Received by 10CD: 12/21/2022 9:48:08 State of New MexicoPage 6Oil Conservation Division

	Page 1 of 18	83
Incident ID	nAPP2207746767	
District RP		
Facility ID		
Application ID		

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u>: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name:Amber Groves	Title: <u>Sr. Environmental Specialist</u>
Signature:	Date: <u>12/20/2022</u>
email:agroves@durangomidstream.com	Telephone: <u>(575)703-7992</u>

OCD Only

Received by: ____

Date:

Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.

Closure Approve	d by:	nnifer Nobui	Date:	01/18/2023
Printed Name:	Jennifer Nobui	0	Title:	Environmental Specialist A

December 2022

Frontier Field Services, LLC Devon Continental to Lusk Groundwater Test Bore Summary UL-M, Sec 5, T19S, R32E 32.683400, -103.795621

The following summary serves as a condensed update on field activities undertaken at the afore referenced groundwater test bore location. The groundwater test bore is located on BLM property.

This groundwater test bore was drilled in association with the Devon Continental 6" Poly Line to Lusk, incident nAPP2207756767 (reference Figure 1). As there are no water wells within a half mile of the release location and per NMOCD guidance, a groundwater test bore was drilled to an approximate depth of fifty-five feet bgs in an effort to determine depth of groundwater as deeper than fifty feet bgs. After drilling of the groundwater test bore, the bore was left open for a period of at least seventy-two hours and then gauged for the presence of water.

If water was present the NMOSE and NMOCD would be notified for guidance on possible conversion to monitor well. If no water was present the well would be plugged according to NMOSE Well Plugging Handbook, Appendix A, Permit Condition 6E.

On December 9, 2022, the groundwater test bore was drilled, via air rotary drill rig, to a depth of approximately fifty-five feet bgs. As the soil is predominantly loamy sand, the bore was cased with three-inch schedule 40 pvc pipe in an effort to prevent bore collapse.

On December 13, 2022, the groundwater test bore was gauged for the presence of water (reference Photograph). No water was present in the bore. On December 15, 2022, the bore was plugged according to the NMOSE approved Plugging Plan. NMOSE approved permit to drill is attached for reference.

Respectfully,

Daniel Dominguez

Environmental Manager Hungry Horse, LLC (575) 408-3134 ddominguez@hungry-horse.com

Received by OCD: 12/21/2022 9:48:08 AM

Mike A. Hamman, P.E. State Engineer

Roswell Office 1900 WEST SECOND STREET ROSWELL, NM 88201

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

Trn Nbr: 737692 File Nbr: L 15415

Nov. 17, 2022

AMBER GROVES FRONTIER FIELD SERVICES 47 CONOCO RD MALJAMAR, NM 88264

Greetings:

Your approved copy of the above numbered permit to drill a well for non-consumptive purposes is enclosed. You must obtain an additional permit if you intend to use the water. It is your responsibility to provide the contracted well driller with a copy of the permit that must be made available during well drilling activities.

Carefully review the attached conditions of approval for all specific permit requirements.

- * If use of this well is temporary in nature and the well will be plugged at the end of the well usage, the OSE must initially approve of the plugging. If plugging approval is not conditioned in this permit, the applicant must submit a Plugging Plan of Operations for approval prior to the well being plugged. The Plugging Record must be properly completed and submitted to the OSE within 30 days of the well plugging.
- * If the final intended purpose and condition requires a well ID tag and meter installation, the applicant must immediately send a completed meter report form to this office.
- * The well record and log must be submitted within 30 days of the completion of the well or if the attempt was a dry hole.
- * This permit expires and will be cancelled if no well is drilled and/or a well log is not received by the date set forth in the conditions of approval.

Appropriate forms can be downloaded from the OSE website www.ose.state.nm.us.

Sincerely, un Clemil

Vanessa Clements (575)622-6521

Enclosure

explore

NEW	/ ME	EXICO OFFICE OF TH WR-07 APPLICATION FOR F A WELL WITH NO WA (check applicable	PERMIT TO DRILL TER RIGHT box):
	Fo	or fees, see State Engineer website: <u>ht</u>	tp://www.ose.state.nm.us/
Purpose:		Pollution Control And/Or Recovery	Ground Source Heat Pump
Exploratory Well*(Pump test)		Construction Site/Public Works Dewatering	Other(Describe):
Monitoring Well		Mine Dewatering	
A separate permit will be required to app	ly wate	to beneficial use regardless if use is co	nsumptive or nonconsumptive.
*New Mexico Environment Department-E	Drinking	Water Bureau (NMED-DWB) will be not	ified if a proposed exploratory well is used for public water supply.
Temporary Request - Requested	ed Sta	t Date: 10/03/2022	Requested End Date: 11/03/2022
Plugging Plan of Operations Subm	itted?	Yes No	Sey for any construction of the second se

1. APPLICANT(S)

Name: Frontier Field Services		Name:		
Contact or Agent:	check here if Agent	Contact or Agent: check here if Agent		
Amber Groves				
Mailing Address: 47 Conoco Rd		Mailing Address:		
City: Maljamar		City:		
State: NM	Zip Code: 88264	State:	Zip Code:	
Phone: 575-703-7992 Phone (Work):	🗌 Home 🔳 Cell	Phone: Phone (Work):	Home Cell	
E-mail (optional): agroves@durangomidstream	.com	E-mail (optional):	2022 SI	

OSE DIT SEP 30 2022 PM2:58

0

File No.: L-15415	Trn. No.: 73710	92 Receip	t No.: 6-49040
Trans Description (optional):	NON		
Sub-Basin:	PCW/LC	OG Due Date:	1-17-2023

Released to Imaging: 1/18/2023 12:15:40 PM

2. WELL(S) Describe the well(s) applicable to this application.

 NM State Plane (NAD83) NM West Zone NM East Zone NM Central Zone 	(Feet)	JTM (NAD83) (Meter]Zone 12N]Zone 13N	s)
Well Number (if known):	X or Easting or Longitude:	Y or Northing or Latitude:	Provide if known: -Public Land Survey System (PLSS) (Quarters or Halves , Section, Township, Range) OR - Hydrographic Survey Map & Tract; OR - Lot, Block & Subdivision; OR - Land Grant Name
Pod 1	-103. 795221	32,683400	Unit Letter "M", Section 5, T19S, R32E
		010000	
NOTE: If more well locations Additional well descriptions	are attached:	ed, complete form \ /es No	VR-08 (Attachment 1 – POD Descriptions) If yes, how many
ther description relating well	to common landmark	s, streets, or other:	
Vell is on land owned by: BL	М		
Vell Information: NOTE: If m If yes, how many	ore than one (1) wel	Il needs to be descr	ibed, provide attachment. Attached? 🗌 Yes 🔳 No
approximate depth of well (fee	t): 55'	Out	tside diameter of well casing (inches): N/A
riller Name: Hungry Horse	, LLC	Dril	ler License Number: 1755
ADDITIONAL STATEMENTS	OR EXPLANATIONS	5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

OSE DIT SEP 30 2022 PM2:58

FOR OSE INTERNAL USE	Application for Permit,	Form WR-07	Version 07/12/22

File No.:	L-15415	Trn No.: 737692
		Page 2 of 3

4. SPECIFIC REQUIREMENTS: The applicant must include the following, as applicable to each well type. Please check the appropriate boxes, to indicate the information has been included and/or attached to this application:

Exploratory: Is proposed well a future public water supply well? Yes NO If Yes, an application must be filed with NMED-DWB, concurrently. Include a description of the requested pump test if applicable. Monitoring The reason and duration of the monitoring is required.	Pollution Control and/or Recovery: Include a plan for pollution control/recovery, that includes the following: A description of the need for the pollution control or recovery operation. The estimated maximum period of time for completion of the operation. The annual diversion amount. The annual diversion amount. The annual diversion amount. The maximum amount of water to be diverted and injected for the duration of the operation. The method and place of discharge. The method of measurement of water produced and discharged. The method of measurement of water injected. The method of determining the resulting annual consumptive use of water and depletion from any related stream system. Proof of any permit required from the New Mexico Environment Department. An access agreement if the applicant is not the owner of the land on which the pollution plume control or	Construction De-Watering: Include a description of the proposed dewatering operation, The estimated duration of the operation, The maximum amount of water to be diverted, A description of the need for the dewatering operation, and, A description of how the diverted water will be disposed of. Ground Source Heat Pump: Include a description of the geothermal heat exchange project, The number of boreholes for the completed project and required depths. The time frame for constructing the geothermal heat exchange project, and, The duration of the project. Preliminary surveys, design data, and additional information shall be included to provide all essential facts	Mine De-Watering: Include a plan for pollution control/recovery, that includes the following: A description of the need for mine dewatering. The estimated maximum period of time for completion of the operation. The source(s) of the water to be diverted. The geohydrologic characteristics of the aquifer(s). The maximum amount of water to be diverted per annum. The maximum amount of water to be diverted for the duration of the operation. The quality of the water. The method of measurement of water diverted. The recharge of water to the aquifer. Description of the effects on surface water rights and underground water rights from the mine dewatering project. A description of the methods employed to estimate effects on surface water rights and underground water rights. Information on existing wells, rivers, springs, and wetlands within the area of hydrologic effect.
--	--	---	---

ACKNOWLEDGEMENT

Amber Groves I, We (name of applicant(s)),

Released to Imaging: 1/18/2023 12:15:40 PM

Print Name(s)

affirm that the foregoing statements are true to the best of (my, our) knowledge and belief		
Im her fime		
V Applicant Signature Applicant Signature		
ACTION OF THE STATE ENGINEER		
This application is:		
approved partially approved denied	20	\$0 ml
provided it is not exercised to the detriment of any others having existing rights, and is not contrary to the conservation Mexico nor detrimental to the public welfare and further subject to the <u>attached</u> conditions of approval. Witness my hand and seal this 17^{M} day of <u>November</u> 20 <u>22</u> , for the State Engineer,	of wate	r in New
Mike Hamman P.E., State Engineer		
By: K. Parcht Kashyap Parch 2020 Signature Print	122 PM2	:58
Title: Water Resources Manager I		

Application for Permit, Form WR-07 Version 07/12/22

37692

Page 3 of 3

Trn No.:

File No.:

FOR OSE INTERNAL USE

15

NEW MEXICO STATE ENGINEER OFFICE PERMIT TO EXPLORE

SPECIFIC CONDITIONS OF APPROVAL

- 17-16 Construction of a water well by anyone without a valid New Mexico Well Driller License is illegal, and the landowner shall bear the cost of plugging the well by a licensed New Mexico well driller. This does not apply to driven wells, the casing of which does not exceed two and three-eighths inches outside diameter.
- 17-1B Depth of the well shall not exceed the thickness of the Ogallala formation.
- 17-4 No water shall be appropriated and beneficially used under this permit.
- 17-6 The well authorized by this permit shall be plugged completely using the following method per Rules and Regulations Governing Well Driller Licensing, Construction, Repair and Plugging of Wells; Subsection C of 19.27.4.30 NMAC unless an alternative plugging method is proposed by the well owner and approved by the State Engineer upon completion of the permitted use. All pumping appurtenance shall be removed from the well prior to plugging. To plug a well, the entire well shall be filled from the bottom upwards to ground surface using a tremie pipe. The bottom of the tremie shall remain submerged in the sealant throughout the entire sealing process; other placement methods may be acceptable and approved by the state engineer. The well shall be plugged with an office of the state engineer approved sealant for use in the plugging of non-artesian wells. The well driller shall cut the casing off at least four (4) feet below ground surface and fill the open hole with at least two vertical feet of approved sealant. The driller must fill or cover any open annulus with sealant. Once the sealant has cured, the well driller or well owner may cover the seal with soil. A Plugging Report for said well shall be filed with the Office of the State Engineer in a District Office within 30 days of completion of the plugging.

Trn Desc: L 15415 POD1

File Number: <u>L 15415</u> Trn Number: <u>737692</u>

page: 1

NEW MEXICO STATE ENGINEER OFFICE PERMIT TO EXPLORE

SPECIFIC CONDITIONS OF APPROVAL (Continued)

- 17-7 The Permittee shall utilize the highest and best technology available to ensure conservation of water to the maximum extent practical.
- 17-B The well shall be drilled by a driller licensed in the State of New Mexico in accordance with 72-12-12 NMSA 1978. A licensed driller shall not be required for the construction of a well driven without the use of a drill rig, provided that the casing shall not exceed two and three-eighths (2 3/8) inches outside diameter.
- 17-C The well driller must file the well record with the State Engineer and the applicant within 30 days after the well is drilled or driven. It is the well owner's responsibility to ensure that the well driller files the well record. The well driller may obtain the well record form from any District Office or the Office of the State Engineer website.
- 17-P The well shall be constructed, maintained, and operated to prevent inter-aquifer exchange of water and to prevent loss of hydraulic head between hydrogeologic zones.
- 17-Q The State Engineer retains jurisdiction over this permit.
- 17-R Pursuant to section 72-8-1 NMSA 1978, the permittee shall allow the State Engineer and OSE representatives entry upon private property for the performance of their respective duties, including access to the ditch or acequia to measure flow and also to the well for meter reading and water level measurement.

Trn Desc: L 15415 POD1

File Number: <u>L 15415</u> Trn Number: <u>737692</u>

page: 2

NEW MEXICO STATE ENGINEER OFFICE PERMIT TO EXPLORE

SPECIFIC CONDITIONS OF APPROVAL (Continued)

LOG The Point of Diversion L 15415 must be completed and the Well Log filed on or before 11/17/2023.

IT IS THE PERMITTEE'S RESPONSIBILITY TO OBTAIN ALL AUTHORIZATIONS AND PERMISSIONS TO DRILL ON PROPERTY OF OTHER OWNERSHIP BEFORE COMMENCING ACITIVITES UNDER THIS PERMIT.

ACTION OF STATE ENGINEER

Notice of Intention Rcvd:		Date Rcvd. Corrected:
Formal Application Rcvd:	11/11/2022	Pub. of Notice Ordered:
Date Returned - Correction:		Affidavit of Pub. Filed:

This application is approved provided it is not exercised to the detriment of any others having existing rights, and is not contrary to the conservation of water in New Mexico nor detrimental to the public welfare of the state; and further subject to the specific conditions listed previously.

Witness my hand and seal this 17 day of Nov A.D., 2022

Mike A. Hamman, P.E. , State Engineer

By: KASHYAP PAREKH

Trn Desc: L 15415 POD1

File Number: L 15415 Trn Number: 737692

page: 3

All fees are non-refundable.

Received by OCD: 12/21/2022 9:48:08 AM

18. Notice of Intent to Appropriate

-	
_	
_	
and the second s	
_	
_	
_	
and the second se	
100 March 100 Ma	
_	
_	
and the second s	
-	
-	
8	
6	
ö	
ö	
ö	
ğ	
ğ	
er	
ē	
er	
ē	
er	
er I	
er F	
er Fi	
er Fi	
er Fil	
er Fil	
er Fil	
er Fili	
er Filir	
er Filin	
er Filing	
er Filing I	
er Filing F	
er Filing F	
ter Filing F	
er Filing F	
ter Filing Fo	
ter Filing Fe	
ter Filing Fe	
ter Filing Fe	
er Filing Fe	
ter Filing Fe	
ter Filing Fee	
ter Filing Fee	
er Filing Fee	
er Filing Fee	
ter Filing Fee	
er Filing Fee	
er Filing Fees	
ter Filing Fees	
er Filing Fees	

16.	15.		14.	13.	12.	11.	10.	9.	.00		7.		6.			5.			4	ω.	2.	
Declaration of Livestock Water	Water Development Plan	Beneficial Use	Proof of Application of Water to	Proof of Completion of Works	Return Flow Credit	Supplemental Well to a Surface Right	Application for Extension of Time	Notice of Intent to Appropriate	Application to Appropriate	Purpose of Use	Application to Change Place and/or	Diversion	Application to Change Point of	Ground Water to Surface Water	and Place and/or Purpose of Use from	Application to Change Point of Diversion	Surface Water to Surface Water	and Place and/or Purpose of Use from	Application to Change Point of Diversion	Amended Declaration	Declaration of Water Right	Change of Ownership of a Water Right
	\$	\$		-	\$	-67-	\$	-	-	-67		-67-		-67-			-67-			\$	-67-	5
	100.00	25.00		25.00	100.00	100.00	50.00	25.00	25.00	100.00		100.00		200.00			200.00			25.00	10.00	5.00

	P
	We
	1
	ę
•	Fe
	ß

License	Application to Amend Well Driller's	Driller's License	Application for Renewal of Well	Application for Well Driller's License
\$		\$		\$
50.00		50.00		50.00

ω

D. Rep 0

0.25¢	\$
p(s)	\$

Ma

Page 12 of 183 OFFICIAL RECEIPT NUMBER:

OFFICE OF THE STATE ENGINEER/INTERSTATE STREAM COMMISSION – SANTA FE OFFICE

PAYOR: Hungry

Horse

LLC

RECEIVED:

Five & 00/100

ADDRESS:

Do

Box

8501

DOLLARS

CHECK NO .: 439 77

CASH: NA

STATE: NM

CITY: Hobbs

FILE NO .: TBD

DATE:

9/26/22

TOTAL:

€

01 00

6 - 49040

RECEIVED BY: lacob Romeno

of the appropriate type of filing. Complete the receipt information. **Original** to payor; **pink** copy to Program Support/ASD; and **yellow** copy all copies and submit to Program Support/ASD as part of your daily deposit.

75.00	\$	Application to Change Purpose of Use 2-12-1 Well
75.00	-67	72-12-1 Well
		Application for Replacement
75.00	5	72-12-1 Well

Impoundment

17. Application for Livestock Water Impoundment

- -5 10.00 10.00 G. Comments: F. Other
 - E. Certification

NE

July 29, 2022

Spill Closure Report:	Devon Continental 6" Poly Line to Lusk
	Section 5, Township 19 South, Range 32 East
	API: N/A
	County: Eddy
	Incident Report: nAPP2207746767
Prepared For:	Durango Midstream, LLC
	300, 10077 Grogans Mill Road
	The Woodlands, Texas 77380

New Mexico Oil Conservation Division – District 2 – Artesia 811 South 1st Street Artesia, New Mexico 88210

Durango Midstream, LLC (Durango) retained Vertex Resource Services Inc. (Vertex) to conduct a Spill Assessment for a release of natural gas condensate due to internal and external corrosion of the Devon Continental 6" Poly Line to Lusk, incident nAPP2207756767 (hereafter referred to as "Devon Continental"). Durango provided spill notification to the New Mexico Oil Conservation District (NMOCD) District 2, via submission of an initial C-141 Release Notification (Attachment 1). This letter provides a description of the spill assessment and includes a request for spill closure. The spill area is located at N 32.683440, W -103.795819.

Background

The site is located approximately 11.75 miles south of Maljamar, New Mexico (Google Inc., 2022). The legal location for the site is Section 5, Township 19 South and Range 32 East in Eddy County, New Mexico. The spill area is located on Bureau of Land Management (BLM) property. Satellite images of the site are included in Attachment 2.

The Geological Map of New Mexico (New Mexico Bureau of Geology and Mineral Resources, 2022) indicates the site's surface geology is comprised primarily of PU – Pyote and Maljamar fine sands and is characterized as sandy eolian deposits from sedimentary rock. The Natural Resources Conservation Service *Web Soil Survey* characterizes the predominant soil texture on the site as Loamy Sand. It tends to be well to somewhat excessively drained with high runoff and very low available moisture levels in the soil profile (United States Department of Agriculture, Natural Resources Conservation Service, 2022).

The surrounding landscape is associated with ridges and fans at elevations of 2,800 to 5,000 feet above sea level. The climate is semi-arid, with an annual precipitation ranging between 8 to 13 inches. Historically, the plant community has a grassland aspect, dominated by black grama, dropseeds, and bluestems. Shrubs such as sand sage, shinnery oak, and mesquite are dispersed throughout the grassland. Forbs are present and populations fluctuate with precipitation variability. Shinnery oak, sand sage, and mesquite are the greatest threat to dominate this site in the long term after disturbance.

There is no surface water located on-site. The nearest significant watercourse, as defined in Subsection P of 19.15.17.7

New Mexico Administrative Code (NMAC), is the Pecos River located approximately 29.31 miles west of the site (United States Fish and Wildlife Service, 2022). There are no continuously flowing watercourses or significant watercourses, lakebeds, sinkholes, playa lakes, or other critical water or community features as outlined in Paragraph (4) of Subsection C of 19.15.29.12 NMAC (New Mexico Oil Conservation Division, 2018).

Incident Description

The initial release occurred on January 3, 2022, due to internal and external corrosion of the line. The initial release was found to be less than 5 bbls and nonreportable. Pipeline replacement began prior to remediation efforts. Upon delineation and excavation, historical impact was encountered and determined to be of a reportable volume. The spill was reported to NMOCD on March 18, 2022. Approximately 1.81 Mcf of natural gas and an unknown amount of condensate was released; no fluids were recovered. The NMOCD C-141 Report: nAPP2207746767 is included in Attachment 1. The Daily Field Report (DFRs) and site photographs are included in Attachment 3.

Closure Criteria Determination

The depth to groundwater was determined using information from the Office of the State Engineers Water Rights Database. The closest recorded depth to groundwater was determined to be 430 feet below ground surface (bgs) (New Mexico Office of the State Engineer, New Mexico Water Rights Reporting System, 2022a). Documentation used in Closure Criteria Determination research is included in Attachment 4.

.

Durango Midstream, LLC Devon Continental 6" Poly Line to Lusk, nAPP2207746767

2022 Spill Assessment and Closure July 2022

Closure Critera Worksheet			
Site Name: Devon Continental to Lusk Fed Com 1			
Spill Coordinates: 32.683440, -103.795819			
		Value	Unit
1	Depth to Groundwater	430	Feet
2	Within 300 feet of any lakebed, sink	154,765	Feet
	hole, or playa lake (measured from		
	the ordinary high-water mark)		
3	Within 200 feet of any lakebed.	32.476	Feet
	sinkhole, or playa lake (measured		
	from the ordinary high-water mark)?		
4	Within 300 feet of an occupied	33.826	Feet
	permanent residence, school,		
	hospital, institution, or church?		
5	Within 500 horizontal feet of a spring	8.392	Feet
	or a private domestic fresh water well	-,	
	used by less than five households for		
	domestic or stock watering		
	purposes?		
	Within 1000 feet of any frest water	8,392	Feet
	well or spring		
6	Within incorporated municipal	No	(Y/N)
	boundaries or within a defined		
	municipal fresh water well field?		
7	Witin 300 feet of a wetland	13,704	Feet
8	within the area overlying a	Νο	(Y/N)
	subsurface mine		
9	Witin an unstable Karst area	Low	
10	Withing a 100 year floodplain	500	Year
11	Soil Type	Pyote &	
		Maljamar Fine	
		sands	
12	Ecological Classification	Loamy Sant	
13	Geology	Qep	
	NMAC 19.15.29.12 E Table 1 Closure	>100'	
	Criteria		

Durango Midstream	, LLC
Devon Continental 6"	Poly Line to Lusk, nAPP2207746767

Based on data included in the closure criteria determination worksheet, the release at Devon Continental would not be subject to the requirements of Paragraph (4) of Subsection C of 19.15.29.12 NMAC and the closure criteria for the site would be determined to be associated with the following constituent concentration limits based on depth to groundwater. The closure criteria determined for the site are associated with the following constituent concentration limits as presented in Table 1.

