

December 19, 2022

District Supervisor Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Release Characterization and Remediation Report Maverick Natural Resources, LLC EVGSAU 2963-002 Wellhead Release Unit Letter N, Section 29, Township 17, Range 35 East Lea County, New Mexico Incident ID: nRM2014565278

Dear Sir or Madam,

Tetra Tech, Inc. (Tetra Tech) was initially contracted by ConocoPhillips (COP) to assess a release that occurred at the East Vacuum Grayburg San Andres Unit (EVGSAU) 2963-002 Wellhead Release (Site) and subsequently contracted by Maverick Natural Resources, LLC (Maverick) to complete remediation of the same release. The Site is located in Public Land Survey System (PLSS) Unit Letters N, Section 29, Township 17 South, and Range 35 East, Lea County, New Mexico. The coordinates of the release point are approximately 32.800575°, - 103.482089°, as shown in **Figures 1** and **2**.

BACKGROUND

According to the State of New Mexico C-141 Initial Report provided in **Appendix A**, the release was discovered on May 9, 2020. The release occurred as the result of equipment failure due to corrosion on a rod blowout preventer (BOP). Approximately 54 barrels (bbls) of produced water were reported released, of which none were recovered. The spill calculator submitted along with the C-141 documented that an area of 3,195 square feet was impacted. The New Mexico Oil Conservation Division (NMOCD) received the initial C-141 report form on May 21, 2020, for the release which was assigned NMOCD Incident ID nRM2014565278.

This site was part of an asset sale from ConocoPhillips to Maverick Natural Resources, which concluded on June 1, 2022. Prior to that date, work was undertaken under the direction of ConocoPhillips, including the site assessment and delineation, as well as the preparation and submittal of the remediation work plan. Since June 1, 2022, Maverick Natural Resources has managed this site and the associated remediation work.

Maverick Natural Resources

SITE CHARACTERIZATION

A Site characterization was performed and no sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, stream bodies, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the distances specified in 19.15.29 New Mexico Administrative Code (NMAC).

Approximately 200 feet (ft) northeast of the EVGSAU 2963-002 wellhead, a topographic surface depression of approximately 1.9 acres was identified in aerial imagery; however, this area is not reported as a playa lake on the NMOCD Oil and Gas Map website. The Site is in an area of low karst potential. According to the New Mexico Office of the State Engineers (NMOSE) reporting system, there is one (1) water well within ½ mile (800 meters) of the Site with depth to groundwater at 90 feet below ground surface (bgs). The site characterization data is included in **Appendix B**.

For this release, as the available water level information was from a well older than 25 years old, Maverick elected to use a nearby boring drilled to depth for groundwater verification as a part of another project. As part of a response to the EVGSAU 3236-004 release (Incident ID nAPP2100449115), on August 25, 2021, a licensed well drilling subcontractor mobilized to a nearby site within ½ mile radius of the EVGSAU 2963-002 wellhead release footprint to drill groundwater determination borehole DTGW-1 to 55 feet bgs. The borehole was dry upon completion, and soils were dry from surface to total depth. The borehole verified that groundwater in the area was greater than 55 feet bgs. Subsequent to borehole completion, the borehole was plugged on August 25, 2021, with 3/8-inch bentonite chips from total depth to surface. Borehole DTGW-1 location coordinates are 32.793424°, -103.482099°, and the boring log is included in **Appendix B**.

REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil. Based on the site characterization and in accordance with Table I of 19.15.29.12 NMAC, the RRALs for the Site were determined to be the following:

Constituent	Site RRALs
Chloride	10,000 mg/kg
ТРН	2,500 mg/kg
BTEX	50 mg/kg

Additionally, in accordance with the NMOCD guidance *Procedures for Implementation of the Spill Rule* (19.15.29 NMAC) (September 6, 2019), the following reclamation requirements for surface soils (0-4 ft bgs) outside of active oil and gas operations are as follows:

Maverick Natural Resources

Constituent	Reclamation Requirements
Chloride	600 mg/kg
ТРН	100 mg/kg
BTEX	50 mg/kg

INITIAL RESPONSE

In accordance with 19.15.29.8. B. (4) NMAC states "the responsible party may commence remediation immediately after discovery of a release", the former owner/operator (COP) elected to begin remediation of the impacted area following the discovery of the release. An area of visibly impacted material within the release footprint, extending from the pumping unit north approximately 70 feet, was excavated and disposed of at an approved waste management facility. The excavated area is approximately 75 feet wide, measuring east to west. The entire excavated area encompasses approximately 2,750 square feet and ranges in depth from 1 to 3 ft bgs. **Figure 3** depicts the release extent and the excavated area from the initial response activities.

SITE VISIT

Tetra Tech mobilized to Site on May 5, 2021, to assess the Site conditions and photograph the impacted area. During the site visit, excavated areas corresponding with the initial response activities were observed. Additionally, a small, excavated area of approximately 185 square feet was observed just south of the pumping unit with an excavation depth of approximately 6 inches to 1 ft bgs. Visually impacted soils were observed outside of the excavated areas in the proximity of the pumping unit and wellhead. Standing water was observed from recent rains in one of the previously excavated areas. The release extent observed during the Site visit is depicted in **Figure 3** and the photographic log in **Appendix D** documents Site conditions observed by Tetra Tech during the Site visit.

SITE ASSESSMENT AND DELINEATION

Initial Site Assessment

In order to achieve horizontal and vertical delineation of the release extent, Tetra Tech personnel conducted soil sampling on August 23, 2021, on behalf of the former owner/operator. A total of ten (10) borings (BH-1 through BH-10) were installed with a truck-mounted air rotary drilling rig. A total of forty-four (44) soils samples were collected from ten (10) locations within and surrounding the release extent. The collected soil samples were transported to National Environmental Laboratory Accreditation Program (NELAP) accredited Pace Analytical Laboratory (Pace) in Mt. Juliet, Tennessee, for analysis of the following:

- Chloride by EPA Method 300.0;
- TPH by EPA Method 8015M; and
- BTEX via EPA Method 8021B.

The laboratory reported all analytical results were below the proposed RRALs for chloride, TPH, and BTEX for on-pad borings BH-3, BH-4, BH-5, BH-7, BH-8, and BH-9. The analytical results associated with off-pad locations BH-1, BH-2, and BH-10 boring locations exceeded the reclamation requirement for TPH of 100 mg/kg in the upper four feet. There were no other analytical results that exceeded the TPH Site reclamation requirement during the initial assessment and Vertical delineation was achieved. Horizontal delineation was not achieved during this initial assessment.

Additional Delineation

Due to the analytical results exceeding the reclamation requirements at boring locations BH-1, BH-2, and BH-10, Tetra Tech returned to the Site in September 2021 and January 2022 to complete the horizontal delineation of the release extent. Eight (8) hand auger borings, AH-1 through AH-8, were completed to 1 ft bgs outside the nRM2014565278 release footprint in an attempt to provide horizontal delineation. A total of eight (8) samples were submitted to Pace for analysis of the following:

- TPH Gasoline Range Organics (GRO) by EPA Method 8015D;
- TPH Diesel Range Organics (DRO) by EPA Method 8015;
- TPH Oil Range Organics (ORO) by EPA Method 8015;
- BTEX by EPA Method 8260B; and
- Chloride by EPA Method 300.0.

Analytical results associated with boring locations AH-3 through AH-8 exceeded the Site reclamation requirement for TPH in the 0-1 foot interval. As the off-pad areas were vegetated, the off-pad TPH impacts are likely unrelated to the nRM2014565278 wellhead release.

To complete and confirm delineation, Tetra Tech personnel again returned to the Site on February 1, 2022, to install three (3) additional hand auger borings, AH-9 to the northwest, AH-10 to the north, and AH-11 to the northeast, to 2 ft bgs. A total of six (6) samples were submitted to Cardinal Laboratories in Hobbs, New Mexico (Cardinal), and again analyzed for the same analytical suite. The February 2022 hand auger borings results achieved the final vertical and horizontal delineation of the nRM2014565278 wellhead release impacts to RRALs.

Results from the soil sampling are summarized in **Table 1**. Site assessment boring locations are presented in **Figure 4**. Laboratory analytical data packages including chain-of-custody documentation are provided in **Appendix C**.

REMEDIATION WORK PLAN AND APPROVAL

The Release Characterization and Remediation Work Plan (Work Plan) was prepared by Tetra Tech on behalf of ConocoPhillips and submitted to NMOCD on March 2, 2022, with fee application payment PO Number RCII4-220302-C-1410. The Work Plan described the results of the release assessment and provided characterization of the impact at the site. The Work Plan was approved via email by Chad Hensley on March 29, 2022.

REMEDIATION AND CONFIRMATION SAMPLING

Based on the August 2021, September 2021, and January 2022 soil assessment and delineation results for the release and the remediation work plan, excavation activities commenced on November 29 and concluded on December 1, 2022. Maverick's subcontractor, SDR Enterprises, used heavy equipment to excavate 220 cubic yards of impacted soil from the remediation areas as shown in **Figure 5** to maximum depths of 4 feet and 1 foot below the surrounding ground surface, respectively. To avoid any potential contact by heavy equipment with the pressurized lines, heavy equipment was maintained at a distance of at least 4 feet from pressurized lines. Confirmation sampling results in the areas around the pressurized lines showed that clean margins were obtained without the need to excavate within 4 feet of these lines. This enabled the remediation to be fully completed and delineated without requiring hand excavation below the pressurized surface lines.

Excavated soils were transported offsite and disposed of at R360 waste Management Service, 4507 W Carlsbad HWY, Hobbs NM 88240.

Upon reaching the final lateral and vertical excavation extents, twenty confirmation samples were collected from the floors and twenty-six confirmation samples were collected from the side walls of the excavated areas and submitted to Cardinal Laboratory in Hobbs, NM for analysis of chloride (SM4500 CL-B), TPH (8015M), and BTEX (8021B). Laboratory analytical results for submitted confirmation samples reported chloride, TPH, and BTEX concentrations below respective Reclamation Requirements.

The initial site assessment data, followed by confirmation sampling data, all showed no exceedances beyond 0-4 feet below ground surface, therefore all soils were remediated according to Reclamation Requirements. The RRALs noted above for soil below 4 feet, therefore, were not applicable, since clean margins were obtained using the stricter Reclamation Requirements.

On December 5, 2022, subsequent to the receipt of confirmation sample results, SDR backfilled the open offpad excavations with clean soil. Confirmation sampling results are summarized in **Table 2** and laboratory analytical data packages including chain of custody documentation are included in **Appendix C**. Photographic Documentation showing the excavated areas and final grading after backfilling is provided in **Appendix D**.

Page 6 of 242

Maverick Natural Resources

CONCLUSIONS

Based on the results of the confirmation sampling, the remaining impacted soil within the release footprint with chloride or TPH concentrations above Reclamation Requirements has been removed and properly disposed of; therefore, Site remediation is complete. The excavated area has been backfilled with clean material. The backfilled areas have been graded and will be seeded in the next growing season to aid in vegetation growth, and to complete reclamation. The seed mixture to be used is provided in **Appendix E**. If you have any questions concerning the remediation activities for the Site, please call me at (832) 251-2093 or Steve at (713) 806-8871.

Sincerely,

Charles H. Terhune IV, P.G. Program Manager Tetra Tech, Inc.

Stephen Jester Program Manager Tetra Tech, Inc.

Cc: Mr. Bryce Wagoner – Maverick Natural Resources

LIST OF ATTACHMENTS

Figures:

Figure 1 – Overview Map

- Figure 2 Topographic Map
- Figure 3 Approximate Release Extent and Initial Excavation Map
- Figure 4 Release Assessment Map
- Figure 5 Remediation Extent and Confirmation Sample Locations

Tables:

Table 1 – Summary of Analytical Results – Soil Assessment

Table 2 – Summary of Analytical Results – Confirmation Samples

Appendices:

Appendix A – C-141 Form

Appendix B – Site Characterization Data

Appendix C – Laboratory Analytical Data

Appendix D – Photographic Documentation

Appendix E – NMSLO Seed Mixture Details

.

Released to Imaging: 3/16/2023 2:40:21 PM

Released to Imaging: 3/16/2023 2:40:21 PM

Released to Imaging: 3/16/2023 2:40:21 PM

.

•

TABLE 1 SUMMARY OF ASSESSMENT ANALYTICAL RESULTS SOIL ASSESSMENT - NRM2014565278 MAVERICK NATURAL RESOURCES EVGSAU 2963-002 WELLHEAD RELEASE LEA COUNTY, NM

	1		Field Sc	reening							BTEX ^{3,4}									TPI	1 ^{5,6}		
		Sample Depth		ults	Chloride ^{1,2}		B		T . I		Pale III		Total Vislama	Т	THEFT		GRO ⁷		DRO		ORO		Total TPH
Sample ID	Sample Date	Interval	Chloride	PID			Benzene		Toluene		Ethylbenzene		Total Xylenes		Total BTEX		C ₃ -C ₁₀		C ₁₀ -C ₂₈		C ₂₈ - C ₃₆		(GRO+DRO+ORO)
		ft. bgs	pp	om	mg/kg	Q	mg/kg (Q	mg/kg	Q	mg/kg	Q	mg/kg Q	T	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
		0-1	231	-	121		< 0.00112		< 0.00558		< 0.00279		< 0.00726	Г	-		0.0308	J	82.1		295		377
BH-1	8/23/2021	2-3	204	-	177		< 0.00120		< 0.00602		< 0.00301		< 0.00782		-		< 0.110		< 4.40		2.70	J	2.70
		4-5	192	-	203		< 0.00121		< 0.00607		< 0.00304		< 0.00790		-		< 0.111		2.10	J	1.78		3.88
		0-1	180	-	35.7		< 0.00118		< 0.00592		< 0.00296		< 0.00769	Τ	-		< 0.109		33.1		101		134
BH-2	8/23/2021	2-3	90.7	-	13.8	J	< 0.00125		< 0.00624		< 0.00312		< 0.00811	Г	-		< 0.112		< 4.49		3.36	J	3.36
		4-5	80.0	-	18.2	J	< 0.00125		< 0.00625		< 0.00313		< 0.00813		-		< 0.113		< 4.50		< 4.50		-
		0-1	305	-	393		0.000940	J	0.00364	J	0.00261	J	0.00434 J	Ī	0.0115		< 0.109		565		1920		2,485
BH-3	8/23/2021	2-3	190	-	13.8	J	< 0.00111		< 0.00557		< 0.00278		< 0.00724	t	-		< 0.106		< 4.23		1.88	J	1.88
		4-5	201	-	17.9	J	< 0.00113		< 0.00564		< 0.00282		< 0.00734	Γ	-		< 0.106		2.43	J	3.27	J	5.70
		0-1	490	-	874		< 0.00112		< 0.00559		< 0.00279		< 0.00727	Ť	-		< 0.106		438		1220		1,658
BH-4	8/23/2021	2-3	510	-	103		< 0.00113		< 0.00563		< 0.00281		< 0.00732	┢	-		< 0.106		2.68	J	5.59		8.27
		4-5	560	-	75.7		< 0.00116		< 0.00580		< 0.00290		< 0.00753	t	-		< 0.108		3.78	J	4.02	J	7.80
		0-1	401		167	İ	< 0.00113	T	< 0.00566		< 0.00283	Ť	< 0.00736	t	-		< 0.107		4.21		13.3		17.5
BH-5	8/23/2021	2-3	230	-	94.4		< 0.00110	-	< 0.00536		< 0.00268		< 0.00697	┢	-	_	< 0.104		6.90	L.	25.2		32.1
	-, -, -	4-5	198	-	89.4		< 0.00112		< 0.00560		< 0.00280		< 0.00728	┢	-		< 0.106		8.36		29.8		38.2
		0-1	401	-	402		< 0.00115		< 0.00574		< 0.00287	+	< 0.00747	÷	-		< 0.107		16.0		60.0		76.0
BH-6	8/23/2021	2-3	260	-	109		< 0.00113		< 0.00552		< 0.00287	-	< 0.00717	┢	-	_	< 0.107		2.88	J	6.19		9.07
Biro	0/20/2021	4-5	109	-	83.6		< 0.00111		< 0.00556		< 0.00278		< 0.00723	┢	-	_	< 0.105		2.45	J	5.84		8.29
	1		1	1	446							+		┾		_							
		3-4	-	-	319		< 0.00117 < 0.00117	-	< 0.00586		< 0.00293		< 0.00762	┢	-	_	< 0.109		44.4 45.5		171 180		215 226
		7-8	385	-	123	\vdash	< 0.00117	-	< 0.00539		< 0.00293	+	0.00212 J	┢	0.00212	-	< 0.109		2.81		5.63		8.44
BH-7	8/23/2021	9-10	-	-	281		< 0.00108	-	< 0.00533		< 0.00210		< 0.00785	┢	-	_	< 0.1104		< 4.41		< 4.41		-
Birr	-,,	12-13	120	-	85.8		< 0.00122		< 0.00612		< 0.00306		< 0.00796	┢	-	-	< 0.111		< 4.45		< 4.45		-
		17-18	-	-	147		< 0.00122		< 0.00610		< 0.00305	+	< 0.00793	┢	-	-	< 0.111		< 4.44		< 4.44		-
		22-23	315	-	189		< 0.00118		< 0.00588		< 0.00294		< 0.00765	┢	-		< 0.109		< 4.35		< 4.35		-
		1-2		-	66.9		< 0.00126		< 0.00628		< 0.00314	+	< 0.00816	÷	-	-	< 0.113		18.5	1	60.4		78.9
		3-4	-	-	29.2		< 0.00112		< 0.00561		< 0.00280		< 0.00729	┢	-	_	< 0.106		1.79	J	3.96	J	5.75
BH-8	8/23/2021	5-6	-	-	18.2	J	< 0.00118		< 0.00591		< 0.00296	+	< 0.00769	┢	-		< 0.109		< 4.37	-	0.588	J	0.588
		7-8	-	-	12.9	J	< 0.00108		< 0.00542		< 0.00271		< 0.00705	┢	-		0.0483	ВJ	< 4.17		< 4.17		0.0483
		10-11	210	-	14.4	J	< 0.00111		< 0.00554		< 0.00277		< 0.00721	┢	-		0.0457	ΒJ	< 4.22		< 4.22		0.0457
		1-2	-	-	179		< 0.00112	Ī	< 0.00561		< 0.00281	T	< 0.00730	Ť	-		< 0.106		25.3		99.5		125
		3-4	-	-	83.3		< 0.00109	+	< 0.00543		< 0.00272	+	< 0.00706	$^{+}$	-		< 0.104		2.51	J	5.90		8.41
		5-6	-	-	209		< 0.00110	1	< 0.00550		< 0.00275	╡	< 0.00715	t	-		< 0.105		< 4.20		1.87	J	1.87
BH-9	8/23/2021	7-8	-	-	37.7		< 0.00120		< 0.00598		< 0.00299		< 0.00778	1	-		< 0.110		< 4.39		0.332	J	0.332
		10-11	-	-	23.1		< 0.00122		< 0.00609		< 0.00305		< 0.00792		-		< 0.111		< 4.44		0.315	J	0.315
		15-16	-	-	17.5	J	< 0.00121		< 0.00604		< 0.00302		< 0.00785		-		< 0.110		< 4.42		< 4.42		-
		20-21	101	-	22.5	J	< 0.00144		< 0.00722		< 0.00361		< 0.00939		-		< 0.122		< 4.89		< 4.89		-
		3-4	-	-	272		< 0.00121		< 0.00605		< 0.00302		< 0.00786	Γ	-		< 0.110		31.9		123		155
		5-6	-	-	262		< 0.00112		< 0.00561		< 0.00281		< 0.00730		-		< 0.106		8.88		34.2		43.1
		7-8	-	-	691		< 0.00119	Τ	< 0.00594		< 0.00297		< 0.00773		-		< 0.109		< 4.38		< 4.38		-
BH-10	8/23/2021	9-10	-	-	246		< 0.00130		< 0.00652		< 0.00326		< 0.00848		-		< 0.115		< 4.61		< 4.61		-
		12-13	-	-	51.1		< 0.00121	\square	< 0.00603		< 0.00301	\square	< 0.00783		-		< 0.110		< 4.41		0.520	J	0.520
		17-18	-	-	30.0		< 0.00122		< 0.00611		< 0.00306		< 0.00795	⊢	-		< 0.111		< 4.44		< 4.44		-
		22-23	98.0	-	15.5	IJ	< 0.00112		< 0.00561		< 0.00280		< 0.00729				< 0.106	1	< 4.24		< 4.24		-

•

TABLE 1 SUMMARY OF ASSESSMENT ANALYTICAL RESULTS SOIL ASSESSMENT - NRM2014565278 MAVERICK NATURAL RESOURCES EVGSAU 2963-002 WELLHEAD RELEASE LEA COUNTY, NM

			Field Sc	reening							BTEX ^{3,4}									TPH	,6		
Sample ID	Sample Date	Sample Depth Interval	Res	ults	Chloride ^{1,2}	2	Benzene		Toluene		Ethylbenze	no	Total Xylen	95	Total BTEX -		GRO ⁷		DRO		ORO		Total TPH
Sample ID	Sample Date		Chloride	PID			Denzene		Totache		Ethylochize		Totat Ayten				C ₃ -C ₁₀		C ₁₀ -C ₂₈		C ₂₈ -C ₃₆		(GRO+DRO+ORO)
		ft. bgs	рр	m	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
AH-1	9/20/2021	0-1	-	-	223		< 0.00137		< 0.00687		< 0.00344		< 0.00893				< 0.119		< 4.75		1.87	J	1.87
AH-2	9/20/2021	0-1	-	-	17.0	J	< 0.00152		< 0.00760		< 0.00380		< 0.00988		-		< 0.126		10.7		48.0		58.7
AH-3	9/20/2021	0-1	-	-	21.4	J	< 0.00114		< 0.00571		< 0.00285		< 0.00742		-		0.182		436		1720		2,156
AH-4	9/20/2021	0-1	-	-	16.5	J	< 0.00146		< 0.00730		< 0.00365		< 0.00948		-		0.230	В	39.7		144		184
AH-5	9/20/2021	0-1	-	-	17.5	J	< 0.00146		< 0.00732		< 0.00366		< 0.00952		-		0.0557	ΒJ	18.5		101		120
AH-6	1/7/2022	0-1	-	-	< 108		< 0.0059		< 0.0237		< 0.0059		< 0.0178		-		< 10.7		202		188		390
AH-7	1/7/2022	0-1	-	-	< 107		< 0.0059		< 0.0237		< 0.0059		< 0.0178		-		< 11.7		159		128		287
AH-8	1/7/2022	0-1	-	-	< 109		< 0.0062		< 0.0246		< 0.0062		< 0.0185		-		< 12.1		79.8		61.2		141
AH-9	2/1/2022	0-1	-	-	32.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0	ТТ	< 10.0		10.9		10.9
AH-9	2/1/2022	1-2	-	-	32.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		-
AH-10	2/1/2022	0-1	-	-	64.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		-
,47-10	2,1/2022	1-2	-	-	16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		-
AH-11	2/1/2022	0-1	-	-	< 16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		21.0		21.0
,		1-2	-	-	< 16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		-

<u>NOTES:</u> ft. F

ft. Feet bgs Below ground surface

ppm Parts per million

mg/kg Milligrams per kilogram

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics

- DRO Diesel range organics
- ORO Oil range organics
- 1 EPA Method 300.0
- 2 Method SM4500Cl-B
- 3 EPA Method 8260B
- 4 EPA Method 8021B
- 5 EPA Method 8015
- 6 EPA Method 8015M
- 7 EPA Method 8015D/GRO

Bold and italicized values indicate exceedance of proposed Remediation RRALs and/or Reclamation Requirements.

Shaded rows indicate intervals proposed for excavation.

QUALIFIERS:

- B The same analyte is found in the associated blank.
- J The identification of the analyte is acceptable; the reported value is an estimate.

•

TABLE 2 SUMMARY OF ANALYTICAL RESULTS CONFIRMATION SAMPLING - NRM2014565278 MAVERICK NATURAL RESOURCES EVGSAU 2963-002 RELEASE LEA COUNTY, NM

			Field Screening						BTEX ²										т	'PH ³		
Converte ID	Course la Data	Sample Depth	Results	Chlorid	de1	Benzei		Tolue		Féhulher		Total Xy		Total BT	FV	GRO		DRO	1	EXT DR	0	Total TPH
Sample ID	Sample Date		Chloride			Benzei	ne	Totue	ne	Ethylber	nzene	TOTALXY	lenes	TOTAL BI	= 1	C ₆ -C ₁₀	D	> C ₁₀ - 0	C ₂₈	> C ₂₈ - C	36	(GRO+DRO+EXT DRO)
		feet bgs	ppm	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
FS-1	11/29/2022	1	147	48.0		<0.050		<0.050		<0.050		<0.150		< 0.300		<10.0		19.8		18.1		37.9
FS-2	11/29/2022	1	422	224.0		< 0.050		< 0.050		< 0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-3	11/29/2022	1	401	64.0		< 0.050		< 0.050		< 0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-4	11/29/2022	1	109	64.0		< 0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-5	11/30/2022	4	236	64.0		< 0.050		<0.050		< 0.050		<0.150		< 0.300		<10.0		<10.0		<10.0		<30.0
FS-6	11/30/2022	4	243	32.0		< 0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-7	11/30/2022	1	192	<16.0		< 0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-8	11/30/2022	1	128	<16.0		< 0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-9	11/30/2022	1	99	<16.0		< 0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-10	11/30/2022	1	135	32		< 0.050		< 0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-11	11/30/2022	1	188	48		< 0.050		< 0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-12	11/30/2022	1	72	48		< 0.050		< 0.050		< 0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-13	11/30/2022	1	201	48		< 0.050		<0.050		< 0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-14	11/30/2022	1	180	32		< 0.050		<0.050		< 0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-15	12/1/2022	1	84 117	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-16	12/1/2022	1	117	<16.0		< 0.050		< 0.050		< 0.050		<0.150		<0.300		<10.0		<10.0		<10.0 <10.0		<30.0
FS-17 FS-18	12/1/2022	1	76	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0 <10.0		<10.0		<30.0 <30.0
FS-18 FS-19	12/1/2022 12/1/2022	1	133	<16.0 16		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
FS-19 FS-20	12/1/2022	1	201	<16.0		< 0.050		< 0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
					<u> </u>						<u> </u>											1
NSW-1	11/29/2022	0-1	97	32.0		< 0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
NSW-2	11/29/2022	0-1	261	80.0		< 0.050		<0.050		< 0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
NSW-3	11/29/2022	0-1	254	64.0		< 0.050		< 0.050		< 0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
NSW-4	11/29/2022	0-1	233	32.0		< 0.050		<0.050		< 0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
NSW-5	11/30/2022	1-4	107	48.0		< 0.050		< 0.050		< 0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
NSW-6	11/29/2022	0-1	113	32		<0.050		<0.050		< 0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
ESW-1	11/29/2022	0-1	136	32.0		< 0.050		< 0.050		< 0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
ESW-2	11/29/2022	0-1	382	48.0		< 0.050		< 0.050		< 0.050		<0.150		< 0.300		<10.0		<10.0		<10.0		<30.0
ESW-3	11/29/2022	0-1	231	64.0		< 0.050		<0.050		< 0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
ESW-4	11/29/2022	0-1	316	48		< 0.050		<0.050		< 0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
ESW-5	11/29/2022	0-1	140	<16.0		< 0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
SSW-1	11/29/2022	0-1	231	64.0		< 0.050		< 0.050		< 0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
SSW-2	11/29/2022	0-1	204	64.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
SSW-3	11/29/2022	0-1	202	80		<0.050		<0.050		< 0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
SSW-4	11/29/2022	0-1	234	32		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
SSW-5	11/30/2022	1-4	121	<16.0		< 0.050		<0.050		< 0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
SSW-6	12/1/2022	0-1	111	<16.0		< 0.050		<0.050		< 0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
SSW-7	12/1/2022	0-1	141	16		< 0.050		< 0.050		< 0.050		<0.150		< 0.300		<10.0		<10.0		<10.0		<30.0
WSW-1	11/29/2022	0-1	231	80.0		< 0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
WSW-2	11/29/2022	0-1	158	64.0		< 0.050		< 0.050		< 0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
WSW-3	11/29/2022	0-1	187	128.0		< 0.050		< 0.050		< 0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
WSW-4	11/29/2022	0-1	111	32.0		< 0.050		< 0.050		< 0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
WSW-5	11/30/2022	1-4	176	32		< 0.050		< 0.050		< 0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
WSW-6	11/30/2022	0-1	86	32		< 0.050		< 0.050		< 0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
WSW-7	11/30/2022	0-1	132	64		<0.050		< 0.050		< 0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0
WSW-8	11/30/2022	0-1	155	96.0		<0.050		< 0.050		< 0.050		<0.150		<0.300		<10.0		<10.0		<10.0		<30.0

.

TABLE 2 SUMMARY OF ANALYTICAL RESULTS CONFIRMATION SAMPLING - NRM2014565278 MAVERICK NATURAL RESOURCES EVGSAU 2963-002 RELEASE LEA COUNTY, NM

			Field Screening							BTEX	(²								Т	PH ³		
		Sample Depth	Results	Chlorie	de1		Benzene Toluene Ethylbenzene Total Xylenes Total BTEX						GRO	1	DRO		EXT D	RO	Total TPH			
Sample ID	Sample Date		Chloride			Benzei	ne	Totue	ne	Ethylben	izene	Total Xy	lenes	I OTAL B	IEX	C ₆ -C	10	> C ₁₀ -	C ₂₈	> C ₂₈ -	C ₃₆	(GRO+DRO+EXT DRO)
		feet bgs	ppm	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg					Q	mg/kg
									L				L									

NOTES:

ft. Feet bgs Below ground surface

mg/kg Milligrams per kilogram

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics

DRO Diesel range organics

1 Method SM4500Cl-B

Bold and italicized values indicate exceedance of proposed Remediation RRALs and Reclamation Requirements.

Gold highlight represents soil horizons that were removed during deepening of excavation floors.

Green highlight represents soil intervals that were removed during horizontal expansion of excavation sidewalls.

* These iterative samples are located to encompass the original sample location that triggered removal, with further excavation in each area indicated in ().

QUALIFIERS:

APPENDIX A C-141 Form

.

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

32.800590

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	NRM2014565278
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party ConocoPhillips Company	OGRID 217817
Contact Name Kelsy Waggaman	Contact Telephone 505-577-9071
Contact email Kelsy.Waggaman@conocophillips.com	Incident # (assigned by OCD)
Contact mailing address 29 Vacuum Complex Lane,	Lovington, NM 88260

Location of Release Source

Latitude

Longitude <u>-103.4820557</u> (NAD 83 in decimal degrees to 5 decimal places)

Site Name East Vacuum (GSA) Unit #2	Site Type Production Facility
Date Release Discovered 5/9/20	API# (if applicable) 30-025-02937

Unit Letter	Section	Township	Range	County
N	29	17S	35E	Lea

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls) 54	Volume Recovered (bbls) 0
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

Rod BOP failure - corrosion

Page 21cof 242

Oil Conservation	on Division
------------------	-------------

Incident ID	NRM2014565278
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
X Yes No	Released volume of produced water was >25 bbls
II YES, was immediate n	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \mathbf{X} The source of the release has been stopped.

X The impacted area has been secured to protect human health and the environment.

X Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

X All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Kelsy Waggaman	Title: Environmental Coordinator
Signature: Kulyhbryghm	Date: 5/21/20
email: Kelsy.Waggaman@ConocoPhillips.com	Telephone: 505-577-9071
OCD Only	
Received by: Ramona Marcus	Date: <u>5/24/2020</u>

NRM2014565278

				L48 Spill Vol	ume Estimate Form				
	Facility	Name & Number:	EVGSAU 2963-00	2					
Asset Area			Buckeye		1		16		
	Release Disco	very Date & Time:	5/9/2020				15		
		Release Type:	Produced Water				1		
Provide a	any known detai	Is about the event:	Rod BOP failure				10		
				Spill Calculation -	Subsurface Spill - Rectangle				
V	Vas the release	on pad or off-pad?			On Pad - 10.5%; Off Pad - 15.12%	soil spilled-fluid sate	uration factor		
Has it rained at lea	ast a half inch in	the last 24 hours?		Yes, On Pa	ad - 8%; Off Pad - 13.57% soil spilled-	fluid saturation facto	or, if No, use factors a	oove.	
Convert Irregular shape into a series of rectangles	Length (ft.)	Width (ft.)	Depth (in.)	Soil Spilled-Fluid Saturation	Estimated volume of each area (bbl.)	Total Estimated Volume of Spill (bbl.)	Percentage of Oil if Spilled Fluid is a Mixture	Total Estimated Volume of Spilled Oil (bbl.)	Total Estimated Volume of Spilled Liquid other than Oil (bbl.)
Rectangle A	18.0	18.0	1.00	10.50%	4.806	0.505			
Rectangle B	44.0	45.0	12.00	10.50%	352.440	37.006			
Rectangle C	33.0	27.0	12.00	10.50%	158.598	16.653	- 6		
Rectangle D					0.000	0.000			
Rectangle E		1			0.000	0.000			
Rectangle F					0.000	0.000			
Rectangle G	1		-	1	0.000	0.000			
Rectangle H					0.000	0.000			
Rectangle I			1		0.000	0.000			
Rectangle J					0.000	0.000			
				A	Total Volume Release:	54.164			

Received by OCD: 3/6/2023 3:05:23 PM Form C-141 State of New Mexico

Oil Conservation Division

	Page 23 of 242
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 3/6/202. Form C-141	3 3:05:23 PM State of New Mexico			Page 24 of 242
			Incident ID	
Page 4	Oil Conservation Division		District RP	
			Facility ID	
			Application ID	
regulations all operators are public health or the environr failed to adequately investig addition, OCD acceptance of and/or regulations.	rmation given above is true and complete to th required to report and/or file certain release no nent. The acceptance of a C-141 report by the ate and remediate contamination that pose a th f a C-141 report does not relieve the operator of	otifications and perform co OCD does not relieve the reat to groundwater, surfa of responsibility for compl	prrective actions for rele operator of liability sho ce water, human health liance with any other feo	eases which may endanger ould their operations have or the environment. In deral, state, or local laws
Printed Name:				
Signature: San k	lidner	Date:	_	
email:		Telephone:		
OCD Only				
Received by: Jocel	yn Harimon	Date: 03/0	6/2023	

Received by OCD: 3/6/2023 3:05:23 PM Form C-141 State of New Mexico

Oil Conservation Division

<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan.

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Title: Signature: San Wicher Date: email: Telephone: _____ OCD Only 03/06/2023 Received by: Jocelyn Harimon Date: Approved Approved with Attached Conditions of Approval Denied Deferral Approved Signature: Date:

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Facility ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u> : Each of the following a	items must be included in the closure report.			
A scaled site and sampling diagram as described in 19.15.29.11 NMAC				
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)				
Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)				
Description of remediation activities				
and regulations all operators are required to report and/or file certaid may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and re- human health or the environment. In addition, OCD acceptance of compliance with any other federal, state, or local laws and/or regular restore, reclaim, and re-vegetate the impacted surface area to the co- accordance with 19.15.29.13 NMAC including notification to the C	ations. The responsible party acknowledges they must substantially onditions that existed prior to the release or their final land use in DCD when reclamation and re-vegetation are complete.			
OCD Only				
Received by: Jocelyn Harimon	Date: 03/06/2023			
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible /or regulations.			
Closure Approved by:	Date:			
Printed Name:				

Page 6

APPENDIX B

Site Characterization Data

.

New Mexico Oil Conservation Division

EVGSAU 2963-002

Released to Imaging: 3/16/2023 2:40:21 PM

NM OCD Oil and Gas Map. http://nm-emnrd.maps.arcgis.com/apps/webappviewer/index.html?id=4d017f2306164de29fd2fb9f8f35ca75: New Mexico Oil Conservation Division

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced, O=orphaned, C=the file is closed)	(quarters are 1=N (quarters are sma		4=SE) (NAD83 UTM i	n meters)	(In fee	et)
POD Number	POD Sub- Code basin Cou	Q Q Q unty 64 16 4 Sec Tr	ws Rng	X Y	Distance	Depth Dep Well Wat	oth Water ter Column
L 04829 S4	LL	E 23291	7S 35E 642	2121 3630598*			90 110 90 feet
				A	verage Depth to Minimum Maximum	Depth:	90 feet 90 feet 90 feet

Record Count: 1

UTMNAD83 Radius Search (in meters):

Easting (X): 642122

Northing (Y): 3630199

Radius: 800

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Received by OCD: 3/6/2023 3:05:23 PM

Page	31	<u>of</u> 242

		TŁ	All and the second					LOG OF BORING DTGW-1	1 of 2
•	me: EVG						nation		
	ocation: G		93424°	, -103	.48209)°	Boreh	Surface Elevation: 3972 ft	
Borehole N	Number: D	TGW-1	1				Diame	ter (in.): Date Statted. 0/20/2021 Date This	hed: 8/25/2021
		n) Y (%)	NT (%)			5		WATER LEVEL OBSERVATIONS	Dry_ft
DEPTH (ft) OPERATION TYPE	Athree Screening (ppm)	D SCREENING (ppm) SAMPI F RFCOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)		=	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
-	Exotix					<u> </u>		-SM- SILTY SAND: Tan to light tan, loose to	
								-CALICHE- CALICHE: White, hard, heavily cemented with calcium carbonate, with abundant gravel, occ. boulders.	
-								-LS- LIMESTONE: Tan, hard, well-indurated, blocky, dry.	
								• CALICHE- CALICHE: White, hard, heavily cemented with calcium carbonate, with abundant gravel.	
								-SM- SILTY SAND: Tan, medium dense, moderately cemented, semi-consolidated, with trace gravel, dry.	
20 								-CALICHE- CALICHE: White, hard, heavily cemented with calcium carbonate, with abundant gravel.	
								-LS- LIMESTONE: White, hard, well cemented, blocky, slabby, dry.	
								-SM- SILTY SAND: Tan, dense, moderately cemented, grading to sandstone (SS), dry.	
Sampler Types:	Split Spoon Shelby Bulk Sample Grab Sample		ple	r T	F	n lud cotary continu light A /ash cotary	ous uger	Hand Auger Notes: Air Rotary Direct Push Core Barrel Core Barrel	l on Google
Logger: J	oe Tyler			C	rilling E	quipr owel	nent: Ai	Rotary Driller: Scarborough Drilling	

TE TETRAT	ECH		LOG OF BORING DTGW-1		Page 2 of 2
/GSAU 3236-004 D	TGW Deter	mination	Bore		
GPS: 32.793424°, -	103.482099°		Surface Elevation: 3972 ft		
DTGW-1		Boreh	ble 8 Date Started: 8/25/2021 Date	e Finished:	8/25/2021
pm) ERY (%) ENT (%)	() DEX		WATER LEVEL OBSERVATIONS	<u>¥</u> C	Pry_ft
DI VOC FIELD SCREENING (F SAMPLE RECOVE MOISTURE CONT	DRY DENSITY (pc F LIQUID LIMIT 	MINUS NO. 200 (% GRAPHIC LOG	MATERIAL DESCRIPTION	DEPTH (ft)	REMARKS
			-SS- SANDSTONE: White to tan, dense to very dense, semi-consolidated, moderately to well cemented, little to no gravel, dry.		
			Bottom of borehole at 55.0 feet.	55	
A	Rota	iry 🗌	Earth data.	based on	Google
	Acetate Liner by Discrete	Acetate Liner y Acetate Liner y Acetate Liner y Acetate Liner y Yane Shear y Mult y Acetate Liner y Mult y	/GSAU 3236-004 DTGW Determination GPS: 32.793424°, -103.482099° DTGW-1 Borehu (uud) (uud)	CGSAU 3236-004 DTGW Determination Bore GPS: 32.793424*, -103.482099* Surface Elevation: 3972 ft DTGW-1 Bitameter (in.,): 8 Date Started: 3/25/2021 Date Started: 3/25/2021 Image: Started St	CSAU 3236-004 DTGW Determination Bore GPS: 32793424*, -103.482099* Surface Elevation: 3972 ft DTGW-1 Borehold in the started: 8/25/2021 Date Finished: While Drilling ⊻ Dry ft Upon Completion of Drilling ¥ Dry ft Upon Completion of Drilling ¥ Dry ft Using gradient started: 8/25/2021 Borehold in the started: 8/25/2021 Date Finished: Using gradient started: 8/25/2021 Borehold in the started: 8/25/2021 Date Finished: Using gradient started: 8/25/2021 Borehold in the started: 8/25/2021 Date Finished: Using gradient started: 8/25/2021 Borehold in the started: 8/25/2021 Date Finished: Using gradient started: 8/25/2021 Borehold in the started: 8/25/2021 Date Finished: Using gradient started: 8/25/2021 Borehold in the started: 8/25/2021 Date Finished: Using gradient started: 8/25/2021 Borehold in the started: 8/25/2021 Date Finished: Using gradient started: 8/25/2021 Borehold in the started: 8/25/2021 Date Finished: Starte started: 8/25/2021 Borehold in the started: 8/25/2021 Borehold in the started: 8/25/2021 Borehold in the started: 8/25/2021 Borehold in the started: 8/25/2021 Borehold in the started: 8/25/2021 Starte started: 8/25/2021

 Logger:
 Joe Tyler
 Drilling Equipment:
 Air Rotary
 Driller:
 Scarborough Drilling

 Refersed to maging:
 3/16/2023
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21
 2:40:21</

APPENDIX C Laboratory Analytical Data

.

