3218827 Units: mg/Kg Analyte Result POL SPK Kel Val SPK Kel Val MREC LowLimit HighLimit %RPD RPDLimit Qual Gasoline Range Organics (GR0) 84 18 90.25 T3.47 77.7 70 130 4.44 20 Surr. BFB 6800 3610 189 37.7 212 0 0 Sample ID: LCSS Batch ID: 69398 RunNo: 90227 Prep Date: Analysis Date: 8/13/2022 SeqNo: 3218852 Units: %Rec Analyte Result POL SPK Rel Val %REC LowLimi	Prep Date:		Analysis D	ate: 8/	12/2022	\$	SeqNo: 32	218826	Units: mg/K	g			
Sur: BFB 7100 3610 196 37.7 212 Sample ID: 2208799-003amsd SampType: MSJ TestCode: EPA Method 8015D: Gasoline Range Client ID: \$-3 Batch ID: Analysis Date: 8/1/2/2022 SeqNo: 3218827 Units: mg/Kg Analysis Date: 8/1/2/2022 SeqNo: 3218827 Units: mg/Kg Analyte Result POL SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Gasoline Range Organics (GRO) 84 18 90.25 13.47 77.7 70 1300 4.44 20 Sur: BFB 6800 3610 189 37.7 212 0 0 0 Sample ID: Ics-69398 SampType: KLS TestCode: EPA Method 8015D: Gasoline Range Client ID: Gasoline Range Multiplicit %RPD RPDLimit Qual Sample ID: mb-69398 SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range Clie	Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Sample ID: 2208799-003amad SampType: MSD TestCode: EPA Method 8015D: Gasoline Range Client ID: S-3 Batch ID: A00/227 RunNo: 90227 Units: mg/Kg Prep Date: Analysis Date: 8/12/2022 SeqNo: 3218827 Units: mg/Kg Analyte Result POL SPK value SPK Kef Val %REC LowLimit HighLimit %RPD RPDLImit Qual Gasoline Range Organics (GRO) 84 18 90.25 13.47 77.7 70 130 4.44 20 Surr.BFB 6800 3610 1849 37.7 212 0 0 0 Sample ID: Lcs-69398 SampType: LCS TestCode: EPA Method 8015D: Gasoline Range 0	0	e Organics (GRO)	-	18		13.47							
Client ID: S-3 Batch ID: A90227 RunN:: 9027 Units: mg/st Analyte Result PQL SPK kalue SPK	Surr: BFB		7100		3610		196	37.7	212				
Prep Date: Analysis Date: 81/2/2022 SeqNo: 3218827 Units: mg/kg Analyte Result PQL SPK ref Val %REC LowLimit HighLimit %RPD RPD Limit Qual Gasoline Range Organics (GRO) 84 18 90.25 13.47 77.7 70 130 4.44 20 Surr: BFB 6800 3610 189 3.7.7 212 0 0 0 Sample ID: Ics-69398 SampType: LCS TestCode: EPA Method 8015D: Gasoline Range Example 10: MRPD RPDLimit Qual Sample ID: bLCSS Batch ID: SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Sample ID: Mc10/2022 Analysis Date: 8/13/2022 SeqNo: 3218853 Units: %Rec Sample ID: mb-69398 SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range Units: %Rec Client ID: PBS Batch ID: 69398 RunNo: 90227 Units: %Rec	Sample ID:	2208799-003amsd	SampT	уре: МS	SD.	TestCode: EPA Method 8015D: Gasoline Range							
Analyte Result POL SPK value	Client ID:	S-3	Batch	Batch ID: A90227			RunNo: 9(0227					
Casoline Range Organics (GR0) 84 18 90.25 13.47 77.7 70 130 4.44 20 Surr: BFB 6800 3610 189 37.7 212 0 0 Surr: BFB 6800 3610 189 37.7 212 0 0 Sample ID: Lcs-69398 SampType: LCS TestCode: EPA Method 8015D: Gasoline Range 0 Client ID: LCSS Batch ID: 69398 RunNo: 90227 Prep Date: %RPD RPDLimit Qual Surr: BFB 2000 1000 197 37.7 212 0 0 Surr: BFB 2000 1000 197 37.7 212 0 0 0 Sample ID: mb-69398 SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range 0 0 89.3 37.7 212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Prep Date:		Analysis D	ate: 8/	12/2022	5	SeqNo: 32	218827	Units: mg/K	g			
Gasoline Range Organics (GR0) 84 18 90.25 13.47 77.7 70 130 4.44 20 Surr: BFB 6800 3610 189 37.7 212 0 0 Surr: BFB 6800 3610 189 37.7 212 0 0 Surr: BFB 6800 3610 189 37.7 212 0 0 Surr: BFB 6800 3610 189 37.7 212 0 0 Sample ID: LCsS Batch ID: 69398 RunNo: 90227 Prep Date: %RPD RPDLimit Qual Surr: BFB 2000 1000 197 37.7 212 Sample ID: mb-69398 SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range	Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Sample ID: Ics-69398 SampType: ICS TestCode: EPA Method 8015D: Gasoline Range Client ID: LCSS Batch ID: 69398 RunNo: 90227 Prep Date: 8/10/2022 Analysis Date: 8/13/2022 SeqNo: 3218852 Units: %Rec Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Sur: BFB 2000 1000 197 37.7 212 2 Sample ID: mb-69398 SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range Client ID: PBS Batch ID: 69398 RunNo: 90227 Inits: %Rec Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Sur: BFB 890 1000 89.3	Gasoline Rang	e Organics (GRO)	84	18	90.25	13.47	77.7	70	130	4.44	20		
Client ID: LCSS Batch ID: 69398 RunNo: 90227 Prep Date: 8/10/2022 Analysis Date: 8/13/2022 SeqNo: 3218852 Units: %Rec Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Surr: BFB 2000 1000 197 37.7 212 Qual Sample ID: mb-69398 SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range Client ID: PBS Batch ID: 69398 RunNo: 90227 Qual Qual Qual Qual Qual Qual Qual	Surr: BFB		6800		3610		189	37.7	212	0	0		
Prep Date: 8/10/2022 Analysis Date: 8/13/2022 SeqNo: 3218852 Units: %Rec Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Surr: BFB 2000 1000 197 37.7 212	Sample ID:	lcs-69398	SampT	ype: LC	S	Tes	tCode: EF	PA Method	8015D: Gasol	ine Range			
Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Surr: BFB 2000 1000 177 37.7 212 2000	Client ID:	LCSS	Batch	n ID: 693	398	F	RunNo: 9(0227					
Surr. BFB 2000 1000 197 37.7 212 Sample ID: mb-69398 SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range Client ID: PBS Batch ID: 69398 RunNo: 90227 Prep Date: 8/10/2022 Analysis Date: 8/13/2022 SeqNo: 3218853 Units: %Rec Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Surr. BFB 890 1000 89.3 37.7 212 2 Sample ID: mb SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range Qual Client ID: PBS Batch ID: G90220 RunNo: 90220 Prep Date: Analysis Date: 8/12/2022 SeqNo: 3218937 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Gasoline Range Organics (GRO) ND 5.0 1000 112 37.7 212 <td>Prep Date:</td> <td>8/10/2022</td> <td>Analysis D</td> <td>ate: 8/</td> <td>13/2022</td> <td>S</td> <td>SeqNo: 32</td> <td>218852</td> <td>Units: %Rec</td> <td></td> <td></td> <td></td>	Prep Date:	8/10/2022	Analysis D	ate: 8/	13/2022	S	SeqNo: 32	218852	Units: %Rec				
Surr: BFB 2000 1000 197 37.7 212 Sample ID: mb-69398 SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range Client ID: PBS Batch ID: 69398 RunNo: 90227 Prep Date: 8/10/2022 Analysis Date: 8/13/2022 SeqNo: 3218853 Units: %Rec Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Surr: BFB 890 1000 89.3 37.7 212 Sample ID: mb SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range Qual Client ID: PBS Batch ID: G90220 RunNo: 90220 Prep Date: Analysis Date: 8/12/2022 SeqNo: 3218937 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Gasoline Range Organics (GRO) ND 5.0 1000 112 37.7 212 Sample ID: 2.5ug gro Ics SampType: LCS TestCode: EPA Method 8015D: Gasoline Range	Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Client ID:PBSBat+ ID:69398RunNo:90227Prep Date:8/10/2022Analysis Date:8/13/2022SeqNo:3218853Units:%RecAnalyteResultPQLSPK valueSPK Ref Val%RECLowLimitHighLimit%RPDRPDLimitQualSurr: BFB890100089.337.7212 </th <th>Surr: BFB</th> <th></th> <th>2000</th> <th></th> <th>1000</th> <th></th> <th>197</th> <th>37.7</th> <th>212</th> <th></th> <th></th> <th></th>	Surr: BFB		2000		1000		197	37.7	212				
Client ID:PBSBat+ ID:69398RunNo:90227Prep Date:8/10/2022Analysis Date:8/13/2022SeqNo:3218853Units:%RecAnalyteResultPQLSPK valueSPK Ref Val%RECLowLimitHighLimit%RPDRPDLimitQualSurr: BFB890100089.337.7212 </td <td>Sample ID:</td> <td>mb-69398</td> <td>SampT</td> <td>vpe: ME</td> <td>BLK</td> <td>Tes</td> <td>tCode: EF</td> <td>PA Method</td> <td>8015D: Gasol</td> <td>ine Range</td> <td></td> <td></td>	Sample ID:	mb-69398	SampT	vpe: ME	BLK	Tes	tCode: EF	PA Method	8015D: Gasol	ine Range			
Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Surr: BFB 890 1000 89.3 37.7 212 21	·									5			
Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Surr: BFB 890 1000 89.3 37.7 212 21	Prep Date:	8/10/2022	Analysis D)ate: 8/	13/2022	S	SeqNo: 32	218853	Units: %Rec				
Surr: BFB890100089.337.7212Sample ID:mbSampType:MBLKTestCode:EPA Method 8015D:Gasoline RangeClient ID:PBSBatch ID:G90220RunNo:90220Prep Date:Analysis Date:8/12/2022SeqNo:3218937Units:mg/KgAnalyteResultPQLSPK valueSPK Ref Val%RECLowLimitHighLimit%RPDRPDLimitQualGasoline Range Organics (GR0)ND5.0110011237.7212212Sample ID:2.5ug gro IcsSampType:LCSTestCode:EPA Method 8015D:Gasoline RangeClient ID:LCSSBatch ID:G90220RunNo:90220Prep Date:Analysis Date:8/12/2022SeqNo:3218938Units:mg/KgAnalyteResultPQLSPK valueSPK Ref Val%RECLowLimitHighLimit%RPDRPDLimitQualGasoline Range Organics (GR0)265.025.00010272.3137137	Analyta					SPK Ref Val	%REC	Lowl imit	Highl imit	%RPD	RPDI imit	Qual	
Client ID: PBS Batch ID: G90220 RunNo: 90220 Prep Date: Analysis Date: 8/12/2022 SeqNo: 3218937 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Gasoline Range Organics (GRO) ND 5.0 1100 1000 112 37.7 212	,			I QL		SI IN INCEI VAI				70111 D		Quai	
Client ID: PBS Batch ID: G90220 RunNo: 90220 Prep Date: Analysis Date: 8/12/2022 SeqNo: 3218937 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Gasoline Range Organics (GRO) ND 5.0 1100 1000 112 37.7 212	0 a sura la JD		0 T				(O. d						
Prep Date:Analysis Date:8/12/2022SeqNo:3218937Units:mg/KgAnalyteResultPQLSPK valueSPK Ref Val%RECLowLimitHighLimit%RPDRPDLimitQualGasoline Range Organics (GRO)ND5.0110011237.721211001100Sample ID:2.5ug gro IcsSampType:LCSSBatch ID:Ggo2020RunNo:90220115D:Gasoline RangeClient ID:LCSSBatch ID:Ggo2020RunNo:90220Units:mg/KgPrep Date:Analysis Date:8/12/2022SeqNo:3218938Units:Mg/KgAnalyteResultPQLSPK valueSPK Ref Val%RECLowLimitHighLimit%RPDRPDLimitQualGasoline Range Organics (GRO)265.025.00010272.3137137137									8015D: Gasol	ine Range			
Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Gasoline Range Organics (GRO) ND 5.0 1100 1000 112 37.7 212		PB3								-			
Gasoline Range Organics (GRO) ND 5.0 Surr: BFB 1100 1000 112 37.7 212 Sample ID: 2.5ug gro Ics SampType: LCS TestCode: EPA Method 8015D: Gasoline Range Client ID: LCSS Batch ID: G90220 RunNo: 90220 Prep Date: Analysis Date: 8/12/2022 SeqNo: 3218938 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Gasoline Range Organics (GRO) 26 5.0 25.00 0 102 72.3 137	•								•	-			
Surr: BFB 1100 1000 112 37.7 212 Sample ID: 2.5ug gro Ics SampType: LCS TestCode: EPA Method 8015D: Gasoline Range Range Client ID: LCSS Batch ID: G90220 RunNo: 90220 Prep Date: Analysis Date: 8/12/2022 SeqNo: 3218938 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Gasoline Range Organics (GRO) 26 5.0 25.00 0 102 72.3 137	-	o Organico (CBO)			SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Client ID: LCSS Batch ID: G90220 RunNo: 90220 Prep Date: Analysis Date: 8/12/2022 SeqNo: 3218938 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Gasoline Range Organics (GRO) 26 5.0 25.00 0 102 72.3 137	0			5.0	1000		112	37.7	212				
Prep Date: Analysis Date: 8/12/2022 SeqNo: 3218938 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Gasoline Range Organics (GRO) 26 5.0 25.00 0 102 72.3 137	Sample ID:	2.5ug gro lcs	SampT	ype: LC	S	Tes	tCode: EF	PA Method	8015D: Gasol	ine Range			
Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Gasoline Range Organics (GRO) 26 5.0 25.00 0 102 72.3 137	Client ID:	LCSS	Batch	n ID: G9	0220	F	RunNo: 9(0220					
Gasoline Range Organics (GRO) 26 5.0 25.00 0 102 72.3 137	Prep Date:		Analysis D	ate: 8/	12/2022	S	SeqNo: 32	218938	Units: mg/K	g			
Gasoline Range Organics (GRO) 26 5.0 25.00 0 102 72.3 137	Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
	,	e Organics (GRO)							-				
Surr: BFB 2200 1000 224 37.7 212 S	Surr: BFB		2200		1000		224	37.7	212			S	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

.

	NSOLUM nes A LS 7									
Sample ID: 2.5ug gro	Tes	stCode: El	PA Method	8015D: Gaso	line Range)				
Client ID: LCSS	Bat	Batch ID: A90227			RunNo: 90227					
Prep Date:	Analysis	Date: 8/	12/2022		SeqNo: 3	220278	Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (G	RO) 24	5.0	25.00	0	97.7	72.3	137			
Surr: BFB	2100		1000		207	37.7	212			
Sample ID: mb	mple ID: mb SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range									
Client ID: PBS	Bat	ch ID: A9	0227	F	RunNo: 9	0227				
Prep Date:	Analysis	Date: 8/	12/2022	;	SeqNo: 3	220279	Units: mg/K	ſg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (G	RO) ND	5.0								
Surr: BFB	910		1000		91.3	37.7	212			

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 18 of 20

WO#: 2208799 17-Aug-22

WO#:	2208799

17-Aug-22

Client:	ENSOLU	М										
Project:	Jones A L	S 7										
Sample ID:	2208799-005ams	SampT	Гуре: МS	;	Tes	TestCode: EPA Method 8021B: Volatiles						
Client ID:	S-5	Batcl	h ID: B9	0227	F	RunNo: 90227						
Prep Date:		Analysis E	Date: 8/ *	12/2022	S	SeqNo: 3	3218879	Units: mg/K	g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene		3.1	0.095	3.794	0	82.2	68.8	120				
Toluene		3.4	0.19	3.794	0.2838	82.5	73.6	124				
Ethylbenzene		3.7	0.19	3.794	0.5508	83.5	72.7	129				
Xylenes, Total		14	0.38	11.38	4.461	81.9	75.7	126				
Surr: 4-Bron	nofluorobenzene	4.3		3.794		113	70	130				
Sample ID:	2208799-005amsd	SampT	Гуре: МS	D	Tes	TestCode: EPA Method 8021B: Volatiles						
Client ID:	S-5	Batch ID: B90227			F	RunNo: 9	0227					
Prep Date:		Analysis E	Date: 8/	12/2022	5	SeqNo: 3	218880	Units: mg/K	g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene		2.9	0.095	3.794	0	77.7	68.8	120	5.62	20		
Toluene		3.2	0.19	3.794	0.2838	77.5	73.6	124	5.71	20		
Ethylbenzene		3.5	0.19	3.794	0.5508	78.4	72.7	129	5.34	20		
Xylenes, Total		13	0.38	11.38	4.461	76.4	75.7	126	4.68	20		
Surr: 4-Bron	nofluorobenzene	4.1		3.794		109	70	130	0	0		
Sample ID:	mb-69398	SampT	SampType: MBLK			tCode: E	PA Method	8021B: Volati	les			
Client ID:	PBS	Batcl	h ID: 693	398	RunNo: 90227							
Prep Date:	8/10/2022	Analysis E	Date: 8/ *	13/2022	5	SeqNo: 3	218906	Units: %Rec				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Surr: 4-Bron	nofluorobenzene	0.81		1.000		80.6	70	130				
Sample ID:	mb	SampT	Гуре: МЕ	BLK	Tes	stCode: E	PA Method	8021B: Volati	les			
Client ID:	PBS	Batcl	h ID: B9	0220	F	RunNo: 9	0220					
Prep Date:		Analysis E				SeqNo: 3	218998	Units: mg/K	g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene		ND	0.025	2								
Toluene		ND	0.050									
Ethylbenzene		ND	0.050									
Xylenes, Total		ND	0.10									
	nofluorobenzene	1.0		1.000		102	70	130				
Sample ID:	100ng btex lcs	SampT	Гуре: LC	S	Tes	stCode: E	PA Method	8021B: Volati	les			
Client ID:	LCSS	•	h ID: B9			RunNo: 9			-			
Prep Date:		Analysis E				SeqNo: 3		Units: mg/K	g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	- HighLimit	- %RPD	RPDLimit	Qual	
						-		0		,		

