Oil Conservation Division

	Page 1 of 92
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within 1/2-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 5/3/2023 7:44:29 AM Form C-141 State of New Mexi			Page 2 of 9				
Form C-141			Incident ID				
Page 4 Oil Conservation Di		l	District RP				
			Facility ID				
			Application ID				
regulations all operators are n public health or the environm failed to adequately investiga addition, OCD acceptance of and/or regulations. Printed Name: Signature: email:	rmation given above is true and complete to the required to report and/or file certain release no nent. The acceptance of a C-141 report by the ate and remediate contamination that pose a the f a C-141 report does not relieve the operator of the acceptance of a C-141 report does not relieve the operator of the operator of the acceptance of the acceptan	otifications and perform c c OCD does not relieve th ireat to groundwater, surf of responsibility for comp	orrective actions for rele e operator of liability sh ace water, human health bliance with any other fe	eases which may endanger ould their operations have or the environment. In deral, state, or local laws			
OCD Only Received by: Jocely	n Harimon	Date:0	5/03/2023				

Oil Conservation Division

	Page 3 of 92
Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u> : Each of the following it	items must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.29.	11 NMAC
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	s of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: appropriate OD	C District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report and/or file certaid may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and re- human health or the environment. In addition, OCD acceptance of compliance with any other federal, state, or local laws and/or regular restore, reclaim, and re-vegetate the impacted surface area to the co- accordance with 19.15.29.13 NMAC including notification to the C	ations. The responsible party acknowledges they must substantially onditions that existed prior to the release or their final land use in DCD when reclamation and re-vegetation are complete.
Printed Name:	Title:
Signature: Amy Thile	Date: _5-3-23
Printed Name:	Telephone:
OCD Only	
Received by: Jocelyn Harimon	Date: 05/03/2023
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible /or regulations.
Closure Approved by: <u>Ashley Mafwell</u>	Date: 05/03/2023
Closure Approved by: <u>Ashley Maywell</u> Printed Name: Ashley Maxwell	Title: Environmental Specialist

Page 6

..

TGO GF KCVKQP 'UWO O CT['CPF''

UQKN'ENQUWT G'T GS WGUV

Ej gxt qp'Eqt r qt c vkqp'' S wckiS wggp'Wpk/%24'' Ngc'Eqwpv{.'Pgy 'O gzkeq'' Wpk/Ngwgt'6Lö.'Ugevkqp'33.'Vqy puj kr'3; 'Uqwyj.'Tcpi g'56'Gcur/' Nc vlawf g'54088; 3: 5^q'P qt vj.'Nqpi kwf g'325074; 346^q'Y gur/' PO QEF 'Tghgt gpeg'% pQ[3: 232578; 4''

•••

Prepared For:

Ej gxt qp'Eqt r qt c vkqp'' 6301 Deauville Blvd. Midland, TX 79706

Prepared By:

Gvgej 'Gpxlt qpo gpvcn('Uchgv('Uqnwkqpu 'Kpe0' P.O. Box 62228 Midland, Texas 79711

Crtki49.'4245''

Black Eit

Blake Estep Project Manager

•• ••

• •

• •

••• ••

VCDNG'QH'EQP VGP VU''

INTRODUCTION	1
NMOCD SITE CLASSIFICATION	1
INITIAL SITE ASSESSMENT	2
DELINEATION, REMEDIATION, AND SOIL SAMPLING ACTIVITIES	2
SOIL DISPOSAL AND BACKFILL ACTIVITIES	2
SOIL CLOSURE REQUEST	3
LIMITATIONS	3
DISTRIBUTION	4

HK WTGU'

Figure 1 – Site Location Topographic Map Figure 2 – Aerial Proximity Map Figure 3 – USGS Well Proximity Map Figure 4 – Site Sample Location Map

VCDNGU'

Table 1 – Concentrations of Benzene, BTEX, TPH and Chloride in Soil

CRRGP F KE GU'

Appendix A – Release Notification and Corrective Action (Form C-141)

Appendix B – Depth to Groundwater Information

Appendix C – Photographic Documentation

Appendix D – Laboratory Analytical Reports

KP VT QF WE VKQP ""

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Chevron Corporation, has prepared this *Remediation Summary and Soil Closure Request* for the release site known as Quail Queen Unit #002 henceforth, "Release Site". The legal description of the Release Site is Unit Letter "J", Section 11, Township 19 South, Range 34 East, in Lea County, New Mexico. The subject release is located on Bureau of Land Management property. The Release Site GPS coordinates are 32.669183° North and 103.529124° West. A "Topographic Map" is provided as Figure 1.

On December 27, 2017, Chevron Corporation discovered a release at the Quail Queen #002 location. A flowline ruptured, causing the release of approximately thirty-five (35) barrels of produced water and one (1) barrel of crude oil. The release was limited to the caliche production pad within the secondary containment of the production equipment. A copy of the New Mexico Oil Conservation Division (NMOCD) Release Notification and Corrective Action (Form C-141) is provided as Appendix A.

Photographic documentation for the Release Site is provided as Appendix C.

POQEF'UKVG'ENCUUKHKECVKQP''

Searches of the groundwater databases maintained by United States Geological Survey (USGS) and New Mexico Office of the State Engineer (NMOSE) identified that there are no freshwater wells within a half mile radius of the Release Site. The closest freshwater well (USGS Well # 324016103301701) is approximately 1.39 miles to the east-northeast. The USGS database indicated groundwater should be encountered at approximately seventy-four (74) feet below ground surface (bgs). In addition, the NMOSE dastabase identifies two (2) wells located less than a mile from the Release Site. The two (2) water wells (L04723 & L04059) are located approximately 0.98 miles northwest and 0.92 miles northeast, with groundwater encountered at 123 feet bgs and 60 feet bgs, respectively.

Based on a search of the NMOCD Imaging System, on October 18, 2005, Environmental Plus, Inc., conducted a site characterization assessment for NMOCD incident (#nPAC0606153274). The assessment consisted of two (2) soil borings to approximate depths of forty-five (45) and sixty-five (65) feet bgs. No ground water was encountered in either of the soil borings (refer to Appendix B).

No surface water or water wells were observed within one thousand (1,000) feet of the Release Site.

The Release Site is considered to be in an area of low potential for karst occurrence. An "Aerial Proximity Map and USGS Well Proximity Map" are provided as Figure 2 and Figure 3, respectively. Depth to groundwater information is provided in Appendix B.

Based on the NMOCD site classification system, the following soil remediation levels were assigned to the release site as a result of this criteria:

- Benzene 10 mg/kg
- Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) 50 mg/kg
- Gas Range Organics + Diesel Range Organics (GRO+DRO) 1,000 mg/kg
- Total Petroleum Hydrocarbons (TPH) 2,500 mg/kg
- Chloride 10,000 mg/kg

KP KVKCN'UKVG'CUUGUUO GP V'''

On April 6, 2022, Etech conducted a sampling event at the Release Site to assess the impact from the release. Two (2) soil auger holes were installed with samples collected at six (6) inch and fifteen (15) inch intervals bgs, at which depth refusal was encountered (refer to Figure 3). Samples were submitted to Xenco Eurofins to be analyzed for TPH, chloride, and BTEX concentrations. A "Site Sample Location Map" is provided as Figure 3.

Laboratory results indicated elevated DRO concentrations in the area associated with Auger Hole 1, all other areas and constituents were below the NMOCD Closure Criteria and/or the NMOCD Reclamation Standards (refer to Table 1).

Laboratory analytical reports are provided in Appendix D.

F GNKP GCVKQP.'T GO GF KCVKQP.'CP F 'UQKN'UCO RNKPI 'CEVKXKVGU'''

On December 1 & 2, 2022, Etech conducted delineation and remediation activities at the release site utilizing a mini-excavator, backhoe, and manual means. Based on field chloride testing, the site was excavated to dimensions of 22 feet in width, 26 feet in length, and a depth of 12 inches bgs. Impacted soils were stockpiled on plastic at the site awaiting final disposition to an approved NMOCD surface waste facility.

On December 1, 2022, three (3) composite bottom hole (Bottom Hole 1 through Bottom Hole 3) and four (4) composite wall (North Sidewall, East Sidewall, South Sidewall, and West Sidewall) samples were collected from the excavated area, representing no more than 200 square feet. Five-point composite confirmation soil samples were labeled, placed into a laboratory provided container, stored on ice, and transported under proper chain-of-custody documentation to Permian Basin Environmental Laboratory (PBELAB) in Midland, Texas.

The soil samples were analyzed for TPH utilizing Method SW 846-8015M, BTEX utilizing Method SW 846-8021B, and chloride utilizing EPA Method 300.0. Laboratory analytical results indicated an elevated TPH concentration in soil samples Bottom Hole 3 and East Sidewall.

On January 3, 2023, Etech further excavated the areas exceeding NMOCD standards for TPH concentrations. Impacted soils were stockpiled on plastic at the site awaiting final disposition to an approved NMOCD facility.