Table 1. Closure Criteria for Soils to Rem	ediation & Reclamation St	andards		
en bener sol Malazerta († 1920) der en blit ander entre og og sol at sol far skale.	Constituent	Limit		
0.45-41(40.45-00.40)	Chloride	600 mg/kg		
0-4 feet bgs (19.15.29.13)	TPH (GRO+DRO+MRO)	100 mg/kg		
	Chloride	20,000 mg/kg		
	TPH (GRO+DRO+MRO)	2,500 mg/kg		
DTGW > 100 feet (19.15.29.12)	GRO+DRO	1,000 mg/kg		
	BTEX	50 mg/kg		
	Benzene	10 mg/kg		

¹Total Dissolved Solids (TDS)

 2 Total petroleum hydrocarbons (TPH) = gasoline range organics (GRO) + diesel range organics (DRO) + motor oil range organics (MRO) 3 Benzene, toluene, ethylbenzene, and xylenes (BTEX)

Remedial Actions Taken

On March 17, 2022, Vertex conducted an initial site inspection and began delineation of the release area. Upon delineation, it was determined that the impact of the release was far greater than originally reported and a C141 was submitted on March 18, 2022 (Attachment 3). Field screening was completed on a total of 12 sample points and consisted of analysis using a Photo Ionization Detector (volatile hydrocarbons), Dexsil Petroflag using EPA SW-846 Method 9074 (extractable hydrocarbons) and Silver Nitrate Titration (chlorides). Field screening results were used to identify areas requiring further remediation from those areas showing concentrations above determined closure criteria levels. Field screening results are presented in Attachment 6, as well as in the DFRs in Attachment 4.

A new remediation plan was drawn up and efforts resumed between June 9, 2022 and June 29, 2022. Vertex collected a total of 26 five-point composite samples from the base and side walls of the excavation in 200 square foot increments at depths ranging between ground surface and 14 feet bgs. Characterization sample points are denoted in Figure 1 & Table 1 and confirmation sampling denoted in Figure 2 & Table 2 in the attachments.

48-hour Notification of Confirmation Sampling (Attachment 5) was sent to NMOCD on June 14, 2022. Confirmation sampling was completed on June 16, 2022. The samples were submitted to Envirotech under chain-of-custody protocols and analyzed for BTEX (EPA Method 8021B), Total Petroleum Hydrocarbons (GRO, DRO, MRO – EPA Method 8015D) and Total Chlorides (EPA Method 300.0). Laboratory data results are presented in Attachment 6 and the laboratory data report is included in Attachment 7.

Durango Midstream, LLC Devon Continental 6" Poly Line to Lusk, nAPP2207746767

Remediation was completed once laboratory data results confirmed all confirmatory samples were below closure criteria for the site and any further remediation efforts were deemed unnecessary. The site was backfilled with locally sourced material on June 29, 2022.

Closure Request

Durango requests that incident nAPP2207746767 be closed as all closure requirements set forth in Subsection E of 19.15.29.12 NMAC have been met. Durango certifies that all information in this report and the attachments is correct, and that they have complied with all applicable closure requirements and conditions specified in Division rules and directives to meet NMOCD requirements to obtain closure on the open release at Devon Continental 6" Poly Line to Lusk.

Should you have any questions or concerns, please do not hesitate to contact Amber Groves at (575)703-7992

Signature

<u>8/30/2022</u> Date

Attachments

- Attachment 1. NMOCD C-141 Release Notification
- Attachment 2. Satellite Image of Site with Sample Locations
- Attachment 3. Daily Field Report(s) with Photographs
- Attachment 4. Closure Criteria for Soils Impacted by a Release Research Determination Documentation
- Attachment 5. 48-hr Notification of Confirmation Sampling
- Attachment 6. Laboratory Data Tables
- Attachment 7. Laboratory Data Reports and Chain of Custody Forms

References

- Google Inc. (2022). Google Earth Pro (Version 7.3.4) [Software]. Retrieved from http://www.google.com/earth on March 1, 2022.
- New Mexico Bureau of Geology and Mineral Resources. (2022). *Interactive Geologic Map.* Retrieved from http://geoinfo.nmt.edu.
- New Mexico Energy, Minerals and Natural Resources Department. (2022). *Coal Mine Resources in New Mexico*. Retrieved from http://www.emnrd.state.nm.us/MMD/gismapminedata.html
- New Mexico Office of the State Engineer, New Mexico Water Rights Reporting System. (2022b). *Point of Diversion Location Report*. Retrieved from http://nmwrrs.ose.state.nm.us/nmwrrs/wellSurfaceDiversion.html.
- New Mexico Office of the State Engineer, New Mexico Water Rights Reporting System. (2022c). *Well Log/Meter Information Report*. Retrieved from http://nmwrrs.ose.state.nm.us/nmwrrs/meterReport.html
- New Mexico Oil Conservation Division. (2018). New Mexico Administrative Code Natural Resources and Wildlife Oil and Gas Releases. Santa Fe, New Mexico.
- United States Department of Agriculture, Natural Resources Conservation Service. (2022). *Web Soil Survey*. Retrieved from https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx.
- United States Department of Homeland Security, FEMA Flood Map Service Center. (2020). *Flood Map Number* 35015C1875D. Retrieved from https://msc.fema.gov/portal/search?AddressQuery=malaga%20new%20 mexico#searchresultsanchor.
- United States Department of the Interior, Bureau of Land Management. (2018). CFO Karst Public. https://www.nm.blm.gov/shapeFiles/cfo/carlsbad_spatial_data.html.
- United States Fish and Wildlife Service. (2022). *National Wetlands Inventory*. Retrieved from https://www.fws.gov/wetlands/data/Mapper.html.

ATTACHMENT 1

Released to Imaging: 1/18/2023 12:15:40 PM

ATTACHMENT 2

Client Name: Durango Midstream Site Name: Devon Continental 6" Poly Line to Lusk NM OCD Tracking #: nAPP2207746767 Project #: 22E-01024 Lab Report(s): E206069

Table 01. Characterization Sample Field Screen and Laboratory Results - Depth to Groundwater >100 feet bgs Sample Description Field Screening Petroleum Hydrocarbons Inorganic Sample Description Field Screening Volatile Extractable Inorganic Sample Description Sample Description Field Screening Volatile Extractable Inorganic Sample ID Depth (ft) Sample Date Sample Date Inorganic Sample Date Inorganic Sample ID Depth (ft) Sample Date Inorganic Inorganic Inorganic Inorganic Sample ID Depth (ft) Sample Date Inorganic Inorganic Inorganic Inorganic Sample ID Depth (ft) Sample Date Inorganic Inorganic Inorganic Inorganic Sample ID Depth (ft) Sample Date Inorganic Inorganic Inorganic Inorganic Inorganic Sample ID Depth (ft) Sample Date Inorganic Inorganic Inorganic Inorganic Inorganic Inorganic Inorganic Inorganic Inorganic Inorganic <thi< th=""></thi<>													
	Sample Descrip	otion	Fi	eld Screeni	ng	Petroleum Hydrocarbons							
						Vol	atile			Extractable	9		Inorganic
Sample ID	Depth (ft)	Sample Date	Volatile Organic Compounds (PID)	Extractable Organic Compounds (PetroFlag)	Chloride Concentration	Benzene	BTEX (Total)	Gasoline Range Organics (GRO)	Diesel Range Organics (DRO)	Motor Oil Range Organics (MRO)	(GRO + DRO)	Total Petroleum Hydrocarbons (TPH)	Chloride Concentration
			(ppm)	(ppm)	(ppm)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
BH22-01	10	June 9, 2022	0.2	-	4,949	-	-	-	-	-	-	-	-
	14	June 9, 2022	0.0	-	3,133	ND	ND	ND	ND	ND	ND	ND	2110
01122 01	18	June 9, 2022	0.0	-	108	ND	ND	ND	ND	ND	ND	ND	106
	20	hold at lab	0.0	-	115	-	-	-	-	-	-	-	-
	0	June 9, 2022	0.1	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH22-02	2	June 9, 2022	0.0	-	ND	-							
	6	June 9, 2022	0.0	-	ND	ND	ND	ND	56.7	66.4	56.7	123.1	93.4
	0	June 9, 2022	0.9	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH22-03	2	June 9, 2022	0.0	-	ND	-	-	-	-	-	-	-	-
Sample ID BH22-01 BH22-02 BH22-03 BH22-04 BH22-05	6	June 9, 2022	0.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
	0	June 9, 2022	0.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH22-04	2	June 9, 2022	0.1	-	ND	-	-	-	-	-	-	-	-
	6	June 9, 2022	0.1	-	ND	ND	ND	ND	ND	ND	ND	ND	94.5
	0	June 9, 2022	4.6	-	ND	ND	ND	ND	157	137	157	294	ND
BH22-05	2	June 9, 2022	0.0	-	ND	-	-	-	-	-	-	-	-
	6	June 9, 2022	0.3	-	ND	ND	ND	ND	ND	ND	ND	ND	ND

"ND" Not Detected at the Reporting Limit "-" indicates not analyzed/assessed

Bold and grey shaded indicates exceedance outside of NM OCD Closure Criteria (on-pad)

Bold and green shaded indicates exceedance outside of NM OCD Reclamation Criteria (off-pad)

Client Name: Durango Midstream LLC Site Name: Devon Continental 6" Poly Line to Lusk

NM OCD Tracking #: nAPP2207746767

Project #: 22E-01024

Lab Report: E206148, E206069

T	Table 2. Initial Characterization/Confirmatory Sample Field Screen and Laboratory Results - Depth to Groundwater 51-100 feet be					g							
Sample Description			Field Screening		Petroleum Hydrocarbons								
			sp			Vol	atile			Extractable	tractable		
Sample ID	Depth (ft)	Sample Date	もの の し の の の の の の の の の の の の の	Extractable Organic 3 Compounds (PetroFlag)	ය ම් යි Chloride Concentration	euseue Beuzeue (mg/kg)	ක්) BTEX (Total) ශී	ଇଥି Gasoline Range Organics ନ୍ନ (GRO)	୍ଲି ଆ Diesel Range Organics ଜୁ (DRO)	ଞ୍ଚି Motor Oil Range Organics ଖ୍ନ (MRO)	(GRO + DRO) (mg/kg)	ଞ୍ଚି Total Petroleum କ୍ରି Hydrocarbons (TPH)	(mg/gg) Chloride Concentration
WES22-01	5-14'	06.16.22	0	193	458	ND	ND	ND	27.2	ND	27.2	27.2	270
WES22-02	5-14'	06.16.22	0	130	5,296	ND	ND	ND	ND	ND	ND	ND	2410
WES22-03	0-5'	06.16.22	0	8	0	ND	ND	ND	ND	ND	ND	ND	ND
WES22-04	0-5'	06.16.22	0	0	0	ND	ND	ND	61.2	ND	61.2	61.2	ND
WES22-05	0-5'	06.16.22	0	16	0	ND	ND	ND	ND	ND	ND	ND	ND
WES22-06	0-5'	06.16.22	0	14	0	ND	ND	ND	36.1	ND	36.1	36.1	31.9
WES22-07	0-5'	06.16.22	0	0	0	ND	ND	ND	ND	ND	ND	ND	ND
WES22-08	0-5'	06.16.22	0	28	0	ND	ND	ND	ND	ND	ND	ND	ND
WES22-09	0-5'	06.16.22	0	16	0	ND	ND	ND	ND	ND	ND	ND	ND
WES22-10	0-5'	06.16.22	0	0	0	ND	ND	ND	84.4	ND	84.4	84.4	61.6
WES22-11	0-5'	06.16.22	0	0	0	ND	ND	ND	ND	ND	ND	ND	ND
WES22-12	0-5'	06.16.22	0	31	0	ND	ND	ND	ND	ND	ND	ND	ND
BES22-01	14'	06.16.22	0	100	3,339	ND	ND	ND	ND	ND	ND	ND	1620
BES22-02	5'	06.16.22	0	79	0	ND	ND	ND	ND	ND	ND	ND	122
BES22-03	5'	06.16.22	0	560	0	ND	ND	ND	145	137	145	282	ND
BES22-04	5'	06.16.22	0	73	0	ND	ND	ND	ND	ND	ND	ND	ND
BES22-05	5'	06.16.22	0	174	0	ND	ND	ND	78.5	55.5	78.5	134	ND
BES22-06	5'	06.16.22	0	154	0	ND	ND	ND	82.4	ND	82.4	82.4	40.7
BES22-07	5'	06.16.22	0	318	0	ND	ND	ND	151	63.6	151	214.6	52.5
BES22-08	5'	06.16.22	0	529	0	ND	ND	ND	207	150	207	357	22.8
BES22-09	5'	06.16.22	0	31	0	ND	ND	ND	ND	ND	ND	ND	ND
BES22-10	5'	06.16.22	0	100	0	ND	ND	ND	33.4	ND	ND	33.4	ND
BES22-11	5'	06.16.22	0	1,230	0	ND	ND	ND	647	569	647	1216	ND
BES22-12	5'	06.16.22	0	982	0	ND	ND	ND	373	332	373	705	23.8
BH22-06	0'	06.16.22	0	33	0	ND	ND	ND	ND	ND	ND	ND	ND
BH22-06	2'	06.16.22	0	34	0	ND	ND	ND	ND	ND	ND	ND	ND

"ND" Not Detected at the Reporting Limit

"-" indicates not analyzed/assessed

ATTACHMENT 3

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	nAPP2207746767
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party Frontier Field Services, LLC	OGRID 221115			
Contact Name Amber Groves	Contact Telephone 575-703-7992			
Contact email agroves@durangomidstream.com	Incident # (assigned by OCD)			
Contact mailing address 47 Conoco Rd, Maljamar NM 88264				

Location of Release Source

Longitude <u>-103.795819</u> (NAD 83 in decimal degrees to 5 decimal places)

Site Name Devon Continental 6" Poly Line to Lusk	Site Type Pipeline
Date Release Discovered 1/3/2022	API# (if applicable)

Unit Letter	Section	Township	Range	County
М	5	19S	32E	Eddy

Surface Owner: State Federal Tribal Private (Name: _

32.683440

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls) Unknown	Volume Recovered (bbls) 0
🛛 Natural Gas	Volume Released (Mcf) 1.81	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

Internal and external corrosion. Initial less than 5 bbl release occurred on 1/3/2022. Pipeline replacement commenced prior to remediation efforts. Upon initial site delineation and excavation historical impact was encountered and determined to be of a reportable volume. NOR was initiated as soon as deemed reportable.

Received by C	CD: 12/21/2	022[9]:48:08PAM	
- orm (`_ 1 <u>%</u> 1		Niate	of New Mexico

Page 2

Was this a major release as defined by	If YES, for what reason(s) does the responsible party consider this a major release?
19.15.29.7(A) NMAC?	
🛛 Yes 🗌 No	
If YES, was immediate no Upon determination of re	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? portable historical volume determined on 3/18/2022, immediate notification sent to Robert Hamlet, Chad
Hensley, Jennifer Nobui,	Nelson Velez, Mike Bratcher and Bradford Billings by Amber Groves.

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:Amber/Groves	Title: <u>Remediation Specialist</u>
Signature:	Date: <u>3/18/2022</u>
email: <u>agroves@durangomidstream.com</u>	Telephone: <u>(575)703-7992</u>
OCD Only Jocelyn Harimon Received by:	03/18/2022 Date:

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
FRONTIER FIELD SERVICES, LLC	221115
10077 Grogans Mill Rd.	Action Number:
The Woodlands, TX 77380	91338
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jharimon	When submitting future reports regarding this release, please submit the calculations used or specific justification for the volumes reported on the initial C- 141	3/18/2022

CONDITIONS

Action 91338

Page 29eof 183

ATTACHMENT 4

Client:	Frontier Field Services	Inspection Date:	3/17/2022									
Site Location Name:	Devon Continental Lusk	Report Run Date:	3/17/2022 9:45 PM									
Client Contact Name:	Amber Groves	API #:										
Client Contact Phone #:												
Unique Project ID		Project Owner:										
Project Reference #		Project Manager:										
Summary of Times												
Arrived at Site	3/17/2022 7:20 AM											
Departed Site	3/17/2022 3:00 PM											

Field Notes

8:36 Flow line release where excavation is being completed to remove contamination. Field screening of walls and base to be completed

- **9:47** Samples collected from bottom of excavation area are high with voc readings. Having operator take walls further out to prevent collapse and deeper to find bottom of contamination
- **10:55** Wall samples on south wall are clean. North wall to be re-sampled after further excavation along with going deeper on the base
- **11:35** Bottom hole sample cleaning up for tph and voc but going up in chlorides. Going down an additional two feet to sample again. Bottom sample to be collected at 10 foot
- **13:36** 10 ft sample has higher elevated level of chlorides. Directed by client to go to 13 ft and test again. Base and wall samples to be mapped out after walls are fully excavated. Due to the potential of the walls collapsing the operator is stair casing them and the use of the bucket on the backhoe to collect the samples.
- **15:18** Excavation put on hold until release area can be properly assessed for next steps. Research needed to determine closure criteria. Potential that a dtgw borehole will need to be drilled if no active well is within the 0.5 mile radius

Next Steps & Recommendations

1 Continue delineation

2 Determine plan to proceed with excavation

Run on 3/17/2022 9:45 PM UTC

Page 32 of 183

.

Run on 3/17/2022 9:45 PM UTC

Site Photos Viewing Direction: Northwest Viewing Direction: West Release area Excavation area Viewing Direction: North Viewing Direction: East Excavation area Excavation area

Area to be excavated

Daily Site Visit Signature

Inspector: Monica Peppin Signature: Signature

•

Daily Soil Sampling

Client: Client: Frontier Field Services

Location: Site: Devon Continental Lusk

Date: (SD: 3/17/22)

Sampling											
			Field Screening				Data Collection				
Hydrocarbon			Chloride								
Sample ID	Depth (ft)	VOC (PID)	TPH (ppm)	EC Reading (mS/cm)	Temp (°C)	EC Chloride (ppm)	Chloride Titration (ppm)	Lab Analysis	Photo Taken	Marked on Sketch	Refusal Depth (ft)
BH22-01	4.0	2		0.09	21.2	23				\checkmark	
BH22-02	4.0	14		0.07	21.3	0				\checkmark	
BH22-03	4.0	291		0.98	20.4	1342				\checkmark	
BH22-04	6.0	149								\checkmark	
BH22-04	8.0	5		2.79	22.6	3859				\checkmark	
BH22-04	10.0	1		2.98	22.9	4120				\checkmark	
BH22-04	13.0	202		1.73	20.1	2437				\checkmark	

Client:	Durango Midstream LLC	Inspection Date:	6/9/2022
Site Location Name:	Devon Continental Lusk	Report Run Date:	6/9/2022 11:41 PM
Client Contact Name:	Amber Groves	API #:	
Client Contact Phone #:	346-351-2786		
Unique Project ID		Project Owner:	
Project Reference #		Project Manager:	
		Summary of	Times
Arrived at Site	6/9/2022 7:32 AM		
Departed Site	6/9/2022 4:37 PM		

Field Notes

- 7:50 Completed safety paperwork on arrival and organized safety meeting with Standard Safety once they arrived. Previous excavation partially filled in with sand.
- **16:16** Investigated existing excavation and swept potential borehole areas with magnetic locator. Collected surface samples from potential test pit locations.
- **16:20** Cleared BH22-01 location with Durango locator and excavated 4 feet west of release point to complete vertical delineation. Field screening results for chloride at 18 feet were below NMOCD strictest criteria.
- 16:21 Met with client and determined that horizontal delineation would start just off of the current excavation boundaries.
- **16:25** Excavated BH22-02, BH22-03, BH22-04, and BH22-05 east, north, west, and south of existing excavation, respectively. Boreholes were sampled as depths of 0, 2, and 6 feet. Field screening results for chloride and VOCs were below NMOCD strictest criteria.
- **16:26** Packaged samples for submission to laboratory.
- **16:28** Arranged with Standard Safety and Supply to plan for excavation the following day. The existing excavation will be cleaned out and the surfaces samples to determine scope of additional excavation.
- **16:36** Durango locator arrived in afternoon to inform us about the location of the pipes coming off of the manifold west of the excavation.

Next Steps & Recommendations

Run on 6/9/2022 11:41 PM UTC

1

Page 38 of 183

.

Site Photos Viewing Direction: East Viewing Direction: South North of release area facing south. BH22-03 West of excavation facing east. Beginning of north of existing excavation. day. Viewing Direction: East Viewing Direction: North Southeast of release area facing northwest. South release area facing north. BH22-05 south BH22-04 west of existing excavation. of existing excavation.

Run on 6/9/2022 11:41 PM UTC

Page 41 of 183

Beginning of day.

Run on 6/9/2022 11:41 PM UTC

Beginning of day.

Page 42 of 183

Run on 6/9/2022 11:41 PM UTC

feet of release point.

Powered by www.krinkleldar.com

excavation.

Daily Site Visit Signature

Inspector: Lakin Pullman Signature:

•

Daily Soil Sampling

Client: Client: Durango Midstream LLC

Location: Site: Devon Continental Lusk

Date: (SD: 6/9/22)

	Sampling											
				Field	Screeni	ng			Data Co	ollection		
		Hydro	carbon		C	Chloride						
Sample ID	Depth (ft)	VOC (PID)	TPH (ppm)	EC Reading (mS/cm)	Temp (°C)	EC Chloride (ppm)	Chloride Titration (ppm)	Lab Analysis	Photo Taken	Marked on Sketch	Refusal Depth (ft)	
BH22-01	10.0	0		3.80	31.1	4949				\checkmark		
BH22-01	14.0	0		2.53	30.7	3133		BTEX (EPA SW-846 Method 8021B/8260B), Chloride (SW-4500 Cl), TPH (EPA SW-846 Method 8015M)	\checkmark	\checkmark		
BH22-01	18.0	0		0.50	32.9	108		BTEX (EPA SW-846 Method 8021B/8260B), Chloride (SW-4500 Cl), TPH (EPA SW-846 Method 8015M)	\checkmark	\bigvee		
BH22-02	0.0	0		0.08	38.6	0		BTEX (EPA SW-846 Method 8021B/8260B), Chloride (SW-4500 Cl), TPH (EPA SW-846 Method 8015M)	\checkmark	\checkmark		
BH22-02	2.0	0		0.40	38.5	0						
BH22-02	6.0	0		0.36	36.8	0		BTEX (EPA SW-846 Method 8021B/8260B), Chloride (SW-4500 Cl), TPH (EPA SW-846 Method 8015M)	\checkmark	\checkmark		
BH22-03	0.0	1		0.07	32.6	0		BTEX (EPA SW-846 Method 8021B/8260B), Chloride (SW-4500 Cl), TPH (EPA SW-846 Method 8015M)	\checkmark	\checkmark		
BH22-03	2.0	0		0.03	34.5	0						
BH22-03	6.0	0		0.07	35.6	0		BTEX (EPA SW-846 Method 8021B/8260B), Chloride (SW-4500 Cl), TPH (EPA SW-846 Method 8015M)	\checkmark	\checkmark		
BH22-04	0.0	0		0.05	34.5	0		BTEX (EPA SW-846 Method 8021B/8260B), Chloride (SW-4500 Cl), TPH (EPA SW-846 Method 8015M)	\checkmark	\checkmark		
BH22-04	2.0	0		0.03	39.4	0						
BH22-04	6.0	0		0.02	38.8	0		BTEX (EPA SW-846 Method 8021B/8260B), Chloride (SW-4500 Cl), TPH (EPA SW-846 Method 8015M)	\checkmark	\checkmark		

Daily Soil Sampling

BH22-05	0.0	5	0.23	32.1	0	BTEX (EPA SW-846 Method 8021B/8260B), Chloride (SW-4500 Cl), TPH (EPA SW-846 Method 8015M)	\checkmark	\checkmark	
BH22-05	2.0	0	0.03	39.4	0			\checkmark	
BH22-05	6.0	0	0.42	35.4	0	BTEX (EPA SW-846 Method 8021B/8260B), Chloride (SW-4500 Cl), TPH (EPA SW-846 Method 8015M)	\checkmark	\checkmark	
SS22-02	0.0	1	0.04	32.1	0			\checkmark	
SS22-03	0.0	0	0.03	32	0			\checkmark	
SS22-05	0.0	0	0.04	32.5	0			\checkmark	

Client:	Durango Midstream LLC	Inspection Date:	6/10/2022
Site Location Name:	Devon Continental Lusk	Report Run Date:	6/11/2022 12:24 AM
Client Contact Name:	Amber Groves	API #:	
Client Contact Phone #:	346-351-2786		
Unique Project ID		Project Owner:	
Project Reference #		Project Manager:	
		Summary of	Times
Arrived at Site	6/10/2022 7:06 AM		
Departed Site	6/10/2022 5:22 PM		

Field Notes

7:11 Completed safety paperwork and organized safety meeting on arrival.