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 19 of 20

WO#:	2208799

17-Aug-22

roject:Jones A LS 7Sample ID:100ng btex lcsSampType:LCSSBatch ID:B90202RunNo:90202rhep Date:Analysis Date:8/12/2022SerNo:3218999Units:mg/KgrhangyteResultPOLSPK valueSPK Ref Val%RECLowLimitHighLimit%RPDRPDLimitQualinterne0.970.0251.000099.580120100<		ENICOLI										
TestCode: EPA Method 8021B: Volatiles ample ID: LCS Batch ID: B90220 RunNo: 90220 vrep Date: Analysis Date: 8/12/2022 SeqNo: 3218999 Units: mg/Kg vranzene 0.97 0.025 1.000 0 97.4 80 120 huene 1.0 0.050 1.000 0 99.5 80 120 huene 1.0 0.050 1.000 0 99.6 80 120 witersene 1.0 0.050 1.000 0 99.7 80 120 sample ID: 100ng btex lcs SampType: LCS TestCode: EPA Method 8021B: Volatiles sample ID: 100ng btex lcs SampType: LCS Result Malysis Date: 8/12/2022 sample ID: 100ng btex lcs SampType: Result Malysis Date: 8/12/2012 SeqNo: 3220280 Units: mg/Kg madyte Result PQL SPK value SPK Value<	Client: Project:											
Attent ID: LCS: Batch ID: B9020 RunNo: B9220 Analysis Date: Analysis Date: 81/2/2022 Seq No: 321-899 Units: mg/g Analysis Date: PGL SPK value SPK Value SPK Ref Val %REC LowLinit HighLinit %RPD RPD Linit Qual Manalysis Result QL SPK value SPK Ref Val %REC LowLinit HighLinit %RPD RPD Linit Qual Manalysis 0.050 1.000 O 99.5 80 120 1000 1000 99.6 800 120 1000 1	i i ojeci.	Joiles A										
Prep Date: Analysis Date: 8/12/2022 SeqNo: 3218999 Units: mg/Kg unalyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual intergree 0.07 0.025 1.000 0 97.4 80 120 100	Sample ID:	100ng btex lcs	Samp	Type: LC	s	Tes	tCode: EF	PA Method	8021B: Volati	iles		
Nalyte Result POL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual nanzene 0.97 0.025 1.000 0 97.4 80 120 nume 1.0 0.050 1.000 0 99.5 80 120 hylbenzene 1.0 0.050 1.000 0 99.6 80 120 idenes, Total 3.0 0.10 3.000 0 98.7 80 120 Smrt 4Bromofluorobenzene 1.0 1.000 104 70 130 120 Smrt 4Bromofluorobenzene 1.0 1.000 104 70 130 120 Smrt 4Bromofluorobenzene 1.0 1.000 104 70 130 120 Signt 1D: LCSS Batch 1D: B90227 RunNo: 90227 Units: mg/Kg rep Date: Analysis Date: 8/12/2022 SeqN Ne 23 80 120 120 <	Client ID:	LCSS	Batc	h ID: B9	0220	F	RunNo: 90)220				
Intervente 0.97 0.025 1.000 0 97.4 80 120 vluene 1.0 0.050 1.000 0 99.5 80 120 vluene 1.0 0.050 1.000 0 99.5 80 120 vluene 1.0 0.050 1.000 0 98.7 80 120 vlenes, Total 3.0 0.10 3.000 0 98.7 80 120 Surr. 4-Bromofluorobenzene 1.0 1.000 104 70 130 Sample ID: 100g btex Ics SampType: LCS TestCode: EPA Method 8021B: Volatiles Silent ID: LCSS Batch ID: B90227 RunNo: 90227 Prep Date: Analysis Date: 8/12/2022 SeqNo: 3220280 Units: mg/Kg unalyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual narzene 0.85 0.050 1.000 84.8	Prep Date:		Analysis [Date: 8/ *	12/2022	S	SeqNo: 32	218999	Units: mg/K	g		
Number 1.0 0.050 1.000 0 99.5 80 120 hylbenzene 1.0 0.050 1.000 0 99.6 80 120 idenes, Total 3.0 0.10 3.000 0 98.7 80 120 Surr, 4-Bromofluorobenzene 1.0 1.00 104 70 130 100 Sample ID: 100ng btex Ics SampType: LCS TestCode: EPA Method 8021B: Volatiles Siminal ID: LCSS Batch ID: B90227 RunNo: 90227 Vinits: mg/Kg vnalyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual manapte 0.82 0.025 1.000 0 84.8 80 120 Vinits: mg/Kg whene 0.84 0.050 1.000 0 84.8 80 120 Vinits: Mg/L Vinits: Mg/L Vinits: Mg/L Vinits: Mg/L Vinits: Mg/L Vinits: Mg/L	Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
hylbenzene 1.0 0.050 1.000 0 99.6 80 120 kenes, Total 3.0 0.10 3.000 0 98.7 80 120 Surr, 4-Bromofluorobenzene 1.0 1.000 104 70 130 sample ID: 1000 btex Ics SampType: LCs TestCode: EPA Method 8021B: Volatiles Stimer, 1D: LCSS Batch ID: 890227 RunNo: 90227 prep Date: Analysis Date: 8/12/2022 SeqNo: 320260 Units: mg/Kg anaptene 0.82 0.025 1.000 0 82.3 80 120 hylbenzene 0.82 0.050 1.000 0 84.8 80 120 hylbenzene 0.85 0.050 1.000 84.8 80 120 120 sample ID: mb SampType: MBL TestCode: EPA Method 8021B: Volatiles 120 sample ID: mb SampType: MBL TestCode: EPA Method 8021B: Volatiles 120 sample ID: mb SampType	Benzene		0.97	0.025	1.000	0	97.4	80	120			
Answer 3.0 0.10 3.000 0 98.7 80 120 Surr: 4-Bromofluorobenzene 1.0 1.000 104 70 130 Sample ID: 1000g btex ics SampType: LCS TestCode: EPA Method 8021B: Volatiles Silient ID: LCSS Batch ID: B90227 RunNo: 90227 Prep Date: Analysis Date: 8/12/2022 SeqNo: 320280 Units: mg/Kg Analysis Date: 8/12/2022 SeqNo: 320280 Units: mg/Kg Analysis Date: 8/12/2022 SeqNo: 320280 Units: mg/Kg Analysis Date: 8/12/2022 SeqNo: 3200 0 82.3 80 120 Iviene 0.82 0.025 1.000 0 84.8 80 120 100	Toluene		1.0	0.050	1.000	0	99.5	80	120			
Sur: 4-Bromofluorobenzene 1.0 1.00 104 70 130 Bample ID: 100ng btex Ics SampType: LCS TestCode: EPA Method 8021B: Volatiles Client ID: LCSS Batch ID: B90227 RunNo: 90227 Prep Date: Analysis Date: 8/12/2022 SeqNo: 3220280 Units: mg/Kg unalyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual anzene 0.82 0.025 1.000 0 82.3 80 120 hyllene 0.84 0.050 1.000 0 84.8 80 120 hyllenzene 0.85 0.050 1.000 86.3 70 130 Gurr 4-Bromofluorobenzene 0.86 1.000 86.3 70 130 Sample ID: mb SampType: MBLK TestCode: EPA Method 8021B: Volatiles Sample ID: mb	Ethylbenzene		1.0	0.050	1.000	0	99.6	80	120			
Sample ID: 100g btsc TestCode: EPA Method 8021B: Volatiles Sample ID: LCSS Batch ID: B90227 RunNo: 90227 Prep Date: Analysis Date: 8/12/2022 SeqNo: 3220280 Units: mg/Kg analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual anzene 0.82 0.025 1.000 0 84.0 80 120 viluene 0.84 0.050 1.000 0 84.8 80 120 viluenes, Total 2.5 0.10 3.000 0 84.8 80 120 Surr: 4-Bromofluorobenzene 0.86 1.000 86.3 70 130 130 Sample ID: mb SampType: MBLK TestCode: EPA Method 8021B: Volatiles Silient ID: PBS Batch ID: B90227 RunNo: 90227 Prep Date: Analy	Xylenes, Total		3.0	0.10	3.000	0	98.7	80	120			
Diant ID: LCSS Batch ID: B90227 RunNo: 90227 Prep Date: Analysis Date: 8/12/2022 SeqNo: 3220280 Units: mg/Kg vnalyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual anzene 0.82 0.025 1.000 0 82.3 80 120 1000 1000 1000 84.8 80 120 1000 1000 1000 84.8 80 120 1000 1000 84.8 80 120 1000 1000 1000 84.8 80 120 10000 1000 1000 <t< td=""><td>Surr: 4-Brom</td><td>ofluorobenzene</td><td>1.0</td><td></td><td>1.000</td><td></td><td>104</td><td>70</td><td>130</td><td></td><td></td><td></td></t<>	Surr: 4-Brom	ofluorobenzene	1.0		1.000		104	70	130			
Prep Date: Analysis Date: 8/12/2022 SeqNo: 3220280 Units: mg/Kg wnalyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual mzene 0.82 0.025 1.000 0 82.3 80 120	Sample ID:	D: 100ng btex lcs SampType: LCS TestCode: EPA Method 8021B: Volatiles										
Nnalyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Innzene 0.82 0.025 1.000 0 82.3 80 120 Juluene 0.84 0.050 1.000 0 84.0 80 120 hylbenzene 0.85 0.050 1.000 0 84.8 80 120 Venes, Total 2.5 0.10 3.000 0 84.8 80 120 Surr: 4-Bromofluorobenzene 0.86 1.000 86.3 70 130 100 100 Sample ID: mb SampType: MBLK TestCode: EPA Method 8021B: Volatiles 100	Client ID:	LCSS	Batc	h ID: B9	0227	F	RunNo: 90)227				
Image: space 0.82 0.025 1.000 0 82.3 80 120 pinzene 0.84 0.050 1.000 0 84.0 80 120 hylbenzene 0.85 0.050 1.000 0 84.8 80 120 klenes, Total 2.5 0.10 3.000 0 84.8 80 120 Surr: 4-Bromofluorobenzene 0.86 1.000 86.3 70 130 Sample ID: mb SampType: MBLK TestCode: EPA Method 8021B: Volatiles 100 100 Sample ID: mb SampType: MBLK TestCode: EPA Method 8021B: Volatiles 100	Prep Date:		Analysis Date: 8/12/2022 SeqNo: 3220280						Units: mg/K	g		
Oluene 0.84 0.050 1.000 0 84.0 80 120 hylbenzene 0.85 0.050 1.000 0 84.8 80 120 idenes, Total 2.5 0.10 3.000 0 84.8 80 120 Surr: 4-Bromofluorobenzene 0.86 1.000 0 84.8 80 120 Sample ID: mb SampType: MBLK TestCode: EPA Method 8021B: Volatiles Client ID: PBS Batch ID: B90227 RunNo: 90227 Prep Date: Analysis Date: 8/12/2022 SeqNo: 3220281 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual anzene ND 0.050 Hybenzene ND 0.050 Hybenzene ND 0.050 Hybenzene Hybenzene ND 0.050 Hybenzene Hybenzene Hybenzene Hybenzene Hybenzene Hybenzene Hybenzene Hybenzene Hybenzene	Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
hylbenzene 0.85 0.050 1.000 0 84.8 80 120 Surr 4-Bromofluorobenzene 0.86 1.000 0 84.8 80 120 Sample ID: mb SampType: MBLK TestCode: EPA Method 8021B: Volatiles 1.000 86.3 70 130 Sample ID: mb SampType: MBLK TestCode: EPA Method 8021B: Volatiles 1.000	Benzene		0.82	0.025	1.000	0	82.3	80	120			
Vienes, Total 2.5 0.10 3.000 0 84.8 80 120 Surr: 4-Bromofluorobenzene 0.86 1.000 86.3 70 130 Sample ID: mb SampType: MBLK TestCode: EPA Method 8021B: Volatiles Client ID: PBS Batch ID: B90227 RunNo: 90227 Prep Date: Analysis Date: 8/12/2022 SeqNo: 3220281 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual enzene ND 0.050 ND 0.050 ND 0.10 ND ND 0.10	Toluene		0.84	0.050	1.000	0	84.0	80	120			
Surr 4-Bromofluorobenzene 0.86 1.00 86.3 70 130 Sample ID: mb SampType: MBLK TestCode: EPA Method 8021B: Volatiles Client ID: PBS Batch ID: B90227 RunNo: 90227 Prep Date: Analysis Date: 8/12/2022 SeqNo: 3220281 Units: mg/Kg Innalyte Result PQL SPK value SPK Ref Val % REC LowLimit HighLimit % RPD RPDLimit Qual Innapte ND 0.025 Innapte ND 0.050 Innapte Innapte ND 0.050 Induene ND 0.050 Innapte ND 0.050 Innapte Inn	Ethylbenzene		0.85	0.050	1.000	0	84.8	80	120			
Sample ID: mb SampType: MBLK TestCode: EPA Method 8021B: Volatiles Client ID: PBS Batch ID: B90227 RunNo: 90227 Prep Date: Analysis Date: 8/12/2022 SeqNo: 3220281 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual enzene ND 0.025	Xylenes, Total		2.5	0.10	3.000	0	84.8	80	120			
Direction Batch ID: B90227 RunNo: 90227 Prep Date: Analysis Date: 8/12/2022 SeqNo: 3220281 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Innzene ND 0.025	Surr: 4-Brom	ofluorobenzene	0.86		1.000		86.3	70	130			
Prep Date: Analysis Date: 8/12/2022 SeqNo: 3220281 Units: mg/Kg unalyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual enzene ND 0.025 -<	Sample ID:	mb	Samp	Туре: МЕ	BLK	Tes	tCode: EF	PA Method	8021B: Volati	iles		
Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual enzene ND 0.025 oluene ND 0.050 hylbenzene ND 0.050 rlenes, Total ND 0.10	Client ID:	PBS	Batc	h ID: B9	0227	F	RunNo: 90)227				
ND 0.025 oluene ND 0.050 hylbenzene ND 0.050 rlenes, Total ND 0.10	Prep Date:		Analysis [Date: 8/ *	12/2022	S	SeqNo: 32	220281	Units: mg/K	g		
ND0.050hylbenzeneND0.050rlenes, TotalND0.10	Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
hylbenzeneND0.050rlenes, TotalND0.10	Benzene		ND	0.025								
vlenes, Total ND 0.10	Toluene		ND	0.050								
	Ethylbenzene		ND	0.050								
	Xylenes, Total		ND	0.10								
Surr: 4-Bromofluorobenzene 0.85 1.000 84.6 70 130	Surr: 4-Brom	ofluorobenzene	0.85		1.000		84.6	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

.

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental A Albua TEL: 505-345-3975 I Website: www.hal	490 querq FAX:	l Hawkins N ue, NM 8710 505-345-410	5 9 S	San	nple Log-In Check List
Client Name: ENSOLUM	Work Order Number:	2208	799			RcptNo: 1
Received By: Juan Rojas 8	0/12/2022 6:25:00 AM		5	Jane	and a	
Completed By: Juan Rojas 8 Reviewed By: July 8/12/22	/12/2022 6:31:44 AM		3	Jame	E.S	
Chain of Custody						
1. Is Chain of Custody complete?		Yes	~	No		Not Present
2. How was the sample delivered?		Cour	er			
Log In						
3. Was an attempt made to cool the samples?	0	Yes	v	No		
4. Were all samples received at a temperature of	>0° C to 6.0°C	Yes	•	No		
5. Sample(s) in proper container(s)?		Yes	~	No	3	
6. Sufficient sample volume for indicated test(s)?	,	fes	~	No [
7. Are samples (except VOA and ONG) properly pr	reserved?	res	~	No [1	
8. Was preservative added to bottles?	Y	/es		No B	/	NA 🗔
9. Received at least 1 vial with headspace <1/4" for	r AQ VOA? Y	res [No [NA 🗹
0. Were any sample containers received broken?		Yes		No	~	# of preserved bottles checked
1. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Y	es l		No [for pH: (<2 or >12 unless noted)
2. Are matrices correctly identified on Chain of Cus	tody? Y	'es E	/	No [1	Adjusted?
3. Is it clear what analyses were requested?	Y	'es E	-	No [
 Were all holding times able to be met? (If no, notify customer for authorization.) 	Y	'es	2	No [Checked by: 30 8/12/2
pecial Handling (if applicable)						
15. Was client notified of all discrepancies with this	order?	Yes		No		NA 🗹
Person Notified: By Whom: Regarding: Client Instructions:	Date Via:	eMai	I 🗌 Phone	e 🗌 f	ax	In Person
16. Additional remarks:					-	
7. Cooler Information	ntact Seal No Sea	al Dat	e Sigr	ned By		

Client: Mailing	Ensol Address	um,L	s. Rio Grande Suite A	□ Standard Project Name Jones Project #:Se	9: A LS #	54ME DAY 1006 +7	HALL ENVIRONMENTA ANALYSIS LABORATO www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request													
email o	Fax#: } Package:	summ	□ Level 4 (Full Validation)	Project Mana	iger: KSurm	rem														
		□ Az Co □ Othe	ompliance r	Sampler: RDelchilly On Ice: Pres □ No # of Coolers: 1 Cooler Temp(including CF): QUFU=0.4 (°C)				-	Pesticides/8082	(Method 504.1)	Ъ		, NO ₃ , NO ₂ ,	(AC	8270 (Semi-VOA)	Total Coliform (Present/Absent)	nde			
Date	Time	Matrix	Sample Name	Container Type and #	Preservative		BTEX /	TPH:8015D(GRO	8081 Pe	EDB (Me	PAHs by 8310	RCRA 8 Metals	Cl, F, Br, NO ₃ ,	8260 (VOA)	8270 (Se	Total Col	Chlon			
11/22	1200	S	S-1	1×402 Jer	cool	-601	X								_		X		+-	╞
1 1	1205	S	S-2	1×402 Jar	0001	-002	X	X	·	24	-	_	_	_	_		X		-	╞
11/22	1210	S	8-3	1×402 Jar	0001	-003	X	X	_	-	_	_					X		+-	+
11	1215	S	<u>S-4</u>	1×402 Jar		-004	X	X			-	-	-	_	-		X	+	+-	╞
	1220	S	<u>S-5</u>	1×402 Jar	1	-005	X	X		-	-	-	-	-		\vdash	X	+	⊢	┝
	-1225	S	S-6 S-7	1×402 Jur		-006	X	X			-	-		-	-	-	XX		-	┝
6 6	-1230	S	<u> </u>	1×402 Jer 1×402 Jar		-007 -008	X	X		-			-				X		+	┢
	- 1235 - 1240	5	5-9	1× Yoz Jar		-009	X	X									X		F	
																				F
ate: 11 22- ate:	Time: -1524 Time:	Relinquist	Dho	Received by: Received by:	Via: Via: Via:	Date Time 8/11/22 1524 Date Time 8/12/22 6.175		ME A			PP	M- my1	Tey	- ī	Lo 2B	ng	(EF	PROD	2	

Client:	Enso	lum,t		Project Name	□ Standard					A	NA		SIS	5 L	AE	BOF	IEN RAT		
Mailing	Address	6065	, Rio Grande Suite A	Jones	A LS=	#7-	11	49	01 H	awkir	s NE	- Al	buqu	erqu	e, N	M 871	09		
	tecin		7410	Project #: Se	e notes	\$		Tel. 505-345-3975 Fax 505-345-4107 Analysis Request											
	Package:		□ Level 4 (Full Validation)	Project Mana	ager: KSUW	Image Image Image 8021) Image 8021) Image 8021) Image 8021) Image 8021) Image 8021) Image 8270SIMS VO2, PO4, SO4 SO4					(Present/Absent)								
Accredi	AC	□ Az Co □ Othe	ompliance r	Sampler: Riberchilly On Ice: PYes PNo # of Coolers: 1 Cooler Temp(including CF): 0.4-0-0.4 (°C)				TPH:8015D(GRO / DRO / MRO)	Pesticides/8082	204	Ъ,	NO ₃ , NO ₂ , I		ni-VOA)		ride			
Date	Time	Matrix	Sample Name	Container Type and #	Preservative Type		BTEX / MTBE / TMB's (8021)	TPH:8015	8081 Pest	EDB (Method	PAHS by 8310 0	Cl, F, Br, NO ₃ ,	8260 (VOA)	8270 (Semi-VOA)	Total Coliform	Chloride			
8/11/22	1245	3	SP-1	1×402 Jar	(00)	-010	X	Х								X			
8/11/22	1250	S	SP-2	1+ 402 Jar	COOL	-011	X	X		1.6						X			
8/11/22	1255	S	SP-3	1+402 Tar	COOL	-012	X	X								X	1	Ē.	
8/11/22	-1300	S	SP-4	1×402-Jer	(00)	-013	×	X								X	_		_
																	+		
																	+		+
Date: 8 11/22 Date:	Time: 1524 Time: 1803	Relinquist	why	Received by: Received by:	Via Wa Via:	Date Time /52y Date Time	′_S≯	nark: Mi D.A			1 F	m	- Ti Ke	5m 1-	Le	ng i 212	(TPP 100	(00)	

August 22, 2022

Kyle Summers ENSOLUM 606 S. Rio Grande Suite A Aztec, NM 87410 TEL: (903) 821-5603 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

RE: Jones A LS 7

OrderNo.: 2208A03

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 4 sample(s) on 8/17/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Analytical Report
Lab Order 2208A03

Date Reported: 8/22/2022

CLIENT: ENSOLUM Project: Jones A LS 7 Lab ID: 2208A03-001	Client Sample ID: S-10 Collection Date: 8/16/2022 12:00:00 PM Matrix: SOIL Received Date: 8/17/2022 6:30:00 AM								
Analyses	Result	RL	Qual Units		Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS					Analyst				
Chloride	ND	61	mg/Kg	20	8/17/2022 10:34:03 AM	69557			
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	DGH			
Diesel Range Organics (DRO)	ND	15	mg/Ko	1	8/17/2022 11:15:12 AM				
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	8/17/2022 11:15:12 AM	69549			
Surr: DNOP	105	21-129	%Rec	1	8/17/2022 11:15:12 AM	69549			
EPA METHOD 8015D: GASOLINE RANGE	I				Analyst	BRM			
Gasoline Range Organics (GRO)	ND	3.4	mg/Kg	1	8/17/2022 12:09:00 PM	A90339			
Surr: BFB	103	37.7-212	%Rec	1	8/17/2022 12:09:00 PM	A90339			
EPA METHOD 8021B: VOLATILES					Analyst	BRM			
Benzene	ND	0.017	mg/Kg	1	8/17/2022 12:09:00 PM	B90339			
Toluene	ND	0.034	mg/Kg	1	8/17/2022 12:09:00 PM	B90339			
Ethylbenzene	ND	0.034	mg/Kg	1	8/17/2022 12:09:00 PM	B90339			
Xylenes, Total	ND	0.069	mg/Kg	1	8/17/2022 12:09:00 PM	B90339			
Surr: 4-Bromofluorobenzene	99.7	70-130	%Rec	1	8/17/2022 12:09:00 PM	B90339			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 7

Analytical Report

Hall Environmental	Analysis	Laboratory,	Inc.

Lab Order 2208A03

Date Reported: 8/22/2022

CLIENT: ENSOLUM			ient Sample II								
Project: Jones A LS 7 Lab ID: 2208A03-002	Collection Date: 8/16/2022 12:05:00 PM Matrix: SOIL Received Date: 8/17/2022 6:30:00 AM										
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch					
EPA METHOD 300.0: ANIONS					Analyst	: NAI					
Chloride	ND	60	mg/Kg	20	8/17/2022 10:46:27 AN	69557					
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	: DGH					
Diesel Range Organics (DRO)	22	15	mg/Kg	1	8/17/2022 11:38:59 AM	69549					
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	8/17/2022 11:38:59 AN	69549					
Surr: DNOP	103	21-129	%Rec	1	8/17/2022 11:38:59 AN	69549					
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: BRM					
Gasoline Range Organics (GRO)	ND	3.5	mg/Kg	1	8/17/2022 12:28:00 PM	A90339					
Surr: BFB	104	37.7-212	%Rec	1	8/17/2022 12:28:00 PM	A90339					
EPA METHOD 8021B: VOLATILES					Analyst	: BRM					
Benzene	ND	0.018	mg/Kg	1	8/17/2022 12:28:00 PM	B90339					
Toluene	ND	0.035	mg/Kg	1	8/17/2022 12:28:00 PN	B90339					
Ethylbenzene	ND	0.035	mg/Kg	1	8/17/2022 12:28:00 PN	B90339					
Xylenes, Total	ND	0.071	mg/Kg	1	8/17/2022 12:28:00 PM	B90339					
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1	8/17/2022 12:28:00 PM	B90339					

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 7

Hall Environmental Analysis Laboratory, Inc.

Analytical Report
Lab Order 2208A03

Date Reported: 8/22/2022

CLIENT: ENSOLUM		Cl	ient Sa	ample II	D: S-1	12					
Project: Jones A LS 7	Collection Date: 8/16/2022 12:10:00 PM										
Lab ID: 2208A03-003	Matrix: SOIL Received Date: 8/17/2022 6:30:00 A										
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch				
EPA METHOD 300.0: ANIONS						Analyst:	NAI				
Chloride	ND	61		mg/Kg	20	8/17/2022 11:23:41 AM	69557				
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS					Analyst	DGH				
Diesel Range Organics (DRO)	ND	14		mg/Kg	1	8/17/2022 12:02:51 PM	69549				
Motor Oil Range Organics (MRO)	ND	48		mg/Kg	1	8/17/2022 12:02:51 PM	69549				
Surr: DNOP	99.6	21-129		%Rec	1	8/17/2022 12:02:51 PM	69549				
EPA METHOD 8015D: GASOLINE RANGE						Analyst	BRM				
Gasoline Range Organics (GRO)	ND	5.1		mg/Kg	1	8/17/2022 12:48:00 PM	A90339				
Surr: BFB	105	37.7-212		%Rec	1	8/17/2022 12:48:00 PM	A90339				
EPA METHOD 8021B: VOLATILES						Analyst	BRM				
Benzene	ND	0.025		mg/Kg	1	8/17/2022 12:48:00 PM	B90339				
Toluene	ND	0.051		mg/Kg	1	8/17/2022 12:48:00 PM	B90339				
Ethylbenzene	ND	0.051		mg/Kg	1	8/17/2022 12:48:00 PM	B90339				
Xylenes, Total	ND	0.10		mg/Kg	1	8/17/2022 12:48:00 PM	B90339				
Surr: 4-Bromofluorobenzene	101	70-130		%Rec	1	8/17/2022 12:48:00 PM	B90339				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 7

Hall Environmental Analysis Laboratory, Inc.

Analytical Report
Lab Order 2208A03

Date Reported: 8/22/2022

CLIENT: ENSOLUM Project: Jones A LS 7 Lab ID: 2208A03-004	Client Sample ID: S-13 Collection Date: 8/16/2022 12:15:00 PM Matrix: SOIL Received Date: 8/17/2022 6:30:00 AM										
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch					
EPA METHOD 300.0: ANIONS					Analyst	: NAI					
Chloride	ND	60	mg/Kg	20	8/17/2022 11:36:06 AM	69557					
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	DGH					
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	8/17/2022 12:26:36 PM	69549					
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	8/17/2022 12:26:36 PM	69549					
Surr: DNOP	97.6	21-129	%Rec	1	8/17/2022 12:26:36 PM	69549					
EPA METHOD 8015D: GASOLINE RANGE					Analyst	BRM					
Gasoline Range Organics (GRO)	ND	3.8	mg/Kg	1	8/17/2022 1:08:00 PM	A90339					
Surr: BFB	106	37.7-212	%Rec	1	8/17/2022 1:08:00 PM	A90339					
EPA METHOD 8021B: VOLATILES					Analyst	BRM					
Benzene	ND	0.019	mg/Kg	1	8/17/2022 1:08:00 PM	B90339					
Toluene	ND	0.038	mg/Kg	1	8/17/2022 1:08:00 PM	B90339					
Ethylbenzene	ND	0.038	mg/Kg	1	8/17/2022 1:08:00 PM	B90339					
Xylenes, Total	ND	0.075	mg/Kg	1	8/17/2022 1:08:00 PM	B90339					
Surr: 4-Bromofluorobenzene	103	70-130	%Rec	1	8/17/2022 1:08:00 PM	B90339					

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 7

Client ID: LCSS

Analyte Chloride

Prep Date: 8/17/2022

Batch ID: 69557

Analysis Date: 8/17/2022

1.5

15.00

Result

14

L.												
Client: Project:		-										
Sample ID: ME	8-69557	SampT	ype: m l	blk	Tes	tCode: E	PA Method	300.0: Anion	S			
Client ID: PB	S	Batch	n ID: 69	557	F	RunNo: 9	90334					
Prep Date: 8/	17/2022	Analysis D	ate: 8/	17/2022	S	SeqNo: 3	3224202	Units: mg/#	٤g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Chloride		ND	1.5									
Sample ID: LC	S-69557	SampT	ype: Ics	3	Tes	tCode: E	PA Method	300.0: Anion	S			

PQL SPK value SPK Ref Val %REC LowLimit

0

RunNo: 90334

95.4

SeqNo: 3224203

Units: mg/Kg

110

%RPD

RPDLimit

Qual

HighLimit

90

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- в Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 5 of 7

	WO#:	2208A03
Environmental Analysis Laboratory, Inc.		22-Aug-22

	OLUM 5 A LS 7									
Sample ID: 2.5ug gro lcs	Samp	Гуре: LC	s	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID: LCSS	Bato	h ID: A9	0339	F	RunNo: 9	0339				
Prep Date:	Analysis I	Date: 8/	17/2022	S	SeqNo: 3	223655	Units: mg/k	٤g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO) 26	5.0	25.00	0	104	72.3	137			
Surr: BFB	2100		1000		212	37.7	212			S
Sample ID: mb	Samp	SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range								
Client ID: PBS	Batc	h ID: A9	0339	F	RunNo: 9	0339				
Prep Date:	Analysis I	Date: 8/	17/2022	S	SeqNo: 3	223656	Units: mg/ #	٤g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO) ND	5.0								
Surr: BFB	990		1000		99.1	37.7	212			

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 6 of 7

Released to Imaging: 12/9/2022 10:52:17 AM

WO#:	2208A03
	<u> </u>

22-Aug-22

Client:	ENSOLUM
Project:	Jones A LS 7

Sample ID: 100ng btex Ics	Samp	ype: LC	S	Tes	tCode: EF	PA Method	8021B: Volat	iles				
Client ID: LCSS	Batc	h ID: B9	0339	R	lunNo: 9	0339						
Prep Date:	Analysis I	Date: 8/	17/2022	S	eqNo: 32	223685	Units: mg/K	g				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	0.86	0.025	1.000	0	85.8	80	120					
Toluene	0.88	0.050	1.000	0	87.6	80	120					
Ethylbenzene	0.88	0.050	1.000	0	88.5	80	120					
Xylenes, Total	2.6	0.10	3.000	0	88.0	80	120					
Surr: 4-Bromofluorobenzene	1.0		1.000		99.8	70	130					
Sample ID: mb	SampType: MBLK TestCode: EPA Method 8021B: Volatiles											
Client ID: PBS	Batc	h ID: B9	0339	R	lunNo: 9	0339						
Prep Date:	Analysis E	Date: 8/	17/2022	S	eqNo: 32	223686	Units: mg/K	g				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Analyte Benzene	Result ND	PQL 0.025	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
,			SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	ND	0.025	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene Toluene	ND ND	0.025 0.050	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 7

.