Received by OCD: 3/6/2023 3:05:23 PM

Pace Analytical® ANALYTICAL REPORT October 01, 2021

Revised Report

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

Report To:

L1396397 08/28/2021 212C-MD-02492 EVSAU 2963-002

Christian Llull 901 West Wall Suite 100 Midland, TX 79701

Ss Cn Sr ʹQc Gl AI Sc

Ср

Тс

Entire Report Reviewed By:

Enica Mc Neese

Erica McNeese Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV/SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Released to Imaging: 3/16/2023 2:40:21 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02492

SDG: L1396397

DATE/TIME. 10/01/21 11:43

PAGE: 1 of 89

TABLE OF CONTENTS

Ср

Ss

Cn

Sr

Qc

GI

ΆI

Sc

Cp: Cover Page			1
Tc: Table of Contents			2
Ss: Sample Summary			4
Cn: Case Narrative			13
Sr: Sample Results			14
BH-1 (0-1) L1396397-01			14
BH-1 (2-3) L1396397-02			15
BH-1 (4-5) L1396397-03			16
BH-2 (0-1) L1396397-04			17
BH-2 (2-3) L1396397-05			18
BH-2 (4-5) L1396397-06			19
BH-3 (0-1) L1396397-07			20
BH-3 (2-3) L1396397-08			21
BH-3 (4-5) L1396397-09			22
BH-4 (0-1) L1396397-10			23
BH-4 (2-3) L1396397-11			24
BH-4 (4-5) L1396397-12			25
BH-5 (0-1) L1396397-13			26
BH-5 (2-3) L1396397-14			27
BH-5 (4-5) L1396397-15			28
BH-6 (0-1) L1396397-16			29
BH-6 (2-3) L1396397-17			30
BH-6 (4-5) L1396397-18			31
BH-7 (3-4) L1396397-19			32
BH-7 (5-6) L1396397-20			33
BH-7 (7-8) L1396397-21			34
BH-7 (9-10) L1396397-22			35
BH-7 (12-13) L1396397-23			36
BH-7 (17-18) L1396397-24			37
BH-7 (22-23) L1396397-25			38
BH-8 (1-2) L1396397-26			39
BH-8 (3-4) L1396397-27			40
BH-8 (5-6) L1396397-28			41
BH-8 (7-8) L1396397-29			42
BH-8 (10-11) L1396397-30			43
BH-9 (1-2) L1396397-31			44
BH-9 (3-4) L1396397-32			45
BH-9 (5-6) L1396397-33			46
BH-9 (7-8) L1396397-34			47
BH-9 (10-11) L1396397-35			48
iging: 3/16/2023 2:40:21 PM	PROJECT:	SDG:	DATE/TIME:

Released to Imaging: 3/16/2023 2:40:21 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02492

SDG: L1396397

10/01/21 11:43

PAGE: 2 of 89

BH-9 (15-16) L1396397-36	49
BH-9 (20-21) L1396397-37	50
BH-10 (3-4) L1396397-38	51
BH-10 (5-6) L1396397-39	52
BH-10 (7-8) L1396397-40	53
BH-10 (9-10) L1396397-41	54
BH-10 (12-13) L1396397-42	55
BH-10 (17-18) L1396397-43	56
BH-10 (22-23) L1396397-44	57
Qc: Quality Control Summary	58
Total Solids by Method 2540 G-2011	58
Wet Chemistry by Method 300.0	63
Volatile Organic Compounds (GC) by Method 8015D/GRO	66
Volatile Organic Compounds (GC/MS) by Method 8260B	71
Semi-Volatile Organic Compounds (GC) by Method 8015M	75
GI: Glossary of Terms	78
Al: Accreditations & Locations	79
Sc: Sample Chain of Custody	80

¹ Cp
² Tc
³ Ss
⁴ Cn
⁵ Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

PROJECT: 212C-MD-02492

SDG: L1396397 DATE/TIME: 10/01/21 11:43

PAGE: 3 of 89
SAMPLE SUMMARY

BH-1 (0-1) L1396397-01 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734868	1	09/07/21 08:19	09/07/21 08:24	СМК	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1731931	1	08/30/21 15:16	08/30/21 17:56	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/01/21 16:08	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 03:16	DWR	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015M	WG1733277	10	09/03/21 04:44	09/04/21 09:11	JN	Mt. Juliet, TN
3H-1 (2-3) L1396397-02 Solid			Collected by Joe Tyler	Collected date/time 08/23/21 00:00	Received da: 08/28/21 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Fotal Solids by Method 2540 G-2011	WG1734868	1	09/07/21 08:19	09/07/21 08:24	СМК	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1731931	1	08/30/21 15:16	08/30/21 18:05	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/01/21 16:29	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 03:36	DWR	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015M	WG1733277	1	09/03/21 04:44	09/04/21 06:19	JN	Mt. Juliet, TN
			Collected by	Collected date/time		
3H-1 (4-5) L1396397-03 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	15
flethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1734868	1	09/07/21 08:19	09/07/21 08:24	СМК	Mt. Juliet, TN
/et Chemistry by Method 300.0	WG1731931	1	08/30/21 15:16	08/30/21 18:34	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/01/21 21:52	DWR	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 03:56	DWR	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015M	WG1733277	1	09/03/21 04:44	09/04/21 06:06	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
3H-2 (0-1) L1396397-04 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	15
N ethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
otal Solids by Method 2540 G-2011	WG1734868	1	date/time 09/07/21 08:19	date/time 09/07/21 08:24	СМК	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1731931	1	08/30/21 15:16	08/30/21 18:44	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1731931 WG1732079	1	08/31/21 16:39	09/01/21 22:14	DWR	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8015D/GRO	WG1732079 WG1734886	1	08/31/21 16:39	09/04/21 04:16	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GCN/S) by Method 82005	WG1734880 WG1733277	2	09/03/21 04:44	09/08/21 14:41	CLG	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
BH-2 (2-3) L1396397-05 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	
Aethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1734868	1	09/07/21 08:19	09/07/21 08:24	СМК	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1731931	1	08/30/21 15:16	08/30/21 18:53	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/02/21 00:13	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 04:36	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1733277	1	09/03/21 04:44	09/04/21 05:40	JN	Mt. Juliet, TN

Released to Imaging: 3/16/2023 2:40:21 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02492

SDG: L1396397 DATE/TIME:

10/01/21 11:43

PAGE: 4 of 89

Page 37 of 242

Ср

²Tc

Ss

Cn

Sr

Qc

GI

ΆI

SAMPLE SUMMARY

BH-2 (4-5) L1396397-06 Solid			Collected by Joe Tyler	Collected date/time 08/23/21 00:00	08/28/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734868	1	09/07/21 08:19	09/07/21 08:24	СМК	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1731931	1	08/30/21 15:16	08/30/21 19:03	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/02/21 00:35	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 04:56	DWR	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/08/21 02:09	CAG	Mt. Juliet, TN
3H-3 (0-1) L1396397-07 Solid			Collected by Joe Tyler	Collected date/time 08/23/21 00:00	Received da 08/28/21 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
atal Calida hu Mathad 2010 C 2011	WC1724000	1	date/time	date/time	CMI	Mt Juliat Th
otal Solids by Method 2540 G-2011 Vet Chemistry by Method 300.0	WG1734868 WG1731931	1	09/07/21 08:19 08/30/21 15:16	09/07/21 08:24	CMK ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1731931 WG1732079	1 1	08/30/21 15:16	08/30/21 19:12 09/02/21 00:56	DWR	Mt. Juliet, TN Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8015D/GRO	WG1732079 WG1734886	1	08/31/21 16:39	09/02/21 00:56	DWR	Mt. Juliet, Tr Mt. Juliet, TN
emi-Volatile Organic Compounds (GC/MS) by Method 82608	WG1734886 WG1734026	20	08/31/21 16:39	09/04/21 05:16	WCR	Mt. Juliet, TN Mt. Juliet, TN
			Callested by		Described	h = /h:
3H-3 (2-3) L1396397-08 Solid			Collected by Joe Tyler	Collected date/time 08/23/21 00:00	08/28/21 09:	
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1734868	1	09/07/21 08:19	09/07/21 08:24	СМК	Mt. Juliet, TN
/et Chemistry by Method 300.0	WG1731931	1	08/30/21 15:16	08/30/21 19:22	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/02/21 01:18	DWR	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 05:36	DWR	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/08/21 02:22	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received date/time	
3H-3 (4-5) L1396397-09 Solid			Joe Tyler	08/23/21 00:00	08/28/2109:	15
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1734868	1	09/07/21 08:19	09/07/21 08:24	СМК	Mt. Juliet, TN
et Chemistry by Method 300.0	WG1731931	1	08/30/21 15:16	08/30/21 19:31	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/02/21 01:39	DWR	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 05:56	DWR	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/08/21 02:36	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
3H-4 (0-1) L1396397-10 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	15
/lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1734869	1	09/07/21 08:10	09/07/21 08:17	СМК	Mt. Juliet, TN
/et Chemistry by Method 300.0	WG1731931	1	08/30/21 15:16	08/30/21 19:41	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/02/21 02:01	DWR	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 06:16	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	10	09/03/21 15:49	09/10/21 15:58	WCR	Mt. Juliet, TN

PROJECT: 212C-MD-02492

SDG: L1396397 DATE/TIME: 10/01/21 11:43

TIME: 1 11:43 PAGE: 5 of 89

Page 38 of 242

Ср

²Tc

Ss

Cn

Sr

Qc

GI

ΆI

SAMPLE SUMMARY

BH-4 (2-3) L1396397-11 Solid			Collected by Joe Tyler	Collected date/time 08/23/21 00:00	08/28/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734869	1	09/07/21 08:10	09/07/21 08:17	СМК	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1731931	1	08/30/21 15:16	08/30/21 19:50	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/02/21 02:22	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 06:36	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/08/21 03:30	CAG	Mt. Juliet, TN
BH-4 (4-5) L1396397-12 Solid			Collected by Joe Tyler	Collected date/time 08/23/21 00:00	Received dat 08/28/21 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
vieniou	Datcii	Dilution	date/time	date/time	Analyst	LOCATION
Total Solids by Method 2540 G-2011	WG1734869	1	09/07/21 08:10	09/07/21 08:17	СМК	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1731931	1	08/30/21 15:16	08/30/21 20:00	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/02/21 02:44	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 06:56	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/08/21 03:17	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	
BH-5 (0-1) L1396397-13 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	15
N ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1734869	1	09/07/21 08:10	09/07/21 08:17	СМК	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1731931	1	08/30/21 15:16	08/30/21 20:28	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/02/21 03:05	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 07:16	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/08/21 03:44	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received date/time	
BH-5 (2-3) L1396397-14 Solid			Joe Tyler	08/23/21 00:00	08/28/2109:	15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1734869	1	date/time 09/07/21 08:10	date/time 09/07/21 08:17	СМК	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1734809 WG1731931	1	08/30/21 15:16	08/30/21 20:38	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1731931 WG1732079	1	08/31/21 16:39	09/02/21 03:27	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8015D/GRO	WG1734886	1	08/31/21 16:39	09/02/21 03:27	DWR	Mt. Juliet, Th Mt. Juliet, Th
Semi-Volatile Organic Compounds (GC) by Method 82005	WG1734026	1	09/03/21 15:49	09/08/21 03:57	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-5 (4-5) L1396397-15 Solid			Joe Tyler	08/23/21 00:00	08/28/2109:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1734869	1	09/07/21 08:10	09/07/21 08:17	СМК	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1731931	1	08/30/21 15:16	08/30/21 20:47	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/02/21 03:48	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 07:56	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/08/21 04:11	CAG	Mt. Juliet, TN

PROJECT: 212C-MD-02492

SDG: L1396397 DATE/TIME:

10/01/21 11:43

PAGE: 6 of 89

Page 39 of 242

Ср

²Tc

Ss

Cn

Sr

Qc

GI

ΆI

SAMPLE SUMMARY

BH-6 (0-1) L1396397-16 Solid			Collected by Joe Tyler	08/23/21 00:00	08/28/21 09:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734869	1	09/07/21 08:10	09/07/21 08:17	СМК	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1731931	1	08/30/21 15:16	08/30/21 21:06	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/02/21 04:10	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 08:16	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/10/21 15:04	WCR	Mt. Juliet, TN
BH-6 (2-3) L1396397-17 Solid			Collected by Joe Tyler	Collected date/time 08/23/21 00:00	Received da 08/28/21 09:	
<i>f</i> lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734869	1	09/07/21 08:10	09/07/21 08:17	СМК	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1731931	1	08/30/21 15:16	08/30/21 21:16	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/02/21 04:31	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 08:36	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/10/21 14:50	WCR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
3H-6 (4-5) L1396397-18 Solid			Joe Tyler	08/23/21 00:00	08/28/2109:	15
<i>M</i> ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1734869	1	09/07/21 08:10	09/07/21 08:17	СМК	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 05:43	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1732079	1	08/31/21 16:39	09/02/21 04:53	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 08:56	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/08/21 04:38	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received date/time	
BH-7 (3-4) L1396397-19 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	WC17240C0	1	date/time	date/time	CM//	
otal Solids by Method 2540 G-2011	WG1734869	1	09/07/21 08:10	09/07/21 08:17	CMK	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 05:52	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1733792	1	08/31/21 16:39	09/02/21 15:35	BMB	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 09:17	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	2	09/03/21 15:49	09/10/21 15:17	WCR	Mt. Juliet, TN
BH-7 (5-6) L1396397-20 Solid			Collected by Joe Tyler	Collected date/time 08/23/21 00:00	Received da 08/28/21 09:	
· · ·						
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1734870	1	09/07/21 08:01	09/07/21 08:07	СМК	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 06:02	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1733792	1	08/31/21 16:39	09/02/21 15:56	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734886	1	08/31/21 16:39	09/04/21 09:37	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	2	09/03/21 15:49	09/10/21 15:31	WCR	Mt. Juliet, TN

PROJECT: 212C-MD-02492

SDG: L1396397 DATE/TIME:

PAGE: 7 of 89

Page 40 of 242

Ср

²Tc

Ss

Cn

Sr

Qc

GI

ΆI

SAMPLE SUMMARY

BH-7 (7-8) L1396397-21 Solid			Collected by Joe Tyler	Collected date/time 08/23/21 00:00	Received da 08/28/21 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1734870	1	09/07/21 08:01	09/07/21 08:07	СМК	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 06:11	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1733792	1	08/31/21 16:39	09/02/21 16:18	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734823	1	08/31/21 16:39	09/03/21 17:22	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1735379	1	08/31/21 16:39	09/05/21 09:41	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/08/21 04:51	CAG	Mt. Juliet, TN

BH-7 (9-10) L1396397-22 Solid			Collected by Joe Tyler	Collected date/time 08/23/21 00:00	Received date/time 08/28/21 09:15	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734870	1	09/07/21 08:01	09/07/21 08:07	СМК	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 06:21	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1733792	1	08/31/21 16:39	09/02/21 16:39	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734823	1	08/31/21 16:39	09/03/21 17:41	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/08/21 01:42	CAG	Mt. Juliet, TN

			Collected by	Collected date/time	Received dat	te/time
BH-7 (12-13) L1396397-23 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:15	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1734870	1	09/07/21 08:01	09/07/21 08:07	СМК	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 06:30	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1733792	1	08/31/21 20:11	09/02/21 17:01	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734823	1	08/31/21 20:11	09/03/21 18:00	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/08/21 01:55	CAG	Mt. Juliet, TN

			Collected by Joe Tyler	Collected date/time 08/23/21 00:00	Received date/time 08/28/21 09:15	
BH-7 (17-18) L1396397-24 Solid			JUE Tyler	00/23/21 00:00		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1734870	1	09/07/21 08:01	09/07/21 08:07	СМК	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 06:40	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1733792	1	08/31/21 20:11	09/02/21 17:22	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734823	1	08/31/21 20:11	09/03/21 18:20	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/08/21 01:14	CAG	Mt. Juliet, TN

BH-7 (22-23) L1396397-25 Solid		C Jo		Collected date/time 08/23/21 00:00	Received date/time 08/28/21 09:15	
Method	Batch	Dilution	Preparation	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734870	1	date/time 09/07/21 08:01	09/07/21 08:07	СМК	Mt. Juliet, TN
Wet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1733212 WG1733792	1 1	09/01/21 16:25 08/31/21 20:11	09/02/21 06:50 09/02/21 17:44	ELN BMB	Mt. Juliet, TN Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734823	1	08/31/21 20:11	09/03/21 18:39	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734026	1	09/03/21 15:49	09/08/21 01:28	CAG	Mt. Juliet, TN

SDG: L1396397 DATE/TIME: 10/01/21 11:43

PAGE: 8 of 89

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

SAMPLE SUMMARY

BH-8 (1-2) L1396397-26 Solid			Collected by Joe Tyler	Collected date/time 08/23/21 00:00	08/28/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1734870	1	09/07/21 08:01	09/07/21 08:07	СМК	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 07:47	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1733792	1	08/31/21 20:11	09/02/21 18:05	BMB	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1734823	1	08/31/21 20:11	09/03/21 18:58	DWR	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/21 18:59	CAG	Mt. Juliet, TN
3H-8 (3-4) L1396397-27 Solid			Collected by Joe Tyler	Collected date/time 08/23/21 00:00	Received dat 08/28/2109:	
Aethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1734870	1	09/07/21 08:01	09/07/21 08:07	СМК	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 07:56	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1733792	1	08/31/21 20:11	09/02/21 18:27	BMB	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1734823	1	08/31/21 20:11	09/03/21 19:17	DWR	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/21 18:17	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
3H-8 (5-6) L1396397-28 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	15
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1734870	1	09/07/21 08:01	09/07/21 08:07	СМК	Mt. Juliet, TN
/et Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 08:06	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1735730	1	08/31/21 20:11	09/06/21 21:25	DWR	Mt. Juliet, TN
'olatile Organic Compounds (GC/MS) by Method 8260B	WG1734823	1	08/31/21 20:11	09/03/21 19:36	DWR	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/21 15:29	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received date/time	
3H-8 (7-8) L1396397-29 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	15
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1734870	1	09/07/21 08:01	09/07/21 08:07	СМК	Mt. Juliet, TN
/et Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 08:15	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1731196	1	08/31/21 20:11	09/03/21 02:56	JAH	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1734823	1	08/31/21 20:11	09/03/21 19:56	DWR	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/21 15:43	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
3H-8 (10-11) L1396397-30 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	15
flethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1734872	1	09/07/21 07:53	09/07/21 07:59	СМК	Mt. Juliet, TN
/et Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 08:25	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1731196	1	08/31/21 20:11	09/03/21 03:19	JAH	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1734823	1	08/31/21 20:11	09/03/21 20:15	DWR	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/21 15:57	CAG	Mt. Juliet, TN

PROJECT: 212C-MD-02492

SDG: L1396397 DATE/TIME: 10/01/21 11:43

PAGE: 9 of 89

Page 42 of 242

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

SAMPLE SUMMARY

Received date/time Collected by Collected date/time 08/23/21 00:00 08/28/21 09:15 Joe Tyler BH-9 (1-2) L1396397-31 Solid Method Batch Dilution Preparation Analysis Analyst Location date/time date/time Total Solids by Method 2540 G-2011 WG1734872 1 09/07/21 07:53 09/07/21 07:59 CMK Mt. Juliet, TN Wet Chemistry by Method 300.0 WG1733212 1 09/01/21 16:25 09/02/21 08:34 ELN Mt. Juliet, TN Volatile Organic Compounds (GC) by Method 8015D/GRO WG1734725 1 08/31/21 20:11 09/04/21 05:29 AV Mt. Juliet, TN Volatile Organic Compounds (GC/MS) by Method 8260B WG1734823 1 08/31/21 20:11 DWR Mt. Juliet, TN 09/03/21 20:34 Semi-Volatile Organic Compounds (GC) by Method 8015M WG1734027 1 09/03/21 04:51 09/04/21 19:55 CLG Mt. Juliet, TN Collected by Collected date/time Received date/time 08/23/21 00:00 08/28/21 09:15 Joe Tyler BH-9 (3-4) L1396397-32 Solid Method Batch Dilution Preparation Analysis Analyst Location date/time date/time Total Solids by Method 2540 G-2011 WG1734872 1 09/07/21 07:53 09/07/21 07:59 CMK Mt. Juliet. TN Wet Chemistry by Method 300.0 WG1733212 1 09/01/21 16:25 09/02/21 08:44 FIN Mt. Juliet, TN WG1734725 09/04/21 05:50 Volatile Organic Compounds (GC) by Method 8015D/GRO 1 08/31/21 20:11 AV Mt. Juliet. TN Volatile Organic Compounds (GC/MS) by Method 8260B WG1734827 08/31/21 20:11 09/03/21 22:48 DWR Mt. Juliet, TN 1 09/03/21 04:51 Semi-Volatile Organic Compounds (GC) by Method 8015M WG1734027 09/04/21 18:31 CAG Mt Juliet TN 1 Collected by Collected date/time Received date/time Joe Tyler 08/23/21 00:00 08/28/21 09:15 BH-9 (5-6) L1396397-33 Solid Method Batch Dilution Preparation Analysis Analyst Location date/time date/time Total Solids by Method 2540 G-2011 WG1734872 1 09/07/21 07:53 09/07/21 07:59 CMK Mt. Juliet, TN Wet Chemistry by Method 300.0 09/01/21 16:25 09/02/21 09:12 **FIN** WG1733212 1 Mt. Juliet, TN Volatile Organic Compounds (GC) by Method 8015D/GRO WG1734725 08/31/21 20:11 09/04/21 06:12 1 AV Mt. Juliet, TN DWR Volatile Organic Compounds (GC/MS) by Method 8260B WG1734827 1 08/31/21 20:11 09/03/21 23:07 Mt. Juliet, TN Semi-Volatile Organic Compounds (GC) by Method 8015M WG1734027 1 09/03/21 04:51 09/04/21 17:49 CAG Mt. Juliet, TN Collected by Collected date/time Received date/time Joe Tyler 08/23/21 00:00 08/28/21 09:15 BH-9 (7-8) L1396397-34 Solid Method Batch Dilution Preparation Analysis Analyst Location date/time date/time WG1734872 09/07/21 07:53 09/07/21 07:59 CMK Total Solids by Method 2540 G-2011 1 Mt. Juliet, TN Wet Chemistry by Method 300.0 WG1733212 1 09/01/21 16:25 09/02/21 09:22 **FIN** Mt. Juliet, TN Volatile Organic Compounds (GC) by Method 8015D/GRO 1 AV WG1734725 08/31/21 20:11 09/04/21 06:33 Mt. Juliet, TN Volatile Organic Compounds (GC/MS) by Method 8260B WG1734827 1 08/31/21 20:11 09/03/21 23:26 DWR Mt. Juliet, TN Semi-Volatile Organic Compounds (GC) by Method 8015M WG1734027 1 09/03/21 04:51 09/04/21 15:01 CAG Mt. Juliet, TN Collected by Collected date/time Received date/time Joe Tyler 08/23/21 00:00 08/28/21 09:15 BH-9 (10-11) L1396397-35 Solid Method Batch Dilution Preparation Analysis Analyst Location date/time date/time Total Solids by Method 2540 G-2011 09/07/21 07:53 09/07/21 07:59 WG1734872 1 CMK Mt. Juliet, TN Wet Chemistry by Method 300.0 WG1733212 1 09/01/21 16:25 09/02/21 09:31 **FIN** Mt. Juliet, TN Volatile Organic Compounds (GC) by Method 8015D/GRO WG1734725 1 08/31/21 20:11 09/04/21 06:55 AV Mt. Juliet, TN Volatile Organic Compounds (GC/MS) by Method 8260B DWR WG1734827 1 08/31/21 20:11 09/03/21 23:45 Mt. Juliet, TN Semi-Volatile Organic Compounds (GC) by Method 8015M WG1734027 1 09/03/21 04:51 09/04/21 15:15 CAG Mt. Juliet. TN

PROJECT: 212C-MD-02492

SDG: L1396397 DATE/TIME: 10/01/21 11:43

TIME: 11:43 PAGE: 10 of 89

Page 43 of 242

Τс

Ss

Cn

Sr

Qc

Gl

AI

SAMPLE SUMMARY

BH-9 (15-16) L1396397-36 Solid			Collected by Joe Tyler	Collected date/time 08/23/21 00:00	Received da 08/28/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734872	1	09/07/21 07:53	09/07/21 07:59	СМК	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 09:50	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1734725	1	08/31/21 20:11	09/04/21 07:16	AV	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734827	1	08/31/21 20:11	09/04/21 00:04	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/21 16:11	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-9 (20-21) L1396397-37 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1734872	1	09/07/21 07:53	09/07/21 07:59	СМК	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733212	1	09/01/21 16:25	09/02/21 10:00	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1734725	1	08/31/21 20:11	09/04/21 07:38	AV	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734827	1	08/31/21 20:11	09/04/21 00:23	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/21 16:25	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-10 (3-4) L1396397-38 Solid			Joe Tyler	08/23/21 00:00	08/28/2109:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734872	1	09/07/21 07:53	09/07/21 07:59	СМК	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1733222	1	09/01/21 16:23	09/01/21 19:29	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1734725	1	08/31/21 20:11	09/04/21 08:00	AV	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1734827	1	08/31/21 20:11	09/04/21 00:42	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/21 19:41	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-10 (5-6) L1396397-39 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734872	1	09/07/21 07:53	09/07/21 07:59	СМК	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1733222	1	09/01/21 16:23	09/01/21 19:38	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1734725	1	08/31/21 20:11	09/04/21 08:21	AV	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734827	1	08/31/21 20:11	09/04/21 01:02	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/21 18:45	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-10 (7-8) L1396397-40 Solid			Joe Tyler	08/23/21 00:00	08/28/2109:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734874	1	09/07/21 07:43	09/07/21 07:49	СМК	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733222	1	09/01/21 16:23	09/01/21 19:47	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1734725	1	08/31/21 20:11	09/04/21 08:43	AV	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734827	1	08/31/21 20:11	09/04/21 01:21	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/21 16:39	CAG	Mt. Juliet, TN

PROJECT: 212C-MD-02492

SDG: L1396397

DATE 10/01/2

DATE/TIME: 10/01/21 11:43 PAGE: 11 of 89

Page 44 of 242

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

SAMPLE SUMMARY

	JAINFLL		ЛАКТ			
BH-10 (9-10) L1396397-41 Solid			Collected by Joe Tyler	Collected date/time 08/23/21 00:00	Received da	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734874	1	09/07/21 07:43	09/07/21 07:49	СМК	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733222	1	09/01/21 16:23	09/01/21 19:57	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1734725	1	08/31/21 20:11	09/04/21 09:04	AV	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734827	1	08/31/21 20:11	09/04/21 01:40	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/21 16:53	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-10 (12-13) L1396397-42 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	:15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734874	1	09/07/21 07:43	09/07/21 07:49	СМК	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733222	1	09/01/21 16:23	09/01/21 20:06	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1734725	1	08/31/21 20:11	09/04/21 09:26	AV	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734827	1	08/31/21 20:11	09/04/21 01:59	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/21 17:07	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-10 (17-18) L1396397-43 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09:	:15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734874	1	09/07/21 07:43	09/07/21 07:49	СМК	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733222	1	09/01/21 16:23	09/01/21 20:16	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1734725	1	08/31/21 20:11	09/04/21 09:47	AV	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734827	1	08/31/21 20:11	09/04/21 02:18	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1734027	1	09/03/21 04:51	09/04/21 17:21	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-10 (22-23) L1396397-44 Solid			Joe Tyler	08/23/21 00:00	08/28/21 09	:15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1734874	1	09/07/21 07:43	09/07/21 07:49	СМК	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1733222	1	09/01/21 16:23	09/01/21 20:25	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1734725	1	08/31/21 20:11	09/04/21 10:09	AV	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1734827	1	08/31/21 20:11	09/04/21 02:38	DWR	Mt. Juliet, TN
			00/00/04 04 54	00/04/04 47 05		

Volatile Organic Compounds (GC/MS) by Method 8260B NG1/3482 Semi-Volatile Organic Compounds (GC) by Method 8015M WG1734027 1

Released to Imaging: 3/16/2023 2:40:21 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02492

SDG: L1396397

09/03/21 04:51

09/04/2117:35

CAG

Mt. Juliet, TN

DATE/TIME: 10/01/21 11:43

PAGE: 12 of 89

Page 45 of 242

Ср

Τс

Cn

Śr

ʹQc

Gl

Â

CASE NARRATIVE

Erica Mc Neese

Erica McNeese Project Manager

Report Revision History

Level II Report - Version 1: 09/15/21 19:03

Project Narrative

Revised report to include revised sample IDs per client request.

Page 46 of 242

SDG: L1396397 DATE/TIME: 10/01/21 11:43

PAGE: 13 of 89

Received by 19 CD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 01

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	94.5		1	09/07/2021 08:24	WG1734868	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	121		9.73	21.2	1	08/30/2021 17:56	WG1731931

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
	Result (ury)	Quanner	WDE (ury)	KDE (dry)	Diution	,	Batch	E
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0308	J	0.0230	0.106	1	09/01/2021 16:08	WG1732079	L
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		09/01/2021 16:08	WG1732079	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000521	0.00112	1	09/04/2021 03:16	<u>WG1734886</u>
Toluene	U		0.00145	0.00558	1	09/04/2021 03:16	WG1734886
Ethylbenzene	U		0.000823	0.00279	1	09/04/2021 03:16	WG1734886
Total Xylenes	U		0.000983	0.00726	1	09/04/2021 03:16	<u>WG1734886</u>
(S) Toluene-d8	103			75.0-131		09/04/2021 03:16	WG1734886
(S) 4-Bromofluorobenzene	103			67.0-138		09/04/2021 03:16	WG1734886
(S) 1,2-Dichloroethane-d4	82.8			70.0-130		09/04/2021 03:16	WG1734886

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	82.1		17.0	42.3	10	09/04/2021 09:11	<u>WG1733277</u>
C28-C36 Motor Oil Range	295		2.90	42.3	10	09/04/2021 09:11	<u>WG1733277</u>
(S) o-Terphenyl	57.2			18.0-148		09/04/2021 09:11	WG1733277

Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 02 L1396397

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

-						I C	ⁿ
	Result	Qualifier	Dilution	Analysis	Batch		-P
Analyte	%			date / time		2	
Total Solids	90.8		1	09/07/2021 08:24	WG1734868	T	Гс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	177		10.1	22.0	1	08/30/2021 18:05	WG1731931

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	r
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0239	0.110	1	09/01/2021 16:29	WG1732079	
(S) a,a,a-Trifluorotoluene(FID)	112			77.0-120		09/01/2021 16:29	<u>WG1732079</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000562	0.00120	1	09/04/2021 03:36	WG1734886
Toluene	U		0.00156	0.00602	1	09/04/2021 03:36	WG1734886
Ethylbenzene	U		0.000887	0.00301	1	09/04/2021 03:36	WG1734886
Total Xylenes	U		0.00106	0.00782	1	09/04/2021 03:36	WG1734886
(S) Toluene-d8	104			75.0-131		09/04/2021 03:36	WG1734886
(S) 4-Bromofluorobenzene	105			67.0-138		09/04/2021 03:36	WG1734886
(S) 1,2-Dichloroethane-d4	80.9			70.0-130		09/04/2021 03:36	WG1734886

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.77	4.40	1	09/04/2021 06:19	<u>WG1733277</u>
C28-C36 Motor Oil Range	2.70	J	0.302	4.40	1	09/04/2021 06:19	<u>WG1733277</u>
(S) o-Terphenyl	60.8			18.0-148		09/04/2021 06:19	WG1733277

SDG: L1396397 DATE/TIME:

Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 03

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ċ	Ср
Analyte	%	quantor	Diración	date / time		2	
Total Solids	90.3		1	09/07/2021 08:24	WG1734868	T	Τс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	203		10.2	22.1	1	08/30/2021 18:34	WG1731931	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
		Quanner			Dilution	,	Bateri	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0240	0.111	1	09/01/2021 21:52	WG1732079	
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		09/01/2021 21:52	<u>WG1732079</u>	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000567	0.00121	1	09/04/2021 03:56	<u>WG1734886</u>
Toluene	U		0.00158	0.00607	1	09/04/2021 03:56	WG1734886
Ethylbenzene	U		0.000895	0.00304	1	09/04/2021 03:56	WG1734886
Total Xylenes	U		0.00107	0.00790	1	09/04/2021 03:56	WG1734886
(S) Toluene-d8	108			75.0-131		09/04/2021 03:56	WG1734886
(S) 4-Bromofluorobenzene	104			67.0-138		09/04/2021 03:56	WG1734886
(S) 1,2-Dichloroethane-d4	81.8			70.0-130		09/04/2021 03:56	WG1734886

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.10	J	1.78	4.43	1	09/04/2021 06:06	<u>WG1733277</u>
C28-C36 Motor Oil Range	1.78	J	0.303	4.43	1	09/04/2021 06:06	<u>WG1733277</u>
(S) o-Terphenyl	61.2			18.0-148		09/04/2021 06:06	WG1733277

SDG: L1396397

Received by OCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 04 L1396397

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	 Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		г	2
Total Solids	91.6		1	09/07/2021 08:24	WG1734868		Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	35.7		10.0	21.8	1	08/30/2021 18:44	WG1731931

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
	Result (dry)	Quanner	WDE (ury)	KDE (dry)	Dilution	,	Baten	6	6
Analyte	mg/kg		mg/kg	mg/kg		date / time			Q
TPH (GC/FID) Low Fraction	U		0.0237	0.109	1	09/01/2021 22:14	WG1732079		
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		09/01/2021 22:14	WG1732079	7	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000553	0.00118	1	09/04/2021 04:16	WG1734886
Toluene	U		0.00154	0.00592	1	09/04/2021 04:16	<u>WG1734886</u>
Ethylbenzene	U		0.000872	0.00296	1	09/04/2021 04:16	WG1734886
Total Xylenes	U		0.00104	0.00769	1	09/04/2021 04:16	<u>WG1734886</u>
(S) Toluene-d8	106			75.0-131		09/04/2021 04:16	WG1734886
(S) 4-Bromofluorobenzene	105			67.0-138		09/04/2021 04:16	<u>WG1734886</u>
(S) 1,2-Dichloroethane-d4	82.9			70.0-130		09/04/2021 04:16	WG1734886

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	33.1		3.52	8.73	2	09/08/2021 14:41	<u>WG1733277</u>
C28-C36 Motor Oil Range	101		0.598	8.73	2	09/08/2021 14:41	<u>WG1733277</u>
(S) o-Terphenyl	87.3			18.0-148		09/08/2021 14:41	WG1733277

SDG: L1396397

Received by GCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 05 L1396397

⁵Sr

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	89.0		1	09/07/2021 08:24	WG1734868	Tc

Wet Chemistry by Method 300.0

Wet Chemist	ry by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cn
Chloride	13.8	Ţ	10.3	22.5	1	08/30/2021 18:53	<u>WG1731931</u>	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
	Result (ury)	Quanner	WDE (ury)	KDE (dry)	Dilution	,	Baten	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		(
TPH (GC/FID) Low Fraction	U		0.0244	0.112	1	09/02/2021 00:13	WG1732079	<u> </u>
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		09/02/2021 00:13	WG1732079	⁷ (

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000582	0.00125	1	09/04/2021 04:36	WG1734886
Toluene	U		0.00162	0.00624	1	09/04/2021 04:36	WG1734886
Ethylbenzene	U		0.000919	0.00312	1	09/04/2021 04:36	WG1734886
Total Xylenes	U		0.00110	0.00811	1	09/04/2021 04:36	WG1734886
(S) Toluene-d8	107			75.0-131		09/04/2021 04:36	WG1734886
(S) 4-Bromofluorobenzene	101			67.0-138		09/04/2021 04:36	WG1734886
(S) 1,2-Dichloroethane-d4	83.1			70.0-130		09/04/2021 04:36	WG1734886

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.81	4.49	1	09/04/2021 05:40	<u>WG1733277</u>
C28-C36 Motor Oil Range	3.36	J	0.308	4.49	1	09/04/2021 05:40	<u>WG1733277</u>
(S) o-Terphenyl	59.4			18.0-148		09/04/2021 05:40	WG1733277

SDG: L1396397

Received by QCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 06 L1396397

⁵Sr

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	88.9		1	09/07/2021 08:24	WG1734868	Tc

Wet Chemistry by Method 300.0

Wet Chemistry	/ by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cr
Chloride	18.2	J	10.4	22.5	1	08/30/2021 19:03	WG1731931	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifior	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
		Qualifier			Dilution	,	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0244	0.113	1	09/02/2021 00:35	WG1732079	
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/02/2021 00:35	WG1732079	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000584	0.00125	1	09/04/2021 04:56	WG1734886
Toluene	U		0.00163	0.00625	1	09/04/2021 04:56	<u>WG1734886</u>
Ethylbenzene	U		0.000921	0.00313	1	09/04/2021 04:56	WG1734886
Total Xylenes	U		0.00110	0.00813	1	09/04/2021 04:56	<u>WG1734886</u>
(S) Toluene-d8	104			75.0-131		09/04/2021 04:56	WG1734886
(S) 4-Bromofluorobenzene	102			67.0-138		09/04/2021 04:56	<u>WG1734886</u>
(S) 1,2-Dichloroethane-d4	84.5			70.0-130		09/04/2021 04:56	WG1734886

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.81	4.50	1	09/08/2021 02:09	WG1734026
C28-C36 Motor Oil Range	U		0.308	4.50	1	09/08/2021 02:09	WG1734026
(S) o-Terphenyl	37.6			18.0-148		09/08/2021 02:09	WG1734026

SDG: L1396397

Received by OCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 07

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	91.5		1	09/07/2021 08:24	WG1734868	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	393		10.1	21.9	1	08/30/2021 19:12	WG1731931	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifior	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
	Result (uly)	Qualifier	WDL (ury)	KDL (ury)	Dilution	,	Baten		6
Analyte	mg/kg		mg/kg	mg/kg		date / time			QQ
TPH (GC/FID) Low Fraction	U		0.0237	0.109	1	09/02/2021 00:56	WG1732079	l	
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		09/02/2021 00:56	WG1732079		⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000940	J	0.000554	0.00119	1	09/04/2021 05:16	<u>WG1734886</u>
Toluene	0.00364	J	0.00154	0.00593	1	09/04/2021 05:16	<u>WG1734886</u>
Ethylbenzene	0.00261	J	0.000875	0.00297	1	09/04/2021 05:16	WG1734886
Total Xylenes	0.00434	J	0.00104	0.00771	1	09/04/2021 05:16	<u>WG1734886</u>
(S) Toluene-d8	104			75.0-131		09/04/2021 05:16	WG1734886
(S) 4-Bromofluorobenzene	107			67.0-138		09/04/2021 05:16	<u>WG1734886</u>
(S) 1,2-Dichloroethane-d4	86.9			70.0-130		09/04/2021 05:16	<u>WG1734886</u>

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	565		35.2	87.4	20	09/10/2021 15:44	<u>WG1734026</u>
C28-C36 Motor Oil Range	1920		5.99	87.4	20	09/10/2021 15:44	<u>WG1734026</u>
(S) o-Terphenyl	100	<u>J7</u>		18.0-148		09/10/2021 15:44	WG1734026

SDG: L1396397

Received by 9CD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 08

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	— L	Ср
Analyte	%			date / time			2
Total Solids	94.7		1	09/07/2021 08:24	WG1734868		Тс

Wet Chemistry by Method 300.0

								1.1
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4
Chloride	13.8	J	9.72	21.1	1	08/30/2021 19:22	WG1731931	Ľ

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
		Guanner			Dilation	,	Baten		6
Analyte	mg/kg		mg/kg	mg/kg		date / time			QC
TPH (GC/FID) Low Fraction	U		0.0229	0.106	1	09/02/2021 01:18	WG1732079	L	
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		09/02/2021 01:18	<u>WG1732079</u>		⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000520	0.00111	1	09/04/2021 05:36	<u>WG1734886</u>
Toluene	U		0.00145	0.00557	1	09/04/2021 05:36	WG1734886
Ethylbenzene	U		0.000820	0.00278	1	09/04/2021 05:36	WG1734886
Total Xylenes	U		0.000980	0.00724	1	09/04/2021 05:36	<u>WG1734886</u>
(S) Toluene-d8	104			75.0-131		09/04/2021 05:36	WG1734886
(S) 4-Bromofluorobenzene	105			67.0-138		09/04/2021 05:36	WG1734886
(S) 1,2-Dichloroethane-d4	87.8			70.0-130		09/04/2021 05:36	WG1734886

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.23	1	09/08/2021 02:22	WG1734026
C28-C36 Motor Oil Range	1.88	J	0.289	4.23	1	09/08/2021 02:22	<u>WG1734026</u>
(S) o-Terphenyl	39.3			18.0-148		09/08/2021 02:22	WG1734026

SDG: L1396397 DATE/TIME: 10/01/21 11:43

³Ss ⁴Cn

Sr

Â

Received by QCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 09 L1396397

⁵Sr

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	94.0		1	09/07/2021 08:24	WG1734868	Tc

Wet Chemistry by Method 300.0

Wet Chemist	ry by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cn
Chloride	17.9	Ţ	9.79	21.3	1	08/30/2021 19:31	WG1731931	СП

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
		Quanner		KDE (dry)	Dilation	,	Baten	6	، د
Analyte	mg/kg		mg/kg	mg/kg		date / time			Q
TPH (GC/FID) Low Fraction	U		0.0231	0.106	1	09/02/2021 01:39	WG1732079	L	
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/02/2021 01:39	WG1732079	7	GI

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000527	0.00113	1	09/04/2021 05:56	<u>WG1734886</u>
Toluene	U		0.00147	0.00564	1	09/04/2021 05:56	<u>WG1734886</u>
Ethylbenzene	U		0.000832	0.00282	1	09/04/2021 05:56	WG1734886
Total Xylenes	U		0.000993	0.00734	1	09/04/2021 05:56	<u>WG1734886</u>
(S) Toluene-d8	105			75.0-131		09/04/2021 05:56	WG1734886
(S) 4-Bromofluorobenzene	103			67.0-138		09/04/2021 05:56	<u>WG1734886</u>
(S) 1,2-Dichloroethane-d4	83.9			70.0-130		09/04/2021 05:56	WG1734886

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.43	J	1.71	4.26	1	09/08/2021 02:36	<u>WG1734026</u>
C28-C36 Motor Oil Range	3.27	Ţ	0.292	4.26	1	09/08/2021 02:36	<u>WG1734026</u>
(S) o-Terphenyl	60.2			18.0-148		09/08/2021 02:36	WG1734026

SDG: L1396397

Received by OCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 10 L1396397

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

_		Result	Qualifier	Dilution	Analysis	Batch		Ср)
Ar	alyte	%			date / time		2		-
To	tal Solids	94.5		1	09/07/2021 08:17	WG1734869	-	Тс	2

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	874		9.74	21.2	1	08/30/2021 19:41	WG1731931