On January 3, 2023, one (1) composite bottom hole (Bottom Hole 3A) and one (1) composite wall (East Sidewall A) samples were collected from the excavated area and submitted to PBELAB for confirmatory analysis of TPH, BTEX, and chloride utilizing the laboratory analytical methods previously described. Laboratory analytical results indicated TPH, BTEX, and chloride concentrations were below the NMOCD Closure Criteria and/or the NMOCD Reclamation Standards in each of the submitted soil samples.

See Figure 4 Site Sample Location Map for sample locations. See Appendix C for photos depicting remediation and backfill activities. See Table 1 Concentrations of Benzene, BTEX, TPH, and Chloride in Soil for sampling results and Appendix D for laboratory analytical reports.

UQKN'F KURQUCN'CP F 'DCEMHKNN'CE VKX KVKGU'

On February 16, 2023, Etech transported the impacted soil to Lea Land disposal facility (NMOCD permit #WM-01-035) in Lea County, New Mexico. Etech transported like-sourced, non-impacted material to the Release Site to be used as backfill material. Utilizing a backhoe, the excavation was backfilled, compacted, and contoured to fit the needs of the facility.

UKVG'E NQUWT G'T GS WGUV''

••

Laboratory analytical results indicate BTEX, TPH, and chloride concentrations were below the NMOCD Closure Criteria and/or the NMOCD Reclamation Standards in each of the submitted soil samples. Etech, on behalf of Chevron Corporation, respectfully requests the NMOCD grant site closure to the Quail Queen Unit #002 (NMOCD Incident ID: nOY1801035692).

NKO KVCVKQPU'

Etech has prepared this *Remediation Summary and Soil Closure Request* to the best of its ability. No other warranty, expressed or implied, is made or intended. Etech has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. Etech has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. Etech has prepared this report, in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Etech also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report. This report has been prepared for the benefit of Chevron Corporation. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Etech and/or Chevron Corporation.

.

F KUVT KDWKQP''

Copy 1:	New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division, District 2 506 West Texas Artesia, New Mexico 88210
Copy 2:	Amy Barnhill Chevron Corporation 6301 Deauville Blvd. Midland, Texas 79706
Copy 3:	Etech Environmental & Safety Solutions, Inc. P.O. Box 62228

Midland, Texas 79711

FIGURES

Received by OCD: 5/3/2023 7:44:29 AM

Page 11 of 92

Released to Imaging: 5/3/2023 1:44:19 PM

Received by OCD: 5/3/2023 7:44:29 AM

Released to Imaging: 5/3/2023 1:44:19 PM

Received by OCD: 5/3/2023 7:44:29 AM

•

TABLES

•

VCDNG'3

EQPEGP VTCVKQP UQHDGP\ GP G. DVGZ.'VRJ 'CP F 'EJ NQTKF G'KP 'UQKN

EJ GXTQP'EQTRQTCVKQP

S wckiS wggp'Wpls'%224 NGC'EQWPV[.'PGY'OGZEQ All concentrations are reported in me/Ke

UCO RNG'NQECVKQP				O GVJ QF UK''UY '! 68/: 243D								O G7	VJ QF ≺UY '! 2370)		G'52202
	F GRVJ	UQKN" UVCVWU	UCO RNG" F CVG	DGP\ GP G	VQNWGP G	GVJ [N/ DGP\ GP G	0 .'r'''' Z[NGPGU'	q'/'''' Z[NGPG	VQVCN'' Z[NGP GU	VQVCN'' DVGZ	I TQ''''''' E ₈ /E ₃₄	FTQ''''''''' E ₃₄ /E _{4:}	I TQ- FTQ''''' E ₈ /E _{4:}	QTQ"""""" E _{4:} /E ₅₇	VRJ ''''''' E ₈ /E ₅₇	EJ NQTHFG
PO QEF 'Enµwtg'Et k	gt k c			32'ò i Ini ''						72'ò i Ini	•		3.222'ò i Ini		4.722'ò i Ini	32.222'ò i lni
Cwigt 'J qug'3	2/8\$	Gzecxcvgf	4/6/2022	ND	ND	ND	ND	ND	ND	ND	ND	1,950	3.;72	ND	1,950	83.4
Cwigt'Jqug'3''	34/37\$	Gzecxcvgf	4/6/2022	ND	ND	ND	ND	ND	ND	ND	ND	1,450	3.672	ND	1,450	305
Cwigt 'Jqng'4	2/8\$	Gzecxcvgf	4/6/2022	ND	ND	ND	ND	ND	ND	ND	ND	953	953	ND	953	1,190
Cwigt 'Jqng'4	34/37\$	Gzecxcvgf	4/6/2022	ND	ND	0.00298	0.0102	0.0138	0.0240	0.0270	ND	644	644	ND	644	2,630
Dqvvqo 'J qıg'3	34\$	Kp/Ukw	12/1/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	19.2
Dqvvqo 'J qıg'4	34\$	Kp/Ukw	12/1/2022	ND	ND	ND	ND	ND	ND	ND	ND	597	597	ND	597	2,220
Dqvvqo 'J qıg'5	34\$	Gzecxcvgf	12/1/2022	ND	ND	ND	ND	ND	ND	ND	ND	3,870	5.: 92	1,540	7.632	312
Dqvvqo 'J qıg'5C	37\$	Kp/Ukw	1/3/2023	NA	NA	NA	NA	NA	NA	NA	ND	846	846	297	1,140	NA
Pqt vj 'Ulf gy cm	8\$	Kp/Ukw	12/1/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	142
Gcuv/Ulf gy cm	8\$	Gzecxcvgf	12/1/2022	ND	ND	ND	ND	ND	ND	ND	ND	1,160	3.382	523	1,680	324
Gcu/Ulf gy cniC	8\$	Kp/Ukw	1/3/2023	NA	NA	NA	NA	NA	NA	NA	ND	348	348	142	490	NA
Uqwj 'Ulf gy cm	8\$	Kp/Ukw	12/1/2022	ND	ND	ND	ND	ND	ND	ND	ND	335	335	155	490	668
Y guv/Ulf gy cm	8\$	Kp/Ukw	12/1/2022	ND	ND	ND	ND	ND	ND	ND	ND	650	650	286	937	26.7

Dqnf 'cpf '[gmyy 'J ki j ni j vgf 'kpf kecvgu'Cpcn(vg'Cdqxg'PO QEF 'Emuwtg'Etkgt kc

PF'/'Cpcn/yg'Pqv'Fgygeygf'cv'qt'cdqxg'yjg'indqtcvqt{'tgrqtvkpi'ikolw

APPENDICES

Appendix C – Release Notification and Corrective Action (Form C-141)

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Tgrgcug'P qvlHec vkqp'cpf 'Eqt t gevkxg'Cevkqp'' Initial only

Form C-141 Revised August 8, 2011

Page 19 of 92

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

ORGTCVQT \square Initial Report \square **Final Report** Name of Company. Chevron Contact: Josepha DeLeon Address: 6301 Deauville Blvd., Midland, TX 79706 Telephone No.: office: 575-263-0424; cell: 432-425-1528 Facility Name: Quail Queen Unit No. 002 Facility Type: Oil Well Surface Owner: Mineral Owner: State of New Mexico API No.: 30-025-25868 NOE CVKOP 'OH'T GNGCUG'' Unit Letter Section Township Range Feet from the North/South Line Feet from the East/West Line County 11 19S 34E 1980' South 1980' Lea J East Ncvkwf g 32.6730576 Nqpi kwf g -103.5289078 P CVWT G'QH'T GNGCUG'' Volume of Release: Type of Release: Spill Volume Recovered: .02 barrels oil .02 barrels oil 34 barrels produced water 34.2 barrels produced water Source of Release: Flow Line bottom side of heater treater Date and Hour of Occurrence: Date and Hour of Discovery: 12/27/2017; 08:00 AM 12/27/2017; 08:00 AM Was Immediate Notice Given? If YES, To Whom? Yes No Not Required NMOCD - Maxey Brown, Olivia Yu BLM – Jim Amos, Shelly Tucker (Confirmed Not Applicable) By Whom? Josepha DeLeon Date and Hour: 12/28/2017; 09:52 AM Was a Watercourse Reached? If YES, Volume Impacting the Watercourse. Yes No N/A If a Watercourse was Impacted, Describe Fully.* RECEIVED N/A By Olivia Yu at 9:51 am, Jan 10, 2018 Describe Cause of Problem and Remedial Action Taken.* A pinhole from flow line. The well was shut in to stop the leak and repair the flow line. Describe Area Affected and Cleanup Action Taken.* All fluid was contained in secondary containment and recovered. Shut in well to repair pinhole on flow line. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Alesem Approved by Environmental Specialist: Signature: Printed Name: Josepha DeLeon 1/10/2018 Title: Environmental Compliance Specialist Approval Date: **Expiration Date:** E-mail Address: jdxd@chevron.com Conditions of Approval: Attached see attached directive Date: 01/04/2018 Phone: 432-425-1528 * Attach Additional Sheets If Necessary 1RP-4923

nOY1801035692

pOY1801036352

Released to Imaging: 5/3/2023 1:44:19 PM

•

Appendix D – Depth to Groundwater Information

New Mexico Office of the State Engineer Wells with Well Log Information

No wells found.

