Page 1 of 100									RECE	EIVED			
Page 1	District 1 1625 N. French I District II 811 S. First St., / District III				Energy M		l Resources		7 2018		Form C-141 vised April 3, 2017 District Office in		
	1000 Rio Brazos District IV 1220 S. St. Franc			i	1220) South	St. France			action action	ordance with	19.15.29 NMAC.	
				Rele				orrective A	ction				
	NABI81				1207		OPERA	TOR			I Report	Final Report	
	Name of Co Address: 63		ville Blvd., N		X 79706			sepha DeLeon No.: 575-263-04	424				
	Facility Nan	ne: Neff	#13 Fed 2 CT	ГВ		1	Facility Typ	e: Central Tank	Batter	у			
	Surface Own	ner:			Mineral	Owner:	Federal			API No:	30-015-261	65	
					LOC	ATION	OF RE	LEASE					
	Unit Letter H	Section 13	Township 22S	Range 31E	Feet from the 1980	North/ North	South Line	Feet from the 660	East/V East	West Line	County Eddy		
	L		1	1	atitude 32.393	33029 I	ongitude	-103 72509 NAD	83				
					NA	FURE	OF REL	EASE					
	Type of Relea	ise: Spill	oil/P.V	N.			A Charles Developed as a set	Oil and 7.24 Barr	els	0.4 Barrel	Volume Recovered: 0.4 Barrel Oil and 7 Barrels produced		
	Source of Re	lease: 2 pl			· · · · · · · · · · · · · · · · · · ·			Water Hour of Occurrence 8; 09:42 AM	æ:	water Date and Hour of Discovery: 05/14/2018; 10:00 AM			
	Was Immedia	te Notice		Yes [] No 🖾 Not F	Required	If YES, To Whom? d						
	By Whom? Was a Water				Date and								
	was a water	course Rea]Yes 🔯] No		If YES, Volume Impacting the Watercourse.						
	If a Watercou N/A	irse was In	npacted, Desci	ribe Fully.	*								
	Describe Cau	ise of Prob	lem and Reme	dial Actio	n Taken.*								
	2 phase separ	ator press	ure safety oper	ned causin	g some fluid to e	scape ves	sel. Lease v	vas immediately is	olated.				
	Describe Are	a Affected	and Cleanup	Action Ta	ken.*								
			acted caliche Remediation			itery prod	uction pad.	Vacuum truck exti	acted fl	uid and reco	overed 0.40 ba	rrel oil and 7	
	I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.										ay endanger or of liability r, human health h any other		
AM	Galeden							<u>OIL CON</u>	SERV	ATION	DIVISION	<u>N</u>	
16:55	Signature:							y Environmental S	pecial	seller /	Same		
23 7:	Printed Nam	e: Josepha	a DeLeon					Flint					
0/20	Title: HES S	pecialist -	Compliance S	Support, E	nvironmental		Approval D	ate: 5/17/12	3	Expiration	Date: N/A	/	
OCD: 1/10/2023 7:16:55 AM			achevron.con		676 262 0124		Conditions	of Approval:	att	acher	Attached	RD. 4758	
0C.	Date: May * Attach Add		eets If Neces		575-263-0424	l		VIL					

Released to Imaging: 3/20/2023 7:39:30 AM

-

Received by OCD: 1/10/2023 7:16:55 AM Form C-141 State of New Mexico

Oil Conservation Division

	Page 2 of 100
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

.

Received by OCD: 1/10/2023	7:16:55 AM State of New Mexico)		Page 3 of 10
	Oil Conservation Divisi		Incident ID	
Page 4	Oil Conservation Divisi	ion	District RP	
			Facility ID	
			Application ID	
regulations all operators are re public health or the environme failed to adequately investigate addition, OCD acceptance of a and/or regulations.	Action given above is true and complete to quired to report and/or file certain release ont. The acceptance of a C-141 report by and remediate contamination that pose a C-141 report does not relieve the operat	e notifications and perform c the OCD does not relieve th a threat to groundwater, surf or of responsibility for comp Title: Date: _1-10-2023	corrective actions for release the operator of liability should ace water, human health or t oliance with any other federa	s which may endanger I their operations have the environment. In Il, state, or local laws
OCD Only Received by: Jocely	/n Harimon	Date: 01/	10/2023	

Oil Conservation Division

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u>: Each of the following i	tems must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.29.	1 NMAC
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: appropriate ODC	C District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report and/or file certai may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and ren human health or the environment. In addition, OCD acceptance of	ations. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in
Printed Name:	Title:
Signature: My Drite	Date:1-10-2023
email:	Telephone: _432-687-7108
OCD Only Received by: Jocelyn Harimon	Date:01/10/2023
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.
Closure Approved by: <u>Ashley Maywell</u>	Date:3/20/2023
Printed Name: Ashley Maxwell	Title: Environmental Specialist

REMEDIATION SUMMARY AND

SOIL CLOSURE REQUEST

Chevron Corporation Neff #13 Fed 2 CTB Eddy County, New Mexico Unit Letter "H", Section 13, Township 22 South, Range 31 East Latitude 32.39330° North, Longitude 103.72509° West NMOCD Reference #: nAB1814131834

Prepared For:

Chevron Corporation 6301 Deauville Blvd. Midland, TX 79706

Prepared By:

Etech Environmental & Safety Solutions, Inc. P.O. Box 62228 Midland, Texas 79711

January 3, 2023

Black Eith

Blake Estep Project Manager

y Kindley

Jeff Kindley, P.G. Senior Project Manager

TABLE OF CONTENTS

INTRODUCTION	1
NMOCD SITE CLASSIFICATION	1
INITIAL SITE ASSESSMENT	2
DELINEATION, REMEDIATION, AND SOIL SAMPLING ACTIVITIES	2
SOIL DISPOSAL AND BACKFILL ACTIVITIES	2
SOIL CLOSURE REQUEST	2
LIMITATIONS	3
DISTRIBUTION	4

FIGURES

- Figure 1 Site Location Topographic Map
- Figure 2 Aerial Proximity Map
- Figure 3 USGS Well Proximity Map
- Figure 4 Site Sample Location Map

TABLES

Table 1 - Concentrations of Benzene, BTEX, TPH and Chloride in Soil

APPENDICES

Appendix A – Release Notification and Corrective Action (Form C-141)

Appendix B – Depth to Groundwater Information

Appendix C – Photographic Documentation

Appendix D – Laboratory Analytical Reports

INTRODUCTION

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Chevron Corporation, has prepared this Remediation Summary and Soil Closure Request for the Release Site known as Neff #13 Fed 2 CTB. The legal description of the Release Site is Unit Letter "H", Section 13, Township 22 South, Range 31 East, in Eddy County, New Mexico. The subject property is administered by the New Mexico U.S. Department of the Interior Bureau of Land Management (BLM). The Release Site GPS coordinates are 32.39330° North and 103.72509° West. A "Site Location Topographic Map" is provided as Figure 1.

On May 14, 2018, two phase separator over pressured causing the pressure relief valve to open causing the release at the Neff #13 Fed 2 CTB (Release Site). Approximately four tenths (0.4) barrels of oil and seven (7) barrels of produced water was released, with four tenths (0.4) of oil and seven (7) barrels of produced water recovered, for a net loss of zero (0) barrels of oil and produced water. A copy of the Release Notification and Corrective Action (NMCOD Form C-141) is provided as Appendix A.

Photographic documentation for the Release Site is provided as Appendix B.

NMOCD SITE CLASSIFICATION

A search of the groundwater database maintained by the United States Geological Survey (USGS) and the New Mexico Office of the State Engineer (NMOSE) did not identify any registered water wells with a ¹/₂-mile of the Release Site. Approximately 0.21 miles east of the release site a boring was installed during the construction of a recycling facility, the boring was terminated at 80 feet bgs and groundwater was not observed during drilling. No surface water or water wells were observed within one thousand (1,000) feet of the Release Site. The release is located in a low potential karst area. An "Aerial Proximity Map and USGS Well Proximity Map" are provided as Figure 2 and Figure 3, respectfully. See appendix B for depth to groundwater data.

Based on the NMOCD site classification system, the following soil remediation levels were assigned to the Release Site as a result of this criteria:

- Benzene 10 mg/kg
- BTEX 50 mg/kg
- TPH (GRO+DRO) 1,000 mg/kg
- TPH (GRO+DRO+MRO) 2,500 mg/kg
- Chloride 10,000 mg/kg

INITIAL SITE ASSESSMENT

On August 11, 2022, Etech conducted a initial site assessment and determined the release impacted approximately five thousand nine hundred thirteen (5,913) square feet of surface area on the caliche tank battery pad. See Appendix C for initial release photographs.

DELINEATION, REMEDIATION, AND SOIL SAMPLING ACTIVITES

Between August 11-19, 2022, Etech commenced delineation and remediation activities at the Release Site utilizing a mini-excavator, backhoe, and manual means. Based on field chloride testing, the site was excavated to dimensions of thirty (30) feet to fifty-two (52) feet in width, by one hundred forty-two (142) feet in length to a depth of two (2) feet below ground surface (bgs). Impacted soils were stockpiled on plastic at the site awaiting final disposition to an approved NMOCD facility.

On August 18, 2022, thirty-two (32) five (5) point composite bottom (Bottom Hole 1 through Bottom Hole 32) and six (6) five (5) point composite wall (North Sidewall 1, 2, South Sidewall 1, 2, East and West Sidewall) samples were collected at the site representing every two hundred (200) square feet, placed into a laboratory provided container, labeled, stored on ice, and transported under proper chain-of-custody documentation to Europhins Laboratory in Midland, Texas. The soil samples were analyzed for total petroleum hydrocarbons (TPH) utilizing EPA Method SW 846-8015M, benzene, toluene, ethylbenzene and xylene (BTEX) utilizing Method SW 846-8021B, and chloride utilizing EPA Method 300.0. See Figure 4 Site Sample Location Map for sample locations. The benzene, total BTEX, TPH, and chlorides were all below the NMOCD standards for all samples analyzed. See Table 1 Concentrations of Benzene, BTEX, TPH, and Chloride in Soil for sampling results and Appendix D for laboratory analytical reports. See Appendix C for photos depicting remediation and backfill activities.

SOIL DISPOSAL AND BACKFILL ACTIVITIES

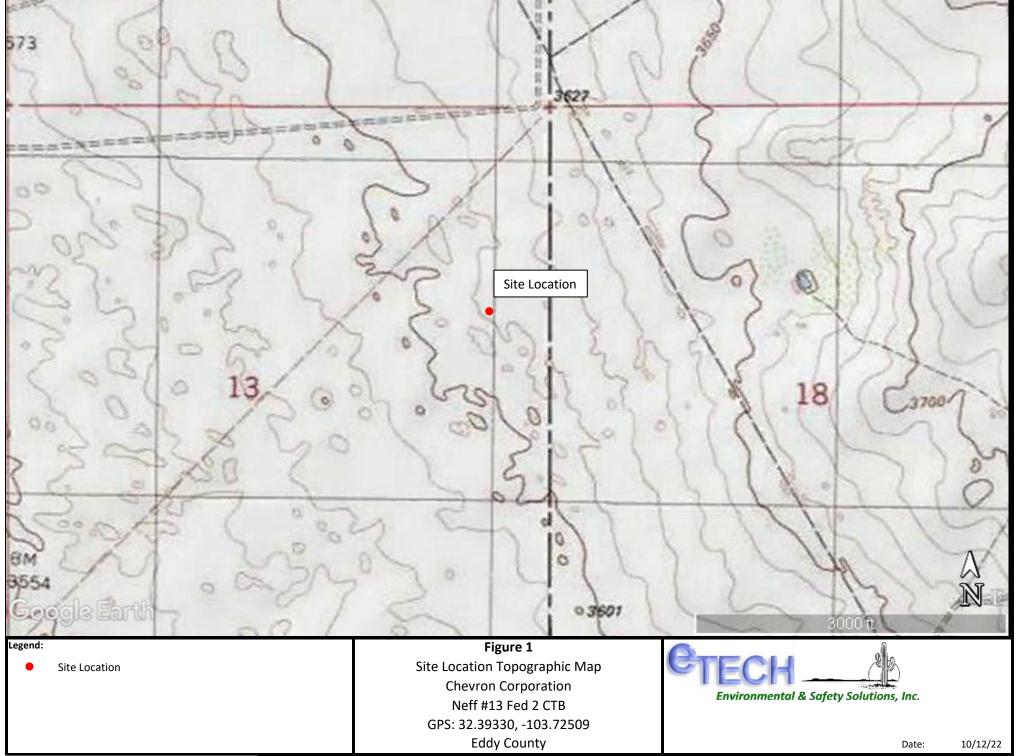
Between September 20-21, Etech transported approximately five hundred four (504) cubic yards of impacted soil to R360 disposal facility in Eddy County, New Mexico. Etech transported approximately four hundred fifty (450) cubic yards of like-sourced material to the Release Site to be used as backfill material. Utilizing a backhoe, the excavation was backfilled using the provided material and the site was restored to "near original conditions".

SITE CLOSURE REQUEST

Laboratory analytical results indicate TPH, Chloride, and BTEX concentrations were below the NMOCD regulatory limits in each of the submitted soil samples. Etech, on behalf of Chevron, respectfully requests the NMOCD and BLM grant site closure to the Neff #13 Fed 2 CTB (NMOCD Incident ID: nAB1814131834).

LIMITATIONS

Etech has prepared this Closure Request and Remediation Summary Report to the best of its ability. No other warranty, expressed or implied, is made or intended. Etech has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. Etech has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. Etech has prepared this report, in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Etech also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report. This report has been prepared for the benefit of Chevron Corporation. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Etech and/or Chevron Corporation.

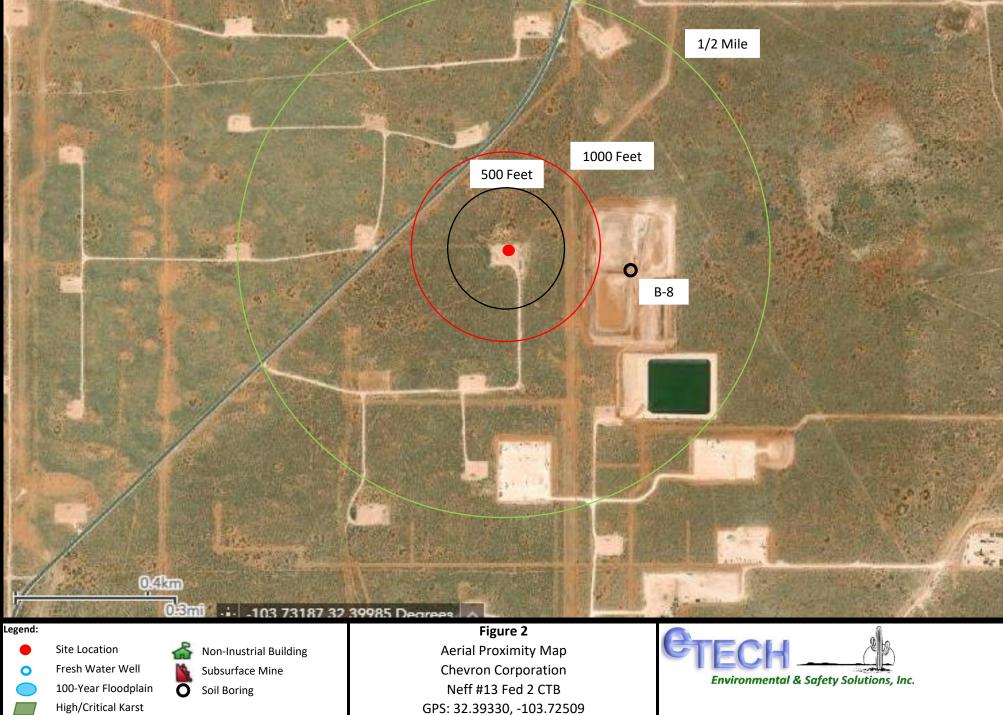

DISTRIBUTION

Copy 1:	New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division, District 2 506 West Texas Artesia, New Mexico 88210
Copy 2:	U.S. Department of the Interior Bureau of Land Management
	620 East Greene Street
	Carlsbad, New Mexico 88220
Copy 3:	Amy Barnhill
	Chevron Corporation
	6301 Deauville Blvd.
	Midland, Texas 79706
Copy 4:	Etech Environmental & Safety Solutions, Inc.
	P.O. Box 62228
	Midland, Texas 79711