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
		Qualifier	WDE (dry)	KDE (dry)	Dilution	,	Bateri	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	09/02/2021 02:01	WG1732079	
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		09/02/2021 02:01	WG1732079	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000522	0.00112	1	09/04/2021 06:16	WG1734886
Toluene	U		0.00145	0.00559	1	09/04/2021 06:16	WG1734886
Ethylbenzene	U		0.000824	0.00279	1	09/04/2021 06:16	WG1734886
Total Xylenes	U		0.000984	0.00727	1	09/04/2021 06:16	<u>WG1734886</u>
(S) Toluene-d8	104			75.0-131		09/04/2021 06:16	WG1734886
(S) 4-Bromofluorobenzene	102			67.0-138		09/04/2021 06:16	WG1734886
(S) 1,2-Dichloroethane-d4	84.7			70.0-130		09/04/2021 06:16	WG1734886

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	438		17.0	42.3	10	09/10/2021 15:58	WG1734026
C28-C36 Motor Oil Range	1220		2.90	42.3	10	09/10/2021 15:58	<u>WG1734026</u>
(S) o-Terphenyl	50.8			18.0-148		09/10/2021 15:58	WG1734026

SDG: L1396397

Received by 9CD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 11

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	94.1		1	09/07/2021 08:17	WG1734869	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	103		9.78	21.3	1	08/30/2021 19:50	WG1731931

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
	Result (dry)	Quanner	WDE (ury)	KDE (dry)	Diution	,	baten		6
Analyte	mg/kg		mg/kg	mg/kg		date / time			Q
TPH (GC/FID) Low Fraction	U		0.0231	0.106	1	09/02/2021 02:22	WG1732079	L	
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/02/2021 02:22	WG1732079		⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000526	0.00113	1	09/04/2021 06:36	WG1734886
Toluene	U		0.00146	0.00563	1	09/04/2021 06:36	WG1734886
Ethylbenzene	U		0.000830	0.00281	1	09/04/2021 06:36	WG1734886
Total Xylenes	U		0.000991	0.00732	1	09/04/2021 06:36	WG1734886
(S) Toluene-d8	105			75.0-131		09/04/2021 06:36	WG1734886
(S) 4-Bromofluorobenzene	103			67.0-138		09/04/2021 06:36	WG1734886
(S) 1,2-Dichloroethane-d4	83.0			70.0-130		09/04/2021 06:36	WG1734886

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.68	J	1.71	4.25	1	09/08/2021 03:30	WG1734026
C28-C36 Motor Oil Range	5.59		0.291	4.25	1	09/08/2021 03:30	<u>WG1734026</u>
(S) o-Terphenyl	50.8			18.0-148		09/08/2021 03:30	WG1734026

SDG: L1396397

Received by 9CD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 12

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	92.6		1	09/07/2021 08:17	WG1734869	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	75.7		9.93	21.6	1	08/30/2021 20:00	WG1731931

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0234	0.108	1	09/02/2021 02:44	<u>WG1732079</u>
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		09/02/2021 02:44	<u>WG1732079</u>

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000541	0.00116	1	09/04/2021 06:56	<u>WG1734886</u>
Toluene	U		0.00151	0.00580	1	09/04/2021 06:56	<u>WG1734886</u>
Ethylbenzene	U		0.000854	0.00290	1	09/04/2021 06:56	WG1734886
Total Xylenes	U		0.00102	0.00753	1	09/04/2021 06:56	<u>WG1734886</u>
(S) Toluene-d8	104			75.0-131		09/04/2021 06:56	WG1734886
(S) 4-Bromofluorobenzene	100			67.0-138		09/04/2021 06:56	<u>WG1734886</u>
(S) 1,2-Dichloroethane-d4	81.6			70.0-130		09/04/2021 06:56	WG1734886

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.78	J	1.74	4.32	1	09/08/2021 03:17	<u>WG1734026</u>
C28-C36 Motor Oil Range	4.02	Ţ	0.296	4.32	1	09/08/2021 03:17	WG1734026
(S) o-Terphenyl	47.7			18.0-148		09/08/2021 03:17	WG1734026

SDG: L1396397

Received by OCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 13 L1396397

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C;	C
Analyte	%			date / time		2	_
Total Solids	93.8		1	09/07/2021 08:17	WG1734869	Ťτα	2

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	167		9.81	21.3	1	08/30/2021 20:28	WG1731931

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0231	0.107	1	09/02/2021 03:05	WG1732079
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/02/2021 03:05	WG1732079

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000529	0.00113	1	09/04/2021 07:16	<u>WG1734886</u>
Toluene	U		0.00147	0.00566	1	09/04/2021 07:16	<u>WG1734886</u>
Ethylbenzene	U		0.000835	0.00283	1	09/04/2021 07:16	WG1734886
Total Xylenes	U		0.000997	0.00736	1	09/04/2021 07:16	<u>WG1734886</u>
(S) Toluene-d8	109			75.0-131		09/04/2021 07:16	WG1734886
(S) 4-Bromofluorobenzene	111			67.0-138		09/04/2021 07:16	<u>WG1734886</u>
(S) 1,2-Dichloroethane-d4	87.1			70.0-130		09/04/2021 07:16	WG1734886

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.21	J	1.72	4.26	1	09/08/2021 03:44	<u>WG1734026</u>
C28-C36 Motor Oil Range	13.3		0.292	4.26	1	09/08/2021 03:44	<u>WG1734026</u>
(S) o-Terphenyl	44.4			18.0-148		09/08/2021 03:44	WG1734026

SDG: L1396397 DATE/TIME:

Received by GCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 14 L1396397

Ss

Cn

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	96.5		1	09/07/2021 08:17	WG1734869	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	94.4		9.53	20.7	1	08/30/2021 20:38	WG1731931

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	09/02/2021 03:27	WG1732079
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/02/2021 03:27	WG1732079

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000501	0.00107	1	09/04/2021 07:36	<u>WG1734886</u>
Toluene	U		0.00139	0.00536	1	09/04/2021 07:36	<u>WG1734886</u>
Ethylbenzene	U		0.000790	0.00268	1	09/04/2021 07:36	WG1734886
Total Xylenes	U		0.000944	0.00697	1	09/04/2021 07:36	WG1734886
(S) Toluene-d8	105			75.0-131		09/04/2021 07:36	WG1734886
(S) 4-Bromofluorobenzene	105			67.0-138		09/04/2021 07:36	WG1734886
(S) 1,2-Dichloroethane-d4	89.1			70.0-130		09/04/2021 07:36	WG1734886

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6.90		1.67	4.14	1	09/08/2021 03:57	<u>WG1734026</u>
C28-C36 Motor Oil Range	25.2		0.284	4.14	1	09/08/2021 03:57	<u>WG1734026</u>
(S) o-Terphenyl	56.2			18.0-148		09/08/2021 03:57	WG1734026

SDG: L1396397 DATE/TIME: 10/01/21 11:43

PAGE: 27 of 89

Sc

Â

Received by 9CD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 15

Total Solids by Method 2540 G-2011

	Result	Qualifier Dilution	Analysis	Batch	Ср
Analyte	%		date / time		2
Total Solids	94.3	1	09/07/2021 08:17	<u>WG1734869</u>	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4
Chloride	89.4		9.75	21.2	1	08/30/2021 20:47	WG1731931	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
	Result (ury)	Quanner		KDE (dry)	Dilution	,	Daten	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		Q
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	09/02/2021 03:48	WG1732079	
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		09/02/2021 03:48	WG1732079	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000523	0.00112	1	09/04/2021 07:56	WG1734886
Toluene	U		0.00146	0.00560	1	09/04/2021 07:56	WG1734886
Ethylbenzene	U		0.000826	0.00280	1	09/04/2021 07:56	WG1734886
Total Xylenes	U		0.000986	0.00728	1	09/04/2021 07:56	WG1734886
(S) Toluene-d8	107			75.0-131		09/04/2021 07:56	WG1734886
(S) 4-Bromofluorobenzene	106			67.0-138		09/04/2021 07:56	WG1734886
(S) 1,2-Dichloroethane-d4	84.4			70.0-130		09/04/2021 07:56	WG1734886

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8.36		1.71	4.24	1	09/08/2021 04:11	<u>WG1734026</u>
C28-C36 Motor Oil Range	29.8		0.290	4.24	1	09/08/2021 04:11	<u>WG1734026</u>
(S) o-Terphenyl	38.5			18.0-148		09/08/2021 04:11	WG1734026

SDG: L1396397 DATE/TIME: 10/01/21 11:43

^³Ss ^⁴Cn

۶r

Â

Received by OCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 16

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	93.1		1	09/07/2021 08:17	WG1734869	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	402		9.88	21.5	1	08/30/2021 21:06	WG1731931

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
	Result (ury)	Quanner	WDE (ury)	KDE (dry)	Diution	,	Baten	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0233	0.107	1	09/02/2021 04:10	WG1732079	
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		09/02/2021 04:10	<u>WG1732079</u>	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000536	0.00115	1	09/04/2021 08:16	WG1734886
Toluene	U		0.00149	0.00574	1	09/04/2021 08:16	WG1734886
Ethylbenzene	U		0.000847	0.00287	1	09/04/2021 08:16	WG1734886
Total Xylenes	U		0.00101	0.00747	1	09/04/2021 08:16	WG1734886
(S) Toluene-d8	105			75.0-131		09/04/2021 08:16	WG1734886
(S) 4-Bromofluorobenzene	101			67.0-138		09/04/2021 08:16	WG1734886
(S) 1,2-Dichloroethane-d4	84.6			70.0-130		09/04/2021 08:16	WG1734886

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	16.0		1.73	4.30	1	09/10/2021 15:04	<u>WG1734026</u>
C28-C36 Motor Oil Range	60.0		0.294	4.30	1	09/10/2021 15:04	<u>WG1734026</u>
(S) o-Terphenyl	53.9			18.0-148		09/10/2021 15:04	WG1734026

SDG: L1396397

Received by GCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 17 L1396397

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	95.1		1	09/07/2021 08:17	WG1734869	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	109		9.67	21.0	1	08/30/2021 21:16	WG1731931

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
		Quanner			Dilution	,	Baten	e	6
Analyte	mg/kg		mg/kg	mg/kg		date / time			Q
TPH (GC/FID) Low Fraction	U		0.0228	0.105	1	09/02/2021 04:31	WG1732079	L	
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/02/2021 04:31	<u>WG1732079</u>	5	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000515	0.00110	1	09/04/2021 08:36	<u>WG1734886</u>
Toluene	U		0.00143	0.00552	1	09/04/2021 08:36	<u>WG1734886</u>
Ethylbenzene	U		0.000813	0.00276	1	09/04/2021 08:36	WG1734886
Total Xylenes	U		0.000971	0.00717	1	09/04/2021 08:36	<u>WG1734886</u>
(S) Toluene-d8	103			75.0-131		09/04/2021 08:36	WG1734886
(S) 4-Bromofluorobenzene	103			67.0-138		09/04/2021 08:36	<u>WG1734886</u>
(S) 1,2-Dichloroethane-d4	86.5			70.0-130		09/04/2021 08:36	WG1734886

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.88	J	1.69	4.20	1	09/10/2021 14:50	<u>WG1734026</u>
C28-C36 Motor Oil Range	6.19		0.288	4.20	1	09/10/2021 14:50	<u>WG1734026</u>
(S) o-Terphenyl	42.3			18.0-148		09/10/2021 14:50	WG1734026

SDG: L1396397 DATE/TIME:

Received by QCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 18 L1396397

Page 64 of 242

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	
Total Solids	94.7		1	09/07/2021 08:17	WG1734869	T	Гс

Wet Chemistry by Method 300.0

Wet Chemistr	Wet Chemistry by Method 300.0								
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time			4 Cn
Chloride	83.6		9.71	21.1	1	09/02/2021 05:43	WG1733212		

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
		Quanner	WDE (dry)	KDE (dry)	Dilution	,	Baten	6	6
Analyte	mg/kg		mg/kg	mg/kg		date / time			C
TPH (GC/FID) Low Fraction	U		0.0229	0.106	1	09/02/2021 04:53	WG1732079		
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		09/02/2021 04:53	<u>WG1732079</u>	7	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000519	0.00111	1	09/04/2021 08:56	WG1734886
Toluene	U		0.00145	0.00556	1	09/04/2021 08:56	<u>WG1734886</u>
Ethylbenzene	U		0.000820	0.00278	1	09/04/2021 08:56	WG1734886
Total Xylenes	U		0.000979	0.00723	1	09/04/2021 08:56	<u>WG1734886</u>
(S) Toluene-d8	107			75.0-131		09/04/2021 08:56	WG1734886
(S) 4-Bromofluorobenzene	107			67.0-138		09/04/2021 08:56	<u>WG1734886</u>
(S) 1,2-Dichloroethane-d4	85.1			70.0-130		09/04/2021 08:56	WG1734886

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.45	J	1.70	4.22	1	09/08/2021 04:38	WG1734026
C28-C36 Motor Oil Range	5.84		0.289	4.22	1	09/08/2021 04:38	<u>WG1734026</u>
(S) o-Terphenyl	45.4			18.0-148		09/08/2021 04:38	WG1734026

SDG: L1396397 DATE/TIME:

Received by QCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 19 L1396397

۶r

Â

Sc

Total Solids by Method 2540 G-2011

							1 Cn
		Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte		%			date / time		2
Total Solic	S	92.1		1	09/07/2021 08:17	WG1734869	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time			⁴ Cn
Chloride	446		9.99	21.7	1	09/02/2021 05:52	WG1733212		

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
		Quanner			Dilation	,	Baten	6	3 <u>~</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time			Q
TPH (GC/FID) Low Fraction	U		0.0236	0.109	1	09/02/2021 15:35	WG1733792		
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/02/2021 15:35	WG1733792		GI

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000548	0.00117	1	09/04/2021 09:17	WG1734886
Toluene	U		0.00152	0.00586	1	09/04/2021 09:17	WG1734886
Ethylbenzene	U		0.000864	0.00293	1	09/04/2021 09:17	WG1734886
Total Xylenes	U		0.00103	0.00762	1	09/04/2021 09:17	WG1734886
(S) Toluene-d8	101			75.0-131		09/04/2021 09:17	WG1734886
(S) 4-Bromofluorobenzene	101			67.0-138		09/04/2021 09:17	WG1734886
(S) 1,2-Dichloroethane-d4	88.9			70.0-130		09/04/2021 09:17	WG1734886

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	44.4		3.50	8.69	2	09/10/2021 15:17	<u>WG1734026</u>
C28-C36 Motor Oil Range	171		0.595	8.69	2	09/10/2021 15:17	<u>WG1734026</u>
(S) o-Terphenyl	45.1			18.0-148		09/10/2021 15:17	WG1734026

Received by OCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 20

Page 66 of 242

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		C
Analyte	%			date / time		2	_
Total Solids	92.1		1	09/07/2021 08:07	WG1734870	Tc	2

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	319		9.99	21.7	1	09/02/2021 06:02	WG1733212	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0236	0.109	1	09/02/2021 15:56	WG1733792
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/02/2021 15:56	WG1733792

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000548	0.00117	1	09/04/2021 09:37	WG1734886
Toluene	U		0.00152	0.00586	1	09/04/2021 09:37	<u>WG1734886</u>
Ethylbenzene	U		0.000864	0.00293	1	09/04/2021 09:37	WG1734886
Total Xylenes	U		0.00103	0.00762	1	09/04/2021 09:37	<u>WG1734886</u>
(S) Toluene-d8	106			75.0-131		09/04/2021 09:37	WG1734886
(S) 4-Bromofluorobenzene	104			67.0-138		09/04/2021 09:37	<u>WG1734886</u>
(S) 1,2-Dichloroethane-d4	85.7			70.0-130		09/04/2021 09:37	WG1734886

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	45.5		3.50	8.69	2	09/10/2021 15:31	WG1734026
C28-C36 Motor Oil Range	180		0.595	8.69	2	09/10/2021 15:31	WG1734026
(S) o-Terphenyl	48.3			18.0-148		09/10/2021 15:31	WG1734026

Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 21

Ss

Cn

A

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		>
Total Solids	96.2		1	09/07/2021 08:07	WG1734870	 Тс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	123		9.56	20.8	1	09/02/2021 06:11	WG1733212

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	09/02/2021 16:18	WG1733792	
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		09/02/2021 16:18	<u>WG1733792</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000503	0.00108	1	09/03/2021 17:22	WG1734823
Toluene	U		0.00140	0.00539	1	09/03/2021 17:22	<u>WG1734823</u>
Ethylbenzene	U		0.000795	0.00270	1	09/03/2021 17:22	WG1734823
Total Xylenes	0.00212	Ţ	0.000949	0.00701	1	09/05/2021 09:41	<u>WG1735379</u>
(S) Toluene-d8	106			75.0-131		09/03/2021 17:22	WG1734823
(S) Toluene-d8	102			75.0-131		09/05/2021 09:41	<u>WG1735379</u>
(S) 4-Bromofluorobenzene	100			67.0-138		09/03/2021 17:22	WG1734823
(S) 4-Bromofluorobenzene	95.5			67.0-138		09/05/2021 09:41	<u>WG1735379</u>
(S) 1,2-Dichloroethane-d4	96.8			70.0-130		09/03/2021 17:22	WG1734823
(S) 1,2-Dichloroethane-d4	92.6			70.0-130		09/05/2021 09:41	<u>WG1735379</u>

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.81	J	1.67	4.16	1	09/08/2021 04:51	WG1734026
C28-C36 Motor Oil Range	5.63		0.285	4.16	1	09/08/2021 04:51	WG1734026
(S) o-Terphenyl	46.0			18.0-148		09/08/2021 04:51	WG1734026

Received by OGD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 22 L1396397

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	90.7		1	09/07/2021 08:07	WG1734870	Tc

Wet Chemistry by Method 300.0

Wet Chemistr	ry by Method 300).0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	281		10.1	22.1	1	09/02/2021 06:21	WG1733212	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
		Quaimer			Dilution	,	Daten	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		Q
TPH (GC/FID) Low Fraction	U		0.0239	0.110	1	09/02/2021 16:39	WG1733792	
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		09/02/2021 16:39	<u>WG1733792</u>	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000564	0.00121	1	09/03/2021 17:41	<u>WG1734823</u>
Toluene	U		0.00157	0.00603	1	09/03/2021 17:41	<u>WG1734823</u>
Ethylbenzene	U		0.000890	0.00302	1	09/03/2021 17:41	WG1734823
Total Xylenes	U		0.00106	0.00785	1	09/03/2021 17:41	<u>WG1734823</u>
(S) Toluene-d8	105			75.0-131		09/03/2021 17:41	WG1734823
(S) 4-Bromofluorobenzene	97.2			67.0-138		09/03/2021 17:41	<u>WG1734823</u>
(S) 1,2-Dichloroethane-d4	94.9			70.0-130		09/03/2021 17:41	WG1734823

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.78	4.41	1	09/08/2021 01:42	<u>WG1734026</u>
C28-C36 Motor Oil Range	U		0.302	4.41	1	09/08/2021 01:42	<u>WG1734026</u>
(S) o-Terphenyl	41.2			18.0-148		09/08/2021 01:42	WG1734026

Received by 061: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 23 L1396397

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	90.0		1	09/07/2021 08:07	WG1734870	Tc

Wet Chemistry by Method 300.0

Wet Chemistry b	y Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	85.8		10.2	22.2	1	09/02/2021 06:30	WG1733212	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
		Quanner			Dilution	,	Datem	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		Q
TPH (GC/FID) Low Fraction	U		0.0241	0.111	1	09/02/2021 17:01	WG1733792	
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/02/2021 17:01	<u>WG1733792</u>	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000572	0.00122	1	09/03/2021 18:00	<u>WG1734823</u>
Toluene	U		0.00159	0.00612	1	09/03/2021 18:00	WG1734823
Ethylbenzene	U		0.000902	0.00306	1	09/03/2021 18:00	WG1734823
Total Xylenes	U		0.00108	0.00796	1	09/03/2021 18:00	WG1734823
(S) Toluene-d8	105			75.0-131		09/03/2021 18:00	WG1734823
(S) 4-Bromofluorobenzene	99.5			67.0-138		09/03/2021 18:00	<u>WG1734823</u>
(S) 1,2-Dichloroethane-d4	96.9			70.0-130		09/03/2021 18:00	WG1734823

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.79	4.45	1	09/08/2021 01:55	<u>WG1734026</u>
C28-C36 Motor Oil Range	U		0.305	4.45	1	09/08/2021 01:55	<u>WG1734026</u>
(S) o-Terphenyl	44.3			18.0-148		09/08/2021 01:55	WG1734026

Received by 980: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 24 L1396397

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	90.1		1	09/07/2021 08:07	WG1734870	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	147		10.2	22.2	1	09/02/2021 06:40	WG1733212	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
A 1.		Quanner			Dilution	,	Baten		6
Analyte	mg/kg		mg/kg	mg/kg		date / time			G
TPH (GC/FID) Low Fraction	U		0.0241	0.111	1	09/02/2021 17:22	WG1733792	L	
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/02/2021 17:22	<u>WG1733792</u>		⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000570	0.00122	1	09/03/2021 18:20	<u>WG1734823</u>
Toluene	U		0.00159	0.00610	1	09/03/2021 18:20	<u>WG1734823</u>
Ethylbenzene	U		0.000900	0.00305	1	09/03/2021 18:20	WG1734823
Total Xylenes	U		0.00107	0.00793	1	09/03/2021 18:20	WG1734823
(S) Toluene-d8	107			75.0-131		09/03/2021 18:20	WG1734823
(S) 4-Bromofluorobenzene	98.3			67.0-138		09/03/2021 18:20	<u>WG1734823</u>
(S) 1,2-Dichloroethane-d4	92.8			70.0-130		09/03/2021 18:20	WG1734823

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.79	4.44	1	09/08/2021 01:14	<u>WG1734026</u>
C28-C36 Motor Oil Range	U		0.304	4.44	1	09/08/2021 01:14	<u>WG1734026</u>
(S) o-Terphenyl	45.8			18.0-148		09/08/2021 01:14	WG1734026

SDG: L1396397

Received by 053; 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 25

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	91.9		1	09/07/2021 08:07	WG1734870	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	189		10.0	21.8	1	09/02/2021 06:50	WG1733212

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0236	0.109	1	09/02/2021 17:44	WG1733792
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/02/2021 17:44	WG1733792

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000549	0.00118	1	09/03/2021 18:39	<u>WG1734823</u>
Toluene	U		0.00153	0.00588	1	09/03/2021 18:39	<u>WG1734823</u>
Ethylbenzene	U		0.000867	0.00294	1	09/03/2021 18:39	WG1734823
Total Xylenes	U		0.00104	0.00765	1	09/03/2021 18:39	WG1734823
(S) Toluene-d8	107			75.0-131		09/03/2021 18:39	WG1734823
(S) 4-Bromofluorobenzene	98.1			67.0-138		09/03/2021 18:39	WG1734823
(S) 1,2-Dichloroethane-d4	91.4			70.0-130		09/03/2021 18:39	WG1734823

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.75	4.35	1	09/08/2021 01:28	WG1734026
C28-C36 Motor Oil Range	U		0.298	4.35	1	09/08/2021 01:28	<u>WG1734026</u>
(S) o-Terphenyl	44.9			18.0-148		09/08/2021 01:28	WG1734026

SDG: L1396397

Received by DCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 26 L1396397

⁵Sr

Â

Sc

Total Solids by Method 2540 G-2011

-						10	Cn
	Result	Qualifier	Dilution	Analysis	Batch	Ľ	CP
Analyte	%			date / time		2	
Total Solids	88.7		1	09/07/2021 08:07	WG1734870		Тс

Wet Chemistry by Method 300.0

Wet Chemistry	by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cn
Chloride	66.9		10.4	22.5	1	09/02/2021 07:47	WG1733212	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0245	0.113	1	09/02/2021 18:05	WG1733792	
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/02/2021 18:05	WG1733792	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000586	0.00126	1	09/03/2021 18:58	<u>WG1734823</u>
Toluene	U		0.00163	0.00628	1	09/03/2021 18:58	WG1734823
Ethylbenzene	U		0.000925	0.00314	1	09/03/2021 18:58	WG1734823
Total Xylenes	U		0.00110	0.00816	1	09/03/2021 18:58	WG1734823
(S) Toluene-d8	108			75.0-131		09/03/2021 18:58	WG1734823
(S) 4-Bromofluorobenzene	97.4			67.0-138		09/03/2021 18:58	WG1734823
(S) 1,2-Dichloroethane-d4	93.5			70.0-130		09/03/2021 18:58	WG1734823

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	18.5		1.82	4.51	1	09/04/2021 18:59	WG1734027
C28-C36 Motor Oil Range	60.4		0.309	4.51	1	09/04/2021 18:59	<u>WG1734027</u>
(S) o-Terphenyl	49.1			18.0-148		09/04/2021 18:59	WG1734027
Received by QCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 27

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	94.3		1	09/07/2021 08:07	WG1734870	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	29.2		9.76	21.2	1	09/02/2021 07:56	WG1733212	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
		Quanner			Dilution	,	Bateri		6
Analyte	mg/kg		mg/kg	mg/kg		date / time			Q
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	09/02/2021 18:27	WG1733792	L	
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/02/2021 18:27	<u>WG1733792</u>		⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000524	0.00112	1	09/03/2021 19:17	<u>WG1734823</u>
Toluene	U		0.00146	0.00561	1	09/03/2021 19:17	<u>WG1734823</u>
Ethylbenzene	U		0.000826	0.00280	1	09/03/2021 19:17	WG1734823
Total Xylenes	U		0.000987	0.00729	1	09/03/2021 19:17	<u>WG1734823</u>
(S) Toluene-d8	106			75.0-131		09/03/2021 19:17	WG1734823
(S) 4-Bromofluorobenzene	96.8			67.0-138		09/03/2021 19:17	<u>WG1734823</u>
(S) 1,2-Dichloroethane-d4	93.3			70.0-130		09/03/2021 19:17	WG1734823

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.79	J	1.71	4.24	1	09/04/2021 18:17	WG1734027
C28-C36 Motor Oil Range	3.96	J	0.291	4.24	1	09/04/2021 18:17	<u>WG1734027</u>
(S) o-Terphenyl	44.8			18.0-148		09/04/2021 18:17	WG1734027

SDG: L1396397

Received by QCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 28 L1396397

⁵Sr

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	91.6		1	09/07/2021 08:07	WG1734870	Tc

Wet Chemistry by Method 300.0

Wet Chemistry	v by Method 300).0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cn
Chloride	18.2	J	10.0	21.8	1	09/02/2021 08:06	WG1733212	СП

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
	itesuit (ury)	Quanner	(ary)	KDE (dry)	Diation	,	Bateri	6	õ 👝
Analyte	mg/kg		mg/kg	mg/kg		date / time			Q
TPH (GC/FID) Low Fraction	U		0.0237	0.109	1	09/06/2021 21:25	WG1735730		
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120		09/06/2021 21:25	WG1735730		GI

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000552	0.00118	1	09/03/2021 19:36	WG1734823
Toluene	U		0.00154	0.00591	1	09/03/2021 19:36	WG1734823
Ethylbenzene	U		0.000872	0.00296	1	09/03/2021 19:36	WG1734823
Total Xylenes	U		0.00104	0.00769	1	09/03/2021 19:36	WG1734823
(S) Toluene-d8	107			75.0-131		09/03/2021 19:36	WG1734823
(S) 4-Bromofluorobenzene	98.9			67.0-138		09/03/2021 19:36	WG1734823
(S) 1,2-Dichloroethane-d4	92.8			70.0-130		09/03/2021 19:36	WG1734823

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.76	4.37	1	09/04/2021 15:29	<u>WG1734027</u>
C28-C36 Motor Oil Range	0.588	J	0.299	4.37	1	09/04/2021 15:29	<u>WG1734027</u>
(S) o-Terphenyl	48.0			18.0-148		09/04/2021 15:29	WG1734027

Received by OCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 29 L1396397

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	
Total Solids	95.9		1	09/07/2021 08:07	WG1734870	7	Тс

Wet Chemistry by Method 300.0

Wet Chemistry by	Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cp
Chloride	12.9	J	9.59	20.8	1	09/02/2021 08:15	WG1733212	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifior	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
	Result (ury)	Qualifier	WDL (ury)	KDL (ury)	Dilution	-)	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		(
TPH (GC/FID) Low Fraction	0.0483	<u>B J</u>	0.0226	0.104	1	09/03/2021 02:56	<u>WG1731196</u>	
(S) a,a,a-Trifluorotoluene(FID)	102			77.0-120		09/03/2021 02:56	<u>WG1731196</u>	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000507	0.00108	1	09/03/2021 19:56	<u>WG1734823</u>
Toluene	U		0.00141	0.00542	1	09/03/2021 19:56	<u>WG1734823</u>
Ethylbenzene	U		0.000800	0.00271	1	09/03/2021 19:56	WG1734823
Total Xylenes	U		0.000955	0.00705	1	09/03/2021 19:56	WG1734823
(S) Toluene-d8	109			75.0-131		09/03/2021 19:56	WG1734823
(S) 4-Bromofluorobenzene	97.5			67.0-138		09/03/2021 19:56	WG1734823
(S) 1,2-Dichloroethane-d4	94.1			70.0-130		09/03/2021 19:56	WG1734823

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.17	1	09/04/2021 15:43	WG1734027
C28-C36 Motor Oil Range	U		0.286	4.17	1	09/04/2021 15:43	WG1734027
(S) o-Terphenyl	50.5			18.0-148		09/04/2021 15:43	WG1734027

Received by OGD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 30 L1396397

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	94.8		1	09/07/2021 07:59	WG1734872	Tc

Wet Chemistry by Method 300.0

Wet Chemist	ry by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cn
Chloride	14.4	J	9.70	21.1	1	09/02/2021 08:25	WG1733212	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifior	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
	Result (ury)	Qualifier	MDL (ury)	KDL (ury)	Dilution	,	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0457	<u>B J</u>	0.0229	0.105	1	09/03/2021 03:19	<u>WG1731196</u>	
(S) a,a,a-Trifluorotoluene(FID)	102			77.0-120		09/03/2021 03:19	WG1731196	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000518	0.00111	1	09/03/2021 20:15	<u>WG1734823</u>
Toluene	U		0.00144	0.00554	1	09/03/2021 20:15	<u>WG1734823</u>
Ethylbenzene	U		0.000817	0.00277	1	09/03/2021 20:15	WG1734823
Total Xylenes	U		0.000976	0.00721	1	09/03/2021 20:15	WG1734823
(S) Toluene-d8	107			75.0-131		09/03/2021 20:15	WG1734823
(S) 4-Bromofluorobenzene	97.7			67.0-138		09/03/2021 20:15	WG1734823
(S) 1,2-Dichloroethane-d4	95.1			70.0-130		09/03/2021 20:15	WG1734823

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.22	1	09/04/2021 15:57	WG1734027
C28-C36 Motor Oil Range	U		0.289	4.22	1	09/04/2021 15:57	WG1734027
(S) o-Terphenyl	52.7			18.0-148		09/04/2021 15:57	WG1734027

Received by DCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 31 L1396397

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	94.3		1	09/07/2021 07:59	WG1734872	Tc

Wet Chemistry by Method 300.0

Wet Chemistry	y by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	179		9.76	21.2	1	09/02/2021 08:34	WG1733212	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
		Quanner			Dilution	,	Baten	(6
Analyte	mg/kg		mg/kg	mg/kg		date / time			C
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	09/04/2021 05:29	WG1734725	L	
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		09/04/2021 05:29	WG1734725	1	70

Volatile Organic Compounds (GC/MS) by Method 8260B

Result (dry) <u>Qualifier</u> MDL (dry) RDL (dry) Dilution Analysis <u>Batch</u>
Analyte mg/kg mg/kg date / time
Benzene U 0.000524 0.00112 1 09/03/2021 20:34 WG1734823
Toluene U 0.00146 0.00561 1 09/03/2021 20:34 WG1734823
Ethylbenzene U 0.000827 0.00281 1 09/03/2021 20:34 WG1734823
Total Xylenes U 0.000988 0.00730 1 09/03/2021 20:34 WG1734823
(S) Toluene-d8 105 75.0-131 09/03/2021 20:34 WG1734823
(S) 4-Bromofluorobenzene 97.8 67.0-138 09/03/2021 20:34 WG1734823
(S) 1,2-Dichloroethane-d4 95.5 70.0-130 09/03/2021 20:34 WG1734823

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	25.3		1.71	4.24	1	09/04/2021 19:55	WG1734027
C28-C36 Motor Oil Range	99.5		0.291	4.24	1	09/04/2021 19:55	<u>WG1734027</u>
(S) o-Terphenyl	53.6			18.0-148		09/04/2021 19:55	WG1734027

SDG: L1396397

Received by QCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 32 L1396397

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	95.9		1	09/07/2021 07:59	WG1734872	Tc

Wet Chemistry by Method 300.0

Wet Chemistr	y by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cn
Chloride	83.3		9.60	20.9	1	09/02/2021 08:44	WG1733212	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyta		dunner			Dilation	,	Baten	e	⁶
Analyte	mg/kg		mg/kg	mg/kg		date / time			Q
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	09/04/2021 05:50	WG1734725	L	
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		09/04/2021 05:50	WG1734725	7	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000507	0.00109	1	09/03/2021 22:48	<u>WG1734827</u>
Toluene	U		0.00141	0.00543	1	09/03/2021 22:48	WG1734827
Ethylbenzene	U		0.000801	0.00272	1	09/03/2021 22:48	WG1734827
Total Xylenes	U		0.000956	0.00706	1	09/03/2021 22:48	WG1734827
(S) Toluene-d8	105			75.0-131		09/03/2021 22:48	WG1734827
(S) 4-Bromofluorobenzene	98.2			67.0-138		09/03/2021 22:48	WG1734827
(S) 1,2-Dichloroethane-d4	95.7			70.0-130		09/03/2021 22:48	WG1734827

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.51	J	1.68	4.17	1	09/04/2021 18:31	WG1734027
C28-C36 Motor Oil Range	5.90		0.286	4.17	1	09/04/2021 18:31	WG1734027
(S) o-Terphenyl	54.1			18.0-148		09/04/2021 18:31	WG1734027

SDG: L1396397 DATE/TIME:

Received by OCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 33 L1396397

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	95.2		1	09/07/2021 07:59	WG1734872	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time			4 Cn
Chloride	209		9.66	21.0	1	09/02/2021 09:12	WG1733212		

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0228	0.105	1	09/04/2021 06:12	WG1734725
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		09/04/2021 06:12	WG1734725

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000514	0.00110	1	09/03/2021 23:07	<u>WG1734827</u>
Toluene	U		0.00143	0.00550	1	09/03/2021 23:07	<u>WG1734827</u>
Ethylbenzene	U		0.000811	0.00275	1	09/03/2021 23:07	WG1734827
Total Xylenes	U		0.000969	0.00715	1	09/03/2021 23:07	<u>WG1734827</u>
(S) Toluene-d8	106			75.0-131		09/03/2021 23:07	WG1734827
(S) 4-Bromofluorobenzene	98.3			67.0-138		09/03/2021 23:07	<u>WG1734827</u>
(S) 1,2-Dichloroethane-d4	94.6			70.0-130		09/03/2021 23:07	WG1734827

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.69	4.20	1	09/04/2021 17:49	WG1734027
C28-C36 Motor Oil Range	1.87	J	0.288	4.20	1	09/04/2021 17:49	WG1734027
(S) o-Terphenyl	51.5			18.0-148		09/04/2021 17:49	WG1734027

Received by OCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 34 L1396397

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	91.1		1	09/07/2021 07:59	WG1734872	Tc

Wet Chemistry by Method 300.0

Wet Chemist	ry by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cr
Chloride	37.7		10.1	22.0	1	09/02/2021 09:22	WG1733212	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quannor	mg/kg	mg/kg	2.100.011	date / time	<u> 2010-</u>	
TPH (GC/FID) Low Fraction	U		0.0238	0.110	1	09/04/2021 06:33	WG1734725	
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/04/2021 06:33	WG1734725	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000559	0.00120	1	09/03/2021 23:26	WG1734827
Toluene	U		0.00156	0.00598	1	09/03/2021 23:26	WG1734827
Ethylbenzene	U		0.000882	0.00299	1	09/03/2021 23:26	WG1734827
Total Xylenes	U		0.00105	0.00778	1	09/03/2021 23:26	<u>WG1734827</u>
(S) Toluene-d8	106			75.0-131		09/03/2021 23:26	WG1734827
(S) 4-Bromofluorobenzene	95.6			67.0-138		09/03/2021 23:26	<u>WG1734827</u>
(S) 1,2-Dichloroethane-d4	94.5			70.0-130		09/03/2021 23:26	WG1734827

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.77	4.39	1	09/04/2021 15:01	<u>WG1734027</u>
C28-C36 Motor Oil Range	0.332	Ţ	0.301	4.39	1	09/04/2021 15:01	<u>WG1734027</u>
(S) o-Terphenyl	54.2			18.0-148		09/04/2021 15:01	WG1734027

SDG: L1396397

Received by OGD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 35 L1396397

⁵Sr

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	90.2		1	09/07/2021 07:59	WG1734872	Tc

Wet Chemistry by Method 300.0

Wet Chemistry	y by Method 300).0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	23.1		10.2	22.2	1	09/02/2021 09:31	WG1733212	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
A		Quanner			Dilution	,	Baten	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0241	0.111	1	09/04/2021 06:55	WG1734725	L
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/04/2021 06:55	WG1734725	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000569	0.00122	1	09/03/2021 23:45	WG1734827
Toluene	U		0.00158	0.00609	1	09/03/2021 23:45	<u>WG1734827</u>
Ethylbenzene	U		0.000898	0.00305	1	09/03/2021 23:45	<u>WG1734827</u>
Total Xylenes	U		0.00107	0.00792	1	09/03/2021 23:45	<u>WG1734827</u>
(S) Toluene-d8	106			75.0-131		09/03/2021 23:45	<u>WG1734827</u>
(S) 4-Bromofluorobenzene	96.3			67.0-138		09/03/2021 23:45	<u>WG1734827</u>
(S) 1,2-Dichloroethane-d4	94.6			70.0-130		09/03/2021 23:45	WG1734827

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.79	4.44	1	09/04/2021 15:15	WG1734027
C28-C36 Motor Oil Range	0.315	J	0.304	4.44	1	09/04/2021 15:15	WG1734027
(S) o-Terphenyl	40.5			18.0-148		09/04/2021 15:15	WG1734027

Received by OCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 36 L1396397

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	90.6		1	09/07/2021 07:59	WG1734872	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	17.5	J	10.2	22.1	1	09/02/2021 09:50	WG1733212

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analuta		Quanner			Dilation	,	Bater	e
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0240	0.110	1	09/04/2021 07:16	WG1734725	L
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/04/2021 07:16	WG1734725	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000564	0.00121	1	09/04/2021 00:04	<u>WG1734827</u>
Toluene	U		0.00157	0.00604	1	09/04/2021 00:04	<u>WG1734827</u>
Ethylbenzene	U		0.000890	0.00302	1	09/04/2021 00:04	WG1734827
Total Xylenes	U		0.00106	0.00785	1	09/04/2021 00:04	<u>WG1734827</u>
(S) Toluene-d8	106			75.0-131		09/04/2021 00:04	WG1734827
(S) 4-Bromofluorobenzene	98.3			67.0-138		09/04/2021 00:04	<u>WG1734827</u>
(S) 1,2-Dichloroethane-d4	94.7			70.0-130		09/04/2021 00:04	WG1734827

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.78	4.42	1	09/04/2021 16:11	<u>WG1734027</u>
C28-C36 Motor Oil Range	U		0.302	4.42	1	09/04/2021 16:11	<u>WG1734027</u>
(S) o-Terphenyl	44.1			18.0-148		09/04/2021 16:11	WG1734027

Received (2002 P); 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 37 L1396397

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	81.8		1	09/07/2021 07:59	<u>WG1734872</u>	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by	/ Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	22.5	J	11.2	24.4	1	09/02/2021 10:00	WG1733212	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
		Quanner			Diation	,	Baten	6	، د
Analyte	mg/kg		mg/kg	mg/kg		date / time			Q
TPH (GC/FID) Low Fraction	U		0.0265	0.122	1	09/04/2021 07:38	WG1734725	L	
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		09/04/2021 07:38	WG1734725		GI

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000675	0.00144	1	09/04/2021 00:23	<u>WG1734827</u>
Toluene	U		0.00188	0.00722	1	09/04/2021 00:23	<u>WG1734827</u>
Ethylbenzene	U		0.00106	0.00361	1	09/04/2021 00:23	<u>WG1734827</u>
Total Xylenes	U		0.00127	0.00939	1	09/04/2021 00:23	<u>WG1734827</u>
(S) Toluene-d8	105			75.0-131		09/04/2021 00:23	<u>WG1734827</u>
(S) 4-Bromofluorobenzene	97.8			67.0-138		09/04/2021 00:23	<u>WG1734827</u>
(S) 1,2-Dichloroethane-d4	93.0			70.0-130		09/04/2021 00:23	WG1734827

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.97	4.89	1	09/04/2021 16:25	<u>WG1734027</u>
C28-C36 Motor Oil Range	U		0.335	4.89	1	09/04/2021 16:25	<u>WG1734027</u>
(S) o-Terphenyl	47.3			18.0-148		09/04/2021 16:25	WG1734027

Received by OCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 38 L1396397

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	90.5		1	09/07/2021 07:59	WG1734872	Tc

Wet Chemistry by Method 300.0

Wet Chemistr	ry by Method 300).0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	272		10.2	22.1	1	09/01/2021 19:29	WG1733222	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
		Quaimer			Dilution	,	Baten	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0240	0.110	1	09/04/2021 08:00	WG1734725	L
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/04/2021 08:00	WG1734725	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000565	0.00121	1	09/04/2021 00:42	WG1734827
Toluene	U		0.00157	0.00605	1	09/04/2021 00:42	WG1734827
Ethylbenzene	U		0.000892	0.00302	1	09/04/2021 00:42	WG1734827
Total Xylenes	U		0.00106	0.00786	1	09/04/2021 00:42	WG1734827
(S) Toluene-d8	107			75.0-131		09/04/2021 00:42	WG1734827
(S) 4-Bromofluorobenzene	97.2			67.0-138		09/04/2021 00:42	WG1734827
(S) 1,2-Dichloroethane-d4	96.6			70.0-130		09/04/2021 00:42	WG1734827

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	31.9		1.78	4.42	1	09/04/2021 19:41	<u>WG1734027</u>
C28-C36 Motor Oil Range	123		0.303	4.42	1	09/04/2021 19:41	<u>WG1734027</u>
(S) o-Terphenyl	54.5			18.0-148		09/04/2021 19:41	WG1734027

SDG: L1396397

Received by OCP: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 39 L1396397