7:50 Plan of day to clean up existing excavation and place all contaminated material on liner. Liner placed south of excavation on area clear of lines. Excavation area swept with magnetic locator prior to work.

- 9:25 North side of excavation was extended north at 5 feet bgs around internal excavation to stabilize north wall.
- **16:43** Excavated south, west, and east sidewalls 1-2 feet and removed material from base of excavation to provide fresh sampling surfaces. The 5-feet base excavation sample field screening results were below DTGW 50-100 feet bgs criteria for TPH and chloride.
- **16:47** Field screening results for 0-5 foot wall samples exceeded NMOCD strictest criteria for TPH on the northwest edge and southeast edges. Further excavation of the southeast edges has not returned clean samples yet.
- **16:47** Further excavation of the surface 5 feet is required in the northwest and southeast corners.
- **16:49** Cleaned and squared the internal excavation to 14 feet bgs. Excavation base and wall samplesl results were below DTGW 50-100 feet bgs criteria.

Next Steps & Recommendations

1 Continue horizontal excavation of northwest and southeast corners. Clean up loose material in base of excavation on west and east ends.

Site Photos Viewing Direction: Northwest Viewing Direction: Southwest Southeast of excavation near road facing Northeast corner of excavation, facing northwest. Beginning of day. southwest. End of day. Viewing Direction: West Viewing Direction: East t, End of day. East edge of excavation, facing west. Cleaned Northwest corner of excavation, facing east. interior excavation to 14 feet bgs. End of day.

Run on 6/11/2022 12:24 AM UTC

Run on 6/11/2022 12:24 AM UTC

Page 50 of 183

Northeast corner of excavation, facing south. End of day.

Daily Site Visit Signature

Inspector: Lakin Pullman Signature:

•

.

Daily Soil Sampling

Client: Client: Durango Midstream LLC

Location: Site: Devon Continental Lusk

Date: (SD: 6/10/22)

	Sampling												
				Field	Screeni	ng			Data Co	ollection			
		Hydro	carbon		C	Chloride							
Sample ID	Depth (ft)	VOC (PID)	TPH (ppm)	EC Reading (mS/cm)	Temp (°C)	EC Chloride (ppm)	Chloride Titration (ppm)	Lab Analysis	Photo Taken	Marked on Sketch	Refusal Depth (ft)		
BES22-01	14.0	0	100	2.91	38.6	3339				\checkmark			
BES22-02	5.0	0	108	0.33	39.9	0				\checkmark			
BES22-03	5.0	1	351	0.18	45.5	0							
BES22-04	5.0	1	382	0.38	44.4	0							
BES22-05	5.0	1	64	0.06	44.3	0							
BES22-06	5.0	32	1097	0.30	41.8	0							
BES22-07	5.0	2000	48	0.09	41.6	0							
BES22-08	5.0	1	39	0.15	44.5	0			\checkmark				
WES22-01	14.0	0	193	0.98	40.8	458			\checkmark	\checkmark			
WES22-02	14.0	0	130	4.17	35.4	5296			\checkmark	\checkmark			
WES22-03	5.0	0	19	0.03	41.3	0			\checkmark	\checkmark			
WES22-04	5.0	0	19	0.03	41.3	0			\checkmark	\checkmark			
WES22-05	5.0	0	410	0.03	45.7	0			\checkmark	\checkmark			
WES22-06	5.0	0	27	0.04	44.7	0			\checkmark	\checkmark			
WES22-07	5.0	0	26	0.04	44.6	0			\checkmark	\checkmark			
WES22-08	5.0	1	15	0.04	43.3	0			\checkmark	\checkmark			
WES22-09	5.0	1	30	0.05	42.3	0			\checkmark	\checkmark			
WES22-10	5.0	703	1142	1.21	42.7	708			\checkmark	\checkmark			
WES22-11	5.0	1	170	0.07	44.2	0			\checkmark	\checkmark			
WES22-12	5.0	3	799	0.06	43.6	0			\checkmark	\checkmark			
WES22-13	5.0	1	54	0.08	42.9	0							

Client:	Durango Midstream LLC	Inspection Date:	6/14/2022
Site Location Name:	Devon Continental Lusk	Report Run Date:	6/14/2022 11:12 PM
Client Contact Name:	Amber Groves	API #:	
Client Contact Phone #:	346-351-2786		
Unique Project ID		Project Owner:	
Project Reference #		Project Manager:	
		Summary of	Гimes
Arrived at Site	6/14/2022 9:30 AM		
Departed Site	6/14/2022 4:01 PM		

Field Notes

15:15 Continue horizontal excavation of northwest and south east corners of site

15:15 Completed safety paperwork and organized safety meeting

15:21 Excavated southeast and northwest sidewalls 2 feet and level with existing 5' deep base. This soil was stockpiled from these areas.

15:22 Collected Wall samples and base samples from newly excavated areas.

15:24 Field screening results for 0-5 feet Wall samples were within acceptable levels in accordance to NMOCD for both TPH and Chlorides.

15:24 Field screening results for 5 feet Base samples were within acceptable levels in accordance to NMOCD for both TPH and Chlorides.

Next Steps & Recommendations

1 Remove all contaminated stockpiled soil and remove all fluff sand/soil from excavation base in preparation for Confirmation Sampling.

Sit	e Photos
Viewing Direction: West	Viewing Direction: South
Security Place Tile Visite Theorem and the security of the sec	Property Brite State
Site arrival	Site Arrival
Viewing Direction: Southwest	Viewing Direction: Southwest
Site arrival	Excavation

•

Daily Site Visit Signature

Inspector: Jarod Florez -U flory Signature:

•

Daily Soil Sampling

Client: Client: Durango Midstream LLC

Location: Site: Devon Continental Lusk

Date: (SD: 6/15/22)

						Sampling					
				Field	Screeni	ng			Data Co	ollection	
		Hydro	carbon		C	hloride					
Sample ID	Depth (ft)	VOC (PID)	TPH (ppm)	EC Reading (mS/cm)	Temp (°C)	EC Chloride (ppm)	Chloride Titration (ppm)	Lab Analysis	Photo Taken	Marked on Sketch	Refusal Depth (ft)
BES22-08	5.0	0	536	0.04	29.9	0		Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)		\checkmark	
BES22-09	5.0	0	153	0.05	29.5	0		Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)		\checkmark	
BES22-10	5.0	0	24	0.02	31.2	0		Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)		\checkmark	
BES22-11	5.0	0	34	0.02	28.6	0		Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)		\bigvee	
WES22-14	5.0	0	142	0.01	29.1	0		Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)		V	
WES22-15	5.0	0	16	0.02	31.7	0		Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)		\checkmark	

Daily Soil Sampling

WES22-16	5.0	0	19	0.02	28.1	0	Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	
WES22-17	5.0	0	8	0.01	27.6	0	Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	

Client:	Durango Midstream LLC	Inspection Date:	6/15/2022						
Site Location Name:	Devon Continental Lusk	Report Run Date:	6/18/2022 12:13 AM						
Client Contact Name:	Amber Groves	API #:							
Client Contact Phone #:	346-351-2786								
Unique Project ID		Project Owner:							
Project Reference #		Project Manager:							
		Summary of	Fimes						
Arrived at Site	6/15/2022 7:15 AM								
Departed Site	6/15/2022 3:30 PM								
Field Notes									

7:50 Upon arrival, completed site walk through, completed safety paperwork, conducted tailgate safety meeting with Standard Safety personnel

- **7:51** Standard Safety will use 2 belly dump trucks for hauling off Contaminated soil Stockpiles. Estimated turn around time from disposal site is 2 hours.
- **18:09** 6 belly dumps @ 20 sq yards each of contaminated soil was hauled off from site for disposal for a total of 120 sq yards. Approximately 1 more load remains on site.

Next Steps & Recommendations

1 Remove the remainder of Contaminated Soil for site

2 Collect, and field screen and prepare Confirmation Samples. Send these samples to Lab for lab results.

Site Photos Viewing Direction: West Viewing Direction: Southwest Loading Contaminated soil in belly dump #5 Arrival to site Viewing Direction: Southwest Viewing Direction: North Loading Contaminated soil in belly dump #6 End of day

Daily Site Visit Signature

Inspector: Jarod Florez a glory Signature:

•

Client:	Durango Midstream LLC	Inspection Date:	6/16/2022
Site Location Name:	Devon Continental Lusk	Report Run Date:	6/18/2022 12:26 AM
Client Contact Name:	Amber Groves	API #:	
Client Contact Phone #:	346-351-2786		
Unique Project ID		Project Owner:	
Project Reference #		Project Manager:	
		Summary of	Times
Arrived at Site	6/16/2022 9:15 AM		
Departed Site	6/16/2022 4:30 PM		

Field Notes

16:23 Arrived on site and did site walk through and conducted safety meeting with Standard Safety Personnel

16:23 Collect Confirmation Base Samples

16:24 Collect Confirmation Wall Samples

16:24 Field screened All Confirmation Samples Collected

16:25 All Confirmation Samples met criterium set forth by NMOCD.

8:53 One more belly dump of Contaminated soil was removed from site. This completes all contaminated soil removal.

8:55 5 feet was stepped off from Bore Hole 2 location and Bore Hole 6 was completed. Soil Samples were collected at 0' and 6'. Field screening determined these met NMOCD criterium

Next Steps & Recommendations

1 Staging of backfill material

2 Await lab results on Confirmation Samples

Site Photos Viewing Direction: South Viewing Direction: West Packaged Samples Confirmation Samples Collected Viewing Direction: Southwest Viewing Direction: Northwest Site upon departure Site upon departure

Daily Site Visit Signature

Inspector: Jarod Florez Signature:

•

Daily Soil Sampling

Client: Client: Durango Midstream LLC

Location: Site: Devon Continental Lusk

Date: (SD: 6/17/22)

Sampling											
				Field	Screeni	ng			Data Co	ollection	
		Hydro	carbon		C	Chloride					
Sample ID	Depth (ft)	VOC (PID)	TPH (ppm)	EC Reading (mS/cm)	Temp (°C)	EC Chloride (ppm)	Chloride Titration (ppm)	Lab Analysis	Photo Taken	Marked on Sketch	Refusal Depth (ft)
BES22-01	14.0	0	100	2.91	38.6	3339		Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)		\checkmark	
BES22-02	5.0	0	79	0.16	27	0		Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)		\checkmark	
BES22-03	5.0	0	560	0.05	27	0		Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)		\checkmark	
BES22-04	5.0	0	73	0.04	26.9	0		Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)		\checkmark	
BES22-05	5.0	0	174	0.03	27	0		Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)		V	
BES22-06	5.0	0	154	0.08	27	0		Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)		\checkmark	

VERTEX

Daily Soil Sampling

BES22-07	5.0	0	318	0.03	27.2	0	Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	
BES22-08	5.0	0	529	0.07	27.3	0	Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	
BES22-09	5.0	0	31	0.04	27.2	0	Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	
BES22-10	5.0	0	100	0.04	27.2	0	Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	
BES22-11	5.0	0	1230	0.04	27.5	0	Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	
BES22-12	5.0	0	982	0.07	27.6	0	Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	
BH22-06	0.0	0	33	0.03	27.5	0	Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	
BH22-06	2.0	0	34	0.02	27.5	0	Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	
WES22-01	14.0	0	193	0.98	40.8	458	Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	

Daily Soil Sampling

WES22-02	14.0	0	130	4.17	35.4	5296	Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	
WES22-03	5.0	0	8	0.02	27.5	0	Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	
WES22-04	5.0	0	0	0.02	27.5	0	Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	
WES22-05	5.0	0	16	0.04	27.4	0	Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	
WES22-06	5.0	0	14	0.01	27.9	0	Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	
WES22-07	5.0	0	0	0.02	27.1	0	Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	
WES22-08	5.0	0	28	0.02	27.1	0	Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	
WES22-09	5.0	0	16	0.02	27.7	0	Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	
WES22-10	5.0	0	0	0.10	27.7	0	Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	
VERTEX

Daily Soil Sampling

WES22-11	5.0	0	0	0.03	27.5	0	Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	
WES22-12	5.0	0	31	0.02	27.2	0	Benzene (EPA SW-846 Method 8021B/8260B), BTEX (EPA SW-846 Method 8021B/8260B), Chloride (EPA 300.0), TPH (EPA SW-846 Method 8015M)	\checkmark	

Client:	Durango Midstream LLC	Inspection Date:	6/17/2022
Site Location Name:	Devon Continental Lusk	Report Run Date:	6/18/2022 12:04 AM
Client Contact Name:	Amber Groves	API #:	
Client Contact Phone #:	346-351-2786		
Unique Project ID		Project Owner:	
Project Reference #		Project Manager:	
		Summary of	Гimes
Arrived at Site	6/17/2022 8:30 AM		
Departed Site	6/17/2022 3:45 PM		

Field Notes

8:58 Upon arrival I did a walk through of the site, conducted Safety meeting with Standard Safety personnel on site, and took photos

- **9:02** Backfill material will be staged to the southeast of excavation site, between Lease Road and Excavation, utilizing 2 dump trucks hauling 12 sq yards of soil per load. It is estimated a total of 20 loads or 240 Sq yards of material will be needed for backfill.
- 15:46 A total of 16 loads of backfill material was delivered and stock piled during the day. 16 loads at 12 sq yards a piece for a total of 192 sq yards delivered.

Next Steps & Recommendations

1 Excavation backfill upon return of lab results and approval of NMOCD.

Site Photos Viewing Direction: West Viewing Direction: South Site upon arrival Backfill Material being staged Viewing Direction: South Viewing Direction: South Backfill Load #9 Backfill Material progress after 9 loads

End of day

Run on 6/18/2022 12:04 AM UTC

.

Daily Site Visit Signature

Inspector: Jarod Florez fl Hory Signature:

•

Client:	Durango Midstream LLC	Inspection Date:	6/29/2022
Site Location Name:	Devon Continental Lusk	Report Run Date:	7/1/2022 4:19 PM
Client Contact Name:	Amber Groves	API #:	
Client Contact Phone #:	346-351-2786		
Unique Project ID		Project Owner:	
Project Reference #		Project Manager:	
		Summary of 1	Times
Arrived at Site	6/29/2022 8:00 AM		
Departed Site	6/29/2022 5:30 PM		

Field Notes

17:30 Arrived on site and did walkthrough. Conducted Tailgate safety meeting with Standard Safety personnel.

17:30 Backfill operations began with material that had been stockpiled on site.

17:32 2 dump trucks delivered 12 additional loads of backfill material to the site as Project was under way.

Next Steps & Recommendations

1 None

Run on 7/1/2022 4:19 PM UTC

Daily Site Visit Signature

Inspector: Jarod Florez Signature: TO ZROW

•

ATTACHMENT 5

Devon Continental Fed Com 1

3/17/2022, 5:04:22 PM

OSE District Boundary New Mexico State Trust Lands

Water Right Regulations

Both Estates

Closure Area

SiteBoundaries

Esri, HERE, GeoTechnologies, Inc., Esri, HERE, Garmin, GeoTechnologies, Inc., U.S. Department of Energy Office of Legacy Management, Maxar

New Mexico Office of the State Engineer Point of Diversion Summary

			(quarters	are 1=N	W 2=	NE 3=SV	W 4=SE)			
			(quarters	s are sm	allest	to larges	t)	(NAD83 U	TM in meters)	
Well Tag	POD	Number	Q64 Q 1	16 Q4	Sec	Tws	Rng	Χ	Y	
	CP (00672	2	4 4	07	18S	32E	612475	3624947* 🧲	
x Driller Lie	cense:	46	Driller C	ompa	ny:	AB	BOTT E	BROTHERS	S COMPANY	
Driller Na	me:	ABBOTT, MUR	RELL							
Drill Start	t Date:	07/17/1992	Drill Fin	ish Da	te:	08	8/07/199	P2 Pl	ug Date:	
Log File D	Date:	08/12/1992	PCW Rc	v Date	e:			So	urce:	Shallow
Ритр Тур	e:		Pipe Disc	charge	e Size	e:		Es	timated Yield	:
Casing Size: 5.50		5.50	Depth W	Depth Well: 524 feet		De	epth Water:	430 feet		
X	Wate	r Bearing Stratif	fications:	То	op H	Bottom	Descr	iption		
				40	50	517	Sands	tone/Gravel	/Conglomerat	e
х		Casing Per	forations:	Te	op E	Bottom				
				43	59	524				
				4.		324				

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

3/18/22 2:37 PM

POINT OF DIVERSION SUMMARY

Devon Continental Fed Com 1

Nearest USGS Well: 324046103464101 Distance: 0.78 miles (4,099 feet) Latest reading: 1958 Legend Feature 1

Page 86 of 183

Devon Continental Fed Com 1

324046103464101 324040103464801

Google Earth

N

U.S. Fish and Wildlife Service

National Wetlands Inventory

Devon Continental Fed Com 1

Wetlands

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland

- **Freshwater Pond**

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

Lake Other Riverine base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Page 88 of 183

Released to Imaging: 1/18/2023 12:15:40 PM

Devon Continental Fed Com 1

Nearest Residence: 6.41 miles (33,826 feet)

Legend Feature 1

Page 89 of 183

Devon Continental Fed Com 1

126

2 mi

248

1.0

Hackberry Lake Dunes Complex

222

Residence

Google Earth

U.S. Fish and Wildlife Service

National Wetlands Inventory

Devon Continental Fed Com 1

March 18, 2022

Wetlands

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Forested/Shrub Wetland
 - **Freshwater Pond**

Freshwater Emergent Wetland

Lake Other Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

National Wetlands Inventory (NWI) This page was produced by the NWI mapper

Released to Imaging: 1/18/2023 12:15:40 PM

3/18/2022, 2:28:45 PM

Maxar, New Mexico State University, Texas Parks & Wildlife, CONANP, Esri, HERE, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau, USDA

Received by OCD: 12/21/2022 9:48:08 AM National Flood Hazard Layer FIRMette

Legend

Page 94 of 183

Releasea to Imaging: 1/18/2023 92915:40 PM 1,500

Feet 1:6,000

1.0,000

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

regulatory purposes.

Received by OCD: 12/21/2022 9:48:08 AM

Page 95 of 183

USDA Natural Resources Conservation Service Released to Imaging: 1/18/2023 12:15:40 PM Web Soil Survey National Cooperative Soil Survey 3/18/2022 Page 1 of 3

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
PU	Pyote and Maljamar fine sands	1.4	100.0%
Totals for Area of Interest		1.4	100.0%

Lea County, New Mexico

PU—Pyote and Maljamar fine sands

Map Unit Setting

National map unit symbol: dmqq Elevation: 3,000 to 3,900 feet Mean annual precipitation: 10 to 12 inches Mean annual air temperature: 60 to 62 degrees F Frost-free period: 190 to 205 days Farmland classification: Not prime farmland

Map Unit Composition

Pyote and similar soils: 46 percent Maljamar and similar soils: 44 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pyote

Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 30 inches: fine sand Bt - 30 to 60 inches: fine sandy loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Gypsum, maximum content: 1 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 2.0
Available water supply, 0 to 60 inches: Low (about 5.1 inches)

Interpretive groups

Land capability classification (irrigated): 6e

Land capability classification (nonirrigated): 7s Hydrologic Soil Group: A Ecological site: R042XC003NM - Loamy Sand Hydric soil rating: No

Description of Maljamar

Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 24 inches: fine sand Bt - 24 to 50 inches: sandy clay loam Bkm - 50 to 60 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 40 to 60 inches to petrocalcic
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Gypsum, maximum content: 1 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 2.0
Available water supply, 0 to 60 inches: Low (about 5.6 inches)

Available water supply, 0 to 60 inches. Low (a

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Ecological site: R042XC003NM - Loamy Sand Hydric soil rating: No

Minor Components

Kermit

Percent of map unit: 10 percent Ecological site: R042XC022NM - Sandhills

Hydric soil rating: No

Data Source Information

Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 18, Sep 10, 2021

USDA Natural Resources Conservation Service

Ecological site R042XC003NM Loamy Sand

Accessed: 03/18/2022

General information

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

Associated sites

R042XC004NM	Sandy Sandy
R042XC005NM	Deep Sand Deep Sand

Table 1. Dominant plant species

Tree	Not specified
Shrub	Not specified
Herbaceous	Not specified

Physiographic features

This site is on uplands, plains, dunes, fan piedmonts and in inter dunal areas. The parent material consists of mixed alluvium and or eolian sands derived from sedimentary rock. Slope range on this site range from 0 to 9 percent with the average of 5 percent.

Low stabilized dunes may occur occasionally on this site. Elevations range from 2,800 to 5,000 feet.

Table 2. Representative physiographic features

Landforms	(1) Fan piedmont(2) Alluvial fan(3) Dune
Elevation	853–1,524 m
Slope	0–9%
Aspect	Aspect is not a significant factor

Climatic features

The average annual precipitation ranges from 8 to 13 inches. Variations of 5 inches, more or less, are common. Over 80 percent of the precipitation falls from April through October. Most of the summer precipitation comes in the form of high intensity-short duration thunderstorms.

Temperatures are characterized by distinct seasonal changes and large annual and diurnal temperature changes. The average annual temperature is 61 degrees with extremes of 25 degrees below zero in the winter to 112 degrees in the summer.

The average frost-free season is 207 to 220 days. The last killing frost being late March or early April and the first killing frost being in later October or early November.

Temperature and rainfall both favor warm season perennial plant growth. In years of abundant spring moisture, annual forbs and cool season grasses can make up an important component of this site. Strong winds blow from the southwest from January through June, which accelerates soil drying during a critical period for cool season plant growth.

Climate data was obtained from http://www.wrcc.sage.dri.edu/summary/climsmnm.html web site using 50% probability for freeze-free and frost-free seasons using 28.5 degrees F and 32.5 degrees F respectively.

Table 3. Representative climatic features

Frost-free period (average)	221 days
Freeze-free period (average)	240 days
Precipitation total (average)	330 mm

Influencing water features

This site is not influenced from water from wetlands or streams.

Soil features

Soils are moderately deep or very deep. Surface textures are loamy fine sand, fine sandy loam, loamy very fine sand or gravelly sandy loam.

Subsurface is a loamy fine sand, coarse sandy loam, fine sandy loam or loam that averages less than 18 percent clay and less than 15 percent carbonates.

Substratum is a fine sandy loam or gravelly fine sandy loam with less than 15 percent gravel and with less than 40 percent calcium carbonate. Some layers high in lime or with caliche fragments may occur at depths of 20 to 30 inches.

These soils, if unprotected by plant cover and organic residue, become wind blown and low hummocks are formed.

Minimum and maximum values listed below represent the characteristic soils for this site.

Characteristic soils are: Maljamar Berino

Received by OCD: 12/21/2022 9:48:08 AM

Parjarito Palomas Wink Pyote

Table 4. Representative soil features

Surface texture	(1) Fine sand(2) Fine sandy loam(3) Loamy fine sand
Family particle size	(1) Sandy
Drainage class	Well drained to somewhat excessively drained
Permeability class	Moderate to moderately rapid
Soil depth	102–183 cm
Surface fragment cover <=3"	0–10%
Surface fragment cover >3"	0%
Available water capacity (0-101.6cm)	12.7–17.78 cm
Calcium carbonate equivalent (0-101.6cm)	3–40%
Electrical conductivity (0-101.6cm)	2–4 mmhos/cm
Sodium adsorption ratio (0-101.6cm)	0–2
Soil reaction (1:1 water) (0-101.6cm)	6.6–8.4
Subsurface fragment volume <=3" (Depth not specified)	4–12%
Subsurface fragment volume >3" (Depth not specified)	0%

Ecological dynamics

Overview

The Loamy Sand site intergrades with the Deep Sand and Sandy sites (SD-3). These sites can be differentiated by surface soil texture and depth to a textural change. Loamy Sand and Deep Sand sites have coarse textured (sands and loamy sand) surface soils while Sandy sites have moderately coarse textured (sandy loam and fine sandy loam) surfaces. Although Loamy Sand and Deep Sand sites have similar surface textures, the depth to a textural change is different—Loamy Sand sub-surface textures typically increase in clay at approximately 20 to 30 inches, and Deep Sand sites not until around 40 inches.