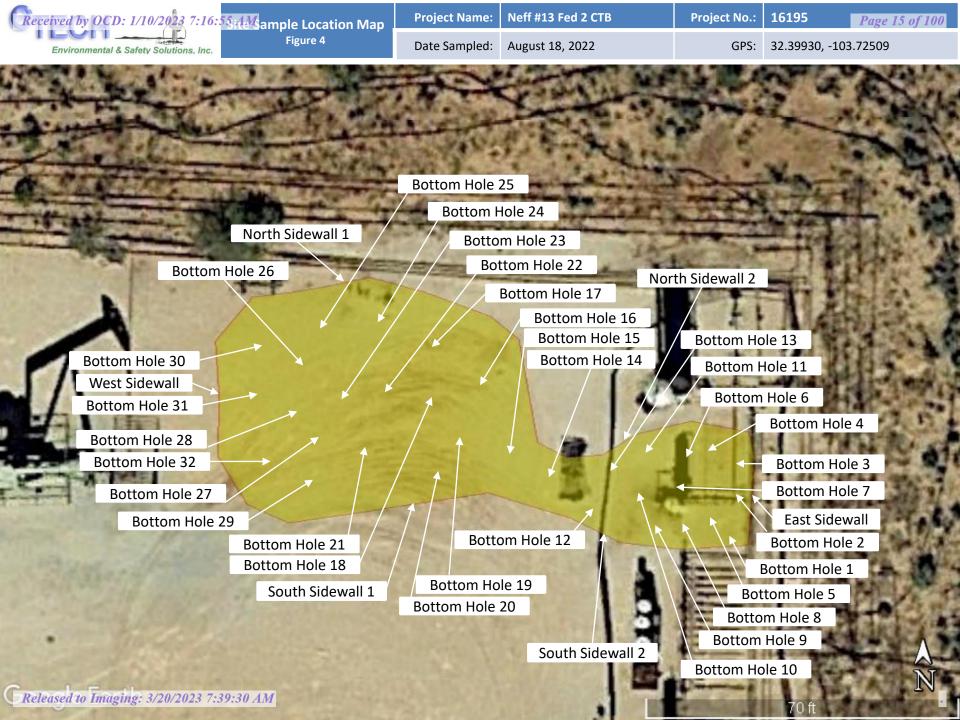
FIGURES

Received by OCD: 1/10/2023 7:16:55 AM

Page 12 of 100


Released to Imaging: 3/20/2023 7:39:30 AM

Released to Imaging: 3/20/2023 7:39:30 AM


12/14/22

Eddy County

TABLES

TABLE 1

CONCENTRATIONS OF BENZENE, BTEX, TPH AND CHLORIDE IN SOIL

CHEVRON CORPORATION

NEFF #13 FED 2 CTB

EDDY COUNTY, NEW MEXICO All concentrations are reported in mg/Kg

	METHODS: SW 846-8021B METHOD: SW 8015M								E 300.0						
SAMPLE LOCATION	DEPTH	SAMPLE DATE	BENZENE	TOLUENE	ETHYL- BENZENE	m, p - XYLENES	o - XYLENE	TOTAL XYLENES	TOTAL BTEX	TPH GRO C ₆ -C ₁₂	TPH DRO C ₁₂ -C ₂₈	TPH GRO+DRO C ₆ -C ₂₈	TPH ORO C ₂₈ -C ₃₅	ТОТАL ТРН С ₆ -С ₃₅	CHLORIDE
NMOCD	RRAL		10 mg/kg						50 mg/kg			1,000 mg/kg		2,500 mg/kg	10,000 mg/kg
Bottom Hole 1	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	69.5
Bottom Hole 2	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	163
Bottom Hole 3	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	65.7
Bottom Hole 4	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	106
Bottom Hole 5	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	67.3
Bottom Hole 6	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	14
Bottom Hole 7	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.03
Bottom Hole 8	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	199
Bottom Hole 9	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	69.4
Bottom Hole 10	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	106
Bottom Hole 11	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	335
Bottom Hole 12	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	173
Bottom Hole 13	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	38
Bottom Hole 14	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	187
Bottom Hole 15	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	353
Bottom Hole 16	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	57.1
Bottom Hole 17	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	74.4
Bottom Hole 18	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	28.8
Bottom Hole 19	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	33.9
Bottom Hole 20	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	48.9
Bottom Hole 21	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	39.5
Bottom Hole 22	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	19.7
Bottom Hole 23	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	15.1
Bottom Hole 24	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	37.5
Bottom Hole 25	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	52.1	52.1	ND	52.1	19.5
Bottom Hole 26	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	181
Bottom Hole 27	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	35
Bottom Hole 28	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	17.9
Bottom Hole 29	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	115	115	34.7	150	140
Bottom Hole 30	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	57.9
Bottom Hole 31	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	28
Bottom Hole 32	24''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	21.3
North Sidewall 1	18''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	26.4
North Sidewall 2	18''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.28
East Sidewall	18''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	148
South Sidewall 1	18''_	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	98.9

Released to Imaging: 3/20/2023 7:39:30 AM

TABLE 1

CONCENTRATIONS OF BENZENE, BTEX, TPH AND CHLORIDE IN SOIL

CHEVRON CORPORATION

NEFF #13 FED 2 CTB

EDDY COUNTY, NEW MEXICO All concentrations are reported in mg/Kg

					METH	ODS: SW 84	6-8021B				ME	THOD: SW 8015N	1		E 300.0
SAMPLE LOCATION	DEPTH	H SAMPLE DATE	BENZENE	TOLUENE	ETHYL- BENZENE	m, p - XYLENES	o - XYLENE	TOTAL XYLENES	TOTAL BTEX	TPH GRO C ₆ -C ₁₂	TPH DRO C ₁₂ -C ₂₈	TPH GRO+DRO C ₆ -C ₂₈	TPH ORO C ₂₈ -C ₃₅	ТОТАL ТРН С ₆ -С ₃₅	CHLORIDE
NMOCD RRAL			10 mg/kg						50 mg/kg			1,000 mg/kg		2,500 mg/kg	10,000 mg/kg
South Sidewall 2	18''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.96
West Sidewall	18''	8/18/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	16.2

Bold and Yellow Highlighted indicates Analyte Above NMOCD Regulatory Limit

ND - Analyte Not Detected at or above the laboratory reporting limit

** - Sample area was eliminated during further excavation activities.

APPENDICES

Appendix C – Release Notification and Corrective Action (Form C-141)

Received by OCD: 1/10/2023 7:16:55 AM Form C-141 State of New Mexico

Oil Conservation Division

	Page 21 of 100
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within 1/2-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

•

Received by OCD: 1/10/20	23 7:16:55 AM State of New Mexico			Page 22 of 100
Form C-141			Incident ID	
Page 4	Oil Conservation Division	il Conservation Division		
			Facility ID	
			Application ID	
regulations all operators are public health or the environ failed to adequately investig addition, OCD acceptance o and/or regulations. Printed Name:	rmation given above is true and complete to the required to report and/or file certain release noti nent. The acceptance of a C-141 report by the C ate and remediate contamination that pose a three f a C-141 report does not relieve the operator of	ifications and perform co DCD does not relieve the eat to groundwater, surfa responsibility for comp	prrective actions for rele e operator of liability sh- ice water, human health liance with any other fe	eases which may endanger ould their operations have or the environment. In
email:		Telephone:		
OCD Only Received by:		Date:		

Appendix D – Depth to Groundwater Information

Received by OCD: 1/10/2023 7:16:55 AM

	BORING LOG NO. B-8 Page 1 of 2											
PR		OJECT: Lost Tanks	Detention Ponds		CLIENT: Topographic Land Survey Fort Worth, TX			d Surveyo		<u> </u>		
	SIT	E: Campbell F Lea County	Road and Red Road /, NM		Fort	wortr	1, IX	(
	GRAPHIC LOG	LOCATION See Exploration Latitude: 32.3929° Longitude: DEPTH		Approximate Surfa	ace Elev.: 3627 (Ft.) +/- ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	WATER CONTENT (%)	LIMITS	PERCENT FINES
		<u>SILTY SAND (SM)</u> , r	eddish brown, very loose	2	ELEVATION (FL)			X	0-1-1 N=2			
		-loose at 2' -dense between 4' a	ind 8'			_ _ 5 _		XX	2-3-5 N=8 10-15-16 N=31			
		-ven/ dense materia	l locally called caliche en	countered below 8'		-			20-17-15 N=32			
:LLAYER.GPJ 4/10/19		-very dense materia				 10 15		X	50/4"			
A18335 LOST TANKS DETENT GPJ MODELLAYER.GPJ 410/19						15— — — 20— —		X	50/3"			
WELL A4185357 LOST		28.0 SILTY CLAYEY SAN	<u>ID (SC-SM)</u> , brown, very	dense	3599+/-	 25 		X	50/3"			
GEO SMART LOG-NO						30			00/3			
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO						35— — — 40— —		X	50/6"			
PARATED F		Stratification lines are approximate. In-situ, the transition may be gradual.				Ham	mer T	ype:	Automatic			
T VALID IF SEF	Advancement Method: See Exploration and Testing Prod Hollow Stem Auger description of field and laboratory used and additional data (If any). See Supporting Information for exsymbols and abbreviations. Abandonment Method: symbols and abbreviations. Boring backfilled with auger cuttings upon completion. Elevation obtained from Google E			aboratory procedures a (If any).	Notes	3:						
OG IS NO.				ons.								
ING F		Groundwater not observed while drilling				Boring	Starte	ed: 03	-15-2019	Boring Corr	pleted: 03-15-	2019
THIS BOR		Dry at completion 10400 State			Highway 191 nd, TX	Drill Ri Project	-		5357	Driller: Tim		

Received by OCD: 1/10/2023 7:16:55 AM

New Mexico Office of the State Engineer Wells with Well Log Information

No wells found.

UTMNAD83 Radius Search (in meters):

Easting (X): 619932.44

Northing (Y): 3584750.84

Radius: 804

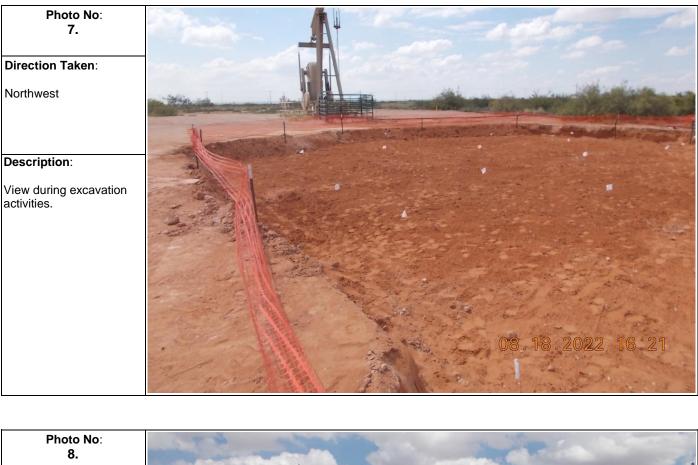
The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Appendix E – Photographic Documentation

Project Name: Neff #13 Fed 2 CTB Project No: 16195 Photographic Documentation

Project Name: Neff #13 Fed 2 CTB Project No: 16195

Photographic Documentation


Photographic Documentation

Project Name: Neff #13 Fed 2 CTB Project No: 16195

Photo No:	
5.	
Direction Taken:	
South	
Description:	
View during excavation activities.	
activities.	
	08,12,2022 15:27
	UQ: JZ: ZUZZ IU. ZI
H	
Photo No:	
6.	and the second sec
Direction Taken:	
East	
Description:	
View during excavation activities.	
activities.	
	and the second sec
	and the second sec
	08.15.2022 16:48
	08.15.2022 16:48

And the first

Project Name: Neff #13 Fed 2 CTB Project No: 16195 Photographic Documentation

Page 32 of 100

Project Name: Neff #13 Fed 2 CTB Project No: 16195

Photographic Documentation

Project Name: Neff #13 Fed 2 CTB Project No: 16195

Photographic Documentation

Appendix F - Ncdt cvqt { 'Analytical Reports

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Brandon Wilson E Tech Environmental & Safety Solutions, Inc. [1] 13000 West County Road 100 Odessa, TX 79765

> Project: Neff #2 Fed CTB Project Number: 16195 Location: New Mexico

Lab Order Number: 2H19009

Current Certification

Report Date: 08/30/22

E Tech Environmental & Safety Solutions, Inc. [1] 13000 West County Road 100 Odessa TX, 79765 Project: Neff #2 Fed CTB Project Number: 16195 Project Manager: Brandon Wilson

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Bottom Hole - 1 @ 24"	2H19009-01	Soil	08/18/22 10:32	08-19-2022 13:40
Bottom Hole - 2 @ 24"	2H19009-02	Soil	08/18/22 10:35	08-19-2022 13:40
Bottom Hole - 3 @ 24"	2H19009-03	Soil	08/18/22 10:38	08-19-2022 13:40
Bottom Hole - 4 @ 24"	2H19009-04	Soil	08/18/22 10:41	08-19-2022 13:40
Bottom Hole - 5 @ 24"	2H19009-05	Soil	08/18/22 10:45	08-19-2022 13:40
Bottom Hole - 6 @ 24"	2H19009-06	Soil	08/18/22 10:48	08-19-2022 13:40
Bottom Hole - 7 @ 24"	2H19009-07	Soil	08/18/22 10:52	08-19-2022 13:40
Bottom Hole - 8 @ 24"	2H19009-08	Soil	08/18/22 10:56	08-19-2022 13:40
Bottom Hole - 9 @ 24"	2H19009-09	Soil	08/18/22 10:59	08-19-2022 13:40
Bottom Hole - 10 @ 24"	2H19009-10	Soil	08/18/22 11:03	08-19-2022 13:40
Bottom Hole - 11 @ 24"	2H19009-11	Soil	08/18/22 11:07	08-19-2022 13:40
Bottom Hole - 12 @ 24"	2H19009-12	Soil	08/18/22 11:10	08-19-2022 13:40
Bottom Hole - 13 @ 24"	2H19009-13	Soil	08/18/22 11:13	08-19-2022 13:40
Bottom Hole - 14 @ 24"	2H19009-14	Soil	08/18/22 11:16	08-19-2022 13:40
Bottom Hole - 15 @ 24"	2H19009-15	Soil	08/18/22 11:19	08-19-2022 13:40
Bottom Hole - 16 @ 24"	2H19009-16	Soil	08/18/22 11:22	08-19-2022 13:40
Bottom Hole - 17 @ 24"	2H19009-17	Soil	08/18/22 11:25	08-19-2022 13:40
Bottom Hole - 18 @ 24"	2H19009-18	Soil	08/18/22 11:28	08-19-2022 13:40
Bottom Hole - 19 @ 24"	2H19009-19	Soil	08/18/22 11:31	08-19-2022 13:40
Bottom Hole - 20 @ 24"	2H19009-20	Soil	08/18/22 11:34	08-19-2022 13:40
Bottom Hole - 21 @ 24"	2H19009-21	Soil	08/18/22 11:37	08-19-2022 13:40
Bottom Hole - 22 @ 24"	2H19009-22	Soil	08/18/22 11:40	08-19-2022 13:40
Bottom Hole - 23 @ 24"	2H19009-23	Soil	08/18/22 11:43	08-19-2022 13:40
Bottom Hole - 24 @ 24"	2H19009-24	Soil	08/18/22 11:46	08-19-2022 13:40
Bottom Hole - 25 @ 24"	2H19009-25	Soil	08/18/22 11:49	08-19-2022 13:40
Bottom Hole - 26 @ 24"	2H19009-26	Soil	08/18/22 11:53	08-19-2022 13:40
Bottom Hole - 27 @ 24"	2H19009-27	Soil	08/18/22 11:56	08-19-2022 13:40
Bottom Hole - 28 @ 24"	2H19009-28	Soil	08/18/22 11:59	08-19-2022 13:40
Bottom Hole - 29 @ 24"	2H19009-29	Soil	08/18/22 12:04	08-19-2022 13:40
Bottom Hole - 30 @ 24"	2H19009-30	Soil	08/18/22 12:08	08-19-2022 13:40
Bottom Hole - 31 @ 24"	2H19009-31	Soil	08/18/22 12:12	08-19-2022 13:40
Bottom Hole - 32 @ 24"	2H19009-32	Soil	08/18/22 12:15	08-19-2022 13:40
North Side Wall - 1 @ 18"	2H19009-33	Soil	08/18/22 12:18	08-19-2022 13:40
North Side Wall - 2 @ 18"	2H19009-34	Soil	08/18/22 12:21	08-19-2022 13:40

E Tech Environmental & Safety Solutions, Inc. [1]
13000 West County Road 100
Odessa TX, 79765

Project: Neff #2 Fed CTB Project Number: 16195 Project Manager: Brandon Wilson

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
South Side Wall - 1 @ 18"	2H19009-35	Soil	08/18/22 12:25	08-19-2022 13:40
South Side Wall - 2 @ 18"	2H19009-36	Soil	08/18/22 12:30	08-19-2022 13:40
West Side Wall @ 18"	2H19009-37	Soil	08/18/22 12:35	08-19-2022 13:40
East Side Wall - 1 @ 18"	2H19009-38	Soil	08/18/22 12:39	08-19-2022 13:40

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Neff #2 Fed CTB
13000 West County Road 100	Project Number:	16195
Odessa TX, 79765	Project Manager:	Brandon Wilson

Bottom Hole - 1 @ 24''

2H19009-01 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 10:30	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 10:30	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 10:30	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 10:30	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 10:30	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		167 %	80-120		P2H2205	08/22/22 14:15	08/23/22 10:30	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		82.4 %	80-120		P2H2205	08/22/22 14:15	08/23/22 10:30	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	69.5	1.01	mg/kg dry	1	P2H2611	08/26/22 13:45	08/27/22 03:48	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Fotal Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2H2305	08/23/22 10:30	08/26/22 08:34	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P2H2305	08/23/22 10:30	08/26/22 08:34	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2H2305	08/23/22 10:30	08/26/22 08:34	TPH 8015M	
Surrogate: 1-Chlorooctane		94.5 %	70-130		P2H2305	08/23/22 10:30	08/26/22 08:34	TPH 8015M	
Surrogate: o-Terphenyl		99.6 %	70-130		P2H2305	08/23/22 10:30	08/26/22 08:34	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	08/23/22 10:30	08/26/22 08:34	calc	