۶r

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	94.2		1	09/07/2021 07:59	WG1734872	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0										
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch			
Analyte	mg/kg		mg/kg	mg/kg		date / time			4 Cn	
Chloride	262		9.76	21.2	1	09/01/2021 19:38	WG1733222			

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
	itesuit (ury)	Quanner			Diation	,	Bateli	6	6 <u> </u>
Analyte	mg/kg		mg/kg	mg/kg		date / time			Q
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	09/04/2021 08:21	WG1734725		
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		09/04/2021 08:21	WG1734725	7	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000524	0.00112	1	09/04/2021 01:02	WG1734827
Toluene	U		0.00146	0.00561	1	09/04/2021 01:02	<u>WG1734827</u>
Ethylbenzene	U		0.000828	0.00281	1	09/04/2021 01:02	WG1734827
Total Xylenes	U		0.000988	0.00730	1	09/04/2021 01:02	<u>WG1734827</u>
(S) Toluene-d8	107			75.0-131		09/04/2021 01:02	WG1734827
(S) 4-Bromofluorobenzene	98.8			67.0-138		09/04/2021 01:02	<u>WG1734827</u>
(S) 1,2-Dichloroethane-d4	95.6			70.0-130		09/04/2021 01:02	WG1734827

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8.88		1.71	4.25	1	09/04/2021 18:45	WG1734027
C28-C36 Motor Oil Range	34.2		0.291	4.25	1	09/04/2021 18:45	<u>WG1734027</u>
(S) o-Terphenyl	57.7			18.0-148		09/04/2021 18:45	WG1734027

SDG: L1396397

Received by OCD: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 40 L1396397

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	91.4		1	09/07/2021 07:49	WG1734874	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0										
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch			
Analyte	mg/kg		mg/kg	mg/kg		date / time			4 Cn	
Chloride	691		10.1	21.9	1	09/01/2021 19:47	WG1733222			

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
		Quaimer			Dilution	,	Daten	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		(
TPH (GC/FID) Low Fraction	U		0.0238	0.109	1	09/04/2021 08:43	WG1734725	
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		09/04/2021 08:43	WG1734725	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000555	0.00119	1	09/04/2021 01:21	WG1734827
Toluene	U		0.00155	0.00594	1	09/04/2021 01:21	WG1734827
Ethylbenzene	U		0.000876	0.00297	1	09/04/2021 01:21	WG1734827
Fotal Xylenes	U		0.00105	0.00773	1	09/04/2021 01:21	WG1734827
(S) Toluene-d8	107			75.0-131		09/04/2021 01:21	WG1734827
(S) 4-Bromofluorobenzene	99.1			67.0-138		09/04/2021 01:21	WG1734827
(S) 1,2-Dichloroethane-d4	99.9			70.0-130		09/04/2021 01:21	WG1734827

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.76	4.38	1	09/04/2021 16:39	<u>WG1734027</u>
C28-C36 Motor Oil Range	U		0.300	4.38	1	09/04/2021 16:39	<u>WG1734027</u>
(S) o-Terphenyl	49.1			18.0-148		09/04/2021 16:39	WG1734027

SDG: L1396397

Received by Orch: 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 41 L1396397

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	86.8		1	09/07/2021 07:49	WG1734874	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time			4 Cn
Chloride	246		10.6	23.0	1	09/01/2021 19:57	WG1733222		

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analista		Qualifier			Dilution	,	Datem	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0250	0.115	1	09/04/2021 09:04	WG1734725	L
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/04/2021 09:04	WG1734725	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000609	0.00130	1	09/04/2021 01:40	<u>WG1734827</u>
Toluene	U		0.00170	0.00652	1	09/04/2021 01:40	<u>WG1734827</u>
Ethylbenzene	U		0.000962	0.00326	1	09/04/2021 01:40	<u>WG1734827</u>
Total Xylenes	U		0.00115	0.00848	1	09/04/2021 01:40	<u>WG1734827</u>
(S) Toluene-d8	106			75.0-131		09/04/2021 01:40	WG1734827
(S) 4-Bromofluorobenzene	95.1			67.0-138		09/04/2021 01:40	<u>WG1734827</u>
(S) 1,2-Dichloroethane-d4	94.3			70.0-130		09/04/2021 01:40	WG1734827

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.85	4.61	1	09/04/2021 16:53	WG1734027
C28-C36 Motor Oil Range	U		0.316	4.61	1	09/04/2021 16:53	<u>WG1734027</u>
(S) o-Terphenyl	49.1			18.0-148		09/04/2021 16:53	WG1734027

SDG: L1396397

Received by 293; 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 42

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	90.7		1	09/07/2021 07:49	WG1734874	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	51.1		10.1	22.0	1	09/01/2021 20:06	WG1733222

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanto	mg/kg	mg/kg	2.0000	date / time		
TPH (GC/FID) Low Fraction	U		0.0239	0.110	1	09/04/2021 09:26	WG1734725	
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		09/04/2021 09:26	<u>WG1734725</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000563	0.00121	1	09/04/2021 01:59	WG1734827
Toluene	U		0.00157	0.00603	1	09/04/2021 01:59	WG1734827
Ethylbenzene	U		0.000888	0.00301	1	09/04/2021 01:59	WG1734827
Total Xylenes	U		0.00106	0.00783	1	09/04/2021 01:59	WG1734827
(S) Toluene-d8	106			75.0-131		09/04/2021 01:59	WG1734827
(S) 4-Bromofluorobenzene	96.6			67.0-138		09/04/2021 01:59	WG1734827
(S) 1,2-Dichloroethane-d4	96.2			70.0-130		09/04/2021 01:59	WG1734827

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.77	4.41	1	09/04/2021 17:07	<u>WG1734027</u>
C28-C36 Motor Oil Range	0.520	Ţ	0.302	4.41	1	09/04/2021 17:07	<u>WG1734027</u>
(S) o-Terphenyl	53.7			18.0-148		09/04/2021 17:07	WG1734027

Received by P. Q. 3/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 43

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	90.0		1	09/07/2021 07:49	WG1734874	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	30.0		10.2	22.2	1	09/01/2021 20:16	WG1733222	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanto	mg/kg	mg/kg	2.0000	date / time	<u> 2010-</u>	
TPH (GC/FID) Low Fraction	U		0.0241	0.111	1	09/04/2021 09:47	WG1734725	
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		09/04/2021 09:47	WG1734725	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000571	0.00122	1	09/04/2021 02:18	<u>WG1734827</u>
Toluene	U		0.00159	0.00611	1	09/04/2021 02:18	<u>WG1734827</u>
Ethylbenzene	U		0.000901	0.00306	1	09/04/2021 02:18	<u>WG1734827</u>
Total Xylenes	U		0.00108	0.00795	1	09/04/2021 02:18	<u>WG1734827</u>
(S) Toluene-d8	106			75.0-131		09/04/2021 02:18	WG1734827
(S) 4-Bromofluorobenzene	95.9			67.0-138		09/04/2021 02:18	<u>WG1734827</u>
(S) 1,2-Dichloroethane-d4	95.8			70.0-130		09/04/2021 02:18	WG1734827

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.79	4.44	1	09/04/2021 17:21	WG1734027
C28-C36 Motor Oil Range	U		0.304	4.44	1	09/04/2021 17:21	<u>WG1734027</u>
(S) o-Terphenyl	44.9			18.0-148		09/04/2021 17:21	WG1734027

Received by QCD 38/6/2023 3:05:23 PM Collected date/time: 08/23/21 00:00

SAMPLE RESULTS - 44 L1396397

⁵Sr

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	94.3		1	09/07/2021 07:49	WG1734874	Tc

Wet Chemistry by Method 300.0

Wet Chemistry	y by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cn
Chloride	15.5	J	9.76	21.2	1	09/01/2021 20:25	WG1733222	Ch

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
	Result (dry)	Quanner		KDE (dry)	Diation	,	Baten	6	δ 👝
Analyte	mg/kg		mg/kg	mg/kg		date / time			Q
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	09/04/2021 10:09	WG1734725		
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		09/04/2021 10:09	WG1734725		GI

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000524	0.00112	1	09/04/2021 02:38	<u>WG1734827</u>
Toluene	U		0.00146	0.00561	1	09/04/2021 02:38	<u>WG1734827</u>
Ethylbenzene	U		0.000826	0.00280	1	09/04/2021 02:38	WG1734827
Total Xylenes	U		0.000987	0.00729	1	09/04/2021 02:38	<u>WG1734827</u>
(S) Toluene-d8	106			75.0-131		09/04/2021 02:38	WG1734827
(S) 4-Bromofluorobenzene	95.1			67.0-138		09/04/2021 02:38	<u>WG1734827</u>
(S) 1,2-Dichloroethane-d4	93.9			70.0-130		09/04/2021 02:38	WG1734827

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.71	4.24	1	09/04/2021 17:35	WG1734027
C28-C36 Motor Oil Range	U		0.291	4.24	1	09/04/2021 17:35	<u>WG1734027</u>
(S) o-Terphenyl	51.7			18.0-148		09/04/2021 17:35	WG1734027

SDG: L1396397

Req @ qd/by \$6. 8/6/2023 3:05:23 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1396397-01,02,03,04,05,06,07,08,09

Page 91 of 242

Qc

GI

Â

Sc

Method Blank (MB)

	,			
(MB) R3701539-1 09/	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

L1396397-01 Original Sample (OS) • Duplicate (DUP)

L1396397-01 Origi	nal Sample	(OS) • Duj	plicate (DUP)		
(OS) L1396397-01 09/07/	/21 08:24 • (DUP) R3701539-3	09/07/21	08:24		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	94.5	94.0	1	0.530		10

Laboratory Control Sample (LCS)

(LCS) R3701539-2 09/0	7/21 08:24				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1396397 DATE/TIME: 10/01/21 11:43

PAGE: 58 of 89

Req @ qd/by @ 81: 3/6/2023 3:05:23 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1396397-10,11,12,13,14,15,16,17,18,19

Page 92 of 242

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3701537-1 09/	/07/21 08:17				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	%		%	%	
Total Solids	0.00100				

L1396397-12 Original Sample (OS) • Duplicate (DUP)

L1396397-12 Origi	nal Sample	(OS) • Du	olicate (DUP)		
(OS) L1396397-12 09/07/	/21 08:17 • (DUP) R3701537-3	09/07/21 (08:17		
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	92.6	92.6	1	0.00162		10

Laboratory Control Sample (LCS)

(LCS) R3701537-2 09/07	7/21 08:17				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1396397 DATE/TIME: 10/01/21 11:43

PAGE: 59 of 89

Reg @ qd/by @ 8. D: 3/6/2023 3:05:23 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1396397-20,21,22,23,24,25,26,27,28,29

Page 93 of 242

Qc

GI

Â

Sc

Method Blank (MB)

Method Blank	(MB)						
(MB) R3701532-1 09	9/07/21 08:07						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	%		%	%			
Total Solids	0.00200						

L1396397-23 Original Sample (OS) • Duplicate (DUP)

L1396397-23 Original Sample (OS) • Duplicate (DUP)									
(OS) L1396397-23 09/07/21 08:07 • (DUP) R3701532-3 09/07/21 08:07									
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte	%	%		%		%			
Total Solids	90.0	89.4	1	0.660		10			

Laboratory Control Sample (LCS)

(LCS) R3701532-2 09/07/21 08:07								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	%	%	%	%				
Total Solids	50.0	50.0	100	85.0-115				

SDG: L1396397 DATE/TIME: 10/01/21 11:43

PAGE: 60 of 89

Reg cy q d by \$\$ \$\$ \$6/2023 3:05:23 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1396397-30,31,32,33,34,35,36,37,38,39

Page 94 of 242

GI

Â

Sc

Method Blank (MB)

Niethod Blank	(IVIB)						
(MB) R3701530-1 0	9/07/21 07:59						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	%		%	%			
Total Solids	0.00200						

L1396397-34 Original Sample (OS) • Duplicate (DUP)

Laboratory Control Sample (LCS)

(LCS) R3701530-2 09/07/21 07:59							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	%	%	%	%			
Total Solids	50.0	50.0	100	85.0-115			

SDG: L1396397 DATE/TIME: 10/01/21 11:43

PAGE: 61 of 89

Req @ qd/by @ 8 D: & /6/2023 3:05:23 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1396397-40,41,42,43,44

Page 95 of 242

Ss

GI

Â

Sc

Method Blank (MB)

Method Blank	(MB)				
(MB) R3701519-1 09/	07/21 07:49				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	%		%	%	Тс
Total Solids	0.00200				

L1396424-01 Original Sample (OS) • Duplicate (DUP)

Laboratory Control Sample (LCS)

(LCS) R3701519-2 09/07/21 07:49							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	%	%	%	%			
Total Solids	50.0	50.0	100	85.0-115			

DATE/TIME: 10/01/21 11:43

PAGE: 62 of 89

Regeivet/by 105 2: 3/6/2023 3:05:23 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1396397-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17

Method Blank (MB)

MB) R3698383-1 08	3/30/21 16:22					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/kg		mg/kg	mg/kg		
Chloride	U		9.20	20.0		

L1395969-02 Original Sample (OS) • Duplicate (DUP)

L1396397-15 Original Sample (OS) • Duplicate (DUP)

L1396397-15 Origin	al Sample ((OS) • Dup	licate (l	OUP)				
(OS) L1396397-15 08/30/21 20:47 • (DUP) R3698383-6 08/30/21 20:57								
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		
Analyte	mg/kg	mg/kg		%		%		
Chloride	89.4	90.1	1	0.796		20		

Laboratory Control Sample (LCS)

(LCS) R3698383-2 08/30	0/21 16:32				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	195	97.7	90.0-110	

L1395969-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1395969-02 08/30	/21 17:08 • (MS)	R3698383-4 (08/30/21 17:27	• (MSD) R36983	383-5 08/30/2	1 17:37						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg				%	%		%			%	%
Chloride	500	1370	2420	1490	229	42.9	10	80.0-120	<u>J5</u>	<u>J3 J6</u>	47.6	20

Released to	Imaging ^{AC3} /96/2023	2:40:21 I	PM
	ConocoPhillips - Tetra Te	ch	

PROJECT: 212C-MD-02492

DATE/TIME: 10/01/21 11:43

PAGE: 63 of 89

Page 96 of 242

Regenyethby 2951 - 3/6/2023 3:05:23 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1396397-18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37

Page 97 of 242

Method Blank (MB)

MB) R3700060-7	09/02/21 16:50			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1396397-25 Original Sample (OS) • Duplicate (DUP)

L1396397-25 Orig	ginal Sample	(OS) • Du	plicate	(DUP)		
(OS) L1396397-25 09/0	02/21 06:50 • (DUI	P) R3700060	-3 09/02/2	21 07:18		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	189	214	1	12.3		20

L1396397-35 Original Sample (OS) • Duplicate (DUP)

(OS) L1396397-35 09/02/21 09:31 • (DUP) R3700060-6 09/02/21 09:41 Original Result DUP Result Dilution DUP RPD DUP Qualifier during the set of	396397-35 Orig	ginal Sample	(OS) • Du	plicate	(DUP)		
(dry) (dry) Dilution DOP RPD <u>DOP Qualifier</u> Limits) L1396397-35 09/0	02/21 09:31 • (DUP) R3700060-	6 09/02/2	1 09:41		
Analyte mg/kg mg/kg % %				Dilution	DUP RPD	DUP Qualifier	
	yte	mg/kg	mg/kg		%		%
Chloride 23.1 23.4 1 1.60 20	vride	23.1	23.4	1	1.60		20

Laboratory Control Sample (LCS)

(LCS) R3700060-2 09/02	2/21 05:33				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	195	97.5	90.0-110	

L1396397-25 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1396397-25 09/02/	(21 06:50 • (MS)) R3700060-4	09/02/21 07:28	8 • (MSD) R370	0060-5 09/02	2/21 07:37						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	544	189	654	722	85.6	98.1	1	80.0-120			9.88	20

PROJECT: 212C-MD-02492

SDG: L1396397

DATE/TIME: 10/01/21 11:43

PAGE: 64 of 89

Regenyethby BGD: 3/6/2023 3:05:23 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1396397-38,39,40,41,42,43,44

Page 98 of 242

Тс

Ss

Method Blank (MB)

(MB) R3700061-1 09	9/01/21 18:45			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1396424-21 Original Sample (OS) • Duplicate (DUP)

L1396424-21 Ori						
(OS) L1396424-21 09/(Original Result (dry)		Dilution		DUP Qualifier	DUP RPD Limits
Analyte Chloride	mg/kg 58.2	mg/kg 64.8	1	%		% 20
	00.2	00	·			

L1396430-05 Original Sample (OS) • Duplicate (DUP)

L1396430-05 Ori	iginal Sample	(OS) • Du	plicate	(DUP)		
(OS) L1396430-05 09/	01/21 22:32 • (DUP) R3700061-4	09/01/21	23:00		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte				%		%
Chloride	815	760	1	6.89		20

Laboratory Control Sample (LCS)

(LCS) R3700061-2 09/01	1/21 18:54				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	196	98.0	90.0-110	

L1396430-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1396430-05 09/01/	′21 22:32 • (MS)	R3700061-5 C	9/01/21 23:10 •	(MSD) R37000	061-6 09/01/21	23:19						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg				%	%		%			%	%
Chloride	500	815	1630	1380	139	97.0	1	80.0-120	<u>E J5</u>	E	16.4	20

Released to	Imaging? 3/96/2023 2:4	0:21 PM
	ConocoPhillips - Tetra Tech	

PROJECT: 212C-MD-02492

SDG: L1396397

DATE/TIME: 10/01/21 11:43

PAGE: 65 of 89

Reg @ qt/by 1960 3/6/2023 3:05:23 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

Page 99 of 242

Method Blank (MB)

(MB) R3700749-2 09/02	/21 19:45				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
PH (GC/FID) Low Fraction	0.0355	Ţ	0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	99.9			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3700749-1 09/02	2/21 18:58				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	4.75	86.4	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			104	77.0-120	

	10
	³ Ss
	_
	⁴ Cn
_	
	⁵Sr
	⁶ Qc
	⁷ Gl
	⁸ Al

Sc

SDG: L1396397 DATE/TIME: 10/01/21 11:43

PAGE: 66 of 89

Req @ qd/by 26Dr. 3/6/2023 3:05:23 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY L1396397-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18

Page 100 of 242

⁺Cn

Sr

ີQc

GI

AI

Sc

Method Blank (MB)

(MB) R3699431-3 09/01/2	21 13:16				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3699431-2 09/01	/21 12:33				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.02	91.3	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			95.0	77.0-120	

L1396397-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1396397-02 09/01	/21 16:29 • (MS)	R3699431-6 0	9/02/21 06:13 •	(MSD) R3699	431-7 09/02/2	1 06:35						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	6.06	U	2.94	2.47	48.5	40.7	1	10.0-151			17.5	28
(S) a,a,a-Trifluorotoluene(FID)					84.8	98.5		77.0-120				

SDG: L1396397 DATE/TIME: 10/01/21 11:43

PAGE: 67 of 89

Req @ qd/by 99D: 3/6/2023 3:05:23 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY <u>11396397-19,20,21,22,23,24,25,26,27</u>

Page 101 of 242

Method Blank (MB)

(MB) R3700523-3 09/02/	./21 10:50				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	⁻Tc
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	112			77.0-120	³ Ss

Laboratory Control Sample (LCS)

(LCS) R3700523-1 09/02	/21 09:00				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.07	92.2	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			101	77.0-120	

Sc

DATE/TIME: 10/01/21 11:43

PAGE: 68 of 89

Req @ qd/by QQD:3/6/2023 3:05:23 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY L1396397-31,32,33,34,35,36,37,38,39,40,41,42,43,44

Page 102 of 242

⁺Cn

Sr

ີQc

GI

AI

Sc

Method Blank (MB)

(MB) R3701276-2 09/04/2	21 05:07				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3701276-1 09/04/21 04:24							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	mg/kg	mg/kg	%	%			
TPH (GC/FID) Low Fraction	5.50	5.67	103	72.0-127			
(S) a.a.a-Trifluorotoluene(FID)			99.6	77.0-120			

L1396397-33 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1396397-33 09/04	/21 06:12 • (MS)	R3701276-3 0	9/04/21 13:05 •	(MSD) R37012	76-4 09/04/2	13:26						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	5.78	U	4.35	3.71	75.3	64.2	1	10.0-151			15.9	28
(S) a,a,a-Trifluorotoluene(FID)					101	100		77.0-120				

DATE/TIME: 10/01/21 11:43

PAGE: 69 of 89

Req @ qd/by 99B: 3/6/2023 3:05:23 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

Page 103 of 242

Method Blank (MB)

)				C
(MB) R3701139-3 09/06/	21 16:16				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120	3

Laboratory Control Sample (LCS)

(LCS) R3701139-2 09/06/	21 15:28				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.19	94.4	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			104	77.0-120	

	³ Ss
ĥ	
	⁴ Cn
	⁵Sr
	⁶ Qc
í	
	⁷ Gl
	⁸ Al
1	
	°Sc

DATE/TIME: 10/01/21 11:43 PAGE: 70 of 89

QUALITY CONTROL SUMMARY L1396397-21,22,23,24,25,26,27,28,29,30,31

Method Blank (MB)

Method Blank (MD)				1
(MB) R3700541-2 09/03/2	21 11:41				C
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Ť
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	³ S
Toluene	U		0.00130	0.00500	Ľ
Xylenes, Total	U		0.000880	0.00650	4
(S) Toluene-d8	105			75.0-131	C
(S) 4-Bromofluorobenzene	93.1			67.0-138	
(S) 1,2-Dichloroethane-d4	89.3			70.0-130	⁵ Si

Laboratory Control Sample (LCS)

(LCS) R3700541-1 09/03	3/21 11:03					7
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	΄GΙ
Analyte	mg/kg	mg/kg	%	%		
Benzene	0.125	0.128	102	70.0-123		⁸ A I
Ethylbenzene	0.125	0.125	100	74.0-126		A
Toluene	0.125	0.125	100	75.0-121		9
Xylenes, Total	0.375	0.356	94.9	72.0-127		Sc
(S) Toluene-d8			101	75.0-131		
(S) 4-Bromofluorobenzene			101	67.0-138		
(S) 1,2-Dichloroethane-d4			101	70.0-130		

DATE/TIME: 10/01/21 11:43 PAGE: 71 of 89

Page 104 of 242

[°]Qc

QUALITY CONTROL SUMMARY L1396397-32,33,34,35,36,37,38,39,40,41,42,43,44

(MB) R3700538-3 09/03	/21 22:28			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	108			75.0-131
(S) 4-Bromofluorobenzene	95.3			67.0-138
(S) 1,2-Dichloroethane-d4	93.0			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3700538-1 09/03/	'21 21:12 • (LCSE	D) R3700538-2	2 09/03/21 21:3	31							7
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	Í GI
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.125	0.112	0.121	89.6	96.8	70.0-123			7.73	20	8
Ethylbenzene	0.125	0.114	0.121	91.2	96.8	74.0-126			5.96	20	A
Toluene	0.125	0.118	0.119	94.4	95.2	75.0-121			0.844	20	9
Xylenes, Total	0.375	0.325	0.360	86.7	96.0	72.0-127			10.2	20	Sc
(S) Toluene-d8				104	101	75.0-131					
(S) 4-Bromofluorobenzene				97.8	104	67.0-138					
(S) 1,2-Dichloroethane-d4				102	100	70.0-130					

L1396424-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1396424-06 09/04/	21 04:52 • (MS)	R3700538-4	09/04/21 05:11	• (MSD) R3700	538-5 09/04/2	21 05:30						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.145	U	0.0534	0.103	36.8	71.0	1	10.0-149		<u>J3</u>	63.4	37
Ethylbenzene	0.145	U	0.0543	0.106	37.4	73.1	1	10.0-160		<u>J3</u>	64.5	38
Toluene	0.145	U	0.0555	0.105	38.2	72.5	1	10.0-156		<u>J3</u>	61.8	38
Xylenes, Total	0.435	U	0.150	0.297	34.4	68.3	1	10.0-160		<u>J3</u>	66.0	38
(S) Toluene-d8					106	105		75.0-131				
(S) 4-Bromofluorobenzene					98.4	96.0		67.0-138				
(S) 1,2-Dichloroethane-d4					100	96.6		70.0-130				

DATE/TIME: 10/01/21 11:43

PAGE:

72 of 89

Ср

Τс

Ss

Cn

Sr

Qc

QUALITY CONTROL SUMMARY 1396397-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

Тс

Ss

Cn

Sr

[°]Qc

Method Blank (MB)

(MB) R3700555-3 09/04/	21 02:56			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	104			75.0-131
(S) 4-Bromofluorobenzene	105			67.0-138
(S) 1,2-Dichloroethane-d4	84.6			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3700555-1 09/04/	/21 01:36 • (LCS	D) R3700555	-2 09/04/21 01:	:56							7
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	Í GI
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.125	0.119	0.122	95.2	97.6	70.0-123			2.49	20	⁸ AI
Ethylbenzene	0.125	0.118	0.117	94.4	93.6	74.0-126			0.851	20	A
Toluene	0.125	0.123	0.125	98.4	100	75.0-121			1.61	20	9
Xylenes, Total	0.375	0.386	0.394	103	105	72.0-127			2.05	20	Sc
(S) Toluene-d8				102	103	75.0-131					
(S) 4-Bromofluorobenzene				105	105	67.0-138					
(S) 1,2-Dichloroethane-d4				88.4	90.8	70.0-130					

SDG: L1396397 DATE/TIME: 10/01/21 11:43

PAGE: 73 of 89

QUALITY CONTROL SUMMARY

Page 107 of 242

Sr

Qc

GI

Â

Sc

Method Blank (MB)

1B) R3700719-3 09/05/2	21 06:47				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	107			75.0-131	
(S) 4-Bromofluorobenzene	90.3			67.0-138	
(S) 1,2-Dichloroethane-d4	100			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3700719-1 09/05/2	21 05:31 • (LCSE) R3700719-2	09/05/21 05:5	50						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Xylenes, Total	0.375	0.337	0.334	89.9	89.1	72.0-127			0.894	20
(S) Toluene-d8				104	101	75.0-131				
(S) 4-Bromofluorobenzene				88.9	94.9	67.0-138				
(S) 1,2-Dichloroethane-d4				94.8	92.2	70.0-130				

DATE/TIME: 10/01/21 11:43

PAGE: 74 of 89 Semi-Volatile Organic Compounds (GC) by Method 8015M

QUALITY CONTROL SUMMARY

Page 108 of 242

⁺Cn

۶r

GI

Â

Sc

Method Blank (MB)

MB) R3701022-1 09/04/2	21 04:21				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C36 Motor Oil Range	U		0.274	4.00	
(S) o-Terphenyl	59.9			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3701022-2 09/0	4/21 04:35				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	35.3	70.6	50.0-150	
(S) o-Terphenyl			63.8	18.0-148	

DATE/TIME: 10/01/21 11:43

PAGE: 75 of 89
Semi-Volatile Organic Compounds (GC) by Method 8015M

QUALITY CONTROL SUMMARY 1396397-06,07,08,09,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25

Page 109 of 242

Cn

Â

Sc

Method Blank (MB)

(MB) R3702000-1 09/08	/21 00:20				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
10-C28 Diesel Range	U		1.61	4.00	
C28-C36 Motor Oil Range	U		0.274	4.00	
(S) o-Terphenyl	43.4			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3702000-2 09/	08/21 00:33				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	36.2	72.4	50.0-150	
(S) o-Terphenyl			54.1	18.0-148	

L1396397-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1396397-09 09/08/	21 02:36 • (MS)	R3702000-3	09/08/21 02:49	9 • (MSD) R370	2000-4 09/08	3/21 03:03						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	51.7	2.43	32.8	37.0	58.7	66.1	1	50.0-150			12.2	20
(S) o-Terphenyl					40.6	46.3		18.0-148				

DATE/TIME: 10/01/21 11:43

PAGE: 76 of 89 Semi-Volatile Organic Compounds (GC) by Method 8015M

QUALITY CONTROL SUMMARY L1396397-26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44

Page 110 of 242

Cn

Â

Sc

Method Blank (MB)

Method Blank (ME	(د				
(MB) R3700504-1 09/04/	/21 03:57				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C36 Motor Oil Range	U		0.274	4.00	
(S) o-Terphenyl	52.6			18.0-148	

Laboratory Control Sample (LCS)

LCS) R3700504-2 09/	04/21 04:11				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
0-C28 Diesel Range	50.0	32.4	64.8	50.0-150	
(S) o-Terphenyl			47.0	18.0-148	

L1396397-26 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1396397-26 09/04/	/21 18:59 • (MS)	R3700504-3 (09/04/21 19:13 •	(MSD) R3700	504-4 09/04/2	1 19:27						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	55.7	18.5	58.5	61.0	71.9	76.6	1	50.0-150			4.15	20
(S) o-Terphenyl					35.6	35.2		18.0-148				

DATE/TIME: 10/01/21 11:43

PAGE: 77 of 89

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

	a Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

PROJECT: 212C-MD-02492

SDG: L1396397 DATE/TIME: 10/01/21 11:43

PAGE: 78 of 89

Received by OCD: 3/6/2023 3:05:23 PMACCREDITATIONS & LOCATIONS

Page 112 of 242	Page	<i>112</i>	of 242
-----------------	------	------------	--------

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
daho	TN00003	Ohio-VAP	CL0069
llinois	200008	Oklahoma	9915
ndiana	C-TN-01	Oregon	TN200002
owa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
ouisiana	AI30792	Tennessee ¹⁴	2006
ouisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
42LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1396397 DATE/TIME: 10/01/21 11:43

Internation Conscriptings Site Manager: Christian Luli Christian Luli Christian Luli Christian Luli register Manne: C. U/SSALL 946.5-000 Contract Info: Email: Christian Juligiter/sites/h.u/Sites/h.u/Sites/h.u/Sites/h.u/Sites/h.u/Sites/sites/h.u/S	TŁ	Tetra Tech, Inc.					901 We	т	Tex el (43	as 79 2) 68	uite 100 701 2-4559 2-3946	Mid	and,										ι	13	76	39	77
Operation: E_VGSALI 396 5-002 Contact Info: Product Operation: Lee County, New Mexico Project #: 3/3C - MD - 0.3443 Operation: Dot West Name: Sampler Signature: Joe Type: Notice to: Accounts Payable Sampler Signature: Joe Type: Notice to: Sampler Signature: Joe Type: Joe Type: Notice to: Sampler Signature: Joe Type: Joe Type: Joe Type: Notice to: Sampler Signature: Joe Type: Joe Type: Joe Type: Notice to: Joe Type: Joe Type: Joe Type: Joe Type: Joe Type: Joe Type: Joe Type: Joe Type:	ient Name:	ConocoPhillips	Site	Manager:	e) yana	Chris	tian Llu	uli	a .		and a second		1														
Upper Lassion: Les County, New Mexico Project #: ∂/2C - MD - 0.3/49.3. ounty, State): Accounts Payable sort West West Steret, Suite 100 Midlard, Texas 72701 Image: State 100 Midlard, Texas 72701 Image: State 100 Midlard, Texas 72701 seeking Laboratory: Pece Analytical Sampler Signature: Joe Tyler Image: State 100 Midlard, Texas 72701 seeking Laboratory: Pece Analytical Sampler Signature: Joe Tyler Image: State 100 Midlard, Texas 72701 seeking Laboratory: Pece Analytical Sampler Signature: Joe Tyler Image: State 100 Midlard, Texas 72701 seeking Laboratory: Pece Analytical Sampler Signature: Joe Tyler Image: State 100 Midlard, Texas 72701 seeking Laboratory: Pece Analytical Sampler Signature: Joe Tyler Image: State 100 Midlard, Texas 72701 seeking Laboratory: Pece Analytical Sampler Signature: Joe Tyler Image: State 100 Midlard, Texas 72701 seeking Laboratory: Pece Analytical Sampler Signature: Joe Tyler Image: Signature: Joe Tyler Jung Laboratory: Pece Analytical Sampler Signature: Joe Tyler Joe Tyler Joe	oject Name:	EVGSAL 2963-002	Cont	tact Info:	2			tian.llu	ull@te	trated	h.com				8	1	(0	Circ	le c	or Sp	pec	ify I	Veth	lod	No.)	ī	i i
Converting Laboratory Pade Antigrature Sampler signature Joe (yer) Reservative Res			Proje	ect #:	2120	- MI	0-0	249	12				R									Sec. 1					
Nummerits: COPTETRA Sample signature: Joe ryer Org <	voice to:		79701		1.5		1							3	10 div	(ONIM	6H a				-					ched lis	-
Date Date Time B B F B	ceiving Laboratory:	Pace Analytical	Sam	pler Signat	ure:		loe Tyl	ler		1	The	201 1		8	Cac	- 020	r Pb Se	BP		1	ac	3				ee attac	
Date Date Time B B F B	omments: COPT	ETRA	24								12.8	-		X 826	C35)	DYD	a Cd C	8	1		624 270016						12.54
Date Date Time B B F B	4			SAMPLIN	IG	MA	TRIX	T				s	Î	BTE	(Ext to	- 040	g As B	g As	olatiles	11	260B /	808		(8)	lfate	Chem	0000
DAISSE DATE TIME S <t< td=""><td>LAB #</td><td>SAMPLE IDENTIFICATION</td><td>YEAF</td><td>R: 2021</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>AINEF</td><td>ED (Y/</td><td>021B</td><td>1005</td><td>70C</td><td></td><td>etals A</td><td>emi Vo</td><td></td><td>1.2</td><td>082 /</td><td></td><td>besto: 300.0</td><td>1 1</td><td>Wate</td><td>5R</td></t<>	LAB #	SAMPLE IDENTIFICATION	YEAF	R: 2021								AINEF	ED (Y/	021B	1005	70C		etals A	emi Vo		1.2	082 /		besto: 300.0	1 1	Wate	5R
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LADUSE	396397	D	ATE	TIME		SOIL	ŢĊĹ	4NO3	сE	NONE	¢ CONT	ILTER		T Hd	AH 82	otal Me	CLPW	CLP Se	Q	SC/MS	CB's 8	NORM	Chloride	Chloride	Seneral	PH 801
-03 (4'-5') -04 (3H-12) -05 (2-3) -06 (4-5) -07 (3H-3) -08 (2-2) -07 (4-5) -08 (2-2) -09 (4-5) -00 (4-5) -01 (3H-4) -02 (4-5) -03 (4-5) -04 (4-5) -05 (1-2) -06 (1-2) -07 (4-5) -08 (1-2) -09 (4-5) -00 (3H-4'(0-1)) Inquished by: Date: Date: Time: Received by: Date: Date: Time: BUSE ONLY Standard Signadard Standard Inquished by: Date: Date: Time: Buse Only RUSH: Same Day 24 hr. 48 hr. 72 hr. Inquished by: Date: Date: Time: Date: Time: Buse Only </td <td></td> <td></td> <td>8.8</td> <td>33</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>~</td> <td>Ĩ</td> <td>-</td> <td>X</td> <td>X</td> <td>(</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>X</td> <td></td> <td></td> <td></td>			8.8	33					-		~	Ĩ	-	X	X	(X			
-04 BH-12 (0-1') -05 (1-3) -00 (1-5) -01 BH-3 -02 BH-3 -03 (1-5) -03 (1-5) -03 (1-5) -03 (1-5) -04 (1-5) -05 (1-5) -07 BH-3 (1-5) 0 -08 (1-5) -09 (1-5) -09 (1-5) -00 BH-4 (0-1) V Inquished by: Date: Date: Time: Beceived by: Date: Date: Time: Barborn Horizon Barborn Horizon Barborn Horizon Barborn Horizon Date: Time: Barborn Horizon Barborn Horizon Barborn Horizon Barborn Horizon Inquished by: Date: Time: Date: Time: Barborn Horizon Barborn Horizon Barborn Horizon Barborn Horizon			(2'-3')	1			1		-	1		1	1	1	-1			-				_		1	4-11	14 14	is had
-05 (1-3) -00 (4-5) -01 BH-3 (0-1) -08 (1-3) -09 (1-3) -01 BH-4 (0-1) -02 BH-4 (0-1) -03 -04 BH-4 -04 BH-4 (0-1) -05 -07 BH-4 -07 BH-4 (0-1) -08 -07 BH-4 -09 -01 BH-4 -01 BH-4 0-1 -02 -03 -04 Bate: Time: -03 -04 -04 -04 -04 -03 -04 -04 -04 -04 -04 -04 -04 -04 -04 -05 -04 -04 -04 -04 -04 -04 -04 -04 -04	-03	√ (4'-5')		1 and	<u></u>					3						7	270	2	i.	100	1.1	al d					
Ob (4-5) OB (0-1) OB (0-2) OB (0-2) OB (0-1) OB (0-1) OB (0-1) OB (0-1) OB (0-1) OB OB OB (0-1) Date: Time: Received by: Date: Time: Control (0-1) Date: Time: Standard Standard Standard Other Standard Other<	-04	BH-\$2 (0'-1')				1		-	$\frac{1}{2}$				-					1			1		100				
-Ob (4-5) -OB (3-2) -OB (3-2) -OB (4-5) -OB Oate: Time: Received by: Date: Time: Buse ONLY Standard Sample Temperature RUSH: Same Day 24 hr. 48 hr. 72 hr. Inquished by: Date: Time: Buse Only Rush Charges Authorized Inquished by: Date: Time: Bate: Time: Received by: Date: Time: Received by: Date: Time: Sample Temperature <t< td=""><td>-05</td><td>(2-3)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Π</td><td>T</td><td>Π</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></t<>	-05	(2-3)										Π	T	Π												-	
-O1 BH-3 (O-1) -O8 (J-2) -O9 (H-5) -O9 (H-5) -O9 BH-4 O-10 BH-4 BH-4 (O-1) Date: Time: Received.by: Date: Time: AB USE ONLY Standard Inquished by: Date: Date: Time: Bate: Time:		(4-5)										Π	11											T			Can !!
-08 (J-Z) -09 (H-S) -00 BH-4 (O-I) Date: Time: Received.by: Date: Time: BH-4 (O-I) Date: Time: Received.by: Date: Time: BH-4 (O-I) Date: Time: BH-4 (O-I) V Date: Time: BH-4 (D-I) V Date: Time: BH-4 (O-I) V Date: Time: BH-4 (D-I) Buse Buse ONLY Standard RUSH: Same Day 24 hr. 48 hr. 72 hr. Buse Only: Date: Date: Time: Bate: Time: Date: Time: Date: Time: Date: Time: Date: Time:										П		Ħ	11	111			\square			\square	+		T	1		1	++
Inquished by: Date: Time: Received by: Date: Time: Journal of the standard Inquished by: Date: Time: Received by: Date: Time: LAB USE ONLY REMARKS: Journal of the standard Journal of the standard Journal of the standard RUSH: Standard Journal of the standard Journal of the standard Journal of the standard RUSH: Standard Journal of the standard Journal of the standard Journal of the standard RUSH: Standard Journal of the standard Journal of the standard Journal of the standard Journal of the standard Index of the standard Journal of the standard Journal of the standard Journal of the standard Journal of the standard Index of the standard Journal of the standard Journal of the standard Journal of the standard Journal of the standard Index of the standard Journal of the standard Journal of the standard Journal of the standard Journal of the standard Index of the standard Journal of the standard <td< td=""><td>-08</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td>Ħ</td><td>11</td><td>11</td><td></td><td></td><td>\square</td><td>+</td><td>+</td><td>\square</td><td>+</td><td>+</td><td>\square</td><td>-11</td><td>+</td><td></td><td>++</td></td<>	-08						1	1				Ħ	11	11			\square	+	+	\square	+	+	\square	-11	+		++
BH-4 (0-1) V<	-09						1	+				Ħ	Ħ	111		H	H	+	+	+	+	+	++	1	+	-	++
Inquished by: Date: Time: Received by: Date: Time: LAB USE ONLY REMARKS: Inquished by: Date: Time: Received by: Date: Time: LAB USE ONLY Standard Inquished by: Date: Time: Received by: Date: Time: Sample Temperature RUSH: Same Day 24 hr. 48 hr. 72 hr. Inquished by: Date: Time: Received by: Date: Time: Rush Charges Authorized Inquished by: Date: Time: Received by: Date: Time: Sample Temperature Rush Charges Authorized	-10						1			V	-	t t	1	1.		1	\vdash	+	+	+	+	-	++	1	++	+	++
Inquished by: Date: Time: Received by: Date: Time: Bate: Time: Received by: Date: Time: Sample Temperature RUSH: Same Day 24 hr. 48 hr. 72 hr. Inquished by: Date: Time: Rush Charges Authorized Inquished by: Date: Time: Time: Sample Temperature Rush Charges Authorized	linquished by:			-	1	0	.*1	Date	e:		_	Time	_		in the			R			_	_	<u> </u>	14	1_1		
Inquished by: Date: Time: Received by: Date: Time: Signature Signature RUSH: Sample Temperature RUSH: Same Day 24 hr. 48 hr. 72 hr. Inquished by: Date: Time: Rush Charges Authorized Date: Time: Received by: Date: Time: Date: Time: Received by: Date: Time:	the	- life S-77-71 12.	1	(N)	11		8				r		2	L	AB U	SE C	DNL	(\geq	Star	ndard						
Signature Signature Sample Temperature Inquished by: Date: Time: Received by:				ived by	-	-	00	and the second se			<u> </u>	_		1						Три	ец.	Same	e Dav	24 1	r 45	hr	72 hr
inquished by: Date: Time: Date: Time: Special Report Limits or TPRP Report	VIL 1	\cap	30 7 SWA 8-272 16:30									Sa	mple	Temp	eratur	e											
	all shit	001-21 (03										1					Rush Charges Authorized										
Special Report Limits or TRRP Report	linquished by:	Date: Time:	Rece	ived by	6 /	M	2	Date	e:	~	10	Time		1.20					_	1				-			
		2	Signa (1992 8-23-2) 09/5								ecial F	Report Limits or TRRP Report															