ANAL	RONMENTAL YSIS Ratory	Hall Environm TEL: 505-345- Website: ww	490 Albuquerg 3975 FAX:) Hawki nue, NM a 505-345	ns NE 87109 Sa -4107	mple Log-In Check List
Client Name:	ENSOLUM	Work Order Nur	nber: 220	8A03		RcptNo; 1
Received By:	Juan Rojas	8/17/2022 6:30:00	AM		Mancal	2
Completed By:	Juan Rojas	8/17/2022 6:50:22	AM		Juan and	2
Reviewed By:	IO	8/17/22			× ~	
Chain of Cus	tody					
1. Is Chain of C	ustody complete?		Yes	•	No 🗌	Not Present
. How was the	sample delivered?		Cou	ier		
Log In 3. Was an atterr	npt made to cool the same	oles?	Yes	~	No 🗌	
. Were all samp	ples received at a tempera	ature of >0° C to 6.0°C	Yes	~	No 🗌	NA 🗔
. Sample(s) in p	proper container(s)?		Yes		No 🗌	
. Sufficient sam	ple volume for indicated t	est(s)?	Yes	~	No 🗌	
Are samples (e	except VOA and ONG) pr	operly preserved?	Yes	~	No 🗌	
. Was preservat	tive added to bottles?		Yes		No 🔽	NA 🗌
. Received at lea	ast 1 vial with headspace	<1/4" for AQ VOA?	Yes		No 🗌	NA 🔽
	nple containers received b		Yes		No 🗹	
	rk match bottle labels? ncies on chain of custody	N	Yes	v	No 🗌	# of preserved bottles checked for pH:
	orrectly identified on Chai		Yes	~	No 🗌	(<2 or >12 unless noted) Adjusted?
	analyses were requested			~		
	g times able to be met? stomer for authorization.)		Yes		No 🗌	enecked by: JAS17/22
	ng (if applicable)				2	
	ified of all discrepancies v	vith this order?	Yes		No 🗌	NA 🗹
Person N	Notified:	Date				
By Whor	n:	Via:	eMai	I 🗌 P	hone 🗌 Fax	In Person
Regardin	ng:					
	structions:					
. Additional rem	narks:					
. <u>Cooler Inform</u> Cooler No 1	nation Temp ºC Condition 1.6 Good	Seal Intact Seal No	Seal Dat	e	Signed By	

Page 1 of 1

Wient:	Ensol	um, L	LC B. Rio Grande , NM 87410	□ Standard Project Nam Jones Project #: S	<mark>対 Rush</mark> e: ALS母・	AMEDAY 100%	HALL ENVIRONMENT ANALYSIS LABORATO www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request						22.1							
Phone			1									A	naly	sis	Req	uest				
	Package:	sum	□ Level 4 (Full Validation)	Project Manager: KSymmeo			's (8021)	O / MRO)	PCB's	T	8270SIMS		PO4, SO4			tt/Absent)				
Accred			ompliance		Deechilly		HWB	/ DR	3082	504.1)			NO ₂ ,		(reser				
	AC (Type)	□ Othe	r	On Ice: # of Coolers:	Yes	□ No	4	GRO	des/8	d 50	10 or	als			VOA	n (Pi	4			
Date	Time	Matrix	Sample Name	Cooler Temp Container	(including CF):) . Preservative Type		BTEX / MTBE / TMB's (8021)	TPH:8015D(GRO / DRO / MRO)	8081 Pesticides/8082	EDB (Method	PAHs by 8310	RCRA 8 Metals	CI, F, Br, NO ₃ ,	8260 (VOA)	8270 (Semi-VOA)	Total Coliform (Present/Absent)	Chloride			
	1200	S	S-10	1× Yoz Tur		10000	X	X					0	ω	ω		X			
8)10/22	1205	S	S-11	1x YozJer		ć	×	X				Ē			1	1.1	X			
A	1210	S	S-12	1x Yoz Jer	A		X	X									X			
5/14/22	1215	S	S-13	1×982 Jar	(16(1)		×	×									×			
4 AM																				
2022 /:12:34										-									_	_
1/29/	Time:	Relinquish	ed by:	Received by:	Via:	Date Time	Ren	narks	5:			Ē	200-	TO	m	00		DRAD		
ate:	1515 Time: 1752	Relinquish	bhlo ed by:	Received by:	Via: Via:	8/10/22 1515 Date Time	SA	DI	E.Y			Po	AY I	Ley	- 1	23:	9 (E 21 200			

August 23, 2022

Kyle Summers ENSOLUM 606 S. Rio Grande Suite A Aztec, NM 87410 TEL: (903) 821-5603 FAX: Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

RE: Jones A LS 7

OrderNo.: 2208B90

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 2 sample(s) on 8/19/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Surr: 4-Bromofluorobenzene

Analytical Report

Lab Order 2208B90

Date Reported: 8/23/2022

8/19/2022 10:15:54 AM D90417

CLIENT: ENSOLUM		Cl	ient Sample II	D: S-1	14	
Project: Jones A LS 7		(Collection Dat	e: 8/1	8/2022 11:30:00 AM	
Lab ID: 2208B90-001	Matrix: SOIL					
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: JTT
Chloride	ND	60	mg/Kg	20	8/19/2022 11:22:12 AM	69629
EPA METHOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analys	t: DGH
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	8/19/2022 10:35:58 AM	69628
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	8/19/2022 10:35:58 AM	69628
Surr: DNOP	83.5	21-129	%Rec	1	8/19/2022 10:35:58 AM	69628
EPA METHOD 8015D: GASOLINE RA	NGE				Analys	t: NSB
Gasoline Range Organics (GRO)	ND	19	mg/Kg	5	8/19/2022 10:15:54 AM	B90417
Surr: BFB	106	37.7-212	%Rec	5	8/19/2022 10:15:54 AM	B90417
EPA METHOD 8021B: VOLATILES					Analys	t: NSB
Benzene	ND	0.097	mg/Kg	5	8/19/2022 10:15:54 AM	D90417
Toluene	ND	0.19	mg/Kg	5	8/19/2022 10:15:54 AM	D90417
Ethylbenzene	ND	0.19	mg/Kg	5	8/19/2022 10:15:54 AM	D90417
Xylenes, Total	ND	0.39	mg/Kg	5	8/19/2022 10:15:54 AM	D90417

96.7

70-130

%Rec

5

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 6

Analytical Report

Hall Environmental Analysis Laboratory, Inc.	Hall	Environmental	Analysis	Laboratory.	Inc.
--	------	----------------------	----------	-------------	------

Lab Order 2208B90

Date Reported: 8/23/2022

CLIENT: ENSOLUM	Client Sample ID: S-15									
Project: Jones A LS 7		(Collection Dat	e: 8/1	18/2022 11:35:00 AM					
Lab ID: 2208B90-002	Matrix: SOIL		Received Dat	e: 8/1	19/2022 6:35:00 AM					
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch				
EPA METHOD 300.0: ANIONS					Analys	t: JTT				
Chloride	ND	59	mg/Kg	20	8/19/2022 11:34:37 AN	69629				
EPA METHOD 8015M/D: DIESEL RAM	NGE ORGANICS				Analys	t: DGH				
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	8/19/2022 10:50:10 AN	69628				
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	8/19/2022 10:50:10 AN	69628				
Surr: DNOP	87.2	21-129	%Rec	1	8/19/2022 10:50:10 AN	69628				
EPA METHOD 8015D: GASOLINE RA	NGE				Analys	t: NSB				
Gasoline Range Organics (GRO)	ND	15	mg/Kg	5	8/19/2022 10:39:26 AN	B90417				
Surr: BFB	110	37.7-212	%Rec	5	8/19/2022 10:39:26 AN	B90417				
EPA METHOD 8021B: VOLATILES					Analys	t: NSB				
Benzene	ND	0.077	mg/Kg	5	8/19/2022 10:39:26 AN	D90417				
Toluene	ND	0.15	mg/Kg	5	8/19/2022 10:39:26 AN	D90417				
Ethylbenzene	ND	0.15	mg/Kg	5	8/19/2022 10:39:26 AN	D90417				
Xylenes, Total	ND	0.31	mg/Kg	5	8/19/2022 10:39:26 AN	D90417				
Surr: 4-Bromofluorobenzene	95.1	70-130	%Rec	5	8/19/2022 10:39:26 AN	D90417				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 6

Client: Project:		DLUM A LS 7									
Sample ID:	MB-69629	SampT	Гуре: mb	lk	Tes	tCode: EF	PA Method	300.0: Anions	5		
Client ID:	PBS	Batcl	h ID: 696	629	F	RunNo: 9(0418				
Prep Date:	8/19/2022	Analysis E	Date: 8/ *	19/2022	S	SeqNo: 32	228072	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								
Sample ID:	LCS-69629	SampT	Гуре: Ics		Tes	tCode: EF	PA Method	300.0: Anions	5		
Client ID:	LCSS	Batcl	h ID: 696	629	F	RunNo: 90	0418				
Prep Date:	8/19/2022	Analysis E	Date: 8/ *	19/2022	S	SeqNo: 32	228073	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	91.1	90	110			

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

2208B90

23-Aug-22

WO#:

WO#:	2208B90	

23-Aug-22

Page 98 of 162

Client: Project:	ENSOLU Jones A L										
Sample ID:	MB-69628	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID:	PBS	Batch	n ID: 69	628	F	RunNo: 9(0423				
Prep Date:	8/19/2022	Analysis D	0ate: 8/	19/2022	5	SeqNo: 32	226587	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range C	Organics (DRO)	ND	15					5			
•	e Organics (MRO)	ND	50								
Surr: DNOP	,	7.7		10.00		76.7	21	129			
Sample ID: LCS-69628 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics											
Client ID:	LCSS	Batch	n ID: 69	628	F	RunNo: 90	0423				
Prep Date:	8/19/2022	Analysis D	0ate: 8/	19/2022	S	SeqNo: 32	226588	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range C	Organics (DRO)	46	15	50.00	0	92.2	64.4	127			
Surr: DNOP		3.8		5.000		76.1	21	129			
Sample ID:	2208B90-001AMS	SampT	ype: MS	6	Tes	tCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID:	S-14	Batch	n ID: 69	628	F	RunNo: 90	0423				
Prep Date:	8/19/2022	Analysis D	0ate: 8/	19/2022	S	SeqNo: 32	226594	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range C	Organics (DRO)	47	15	49.55	0	95.3	36.1	154			
Surr: DNOP		3.8		4.955		76.1	21	129			
Sample ID:	2208B90-001AMSD	SampT	уре: М	SD	Tes	tCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID:	S-14	Batch	n ID: 69	628	F	RunNo: 90	0423				
Prep Date:	8/19/2022	Analysis D	0ate: 8/	19/2022	S	SeqNo: 32	226595	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range C	Drganics (DRO)	44	14	47.21	0	92.2	36.1	154	8.14	33.9	
Surr: DNOP		3.4		4.721		73.1	21	129	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

WO#:	2208B90
	22.4 22

	ENSOLUM Iones A LS 7									
Sample ID: mb	Sam	оТуре: МЕ	BLK	Tes	tCode: EF	PA Method	8015D: Gasol	ine Range		
Client ID: PBS	Bat	ch ID: B9	0417	F	RunNo: 9(0417				
Prep Date:	Analysis	Date: 8/	19/2022	S	SeqNo: 32	227673	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics Surr: BFB	(GRO) ND 1100	5.0	1000		113	37.7	212			
Sample ID: 2.5ug gr	o Ics Sam	Type: LC	S	Tes	tCode: EF	PA Method	8015D: Gasol	ine Range		
Client ID: LCSS	Bat	ch ID: B9	0417	F	RunNo: 9(0417				
Prep Date:	Analysis	Date: 8/	19/2022	S	SeqNo: 32	227674	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics	(GRO) 26	5.0	25.00	0	103	72.3	137			
Surr: BFB	2100		1000		207	37.7	212			
Sample ID: 2208b90	-001ams Sam	туре: М	6	Tes	tCode: EF	PA Method	8015D: Gasol	ine Range		
Client ID: S-14	Bat	ch ID: B9	0417	F	RunNo: 9(0417				
Prep Date:	Analysis	Date: 8/	19/2022	S	SeqNo: 32	227680	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics	(GRO) 100	19	96.68	0	106	70	130			
Surr: BFB	8000		3867		207	37.7	212			
Sample ID: 2208b90	-001amsd Sam	Type: MS	SD	Tes	tCode: EF	PA Method	8015D: Gasol	ine Range		
Client ID: S-14	Bat	ch ID: B9	0417	F	RunNo: 9(0417				
Prep Date:	Analysis	Date: 8/	19/2022	S	SeqNo: 32	227681	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics	,	19	96.68	0	107	70	130	0.677	20	
Surr: BFB	8300		3867		213	37.7	212	0	0	S

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

ENSOLUM

Jones A LS 7

Client:

Project:

Sample ID: mb

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

•		••								
Client ID: PBS	Batcl	n ID: D9	0417	F	RunNo: 9(0417				
Prep Date:	Analysis E	Date: 8/ *	19/2022	\$	SeqNo: 32	227719	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenzene	0.95		1.000		94.8	70	130			
Sample ID: 100ng btex lcs	SampT	SampType: LCS TestCode: EPA Method 8021B: Volatiles								
Client ID: LCSS	Batcl	Batch ID: D90417				0417				
Prep Date:	Analysis E	Date: 8/ *	19/2022	S	SeqNo: 32	227720	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.97	0.025	1.000	0	96.8	80	120			
Toluene	1.0	0.050	1.000	0	99.6	80	120			
Ethylbenzene	1.0	0.050	1.000	0	99.5	80	120			
Xylenes, Total	3.0	0.10	3.000	0	98.7	80	120			
Surr: 4-Bromofluorobenzene	0.97		1.000		96.8	70	130			
Sample ID: 2208b90-002ams	SampT	SampType: MS TestCode: EPA Method 8021B: Volatiles								
Client ID: S-15	Batcl	n ID: D9	0417	F	RunNo: 9(0417				
Prep Date:	Analysis E	Date: 8/ *	19/2022	5	SeqNo: 32	227726	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	2.9	0.077	3.073	0.04210	93.7	68.8	120			
Toluene	3.0	0.15	3.073	0.06116	97.0	73.6	124			
Ethylbenzene	3.0	0.15	3.073	0.04057	96.6	72.7	129			
Xylenes, Total	9.1	0.31	9.219	0.1607	97.4	75.7	126			
Surr: 4-Bromofluorobenzene	3.1		3.073		99.9	70	130			
Sample ID: 2208b90-002amsd	SampT	уре: МS	D	Tes	stCode: EF	PA Method	8021B: Volati	les		
Client ID: S-15	Batcl	n ID: D9	0417	F	RunNo: 9(0417				
Prep Date:	Analysis E	Date: 8/ *	19/2022	Ş	SeqNo: 32	227727	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	2.9	0.077	3.073	0.04210	94.2	68.8	120	0.535	20	
Toluene										
	3.1	0.15	3.073	0.06116	97.7	73.6	124	0.685	20	
Ethylbenzene	3.1 3.0	0.15 0.15	3.073 3.073	0.06116 0.04057	97.7 97.5	73.6 72.7	124 129	0.685 0.884	20 20	
Ethylbenzene Xylenes, Total										

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- PQL Practical Quanitative Limit

Surr: 4-Bromofluorobenzene

- S
- в Analyte detected in the associated Method Blank

101

70

130

0

Е Estimated value

3.073

- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

0

3.1

2208B90

23-Aug-22

TestCode: EPA Method 8021B: Volatiles

WO#:

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmen A TEL: 505-345-39 Website: www	4901 H Ilbuquerque, 075 FAX: 505	awkins NE NM 87109 -345-4107	Sar	nple Log-In (Check List	
Client Name: ENSOLUM	Work Order Numb	er: 2208B9	0		RcptNo	p: 1	20
Received By: Juan Rojas	8/19/2022 6:35:00 A	M	glia	New Y			
Completed By: Juan Rojas Reviewed By: NB 8/19/22	8/19/2022 6:48:34 A	M	illian	AND AND			
Chain of Custody							
1. Is Chain of Custody complete?		Yes 🗸	N		Not Present		
2. How was the sample delivered?		Courier					
Log In							
3. Was an attempt made to cool the samples	5?	Yes 🗸	No		NA 🗌		
4. Were all samples received at a temperatu	re of >0° C to 6.0°C	Yes 🔽	No		NA 🗌		
5. Sample(s) in proper container(s)?		Yes 🔽	No				
6. Sufficient sample volume for indicated test	(s)?	Yes 🗸	No				
7. Are samples (except VOA and ONG) prope	erly preserved?	Yes 🗹	No				
8. Was preservative added to bottles?		Yes 🗌	No	~	NA 🗌		
9. Received at least 1 vial with headspace <1	/4" for AQ VOA?	Yes 🗌	No		NA 🔽		
0. Were any sample containers received brol	ken?	Yes 🗌	No	✓	# of preserved	/	-
1. Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes 🔽	No		bottles checked for pH:	r>12 unless noted)	
2. Are matrices correctly identified on Chain of	f Custody?	Yes 🗸	No		Adjusted?		
3. Is it clear what analyses were requested?		Yes 🗸	No		/		100
 Were all holding times able to be met? (If no, notify customer for authorization.) 		Yes 🗹	No		Checked by:	328/19	12
pecial Handling (if applicable)				~			
15. Was client notified of all discrepancies with	this order?	Yes	No				
Person Notified:	Date			_		1	
By Whom:	Via:	eMail	Phone	Fax	In Person		
Regarding:							
Client Instructions:							
16. Additional remarks:							
17. <u>Cooler Information</u> Cooler No Temp ⁰C Condition S 1 1.4 Good	Seal Intact Seal No	Seal Date	Signed	Ву			

Page 1 of 1

Viailing	<u>Address</u>	s: 6000	LC S. Dia Grande Site A	□ Standard <u>Xi Rush 100%</u> Project Name: Jones A LS#7 Project #: seeneres				HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109										
Phone 7		n 87	-410					Tel. 505-345-3975 Fax 505-345-4107 Analysis Request										
email o	r Fax#:] Package:		useensolum. (@m. □ Level 4 (Full Validation)	Project Mana	ger: KSUM	imert	¥s (8021)	(O / MRO)	PCB's		8270SIMS		PO4, SO4					
I NEL	tation: AC (Type)	□ Az Co □ Othe	ompliance r	Sampler: PDetchilly On Ice:			BTEX / MTBE / TMB's (8021)	TPH:8015D(GRO / DRO / MRO)	8081 Pesticides/8082	hod 504.1)	5	Aetals	NO ₃ , NO ₂ ,	A)	ni-VOA)	Total Coliform (Present/Absent)	nde	
	-	Matrix	Sample Name	Container	Preservative Type	HEAL No. 22081390	BTEX / N	TPH:8015	8081 Pest	EDB (Method	PAHs by 8310	RCRA 8 Metals	CI, F, Br, NO ₃ ,	8260 (VOA)	8270 (Semi-VOA)	Total Colif	Chlande	
1 1	1130	S	S-14	(1) 402 Jer	COU	-001	X	X			1					1	X	
18/22	-1135	S	S-15	(1) 402 Jar		-002	×	×					_				×	
																	_	
18/22 10: 18/22	Time: _1<56 Time: 1819	Relinquish	DIS	Received by: Received by:	Via: Via: Via:	8/18/72 1556 Date Time 8/19/22 6.'35	S	AM C	LAY								9 (EF	

0

August 26, 2022

Kyle Summers ENSOLUM 606 S. Rio Grande Suite A Aztec, NM 87410 TEL: (903) 821-5603 FAX: Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

RE: Jones A LS 7

OrderNo.: 2208D45

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 2 sample(s) on 8/23/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report

Lab Order 2208D45

Date Reported: 8/26/2022

CLIENT: ENSOLUM Client Sample ID: S-16												
Project: Jones A LS 7		Collection Date: 8/22/2022 11:00:00 AM										
Lab ID: 2208D45-001	Matrix: SOIL	Received Date: 8/23/2022 7:00:00 AM										
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch						
EPA METHOD 300.0: ANIONS					Analys	t: JTT						
Chloride	ND	60	mg/Kg	20	8/23/2022 12:39:44 PM	69695						
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analys	t: DGH						
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	8/23/2022 12:07:58 PM	69685						
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	8/23/2022 12:07:58 PM	69685						
Surr: DNOP	103	21-129	%Rec	1	8/23/2022 12:07:58 PM	69685						
EPA METHOD 8015D: GASOLINE RA	ANGE				Analys	t: NSB						
Gasoline Range Organics (GRO)	6.4	3.8	mg/Kg	1	8/23/2022 9:30:27 AM	G90483						
Surr: BFB	152	37.7-212	%Rec	1	8/23/2022 9:30:27 AM	G90483						
EPA METHOD 8021B: VOLATILES					Analys	t: NSB						
Benzene	ND	0.019	mg/Kg	1	8/23/2022 9:30:27 AM	B90483						
Toluene	0.058	0.038	mg/Kg	1	8/23/2022 9:30:27 AM	B90483						
Ethylbenzene	ND	0.038	mg/Kg	1	8/23/2022 9:30:27 AM	B90483						
Xylenes, Total	0.27	0.075	mg/Kg	1	8/23/2022 9:30:27 AM	B90483						
Surr: 4-Bromofluorobenzene	94.9	70-130	%Rec	1	8/23/2022 9:30:27 AM	B90483						