E Tech Environmental & Safety Soluti 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	Number:	Neff #2 Fed (16195 Brandon Wils				
					le - 2 @ 24' -02 (Soil)	,			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental L	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 10:51	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 10:51	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 10:51	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 10:51	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 10:51	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		84.7 %	80-120		P2H2205	08/22/22 14:15	08/23/22 10:51	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		166 %	80-120		P2H2205	08/22/22 14:15	08/23/22 10:51	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	163	1.02	mg/kg dry	1	P2H2611	08/26/22 13:45	08/27/22 04:01	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2H2305	08/23/22 10:30	08/26/22 03:52	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P2H2305	08/23/22 10:30	08/26/22 03:52	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2H2305	08/23/22 10:30	08/26/22 03:52	TPH 8015M	
Surrogate: 1-Chlorooctane		90.2 %	70-130		P2H2305	08/23/22 10:30	08/26/22 03:52	TPH 8015M	
Surrogate: o-Terphenyl		96.3 %	70-130		P2H2305	08/23/22 10:30	08/26/22 03:52	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	08/23/22 10:30	08/26/22 03:52	calc	

E Tech Environmental & Safety Soluti 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	Number:	Neff #2 Fed (16195 Brandon Wils				
					e - 3 @ 24' -03 (Soil)	,			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental L	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 11:54	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 11:54	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 11:54	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 11:54	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 11:54	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		165 %	80-120		P2H2205	08/22/22 14:15	08/23/22 11:54	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		80.1 %	80-120		P2H2205	08/22/22 14:15	08/23/22 11:54	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	65.7	1.01	mg/kg dry	1	P2H2611	08/26/22 13:45	08/27/22 04:15	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 05:41	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 05:41	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 05:41	TPH 8015M	
Surrogate: 1-Chlorooctane		102 %	70-130		P2H2306	08/23/22 11:00	08/27/22 05:41	TPH 8015M	
Surrogate: o-Terphenyl		124 %	70-130		P2H2306	08/23/22 11:00	08/27/22 05:41	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	08/23/22 11:00	08/27/22 05:41	calc	

E Tech Environmental & Safety Soluti 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		•	Number:	Neff #2 Fed 0 16195 Brandon Wils				
					le - 4 @ 24' -04 (Soil)	,			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 12:16	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 12:16	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 12:16	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 12:16	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 12:16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		80.1 %	80-120		P2H2205	08/22/22 14:15	08/23/22 12:16	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		160 %	80-120		P2H2205	08/22/22 14:15	08/23/22 12:16	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	dard Met	hods						
Chloride	106	1.02	mg/kg dry	1	P2H2611	08/26/22 13:45	08/27/22 04:28	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 06:03	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 06:03	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 06:03	TPH 8015M	
Surrogate: 1-Chlorooctane		96.6 %	70-130		P2H2306	08/23/22 11:00	08/27/22 06:03	TPH 8015M	
Surrogate: o-Terphenyl		119 %	70-130		P2H2306	08/23/22 11:00	08/27/22 06:03	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	08/23/22 11:00	08/27/22 06:03	calc	

E Tech Environmental & Safety Soluti 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		•	Number:	Neff #2 Fed 0 16195 Brandon Wils				
					le - 5 @ 24' -05 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 12:37	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 12:37	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 12:37	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 12:37	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 12:37	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		80.4 %	80-120		P2H2205	08/22/22 14:15	08/23/22 12:37	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		167 %	80-120		P2H2205	08/22/22 14:15	08/23/22 12:37	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	dard Met	hods						
Chloride	67.3	1.02	mg/kg dry	1	P2H2611	08/26/22 13:45	08/27/22 04:42	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 06:25	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 06:25	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 06:25	TPH 8015M	
Surrogate: 1-Chlorooctane		99.2 %	70-130		P2H2306	08/23/22 11:00	08/27/22 06:25	TPH 8015M	
Surrogate: o-Terphenyl		123 %	70-130		P2H2306	08/23/22 11:00	08/27/22 06:25	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	08/23/22 11:00	08/27/22 06:25	calc	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	Number:	Neff #2 Fed 0 16195 Brandon Wils				
					le - 6 @ 24' -06 (Soil)	•			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00106	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 12:58	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 12:58	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 12:58	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 12:58	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 12:58	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		80.8 %	80-120		P2H2205	08/22/22 14:15	08/23/22 12:58	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		167 %	80-120		P2H2205	08/22/22 14:15	08/23/22 12:58	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	14.0	1.06	mg/kg dry	1	P2H2611	08/26/22 13:45	08/27/22 04:55	EPA 300.0	
% Moisture	6.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	26.6	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 06:47	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 06:47	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 06:47	TPH 8015M	
Surrogate: 1-Chlorooctane		95.3 %	70-130		P2H2306	08/23/22 11:00	08/27/22 06:47	TPH 8015M	
Surrogate: o-Terphenyl		108 %	70-130		P2H2306	08/23/22 11:00	08/27/22 06:47	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	08/23/22 11:00	08/27/22 06:47	calc	

E Tech Environmental & Safety Soluti 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		•	Number:	Neff #2 Fed 16195 Brandon Wil				
					le - 7 @ 24' -07 (Soil)	,			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00109	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 13:19	EPA 8021B	
Toluene	ND	0.00109	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 13:19	EPA 8021B	
Ethylbenzene	ND	0.00109	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 13:19	EPA 8021B	
Xylene (p/m)	ND	0.00217	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 13:19	EPA 8021B	
Xylene (o)	ND	0.00109	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 13:19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		81.4 %	80-120		P2H2205	08/22/22 14:15	08/23/22 13:19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		168 %	80-120		P2H2205	08/22/22 14:15	08/23/22 13:19	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	7.03	1.09	mg/kg dry	1	P2H2611	08/26/22 13:45	08/27/22 05:35	EPA 300.0	
% Moisture	8.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	27.2	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 07:10	TPH 8015M	
>C12-C28	ND	27.2	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 07:10	TPH 8015M	
>C28-C35	ND	27.2	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 07:10	TPH 8015M	
Surrogate: 1-Chlorooctane		91.2 %	70-130		P2H2306	08/23/22 11:00	08/27/22 07:10	TPH 8015M	
Surrogate: o-Terphenyl		104 %	70-130		P2H2306	08/23/22 11:00	08/27/22 07:10	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.2	mg/kg dry	1	[CALC]	08/23/22 11:00	08/27/22 07:10	calc	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		•	Number:	Neff #2 Fed 16195 Brandon Wil				
					le - 8 @ 24' -08 (Soil)	'			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 13:41	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 13:41	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 13:41	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 13:41	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 13:41	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		81.3 %	80-120		P2H2205	08/22/22 14:15	08/23/22 13:41	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		165 %	80-120		P2H2205	08/22/22 14:15	08/23/22 13:41	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	199	1.01	mg/kg dry	1	P2H2611	08/26/22 13:45	08/27/22 06:15	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 07:32	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 07:32	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 07:32	TPH 8015M	
Surrogate: 1-Chlorooctane		100 %	70-130		P2H2306	08/23/22 11:00	08/27/22 07:32	TPH 8015M	
Surrogate: o-Terphenyl		121 %	70-130		P2H2306	08/23/22 11:00	08/27/22 07:32	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	08/23/22 11:00	08/27/22 07:32	calc	

E Tech Environmental & Safety Soluti 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]			Number:	Neff #2 Fed 16195 Brandon Wil				
					le - 9 @ 24' -09 (Soil)	'			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 14:02	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 14:02	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 14:02	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 14:02	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 14:02	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		172 %	80-120		P2H2205	08/22/22 14:15	08/23/22 14:02	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		81.2 %	80-120		P2H2205	08/22/22 14:15	08/23/22 14:02	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	69.4	1.02	mg/kg dry	1	P2H2611	08/26/22 13:45	08/27/22 06:28	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 07:54	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 07:54	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 07:54	TPH 8015M	
Surrogate: 1-Chlorooctane		97.6 %	70-130		P2H2306	08/23/22 11:00	08/27/22 07:54	TPH 8015M	
Surrogate: o-Terphenyl		120 %	70-130		P2H2306	08/23/22 11:00	08/27/22 07:54	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	08/23/22 11:00	08/27/22 07:54	calc	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	Number:	Neff #2 Fed 0 16195 Brandon Wils				
					e - 10 @ 24 -10 (Soil)	,,			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 14:23	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 14:23	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 14:23	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 14:23	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 14:23	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		81.0 %	80-120		P2H2205	08/22/22 14:15	08/23/22 14:23	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		170 %	80-120		P2H2205	08/22/22 14:15	08/23/22 14:23	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	dard Met	hods						
Chloride	106	1.03	mg/kg dry	1	P2H2611	08/26/22 13:45	08/27/22 06:42	EPA 300.0	
% Moisture	3.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 08:16	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 08:16	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 08:16	TPH 8015M	
Surrogate: 1-Chlorooctane		101 %	70-130		P2H2306	08/23/22 11:00	08/27/22 08:16	TPH 8015M	
Surrogate: o-Terphenyl		118 %	70-130		P2H2306	08/23/22 11:00	08/27/22 08:16	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	08/23/22 11:00	08/27/22 08:16	calc	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	Number:	Neff #2 Fed (16195 Brandon Wils				
					e - 11 @ 24 -11 (Soil)	••			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	Lab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 14:44	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 14:44	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 14:44	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 14:44	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P2H2205	08/22/22 14:15	08/23/22 14:44	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		175 %	80-120		P2H2205	08/22/22 14:15	08/23/22 14:44	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		81.0 %	80-120		P2H2205	08/22/22 14:15	08/23/22 14:44	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	335	1.01	mg/kg dry	1	P2H2611	08/26/22 13:45	08/27/22 06:55	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 08:39	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 08:39	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 08:39	TPH 8015M	
Surrogate: 1-Chlorooctane		98.1 %	70-130		P2H2306	08/23/22 11:00	08/27/22 08:39	TPH 8015M	
Surrogate: o-Terphenyl		120 %	70-130		P2H2306	08/23/22 11:00	08/27/22 08:39	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	08/23/22 11:00	08/27/22 08:39	calc	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	t Number:	Neff #2 Fed (16195 Brandon Wils				
					e - 12 @ 24 -12 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 20:05	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 20:05	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 20:05	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 20:05	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 20:05	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		80.3 %	80-120		P2H2310	08/23/22 14:48	08/23/22 20:05	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		175 %	80-120		P2H2310	08/23/22 14:48	08/23/22 20:05	EPA 8021B	S-GC
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	173	1.01	mg/kg dry	1	P2H2611	08/26/22 13:45	08/27/22 07:08	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP.	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 09:01	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 09:01	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 09:01	TPH 8015M	
Surrogate: 1-Chlorooctane		98.7 %	70-130		P2H2306	08/23/22 11:00	08/27/22 09:01	TPH 8015M	
Surrogate: o-Terphenyl		118 %	70-130		P2H2306	08/23/22 11:00	08/27/22 09:01	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	08/23/22 11:00	08/27/22 09:01	calc	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	t Number:	Neff #2 Fed (16195 Brandon Wils				
					e - 13 @ 24 -13 (Soil)	••			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental L	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 04:31	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 04:31	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 04:31	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 04:31	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 04:31	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		82.6 %	80-120		P2H2310	08/23/22 14:48	08/24/22 04:31	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		243 %	80-120		P2H2310	08/23/22 14:48	08/24/22 04:31	EPA 8021B	S-GC
General Chemistry Parameters by	EPA / Stand	dard Met	hods						
Chloride	38.0	1.03	mg/kg dry	1	P2H2611	08/26/22 13:45	08/27/22 07:22	EPA 300.0	
% Moisture	3.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP.	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 10:08	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 10:08	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 10:08	TPH 8015M	
Surrogate: 1-Chlorooctane		90.4 %	70-130		P2H2306	08/23/22 11:00	08/27/22 10:08	TPH 8015M	
Surrogate: o-Terphenyl		101 %	70-130		P2H2306	08/23/22 11:00	08/27/22 10:08	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	08/23/22 11:00	08/27/22 10:08	calc	

E Tech Environmental & Safety Soluti 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	Number:	Neff #2 Fed (16195 Brandon Wils				
					e - 14 @ 24 -14 (Soil)	••			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental L	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 20:47	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 20:47	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 20:47	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 20:47	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 20:47	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		81.6 %	80-120		P2H2310	08/23/22 14:48	08/23/22 20:47	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		173 %	80-120		P2H2310	08/23/22 14:48	08/23/22 20:47	EPA 8021B	S-GC
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	187	1.02	mg/kg dry	1	P2H2611	08/26/22 13:45	08/27/22 07:35	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP.	A Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 10:30	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 10:30	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 10:30	TPH 8015M	
Surrogate: 1-Chlorooctane		100 %	70-130		P2H2306	08/23/22 11:00	08/27/22 10:30	TPH 8015M	
Surrogate: o-Terphenyl		124 %	70-130		P2H2306	08/23/22 11:00	08/27/22 10:30	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	08/23/22 11:00	08/27/22 10:30	calc	

E Tech Environmental & Safety Soluti 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	Number:	Neff #2 Fed (16195 Brandon Wils				
					e - 15 @ 24 -15 (Soil)	••			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental L	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00106	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 21:08	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 21:08	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 21:08	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 21:08	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 21:08	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		81.2 %	80-120		P2H2310	08/23/22 14:48	08/23/22 21:08	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		179 %	80-120		P2H2310	08/23/22 14:48	08/23/22 21:08	EPA 8021B	S-GC
General Chemistry Parameters by	EPA / Stand	dard Met	hods						
Chloride	353	1.06	mg/kg dry	1	P2H2611	08/26/22 13:45	08/27/22 07:48	EPA 300.0	
% Moisture	6.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	26.6	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 10:53	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 10:53	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 10:53	TPH 8015M	
Surrogate: 1-Chlorooctane		102 %	70-130		P2H2306	08/23/22 11:00	08/27/22 10:53	TPH 8015M	
Surrogate: o-Terphenyl		122 %	70-130		P2H2306	08/23/22 11:00	08/27/22 10:53	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	08/23/22 11:00	08/27/22 10:53	calc	

E Tech Environmental & Safety Soluti 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	Number:	Neff #2 Fed (16195 Brandon Wils				
					e - 16 @ 24 -16 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 21:29	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 21:29	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 21:29	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 21:29	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 21:29	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		184 %	80-120		P2H2310	08/23/22 14:48	08/23/22 21:29	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		81.7 %	80-120		P2H2310	08/23/22 14:48	08/23/22 21:29	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	57.1	1.04	mg/kg dry	1	P2H2611	08/26/22 13:45	08/27/22 08:02	EPA 300.0	
% Moisture	4.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 11:15	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 11:15	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 11:15	TPH 8015M	
Surrogate: 1-Chlorooctane		102 %	70-130		P2H2306	08/23/22 11:00	08/27/22 11:15	TPH 8015M	
Surrogate: o-Terphenyl		125 %	70-130		P2H2306	08/23/22 11:00	08/27/22 11:15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	08/23/22 11:00	08/27/22 11:15	calc	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	Number:	Neff #2 Fed (16195 Brandon Wils				
					e - 17 @ 24 -17 (Soil)	••			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 21:50	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 21:50	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 21:50	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 21:50	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 21:50	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		185 %	80-120		P2H2310	08/23/22 14:48	08/23/22 21:50	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		81.7 %	80-120		P2H2310	08/23/22 14:48	08/23/22 21:50	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	74.4	1.03	mg/kg dry	1	P2H2613	08/26/22 15:43	08/28/22 11:59	EPA 300.0	
% Moisture	3.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 11:37	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 11:37	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 11:37	TPH 8015M	
Surrogate: 1-Chlorooctane		97.1 %	70-130		P2H2306	08/23/22 11:00	08/27/22 11:37	TPH 8015M	
Surrogate: o-Terphenyl		119 %	70-130		P2H2306	08/23/22 11:00	08/27/22 11:37	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	08/23/22 11:00	08/27/22 11:37	calc	

E Tech Environmental & Safety Soluti 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	Number:	Neff #2 Fed (16195 Brandon Wils				
					e - 18 @ 24 -18 (Soil)	••			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental L	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00105	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 22:11	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 22:11	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 22:11	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 22:11	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 22:11	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		180 %	80-120		P2H2310	08/23/22 14:48	08/23/22 22:11	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		81.7 %	80-120		P2H2310	08/23/22 14:48	08/23/22 22:11	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	28.8	1.05	mg/kg dry	1	P2H2613	08/26/22 15:43	08/28/22 12:17	EPA 300.0	
% Moisture	5.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP/	A Method	8015M						
C6-C12	ND	26.3	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 11:59	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 11:59	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 11:59	TPH 8015M	
Surrogate: 1-Chlorooctane		98.8 %	70-130		P2H2306	08/23/22 11:00	08/27/22 11:59	TPH 8015M	
Surrogate: o-Terphenyl		120 %	70-130		P2H2306	08/23/22 11:00	08/27/22 11:59	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	08/23/22 11:00	08/27/22 11:59	calc	