The historic plant community of Loamy Sand sites is dominated by black grama (*Bouteloua eriopoda*), dropseeds (*Sporobolus flexuosus*, *S. contractus*, *S. cryptandrus*), and bluestems (*Schizachyrium scoparium* and *Andropogon hallii*), with scattered shinnery oak (*Quercus havardii*) and sand sage (*Artemisia filifolia*). Perennial and annual forb abundance and distribution are dependent on precipitation. Litter and to a lesser extent, bare ground, are a significant proportion of ground cover while grasses compose the remainder. Decreases in black grama indicate a transition to either a grass/shrub or shrub-dominated state. The grass/shrub state is composed of grasses/honey mesquite (*Prosopis glandulosa*), grasses/broom snakeweed (*Gutierrezia sarothrae*), or grasses/sand sage. The shrub-dominated state occurs after a severe loss of grass cover and a prevalence of sand sage with secondary shinnery oak and mesquite. Heavy grazing intensity and/or drought are influential drivers in decreasing black grama and bluestems and subsequently increasing shrub cover, erosion, and bare patches. Historical fire suppression also encourages shrub pervasiveness and a competitive advantage over grass species (McPherson 1995). Brush and grazing management, however, may reverse grass/shrub and shrub-dominated states toward the grassland-

State and transition model

Plant Communities and Transitional Pathways (diagram):

MLRA-42, SD-3, Loamy Sand

1a. Drought, over grazing, fire suppression.

1b. Brush control, prescribed grazing

Severe loss of grass cover, fire suppression, erosion.
 Brush control, seeding, prescribed grazing.

3. Continued loss of grass cover, erosion.

Figure 4.

State 1 Historic Climax Plant Community

Community 1.1 Historic Climax Plant Community

Grassland: The historic plant community is a uniformly distributed grassland dominated by black grama, dropseeds, and bluestems. Sand sage and shinnery oak are evenly dispersed throughout the grassland due to the coarse soil surface texture. Perennial and annual forbs are common but their abundance and distribution are reflective of precipitation. Bluestems initially, followed by black grama, decrease with drought and heavy grazing intensity. Historical fire frequency is unknown but likely occurred enough to remove small shrubs to the competitive advantage of grass species. Fire suppression, drought conditions, and excessive grazing drive most grass species out of competition with shrub species.

Diagnosis: Grassland dominated by black grama, dropseeds, and bluestems. Shrubs, such as sand sage, shinnery oak, and mesquite are dispersed throughout the grassland. Forbs are present and populations fluctuate with precipitation variability.

Table 5. Annual production by plant type

Plant Type	Low (Kg/Hectare)	Representative Value (Kg/Hectare)	High (Kg/Hectare)
Grass/Grasslike	495	934	1372
Forb	123	233	343
Shrub/Vine	110	206	303
Total	728	1373	2018

Table 6. Ground cover

Tree foliar cover	0%
Shrub/vine/liana foliar cover	0%
Grass/grasslike foliar cover	28%
Forb foliar cover	0%
Non-vascular plants	0%
Biological crusts	0%
Litter	50%
Litter Surface fragments >0.25" and <=3"	50% 0%
Litter Surface fragments >0.25" and <=3" Surface fragments >3"	50% 0% 0%
Litter Surface fragments >0.25" and <=3" Surface fragments >3" Bedrock	50% 0% 0% 0%
Litter Surface fragments >0.25" and <=3" Surface fragments >3" Bedrock Water	50% 0% 0% 0%

Figure 6. Plant community growth curve (percent production by month). NM2803, R042XC003NM-Loamy Sand-HCPC. SD-3 Loamy Sand - Warm season plant community .

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	3	5	10	10	25	30	12	5	0	0

State 2 Grass/Shrub

Community 2.1 Grass/Shrub Received by OCD: 12/21/2022 9:48:08 AM

Grass/Shrub

 Black grame/Mesquite community, with some dropseeds, threeovus, and scattered and shimory oak
 Orass cover low to moderate

Grass/Shrub State: The grass/shrub state is dominated by communities of grasses/mesquite, grasses/snakeweed, or grasses/sand sage. Decreases in black grama and bluestem species lead to an increase in bare patches and mesquite which further competes with grass species. An increase of dropseeds and threeawns occurs. Grass distribution becomes more patchy with an absence or severe decrease in black grama and bluestems. Mesquite provides nitrogen and soil organic matter to co-dominant grasses (Ansley and Jacoby 1998, Ansley et al. 1998). Mesquite mortality when exposed to fire is low due to aggressive resprouting abilities. Herbicide application combined with subsequent prescribed fire may be more effective in mesquite reduction (Britton and Wright 1971).

Diagnosis: This state is dominated by an increased abundance of communities including grass/mesquite, grass/snakeweed, or grass/sand sage. Dropseeds and threeawns have a patchy distribution.

Transition to Grass/Shrub State (1a): The historic plant community begins to shift toward the grass/shrub state as drivers such as drought, fire suppression, interspecific competition, and excessive grazing contribute to alterations in soil properties and herbaceous cover. Cover loss and surface soil erosion are initial indicators of transition followed by a decrease in black grama with a subsequent increase of dropseeds, threeawns, mesquite, and snakeweed. Snakeweed has been documented to outcompete black grama especially under conditions of fire suppression and drought (McDaniel et al. 1984).

Key indicators of approach to transition:

- Loss of black grama cover
- Surface soil erosion
- Bare patch expansion
- Increased dropseed/threeawn and mesquite, snakeweed, or sand sage abundances

Transition to Historic Plant Community (1b): Brush and grazing management may restore the grassland component and reverse shrub or grass/shrub dominated states back toward the historic plant community.

State 3 Shrub Dominated

Community 3.1 Shrub Dominated

Shrub-Dominated State: The shrub-dominated state results from a severe loss of grass cover. This state's primary species is sand sage. Shinnery oak and mesquite also occur; however, grass cover is limited to intershrub distribution. Sand sage stabilizes light sandy soils from wind erosion, which enhances protected grass/forb cover (Davis and Bonham 1979). However, shinnery oak also responds to the sandy soils with dense stands due to an aggressive rhizome system. Shinnery oak's extensive root system promotes competitive exclusion of grasses and forbs. Sand sage, shinnery oak, and mesquite can be controlled with herbicide (Herbel et al. 1979, Pettit 1986).

Transition to Shrub-Dominated (2a): Severe loss of grass species with increased erosion and fire suppression will result in a transition to a shrub-dominated state with sand sage, Shin oak, and honey mesquite directly from the grassland-dominated state.

Key indicators of approach to transition:

- · Severe loss of grass species cover
- Surface soil erosion
- Bare patch expansion
- · Increased sand sage, shinnery oak, and mesquite abundance

Transition to Historic Plant Community (2b): Brush and grazing management may restore the grassland component and reverse shrub or grass/shrub dominated states back toward the historic plant community. In addition, seeding with native grass species will augment the transition to a grassland-dominated state.

Transition to Shrub-Dominated (3): If the grass/shrub site continues to lose grass cover with soil erosion, the site will transition to a shrub-dominated state with sand sage, shinnery oak, and honey mesquite.

Key indicators of approach to transition:

- · Continual loss of dropseeds/threeawns cover
- Surface soil erosion
- Bare patch expansion
- Increased sand sage, shinnery oak, and mesquite/dropseed/threeawn and mesquite/snakeweed abundance

Additional community tables

Table 7. Community 1.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Kg/Hectare)	Foliar Cover (%)
Grass	/Grasslike				
1	Warm Season			68–138	
	little bluestem	SCSC	Schizachyrium scoparium	68–138	_
2	Warm Season		41–68		
	sand bluestem	ANHA	Andropogon hallii	41–68	_
3	Warm Season		41–68		
	cane bluestem	BOBA3	Bothriochloa barbinodis	41–68	_
	silver bluestem	BOSA	Bothriochloa saccharoides	41–68	—
4	Warm Season		138–206		
	black grama	BOER4	Bouteloua eriopoda	138–206	_
	bush muhly	MUPO2	Muhlenbergia porteri	138–206	_
5	Warm Season		138–206		
	thin paspalum	PASE5	Paspalum setaceum	138–206	
	alaina kuistlaanaaa		Outerrie	400 000	l

Released to Imaging: 1/18/2023 12:15:40 PM

Received by OCD: 12/21/2022 9:48:08 AM

I	plains pristiegrass	SEVUZ	Setaria vuipiseta	130-200	-		
	fringed signalgrass	URCI Urochloa ciliatissima		138–206	_		
6	Warm Season	138–206					
	spike dropseed	SPCO4	Sporobolus contractus	138–206	_		
	sand dropseed	SPCR	Sporobolus cryptandrus	138–206	_		
	mesa dropseed	SPFL2	Sporobolus flexuosus	138–206	_		
7	Warm Season		•	68–138			
	hooded windmill grass	CHCU2	Chloris cucullata	68–138	_		
	Arizona cottontop	DICA8	Digitaria californica	68–138	_		
9	Other Perennial Grasses	41–68					
	Grass, perennial	2GP	Grass, perennial	41–68	_		
Shrul	b/Vine	•	•				
8	Warm Season	/arm Season					
	New Mexico feathergrass	HENE5	Hesperostipa neomexicana	41–68	_		
	giant dropseed	SPGI	Sporobolus giganteus	41–68	_		
10	Shrub	68–138					
	sand sagebrush	ARFI2	Artemisia filifolia	68–138	-		
	Havard oak	QUHA3	Quercus havardii	68–138	-		
11	Shrub			38–68			
	fourwing saltbush	ATCA2	Atriplex canescens	41–68	-		
	featherplume	DAFO	Dalea formosa	41–68	-		
12	Shrub	Shrub					
	jointfir	EPHED	Ephedra	41–68	-		
	littleleaf ratany	KRER	Krameria erecta	41–68	-		
13	Other Shrubs	41–68					
	Shrub (>.5m)	2SHRUB	Shrub (>.5m)	41–68	_		
Forb			•				
14	Forb	68–138					
	leatherweed	CRPOP	Croton pottsii var. pottsii	68–138	_		
	Indian blanket	GAPU	Gaillardia pulchella	68–138	_		
	globemallow	SPHAE	Sphaeralcea	68–138	_		
15	Forb		•	13–41			
	woolly groundsel	PACA15	Packera cana	13–41	_		
16	Forb	68–138					
	touristplant	DIWI2	Dimorphocarpa wislizeni	68–138	_		
	woolly plantain	PLPA2	Plantago patagonica	68–138	_		
17	Other Forbs	41–68					
	Forb (herbaceous, not grass nor grass-like)	2FORB	Forb (herbaceous, not grass nor grass-like)	41–68	_		

Animal community

This Ecological Site provides habitat which supports a resident animal community that is characterized by pronghorn antelope, desert cottontail, spotted ground squirrel, black-tailed prairie dog, yellow faced pocket gopher, Ord's kangaroo rat, northern grasshopper mouse, southern plains woodrat, badger, roadrunner, meadowlark, burrowing owl, white necked raven, lesser prairie chicken, morning dove, scaled quail, Harris hawk, side blotched
lizard, marbled whiptail, Texas horned lizard, western diamondback rattlesnake, dusty hognose snake and ornate box turtle.

Where mesquite has invaded, most resident birds and scissor-tailed flycatcher, morning dove and Swainson's hawk, nest. Vesper and grasshopper sparrows utilize the site during migration.

Hydrological functions

The runoff curve numbers are determined by field investigations using hydraulic cover conditions and hydrologic soil groups.

Hydrologic Interpretations Soil Series Hydrologic Group Berino B Kinco A Maljamar B Pajarito B Palomas B Wink B Pyote A

Recreational uses

This site offers recreation potential for hiking, borseback riding, nature observation, photography and hunting. During years of abundant spring moisture, this site displays a colorful array of wildflowers during May and June.

Wood products

This site has no potential for wood products.

Other products

This site is suitable for grazing by all kinds and classes of livestock at any time of year. In cases where this site has been invaded by brush species it is especially suited for goats. Mismanagement of this site will cause a decrease in species such as the bluestems, blsck grama, bush muhly, plains bristlegrass, New Mexico feathergrass, Arizona cottontop and fourwing saltbush. A corresponding increase in the dropseeds, windmill grass, fall witchgrass, silver bluestem, sand sagebrush, shinery oak and ephedra will occur. This will also cause an increase in bare ground which will increase soil erodibility. This site will respond well to a system of management that rotates the season of use.

Other information

Guide to Suggested Initial Stocking Rate Acres per Animal Unit Month Similarity Index Ac/AUM 100 - 762.3 - 3.5 75 - 513.0 - 4.5 50 - 264.6 - 9.0 25 - 09.1 +

Inventory data references

Data collection for this site was done in conjunction with the progressive soil surveys within the Southern Desertic Basins, Plains and Mountains, Major Land Resource Areas of New Mexico. This site has been mapped and correlated with soils in the following soil surveys. Eddy County, Lea County, and Chaves County.

Other references

Literature Cited:

Ansley, R. J.; Jacoby, P. W. 1998. Manipulation of fire intensity to achieve mesquite management goals in north Texas. In: Pruden, Teresa L.; Brennan, Leonard A., eds. Fire in ecosystem management: shifting the paradigm from suppression to prescription: Proceedings, Tall Timbers fire ecology conference; 1996 May 7-10; Boise, ID. No. 20. Tallahassee, FL: Tall Timbers Research Station: 195-204.

Ansley, R. J.; Jones, D. L.; Tunnell, T. R.; [and others]. 1998. Honey mesquite canopy responses to single winter fires: relation to herbaceous fuel, weather and fire temperature. International Journal of Wildland Fire 8(4):241-252.

Britton, Carlton M.; Wright, Henry A. 1971. Correlation of weather and fuel variables to mesquite damage by fire. Journal of Range Management 24:136-141.

Davis, Joseph H., III and Bonham, Charles D. 1979. Interference of sand sagebrush canopy with needleandthread. Journal of Range Management 32(5):384-386.

Herbel, C. H, Steger, R, Gould, W. L. 1974. Managing semidesert ranges of the Southwest Circular 456. Las Cruces, NM: New Mexico State University, Cooperative Extension Service. 48 p.

McDaniel, Kirk C.; Pieper, Rex D.; Loomis, Lyn E.; Osman, Abdelgader A. 1984. Taxonomy and ecology of perennial snakeweeds in New Mexico. Bulletin 711. Las Cruces, NM: New Mexico State University, Agricultural Experiment Station. 34 p.

McPherson, Guy R. 1995. The role of fire in the desert grasslands. In: McClaran, Mitchel P.; Van Devender, Thomas R., eds. The desert grassland. Tucson, AZ: The University of Arizona Press: 130-151.

Pettit, Russell D. 1986. Sand shinnery oak: control and management. Management Note 8. Lubbock, TX: Texas Tech University, College of Agricultural Sciences, Department of Range and Wildlife Management. 5 p.

Contributors

Don Sylvester Quinn Hodgson

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	
Date	
Approved by	
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

1. Number and extent of rills:

- 2. Presence of water flow patterns:
- 3. Number and height of erosional pedestals or terracettes:
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):
- 5. Number of gullies and erosion associated with gullies:
- 6. Extent of wind scoured, blowouts and/or depositional areas:
- 7. Amount of litter movement (describe size and distance expected to travel):
- 8. Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values):
- 9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):
- 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:
- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
- 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):

Dominant:

Sub-dominant:

Other:

Additional:

13. Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):

- 14. Average percent litter cover (%) and depth (in):
- 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annualproduction):
- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:
- 17. Perennial plant reproductive capability:

mxd

ATTACHMENT 6

•

48 Hr Notification of Confirmation Sampling - nAPP2207746767 DOR: 1/03/2022 Site Name: Devon Continental 6" Poly Line to Lusk						
Jason Crabtree «jcrabtree@vertex.ca» Ta U OCD EnviroBetationmus Ce U Amber Grever: U Jarod Flores	4	Free Reply	(6) Reply All	→ Forward Tue 202	3-06-14 2:4	42 PM
All,						
Please accept this email as 48-hr notification that Vertex Resource Services has scheduled confirmatory sampling to be conducted for the following releases:						
nAPP2207746767 DOR: 1/03/2022 Site Name: Devon Continental 6" Poly Line to Lusk						
This work will be completed on behalf of Frontier Field Services, LLC.						
On Thursday, June 16th, 2022 at approximately 8:00 a.m., Jarod Florez will be on site to conduct confirmatory sampling and will go into Monday, June 20th, 2022. If you need directions to the site, please do not hesit this notification, please give me a call at 432-250-3456.	ate to contact him	. If you have	any questions	or concerns re	garding	

Thank you

ATTACHMENT 7

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Vertex

Project Name:	Devon Continental Lusk 22E-01024
Work Order:	E206069
Job Number:	21080-0001
Received:	6/14/2022

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 6/14/22

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Envirotech Inc, holds the NM SDWA certification for data reported. (Lab #NM00979) Date Reported: 6/14/22

Jason Crabtree 161, 2055 Premier Way Sherwood Park, AB T8H 0G2

Jason Crabtree,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 6/14/2022 9:50:00AM, under the Project Name: Devon Continental Lusk 22E-01024.

The analytical test results summarized in this report with the Project Name: Devon Continental Lusk 22E-01024 apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe Technical Representative/Client Services Office: 505-421-LABS(5227) Cell: 505-320-4759

ljarboe@envirotech-inc.com

Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

West Texas Midland/Odessa Area Rayny Hagan Technical Representative Office: 505-421-LABS(5227)

Envirotech Web Address: www.envirotech-inc.com

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	4
Sample Data	5
BH22-01 14'	5
BH22-01 18'	6
BH22-02 0'	7
BH22-02 6'	8
BH22-03 0'	9
BH22-03 6'	10
BH22-04 0'	11
BH22-04 6'	12
BH22-05 0'	13
BH22-05 6'	14
QC Summary Data	15
QC - Volatile Organics by EPA 8021B	15
QC - Nonhalogenated Organics by EPA 8015D - GRO	16
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	17
QC - Anions by EPA 300.0/9056A	18
Definitions and Notes	19
Chain of Custody etc.	20

Sample Summary

		Sample Sum	mai y		
Vertex		Project Name:	Devon Continental	Lusk 22E-01024	Poportod.
161, 2055 Premier Way		Project Number:	21080-0001		Keporteu.
Sherwood Park AB, T8H 0G2		Project Manager:	Jason Crabtree		06/14/22 17:56
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
BH22-01 14'	E206069-01A	Soil	06/09/22	06/14/22	Glass Jar, 4 oz.
BH22-01 18'	E206069-02A	Soil	06/09/22	06/14/22	Glass Jar, 4 oz.
BH22-01 20'> Hold	E206069-03A	Soil	06/09/22	06/14/22	Glass Jar, 4 oz.
BH22-02 0'	E206069-04A	Soil	06/09/22	06/14/22	Glass Jar, 4 oz.
BH22-02 6'	E206069-05A	Soil	06/09/22	06/14/22	Glass Jar, 4 oz.
BH22-03 0'	E206069-06A	Soil	06/09/22	06/14/22	Glass Jar, 4 oz.
BH22-03 6'	E206069-07A	Soil	06/09/22	06/14/22	Glass Jar, 4 oz.
BH22-04 0'	E206069-08A	Soil	06/09/22	06/14/22	Glass Jar, 4 oz.
BH22-04 6'	E206069-09A	Soil	06/09/22	06/14/22	Glass Jar, 4 oz.
BH22-05 0'	E206069-10A	Soil	06/09/22	06/14/22	Glass Jar, 4 oz.
BH22-05 6'	E206069-11A	Soil	06/09/22	06/14/22	Glass Jar, 4 oz.

•

Vertex	Project Name:	Dev	on Continental Lu	ısk 22E-01024		
161. 2055 Premier Way	Project Numbe	er: 210	21080-0001			Reported:
Sherwood Park AB, T8H 0G2	Project Manag	er: Jaso	n Crabtree		6/14/2022 5:56:58PM	
	В	3H22-01 14'				
]	E206069-01				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RKS		Batch: 2225012
Benzene	ND	0.0250	1	06/14/22	06/14/22	
Ethylbenzene	ND	0.0250	1	06/14/22	06/14/22	
Toluene	ND	0.0250	1	06/14/22	06/14/22	
o-Xylene	ND	0.0250	1	06/14/22	06/14/22	
p,m-Xylene	ND	0.0500	1	06/14/22	06/14/22	
Total Xylenes	ND	0.0250	1	06/14/22	06/14/22	
Surrogate: 4-Bromochlorobenzene-PID		93.9 %	70-130	06/14/22	06/14/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2225012
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/14/22	06/14/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		90.9 %	70-130	06/14/22	06/14/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2225014
Diesel Range Organics (C10-C28)	ND	25.0	1	06/14/22	06/14/22	
Oil Range Organics (C28-C36)	ND	50.0	1	06/14/22	06/14/22	
Surrogate: n-Nonane		94.2 %	50-200	06/14/22	06/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: KL		Batch: 2225011
Chloride	2110	20.0	1	06/14/22	06/14/22	

Sample Data

Sample Data

		-				
Vertex	Project Name:	: Dev	Devon Continental Lusk 22E-01024			
161, 2055 Premier Way	Project Numb	er: 210	21080-0001			Reported:
Sherwood Park AB, T8H 0G2	Project Manag	ger: Jaso	n Crabtree			6/14/2022 5:56:58PM
	l	BH22-01 18'				
		E206069-02				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	st: RKS		Batch: 2225012
Benzene	ND	0.0250	1	06/14/22	06/14/22	
Ethylbenzene	ND	0.0250	1	06/14/22	06/14/22	
Toluene	ND	0.0250	1	06/14/22	06/14/22	
o-Xylene	ND	0.0250	1	06/14/22	06/14/22	
p,m-Xylene	ND	0.0500	1	06/14/22	06/14/22	
Total Xylenes	ND	0.0250	1	06/14/22	06/14/22	
Surrogate: 4-Bromochlorobenzene-PID		92.4 %	70-130	06/14/22	06/14/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	st: RKS		Batch: 2225012
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/14/22	06/14/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		90.8 %	70-130	06/14/22	06/14/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	vst: JL		Batch: 2225014
Diesel Range Organics (C10-C28)	ND	25.0	1	06/14/22	06/14/22	
Oil Range Organics (C28-C36)	ND	50.0	1	06/14/22	06/14/22	
Surrogate: n-Nonane		105 %	50-200	06/14/22	06/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	rst: KL		Batch: 2225011
Chloride	106	20.0	1	06/14/22	06/14/22	

Sample Data

Vertex	Project Name:	Dev	on Continental L	usk 22E-01024		
161, 2055 Premier Way	Project Numbe	er: 2108	21080-0001			Reported:
Sherwood Park AB, T8H 0G2	Project Manag	ger: Jaso	n Crabtree		6/14/2022 5:56:58PM	
]	BH22-02 0'				
		E206069-04				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: RKS		Batch: 2225012
Benzene	ND	0.0250	1	06/14/22	06/14/22	
Ethylbenzene	ND	0.0250	1	06/14/22	06/14/22	
Toluene	ND	0.0250	1	06/14/22	06/14/22	
o-Xylene	ND	0.0250	1	06/14/22	06/14/22	
p,m-Xylene	ND	0.0500	1	06/14/22	06/14/22	
Total Xylenes	ND	0.0250	1	06/14/22	06/14/22	
Surrogate: 4-Bromochlorobenzene-PID		82.3 %	70-130	06/14/22	06/14/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	st: RKS		Batch: 2225012
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/14/22	06/14/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		96.9 %	70-130	06/14/22	06/14/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: JL		Batch: 2225014
Diesel Range Organics (C10-C28)	ND	25.0	1	06/14/22	06/14/22	
Oil Range Organics (C28-C36)	ND	50.0	1	06/14/22	06/14/22	
Surrogate: n-Nonane		83.8 %	50-200	06/14/22	06/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: KL		Batch: 2225011
Chloride	ND	20.0	1	06/14/22	06/14/22	

Page 7 of 22

Sample Data

Vertex	Project Name:	Dev	on Continental L	usk 22E-01024		
161, 2055 Premier Way	Project Numbe	er: 2108	30-0001	Reported:		
Sherwood Park AB, T8H 0G2	Project Manag	er: Jaso	n Crabtree	6/14/2022 5:56:58PM		
]	BH22-02 6'				
	-	E206069-05				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: RKS		Batch: 2225012
Benzene	ND	0.0250	1	06/14/22	06/14/22	
Ethylbenzene	ND	0.0250	1	06/14/22	06/14/22	
Toluene	ND	0.0250	1	06/14/22	06/14/22	
o-Xylene	ND	0.0250	1	06/14/22	06/14/22	
p,m-Xylene	ND	0.0500	1	06/14/22	06/14/22	
Total Xylenes	ND	0.0250	1	06/14/22	06/14/22	
Surrogate: 4-Bromochlorobenzene-PID		93.1 %	70-130	06/14/22	06/14/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	st: RKS		Batch: 2225012
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/14/22	06/14/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		91.5 %	70-130	06/14/22	06/14/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: JL		Batch: 2225014
Diesel Range Organics (C10-C28)	56.7	25.0	1	06/14/22	06/14/22	
Oil Range Organics (C28-C36)	66.4	50.0	1	06/14/22	06/14/22	
Surrogate: n-Nonane		90.5 %	50-200	06/14/22	06/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: KL		Batch: 2225011
Chloride	93.4	20.0	1	06/14/22	06/14/22	

.