UTMNAD83 Radius Search (in meters):

Easting (X): 637920.42

Northing (Y): 3615569.59

Radius: 804

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Received by OCD: 5/3/2023 7:44:29 AM

ENVIRONMENTAL PLUS, INC.

Micro-Blaze Micro-Blaze Oct STAFF APPROVED LAND EARN AND ENVIRONMENTAL SURVIC

6 December 2005

Mr. Larry Johnson **Environmental Engineer Specialist** New Mexico Oil Conservation Division 1625 North French Drive Hobbs, New Mexico 88240

RE: Site Characterization Chesapeake Energy-Quail State SWD (Ref. #160030) UL-O of Section 11, T19S, R34E

Dear Mr. Johnson:

On September 17, 2005, approximately 115 barrels (bbls) of fluid were released onto the ground surface after lightening struck a 500 bbl fiberglass produced water tank. Approximately 55 bbls of production fluid were recovered by a vacuum truck with the remaining fluid seeping into the soil. Chesapeake Energy Corporation (Chesapeake) retained Environmental Plus, Inc. (EPI) in September 2005 to delineate the vertical extent of impacted soil at the site. This letter report documents the results of the delineation activities and recommends remedial procedures for cleanup of the impacted soil.

Site Background

The site is located in the SW¼ of the SE¼ of Section 11, Township 19 South, Range 34 East at an elevation of approximately 3,792 feet above mean sea level (reference Figures 1 and 2). The property is owned by the State of New Mexico. A search for area water wells was completed utilizing the New Mexico Office of the State Engineers website and a database maintained by the United States Geological Survey (USGS). No wells (domestic, agriculture or public) or bodies of surface water exist within a 1,000- foot radius of the site (reference Figure 2). However, there are three (3) water supply wells located within a 1.0- mile radius of the release area. Groundwater level data indicates an average water depth of approximately 76 feet below ground surface in the area (reference *Table 1*). Therefore, based on available information, it was determined the distance between the contamination and groundwater is approximately 70 feet. Utilizing this information, the New Mexico Oil Conservation Division (NMOCD) Remedial Goals for this site are determined as follows:

P1#3025255360000	Parameter	Remedial Goal
	Benzene	10 parts per million
rudent nEACOURT	BTEX	50 parts per million
	ТРН	1,000 parts per million
plication - pmcoord		s may not be capable of impacting love NMWQCC Standard of 250 mg/k

P.O. Box 1558

2100 AVENUE O

EUNICE, NEW MEXICO 88231

TELEPHONE 505 • 394 • 3481 • • • FAX 505-394-2601

Field Work

On September 19, 2005, EPI performed an assessment of the surface area damage caused by the spill. The total spill area was surveyed and classified as a primary release area consisting of approximately 16,500 square feet (sf).

On October 18, 2005, EPI mobilized at the site to direct the placement and depth of two (2) soil borings within the perimeter of the release area to delineate the vertical extent of production fluid impacted soil (reference *Figure 4*). During the advancement of the soil borings, samples were collected at 5-foot intervals with a portion of the sample placed in a laboratory provided container and the remainder placed in a self sealing polyethylene bag. The samples in the laboratory provided containers were immediately placed on ice for transport to Environmental Lab of Texas in Odessa, Texas, for quantification of benzene, toluene, ethylbenzene and total xylenes (BTEX), gasoline range organics (GRO), diesel range organics (DRO) and chlorides. The portions of the samples in the self-sealing polyethylene bags were placed in a heated environment (i.e., cab of a truck) to allow the volatilization of organic vapors. After the samples had been allowed to equilibrate to $\approx 70^{\circ}$ F, they were analyzed for the presence of organic vapors utilizing a MiniRae[®] photoionozation detector (PID) equipped with a 9.8 electron-volt (eV) lamp. In addition, the samples were analyzed in the field for the presence of chlorides using a LaMotte Chloride Test Kit.

The soil borings were advanced to a depth of 45 feet (BH-1) and 65 feet (BH-2) below ground surface (bgs) with samples being collected at 2-feet and 5-feet depths initially then at 5-foot intervals to total depth (TD) of the soil borings. Field analyses of the samples collected during the advancement of soil boring BH-1 indicated the presence of organic vapor concentrations ranging from 1.5 parts per million (ppm) at 20 feet bgs to 4.4 ppm at 2 feet bgs. Field analyses for chloride indicated concentrations ranging from 240 milligrams per kilogram (mg/Kg) at 45 feet bgs to 3,540 mg/Kg at 2 feet bgs. Field analyses of the samples collected during the advancement of soil boring BH-2 indicated the presence of organic vapor concentrations ranging from 1.1 ppm at 20 feet bgs to 3.0 ppm at 15 feet bgs. Field analyses for chlorides indicated concentrations ranging from 240 mg/Kg at 2 feet bgs to 3,120 mg/Kg at 2 feet bgs (reference *Table 1*).

During the advancement of the soil boring, the lithology was defined as caliche from ground surface to a depth of approximately 20 feet bgs, underlain by light tan sand from a depth of approximately 20 feet bgs to TD of each wells respective bore hole (reference *Attachment II*).

Analytical Data

Analytical results for soil samples collected from BH-1 at 2-feet bgs indicated TPH concentrations of 18.7 mg/Kg while benzene and BTEX were not detected at or above laboratory method detection limits (MDL). Samples collected at 5-feet bgs showed traces of toluene (0.0259mg/Kg), ethylene benzene (0.0657 mg/Kg), m,p-xylenes (0.2680 mg/Kg), o-xylene (0.0890 mf/Kg) and BTEX (0.4486 mg/Kg) while TPH was not detected at or above laboratory MDL (reference *Table 1*).

Analytical results from samples collected from BH-2 at 2-feet and 5-feet bgs indicated benzene, BTEX and TPH were not detected at or above laboratory MDL (reference *Table 1*).

Mr. Larry Johnson 6 December 2005

Chloride concentrations for the samples obtained during the advancement of soil boring BH-1 were reported ranging from 3,710 mg/Kg at 2-feet bgs to 214 mg/Kg at 15-feet bgs. Chloride concentrations for the samples obtained during the advancement of soil boring for BH-2 were reported ranging from 1,862 mg/Kg at 2-feet bgs to 172 mg/Kg at 15- feet. However, the concentrations from ground level to 5-feet bgs are above the New Mexico Water Quality Control Commission's (NMWQCC) standards for groundwater of 250 mg/Kg. Chloride concentrations from 5-feet bgs to total depth of well borings are below the 250 mg/Kg groundwater standards for both BH-1 and BH-2 (reference Table 1).

Summary

Analytical results for the samples collected during the advancement of soil borings for BH-1 indicate soil is slightly impacted with benzene, BTEX and TPH to a depth of approximately 5-feet bgs while samples for BH-2 indicate no impacted soil. However, the soil from BH-1 and BH-2 is impacted with chlorides which exceed NMOCD Remedial Goals as set forth in the Site Background section and could possibly impact groundwater above New Mexico Water Quality Control Commission's (NMWQCC) standards of 250 mg/Kg groundwater standards.

Based on field and analytical analysis, soil impacted above the NMOCD remedial thresholds extends to a depth of approximately 5-feet bgs within the confines of the release area (reference *Figure 3*). The release area is approximately 16,500 square feet in size, resulting in approximately 3,060 cubic yards of soil (*in situ*) impacted above NMOCD remedial guidelines for this site. It is unlikely that soil impacted above the NMOCD remedial guidelines for this site extends completely to 5 feet bgs across the entire release area and the actual volume of impacted soil may be less than 3,060 cubic yards.

Should you have any questions or concerns, please feel free to contact me at (505) 394-3481 or via e-mail at dduncan@envplus.net. Upon your approval, EPI will initiate the next phase of site remediation. All official correspondence should be submitted to Mr. Bradley Blevins at:

Mr. Bradley Blevins Chesapeake Energy Corporation P.O. Box 190 Hobbs, NM 88240-0190

(505) 391-1462, ext. 6224 bblevins@chkenergy.com

Sincerely,

ENVIRONMENTAL PLUS, INC.

David P. Duncan Civil Engineer

cc: Bradley Blevins, Chesapeake Energy-Hobbs, NM Curtis Blake, Chesapeake Energy-Hobbs, NM Jace Marshall, Chesapeake Energy-Oklahoma City, OK

Released to Imaging: 5/3/2023 1:44:19 PM

...

...