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 6

Analytical Report

	Hall Environmental	Analysis	Laboratory.	Inc.
--	--------------------	----------	-------------	------

Lab Order 2208D45

Date Reported: 8/26/2022

CLIENT: ENSOLUMClient Sample ID: S-17roject: Jones A LS 7Collection Date: 8/22/2022 11:05:00 AM										
Lab ID: 2208D45-002	Matrix: SOIL Received Date: 8/23/2022 7:00:00 AM									
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch				
EPA METHOD 300.0: ANIONS					Analys	: JTT				
Chloride	ND	60	mg/Kg	20	8/23/2022 12:52:09 PM	69695				
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS				Analys	: DGH				
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	8/23/2022 12:18:38 PM	69685				
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	8/23/2022 12:18:38 PM	69685				
Surr: DNOP	96.7	21-129	%Rec	1	8/23/2022 12:18:38 PM	69685				
EPA METHOD 8015D: GASOLINE RANG	GE				Analys	: NSB				
Gasoline Range Organics (GRO)	ND	3.6	mg/Kg	1	8/23/2022 9:53:52 AM	G90483				
Surr: BFB	104	37.7-212	%Rec	1	8/23/2022 9:53:52 AM	G90483				
EPA METHOD 8021B: VOLATILES					Analys	: NSB				
Benzene	ND	0.018	mg/Kg	1	8/23/2022 9:53:52 AM	B90483				
Toluene	ND	0.036	mg/Kg	1	8/23/2022 9:53:52 AM	B90483				
Ethylbenzene	ND	0.036	mg/Kg	1	8/23/2022 9:53:52 AM	B90483				
Xylenes, Total	ND	0.072	mg/Kg	1	8/23/2022 9:53:52 AM	B90483				
Surr: 4-Bromofluorobenzene	89.7	70-130	%Rec	1	8/23/2022 9:53:52 AM	B90483				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 6

Client: Project:		SOLUM es A LS 7								
Sample ID:	MB-69695	SampType: m	blk	Tes	tCode: EF	PA Method	300.0: Anions	6		
Client ID:	PBS	Batch ID: 69	695	F	RunNo: 9()492				
Prep Date:	8/23/2022	Analysis Date: 8	23/2022	S	SeqNo: 32	232550	Units: mg/K	g		
Analyte		Result PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND 1.5								
Sample ID: I	_CS-69695	SampType: Ic:	6	Tes	tCode: EF	PA Method	300.0: Anions	5		
Client ID:	LCSS	Batch ID: 69	695	F	RunNo: 9(0492				
Prep Date:	8/23/2022	Analysis Date: 8	/23/2022	5	SeqNo: 32	232551	Units: mg/K	g		
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

Chloride

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

2208D45

26-Aug-22

WO#:

	WO#:	2208D45
onmental Analysis Laboratory, Inc.		26-Aug-22

Client: ENSOL Project: Jones A	-									
Sample ID: LCS-69685	SampT	ype: LC	S	Tes	tCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID: LCSS	Batch	n ID: 696	685	F	RunNo: 9(0486				
Prep Date: 8/23/2022	Analysis D	Date: 8/ 3	23/2022	S	SeqNo: 32	231313	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	44	15	50.00	0	87.0	64.4	127			
Surr: DNOP	3.6		5.000		71.6	21	129			
Sample ID: MB-69685	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID: PBS	Batch	n ID: 696	685	F	RunNo: 9(0486				
Prep Date: 8/23/2022	Analysis D	Date: 8/ 2	23/2022	S	SeqNo: 32	231315	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	15								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	9.5		10.00		95.0	21	129			

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 4 of 6

Client:

Project:

Prep Date:

Surr: BFB

Client ID:

Prep Date:

Surr: BFB

Analyte

Analyte

Sample ID: mb Client ID:

PBS

Gasoline Range Organics (GRO)

Sample ID: 2.5ug gro Ics

Gasoline Range Organics (GRO)

LCSS

Result

ND

1200

Result

2100

25

Analysis Date: 8/23/2022

PQL

SampType: LCS

Batch ID: G90483

PQL

5.0

Analysis Date: 8/23/2022

5.0

SPK value SPK Ref Val

SPK value SPK Ref Val

0

1000

25.00

1000

nmental Analysis Laboratory, Inc.					
ENSOLUM Jones A LS 7					
SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range					
Batch ID: G90483 RunNo: 90483					

Units: mg/Kg

212

Units: mg/Kg

137

212

HighLimit

%RPD

%RPD

HighLimit

SeqNo: 3231925

LowLimit

LowLimit

72.3

37.7

37.7

TestCode: EPA Method 8015D: Gasoline Range

%REC

119

RunNo: 90483

%REC

102

209

SeqNo: 3231926

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- в Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Sample pH Not In Range Р
- RL Reporting Limit

Page 5 of 6

Qual

Qual

MOU

RPDLimit

RPDLimit
ENSOLUM

Jones A LS 7

Client:

Project:

Client ID:

Sample ID: mb

PBS

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

Batch ID: B90483

RunNo: 90483		
SeaNo: 3231051	Units: ma/Ka	

TestCode: EPA Method 8021B: Volatiles

Prep Date:	Analysis [Date: 8/ 2	23/2022	\$	SeqNo: 32	231951	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenzene	0.93		1.000		92.7	70	130			
Sample ID: 100ng btex lcs	SampT	Type: LC	S	Tes	stCode: EF	PA Method	8021B: Volati	iles		
Client ID: LCSS	Batcl	h ID: B9	0483	F	RunNo: 9	0483				
Prep Date:	Analysis [Date: 8/ 2	23/2022	Ş	SeqNo: 32	231952	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.95	0.025	1.000	0	94.9	80	120			
Toluene	0.98	0.050	1.000	0	97.8	80	120			
Ethylbenzene	0.96	0.050	1.000	0	96.4	80	120			
Xylenes, Total	2.9	0.10	3.000	0	95.9	80	120			
Surr: 4-Bromofluorobenzene	0.94		1.000		94.5	70	130			
Sample ID: 2208d45-001ams	SampT	Type: MS	6	Tes	stCode: EF	PA Method	8021B: Volati	iles		
Client ID: S-16	Batcl	h ID: B9	0483	F						
Prep Date:	Analysis [Date: 8/ 2	23/2022	\$	SeqNo: 32	231953	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.67	0.019	0.7502	0.01305	87.6	68.8	120			
Toluene	0.74	0.038	0.7502	0.05754	91.6	73.6	124			
Ethylbenzene	0.71	0.038	0.7502	0.02783	91.0	72.7	129			
Xylenes, Total	2.3	0.075	2.251	0.2704	90.4	75.7	126			
Surr: 4-Bromofluorobenzene	0.73		0.7502		97.0	70	130			
Sample ID: 2208d45-001amsd	SampT	Type: MS	SD.	Tes	stCode: EF	PA Method	8021B: Volati	iles		
Client ID: S-16	Batcl	h ID: B9	0483	F	RunNo: 9	0483				
Prep Date:	Analysis [Date: 8/ 2	23/2022	:	SeqNo: 32	231954	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.67	0.019	0.7502	0.01305	87.3	68.8	120	0.347	20	
Toluene	0.75	0.038	0.7502	0.05754	91.9	73.6	124	0.282	20	
Ethylbenzene	0.72	0.038	0.7502	0.02783	91.9	72.7	129	0.988	20	
Xylenes, Total	2.3	0.075	2.251	0.2704	92.4	75.7	126	1.92	20	
						_				

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- PQL Practical Quanitative Limit

Surr: 4-Bromofluorobenzene

% Recovery outside of range due to dilution or matrix interference S

0.74

в Analyte detected in the associated Method Blank

98.1

Е Estimated value

0.7502

- J
- Р Sample pH Not In Range
- RL Reporting Limit

Page 6 of 6

0

2208D45

26-Aug-22

WO#:

130

0

- Analyte detected below quantitation limits

70

Page 109 of 162

	TAL	4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com					Sample Log-In Check Li				
Client Name: ENSOLUM	М	Work Order Number	: 220	8D45			RcptNc	p: 1	кс. Т		
Received By: Juan Roj	as	8/23/2022 7:00:00 AM	P		Lan	ay					
Completed By: Juan Roj Reviewed By: N/3 8/23/		8/23/2022 7:16:11 AM			e flans Glians	Ð					
Chain of Custody											
1. Is Chain of Custody comp	plete?		Yes		No		Not Present				
2. How was the sample deliv	vered?		Cou	irier							
Log In 3. Was an attempt made to	cool the samples?		Yes	•	No						
4. Were all samples received	d at a temperature of	>0° C to 6.0°C	Yes	~	No						
5. Sample(s) in proper conta	liner(s)?		Yes	~	No						
5. Sufficient sample volume f	for indicated test(s)?		Yes	~	No						
7. Are samples (except VOA	and ONG) properly p	reserved?	Yes	~	No						
3. Was preservative added to	bottles?		Yes		No	~	NA 🗌				
. Received at least 1 vial wit	h headspace <1/4" fo	Dr AQ VOA?	Yes	E	No		NA 🔽				
0. Were any sample containe			Yes		No		# of preserved		ĩ		
1. Does paperwork match bo (Note discrepancies on cha			Yes	•	No [bottles checked for pH:	>12 unless noted)	/		
2 Are matrices correctly iden		stody?	Yes	~	No [Adjusted?	- 12 unicsarioted)			
3. Is it clear what analyses we	ere requested?		Yes	~	No [/	1.1			
 Were all holding times able (If no, notify customer for a 	to be met? uthorization.)		Yes		No 🗌		Checked by:	Jn8/23/2	2		
pecial Handling (if app	olicable)										
5. Was client notified of all di	screpancies with this	order?	Yes		No		NA 🗹				
Person Notified:		Date		_		-					
By Whom:		Via:	eMa	ail 🗌 Ph	none 🗌 F	Fax	In Person				
Regarding:											
Client Instructions:											
7. <u>Cooler Information</u> Cooler No Temp °C 1 0.7	Condition Seal Good	Intact Seal No Se	eal Da	ite :	Signed By	1					

Page 1 of 1

Gilient:	Ens Addres	slum	S. Rio (grande, Suite A	-	dard Rush 0690			HALL ENVIRONMEN ANALYSIS LABORA www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request							RAT				
	Package		Level 4 (Full Validation)	Project Mana	ager: KSum	mes	TMB's (8021)	DRO / MRO)	PCB's		8270SIMS		PO4, SO4		n co	(Present/Absent)			
Accred		□ Az Co □ Othe	ompliance r	On Ice: # of Coolers: Cooler Temp) (including CF): ()-'	1 No Sfa1=6.7 (°C)	ATBE!	TPH:8015D(GRO / DR	Pesticides/80	EDB (Method 504.1)	5		103, NO2,	8260 (VOA)	8270 (Semi-VOA)	Total Coliform (Presen	londe		
Date	Time	Matrix	Sample Name	Container Type and #	Preservative Type	HEAL NO. 220.8045	BTEX	TPH:8	8081	EDB (PAHs	RCRA	CI, F,	8260 (8270 (Total (Chi		
8/22/22		3	8-16	(1) 402 Jur	CADI	-001	X	X						1			X		
8/22/22	1105	S	S-17	1) Yoz Jor	1 6001	-002	×	×									X		
:34 AM																			
29/2022 7:12.					-			-	-					_	-		_		+
0.000 12	1346	Relinquishe Relinquishe	.Dh	Received by:	Via: Wat Via:	8/22/22 1346 Date Time		arks ME DA			(PM	-T Ke	Torr .y-	RB.	ona 212)(EP 200	ROD)	

Released to Imaging: 12/9/2022 10:52:17 AM

.

to ourse account of this possibility. Any sub-contracted data will be clearly notated on the analytical report. 5

September 08, 2022

Kyle Summers ENSOLUM 606 S. Rio Grande Suite A Aztec, NM 87410 TEL: (903) 821-5603 FAX: Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 2209144

Dear Kyle Summers:

RE: Jones A LS 7

Hall Environmental Analysis Laboratory received 1 sample(s) on 9/3/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209144

Date Reported: 9/8/2022

CLIENT: ENSOLUM		Cl	lient Sar	nple II): S-1	18	
Project: Jones A LS 7		(Collectio	on Dat	e: 9/2	2/2022 9:00:00 AM	
Lab ID: 2209144-001	Matrix: SOIL		Receive	ed Dat	e:9/3	8/2022 9:00:00 AM	
Analyses	Result	RL	Qual 1	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	NAI
Chloride	ND	61	I	mg/Kg	20	9/6/2022 11:21:43 AM	69971
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS					Analyst	DGH
Diesel Range Organics (DRO)	ND	14	I	mg/Kg	1	9/6/2022 10:26:14 AM	69963
Motor Oil Range Organics (MRO)	ND	46	I	mg/Kg	1	9/6/2022 10:26:14 AM	69963
Surr: DNOP	82.5	21-129		%Rec	1	9/6/2022 10:26:14 AM	69963
EPA METHOD 8015D: GASOLINE RANGE						Analyst	NSB
Gasoline Range Organics (GRO)	ND	24	I	mg/Kg	5	9/6/2022 9:20:35 AM	69961
Surr: BFB	99.4	37.7-212		%Rec	5	9/6/2022 9:20:35 AM	69961
EPA METHOD 8021B: VOLATILES						Analyst	NSB
Benzene	ND	0.12	I	mg/Kg	5	9/6/2022 9:20:35 AM	69961
Toluene	ND	0.24	I	mg/Kg	5	9/6/2022 9:20:35 AM	69961
Ethylbenzene	ND	0.24	I	mg/Kg	5	9/6/2022 9:20:35 AM	69961
Xylenes, Total	ND	0.48	I	mg/Kg	5	9/6/2022 9:20:35 AM	69961
Surr: 4-Bromofluorobenzene	90.7	70-130		%Rec	5	9/6/2022 9:20:35 AM	69961

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits Sample pH Not In Range
- Р RL Reporting Limit

Page 1 of 5

	SOLUM es A LS 7			
Sample ID: MB-69971	SampType: mblk	TestCode: EPA Method	I 300.0: Anions	
Client ID: PBS	Batch ID: 69971	RunNo: 90821		
Prep Date: 9/6/2022	Analysis Date: 9/6/2022	SeqNo: 3247546	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Chloride	ND 1.5			
Sample ID: LCS-69971	SampType: Ics	TestCode: EPA Method	l 300.0: Anions	
Client ID: LCSS	Batch ID: 69971	RunNo: 90821		
Prep Date: 9/6/2022	Analysis Date: 9/6/2022	SeqNo: 3247547	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Chloride	14 1.5 15.00	0 93.5 90	110	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 5

2209144

08-Sep-22

WO#:

ENSOLUM

Client:

Surr: DNOP

Diesel Range Organics (DRO)

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

36

3.1

14

45.66

4.566

Project: Jone	s A LS 7									
Sample ID: LCS-69963	SampTy	pe: LC	S	Tes	tCode: EF	PA Method	8015M/D: Die	esel Rang	e Organics	
Client ID: LCSS	Batch I	D: 699	63	R	unNo: 90	0816				
Prep Date: 9/6/2022	Analysis Da	te: 9/6	6/2022	S	eqNo: 3	246556	Units: mg/K	٤g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	33	15	50.00	0	66.1	64.4	127			
Surr: DNOP	3.1		5.000		62.4	21	129			
Sample ID: MB-69963	SampTy	be: MB	LK	Tes	tCode: EF	PA Method	8015M/D: Die	esel Rang	e Organics	
Client ID: PBS	Batch I	D: 699	63	R	unNo: 9	0816				
Prep Date: 9/6/2022	Analysis Da	te: 9/6	6/2022	S	eqNo: 32	246558	Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	15								
Motor Oil Range Organics (MRC) ND	50								
Surr: DNOP	7.7		10.00		77.0	21	129			
Sample ID: 2209144-001	AMS SampTy	be: MS		Tes	tCode: EF	PA Method	8015M/D: Die	esel Rang	e Organics	
Client ID: S-18	Batch I	D: 699	63	R	unNo: 90	0816				
Prep Date: 9/6/2022	Analysis Da	te: 9/6	6/2022	S	eqNo: 32	246573	Units: mg/K	ίg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

78.3

68.8

36.1

21

154

129

						= -				
Sample ID: 2209144-001AMSD	SampTy	pe: MS	SD	Test	tCode: EF	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: S-18	Batch	ID: 69	963	R	tunNo: 9	0816				
Prep Date: 9/6/2022	Analysis Da	te: 9/	6/2022	S	eqNo: 32	246575	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	33	14	46.08	0	71.6	36.1	154	8.04	33.9	
Surr: DNOP	3.0		4.608		64.6	21	129	0	0	

0

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- в Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 3 of 5

WO#: 2209144 08-Sep-22

QC SUMMARY REPORT Hall Environ

	WO#:	2209144	
nmental Analysis Laboratory, Inc.		08-Sep-22	

Client: Project:	ENSOLU Jones A L										
Sample ID:	mb-69961	SampTy	vpe: ME	BLK	Tes	tCode: EF	PA Method	8015D: Gaso	oline Rang	e	
Client ID:	PBS	Batch	ID: 69	961	F	RunNo: 90	0809				
Prep Date:	9/4/2022	Analysis Da	ate: 9/	6/2022	5	SeqNo: 32	246744	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang Surr: BFB	e Organics (GRO)	ND 960	5.0	1000		95.8	37.7	212			
Sample ID:	2209144-001ams	SampTy	/pe: MS	6	Tes	tCode: EF	PA Method	8015D: Gaso	oline Rang	e	
Client ID:	S-18	Batch	ID: 69	961	F	RunNo: 90	0809				
Prep Date:	9/4/2022	Analysis Da	ate: 9/	6/2022	S	SeqNo: 32	246747	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
-	e Organics (GRO)	25	25	24.85	0	100	70	130			
Surr: BFB		5800		4970		117	37.7	212			
Sample ID:	2209144-001amsd	SampTy	/pe: MS	SD	Tes	tCode: EF	PA Method	8015D: Gaso	oline Rang	e	
Client ID:	S-18	Batch	ID: 69	961	F	RunNo: 90	0809				
Prep Date:	9/4/2022	Analysis Da	ate: 9/	6/2022	5	SeqNo: 32	246748	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
-	e Organics (GRO)	25	25	24.83	0	100	70	130	0.0994	20	
Surr: BFB		5900		4965		118	37.7	212	0	0	
Sample ID:	lcs-69961	SampTy	vpe: LC	S	Tes	tCode: EF	PA Method	8015D: Gaso	oline Rang	e	
Client ID:	LCSS	Batch	ID: 69	961	F	RunNo: 9	0809				
Prep Date:	9/4/2022	Analysis Da	ate: 9/	6/2022	S	SeqNo: 3	246836	Units: mg/k	٨g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	e Organics (GRO)	26	5.0	25.00	0	102	72.3	137			
Surr: BFB				1000			37.7	212			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 4 of 5

K 1	WO#:	2209144	
s Laboratory, Inc.		08-Sep-22	

Client: Project:	ENSOLUM Jones A LS 7									
Sample ID: mb-69	961 Samp	Type: ME	BLK	Tes	tCode: EF	PA Method	8021B: Vola	tiles		
Client ID: PBS	Bat	ch ID: 69	961	F	RunNo: 9	0809				
Prep Date: 9/4/20	Analysis	Date: 9/	6/2022	S	SeqNo: 32	246793	Units: mg/l	٨g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobe	enzene 0.90		1.000		90.5	70	130			
Sample ID: LCS-69	9961 Samp	oType: LC	S	Tes	tCode: EF	PA Method	8021B: Vola	tiles		
Client ID: LCSS	Bat	ch ID: 69	961	F	RunNo: 9	0809				
Prep Date: 9/4/20	Analysis	Date: 9/	6/2022	S	SeqNo: 32	246794	Units: mg/l	٨g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.88	0.025	1.000	0	87.8	80	120			
Toluene	0.93	0.050	1.000	0	93.0	80	120			
Ethylbenzene	0.93	0.050	1.000	0	92.6	80	120			
Xylenes, Total	2.8	0.10	3.000	0	92.6	80	120			
Surr: 4-Bromofluorobe	enzene 0.91		1.000		90.5	70	130			
Sample ID: 220914	4-001a ms Samp	Type: MS	6	Tes	tCode: EF	PA Method	8021B: Vola	tiles		
Client ID: S-18	Bat	ch ID: 69	961	F	RunNo: 90	0809				
Prep Date: 9/4/20	Analysis	Date: 9/	6/2022	Ş	SeqNo: 32	246796	Units: mg/l	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.89	0.12	0.9990	0	88.6	68.8	120			
Toluene	0.94	0.25	0.9990	0	93.8	73.6	124			
Ethylbenzene	0.94	0.25	0.9990	0	94.4	72.7	129			
Xylenes, Total	2.8	0.50	2.997	0.09884	91.1	75.7	126			
Surr: 4-Bromofluorobe	enzene 4.6		4.995		91.5	70	130			
Sample ID: 220914	4-001a msd Samp	Type: MS	SD	Tes	tCode: El	PA Method	8021B: Vola	tiles		
Client ID: S-18	Bat	ch ID: 69	961	F	RunNo: 9	0809				
Prep Date: 9/4/20	022 Analysis	Date: 9/	6/2022	5	SeqNo: 32	246797	Units: mg/l	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.87	0.12	0.9891	0	88.3	68.8	120	1.33	20	
Toluene	0.93	0.25	0.9891	0	93.7	73.6	124	1.05	20	
Ethylbenzene	0.94	0.25	0.9891	0	95.4	72.7	129	0.00728	20	
Xylenes, Total	2.8	0.49	2.967	0.09884	92.3	75.7	126	0.251	20	
Surr: 4-Bromofluorobe	enzene 4.5		4.946		91.9	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Limit

environmental Analysis Laboratory		901 Hawkins NE rque. NM 87109 K: 505-345-4107	Sa	mple Log-In C	Page 118 Check List
Client Name: ENSOLUM W	ork Order Number: 22	09144		RcptNo	: 1
Received By: Tracy Casarrubias 9/3/2	2022 9:00:00 AM				
Completed By: Tracy Casarrubias 9/3/2	2022 11:44:48 AM				
Reviewed By: Ser Sly (22					
Chain of Custody					
1. Is Chain of Custody complete?	Ye	s 🗹	No 🗌	Not Present 🗌	
2. How was the sample delivered?	Co	urier			
Log In					
3. Was an attempt made to cool the samples?	Ye	s 🔽	No 🗌		
4. Were all samples received at a temperature of $>0^{\circ}$	C to 6.0°C Yes	s 🖌	No 🗌		
5. Sample(s) in proper container(s)?	Yes	. 🗹	No 🗌		
Sufficient sample volume for indicated test(s)?	Yes		No 🗆		
7. Are samples (except VOA and ONG) properly prese	rved? Yes		No 🗌		
8. Was preservative added to bottles?	Yes		No 🔽	NA 🗌	
9. Received at least 1 vial with headspace <1/4" for A0	VOA? Yes		No 🗌		
0. Were any sample containers received broken?	Yes		No 🔽	# of preserved	
1. Does paperwork match bottle labels?				bottles checked	/
(Note discrepancies on chain of custody)	Yes		No 🗌	for pH: (<2 or	>12 unless noted)
2. Are matrices correctly identified on Chain of Custod	Y? Yes		No 🗌	Adjusted?	2
3. Is it clear what analyses were requested?	Yes		No 🗌	/	
 Were all holding times able to be met? (If no, notify customer for authorization.) 	Yes		No 🗌	Checked by:	im G/shr
pecial Handling (if applicable)				1	
5. Was client notified of all discrepancies with this order	er? Yes		No 🗌	NA 🗹	
Person Notified:	Date:				
By Whom:		ail 🗌 Phone	☐ Fax	In Person	
Regarding:					
Client Instructions:					
6. Additional remarks:					
7. <u>Cooler Information</u> Cooler No Temp °C Condition Seal Intac	t Seal No Seal D	ate Sign	ed By		
1 3.1 Good Yes		A. 1994			