Page 124 of 183

Page	<i>125</i>	of	<i>183</i>
------	------------	----	------------

		I				
Vertex	Project Name	: Dev	on Continental Lu			
161, 2055 Premier Way	Project Numb	per: 2108	21080-0001			Reported:
Sherwood Park AB, T8H 0G2	Project Mana	ger: Jaso	n Crabtree			6/14/2022 5:56:58PM
		BH22-03 0'				
		E206069-06				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: RKS		Batch: 2225012
Benzene	ND	0.0250	1	06/14/22	06/14/22	
Ethylbenzene	ND	0.0250	1	06/14/22	06/14/22	
Toluene	ND	0.0250	1	06/14/22	06/14/22	
p-Xylene	ND	0.0250	1	06/14/22	06/14/22	
p,m-Xylene	ND	0.0500	1	06/14/22	06/14/22	
Total Xylenes	ND	0.0250	1	06/14/22	06/14/22	
Surrogate: 4-Bromochlorobenzene-PID		92.7 %	70-130	06/14/22	06/14/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	st: RKS		Batch: 2225012
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/14/22	06/14/22	
- Surrogate: 1-Chloro-4-fluorobenzene-FID		91.0 %	70-130	06/14/22	06/14/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: JL		Batch: 2225014
Diesel Range Organics (C10-C28)	ND	25.0	1	06/14/22	06/14/22	
Oil Range Organics (C28-C36)	ND	50.0	1	06/14/22	06/14/22	
Surrogate: n-Nonane		91.2 %	50-200	06/14/22	06/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: KL		Batch: 2225011
Chloride	ND	20.0	1	06/14/22	06/14/22	

	~					
Vertex	Project Name	: Dev	on Continental L			
161, 2055 Premier Way	Project Numb	per: 210	21080-0001			Reported:
Sherwood Park AB, T8H 0G2	Project Manag	ger: Jaso	n Crabtree			6/14/2022 5:56:58PM
		BH22-03 6'				
		E206069-07				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: RKS		Batch: 2225012
Benzene	ND	0.0250	1	06/14/22	06/14/22	
Ethylbenzene	ND	0.0250	1	06/14/22	06/14/22	
Toluene	ND	0.0250	1	06/14/22	06/14/22	
o-Xylene	ND	0.0250	1	06/14/22	06/14/22	
p,m-Xylene	ND	0.0500	1	06/14/22	06/14/22	
Total Xylenes	ND	0.0250	1	06/14/22	06/14/22	
Surrogate: 4-Bromochlorobenzene-PID		82.0 %	70-130	06/14/22	06/14/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	st: RKS		Batch: 2225012
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/14/22	06/14/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		96.5 %	70-130	06/14/22	06/14/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: JL		Batch: 2225014
Diesel Range Organics (C10-C28)	ND	25.0	1	06/14/22	06/14/22	
Oil Range Organics (C28-C36)	ND	50.0	1	06/14/22	06/14/22	
Surrogate: n-Nonane		90.0 %	50-200	06/14/22	06/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: KL		Batch: 2225011
Chloride	ND	20.0	1	06/14/22	06/14/22	

.

Page 126 of 183

Sample Data

X7t.	Due is st N	- . D	Cantinant 11			
Vertex	Project Name	: Dev	on Continental Li		D (1	
161, 2055 Premier Way	Project Numb	ber: 210	30-0001			Reported:
Sherwood Park AB, T8H 0G2	Project Manager: Jason Crabtree					6/14/2022 5:56:58PM
		BH22-04 0'				
		E206069-08				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RKS		Batch: 2225012
Benzene	ND	0.0250	1	06/14/22	06/14/22	
Ethylbenzene	ND	0.0250	1	06/14/22	06/14/22	
Toluene	ND	0.0250	1	06/14/22	06/14/22	
o-Xylene	ND	0.0250	1	06/14/22	06/14/22	
p,m-Xylene	ND	0.0500	1	06/14/22	06/14/22	
Total Xylenes	ND	0.0250	1	06/14/22	06/14/22	
Surrogate: 4-Bromochlorobenzene-PID		82.3 %	70-130	06/14/22	06/14/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2225012
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/14/22	06/14/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		97.5 %	70-130	06/14/22	06/14/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2225014
Diesel Range Organics (C10-C28)	ND	25.0	1	06/14/22	06/14/22	
Oil Range Organics (C28-C36)	ND	50.0	1	06/14/22	06/14/22	
Surrogate: n-Nonane		93.6 %	50-200	06/14/22	06/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: KL		Batch: 2225011
Chloride	ND	20.0	1	06/14/22	06/14/22	

	Page 128 of 183
DE 01024	

Vertex	Project Name:	Dev	on Continental Li	usk 22E-01024		
161, 2055 Premier Way	Project Number	r: 2108	80-0001			Reported:
Sherwood Park AB, T8H 0G2	Project Manage	er: Jaso	n Crabtree			6/14/2022 5:56:58PM
	ŀ	3H22-04 6'				
	1	E206069-09				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: RKS		Batch: 2225012
Benzene	ND	0.0250	1	06/14/22	06/14/22	
Ethylbenzene	ND	0.0250	1	06/14/22	06/14/22	
Toluene	ND	0.0250	1	06/14/22	06/14/22	
o-Xylene	ND	0.0250	1	06/14/22	06/14/22	
p,m-Xylene	ND	0.0500	1	06/14/22	06/14/22	
Total Xylenes	ND	0.0250	1	06/14/22	06/14/22	
Surrogate: 4-Bromochlorobenzene-PID		81.8 %	70-130	06/14/22	06/14/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	st: RKS		Batch: 2225012
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/14/22	06/14/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		96.1 %	70-130	06/14/22	06/14/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: JL		Batch: 2225014
Diesel Range Organics (C10-C28)	ND	25.0	1	06/14/22	06/14/22	
Oil Range Organics (C28-C36)	ND	50.0	1	06/14/22	06/14/22	
Surrogate: n-Nonane		93.2 %	50-200	06/14/22	06/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: KL		Batch: 2225011
Chloride	94.5	20.0	1	06/14/22	06/14/22	

Page	<i>129</i>	of 183
------	------------	--------

Vertex	Project Name					
161, 2055 Premier Way	Project Numb	per: 2108	30-0001		Reported:	
Sherwood Park AB, T8H 0G2	Project Mana	ger: Jaso	n Crabtree			6/14/2022 5:56:58PM
		BH22-05 0'				
		E206069-10				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	st: RKS		Batch: 2225012
Benzene	ND	0.0250	1	06/14/22	06/14/22	
Ethylbenzene	ND	0.0250	1	06/14/22	06/14/22	
Toluene	ND	0.0250	1	06/14/22	06/14/22	
o-Xylene	ND	0.0250	1	06/14/22	06/14/22	
p,m-Xylene	ND	0.0500	1	06/14/22	06/14/22	
Total Xylenes	ND	0.0250	1	06/14/22	06/14/22	
Surrogate: 4-Bromochlorobenzene-PID		84.1 %	70-130	06/14/22	06/14/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	st: RKS		Batch: 2225012
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/14/22	06/14/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		96.2 %	70-130	06/14/22	06/14/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst: JL			Batch: 2225014
Diesel Range Organics (C10-C28)	157	25.0	1	06/14/22	06/14/22	
Oil Range Organics (C28-C36)	137	50.0	1	06/14/22	06/14/22	
Surrogate: n-Nonane		94.8 %	50-200	06/14/22	06/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: KL		Batch: 2225011
Chloride	ND	20.0	1	06/14/22	06/14/22	

Page .	130	of	183
--------	-----	----	-----

	~					
Vertex	Project Name	: Dev				
161, 2055 Premier Way	Project Number: 21080-0001					Reported:
Sherwood Park AB, T8H 0G2	Project Mana	ger: Jaso	n Crabtree		6/14/2022 5:56:58PM	
		BH22-05 6'				
		E206069-11				
		Reporting				
Analyte	Result	Limit	Dilutior	n Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Ana	alyst: RKS		Batch: 2225012
Benzene	ND	0.0250	1	06/14/22	06/14/22	
Ethylbenzene	ND	0.0250	1	06/14/22	06/14/22	
Toluene	ND	0.0250	1	06/14/22	06/14/22	
o-Xylene	ND	0.0250	1	06/14/22	06/14/22	
p,m-Xylene	ND	0.0500	1	06/14/22	06/14/22	
Total Xylenes	ND	0.0250	1	06/14/22	06/14/22	
Surrogate: 4-Bromochlorobenzene-PID		83.8 %	70-130	06/14/22	06/14/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Ana	alyst: RKS		Batch: 2225012
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/14/22	06/14/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		97.0 %	70-130	06/14/22	06/14/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Ana	alyst: JL		Batch: 2225014
Diesel Range Organics (C10-C28)	ND	25.0	1	06/14/22	06/14/22	
Oil Range Organics (C28-C36)	ND	50.0	1	06/14/22	06/14/22	
Surrogate: n-Nonane		93.6 %	50-200	06/14/22	06/14/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Ana	alyst: KL		Batch: 2225011
Chloride	ND	20.0	1	06/14/22	06/14/22	

QC Summary Data

Vertex 161, 2055 Premier Way Sherwood Park AB, T8H 0G2		Project Name: Project Number: Project Manager:	De 21 Jas	evon Continen 080-0001 son Crabtree	ital Lusk 2	22E-01024	L		Reported: 6/14/2022 5:56:58PM
		Volatile O	rganics b	y EPA 802	1B				Analyst: RKS
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2225012-BLK1)		Prepared: 0					6/14/22 A	Analyzed: 06/14/22	
Benzene	ND	0.0250							
Ethylbenzene	ND	0.0250							
Toluene	ND	0.0250							
o-Xylene	ND	0.0250							
p,m-Xylene	ND	0.0500							
Total Xylenes	ND	0.0250							
Surrogate: 4-Bromochlorobenzene-PID	7.36		8.00		92.0	70-130			
LCS (2225012-BS1)							Prepared: 0	6/14/22 A	Analyzed: 06/14/22
Benzene	4.55	0.0250	5.00		91.0	70-130			
Ethylbenzene	4.17	0.0250	5.00		83.3	70-130			
Toluene	4.41	0.0250	5.00		88.1	70-130			
o-Xylene	4.32	0.0250	5.00		86.5	70-130			
p,m-Xylene	8.59	0.0500	10.0		85.9	70-130			
Total Xylenes	12.9	0.0250	15.0		86.1	70-130			
Surrogate: 4-Bromochlorobenzene-PID	7.49		8.00		93.6	70-130			
LCS Dup (2225012-BSD1)							Prepared: 0	6/14/22 A	Analyzed: 06/14/22
Benzene	4.90	0.0250	5.00		98.1	70-130	7.49	20	
Ethylbenzene	4.49	0.0250	5.00		89.8	70-130	7.47	20	
Toluene	4.75	0.0250	5.00		95.0	70-130	7.48	20	
o-Xylene	4.66	0.0250	5.00		93.1	70-130	7.41	20	
p,m-Xylene	9.26	0.0500	10.0		92.6	70-130	7.47	20	
Total Xylenes	13.9	0.0250	15.0		92.8	70-130	7.45	20	
Surrogate: 4-Bromochlorobenzene-PID	7.51		8.00		93.9	70-130			

Surrogate: 4-Bromochlorobenzene-PID

QC Summary Data

		<u> </u>		v					
Vertex		Project Name:	D	evon Contine	ntal Lusk 2	22E-01024			Reported:
161, 2055 Premier Way		Project Number	:: 2	1080-0001					
Sherwood Park AB, T8H 0G2		Project Manage	r: Ja	ason Crabtree					6/14/2022 5:56:58PM
	No	onhalogenated	Organics	by EPA 80	15D - G	RO			Analyst: RKS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2225012-BLK1)							Prepared: 0	6/14/22	Analyzed: 06/14/22
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.27		8.00		90.9	70-130			
LCS (2225012-BS2)							Prepared: 0	6/14/22	Analyzed: 06/14/22
Gasoline Range Organics (C6-C10)	48.9	20.0	50.0		97.7	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.32		8.00		91.5	70-130			
LCS Dup (2225012-BSD2)							Prepared: 0	6/14/22	Analyzed: 06/14/22
Gasoline Range Organics (C6-C10)	49.8	20.0	50.0		99.6	70-130	1.95	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.36		8.00		92.0	70-130			

QC Summary Data

Vertex 161, 2055 Premier Way		Project Name: Project Number:		Devon Continer 21080-0001	ntal Lusk 2	22E-01024	ļ		Reported:
Sherwood Park AB, T8H 0G2		Project Manager:	:	Jason Crabtree					6/14/2022 5:56:58PM
	Nonh	alogenated Org	ganics b	y EPA 8015E) - DRO	/ORO			Analyst: JL
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	t
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2225014-BLK1)							Prepared: (06/14/22	Analyzed: 06/14/22
Diesel Range Organics (C10-C28)	ND	25.0							
Oil Range Organics (C28-C36)	ND	50.0							
Surrogate: n-Nonane	44.0		50.0		88.0	50-200			
LCS (2225014-BS1)							Prepared: (06/14/22	Analyzed: 06/14/22
Diesel Range Organics (C10-C28)	492	25.0	500		98.3	38-132			
Surrogate: n-Nonane	42.1		50.0		84.2	50-200			
Matrix Spike (2225014-MS1)				Source:	E206069-	02	Prepared: (06/14/22	Analyzed: 06/14/22
Diesel Range Organics (C10-C28)	496	25.0	500	ND	99.2	38-132			
Surrogate: n-Nonane	44.9		50.0		89.8	50-200			
Matrix Spike Dup (2225014-MSD1)				Source:	E206069-	02	Prepared: (06/14/22	Analyzed: 06/14/22
Diesel Range Organics (C10-C28)	498	25.0	500	ND	99.6	38-132	0.451	20	
Surrogate: n-Nonane	44.1		50.0		88.1	50-200			

QC Summary Data

Vertex 161, 2055 Premier Way Sherwood Park AB, T8H 0G2		Project Name: Project Number: Project Manager:	- - - -	Devon Continen 21080-0001 Jason Crabtree	ital Lusk 2	22E-01024	ļ		Reported: 6/14/2022 5:56:58PM
		Anions by EPA 300.0/9056A							Analyst: KL
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2225011-BLK1)							Prepared: 0	5/14/22 A	nalyzed: 06/14/22
Chloride	ND	20.0							
LCS (2225011-BS1)							Prepared: 0	5/14/22 A	nalyzed: 06/14/22
Chloride	249	20.0	250		99.7	90-110			
LCS Dup (2225011-BSD1)							Prepared: 0	5/14/22 A	nalyzed: 06/14/22
Chloride	250	20.0	250		99.8	90-110	0.144	20	

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Vertex	Project Name:	Devon Continental Lusk 22E-01024	
161, 2055 Premier Way	Project Number:	21080-0001	Reported:
Sherwood Park AB, T8H 0G2	Project Manager:	Jason Crabtree	06/14/22 17:56

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

читтик форбраний (Умрандт) 1993 - Энг наловиния			6281-09 (2021 H					Man i Man i	190-557 626 500 758-001	102120 400	10978.MH. M 10978.MH. M	yborsuJ to nisnJ ۲۵۹۹ (۱۹۶۹) (۱۹۶۹) (۱۹۶۹) ۱۹۶۹ (۱۹۶۹) (۱۹۹۹) (۱۹۹۹) (۱۹۹۹) ۱۹۹۹ (۱۹۹۹) (۱۹۹۹) (۱۹۹۹) (۱۹۹۹)			Anoped off after hours to a secure drop off area. Analytical Laboratory			
	-			-	.2	Aep 11	ianba	sqns ud	above 0 but less than 6 °C o	s qm91 gv6 n	e te avi ni ba	1 to died?	, are sampled or	γeh γeb edt eoi no	n must be received	thermal preservation	gninuper selqme2**	
	AOV	- v ,ssalg	amber	- 36 , 2i	tselq'	/ʎlod	- d '	sselg	- g :9qyT 19nistnoD)	1 00	0 - Other	, suoənpA - A (əgb	nis - <mark>82</mark> , bilo2 - b2 ,liu	S - S :xinteM sigmes	
		_£T			12	Б	⊃° qı	məT		22/h]/(n (ə.	utengiz).yo		SI'2	Pate Date	Dinjeus A	bentainpriled b	
	-		<u> </u>	N) ƏsŊ (aol n	o pə	1 eceiv	8** 20 JU 6	Dete DH0			Received	об <i>י</i> 30	6-10-3030 Date	y: (Signature)	Relinquished b	
				_			0					CBLI				9	DUGAR A	
					Υľ	11	N.	21	,	1		30.11				1.7	HU-CUA8	
						Π					11	00:1				,0	P0-6648	
					Π		\prod					.55:81				j 9	8#20-03	
					Π	Π						Oh: 01				10	E0-6648	
					X	R	K	X		1		Uh:81				19	BH37-0J	
					X	R	R	R		1		01:11				,0	BH97-07	
										1		Stitl			plot	50, 2	8#77-01	
					X	X	X	X	207 1	IION	l'na	D:00	7007-6-5)		,81	10-6648	
					R	X	X	X	2077 M	170	1'na	09:11	6606-P-6)		, hl	BH97-01	
Corre		+			Chlor	TPH b	BTEX	GRO/	containers J/TYPE/Preservative	ον - Υτ <u>ρ</u>	Matrix	əlqms2 əmiT	ate0 alqms2		GI s	əlqma2		
et C	La				ide b	oy 41	by 8	DRO		.0	Page			<u> </u>	antaban	er: Jaken (Project Manag	
ont/F	Nu				уу 30	.8.1	021	by 8	180-0201	310			5.CD	operation	ndt, pla	some want	Email(s): LPw	
rsrv	nber				0.0			015	Job Number		_					teri-201	Phone: 701-	
(s) Y,									600000	BE	99 29				107A1 187	www	Sampler: L.	
Z.									#OW daJ		ρτ Χ			10-900	1/8n 14	apwork two) N	Project: Now	
VInC	D del		ethod	M bns	sisyle	snA			VinO 9sU daJ		SUSH?				(11/4 tradit	annena (h.) ×	Client: North	

3	Contra Jun contra Jun	kon Unetada Ma	٥.	ſ	Burg	un (621 598]	81-59() 91-559()	0000 FJ	5190-657 1026) 4d 5190-779 1505) 4d 1730/WH : NAMMK	2-425-07] 1051207-000	10478 MH, Joop 10478 MH, Joop 2010, 211 Stud, 19400	g openian go - s	ઈમામ્લંડ સ્ટાવા વિમ ડા ૧૬૮૬	۵۰۸ ۲	а гароца 0 160	TİVI DityionA	le l
\vdash			~	_	-		App 11	uanha	conc u	info:	Notes/Billing	Vboteu Custody	to nisho		area.	o a secure drop off	off after hours i	paddorb (s)aldmes
	AOV	- A 'SSE	uper	ue - 8	le 'oig	seid	/ʎjoc	d - d	SSEI3	ontainer Type: g - g		e te azi ni baz	en haviarat	TO halomes are ve	0 - Other	age, A - Aqueous, I	a - 2011a, 28 - 510	Samples requiring ther
	_	_ET			N /	۲2 ۲2	est u	o pə	viəce Tem		1001-1 Date	nre)	tengi2) :Yd	l baliesa Received I	51.4. 08:30	100-01-9		
-	1 1		1	uO ə	sU di	eJ	1	1	1	Time	Date	4 10	engi2) :yd	B CONTRACT	∋miT	916O	(9101603iS	Relinquished by: (
-								+			11-	-			-		_	
								+										
										1								
-	+ +		+		$\left \right $												1.4	1
								\uparrow										
								<u> </u>										
-												-					-	
						X	X	R	R	Sol	1200-1	1.105	51:41	6-9-2019			C)	50-CCA
_	+				_	()				70	IMP 1	1100	Do. or	- hom 1 0				
						X	X	X	X		H wit I	1 ms	SDID	1105-6-9			O_{I}	20-2245
C						5	뒥	B	ត្	PE/Preservative	άτγ - νοί/τγ		əwii		1			SARLATINAR
orrec						loric	H by	EXB	٥́/٦	tainers	uoj	xinteM	əldme2	Sample Date		01 e	Iqme2	SUNDX KARIS
t Co	Lab					le by	418	V 80	RO	9	to C	Pageq						roject Manager:
nt/P	Nun					300	.1	21	98 Ac	1000-09	SOIS		-	7, COL	obrov Garr	ton 2 (hang	xoprariam	May 1 :(z)liem
rsn	ıber	2).0)15	o Number	lot						TTL1-56	101 := nou
(S) Y										60000	REA	۶t				11 NF -	wow	ampler: LP
Z										#OW da	1	рт 🗙				Mary 1	openant-puro	roject: Devion
λļu) del		роч	t9M	pue s	isyle	snA			yinO əsU o	רפן	SUSH ?				(IN: 8 -form)	DAMPING	X96 Wall : Insil
												Page 21 c	of 22			·		·

•

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

	Vertex	ate Received:	06/14/22 09::	50	W	ork Order ID:	E206069
Phone:	(575) 748-0176 D	ate Logged In:	06/14/22 09::	50	L	ogged In By:	Alexa Michaels
Email:	jcrabtree@vertex.ca	ue Date:	06/14/22 17:	00 (0 day TAT)			
hain of	Custody (COC)						
. Does t	he sample ID match the COC?		Yes				
2. Does t	he number of samples per sampling site location match	the COC	Yes				
3. Were s	amples dropped off by client or carrier?		Yes	Carrier: U	UPS		
. Was th	e COC complete, i.e., signatures, dates/times, requeste	d analyses?	Yes				
5. Were a	Il samples received within holding time? Note: Analysis, such as pH which should be conducted in th i.e, 15 minute hold time, are not included in this disucssion.	e field,	Yes			<u>Commen</u>	ts/Resolution
Sample [<u>Furn Around Time (TAT)</u>					22 01 20 1	
6. Did th	e COC indicate standard TAT, or Expedited TAT?		Yes		Sample (BH	22-01 20)	is on hold per
<u>Sample (</u>	Cooler				COC, Sample	e will expi	re on June 23rd
7. Was a	sample cooler received?		Yes		2022 at 12:14	4pm	
3. If yes,	was cooler received in good condition?		Yes				
). Was th	e sample(s) received intact, i.e., not broken?		Yes				
0. Were	custody/security seals present?		No				
1. If yes	s, were custody/security seals intact?		NA				
12. Was tl	ne sample received on ice? If yes, the recorded temp is 4°C, i.e. Note: Thermal preservation is not required, if samples are re- minutes of sampling	e., 6°±2°C eceived w/i 15	Yes				
13. If no	visible ice, record the temperature. Actual sample te	mperature: <u>4</u> °	<u>°C</u>				
ample (<u>Container</u>						
14. Are a	queous VOC samples present?		No				
5. Are V	/OC samples collected in VOA Vials?		NA				
6. Is the	head space less than 6-8 mm (pea sized or less)?		NA				
.7. Was a	a trip blank (TB) included for VOC analyses?		NA				
18. Are r	on-VOC samples collected in the correct containers?		Yes				
9. Is the	appropriate volume/weight or number of sample container	s collected?	Yes				
Field La	<u>bel</u>						
20. Were	field sample labels filled out with the minimum inform	nation:					
S	ample ID?		Yes				
	Date/Time Collected?		Yes				
Comple I	Preservation		Yes				
1 Does	the COC or field labels indicate the samples were pres	erved?	No				
)) Ares	ample(s) correctly preserved?	civea.	NA				
24. Is lah	filteration required and/or requested for dissolved met	als?	No				
Inltink	aso Samula Matrix		110				
viuitiph: 26. Docc	the sample have more than one phase i.e. multiphase)	N.				
70. Dues	the sample have more than one phase, i.e., multiphase						
11 yes	s, does me COC specify which phase(s) is to be analyze	u (NA				
	·····						
Subcont	ract Laboratory						
<u>Subcont</u> ?8. Are s	amples required to get sent to a subcontract laboratory	?	No				

Signature of client authorizing changes to the COC or sample disposition.

envirotech Inc.