					Lo	og ∏f	F Test Borings (NDTE - Page 1 of 3)
	<u> </u>			_	-		Project Number: 160030
					lus, Inc. farm an		Project Name: Chesapeake Quail State SWD
Ţ		ENV	IRONME!	NTAL SEP			ocation: UL-0, Section 11, Township 19 South, Range 34 East
<u> </u>			505 [.]	EUNICE -394-348	31	-	pring Number: BH-2 Surface Elevation: 3,972
# u		22	a	ST.			Start Date: 10/18/05 Time: 1443 hrs
ald	Type	ove hes	Moisture	E Se C	U.S.C.S. Symbol	llepth (feet)	Completion Date: 10/18/05 Time: 1630 hrs
Sample # and Time	95 D	Recovery (inches)	Mois	PID Readings (ppm)	S.U.S.	я£	Description
			+	11			
1443				2.6		2-	Rock, Top Soll, Black Clay —
						-	
						_	_
1447				2.3			Caliche
						-	_
							_
						_	-
						10-	
1500				2.2	-	-	Caliche _
			_				-
					-		-
					-	-	_
						-15-	
1510				3.0	-	_	Caliche -
						-	
						-	-
						-	-
						-20-	
1518				1.1		-	Caliche -
			1				-
							-
1523				L.9		2J-	Light Tan Sugar Sand –
			_				
						_	
						_	-
1526				2.1	-		Light Tan Sugar Sand
Date	Water Time		vel Meas Sample	surement Casing	ts (feet) Cave-In		Er Drilling Method: HSA 3.5" [D
			Depth	Depth	Depth	Le	Vel Packelli Nathad Pentanita
10/18/05	<u> </u>		-	+	-		
					L		Field Representative: JR

۰.

....

					L	.09 (]f T	est Borings (NOTE - Page 2 of 3)	
/ <u>_</u>	<u> </u>						Pro	ject Number: 160030	
			ONMEN	tal Pi	lus, In	c.		ject Name: Chesapeake Quail State SWD	
▝▁		ATE A	RONMEN	D LAND	FARM A			ation: UL-O, Section 11, Township 19 South, Range 34 East	
<u>`.'!!'</u>	-		505-	UNICE 394-348	11	t.		ng Number: BH-2 Surface Elevation: 3,972	
# @		22	e	s				art Date: 10/18/05 Time: 1443 hrs	
Sample # and Time Comola	Type	Recovery (inches)	Moisture	PID Readings (ppm)	U.S.C.S. Symbol	Depth (feet)		ompletion Date: 10/18/05 1630 hrs	
Sor	;-	Cinc	Moi	Rec	SC	ăt.		Description	
							T		
						_			
						—			
						-	_		
1544		-		L.4				Light Tan Sugar Sand Pebbles	
						L			_
						<u> </u>			_
				+		4			
1547	ļ			1.7		-		Light Tan Sugar Sand Pebbles	_
			1	<u> </u>					
									_
						-4	5		
1600				1.5			1.	Light Tan Sugar Sand	_
						_			_
						_			
						<u> </u>			
1605				.9		5	0+	Padish Tan Supan Sand	
1003				ر ،				Redish Tan Sugar Sand	_
						L			_
						F-			_
				+		5	5+		
1610				. 2				Redish Tan Sugar Sand	
<u> </u>			1						_
									_
						6	,0		
1622				.3		F		Redish Tan Sugar Sand	
	Wate	r Leve	l el Meas	surement	s (fee	b			
Date	Tim	e So	epth	Casing Depth	Cave- Depti	in V	ater evel		
10/18/05			-	-			-	Backfill Method: Bentonite	
								Field Representative: JR	

...

					L	.09 [Jf T	est Barings (NOTE - Page 3 of 3)
<u> </u>							Pro	ject Numbers 160030
					lus, In	C. [Pro	iject Name: Chesapeake Quail State SWD
	ר י ין	ENVI	RONMEN	ID LAND				ation: UL-O, Section 11, Township 19 South, Range 34 East
<u> </u>			505-	UNICE 394-348	81	ľ	Borin	ng Number: BH-2 Surface Elevation: 3,972
Sample # and Time	Sample Type	Recovery (inches)	Moisture	PID Readings (ppm)	U.S.C.S. Symbol	Depth (feet)		art Date: <u>10/18/05</u> Time: <u>1443 hrs</u> Ompletion Date: <u>10/18/05</u> Time: <u>1630 hrs</u> Description
						6	5	
1630				.2				Redish Tan Sugar Sand End of Boring at 65.0'
						7 7 	0	
						7	5	
						8 8	0	
						8	5	
						9	0	
		L				<u> </u>		
Date	Wate Tim	ne So	mple pth	Casing Depth	s (fee Cave-I Deptr	n V	ater evel	
10/18/0)5 -	· _	-	<u></u>	-		-	Backfill Method: Bentonite
								Field Representative: JR

New Mexico Office of the State Engineer Point of Diversion Summary

			(quarters a								
			(quarters	are sm	allest t	o larges	t)	(NAD83 U	TM in meters)		
Well Tag	POD	Number	Q64 Q1	6 Q4	Sec	Tws	Rng	Х	Y		
	L 04	4059	4	1	12	19S	34E	639146	3616412*	•	
x Driller Lic	ense:	46	Driller Co	ompa	ny:	AB	BOTT I	BROTHERS	COMPANY		
Driller Na	me:										
Drill Start Date: 01/29/1959			Drill Fini	sh Da	te:	0	1/29/195	59 Plu	ug Date:	06/05/1959	
Log File Date: 02/05/1959			PCW Rev	v Date	:		So	urce:	Shallow		
Pump Typ	e:	Pipe Disc	harge	Size	:		Es	l:			
Casing Size: 7.00			Depth We	ell:		12	25 feet	De	pth Water:	60 feet	
х	Wate	r Bearing Stratif	fications:	To	p B	ottom	Descr	ription			
		C		60				-	ne/Gravel/Conglomerate		
X		Casing Per	orations: Top			ottom	l				
					70	125					

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

5/4/22 8:23 AM

POINT OF DIVERSION SUMMARY

New Mexico Office of the State Engineer Point of Diversion Summary

			• •			2=NE 3=SV st to largest		(NAD83 UTM in meters)				
Well Tag	POD	Number	Q64	Q16 Q	4 Se	ec Tws	Rng	X	Ŷ			
-	L 04	4723	1	1	1 1	1 19S	34E	637026	3616880* 🧧			
Driller License: 137			Driller	Comp	any:	RO	BERTS	, GRADY				
Driller Nan	ne:											
Drill Start Date: 09/22/1961			Drill F	inish I	Date:	09	/24/196	61 P	lug Date:	10/30/1961		
Log File Da	nte:	10/16/1961	PCW I	Rcv Da	te:			S	ource:	Shallow		
Pump Type:			Pipe D	ischar	ge Si	ze:		Ε	Estimated Yield:			
Casing Size	Casing Size: 6.63			Depth Well:				D	epth Water:	123 feet		
x	Wate	er Bearing Stratif	ications:	•	Гор	Bottom	Desci	ription				
		130 139			139 Sandstone/Gravel/Conglomerate							
					Sands	Sandstone/Gravel/Conglomerate						
Casing Perfo					144	145	Sands	stone/Grave	l/Conglomerate			
			forations:	orations: Top			Bottom					
					120	145						

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

5/4/22 8:28 AM

POINT OF DIVERSION SUMMARY

Appendix E – Photographic Documentation

Photographic Documentation

Photographic Documentation

Photographic Documentation

•

Appendix F – Analytical Reports
Received by OCD: 5/3/2023 7:44:29 AM

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Released to Imaging: 5/3/2023 1:44:19 PM

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-13745-1

Laboratory Sample Delivery Group: 15661 Client Project/Site: Quail Queen Unit #002

For:

Etech Environmental & Safety Solutions PO BOX 62228 Midland, Texas 79711

Attn: Brandon Wilson

KRAMER

Authorized for release by: 4/20/2022 7:34:04 PM

Jessica Kramer, Project Manager (432)704-5440 Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Laboratory Job ID: 880-13745-1 SDG: 15661

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
	4
Client Sample Results	5
Surrogate Summary	9
QC Sample Results	10
	15
Lab Chronicle	18
Certification Summary	20
Method Summary	21
Sample Summary	22
	23
Receipt Checklists	24

2

	Definitions/Glossony		
	Definitions/Glossary	745 4	
	Environmental & Safety SolutionsJob ID: 880-137Quail Queen Unit #002SDG: 1		
Qualifiers		/	
GC VOA			ł
Qualifier	Qualifier Description		
F1	MS and/or MSD recovery exceeds control limits.		
F2	MS/MSD RPD exceeds control limits		
S1-	Surrogate recovery exceeds control limits, low biased.		
U	Indicates the analyte was analyzed for but not detected.		
GC Semi VOA	Δ		
Qualifier	Qualifier Description		
F1	MS and/or MSD recovery exceeds control limits.		
S1-	Surrogate recovery exceeds control limits, low biased.		
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
Glossary			
Abbreviation	These commonly used abbreviations may or may not be present in this report.	1	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery	, P	l
CFL	Contains Free Liquid	1	
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry) Method Detection Limit		
MDI			