E Tech Environmental & Safety Soluti 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	Number:	Neff #2 Fed (16195 Brandon Wils				
					e - 19 @ 24 -19 (Soil)	••			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental I	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 23:14	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 23:14	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 23:14	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 23:14	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 23:14	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		191 %	80-120		P2H2310	08/23/22 14:48	08/23/22 23:14	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		80.2 %	80-120		P2H2310	08/23/22 14:48	08/23/22 23:14	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	33.9	1.03	mg/kg dry	1	P2H2613	08/26/22 15:43	08/28/22 12:35	EPA 300.0	
% Moisture	3.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 12:22	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 12:22	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 12:22	TPH 8015M	
Surrogate: 1-Chlorooctane		98.9 %	70-130		P2H2306	08/23/22 11:00	08/27/22 12:22	TPH 8015M	
Surrogate: o-Terphenyl		122 %	70-130		P2H2306	08/23/22 11:00	08/27/22 12:22	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	08/23/22 11:00	08/27/22 12:22	calc	

E Tech Environmental & Safety Soluti 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	Number:	Neff #2 Fed (16195 Brandon Wils				
					e - 20 @ 24 -20 (Soil)	••			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 23:35	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 23:35	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 23:35	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 23:35	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 23:35	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		195 %	80-120		P2H2310	08/23/22 14:48	08/23/22 23:35	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		80.7 %	80-120		P2H2310	08/23/22 14:48	08/23/22 23:35	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	48.9	1.03	mg/kg dry	1	P2H2613	08/26/22 15:43	08/28/22 12:53	EPA 300.0	
% Moisture	3.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 12:45	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 12:45	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 12:45	TPH 8015M	
Surrogate: 1-Chlorooctane		97.1 %	70-130		P2H2306	08/23/22 11:00	08/27/22 12:45	TPH 8015M	
Surrogate: o-Terphenyl		118 %	70-130		P2H2306	08/23/22 11:00	08/27/22 12:45	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	08/23/22 11:00	08/27/22 12:45	calc	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	Number:	Neff #2 Fed (16195 Brandon Wils				
					e - 21 @ 24 -21 (Soil)	••			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental L	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00105	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 23:56	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 23:56	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 23:56	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 23:56	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P2H2310	08/23/22 14:48	08/23/22 23:56	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		80.0 %	80-120		P2H2310	08/23/22 14:48	08/23/22 23:56	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		193 %	80-120		P2H2310	08/23/22 14:48	08/23/22 23:56	EPA 8021B	S-GC
General Chemistry Parameters by	EPA / Stan	lard Met	hods						
Chloride	39.5	1.05	mg/kg dry	1	P2H2613	08/26/22 15:43	08/28/22 13:48	EPA 300.0	
% Moisture	5.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP.	A Method	8015M						
C6-C12	ND	26.3	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 13:07	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 13:07	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 13:07	TPH 8015M	
Surrogate: 1-Chlorooctane		109 %	70-130		P2H2306	08/23/22 11:00	08/27/22 13:07	TPH 8015M	
Surrogate: o-Terphenyl		132 %	70-130		P2H2306	08/23/22 11:00	08/27/22 13:07	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	08/23/22 11:00	08/27/22 13:07	calc	

13000 West County Road 100 Odessa TX, 79765			5	Number: Manager:	Brandon Wilse	on			
					e - 22 @ 24' -22 (Soil)	•			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 00:17	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 00:17	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 00:17	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 00:17	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 00:17	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		197 %	80-120		P2H2310	08/23/22 14:48	08/24/22 00:17	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		81.4 %	80-120		P2H2310	08/23/22 14:48	08/24/22 00:17	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	19.7	1.02	mg/kg dry	1	P2H2613	08/26/22 15:43	08/28/22 14:42	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP.	A Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 13:30	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 13:30	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2H2306	08/23/22 11:00	08/27/22 13:30	TPH 8015M	
Surrogate: 1-Chlorooctane		100 %	70-130		P2H2306	08/23/22 11:00	08/27/22 13:30	TPH 8015M	
Surrogate: o-Terphenyl		120 %	70-130		P2H2306	08/23/22 11:00	08/27/22 13:30	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	08/23/22 11:00	08/27/22 13:30	calc	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	t Number:	Neff #2 Fed (16195 Brandon Wils				
					e - 23 @ 24 -23 (Soil)	••			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian B	asin Envi	ronmental L	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 00:39	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 00:39	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 00:39	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 00:39	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 00:39	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		80.4 %	80-120		P2H2310	08/23/22 14:48	08/24/22 00:39	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		213 %	80-120		P2H2310	08/23/22 14:48	08/24/22 00:39	EPA 8021B	S-GC
General Chemistry Parameters by	EPA / Stand	dard Met	hods						
Chloride	15.1	1.04	mg/kg dry	1	P2H2613	08/26/22 15:43	08/28/22 15:00	EPA 300.0	
% Moisture	4.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP.	A Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 16:55	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 16:55	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 16:55	TPH 8015M	
Surrogate: 1-Chlorooctane		96.8 %	70-130		P2H2307	08/23/22 11:20	08/27/22 16:55	TPH 8015M	
Surrogate: o-Terphenyl		116 %	70-130		P2H2307	08/23/22 11:20	08/27/22 16:55	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	08/23/22 11:20	08/27/22 16:55	calc	

13000 West County Road 100 Odessa TX, 79765			5	Number: Manager:	16195 Brandon Wils	on			
					e - 24 @ 24' -24 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00105	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 01:00	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 01:00	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 01:00	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 01:00	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 01:00	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		80.2 %	80-120		P2H2310	08/23/22 14:48	08/24/22 01:00	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		218 %	80-120		P2H2310	08/23/22 14:48	08/24/22 01:00	EPA 8021B	S-GO
General Chemistry Parameters by	EPA / Stand	dard Met	hods						
Chloride	37.5	1.05	mg/kg dry	1	P2H2613	08/26/22 15:43	08/28/22 15:18	EPA 300.0	
% Moisture	5.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	26.3	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 17:18	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 17:18	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 17:18	TPH 8015M	
Surrogate: 1-Chlorooctane		97.1 %	70-130		P2H2307	08/23/22 11:20	08/27/22 17:18	TPH 8015M	
Surrogate: o-Terphenyl		120 %	70-130		P2H2307	08/23/22 11:20	08/27/22 17:18	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	08/23/22 11:20	08/27/22 17:18	calc	

13000 West County Road 100 Odessa TX, 79765				t Number: Manager:	Brandon Wilso	on			
					e - 25 @ 24''	,			
				2H19009	-25 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 01:21	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 01:21	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 01:21	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 01:21	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 01:21	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		80.6 %	80-120		P2H2310	08/23/22 14:48	08/24/22 01:21	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		214 %	80-120		P2H2310	08/23/22 14:48	08/24/22 01:21	EPA 8021B	S-GC
General Chemistry Parameters by	EPA / Stand	dard Met	hods						
Chloride	19.5	1.03	mg/kg dry	1	P2H2613	08/26/22 15:43	08/28/22 15:36	EPA 300.0	
% Moisture	3.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EP	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 17:40	TPH 8015M	
>C12-C28	52.1	25.8	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 17:40	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 17:40	TPH 8015M	
Surrogate: 1-Chlorooctane		100 %	70-130		P2H2307	08/23/22 11:20	08/27/22 17:40	TPH 8015M	
Surrogate: o-Terphenyl		120 %	70-130		P2H2307	08/23/22 11:20	08/27/22 17:40	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	52.1	25.8	mg/kg dry	1	[CALC]	08/23/22 11:20	08/27/22 17:40	calc	

E Tech Environmental & Safety Soluti 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	Number:	Neff #2 Fed (16195 Brandon Wils				
					e - 26 @ 24 -26 (Soil)	.,			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 01:42	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 01:42	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 01:42	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 01:42	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 01:42	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		80.1 %	80-120		P2H2310	08/23/22 14:48	08/24/22 01:42	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		221 %	80-120		P2H2310	08/23/22 14:48	08/24/22 01:42	EPA 8021B	S-GC
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	181	1.04	mg/kg dry	1	P2H2613	08/26/22 15:43	08/28/22 15:54	EPA 300.0	
% Moisture	4.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 18:03	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 18:03	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 18:03	TPH 8015M	
Surrogate: 1-Chlorooctane		97.6 %	70-130		P2H2307	08/23/22 11:20	08/27/22 18:03	TPH 8015M	
Surrogate: o-Terphenyl		118 %	70-130		P2H2307	08/23/22 11:20	08/27/22 18:03	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	08/23/22 11:20	08/27/22 18:03	calc	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	t Number:	Neff #2 Fed (16195 Brandon Wils				
					e - 27 @ 24 -27 (Soil)	••			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian B	asin Envi	ronmental L	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00108	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 02:03	EPA 8021B	
Toluene	ND	0.00108	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 02:03	EPA 8021B	
Ethylbenzene	ND	0.00108	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 02:03	EPA 8021B	
Xylene (p/m)	ND	0.00215	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 02:03	EPA 8021B	
Xylene (o)	ND	0.00108	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 02:03	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		81.1 %	80-120		P2H2310	08/23/22 14:48	08/24/22 02:03	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		221 %	80-120		P2H2310	08/23/22 14:48	08/24/22 02:03	EPA 8021B	S-GC
General Chemistry Parameters by	EPA / Stand	dard Met	hods						
Chloride	35.0	1.08	mg/kg dry	1	P2H2613	08/26/22 15:43	08/28/22 16:12	EPA 300.0	
% Moisture	7.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP.	A Method	8015M						
C6-C12	ND	26.9	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 18:26	TPH 8015M	
>C12-C28	ND	26.9	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 18:26	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 18:26	TPH 8015M	
Surrogate: 1-Chlorooctane		103 %	70-130		P2H2307	08/23/22 11:20	08/27/22 18:26	TPH 8015M	
Surrogate: o-Terphenyl		121 %	70-130		P2H2307	08/23/22 11:20	08/27/22 18:26	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.9	mg/kg dry	1	[CALC]	08/23/22 11:20	08/27/22 18:26	calc	

Odessa TX, 79765			Project	Manager:	Brandon Wilso	on			
					e - 28 @ 24'' -28 (Soil)	1			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental La	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00110	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 02:24	EPA 8021B	
Toluene	ND	0.00110	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 02:24	EPA 8021B	
Ethylbenzene	ND	0.00110	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 02:24	EPA 8021B	
Xylene (p/m)	ND	0.00220	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 02:24	EPA 8021B	
Xylene (o)	ND	0.00110	mg/kg dry	1	P2H2310	08/23/22 14:48	08/24/22 02:24	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		227 %	80-120		P2H2310	08/23/22 14:48	08/24/22 02:24	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		81.6 %	80-120		P2H2310	08/23/22 14:48	08/24/22 02:24	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	17.9	1.10	mg/kg dry	1	P2H2613	08/26/22 15:43	08/28/22 16:30	EPA 300.0	
% Moisture	9.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	27.5	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 18:49	TPH 8015M	
>C12-C28	ND	27.5	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 18:49	TPH 8015M	
>C28-C35	ND	27.5	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 18:49	TPH 8015M	
Surrogate: 1-Chlorooctane		98.4 %	70-130		P2H2307	08/23/22 11:20	08/27/22 18:49	TPH 8015M	
Surrogate: o-Terphenyl		119 %	70-130		P2H2307	08/23/22 11:20	08/27/22 18:49	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.5	mg/kg dry	1	[CALC]	08/23/22 11:20	08/27/22 18:49	calc	

E Tech Environmental & Safety Solution	ns, Inc. [1]			Project:	Neff #2 Fed C	ГВ			
13000 West County Road 100	× 13		Project	Number:					
Odessa TX, 79765			5		Brandon Wilso	n			
					e - 29 @ 24''				
				2H19009	-29 (Soil)				
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental La	ıb, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 17:11	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 17:11	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 17:11	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 17:11	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 17:11	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		99.9 %	80-120		P2H2908	08/29/22 14:01	08/29/22 17:11	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		112 %	80-120		P2H2908	08/29/22 14:01	08/29/22 17:11	EPA 8021B	
General Chemistry Parameters by l	EPA / Stand	lard Met	hods						
Chloride	140	1.04	mg/kg dry	1	P2H2613	08/26/22 15:43	08/28/22 16:48	EPA 300.0	
% Moisture	4.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6-	C35 by EP	A Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 19:11	TPH 8015M	
>C12-C28	115	26.0	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 19:11	TPH 8015M	
>C28-C35	34.7	26.0	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 19:11	TPH 8015M	
Surrogate: 1-Chlorooctane		96.5 %	70-130		P2H2307	08/23/22 11:20	08/27/22 19:11	TPH 8015M	
Surrogate: o-Terphenyl		115 %	70-130		P2H2307	08/23/22 11:20	08/27/22 19:11	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	150	26.0	mg/kg dry	1	[CALC]	08/23/22 11:20	08/27/22 19:11	calc	

13000 West County Road 100 Odessa TX, 79765			5	Number: Manager:	16195 Brandon Wilso	on			
					e - 30 @ 24'' -30 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental La	ıb, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 17:33	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 17:33	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 17:33	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 17:33	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 17:33	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		104 %	80-120		P2H2908	08/29/22 14:01	08/29/22 17:33	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		98.6 %	80-120		P2H2908	08/29/22 14:01	08/29/22 17:33	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	57.9	1.04	mg/kg dry	1	P2H2613	08/26/22 15:43	08/28/22 17:06	EPA 300.0	
% Moisture	4.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 19:34	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 19:34	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 19:34	TPH 8015M	
Surrogate: 1-Chlorooctane		97.1 %	70-130		P2H2307	08/23/22 11:20	08/27/22 19:34	TPH 8015M	
Surrogate: o-Terphenyl		116 %	70-130		P2H2307	08/23/22 11:20	08/27/22 19:34	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	08/23/22 11:20	08/27/22 19:34	calc	

13000 West County Road 100 Odessa TX, 79765			5	Number: Manager:	Brandon Wilse	on			
					e - 31 @ 24' -31 (Soil)	'			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00109	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 17:54	EPA 8021B	
Toluene	ND	0.00109	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 17:54	EPA 8021B	
Ethylbenzene	ND	0.00109	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 17:54	EPA 8021B	
Xylene (p/m)	ND	0.00217	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 17:54	EPA 8021B	
Xylene (o)	ND	0.00109	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 17:54	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		101 %	80-120		P2H2908	08/29/22 14:01	08/29/22 17:54	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	80-120		P2H2908	08/29/22 14:01	08/29/22 17:54	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	28.0	1.09	mg/kg dry	1	P2H2804	08/28/22 11:27	08/28/22 18:54	EPA 300.0	
% Moisture	8.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	27.2	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 19:56	TPH 8015M	
>C12-C28	ND	27.2	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 19:56	TPH 8015M	
>C28-C35	ND	27.2	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 19:56	TPH 8015M	
Surrogate: 1-Chlorooctane		97.2 %	70-130		P2H2307	08/23/22 11:20	08/27/22 19:56	TPH 8015M	
Surrogate: o-Terphenyl		118 %	70-130		P2H2307	08/23/22 11:20	08/27/22 19:56	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.2	mg/kg dry	1	[CALC]	08/23/22 11:20	08/27/22 19:56	calc	

13000 West County Road 100 Odessa TX, 79765			5	t Number: Manager:	16195 Brandon Wilso	on			
					e - 32 @ 24'' -32 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental La	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00108	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 18:16	EPA 8021B	
Toluene	ND	0.00108	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 18:16	EPA 8021B	
Ethylbenzene	ND	0.00108	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 18:16	EPA 8021B	
Xylene (p/m)	ND	0.00215	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 18:16	EPA 8021B	
Xylene (o)	ND	0.00108	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 18:16	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P2H2908	08/29/22 14:01	08/29/22 18:16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		99.8 %	80-120		P2H2908	08/29/22 14:01	08/29/22 18:16	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	21.3	1.08	mg/kg dry	1	P2H2804	08/28/22 11:27	08/28/22 19:48	EPA 300.0	
% Moisture	7.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	26.9	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 20:19	TPH 8015M	
>C12-C28	ND	26.9	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 20:19	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 20:19	TPH 8015M	
Surrogate: 1-Chlorooctane		97.6 %	70-130		P2H2307	08/23/22 11:20	08/27/22 20:19	TPH 8015M	
Surrogate: o-Terphenyl		120 %	70-130		P2H2307	08/23/22 11:20	08/27/22 20:19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.9	mg/kg dry	1	[CALC]	08/23/22 11:20	08/27/22 20:19	calc	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	Project: Neff #2 Fed CTB Project Number: 16195 Project Manager: Brandon Wilson								
					/all - 1 @ 18 -33 (Soil)	8''			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 18:37	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 18:37	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 18:37	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 18:37	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 18:37	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		104 %	80-120		P2H2908	08/29/22 14:01	08/29/22 18:37	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		109 %	80-120		P2H2908	08/29/22 14:01	08/29/22 18:37	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	26.4	1.02	mg/kg dry	1	P2H2804	08/28/22 11:27	08/28/22 20:06	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 21:26	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 21:26	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 21:26	TPH 8015M	
Surrogate: 1-Chlorooctane		98.4 %			P2H2307	08/23/22 11:20	08/27/22 21:26	TPH 8015M	
Surrogate: o-Terphenyl		114 %	70-130		P2H2307	08/23/22 11:20	08/27/22 21:26	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	08/23/22 11:20	08/27/22 21:26	calc	