Page 114 of 242

Analysis Request of Chain of Custody Record

Page: 02 of 05

Æ	Tetra Tech, Inc.			and the second	901 V	West	Tel	Street, Texas (432) 6 (432)	7970 682-4)1 4559) Midl	and,										1	3	ι	12	91	3	97
Client Name:	ConocoPhillips	Site Manag	er:	Chri	stian l	luli			1												SIS							
Project Name:	EVGSAU \$ 2963-002	Contact Inf	o:	Ema Pho		istian	n.llull@	@tetrat	ech.o	com			1	É i	ī	1	(Cir I I	cle	or	Sp	ecif	fy M III	leth I	bo	No.	.) 	1	1.1
Project Location: (County, State)	Lea County, New Mexico	Project #:					a P						1											1		Ð		
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79	0701					1						1		MRO)	Hg	Se Hg	2	115	-		E.			12	attached list)		100
Receiving Laborat	tory: Pace Analytical	Sampler Si	gnature:		Joe T	yler							BB		ORO - MRO)	Ba Cd Cr Pb Se Hg	Cr Pb S				25			100		(see attac		
Comments:	COPTETRA												EX 826	C35)	DRO	a Cd C	As Ba Cd Cr Pb		and the	624	8270C/625		4		TDS	stry	0	
		SAM	PLING	M	ATRI	x	PR	METH			RS	(N)	BT	(Ext to	(GRO-	Ag As B	0	S	olatiles	82608 / 624	Vol.	608	1	(so	Sulfate	er Chemistry	balano	
LAB #	SAMPLE IDENTIFICATION	YEAR: 2021 DATE	TIME	WATER	-		_	03	NE		# CONTAINERS	FILTERED (Y/N)	EX 8021B	TX1005	8015M 8270C	Metals	TCLP Metals	rcLP Volatiles	TCLP Semi Volatiles RCI	MS Vol.	1.2	PCB's 8082/	RM	(Aspestide 300.		General Water	Anion/Cation Balance TPH 8015R	9
(ONLY)	U396397 BH-4 (9-3)	8-23	TIME	WA	X sol	+	HCL	V ICE	NONE	-	0 #	E N		TPH	PAH	Tota	10	TCL	TCL	DO DO	CC CC	PCE	NORM	Chlor	Chi	Ger	TPF	НОГР
-12	4 (4-5)	0-43	1	1.55	1	1		i			1	1	ĥ		î			+	+	+	123		92.0	1.	+		224	
-13	BH-5 (0-1)									140	Ħ	Ħ	#	H	1				1	3								1200
-19	(2-3)							11	100		Ħ	Ħ	#		tt	1				T					1			
-13	v (4-5)		1.1.1				8		1	1	Ħ	Ħ			Ħ				1	+								
-16	BH-6 (0-1)											T		\square	1					T		\square				\square		
-17	1 (2-3)		-		T					1		Ħ	1	\square	$^{+-}$		\square	1			1	\square						
-18	v (4-5)										11	\square		Π	11					1						\square		
-19	8H-7 (O-1)				П						T	11	1		11		\square		R.			\square				H		
-20	4 (2-3)	V			V			1	r		1	1	1		V									1	1			
Relinquished by:	Loc Tyler Style Bics	Received by	ti	P	8	-21	Date: 7 A	4		E	Time 35.C		1	AB	JSE	ONL					dard				-			
	AN 827-21 16:30	Received by	i Kas	8	32		Date: - 21	ı			Time	ĸ	Si	ample	Temp	berati	ure		_						nr. 4	18 hr.	72 hi	t
Relinquished by:	Date: Time:	Received by	A	CARL BIBIL AS												- 1	Rush Charges Authorized											
		ORIGINAL COPY							(Cir	cle) I	HAND	DELIV	ERED	RED FEDEX UPS Tracking #:														
Released to	Imaging: 3/16/2023 2:40:21 PM						- 4- - W											2	1.3 A	2 N	22	3						

Page 115 of 242

•

LAB # SAMPLE IDENTIFICATION YEAR: 2021 WILL	TŁ	Tetra Tech, Inc.			A. S.	901 We	т	all Stree Texas el (432) ax (432)	7970	01 4559	Midla	nd,							310	1.22			l	13	391	62	917
Project Name: EVGSAU 2963-002 Contract Info: Email: drinstan Juliggetrated.com Project Name: EvGSAU 2963-002 Contact Info: Email: drinstan Juliggetrated.com Project Castlon: Lea County, New Mexico Project #: Invoice for: Accounts Payable B01 West Wall Street, Suite 100 Midland, Texas 79701 Receiving Laboratory: Pace Analytical Sampler Signature: Joe Tyler Image: COPTETRA Sampler Signature: Joe Tyler Image: Control (1) Control (1) Control (1) Control (1) Image: Control (1) Control (1) Control (1) Control (1) Control (1) Image: Control (1)	nt Name:	ConocoPhillips	Site Manag	er:	Chris	stian Llu	II			X			-				0							d No	,		
County, State) Les Counts Product invoice to: 901 West Wall Street, Suite 100 Midland, Texas 79701 901 West Wall Street, Suite 100 Midland, Texas 79701 901 West Wall Street, Suite 100 Midland, Texas 79701 Receiving Laboratory: Pace Analytical Sampler Signature: Joe Tyler 900 West Wall Street, Suite 100 Midland, Texas 79701 Receiving Laboratory: Pace Analytical Sampler Signature: Joe Tyler 900 Will Bill Street, Suite 100 Midland, Texas 79701 Comments: COPTETRA Sampler Signature: Joe Tyler 900 Will Bill Street, Suite 100 Midland, Texas 79701 Comments: COPTETRA Sampler Signature: Joe Tyler 900 Will Bill Hill Street, Suite 100 Will Bill Hill Hill Hill Street, Suite 100 Will Bill Hill Hill Hill Street, Suite 100 Will Bill Hill Hill Street, Suite 100 Will Bill Hill Hill Hill Hill Street, Suite 100 Will Bill Hill Hill Hill Hill Hill Hill H	ect Name:	EVGSAU 2963-002	Contact Inf	o:			tian.Ilu	ull@tetra	tech.	.com				1	T	1				spe 					-) 	Т	11
Receiving Laboratory: Pace Analytical Sampler Signature: Joe Tyler Image: Comments: Second Comments: </td <td></td> <td>Lea County, New Mexico</td> <td>Project #:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>st)</td> <td></td> <td></td>		Lea County, New Mexico	Project #:										1												st)		
Laber Sampler Signature: Joe Tyler Big USE			79701										1		- MRO)	e Hg	Se Hg	Sig.						APR	ached li		
LAB # SAMPLE IDENTIFICATION VEAR: 2021 Image: 100 minute intervent int	eiving Laborato	ry: Pace Analytical	Sampler Si	gnature:		Joe Tyl	er				1		50B			Cr Pb S	Cr Pb	N. Law			625		199		see		125
LAB # SAMPLE IDENTIFICATION VEAR: 2021 Image: 100 minute intervent int	nments: (COPTETRA											EX 82(o C35)	- DRO	Ba Cd	Ba Cd		s	/ 624	8270C/	-		TDS	stry	8	1
LAB # SAMPLE IDENTIFICATION YEAR: 2021 NV NV <td>and the second sec</td> <td></td> <td></td> <td></td> <td>M</td> <td>ATRIX</td> <td></td> <td></td> <td></td> <td></td> <td>ERS</td> <td>(N/A</td> <td></td> <td>5 (Ext t</td> <td></td> <td>Ag</td> <td>0</td> <td>les Volatile</td> <td>Volatile</td> <td></td> <td></td> <td>/ 608</td> <td>tos)</td> <td>0.0 Sulfate</td> <td>5</td> <td>n Balance</td> <td></td>	and the second sec				M	ATRIX					ERS	(N/A		5 (Ext t		Ag	0	les Volatile	Volatile			/ 608	tos)	0.0 Sulfate	5	n Balance	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1000				WATER	SOIL	HCL	HNO ₃	ICE	NONE		FILTERED (8021	TPH TX100	TPH 8015M PAH 8270C	Total Metals	TCLP Metals		L Sem	GC/MS Vol.	GC/MS Sem		PLM (Asbes	1 1 1 1 1 1 1	1	Anion/Cation TPH 8015R	01011
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			8-23			_	T	_	_		1	N	_		X												\square
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-12		1	13	-	1	+				+	1	1		+	-		-	-	+		-	+				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-05			and the			+	++	\mathbb{H}		H	H	+		\mathbb{H}	15					1		+				
Ale BH-8 (O-1) (J-3) (J-3) (J-3) (J-3) <td< td=""><td>25</td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td>Ħ</td><td>1</td><td>ŧ</td><td>Ħ</td><td>Ħ</td><td></td><td>t.</td><td></td><td>\square</td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></td<>	25						+		Ħ	1	ŧ	Ħ	Ħ		t.		\square	1	1							-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21																										
109 (6-7) -30 (9-10) Relinquished by: Date: Jate: Time: Received by: Date: Jate: Time:	-22										\square	\square	1		11			\downarrow	-	-			-		\square	_	\square
-30 (9-10) Relinquished by: Joe Tyt Standard Joe Tyt Standard Date: Time: Date: Time: Joe Tyt Standard REMARKS: No Standard REMARKS:						111	-		\prod	-	11	\square	#		11	+	\square	+	-	-			+	11	+	+	++
Relinquished by: Joe Lyt 8272 B.O., Handler Date: Time: LAB USE ONLY REMARKS: LAB USE ONLY REMARKS: Standard RUSH: Same Day 24 br 48 br	UII				-	111-	+	+	1	+	11	11		\square	1	+	+	+	+	+	+	\vdash	+		+	-	++
LAB USE ONLY Standard					1	-M	Da	_	N/		-	_	V		V	-		REM	ARK	S:				V		_	
Plater Time: RIISH: Same Day 24 hr 48 hr	inquisited by:		110	h	U	-0	1.	-2.		1-	3.	1	L	AB	USE	ON	LY	D	S	Standa	ard						
	inquished by:	Date: Time:	Received b	v.	-	-	Da	ate:	-	10	Time							Г	R	RUSH	I: S	ame [Day 1	24 hr.	48 hr.	72 h	ir.
Relinquished by: Date: Time: Received by: Parte: Sample Temperature Rush Charges Authorized	Un	1 827-21 11:2	S	A		52	17-	21		14	0:3	5	0.	ampie	e rem	pera	uie	Г		Rush	Char	aes Au	uthoriz	ed			
Relinquished by: Date: Time: Date: Time: Special Report Limits or TRRP Report	inquished by:			A DI	No		_	_	3-	21			in the		212 		1	Ľ							Repo	ort	
ORIGINAL COPY (Circle) HAND DELIVERED FEDEX UPS Tracking#:		2y Ba	ORIGIN	AL COPY	1-			12	-		Vi	V	(Cir	rcle)	HAND	DEL	VERED	FE	DEX	UPS	S Tra	acking	#:		-		

Analysis Request of Chain of Custody Record

Page: OH of 05

Ŧŧ	Tetra '	Fech, Inc.			1.000	901 W		Te Tel (4	xas 7 (32) 6	Suite 10 9701 82-4559 882-394	9	Midlar	nd,												L	1	39	16	39	7
Client Name:	ConocoPhillips		Site Mana	ger:	Chris	stian LI	ull		-	-								(0)				SIS				hla				
Project Name:	EVGSAU 29	163-002	Contact In	ifo:	Ema Pho		stian.ll	lull@t	tetrati	ech.com	١			4	4	1	I			e or	Sp		ry iv 	leti	hod		.) 	I	1	1
Project Location: (County, State)	Lea County, New N	1987 - 118 - 118 - 118 - 118 - 118 - 118 - 118 - 118 - 118 - 118 - 118 - 118 - 118 - 118 - 118 - 118 - 118 - 1	Project #:	t i	1	1										1	it.			- 5							st)			
Invoice to:	Accounts Payable 901 West Wall Stre	eet, Suite 100 Midland, Texas	79701				Ne				1					- MRO)	e Ho	Se Hg	Ċ,								attached list)	22	a E	
Receiving Laborate	ory: Pace Analytical		Sampler S	ignature:		Joe Ty	ler							8260B		- ORO -	An As Ba Cd Cr Ph Se Hn	Cr Pb				625					(see att			
Comments:	COPTETRA			4.5										EX 82(- DRO	Ba Cd	Ba Cd	-	0	VCal	8270C/625		1		TDS	stry	8		
100 C	1		SAM	MPLING	N	ATRIX			SER	VATIVE IOD		ERS	(N/N)	BT	5 (Ext to	(GRO	An As	Ag As	es	Semi Volatiles	ACA L GOACS	Vol.	/ 608		tos)	0.0 Sulfate	er Che	Balan		
LAB # (LAB USE)	sample id 11396397	DENTIFICATION	YEAR: 202 DATE	TIME	WATER	SOIL	HCI	HNO,	ICE	NONE		# CONTAINERS	FILTERED ()	BTEX 8021B		TPH 8015M (GRO	Total Metals	TCLP Metals	TCLP Volatiles	0	RCI COMEND	GC/MS Semi.	PCB's 8082 / 608	NORM	PLM (Asbestos)	Chloride 300.0 Chloride Sulf	General Water Chemistry	Anion/Cation Balance	TPH 8015R	НОГР
-31	BH-9	(0-1)	8-23		Ĺ	X			>	_		1	N	Х		Х			14.1	10			1			XX			29	
-32		(2-3)			-	1	-		-	1	-	+	1	+		+			-	-	-	-	-	-		-	H			
-30		(4-5)		3			+	+			+	+	H	H		+													-	
-25		(9-10)		10		Ħ						T		IT	151	T							1		2			1		ar.
-36		(14-15)																		-						1	1		1990	
-37	V	(19-20)				111	_	-		+	\downarrow	+		11		1	+	-			-	-				1	\square	100	1	
-28	BH-10	(0-1)			┢	111-	+	+		+	+	+	$\left \right $	₩		+	+	+	-	\square	-	+	-		\vdash		++	+	-	
-39		(2-3)			+	V	+	+	-1		+	V	H	H,	\square	1	+	+	+	$\left \right $	+	+	+	Η	H,	\downarrow	+	+	+	+
Relinquished by:	for typ	(4-5) Date: Time: 827-21 B2		m	l	8	22	ate: 7-5		4	B	Time:	J	L	AB	USE	ON	ILY		-	Stan					-		70		
Relinquished by:	1 8	Date: Time:	Received	N		8	22	121		(Time:		S	ampl	e Ten	npera	ature							y 24		48 hr.	12	tur.	
Relinquished by:		Date: Time:		by M	M	2		ate:	3-	11	-	Time:		1						_							Repo	ərt		
			ORIGI	NAL COPY	011-	_	Ŋ	0		1	-		-	(Ci	rcle)	HANE	DEL	IVER	ED F	EDE)	X UF	PS 1	Frackir	ng #:	_		_	_		-
																				-	-	310	-	-	3					

Page 117 of 242

•

-

TŁ	Tetra	Tech, I	nc.			A.S.A.	901 W	т	Texa el (432	is 79 2) 68	uite 100 701 2-4559 2-3946) Mid	and,	64 P								-	1	LI	39	26	3	27
lient Name:	ConocoPhillips			Site Manage	er:	Chris	tian Ll	ull						he -	.42			2:			YSIS							
roject Name:	EVGSAU	2963-002		Contact Info):	Emai Phon		stian.llu	ull@tet	rated	h.com			1	Ĩ	ī	1				pec			noa		.) 	T	Ē
roject Location: County, State)	Lea County, New			Project #:																						st)		
voice to:	Accounts Payable 901 West Wall St	reet, Suite 100 Midlar	nd, Texas 7970	1	Ť.	1		the second					1		- ORO - MRO)		e Hg	Se Hg								attached list)		
eceiving Laboratory:	Pace Analytical			Sampler Sig	gnature:		Јое Ту	rler	1-2					8260B			Ba Cd Cr Pb Se Hg	Cr Pb			100	629				(see atta		
omments: COPTE	TRA				-37 -			~				0		X	TX1005 (Ext to C35) 8015M (GRO - DRO		Ba Cd	BaCd	0		1624	82/00/625			TDS		8	
	2				PLING	M	ATRIX		PRES	ERV		ERS	(N/A	1 1	5 (Ext to		Ag As	s Ag As	Volatile		8260B / 624	II. Vol.		tos)	Sulfate	ter Che	1 balance	
LAB #	sample 1 296397	DENTIFICATION		YEAR: 2021 DATE	TIME	WATER	SOIL	HCL	HNO ₃	ICE	NONE	# CONTAINERS	FILTERED (Y/N)		TPH TX1005	PAH 8270C	Total Metals	TCLP Metals Ag As Ba Cd Cr Pb TCI P Volatiles	TCLP Semi Volatiles	RCI	GC/MS Vol.	GC/MS Semi. Vol. PCB's 8082 / 608	NORM	PLM (Asbestos)	Chloride 300.0 Chloride Sulf	2	TPH 8015R	-
-41	BH-10	(6-7)		8.23		Ĺ	X			X		1	N	X	X									_	X			П
-47		(9-10)	-	102	101		+		1.53	+		+	+	\mathbb{H}			259	-	-	1.		1	12					\square
_44	v	(19-20)	al stra	V			1		and a second	¥		1	V	V	,	/)	1			
COC Seal Pro COC Signed/i Bottles arr: Correct bott Sufficient	tles used:	N If A N VOA Zero H	pplicable eadspace: _ ct/Check: _	_Y_N _Y_N	1																							
RAD Screen		Date: Date: Date: Date: Date: Date:	Time: Biw Time: (CBW Time:	Received b Received b	hi s	l	8	Da 17: Da Da 27: Da	21		13	Tim	5 10:	-	AB U			٢		RU	andard	Sam				48 hr.	72 hi	
			2	De	M	PA	12	X	3-1	B	2]	0f)	5					1		_	-			ts or T	TRRP	Repor	1	
4				ORIGIN	AL COPY									(Cir	cle) H	AND	DELIVE	RED	FED		UPS 3t	-	-		_	1407		

D146

nalysis Request of Chain of Custody Record

901 West Wall Street, Suite 100 Midland, 1 na Tetra Tech, Inc. Texas 79701 11396397 Tel (432) 682-4559 Fax (432) 662-3946 lient Name: ConocoPhillips Site Manager: Christian Liuß ANALYSIS REQUEST (Circle or Specify Method No.) Email christian Bull@tetratech.com roject Name: EVGSAL 2963-002 Contact Info: Phone roject Location: Lea County, New Mexico 212C-MD-02492 Project #: Jounty, State) list) PH 8015M (GRO - DRO - ORO - MRO) Accounts Payable voice to: 51 attached Se Hg 901 West Wall Street, Suite 100 Midland, Texas 79701 Se 0 0 eceiving Laboratory: fotal Metals Ag As Ba Cd Cr Pb Pace Analytical Sampler Signature: Joe Tyler (see 625 5260B ŭ 8 (Ext to C35) 8270C/ TDS Chemistry COPTETRA omments: 826087624 **BTEX** Ag As Ea Anion/Cation Balance Semi Volaties PRESERVATIVE Sulfate SAMPLING MATRIX Š B082 / 608 FIL TERED (Y/N) METHOD CONTAINERS PLM (Asbesios) Volatiles Chloride 300.0 General Water 30218 TY1005 Semi 'EAR 2021 **FCLP** Metals 8270C SC/MS Vol 8015R SAMPLE IDENTIFICATION LAB # ATER Chloride GC/MS NONE PCB's / LAB USE NORM BTEX TCLP CLP HOLD SOIL 1376397 DATE TIME - NO ų HAR Н. G ONLY S 22 BH-1 (0'-1')-01 8.23 X Х N X X X -02 (2'-5') ŧ -02 \mathbf{v} (4'-5') -04 BH-12 (0'-1') -05 (2-3) -06 (4-5) BH-3 (0-1) -08 (2-2) (4.5) $\overline{\mathbf{v}}$ BH-4 (0-1) V J $\sqrt{}$ J/ elinguished by Date Time Received by Date Time REMARKS: Jabyer LAB USE ONLY Standard 3-27-21 B.a Not 3 Lici inquisined by Date Time Receiv Date Time: RUSH: Same Day 24 hr. 48 hr. 72 hr. 827 Sample Temperature 03: -27 30 -2 Rush Charges Authorized elinquished by Date Time ecerved hy Date ime R-23-21 0115 Special Report Limits or TRRP Report ORIGINAL COPY (Circle) HAND DELIVERED FEDEX UPS Tracking

Page 118 of 242

01 of 05

Page

Released to Imaging: 3/16/2023 2:40:21 PM

Analysis Request of Chain of Custody Record

•

Page	02 of 05
------	----------

	Tetra Tech, Inc.			901	Nes	Te	- Stre- Texa - (432 - (432	s 79	701 2-455	9	1.1 a a	ana,								. <u>.</u>					U	39	16	,3'	97
Client Name:	ConocoPhilips	Site Manager:	Chr	shan	Llu			Araphata					Γ										EQU						
Project Name:	EVGSAU \$7463-002	Contact Info:	Em. Pho		n stia	ال از ۱	iĝ en	ales	h com	1				[1	ł	(C 	irc 	le c	or S	ipe I I	cify E	Me I	thc I	bd ľ	io.) 	I	I	
Project Location: (County, State)	Lea County, New Mexico	Project #:			-								1																
nvoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas	79701		-								4.50			MRO)	Sa Hin	РH										hed list)		
Receiving Laboratory:	Pace Analytical	Sampler Signature:		Joe	Tyler	-							8		CRO - MRO)	Cr Ph Sp	Cr Pb Se					25					ee attact		
Comments: COPTE	ETRA		1010					-					X 8260	C35)	0 H O	13	10				6.24	8270C/625					stry (s		
		SAMPLING	N	ATR	ix	Ρ	RESE			T	SS	(N/Y)	BTEX	(Ext to	GRO	An As Es	Ag As Ba	5	slatiles			1	608	s)	0	late	Chem Salance	TPH 8015R	
LAB #	SAMPLE IDENTIFICATION	YEAR 2021	~							٦	CONTAINERS	ED (Y	80 2 1B	TX1005	8015M {	8270C Metals A	tetals /		emi Vi		1 1	Sem.	8082 /	sbėsto	300 0		Water Mater	15R	
(LABLISE) LIZ	516397	DATE TIME	WATER	SOIL		HCL	412 O .	ш СШ	NONE		CON1	FILTERED	BTEX 8	T H I		Total M	ICLP Metals	TCLP Votatile	TCLP S	RCI	SC/MS Vol	2	NDRM	PLM (Asbestos)	Chlonde	Chloride	General Water	TPH 8015R	
-11	BH-4 (2'-3')	8-23	2	X		<u>_</u>	-	X	-	+	1	N	X	<u> </u>	X				1	Ľ	0	0		. a.	X	0	0 4		+-+-
-12	4 (4-5)			1					-+	1	1	1	1,		1		+	+	\uparrow			-	+	1	17		-	+	+-+-
-13	BH-5 (0-1)			\square				Ħ		1	\top		11-		11		+		\uparrow	+		-	+	1				+	+-+-
-14	(2-3)			Π				Ħ	1	1		$\uparrow \uparrow$					1	T	1			-+	十				+	+	11
-15	(4-5)			Π				Ħ		1	T		#-				+	T	\top	\uparrow			+	+	$\dagger \dagger$		+	+	+-+-
-17 -17 -17 -18 -19 -20	BH-6 (0-1)							Ħ		-	\uparrow		11-					\uparrow	1				+	+	++			+	
-17	1 (2-3)							Ħ			+	$\uparrow \uparrow$	#			-+-	+-		╋			-+-		+	++		-	+	++
-18	(4-5)		_					11		1	+	$\uparrow \uparrow$	╂╊╌		++	+	+	+	+-				+	+-	++		+		+
-19	BH-7 (3-4)							\dagger		1	+	++-			++		+	+	+			-+-	+	+	++		-+-	+	+-+-
-20	(2-3) (5-6							\mathbf{t}	-+-	+	J	\mathbf{V}	V		$\downarrow \uparrow$	+	+	+	+			-+	+	+	1		-+-	+-	+-+-
Peinguished by	Date Time	Received by /	1			Date				1	īime.		ŕ		V I		1	RE	1 MAF	RKS:				1	1				<u>1 1</u>
doe	-Tyle Stral Bu	ROAL		Æ	2-2	7-	1.		1	2	· c	5	L	AB	L	ON	LY		\ge	Sta	utdar	d							
elinquished by	Dat Tre	Received by		0		d 🖓 Date	~!		(and the second value of th	C. Fi m e	0	-						<u> </u>	180	SH-	San	ne []	av '	24 br	46	3 hr.	72 bi	
KIT.	() FAT-21 163		ç	2	17-	0							Sa	e pi	÷ T~ 1	ê d	e			-								·	1
RA nou shed by.	C EAT-21 163		(2 00		-				42	X	2								Ru	sh Ch	iarge	s Au	thoriz	zed				
		Pived by	F	17.	ļ	Date	13	5	1	Ó	1	5] Spe	ecial	Repo	irt Lir	nits d	or TRI	RP R	eport		
		DRIGNAL ODPX						Wind-				-	(Car	clet	HANC	DELI	VER	D I	FEDE	×ι	JPS	Trac	song f	t					
													une nite e fai						2.	31	-Ú-	23	3						
																			- 1	A	27	st	***						

nalysis Request of Chain of Custody Record

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T	Tetra Tech, Inc.			901 We			Has 7 (32) 6	9701 82-45	69	Midle	and,												14 V.	ι	,[*	39	ìle	,Ŧ	377
EVGSAU 3963-001 Contect Into: Endoug	lient Name:	ConocoPhillers	Site Manager:	Chris	tian Llui	i i											10									1.67				
State) Les Loom / How Recks Project #: volice to: Account & State) Sampler Signature: Joe 7, 500 serving Laboratory: Pace Analytical Sampler Signature: Joe 7, 500 serving Laboratory: Pace Analytical Sampler Signature: Joe 7, 500 information: COPTETRA Sampler Signature	roject Name:	EVGSAU 2963-002	Contact Info:			a٩	1.1.2	tetrate	sh co	m				1		-	(C	arc I	ile i	or: 	>p∈ 	ecit 	ry⊪ III	ietr	noc 	I NG).) 	1		
Vecket to: Account Payade Unit of the start Street Starte 100 Minutes Texas 578701 externing Laboratory: Pace Analytical Sampler Signature: De Treet omments: COPTETRA Sampler Signature: De Treet Presset value Image: Started Start		Lea County, New Mexico	Project #:										1														st)			
OPTIMENTS: COPTETRA LAB # SAMPLE IDENTIFICATION SAMPLING MATRIX PRESERVATIVE METHOD VIEW METHOD VIE	ivoice to:		701			2.00							1		MRO)		6 H 0	е н д									bed			
COPTETRA SAMPLING MATRIX PRESERVATIVE METHOD SS MPLING Normality (N) (300)	eceiving Laboratory:	Pace Analytical	Sampler Signature:		joe T, le	ar							- ස		080		S ad 1	ク 合王 しつ				:25					ee atta			
LAB # SAMPLING MATRIX PRESERVATIVE METHOD NUMBER HIGH NUMER HIGH NUMER HIGH	iomments: COPTET	TRA	. Azərmanı				C. C. AL							18	DRO		8	3			624	1.5				100				
LAB # SAMPLE IDENTIFICATION HER. 2021 Image: Constraint of the second of the secon			SAMPLING	M	ATRIX	Τ				Έ	RS	(N/)		Ш.			As	SA B	e5 Primetale c		82608	io/	608		os)	0	Che	ΞĒ		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	40.45547. 41568	SAMPLE IDENTIFICATION	YEAR: 2021	æ							NTAINE	RED (Y	80218	TX1005	8015M			Metals	Volat Se m i		Į	Se m	\$ 8082	5	(Aspest	8	13	/Cation	B015R	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ONLY 140	56397	DATE TIME	WATE	SOIL	ũ,	HN0.	БСE	NON		# CO	FILTE	-	Hd		HVd	Total			<u>j</u>	GC/N	GCIN	PCB'	NOR	PLA		Gene	Anion	HHT	НОГР
	-29 -20 -29 -29 -30 Pelinguished by Te indushed by The industries of the industries	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Peceived by Received by S.A		-2.	7-	- 2 ^{bate} - 21	· · · · · · · · · · · · · · · · · · ·		14	Time Time									S R R	tand USH ush	(: € Chai	ige s ,	Auth	v 24 orize	4 hr			72 hr	
2.3 to-23		na generali de allerri i del allerri dan all'antenisti e della della della della della della della della della	OFICIPAL CORY			11			-				ιC	ircle) + 1	D DF	LIVE	RED	FE	DEX	UPS	S T	li ska	10#			-			
																			0	2.7	31	Û	-	2.	3					

Page ()3 of 05

nalysis Request of Chain of Custody Record

Page OH of OS

Page 121 of 242

	Tetra	Tech, Inc.		đ.	01 Vves	1≑)	(432	: Su 797(682-) 5 32 -	01 4559	Mid	and,												U	13	All	102	\$97
lient Name:	ConoccPhillips		Site Manager:	Christi	an Lluii							Γ									EQU						
roject Name:	EVGSAU 6	963-002-	Contact Info:	Email Phone	christia	n liulią	gtein	atech	com						1	Cir	cle (or S	peo	cify I	Me	tho I	od N	0.) 	1	11	
roject Location: County, State)	Lea County New		Project #:									1													()		
nvoice to:	Accounts Payable 901 West Wall St	e treet Suite 100 Midlarid Texas 7970)1		- Plidopeu							1		ORO - MRO)	Se Hg	Se Hg								al to do	Waith Unerweity (see allached list) ation Balance		
leceiving Laboratory:	Pace Analytical		Sampler Signature:	J.	pe Tyre:	main comment			-			98		CRO-	r Pb Se	Cr Pb S				25					ee atta		
omments: COPTE	TRA											X 826		DRO	Ag As Ba Cd Cr Pb	3			624	8270C/625				TDS	nstry (s		
	an a		SAMPLING	MA	TRIX	PF		RVA1 THOD		Rs	(N)	BTE	(Ext to	(GRO	Ag As E	Ag As Ba	ds folaties		82608	- 1	608	stos)		Sultate	R Chen Balanc		
LAB #	sample 3963577	IDENTIF ICATION	DATE T ME	MATER	201	HCL	HNO.	ICE	NONE	e CONTAINE	FILTERED (Y/N)	BTEX 80218	TPH TX1005 (Ext to	TPH 8015M (GRO	Metals	TCLP Metals	TCLP Votatile TCLP Serrev		SCAMS Vol	GC/MS Seni	PCB's 80827608 NORM	she	8	Interrite Si	General Water Unero Anion/Cation Balance	PH 6015R	ногр
-3 -32 -33 -35 -36 -36 -37 -37 -26	BH-9 BH-10	$\begin{array}{c} (2-1)^{-}(1-2) \\ (1-3)^{-}(3-4) \\ (4-5)^{-}(5-6) \\ (4-1)^{-}(7-8) \\ (9+0)^{-}(10-11) \\ (19+0)^{-}(15-16) \\ (19-20)^{-}(20-21) \\ (0-1)^{-}(3-4) \end{array}$	8-23					X /																% <u>,</u>			
		(7-3) (5-6) (7-3) (7-8)								J													V				
Relinquished by:	- G C P	Date: Time SIJT-31 B.C. Date Time SIJT-31 1630 Date Time	Pecelved by	1	82	Cate 27- Date Date	1	- 7,		3-1 Tim 5-	e. 30	S	ampie	USE Tem	perat	.Y ne		Sta RL Ru Sp	andar ISH: sn Cl ecial	Sa harg Rep	ine Di es Au ort Lir	nats o	ed			72 hr	
			WEINE FLUX														-	-	-	-	-2-						

Page 122 of 242

Analysis Request of C	hain of Custody Record																					Pag	je	05	of	25
R	Tetra Tech, Inc.		(3r	©1V:e	T	Tex Tex (43	as 79 2; 58	Suite 10 9701 12-4559 82-3946		ilan d,							, 1					LI	29	16	34	27
Client Name:	Conocaphilles	Site Manager: (Christ	ar Llu	6										<i>(</i> 0 ⁻				SIS							
Project Name:	EVGSAU 2963-002	IContact Joto	Email Phone		an i .	, ₫te	raie	sh qom					ł	1		rcie	e or	'Sp 	ecu	ry n I	лен 	hod I	No.)	1	
Project Location: (County, State)	Lea County, New Mexico	Project#:									1													÷		
Invoic e to :	Accounts Payable 901 West Wall Street, Suite 100 Micliand, Texas 7970	1									1		MRO)	Se Ha	Se Hg									attached list		
Receiving Laboratory:	Pace Analytical	Sampler Signature:	į	ioe Tyle	±1						10B		ORO	Cr Pb S	Cr Pb S				525					see atta		
Comments: COPTET	RA										EX 826	5 C35)	- DRO	Bal Cd C	Ba Co			624	8270C/625				TDS	mist ry (s	¢	
		SAMPLING	MA	TRIX			ETH	ATIVE DD	a a	(N)	a a a	(Ext	(GRO	Aq As	Ag As	ÊS	Volaties	RJEDR		608		(so	Sulfate	er Chèn	balanu	
LAB #	sample identification	DATE TIME	WATER	SOIL	HCL	-ONF	ICE	NONE	# CONTAIMPRS		3TEX 80218	Ě	TPH 8015M	Total Metals	TCLP Metals	Volati	P Sem	RCI GC/MS Vol	GC/MS Semi	PCB's 8082	NORM	PLM (Asbestos)	Chloride S	General Water	Amon/Cation Balance TPH 8015R	НОГД
-41	BH-10 (9-10)	8.23	_	X		1	X			N	-		X		-					<u>u</u>	2		-			<u></u>
-42	(9-10) (12-13)			1	-								1				_	_								
-42	(14-15) (17-18) (19-10)-(22-23)						v						V						+				/		+-	
Stoned A 11 98 ac 1 e Atri	San - Pere Tristrad Hermanitat : Tristrad H																									
Relinquished by Joe.	- Zylor 827-21 Br	Received by	0	So	0a 17:	1te		13	Tin		T	LAB	USE	ON	L.Y			<s: Stand</s: 	tar d							
Relinduished by	Bate Time	Received by		85	Dà 17:	ite 71		10	Tin 	ner 30	1	Sample	e Ten	pera	lure							24 I onzed	hr 4	8 hr.	72 hi	
Reingtrished by	Date Time	Received by	J.H.	р .л 2	Da /	nte M J	:G-	9	Tin A,	ne S								Spec	iáł Re	⊧cort `	Limit	s or T	RRP F	≷e port		
		UNG ALCU.Y									0	(cle)	H4ND	DEL	VERE	D FI		-								
																			ito.		-	5				
																		忙	22	>1						

Page 123 of 242

October 05, 2021

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

L1407434 09/22/2021 212C-MD-02492TASK200 EVGSAU 2963-002

Report To:

Christian Llull 901 West Wall Suite 100 Midland, TX 79701

Ср Тс Ss Cn Sr Qc Gl AI Sc

Entire Report Reviewed By:

Chu, toph

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Released to Imaging: 3/16/2023 2:40:21 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02492TASK200

SDG: L1407434

DATE/TIME: 10/05/21 21:32

PAGE: 1 of 20

TABLE OF CONTENTS

Page 124 of 242

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
AH-1 (0-1') L1407434-01	5
AH-2 (0-1') L1407434-02	6
AH-3 (0-1') L1407434-03	7
AH-4 (0-1') L1407434-04	8
AH-5 (0-1') L1407434-05	9
Qc: Quality Control Summary	10
Total Solids by Method 2540 G-2011	10
Wet Chemistry by Method 300.0	13
Volatile Organic Compounds (GC) by Method 8015D/GRO	14
Volatile Organic Compounds (GC/MS) by Method 8260B	16
Semi-Volatile Organic Compounds (GC) by Method 8015M	17
GI: Glossary of Terms	18
Al: Accreditations & Locations	19
Sc: Sample Chain of Custody	20

DATE/TIME: 10/05/21 21:32

Received by OCD: 3/6/2023 3:05:23 PM	SAMPLES	SUMN	IARY			Page
AH-1 (0-1') L1407434-01 Solid			Collected by Devin Dominguez	Collected date/time 09/20/21 11:00	Received da 09/22/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1747735	1	09/29/2112:58	09/29/21 13:04	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1748692	1	09/29/21 17:57	09/29/21 21:42	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1750716	1	09/24/21 16:44	10/04/21 03:43	BMB	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1746386	1	09/24/21 16:44	09/25/21 04:31	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1749721	1	10/01/21 11:58	10/02/21 21:56	JN	Mt. Juliet, TN
			Collected by	Collected date/time		
AH-2 (0-1') L1407434-02 Solid			Devin Dominguez	09/20/21 11:10	09/22/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1747751	1	09/29/21 09:20	09/29/21 09:30	СМК	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1748692	1	09/29/21 17:57	09/29/21 21:51	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1750716	1	09/24/21 16:44	10/04/21 04:07	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1746386	1	09/24/21 16:44	09/25/21 04:51	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1749721	1	10/01/21 11:58	10/02/21 23:31	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-3 (0-1') L1407434-03 Solid			Devin Dominguez	09/20/21 11:20	09/22/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1747751	1	09/29/21 09:20	09/29/21 09:30	СМК	Mt. Juliet, TN
/et Chemistry by Method 300.0	WG1748692	1	09/29/21 17:57	09/29/21 22:01	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1750716	1	09/24/21 16:44	10/04/21 04:30	BMB	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1746386	1	09/24/21 16:44	09/25/21 05:10	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1749721	50	10/01/21 11:58	10/03/21 00:12	JN	Mt. Juliet, TN
			Collected by	Collected date/time		
AH-4 (0-1') L1407434-04 Solid			Devin Dominguez	09/20/21 11:30	09/22/21 09:	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1747751	1	09/29/21 09:20	09/29/21 09:30	СМК	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1748692	1	09/29/21 17:57	09/29/21 22:10	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1749966	1	09/24/21 16:44	10/02/21 08:19	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1746386	1	09/24/21 16:44	09/25/21 05:29	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG1749721	1	10/01/21 11:58	10/02/21 23:59	JN	Mt. Juliet, TN
AH-5 (0-1') L1407434-05 Solid			Collected by Devin Dominguez	Collected date/time 09/20/21 11:40	Received da 09/22/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1747792	1	09/29/21 09:03	09/29/21 09:17	СМК	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1748692	1	09/29/21 17:57	09/29/21 22:39	ELN	Mt. Juliet, TN
	WG1749966	1	09/24/21 16:44	10/02/21 08:41	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO		1	09/24/21 16:44	09/25/21 05:48	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B	WG1746386					,

PROJECT: 212C-MD-02492TASK200

SDG: L1407434

DATE/TIME: 10/05/21 21:32

PAGE: 3 of 20

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

SDG: L1407434 DATE/TIME: 10/05/21 21:32

TIME: 21:32 PAGE: 4 of 20

Collected date/time: 09/20/21 11:00

SAMPLE RESULTS - 01

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	84.3		1	09/29/2021 13:04	WG1747735	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	223		10.9	23.7	1	09/29/2021 21:42	WG1748692

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
		Qualifier	WDL (ury)	KDL (ury)	Dilution	,	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		(
TPH (GC/FID) Low Fraction	U		0.0257	0.119	1	10/04/2021 03:43	<u>WG1750716</u>	
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-120		10/04/2021 03:43	WG1750716	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000642	0.00137	1	09/25/2021 04:31	WG1746386
Toluene	U		0.00179	0.00687	1	09/25/2021 04:31	<u>WG1746386</u>
Ethylbenzene	U		0.00101	0.00344	1	09/25/2021 04:31	WG1746386
Total Xylenes	U		0.00121	0.00893	1	09/25/2021 04:31	WG1746386
(S) Toluene-d8	109			75.0-131		09/25/2021 04:31	WG1746386
(S) 4-Bromofluorobenzene	93.4			67.0-138		09/25/2021 04:31	WG1746386
(S) 1,2-Dichloroethane-d4	106			70.0-130		09/25/2021 04:31	WG1746386

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.91	4.75	1	10/02/2021 21:56	<u>WG1749721</u>
C28-C36 Motor Oil Range	1.87	J	0.325	4.75	1	10/02/2021 21:56	<u>WG1749721</u>
(S) o-Terphenyl	42.0			18.0-148		10/02/2021 21:56	WG1749721

Recrived by OCD: 3/6/2023 3:05:23 PM Collected date/time: 09/20/21 11:10

SAMPLE RESULTS - 02 L1407434

sr

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	79.4		1	09/29/2021 09:30	WG1747751	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4
Chloride	17.0	J	11.6	25.2	1	09/29/2021 21:51	WG1748692	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
		Quaimer			Dilution	,	Bateri		6
Analyte	mg/kg		mg/kg	mg/kg		date / time			C.
TPH (GC/FID) Low Fraction	U		0.0273	0.126	1	10/04/2021 04:07	WG1750716	L	
(S) a,a,a-Trifluorotoluene(FID)	97.3			77.0-120		10/04/2021 04:07	WG1750716	·	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000710	0.00152	1	09/25/2021 04:51	WG1746386
Toluene	U		0.00198	0.00760	1	09/25/2021 04:51	WG1746386
Ethylbenzene	U		0.00112	0.00380	1	09/25/2021 04:51	WG1746386
Total Xylenes	U		0.00134	0.00988	1	09/25/2021 04:51	<u>WG1746386</u>
(S) Toluene-d8	110			75.0-131		09/25/2021 04:51	WG1746386
(S) 4-Bromofluorobenzene	97.4			67.0-138		09/25/2021 04:51	<u>WG1746386</u>
(S) 1,2-Dichloroethane-d4	107			70.0-130		09/25/2021 04:51	WG1746386

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	10.7		2.03	5.04	1	10/02/2021 23:31	<u>WG1749721</u>
C28-C36 Motor Oil Range	48.0		0.345	5.04	1	10/02/2021 23:31	<u>WG1749721</u>
(S) o-Terphenyl	48.5			18.0-148		10/02/2021 23:31	WG1749721

Recrised by OCD: 3/6/2023 3:05:23 PM Collected date/time: 09/20/21 11:20

SAMPLE RESULTS - 03 L1407434

⁵Sr

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	93.4		1	09/29/2021 09:30	WG1747751	Tc

Wet Chemistry by Method 300.0

Wet Chemistr	y by Method 300).0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	21.4	J	9.85	21.4	1	09/29/2021 22:01	WG1748692	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
		Quaimer	WDE (dry)	KDE (dry)	Dilution	,	Baten	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		(
TPH (GC/FID) Low Fraction	0.182		0.0232	0.107	1	10/04/2021 04:30	<u>WG1750716</u>	
(S) a,a,a-Trifluorotoluene(FID)	92.0			77.0-120		10/04/2021 04:30	<u>WG1750716</u>	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000533	0.00114	1	09/25/2021 05:10	WG1746386
Toluene	U		0.00148	0.00571	1	09/25/2021 05:10	WG1746386
Ethylbenzene	U		0.000842	0.00285	1	09/25/2021 05:10	WG1746386
Total Xylenes	U		0.00100	0.00742	1	09/25/2021 05:10	WG1746386
(S) Toluene-d8	112			75.0-131		09/25/2021 05:10	WG1746386
(S) 4-Bromofluorobenzene	95.3			67.0-138		09/25/2021 05:10	WG1746386
(S) 1,2-Dichloroethane-d4	105			70.0-130		09/25/2021 05:10	WG1746386