Page 1 of 1

Client: Enselum, LLC Mailing Address: 606 5 Regender, Suike Actes, NM, 57410 Phone #:	Turn-Around Standard Project Name Sone Project #:	Rush	100% Dry 5#7	HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request													
email or Fax#: KGRMMerss@ansahunut QA/QC Package: □ □ Standard □ Level 4 (Full Validation) Accreditation: □ Az Compliance □ NELAC	Sampler:	ger: K. L.Dao	Summers	TMB's (8021)) / DRO / MRO)	/8082 PCB's	04.1)	r 8270SIMS		NO ₂ , PO ₄ , SO ₄		(1	^p resent/Absent)				7:12:34 AM
Date Time Matrix Sample Name	# of Coolers: Cooler Temp Container	1	3-0.2-31 (°C)	BTEX / MTBE/	TPH:8015D(GRO / DRO / MRO)	8081 Pesticides/8082	EDB (Method 504.1)	PAHs by 8310 or	RCRA 8 Metals	C) F, Br, NO3,	8260 (VOA)	8270 (Semi-VOA)	Total Coliform (Present/Absent)				
9/422 9:00 5 5-18	1 Hozjar	(00)	001	×	×					X							
Date: Time: Relinquished by:	Received by:	Via: Counce	Date Time 91322 9:00	Ren	narks	s:		PI	5	T	01	~ ~ ~		317	3	15	Paget

Released to Imaging: 12/9/2022 10:52:17 AM

162

September 14, 2022

Kyle Summers ENSOLUM 606 S. Rio Grande Suite A Aztec, NM 87410 TEL: (903) 821-5603 FAX: Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

RE: Jones A LS 7

OrderNo.: 2209428

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 7 sample(s) on 9/9/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209428

Date Reported: 9/14/2022

CLIENT:	ENSOLUM	Client Sample ID: S-19
Project:	Jones A LS 7	Collection Date: 9/8/2022 11:30:00 AM
Lab ID:	2209428-001	Matrix: MEOH (SOIL) Received Date: 9/9/2022 7:30:00 AM

Analyses	Result	RL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: JMT
Chloride	ND	60	mg/Kg	20	9/9/2022 10:41:32 AM	70075
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analys	t: DGH
Diesel Range Organics (DRO)	18	15	mg/Kg	1	9/9/2022 12:05:46 PM	70068
Motor Oil Range Organics (MRO)	79	49	mg/Kg	1	9/9/2022 12:05:46 PM	70068
Surr: DNOP	112	21-129	%Rec	1	9/9/2022 12:05:46 PM	70068
EPA METHOD 8015D: GASOLINE RANGE					Analys	t: NSB
Gasoline Range Organics (GRO)	ND	18	mg/Kg	5	9/9/2022 8:49:02 AM	G90918
Surr: BFB	105	37.7-212	%Rec	5	9/9/2022 8:49:02 AM	G90918
EPA METHOD 8021B: VOLATILES					Analys	t: NSB
Benzene	ND	0.089	mg/Kg	5	9/9/2022 8:49:02 AM	B90918
Toluene	ND	0.18	mg/Kg	5	9/9/2022 8:49:02 AM	B90918
Ethylbenzene	ND	0.18	mg/Kg	5	9/9/2022 8:49:02 AM	B90918
Xylenes, Total	ND	0.35	mg/Kg	5	9/9/2022 8:49:02 AM	B90918
Surr: 4-Bromofluorobenzene	94.6	70-130	%Rec	5	9/9/2022 8:49:02 AM	B90918

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:**

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 12

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209428

Date Reported: 9/14/2022

CLIENT:	ENSOLUM	Client Sample ID: S-20
Project:	Jones A LS 7	Collection Date: 9/8/2022 11:40:00 AM
Lab ID:	2209428-002	Matrix: MEOH (SOIL) Received Date: 9/9/2022 7:30:00 AM

Analyses	Result	RL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: JMT
Chloride	ND	60	mg/Kg	20	9/9/2022 10:53:57 AM	70075
EPA METHOD 8015M/D: DIESEL RANGE C	RGANICS				Analys	t: DGH
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	9/9/2022 12:16:32 PM	70068
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	9/9/2022 12:16:32 PM	70068
Surr: DNOP	98.1	21-129	%Rec	1	9/9/2022 12:16:32 PM	70068
EPA METHOD 8015D: GASOLINE RANGE					Analys	t: NSB
Gasoline Range Organics (GRO)	ND	19	mg/Kg	5	9/9/2022 9:12:26 AM	G90918
Surr: BFB	101	37.7-212	%Rec	5	9/9/2022 9:12:26 AM	G90918
EPA METHOD 8021B: VOLATILES					Analys	t: NSB
Benzene	ND	0.097	mg/Kg	5	9/9/2022 9:12:26 AM	B90918
Toluene	ND	0.19	mg/Kg	5	9/9/2022 9:12:26 AM	B90918
Ethylbenzene	ND	0.19	mg/Kg	5	9/9/2022 9:12:26 AM	B90918
Xylenes, Total	ND	0.39	mg/Kg	5	9/9/2022 9:12:26 AM	B90918
Surr: 4-Bromofluorobenzene	92.1	70-130	%Rec	5	9/9/2022 9:12:26 AM	B90918

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 12

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209428

Date Reported: 9/14/2022

CLIENT:	ENSOLUM	Client Sample ID: S-21
Project:	Jones A LS 7	Collection Date: 9/8/2022 11:50:00 AM
Lab ID:	2209428-003	Matrix: MEOH (SOIL) Received Date: 9/9/2022 7:30:00 AM

Analyses	Result	RL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: JMT
Chloride	ND	60	mg/Kg	20	9/9/2022 11:06:22 AM	70075
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analys	t: DGH
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	9/9/2022 12:27:14 PM	70068
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	9/9/2022 12:27:14 PM	70068
Surr: DNOP	95.2	21-129	%Rec	1	9/9/2022 12:27:14 PM	70068
EPA METHOD 8015D: GASOLINE RANG	E				Analys	t: NSB
Gasoline Range Organics (GRO)	ND	18	mg/Kg	5	9/9/2022 9:35:52 AM	G90918
Surr: BFB	102	37.7-212	%Rec	5	9/9/2022 9:35:52 AM	G90918
EPA METHOD 8021B: VOLATILES					Analys	t: NSB
Benzene	ND	0.091	mg/Kg	5	9/9/2022 9:35:52 AM	B90918
Toluene	ND	0.18	mg/Kg	5	9/9/2022 9:35:52 AM	B90918
Ethylbenzene	ND	0.18	mg/Kg	5	9/9/2022 9:35:52 AM	B90918
Xylenes, Total	ND	0.36	mg/Kg	5	9/9/2022 9:35:52 AM	B90918
Surr: 4-Bromofluorobenzene	93.9	70-130	%Rec	5	9/9/2022 9:35:52 AM	B90918

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:**

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 3 of 12

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209428

Date Reported: 9/14/2022

CLIENT:	ENSOLUM	(Client Sample ID: S-22
Project:	Jones A LS 7		Collection Date: 9/8/2022 12:00:00 PM
Lab ID:	2209428-004	Matrix: MEOH (SOIL)	Received Date: 9/9/2022 7:30:00 AM

Analyses	Result	RL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: JMT
Chloride	ND	60	mg/Kg	20	9/9/2022 11:18:46 AM	70075
EPA METHOD 8015M/D: DIESEL RANGE OI	RGANICS				Analys	t: DGH
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	9/9/2022 12:37:57 PM	70068
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	9/9/2022 12:37:57 PM	70068
Surr: DNOP	89.5	21-129	%Rec	1	9/9/2022 12:37:57 PM	70068
EPA METHOD 8015D: GASOLINE RANGE					Analys	t: NSB
Gasoline Range Organics (GRO)	ND	20	mg/Kg	5	9/9/2022 9:59:18 AM	G90918
Surr: BFB	100	37.7-212	%Rec	5	9/9/2022 9:59:18 AM	G90918
EPA METHOD 8021B: VOLATILES					Analys	t: NSB
Benzene	ND	0.098	mg/Kg	5	9/9/2022 9:59:18 AM	B90918
Toluene	ND	0.20	mg/Kg	5	9/9/2022 9:59:18 AM	B90918
Ethylbenzene	ND	0.20	mg/Kg	5	9/9/2022 9:59:18 AM	B90918
Xylenes, Total	ND	0.39	mg/Kg	5	9/9/2022 9:59:18 AM	B90918
Surr: 4-Bromofluorobenzene	93.0	70-130	%Rec	5	9/9/2022 9:59:18 AM	B90918

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:**

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 4 of 12

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209428

Date Reported: 9/14/2022

CLIENT:	ENSOLUM	Client Sample ID: S-23
Project:	Jones A LS 7	Collection Date: 9/8/2022 12:10:00 PM
Lab ID:	2209428-005	Matrix: MEOH (SOIL) Received Date: 9/9/2022 7:30:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: JMT
Chloride	ND	60	mg/Kg	20	9/9/2022 11:31:10 AM	70075
EPA METHOD 8015M/D: DIESEL RANGE C	RGANICS				Analys	t: DGH
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	9/9/2022 12:48:46 PM	70068
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	9/9/2022 12:48:46 PM	70068
Surr: DNOP	98.0	21-129	%Rec	1	9/9/2022 12:48:46 PM	70068
EPA METHOD 8015D: GASOLINE RANGE					Analys	t: NSB
Gasoline Range Organics (GRO)	42	20	mg/Kg	5	9/9/2022 10:22:50 AM	G90918
Surr: BFB	127	37.7-212	%Rec	5	9/9/2022 10:22:50 AM	G90918
EPA METHOD 8021B: VOLATILES					Analys	t: NSB
Benzene	ND	0.10	mg/Kg	5	9/9/2022 10:22:50 AM	B90918
Toluene	ND	0.20	mg/Kg	5	9/9/2022 10:22:50 AM	B90918
Ethylbenzene	ND	0.20	mg/Kg	5	9/9/2022 10:22:50 AM	B90918
Xylenes, Total	1.3	0.40	mg/Kg	5	9/9/2022 10:22:50 AM	B90918
Surr: 4-Bromofluorobenzene	95.2	70-130	%Rec	5	9/9/2022 10:22:50 AM	B90918

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:**

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 5 of 12

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209428

Date Reported: 9/14/2022

CLIENT:	ENSOLUM	Client Sample ID: S-24
Project:	Jones A LS 7	Collection Date: 9/8/2022 12:20:00 PM
Lab ID:	2209428-006	Matrix: MEOH (SOIL) Received Date: 9/9/2022 7:30:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: JMT
Chloride	ND	60	mg/Kg	20	9/9/2022 11:43:36 AM	70075
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS				Analys	t: DGH
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	9/9/2022 12:59:34 PM	70068
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	9/9/2022 12:59:34 PM	70068
Surr: DNOP	89.8	21-129	%Rec	1	9/9/2022 12:59:34 PM	70068
EPA METHOD 8015D: GASOLINE RANGE					Analys	t: NSB
Gasoline Range Organics (GRO)	ND	3.8	mg/Kg	1	9/9/2022 10:46:31 AM	G90918
Surr: BFB	95.2	37.7-212	%Rec	1	9/9/2022 10:46:31 AM	G90918
EPA METHOD 8021B: VOLATILES					Analys	t: NSB
Benzene	ND	0.019	mg/Kg	1	9/9/2022 10:46:31 AM	B90918
Toluene	ND	0.038	mg/Kg	1	9/9/2022 10:46:31 AM	B90918
Ethylbenzene	ND	0.038	mg/Kg	1	9/9/2022 10:46:31 AM	B90918
Xylenes, Total	ND	0.075	mg/Kg	1	9/9/2022 10:46:31 AM	B90918
Surr: 4-Bromofluorobenzene	89.6	70-130	%Rec	1	9/9/2022 10:46:31 AM	B90918

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:**

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 6 of 12

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209428

Date Reported: 9/14/2022

CLIENT	ENSOLUM	Client Sample ID: S-25
Project:	Jones A LS 7	Collection Date: 9/8/2022 12:30:00 PM
Lab ID:	2209428-007	Matrix: MEOH (SOIL) Received Date: 9/9/2022 7:30:00 AM

Analyses	Result	RL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: JMT
Chloride	ND	60	mg/Kg	20	9/9/2022 11:56:00 AM	70075
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analys	t: DGH
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	9/9/2022 1:10:23 PM	70068
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	9/9/2022 1:10:23 PM	70068
Surr: DNOP	91.2	21-129	%Rec	1	9/9/2022 1:10:23 PM	70068
EPA METHOD 8015D: GASOLINE RANGE	E				Analys	t: NSB
Gasoline Range Organics (GRO)	ND	3.5	mg/Kg	1	9/9/2022 11:10:01 AM	G90918
Surr: BFB	97.5	37.7-212	%Rec	1	9/9/2022 11:10:01 AM	G90918
EPA METHOD 8021B: VOLATILES					Analys	t: NSB
Benzene	ND	0.018	mg/Kg	1	9/9/2022 11:10:01 AM	B90918
Toluene	ND	0.035	mg/Kg	1	9/9/2022 11:10:01 AM	B90918
Ethylbenzene	ND	0.035	mg/Kg	1	9/9/2022 11:10:01 AM	B90918
Xylenes, Total	ND	0.071	mg/Kg	1	9/9/2022 11:10:01 AM	B90918
Surr: 4-Bromofluorobenzene	90.4	70-130	%Rec	1	9/9/2022 11:10:01 AM	B90918

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:**

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 7 of 12

	NSOLUM ones A LS 7					
Sample ID: MB-7007	SampType: mblk	TestC	ode: EPA Method	300.0: Anions		
Client ID: PBS	Batch ID: 70075	Ru	nNo: 90923			
Prep Date: 9/9/2022	Analysis Date: 9/9/202	2 See	qNo: 3252131	Units: mg/Kg		
Analyte	Result PQL SPH	Value SPK Ref Val	6REC LowLimit	HighLimit %RPD	RPDLimit	Qual
Chloride	ND 1.5					
Sample ID: LCS-7007	5 SampType: Ics	TestC	ode: EPA Method	300.0: Anions		
Client ID: LCSS	Batch ID: 70075	Ru	nNo: 90923			
Prep Date: 9/9/2022	Analysis Date: 9/9/202	2 See	qNo: 3252132	Units: mg/Kg		
Analyte	Result PQL SPH	Value SPK Ref Val	%REC LowLimit	HighLimit %RPD	RPDLimit	Qual
Chloride	14 1.5	15.00 0	92.4 90	110		

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 12

2209428

14-Sep-22

WO#:

QC SUMMARY REPORT Hall En

	WO#:	2209428
nvironmental Analysis Laboratory, Inc.		14-Sep-22

Client:ENSOLUProject:Jones A L										
Sample ID: LCS-69992	Samp	Туре: LC	S	Tes	tCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID: LCSS	Batc	h ID: 69	992	F	RunNo: 9(851				
Prep Date: 9/6/2022	Analysis [Date: 9/	8/2022	S	SeqNo: 32	48817	Units: %Red	;		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP	4.2		5.000		83.0	21	129			
Sample ID: MB-69992	Samp	Туре: МЕ	BLK	Tes	tCode: EF	A Method	8015M/D: Die	sel Range	Organics	
Client ID: PBS	Batc	h ID: 69	992	F	RunNo: 90	851				
Prep Date: 9/6/2022	Analysis [Date: 9/	8/2022	S	SeqNo: 32	48818	Units: %Red	:		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP	13		10.00		131	21	129			S
Sample ID: LCS-70068	Samp	Туре: LC	S	Tes	tCode: EF	A Method	8015M/D: Die	sel Range	Organics	
Client ID: LCSS	Batc	h ID: 70	068	F	RunNo: 90	851				
Prep Date: 9/9/2022	Analysis [Date: 9/	9/2022	S	SeqNo: 32	250676	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	36	15	50.00	0	71.8	64.4	127			
Surr: DNOP	3.4		5.000		67.7	21	129			
Sample ID: MB-70068	Samp	Туре: МЕ	BLK	Tes	tCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID: PBS	Batc	h ID: 70	068	F	RunNo: 90	851				
Prep Date: 9/9/2022	Analysis E	Date: 9/	9/2022	Ś	SeqNo: 32	250684	Units: mg/K	g		
Analyte	Decult									
7 **	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	15	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO) Motor Oil Range Organics (MRO)	ND ND			SPK Ref Val			U	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO) Motor Oil Range Organics (MRO) Surr: DNOP	ND ND 8.7	15 50	10.00	SPK Ref Val	%REC 87.0	LowLimit 21	HighLimit 129	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO) Motor Oil Range Organics (MRO) Surr: DNOP Sample ID: 2209428-001AMS	ND ND 8.7 SampT	15 50 Type: MS	10.00	Tes	87.0 stCode: EF	21 PA Method	U			Qual
Diesel Range Organics (DRO) Motor Oil Range Organics (MRO) Surr: DNOP Sample ID: 2209428-001AMS Client ID: S-19	ND ND 8.7 Samp ⁻¹ Batcl	15 50 Type: M\$ h ID: 70	10.00 5 068	Tes	87.0 ttCode: EF RunNo: 90	21 PA Method 0851	129 8015M/D: Die	sel Range		Qual
Diesel Range Organics (DRO) Motor Oil Range Organics (MRO) Surr: DNOP Sample ID: 2209428-001AMS	ND ND 8.7 SampT	15 50 Type: M\$ h ID: 70	10.00 5 068	Tes	87.0 stCode: EF	21 PA Method 0851	129	sel Range		Qual
Diesel Range Organics (DRO) Motor Oil Range Organics (MRO) Surr: DNOP Sample ID: 2209428-001AMS Client ID: S-19 Prep Date: 9/9/2022 Analyte	ND ND 8.7 Samp Batcl Analysis I Result	15 50 Type: M\$ th ID: 70 Date: 9/ PQL	10.00 5 068 9/2022 SPK value	Tes F SPK Ref Val	87.0 ttCode: EF RunNo: 90 SeqNo: 32 %REC	21 PA Method 1851 251917 LowLimit	129 8015M/D: Die Units: mg/K HighLimit	sel Range		Qual
Diesel Range Organics (DRO) Motor Oil Range Organics (MRO) Surr: DNOP Sample ID: 2209428-001AMS Client ID: S-19 Prep Date: 9/9/2022 Analyte Diesel Range Organics (DRO)	ND ND 8.7 Samp Batch Analysis D Result 46	15 50 Type: M\$ th ID: 70 Date: 9 /	10.00 5 068 9/2022 SPK value 48.31	Tes F	87.0 ttCode: EF RunNo: 90 SeqNo: 32 %REC 59.2	21 PA Method 0851 251917 LowLimit 36.1	129 8015M/D: Die Units: mg/K HighLimit 154	sel Range g	Organics	
Diesel Range Organics (DRO) Motor Oil Range Organics (MRO) Surr: DNOP Sample ID: 2209428-001AMS Client ID: S-19 Prep Date: 9/9/2022 Analyte	ND ND 8.7 Samp Batch Analysis D Result 46 4.5	15 50 Type: MS th ID: 70 Date: 9 / PQL 14	10.00 5 068 9/2022 SPK value 48.31 4.831	Tes F SPK Ref Val	87.0 ttCode: EF RunNo: 90 SeqNo: 32 %REC	21 PA Method 1851 251917 LowLimit	129 8015M/D: Die Units: mg/K HighLimit	sel Range g	Organics	
Diesel Range Organics (DRO) Motor Oil Range Organics (MRO) Surr: DNOP Sample ID: 2209428-001AMS Client ID: S-19 Prep Date: 9/9/2022 Analyte Diesel Range Organics (DRO) Surr: DNOP Sample ID: 2209428-001AMSD	ND ND 8.7 Samp ¹ Batcl Analysis I Result 46 4.5	15 50 Type: MS th ID: 700 Date: 9/ PQL 14 Type: MS	10.00 5 068 9/2022 SPK value 48.31 4.831 5D	Tes F SPK Ref Val 17.60 Tes	87.0 ttCode: EF RunNo: 90 SeqNo: 32 %REC 59.2 93.4 ttCode: EF	21 24 Method 2851 251917 LowLimit 36.1 21 24 Method	129 8015M/D: Die Units: mg/K HighLimit 154	sel Range g %RPD	Organics RPDLimit	
Diesel Range Organics (DRO) Motor Oil Range Organics (MRO) Surr: DNOP Sample ID: 2209428-001AMS Client ID: S-19 Prep Date: 9/9/2022 Analyte Diesel Range Organics (DRO) Surr: DNOP Sample ID: 2209428-001AMSD Client ID: S-19	ND ND 8.7 Samp Batcl Analysis I Result 46 4.5 Samp Batcl	15 50 Type: MS th ID: 70 Date: 9 / PQL 14 Type: MS th ID: 70	10.00 5 068 9/2022 SPK value 48.31 4.831 5D 068	Tes F SPK Ref Val 17.60 Tes F	87.0 ttCode: EF RunNo: 90 SeqNo: 32 %REC 59.2 93.4 ttCode: EF RunNo: 90	21 PA Method 9851 251917 LowLimit 36.1 21 PA Method 9851	129 8015M/D: Die Units: mg/K HighLimit 154 129 8015M/D: Die	sel Range g %RPD sel Range	Organics RPDLimit	
Diesel Range Organics (DRO) Motor Oil Range Organics (MRO) Surr: DNOP Sample ID: 2209428-001AMS Client ID: S-19 Prep Date: 9/9/2022 Analyte Diesel Range Organics (DRO) Surr: DNOP Sample ID: 2209428-001AMSD	ND ND 8.7 Samp ¹ Batcl Analysis I Result 46 4.5	15 50 Type: MS th ID: 70 Date: 9 / PQL 14 Type: MS th ID: 70	10.00 5 068 9/2022 SPK value 48.31 4.831 5D 068	Tes F SPK Ref Val 17.60 Tes F	87.0 ttCode: EF RunNo: 90 SeqNo: 32 %REC 59.2 93.4 ttCode: EF	21 PA Method 9851 251917 LowLimit 36.1 21 PA Method 9851	129 8015M/D: Die Units: mg/K HighLimit 154 129	sel Range g %RPD sel Range	Organics RPDLimit	
Diesel Range Organics (DRO) Motor Oil Range Organics (MRO) Surr: DNOP Sample ID: 2209428-001AMS Client ID: S-19 Prep Date: 9/9/2022 Analyte Diesel Range Organics (DRO) Surr: DNOP Sample ID: 2209428-001AMSD Client ID: S-19	ND ND 8.7 Samp Batcl Analysis I Result 46 4.5 Samp Batcl	15 50 Type: MS th ID: 70 Date: 9 / PQL 14 Type: MS th ID: 70	10.00 5 068 9/2022 SPK value 48.31 4.831 5D 068 9/2022	Tes F SPK Ref Val 17.60 Tes F	87.0 ttCode: EF RunNo: 90 SeqNo: 32 %REC 59.2 93.4 ttCode: EF RunNo: 90	21 PA Method 9851 251917 LowLimit 36.1 21 PA Method 9851	129 8015M/D: Die Units: mg/K HighLimit 154 129 8015M/D: Die	sel Range g %RPD sel Range	Organics RPDLimit	

Qualifiers:

Value exceeds Maximum Contaminant Level. *

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit Page 9 of 12

2209428

14-Sep-22

WO#:

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Project:	ENSOLUI Jones A L										
Sample ID:	2209428-001AMSD	SampT	ype: MS	SD	Tes	tCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID:	S-19	Batch	ID: 70	068	F	RunNo: 9(0851				
Prep Date:	9/9/2022	Analysis D	ate: 9/	9/2022	5	SeqNo: 32	251918	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP		4.7		4.748		99.1	21	129	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 12

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc

	WO#:	2209428
mental Analysis Laboratory, Inc.		14-Sep-22

Client: Project:	ENSOLU Jones A L										
Sample ID:	mb	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8015D: Gasol	ine Range		
Client ID:	PBS	Batch	ID: G9	0918	F	RunNo: 9(918				
Prep Date:		Analysis D	ate: 9/	9/2022	S	SeqNo: 32	251213	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Surr: BFB	Organics (GRO)	ND 990	5.0	1000		98.5	37.7	212			
Sample ID:	2.5ug gro Ics	SampT	ype: LC	s	Tes	tCode: EF	PA Method	8015D: Gasol	ine Range		
Client ID:	LCSS	Batch	ID: G9	0918	F	RunNo: 9(918				
Prep Date:		Analysis D	ate: 9/	9/2022	S	SeqNo: 32	251214	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range	e Organics (GRO)	24	5.0	25.00	0	96.2	72.3	137			
Surr: BFB		2000		1000		199	37.7	212			
								8015D: Gasol	ino Pango		
Sample ID:	2209428-001ams	SampT	ype: MS	;	Tes	tCode: EF	'A Method	0010D. Cu301	me nange		
	2209428-001ams S-19	•	ype: MS ID: G9			tCode: EF RunNo: 9(00102.00301	ine nange		
		•	ID: G9	0918	F		918	Units: mg/K	U		
Client ID:		Batch	ID: G9	0918 9/2022	F	RunNo: 9(SeqNo: 32	918		U	RPDLimit	Qual
Client ID: Prep Date: Analyte		Batch Analysis D	ID: G9 ate: 9/ 9	0918 9/2022	F S	RunNo: 9(SeqNo: 32)918 251215	Units: mg/K	g		Qual
Client ID: Prep Date: Analyte	S-19	Batch Analysis D Result	D: G9 ate: 9/ PQL	0918 9/2022 SPK value	F S SPK Ref Val	RunNo: 90 SeqNo: 32 %REC	0918 251215 LowLimit	Units: mg/K HighLimit	g		Qual
Client ID: Prep Date: Analyte Gasoline Range Surr: BFB	S-19	Batch Analysis D Result 25 2100	D: G9 ate: 9/ PQL	0918 9/2022 SPK value 25.00 1000	F SPK Ref Val 0	RunNo: 90 SeqNo: 32 %REC 102 206	251215 LowLimit 70 37.7	Units: mg/K HighLimit 130	g %RPD	RPDLimit	Qual
Client ID: Prep Date: Analyte Gasoline Range Surr: BFB Sample ID:	S-19 e Organics (GRO)	Batch Analysis D Result 25 2100 SampT	DID: G9 pate: 9/ PQL 5.0	0918 9/2022 SPK value 25.00 1000	F S SPK Ref Val 0 Tes	RunNo: 90 SeqNo: 32 %REC 102 206	251215 LowLimit 70 37.7	Units: mg/K HighLimit 130 212	g %RPD	RPDLimit	Qual
Client ID: Prep Date: Analyte Gasoline Range Surr: BFB Sample ID:	S-19 e Organics (GRO) 2209428-001amsd	Batch Analysis D Result 25 2100 SampT	PQL 5.0 ype: MS	0918 9/2022 SPK value 25.00 1000 5D 0918	F SPK Ref Val 0 Tes F	RunNo: 90 SeqNo: 32 %REC 102 206 tCode: EF	251215 LowLimit 70 37.7 PA Method 0918	Units: mg/K HighLimit 130 212	g %RPD ine Range	RPDLimit	Qual
Client ID: Prep Date: Analyte Gasoline Range Surr: BFB Sample ID: Client ID:	S-19 e Organics (GRO) 2209428-001amsd	Batch Analysis D Result 25 2100 SampT Batch	PQL 5.0 ype: MS	0918 9/2022 SPK value 25.00 1000 5D 0918 9/2022	F SPK Ref Val 0 Tes F	RunNo: 90 SeqNo: 32 %REC 102 206 tCode: EF	251215 LowLimit 70 37.7 PA Method 0918	Units: mg/K HighLimit 130 212 8015D: Gasol	g %RPD ine Range	RPDLimit	Qual
Client ID: Prep Date: Analyte Gasoline Range Surr: BFB Sample ID: Client ID: Prep Date: Analyte	S-19 e Organics (GRO) 2209428-001amsd	Batch Analysis D Result 25 2100 SampT Batch Analysis D	PQL 5.0 ype: MS 1D: G9 ype: MS	0918 9/2022 SPK value 25.00 1000 5D 0918 9/2022	F SPK Ref Val 0 Tes F S	RunNo: 90 SeqNo: 32 %REC 102 206 tCode: EF RunNo: 90 SeqNo: 32	251215 LowLimit 70 37.7 24 Method 2918 251216	Units: mg/K HighLimit 130 212 8015D: Gasol Units: mg/K	g %RPD ine Range g	RPDLimit	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 12

Client: Project:

	WO#: 2209428	
nvironmental Analysis Laboratory, Inc.	14-Sep-22	
ENSOLUM		
Jones A LS 7		

Sample ID:	mb	Samp ⁻	Туре: МВ	LK	Tes	tCode: EF	PA Method	8021B: Volati	les		
Client ID:	PBS	Batc	h ID: B90	0918	F	RunNo: 9(0918				
Prep Date:		Analysis [Date: 9/9	9/2022	5	SeqNo: 32	251278	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	0.025								
Toluene		ND	0.050								
Ethylbenzene		ND	0.050								
Xylenes, Total		ND	0.10								
Surr: 4-Brom	nofluorobenzene	0.91		1.000		91.4	70	130			
Sample ID:	100ng btex lcs	Samp	Type: LC	S	Tes	tCode: EF	A Method	8021B: Volati	les		
Client ID:	LCSS	Batc	h ID: B90	0918	F	RunNo: 9(918				
Prep Date:		Analysis [Date: 9/9	9/2022	5	SeqNo: 32	251279	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.87	0.025	1.000	0	87.0	80	120			
Toluene		0.91	0.050	1.000	0	90.8	80	120			
Ethylbenzene		0.90	0.050	1.000	0	89.6	80	120			
Xylenes, Total		2.7	0.10	3.000	0	90.0	80	120			
-											
Surr: 4-Bron	nofluorobenzene	0.94		1.000		94.5	70	130			
	2209428-002ams		Type: MS		Tes			130 8021B: Volati	les		
		Samp	Type: MS h ID: B9(;			PA Method		les		
Sample ID:	2209428-002ams	Samp	h ID: B9(0918	F	tCode: EF	PA Method 0918				
Sample ID: Client ID:	2209428-002ams	Samp ⁻ Batc	h ID: B9(0918	F	tCode: EF	PA Method 0918	8021B: Volati		RPDLimit	Qual
Sample ID: Client ID: Prep Date:	2209428-002ams	Samp ⁻ Batc Analysis [h ID: B9(Date: 9/ 9)918)/2022	F	ttCode: EF RunNo: 90 SeqNo: 32	PA Method 0918 251280	8021B: Volati Units: mg/K	g	RPDLimit	Qual
Sample ID: Client ID: Prep Date: Analyte Benzene	2209428-002ams	Samp Batc Analysis I Result	h ID: B90 Date: 9/9 PQL	0918 0/2022 SPK value	F SPK Ref Val	tCode: EF RunNo: 90 SeqNo: 32 %REC	PA Method 0918 251280 LowLimit	8021B: Volati Units: mg/K HighLimit	g	RPDLimit	Qual
Sample ID: Client ID: Prep Date: Analyte Benzene Toluene	2209428-002ams	Samp Batc Analysis I Result 0.89	h ID: B9(Date: 9/ 9 PQL 0.025	0918 0/2022 SPK value 1.000	F SPK Ref Val 0	tCode: EF RunNo: 90 SeqNo: 32 %REC 89.3	PA Method 0918 251280 LowLimit 68.8	8021B: Volati Units: mg/K HighLimit 120	g	RPDLimit	Qual
Sample ID: Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene	2209428-002ams	Samp Batc Analysis I Result 0.89 0.93	h ID: B9(Date: 9/ 9 PQL 0.025 0.050	0918 0/2022 SPK value 1.000 1.000	F SPK Ref Val 0 0.06760	tCode: EF RunNo: 90 SeqNo: 32 %REC 89.3 86.5	PA Method 0918 251280 LowLimit 68.8 73.6	8021B: Volati Units: mg/K HighLimit 120 124	g	RPDLimit	Qual
Sample ID: Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total	2209428-002ams	Samp Batc Analysis I Result 0.89 0.93 0.93	h ID: B9 Date: 9 /9 PQL 0.025 0.050 0.050	0918 0/2022 SPK value 1.000 1.000 1.000	F SPK Ref Val 0 0.06760 0.05750	tCode: EF RunNo: 90 SeqNo: 32 %REC 89.3 86.5 87.0	PA Method 0918 251280 LowLimit 68.8 73.6 72.7	8021B: Volati Units: mg/K HighLimit 120 124 129	g	RPDLimit	Qual
Sample ID: Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bron	2209428-002ams S-20	Samp Batc Analysis I Result 0.89 0.93 0.93 2.8 0.94	h ID: B9 Date: 9 /9 PQL 0.025 0.050 0.050	0918 5/2022 5PK value 1.000 1.000 1.000 3.000 1.000	F SPK Ref Val 0 0.06760 0.05750 0.2809	etCode: EF RunNo: 90 SeqNo: 32 %REC 89.3 86.5 87.0 83.1 93.5	24 Method 0918 251280 LowLimit 68.8 73.6 72.7 75.7 70	8021B: Volati Units: mg/K HighLimit 120 124 129 126	g %RPD	RPDLimit	Qual
Sample ID: Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bron	2209428-002ams S-20	Samp Batc Analysis I Result 0.89 0.93 0.93 0.93 2.8 0.94	h ID: B9(Date: 9/ PQL 0.025 0.050 0.050 0.10	0918 0/2022 SPK value 1.000 1.000 1.000 3.000 1.000 D	F SPK Ref Val 0 0.06760 0.05750 0.2809 Tes	etCode: EF RunNo: 90 SeqNo: 32 %REC 89.3 86.5 87.0 83.1 93.5	PA Method 1918 251280 LowLimit 68.8 73.6 72.7 75.7 70 PA Method	8021B: Volati Units: mg/K HighLimit 120 124 129 126 130	g %RPD	RPDLimit	Qual
Sample ID: Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bron Sample ID:	2209428-002ams S-20 nofluorobenzene 2209428-002amsd	Samp Batc Analysis I Result 0.89 0.93 0.93 0.93 2.8 0.94	h ID: B9(Date: 9/ PQL 0.025 0.050 0.050 0.10 Type: MS h ID: B9(0918 5/2022 5PK value 1.000 1.000 1.000 3.000 1.000 D 0918	F SPK Ref Val 0 0.06760 0.05750 0.2809 Tes F	tCode: EF RunNo: 90 SeqNo: 32 %REC 89.3 86.5 87.0 83.1 93.5 tCode: EF	24 Method 0918 251280 LowLimit 68.8 73.6 72.7 75.7 70 24 Method 0918	8021B: Volati Units: mg/K HighLimit 120 124 129 126 130	g %RPD	RPDLimit	Qual
Sample ID: Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bron Sample ID: Client ID:	2209428-002ams S-20 nofluorobenzene 2209428-002amsd	Samp Batc Analysis I Result 0.89 0.93 0.93 2.8 0.94 Samp Batc	h ID: B9(Date: 9/ PQL 0.025 0.050 0.050 0.10 Type: MS h ID: B9(0918 0/2022 SPK value 1.000 1.000 3.000 1.000 D 0918 0/2022	F SPK Ref Val 0 0.06760 0.05750 0.2809 Tes F	tCode: EF RunNo: 90 SeqNo: 32 %REC 89.3 86.5 87.0 83.1 93.5 tCode: EF RunNo: 90	24 Method 0918 251280 LowLimit 68.8 73.6 72.7 75.7 70 24 Method 0918	8021B: Volati Units: mg/K HighLimit 120 124 129 126 130 8021B: Volati	g %RPD	RPDLimit	Qual
Sample ID: Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bron Sample ID: Client ID: Prep Date:	2209428-002ams S-20 nofluorobenzene 2209428-002amsd	Samp Batc Analysis I Result 0.89 0.93 0.93 2.8 0.94 Samp Batc Analysis I	h ID: B9 Date: 9 /9 0.025 0.050 0.050 0.10 Type: MS h ID: B9 Date: 9 /9	0918 0/2022 SPK value 1.000 1.000 3.000 1.000 D 0918 0/2022	F SPK Ref Val 0 0.06760 0.05750 0.2809 Tes F	ttCode: EF RunNo: 90 SeqNo: 32 %REC 89.3 86.5 87.0 83.1 93.5 ttCode: EF RunNo: 90 SeqNo: 32	24 Method 2918 251280 LowLimit 68.8 73.6 72.7 75.7 70 24 Method 2918 251281 LowLimit 68.8	8021B: Volati Units: mg/K HighLimit 120 124 129 126 130 8021B: Volati Units: mg/K	g %RPD les		
Sample ID: Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bron Sample ID: Client ID: Prep Date: Analyte	2209428-002ams S-20 nofluorobenzene 2209428-002amsd	Samp Batc Analysis I Result 0.89 0.93 0.93 2.8 0.94 Samp Batc Analysis I Result	h ID: B9 Date: 9 /9 0.025 0.050 0.050 0.10 Type: MS h ID: B9 Date: 9 /9 PQL 0.025 0.050	20918 2/2022 SPK value 1.000 1.000 3.000 1.000 D 0918 2/2022 SPK value	F SPK Ref Val 0 0.06760 0.05750 0.2809 Tes F SPK Ref Val	ttCode: EF RunNo: 90 SeqNo: 32 %REC 89.3 86.5 87.0 83.1 93.5 ttCode: EF RunNo: 90 SeqNo: 32 %REC	24 Method 1918 251280 LowLimit 68.8 73.6 72.7 75.7 70 24 Method 2918 251281 LowLimit	8021B: Volati Units: mg/K HighLimit 120 124 129 126 130 8021B: Volati Units: mg/K HighLimit	g %RPD les g %RPD	RPDLimit	
Sample ID: Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bron Sample ID: Client ID: Prep Date: Analyte Benzene	2209428-002ams S-20 nofluorobenzene 2209428-002amsd	Samp Batc Analysis I Result 0.89 0.93 0.93 2.8 0.94 Samp Batc Analysis I Result 0.88	h ID: B9 Date: 9 /S 0.025 0.050 0.050 0.10 Type: MS h ID: B9 Date: 9 /S PQL 0.025 0.050 0.050	D918 D/2022 SPK value 1.000 1.000 1.000 3.000 1.000 D D D D D D D D SPK value 1.000 0.000 1.000 1.000 0.000 1.000 0.000 1.000 0.0000 0.0000 0.000 0.00000 0.00000 0.0000 0.0000000 0.0000 0.0000 0.0000 0.0000	F SPK Ref Val 0 0.06760 0.05750 0.2809 Tes F SPK Ref Val 0	ttCode: EF RunNo: 90 SeqNo: 32 %REC 89.3 86.5 87.0 83.1 93.5 ttCode: EF RunNo: 90 SeqNo: 32 %REC 87.8	251280 251280 251280 251280 251280 73.6 72.7 75.7 70 26 27 27 27 27 27 27 27 27 27 27	8021B: Volati Units: mg/K HighLimit 120 124 129 126 130 8021B: Volati Units: mg/K HighLimit 120	g %RPD les %RPD 1.75 0.732 1.26	RPDLimit 20	
Sample ID: Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bron Sample ID: Client ID: Prep Date: Analyte Benzene Toluene	2209428-002ams S-20 nofluorobenzene 2209428-002amsd	Samp Batc Analysis I Result 0.89 0.93 0.93 2.8 0.94 Samp Batc Analysis I Result 0.88 0.93	h ID: B9 Date: 9 /9 0.025 0.050 0.050 0.10 Type: MS h ID: B9 Date: 9 /9 PQL 0.025 0.050	0918 5/2022 SPK value 1.000 1.000 1.000 3.000 1.000 D 0918 5/2022 SPK value 1.000 1.000 1.000	SPK Ref Val 0 0.06760 0.2809 Tes 5 SPK Ref Val 0 0.06760	etCode: EF RunNo: 90 SeqNo: 32 %REC 89.3 86.5 87.0 83.1 93.5 etCode: EF RunNo: 90 SeqNo: 32 %REC 87.8 85.8	PA Method 0918 251280 LowLimit 68.8 73.6 72.7 75.7 70 PA Method 0918 251281 LowLimit 68.8 73.6	8021B: Volati Units: mg/K HighLimit 120 124 129 126 130 8021B: Volati Units: mg/K HighLimit 120 124	g %RPD les g %RPD 1.75 0.732	RPDLimit 20 20	

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 12 of 12

ANAL	RONMENTAL YSIS RATORY	TEL: 505-345-	ental Analysis Labor 4901 Hawkin Albuquerque, NM 8 3975 FAX: 505-345- w.hallenvironmental	⁷¹⁰⁹ San	nple Log-In Chec	k List
Client Name:	ENSOLUM	Work Order Nur	nber: 2209428		RcptNo: 1	
Received By:	Sean Livingston	9/9/2022 7:30:00	AM	Sal	John	
Completed By:	Sean Livingston	9/9/2022 7:51:02	AM	Sal	~ /	
Reviewed By:	TMC	9/9/22			10-	
Chain of Cu	stody					
1. Is Chain of C	Custody complete?		Yes 🗹	No 🗌	Not Present	
2. How was the	e sample delivered?		Courier			
Log In	npt made to cool the sam			No 🗌		
o. was an atter	npt made to cool the sam	pies?	Yes 🗹	NO		
4. Were all sam	ples received at a temper	rature of >0° C to 6.0°C	Yes 🔽	No 🗌		
5. Sample(s) in	proper container(s)?		Yes 🔽	No 🗌		
6. Sufficient sar	nple volume for indicated	test(s)?	Yes 🔽	No 🗌		
7. Are samples	(except VOA and ONG) p	roperly preserved?	Yes 🔽	No 🗌		
8. Was preserva	ative added to bottles?		Yes 🗌	No 🗹		
9. Received at I	east 1 vial with headspace	e <1/4" for AQ VOA?	Yes 🗌	No 🗌	NA 🔽	
10. Were any sa	mple containers received	broken?	Yes	No 🔽	a statut territa	
	ork match bottle labels?		Yes 🔽	No 🗆	# of preserved bottles checked for pH:	
	ancies on chain of custor	* 4		н . П	(<2 or >12 un Adjusted?	less noted)
	correctly identified on Cha at analyses were requeste	and the second	Yes 🔽 Yes 🔽	No 🗌 No 🗌	, lajuolou.	
14. Were all hold	ing times able to be met? customer for authorization		Yes 🗹		Checked by: JA	9/01
	ling (if applicable)					
15. Was client n	otified of all discrepancies	with this order?	Yes	No 🗌	NA 🔽	
Persor	Notified:	Dat	e:			
By Wh	om:	Via	🗌 eMail 🔲 F	hone 🗌 Fax	In Person	
Regard	ding:					
	Instructions:					
16. Additional re 17. <u>Cooler Info</u> Cooler Ne	mation	n Seal Intact Seal No	Seal Date	Signed By		
1	0.4 Good					

Page 1 of 1

Client: Mailing	Er Address	15010 8:606	ustody Record Im, LLC 5. R.o. Grande, Suites 37410	Turn-Around	e:	1007. Dory LS#7														
Phone email o	r Fax#:		mmers@ensolum.co	Project Mana	ager:		21)	MRO)	s		(0)	Ą	naly OS	sis	Req	-	T	T		
□ Stan Accredi □ NEL	itation: AC		□ Level 4 (Full Validation) ompliance r	Sampler: On Ice:	and the state of t	and the second se	= / TMB's (8021)	/ DRO /	Pesticides/8082 PCB's	504.1)	0 or 8270SIMS	ls	F, Br, NO ₃ , NO ₂ , PO ₄ ,		OA)	(Present/Absent)				7:12:34 AIM
Date	(Type)	Matrix	Sample Name	# of Coolers: Cooler Temp Container Type and #		<u>1.4±0= ().4 (°С)</u> HEAL №. ZZOG 4Z8	BTEX / MIBI	TPH:8015D(GRO	8081 Pesticid	EDB (Method 504.1)	PAHs by 8310 or	RCRA 8 Metals	CINF, Br, NC	8260 (VOA)	8270 (Semi-VOA)	Total Coliform				
9/8/22	11:30	5	5-19	1402 jar	6001	100	X	X					X							
9/8/22	11:40	5	5-20			202	X	X	2				X							
9/9/22	11:56	5	5-21			203	X	X					X							
7/8/22	12:00	5	5-22			204	X	X					X							
9/8/22	-1210	5	5-23			205	X	X			-		X							
9/8/22	-12:20	5	5-24			, CC	X	X		111	-		Х					_		
9 8 2	12:30	5	5-25	4	4	207	X	X					X					_		
Date: 9/8/27 Date: 9 8 27	Time: 1534 Time:	Relinquist		Received by: Received by: Sur	Via: Via: Via:	Date Time 9/8/22 Date Time 9/9 (22 7:30	Rem	narks	5:	P P	May	7 Kei	For 1:	n R	L= 32	120	20	E	An De	Le zy

162

-

September 26, 2022

Kyle Summers ENSOLUM 606 S. Rio Grande Suite A Aztec, NM 87410 TEL: (903) 821-5603 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

RE: Jones A LS 7

OrderNo.: 2209550

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 8 sample(s) on 9/13/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209550

Date Reported: 9/26/2022

CLIENT:	ENSOLUM	Client Sample ID: S-26
Project:	Jones A LS 7	Collection Date: 9/12/2022 3:00:00 PM
Lab ID:	2209550-001	Matrix: MEOH (SOIL) Received Date: 9/13/2022 7:50:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: JMT
Chloride	ND	60		mg/Kg	20	9/13/2022 9:31:21 AM	70126
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS					Analyst	DGH
Diesel Range Organics (DRO)	88	15		mg/Kg	1	9/13/2022 10:21:22 AM	70125
Motor Oil Range Organics (MRO)	ND	49		mg/Kg	1	9/13/2022 10:21:22 AM	70125
Surr: DNOP	82.4	21-129		%Rec	1	9/13/2022 10:21:22 AM	70125
EPA METHOD 8015D: GASOLINE RANGE						Analyst	: NSB
Gasoline Range Organics (GRO)	96	20		mg/Kg	5	9/13/2022 8:51:45 AM	G90976
Surr: BFB	242	37.7-212	S	%Rec	5	9/13/2022 8:51:45 AM	G90976
EPA METHOD 8021B: VOLATILES						Analyst	: NSB
Benzene	ND	0.10		mg/Kg	5	9/13/2022 8:51:45 AM	B90976
Toluene	0.64	0.20		mg/Kg	5	9/13/2022 8:51:45 AM	B90976
Ethylbenzene	0.42	0.20		mg/Kg	5	9/13/2022 8:51:45 AM	B90976
Xylenes, Total	4.7	0.40		mg/Kg	5	9/13/2022 8:51:45 AM	B90976
Surr: 4-Bromofluorobenzene	96.8	70-130		%Rec	5	9/13/2022 8:51:45 AM	B90976