MDL Method Detection Limit ML Minimum Level (Dioxin)

MPN Most Probable Number Method Quantitation Limit

MQL Not Calculated NC

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL PRES Presumptive

Quality Control QC RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points RPD

TEF Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count **Case Narrative**

Page 40 of 92

4

5

Job ID: 880-13745-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-13745-1

Receipt

The samples were received on 4/14/2022 4:29 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.2°C

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-23778 and analytical batch 880-23767 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Job ID: 880-13745-1 SDG: 15661

Client Sample ID: Auger Hole 1

Project/Site: Quail Queen Unit #002

Client: Etech Environmental & Safety Solutions

Date Collected: 04/06/22 12:00

Lab Sample ID: 880-13745-1

Matrix: Solid

Received: 04/14/22 le Depth: 0 - 6"	16:29								
hod: 8021B - Volatil	le Organic Compounds ((GC)							
/te	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ene	<0.00202	U F2 F1	0.00202		mg/Kg		04/19/22 09:58	04/19/22 12:32	1
ene	<0.00202	U F2 F1	0.00202		mg/Kg		04/19/22 09:58	04/19/22 12:32	1
benzene	<0.00202	U F2 F1	0.00202		mg/Kg		04/19/22 09:58	04/19/22 12:32	1
lene & p-Xylene	<0.00403	U F2 F1	0.00403		mg/Kg		04/19/22 09:58	04/19/22 12:32	1
ene	<0.00202	U F1	0.00202		mg/Kg		04/19/22 09:58	04/19/22 12:32	1
nes, Total	<0.00403	U F1	0.00403		mg/Kg		04/19/22 09:58	04/19/22 12:32	1
ogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
mofluorobenzene (Surr)	98		70 - 130				04/19/22 09:58	04/19/22 12:32	1
ifluorobenzene (Surr)	100		70 - 130				04/19/22 09:58	04/19/22 12:32	1
hod: Total BTEX - T	otal BTEX Calculation								
/te		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
BTEX	<0.00403	U	0.00403		mg/Kg			04/19/22 16:59	1
hod: 8015 NM - Dies	sel Range Organics (DR	O) (GC)							
/te	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ТРН	1950		49.9		mg/Kg			04/18/22 12:12	1
hod: 8015B NM - Di	esel Range Organics (DI	RO) (GC)							
/te		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
line Range Organics	<49.9	U	49.9		mg/Kg		04/15/22 08:43	04/16/22 05:14	1
el Range Organics (Ov C28)	rer 1950		49.9		mg/Kg		04/15/22 08:43	04/16/22 05:14	1
ange Organics (Over C2	8-C36) <49.9	U	49.9		mg/Kg		04/15/22 08:43	04/16/22 05:14	1
ogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
lorooctane	78		70 - 130				04/15/22 08:43	04/16/22 05:14	1
phenyl	90		70 - 130				04/15/22 08:43	04/16/22 05:14	1
hod: 300.0 - Anions	, Ion Chromatography -	Soluble							
/te	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ride	83.4		4.95		mg/Kg			04/19/22 12:42	1
nt Sample ID: Au	iger Hole 1						Lab Sam	ple ID: 880-1	3745-2
Collected: 04/06/22								Matri	x: Solid
Received: 04/14/22 le Depth: 12 - 15"	16:29								
hod: 8021B - Volatil /te	le Organic Compounds (Result	(<mark>GC)</mark> Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ene	<0.00200		0.00200		mg/Kg		04/19/22 09:58	04/19/22 12:53	1
ene	<0.00200		0.00200		mg/Kg		04/19/22 09:58	04/19/22 12:53	1
benzene	<0.00200		0.00200		mg/Kg		04/19/22 09:58	04/19/22 12:53	1
									· · · · · · · · · 1
									1
									1
lene & p-Xylene ene ıes, Total	<0.00399 <0.00200 <0.00399	U	0.00399 0.00200 0.00399		mg/Kg mg/Kg mg/Kg		04/19/22 09:58 04/19/22 09:58 04/19/22 09:58	04	1/19/22 12:53 1/19/22 12:53 1/19/22 12:53

Prepared	Analyzed	Dil Fac
04/19/22 09:58	04/19/22 12:53	1

Eurofins Midland

Released to Imaging: 5/3/2023 1:44:19 PM

Surrogate

4-Bromofluorobenzene (Surr)

Limits

70 - 130

%Recovery Qualifier

94

Project/Site: Quail Queen Unit #002

Job ID: 880-13745-1 SDG: 15661

Matrix: Solid

5

Lab Sample ID: 880-13745-2

Client Sample ID: Auger Hole 1

Client: Etech Environmental & Safety Solutions

Date Collected: 04/06/22 12:02 Date Received: 04/14/22 16:29

Sample Depth: 12 - 15"

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	101		70 - 130				04/19/22 09:58	04/19/22 12:53	1
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			04/19/22 16:59	1
Method: 8015 NM - Diesel Range (Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	1450		49.9		mg/Kg			04/18/22 12:12	1
Method: 8015B NM - Diesel Range	Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		04/15/22 08:43	04/16/22 05:35	1
Diesel Range Organics (Over C10-C28)	1450		49.9		mg/Kg		04/15/22 08:43	04/16/22 05:35	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		04/15/22 08:43	04/16/22 05:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	81		70 - 130				04/15/22 08:43	04/16/22 05:35	1
o-Terphenyl	91		70 - 130				04/15/22 08:43	04/16/22 05:35	1
Method: 300.0 - Anions, Ion Chror	natography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	305		4.95		mg/Kg			04/19/22 12:48	1

Date Received: 04/14/22 16:29 Sample Depth: 0 - 6"

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		04/19/22 09:58	04/19/22 13:13	1
Toluene	<0.00199	U	0.00199		mg/Kg		04/19/22 09:58	04/19/22 13:13	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		04/19/22 09:58	04/19/22 13:13	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		04/19/22 09:58	04/19/22 13:13	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		04/19/22 09:58	04/19/22 13:13	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		04/19/22 09:58	04/19/22 13:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130				04/19/22 09:58	04/19/22 13:13	1
1,4-Difluorobenzene (Surr)	100		70 - 130				04/19/22 09:58	04/19/22 13:13	1
Method: Total BTEX - Total B	FEX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			04/19/22 16:59	1
Method: 8015 NM - Diesel Rar	nge Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	953		49.9		mg/Kg			04/18/22 12:12	

Eurofins Midland

Client Sample Results

RL

49.9

49.9

49.9

RL

24.9

Limits

70 - 130

70 - 130

MDL

Unit

mg/Kg

mg/Kg

mg/Kg

MDL Unit

mg/Kg

D

D

Prepared

04/15/22 08:43

04/15/22 08:43

04/15/22 08:43

Prepared

04/15/22 08:43

04/15/22 08:43

Prepared

04/15/22 08:43

Page 43 of 92

Job ID: 880-13745-1 SDG: 15661

Client Sample ID: Auger Hole 2

Project/Site: Quail Queen Unit #002

Client: Etech Environmental & Safety Solutions

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Method: 300.0 - Anions, Ion Chromatography - Soluble

Result Qualifier

<49.9 U

953

<49.9 U

79

87

1190

113

Result Qualifier

Qualifier

%Recovery

Date Collected: 04/06/22 12:04 Date Received: 04/14/22 16:29

Sample Depth: 0 - 6"

Gasoline Range Organics

Diesel Range Organics (Over

Oll Range Organics (Over C28-C36)

Client Sample ID: Auger Hole 2

Date Collected: 04/06/22 12:06

Analyte

(GRO)-C6-C10

C10-C28)