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	436		86.2	214	50	10/03/2021 00:12	<u>WG1749721</u>
C28-C36 Motor Oil Range	1720		14.7	214	50	10/03/2021 00:12	<u>WG1749721</u>
(S) o-Terphenyl	67.3	<u>J7</u>		18.0-148		10/03/2021 00:12	WG1749721

DATE/TIME: 10/05/21 21:32 Recreized by OCD: 3/6/2023 3:05:23 PM Collected date/time: 09/20/21 11:30

SAMPLE RESULTS - 04 L1407434

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	81.4		1	09/29/2021 09:30	WG1747751	Tc

Wet Chemistry by Method 300.0

Wet Chemistr	y by Method 300	0.0						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	16.5	J	11.3	24.6	1	09/29/2021 22:10	WG1748692	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic C	compounds ((GC) by Me	ethod 801	5D/GRO				⁵ Sr
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		°Qc
TPH (GC/FID) Low Fraction	0.230	В	0.0267	0.123	1	10/02/2021 08:19	WG1749966	
(S) a,a,a-Trifluorotoluene(FID)	92.7			77.0-120		10/02/2021 08:19	WG1749966	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000681	0.00146	1	09/25/2021 05:29	WG1746386
Toluene	U		0.00190	0.00730	1	09/25/2021 05:29	WG1746386
Ethylbenzene	U		0.00108	0.00365	1	09/25/2021 05:29	WG1746386
Total Xylenes	U		0.00128	0.00948	1	09/25/2021 05:29	WG1746386
(S) Toluene-d8	110			75.0-131		09/25/2021 05:29	WG1746386
(S) 4-Bromofluorobenzene	97.4			67.0-138		09/25/2021 05:29	WG1746386
(S) 1,2-Dichloroethane-d4	105			70.0-130		09/25/2021 05:29	<u>WG1746386</u>

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	39.7		1.98	4.92	1	10/02/2021 23:59	<u>WG1749721</u>
C28-C36 Motor Oil Range	144		0.337	4.92	1	10/02/2021 23:59	<u>WG1749721</u>
(S) o-Terphenyl	37.4			18.0-148		10/02/2021 23:59	WG1749721

SDG: L1407434

PAGE: 8 of 20 Recreived by OCD: 3/6/2023 3:05:23 PM Collected date/time: 09/20/21 11:40

SAMPLE RESULTS - 05 L1407434

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier Dilu	tion Analysis	Batch	 Ср
Analyte	%		date / time		2
Total Solids	81.2	1	09/29/2021 09:17	WG1747792	Tc

Wet Chemistry by Method 300.0

Wet Chemistr	y by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	17.5	Ţ	11.3	24.6	1	09/29/2021 22:39	WG1748692	CIT

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic C	compounds ((GC) by Me	ethod 801	5D/GRO				⁵ Sr
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		ိုင္ရင
TPH (GC/FID) Low Fraction	0.0557	<u>B J</u>	0.0267	0.123	1	10/02/2021 08:41	WG1749966	
(S) a,a,a-Trifluorotoluene(FID)	91.8			77.0-120		10/02/2021 08:41	WG1749966	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000684	0.00146	1	09/25/2021 05:48	WG1746386
Toluene	U		0.00190	0.00732	1	09/25/2021 05:48	<u>WG1746386</u>
Ethylbenzene	U		0.00108	0.00366	1	09/25/2021 05:48	WG1746386
Total Xylenes	U		0.00129	0.00952	1	09/25/2021 05:48	WG1746386
(S) Toluene-d8	109			75.0-131		09/25/2021 05:48	WG1746386
(S) 4-Bromofluorobenzene	95.7			67.0-138		09/25/2021 05:48	WG1746386
(S) 1,2-Dichloroethane-d4	108			70.0-130		09/25/2021 05:48	WG1746386

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	18.5		1.98	4.93	1	10/02/2021 23:18	WG1749721
C28-C36 Motor Oil Range	101		0.338	4.93	1	10/02/2021 23:18	WG1749721
(S) o-Terphenyl	43.4			18.0-148		10/02/2021 23:18	WG1749721

SDG: L1407434

Regeired by PPB.3/6/2023 3:05:23 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1407434-01

Page 132 of 242

Method Blank (MB)

Method Blank (N	1B)				1 C p
(MB) R3710564-1 09/2	9/21 13:04				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	%		%	%	Тс
Total Solids	0.00200				

L1407507-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1407507-03 09/2	:9/21 13:04 • (DI	JP) R3710564-3	3 09/29/21	13:04		
	Original Res	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	83.5	81.8	1	2.08		10

Laboratory Control Sample (LCS)

(LCS) R3710564-2 09/	29/21 13:04				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	49.9	99.9	85.0-115	

Regeired by P&B: 3/6/2023 3:05:23 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Page 133 of 242

Method Blank (MB)

					1 Cp
(MB) R3710336-1 09/	29/21 09:30				СР
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	%		%	%	Tc
Total Solids	0.00100				

L1409655-43 Original Sample (OS) • Duplicate (DUP)

(OS) L1409655-43 09/29	9/21 09:30 • (DU	JP) R3710336-	3 09/29/2	1 09:30		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	75.0	73.2	1	2.33		10

Laboratory Control Sample (LCS)

(LCS) R3710336-2 0	9/29/21 09:30				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	99.9	85.0-115	

DATE/TIME: 10/05/21 21:32

Req @ qd/by DQD: 3/6/2023 3:05:23 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1407434-05

Page 134 of 242

GI

Â

Sc

Method Blank (MB)

9/29/21 09:17				
MB Result	MB Qualifier	MB MDL	/B RDL	
%		%	, 0	
0.000				
	9/29/21 09:17 MB Result %	9/29/21 09:17 MB Result <u>MB Qualifier</u> %	9/29/21 09:17 MB Result <u>MB Qualifier</u> MB MDL M % % %	9/29/21 09:17 MB Result <u>MB Qualifier</u> MB MDL MB RDL % % %

L1408261-02 Original Sample (OS) • Duplicate (DUP)

L1408261-02 Orig (OS) L1408261-02 09/29						
(03) 11406201-02 09/28		sult DUP Result		DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	74.9	76.1	1	1.70		10

Laboratory Control Sample (LCS)

(LCS) R3710335-2 09/2	9/21 09:17				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	99.9	85.0-115	

DATE/TIME: 10/05/21 21:32

Req @ qt/by 86 by 3/6/2023 3:05:23 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY

Page 135 of 242

Method Blank (MB)

(MB) R3710902-1 0	9/29/21 18:39				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Chloride	U		9.20	20.0	

Laboratory Control Sample (LCS)

(LCS) R3710902-2 09/29)/21 18:48				
Analuta	Spike Amount		LCS Rec.	Rec. Limits	LCS Qualifier
Analyte Chloride	mg/kg 200	mg/kg 199	99.3	90.0-110	

DATE/TIME: 10/05/21 21:32

PAGE: 13 of 20

Req @ qt/by @ GB & 6/6/2023 3:05:23 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY L1407434-04,05

Page 136 of 242

Method Blank (MB)

Method Blank (MB	<i>i</i>)				1
(MB) R3711826-2 10/02/2	21 05:45				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Tc
TPH (GC/FID) Low Fraction	0.0284	J	0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	88.1			77.0-120	³ Ss

Laboratory Control Sample (LCS)

(LCS) R3711826-1 10/02/2	1 05:01				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	4.33	78.7	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			103	77.0-120	

Sc

DATE/TIME: 10/05/21 21:32

PAGE: 14 of 20

Req @ qd/by 090 63/6/2023 3:05:23 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

Page 137 of 242

Method Blank (MB)

(MB) R3712640-2 10/04/2	21 02:32			
(MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3712640-1 10/04/2	21 01:45				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	6.46	117	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			101	77.0-120	

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Page 138 of 242

Ср

Τс

Ss

Cn

Sr

[°]Qc

Method Blank (MB)

(MB) R3709977-3 09/24/	21 23:00			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	110			75.0-131
(S) 4-Bromofluorobenzene	93.8			67.0-138
(S) 1,2-Dichloroethane-d4	108			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3709977-1 09/24/2	21 21:28 • (LCSI)) R3709977-2	2 09/24/21 21:4	F2							7
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	[′] Gl
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.125	0.106	0.115	84.8	92.0	70.0-123			8.14	20	8
Ethylbenzene	0.125	0.120	0.129	96.0	103	74.0-126			7.23	20	A
Toluene	0.125	0.110	0.122	88.0	97.6	75.0-121			10.3	20	9
Xylenes, Total	0.375	0.340	0.368	90.7	98.1	72.0-127			7.91	20	Sc
(S) Toluene-d8				103	105	75.0-131					
(S) 4-Bromofluorobenzene				101	99.4	67.0-138					
(S) 1,2-Dichloroethane-d4				112	112	70.0-130					

DATE/TIME: 10/05/21 21:32

PAGE: 16 of 20 Semi-Volatile Organic Compounds (GC) by Method 8015M

QUALITY CONTROL SUMMARY

Page 139 of 242

¹Cn

Sr

GI

Â

Sc

Method Blank (MB)

(MB) R3711653-1 10/02/21	1 02:26				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C36 Motor Oil Range	U		0.274	4.00	
(S) o-Terphenyl	61.6			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3711653-2 10/02	2/21 02:39					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		
C10-C28 Diesel Range	50.0	34.4	68.8	50.0-150		
(S) o-Terphenyl			61.1	18.0-148		

L1407434-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1407434-01 10/02/2	21 21:56 • (MS) R	3711653-3 10/0	02/21 22:10 • (N	ISD) R3711653	-4 10/02/21 22	2:23						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	59.0	U	32.2	39.2	54.5	66.8	1	50.0-150			19.6	20
(S) o-Terphenyl					39.7	50.6		18.0-148				

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

PROJECT: 212C-MD-02492TASK200

SDG: L1407434 DATE/TIME: 10/05/21 21:32

PAGE: 18 of 20

Received by OCD: 3/6/2023 3:05:23 PMACCREDITATIONS & LOCATIONS

Page	<i>141</i>	of 242
------	------------	--------

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
lorida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
daho	TN00003	Ohio–VAP	CL0069
llinois	200008	Oklahoma	9915
ndiana	C-TN-01	Oregon	TN200002
owa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
ouisiana	AI30792	Tennessee ¹⁴	2006
ouisiana	LA018	Texas	T104704245-20-18
faine	TN00003	Texas ⁵	LAB0152
/aryland	324	Utah	TN000032021-11
/assachusetts	M-TN003	Vermont	VT2006
lichigan	9958	Virginia	110033
<i>l</i> innesota	047-999-395	Washington	C847
Aississippi	TN00003	West Virginia	233
Aissouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
PA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1407434 DATE/TIME: 10/05/21 21:32

	**	000	B 10 100	000 0	OF A	3 33 3 4
Receive	1 122 4	16 19 .	5/0/2	1125 5	113:2	3 PM

B054

Page 142 of 242

TŁ	Tetra Tech, Inc.			90	Tel (4	nd,Tex (432) 6	Street, 8 kas 797 382-455 582-394	01 9								l	_	10	10	2	1	24	3	34				
lient Name:	ConocoPhillips	Site Manager: Christian Llull												Cir							ES	T od I	No	,				
Project Name:	EVGSAU 2963-002												1	1								-			1	11	1	
Project Location: county, state)	Lea County, New Mexico	Project #: 212C-MD-02492 Task 200																					ist)					
nvoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701												100	(DAN	fg	Hg	1					1			chea			
Receiving Laboratory:	Pace Analytical	Sampler Signature: Devin Dominguez										000	- 040	Pb Se Hg	Pb Se				5					ee atta				
Comments:	TRA Acctnum											X 8260E	C35)	- OHU	Ba Cd Cr Pb S	a Cd Cr			624	270C/62				TDS	nistry (s			-
		SAMPLING			MATRIX		PRESERVATIVE METHOD			RS	(N/A)	BTEX	Ext to	- 040	Ag As Bi	A B	latilae		2608 /	Vol. 8	808	10		Sulfate	Ralance			
LAB #	SAMPLE IDENTIFICATION	YEAR: 2021	TIME	WATER	OUL	HCL	HNO ₃	None		# CONTAINERS	FILTERED (Y	BTEX 8021B	TPH TX1005 (Ext to C35)	PAH 8270C	Metals	rcLP Metals Ag As	TCLP Volatiles	RCI	SC/MS Vol. 8	GC/MS Semi. Vol. 8270C/625	CB's 8082 /	PLM'(Asbestos)	Chloride	Chloride Su	General Water Chemistry (see attached list) Anion/Cation Balance	TPH 8015R		Hold
-01	AH-1 (0-1')	9/20/2021	1100		x	É		X		1	N	X	<u> </u>	X			1						X					-
-01	AH-2 (0-1')	9/20/2021	1110		X			X		1	N											T						X
m	AH-3 (0-1')	9/20/2021	1120		X			X		1	N	X		X									X					
-04	AH-4 (0-1')	9/20/2021	1130		X			X		1	N	X		X									X					
-05	AH-5 (0-1')	9/20/2021	1140		X			X		1	N	Х		X			_	1			-	-	X		-			
Relinquished by:	Date: Time: 900 pg[21]21 Date: Time:	Received by Huu Received by	eived by: Date: Time: WWDDD WWDDD Bottles arrive intact: Correct bottles used: Sufficient volume sent: RAD Screen <0.5 mR/hr: 0 N Pres.Co N Pres.Co N Pres.Co N N Pres.Co N N N N N N N N N N N N N									List If Applicable Pro Headspace: _Y Correct/Check: _Y LAB USE ONLY Sample Temperature 2.672.6							ST		ame	Day			48 h	721	hr	
Relinquished by:	Date: Time:	Received by	ceived by: Date: Time:								-		307				Rush Charges Authorized											

ORIGINAL COPY

January 20, 2022

Christian Lull Tetra Tech-Houston 8911 N Capital of Texas Hwy. Bldg. 2, Suite 2310 Austin, TX 78759

RE: Project: EVGSAU 2963-002 Pace Project No.: 60390186

Dear Christian Lull:

Enclosed are the analytical results for sample(s) received by the laboratory on January 08, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

This Wood

Nolie Wood nolie.wood@pacelabs.com 1(913)563-1401 Project Manager

Enclosures

cc: Sam Abbott, Tetra Tech, Inc Ryan Dickerson, Tetra Tech Houston TX John Thurston, Tetra Tech-Houston TX

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC. Received by OCD: 3/6/2023 3:05:23 PM Pace Analytical[®] www.pacelabs.com

CERTIFICATIONS

Project: EVGSAU 2963-002 Pace Project No.: 60390186

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Inorganic Drinking Water Certification #: 10090 Arkansas Drinking Water Arkansas Certification #: 20-020-0 Arkansas Drinking Water Illinois Certification #: 2000302021-3 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-19-12 Utah Certification #: KS000212019-9 Illinois Certification #: 004592 Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE SUMMARY

Project: EVGSAU 2963-002 Pace Project No.: 60390186

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60390186001	AH-6 (0-1')	Solid	01/07/22 09:20	01/08/22 10:40
60390186002	AH-7 (0-1')	Solid	01/07/22 09:25	01/08/22 10:40
60390186003	AH-8 (0-1')	Solid	01/07/22 09:30	01/08/22 10:40

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: EVGSAU 2963-002 Pace Project No.: 60390186

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60390186001		EPA 8015B	AHS	4	PASI-K
		EPA 8015B	JLO	2	PASI-K
		EPA 8260B	RAD	7	PASI-K
		ASTM D2974	DWC	1	PASI-K
		EPA 9056	CRN2	1	PASI-K
60390186002	AH-7 (0-1')	EPA 8015B	AHS	4	PASI-K
		EPA 8015B	JLO	2	PASI-K
		EPA 8260B	RAD	7	PASI-K
		ASTM D2974	DWC	1	PASI-K
		EPA 9056	CRN2	1	PASI-K
60390186003	AH-8 (0-1')	EPA 8015B	AHS	4	PASI-K
		EPA 8015B	JLO	2	PASI-K
		EPA 8260B	RAD	7	PASI-K
		ASTM D2974	DWC	1	PASI-K
		EPA 9056	CRN2	1	PASI-K

PASI-K = Pace Analytical Services - Kansas City

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project: EVGSAU 2963-002

Pace Project No.: 60390186

Sample: AH-6 (0-1')	Lab ID: 603	90186001	Collected: 01/07/2	22 09:2	0 Received: 01	/08/22 10:40 N	Aatrix: Solid	
Results reported on a "dry weight	" basis and are adj	usted for p	ercent moisture, sa	ample s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015B Diesel Range Organics	•		15B Preparation Me	ethod: E	EPA 3546			
	Pace Analytica	I Services -	Kansas City					
TPH-DRO (C10-C28)	202	mg/kg	105	10	01/10/22 15:59	01/12/22 11:20		
TPH-ORO (C28-C35)	188	mg/kg	105	10	01/10/22 15:59	01/12/22 11:20		
Surrogates	0	0/	24.452	40	04/40/00 45.50	04/40/00 44-00	646 94 4	C 4
n-Tetracosane (S)	0	%	31-152 46-130	10 10		01/12/22 11:20 01/12/22 11:20		S4 S4
p-Terphenyl (S)	0	%	46-130	10	01/10/22 15:59	01/12/22 11:20	92-94-4	54
Gasoline Range Organics	Analytical Mether	nod: EPA 80	15B Preparation Me	ethod: E	EPA 5035A/5030B			
	Pace Analytica	I Services -	Kansas City					
TPH-GRO	ND	mg/kg	10.7	1	01/12/22 10:46	01/13/22 00:27		
Surrogates								
4-Bromofluorobenzene (S)	92	%	63-121	1	01/12/22 10:46	01/13/22 00:27	460-00-4	
8260B MSV 5035A Low Level	Analytical Mether	nod: EPA 82	60B Preparation Me	ethod: E	EPA 5035A/5030B			
	Pace Analytica	I Services -	Kansas City					
Benzene	ND	ug/kg	5.9	1	01/20/22 07:46	01/20/22 09:54	71-43-2	
Ethylbenzene	ND	ug/kg	5.9	1	01/20/22 07:46	01/20/22 09:54	100-41-4	
Toluene	ND	ug/kg	23.7	1	01/20/22 07:46	01/20/22 09:54	108-88-3	
Xylene (Total)	ND	ug/kg	17.8	1	01/20/22 07:46	01/20/22 09:54	1330-20-7	
Surrogates								
Toluene-d8 (S)	100	%	80-120	1		01/20/22 09:54		
4-Bromofluorobenzene (S)	103	%	83-119	1		01/20/22 09:54		
1,2-Dichlorobenzene-d4 (S)	100	%	80-120	1	01/20/22 07:46	01/20/22 09:54	2199-69-1	
Percent Moisture	Analytical Mether	nod: ASTM [02974					
	Pace Analytica	I Services -	Kansas City					
Percent Moisture	9.0	%	0.50	1		01/10/22 16:01		
9056 IC Anions	Analytical Mether	nod: EPA 90	56 Preparation Met	hod: EF	PA 9056			
	Pace Analytica	I Services -	Kansas City					
Chloride	ND	mg/kg	108	10	01/18/22 08:19	01/19/22 11:22	16887-00-6	

 Sample: AH-7 (0-1')
 Lab ID: 60390186002
 Collected: 01/07/22 09:25
 Received: 01/08/22 10:40
 Matrix: Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015B Diesel Range Organics			5B Preparation Me	ethod: E	PA 3546			
	Pace Analytica	al Services - K	ansas City					
TPH-DRO (C10-C28)	159	mg/kg	109	10	01/10/22 15:59	01/12/22 11:29		
TPH-ORO (C28-C35)	128	mg/kg	109	10	01/10/22 15:59	01/12/22 11:29		
Surrogates								
n-Tetracosane (S)	0	%	31-152	10	01/10/22 15:59	01/12/22 11:29	646-31-1	S4
p-Terphenyl (S)	0	%	46-130	10	01/10/22 15:59	01/12/22 11:29	92-94-4	S4

REPORT OF LABORATORY ANALYSIS

Date: 01/20/2022 12:18 PM

ANALYTICAL RESULTS

Project: EVGSAU 2963-002

Pace Project No.: 60390186

Gasoline Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 5035A/5030B Pace Analytical Services - Kansas City Preparation Method: EPA 5035A/5030B Pace Analytical Services - Kansas City TPH-GRO ND mg/kg 11.7 1 01/12/22 0.43 460-00-4 8260B MSV 5035A Low Level Analytical Method: EPA 8260B Preparation Method: EPA 5035A/5030B Pace Analytical Services - Kansas City Pace Analytical Services - Kansas City 01/11/22 01/11/22 01/11/22 14:10 01/11/22 14:10 01/11/22 14:10 01/11/22 14:10 01/14/2 14:10 10/14/2 14:10 10/14/2 14:10 10/14/2 14:10 10/14/2 14:10 10/14/2 14:10 10/041:4 10/04:2 14:10 10/04:4 10/04:2 14:10 10/04:2 14:10 10/04:2 14:10 10/04:2 14:10 10/04:2 14:10 10/04:2 14:10 10/04:2 14:10 10/04:2 14:10 10/04:2 10:11/2 10:11/2 10:11/2 10:11/2 10:11/2 10:11/2 10:11/2 10:11/2 <	Sample: AH-7 (0-1')	Lab ID: 603	90186002	Collected: 01/07/2	2 09:2	5 Received: 0	1/08/22 10:40 M	Aatrix: Solid	
Gasoline Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 5035A/5030B Pace Analytical Services - Kansas City Pace Analytical Services - Kansas City PTH-GRO ND mg/kg 11.7 1 01/12/22 10:46 01/13/22 00:43 Surrogates 92 % 63-121 1 01/12/22 10:46 01/13/22 00:43 460-00-4 Assole MSV 5035A Low Level Analytical Method: EPA 8260B Preparation Method: EPA 5035A/5030B Pace Analytical Services - Kansas City Pace Analytical Services - Kansas City 1 01/11/22 08:53 01/11/22 14:10 71-43-2 Benzene ND ug/kg 5.9 1 01/11/22 08:53 01/11/22 14:10 08-142 Surrogates ND ug/kg 5.9 1 01/11/22 08:53 01/11/22 14:10 037-28-5 Toluene ND ug/kg 1 01/11/22 08:53 01/11/22 14:10 037-28-5 Toluene otion ND ug/kg 1 01/11/22 08:53 01/11/22 14:10 037-28-5 Toluene otion 97 % 83-119 1 01/11/22 08	Results reported on a "dry weight	" basis and are ad	justed for pe	rcent moisture, sa	mple s	size and any dilu	tions.		
Pace Analytical Services - Kansas City TPH-GRO ND mg/kg 11.7 1 01/12/22 10:46 01/13/22 00:43 Surrogates 4-Bromofluorobenzene (S) 92 % 63-121 1 01/12/22 10:46 01/13/22 00:43 460-00-4 Bacob MSV 5035A Low Level Analytical Method: EPA 8260B Preparation Method: EPA 5035A/5030B Pace Analytical Method: EPA 5035A/5030B Benzene ND ug/kg 5.9 1 01/11/22 08:53 01/11/22 14:10 71-43-2 Entylbenzene ND ug/kg 5.9 1 01/11/22 08:53 01/11/22 14:10 104-14-4 Toluene ND ug/kg 2.7.7 1 01/11/22 08:53 01/11/22 14:10 030-20-7 Surrogates 100 % 80-120 1 01/11/22 14:10 030-20-7 Surrogates 100 % 80-120 1 01/11/22 08:53 01/11/22 14:10 00-54-26-5 Astromoflucrobenzene 44 (S) 94 % 80-120 1 01/11/22 14:10 00-56	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Pace Analytical Services - Kansas City TPH-GRO ND mg/kg 11.7 1 01/12/22 10:46 01/13/22 00:43 Surrogates 4-Bromofluorobenzene (S) 92 % 63-121 1 01/12/22 10:46 01/13/22 00:43 460-00-4 Bacob MSV 5035A Low Level Analytical Method: EPA 8260B Preparation Method: EPA 5035A0503B Pace Analytical Method: EPA 8260B 10 01/11/22 08:53 01/11/22 14:10 71-43-2 Ethylbenzene ND ug/kg 5.9 1 01/11/22 08:53 01/11/22 14:10 104-14-4 Toluene ND ug/kg 2.7 1 01/11/22 08:53 01/11/22 14:10 030-20-7 Surrogates ND ug/kg 1.7.8 1 01/11/22 08:53 01/11/22 14:10 030-20-7 Surrogates 100 % 80-120 1 01/11/22 08:53 01/11/22 14:10 00-7-26-5 Abromoflucrobenzene C4 (S) 94 % 80-120 1 01/11/22 08:53 01/11/22 14:10 00-7-26-5 Percent Moisture A.6 %	Gasoline Range Organics	Analytical Met	hod: EPA 801	5B Preparation Me	ethod: E	EPA 5035A/5030E	3		
Surrogates 0 <th0< td=""><td></td><td>Pace Analytica</td><td>al Services - K</td><td>ansas City</td><td></td><td></td><td></td><td></td><td></td></th0<>		Pace Analytica	al Services - K	ansas City					
Surrogates 0	TPH-GRO	ND	ma/ka	11.7	1	01/12/22 10:46	01/13/22 00:43		
4-Bromofluorobenzene (S) 92 % 63-121 1 01/12/22 10:46 01/13/22 00:43 460-00-4 8260B MSV 5035A Low Level Analytical Method: EPA 800B Preparation Method: EPA 5036A/5030B Pace Analytical Services - Kansas City Benzene ND ug/kg 5.9 1 01/11/22 08:53 01/11/22 14:10 71-43-2 Benzene ND ug/kg 5.9 1 01/11/22 08:53 01/11/22 14:10 100-41-4 Stringates ND ug/kg 2.37 1 01/11/22 08:53 01/11/22 14:10 1030-20-7 Surrogates ND ug/kg 1.3 01/11/22 08:53 01/11/22 14:10 2037-26-5 4-Bromofluorobenzene (S) 97 % 83-119 1 01/11/22 08:53 01/11/22 14:10 2037-26-5 4-Bromofluorobenzene (S) 97 % 83-119 1 01/11/22 08:53 01/11/22 14:10 2039-26-5 4-Bromofluorobenzene (S) 97 % 83-119 1 01/11/22 08:53 01/11/22 14:10 219-66-1 Percent Moisture <th< td=""><td></td><td></td><td></td><td></td><td></td><td>01/12/22 10:10</td><td>01,10,22 00.10</td><td></td><td></td></th<>						01/12/22 10:10	01,10,22 00.10		
Pace Analytical Services - Kansas City Benzene ND ug/kg 5.9 1 01/11/22 08:53 01/11/22 14:10 71-43-2 Ethylbenzene ND ug/kg 5.9 1 01/11/22 08:53 01/11/22 14:10 100-41-4 Toluene ND ug/kg 2.3.7 1 01/11/22 08:53 01/11/22 14:10 130-20-7 Surrogates 00 % 80-120 1 01/11/22 08:53 01/11/22 14:10 2037-26-5 Surrogates 01/11/22 08:53 01/11/22 14:10 2037-26-5 4-8700 Toluene-d8 (S) 97 % 83-119 1 01/11/22 08:53 01/11/22 14:10 2037-26-5 4-Bromofluorobenzene (S) 97 % 83-119 1 01/11/22 08:53 01/11/22 14:10 2037-26-5 4-Bromofluorobenzene (S) 94 % 80-50 1 01/11/22 08:19 01/11/22 14:10 2199-59-1 Percent Moisture Analytical Method: ASTM D2974 Parameters Resolute Parameters Resolute 0.500 1 <td></td> <td>92</td> <td>%</td> <td>63-121</td> <td>1</td> <td>01/12/22 10:46</td> <td>01/13/22 00:43</td> <td>460-00-4</td> <td></td>		92	%	63-121	1	01/12/22 10:46	01/13/22 00:43	460-00-4	
Pace Analytical Services - Kansas City Benzene ND ug/kg 5.9 1 01/11/22 08:53 01/11/22 14:10 71-43-2 Ethylbenzene ND ug/kg 5.9 1 01/11/22 08:53 01/11/22 14:10 100-41-4 Surrogates 0 ug/kg 2.3.7 1 01/11/22 08:53 01/11/22 14:10 130-20-7 Surrogates 0 0 % 80-120 1 01/11/22 08:53 01/11/22 14:10 2037-26-5 Chorobenzene-04 (S) 97 % 83-119 1 01/11/22 08:53 01/11/22 14:10 2037-26-5 4-Bromofluorobenzene (S) 97 % 83-119 1 01/11/22 08:53 01/11/22 14:10 2037-26-5 4-Bromofluorobenzene (S) 97 % 83-119 1 01/11/22 08:53 01/11/22 14:10 2037-9 Percent Moisture Analytical Method: ASTM D2974 Parameters Kanas City 0.50 1 01/10/22 16:01 Sobe I C Anions Analytical Method: EPA 0956 Preparation Method: EPA 9056 Prea	8260B MSV 5035A Low Level	Analytical Met	hod: EPA 826	0B Preparation Me	thod: E	EPA 5035A/5030E	3		
Ethylbenzene ND ug/kg 5.9 1 01/11/22 08:53 01/11/22 14:10 100-41-4 Toluene ND ug/kg 23.7 1 01/11/22 08:53 01/11/22 14:10 108-88-3 Surrogates ND ug/kg 17.8 1 01/11/22 08:53 01/11/22 14:10 108-88-3 Surrogates 100 % 80-120 1 01/11/22 08:53 01/11/22 14:10 2037-26-5 Abromofluorobenzene-d4 (S) 97 % 83-119 1 01/11/22 08:53 01/11/22 14:10 460-00-4 Apromofluorobenzene-d4 (S) 94 % 80-120 1 01/11/22 08:53 01/11/22 14:10 460-00-4 Percent Moisture Analytical Method: ASTM D2974 9056 1 01/10/22 16:01 9056 Pace Analytical Services - Kansas City 9056 Pace Analytical Services - Kansas City 10 01/19/22 11:40 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Fepared Analytical Method: EPA 8015B									
Ethylbenzene ND ug/kg 5.9 1 01/11/22 08:53 01/11/22 14:10 100-41-4 Toluene ND ug/kg 23.7 1 01/11/22 08:53 01/11/22 14:10 108-88-3 Surrogates ND ug/kg 17.8 1 01/11/22 08:53 01/11/22 14:10 108-88-3 Toluene-d8 (S) 100 % 80-120 1 01/11/22 08:53 01/11/22 14:10 2037-26-5 4Pcronfluorobenzene-d4 (S) 97 % 83-119 1 01/11/22 08:53 01/11/22 14:10 460-00-4 4Pcronfluorobenzene-d4 (S) 94 % 80-120 1 01/11/22 08:53 01/11/22 14:10 460-00-4 12-Dichlorobenzene-d4 (S) 94 % 80-120 1 01/11/22 08:53 01/11/22 14:10 460-00-4 9056 IC Anions Analytical Method: EPA 9056 Preparation Method: EPA 9056 Preparad Analyted	Benzene	ND	ua/ka	5.9	1	01/11/22 08:53	01/11/22 14:10	71-43-2	
Toluene ND ug/kg 23.7 1 01/11/22 08:53 01/11/22 14:10 108-88-3 Xylene (Total) ND ug/kg 17.8 1 01/11/22 08:53 01/11/22 14:10 130-20-7 Surrogates Toluene-d8 (S) 100 % 80-120 1 01/11/22 08:53 01/11/22 14:10 2037-26-5 4-Bromofluorobenzene (S) 97 % 83-119 1 01/11/22 08:53 01/11/22 14:10 2037-26-5 4-Bromofluorobenzene (S) 97 % 83-119 1 01/11/22 08:53 01/11/22 14:10 2037-26-5 4-Bromofluorobenzene (S) 97 % 83-119 1 01/11/22 08:53 01/11/22 14:10 2199-69-1 Percent Moisture Analytical Method: ASTM D2974 Pace Analytical Services - Kansas City 01/10/22 16:01 01/10/22 16:01 9056 IC Anions Analytical Method: EPA 9056 Preze Analytical Services - Kansas City 01/19/22 11:56 16887-00-6 Sample: AH-8 (o-1') Lab ID: 60390186003 Collected: 01/07/22 09:30 Received: 01/08/22 10:40 Matrix: Solid									
Xylene (Total) ND ug/kg 17.8 1 01/11/22 08:53 01/11/22 14:10 1330-20-7 Surrogates 100 % 80-120 1 01/11/22 08:53 01/11/22 14:10 2037-26-5 4-Bromofluorobenzene (S) 97 % 83-119 1 01/11/22 08:53 01/11/22 14:10 2037-26-5 4-Bromofluorobenzene (S) 94 % 80-120 1 01/11/22 08:53 01/11/22 14:10 2037-26-5 4-Bromofluorobenzene (S) 94 % 80-120 1 01/11/22 08:53 01/11/22 14:10 2037-26-5 Percent Moisture Analytical Method: ASTM D2974 Pace Analytical Services - Kansas City 01/10/22 16:01 209-69-1 9056 IC Anions Analytical Method: EPA 9056 Preparetion Method: EPA 9056 Pace Analytical Services - Kansas City 01/10/22 11:56 16887-00-6 Sample: AH-8 (0-1') Lab ID: 60390186003 Collected: 01/07/22 09:30 Received: 01/08/22 10:40 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Analytical Method: EPA 8015B Prepared			00						
Surrogates 0 80-120 1 01/11/22 01/11/21 01/11/21 01/11/21/									
Toluane-d8 (S) 100 % 80-120 1 01/11/22 08:53 01/11/22 14:10 2037-26-5 4-Bromofluorobenzene (S) 97 % 83-119 1 01/11/22 08:53 01/11/22 14:10 2037-26-5 4-Bromofluorobenzene (S) 94 % 80-120 1 01/11/22 08:53 01/11/22 14:10 2037-26-5 Percent Moisture Analytical Method: ASTM D2974 Pace Analytical Services - Kansas City 01/11/22 08:53 01/11/22 16:01 9056 IC Anions Analytical Method: EPA 9056 Preparation Method: EPA 9056 Pace Analytical Services - Kansas City 01/19/22 11:56 16887-00-6 Sample: AH-8 (0-1') Lab ID: 60390186003 Collected: 01/07/22 09:30 Received: 01/08/22 10:40 Matrix: Solid Results Units Report Limit DF Prepared Analyzed CAS No. Qua Sample: AH-8 (0-1') Lab ID: 60390186003 Collected: 01/07/22 09:30 Received: 01/08/22 10:40 Matrix: Solid Results Units Report Limit DF Pr	· · · · ·	ND	ug/kg	17.0	1	01/11/22 00:00	01/11/22 14.10	1000 20 7	
4-Bromofluorobenzene (S) 97 % 83-119 1 01/11/22 08:53 01/11/22 14:10 460-00-4 1,2-Dichlorobenzene-04 (S) 94 % 80-120 1 01/11/22 08:53 01/11/22 14:10 2199-69-1 Percent Moisture Analytical Method: ASTM D2974 Pace Analytical Services - Kansas City Percent Moisture 8.6 % 0.50 1 01/11/22 08:53 01/11/22 16:01 9056 IC Anions Analytical Method: EPA 9056 Preparation Method: EPA 9056 Pace Analytical Services - Kansas City Chloride ND mg/kg 107 10 01/18/22 08:19 01/09/22 11:56 16887-00-6 Sample: AH-8 (0-1') Lab ID: 60390186003 Collected: 01/07/22 09:30 Received: 01/08/22 10:40 Matrix: Solid Results Units Report Limit DF Prepared Analyzed CAS No. Qua 8015B Piesel Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 3546 Pace Analytical Services - Kansas City TPH-DRO (C10-C28) 79.8 <td></td> <td>100</td> <td>%</td> <td>80-120</td> <td>1</td> <td>01/11/22 08:53</td> <td>01/11/22 14:10</td> <td>2037-26-5</td> <td></td>		100	%	80-120	1	01/11/22 08:53	01/11/22 14:10	2037-26-5	
1,2-Dichlorobenzene-d4 (S) 94 % 80-120 1 01/11/22 08:53 01/11/22 14:10 2199-69-1 Percent Moisture Analytical Method: ASTM D2974 Pace Analytical Services - Kansas City Percent Moisture 8.6 % 0.50 1 01/10/22 16:01 9056 IC Anions Analytical Method: EPA 9056 Preparation Method: EPA 9056 Pace Analytical Services - Kansas City 01/19/22 11:56 16887-00-6 Chloride ND mg/kg 107 10 01/18/22 08:19 01/19/22 11:56 16887-00-6 Sample: AH-8 (0-1') Lab ID: 60390186003 Collected: 01/07/22 09:30 Received: 01/08/22 10:40 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Que 8015B Diesel Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 3546 Pace Analytical Services - Kansas City TPH-ORO (C10-C28) 79.8 mg/kg 11.1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Percent Moisture Analytical Method: ASTM D2974 Pace Analytical Services - Kansas City Percent Moisture 8.6 % 0.50 1 01/10/22 16:01 9056 IC Anions Analytical Method: EPA 9056 Preparation Method: EPA 9056 Pace Analytical Services - Kansas City EPA 9056 Chloride ND mg/kg 107 10 01/18/22 08:19 01/19/22 11:56 16887-00-6 Sample: AH-8 (0-1') Lab ID: 60390186003 Collected: 01/07/22 09:30 Received: 01/08/22 10:40 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Prepared Analyzed CAS No. Qua 8015B Diesel Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 3546 Pace Analytical Services - Kansas City Prepared Analyzed CAS No. Qua TPH-DRO (C10-C28) 79.8 mg/kg 11.1 1 01/10/22 15:59 01/12/22 11:47 646-31-1 Surrogates 74 % 31-152 1 01/10/22 15:59 01/12/22 11:47 646-31-1 Gasoline Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 5055 01/12/22 11:47 646-31-1 01/10/12/22 15:59 01/12/22 11:47 646-31-1									
Pace Analytical Services - Kansas City Percent Moisture 8.6 % 0.50 1 01/10/22 16:01 9056 IC Anions Analytical Method: EPA 9056 Preparation Method: EPA 9056 Pace Analytical Services - Kansas City EAR 01/19/22 11:56 16887-00-6 Sample: AH-8 (0-1') Lab ID: 60390186003 Collected: 01/07/22 09:30 Received: 01/08/22 10:40 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Prepared Analyzed CAS No. Quad 8015B Diesel Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 3546 Pace Analytical Services - Kansas City Prepared Analyzed CAS No. Quad 1PH-DRO (C10-C28) 79.8 mg/kg 11.1 1 01/10/22 15:59 01/12/22 11:47 646-31-1 Surrogates 74 % 31-152 1 01/10/22 15:59 01/12/22 11:47 646-31-1 Gasoline Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 5035A/5030B Pace Analytical Method: EPA 8015B Preparation Method: EPA 5035A/5030B Pace Analytical Method: EPA 8015B Preparation Method: EPA 5035A/5030B									
B056 IC Anions Analytical Method: EPA 9056 Preparation Method: EPA 9056 Pace Analytical Services - Kansas City Chloride ND mg/kg 107 10 01/18/22 08:19 01/19/22 11:56 16887-00-6 Sample: AH-8 (0-1') Lab ID: 60390186003 Collected: 01/07/22 09:30 Received: 01/08/22 10:40 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Prepared Analyzed CAS No. Qua 8015B Diesel Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 3546 Pace Analytical Services - Kansas City TPH-DRO (C10-C28) 79.8 mg/kg 11.1 1 01/10/22 15:59 01/12/22 11:47 Surrogates 74 % 31-152 1 01/10/22 15:59 01/12/22 11:47 Gasoline Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 5035A/5030B Pace Analytical Services - Kansas City TPH-GRO 74 % 31-152 1 01/10/22 15:59 01/12/22 11:47 646-31-1 Gasoline Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 5035A/5030B Pace Analytical Services - Kansas City ND mg/kg 12.1 1 01	Percent Moisture								
Pace Analytical Services - Kansas City Chloride ND mg/kg 107 10 01/18/22 08:19 01/19/22 11:56 16887-00-6 Sample: AH-8 (0-1') Lab ID: 60390186003 Collected: 01/07/22 09:30 Received: 01/08/22 10:40 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Prepared Analyzed CAS No. Qua B015B Diesel Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 3546 Pace Analytical Services - Kansas City TPH-DRO (C10-C28) 79.8 mg/kg 11.1 1 01/10/22 15:59 01/12/22 11:47 Surrogates 74 % 31-152 1 01/10/22 15:59 01/12/22 11:47 92-94-4 Gasoline Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 5035A/5030B Pace Analytical Services - Kansas City TPH-GRO 74 % 31-152 1 01/10/22 15:59 01/12/22 11:47 92-	Percent Moisture	8.6	%	0.50	1		01/10/22 16:01		
Pace Analytical Services - Kansas City Chloride ND mg/kg 107 10 01/18/22 08:19 01/19/22 11:56 16887-00-6 Sample: AH-8 (0-1') Lab ID: 60390186003 Collected: 01/07/22 09:30 Received: 01/08/22 10:40 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qua 8015B Diesel Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 3546 Pace Analytical Services - Kansas City TPH-ORO (C10-C28) 79.8 mg/kg 11.1 1 01/10/22 15:59 01/12/22 11:47 Surrogates n-Tetracosane (S) 74 % 31-152 1 01/10/22 15:59 01/12/22 11:47 92-94-4 Gasoline Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 5035A/5030B	9056 IC Anions	Analytical Met	hod: EPA 905	6 Preparation Met	nod: EF	PA 9056			
Sample: AH-8 (0-1')Lab ID: 60390186003Collected: 01/07/22 09:30Received: 01/08/22 10:40Matrix: SolidResults reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.DFPreparedAnalyzedCAS No.Qua8015B Diesel Range OrganicsAnalytical Method: EPA 8015BPreparation Method: EPA 3546Pace Analytical Services - Kansas CityTPH-DRO (C10-C28)79.8mg/kg11.1101/10/22 15:5901/12/22 11:47TPH-ORO (C28-C35)61.2mg/kg11.1101/10/22 15:5901/12/22 11:47Surrogates n-Tetracosane (S)74%31-152101/10/22 15:5901/12/22 11:47Gasoline Range OrganicsAnalytical Method: EPA 8015BPreparation Method: EPA 5035A/5030B Pace Analytical Services - Kansas City101/10/22 15:5901/12/22 11:47TPH-GRONDmg/kg12.1101/12/22 10:4601/13/22 00:58		-							
Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.ParametersResultsUnitsReport LimitDFPreparedAnalyzedCAS No.Quadity of the constraint of th	Chloride	ND	mg/kg	107	10	01/18/22 08:19	01/19/22 11:56	16887-00-6	
Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.ParametersResultsUnitsReport LimitDFPreparedAnalyzedCAS No.Quadity of the constraint of th									
Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qua 8015B Diesel Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 3546 Pace Analytical Services - Kansas City Prepared Analyzed CAS No. Qua TPH-DRO (C10-C28) 79.8 mg/kg 11.1 1 01/10/22 15:59 01/12/22 11:47 TPH-ORO (C28-C35) 61.2 mg/kg 11.1 1 01/10/22 15:59 01/12/22 11:47 Surrogates 74 % 31-152 1 01/10/22 15:59 01/12/22 11:47 p-Terphenyl (S) 74 % 31-152 1 01/10/22 15:59 01/12/22 11:47 Gasoline Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 5035A/5030B Pace Analytical Services - Kansas City TPH-GRO ND mg/kg 12.1 1 01/12/22 10:46 01/13/22 00:58	Sample: AH-8 (0-1')	Lab ID: 603	90186003	Collected: 01/07/2	2 09:3	0 Received: 0	1/08/22 10:40 M	Aatrix: Solid	
B015B Diesel Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 3546 Pace Analytical Services - Kansas City TPH-DRO (C10-C28) TPH-ORO (C28-C35) 79.8 mg/kg 11.1 1 01/10/22 15:59 01/12/22 11:47 Surrogates n-Tetracosane (S) p-Terphenyl (S) 74 % 31-152 1 01/10/22 15:59 01/12/22 11:47 Gasoline Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 5035A/5030B Pace Analytical Services - Kansas City TPH-GRO ND mg/kg 12.1 1 01/12/22 10:46 01/13/22 00:58	Results reported on a "dry weight	t" basis and are ad	justed for pe	rcent moisture, sa	mple s	size and any dilu	tions.		
Pace Analytical Services - Kansas City TPH-DRO (C10-C28) 79.8 mg/kg 11.1 1 01/10/22 15:59 01/12/22 11:47 TPH-ORO (C28-C35) 61.2 mg/kg 11.1 1 01/10/22 15:59 01/12/22 11:47 Surrogates 74 % 31-152 1 01/10/22 15:59 01/12/22 11:47 646-31-1 Po-Terphenyl (S) 74 % 31-152 1 01/10/22 15:59 01/12/22 11:47 646-31-1 Gasoline Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 5035A/5030B Pace Analytical Services - Kansas City TPH-GRO ND mg/kg 12.1 1 01/12/22 10:46 01/13/22 00:58	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Pace Analytical Services - Kansas City TPH-DRO (C10-C28) 79.8 mg/kg 11.1 1 01/10/22 15:59 01/12/22 11:47 TPH-ORO (C28-C35) 61.2 mg/kg 11.1 1 01/10/22 15:59 01/12/22 11:47 Surrogates 74 % 31-152 1 01/10/22 15:59 01/12/22 11:47 646-31-1 p-Terphenyl (S) 74 % 31-152 1 01/10/22 15:59 01/12/22 11:47 646-31-1 Gasoline Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 5035A/5030B Pace Analytical Services - Kansas City Preparation Method: EPA 5035A/5030B Pace Analytical Services - Kansas City TPH-GRO ND mg/kg 12.1 1 01/12/22 10:46 01/13/22 00:58	8015B Diesel Range Organics	Analytical Met	hod: EPA 801	5B Preparation Me	ethod: E	EPA 3546			
TPH-ORO (C28-C35) 61.2 mg/kg 11.1 1 01/10/22 15:59 01/12/22 11:47 Surrogates n-Tetracosane (S) 74 % 31-152 1 01/10/22 15:59 01/12/22 11:47 646-31-1 p-Terphenyl (S) 74 % 31-152 1 01/10/22 15:59 01/12/22 11:47 646-31-1 Gasoline Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 5035A/5030B Pace Analytical Services - Kansas City TPH-GRO ND mg/kg 12.1 1 01/12/22 10:46 01/13/22 00:58									
TPH-ORO (C28-C35) 61.2 mg/kg 11.1 1 01/10/22 15:59 01/12/22 11:47 Surrogates n-Tetracosane (S) 74 % 31-152 1 01/10/22 15:59 01/12/22 11:47 646-31-1 p-Terphenyl (S) 79 % 46-130 1 01/10/22 15:59 01/12/22 11:47 646-31-1 Gasoline Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 5035A/5030B Pace Analytical Services - Kansas City TPH-GRO ND mg/kg 12.1 1 01/12/22 10:46 01/13/22 00:58	TPH-DRO (C10-C28)	79.8	ma/ka	11.1	1	01/10/22 15:59	01/12/22 11:47		
Surrogates 74 % 31-152 1 01/10/22 15:59 01/12/22 11:47 646-31-1 p-Terphenyl (S) 79 % 46-130 1 01/10/22 15:59 01/12/22 11:47 92-94-4 Gasoline Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 5035A/5030B Pace Analytical Services - Kansas City TPH-GRO ND mg/kg 12.1 1 01/12/22 10:46 01/13/22 00:58 Surrogates ND mg/kg 12.1 1 01/12/22 10:46 01/13/22 00:58	(/								
Tetracosane (S) 74 % 31-152 1 01/10/22 15:59 01/12/22 11:47 646-31-1 po-Terphenyl (S) 79 % 46-130 1 01/10/22 15:59 01/12/22 11:47 92-94-4 Gasoline Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 5035A/5030B Pace Analytical Services - Kansas City TPH-GRO ND mg/kg 12.1 1 01/12/22 10:46 01/13/22 00:58 Surrogates ND mg/kg 12.1 1 01/12/22 10:46 01/13/22 00:58	- , ,	01.2	<u>9</u> /Ng	11.1	,	51/10/22 10.00	51/12/22 11.4/		
Terphenyl (S) 79 % 46-130 1 01/10/22 15:59 01/12/22 11:47 92-94-4 Gasoline Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 5035A/5030B Pace Analytical Services - Kansas City TPH-GRO ND mg/kg 12.1 1 01/12/22 10:10:10:10:10:10:10:10:10:10:10:10:10:1	-	74	%	31-152	1	01/10/22 15:59	01/12/22 11:47	646-31-1	
Gasoline Range Organics Analytical Method: EPA 8015B Preparation Method: EPA 5035A/5030B Pace Analytical Services - Kansas City TPH-GRO ND mg/kg 12.1 1 01/12/22 10:46 01/13/22 00:58 Surrogates									
Pace Analytical Services - Kansas City TPH-GRO ND mg/kg 12.1 1 01/12/22 10:46 01/13/22 00:58 Surrogates Surrogates ND ND <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Surrogates	Gasoline Range Organics	-			ethod: E	EPA 5035A/5030E	5		
Surrogates	TPH-GRO	ND	ma/ka	12.1	1	01/12/22 10:46	01/13/22 00:58		
•						3., . _ , _ _ 10.40	5., 10, 22 00.00		
	4-Bromofluorobenzene (S)	92	%	63-121	1	01/12/22 10:46	01/13/22 00:58	460-00-4	