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 12

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209550

Date Reported: 9/26/2022

CLIENT:	ENSOLUM	Client Sample ID: S-27
Project:	Jones A LS 7	Collection Date: 9/12/2022 3:10:00 PM
Lab ID:	2209550-002	Matrix: MEOH (SOIL) Received Date: 9/13/2022 7:50:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: JMT
Chloride	ND	60	mg/Kg	20	9/13/2022 9:43:45 AM	70126
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst	DGH
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	9/13/2022 10:45:07 AM	70125
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	9/13/2022 10:45:07 AM	70125
Surr: DNOP	87.6	21-129	%Rec	1	9/13/2022 10:45:07 AM	70125
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	3.9	mg/Kg	1	9/13/2022 9:15:20 AM	G90976
Surr: BFB	101	37.7-212	%Rec	1	9/13/2022 9:15:20 AM	G90976
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.019	mg/Kg	1	9/13/2022 9:15:20 AM	B90976
Toluene	ND	0.039	mg/Kg	1	9/13/2022 9:15:20 AM	B90976
Ethylbenzene	ND	0.039	mg/Kg	1	9/13/2022 9:15:20 AM	B90976
Xylenes, Total	0.084	0.077	mg/Kg	1	9/13/2022 9:15:20 AM	B90976
Surr: 4-Bromofluorobenzene	89.0	70-130	%Rec	1	9/13/2022 9:15:20 AM	B90976

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 12

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209550

Date Reported: 9/26/2022

CLIENT	ENSOLUM	Client Sample ID: S-28
Project:	Jones A LS 7	Collection Date: 9/12/2022 3:20:00 PM
Lab ID:	2209550-003	Matrix: MEOH (SOIL) Received Date: 9/13/2022 7:50:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: JMT
Chloride	ND	60	mg/Kg	20	9/13/2022 9:56:09 AM	70126
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst	: DGH
Diesel Range Organics (DRO)	130	15	mg/Kg	1	9/13/2022 11:08:52 AN	70125
Motor Oil Range Organics (MRO)	100	50	mg/Kg	1	9/13/2022 11:08:52 AN	1 70125
Surr: DNOP	98.7	21-129	%Rec	1	9/13/2022 11:08:52 AN	70125
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	4.5	3.5	mg/Kg	1	9/13/2022 9:38:54 AM	G90976
Surr: BFB	145	37.7-212	%Rec	1	9/13/2022 9:38:54 AM	G90976
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.017	mg/Kg	1	9/13/2022 9:38:54 AM	B90976
Toluene	ND	0.035	mg/Kg	1	9/13/2022 9:38:54 AM	B90976
Ethylbenzene	ND	0.035	mg/Kg	1	9/13/2022 9:38:54 AM	B90976
Xylenes, Total	0.16	0.070	mg/Kg	1	9/13/2022 9:38:54 AM	B90976
Surr: 4-Bromofluorobenzene	91.2	70-130	%Rec	1	9/13/2022 9:38:54 AM	B90976

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 12

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209550

Date Reported: 9/26/2022

CLIENT:	ENSOLUM	Client Sample ID: S-29
Project:	Jones A LS 7	Collection Date: 9/12/2022 3:30:00 PM
Lab ID:	2209550-004	Matrix: MEOH (SOIL) Received Date: 9/13/2022 7:50:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: JMT
Chloride	ND	60	mg/Kg	20	9/13/2022 10:08:34 AM	1 70126
EPA METHOD 8015M/D: DIESEL RANGE ORG	SANICS				Analys	t: DGH
Diesel Range Organics (DRO)	37	15	mg/Kg	1	9/13/2022 11:32:41 AM	1 70125
Motor Oil Range Organics (MRO)	140	49	mg/Kg	1	9/13/2022 11:32:41 AN	1 70125
Surr: DNOP	97.4	21-129	%Rec	1	9/13/2022 11:32:41 AM	1 70125
EPA METHOD 8015D: GASOLINE RANGE					Analys	t: NSB
Gasoline Range Organics (GRO)	ND	18	mg/Kg	5	9/13/2022 10:02:21 AM	1 G90976
Surr: BFB	105	37.7-212	%Rec	5	9/13/2022 10:02:21 AN	1 G90976
EPA METHOD 8021B: VOLATILES					Analys	t: NSB
Benzene	ND	0.091	mg/Kg	5	9/13/2022 10:02:21 AN	1 B90976
Toluene	ND	0.18	mg/Kg	5	9/13/2022 10:02:21 AN	B90976
Ethylbenzene	ND	0.18	mg/Kg	5	9/13/2022 10:02:21 AM	1 B90976
Xylenes, Total	0.46	0.37	mg/Kg	5	9/13/2022 10:02:21 AN	1 B90976
Surr: 4-Bromofluorobenzene	90.1	70-130	%Rec	5	9/13/2022 10:02:21 AM	B90976

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limitsP Sample pH Not In Range
- RL Reporting Limit

Page 4 of 12

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209550 Date Reported: 9/26/2022

CLIENT:	ENSOLUM	Client Sample ID: S-30
Project:	Jones A LS 7	Collection Date: 9/12/2022 3:40:00 PM
Lab ID:	2209550-005	Matrix: MEOH (SOIL) Received Date: 9/13/2022 7:50:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: JMT
Chloride	ND	60	mg/Kg	20	9/13/2022 10:20:59 AM	1 70126
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analys	t: DGH
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	9/13/2022 11:56:26 AM	1 70125
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	9/13/2022 11:56:26 AN	1 70125
Surr: DNOP	93.6	21-129	%Rec	1	9/13/2022 11:56:26 AM	1 70125
EPA METHOD 8015D: GASOLINE RANGE					Analys	t: NSB
Gasoline Range Organics (GRO)	ND	3.5	mg/Kg	1	9/13/2022 10:25:50 AM	1 G90976
Surr: BFB	98.0	37.7-212	%Rec	1	9/13/2022 10:25:50 AM	1 G90976
EPA METHOD 8021B: VOLATILES					Analys	t: NSB
Benzene	ND	0.018	mg/Kg	1	9/13/2022 10:25:50 AM	1 B90976
Toluene	ND	0.035	mg/Kg	1	9/13/2022 10:25:50 AM	B90976
Ethylbenzene	ND	0.035	mg/Kg	1	9/13/2022 10:25:50 AM	B90976
Xylenes, Total	ND	0.071	mg/Kg	1	9/13/2022 10:25:50 AM	1 B90976
Surr: 4-Bromofluorobenzene	89.8	70-130	%Rec	1	9/13/2022 10:25:50 AM	1 B90976

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range Reporting Limit
- RL

Page 5 of 12

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209550

Date Reported: 9/26/2022

CLIENT:	ENSOLUM	Client Sample ID: S-31
Project:	Jones A LS 7	Collection Date: 9/12/2022 3:50:00 PM
Lab ID:	2209550-006	Matrix: MEOH (SOIL) Received Date: 9/13/2022 7:50:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: JMT
Chloride	ND	60	mg/Kg	20	9/13/2022 10:58:13 AM	1 70126
EPA METHOD 8015M/D: DIESEL RANGE OF	GANICS				Analys	t: DGH
Diesel Range Organics (DRO)	56	14	mg/Kg	1	9/13/2022 12:20:11 PM	1 70125
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	9/13/2022 12:20:11 PM	1 70125
Surr: DNOP	102	21-129	%Rec	1	9/13/2022 12:20:11 PM	1 70125
EPA METHOD 8015D: GASOLINE RANGE					Analys	t: NSB
Gasoline Range Organics (GRO)	77	20	mg/Kg	5	9/13/2022 10:49:23 AM	1 G90976
Surr: BFB	172	37.7-212	%Rec	5	9/13/2022 10:49:23 AM	1 G90976
EPA METHOD 8021B: VOLATILES					Analys	t: NSB
Benzene	ND	0.10	mg/Kg	5	9/13/2022 10:49:23 AN	1 B90976
Toluene	1.3	0.20	mg/Kg	5	9/13/2022 10:49:23 AN	B90976
Ethylbenzene	0.45	0.20	mg/Kg	5	9/13/2022 10:49:23 AN	B90976
Xylenes, Total	4.4	0.40	mg/Kg	5	9/13/2022 10:49:23 AM	1 B90976
Surr: 4-Bromofluorobenzene	94.4	70-130	%Rec	5	9/13/2022 10:49:23 AM	1 B90976

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 12

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209550

Date Reported: 9/26/2022

CLIENT:	ENSOLUM	Client Sample ID: S-32
Project:	Jones A LS 7	Collection Date: 9/12/2022 4:00:00 PM
Lab ID:	2209550-007	Matrix: MEOH (SOIL) Received Date: 9/13/2022 7:50:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: JMT
Chloride	ND	60	mg/Kg	20	9/13/2022 11:10:37 AM	1 70126
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analys	t: DGH
Diesel Range Organics (DRO)	62	15	mg/Kg	1	9/13/2022 12:44:03 PM	1 70125
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	9/13/2022 12:44:03 PM	1 70125
Surr: DNOP	99.3	21-129	%Rec	1	9/13/2022 12:44:03 PM	1 70125
EPA METHOD 8015D: GASOLINE RANGE					Analys	t: NSB
Gasoline Range Organics (GRO)	36	20	mg/Kg	5	9/13/2022 11:12:57 AM	1 G90976
Surr: BFB	127	37.7-212	%Rec	5	9/13/2022 11:12:57 AM	1 G90976
EPA METHOD 8021B: VOLATILES					Analys	t: NSB
Benzene	ND	0.10	mg/Kg	5	9/13/2022 11:12:57 AM	1 B90976
Toluene	0.50	0.20	mg/Kg	5	9/13/2022 11:12:57 AM	B90976
Ethylbenzene	ND	0.20	mg/Kg	5	9/13/2022 11:12:57 AM	1 B90976
Xylenes, Total	1.7	0.41	mg/Kg	5	9/13/2022 11:12:57 AM	1 B90976
Surr: 4-Bromofluorobenzene	94.0	70-130	%Rec	5	9/13/2022 11:12:57 AM	1 B90976

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 12

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209550

Date Reported: 9/26/2022

CLIENT: ENSOLUM	Client Sample ID: S-33
Project: Jones A LS 7	Collection Date: 9/12/2022 4:10:00 PM
Lab ID: 2209550-008	Matrix: MEOH (SOIL) Received Date: 9/13/2022 7:50:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: JMT
Chloride	ND	61	mg/Kg	20	9/13/2022 11:23:01 AN	70126
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst	DGH
Diesel Range Organics (DRO)	260	15	mg/Kg	1	9/13/2022 1:07:48 PM	70125
Motor Oil Range Organics (MRO)	160	49	mg/Kg	1	9/13/2022 1:07:48 PM	70125
Surr: DNOP	104	21-129	%Rec	1	9/13/2022 1:07:48 PM	70125
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	3.3	mg/Kg	1	9/13/2022 11:36:26 AN	G90976
Surr: BFB	96.0	37.7-212	%Rec	1	9/13/2022 11:36:26 AN	G90976
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.016	mg/Kg	1	9/13/2022 11:36:26 AN	B90976
Toluene	ND	0.033	mg/Kg	1	9/13/2022 11:36:26 AN	B90976
Ethylbenzene	ND	0.033	mg/Kg	1	9/13/2022 11:36:26 AN	B90976
Xylenes, Total	ND	0.065	mg/Kg	1	9/13/2022 11:36:26 AN	B90976
Surr: 4-Bromofluorobenzene	90.2	70-130	%Rec	1	9/13/2022 11:36:26 AN	B90976

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 12

2209550

WO#:

Hall Environmental Analysis Laboratory, Inc.											26-Sep-2
Client: Project:	ENSOLUM Jones A LS 7										
Sample ID: MB-70126 SampType: mblk TestCode: EPA Method 300.0: Anions											
Client ID: PBS Batch ID: 70126				RunNo: 90978							
Prep Date: 9/13/2022 Analysis Date: 9/13/2022			2022	S	255241	Units: mg/K					
Analyte	Re	sult F	QL SF	PK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								
Sample ID: 1 CS-7	0126				Tes	Code: El	PA Mothod	300 0: Anion	•		

Sample ID: LC:	5-70126	CS ICS	ICS TestCode: EPA Method 300.0: Anions								
Client ID: LCS	SS	Batch ID: 70126				RunNo: 90978					
Prep Date: 9/	13/2022	Analysis Date: 9/13/2022			S	SeqNo: 3255242			Units: mg/Kg		
Analyte		Result F	QL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	93.7	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 12
ZC SUMMART REFORT	WO#:	2209550
Hall Environmental Analysis Laboratory, Inc.		26-Sep-22

Client: ENSO	LUM								
Project: Jones A	ALS 7								
Sample ID: MB-70125	SampType	e: MBLK	Tes	tCode: EF	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: PBS	Batch ID): 70125	R	RunNo: 9(0980				
Prep Date: 9/13/2022	Analysis Date	e: 9/13/2022	S	SeqNo: 32	253842	Units: mg/K	g		
Analyte	Result F	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	15							
Notor Oil Range Organics (MRO)	ND	50							
Surr: DNOP	8.2	10.00		81.8	21	129			
Sample ID: LCS-70125	SampType	e: LCS	Tes	tCode: EF	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: LCSS	Batch ID): 70125	R	RunNo: 9(0980				
Prep Date: 9/13/2022	Analysis Date	e: 9/13/2022	S	SeqNo: 32	253843	Units: mg/K	g		
Analyte	Result F	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	46	15 50.00	0	92.0	64.4	127			
Surr: DNOP	4.1	5.000		82.6	21	129			
Sample ID: 2209550-001AN	SampType	e: MS	Tes	tCode: EF	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: S-26	Batch ID): 70125	R	RunNo: 90	0980				
Prep Date: 9/13/2022	Analysis Date	e: 9/13/2022	S	SeqNo: 32	260188	Units: mg/K	g		
Analyte	Result F	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	140	15 49.70	88.33	106	36.1	154			
Surr: DNOP	5.3	4.970		107	21	129			
Sample ID: 2209550-001AN	SampType	e: MSD	Test	tCode: EF	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: S-26	Batch ID): 70125	R	RunNo: 9(0980				
Prep Date: 9/13/2022	Analysis Date	e: 9/13/2022	S	SeqNo: 32	260189	Units: mg/K	g		
Analyte	Result F	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	140	15 49.46	88.33	104	36.1	154	0.784	33.9	
Surr: DNOP	5.2	4.946		105	21	129	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 10 of 12

QC SUMMARY REPORT H

	WO#:	2209550
Hall Environmental Analysis Laboratory, Inc.		26-Sep-22

	ENSOLUM Jones A LS 7									
Sample ID: mb	Sa	mpType: M	BLK	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID: PBS	E	atch ID: G	90976	F	RunNo: 9	0976				
Prep Date:	Analys	sis Date: 9	/13/2022	5	SeqNo: 3	254266	Units: mg/K	(g		
Analyte	Resu	lt PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics Surr: BFB	s (GRO) N 97		1000		97.0	37.7	212			
Sample ID: 2.5ug g	ro Ics Sa	mpType: L(CS	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID: LCSS	E	atch ID: G	90976	F	RunNo: 9	0976				
Prep Date:	Analys	sis Date: 9	/13/2022	S	SeqNo: 3	254267	Units: mg/K	(g		
Analyte	Resu	lt PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics	s (GRO) 2	6 5.0	25.00	0	104	72.3	137			
Surr: BFB	200	0	1000		196	37.7	212			
Sample ID: 220955	0-001ams Sa	mpType: M	s	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID: S-26	E	atch ID: G	90976	F	RunNo: 9	0976				
Prep Date:	Analys	sis Date: 9	/13/2022	S	SeqNo: 3	254268	Units: mg/K	g		
Analyte	Resu	lt PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics	s (GRO) 21	0 20	99.60	95.66	112	70	130			
Surr: BFB	1400	0	3984		359	37.7	212			S
Sample ID: 220955	0-001amsd Sa	mpType: M	SD	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID: S-26	E	atch ID: G	90976	F	RunNo: 9	0976				
Prep Date:	Analys	sis Date: 9	/13/2022	5	SeqNo: 3	254269	Units: mg/K	ſg		
Analyte	Resu	lt PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics	· ,			95.66	103	70	130	4.51	20	
Surr: BFB	1400	0	3984		348	37.7	212	0	0	S

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

C	all Environmental Analysis Laboratory, Inc.									
	ENSOLUM ones A LS 7									
Sample ID: mb	Samp	оТуре: М	BLK	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: PBS	Bat	ch ID: B9	0976	F	RunNo: 9	0976				
Prep Date:	Analysis	Date: 9/	13/2022	S	SeqNo: 3	254307	Units: mg/k	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Foluene	ND	0.050								
Ethylbenzene	ND	0.050								
Kylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenz	ene 0.91		1.000		90.6	70	130			

Sample ID: 100ng btex lcs	Samp	SampType: LCS TestCode: EPA Method 8021B: Volatiles								
Client ID: LCSS	Batc	Batch ID: B90976 RunNo: 90976								
Prep Date:	Analysis [Date: 9/	13/2022	5	SeqNo: 3	254308	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.90	0.025	1.000	0	90.0	80	120			
Toluene	0.93	0.050	1.000	0	93.5	80	120			
Ethylbenzene	0.93	0.050	1.000	0	92.9	80	120			
Xylenes, Total	2.8	0.10	3.000	0	92.8	80	120			
Surr: 4-Bromofluorobenzene	0.89		1.000		89.2	70	130			
				_						

Sample ID: 2209550-002ams	SampT	SampType: MS TestCode: EPA Method 8021B: Volatiles								
Client ID: S-27	Batch	n ID: B9	0976	F	0976					
Prep Date:	Analysis D	0ate: 9/	13/2022	5	SeqNo: 3	254309	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.71	0.019	0.7728	0.01244	90.3	68.8	120			
Toluene	0.77	0.039	0.7728	0.03423	94.7	73.6	124			
Ethylbenzene	0.74	0.039	0.7728	0.01376	94.6	72.7	129			
Xylenes, Total	2.3	0.077	2.318	0.08447	94.3	75.7	126			
Surr: 4-Bromofluorobenzene	0.73		0.7728		94.0	70	130			

Sample ID: 2209550-002ams	d SampT	SampType: MSD TestCode: EPA Method 8021B: Volatiles								
Client ID: S-27	Batcl	Batch ID: B90976 RunNo: 90976								
Prep Date: Analysis Date: 9/13/2022 SeqNo: 3254310 Units: mg/Kg						g				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.68	0.019	0.7728	0.01244	86.4	68.8	120	4.32	20	
Toluene	0.74	0.039	0.7728	0.03423	90.9	73.6	124	3.83	20	
Ethylbenzene	0.71	0.039	0.7728	0.01376	90.5	72.7	129	4.39	20	
Xylenes, Total	2.2	0.077	2.318	0.08447	90.4	75.7	126	4.00	20	
Surr: 4-Bromofluorobenzene	0.71		0.7728		92.3	70	130	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 12 of 12

 2. How was the sample delivered? Log In 3. Was an attempt made to cool the samples? 4. Were all samples received at a temperature of >0° C to 6.0°C 5. Sample(s) in proper container(s)? 6. Sufficient sample volume for indicated test(s)? 	Yes <u>Cour</u> Yes Yes Yes Yes	ier V	No No No No No No No	RcptN4	o: 1
Completed By: Cheyenne Cason 9/13/2022 8:06:10 AM Reviewed By: 9-13-22 Chain of Custody 1. Is Chain of Custody complete? 2. How was the sample delivered? Log In 3. Was an attempt made to cool the samples? 4. Were all samples received at a temperature of >0° C to 6.0°C 5. Sample(s) in proper container(s)? 6. Sufficient sample volume for indicated test(s)?	<u>Cour</u> Yes Yes Yes		No 🗌 No 🗍	Not Present 🗌	
Reviewed By: 9-13-22 Chain of Custody 1. Is Chain of Custody complete? 2. How was the sample delivered? Log In 3. Was an attempt made to cool the samples? 4. Were all samples received at a temperature of >0° C to 6.0°C 5. Sample(s) in proper container(s)? 6. Sufficient sample volume for indicated test(s)?	<u>Cour</u> Yes Yes Yes		No 🗌 No 🗍	Not Present 🗌	
 Is Chain of Custody complete? How was the sample delivered? Log In Was an attempt made to cool the samples? Were all samples received at a temperature of >0° C to 6.0°C Sample(s) in proper container(s)? Sufficient sample volume for indicated test(s)? 	<u>Cour</u> Yes Yes Yes		No 🗌	NA 🗌	
 2. How was the sample delivered? Log In 3. Was an attempt made to cool the samples? 4. Were all samples received at a temperature of >0° C to 6.0°C 5. Sample(s) in proper container(s)? 6. Sufficient sample volume for indicated test(s)? 	<u>Cour</u> Yes Yes Yes		No 🗌	NA 🗌	
Log In 3. Was an attempt made to cool the samples? 4. Were all samples received at a temperature of >0° C to 6.0°C 5. Sample(s) in proper container(s)? 6. Sufficient sample volume for indicated test(s)?	Yes Yes Yes	>	No 🗌		
 3. Was an attempt made to cool the samples? 4. Were all samples received at a temperature of >0° C to 6.0°C 5. Sample(s) in proper container(s)? 6. Sufficient sample volume for indicated test(s)? 	Yes Yes	>	No 🗌		
 4. Were all samples received at a temperature of >0° C to 6.0°C 5. Sample(s) in proper container(s)? 6. Sufficient sample volume for indicated test(s)? 	Yes Yes	>	No 🗌		
 5. Sample(s) in proper container(s)? 6. Sufficient sample volume for indicated test(s)? 	Yes			NA 🗌	
6. Sufficient sample volume for indicated test(s)?			No 🗌		
	Yes	_			
			No 🗌		
7. Are samples (except VOA and ONG) properly preserved?	Yes	~	No 🗌		
8. Was preservative added to bottles?	Yes		No 🔽	NA 🗌	
9. Received at least 1 vial with headspace <1/4" for AQ VOA?	Yes		No 🗌	NA 🔽	
0. Were any sample containers received broken?	Yes		No 🗹	# of preserved	
1. Does paperwork match bottle labels? γ (Note discrepancies on chain of custody)	Yes	~	No 🗌	bottles checked for pH: (<2 o	or >12 unless noted)
	Yes [~	No 🗌	Adjusted?	and the unless holed
가지 않는 것 같은 것 같	Yes [No 🗌		/
· 그는 것은 것 같은	Yes 🛛		No 🗌	Checked by:	In 9/13/2
pecial Handling (if applicable)			-		
	Yes		No 🗌	NA 🔽	
Person Notified: Date:					
De Miles est	eMai		Phone 🗌 Fax	In Person	
Regarding:					
Client Instructions:					
6. Additional remarks:					
7. <u>Cooler Information</u> Cooler No Temp ^o C Condition Seal Intact Seal No Sea 1 0.2 Good Yes	al Dat	e	Signed By		