Surrogate

o-Terphenyl

Analyte

Chloride

o-Terphenyl

1-Chlorooctane

Lab Sample ID: 880-13745-3

Analyzed

04/16/22 05:56

04/16/22 05:56

04/16/22 05:56

Analyzed

04/16/22 05:56

04/16/22 05:56

Analyzed

04/19/22 13:39

Lab Sample ID: 880-13745-4

Matrix: Solid

Dil Fac

1

1

1

1

5

Dil Fac

Dil Fac

Matrix: Solid

Sample Depth: 12 - 15"									
Method: 8021B - Volatile Organi	c Compounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	< 0.00200	U	0.00200		mg/Kg		04/19/22 09:58	04/19/22 13:34	
Toluene	<0.00200	U	0.00200		mg/Kg		04/19/22 09:58	04/19/22 13:34	
Ethylbenzene	0.00298		0.00200		mg/Kg		04/19/22 09:58	04/19/22 13:34	
m-Xylene & p-Xylene	0.0102		0.00399		mg/Kg		04/19/22 09:58	04/19/22 13:34	
o-Xylene	0.0138		0.00200		mg/Kg		04/19/22 09:58	04/19/22 13:34	
Xylenes, Total	0.0240		0.00399		mg/Kg		04/19/22 09:58	04/19/22 13:34	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)			70 - 130				04/19/22 09:58	04/19/22 13:34	
1,4-Difluorobenzene (Surr)	95		70 - 130				04/19/22 09:58	04/19/22 13:34	
		Qualifian		MDI	11	-	Durante	A	D11 E -
Method: Total BTEX - Total BTE Analyte Total BTEX		Qualifier	RL 0.00399	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 04/19/22 16:59	
Analyte Total BTEX	Result 0.0270			MDL		<u> </u>	Prepared		
Analyte Total BTEX Method: 8015 NM - Diesel Range	e Organics (DR					<u>D</u> 	Prepared		
Analyte	e Organics (DR	O) (GC)	0.00399		mg/Kg		<u>.</u>	04/19/22 16:59	Dil Fac
Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte	e Organics (DR Result Result 644	O) (GC) Qualifier	0.00399 RL		mg/Kg Unit		<u>.</u>	04/19/22 16:59 Analyzed	Dil Fac
Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Ran	e Organics (DR Result e Organics (DR Result 644 ge Organics (D	O) (GC) Qualifier	0.00399 RL	MDL	mg/Kg Unit		<u>.</u>	04/19/22 16:59 Analyzed	Dil Fa
Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics	e Organics (DR Result e Organics (DR Result 644 ge Organics (D	0) (GC) Qualifier RO) (GC) Qualifier	0.00399 RL 49.9	MDL	mg/Kg Unit mg/Kg	D	Prepared	04/19/22 16:59 Analyzed 04/18/22 12:12	Dil Fac
Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Ran Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	e Organics (DR Result e Organics (DR Result 644 ge Organics (D Result	0) (GC) Qualifier RO) (GC) Qualifier	0.00399 	MDL	mg/Kg Unit mg/Kg Unit	D	Prepared	04/19/22 16:59 Analyzed 04/18/22 12:12 Analyzed	Dil Fac
Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH	e Organics (DR e Organics (DR Result 644 ge Organics (D Result www.selicolucity.com	0) (GC) Qualifier RO) (GC) Qualifier U	0.00399 	MDL	mg/Kg Unit mg/Kg Unit mg/Kg	D	Prepared Prepared 04/15/22 08:43	04/19/22 16:59 Analyzed 04/18/22 12:12 Analyzed 04/15/22 17:03	Dil Fau
Analyte Total BTEX Method: 8015 NM - Diesel Range Analyte Total TPH Method: 8015B NM - Diesel Range Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	e Organics (DR Result 644 ge Organics (D Result 644 49.9 644	0) (GC) Qualifier RO) (GC) Qualifier U	0.00399 RL 49.9 RL 49.9 49.9 49.9	MDL	mg/Kg Unit mg/Kg Unit mg/Kg mg/Kg	D	Prepared Prepared 04/15/22 08:43 04/15/22 08:43	Analyzed 04/19/22 16:59 Analyzed 04/18/22 12:12 Analyzed 04/15/22 17:03 04/15/22 17:03	Dil Fac

Eurofins Midland

04/15/22 17:03

Released to Imaging: 5/3/2023 1:44:19 PM

70 - 130

1

		Client	Sample R	esults	5					
Client: Etech Environmental & Safety Project/Site: Quail Queen Unit #002	/ Solutions							Job ID: 880- SDG	13745-1 G: 15661	2
Client Sample ID: Auger Hole Date Collected: 04/06/22 12:06	2						Lab San	nple ID: 880-1 Matri	3745-4 ix: Solid	
Date Received: 04/14/22 16:29 Sample Depth: 12 - 15"										4
Method: 300.0 - Anions, Ion Chron Analyte		Soluble Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Chloride	2630		25.0		mg/Kg		11004104	04/19/22 13:58	5	
										8
										9
										1

Eurofins Midland

Client: Etech Environmental & Safety Solutions Project/Site: Quail Queen Unit #002

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		5
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
880-13745-1	Auger Hole 1	98	100		
880-13745-1 MS	Auger Hole 1	2 S1-	99		6
880-13745-1 MSD	Auger Hole 1	96	102		
880-13745-2	Auger Hole 1	94	101		
880-13745-3	Auger Hole 2	102	100		
880-13745-4	Auger Hole 2	119	95		8
LCS 880-23778/1-A	Lab Control Sample	99	102		
LCSD 880-23778/2-A	Lab Control Sample Dup	97	101		C
MB 880-23778/5-A	Method Blank	100	93		9
Surrogate Legend					

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		1CO1	OTPH1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
880-13745-1	Auger Hole 1	78	90		
880-13745-2	Auger Hole 1	81	91		
880-13745-3	Auger Hole 2	79	87		
880-13745-4	Auger Hole 2	94	113		
880-13746-A-1-B MS	Matrix Spike	67 S1-	69 S1-		
880-13746-A-1-C MSD	Matrix Spike Duplicate	71	75		
Surrogate Legend					
1CO = 1-Chlorooctane					

OTPH = o-Terphenyl

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

Prep Type: Total/NA

Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO2	OTPH2	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
LCS 880-23575/2-A	Lab Control Sample	113	132 S1+	
LCSD 880-23575/3-A	Lab Control Sample Dup	100	118	
MB 880-23575/1-A	Method Blank	80	96	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Job ID: 880-13745-1 SDG: 15661

Page 45 of 92

Eurofins Midland

QC Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: Quail Queen Unit #002

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-23778/5-A							Client Sa	mple ID: Metho	d Blank
Matrix: Solid								Prep Type: 1	ſotal/NA
Analysis Batch: 23767								Prep Batch	1: 23778
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		04/19/22 09:58	04/19/22 12:11	1
Toluene	<0.00200	U	0.00200		mg/Kg		04/19/22 09:58	04/19/22 12:11	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		04/19/22 09:58	04/19/22 12:11	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		04/19/22 09:58	04/19/22 12:11	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		04/19/22 09:58	04/19/22 12:11	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		04/19/22 09:58	04/19/22 12:11	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130				04/19/22 09:58	04/19/22 12:11	1
1,4-Difluorobenzene (Surr)	93		70 _ 130				04/19/22 09:58	04/19/22 12:11	1

Lab Sample ID: LCS 880-23778/1-A Matrix: Solid

Analysis Batch: 23767

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1203		mg/Kg		120	70 - 130	
Toluene	0.100	0.1112		mg/Kg		111	70 - 130	
Ethylbenzene	0.100	0.1010		mg/Kg		101	70 - 130	
m-Xylene & p-Xylene	0.200	0.2116		mg/Kg		106	70 - 130	
o-Xylene	0.100	0.1004		mg/Kg		100	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		70 - 130
1,4-Difluorobenzene (Surr)	102		70 - 130

Lab Sample ID: LCSD 880-23778/2-A

Matrix: Solid

Analysis Batch: 23767							Prep	Batch:	23778
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1220		mg/Kg		122	70 - 130	1	35
Toluene	0.100	0.1124		mg/Kg		112	70 - 130	1	35
Ethylbenzene	0.100	0.1018		mg/Kg		102	70 - 130	1	35
m-Xylene & p-Xylene	0.200	0.2132		mg/Kg		107	70 - 130	1	35
o-Xylene	0.100	0.1014		mg/Kg		101	70 - 130	1	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	97		70 - 130
1,4-Difluorobenzene (Surr)	101		70 - 130

Lab Sample ID: 880-13745-1 MS Matrix: Solid

Analysis Batch: 23767

Analysis Batch: 23767									Prep	Batch: 23778
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00202	U F2 F1	0.100	0.002399	F1	mg/Kg		2	70 - 130	
Toluene	<0.00202	U F2 F1	0.100	<0.00200	U F1	mg/Kg		2	70 - 130	