•

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Vertex

Project Name:

Devon Continental Lusk

Work Order: E206148

Job Number: 21080-0001

Received: 6/20/2022

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 6/27/22

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Envirotech Inc, holds the NM SDWA certification for data reported. (Lab #NM00979) Date Reported: 6/27/22

Jason Crabtree 161, 2055 Premier Way Sherwood Park, AB T8H 0G2

Project Name: Devon Continental Lusk Workorder: E206148 Date Received: 6/20/2022 8:15:00AM

Jason Crabtree,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 6/20/2022 8:15:00AM, under the Project Name: Devon Continental Lusk.

The analytical test results summarized in this report with the Project Name: Devon Continental Lusk apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe Technical Representative/Client Services

Office: 505-421-LABS(5227) Cell: 505-320-4759 ljarboe@envirotech-inc.com Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

West Texas Midland/Odessa Area Rayny Hagan Technical Representative Office: 505-421-LABS(5227)

Envirotech Web Address: www.envirotech-inc.com

Page 140 of 183

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	5
Sample Data	6
BS22-01 14'	6
BS22-02 5'	7
BS22-03 5'	8
BS22-04 5'	9
BS22-05 5'	10
BS22-06 5'	11
BS22-07 5'	12
BS22-08 5'	13
BS22-09 5'	14
BS22-10 5'	15
BS22-11 5'	16
BS22-12 5'	17
WS22-01 5' - 14'	18
WS22-02 5' - 14'	19
WS22-03 0 - 5'	20
WS22-04 0 - 5'	21
WS22-05 0 - 5'	22
WS22-06 0 - 5'	23
WS22-07 0 - 5'	24
WS22-08 0 - 5'	25

.

Table of Contents (continued)

WS22-09 0 - 5'	26
WS22-10 0 - 5'	27
WS22-11 0 - 5'	28
WS22-12 0 - 5'	29
BH22-06 0'	30
BH22-06 2'	31
QC Summary Data	32
QC - Volatile Organic Compounds by EPA 8260B	32
QC - Volatile Organics by EPA 8021B	33
QC - Nonhalogenated Organics by EPA 8015D - GRO	34
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	36
QC - Anions by EPA 300.0/9056A	38
Definitions and Notes	40
Chain of Custody etc.	41

Sample Summary

		I I I I I I I I I I I I I I I I I I I					
Vertex 161, 2055 Premier Way Sherwood Park AB, T8H 0G2		Project Name: Project Number: Project Manager:	Devon Continental 21080-0001 Jason Crabtree	Lusk	Reported: 06/27/22 14:42		
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container		
BS22-01 14'	E206148-01A	Soil	06/16/22	06/20/22	Glass Jar, 4 oz.		
BS22-02 5'	E206148-02A	Soil	06/16/22	06/20/22	Glass Jar, 4 oz.		
BS22-03 5'	E206148-03A	Soil	06/16/22	06/20/22	Glass Jar, 4 oz.		
BS22-04 5'	E206148-04A	Soil	06/16/22	06/20/22	Glass Jar, 4 oz.		
BS22-05 5'	E206148-05A	Soil	06/16/22	06/20/22	Glass Jar, 4 oz.		
BS22-06 5'	E206148-06A	Soil	06/16/22	06/20/22	Glass Jar, 4 oz.		
BS22-07 5'	E206148-07A	Soil	06/16/22	06/20/22	Glass Jar, 4 oz.		
BS22-08 5'	E206148-08A	Soil	06/16/22	06/20/22	Glass Jar, 4 oz.		
BS22-09 5'	E206148-09A	Soil	06/16/22	06/20/22	Glass Jar, 4 oz.		
BS22-10 5'	E206148-10A	Soil	06/16/22	06/20/22	Glass Jar, 4 oz.		
BS22-11 5'	E206148-11A	Soil	06/16/22	06/20/22	Glass Jar, 4 oz.		
BS22-12 5'	E206148-12A	Soil	06/16/22	06/20/22	Glass Jar, 4 oz.		
WS22-01 5' - 14'	E206148-13A	Soil	06/16/22	06/20/22	Glass Jar, 4 oz.		
WS22-02 5' - 14'	E206148-14A	Soil	06/16/22	06/20/22	Glass Jar, 4 oz.		
WS22-03 0 - 5'	E206148-15A	Soil	06/16/22	06/20/22	Glass Jar, 4 oz.		
WS22-04 0 - 5'	E206148-16A	Soil	06/16/22	06/20/22	Glass Jar, 4 oz.		
WS22-05 0 - 5'	E206148-17A	Soil	06/16/22	06/20/22	Glass Jar, 4 oz.		
WS22-06 0 - 5'	E206148-18A	Soil	06/16/22	06/20/22	Glass Jar, 4 oz.		
WS22-07 0 - 5'	E206148-19A	Soil	06/16/22	06/20/22	Glass Jar, 4 oz.		
WS22-08 0 - 5'	E206148-20A	Soil	06/16/22	06/20/22	Glass Jar, 4 oz.		
WS22-09 0 - 5'	E206148-21A	Soil	06/16/22	06/20/22	Glass Jar, 4 oz.		
WS22-10 0 - 5'	E206148-22A	Soil	06/16/22	06/20/22	Glass Jar, 4 oz.		
WS22-11 0 - 5'	E206148-23A	Soil	06/16/22	06/20/22	Glass Jar, 4 oz.		
WS22-12 0 - 5'	E206148-24A	Soil	06/16/22	06/20/22	Glass Jar, 4 oz.		
BH22-06 0'	E206148-25A	Soil	06/16/22	06/20/22	Glass Jar, 4 oz.		
BH22-06 2'	E206148-26A	Soil	06/16/22	06/20/22	Glass Jar, 4 oz.		

		1				
Vertex	Project Name	e: Dev	on Continental Lu	sk		
161, 2055 Premier Way	Project Num	ber: 210	80-0001			Reported:
Sherwood Park AB, T8H 0G2	Project Mana	ager: Jaso	n Crabtree			6/27/2022 2:42:58PM
		BS22-01 14'				
		E206148-01				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: IY		Batch: 2226048
Benzene	ND	0.0250	1	06/21/22	06/23/22	
Ethylbenzene	ND	0.0250	1	06/21/22	06/23/22	
Toluene	ND	0.0250	1	06/21/22	06/23/22	
o-Xylene	ND	0.0250	1	06/21/22	06/23/22	
p,m-Xylene	ND	0.0500	1	06/21/22	06/23/22	
Total Xylenes	ND	0.0250	1	06/21/22	06/23/22	
Surrogate: 4-Bromochlorobenzene-PID		86.8 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: IY		Batch: 2226048
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/21/22	06/23/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		83.8 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: JL		Batch: 2226052
Diesel Range Organics (C10-C28)	ND	25.0	1	06/21/22	06/23/22	
Oil Range Organics (C28-C36)	ND	50.0	1	06/21/22	06/23/22	
Surrogate: n-Nonane		123 %	50-200	06/21/22	06/23/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: KL		Batch: 2226035
Chloride	1620	20.0	1	06/21/22	06/24/22	

Sample Data

Sample Data

Vertex	Project Name:	: Dev	Devon Continental Lusk			
161, 2055 Premier Way	Project Numb	er: 2108	21080-0001			Reported:
Sherwood Park AB, T8H 0G2	Project Manag	Project Manager: Jason Crabtree				6/27/2022 2:42:58PM
		BS22-02 5'				
		E206148-02				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst: IY			Batch: 2226048
Benzene	ND	0.0250	1	06/21/22	06/23/22	
Ethylbenzene	ND	0.0250	1	06/21/22	06/23/22	
Toluene	ND	0.0250	1	06/21/22	06/23/22	
o-Xylene	ND	0.0250	1	06/21/22	06/23/22	
p,m-Xylene	ND	0.0500	1	06/21/22	06/23/22	
Total Xylenes	ND	0.0250	1	06/21/22	06/23/22	
Surrogate: 4-Bromochlorobenzene-PID		86.8 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	vst: IY		Batch: 2226048
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/21/22	06/23/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		84.1 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	rst: JL		Batch: 2226052
Diesel Range Organics (C10-C28)	ND	25.0	1	06/21/22	06/23/22	
Oil Range Organics (C28-C36)	ND	50.0	1	06/21/22	06/23/22	
Surrogate: n-Nonane		121 %	50-200	06/21/22	06/23/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	rst: KL		Batch: 2226035
Chloride	122	20.0	1	06/21/22	06/24/22	

Sample Data

	~					
Vertex	Project Name:	Dev	Devon Continental Lusk			
161, 2055 Premier Way	Project Number	er: 2108	21080-0001			Reported:
Sherwood Park AB, T8H 0G2	Project Manag	Project Manager: Jason Crabtree				6/27/2022 2:42:58PM
		BS22-03 5'				
		E206148-03				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst: IY			Batch: 2226048
Benzene	ND	0.0250	1	06/21/22	06/23/22	
Ethylbenzene	ND	0.0250	1	06/21/22	06/23/22	
Toluene	ND	0.0250	1	06/21/22	06/23/22	
o-Xylene	ND	0.0250	1	06/21/22	06/23/22	
p,m-Xylene	ND	0.0500	1	06/21/22	06/23/22	
Total Xylenes	ND	0.0250	1	06/21/22	06/23/22	
Surrogate: 4-Bromochlorobenzene-PID		86.7 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	yst: IY		Batch: 2226048
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/21/22	06/23/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		83.4 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	vst: JL		Batch: 2226052
Diesel Range Organics (C10-C28)	145	25.0	1	06/21/22	06/23/22	
Oil Range Organics (C28-C36)	137	50.0	1	06/21/22	06/23/22	
Surrogate: n-Nonane		115 %	50-200	06/21/22	06/23/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	yst: KL		Batch: 2226035
Chloride	ND	20.0	1	06/21/22	06/24/22	

Sample Data

		ampic D	utu			
Vertex	Project Name:	Dev	Devon Continental Lusk			
161, 2055 Premier Way	Project Number	er: 2108	21080-0001			Reported:
Sherwood Park AB, T8H 0G2	Project Manag	ger: Jaso	n Crabtree			6/27/2022 2:42:58PM
		BS22-04 5'				
		E206148-04				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst: IY			Batch: 2226048
Benzene	ND	0.0250	1	06/21/22	06/23/22	
Ethylbenzene	ND	0.0250	1	06/21/22	06/23/22	
Toluene	ND	0.0250	1	06/21/22	06/23/22	
o-Xylene	ND	0.0250	1	06/21/22	06/23/22	
p,m-Xylene	ND	0.0500	1	06/21/22	06/23/22	
Total Xylenes	ND	0.0250	1	06/21/22	06/23/22	
Surrogate: 4-Bromochlorobenzene-PID		85.8 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	st: IY		Batch: 2226048
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/21/22	06/23/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		83.6 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	st: JL		Batch: 2226052
Diesel Range Organics (C10-C28)	ND	25.0	1	06/21/22	06/23/22	
Oil Range Organics (C28-C36)	ND	50.0	1	06/21/22	06/23/22	
Surrogate: n-Nonane		121 %	50-200	06/21/22	06/23/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: KL		Batch: 2226035
Chloride	ND	20.0	1	06/21/22	06/24/22	

Sample Data

		I I				
Vertex	Project Name	e: Dev	Devon Continental Lusk			
161, 2055 Premier Way	Project Numb	ber: 2108	21080-0001			Reported:
Sherwood Park AB, T8H 0G2	Project Mana	iger: Jaso	n Crabtree		6/27/2022 2:42:58PM	
		BS22-05 5'				
		E206148-05				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	ng/kg Analyst: IY			Batch: 2226048
Benzene	ND	0.0250	1	06/21/22	06/23/22	
Ethylbenzene	ND	0.0250	1	06/21/22	06/23/22	
Toluene	ND	0.0250	1	06/21/22	06/23/22	
o-Xylene	ND	0.0250	1	06/21/22	06/23/22	
p,m-Xylene	ND	0.0500	1	06/21/22	06/23/22	
Total Xylenes	ND	0.0250	1	06/21/22	06/23/22	
Surrogate: 4-Bromochlorobenzene-PID		85.1 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Anal	yst: IY		Batch: 2226048
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/21/22	06/23/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		82.2 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Anal	yst: JL		Batch: 2226052
Diesel Range Organics (C10-C28)	78.5	25.0	1	06/21/22	06/23/22	
Oil Range Organics (C28-C36)	55.5	50.0	1	06/21/22	06/23/22	
Surrogate: n-Nonane		104 %	50-200	06/21/22	06/23/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Anal	yst: KL		Batch: 2226035
Chloride	ND	20.0	1	06/21/22	06/24/22	

Sample Data

		L				
Vertex	Project Name	e: Dev	Devon Continental Lusk			
161, 2055 Premier Way	Project Numb	per: 2108	21080-0001			Reported:
Sherwood Park AB, T8H 0G2	Project Mana	ger: Jaso	n Crabtree			6/27/2022 2:42:58PM
		BS22-06 5'				
		E206148-06				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	kg Analyst: IY			Batch: 2226048
Benzene	ND	0.0250	1	06/21/22	06/23/22	
Ethylbenzene	ND	0.0250	1	06/21/22	06/23/22	
Toluene	ND	0.0250	1	06/21/22	06/23/22	
o-Xylene	ND	0.0250	1	06/21/22	06/23/22	
p,m-Xylene	ND	0.0500	1	06/21/22	06/23/22	
Total Xylenes	ND	0.0250	1	06/21/22	06/23/22	
Surrogate: 4-Bromochlorobenzene-PID		85.5 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	st: IY		Batch: 2226048
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/21/22	06/23/22	
- Surrogate: 1-Chloro-4-fluorobenzene-FID		83.0 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: JL		Batch: 2226052
Diesel Range Organics (C10-C28)	82.4	25.0	1	06/21/22	06/23/22	
Oil Range Organics (C28-C36)	ND	50.0	1	06/21/22	06/23/22	
Surrogate: n-Nonane		110 %	50-200	06/21/22	06/23/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: KL		Batch: 2226035
Chloride	40.7	20.0	1	06/21/22	06/24/22	

Sample Data

	~	P				
Vertex	Project Name	: Dev	Devon Continental Lusk			
161, 2055 Premier Way	Project Numb	per: 210	80-0001			Reported:
Sherwood Park AB, T8H 0G2	Project Manager: Jason Crabtree					6/27/2022 2:42:58PM
		BS22-07 5'				
		E206148-07				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst: IY			Batch: 2226048
Benzene	ND	0.0250	1	06/21/22	06/23/22	
Ethylbenzene	ND	0.0250	1	06/21/22	06/23/22	
Toluene	ND	0.0250	1	06/21/22	06/23/22	
o-Xylene	ND	0.0250	1	06/21/22	06/23/22	
p,m-Xylene	ND	0.0500	1	06/21/22	06/23/22	
Total Xylenes	ND	0.0250	1	06/21/22	06/23/22	
Surrogate: 4-Bromochlorobenzene-PID		86.2 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	vst: IY		Batch: 2226048
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/21/22	06/23/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		82.8 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	vst: JL		Batch: 2226052
Diesel Range Organics (C10-C28)	151	25.0	1	06/21/22	06/23/22	
Oil Range Organics (C28-C36)	63.6	50.0	1	06/21/22	06/23/22	
Surrogate: n-Nonane		109 %	50-200	06/21/22	06/23/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	yst: KL		Batch: 2226035
Chloride	52.5	20.0	1	06/21/22	06/24/22	

Sample Data

		···				
Vertex	Project Name	e: Dev	Devon Continental Lusk			
161, 2055 Premier Way	Project Num	ber: 210	21080-0001			Reported:
Sherwood Park AB, T8H 0G2	Project Mana	iger: Jaso	n Crabtree		6/27/2022 2:42:58PM	
		BS22-08 5'				
		E206148-08				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	g/kg Analyst: IY			Batch: 2226048
Benzene	ND	0.0250	1	06/21/22	06/23/22	
Ethylbenzene	ND	0.0250	1	06/21/22	06/23/22	
Toluene	ND	0.0250	1	06/21/22	06/23/22	
o-Xylene	ND	0.0250	1	06/21/22	06/23/22	
p,m-Xylene	ND	0.0500	1	06/21/22	06/23/22	
Total Xylenes	ND	0.0250	1	06/21/22	06/23/22	
Surrogate: 4-Bromochlorobenzene-PID		84.2 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Ana	lyst: IY		Batch: 2226048
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/21/22	06/23/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		83.5 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Ana	lyst: JL		Batch: 2226052
Diesel Range Organics (C10-C28)	207	25.0	1	06/21/22	06/23/22	
Oil Range Organics (C28-C36)	150	50.0	1	06/21/22	06/23/22	
Surrogate: n-Nonane		103 %	50-200	06/21/22	06/23/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Ana	lyst: KL		Batch: 2226035
Chloride	22.8	20.0	1	06/21/22	06/24/22	

Sample Data

		L				
Vertex	Project Name	:: Dev	on Continental L	ısk		
161, 2055 Premier Way	Project Numb	per: 2108	21080-0001			Reported:
Sherwood Park AB, T8H 0G2	Project Mana	ger: Jaso	n Crabtree			6/27/2022 2:42:58PM
		BS22-09 5'				
		E206148-09				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	kg Analyst: IY			Batch: 2226048
Benzene	ND	0.0250	1	06/21/22	06/23/22	
Ethylbenzene	ND	0.0250	1	06/21/22	06/23/22	
Toluene	ND	0.0250	1	06/21/22	06/23/22	
o-Xylene	ND	0.0250	1	06/21/22	06/23/22	
p,m-Xylene	ND	0.0500	1	06/21/22	06/23/22	
Total Xylenes	ND	0.0250	1	06/21/22	06/23/22	
Surrogate: 4-Bromochlorobenzene-PID		84.7 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	st: IY		Batch: 2226048
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/21/22	06/23/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		84.0 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: JL		Batch: 2226052
Diesel Range Organics (C10-C28)	ND	25.0	1	06/21/22	06/23/22	
Oil Range Organics (C28-C36)	ND	50.0	1	06/21/22	06/23/22	
Surrogate: n-Nonane		112 %	50-200	06/21/22	06/23/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: KL		Batch: 2226035
Chloride	ND	20.0	1	06/21/22	06/24/22	

Sample Data

		L				
Vertex	Project Name	: Dev	Devon Continental Lusk			
161, 2055 Premier Way	Project Numb	per: 210	21080-0001			Reported:
Sherwood Park AB, T8H 0G2	Project Mana	ger: Jaso	n Crabtree			6/27/2022 2:42:58PM
		BS22-10 5'				
		E206148-10				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	mg/kg Analyst: IY			Batch: 2226048
Benzene	ND	0.0250	1	06/21/22	06/23/22	
Ethylbenzene	ND	0.0250	1	06/21/22	06/23/22	
Toluene	ND	0.0250	1	06/21/22	06/23/22	
o-Xylene	ND	0.0250	1	06/21/22	06/23/22	
p,m-Xylene	ND	0.0500	1	06/21/22	06/23/22	
Total Xylenes	ND	0.0250	1	06/21/22	06/23/22	
Surrogate: 4-Bromochlorobenzene-PID		82.3 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	vst: IY		Batch: 2226048
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/21/22	06/23/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		84.5 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	rst: JL		Batch: 2226052
Diesel Range Organics (C10-C28)	33.4	25.0	1	06/21/22	06/23/22	
Oil Range Organics (C28-C36)	ND	50.0	1	06/21/22	06/23/22	
Surrogate: n-Nonane		128 %	50-200	06/21/22	06/23/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	rst: KL		Batch: 2226035
Chloride	ND	20.0	1	06/21/22	06/24/22	

Sample Data

		L				
Vertex	Project Name	:: Dev	on Continental L	lusk		
161, 2055 Premier Way	Project Numb	per: 210	21080-0001			Reported:
Sherwood Park AB, T8H 0G2	Project Mana	ger: Jaso	n Crabtree		6/27/2022 2:42:58PM	
		BS22-11 5'				
		E206148-11				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst: IY			Batch: 2226048
Benzene	ND	0.0250	1	06/21/22	06/23/22	
Ethylbenzene	ND	0.0250	1	06/21/22	06/23/22	
Toluene	ND	0.0250	1	06/21/22	06/23/22	
o-Xylene	ND	0.0250	1	06/21/22	06/23/22	
p,m-Xylene	ND	0.0500	1	06/21/22	06/23/22	
Total Xylenes	ND	0.0250	1	06/21/22	06/23/22	
Surrogate: 4-Bromochlorobenzene-PID		82.3 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	vst: IY		Batch: 2226048
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/21/22	06/23/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		82.9 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	rst: JL		Batch: 2226052
Diesel Range Organics (C10-C28)	647	25.0	1	06/21/22	06/23/22	
Oil Range Organics (C28-C36)	569	50.0	1	06/21/22	06/23/22	
Surrogate: n-Nonane		130 %	50-200	06/21/22	06/23/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	rst: KL		Batch: 2226035
Chloride	ND	20.0	1	06/21/22	06/24/22	

Sample Data

	\sim					
Vertex	Project Name	: Dev	on Continental L	Jusk		
161, 2055 Premier Way	Project Numb	per: 2108	21080-0001			Reported:
Sherwood Park AB, T8H 0G2	Project Manag	ger: Jaso	n Crabtree			6/27/2022 2:42:58PM
		BS22-12 5'				
		E206148-12				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	g Analyst: IY			Batch: 2226048
Benzene	ND	0.0250	1	06/21/22	06/23/22	
Ethylbenzene	ND	0.0250	1	06/21/22	06/23/22	
Toluene	ND	0.0250	1	06/21/22	06/23/22	
o-Xylene	ND	0.0250	1	06/21/22	06/23/22	
p,m-Xylene	ND	0.0500	1	06/21/22	06/23/22	
Total Xylenes	ND	0.0250	1	06/21/22	06/23/22	
Surrogate: 4-Bromochlorobenzene-PID		82.4 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	/st: IY		Batch: 2226048
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/21/22	06/23/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		83.3 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	/st: JL		Batch: 2226052
Diesel Range Organics (C10-C28)	373	25.0	1	06/21/22	06/23/22	
Oil Range Organics (C28-C36)	332	50.0	1	06/21/22	06/23/22	
Surrogate: n-Nonane		141 %	50-200	06/21/22	06/23/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	/st: KL		Batch: 2226035
Chloride	23.8	20.0	1	06/21/22	06/24/22	