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project: EVGSAU 2963-002

Pace Project No.: 60390186

Sample: AH-8 (0-1')	Lab ID: 603	90186003	Collected: 01/07/2	2 09:30	Received: 01	/08/22 10:40 N	Aatrix: Solid	
Results reported on a "dry weight"	' basis and are adj	usted for p	oercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV 5035A Low Level	Analytical Meth	nod: EPA 82	260B Preparation Me	thod: E	PA 5035A/5030B			
	Pace Analytica	I Services -	Kansas City					
Benzene	ND	ug/kg	6.2	1	01/11/22 08:53	01/11/22 14:30	71-43-2	
Ethylbenzene	ND	ug/kg	6.2	1	01/11/22 08:53	01/11/22 14:30	100-41-4	
Toluene	ND	ug/kg	24.6	1	01/11/22 08:53	01/11/22 14:30	108-88-3	
Xylene (Total)	ND	ug/kg	18.5	1	01/11/22 08:53	01/11/22 14:30	1330-20-7	
Surrogates	101	0/	00,400		04/44/00 00.50	04 /44 /00 4 4:00	0007.00 5	
Toluene-d8 (S)	101	%	80-120	1		01/11/22 14:30		
4-Bromofluorobenzene (S)	99	%	83-119	1	01/11/22 08:53	•		
1,2-Dichlorobenzene-d4 (S)	94	%	80-120	1	01/11/22 08:53	01/11/22 14:30	2199-69-1	
Percent Moisture	Analytical Meth	nod: ASTM	D2974					
	Pace Analytica	I Services -	Kansas City					
Percent Moisture	10.4	%	0.50	1		01/10/22 16:01		
9056 IC Anions	Analytical Meth	nod: EPA 90	056 Preparation Meth	nod: EP	A 9056			
	Pace Analytica	I Services -	Kansas City					
Chloride	ND	mg/kg	109	10	01/18/22 08:19	01/19/22 12:19	16887-00-6	

REPORT OF LABORATORY ANALYSIS

Project:	EVGSAU 2963-00	2										
Pace Project No.:	60390186											
QC Batch:	766196		Analys	sis Metho	d:	EPA 8015B						
QC Batch Method:	EPA 5035A/5030	B	Analy	sis Descrij	ption:	Gasoline Ra	nge Organ	ics				
			Labor	atory:		Pace Analyti	cal Service	es - Kansa	s City			
Associated Lab San	nples: 60390186	001, 6039018600	2, 60390186	6003								
METHOD BLANK:	3061957			Matrix: So	olid							
Associated Lab San	nples: 60390186	001, 6039018600	2, 60390186	5003								
			Blan	k l	Reporting							
Paran	neter	Units	Resu	ılt	Limit	Analy	zed	Qualifier	s			
TPH-GRO		mg/kg		ND	10.	0 01/12/22	22:22					
4-Bromofluorobenze	ene (S)	%		94	63-12	1 01/12/22	22:22					
LABORATORY COM	NTROL SAMPLE:	3061958										
			Spike	LC	S	LCS	% Re	ЭC				
Paran	neter	Units	Conc.	Res	sult	% Rec	Limit	S	Qualifiers			
TPH-GRO												
IPH-GRU		mg/kg	50)	39.2	78	7	1-107		_		
4-Bromofluorobenze	ene (S)	mg/kg %	50)	39.2	78 94		1-107 3-121		_		
4-Bromofluorobenze		%)		94		-				
		%	959		39.2	94		-				
4-Bromofluorobenze		%	959 MS	MSD	3061960	94	. 6	3-121	% Rec		Мах	
4-Bromofluorobenze	IATRIX SPIKE DUF	% LICATE: 3061 60390152003	959			94		-	% Rec Limits	RPD	Max RPD	Qual
4-Bromofluorobenze	IATRIX SPIKE DUF	% PLICATE: 3061 60390152003 Result	959 MS Spike	MSD Spike	3061960 MS	94) MSD	MS	MSD	Limits		RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 01/20/2022 12:18 PM

QC Batch: 7659	958	Analysis Meth	nod: EF	PA 8260B	
	5035A/5030B	Analysis Des		60B MSV 5035A L	ow Level
	0000, 000002	Laboratory:	•	ice Analytical Servi	
Associated Lab Samples:	60390186002, 60390186003			···· · · · · · · · · · · · · · · · · ·	
METHOD BLANK: 30611	52	Matrix:	Solid		
Associated Lab Samples:	60390186002, 60390186003	3			
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg		5.0	01/11/22 10:17	
Ethylbenzene	ug/kg	ND	5.0	01/11/22 10:17	
Toluene	ug/kg	ND	20.0	01/11/22 10:17	
Xylene (Total)	ug/kg	ND	15.0	01/11/22 10:17	
1,2-Dichlorobenzene-d4 (S) %	95	80-120	01/11/22 10:17	
4-Bromofluorobenzene (S)	%	99	83-119	01/11/22 10:17	
Toluene-d8 (S)	%	99	80-120	01/11/22 10:17	

LABORATORY CONTROL SAMPLE: 3061153

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/kg	1250	1190	96	67-126	
Ethylbenzene	ug/kg	1250	1230	98	69-127	
Toluene	ug/kg	1250	1130	90	80-118	
Xylene (Total)	ug/kg	3750	3740	100	69-130	
1,2-Dichlorobenzene-d4 (S)	%			96	80-120	
4-Bromofluorobenzene (S)	%			97	83-119	
Toluene-d8 (S)	%			96	80-120	

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	CATE: 3061	154		3061155							
			MS	MSD								
	6	0390186003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/kg	ND	1540	1540	1490	1500	97	97	17-134	0	53	
Ethylbenzene	ug/kg	ND	1540	1540	1580	1570	103	102	10-137	0	60	
Toluene	ug/kg	ND	1540	1540	1460	1450	94	94	13-131	0	60	
Xylene (Total)	ug/kg	ND	4620	4620	4790	4750	104	103	10-137	1	58	
1,2-Dichlorobenzene-d4 (S)	%						96	96	80-120			
4-Bromofluorobenzene (S)	%						97	96	83-119			
Toluene-d8 (S)	%						96	97	80-120			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 01/20/2022 12:18 PM

Project: EVGSAU 2963-002

QC Batch:	767409	9	Analysis Meth	nod: EF	PA 8260B	
QC Batch Method:	EPA 50)35A/5030B	Analysis Dese	cription: 82	60B MSV 5035A L	ow Level
			Laboratory:	Pa	ace Analytical Servi	ces - Kansas Cit
Associated Lab Samp	oles:	60390186001				
METHOD BLANK: 3	3066402	2	Matrix:	Solid		
Associated Lab Samp	oles:	60390186001				
			Blank	Reporting		
Parame	eter	Units	Result	Limit	Analyzed	Qualifiers
Benzene		ug/kg		5.0	01/20/22 09:35	
Ethylbenzene		ug/kg	ND	5.0	01/20/22 09:35	
Toluene		ug/kg	ND	20.0	01/20/22 09:35	
Xylene (Total)		ug/kg	ND	15.0	01/20/22 09:35	
1,2-Dichlorobenzene-	-d4 (S)	%	98	80-120	01/20/22 09:35	
4-Bromofluorobenzen	ne (S)	%	103	83-119	01/20/22 09:35	
Toluene-d8 (S)		%	99	80-120	01/20/22 09:35	

LABORATORY CONTROL SAMPLE: 3066403

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/kg	1250	1280	103	67-126	
Ethylbenzene	ug/kg	1250	1300	104	69-127	
Toluene	ug/kg	1250	1190	95	80-118	
Xylene (Total)	ug/kg	3750	3920	105	69-130	
1,2-Dichlorobenzene-d4 (S)	%			100	80-120	
4-Bromofluorobenzene (S)	%			101	83-119	
Toluene-d8 (S)	%			97	80-120	

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	CATE: 3066	404		3066405							
			MS	MSD								
	6	0390186001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/kg	ND	1480	1480	1470	1490	100	100	17-134	1	53	
Ethylbenzene	ug/kg	ND	1480	1480	1520	1530	103	103	10-137	1	60	
Toluene	ug/kg	ND	1480	1480	1400	1400	94	94	13-131	0	60	
Xylene (Total)	ug/kg	ND	4440	4440	4640	4730	105	106	10-137	2	58	
1,2-Dichlorobenzene-d4 (S)	%						100	101	80-120			
4-Bromofluorobenzene (S)	%						99	101	83-119			
Toluene-d8 (S)	%						96	96	80-120			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 01/20/2022 12:18 PM

Project:	EVGSAU 2963-	002										
Pace Project No.:	60390186											
QC Batch:	765870		Analy	sis Metho	d: E	PA 8015B						
QC Batch Method:	EPA 3546		Analy	vsis Descri	ption: E	PA 8015B						
			Labo	ratory:	P	ace Analyti	cal Servic	es - Kansa	s City			
Associated Lab San	nples: 6039018	86001, 603901860	02, 6039018	6003								
METHOD BLANK:	3060928			Matrix: S	olid							
Associated Lab San	nples: 6039018	86001, 603901860	02, 6039018	6003								
			Blar	ık	Reporting							
Paran	neter	Units	Resu	ult	Limit	Analy	zed	Qualifier	S			
TPH-DRO (C10-C2	3)	mg/kg		ND	9.6	01/12/22	09:43					
TPH-ORO (C28-C3	5)	mg/kg		ND	9.6	01/12/22	09:43					
n-Tetracosane (S)		%		92	31-152							
p-Terphenyl (S)		%		102	46-130	01/12/22	09:43					
LABORATORY COM	NTROL SAMPLE:	3060929										
			Spike	LC	S	LCS	% R	ec				
Paran	neter	Units	Conc.	Re	sult	% Rec	Limi	its	Qualifiers			
TPH-DRO (C10-C2	3)	 mg/kg	8	2	74.1	90		74-124		_		
n-Tetracosane (S)		%				90) :	31-152				
p-Terphenyl (S)		%				104		46-130				
MATRIX SPIKE & M			0930		3060931							
		51 LIOATE. 300	MS	MSD	3000331							
		60390152001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
		00390132001						-				
Parameter	- Un		Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua

88

95

31-152

46-130

87

92

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 01/20/2022 12:18 PM

n-Tetracosane (S)

p-Terphenyl (S)

%

%

Project:	EVGSAU 2963-002						
Pace Project No.:	60390186						
QC Batch:	765795		Analysis Meth	hod: AS	STM D2974		
QC Batch Method:	ASTM D2974		Analysis Des	cription: Dr	ry Weight/Percent I	Moisture	
			Laboratory:	Pa	ace Analytical Serv	ices - Kansas (City
Associated Lab Sar	nples: 603901860	01, 6039018600	02, 60390186003				
METHOD BLANK:	3060705		Matrix:	Solid			
		04 602004960	02, 60390186003				
Associated Lab Sar	npies: 603901860	01, 6039016600	02,000301000000				
Associated Lab Sar	101901860	01, 6039018600	Blank	Reporting			
Associated Lab Sar Parar		Units	-	Reporting Limit	Analyzed	Qualifiers	
			Blank			Qualifiers	_
Parar		Units	Blank Result	Limit	· ·	Qualifiers	_
Parar	neter	Units	Blank Result	Limit	· ·	Qualifiers	_
Parar Percent Moisture	neter	Units	Blank Result	Limit	· ·	Qualifiers	_
Parar Percent Moisture	neter	Units	Blank Result ND	Limit 0.50	· ·		Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 01/20/2022 12:18 PM

Project:	EVGSAU 2963-00	2										
Pace Project No.:	60390186											
QC Batch:	767166		Analy	ysis Metho	d: E	PA 9056						
QC Batch Method:	EPA 9056		Analy	ysis Descri	ption: 9	056 IC Ani	ons					
			Labo	ratory:	F	Pace Analyt	ical Servic	es - Kansas	s City			
Associated Lab Sam	ples: 60390186	001, 6039018600	2, 6039018	36003								
METHOD BLANK:	3065612			Matrix: S	olid							
Associated Lab Sam	ples: 60390186	001, 6039018600	2, 6039018	36003								
			Blai	nk	Reporting							
Param	eter	Units	Res	ult	Limit	Analy	/zed	Qualifiers	S			
Chloride		mg/kg		ND	100	01/19/2	2 11:00					
LABORATORY CON	TROL SAMPLE:	3065613										
			Spike	LC	S	LCS	% R	ec				
Param	eter	Units	Conc.	Res	sult	% Rec	Limi	ts C	Qualifiers			
Chloride		mg/kg	50	00	479	9	6 8	30-120		_		
MATRIX SPIKE & M	ATRIX SPIKE DUF	PLICATE: 3065	-		3065615							
		00000400004	MS	MSD		MOD		MOD	0(D			
Parameter	Units	60390186001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
												Quai
Chloride	mg/ko	g ND	537	537	525	528	84	85	80-120	0	15	
SAMPLE DUPLICAT	E: 3065616											
	0000010		603901	86002	Dup			Max				
Param	eter	Units	Res		Result	RPE)	RPD	Qualif	iers		
Chloride		mg/kg		ND	76.2			15	5			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 01/20/2022 12:18 PM

QUALIFIERS

Project: EVGSAU 2963-002

Pace Project No.: 60390186

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

S4 Surrogate recovery not evaluated against control limits due to sample dilution.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: EVGSAU 2963-002 Pace Project No.: 60390186

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60390186001	AH-6 (0-1')	EPA 3546	765870	EPA 8015B	765963
60390186002	AH-7 (0-1')	EPA 3546	765870	EPA 8015B	765963
60390186003	AH-8 (0-1')	EPA 3546	765870	EPA 8015B	765963
60390186001	AH-6 (0-1')	EPA 5035A/5030B	766196	EPA 8015B	766216
60390186002	AH-7 (0-1')	EPA 5035A/5030B	766196	EPA 8015B	766216
60390186003	AH-8 (0-1')	EPA 5035A/5030B	766196	EPA 8015B	766216
60390186001	AH-6 (0-1')	EPA 5035A/5030B	767409	EPA 8260B	767422
60390186002	AH-7 (0-1')	EPA 5035A/5030B	765958	EPA 8260B	765990
60390186003	AH-8 (0-1')	EPA 5035A/5030B	765958	EPA 8260B	765990
60390186001	AH-6 (0-1')	ASTM D2974	765795		
60390186002	AH-7 (0-1')	ASTM D2974	765795		
60390186003	AH-8 (0-1')	ASTM D2974	765795		
60390186001	AH-6 (0-1')	EPA 9056	767166	EPA 9056	767351
60390186002	AH-7 (0-1')	EPA 9056	767166	EPA 9056	767351
60390186003	AH-8 (0-1')	EPA 9056	767166	EPA 9056	767351

REPORT OF LABORATORY ANALYSIS

5)		W0#:60390186
Pace Analytical Sample Condition	Upon Receipt	
Client Name: Terra Tech		
	PEX 🗆 ECI 🗆	Pace 🗆 Xroads 🗆 Client 🗆 Other 🗆
	ce Shipping Label Used	d? Yes □ No 🟚
Custody Seal on Cooler/Box Present: Yes 🗆 No 💋	Seals intact: Yes	No/
	of Ice: (Wei) Blue Nor	None Other ne
Cooler Temperature (°C): As-read 2.7 Corr. Fac	tor -0.2 Correct	ted 2.5 Date and initials of person examining contents: 1-8-2023
Temperature should be above freezing to 6°C		
Chain of Custody present:	Yes No N/A	
Chain of Custody relinquished:	Yes No N/A	
Samples arrived within holding time:	Yes □No □N/A	
Short Hold Time analyses (<72hr):	Yes No N/A	
Rush Turn Around Time requested:	□Yes No □N/A	
Sufficient volume:		
Correct containers used:		
Pace containers used:	ZYes 🗆 No 🗇 N/A	
Containers intact:	ZYes No N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No ØN/A	
Filtered volume received for dissolved tests?	□Yes □No ØN/A	
Sample labels match COC: Date / time / ID / analyses		
Containers requiring pH preservation in compliance? (HNO ₃ , H ₂ SO ₄ , HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT#		List sample IDs, volumes, lot #'s of preservative and the date/time added.
Cyanide water sample checks: _ead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
rip Blank present:		
leadspace in VOA vials (>6mm):		
Samples from USDA Regulated Area: State	TYes No N/A	
additional labels attached to 5035A / TX1005 vials in the field		
Client Notification/ Resolution: Copy COC		Field Data Required? Y / N
Person Contacted: Date/	Time:	
Comments/ Resolution:		
Project Manager Review:	Date	

.

F-KS-C-003-Rev, 11, February 28, 2018

	Tetra Tech, Inc.		901 We Mid Te	901 West Wall St, Suite 100 Midland,Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946						9	6039019	518K	5	d by OCD:
	ConocoPhillips	Site Manager:	Ryan Dickerson	ckerson				₹ I	LYSIS F	ANALYSIS REQUEST	ST	2		3/6/2
Project Name;	EVGSAU 2963-002					1	(Circle	5 -	Specif	Specify Method	(.oN bor		-	2023
	on: Lea County, New Mexico	Project #:	212C	212C-MD-02492		T		-				(_	3:05:2
	Tetra Tech, Attention: Ryan Dickerson					r		6				tsil bər		23 PN
		Sampler Signature:	Colton	n Bickerstaff		T		iH 92 c				attach		1
Comments:	Send invoice, results to Ryan Dickerson at Ryan.Dickerson@tetratech.com	@tetratech.com						Cd Cr Pt		070100	SQT			
		SAMPLING	MATRIX	PRESERVATIVE METHOD	S	BTEX STEX			_		ate		_	
LAB #	SAMPLE IDENTIFICATION	YEAR:			иев	902 (E	С	səlij		09/7	(sots Sulf			
		ataq JME	APTER MATER	CE HNO ³ HCT	KCONTAL	31EX 802	PH 80151 90758 HA 1519M Isto	CLP Semi CLP Volat CLP Meta	SC/W2 261 SC/W2 A91 SCI	ЮКМ СВ's 808;	LM (Asbe: Ploride Shloride	eneral W nion/Catio sbestos		plo
	AH-6 (0-1'))22 g	-		-		-	L		Н		A		н
	AH-7 (0-1')	1/7/2022 9:25	×	×	-	×	×				×			
	AH-8 (0-1')	1/7/2022 9:30	×	×	-		×				×			
			_											177
						-					_			
								-	-					
												-		T
			-											
	Date: 01/07/22	Received by h	L	Date: Time	12:45	0 F	AB USE ONLY	REMARKS:	1	Standard TAT	TAT			
Relinguished	In A	Received by:		Date: Time.	0	Sample T	Sample Temperature		RUSH:	RUSH: Same Day	/ 24 hr	48 hr 7	72 hr	
Refinquished by:	by Date Time	ROLX	-	3	14CN	Т			Rush Cha	Rush Charges Authorized	horized			
Pag		hereived by	r 1.	1 CC-S.	1040	3	S		Special R	Special Report Limits or TRRP Report	its or TRF	P Report		Pas
e 17						(Circle) H	(Circle) HAND DELIVERED		FEDEX UF	UPS Track	Tracking #:			e 1
of 18		URIGINAL CUPY												59 of 24
														2

Released to Imaging: 3/16/2023 2:40:21 PM

		ССТС Сыгс ЗБГС ЗБЗХ ЗБЗС													-	Misc		1 IZUTIL CONTOFT NA I NIOSUITATE		Air Cassettes	Terracore Kit	Summa Can			Matrix	Water	Solid	Non-aqueous Liquid	OIL	Wipe Deinking Mator	Drinking Water				
		SEGE	+				-										-	1010	AF C	U	Я	∍	-	+	-	1	SL	NAL		d M	<u>a</u>	-	П		
		3P3F	-				-				_															ered									
		BP3N							_																	Teld filt		Istic	Į	ate	Istic		.0		
		NIde	-		-		-		-	_	-		-	-					olastic	etate	astic	astic	lastic	veu pia	astic	astic - f	astic	ved pla	astic	n Aceta	ved pla	lastic	ed plst		
*	g	363N		_	-		-							1		Plastic	1L NAOH plastic	11 H2SOA plastic	1L unpreserved plastic	1L NaOH, Zn Acetate	500mL NAOH plastic	500mL HNO3 plastic	500mL H2SO4 plastic	500ml NaOH Zh Aretate	250mL NaOH plastic	250mL HNO3 plastic - field filtered	250mL HNO3 plastic	250mL unpreserved plastic	250mL H2SO4 plastic	250mL NaOH, Zn Acetate	125mL unpreserved plastic	125mL H2SO4 plastic	16oz unpresserved plstic		
Profile #		BP2U	-				-		_							•	NAOH	SONE CONT		NaOH.	mL NA	ML HN			mL Na	mL HN	mL HN	mL un	mL H2				z unpr		
Ť	í.	9610	-				-		_		-		_				11			11	500	500	200		250	250	250	250	250	102	125	125	160		
		NGDN	-		-						1						0	z		Z	ပ္ရ	z	SI =			۲.	Z		S	2	2 3	r st	В		
		NGKN					-		_		-						BP1C		BP1U	BP1Z	BP2C		BP2S	BP27	BP3C	BP3F	BP3N	BP3U	BP3S	BP3Z	BP4U BP4N	BP4S	WPDU		
		IGFU		-			-					_											1L Na Thiosulfate clear/amber glass												
		VG£U					-												r wide	lass			/ambei	ass	glass	glass	lass	ass	lass	ass					
		₽64∪																	402 Undreserved amber wide	100mL unores amber glass	ass	1L H2SO4 amber glass	e clear	500ml HNO3 amber class	500mL H2SO4 amber glass	04 amber glass	500mL unpres amber glass	250mL unpres amber glass	amber glass	100mL unpres amber glass					
<		¥G3S	-		-		-				_	_	-				soll lar	soil jar	served	ores al	1L HCI amber glass	+ ambe	osultat	IO3 an	S04 a	S04 a	pres al	pres al	pres a	pres a					
ech		NG2U	\vdash		-		-						_				8oz clear soi	207 clear soil	unpre	mL un	HCI arr	12SO4	1L Na Thiosu		mL H2	250mL H2SC	mL un	un Jur	125mL unpres	mr un					
		NIÐA		_			-		_		4						80Z		40Z	100	7	Ţ		200	500	250	500	250	125				ſ		٦
		HtəA							_			_					RU			З	王	S			SS	3S	SU		₹Ę						
		BG1U					-		_			_				Glass	WGKU		JGFU	AGOU	AG1H	AG1S	AG11	AG2N	AG2S	AG3S	AG	AG3U	AG4U	AG5U					
ainer Co		DC9B						101	_																									Y	Q
Lenexa		DG9M			-		-		-								-	ē		<u>9</u>	al	led		ar vial	s,		s	ass						00190186	5
1_Sam		DG9U	-									_					lear via		r vial	nber vi	nber v	reserv	Vial Inar vi		ar glas	SS	ar glas	lear g	_					202	2
LENE-000 Date: Iss lient:		∩69∧	_		-				-					_			lifate c		ambe	304 an	Thio ar	er ung	Clear J	Leser	04 cle	es glas	CL Cle	pres C	soil ja					20	د لا
DC#_Title: ENV-FRM-LENE-0001_Sample Container Count Revision: 3 Effective Date: Issued by: Lenexa Client:Client:Client:		DG90									_						40mL bisulfate clear vial	40ml MeOH clear via	40mL TSP amber vial	40mL H2SO4 amber vial	40mL Na Thio amber vial	40mL amber unpreserved	40mL HCI clear vial	40mL unbreserved clear vial	1liter H2SO4 clear glass	1liter unpres glass	250mL HCL Clear glass	250mL Unpres Clear glass	16oz clear soil jar				Ĺ		
e: ENV.	+	DG9H			-			-	-		-	-	-	_			400	104	40	40	4	4	104	404	1 III III	1lit	25(25(16				;	amun .	
C#_Titl Revision	-	VG9H		J	2				-		-				les		DG9B DC9B	Mend	DG9Q	DG9S	DG9T	DG9U	VG9H	VG9U	BG1S	BG1U	BG3H	BG3U	WGDU				(Work Order Number:	
	+		S	3	S		-		_		-				Container Codes		26			B	8		2	318	B	BG			ž	1			3	NVC	
Released to Ima	gin	COC Line Item	202	3	en 2:4	4 1:2	ю 1 Р	9 M	7	00	σ	10	÷	12	Conta																			I	Paę

Received by OCD: 3/6/2023 3:05:23 PM

Page 160 of 242

Page 1 of 1

٦

Pace Analytical Services, LLC

Qualtrax Document ID: 30422

Page 18 of 18

February 03, 2022

CHRISTIAN LLULL TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: EVGSAU 2963-002 WELLHEAD RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 02/01/22 12:55.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	02/01/2022	Sampling Date:	02/01/2022
Reported:	02/03/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - MD - 02492	Sample Received By:	Jodi Henson
Project Location:	CONOCO PHILLIPS - LEA CO NM		

Sample ID: AH - 9 (0-1') (H220382-01)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/02/2022	ND	2.01	100	2.00	5.59	QR-03
Toluene*	<0.050	0.050	02/02/2022	ND	2.19	109	2.00	3.60	
Ethylbenzene*	<0.050	0.050	02/02/2022	ND	2.01	101	2.00	6.75	
Total Xylenes*	<0.150	0.150	02/02/2022	ND	6.27	104	6.00	6.77	
Total BTEX	<0.300	0.300	02/02/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	02/02/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/02/2022	ND	220	110	200	28.4	
DRO >C10-C28*	<10.0	10.0	02/02/2022	ND	259	129	200	6.30	
EXT DRO >C28-C36	10.9	10.0	02/02/2022	ND					
Surrogate: 1-Chlorooctane	101 9	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	108 9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	02/01/2022	Sampling Date:	02/01/2022
Reported:	02/03/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - MD - 02492	Sample Received By:	Jodi Henson
Project Location:	CONOCO PHILLIPS - LEA CO NM		

Sample ID: AH - 9 (1'-2') (H220382-02)

BTEX 8021B	mg,	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/02/2022	ND	2.01	100	2.00	5.59	
Toluene*	<0.050	0.050	02/02/2022	ND	2.19	109	2.00	3.60	
Ethylbenzene*	<0.050	0.050	02/02/2022	ND	2.01	101	2.00	6.75	
Total Xylenes*	<0.150	0.150	02/02/2022	ND	6.27	104	6.00	6.77	
Total BTEX	<0.300	0.300	02/02/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	02/02/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/02/2022	ND	220	110	200	28.4	
DRO >C10-C28*	<10.0	10.0	02/02/2022	ND	259	129	200	6.30	
EXT DRO >C28-C36	<10.0	10.0	02/02/2022	ND					
Surrogate: 1-Chlorooctane	88.2	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	94.6	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	02/01/2022	Sampling Date:	02/01/2022
Reported:	02/03/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - MD - 02492	Sample Received By:	Jodi Henson
Project Location:	CONOCO PHILLIPS - LEA CO NM		

Sample ID: AH - 10 (0-1') (H220382-03)

BTEX 8021B	mg,	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/02/2022	ND	2.01	100	2.00	5.59	
Toluene*	<0.050	0.050	02/02/2022	ND	2.19	109	2.00	3.60	
Ethylbenzene*	<0.050	0.050	02/02/2022	ND	2.01	101	2.00	6.75	
Total Xylenes*	<0.150	0.150	02/02/2022	ND	6.27	104	6.00	6.77	
Total BTEX	<0.300	0.300	02/02/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	02/02/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/02/2022	ND	220	110	200	28.4	
DRO >C10-C28*	<10.0	10.0	02/02/2022	ND	259	129	200	6.30	
EXT DRO >C28-C36	<10.0	10.0	02/02/2022	ND					
Surrogate: 1-Chlorooctane	111 9	66.9-13	6						
Surrogate: 1-Chlorooctadecane	118 9	59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	02/01/2022	Sampling Date:	02/01/2022
Reported:	02/03/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - MD - 02492	Sample Received By:	Jodi Henson
Project Location:	CONOCO PHILLIPS - LEA CO NM		

Sample ID: AH - 10 (1'-2') (H220382-04)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/02/2022	ND	2.01	100	2.00	5.59	
Toluene*	<0.050	0.050	02/02/2022	ND	2.19	109	2.00	3.60	
Ethylbenzene*	<0.050	0.050	02/02/2022	ND	2.01	101	2.00	6.75	
Total Xylenes*	<0.150	0.150	02/02/2022	ND	6.27	104	6.00	6.77	
Total BTEX	<0.300	0.300	02/02/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	02/02/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/03/2022	ND	220	110	200	28.4	
DRO >C10-C28*	<10.0	10.0	02/03/2022	ND	259	129	200	6.30	
EXT DRO >C28-C36	<10.0	10.0	02/03/2022	ND					
Surrogate: 1-Chlorooctane	67.6	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	74.9	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	02/01/2022	Sampling Date:	02/01/2022
Reported:	02/03/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - MD - 02492	Sample Received By:	Jodi Henson
Project Location:	CONOCO PHILLIPS - LEA CO NM		

Sample ID: AH - 11 (0-1') (H220382-05)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/03/2022	ND	2.01	100	2.00	5.59	
Toluene*	<0.050	0.050	02/03/2022	ND	2.19	109	2.00	3.60	
Ethylbenzene*	<0.050	0.050	02/03/2022	ND	2.01	101	2.00	6.75	
Total Xylenes*	<0.150	0.150	02/03/2022	ND	6.27	104	6.00	6.77	
Total BTEX	<0.300	0.300	02/03/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	02/02/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/02/2022	ND	220	110	200	28.4	
DRO >C10-C28*	<10.0	10.0	02/02/2022	ND	259	129	200	6.30	
EXT DRO >C28-C36	21.0	10.0	02/02/2022	ND					
Surrogate: 1-Chlorooctane	88.7	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	95.5	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHRISTIAN LLULL 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	02/01/2022	Sampling Date:	02/01/2022
Reported:	02/03/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	** (See Notes)
Project Number:	212C - MD - 02492	Sample Received By:	Jodi Henson
Project Location:	CONOCO PHILLIPS - LEA CO NM		

Sample ID: AH - 11 (1'-2') (H220382-06)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/03/2022	ND	2.01	100	2.00	5.59	
Toluene*	<0.050	0.050	02/03/2022	ND	2.19	109	2.00	3.60	
Ethylbenzene*	<0.050	0.050	02/03/2022	ND	2.01	101	2.00	6.75	
Total Xylenes*	<0.150	0.150	02/03/2022	ND	6.27	104	6.00	6.77	
Total BTEX	<0.300	0.300	02/03/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	02/02/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/02/2022	ND	220	110	200	28.4	
DRO >C10-C28*	<10.0	10.0	02/02/2022	ND	259	129	200	6.30	
EXT DRO >C28-C36	<10.0	10.0	02/02/2022	ND					
Surrogate: 1-Chlorooctane	100	% 66.9-13	6						
Surrogate: 1-Chlorooctadecane	107	% 59.5-14	2						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QR-04	The RPD for the BS/BSD was outside of historical limits.
QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Ž	
La	0
bo	R
LD J	D
tor	Ś
ories	2

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

>

Page 9 of 9

Delivered By: (Circle One) Sampler - UPS - Bus - Other:	Coltan Bitxessaff Relinguished By:	PLEASE NOTE: Liability and Damages. Cardinal's liability a analyses. All claims including those for negligence and any service. In no event shall Cardinal be liable for incidental or affiliate or successors arising out of or related to the perform Relinguished By:	5 AN-10 (1-2) 6 AH-11 (1-2)	1 AH-9 (0-1) 2 AH-9 (1-2) 3 AH-10 (0-1)	Lab I.D. Samp	Colton (Project Name: EV6SAM 2	Project #: 2/2/-MD-09497		ess: Cholsting,	Project Manager: Coneco Phillip
Time: Observed Temp. °C / 0. S Sample Condition CHECKED BY: Corrected Temp. °C / 0. S Cool Intact Corrected Temp. °C / 0. S Cool Intact Cool Intact No No No No CHECKED BY: Correction Factor - 0.5°C	Times 55 JOAN HAMADA	remedy for any claim arising whether based in contract or tor ever shall be deemed waiwed unless made in writing and rece gree, including without imitation, business interruptions, loss of anunder by Cardinal, regardless of whether such claim is bas			DGE ER : /BASE: COOL ER :	ISILK STOLL MATRIX PRESERV S		Project Owner: Address: by	State: Zip:	tettertechy lan company:	I BILL
REMARKS: AND Abon, Unill Ote tratech, unit Turnaround Time: Standard D Bacteria (only) Sample Condition Thermometer ID #113 Correction Factor -0.5°C Ves Ves Correction Factor -0.5°C	Verbal Result: Ves IV No Add'l Phone #: All Results are emailed. Please provide Email address:	and by the client for the applicable refersion of the sublidaries,		-X BT	EX H locides			3	s Link	da11	TO ANALYSIS REQUEST

Page 169 of 242

December 01, 2022

CHUCK TERHUNE TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: EVGSAU 2963-002 WELLHEAD RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 11/30/22 16:55.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/29/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: E SW - 1 (0-1') (H225621-01)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	100 \$	45.3-16	1						
Surrogate: 1-Chlorooctadecane	104 9	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/29/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: E SW - 2 (0-1') (H225621-02)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.8	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	12/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	97.1	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	105	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/29/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: E SW - 3 (0-1') (H225621-03)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.3	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	12/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	Analyzed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	91.0	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	97.3	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/29/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: E SW - 4 (0-1') (H225621-04)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.5	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	12/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	93.4	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	101	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/30/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: E SW - 5 (0-1') (H225621-05)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.6	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	Analyzed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	80.6	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	87.8	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/29/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: N SW - 1 (0-1') (H225621-06)

BTEX 8021B	mg/kg		Analyze	Analyzed By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/01/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	85.3	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	93.8	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/29/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: N SW - 2 (0-1') (H225621-07)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	81.1	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	92.0	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/29/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: N SW - 3 (0-1') (H225621-08)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.5	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	92.6	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	99.3	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/29/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: N SW - 4 (0-1') (H225621-09)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	82.3	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	86.2	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/30/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: N SW - 5 (1-4') (H225621-10)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	′kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	84.9	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	90.3	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/29/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: N SW - 6 (0-1') (H225621-11)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	68.3	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	71.7	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/29/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: S SW - 1 (0-1') (H225621-12)

BTEX 8021B	mg,	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	96.4	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	105	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/29/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: S SW - 2 (0-1') (H225621-13)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	72.7	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	77.4	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/29/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: S SW - 3 (0-1') (H225621-14)