Eurofins Midland

Prep Type: Total/NA

Page 46 of 92

Job ID: 880-13745-1

SDG: 15661

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 23778

Eurofins	Mid

Client Sample ID: Auger Hole 1

QC Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: Quail Queen Unit #002

Page 47 of 92

Job ID: 880-13745-1 SDG: 15661

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-13745-1 I	NS											Client S	ample ID:		
Matrix: Solid													Prep 1	Type: To	tal/NA
Analysis Batch: 23767													Prep	Batch:	23778
	Sample	Sam	ple	Spike		MS	MS						%Rec		
Analyte	Result	Qua	ifier	Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Ethylbenzene	< 0.00202	U F2	F1	0.100	<	0.00200	U F1		mg/Kg			2	70 - 130		
m-Xylene & p-Xylene	<0.00403	U F2	F1	0.200	<	0.00401	UF1		mg/Kg			2	70 - 130		
o-Xylene	<0.00202	U F1		0.100	<	0.00200	U F1		mg/Kg			0	70 - 130		
	MS	мs													
Surrogate	%Recovery	Qua	lifier	Limits											
4-Bromofluorobenzene (Surr)	2	S1-		70 - 130											
1,4-Difluorobenzene (Surr)	99			70 - 130											
Lab Sample ID: 880-13745-1 I	MSD											Client S	ample ID:	Auger I	Hole
Matrix: Solid														Type: To	
Analysis Batch: 23767														Batch:	
	Sample	Sam	ple	Spike		MSD	MSD						%Rec		RP
Analyte	Result	Qua	ifier	Added		Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Lim
Benzene	<0.00202	U F2	F1	0.0998		0.1105	F2		mg/Kg			111	70 - 130	192	3
Foluene	<0.00202	U F2	F1	0.0998		0.08062	F2		mg/Kg			81	70 - 130	191	3
Ethylbenzene	<0.00202	U F2	F1	0.0998		0.05685	F2 F	1	mg/Kg			57	70 - 130	190	3
n-Xylene & p-Xylene	<0.00403	U F2	F1	0.200		0.1160	F2 F	1	mg/Kg			58	70 - 130	189	3
p-Xylene	<0.00202	U F1		0.0998		0.05504	F1		mg/Kg			55	70 - 130	NC	3
	MSD	MSD	1												
Surrogate	%Recovery	Qua	lifier	Limits											
4-Bromofluorobenzene (Surr)	96			70 - 130											
1,4-Difluorobenzene (Surr)	102			70 - 130											
lethod: 8015B NM - Dies	el Range O	rgar	ics (DR	O) (GC)											
Lab Sample ID: MB 880-2357	5/1-A										(Client Sa	mple ID:	Method	Blan
Matrix: Solid														Type: To	
Analysis Batch: 23584														Batch:	
		мв	МВ												
Analyte	R	esult	Qualifier		RL		MDL	Unit		D	Pr	epared	Analyz	ed	Dil Fa
Gasoline Range Organics		<50.0			50.0			mg/Kg		_	04/15	5/22 08:43	04/15/22		
GRO)-C6-C10 Diesel Range Organics (Over	<	<50.0	U		50.0			mg/Kg			04/15	5/22 08:43	04/15/22	10:24	
C10-C28) Oll Range Organics (Over C28-C36)		<50.0			50.0			mg/Kg			04/45	6/22 08:43	04/15/22	10.24	

	NID NID		
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	80		70 - 130
o-Terphenyl	96		70 - 130

MR MR

Lab Sample ID: LCS 880-23575/2-A Matrix: Solid

Analysis Batch: 23584							Prep	Batch: 2	23575
	Spike	LCS	LCS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	1000	977.3		mg/Kg		98	70 - 130		
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	1032		mg/Kg		103	70 - 130		
C10-C28)									

Eurofins Midland

Prep Type: Total/NA

Released to Imaging: 5/3/2023 1:44:19 PM

Dil Fac

1

1

Analyzed

04/15/22 10:24

Client Sample ID: Lab Control Sample

04/15/22 08:43 04/15/22 10:24

Prepared

04/15/22 08:43

QC Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: Quail Queen Unit #002

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-235	75/2-A						Client	Sample	ID: Lab Co		
Matrix: Solid									Prep T	Type: Tot	tal/NA
Analysis Batch: 23584									Prep	Batch:	23575
	LCS	LCS									
Surrogate	%Recovery		Limits								
1-Chlorooctane			70 - 130								
o-Terphenyl	132	S1+	70 - 130								
Lab Sample ID: LCSD 880-23	3575/3-4					Clier	nt Sam	nle ID [.] I	Lab Contro	J Sampl	e Dur
Matrix: Solid						•				Type: To	
Analysis Batch: 23584										Batch:	
			Spike	LCSD	LCSD				%Rec		RPI
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics			1000	1072		mg/Kg		107	70 - 130	9	20
(GRO)-C6-C10						5 5					
Diesel Range Organics (Over			1000	910.6		mg/Kg		91	70 - 130	13	20
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	100		70 - 130								
o-Terphenyl	118		70 - 130								
Lab Sample ID: 880-13746-A	-1-B MS							Client	Sample ID	• Matrix	Snike
Matrix: Solid								onent		Type: To	
Analysis Batch: 23584										Batch:	
Analysis Datch. 20004	Sample	Sample	Spike	MS	MS				%Rec	Daten.	20070
Analyte	-	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<49.9		1000	694.8		mg/Kg		67	70 - 130		
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.9	U F1	1000	596.9	F1	mg/Kg		58	70 - 130		
C10-C28)											
	MS	WS									
Surrogate	MS %Recovery	MS Qualifier	Limits								
Surrogate 1-Chlorooctane			Limits								
1-Chlorooctane		Qualifier									
1-Chlorooctane o-Terphenyl	%Recovery 67 69	Qualifier S1-	70 - 130			CI	iont S	ample IF	1. Matrix Sr	niko Dun	licate
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-13746-A	%Recovery 67 69	Qualifier S1-	70 - 130			Cli	ient Sa	ample ID): Matrix Sp		
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-13746-A Matrix: Solid	%Recovery 67 69	Qualifier S1-	70 - 130			Cli	ient Sa	ample ID	Prep T	Type: To	tal/NA
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-13746-A Matrix: Solid	67 67 69 -1-C MSD	Qualifier S1- S1-	70 - 130 70 - 130	MSD	MSD	Cli	ient Si	ample IC	Prep T Prep		tal/NA 23575
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-13746-A Matrix: Solid Analysis Batch: 23584		Qualifier S1- S1- Sample	70 - 130 70 - 130 Spike		MSD Qualifier			-	Prep T Prep %Rec	Type: To Batch:	tal/N/ 2357 RPI
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-13746-A Matrix: Solid Analysis Batch: 23584 Analyte		Qualifier S1- S1- Sample Qualifier	70 - 130 70 - 130 Spike Added	Result	MSD Qualifier	Unit	ient Sa	%Rec	Prep T Prep %Rec Limits	Spe: Top Batch: RPD	tal/NA 2357 RPC Limi
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-13746-A Matrix: Solid Analysis Batch: 23584 Analyte Gasoline Range Organics		Qualifier S1- S1- Sample Qualifier	70 - 130 70 - 130 Spike					-	Prep T Prep %Rec	Type: To Batch:	tal/NA 2357 RPC Limi
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-13746-A Matrix: Solid Analysis Batch: 23584 Analyte		Qualifier S1- S1- Sample Qualifier U F1	70 - 130 70 - 130 Spike Added	Result	Qualifier	Unit		%Rec	Prep T Prep %Rec Limits	Spe: Top Batch: RPD	tal/N/ 2357 RPI Limi 20
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-13746-A Matrix: Solid Analysis Batch: 23584 Analyte Gasoline Range Organics (GRO)-C6-C10		Qualifier S1- S1- Sample Qualifier U F1	70 - 130 70 - 130 Spike Added 998	Result 734.2	Qualifier	_ <mark>Unit</mark> mg/Kg		%Rec	Prep T Prep %Rec Limits 70 - 130	RPD 6	tal/N/ 2357 RPI Limi 20
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-13746-A Matrix: Solid Analysis Batch: 23584 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	%Recovery 67 69 	Qualifier S1- S1- Sample Qualifier U F1	70 - 130 70 - 130 Spike Added 998	Result 734.2	Qualifier	_ <mark>Unit</mark> mg/Kg		%Rec	Prep T Prep %Rec Limits 70 - 130	RPD 6	tal/NA 2357 RPE
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-13746-A Matrix: Solid Analysis Batch: 23584 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	%Recovery 67 69 	Qualifier S1- S1- Sample Qualifier U F1 U F1 MSD	70 - 130 70 - 130 Spike Added 998	Result 734.2	Qualifier	_ <mark>Unit</mark> mg/Kg		%Rec	Prep T Prep %Rec Limits 70 - 130	RPD 6	tal/NA 2357 RPE Limi 20
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-13746-A Matrix: Solid Analysis Batch: 23584 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)		Qualifier S1- S1- Sample Qualifier U F1 U F1 MSD	70 - 130 70 - 130 Spike Added 998 998	Result 734.2	Qualifier	_ <mark>Unit</mark> mg/Kg		%Rec	Prep T Prep %Rec Limits 70 - 130	RPD 6	tal/NA 2357 RPE Limi 20

Eurofins Midland

QC Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: Quail Queen Unit #002 Job ID: 880-13745-1 SDG: 15661