Sample Data

		···I•• —				
Vertex	Project Name	: Dev	on Continental	Lusk		
161, 2055 Premier Way	Project Numb	per: 2108	21080-0001			Reported:
Sherwood Park AB, T8H 0G2	Project Mana	ger: Jaso	n Crabtree		6/27/2022 2:42:58PM	
	W	'822-01 5' - 14	4'			
		E206148-13				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst: IY			Batch: 2226048
Benzene	ND	0.0250	1	06/21/22	06/24/22	
Ethylbenzene	ND	0.0250	1	06/21/22	06/24/22	
Toluene	ND	0.0250	1	06/21/22	06/24/22	
o-Xylene	ND	0.0250	1	06/21/22	06/24/22	
p,m-Xylene	ND	0.0500	1	06/21/22	06/24/22	
Total Xylenes	ND	0.0250	1	06/21/22	06/24/22	
Surrogate: 4-Bromochlorobenzene-PID		86.3 %	70-130	06/21/22	06/24/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Ana	lyst: IY		Batch: 2226048
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/21/22	06/24/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		82.7 %	70-130	06/21/22	06/24/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Ana	lyst: JL		Batch: 2226052
Diesel Range Organics (C10-C28)	27.2	25.0	1	06/21/22	06/23/22	
Oil Range Organics (C28-C36)	ND	50.0	1	06/21/22	06/23/22	
Surrogate: n-Nonane		112 %	50-200	06/21/22	06/23/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Ana	lyst: KL		Batch: 2226035
Chloride	270	20.0	1	06/21/22	06/24/22	

Sample Data

		impic 2				
Vertex	Project Name:	Dev	on Continental L	usk		
161, 2055 Premier Way	Project Numbe	er: 210	30-0001			Reported:
Sherwood Park AB, T8H 0G2	n Crabtree			6/27/2022 2:42:58PM		
	WS	522-02 5' - 1	4'			
]	E206148-14				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: IY	Batch: 2226048	
Benzene	ND	0.0250	1	06/21/22	06/23/22	
Ethylbenzene	ND	0.0250	1	06/21/22	06/23/22	
Toluene	ND	0.0250	1	06/21/22	06/23/22	
o-Xylene	ND	0.0250	1	06/21/22	06/23/22	
p,m-Xylene	ND	0.0500	1	06/21/22	06/23/22	
Total Xylenes	ND	0.0250	1	06/21/22	06/23/22	
Surrogate: 4-Bromochlorobenzene-PID		92.0 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	st: IY		Batch: 2226048
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/21/22	06/23/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		84.1 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: JL		Batch: 2226052
Diesel Range Organics (C10-C28)	ND	25.0	1	06/21/22	06/23/22	
Oil Range Organics (C28-C36)	ND	50.0	1	06/21/22	06/23/22	
Surrogate: n-Nonane		90.8 %	50-200	06/21/22	06/23/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: KL		Batch: 2226035
Chloride	2410	20.0	1	06/21/22	06/24/22	

Sample Data

			ucu								
Vertex	Project Name:	Dev	on Continental L	usk							
161, 2055 Premier Way	Project Numb	er: 2108	30-0001			Reported:					
Sherwood Park AB, T8H 0G2	Project Manag	ger: Jaso	n Crabtree			6/27/2022 2:42:58PM					
	W	/S22-03 0 - 5	,								
		E206148-15									
Reporting											
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes					
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	Analyst: IY		Batch: 2226048					
Benzene	ND	0.0250	1	06/21/22	06/23/22						
Ethylbenzene	ND	0.0250	1	06/21/22	06/23/22						
Toluene	ND	0.0250	1	06/21/22	06/23/22						
o-Xylene	ND	0.0250	1	06/21/22	06/23/22						
p,m-Xylene	ND	0.0500	1	06/21/22	06/23/22						
Total Xylenes	ND	0.0250	1	06/21/22	06/23/22						
Surrogate: 4-Bromochlorobenzene-PID		85.5 %	70-130	06/21/22	06/23/22						
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	st: IY		Batch: 2226048					
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/21/22	06/23/22						
Surrogate: 1-Chloro-4-fluorobenzene-FID		83.9 %	70-130	06/21/22	06/23/22						
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	st: JL		Batch: 2226052					
Diesel Range Organics (C10-C28)	ND	25.0	1	06/21/22	06/23/22						
Oil Range Organics (C28-C36)	ND	50.0	1	06/21/22	06/23/22						
Surrogate: n-Nonane		106 %	50-200	06/21/22	06/23/22						
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: KL		Batch: 2226035					
Chloride	ND	20.0	1	06/21/22	06/25/22						

Sample Data

		ampic D	ucu								
Vertex	Project Name:	Dev	on Continental L	usk							
161, 2055 Premier Way	Project Number	er: 2108	30-0001			Reported:					
Sherwood Park AB, T8H 0G2	Project Manag	ger: Jaso	n Crabtree			6/27/2022 2:42:58PM					
	W	/S22-04 0 - 5	•								
		E206148-16									
Reporting											
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes					
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	Analyst: IY		Batch: 2226048					
Benzene	ND	0.0250	1	06/21/22	06/23/22						
Ethylbenzene	ND	0.0250	1	06/21/22	06/23/22						
Toluene	ND	0.0250	1	06/21/22	06/23/22						
o-Xylene	ND	0.0250	1	06/21/22	06/23/22						
p,m-Xylene	ND	0.0500	1	06/21/22	06/23/22						
Total Xylenes	ND	0.0250	1	06/21/22	06/23/22						
Surrogate: 4-Bromochlorobenzene-PID		86.6 %	70-130	06/21/22	06/23/22						
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	st: IY		Batch: 2226048					
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/21/22	06/23/22						
Surrogate: 1-Chloro-4-fluorobenzene-FID		84.0 %	70-130	06/21/22	06/23/22						
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	st: JL		Batch: 2226052					
Diesel Range Organics (C10-C28)	61.2	25.0	1	06/21/22	06/23/22						
Oil Range Organics (C28-C36)	ND	50.0	1	06/21/22	06/23/22						
Surrogate: n-Nonane		107 %	50-200	06/21/22	06/23/22						
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: KL		Batch: 2226035					
Chloride	ND	20.0	1	06/21/22	06/25/22						

Sample Data

		ampic D	ata								
Vertex 161, 2055 Premier Way Sherwood Park AB, T8H 0G2	Project Name: Project Numb Project Manag	er: Dev 2108 ger: Jaso	on Continental L 80-0001 n Crabtree		Reported: 6/27/2022 2:42:58PM						
W822-05 0 - 5'											
		E206148-17									
Reporting											
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes					
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	Analyst: IY		Batch: 2226048					
Benzene	ND	0.0250	1	06/21/22	06/23/22						
Ethylbenzene	ND	0.0250	1	06/21/22	06/23/22						
Toluene	ND	0.0250	1	06/21/22	06/23/22						
o-Xylene	ND	0.0250	1	06/21/22	06/23/22						
p,m-Xylene	ND	0.0500	1	06/21/22	06/23/22						
Total Xylenes	ND	0.0250	1	06/21/22	06/23/22						
Surrogate: 4-Bromochlorobenzene-PID		89.9 %	70-130	06/21/22	06/23/22						
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	vst: IY		Batch: 2226048					
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/21/22	06/23/22						
Surrogate: 1-Chloro-4-fluorobenzene-FID		85.4 %	70-130	06/21/22	06/23/22						
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	rst: JL		Batch: 2226052					
Diesel Range Organics (C10-C28)	ND	25.0	1	06/21/22	06/23/22						
Oil Range Organics (C28-C36)	ND	50.0	1	06/21/22	06/23/22						
Surrogate: n-Nonane		105 %	50-200	06/21/22	06/23/22						
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	rst: KL		Batch: 2226035					
Chloride	ND	20.0	1	06/21/22	06/25/22						

Sample Data

		I I				
Vertex	Project Name	e: Dev	on Continental	l Lusk		
161, 2055 Premier Way	Project Numb	ber: 2108	80-0001			Reported:
Sherwood Park AB, T8H 0G2	Project Mana	iger: Jaso	n Crabtree			6/27/2022 2:42:58PM
	V	WS22-06 0 - 5	•			
		E206148-18				
		Reporting				
Analyte	Result	Limit	Dilution	n Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst: IY			Batch: 2226048
Benzene	ND	0.0250	1	06/21/22	06/23/22	
Ethylbenzene	ND	0.0250	1	06/21/22	06/23/22	
Toluene	ND	0.0250	1	06/21/22	06/23/22	
o-Xylene	ND	0.0250	1	06/21/22	06/23/22	
p,m-Xylene	ND	0.0500	1	06/21/22	06/23/22	
Total Xylenes	ND	0.0250	1	06/21/22	06/23/22	
Surrogate: 4-Bromochlorobenzene-PID		91.1 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Ana	alyst: IY		Batch: 2226048
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/21/22	06/23/22	
Surrogate: 1-Chloro-4-fluorobenzene-FID		86.4 %	70-130	06/21/22	06/23/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Ana	alyst: JL		Batch: 2226052
Diesel Range Organics (C10-C28)	36.1	25.0	1	06/21/22	06/23/22	
Oil Range Organics (C28-C36)	ND	50.0	1	06/21/22	06/23/22	
Surrogate: n-Nonane		105 %	50-200	06/21/22	06/23/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Ana	alyst: KL		Batch: 2226035
Chloride	31.9	20.0	1	06/21/22	06/25/22	

Sample Data

		I I									
Vertex	Project Name	e: Dev	on Continenta	ıl Lusk							
161, 2055 Premier Way	Project Num	ber: 210	80-0001			Reported:					
Sherwood Park AB, T8H 0G2	Project Mana	iger: Jaso	n Crabtree			6/27/2022 2:42:58PM					
	V	VS22-07 0 - 5	•								
		E206148-19									
	Reporting										
Analyte	Result	Limit	Dilutio	on Prepared	Analyzed	Notes					
Volatile Organics by EPA 8021B	mg/kg	mg/kg	An	aalyst: IY		Batch: 2226048					
Benzene	ND	0.0250	1	06/21/22	06/23/22						
Ethylbenzene	ND	0.0250	1	06/21/22	06/23/22						
Toluene	ND	0.0250	1	06/21/22	06/23/22						
o-Xylene	ND	0.0250	1	06/21/22	06/23/22						
p,m-Xylene	ND	0.0500	1	06/21/22	06/23/22						
Total Xylenes	ND	0.0250	1	06/21/22	06/23/22						
Surrogate: 4-Bromochlorobenzene-PID		91.0 %	70-130	06/21/22	06/23/22						
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	An	nalyst: IY		Batch: 2226048					
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/21/22	06/23/22						
Surrogate: 1-Chloro-4-fluorobenzene-FID		86.1 %	70-130	06/21/22	06/23/22						
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	An	nalyst: JL		Batch: 2226052					
Diesel Range Organics (C10-C28)	ND	25.0	1	06/21/22	06/23/22						
Oil Range Organics (C28-C36)	ND	50.0	1	06/21/22	06/23/22						
Surrogate: n-Nonane		91.3 %	50-200	06/21/22	06/23/22						
Anions by EPA 300.0/9056A	mg/kg	mg/kg	An	alyst: KL		Batch: 2226035					
Chloride	ND	20.0	1	06/21/22	06/25/22						

Sample Data

		·· I · ·									
Vertex	Project Name	e: Dev	on Continental	Lusk							
161, 2055 Premier Way	Project Num	ber: 210	80-0001			Reported:					
Sherwood Park AB, T8H 0G2	Project Mana	ager: Jaso	n Crabtree			6/27/2022 2:42:58PM					
	١	WS22-08 0 - 5	•								
		E206148-20									
Reporting											
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes					
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Ana	lyst: IY		Batch: 2226048					
Benzene	ND	0.0250	1	06/21/22	06/23/22						
Ethylbenzene	ND	0.0250	1	06/21/22	06/23/22						
Toluene	ND	0.0250	1	06/21/22	06/23/22						
o-Xylene	ND	0.0250	1	06/21/22	06/23/22						
p,m-Xylene	ND	0.0500	1	06/21/22	06/23/22						
Total Xylenes	ND	0.0250	1	06/21/22	06/23/22						
Surrogate: 4-Bromochlorobenzene-PID		91.9 %	70-130	06/21/22	06/23/22						
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Ana	lyst: IY		Batch: 2226048					
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/21/22	06/23/22						
Surrogate: 1-Chloro-4-fluorobenzene-FID		85.1 %	70-130	06/21/22	06/23/22						
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Ana	lyst: JL		Batch: 2226052					
Diesel Range Organics (C10-C28)	ND	25.0	1	06/21/22	06/23/22						
Oil Range Organics (C28-C36)	ND	50.0	1	06/21/22	06/23/22						
Surrogate: n-Nonane		107 %	50-200	06/21/22	06/23/22						
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Ana	lyst: KL		Batch: 2226035					
Chloride	ND	20.0	1	06/21/22	06/25/22						

Sample Data

		L				
Vertex	Project Name:	: Deve				
161, 2055 Premier Way	Project Numb	er: 2108	0-0001			Reported:
Sherwood Park AB, T8H 0G2	Project Manag	ger: Jason	n Crabtree			6/27/2022 2:42:58PM
	W	/S22-09 0 - 5'	,			
		E206148-21				
		Reporting				
Analyte	Result	Limit	Diluti	on Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	А	nalyst: IY		Batch: 2226049
Benzene	ND	0.0250	1	06/21/22	06/24/22	
Ethylbenzene	ND	0.0250	1	06/21/22	06/24/22	
Toluene	ND	0.0250	1	06/21/22	06/24/22	
o-Xylene	ND	0.0250	1	06/21/22	06/24/22	
p,m-Xylene	ND	0.0500	1	06/21/22	06/24/22	
Total Xylenes	ND	0.0250	1	06/21/22	06/24/22	
Surrogate: Bromofluorobenzene		99.7 %	70-130	06/21/22	06/24/22	
Surrogate: 1,2-Dichloroethane-d4		99.0 %	70-130	06/21/22	06/24/22	
Surrogate: Toluene-d8		102 %	70-130	06/21/22	06/24/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	А	.nalyst: IY		Batch: 2226049
Gasoline Range Organics (C6-C10)	ND	20.0	1	06/21/22	06/24/22	
Surrogate: Bromofluorobenzene		99.7 %	70-130	06/21/22	06/24/22	
Surrogate: 1,2-Dichloroethane-d4		99.0 %	70-130	06/21/22	06/24/22	
Surrogate: Toluene-d8		102 %	70-130	06/21/22	06/24/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	А	.nalyst: JL		Batch: 2226044
Diesel Range Organics (C10-C28)	ND	25.0	1	06/21/22	06/22/22	
Oil Range Organics (C28-C36)	ND	50.0	1	06/21/22	06/22/22	
Surrogate: n-Nonane		122 %	50-200	06/21/22	06/22/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	А	nalyst: KL		Batch: 2226066
Chloride	ND	20.0	1	06/22/22	06/25/22	

Sample Data

	N	umpic D					
Vertex	Project Name	:: Deve	on Contine	ental Lus	k		
161, 2055 Premier Way	Project Numb	per: 2108	30-0001				Reported:
Sherwood Park AB, T8H 0G2	Project Mana	ger: Jaso	n Crabtree				6/27/2022 2:42:58PM
	V	VS22-10 0 - 5	,				
		E206148-22					
		Reporting					
Analyte	Result	Limit	Dil	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2226049
Benzene	ND	0.0250		1	06/21/22	06/24/22	
Ethylbenzene	ND	0.0250		1	06/21/22	06/24/22	
Toluene	ND	0.0250		1	06/21/22	06/24/22	
o-Xylene	ND	0.0250		1	06/21/22	06/24/22	
p,m-Xylene	ND	0.0500		1	06/21/22	06/24/22	
Total Xylenes	ND	0.0250		1	06/21/22	06/24/22	
Surrogate: Bromofluorobenzene		98.1 %	70-130		06/21/22	06/24/22	
Surrogate: 1,2-Dichloroethane-d4		93.5 %	70-130		06/21/22	06/24/22	
Surrogate: Toluene-d8		102 %	70-130		06/21/22	06/24/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2226049
Gasoline Range Organics (C6-C10)	ND	20.0		1	06/21/22	06/24/22	
Surrogate: Bromofluorobenzene		98.1 %	70-130		06/21/22	06/24/22	
Surrogate: 1,2-Dichloroethane-d4		93.5 %	70-130		06/21/22	06/24/22	
Surrogate: Toluene-d8		102 %	70-130		06/21/22	06/24/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	ЛL		Batch: 2226044
Diesel Range Organics (C10-C28)	84.4	25.0		1	06/21/22	06/22/22	
Oil Range Organics (C28-C36)	ND	50.0		1	06/21/22	06/22/22	
Surrogate: n-Nonane		123 %	50-200		06/21/22	06/22/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	KL		Batch: 2226066
Chloride	61.6	20.0		1	06/22/22	06/25/22	

Sample Data

	N N	umpic D													
Vertex	Project Name	: Deve	on Continer	ntal Lusk											
161, 2055 Premier Way	Project Numb	per: 2108	30-0001				Reported:								
Sherwood Park AB, T8H 0G2	Project Mana	ger: Jaso	n Crabtree				6/27/2022 2:42:58PM								
	V	VS22-11 0 - 5	1												
		E206148-23													
		Reporting													
Analyte	Result	Limit	Dilu	tion P1	repared	Analyzed	Notes								
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst: IY			Batch: 2226049								
Benzene	ND	0.0250	1	06	6/21/22	06/24/22									
Ethylbenzene	ND	0.0250	1	06	5/21/22	06/24/22									
Toluene	ND	0.0250	1	06	5/21/22	06/24/22									
o-Xylene	ND	0.0250	1	06	6/21/22	06/24/22									
p,m-Xylene	ND	0.0500	1	06	5/21/22	06/24/22									
Total Xylenes	ND	0.0250	1	06	5/21/22	06/24/22									
Surrogate: Bromofluorobenzene		98.9 %	70-130	00	5/21/22	06/24/22									
Surrogate: 1,2-Dichloroethane-d4		99.8 %	70-130	00	6/21/22	06/24/22									
Surrogate: Toluene-d8		101 %	70-130	00	5/21/22	06/24/22									
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst: IY			Batch: 2226049								
Gasoline Range Organics (C6-C10)	ND	20.0	1	06	5/21/22	06/24/22									
Surrogate: Bromofluorobenzene		98.9 %	70-130	00	5/21/22	06/24/22									
Surrogate: 1,2-Dichloroethane-d4		99.8 %	70-130	00	5/21/22	06/24/22									
Surrogate: Toluene-d8		101 %	70-130	00	6/21/22	06/24/22									
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst: JL			Batch: 2226044								
Diesel Range Organics (C10-C28)	ND	25.0	1	06	5/21/22	06/22/22									
Oil Range Organics (C28-C36)	ND	50.0	1	06	5/21/22	06/22/22									
Surrogate: n-Nonane		119 %	50-200	00	5/21/22	06/22/22									
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst: KL			Batch: 2226066								
Chloride	ND	20.0	1	06	6/22/22	06/25/22									

Sample Data

	5	ampic D	aca				
Vertex	Project Name	: Dev	on Contine	ntal Lusk			
161, 2055 Premier Way	Project Numb	per: 2108	80-0001				Reported:
Sherwood Park AB, T8H 0G2	Project Manag	ger: Jaso	n Crabtree				6/27/2022 2:42:58PM
	V	VS22-12 0 - 5	•				
		E206148-24					
		Reporting					
Analyte	Result	Limit	Dilı	ition	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst: I	Y		Batch: 2226049
Benzene	ND	0.0250		1	06/21/22	06/24/22	
Ethylbenzene	ND	0.0250		1	06/21/22	06/24/22	
Toluene	ND	0.0250		1	06/21/22	06/24/22	
o-Xylene	ND	0.0250		1	06/21/22	06/24/22	
p,m-Xylene	ND	0.0500		1	06/21/22	06/24/22	
Total Xylenes	ND	0.0250		1	06/21/22	06/24/22	
Surrogate: Bromofluorobenzene		98.8 %	70-130		06/21/22	06/24/22	
Surrogate: 1,2-Dichloroethane-d4		99.8 %	70-130		06/21/22	06/24/22	
Surrogate: Toluene-d8		102 %	70-130		06/21/22	06/24/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst: I	Y		Batch: 2226049
Gasoline Range Organics (C6-C10)	ND	20.0		1	06/21/22	06/24/22	
Surrogate: Bromofluorobenzene		98.8 %	70-130		06/21/22	06/24/22	
Surrogate: 1,2-Dichloroethane-d4		99.8 %	70-130		06/21/22	06/24/22	
Surrogate: Toluene-d8		102 %	70-130		06/21/22	06/24/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst: J	L		Batch: 2226044
Diesel Range Organics (C10-C28)	ND	25.0		1	06/21/22	06/22/22	
Oil Range Organics (C28-C36)	ND	50.0		1	06/21/22	06/22/22	
Surrogate: n-Nonane		123 %	50-200		06/21/22	06/22/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst: I	(L		Batch: 2226066
Chloride	ND	20.0		1	06/22/22	06/25/22	

Sample Data

		1					
Vertex	Project Name	: Deve	on Contine	ntal Lus	k		
161, 2055 Premier Way	Project Numb	per: 2108	80-0001				Reported:
Sherwood Park AB, T8H 0G2	Project Mana	ger: Jaso	Jason Crabtree				6/27/2022 2:42:58PM
		BH22-06 0'					
		E206148-25					
		Reporting					
Analyte	Result	Limit	Dil	ution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst:	IY		Batch: 2226049
Benzene	ND	0.0250		1	06/21/22	06/24/22	
Ethylbenzene	ND	0.0250		1	06/21/22	06/24/22	
Toluene	ND	0.0250		1	06/21/22	06/24/22	
o-Xylene	ND	0.0250		1	06/21/22	06/24/22	
p,m-Xylene	ND	0.0500		1	06/21/22	06/24/22	
Total Xylenes	ND	0.0250		1	06/21/22	06/24/22	
Surrogate: Bromofluorobenzene		97.3 %	70-130		06/21/22	06/24/22	
Surrogate: 1,2-Dichloroethane-d4		96.8 %	70-130		06/21/22	06/24/22	
Surrogate: Toluene-d8		102 %	70-130		06/21/22	06/24/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst:	IY		Batch: 2226049
Gasoline Range Organics (C6-C10)	ND	20.0		1	06/21/22	06/24/22	
Surrogate: Bromofluorobenzene		97.3 %	70-130		06/21/22	06/24/22	
Surrogate: 1,2-Dichloroethane-d4		96.8 %	70-130		06/21/22	06/24/22	
Surrogate: Toluene-d8		102 %	70-130		06/21/22	06/24/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst:	JL		Batch: 2226044
Diesel Range Organics (C10-C28)	ND	25.0		1	06/21/22	06/22/22	
Oil Range Organics (C28-C36)	ND	50.0		1	06/21/22	06/22/22	
Surrogate: n-Nonane		121 %	50-200		06/21/22	06/22/22	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst:	KL		Batch: 2226066
Chloride	ND	20.0		1	06/22/22	06/25/22	

Sample Data

		L									
Vertex	Project Name	: Deve	on Contine	ntal Lusk							
161, 2055 Premier Way	Project Numb	per: 2108	80-0001				Reported:				
Sherwood Park AB, T8H 0G2	Project Mana	ger: Jaso	n Crabtree				6/27/2022 2:42:58PM				
		BH22-06 2'									
E206148-26											
		Reporting									
Analyte	Result	Limit	Dilu	tion	Prepared	Analyzed	Notes				
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst: I	Y		Batch: 2226049				
Benzene	ND	0.0250	1	l	06/21/22	06/24/22					
Ethylbenzene	ND	0.0250	1	l	06/21/22	06/24/22					
Toluene	ND	0.0250	1	l	06/21/22	06/24/22					
o-Xylene	ND	0.0250	1	l	06/21/22	06/24/22					
p,m-Xylene	ND	0.0500	1	l	06/21/22	06/24/22					
Total Xylenes	ND	0.0250	1	l	06/21/22	06/24/22					
Surrogate: Bromofluorobenzene		98.1 %	70-130		06/21/22	06/24/22					
Surrogate: 1,2-Dichloroethane-d4		97.6 %	70-130		06/21/22	06/24/22					
Surrogate: Toluene-d8		101 %	70-130		06/21/22	06/24/22					
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst: I	Y		Batch: 2226049				
Gasoline Range Organics (C6-C10)	ND	20.0	1	l	06/21/22	06/24/22					
Surrogate: Bromofluorobenzene		98.1 %	70-130		06/21/22	06/24/22					
Surrogate: 1,2-Dichloroethane-d4		97.6 %	70-130		06/21/22	06/24/22					
Surrogate: Toluene-d8		101 %	70-130		06/21/22	06/24/22					
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst: J	L		Batch: 2226044				
Diesel Range Organics (C10-C28)	ND	25.0	1	l	06/21/22	06/22/22					
Oil Range Organics (C28-C36)	ND	50.0	1	l	06/21/22	06/22/22					
Surrogate: n-Nonane		128 %	50-200		06/21/22	06/22/22					
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst: I	KL		Batch: 2226066				
Chloride	ND	20.0	1	1	06/22/22	06/25/22					