Odessa TX, 79765 Project Manager: Brandon Wilson									
			Nort	h Side W	Vall - 2 @ 18	8''			
				2H19009	-34 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 18:59	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 18:59	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 18:59	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 18:59	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 18:59	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		99.0 %	80-120		P2H2908	08/29/22 14:01	08/29/22 18:59	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		101 %	80-120		P2H2908	08/29/22 14:01	08/29/22 18:59	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	8.28	1.03	mg/kg dry	1	P2H2804	08/28/22 11:27	08/28/22 20:24	EPA 300.0	
% Moisture	3.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.8	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 21:48	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 21:48	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 21:48	TPH 8015M	
Surrogate: 1-Chlorooctane		101 %	70-130		P2H2307	08/23/22 11:20	08/27/22 21:48	TPH 8015M	
Surrogate: o-Terphenyl		122 %	70-130		P2H2307	08/23/22 11:20	08/27/22 21:48	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	08/23/22 11:20	08/27/22 21:48	calc	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	ons, me. [1]		5	Number:	Neff #2 Fed C 16195 Brandon Wils				
					/all - 1 @ 18 -35 (Soil)	8''			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 19:20	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 19:20	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 19:20	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 19:20	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 19:20	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		104 %	80-120		P2H2908	08/29/22 14:01	08/29/22 19:20	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		106 %	80-120		P2H2908	08/29/22 14:01	08/29/22 19:20	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	148	1.01	mg/kg dry	1	P2H2804	08/28/22 11:27	08/28/22 20:42	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 22:11	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 22:11	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 22:11	TPH 8015M	
Surrogate: 1-Chlorooctane		98.6 %	70-130		P2H2307	08/23/22 11:20	08/27/22 22:11	TPH 8015M	
Surrogate: o-Terphenyl		122 %	70-130		P2H2307	08/23/22 11:20	08/27/22 22:11	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	08/23/22 11:20	08/27/22 22:11	calc	

Odessa TX, 79765			Project	Manager:	Brandon Wils	on			
					/all - 2 @ 18 -36 (Soil)	3			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 19:41	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 19:41	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 19:41	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 19:41	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 19:41	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		99.6 %	80-120		P2H2908	08/29/22 14:01	08/29/22 19:41	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		98.6 %	80-120		P2H2908	08/29/22 14:01	08/29/22 19:41	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	98.9	1.02	mg/kg dry	1	P2H2804	08/28/22 11:27	08/28/22 21:00	EPA 300.0	
% Moisture	2.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.5	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 22:33	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 22:33	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 22:33	TPH 8015M	
Surrogate: 1-Chlorooctane		107 %	70-130		P2H2307	08/23/22 11:20	08/27/22 22:33	TPH 8015M	
Surrogate: o-Terphenyl		125 %	70-130		P2H2307	08/23/22 11:20	08/27/22 22:33	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	08/23/22 11:20	08/27/22 22:33	calc	

Odessa TX, 79765					Brandon Wils				
					Wall @ 18'' -37 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 20:02	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 20:02	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 20:02	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 20:02	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 20:02	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		102 %	80-120		P2H2908	08/29/22 14:01	08/29/22 20:02	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		99.1 %	80-120		P2H2908	08/29/22 14:01	08/29/22 20:02	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	6.96	1.04	mg/kg dry	1	P2H2804	08/28/22 11:27	08/28/22 21:18	EPA 300.0	
% Moisture	4.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 22:55	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 22:55	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 22:55	TPH 8015M	
Surrogate: 1-Chlorooctane		104 %	70-130		P2H2307	08/23/22 11:20	08/27/22 22:55	TPH 8015M	
Surrogate: o-Terphenyl		125 %	70-130		P2H2307	08/23/22 11:20	08/27/22 22:55	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	08/23/22 11:20	08/27/22 22:55	calc	

13000 West County Road 100 Odessa TX, 79765			5	Number: Manager:	16195 Brandon Wils	son			
					all - 1 @ 18 -38 (Soil)	"			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00101	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 20:24	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 20:24	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 20:24	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 20:24	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P2H2908	08/29/22 14:01	08/29/22 20:24	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		99.4 %	80-120		P2H2908	08/29/22 14:01	08/29/22 20:24	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		104 %	80-120		P2H2908	08/29/22 14:01	08/29/22 20:24	EPA 8021B	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	16.2	1.01	mg/kg dry	1	P2H2804	08/28/22 11:27	08/28/22 21:36	EPA 300.0	
% Moisture	1.0	0.1	%	1	P2H2301	08/23/22 08:50	08/23/22 08:52	ASTM D2216	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	25.3	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 23:17	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 23:17	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P2H2307	08/23/22 11:20	08/27/22 23:17	TPH 8015M	
Surrogate: 1-Chlorooctane		102 %	70-130		P2H2307	08/23/22 11:20	08/27/22 23:17	TPH 8015M	
Surrogate: o-Terphenyl		123 %	70-130		P2H2307	08/23/22 11:20	08/27/22 23:17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	08/23/22 11:20	08/27/22 23:17	calc	

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Neff #2 Fed CTB
13000 West County Road 100	Project Number:	16195
Odessa TX, 79765	Project Manager:	Brandon Wilson

Permian Basin Environmental Lab, L.P.

	D L	Reporting	TT '-	Spike	Source	0/850	%REC	DPD	RPD	NT -
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2H2205 - *** DEFAULT PREP ***										
Blank (P2H2205-BLK1)				Prepared &	Analyzed:	08/22/22				
Benzene	ND	0.00100	mg/kg							
Toluene	ND	0.00100								
Ethylbenzene	ND	0.00100								
Xylene (p/m)	ND	0.00200								
Xylene (o)	ND	0.00100								
Surrogate: 1,4-Difluorobenzene	0.0969		"	0.120		80.8	80-120			
Surrogate: 4-Bromofluorobenzene	0.184		"	0.120		154	80-120			S-GO
LCS (P2H2205-BS1)				Prepared &	Analyzed:	08/22/22				
Benzene	0.108	0.00100	mg/kg	0.100		108	80-120			
Toluene	0.101	0.00100		0.100		101	80-120			
Ethylbenzene	0.110	0.00100	"	0.100		110	80-120			
Xylene (p/m)	0.207	0.00200	"	0.200		103	80-120			
Xylene (o)	0.0987	0.00100		0.100		98.7	80-120			
Surrogate: 4-Bromofluorobenzene	0.176		"	0.120		146	80-120			S-G(
Surrogate: 1,4-Difluorobenzene	0.0962		"	0.120		80.1	80-120			
LCS Dup (P2H2205-BSD1)				Prepared &	Analyzed:	08/22/22				
Benzene	0.102	0.00100	mg/kg	0.100		102	80-120	5.29	20	
Toluene	0.0934	0.00100		0.100		93.4	80-120	7.44	20	
Ethylbenzene	0.103	0.00100		0.100		103	80-120	6.21	20	
Xylene (p/m)	0.194	0.00200	"	0.200		97.1	80-120	6.25	20	
Xylene (o)	0.0924	0.00100		0.100		92.4	80-120	6.63	20	
Surrogate: 4-Bromofluorobenzene	0.184		"	0.120		154	80-120			S-G0
Surrogate: 1,4-Difluorobenzene	0.0977		"	0.120		81.4	80-120			
Calibration Blank (P2H2205-CCB1)				Prepared &	Analyzed:	08/22/22				
Benzene	0.160		ug/kg							
Toluene	0.420									
Ethylbenzene	0.190									
Xylene (p/m)	0.340									
Xylene (o)	0.210									
Surrogate: 4-Bromofluorobenzene	0.183		"	0.120		152	80-120			S-G0
Surrogate: 1,4-Difluorobenzene	0.0963		"	0.120		80.2	80-120			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Neff #2 Fed CTB
13000 West County Road 100	Project Number:	16195
Odessa TX, 79765	Project Manager:	Brandon Wilson

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2H2205 - *** DEFAULT PREP ***										
Calibration Blank (P2H2205-CCB2)				Prepared: ()8/22/22 Ar	nalvzed: 08	/23/22			
Benzene	0.290		ug/kg	1	-	<u> </u>	-			
Toluene	0.410		"							
Ethylbenzene	0.250		"							
Xylene (p/m)	0.390		"							
Xylene (o)	0.320		"							
Surrogate: 1,4-Difluorobenzene	0.0965		"	0.120		80.4	80-120			
Surrogate: 4-Bromofluorobenzene	0.189		"	0.120		157	80-120			<i>S-G</i> (
Calibration Check (P2H2205-CCV1)				Prepared &	Analyzed:	08/22/22				
Benzene	0.119	0.00100	mg/kg	0.102		116	80-120			
Toluene	0.111	0.00100	"	0.102		109	80-120			
Ethylbenzene	0.113	0.00100	"	0.102		111	80-120			
Xylene (p/m)	0.224	0.00200	"	0.204		110	80-120			
Xylene (o)	0.110	0.00100	"	0.102		107	80-120			
Surrogate: 4-Bromofluorobenzene	0.182		"	0.120		151	75-125			S-GC
Surrogate: 1,4-Difluorobenzene	0.0990		"	0.120		82.5	75-125			
Calibration Check (P2H2205-CCV2)				Prepared: ()8/22/22 Ar	nalyzed: 08	/23/22			
Benzene	0.117	0.00100	mg/kg	0.102		114	80-120			
Toluene	0.104	0.00100	"	0.102		102	80-120			
Ethylbenzene	0.103	0.00100	"	0.102		101	80-120			
Xylene (p/m)	0.206	0.00200	"	0.204		101	80-120			
Xylene (o)	0.103	0.00100	"	0.102		101	80-120			
Surrogate: 1,4-Difluorobenzene	0.0960		"	0.120		80.0	75-125			
Surrogate: 4-Bromofluorobenzene	0.187		"	0.120		156	75-125			<i>S-G</i> (
Calibration Check (P2H2205-CCV3)				Prepared: ()8/22/22 Ar	nalyzed: 08	/23/22			
Benzene	0.106	0.00100	mg/kg	0.102		104	80-120			
Toluene	0.0928	0.00100	"	0.102		91.0	80-120			
Ethylbenzene	0.0980	0.00100	"	0.102		96.0	80-120			
Xylene (p/m)	0.187	0.00200	"	0.204		91.6	80-120			
Xylene (o)	0.0904	0.00100	"	0.102		88.6	80-120			
Surrogate: 1,4-Difluorobenzene	0.0978		"	0.120		81.5	75-125			
Surrogate: 4-Bromofluorobenzene	0.214		"	0.120		178	75-125			S-GC

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project: Neff #2 Fed CTB
13000 West County Road 100	Project Number: 16195
Odessa TX, 79765	Project Manager: Brandon Wilson

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P2H2205 - *** DEFAULT PREP ***

Matrix Spike (P2H2205-MS1)	Sour	ce: 2H22003	-01	Prepared: 0	8/22/22 A	nalyzed: 08	3/23/22			
Benzene	0.101	0.00103	mg/kg dry	0.103	ND	98.2	80-120			
Toluene	0.102	0.00103	"	0.103	ND	98.7	80-120			
Ethylbenzene	0.0912	0.00103	"	0.103	ND	88.5	80-120			
Xylene (p/m)	0.167	0.00206	"	0.206	ND	81.2	80-120			
Xylene (o)	0.0954	0.00103	"	0.103	ND	92.5	80-120			
Surrogate: 1,4-Difluorobenzene	0.103		"	0.124		82.9	80-120			
Surrogate: 4-Bromofluorobenzene	0.240		"	0.124		194	80-120			S-GC
Matrix Spike Dup (P2H2205-MSD1)	Sour	ce: 2H22003	-01	Prepared: 0	8/22/22 A	nalyzed: 08	8/23/22			
Benzene	0.101	0.00103	mg/kg dry	0.103	ND	97.8	80-120	0.316	20	
Toluene	0.104	0.00103	"	0.103	ND	101	80-120	2.32	20	
Ethylbenzene	0.0930	0.00103	"	0.103	ND	90.2	80-120	1.95	20	
Xylene (p/m)	0.168	0.00206	"	0.206	ND	81.5	80-120	0.363	20	
Xylene (o)	0.0953	0.00103	"	0.103	ND	92.5	80-120	0.0540	20	
Surrogate: 1,4-Difluorobenzene	0.100		"	0.124		80.9	80-120			
Surrogate: 4-Bromofluorobenzene	0.225		"	0.124		182	80-120			S-GC

Batch P2H2310 - *** DEFAULT PREP ***

Blank (P2H2310-BLK1)			Prepared & Anal	yzed: 08/23/22			
Benzene	ND	0.00100	mg/kg				
Toluene	ND	0.00100	"				
Ethylbenzene	ND	0.00100	"				
Xylene (p/m)	ND	0.00200	"				
Xylene (o)	ND	0.00100					
Surrogate: 1,4-Difluorobenzene	0.0980		"	0.120	81.7	80-120	
Surrogate: 4-Bromofluorobenzene	0.199		"	0.120	166	80-120	S-GC

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project: Neff #2 Fed CTB	
13000 West County Road 100	Project Number: 16195	
Odessa TX, 79765	Project Manager: Brandon Wilson	

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2H2310 - *** DEFAULT PREP ***										
				D 10	. 1 1	00/22/22				
LCS (P2H2310-BS1)	0.115	0.00100		Prepared &	Analyzed:		00.120			
Benzene	0.115	0.00100	mg/kg "	0.100		115	80-120			
Toluene	0.106	0.00100		0.100		106	80-120			
Ethylbenzene	0.118	0.00100		0.100		118	80-120			
Xylene (p/m)	0.222	0.00200		0.200		111	80-120			
Xylene (o)	0.105	0.00100	"	0.100		105	80-120			
Surrogate: 4-Bromofluorobenzene	0.212		"	0.120		176	80-120			S-GG
Surrogate: 1,4-Difluorobenzene	0.0961		"	0.120		80.1	80-120			
LCS Dup (P2H2310-BSD1)				Prepared &	Analyzed:	08/23/22				
Benzene	0.109	0.00100	mg/kg	0.100		109	80-120	6.00	20	
Toluene	0.0991	0.00100		0.100		99.1	80-120	6.67	20	
Ethylbenzene	0.111	0.00100		0.100		111	80-120	5.67	20	
Xylene (p/m)	0.208	0.00200		0.200		104	80-120	6.49	20	
Xylene (o)	0.0974	0.00100		0.100		97.4	80-120	7.26	20	
Surrogate: 1,4-Difluorobenzene	0.0964		"	0.120		80.3	80-120			
Surrogate: 4-Bromofluorobenzene	0.214		"	0.120		179	80-120			<i>S-G</i> (
Calibration Blank (P2H2310-CCB1)				Prepared &	Analyzed:	08/23/22				
Benzene	0.120		ug/kg	1	2					
Toluene	0.350		"							
Ethylbenzene	0.350									
Xylene (p/m)	0.390									
Xylene (o)	0.350									
Surrogate: 1,4-Difluorobenzene	0.0986		"	0.120		82.2	80-120			
Surrogate: 4-Bromofluorobenzene	0.215		"	0.120		179	80-120			<i>S-G</i> (
Calibration Blank (P2H2310-CCB2)				Prepared &	Analyzed:	08/23/22				
Benzene	0.130		ug/kg	1						
Toluene	0.400		"							
Ethylbenzene	0.260									
Xylene (p/m)	0.400									
Xylene (o)	0.210		"							
Surrogate: 4-Bromofluorobenzene	0.219		"	0.120		183	80-120			S-GO
Surrogate: 1,4-Difluorobenzene	0.0969		"	0.120		80.7	80-120			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Neff #2 Fed CTB
13000 West County Road 100	Project Number:	16195
Odessa TX, 79765	Project Manager:	Brandon Wilson

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2H2310 - *** DEFAULT PREP ***										
Calibration Check (P2H2310-CCV1)				Prepared &	Analyzed:	: 08/23/22				
Benzene	0.116	0.00100	mg/kg	0.102		114	80-120			
Toluene	0.108	0.00100	"	0.102		106	80-120			
Ethylbenzene	0.111	0.00100	"	0.102		109	80-120			
Xylene (p/m)	0.223	0.00200	"	0.204		109	80-120			
Xylene (o)	0.108	0.00100	"	0.102		106	80-120			
Surrogate: 4-Bromofluorobenzene	0.201		"	0.120		168	75-125			S-GC
Surrogate: 1,4-Difluorobenzene	0.0969		"	0.120		80.8	75-125			
Calibration Check (P2H2310-CCV2)				Prepared &	Analyzed:	: 08/23/22				
Benzene	0.119	0.00100	mg/kg	0.102		116	80-120			
Toluene	0.107	0.00100	"	0.102		105	80-120			
Ethylbenzene	0.108	0.00100	"	0.102		106	80-120			
Xylene (p/m)	0.219	0.00200	"	0.204		108	80-120			
Xylene (o)	0.107	0.00100	"	0.102		105	80-120			
Surrogate: 4-Bromofluorobenzene	0.222		"	0.120		185	75-125			S-GC
Surrogate: 1,4-Difluorobenzene	0.0972		"	0.120		81.0	75-125			
Calibration Check (P2H2310-CCV3)				Prepared: ()8/23/22 A	nalyzed: 08	3/24/22			
Benzene	0.112	0.00100	mg/kg	0.102		110	80-120			
Toluene	0.100	0.00100	"	0.102		98.3	80-120			
Ethylbenzene	0.100	0.00100	"	0.102		98.3	80-120			
Xylene (p/m)	0.205	0.00200	"	0.204		100	80-120			
Xylene (o)	0.100	0.00100	"	0.102		98.0	80-120			
Surrogate: 1,4-Difluorobenzene	0.0974		"	0.120		81.2	75-125			
Surrogate: 4-Bromofluorobenzene	0.282		"	0.120		235	75-125			S-GC
Matrix Spike (P2H2310-MS1)	Soi	ırce: 2H23001	-01	Prepared: (08/23/22 A	nalyzed: 08	8/24/22			
Benzene	0.00245	0.00112	mg/kg dry	0.112	ND	2.18	80-120			QM-05
Toluene	0.00130	0.00112	"	0.112	ND	1.16	80-120			QM-05
Ethylbenzene	0.000910	0.00112	"	0.112	ND	0.810	80-120			QM-05
Xylene (p/m)	0.00143	0.00225	"	0.225	ND	0.635	80-120			QM-05
Xylene (o)	0.00165	0.00112	"	0.112	ND	1.47	80-120			QM-05
Surrogate: 4-Bromofluorobenzene	0.312		"	0.135		232	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.109		"	0.135		81.0	80-120			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Neff #2 Fed CTB
13000 West County Road 100	Project Number:	16195
Odessa TX, 79765	Project Manager:	Brandon Wilson