Page 1 of 1

Client:	En	solu	ustody Record	Turn-Around	Rusi	100% Dry				A	AN	AL	.Ys	SIS	S L	AB	BOR		TAL OR \
Mailing	Address	s: 606 s	5. ReoGrande, SuiteA	Ton	es A	15#7		10	01 -							tal.co			
Az	tor.	NM	67410	FIDEUL#.		62111			el. 50							-345-	M 8710	19	
Phone	/			2	ree Not	^c 5	15	1	01. 00	0-0-	+3-3			-	-	uest			
email o	r Fax#:	KSU	morsepensolum.ca	Project Mana	iger:		=	6					SO4						
QA/QC I	Package: idard		□ Level 4 (Full Validation)	4	S. Su	whers	TMB's (8021)	O / MR	PCB's		8270SIMS					(Present/Absent)			
Accredi			ompliance	Sampler:	L. Ocen		MB	DR	382	(1	3270		021			sen			
		□ Othe	r		Yes	□ No	12	RO	es/8(504.1)	Ъ	s	3, N		(AC	(Pre			
	(Type)			# of Coolers:	(including OD)* (a.e.	1 to. 1= 0. 2 (°C)	/-MTBE	D(G	icide	pou	3310	8 Metals	0N	7	-ir	orm			
Date	Time	Matrix	Sample Name	Container Type and #	Preservative Type		BTEX /-N	TPH:8015D(GRO / DRO / MRO)	8081 Pesticides/8082	EDB (Method	PAHs by 8310	RCRA 8 N	Ch F, Br, NO3, NO2, PO4,	8260 (VOA)	8270 (Semi-VOA)	Total Coliform			
9/12/22	300	5	5-26	1402 101		001	X	V	80	ш	Δ.	œ	X	8	80	-	-	+	
9/12/22		5	5-27	110000	Loca	10.		X		-			-		-	-			
	3:20	9	5-28	6		002 003	A	V					X	-		-		+	-
	3:30	5	5-29				x	$\overline{}$	-	-	-		4		-		+	++	
1 /	3:40	9	5-30			004	1	X		-	-	-	X	- 1		-		++	-
1.	3,50	5	5-71			006	X	~			-	-	5	-	-			+	-
1	9:00	5	5-32		}	007	V	X					5	-	_	-		+	-
11	4:10	5	5-32	V	. 1	008	T	V	-			-	~	-		-	-	+	-4-1
figer			d de	Ψ	N/	005	A	\sim		-			×			-		+	
									-	-		-		-	-			+	
- 14 C								-	-	-			-		-			+	
		12-51			Ť.		1.1	-		-	1				-			+	
1/142	1715	Relinquishe	-	Received by:	Via: Via:	Date Time 9/12/22 1715 Date Time	Rem	arks	:	Pp	M	1	in it	n (-0	27		Yan P	ne)
1/12/22	1823	Cho	wather Would to Hall Environmental may be subc	12	-lowie	9/13/22 7:50						5							-

September 20, 2022

Kyle Summers ENSOLUM 606 S. Rio Grande Suite A Aztec, NM 87410 TEL: (903) 821-5603 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 2209728

Dear Kyle Summers:

RE: Jones A LS 7

Hall Environmental Analysis Laboratory received 4 sample(s) on 9/15/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209728

Date Reported: 9/20/2022

CLIENT	ENSOLUM	Client Sample ID: S-34
Project:	Jones A LS 7	Collection Date: 9/14/2022 1:50:00 PM
Lab ID:	2209728-001	Matrix: MEOH (SOIL) Received Date: 9/15/2022 7:35:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: JTT
Chloride	ND	60	mg/Kg	20	9/15/2022 10:51:27 AM	70196
EPA METHOD 8015M/D: DIESEL RANGE OF	GANICS				Analyst	DGH
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	9/15/2022 2:55:35 PM	70192
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	9/15/2022 2:55:35 PM	70192
Surr: DNOP	76.1	21-129	%Rec	1	9/15/2022 2:55:35 PM	70192
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	42	20	mg/Kg	5	9/15/2022 9:03:18 AM	A91053
Surr: BFB	122	37.7-212	%Rec	5	9/15/2022 9:03:18 AM	A91053
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.10	mg/Kg	5	9/15/2022 9:03:18 AM	C91053
Toluene	0.48	0.20	mg/Kg	5	9/15/2022 9:03:18 AM	C91053
Ethylbenzene	0.21	0.20	mg/Kg	5	9/15/2022 9:03:18 AM	C91053
Xylenes, Total	2.0	0.40	mg/Kg	5	9/15/2022 9:03:18 AM	C91053
Surr: 4-Bromofluorobenzene	87.9	70-130	%Rec	5	9/15/2022 9:03:18 AM	C91053

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 9

.

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209728

Date Reported: 9/20/2022

CLIENT: ENSOLUM	Client Sample ID: S-35
Project: Jones A LS 7	Collection Date: 9/14/2022 2:00:00 PM
Lab ID: 2209728-002	Matrix: MEOH (SOIL) Received Date: 9/15/2022 7:35:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: JTT
Chloride	ND	60	mg/Kg	20	9/15/2022 11:03:52 AM	1 70196
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analys	t: DGH
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	9/15/2022 10:54:50 AM	1 70192
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	9/15/2022 10:54:50 AM	1 70192
Surr: DNOP	92.9	21-129	%Rec	1	9/15/2022 10:54:50 AM	1 70192
EPA METHOD 8015D: GASOLINE RANGE					Analys	t: NSB
Gasoline Range Organics (GRO)	ND	3.5	mg/Kg	1	9/15/2022 9:26:44 AM	A91053
Surr: BFB	90.9	37.7-212	%Rec	1	9/15/2022 9:26:44 AM	A91053
EPA METHOD 8021B: VOLATILES					Analys	t: NSB
Benzene	ND	0.018	mg/Kg	1	9/15/2022 9:26:44 AM	C91053
Toluene	ND	0.035	mg/Kg	1	9/15/2022 9:26:44 AM	C91053
Ethylbenzene	ND	0.035	mg/Kg	1	9/15/2022 9:26:44 AM	C91053
Xylenes, Total	ND	0.071	mg/Kg	1	9/15/2022 9:26:44 AM	C91053
Surr: 4-Bromofluorobenzene	88.4	70-130	%Rec	1	9/15/2022 9:26:44 AM	C91053

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 9

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209728

Date Reported: 9/20/2022

CLIENT:	ENSOLUM	Client Sample ID: S-36
Project:	Jones A LS 7	Collection Date: 9/14/2022 2:10:00 PM
Lab ID:	2209728-003	Matrix: MEOH (SOIL) Received Date: 9/15/2022 7:35:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: JTT
Chloride	ND	60	mg/Kg	20	9/15/2022 11:16:17 AM	1 70196
EPA METHOD 8015M/D: DIESEL RANGE OF	RGANICS				Analys	t: DGH
Diesel Range Organics (DRO)	ND	14	mg/Kg	1	9/15/2022 11:05:37 AM	1 70192
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	9/15/2022 11:05:37 AN	1 70192
Surr: DNOP	84.5	21-129	%Rec	1	9/15/2022 11:05:37 AM	1 70192
EPA METHOD 8015D: GASOLINE RANGE					Analys	t: NSB
Gasoline Range Organics (GRO)	ND	3.8	mg/Kg	1	9/15/2022 9:50:10 AM	A91053
Surr: BFB	89.0	37.7-212	%Rec	1	9/15/2022 9:50:10 AM	A91053
EPA METHOD 8021B: VOLATILES					Analys	t: NSB
Benzene	ND	0.019	mg/Kg	1	9/15/2022 9:50:10 AM	C91053
Toluene	ND	0.038	mg/Kg	1	9/15/2022 9:50:10 AM	C91053
Ethylbenzene	ND	0.038	mg/Kg	1	9/15/2022 9:50:10 AM	C91053
Xylenes, Total	ND	0.076	mg/Kg	1	9/15/2022 9:50:10 AM	C91053
Surr: 4-Bromofluorobenzene	87.0	70-130	%Rec	1	9/15/2022 9:50:10 AM	C91053

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 3 of 9

.

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2209728

Date Reported: 9/20/2022

CLIENT: ENSOLUM	Client Sample ID: S-37
Project: Jones A LS 7	Collection Date: 9/14/2022 2:20:00 PM
Lab ID: 2209728-004	Matrix: MEOH (SOIL) Received Date: 9/15/2022 7:35:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: JTT
Chloride	ND	60	mg/Kg	20	9/15/2022 11:28:42 AM	1 70196
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analys	t: DGH
Diesel Range Organics (DRO)	ND	15	mg/Kg	1	9/15/2022 11:16:21 AM	1 70192
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	9/15/2022 11:16:21 AN	1 70192
Surr: DNOP	86.3	21-129	%Rec	1	9/15/2022 11:16:21 AN	1 70192
EPA METHOD 8015D: GASOLINE RANGE					Analys	t: NSB
Gasoline Range Organics (GRO)	ND	3.7	mg/Kg	1	9/15/2022 10:13:41 AM	1 A91053
Surr: BFB	88.5	37.7-212	%Rec	1	9/15/2022 10:13:41 AM	1 A91053
EPA METHOD 8021B: VOLATILES					Analys	t: NSB
Benzene	ND	0.018	mg/Kg	1	9/15/2022 10:13:41 AM	1 C91053
Toluene	ND	0.037	mg/Kg	1	9/15/2022 10:13:41 AN	1 C91053
Ethylbenzene	ND	0.037	mg/Kg	1	9/15/2022 10:13:41 AN	1 C91053
Xylenes, Total	ND	0.074	mg/Kg	1	9/15/2022 10:13:41 AN	1 C91053
Surr: 4-Bromofluorobenzene	86.9	70-130	%Rec	1	9/15/2022 10:13:41 AM	1 C91053

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 4 of 9

L.	Hall Environmental Analysis Laboratory, Inc.								WO#:	2209728 20-Sep-22	
Client: Project:	ENSOI Jones A										
Sample ID: ME Client ID: PE		SampTy Batch	/pe: ME ID: 70 /			tCode: El RunNo: 9		300.0: Anion	S		
	/15/2022	Analysis Da		15/2022		SeqNo: 3		Units: mg/K	g		
Analyte Chloride		Result ND	PQL 1.5	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

Sample ID: LCS-70196	SampType: LCS			Test	TestCode: EPA Method 300.0: Anions					
Client ID: LCSS	Batch	ID: 70	196	R	RunNo: 9	1056				
Prep Date: 9/15/2022	Analysis D	ate: 9/	15/2022	S	SeqNo: 3	258075	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	14	1.5	15.00	0	94.3	90	110			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 5 of 9

QC SUMMARY REPORT Hal

C SUMMART REFORT	WO#:	2209728
all Environmental Analysis Laboratory, Inc.		20-Sep-22

	ENSOLUM ones A LS 7									
Sample ID: LCS-701	60 SampTy	/pe: LC \$	S	Test	Code: EF	PA Method	8015M/D: Die	sel Range	e Organics	
Client ID: LCSS	Batch	ID: 701	60	R	unNo: 9 ′	1028				
Prep Date: 9/13/20	22 Analysis Da	ate: 9/1	4/2022	S	eqNo: 3	255495	Units: %Rec			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP	3.4		5.000		68.7	21	129			
Sample ID: MB-7016	0 SampTy	/pe: MB	LK	Test	Code: EF	PA Method	8015M/D: Die	sel Range	e Organics	
Client ID: PBS	Batch	ID: 701	60	R	unNo: 9	1028				
Prep Date: 9/13/20	22 Analysis Da	ate: 9/1	4/2022	S	eqNo: 32	255498	Units: %Rec			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP	8.5		10.00		85.5	21	129			
Sample ID: 2209728	001AMS SampTy	/pe: MS		Test	Code: EF	PA Method	8015M/D: Die	sel Range	e Organics	
Client ID: S-34	Batch	ID: 701	92	R	unNo: 9 ′	1028		_	-	
Prep Date: 9/15/20	22 Analysis Da	ate: 9/1	5/2022	S	eqNo: 32	256960	Units: mg/Kg	9		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DI		14	47.35	0	79.4	36.1	154			
Surr: DNOP	3.3		4.735		68.8	21	129			
Sample ID: 2209728	001AMSD SampTy	/pe: MS	D	Test	Code: EF	PA Method	8015M/D: Die	sel Range	e Organics	
Client ID: S-34	Batch	ID: 701	92	R	unNo: 9	1028				
Prep Date: 9/15/20	22 Analysis Da	ate: 9/1	15/2022	S	eqNo: 32	256961	Units: mg/Kg	9		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DI	,	15	49.85	0	90.2	36.1	154	17.8	33.9	
Surr: DNOP	3.4		4.985		68.7	21	129	0	0	
Sample ID: LCS-701	32 SampTy	/pe: LC \$	S	Test	Code: EF	PA Method	8015M/D: Die	sel Range	e Organics	
Client ID: LCSS	Batch	ID: 701	32	R	unNo: 9	1028				
Prep Date: 9/13/20	22 Analysis Da	ate: 9/1	5/2022	S	eqNo: 3	256966	Units: %Rec			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP	2.8		5.000		55.6	21	129			
Sample ID: LCS-701	56 SampTy	/pe: LC	S	Test	Code: EF	PA Method	8015M/D: Die	sel Range	e Organics	
Client ID: LCSS	Batch	ID: 701	56	R	unNo: 9	1028				
Prep Date: 9/13/20	22 Analysis Da	ate: 9/1	5/2022	S	eqNo: 32	256969	Units: %Rec			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP	4.2		5.000		84.0	21	129			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

OC SUMMARY REPORT H

	WO#:	2209728
Hall Environmental Analysis Laboratory, Inc.		20-Sep-22

Client: ENSO Project: Jones	LUM A LS 7	
Sample ID: LCS-70192	SampType: LCS	TestCode: EPA Method 8015M/D: Diesel Range Organics
Client ID: LCSS	Batch ID: 70192	RunNo: 91028
Prep Date: 9/15/2022	Analysis Date: 9/15/2022	SeqNo: 3256971 Units: mg/Kg
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Diesel Range Organics (DRO)	40 15 50.00	0 79.7 64.4 127
Surr: DNOP	3.4 5.000	67.5 21 129
Sample ID: MB-70132	SampType: MBLK	TestCode: EPA Method 8015M/D: Diesel Range Organics
Client ID: PBS	Batch ID: 70132	RunNo: 91028
Prep Date: 9/13/2022	Analysis Date: 9/15/2022	SeqNo: 3256972 Units: %Rec
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Surr: DNOP	7.1 10.00	70.7 21 129
Sample ID: MB-70156	SampType: MBLK	TestCode: EPA Method 8015M/D: Diesel Range Organics
Client ID: PBS	Batch ID: 70156	RunNo: 91028
Prep Date: 9/13/2022	Analysis Date: 9/15/2022	SeqNo: 3256975 Units: %Rec
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Surr: DNOP	8.3 10.00	83.3 21 129
Sample ID: MB-70192	SampType: MBLK	TestCode: EPA Method 8015M/D: Diesel Range Organics
Client ID: PBS	Batch ID: 70192	RunNo: 91028
Prep Date: 9/15/2022	Analysis Date: 9/15/2022	SeqNo: 3256977 Units: mg/Kg
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Diesel Range Organics (DRO)	ND 15	
Motor Oil Range Organics (MRO)	ND 50	
Surr: DNOP	8.4 10.00	84.2 21 129

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 7 of 9

QC SUMMARY REPORT Hall Env

	WO#:	2209728
vironmental Analysis Laboratory, Inc.		20-Sep-22

Client:	ENSOLU	М												
Project:	Jones A L	.S 7												
Sample ID: mb		SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8015D: Gasc	line Rang	e				
Client ID: PBS		Batch	n ID: A91053 RunNo: 91053											
Prep Date:		Analysis D	ate: 9/	15/2022	S	SeqNo: 3	257259	Units: mg/Kg						
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Gasoline Range Organics	s (GRO)	ND	5.0											
Surr: BFB		930		1000		93.0	37.7	212						
Sample ID: 2.5ug g	ro Ics	SampT	ype: LC	S	Tes	tCode: EF	PA Method	8015D: Gaso	line Rang	е				
Client ID: LCSS		Batch	n ID: A9	1053	F	RunNo: 9 1	1053							
Prep Date:		Analysis D	ate: 9/	15/2022	S	SeqNo: 32	257260	Units: mg/k	٤g					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Gasoline Range Organics	s (GRO)	24	5.0	25.00	0	94.9	72.3	137						
Surr: BFB		1800		1000		183	37.7	212						
Sample ID: 220972	8-001ams	SampT	ype: MS	3	Tes	tCode: EF	PA Method	8015D: Gaso	line Rang	e				
Client ID: S-34		Batch	n ID: A9	1053	F	RunNo: 9	1053							
Prep Date:		Analysis D	ate: 9/	15/2022	5	SeqNo: 32	257261	Units: mg/k	(g					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Gasoline Range Organics	s (GRO)	150	20	101.2	41.82	102	70	130						
Surr: BFB		8800		4049		218	37.7	212			S			
Sample ID: 220972	8-001amsd	SampT	ype: MS	SD	Tes	tCode: EF	PA Method	8015D: Gasc	line Rang	e				
Client ID: S-34		Batch	n ID: A9	1053	F	RunNo: 9 1	1053							
Prep Date:		Analysis D	ate: 9/	15/2022	S	SeqNo: 32	257262	Units: mg/k	٤g					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Gasoline Range Organics	s (GRO)	140	20	101.2	41.82	102	70	130	0.195	20				
Surr: BFB		9200		4049		228	37.7	212	0	0	S			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

MMARY REPORT	WO#:	2209728
vironmental Analysis Laboratory, Inc.		20-Sep-22

	NSOLUM ones A LS 7									
Sample ID: mb	Samp	Туре: МЕ	BLK	Tes	tCode: EF	PA Method	8021B: Vola	tiles		
Client ID: PBS	Bato	Batch ID: C91053 RunNo: 91053								
Prep Date:	Analysis	Date: 9/	15/2022	S	SeqNo: 32	257337	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenze	ene 0.88		1.000		88.4	70	130			
Sample ID: 100ng bte	x Ics Samp	Type: LC	S	Tes	tCode: EF	PA Method	8021B: Vola	tiles		
Client ID: LCSS	Bato	ch ID: C9	1053	F	RunNo: 9 ′	1053				
Prep Date:	Analysis	Date: 9/	15/2022	S	SeqNo: 32	257338	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.88	0.025	1.000	0	87.9	80	120			
Toluene	0.91	0.050	1.000	0	90.7	80	120			
Ethylbenzene	0.90	0.050	1.000	0	89.8	80	120			
Xylenes, Total	2.7	0.10	3.000	0	89.6	80	120			
Surr: 4-Bromofluorobenze	ene 0.89		1.000		88.7	70	130			
Sample ID: 2209728-0	002ams Samp	Type: MS	6	Tes	tCode: EF	PA Method	8021B: Vola	tiles		
Client ID: S-35	Bato	ch ID: C9	1053	F	RunNo: 9 ′	1053				
Prep Date:	Analysis	Date: 9/	15/2022	S	SeqNo: 32	257340	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.61	0.018	0.7067	0	86.9	68.8	120			
Toluene	0.64	0.035	0.7067	0.009258	89.2	73.6	124			
Ethylbenzene	0.64	0.035	0.7067	0	90.2	72.7	129			
Xylenes, Total	1.9	0.071	2.120	0.02664	88.8	75.7	126			
Surr: 4-Bromofluorobenze	ene 0.62		0.7067		88.3	70	130			
Sample ID: 2209728-0	002amsd Samp	Type: MS	SD	Tes	tCode: EF	PA Method	8021B: Vola	tiles		
Client ID: S-35	Bato	ch ID: C9	1053	F	RunNo: 9 ′	1053				
Prep Date:	Analysis	Date: 9/	15/2022	5	SeqNo: 3	257341	Units: mg/k	٢g		
Analyte	Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.62	0.018	0.7067	0	88.1	68.8	120	1.37	20	
Toluene	0.65	0.035	0.7067	0.009258	90.1	73.6	124	0.923	20	
Ethylbenzene	0.65	0.035	0.7067	0	91.5	72.7	129	1.46	20	
Xylenes, Total	1.9	0.071	2.120	0.02664	89.6	75.7	126	0.954	20	
Surr: 4-Bromofluorobenze	ene 0.63		0.7067		88.7	70	130	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Practical Quanitative Limit PQL
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range

RL Reporting Limit

		TEL: 505-345-	ental Analysis Lai 4901 Haw Albuquerque, N 3975 FAX: 505-3 w.hallenvironmer	kins NE 187109 S 45-4107	ample Log-In	Page 160 o Check List
Client Name: ENSO	LUM	Work Order Nun	nber: 2209728		Rcp	tNo: 1
Received By: Juan	Rojas	9/15/2022 7:35:00	AM	Guarre	13	
n,	Livingston イダ・そそ	9/15/2022 8:03:39	AM	5-	-Crot	
Chain of Custody						
1. Is Chain of Custody of	omplete?		Yes 🗹	No	Not Present	30
2. How was the sample	delivered?		Courier			
Log In						
3. Was an attempt made	e to cool the samples	?	Yes 🔽	No [na [
4. Were all samples rece	ived at a temperature	e of >0° C to 6.0°C	Yes 🗹	No [
5. Sample(s) in proper c	ontainer(s)?		Yes 🗹	No [
6. Sufficient sample volu	me for indicated test(s)?	Yes 🔽	No [
7. Are samples (except \	OA and ONG) prope	rly preserved?	Yes 🔽	No [
8. Was preservative add	ed to bottles?		Yes 🗌	No 🛛]
9. Received at least 1 via	I with headspace <1/	4" for AQ VOA?	Yes	No [1
10. Were any sample con			Yes	No 🗄		
11. Does paperwork matc (Note discrepancies or			Yes 🔽	No [# of preserved bottles checked for pH:	2 or >12 untess noted)
12. Are matrices correctly		Custody?	Yes 🔽	No [
13. Is it clear what analyse	s were requested?		Yes 🔽	No [1. 1. 1. L
 Were all holding times (If no, notify customer 			Yes 🔽	No [Checked by	Jua 115/22
Special Handling (if	applicable)				-	
15. Was client notified of	all discrepancies with	this order?	Yes 🗌	No [NA 🛛	2
Person Notified:	1	Date			-	
By Whom:	Γ	Via:	eMail] Phone 🔲 F	Fax 🔲 In Person	
Regarding:	1					
Client Instruction	ns:					
16. Additional remarks:						
17. <u>Cooler Information</u> Cooler No Temp	°C Condition S	eal Intact Seal No	Seal Date	Signed By		
1 3.9	Good					

Page 1 of 1

Mailing Address: 606 S. Rio Grandepsuk Aztec, NM 87410		e: hes A			HALL ENVIRONMENTAL ANALYSIS LABORATOR www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107											
Phone #:	SER Notes Analysis Request															
email or Fax#: Kommers@ensolur.ca QA/QC Package: □ Standard □ Level 4 (Full Validation)		ager: Summ	rers	TMB's (8021)	DRO / MRO)	PCB's		8270SIMS		104, 004		nt/Absent)				
Accreditation: □ Az Compliance □ NELAC □ Other □ EDD (Type) □ □ □	# of Coolers:		D No	1961	~	Pesticides/8082	50	5	letals	0, 1, 5, 103, 102, 104, 504 8260 (VOA)	(NOA)	Coliform (Present/Absent)				
Date Time Matrix Sample Name	Cooler Temp Container Type and #	Preservative Type	<u>9-0:3.7 (°C)</u> HEAL No. ZZOG 728	BTEX / M	TPH:8015D(GRO	8081 Pest	EDB (Method	PAHs by 8310	RCRA 8 Metals	8260 (VOA)	8270 (Semi-VOA)	Total Colife				
9/14/22 50 5 5-34	14zjar	1001	100	X	X	120			>	$\langle $						
7/14/2214:00 5 5-35			202	X	X)	K			210			
9/14/2214:10 5 5-310			203	X	X)			$\left[-1 \right]$				
9/14/2014:20 5 5-37	6	6	ચ્છપ્	X	×		_		×							_
AM																
022 7:12:34													_			_
Date: Time: Relinquished by:	Received by:	Via:	Date Time 9/14/72 1544	Ren	narks	3:	PI	N	To	ml	-01	19		F F	an	
n 1810 Must Wag	Received by:	Via:	Date Time	6			Pa	29	Ke	y.	r B	217	200	(D.	g

•

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
Enterprise Field Services, LLC	241602
PO Box 4324	Action Number:
Houston, TX 77210	161898
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
nvelez	None	12/9/2022

Page 162 of 162 CONDITIONS

Action 161898

.