QC Summary Data

Vertex 161, 2055 Premier Way Sherwood Park AB, T8H 0G2		Project Name: Project Number: Project Manager:	Do 21 Ja	evon Continen 080-0001 son Crabtree	ntal Lusk			6	Reported: /27/2022 2:42:58PM
	,		Analyst: IY						
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2226049-BLK1)							Prepared: 0	6/21/22 Ana	alyzed: 06/23/22
Benzene	ND	0.0250							
Ethylbenzene	ND	0.0250							
Toluene	ND	0.0250							
o-Xylene	ND	0.0250							
p,m-Xylene	ND	0.0500							
Total Xylenes	ND	0.0250							
Surrogate: Bromofluorobenzene	0.491		0.500		98.1	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.494		0.500		98.7	70-130			
Surrogate: Toluene-d8	0.511		0.500		102	70-130			
LCS (2226049-BS1)							Prepared: 0	6/21/22 Ana	lyzed: 06/23/22
Benzene	2.23	0.0250	2.50		89.3	70-130			
Ethylbenzene	2.19	0.0250	2.50		87.4	70-130			
Toluene	2.10	0.0250	2.50		83.9	70-130			
p-Xylene	2.08	0.0250	2.50		83.3	70-130			
p,m-Xylene	4.15	0.0500	5.00		83.0	70-130			
Total Xylenes	6.23	0.0250	7.50		83.1	70-130			
Surrogate: Bromofluorobenzene	0.499		0.500		<i>99.7</i>	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.515		0.500		103	70-130			
Surrogate: Toluene-d8	0.491		0.500		98.1	70-130			
LCS Dup (2226049-BSD1)							Prepared: 0	6/21/22 Ana	lyzed: 06/23/22
Benzene	2.22	0.0250	2.50		89.0	70-130	0.404	23	
Ethylbenzene	2.24	0.0250	2.50		89.5	70-130	2.31	27	
Toluene	2.17	0.0250	2.50		86.6	70-130	3.17	24	
p-Xylene	2.11	0.0250	2.50		84.4	70-130	1.38	27	
p,m-Xylene	4.23	0.0500	5.00		84.6	70-130	1.91	27	
Total Xylenes	6.34	0.0250	7.50		84.5	70-130	1.73	27	
Surrogate: Bromofluorobenzene	0.499		0.500		99.7	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.502		0.500		100	70-130			
Surrogate: Toluene_d8	0.510		0.500		102	70-130			

QC Summary Data

				•					
Vertex		Project Name:	De	evon Continen	ıtal Lusk				Reported:
161, 2055 Premier Way	161, 2055 Premier Way			080-0001					
Sherwood Park AB, T8H 0G2		Project Manager:	er: Jason Crabtree						6/27/2022 2:42:58PM
		Volatile O	rganics b	oy EPA 802	1B				Analyst: IY
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2226048-BLK1)							Prepared: 0	5/21/22 A	analyzed: 06/24/22
Benzene	ND	0.0250							
Ethylbenzene	ND	0.0250							
Toluene	ND	0.0250							
p-Xylene	ND	0.0250							
o,m-Xylene	ND	0.0500							
Total Xylenes	ND	0.0250							
Surrogate: 4-Bromochlorobenzene-PID	6.97		8.00		87.1	70-130			
LCS (2226048-BS1)							Prepared: 00	5/21/22 A	analyzed: 06/24/22
Benzene	5.66	0.0250	5.00		113	70-130			
Ethylbenzene	5.60	0.0250	5.00		112	70-130			
Toluene	5.97	0.0250	5.00		119	70-130			
p-Xylene	5.49	0.0250	5.00		110	70-130			
o,m-Xylene	11.3	0.0500	10.0		113	70-130			
Total Xylenes	16.8	0.0250	15.0		112	70-130			
Surrogate: 4-Bromochlorobenzene-PID	7.04		8.00		88.0	70-130			
LCS Dup (2226048-BSD1)							Prepared: 0	5/21/22 A	analyzed: 06/24/22
Benzene	5.70	0.0250	5.00		114	70-130	0.706	20	
Ethylbenzene	5.65	0.0250	5.00		113	70-130	0.960	20	
Foluene	6.03	0.0250	5.00		121	70-130	0.897	20	
p-Xylene	5.55	0.0250	5.00		111	70-130	1.08	20	
p,m-Xylene	11.4	0.0500	10.0		114	70-130	1.03	20	
Total Xylenes	17.0	0.0250	15.0		113	70-130	1.05	20	
Surrogate: 4-Bromochlorobenzene-PID	7.01		8.00		87.6	70-130			

QC Summary Data

		•		v					
Vertex		Project Name: Devon Continental Lusk						Reported:	
161, 2055 Premier Way		Project Number:	2	1080-0001					
Sherwood Park AB, T8H 0G2		Project Manager	: Ja	ason Crabtree					6/27/2022 2:42:58PM
	No	onhalogenated (Organics	by EPA 801	15D - GI	RO			Analyst: IY
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2226048-BLK1)							Prepared: 0	6/21/22	Analyzed: 06/24/22
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	6.74		8.00		84.3	70-130			
LCS (2226048-BS2)							Prepared: 0	6/21/22	Analyzed: 06/24/22
Gasoline Range Organics (C6-C10)	44.6	20.0	50.0		89.2	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	6.57		8.00		82.1	70-130			
LCS Dup (2226048-BSD2)							Prepared: 0	6/21/22	Analyzed: 06/24/22
Gasoline Range Organics (C6-C10)	43.9	20.0	50.0		87.8	70-130	1.57	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	6.75		8.00		84.4	70-130			

QC Summary Data

		<u> </u>		v					
Vertex 161, 2055 Premier Way Sherwood Park AB, T8H 0G2		Project Name: Project Number: Project Manager:		Devon Continen 21080-0001 Jason Crabtree	ital Lusk				Reported: 6/27/2022 2:42:58PM
	N		Analyst: IY						
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2226049-BLK1)							Prepared: 0	6/21/22 A	nalyzed: 06/23/22
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: Bromofluorobenzene	0.491		0.500		98.1	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.494		0.500		98.7	70-130			
Surrogate: Toluene-d8	0.511		0.500		102	70-130			
LCS (2226049-BS2)							Prepared: 0	6/21/22 A	nalyzed: 06/23/22
Gasoline Range Organics (C6-C10)	58.5	20.0	50.0		117	70-130			
Surrogate: Bromofluorobenzene	0.494		0.500		98.8	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.495		0.500		98.9	70-130			
Surrogate: Toluene-d8	0.508		0.500		102	70-130			
LCS Dup (2226049-BSD2)							Prepared: 0	6/21/22 A	nalyzed: 06/23/22
Gasoline Range Organics (C6-C10)	57.2	20.0	50.0		114	70-130	2.24	20	
Surrogate: Bromofluorobenzene	0.500		0.500		100	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.486		0.500		97.2	70-130			
Surrogate: Toluene-d8	0.518		0.500		104	70-130			

QC Summary Data

				•							
Vertex 161, 2055 Premier Way		Project Name: Project Number:	ne: Devon Continental Lusk nber: 21080-0001						Reported:		
Sherwood Park AB, T8H 0G2		Project Manager:	:	Jason Crabtree				6/27/2022 2:42:58PM			
	Nonh	alogenated Org	anics b	y EPA 8015D	- DRO	/ORO			Analyst: AK		
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit			
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes		
Blank (2226044-BLK1)							Prepared: (6/21/22	Analyzed: 06/22/22		
Diesel Range Organics (C10-C28)	ND	25.0									
Oil Range Organics (C28-C36)	ND	50.0									
Surrogate: n-Nonane	64.3		50.0		129	50-200					
LCS (2226044-BS1)							Prepared: (6/21/22	Analyzed: 06/22/22		
Diesel Range Organics (C10-C28)	504	25.0	500		101	38-132					
Surrogate: n-Nonane	58.6		50.0		117	50-200					
Matrix Spike (2226044-MS1)				Source:	E206132-	25	Prepared: (06/21/22	Analyzed: 06/22/22		
Diesel Range Organics (C10-C28)	520	25.0	500	ND	104	38-132					
Surrogate: n-Nonane	64.7		50.0		129	50-200					
Matrix Spike Dup (2226044-MSD1)				Source:	E206132-	25	Prepared: (06/21/22	Analyzed: 06/22/22		
Diesel Range Organics (C10-C28)	529	25.0	500	ND	106	38-132	1.79	20			
Surrogate: n-Nonane	55.5		50.0		111	50-200					

QC Summary Data

				•					
Vertex 161, 2055 Premier Way		Project Name: Project Number:	Name:Devon Continental LuskNumber:21080-0001						Reported:
Sherwood Park AB, T8H 0G2		Project Manager	: J	ason Crabtree					6/27/2022 2:42:58PM
	Nonh	alogenated Org	ganics by	y EPA 8015I) - DRO	/ORO			Analyst: JL
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2226052-BLK1)							Prepared: (06/21/22	Analyzed: 06/22/22
Diesel Range Organics (C10-C28)	ND	25.0							
Oil Range Organics (C28-C36)	ND	50.0							
Surrogate: n-Nonane	60.8		50.0		122	50-200			
LCS (2226052-BS1)							Prepared: (06/21/22	Analyzed: 06/22/22
Diesel Range Organics (C10-C28)	497	25.0	500		99.5	38-132			
Surrogate: n-Nonane	56.8		50.0		114	50-200			
Matrix Spike (2226052-MS1)				Source:	E206148-	08	Prepared: (06/21/22	Analyzed: 06/22/22
Diesel Range Organics (C10-C28)	700	25.0	500	207	98.6	38-132			
Surrogate: n-Nonane	60.3		50.0		121	50-200			
Matrix Spike Dup (2226052-MSD1)				Source:	E206148-	08	Prepared: (06/21/22	Analyzed: 06/22/22
Diesel Range Organics (C10-C28)	676	25.0	500	207	93.9	38-132	3.37	20	
Surrogate: n-Nonane	59.7		50.0		119	50-200			

QC Summary Data

				·					
Vertex 161, 2055 Premier Way		Project Name: Project Number:	D 2	evon Continer 1080-0001	ntal Lusk				Reported:
Sherwood Park AB, T8H 0G2		Project Manager			6/27/2022 2:42:58PM				
	Analyst: KL								
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2226035-BLK1)							Prepared: 0	6/21/22 A	Analyzed: 06/24/22
Chloride	ND	20.0							
LCS (2226035-BS1)							Prepared: 0	6/21/22 A	Analyzed: 06/24/22
Chloride	250	20.0	250		99.9	90-110			
Matrix Spike (2226035-MS1)				Source:	E206148-0	01	Prepared: 0	6/21/22 A	Analyzed: 06/24/22
Chloride	1580	20.0	250	1620	NR	80-120			M4
Matrix Spike Dup (2226035-MSD1)				Source:	E206148-0)1	Prepared: 0	6/21/22 A	Analyzed: 06/24/22
Chloride	1850	20.0	250	1620	90.7	80-120	16.1	20	

QC Summary Data

Vertex 161, 2055 Premier Way Sherwood Park AB, T8H 0G2		Project Name:Devon Continental LuskProject Number:21080-0001Project Manager:Jason Crabtree							Reported: 6/27/2022 2:42:58PM
		Anions	by EPA	300.0/9056A	\				Analyst: KL
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2226066-BLK1)							Prepared: 0	6/22/22 A	nalyzed: 06/22/22
Chloride	ND	20.0							
LCS (2226066-BS1)							Prepared: 0	6/22/22 A	nalyzed: 06/22/22
Chloride	245	20.0	250		97.9	90-110			
LCS Dup (2226066-BSD1)							Prepared: 0	6/22/22 A	nalyzed: 06/22/22
Chloride	266	20.0	250		106	90-110	8.33	20	

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Vertex	Project Name:	Devon Continental Lusk	
161, 2055 Premier Way	Project Number:	21080-0001	Reported:
Sherwood Park AB, T8H 0G2	Project Manager:	Jason Crabtree	06/27/22 14:42

M4 Matrix spike recovery value is suspect since the analyte concentration in the sample is disproportionate to the spike level. The associated LCS spike recovery was acceptable.

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

	bob	1 21080-0001	1 ulaolaa oc							
Client: Vertex (Durango Direct Bill)			RUSH?	Lab Use Only			An	alysis and	d Method	lab Onl
Project: Devon Continental Lusk			1d	Lab WO#						NI
Sampler: J. Florez			3d	PE206148						19
Phone: 505-506-0040				Job Number	015			0.0		nbei
Email(s): iflower Dvertex. La, i crabtree Dvertex.	ca			19034-0001	by 8	021	3.1	V 30(Nur Nur
Project Manager: Jaros Jason Crabtree			Pag	e i of 3	ORO	oy 80	/ 418	de b		+ Co
Sample ID	Sample Da	te Sample Time	Matrix	Containers QTY - Vol/TYPE/Preservative	GRO/I	BTEX	TPH by	Chlori		Correc
BS22-01 5 905 14'	06/16/20	22 9:25	Soil	1 Glass Jar, 402.	X	X	X	X		-1
BS22-02 5'	Ì	9:30				1	1	1		2
BS22-03 5'		9:35								3
BS22-04 5'		9:40								4
BS 22-05 5'		9:45								5
BS22-06 5'		9:50								6
BS22-07 5'		9:55		kerne in the second						7
BS 22-08 5'		10:00								8
BS22-09 5'		10:05								9
BS22-10 5'		10:10	\downarrow	\checkmark	A	6	1	6		D
Relinquished by: (Signature) Date Time Aard A. Hour 06 17 2022 07:30 a Relinquished by: (Signature) Date Time UQUER MAN 6-17-22 4,15	n blow	ved by Gigna ved by Gigna	at (rg) at (re)	Date Time 6-17-22 1:30 ** 6-17-22 1:30 ** 1:30 ** Time T: 1:5 A	*Recei 1 VG Tei	ived - mp °	on lo	Lab U. D/ N T2	se Only –	тз
Sample Marix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O - Other		10.47	-	Container Type:	g - glas	ss, p	poly	/plastic, a	ag - amber glas	s, v - VOA
**Samples requiring thermal preservation must be received on ice the da	ly they are sample	ed or received p	acked in ice a	at an avg temp above 0 but less than 6	°C on su	bsequ	ent da	ys.		
Sample(s) dropped off after hours to a secure drop off area.		Chain o	t Custody	Project Owner: Am	oer G	rove	1, 2)urango	. Midstream	
Analytical Laboratory	5796 Three	r US Highway 64, Farm • Springs • 65 Mercadi	ington, NM 87401 o Street, Suite 115,	Ph (505) 632 Durango, (O 81301 Ph (970) 259	-0615 Fx (-0615 Fr (505) 632 800) 362	1865	d	laborat	envirotech inc.com arywenvirotech inc.com
		Pac	e 41 of 4	4					1	

Released to Imaging: 1/18/2023 12:15:40 PM

Page 179 of 183

			\$100C	21080-0	001 (010	0/2	a Ce	,		-	
Client: Vertex (Durango Direct Kill)		<u></u>	RUSH?	La	ab Use Only			Ana	alysis an	d Method	li	ab Only
Project: Devon Continental Lusk			1d		Lab WO#							N/N
Sampler: J. Florez			3d	PEa	2019148	_						(s)
Phone: 505-506-0040				J	ob Number	015			0.0			rsrv
Email(s): ;flore Overtex. ca, jcrabtree OverAex	. (a			1903	4-0001	by 8	021	8.1	y 30			Nur nt/F
Project Manager: Jason Crabtee			Page	2 of	3	DRO	oy 80	y 418	de b			Lab ct Cc
Sample ID	Sample Date	Sample Time	Matrix	Cc QTY - Vol/	ontainers TYPE/Preservativ	e GRO/I	BTEX b	TPH by	Chlori			Corre
BS22-11 5'	06/16/2022	10:15	Soil	1 Glass	Jar 4 oz.	X	x	X	X		1	11
B522-12 5'	06/16/2022	10:20	1		0		1	1	1		li	2
WS22-01 0-5-467 5-14	06/16/2022	10:40									Г	3
WS 22-02 0-5 5-14'	06/16/2022	10:45									1	4
WS 22-03 0-5'	06/16/2022	10:50									1	5
WS 22-04 0-5'	06/16/2022	10:55									10	R
WS22-05 0-5'	06/16/2022	11:00									[7
WS22-06 0-5'	06/16/2022	11:05									ľ	8
WS 22-07 0-5'	06/16/2022	11:10									k	1
WS22-08 0-5'	06/16/2022	11:15			V	1	ł	¥	1		2	ð
Caunda Hay 06/17/2022 07:30 an	Received	by that	NB7	6-17-02	113	**Recei	ved	on Ic		se Only		
Relinquished by: (Signature) Date Time LOWER Month 6-1720 4:15	alette	by: (Signat	n (10 Date	8.15	T1 AVG Ter	- np°	c_ 4	T2	-	Т3	
Sample Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O - Other			1.11.1		Container Type	e: g - glas	s, p -	poly,	/plastic,	ag - amber	glass, v - VC	AC
Samples requiring thermal preservation must be received on ice the day Sample(s) dropped off after hours to a secure drop off area.	they are sampled o	Chain of	Custody	Notes/Billin	ove 0 but less than ng info:	Anbi	oseque	ent day	s. Dui	Nemas M	detream	
Genvirotech	5796 US H	ghway 64, Farmu	igton, NM 8740.)	<u> </u>	Ph (505) 6	532-0615 Fx1	505) 632	-1865	- ()***	<u>- j- rc</u>	envitate	ech incesm
Analytical Laboratory	Three Sprin	ngs + 65 Mercado ' Page	street, Suite 115, 00 e 42 of 44	urango, CO 81301	Ph (970) J	159-0615 Fr (1	300) 362	1879			aboratorya-envirote	ch-ini, com

Released to Imaging: 1/18/2023 12:15:40 PM

Page 180 of 183

Received by OCD: 12/21/2022 9:48:08 AM
				Jobt	0#21080-0001 Wadaa 00						
Client: Vertex (Duringo Direct Bill)			RUSH?		Lab Use Only			An	alysis	s and Method	lab On
Project: Devon Confinental Luik			1d	1-	Lab WO#						V INI
Sampler: J. Florez			3d	PEC	206148	_					er (s)
Phone: 505-506-0040				100	Job Number	3015			0.0		mbe
Email(s): florez vertex. (a) crabtree over	tex.ca			190	By-aut	by 8	3021	18.1	oy 30		p Nu
Project Manager: Jason Crustrie	1		Pag	e <u>3</u> of	<u>3</u>	DRC	by 8	y 4.	ide l		La La
Sample ID	Sample Date	Sample Time	Matrix	QTY - Vol	/TYPE/Preservative	GRO/	BTEX	TPH	Chlor		, and
WS22-09 0-5'	06/16/2022	11:20	Soil	1 Glass	Jar, 402.	X	X	X	X		21
WS22-10 0-5'	06/16/2022	11:25									22
WS 22-11 0-5'	06/16/2022	11:30									23
WS22-12 0-5'	06/16/2022	11:35									24
BH22-06 O'	06/16/2022	12:00									25
BH22-06 2'	06/16/2022	12:05	V	\	/	5	6	J	4		RO
Relinquished by: (Signature) Date Time 06 17 2022 07:30 a Relinquished by: (Signature) Date Time	Received	by Signa	ture) (ure)	6-17-2 Date	20 / 1/4 **	Recei	ved	on Ic	La T2_	b Use Only N	Т3
Sample Matrix S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O - Other	1 ath	Ch	h	6/20/22	Container Type:	/G Ter	mp°		/plas	- tic. ag - amber	glass, y - VOA
**Samples requiring thermal preservation must be received on ice the o	day they are sampled or	received p	acked in ice a	at an avg temp a	bove 0 but less than 6 °	C on sul	oseque	ent day	ys.	,-0 u	0.300,1 1011
Sample(s) dropped off after hours to a secure drop off area.		Chain of	f Custody	Notes/Bil	ing info: roject Owner:	Amb	er (ânu	es, Ì	Durango Mi	dstream
<pre>//denvirotech</pre>	5796 US Hi	5796 US Highway 64, Farmington, NM			Ph (505) 632	632 0615 Fx (505) 632-1865 environmenter					
Analytical Laboratory	Three Sprin	igs • 65 Mercado Pace	Street, Suite 115, 1 e 43 of 44	Durango, CO 81301 1	Ph (970) 259-	0615 Fr (8	300) 362-	1879			laboratory inervice tech-ine con

-

Page 181 of 183

Received by OCD: 12/21/2022 9:48:08 AM

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

Client: Vertex	Date Received:	06/20/22	08:15	Work Order ID:	E206148
Phone: (575) 748-0176	Date Logged In:	06/20/22	09:28	Logged In By:	Caitlin Christian
Email: jcrabtree@vertex.ca	Due Date:	06/24/22	2 17:00 (4 day TAT)		
Chain of Custody (COC)					
1. Does the sample ID match the COC?		Yes			
2. Does the number of samples per sampling site location matc	h the COC	Yes			
3. Were samples dropped off by client or carrier?		Yes	Carrier: UPS		
4. Was the COC complete, i.e., signatures, dates/times, request	ed analyses?	Yes	<u></u>		
5. Were all samples received within holding time? Note: Analysis, such as pH which should be conducted in 1 i.e, 15 minute hold time, are not included in this disucssior	he field,	Yes		Commen	ts/Resolution
Sample Turn Around Time (TAT) 6. Did the COC indicate standard TAT, or Expedited TAT?		Yes			
Sample Cooler					
7. Was a sample cooler received?		Yes			
8. If yes, was cooler received in good condition?		Yes			
9. Was the sample(s) received intact, i.e., not broken?		Yes			
10. Were custody/security seals present?		No			
11. If yes, were custody/security seals intact?		NA			
12. Was the sample received on ice? If yes, the recorded temp is 4°C, i. Note: Thermal preservation is not required, if samples are	e., 6°±2°C received w/i 15	Yes			
minutes of sampling	emperature 1º	'C			
Sample Container	emperature. <u>+</u>	<u>c</u>			
<u>Sample Container</u>		No			
15. Are VOC samples collected in VOA Vials?		NA			
16. Is the head space less than 6-8 mm (nea sized or less)?		NA			
17. Was a trip blank (TB) included for VOC analyses?		NA			
18. Are non-VOC samples collected in the correct containers?		Yes			
19. Is the appropriate volume/weight or number of sample contained	rs collected?	Yes			
Field Label					
20. Were field sample labels filled out with the minimum infor	mation:				
Sample ID?		Yes			
Date/Time Collected?		Yes	L		
Collectors name?		Yes			
Sample Preservation	10	21			
21. Does the COC or field labels indicate the samples were pre	servea?	NO			
22. Are sample(s) correctly preserved?	tale?	NA N-			
24. Is not interation required and/or requested for dissolved me	aans (No			
<u>Multiphase Sample Matrix</u>	0				
26. Does the sample have more than one phase, i.e., multiphase	10	No			
27. If yes, does the COC specify which phase(s) is to be analyz	ed?	NA			
Subcontract Laboratory					
28. Are samples required to get sent to a subcontract laboratory	/?	No			
29. Was a subcontract laboratory specified by the client and if s	so who?	NA	Subcontract Lab: NA		
Client Instruction					

Signature of client authorizing changes to the COC or sample disposition.

•

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
FRONTIER FIELD SERVICES, LLC	221115
10077 Grogans Mill Rd.	Action Number:
The Woodlands, TX 77380	169275
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jnobui	Closure Report Approved.	1/18/2023