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P2H2310 - *** DEFAULT PREP ***

Matrix Spike Dup (P2H2310-MSD1)	Sou	Source: 2H23001-01			08/23/22 A	nalyzed: 08	8/24/22			
Benzene	ND	0.00112	mg/kg dry	0.112	ND		80-120		20	QM-05
Toluene	0.000607	0.00112	"	0.112	ND	0.540	80-120	72.9	20	QM-05
Ethylbenzene	0.000640	0.00112	"	0.112	ND	0.570	80-120	34.8	20	QM-05
Xylene (p/m)	ND	0.00225	"	0.225	ND		80-120		20	QM-05
Xylene (o)	ND	0.00112	"	0.112	ND		80-120		20	QM-05
Surrogate: 4-Bromofluorobenzene	0.328		"	0.135		243	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.109		"	0.135		80.5	80-120			

Batch P2H2908 - *** DEFAULT PREP ***

Blank (P2H2908-BLK1)				Prepared & Ana	lyzed: 08/29/22	
Benzene	ND	0.00100	mg/kg			
Toluene	ND	0.00100				
Ethylbenzene	ND	0.00100				
Xylene (p/m)	ND	0.00200				
Xylene (o)	ND	0.00100				
Surrogate: 1,4-Difluorobenzene	0.117		"	0.120	97.5	80-120
Surrogate: 4-Bromofluorobenzene	0.122		"	0.120	101	80-120
LCS (P2H2908-BS1)				Prepared & Ana	lyzed: 08/29/22	
Benzene	0.0941	0.00100	mg/kg	0.100	94.1	80-120
Toluene	0.103	0.00100	"	0.100	103	80-120
Ethylbenzene	0.108	0.00100	"	0.100	108	80-120
Xylene (p/m)	0.201	0.00200	"	0.200	101	80-120
Xylene (o)	0.0979	0.00100		0.100	97.9	80-120
Surrogate: 4-Bromofluorobenzene	0.131		"	0.120	109	80-120
Surrogate: 1,4-Difluorobenzene	0.119		"	0.120	99.2	80-120

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project: Neff #2 Fed CTB	
13000 West County Road 100	Project Number: 16195	
Odessa TX, 79765	Project Manager: Brandon Wilson	

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2H2908 - *** DEFAULT PREP ***										
LCS Dup (P2H2908-BSD1)				Prepared &	Analyzed:	08/29/22				
Benzene	0.0940	0.00100	mg/kg	0.100		94.0	80-120	0.128	20	
Toluene	0.103	0.00100		0.100		103	80-120	0.00973	20	
Ethylbenzene	0.102	0.00100	"	0.100		102	80-120	6.35	20	
Xylene (p/m)	0.196	0.00200	"	0.200		97.9	80-120	2.68	20	
Xylene (o)	0.0958	0.00100		0.100		95.8	80-120	2.23	20	
Surrogate: 4-Bromofluorobenzene	0.132		"	0.120		110	80-120			
Surrogate: 1,4-Difluorobenzene	0.120		"	0.120		99.8	80-120			
Calibration Blank (P2H2908-CCB1)				Prepared &	Analyzed:	08/29/22				
Benzene	0.00		ug/kg							
Toluene	0.00									
Ethylbenzene	0.200									
Xylene (p/m)	0.330									
Xylene (o)	0.150									
Surrogate: 4-Bromofluorobenzene	0.130		"	0.120		108	80-120			
Surrogate: 1,4-Difluorobenzene	0.118		"	0.120		98.0	80-120			
Calibration Blank (P2H2908-CCB2)				Prepared &	Analyzed:	08/29/22				
Benzene	0.00		ug/kg							
Toluene	0.00									
Ethylbenzene	0.120									
Xylene (p/m)	0.210									
Xylene (o)	0.120									
Surrogate: 1,4-Difluorobenzene	0.122		"	0.120		102	80-120			
Surrogate: 4-Bromofluorobenzene	0.114		"	0.120		95.2	80-120			
Calibration Check (P2H2908-CCV1)				Prepared &	Analyzed:	08/29/22				
Benzene	0.0894	0.00100	mg/kg	0.102		87.6	80-120			
Toluene	0.0988	0.00100		0.102		96.9	80-120			
Ethylbenzene	0.106	0.00100		0.102		104	80-120			
Xylene (p/m)	0.195	0.00200		0.204		95.5	80-120			
Xylene (o)	0.0953	0.00100		0.102		93.4	80-120			
Surrogate: 1,4-Difluorobenzene	0.126		"	0.120		105	75-125			
Surrogate: 4-Bromofluorobenzene	0.138		"	0.120		115	75-125			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project: Neff #2 Fed CTB
13000 West County Road 100	Project Number: 16195
Odessa TX, 79765	Project Manager: Brandon Wilson

Permian Basin Environmental Lab, L.P.

		Reporting	T T 1:	Spike	Source	0/255	%REC	DES	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2H2908 - *** DEFAULT PREP ***										
Calibration Check (P2H2908-CCV2)				Prepared &	Analyzed:	: 08/29/22				
Benzene	0.0972	0.00100	mg/kg	0.102		95.3	80-120			
Toluene	0.100	0.00100		0.102		98.4	80-120			
Ethylbenzene	0.0999	0.00100		0.102		98.0	80-120			
Xylene (p/m)	0.176	0.00200		0.204		86.4	80-120			
Xylene (o)	0.0969	0.00100		0.102		95.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.123		"	0.120		103	75-125			
Surrogate: 1,4-Difluorobenzene	0.126		"	0.120		105	75-125			
Calibration Check (P2H2908-CCV3)				Prepared: ()8/29/22 A	nalyzed: 08	3/30/22			
Benzene	0.0929	0.00100	mg/kg	0.102		91.1	80-120			
Toluene	0.101	0.00100	"	0.102		99.3	80-120			
Ethylbenzene	0.105	0.00100	"	0.102		103	80-120			
Xylene (p/m)	0.190	0.00200		0.204		92.9	80-120			
Xylene (o)	0.0985	0.00100		0.102		96.6	80-120			
Surrogate: 1,4-Difluorobenzene	0.129		"	0.120		107	75-125			
Surrogate: 4-Bromofluorobenzene	0.135		"	0.120		113	75-125			
Matrix Spike (P2H2908-MS1)	Sou	ırce: 2H19009	-29	Prepared: ()8/29/22 A	nalyzed: 08	3/30/22			
Benzene	0.0382	0.00104	mg/kg dry	0.104	ND	36.7	80-120			QM-0
Toluene	0.0377	0.00104		0.104	ND	36.2	80-120			QM-0
Ethylbenzene	0.0339	0.00104		0.104	ND	32.6	80-120			QM-0
Xylene (p/m)	0.0664	0.00208		0.208	ND	31.9	80-120			QM-0
Xylene (o)	0.0312	0.00104		0.104	ND	29.9	80-120			QM-0
Surrogate: 4-Bromofluorobenzene	0.130		"	0.125		104	80-120			
Surrogate: 1,4-Difluorobenzene	0.131		"	0.125		104	80-120			
Matrix Spike Dup (P2H2908-MSD1)	Sou	ırce: 2H19009	-29	Prepared: ()8/29/22_A	nalyzed: 08	3/30/22			
Benzene	0.0681	0.00104	mg/kg dry	0.104	ND	65.4	80-120	56.3	20	QM-0
Toluene	0.0613	0.00104		0.104	ND	58.9	80-120	47.6	20	QM-0
Ethylbenzene	0.0456	0.00104	"	0.104	ND	43.8	80-120	29.4	20	QM-0
Xylene (p/m)	0.0847	0.00208		0.208	ND	40.6	80-120	24.2	20	QM-0
Xylene (o)	0.0415	0.00104	"	0.104	ND	39.8	80-120	28.4	20	QM-0
Surrogate: 4-Bromofluorobenzene	0.137		"	0.125		110	80-120			
Surrogate: 1,4-Difluorobenzene	0.133		"	0.125		106	80-120			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Neff #2 Fed CTB
13000 West County Road 100	Project Number:	16195
Odessa TX, 79765	Project Manager:	Brandon Wilson

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

					-					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Anaryte	Result	Limit	Units	Level	Result	70KEC	Limits	KPD	Limit	notes
Batch P2H2301 - *** DEFAULT PREP ***										
Blank (P2H2301-BLK1)				Prepared &	Analyzed:	08/23/22				
% Moisture	ND	0.1	%							
Blank (P2H2301-BLK2)				Prepared &	Analyzed:	08/23/22				
% Moisture	ND	0.1	%							
Duplicate (P2H2301-DUP1)	Source: 2H19009-10 P		Prepared &	Analyzed:	08/23/22					
% Moisture	3.0	0.1	%		3.0			0.00	20	
Duplicate (P2H2301-DUP2)	Source: 2H19009-20 P		Prepared &	Analyzed:	08/23/22					
% Moisture	3.0	0.1	%		3.0			0.00	20	
Duplicate (P2H2301-DUP3)	Sou	rce: 2H19009-	35	Prepared & Analyzed: 08/23/22						
% Moisture	1.0	0.1	%		1.0			0.00	20	
Duplicate (P2H2301-DUP4)	Sou	rce: 2H19008-	01	Prepared &	Prepared & Analyzed: 08/23/22					
% Moisture	48.0	0.1	%		49.0			2.06	20	
Batch P2H2611 - *** DEFAULT PREP ***										
Blank (P2H2611-BLK1)				Prepared: ()8/26/22 A	nalyzed: 08	/27/22			
Chloride	ND	1.00	mg/kg	-		•				
LCS (P2H2611-BS1)				Prepared: (08/26/22 A	nalyzed: 08	/27/22			
Chloride	40.3		mg/kg	40.0		101	90-110			
LCS Dup (P2H2611-BSD1)				Prepared: ()8/26/22 A	nalyzed: 08	/27/22			
Chloride	41.7		mg/kg	40.0		104	90-110	3.54	10	

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Neff #2 Fed CTB
13000 West County Road 100	Project Number:	16195
Odessa TX, 79765	Project Manager:	Brandon Wilson

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

					-					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2H2611 - *** DEFAULT PREP ***										
Calibration Blank (P2H2611-CCB1)				Prepared:	Prepared: 08/26/22 Analyzed: 08/27/22					
Chloride	0.0770		mg/kg							
Calibration Blank (P2H2611-CCB2)				Prepared:	08/26/22 A	Analyzed: 08	8/27/22			
Chloride	0.110		mg/kg							
Calibration Check (P2H2611-CCV1)				Prepared:	08/26/22 A	Analyzed: 08	8/27/22			
Chloride	20.9		mg/kg	20.0		104	90-110			
Calibration Check (P2H2611-CCV2)				Prepared:	08/26/22 A	Analyzed: 08	8/27/22			
Chloride	20.6		mg/kg	20.0		103	90-110			
Calibration Check (P2H2611-CCV3)	Р		Prepared:	08/26/22 A	Analyzed: 08	8/27/22				
Chloride	20.4		mg/kg	20.0		102	90-110			
Matrix Spike (P2H2611-MS1)	Sou	rce: 2H19007	7-03	Prepared: 08/26/22 Analyzed: 08/27/22			8/27/22			
Chloride	4520	10.2	mg/kg dry	510	3840	133	80-120			QM-05
Matrix Spike (P2H2611-MS2)	Sou	rce: 2H19009	9-07	Prepared:	08/26/22 A	Analyzed: 08	8/27/22			
Chloride	262	1.09	mg/kg dry	272	7.03	94.0	80-120			
Matrix Spike Dup (P2H2611-MSD1)	Sou	rce: 2H19007	7-03	Prepared:	08/26/22 A	Analyzed: 08	8/27/22			
Chloride	4340	10.2	mg/kg dry	510	3840	97.3	80-120	4.13	20	
Matrix Spike Dup (P2H2611-MSD2)	Sou	rce: 2H19009	9-07	Prepared:	08/26/22 A	Analyzed: 08	8/27/22			
Chloride	262	1.09	mg/kg dry	272	7.03	93.9	80-120	0.0912	20	
Batch P2H2613 - *** DEFAULT PREP ***										
Blank (P2H2613-BLK1)				Prepared:	08/26/22 A	Analyzed: 08	8/28/22			
Chloride	ND	1.00	mg/kg							

E Tech Environmental & Safety Solutions, Inc. [1]	
13000 West County Road 100	Proje
Odessa TX, 79765	Projec