BTEX 8021B	mg,	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	72.2	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	75.5	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/29/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: S SW - 4 (0-1') (H225621-15)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	Analyzed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	69.5	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	72.5	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/30/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: S SW - 5 (1-4') (H225621-16)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	92.9	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	98.7	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/29/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: W SW - 1 (0-1') (H225621-17)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	64.2	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	66.8	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/29/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: W SW - 2 (0-1') (H225621-18)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	93.4	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	101 9	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/29/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: W SW - 3 (0-1') (H225621-19)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	77.2	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	82.5	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/29/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: W SW - 4 (0-1') (H225621-20)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.78	89.2	2.00	1.00	
Toluene*	<0.050	0.050	12/01/2022	ND	2.05	102	2.00	0.725	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.09	105	2.00	0.734	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.45	107	6.00	0.965	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.4	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.7	200	0.855	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	193	96.4	200	1.74	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	79.8	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	83.1	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/30/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: W SW - 5 (1-4') (H225621-21)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	60.9	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	65.6	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/30/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: W SW - 6 (0-1') (H225621-22)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	88.9	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	96.8	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/30/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: W SW - 7 (0-1') (H225621-23)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	75.9	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	81.2	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/30/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: W SW - 8 (0-1') (H225621-24)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	82.7	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	90.3	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/29/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 1 (1') (H225621-25)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	19.8	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	18.1	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	97.9	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	109	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/29/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 2 (1') (H225621-26)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	224	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	69.0	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	74.3	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/29/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 3 (1') (H225621-27)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	86.6	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	97.2	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/29/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 4 (1') (H225621-28)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	85.5	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	<i>93</i> .8	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/30/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 5 (4') (H225621-29)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	94.3	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	106	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/30/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 6 (4') (H225621-30)

BTEX 8021B	mg	/kg	Analyze	ed By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	93.7	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	104	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/30/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 7 (1') (H225621-31)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	90.7	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	101	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/30/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 8 (1') (H225621-32)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	93.2	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	103	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/30/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 9 (1') (H225621-33)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	88.5	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	97.8	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/30/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 10 (1') (H225621-34)

BTEX 8021B	mg,	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	75.2	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	83.2	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/30/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 11 (1') (H225621-35)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	85.7	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	93.8	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/30/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 12 (1') (H225621-36)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	109	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	80.0	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	88.1	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/30/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 13 (1') (H225621-37)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	89.0	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	98.4	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/30/2022	Sampling Date:	11/30/2022
Reported:	12/01/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 14 (1') (H225621-38)

BTEX 8021B	mg,	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.86	93.2	2.00	10.5	
Toluene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.73	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.12	106	2.00	9.19	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.50	108	6.00	8.79	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/01/2022	ND	416	104	400	0.00	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	197	98.6	200	6.38	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	177	88.3	200	7.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	85.4	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	93.5	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

	Relinquished by:		Relinquished by	Kind	Relinquished by	0)	9	2	7	Q	ગ	4	en	23	-	(LAB USE)	LAB#	HBASWAI		Comments:		Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	5
	y;		1	1 March 113	11	N SW-5 (1-4")	N SW-4 (0-1")	N SW-3 (0-1')	N SW-2 (0-1")	N SW-1 (0-1")	E SW-5 (0-1")	E SW-4 (0-1')	E SW-3 (0-1')	E SW-2 (0-1')	E SW-1 (0-1')		SAMPLE IDENTIFICATION				Cardinal Laboratories		Tetra Tech. Inc.	Lea County, NM	EVGSAU 2963-002 Wellhead Release	Maverick Natural Resources	Tetra
	Date:		Date:	11/30/22	Date:												VTIFICATIO				ries				2 Wellhe	Resource	Tec
	Time:		Time:	1654	Time:												N								ad Release	s	letra Tech, Inc.
	Received by:		Received by:	NOMO	Received by:	11/30/2022	11/29/2022	11/29/2022	11/29/2022	11/29/2022	11/30/2022	11/29/2022	11/29/2022	11/29/2022	11/29/2022	DATE		YEAR: 2020	SAMPLING			Sampler Signature:	-	Project #:		Site Manager:	
			1	MAN	5	L									-	TIME		4				n			chuck.terhune@tetratech.com	ç	
			VD	ert-		X	>	< >	×	×	×	×	×	×	×	SOI	L	-	MATRIX			Ezequie		212C-HN-02084	e@tetrate	Chuck Terhune	901W Wall S Midland,T Tel (432) Fax (432)
	Date: Time:		Date: I me:	1	2	Date: Time:	< >	< >	< >		X	×	×	< >	< >	HCL HNC ICE Nor	D ₃	-	PRESERVATIVE			Ezequiel Moreno		N-02084	ech.com	Iune	901W Wall Street, Ste 100 Midland, Texas 79705 Tel (432) 882-4559 Fax (432) 682-3946
					s lles	t			+				+		+	# C(ONTA	INE	RS								
200 index	A	6	San	L	5	>	< >	×>	< >	< >	< >	< >			< >	< BTE	_	21B	BT	EX 826	60B	_	!		_	-	
	35.32	Si	Sample Temperature		LAB USI	>	× :	×	× >	< >	< >	<>		< >	× >	K TPH		5M (- DRO	- 0	20 -	MRO)		_		
	#	0.0.	perature		USE ONLY	E	+	+	+	+	+	+	+	+	+	Tota	I Meta	als A		Ba Cd Ba Cd					_	(Circle	
ł	5		-	_		RE	1	+	+	+	+	+	+	+	+	TCL	P Vol	atiles	5		_	_					
	Sp	Ra	E	X RUSH:	Ц	REMARKS:	-	-	-	-	+	+	+	+	+	RC					_			_		or Specify Metho	
	ecial R	Rush Charges Authorized			STANDARD	ľ	-	+	+	+	+	+	+	+	-	_		_	-	/ 624 8270C	/625	-				cify	
Tracking	eport L	irges A		Same Day	NDAR	F	-	-	-	+	-	+	+	-	-	_	B's 80 RM	082 /	608		-	_		_		Method	
dina #	imits o	uthoriz	0	-	0	t		×	×	×	×	×	×	×	×	_	M (Ast oride	pesto	os)	_	_	_	_		-	ē.	
	TRR	ed	1	24 hr 4	9	t	×									Ch	loride		Sulfat				ttache	ed list) ·	_	No.)	
	Special Report Limits or TRRP Report			48 hr		ł	-									_	ion/C	-			. , (0					-	
	a			72 hr		F			-	-	-	-	-			-	_	_	_		_	_			-		
						I															_	_			_	-	
					_											H	old	_	_	-	_	_	-	_			Pag

Page 210 of 242

Sh, Inc. Site Manager: rulesca	Tetra Tech, Inc. Bit Wanger: Cluck Terhune Release EVGSAU 2963-002 Weilhead Release Chuck terhune@letraitech.com Lea County, NM Sampler Signature: Caquial Moreno Cardinal Laboratories Sampler Signature: Ezequiel Moreno Sample Signature: Sampler Signature: Ezequiel Moreno Sampler Signature: Ezequiel Moreno Marker Signature: Ezequiel Moreno Signature: Sampler Signature: Ezequiel Moreno Signature: Signature: Marker Signature: Signature: Signature: Signature: Signature: Signature: Signature:	Image: Construction of the second o	Mayerick Natural Resources Sampler Signature: Chuck Terhune@listratech.com Crice or S EVGSAU 2962-002 Weilhead Release chuck terhune@listratech.com Crice or S EvgSAU 2962-002 Weilhead Release chuck terhune@listratech.com Crice or S Cardinal Laborationes mover. 212C-HN.0009 Crice or S Cardinal Laborationes Sampler Signature: Ezequiel Moreno Crice or S Cardinal Laborationes Sampler Signature: Ezequiel Moreno Crice or S SW4 (0-1) sweler Signature: Ezequiel Moreno Crice or S SW4 (0-1) Intraacozzi TIME Maxer Levino Ezequiel Moreno SW4 (0-1) Intraacozzi TIME Valorizazi K H SW4 (0-1) Intraacozzi X H K Resource Ezequiel Moreno SW4 (0-1) Intraacozzi TIME VAL VAL VAL VAL VAL SW4 (0-1) Intraacozzi X H K NAL VAL	Open Manager: Chuck Terhung@Dietratech.com relocities.min Chuck Terhung@Dietratech.com relocities.min Chuck Terhung@Dietratech.com relocities.min Chuck Terhung@Dietratech.com Image: Image: Chuck Terhung@Dietratech.com Image: Chuck Terhung@Dietratech.com Image: Sampler Signature: Ezequiel Moreno Image: Chuck Terhung@Dietratech.com Image: Chuck Terhung@Dietratech.com Image: Image: Chuck Terhung@Dietratech.com Image: Sampler Signature: Ezequiel Moreno Image: Circle or Specify Me Image: Image: Image: Image: Image: Image: Image: Image:
Site Manager: Chuck Terhune@tetrates Project #: Classification Sampler Signature: Ezequiel VEAR: 2020 MATRIX TH SAMPLING MATRIX TH Barry MATRIX Intraction MATRIX MATRIX TH DA TI MATRIX Intraction MATRIX MATRIX Intraconce X HCL	onlyweid Teach Ster Manager: Tel (422) 682-4559 Tel (422) 682-459 Tel (422) 68	Site Manager: Chuck Terhune@tetratech.com Sampler Signature: Chuck terhune@tetratech.com Chuck terhune@tetratech.com Chuck terhune@tetratech.com VEVAP.2000 SAMPLING MATRIX Preservatore 212C-HN-02084 Chuck terhune@tetratech.com VEVAP.2002 SAMPLING MATRIX Preservatore 212C-HN-02084 Chuck terhune@tetratech.com VEVAP.2002 TIME TIME VATER VATER VATER Chuck terhune@tetratech.com Chuck terhune@tetratech.com VEVAP.2002 TIME VATER	Site Manager: Chuck Terhune@letratech.com Chuck Terhune@letratech.com Chuck Terhune@letratech.com rescalar Sampler Signature: Ezequiel Moreno Circle or Signature: Circle or Signature: <td>Bite Manager: In (classical answer) Bite dag assume an (classical answer) an (cla</td>	Bite Manager: In (classical answer) Bite dag assume an (classical answer) an (cla
Sportw Walling, Trans. Program. Chuck Terhune Chuck Terhune 212C-HN-020 212C-HN-020 212C-HN-020 WATER WATER WSOIL WATER WATER WATER WATER Value		Imme: None	Imme None Mone	ANALYSIS RECUEST Circle or Specify Method No. Circle or Specify Method No. Imme # CONTAINERS Imme X X X X X X X TPH 8015M (GRO - DRO - ORO - MRO) X X X X X X X X X TPH 8015M (GRO - DRO - MRO) X X X X X X X X X X TCLP Metals Ag As Ba Cd Cr Pb Se Hig Construction GC/mst Semi Vol. 8260B / 624 GC/MS Semi Vol. 8260B / 624 GC/MS Semi Vol. 8270C/625 PCB's 8082 / 608 NORM NORM PLM (Asbestos) X X X X X X X X Chloride PLM (Asbestos) X X X X X X X X X Chloride PLM (Asbestos) X
		Imme: None	Imme None Mone	ANALYSIS RECUEST Circle or Specify Method No. Imme: # CONTAINERS Imme: X X X X X X # TPH 8015M (GRO-DRO-ORO-MRO) Imme: X X X X X X TPH 8015M (GRO-DRO-ORO-MRO) Imme: X X X X X X X TPH 8015M (GRO-DRO-ORO-MRO) X X X X X X X X X X TOLIP Metals Ag As Ba Cd Cr Pb Se Hig Imme: X X X X X X X X X X TCLP Volatilies Imme: X X X X X X X X X X X TCLP Semi Volatiles Imme: X X X X X X X X X X PCB's 8082 / 608 NORM Imme: X X X X X X X X X Chloride Imme:

Image: Constraint of the second sec	Ch, Inc. Served Start Manager: Tar (sc)) besides Served Star Manager: Tar (sc)) besides	Ch, Inc. Sampler Signature: Project # Chuck terhune@lifetalech.com Project # Chuck terhune@lifetalech.com Project # Chuck terhune@lifetalech.com Chuck terhune@lifetalech.com Image: Sampler Signature: 212C-HN-02084 212C-HN-02084 Cricle or Specify Image: Sampler Signature: 212C-HN-02084 Cricle or Specify Image: Sampler Signature: Ecequiel Moreino Cricle or Specify Image: Sampler Signature: Image: Sampler Signature: Sampler Signature: Image: Sampler Signature: Image: Sampler Signature: Sampler Signature: Sampler Signature: Image: Sampler Signature: Image: Sampler Signature: Sampler Signature: Sampler Signature: Image: Sampler Signature: Image: Sampler Signature: Sampler Signature: Sampler Signature:		Relinquished by:		Relinquished by:	T	Relinquished by:	30	2	38	8	48	200	24	200	oxo oxo	201	10	(LAB USE	LAB#	Haasua		Comments:		Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	F
Simpler Signature: Chuck. terhune@letralech.com reaction chuck. terhune@letralech.com simpler Signature: 212C-HN-02084 reaction 212C-HN-02084 simpler Signature: Ezequiel Moreino reaction matrix protect #: 212C-HN-02084 reaction matrix reaction matrix part 11130/2022 rining xx rining xx <td>Ster Manager: Chuck Terhune@lietratech.com Chuck Terhune Chuck Terhune</td> <td>Break-team of the second seco</td> <td></td> <td>Date:</td> <td></td> <td>Date:</td> <td>11/20/27</td> <td>Date: Inte</td> <td>FS-6 (4")</td> <td>FS-5 (4')</td> <td>F3-4 (1)</td> <td>FS-3 (1)</td> <td>FS-2 (1)</td> <td>FS-1 (1)</td> <td>W SW-8 (0-1)</td> <td>VV SVV-7 (U-1)</td> <td>WOW Z/D 45</td> <td>W SW-6 (0-1')</td> <td>W SW-5 (1-4')</td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td>Cardinal Laboratories</td> <td>1</td> <td>Tetra Tech. Inc.</td> <td></td> <td>EVGSAU 2963-002 Wellhead Relea</td> <td>Maverick Natural Resources</td> <td>Tetra Tech, Ir</td>	Ster Manager: Chuck Terhune@lietratech.com Chuck Terhune	Break-team of the second seco		Date:		Date:	11/20/27	Date: Inte	FS-6 (4")	FS-5 (4')	F3-4 (1)	FS-3 (1)	FS-2 (1)	FS-1 (1)	W SW-8 (0-1)	VV SVV-7 (U-1)	WOW Z/D 45	W SW-6 (0-1')	W SW-5 (1-4')			<u> </u>			Cardinal Laboratories	1	Tetra Tech. Inc.		EVGSAU 2963-002 Wellhead Relea	Maverick Natural Resources	Tetra Tech, Ir
Chuck Terhune Matrix Preservice August Store for the store store for the store store store store for the store store store store store sto	Chuck Terhune (Ray best ways) ru (Ray best ways) ru (Mark territurine@itelfallech.com Chuck Terhune Chuc		Received by:		Received by:	L	_	Received by:	11/20/2022	11/30/2022	11/29/2022	11/29/2022	11/29/2022	11/29/2022	11/30/2022	11/30/2022	11/30/2022	11/30/2022	DATE		VEAR- 2020	SAMPLING			Sampler Signature:		Project #:		Site Manager:	IC.
Imme: None 9 mm Imme:	Imme: None 9 mm Imme: Imm	ANALYSIS RECUEST Inne:		Date	2	C Date	I' L' MMM	the second se	t	×	×	×	X	X	×	×	×	×	×	WAT SOIL	ER		MATRIX			Ezequiel M		212C-HN-0	k.terhune@tetratech	Chuck Terhune	901W Wall Street Midland, Texas Tel (432) 682- Fax (432) 682
Sample Image: Sample X X X X X X X BTEX 8021B BTEX 8260B Solution TPH TX1005 (Ext to C35) Solution TPH TX1005 (Ext to C35) TPH TX10	Sample Temperature Sample Temper	ARLYSIS RECUEST Circle of Special Report Limits or TRAPP Report Special Report Limits or TRAPP Report TRAPP Report Limits or TRAPP Report TABLES AS					Time:	120 1105	Time:	×	×	×	×	×	×	×	×	×	×	ICE Non	e	INE	_			oreno	<i>.</i>	2084	1.com	a	, Ste 100 79705 4559 -3945
	Rm TCLP Volatiles OF AL TCLP Semi Volatiles OF AL	Renarcs: RCI Renarcs: GC/MS Vol. 8260B / 624 Rush Charges Authorized GC/MS Semi. Vol. 8270C/625 Rush Charges Authorized NORM X X X X <	ъ	上、T·S	ちょくこん			-	-											K BTE TPH K TPH PAH Tota	X 802 TX10 8015 8270 Meta	21B 005 5M (0C als A	BT (Ext to GRO	- DRC Ba Cd	0 - 0 Cr F	b Se	Hg			(Circ	

Received by OCD: 3/6/2023 3:05:23 PM

_		_			
-	(OP	P	요	P	
Invoice t	Projec	응	9	2	
2	7 8	č	2	 -	
2	× #	2	5	10	

Sh, Inc. Service Manager: In (stag) besides Chuck terhune@letratech.com Anty (stag) besides ead Release Protest # 212C-HN-02084 Cruck terhune@letratech.com Cruce or Stag Integration and the stage of the Manager Sampler Signature: Ezequiel Moreno Cruce or Stag Integration and the stage of the Manager Sampler Signature: Ezequiel Moreno Cruce or Stag Integration and the stage of the Manager Integration and the stage of th	Arrow Surveyee was an and a set of the set of t	Sh, Inc. Service Manager: In (stag) besides Chuck terhune@letratech.com Anty (stag) besides ead Release Protest # 212C-HN-02084 Cruck terhune@letratech.com Cruce or Stag Integration and the stage of the Manager Sampler Signature: Ezequiel Moreno Cruce or Stag Integration and the stage of the Manager Sampler Signature: Ezequiel Moreno Cruce or Stag Integration and the stage of the Manager Integration and the stage of th	Tetra Tech, Inc. manusers and manual measures and manus and manual measures and manu measures and manual measure	Relinquished by:	Relinquished by:	Kend	Relinquished by:			200	37 F	SO FE				De la		21 FS	LAB USE	HDODGQ1		Comments:		Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	5
Open Date: Time: Chuck terhune@tetratech.com Chuck terhune@tetratech.com Chuck terhune@tetratech.com 212C-HN-02084 212C-HN-02084 212C-HN-02084 212C-HN-02084 Circle or Status 212C-HN-02084 212C-HN-02084 212C-HN-02084 Circle or Status Circle or Status 212C-HN-02084 212C-HN-02084 212C-HN-02084 Circle or Status Circle or Status 212C-HN-02084 212C-HN-02084 212C-HN-02084 Circle or Status Circle or Status 212C-HN-02084 212C-HN-02084 212C-HN-02084 Circle or Status Circle or Status 212C-HN-02084 212C-HN-02084 212C-HN-02084 Circle or Status Circle or Status 212C-HN-02084 212C-HN-02084 212C-HN-02084 Circle or Status Circle or Status 212C-HN-02084 212C-HN-02084 212C-HN-02084 Circle or Status Circle or Status 212C-HN-02084 212C-HN-02084 212C-HN-02084 Circle or Status Circle or Status 212C-HN-02084 212C-HN-02084 212C-HN-02084 Circle or Status Circle or Status 212C	Service S	operation of the set of th	Prived technine@letratech.com In (Kity) beside In (Kity)			Time-				S-14 (1')	3-13 (1')	3-12 (1')	3-11 (1)	5-10 (1')	9-9 (T)		2 0 /1 ¹	-7 (1)		SAMDIE IDENTIFICATION					Tetra Tech, Inc.	Lea County, NM	EVGSAU 2963-002 Wellhead Release	Maverick Natural Resources	;h,
Presservining Chuck Terhune (List2) 882-389 Tri (422) 882-383 Tri (422) 882-363 Tri (422) 882-363 Tri (422) 882-363 Tri (422) 882-363 Tri (42	Market Buelt Service Servic	Market Barles Barles Status Market Barles Barles Status Market Barles Barles Status Market Barles Barles Status Market Barles	and states the system of the	Received by:		Received by:	Sinda	Received by:		2707IDC/L1	44/30/3032	11/30/2022	11/30/2022	11/30/2022	0000000	11/30/2022	11/30/2022	11/30/2022		YEAR: 2020	SAMPLING			Sampler Signature:		Project #:		Site Manager:	
Imme None	ANALYSIS REQUEST INTRE: INTR	ARLYSIS RECUEST	ARTYSIS REQUEST Circle or Specify Method No.			1 UNN &	Carlo		-				-		-	_			WATE	R							k.terhune	Chu	
Imme None Sample Temperature Imme Im	ARLYSIS RECUEST I'me: USS USE ONLY Sample Temporature RemArKS: Rush Charges Authorized Special Report Limits or TRRP Page	ARALYSIS RECUEST I'me: USS I A A A A A A A A A A A A A A A A A A	ARTYSIS REQUEST Circle or Specify Method No.			d	5		-	-	×	×	×	×	×	×	×	×			ATRIX			Ezequi		212C-H	@tetra	ick Ter	901W Wal Midland Tel (43 Fax (43
Sample Temperature FILTERED (Y/N) Sample Temperature X X X X X X X X X X BTEX 8021B BTEX 8260B TPH TX1005 (Ext to C35) X X X X X X X X X X TPH 8015M (GRO - DRO - ORO - MRO) PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Semi Volatiles TCLP Semi Volatiles	ABUSE ONLY FILTERED (Y/N) Sample Temperature X X X X X X X X X X X X X X X X X X X	ABUSE ONLY FILTERED (Y/N) Sample Temperature X X X X X X X X X X X X X X X X X X X	Sample Temperature FILTERED (Y/N) Sample Temperature X X X X X X X X X X X BTEX 8021B BTEX 8260B TPH TX1005 (Ext to C35) X X X X X X X X X X TPH 8015M (GRO - DRO - ORO - MRO) PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Semi Volatiles TCLP Semi Volatiles TCLP Semi Volatiles NORM NORM NORM PLM (Asbestos) An Or Arges Authorized An Or Arges Authorized An Or Arges Authorized An Or Arges Authorized				_				×	×	×	×	×	×	×	×	HNO ₃ ICE		METHOD	DECCENATIVE		iel Moreno		HN-02084	atech.com	hune	II Street, Ste 100 I,Texas 79705 32) 682-4559 32) 682-3946
Sample Temperature Remark Sample Temperature FILTERED (Y/N) FILTERED (Y/N) V32LOUS X X X X X BTEX 8021B BTEX 8260B V32LOUS X X X X X X Sample Temperature Cricle or Sp. V32LOUS X X X X X X Sample Temperature Cricle or Sp. V32LOUS X X X X X X X Total Metals Ag As Ba Cd Cr Pb Se Hg Cricle or Sp. V32LOUS X X X X TCLP Volatiles TCLP Semi Volatiles FREMARY	Antropy FILTERED (Y/N) Image: Strange Temperature Image: Strange Temperature Image: Strange Temperature Image: Strange Temperature <	ARLYSI REDUCT FILTERED (Y/N) Image: Strange Temperature Image: Strange Temperature	NATURE FILTERED (Y/N) Image: state of the				165			+	1								# CON	TAIN	ERS								
ABUSE ONLY REAL REAL REAL REAL REAL REAL REAL REAL	ARTSIS RECULT AB USE ONLY AB USE ONLY A	ARTSIS RECULT AB USE ONLY AB USE ONLY A	ARUSIS REQUEST ABUSE ONLY ABUSE ONLY AB				S															_	060B						4
Image: Sector of the sector	Antropy Method Antropy Method Normality Image: Standard Standa	Antropy Method Antropy Method Normality Inclumities Inclumities </td <td>ARLYSIS RECUEST I CLP Metala Ag As Ballocon rooms or Specify Method No. TCLP Semi Volatiles TCLP Semi Volatiles TCLP Semi Volatiles RCI CRUSS Semi. Vol. 8260B / 624 CRUSS Semi. Vol. 8270C/625 STANDARD Rush Charges Authorized Special Report Limits or TRRP Report T2 hr Special Report Limits or TRRP Report</td> <td>v/</td> <td>5N</td> <td>Sample</td> <td>LAD</td> <td></td> <td></td> <td></td> <td>×</td> <td>×</td> <td>×</td> <td>×</td> <td>×</td> <td></td> <td></td> <td>f</td> <td>TPH T</td> <td>X100</td> <td>5 (Ext</td> <td>to C35</td> <td>)</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>	ARLYSIS RECUEST I CLP Metala Ag As Ballocon rooms or Specify Method No. TCLP Semi Volatiles TCLP Semi Volatiles TCLP Semi Volatiles RCI CRUSS Semi. Vol. 8260B / 624 CRUSS Semi. Vol. 8270C/625 STANDARD Rush Charges Authorized Special Report Limits or TRRP Report T2 hr Special Report Limits or TRRP Report	v/	5N	Sample	LAD				×	×	×	×	×			f	TPH T	X100	5 (Ext	to C35)	_					
R TCLP Volatiles P R TCLP Volatiles P R TCLP Volatiles P R TCLP Semi Volatiles P	Antropy Method Antropy Method Normality Image: State of the	Antonized Inclumits of TRRP Report Image: Special Report Limits of TRRP Report Image: Special Report Limits of TRRP Report Image: Special Report Limits of TRRP Report Image: Special Report Limits of TRRP Report	ARLYSIS RECUEST I CLP Wetala Ag As do con rooms or Specify Method No. TCLP Semi Volatiles TCLP Semi Volatiles TCLP Semi Volatiles RCI CRUSS Semi. Vol. 8260B / 624 CRUSS Semi. Vol. 8270C/625 STANDARD Rush Charges Authorized Special Report Limits or TRRP Report T2 hr Special Report Limits or TRRP Report	USE Tempe							×	×	×	×	×	×	×	×		_	(GR	0 - DR(0-0	RO -	MRO)			-	
mm TCLP Volatiles of Annotatiles mm mm TCLP Semi Volatiles of Annotatiles	AMALYSIS RECUEST AMALYSIS RECUEST AMALYSIS RECUEST AMALYSIS RECUEST AMALYSIS RECUEST AMALYSIS RECUEST AMALYSIS AMALYSIS RECUEST AMALYSIS MALYSIS AMALYSIS AMALYSI	Avalysis records a set of the set	ANALYSIS REQUEST										Circl																
Image: Special Report Limits or TRRP Report Image: Special Report Report Image: Special Report Re	Carlow Child Control Carlow Carlow Control Carlow Carlow Control Carlow Control Control Carlow Control <td>Carlow Child Control Carlow Carlow Control Carlow Carlow Control Carlow Control Control Carlow Control<td>Can X<</td><td>50</td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>t</td><td>t</td><td>+</td><td>TCLP</td><td>Volatil</td><td>es</td><td></td><td>_</td><td>_</td><td></td><td></td><td></td><td>e or</td><td></td></td>	Carlow Child Control Carlow Carlow Control Carlow Carlow Control Carlow Control Control Carlow Control <td>Can X<</td> <td>50</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>t</td> <td>t</td> <td>+</td> <td>TCLP</td> <td>Volatil</td> <td>es</td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td>e or</td> <td></td>	Can X<	50		-	-									t	t	+	TCLP	Volatil	es		_	_				e or	
STANDARD STANDARD VISH: Same Day (24 hr Report Limits or TRRP Rep	Itilits or TRRP Report 24 hr X X X X X X X X X X Chloride Chloride Sulfate TDS 48 hr General Water Chemistry (see attached list) 48 hr Anion/Cation Balance	Its or TRR P 24 hr X X X X X X X X X Chloride Chloride Sulfate TDS No V X X X X X X X X X X X X X X X X X X X	Annon/Cation Balance			X	E			-	-		-	-	-	+	+	+	RCI		-		-					Spe	
ANDARD Same Day 24 hr 48 hr Report Limits or TRRP Rep A thorized A thoriz	Inition of the second of th	Inition of the second of th	Annon/Cation Balance	pecia	E								1	1						5				cif					
ARD ARD VARD VARD VARD VARD VARD VARD VA	Inition of the second of th	Inition of the second of th	Annon/Cation Balance	I Rep	harge			AND	F	-	-	-	-	+	\vdash	+	+	+	_	_	_		GIGE	-		-		M	2
PLM (Asbestos) PLM (Asbestos) V V V V V V V V V V V V V	Inition TRRP 24 m X <td>Inition TRRP 24 m X<td>Anion/Cation Balance</td><td>ort Lin</td><td>es Au</td><td>ne Da</td><td></td><td>ARC</td><td>E</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>+</td><td>1</td><td>-</td><td>_</td><td>dan)</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>- the</td><td></td></td>	Inition TRRP 24 m X <td>Anion/Cation Balance</td> <td>ort Lin</td> <td>es Au</td> <td>ne Da</td> <td></td> <td>ARC</td> <td>E</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>+</td> <td>1</td> <td>-</td> <td>_</td> <td>dan)</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- the</td> <td></td>	Anion/Cation Balance	ort Lin	es Au	ne Da		ARC	E							1	+	1	-	_	dan)	_						- the	
Chloride Sulfate TDS 48 5 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	Rice Suitate 105 Suitate 105 Chionde Suitate 1	Rice Suitate 105 Suitate 105 Chionde Suitate 1	RR Chionde Suitate DS 48 General Water Chemistry (see attached list) 72 Anion/Cation Balance	nits or	thorize	-	>	-	F	-	×	×	×	×	×	-		< >		-	stos)	-	_	-				0	
Anion/Cation Balance	Anion/Cation Balance	Amount Amount Amount 72 72 1 1	2 hr	TRR	ď	-			E							T	1							000	attach	ed list)	-	0.)	
	Nort 72	Port 72 hr	2 hr	P Rep	0									_															

Page 213 of 242

December 02, 2022

CHUCK TERHUNE TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: EVGSAU 2963-002 WELLHEAD (RELEASE)

Enclosed are the results of analyses for samples received by the laboratory on 12/01/22 12:10.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/01/2022	Sampling Date:	12/01/2022
Reported:	12/02/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD (RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 15 (1') (H225635-01)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	12/01/2022	ND	1.76	87.9	2.00	10.1	
Toluene*	<0.050	0.050	12/01/2022	ND	2.00	100	2.00	9.75	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.90	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.35	106	6.00	9.52	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/02/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	195	97.4	200	0.106	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	182	90.8	200	1.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	85.0	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	92.4	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/01/2022	Sampling Date:	12/01/2022
Reported:	12/02/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD (RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 16 (1') (H225635-02)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	12/01/2022	ND	1.76	87.9	2.00	10.1	
Toluene*	<0.050	0.050	12/01/2022	ND	2.00	100	2.00	9.75	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.90	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.35	106	6.00	9.52	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/02/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	195	97.4	200	0.106	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	182	90.8	200	1.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	83.0	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	89.7	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/01/2022	Sampling Date:	12/01/2022
Reported:	12/02/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD (RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 17 (1') (H225635-03)

BTEX 8021B	mg,	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.76	87.9	2.00	10.1	
Toluene*	<0.050	0.050	12/01/2022	ND	2.00	100	2.00	9.75	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.90	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.35	106	6.00	9.52	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/02/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	195	97.4	200	0.106	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	182	90.8	200	1.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	90.8	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	97.7	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/01/2022	Sampling Date:	12/01/2022
Reported:	12/02/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD (RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 18 (1') (H225635-04)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.76	87.9	2.00	10.1	
Toluene*	<0.050	0.050	12/01/2022	ND	2.00	100	2.00	9.75	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.90	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.35	106	6.00	9.52	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/02/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	195	97.4	200	0.106	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	182	90.8	200	1.62	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	89.0	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	97.0	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/01/2022	Sampling Date:	12/01/2022
Reported:	12/02/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD (RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 19 (1') (H225635-05)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.76	87.9	2.00	10.1	
Toluene*	<0.050	0.050	12/01/2022	ND	2.00	100	2.00	9.75	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.90	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.35	106	6.00	9.52	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/02/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/02/2022	ND	195	97.4	200	0.106	
DRO >C10-C28*	<10.0	10.0	12/02/2022	ND	182	90.8	200	1.62	
EXT DRO >C28-C36	<10.0	10.0	12/02/2022	ND					
Surrogate: 1-Chlorooctane	105	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	117 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/01/2022	Sampling Date:	12/01/2022
Reported:	12/02/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD (RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 20 (1') (H225635-06)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.76	87.9	2.00	10.1	
Toluene*	<0.050	0.050	12/01/2022	ND	2.00	100	2.00	9.75	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.90	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.35	106	6.00	9.52	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.0	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/02/2022	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/02/2022	ND	195	97.4	200	0.106	
DRO >C10-C28*	<10.0	10.0	12/02/2022	ND	182	90.8	200	1.62	
EXT DRO >C28-C36	<10.0	10.0	12/02/2022	ND					
Surrogate: 1-Chlorooctane	77.5	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	83.5	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/01/2022	Sampling Date:	12/01/2022
Reported:	12/02/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD (RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: S SW - 6 (0-1') (H225635-07)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.76	87.9	2.00	10.1	
Toluene*	<0.050	0.050	12/01/2022	ND	2.00	100	2.00	9.75	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.90	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.35	106	6.00	9.52	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.5	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/02/2022	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	221	110	200	2.09	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	231	116	200	4.60	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	91.3	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	92.8	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/01/2022	Sampling Date:	12/01/2022
Reported:	12/02/2022	Sampling Type:	Soil
Project Name:	EVGSAU 2963-002 WELLHEAD (RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - HN - 02084	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: S SW - 7 (0-1') (H225635-08)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2022	ND	1.76	87.9	2.00	10.1	
Toluene*	<0.050	0.050	12/01/2022	ND	2.00	100	2.00	9.75	
Ethylbenzene*	<0.050	0.050	12/01/2022	ND	2.06	103	2.00	9.90	
Total Xylenes*	<0.150	0.150	12/01/2022	ND	6.35	106	6.00	9.52	
Total BTEX	<0.300	0.300	12/01/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/02/2022	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2022	ND	221	110	200	2.09	
DRO >C10-C28*	<10.0	10.0	12/01/2022	ND	231	116	200	4.60	
EXT DRO >C28-C36	<10.0	10.0	12/01/2022	ND					
Surrogate: 1-Chlorooctane	95.5	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	96.7	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

BS-3	Blank spike recovery outside of lab established statistical limits, but still within method limits. Data is not adversely affected.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keene, Lab Director/Quality Manager

Received by OCD: 3/6/2023 3:05:23 PM

Page 224 of 242	Page	224	of	242
-----------------	------	-----	----	-----

Relinquished by:		Relinquished by:	K m	Relinquished by:		S S	-	6 FS	SES	-	S FS	2 FS	/ FS	(LAB USE)	LAB#	1775120	Comments:	Receiving Laboratory:	invoice to:	Project Location: (county, state)	Project Name:	Client Name:	F
Date: Time:		Date: Time:	11	Date: Time:		S SW-7 (01')	S SW-6 (0-1')	FS-20 (1')	FS-19 (1')	FS-18 (1')	FS-17 (1')	FS-16 (1')	FS-15 (1')		SAMPLE IDENTIFICATION			ry: Cardinal Laboratories	Tetra Tech, Inc.	Lea County, NM	EVGSAU 2963-002 Wellhead Release	Maverick Natural Resources	Tetra Tech, Inc.
Received by:		Received by:	(Janan	Received by:		12/1/2022	12/1/2022	12/1/2022	12/1/2022	12/1/2022	12/1/2022	12/1/2022	12/1/2022	DATE	YEAR: 2020	SAMPLING		Sampler Signature:		Project #:		Site Manager:	
Date	2	Date	Charlow 1	n Mulal		×	×	×	×	×	×	×	×	WATEI SOIL HCL	2	MATRIX		Ezequiel Moreno		212C-HN-02084	chuck.terhune@tetratech.com	Chuck Terhune	901W Wall Street, Ste 100 Micliand, Texas 79705 Tel (432) 682-4559 Fax (432) 682-3945
e. Ime		e; Ime:	C16-1	Time:	\vdash	×	×	×	×	×	×	×	×	HNO ₃ ICE None	_	METHOD		Moreno		1-02084	<u>ch.com</u>	une	treet, Ste 100 xxas 79705 682-4559 682-3946
		S)	000	210		×	×	×	×	×	×	×	×	# CONT FILTER BTEX 8	ED (Y/N)	X 8260E						
5.40	200	Sample Temperature		AB USE	Ħ	×			×	×	×	×		TPH TX TPH 80	1005	(Ext to	C35)		MRO)		_		
#11		perature		EONLY	E	-	-							PAH 82 Total Me	tals /		a Cd Cr Ba Cd Cr				=	(Circ	
		1 15	2	KEM		+	+	1	F	F		-	F	TCLP V	olatile	s	Su Gu Gi			_		D	
Specia	Rush		Y RUSH	S		-	+	-	-	-	-	-	F	RCI GC/MS	Vol.	8260B	624				_	ANALYSIS	
ial Repo									REC														
ANDARD							NORM PLM (Asbestos)			REQUES													
ts or TI	orized		24 hr		H	×	×	×	×	×	×	×	×	Chloride								od No	
RRP R			r 48 hr		H		-							-	I Wa	_	emistry (see at	ached	list)	_	0.)	
aport			nr 72 hr		H	-	-	F	-	-	-	-	-	Anion/C	ation	n Balar	nce						
			न		H	-	-	-	-		-	F	-	-									
					H	-	+	+	+	+	+	+	-	Hold		_		_			-		

Site Remediation Closure Report December 16, 2022

Maverick Natural Resources

APPENDIX D

Photographic Documentation

.

PROJECT NO.		the EVGSAU 2963-002 weilhead.
212C-MD-02492	SITE NAME	ConocoPhillips EVGSAU 2963-002 Wellhead Release

DESCRIPTION

08:30:32

6

5/5/2021

View southwest. Initial response excavation northeast of

the EVGSAU 2963-002 wellhead.

TETRA TECH, INC.

Site Remediation Closure Report December 16, 2022

Appendix E

NMSLO Seed Mixture Details

.

Received by OCD: 3/6/2023 3:05:23 PM

Page 234 of 242

-

•

MA	PLEGEND	MAP INFORMATION				
Area of Interest (AOI) Area of Interest (AO) Spoil Area	The soil surveys that comprise your AOI were mapped at 1:20,000.				
Area of Interest (AO Soils Soil Map Unit Polyge Soil Map Unit Points Soil Map Unit Points Special Pint Features Image: Special Pint Features <	Image: Story Spot Image: Story Spot <th> Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 18, Sep 10, 2021 </th>	 Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 18, Sep 10, 2021 				
 Saline Spot Sandy Spot Severely Eroded Sp Sinkhole Slide or Slip 	ot	Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Feb 7, 2020—May 12, 2020				
Sodic Spot		The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.				

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
KU	Kimbrough-Lea complex, dry, 0 to 3 percent slopes	0.6	100.0%
Totals for Area of Interest		0.6	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Lea County, New Mexico

KU—Kimbrough-Lea complex, dry, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2tw46 Elevation: 2,500 to 4,800 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 57 to 63 degrees F Frost-free period: 180 to 220 days Farmland classification: Not prime farmland

Map Unit Composition

Kimbrough and similar soils: 45 percent *Lea and similar soils:* 25 percent *Minor components:* 30 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Kimbrough

Setting

Landform: Playa rims, plains *Down-slope shape:* Convex, linear *Across-slope shape:* Concave, linear *Parent material:* Loamy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 3 inches: gravelly loam Bw - 3 to 10 inches: loam Bkkm1 - 10 to 16 inches: cemented material Bkkm2 - 16 to 80 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 4 to 18 inches to petrocalcic
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.01 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 95 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Very low (about 1.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: R077DY049TX - Very Shallow 12-17" PZ Hydric soil rating: No

Description of Lea

Setting

Landform: Plains Down-slope shape: Convex Across-slope shape: Linear Parent material: Calcareous, loamy eolian deposits from the blackwater draw formation of pleistocene age over indurated caliche of pliocene age

Typical profile

A - 0 to 10 inches: loam Bk - 10 to 18 inches: loam Bkk - 18 to 26 inches: gravelly fine sandy loam Bkkm - 26 to 80 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 22 to 30 inches to petrocalcic
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 90 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 3.0
Available water supply, 0 to 60 inches: Very low (about 2.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: R077DY047TX - Sandy Loam 12-17" PZ Hydric soil rating: No

Minor Components

Douro

Percent of map unit: 12 percent Landform: Plains Down-slope shape: Linear Across-slope shape: Linear Ecological site: R077DY047TX - Sandy Loam 12-17" PZ Other vegetative classification: Unnamed (G077DH000TX) Hydric soil rating: No

Kenhill

Percent of map unit: 12 percent Landform: Plains Down-slope shape: Linear Across-slope shape: Linear Ecological site: R077DY038TX - Clay Loam 12-17" PZ Hydric soil rating: No

.

Custom Soil Resource Report

Spraberry

Percent of map unit: 6 percent Landform: Playa rims, plains Down-slope shape: Convex, linear Across-slope shape: Linear Ecological site: R077DY049TX - Very Shallow 12-17" PZ Other vegetative classification: Unnamed (G077DH000TX) Hydric soil rating: No

NMSLO Seed Mix

Loamy (L)

LOAMY (L) SITES SEED MIXTURE:

COMMON NAME	VARIETY	APPLICATION RATE (PLS/Acre)	DRILL BOX
Grasses:			
Black grama	VNS, Southern	1.0	D
Blue grama	Lovington	1.0	D
Sideoats grama	Vaughn, El Reno	4.0	F
Sand dropseed	VNS, Southern	2.0	S
Alkali sacaton	VNS, Southern	1.0	
Little bluestem	Cimarron, Pastura	1.5	F
<u>Forbs:</u> Firewheel (<i>Gaillardia</i>)	VNS, Southern	1.0	Ð
Shrubs:			B
Fourwing saltbush	Marana, Santa Rita	1.0	D
Common winterfat	VNS, Southern	0.5	F
8 8	Total PLS/acr	e 18.0	ST B

S = Small seed drill box, D = Standard seed drill box, F = Fluffy seed drill box VNS = Variety Not Stated, PLS = Pure Live Seed

- Seed mixes should be provided in bags separating seed types into the three categories: small (S), standard (D) and fluffy (F).
- VNS, Southern Seed should be from a southern latitude collection of this species.
- Double seed application rate for broadcast or hydroseeding.
- If one species is not available, contact the SLO for an approved substitute; alternatively the SLO may require other species proportionately increased.
- Additional information on these seed species can be found on the USDA Plants Database website at http://plants.usda.gov.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
Maverick Permian LLC	331199
1111 Bagby Street Suite 1600	Action Number:
Houston, TX 77002	193844
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jnobui	Closure Report Approved. Please implement 19.15.29.13 NMAC when completing P&A.	3/16/2023

Page 242 of 242 CONDITIONS

Action 193844