Project: Neff #2 Fed CTB Project Number: 16195 Project Manager: Brandon Wilson

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
			Prepared: (08/26/22 A	analyzed: 08	/28/22			
37.8		mg/kg	40.0		94.6	90-110			
			Prepared: ()8/26/22 A	analyzed: 08	/28/22			
37.1		mg/kg	40.0		92.7	90-110	2.04	10	
			Prepared: 08/26/22 Analyzed: 08/28/22						
0.0620		mg/kg	*						
			Prepared: (08/26/22 A	analyzed: 08	/28/22			
0.0730		mg/kg							
	Prepared: 08/26/22 Analyzed: 08/27/22				/27/22				
21.3		mg/kg	20.0		106	90-110			
			Prepared: (08/26/22 A	analyzed: 08	/28/22			
21.5		mg/kg	20.0		108	90-110			
			Prepared: ()8/26/22 A	analyzed: 08	/28/22			
21.6		mg/kg	20.0		108	90-110			
Sou	rce: 2H26011	-01	Prepared: ()8/26/22 A	analyzed: 08	/28/22			
265	1.01	mg/kg dry	253	13.4	99.8	80-120			
Sou	rce: 2H19009	-21	Prepared: ()8/26/22 A	analyzed: 08	/28/22			
294	1.05	mg/kg dry	263	39.5	96.6	80-120			
Sou	rce: 2H26011	-01	Prepared: ()8/26/22 A	analyzed: 08	/28/22			
265	1.01	mg/kg dry	253	13.4	99.7	80-120	0.156	20	
	37.8 37.1 0.0620 0.0730 21.3 21.5 21.6 Soun 265 Soun 294 Soun	Result Limit 37.8 37.8 37.1 0.0620 0.0730 21.3 21.3 21.5 21.6 Source: 2H26011 265 1.01 Source: 2H19009 294 294 1.05 Source: 2H26011 21.5	Result Limit Units 37.8 mg/kg 37.1 mg/kg 0.0620 mg/kg 0.0730 mg/kg 21.3 mg/kg 21.5 mg/kg 21.6 mg/kg 221.5 1.01 294 1.05 mg/kg dry Source: 2H26011-01 294	Result Limit Units Level Imit Units Level 37.8 mg/kg 40.0 37.8 mg/kg 40.0 37.1 mg/kg 40.0 0.0620 mg/kg Prepared: 0 0.0730 mg/kg Prepared: 0 0.1730 mg/kg 20.0 21.3 mg/kg 20.0 21.4 mg/kg 20.0 21.5 mg/kg 20.0 21.6 mg/kg 20.0 20.1 Prepared: 0 21.6 mg/kg 20.0 20.1 mg/kg 20.0 21.6 mg/kg 20.0 20.1 mg/kg 20.0 20.5	Result Limit Units Level Result Prepared: 08/26/22 A 37.8 mg/kg 40.0 Prepared: 08/26/22 A 37.8 mg/kg 40.0 Prepared: 08/26/22 A 37.1 mg/kg 40.0 Prepared: 08/26/22 A 0.0620 mg/kg 40.0 Prepared: 08/26/22 A 0.0730 mg/kg Prepared: 08/26/22 A A 21.3 mg/kg 20.0 Prepared: 08/26/22 A 21.5 mg/kg 20.0 Prepared: 08/26/22 A 21.5 mg/kg 20.0 Prepared: 08/26/22 A 21.6 mg/kg 20.0 T 21.6 mg/kg 20.0 T <t< td=""><td>Result Limit Units Level Result %REC Prepared: 08/26/22 Analyzed: 08 37.8 mg/kg 40.0 94.6 37.8 mg/kg 40.0 94.6 Prepared: 08/26/22 Analyzed: 08 37.1 mg/kg 40.0 92.7 Prepared: 08/26/22 Analyzed: 08 0.0620 mg/kg 40.0 92.7 Prepared: 08/26/22 Analyzed: 08 0.0620 mg/kg 40.0 92.7 Prepared: 08/26/22 Analyzed: 08 0.0730 mg/kg 92.7 106 Prepared: 08/26/22 Analyzed: 08 21.3 mg/kg 20.0 106 Prepared: 08/26/22 Analyzed: 08 21.5 mg/kg 20.0 108 Prepared: 08/26/22 Analyzed: 08 21.6 mg/kg 20.0 108 Source: 2H26011-01 Prepared: 08/26/22 Analyzed: 08</td><td>Result Limit Units Level Result %REC Limits Prepared: $08/26/22$ Analyzed: $08/28/22$ 37.8 mg/kg 40.0 94.6 90-110 Prepared: $08/26/22$ Analyzed: $08/28/22$ 37.1 mg/kg 40.0 92.7 90-110 Prepared: $08/26/22$ Analyzed: $08/28/22$ 0.0620 mg/kg Prepared: $08/26/22$ Analyzed: $08/28/22$ 0.0730 mg/kg Prepared: $08/26/22$ Analyzed: $08/28/22$ 0.0730 mg/kg 20.0 106 90-110 Prepared: $08/26/22$ Analyzed: $08/28/22$ 21.3 mg/kg 20.0 106 90-110 Prepared: $08/26/22$ Analyzed: $08/28/22$ 21.5 mg/kg 20.0 108 90-110 Prepared: $08/26/22$ Analyzed: $08/28/22$ 21.6 mg/kg 20.0 108 90-110 Source: 2H26011-01 Prepared: $08/26/22$ Analyzed: $08/28/22$ 265 1.01 mg/kg 253 13.4</td><td>Result Limit Units Level Result %REC Limits RPD Prepared: 08/26/22 Analyzed: 08/28/22 37.8 mg/kg 40.0 94.6 90-110 2.04 Prepared: 08/26/22 Analyzed: 08/28/22 37.1 mg/kg 40.0 92.7 90-110 2.04 Prepared: 08/26/22 Analyzed: 08/28/22 37.1 mg/kg 40.0 92.7 90-110 2.04 Prepared: 08/26/22 Analyzed: 08/28/22 0.0620 mg/kg Prepared: 08/26/22 Analyzed: 08/28/22 0.0730 mg/kg 0.0730 90-110 2.04 Prepared: 08/26/22 Analyzed: 08/28/22 21.3 mg/kg 20.0 106 90-110 Prepared: 08/26/22 Analyzed: 08/28/22 21.5 mg/kg 20.0 108 90-110 Prepared: 08/26/22 Analyzed: 08/28/22 21.6 mg/kg 20.0 108 90-110 Source: 2H26011-01 Prepared: 08/26/22 Analyzed: 08/28/22 265</td><td>Result Limit Units Level Result %REC Limits RPD Limit Prepared: 08/26/22 Analyzed: 08/28/22 37.8 mg/kg 40.0 94.6 90-110 37.1 mg/kg 40.0 92.7 90-110 2.04 10 Prepared: 08/26/22 Analyzed: 08/28/22 0.0620 mg/kg 40.0 92.7 90-110 2.04 10 Prepared: 08/26/22 Analyzed: 08/28/22 0.0620 mg/kg Prepared: 08/26/22 Analyzed: 08/28/22 0.0730 mg/kg 20.0 106 90-110 Prepared: 08/26/22 Analyzed: 08/28/22 21.3 mg/kg 20.0 106 90-110 Prepared: 08/26/22 Analyzed: 08/28/22 21.5 mg/kg 20.0 108 90-110 Prepared: 08/26/22 Analyzed: 08/28/22 21.6 mg/kg 20.0 108 90-110 Source: 2H126011-01 Prepared: 08/</td></t<>	Result Limit Units Level Result %REC Prepared: 08/26/22 Analyzed: 08 37.8 mg/kg 40.0 94.6 37.8 mg/kg 40.0 94.6 Prepared: 08/26/22 Analyzed: 08 37.1 mg/kg 40.0 92.7 Prepared: 08/26/22 Analyzed: 08 0.0620 mg/kg 40.0 92.7 Prepared: 08/26/22 Analyzed: 08 0.0620 mg/kg 40.0 92.7 Prepared: 08/26/22 Analyzed: 08 0.0730 mg/kg 92.7 106 Prepared: 08/26/22 Analyzed: 08 21.3 mg/kg 20.0 106 Prepared: 08/26/22 Analyzed: 08 21.5 mg/kg 20.0 108 Prepared: 08/26/22 Analyzed: 08 21.6 mg/kg 20.0 108 Source: 2H26011-01 Prepared: 08/26/22 Analyzed: 08	Result Limit Units Level Result %REC Limits Prepared: $08/26/22$ Analyzed: $08/28/22$ 37.8 mg/kg 40.0 94.6 90-110 Prepared: $08/26/22$ Analyzed: $08/28/22$ 37.1 mg/kg 40.0 92.7 90-110 Prepared: $08/26/22$ Analyzed: $08/28/22$ 0.0620 mg/kg Prepared: $08/26/22$ Analyzed: $08/28/22$ 0.0730 mg/kg Prepared: $08/26/22$ Analyzed: $08/28/22$ 0.0730 mg/kg 20.0 106 90-110 Prepared: $08/26/22$ Analyzed: $08/28/22$ 21.3 mg/kg 20.0 106 90-110 Prepared: $08/26/22$ Analyzed: $08/28/22$ 21.5 mg/kg 20.0 108 90-110 Prepared: $08/26/22$ Analyzed: $08/28/22$ 21.6 mg/kg 20.0 108 90-110 Source: 2H26011-01 Prepared: $08/26/22$ Analyzed: $08/28/22$ 265 1.01 mg/kg 253 13.4	Result Limit Units Level Result %REC Limits RPD Prepared: 08/26/22 Analyzed: 08/28/22 37.8 mg/kg 40.0 94.6 90-110 2.04 Prepared: 08/26/22 Analyzed: 08/28/22 37.1 mg/kg 40.0 92.7 90-110 2.04 Prepared: 08/26/22 Analyzed: 08/28/22 37.1 mg/kg 40.0 92.7 90-110 2.04 Prepared: 08/26/22 Analyzed: 08/28/22 0.0620 mg/kg Prepared: 08/26/22 Analyzed: 08/28/22 0.0730 mg/kg 0.0730 90-110 2.04 Prepared: 08/26/22 Analyzed: 08/28/22 21.3 mg/kg 20.0 106 90-110 Prepared: 08/26/22 Analyzed: 08/28/22 21.5 mg/kg 20.0 108 90-110 Prepared: 08/26/22 Analyzed: 08/28/22 21.6 mg/kg 20.0 108 90-110 Source: 2H26011-01 Prepared: 08/26/22 Analyzed: 08/28/22 265	Result Limit Units Level Result %REC Limits RPD Limit Prepared: 08/26/22 Analyzed: 08/28/22 37.8 mg/kg 40.0 94.6 90-110 37.1 mg/kg 40.0 92.7 90-110 2.04 10 Prepared: 08/26/22 Analyzed: 08/28/22 0.0620 mg/kg 40.0 92.7 90-110 2.04 10 Prepared: 08/26/22 Analyzed: 08/28/22 0.0620 mg/kg Prepared: 08/26/22 Analyzed: 08/28/22 0.0730 mg/kg 20.0 106 90-110 Prepared: 08/26/22 Analyzed: 08/28/22 21.3 mg/kg 20.0 106 90-110 Prepared: 08/26/22 Analyzed: 08/28/22 21.5 mg/kg 20.0 108 90-110 Prepared: 08/26/22 Analyzed: 08/28/22 21.6 mg/kg 20.0 108 90-110 Source: 2H126011-01 Prepared: 08/

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1] 13000 West County Road 100		Project Nu	umber: 161									
Odessa TX, 79765		Project Ma	nager: Bra	ndon Wilsor	1							
General Chemi	stry Para	ameters by	y EPA / S	Standard	Method	s - Qua	lity Cont	rol				
	Perm	ian Basin	Enviror	ımental l	Lab, L.P.							
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch P2H2613 - *** DEFAULT PREP ***												
Matrix Spike Dup (P2H2613-MSD2)	Sou	Source: 2H19009-21		Prepared: 08/26/22 Analyzed: 08/28/22								
Chloride	297	1.05	mg/kg dry	263	39.5	98.0	80-120	1.22	20			
Batch P2H2804 - *** DEFAULT PREP ***												
Blank (P2H2804-BLK1)					Prepared & Analyzed: 08/28/22							
Chloride	ND	1.00	mg/kg									
LCS (P2H2804-BS1)				Prepared &	Analyzed:	08/28/22						
Chloride	38.4		mg/kg	40.0		96.1	90-110					
LCS Dup (P2H2804-BSD1)				Prepared &	Analyzed:	08/28/22						
Chloride	37.6		mg/kg	40.0		94.1	90-110	2.06	10			
Calibration Blank (P2H2804-CCB1)				Prepared &	Analyzed:	08/28/22						
Chloride	0.0760		mg/kg	1	ÿ							
Calibration Blank (P2H2804-CCB2)				Prepared &	Analyzed:	08/28/22						
Chloride	0.0970		mg/kg	1	y							
Calibration Check (P2H2804-CCV1)				Prepared &	Analyzed:	08/28/22						
Chloride	21.6		mg/kg	20.0	2	108	90-110					
Calibration Check (P2H2804-CCV2)				Prepared &	Analyzed:	08/28/22						
Chloride	21.6		mg/kg	20.0	<i>,</i>	108	90-110					
Calibration Check (P2H2804-CCV3)				Prepared: ()8/28/22 At	nalyzed: 08	/29/22					
Chloride	22.0		mg/kg	20.0		110	90-110					

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Neff #2 Fed CTB
13000 West County Road 100	Project Number:	16195
Odessa TX, 79765	Project Manager:	Brandon Wilson

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting	Spike	Source		%REC		RPD	
Analyte	Result	Limit Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2H2804 - *** DEFAULT PREP ***									
Matrix Spike (P2H2804-MS1)	Source: 2H19009-31 P		Prepared &	repared & Analyzed: 08/28/22					
Chloride	284	1.09 mg/kg dry	272	28.0	94.2	80-120			
Matrix Spike (P2H2804-MS2)	Sourc	e: 2H22001-03	Prepared: 08/28/22 Analyzed: 08/29/22						
Chloride	12400	50.5 mg/kg dry	2530	9820	104	80-120			
		50.5 mg/kg dry e: 2H19009-31	2530 Prepared &			80-120			
Chloride Matrix Spike Dup (P2H2804-MSD1) Chloride		00,				80-120 80-120	0.462	20	
Matrix Spike Dup (P2H2804-MSD1)	Sourc 285	e: 2H19009-31	Prepared &	Analyzed: 28.0	08/28/22 94.7	80-120	0.462	20	

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Neff #2 Fed CTB
13000 West County Road 100	Project Number:	16195
Odessa TX, 79765	Project Manager:	Brandon Wilson

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2H2305 - TX 1005										
Blank (P2H2305-BLK1)		Prepared: 08/23/22 Analyzed: 08/25/22								
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0								
>C28-C35	ND	25.0								
Surrogate: 1-Chlorooctane	98.1		"	100		98.1	70-130			
Surrogate: o-Terphenyl	49.9		"	50.0		99.8	70-130			
LCS (P2H2305-BS1)	Prepared: 08/23/22 Analyzed: 08/25/22									
C6-C12	931	25.0	mg/kg	1000		93.1	75-125			
>C12-C28	935	25.0		1000		93.5	75-125			
Surrogate: 1-Chlorooctane	96.0		"	100		96.0	70-130			
Surrogate: o-Terphenyl	51.2		"	50.0		102	70-130			
Calibration Check (P2H2305-CCV1)				Prepared: (08/23/22 At	nalyzed: 08	/25/22			
C6-C12	494	25.0	mg/kg	500		98.7	85-115			
>C12-C28	511	25.0		500		102	85-115			
Surrogate: 1-Chlorooctane	117		"	100		117	70-130			
Surrogate: o-Terphenyl	50.7		"	50.0		101	70-130			
Calibration Check (P2H2305-CCV2)				Prepared: ()8/23/22 At	nalyzed: 08	/25/22			
C6-C12	500	25.0	mg/kg	500		100	85-115			
>C12-C28	536	25.0		500		107	85-115			
Surrogate: 1-Chlorooctane	120		"	100		120	70-130			
Surrogate: o-Terphenyl	53.0		"	50.0		106	70-130			
Calibration Check (P2H2305-CCV3)				Prepared: (08/23/22 At	nalyzed: 08	/26/22			
C6-C12	447	25.0	mg/kg	500		89.5	85-115			
>C12-C28	488	25.0	"	500		97.6	85-115			
Surrogate: 1-Chlorooctane	106		"	100		106	70-130			
Surrogate: o-Terphenyl	46.4		"	50.0		92.7	70-130			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Neff #2 Fed CTB
13000 West County Road 100	Project Number:	16195
Odessa TX, 79765	Project Manager:	Brandon Wilson

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2H2305 - TX 1005										
Matrix Spike (P2H2305-MS1)	Source	e: 2H19009	0-02	Prepared: (08/23/22 A	nalyzed: 08	/26/22			
C6-C12	740	25.5	mg/kg dry	1020	ND	72.5	75-125			QM-0
>C12-C28	747	25.5	"	1020	14.5	71.8	75-125			QM-0
Surrogate: 1-Chlorooctane	102		"	102		99.9	70-130			
Surrogate: o-Terphenyl	44.6		"	51.0		87.5	70-130			
Matrix Spike Dup (P2H2305-MSD1)	Sourc	e: 2H19009	0-02	Prepared: (08/23/22 A	nalyzed: 08	/26/22			QM-0
C6-C12	751	25.5	mg/kg dry	1020	ND	73.6	75-125	1.47	20	
>C12-C28	836	25.5	"	1020	14.5	80.5	75-125	11.4	20	
Surrogate: 1-Chlorooctane	117		"	102		114	70-130			
Surrogate: o-Terphenyl	42.4		"	51.0		83.0	70-130			
Batch P2H2306 - TX 1005										
Blank (P2H2306-BLK1)				Prepared: (08/23/22 A	nalyzed: 08	/27/22			
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	93.1		"	100		93.1	70-130			
Surrogate: o-Terphenyl	53.9		"	50.0		108	70-130			
LCS (P2H2306-BS1)				Prepared: (08/23/22 A	nalyzed: 08	/27/22			
C6-C12	1060	25.0	mg/kg	1000		106	75-125			
>C12-C28	1110	25.0	"	1000		111	75-125			
Surrogate: 1-Chlorooctane	100		"	100		100	70-130			
Surrogate: o-Terphenyl	62.6		"	50.0		125	70-130			
LCS Dup (P2H2306-BSD1)				Prepared: (08/23/22 A	nalyzed: 08	/27/22			
C6-C12	1030	25.0	mg/kg	1000		103	75-125	2.49	20	
>C12-C28	1100	25.0	"	1000		110	75-125	1.53	20	
Surrogate: 1-Chlorooctane	101		"	100		101	70-130			
Surrogate: o-Terphenyl	61.8		"	50.0		124	70-130			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Neff #2 Fed CTB
13000 West County Road 100	Project Number:	16195
Odessa TX, 79765	Project Manager:	Brandon Wilson

87.0

50.8

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2H2306 - TX 1005										
Calibration Check (P2H2306-CCV1)				Prepared:	08/23/22 A	nalyzed: 08	/27/22			
C6-C12	546	25.0	mg/kg	500		109	85-115			
>C12-C28	536	25.0	"	500		107	85-115			
Surrogate: 1-Chlorooctane	99.5		"	100		99.5	70-130			
Surrogate: o-Terphenyl	57.9		"	50.0		116	70-130			
Calibration Check (P2H2306-CCV2)				Prepared: (08/23/22 A	nalyzed: 08	/27/22			
C6-C12	519	25.0	mg/kg	500		104	85-115			
>C12-C28	543	25.0	"	500		109	85-115			
Surrogate: 1-Chlorooctane	120		"	100		120	70-130			
Surrogate: o-Terphenyl	59.6		"	50.0		119	70-130			
Matrix Spike (P2H2306-MS1)	Sou	rce: 2H19009	-22	Prepared: (08/23/22 A	nalyzed: 08	/27/22			
C6-C12	789	25.5	mg/kg dry	1020	11.7	76.2	75-125			
>C12-C28	862	25.5	"	1020	25.0	82.0	75-125			
Surrogate: 1-Chlorooctane	119		"	102		117	70-130			
Surrogate: o-Terphenyl	51.9		"	51.0		102	70-130			
Matrix Spike Dup (P2H2306-MSD1)	Sou	rce: 2H19009	-22	Prepared: (08/23/22 A	nalyzed: 08	/27/22			
C6-C12	796	25.5	mg/kg dry	1020	11.7	76.8	75-125	0.848	20	
>C12-C28	872	25.5	"	1020	25.0	83.0	75-125	1.20	20	
Surrogate: 1-Chlorooctane	116		"	102		113	70-130			
Surrogate: o-Terphenyl	52.6		"	51.0		103	70-130			
Batch P2H2307 - TX 1005										
Blank (P2H2307-BLK1)				Prepared:	08/23/22 A	nalyzed: 08	/27/22			
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							

100

50.0

"

Surrogate: 1-Chlorooctane

Surrogate: o-Terphenyl

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

87.0

102

70-130

70-130

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Neff #2 Fed CTB
13000 West County Road 100	Project Number:	16195
Odessa TX, 79765	Project Manager:	Brandon Wilson

49.5

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2H2307 - TX 1005							· · ·			
LCS (P2H2307-BS1)				Prepared:	08/23/22 A	nalyzed: 08	8/27/22			
C6-C12	1010	25.0	mg/kg	1000		101	75-125			
>C12-C28	1080	25.0	"	1000		108	75-125			
Surrogate: 1-Chlorooctane	96.1		"	100		96.1	70-130			
Surrogate: o-Terphenyl	60.5		"	50.0		121	70-130			
LCS Dup (P2H2307-BSD1)				Prepared: (08/23/22 A	nalyzed: 08	8/27/22			
C6-C12	998	25.0	mg/kg	1000		99.8	75-125	1.29	20	
>C12-C28	1070	25.0		1000		107	75-125	0.504	20	
Surrogate: 1-Chlorooctane	98.0		"	100		98.0	70-130			
Surrogate: o-Terphenyl	58.6		"	50.0		117	70-130			
Calibration Check (P2H2307-CCV1)				Prepared: (08/23/22 A	nalyzed: 08	8/27/22			
C6-C12	508	25.0	mg/kg	500		102	85-115			
>C12-C28	572	25.0		500		114	85-115			
Surrogate: 1-Chlorooctane	117		"	100		117	70-130			
Surrogate: o-Terphenyl	56.0		"	50.0		112	70-130			
Calibration Check (P2H2307-CCV2)				Prepared: (08/23/22 A	nalyzed: 08	8/27/22			
C6-C12	501	25.0	mg/kg	500		100	85-115			
>C12-C28	567	25.0		500		113	85-115			
Surrogate: 1-Chlorooctane	113		"	100		113	70-130			
Surrogate: o-Terphenyl	55.9		"	50.0		112	70-130			
Matrix Spike (P2H2307-MS1)	Sou	rce: 2H19009	-38	Prepared: (08/23/22 A	nalyzed: 08	8/28/22			
C6-C12	808	25.3	mg/kg dry	1010	11.7	78.8	75-125			
>C12-C28	881	25.3		1010	9.76	86.2	75-125			
Surrogate: 1-Chlorooctane	118		"	101		117	70-130			

50.5

Permian Basin Environmental Lab, L.P.

Surrogate: o-Terphenyl

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

98.0

70-130

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Neff #2 Fed CTB
13000 West County Road 100	Project Number:	16195
Odessa TX, 79765	Project Manager:	Brandon Wilson

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2H2307 - TX 1005 Matrix Spike Dup (P2H2307-MSD1)	Sourc	e: 2H19009	-38	Prepared: ()8/23/22 Ai	nalyzed: 08	8/28/22			
C6-C12	802	25.3	mg/kg dry	1010	11.7	78.2	75-125	0.733	20	
>C12-C28	878	25.3	"	1010	9.76	85.9	75-125	0.336	20	
Surrogate: 1-Chlorooctane	121		"	101		120	70-130			
Surrogate: o-Terphenyl	49.1		"	50.5		97.1	70-130			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project: Neff #2 Fed CTB	
13000 West County Road 100	Project Number: 16195	
Odessa TX, 79765	Project Manager: Brandon Wilson	

Notes and Definitions

S-GC	Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.
ROI	Received on Ice
QM-05	The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.
NPBEL CO	Chain of Custody was not generated at PBELAB
BULK	Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Report Approved By:

Sun Barron

_ Date: ______8/30/2022_

Brent Barron, Laboratory Director/Technical Director

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Neff #2 Fed CTB
13000 West County Road 100	Project Number:	16195
Odessa TX, 79765	Project Manager:	Brandon Wilson

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

PI3E Project	ILAB Manager:	al lai	128 1205F 1 1 1		TODY			don l	Pern 1400 Midl	nian i) Rar and,	Basir 1kin I Texa	Hwy as 7	,	1	tal La	ıb,iL			ject	Nan	ne:				342 I		7235 2 d	\$.	<u>ст</u>	ß	
Compai	·		ખta[≚્			Etech E	Enviro	nmental 😒						• •																	
Compar City/Sta	ny Address: ite/Zip:	· · · · · · · · · · · · · · · · · · ·					West dland,	CR 100 5									407 1	Ρ	roje	ct Lo	oc: _	<u>u</u>	<u>e</u> u	د	W	(e)	<u>KC</u>	<u>۵</u>			
Telepho	one No: r Signature:		(432)5	63-22	00			Fax No: e-mail:			<u>B1</u>	<u>م ا</u>	Ke.	Q	E	२ ट	Re	eport . C ♥	For	mat: • C	[••] _{Sta}			[e For		RP			IPDE	≣S
b use only)		an a																	⊢			TCLP	_	alyz		ı.	<u> </u>		T	- ²	2
rder #: 2	19009									_	Droc	anvati	on & #	f of Co	ntainer		Ма	triv			۲ ··· ۱	OTAL	:		_					48. 72 hi	
LAB#(labuse only)	FIELD COD			Beginning Depth	- 2 - Ending Depth	くの人の Date Sampled		Time Sampled	Field Filtered	Total #. of Containers	HNO ₃	HCI	H ₂ SO ₄	NaOH Na.S.O.	None	Other (Specify)	DW=Drinking Water SL=Sludge	ovv = Groundwater S=Soursond NP=Non-Potable Specify Other	TPH: 418.1 20150 80	TPH: TX 1005 TX 1006	Cations (Ca, Mg, Na, K)	Anions (ul, 504, Aikatinity) SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg Se	Volatiles		BTEX 80219/5030 or BTEX 8260 RCI	N.O.R.M.	Solids, Dry Weight	- Chlorids	RUSH TAT (Pre-Schedule) 24.	
		-						10:38				+	$\left \right $						H				-			\square	+	┝┤	+	╞	╡
	omhole ?	<u>)</u> 1						(0: 41		-11		-							H		-					H	+		++	-	+
		<u>1</u> 5			╉╌┼╴			10:45	$\uparrow \uparrow$		-	\square		+							\uparrow	+-					1	[+]	11	╉	+
	tomhole	<u>ر</u> ا	· · · · ·		+	+		10: 48				-																	\mathbf{T}	1	1
the first state of the second state of the sec	tom hold	<u>6</u> 7		\vdash				10: 52	$\uparrow \uparrow$	1				\top							•	1					T				1
	ton hole	8		$ \uparrow $	$\uparrow\uparrow$			10:56																							Τ
		9						10:59											\prod										\prod		
10 300	Hanhole	10			Ŋ		!	11:03											$\left[\right]$							1					
elinquished by: elinquished by: elinquished by:	ons: Maltat		Date Ø- 19-22 Date Date	/_'' 	ime fop,r ime	Received b	y:	Gedroe								Da	nte nte		Time	0	Sam VOC Labe Cust Cust Sam	ole C s Fre ls on ody s ody s ple H v Sar	ontail conta eals o eals o and [npler/	hers Head ainer on co on co on co Delivi Clier	Intac Intac dspac r(s) ontail oolen vered nt Rej Rece	st? ce? ner(s (s) p. ?)) UF ctor			N N N N N N	

0
-
-
-
The second
G
\smile
_
\sim
\sim
\sim
A
A
A
A
A
A
by
d by
d by
d by
by
d by
d by
d by
d by
d by
d by
ived by
ived by
ived by
ived by
eived by
eived by
ived by

	ger: Devon Carpenter												ojec								· .			1.1		
Company Nan	the second se	& Safety So	olutic	ons, li	<u>nc.</u>								ojec	<u>t #:</u>	161	95		<u> </u>	1. T.			<u>N</u>	ومع	<u>> </u>	<u>Nex</u>	٢
	ress: <u>P.O. Box 8469</u> : Midland, <u>Texas 79708</u>	.										<u>A</u>	rea:						<u> </u>	0#:					<u></u>	
City/State/Zip Sampler Signa		ema	ail:	•	Tim@etec	nenv.coi	'n					Г	Bill	Ete	ch											
oumprei 0.8					and the same the same to save the same to save the	Getecht		<u>om</u>	ni inin	· · · · · · · · · · · · · · · · · · ·			eport Fo		CTAN					•		PDES				
						al-e					nu			ormat:				·		Analy	yze F	For:	· 			-
ab use only)					(3)		e					0					TC	LP:								
$\frac{1}{2}$.419009			Dr	eservation & # o	f Containers			-		· · ·			Matrix	6	i	TOT					+			<u> </u>	
	<u>e en en estado en el el compositiones el compositiones el compositiones el compositiones en el compositiones e</u> En el compositiones en el compos						ΤT	:	T I	1	Т		- [•]		1006		<u>छ</u>		^{1g} Se		8260					87 ,
2							5						ludge	Il/Sofic	005	Cations (Ca, Mg, Na, K)	Anions (Cl, SO4, CO3, HCO3)	ပ္စ	Metals: As Ag Ba Cd Cr Pb Hg Se	s	BIEX 80218 5030 or BTEX 8260					PLISH TAT/Dre-Schedule) 34
LAB # (lab use only)			pth	к Ж	pled	pled	No. of Containers						Other (Specify) DW=Drinking Water SL=S	W = Groundwater S=Soll/Sol NP=Non-PotableSpecify Othe	TPH: 418.1 8015M 1005	Mg, I	ä	SAR / ESP / CEC	CG C	Volatiles Semi volatiles	DorE		Σ	Ge	1	20400
g g	FIELD CODE		Start Depth	End Depth	Date Sampled	Time Sampled	Cont	HNO ₃	모	12 SO4	Na ₂ S ₂ O ₃	None	Other (Specify) rinking Water SL≕	water	0151	Ca,	504	/ ESI	g Ba	Volatiles mi volatile	503(ß	N.O.R.M.	LOU	1	Ş
			Star	Ш. Ш	Date	Time	o. of			± *	ž)ther inking	round n-Pota	1.0	ions	s (Cl,	SAR	As A	Sen	21B			7		
5							Z						N=D	N = G	: 418	Ğ	vion		etals:		N 8					10110
					8/18/22									N G			· ·									
11	Bottomhole 11		<u> </u>	24	#	11:07									Φ						4			\Box		[
n	Bottomhole 1					11:10																		₽ □		Ľ
3	Button hole 1	· · · · · · · · · · · · · · · · · · ·	 			11:13				_					D	-				<u> </u>	1.1.					[
14		4		++		11:16				· · · ·					<u>р</u>						1.1					
15		5		$\left \right $	$\left \right $	11:19												_			1					Ę
6		16				11: 22															_	+ +				-
<u> </u>		17				11:25						the state of the s		<u> </u>						-						
-18-		<u>18</u>				11:28																				
and the second second second		19 20				11: 34																			-	1
20 U		21	$\left \cdot \right $			11:37	_													_						
		22		+		11:40	سأسسط							<u></u>										╏┤		
<u>71</u> 23	Botton hole Button nois	23	+ +	++		11:43						┢╧╂						_			1#	片				
24	Botton hole	24		4	•	11.46	<u> </u>					1-1		<u> </u>								╞┼╴				
	tions:		<u> </u>	<u> </u>	<u>L. 7</u>	<u></u>	<u>, 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 </u>	<u> - 11</u>	<u></u>		-1		<u></u>		14				/ Con			ļ		*17	$\frac{1}{1}$	

Released to Imaging: 3/20/2023 7:39:30 AM

Page 63 of 64

100 Nankiu	and the second and the second seco	i Texas 79701		1.5	ASOM	Phone:	32.	681	6-72	:35			P	roie	ect I	Nan	ne.	Ň	of	Ţ	#	2	F	وح	7	C.	TE	3	
roject Manag													. D	roie	act f	4. 1	61	99	<u>~ /</u>		Iroi			. 1	<u>k 1</u>	0.1		3 <u>N</u> e	
ompany Nam	e: <u>Etech Environmen</u> ess: <u>P.O. Box 8469</u>	Lai & Salety S	JIULIO	<u>115, 11</u>	<u>ic.</u>											<u>T. </u>								<u>.)</u>	<u> </u>	<u></u>	<u></u>	<u></u> e	X
ity/State/Zip:		708												rea		·					·····	PO	#:				<u>حــــــــــــــــــــــــــــــــــــ</u>	 ,	
ampler Signat	and the second	em	ail:		Tim@etec	henv.con	'n				i sa La s		[B	ill E	tec	h												
						@etech c		eor	7 7					onod	Form		* ^ ^ /		. –	-				NOD	ES.	-			
						slake					<i>on</i>	er										An		e Fo					
b use only)	7.1.1.0			· · · ·	¥		<		=	τ-		Ū					· ·		_				믜	믜					
RDER #: 2	21419009			-Dro	servation & # o	of Containers									Diat		in l		тот	AL :			-			4	\downarrow		
<u> </u>	<u> </u>		<u> </u>	-16	SCIVALIUIT OL IF (Contaillers	T		Ī	1	T ·	T			Mat		1006		33)		lg Se			BTEX 80218 5030 or BTEX 8260					f i
ŝ			[1 · · · ·	S								ludge //Solid	Other	005	Cations (Ca, Mg, Na, K)	Anions (Cl, SO4, CO3, HCO3)	ب	Metals: As Ag Ba Cd Cr Pb Hg Se		_ ار	TEX					STANDARD TAT
.AB# (ab use only)			Ę	£	pled	pled	No. of Containers	·	· [-				cify)	r SL=S	NP=Non-PotableSpecify Dthe	TPH: 418.1 8015M 1005	Mg, P	ő	SAR / ESP / CEC	g	les	Semi volatiles	G	_ :	Chlorides			STANDARD TAT
S g	FIELD CODE		Start Depth	End Depth	Date Sampled	Time Sampled	Cont	e: E	HN03	모응	POH POH	Na ₂ S ₂ O ₃	None	Other (Specify)	=Drinking Water = Groundwater	bleSpi	0150	Ca,	SQ4,	/ ESP	g Ba	Volatiles	ni vol	203	2	hlori			DAR
8) #			Star	End	Date	i me	jo .		- T		2	ž	Z	ther	nking	-Pota	۳	ions	с С	SAR	As A	~	Sel	218	2	210	1		N M
¶ ¶							ž					1.		1 C C	V=Dri V = Gr	P=Noi	418	ĕ	nion.		tals:		- 	80 80				191.0	ິ່
															MD NO	Z	TPH		۲		Ř		· ['	ย				Г ^а	
25	Dottonhole	25		24	8/18/22			Þ									町												η
26	Bottonnole	26		1		11:53		口									中									эþ			
27	BottomNole	27				11:56		-++									-												口巾
<u>Z8</u>	Bottomhole	28				11:59		Ф				-					фI]中			山中
29	Bottom hole	29				12:04		믹																		<u>1</u> [旧		卭
CS	Bottom nule	30		11-		12.08		車									<u> </u>							φl		4			叩
31	Bottomnoie	31		<u> </u>		12:12		- h			-						-+-+	<u> </u>				<u> </u>				16			
32	Duttomhole	32		1.01		12:15		<u> </u>				-				·	<u></u>				ᆜ	ᆜ	井		╧╋╧	44			ᆂᇉ
33	North Side wall		<u> </u>	18"	18"	12:18	╞╌┨	4				-			· · · ·	-+					<u> </u>				╧╋╧	井뷛	붜ᅴ		井上
34	North side wall			18" 18"	181	2:25	$\left \cdot \right $	<u> </u>									_				_			╧	╧╋╞	╬	╬╬		
	South Side wall		 	18"	(8)	12:30				_			-																+T
	South Side wall			10	(8)"	(2:35	┞╴┨	++			_	_					<u>+</u>						-				_		++
57 38				10	B A 27/22		╞─┨										<u>中</u>												
OD ecial Instruc	East Side wa		<u> </u>	1.0	- ANY 22	110.01	l _{ei} l	¥!			<u></u>	<u>با ا</u> ر					41		abor							-14	Ľ	Li Li	-14
									•									S	ample OCs	e Cor	ntaine	ers k	ntact	?		•	5		
linquished by:	ALTAN	Date Tin		Receiv	ed by:	· · · · · · · · · · · · · · · · · · ·		• • •			1.1			Date	•	T	ime		ustod	ly se	als o	n co	ntair	ner(s	्रः	1	$\frac{1}{2}$) N	
/	Jawah		of		· · · · · · · · · · · · · · · · · · ·													S	ustod ample	e Har	nd De	liver	ed			1	Ŷ	N N	
linquished by:		Date Tir	ne	Receiv	ed by:				-		-	-		Date	3	Ţ	ime		ar by ar by				t Re UPS		JHL	۲e		/ N Lone	
linquished by:		Date Tin	ne /	RATE	ed by:	ANG/		1		•.	-	1	0	Date	In	13	ime 40		empe						30		ି (2Ft	Į

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	174369
	Action Type:
	[C-141] Release Corrective Action (C-141)
CONDITIONS	

Created By Condition Condition Date None 3/20/2023 amaxwell

CONDITIONS

Page 100 of 100

Action 174369