Method: 300.0 - Anions, Ion Chromatography

Matrix: Solid										Client S	ample ID: M Prep T		
Analysis Batch: 23775													
		MB MB											
Analyte	R	esult Qualifier		RL		MDL Unit		D	Pi	repared	Analyze	d	Dil Fa
Chloride	~	<5.00 U		5.00		mg/K	g				04/19/22 09	9:39	
Lab Sample ID: LCS 880-23640/2-A								Cli	ient	Sample	ID: Lab Co	ntrol S	amnl
Matrix: Solid								•		Campic	Prep T		
Analysis Batch: 23775													
			Spike		LCS	LCS					%Rec		
Analyte			Added		Result	Qualifier	Unit		D	%Rec	Limits		
Chloride			250		233.2		mg/Kg			93	90 - 110		
Lab Sample ID: LCSD 880-23640/3-	Α						Cli	ent S	Sam	ple ID: I	Lab Control	Samp	le Du
Matrix: Solid											Prep T		
Analysis Batch: 23775													
			Spike		LCSD	LCSD					%Rec		RP
Analyte			Added		Result	Qualifier	Unit		D	%Rec	Limits	RPD	Lim
Chloride			250		230.5		mg/Kg			92	90 - 110	1	2
Lab Sample ID: 880-13733-A-1-F M	s									Client	Sample ID:	Matrix	c Spik
Matrix: Solid											Prep T	ype: S	Solub
Analysis Batch: 23775													
		Sample	Spike			MS					%Rec		
		Qualifian	A d d a d		Result	Qualifier	Unit		D	%Rec	Limits		
Chloride Lab Sample ID: 880-13733-A-1-G M	78.0	Qualifier	Added 250		307.1		mg/Kg	Clien	_	92	90 - 110): Matrix Spi		-
Chloride Lab Sample ID: 880-13733-A-1-G M Matrix: Solid	78.0						mg/Kg	Clien	_	92	90 - 110		-
Analyte Chloride Lab Sample ID: 880-13733-A-1-G M Matrix: Solid Analysis Batch: 23775	78.0 SD	Sample				MSD	mg/Kg	Clien	_	92	90 - 110): Matrix Spi		-
Chloride Lab Sample ID: 880-13733-A-1-G M Matrix: Solid	78.0 SD Sample		250		307.1		mg/Kg	Clien	_	92	90 ₋ 110 9: Matrix Spi Prep T		Solubl
Chloride Lab Sample ID: 880-13733-A-1-G M Matrix: Solid Analysis Batch: 23775	78.0 SD Sample	Sample	250 Spike		307.1	MSD	mg/Kg	Clien	_ t Sa	92 Imple ID	90 - 110): Matrix Spi Prep T %Rec	ype: S	RP Lim
Chloride Lab Sample ID: 880-13733-A-1-G M Matrix: Solid Analysis Batch: 23775 Analyte Chloride	78.0 SD Sample Result	Sample	250 Spike Added		307.1 MSD Result	MSD	mg/Kg Unit	Clien	t Sa	92	90 - 110 9: Matrix Spi Prep T %Rec Limits 90 - 110	ype: S	RP Lim
Chloride Lab Sample ID: 880-13733-A-1-G M Matrix: Solid Analysis Batch: 23775 Analyte Chloride Lab Sample ID: MB 880-23643/1-A	78.0 SD Sample Result	Sample	250 Spike Added		307.1 MSD Result	MSD	mg/Kg Unit	Clien	t Sa	92	90 - 110 D: Matrix Spi Prep T %Rec Limits 90 - 110 Gample ID: M	RPD 1 RPD	RF Lim
Chloride Lab Sample ID: 880-13733-A-1-G M Matrix: Solid Analysis Batch: 23775 Analyte Chloride Lab Sample ID: MB 880-23643/1-A Matrix: Solid	78.0 SD Sample Result	Sample	250 Spike Added		307.1 MSD Result	MSD	mg/Kg Unit	Clien	t Sa	92	90 - 110 9: Matrix Spi Prep T %Rec Limits 90 - 110	RPD 1 RPD	RP Lim 2 I Blan
Chloride Lab Sample ID: 880-13733-A-1-G M Matrix: Solid Analysis Batch: 23775 Analyte Chloride Lab Sample ID: MB 880-23643/1-A Matrix: Solid	78.0 SD Sample Result	Sample	250 Spike Added		307.1 MSD Result	MSD	mg/Kg Unit	Clien	t Sa	92	90 - 110 D: Matrix Spi Prep T %Rec Limits 90 - 110 Gample ID: M	RPD 1 RPD	RP Lim 2 I Blan
Chloride Lab Sample ID: 880-13733-A-1-G M Matrix: Solid Analysis Batch: 23775 Analyte Chloride Lab Sample ID: MB 880-23643/1-A Matrix: Solid Analysis Batch: 23776 Analyte	78.0 SD Sample Result 78.0	Sample Qualifier MB MB Jesult Qualifier	250 Spike Added		307.1 MSD Result 310.0	MSD	mg/Kg Unit	D	_ t Sa	92	90 - 110 91 Matrix Spi Prep T %Rec Limits 90 - 110 Gample ID: M Prep T Analyze	ype: S RPD 1 lethod ype: S	RP Lim 2 I Blan Solubl
Chloride Lab Sample ID: 880-13733-A-1-G M Matrix: Solid Analysis Batch: 23775 Analyte Chloride Lab Sample ID: MB 880-23643/1-A Matrix: Solid Analysis Batch: 23776 Analyte	78.0 SD Sample Result 78.0	Sample Qualifier MB MB	250 Spike Added		307.1 MSD Result 310.0	MSD Qualifier	mg/Kg Unit mg/Kg		_ t Sa	92 mple ID <u>%Rec</u> 93 Client S	90 - 110 91 Matrix Spi Prep T %Rec Limits 90 - 110 Gample ID: M Prep T	ype: S RPD 1 lethod ype: S	RF Lim 2 I Blan Solub
Chloride Lab Sample ID: 880-13733-A-1-G M Matrix: Solid Analysis Batch: 23775 Analyte Chloride Lab Sample ID: MB 880-23643/1-A Matrix: Solid Analysis Batch: 23776 Analyte Chloride	78.0 SD Result 78.0	Sample Qualifier MB MB Jesult Qualifier	250 Spike Added		307.1 MSD Result 310.0	MSD Qualifier MDL Unit	mg/Kg Unit mg/Kg	<u>D</u>	L Sa	92 mple IC %Rec 93 Client S	90 - 110 9: Matrix Spi Prep T %Rec Limits 90 - 110 Gample ID: M Prep T Analyze 04/19/22 13	RPD 1 lethod ype: S d 3:20	RF Lin I Blar Solub Dil F
Chloride Lab Sample ID: 880-13733-A-1-G M Matrix: Solid Analysis Batch: 23775 Analyte Chloride Lab Sample ID: MB 880-23643/1-A Matrix: Solid Analysis Batch: 23776 Analyte Chloride Lab Sample ID: LCS 880-23643/2-A	78.0 SD Result 78.0	Sample Qualifier MB MB Jesult Qualifier	250 Spike Added		307.1 MSD Result 310.0	MSD Qualifier MDL Unit	mg/Kg Unit mg/Kg	<u>D</u>	L Sa	92 mple IC %Rec 93 Client S	90 - 110 91 Matrix Spi Prep T %Rec Limits 90 - 110 Gample ID: M Prep T Analyze	RPD 1 lethod ype: S d 3:20 -	RF Lin I Blar Solub Dil F
Chloride Lab Sample ID: 880-13733-A-1-G M Matrix: Solid Analysis Batch: 23775 Analyte Chloride Lab Sample ID: MB 880-23643/1-A Matrix: Solid Analysis Batch: 23776 Analyte Chloride Lab Sample ID: LCS 880-23643/2-A Matrix: Solid	78.0 SD Result 78.0	Sample Qualifier MB MB Jesult Qualifier	250 Spike Added		307.1 MSD Result 310.0	MSD Qualifier MDL Unit	mg/Kg Unit mg/Kg	<u>D</u>	L Sa	92 mple IC %Rec 93 Client S	90 - 110 91 - 110 92 Matrix Spi Prep T %Rec Limits 90 - 110 Sample ID: M Prep T Analyze 04/19/22 13 91 D: Lab Con	RPD 1 lethod ype: S d 3:20 -	RF Lin 2 I Blan Solub Dil Fa
Chloride Lab Sample ID: 880-13733-A-1-G M Matrix: Solid Analysis Batch: 23775 Analyte Chloride Lab Sample ID: MB 880-23643/1-A Matrix: Solid Analysis Batch: 23776 Analyte Chloride Lab Sample ID: LCS 880-23643/2-A Matrix: Solid Analysis Batch: 23776	78.0 SD Result 78.0	Sample Qualifier MB MB Jesult Qualifier	250 Spike Added 250	RL 5.00	307.1 MSD Result 310.0	MSD Qualifier MDL Unit mg/Kt	Unit mg/Kg	<u>D</u>	 D Pr ient	92 mple ID <u>%Rec</u> 93 Client S repared Sample	90 - 110 91 Matrix Spi Prep T %Rec Limits 90 - 110 Sample ID: M Prep T Analyze 04/19/22 13 91D: Lab Con Prep T %Rec	RPD 1 lethod ype: S d 3:20 -	RF Lin 2 I Blan Solub Dil Fa
Chloride Lab Sample ID: 880-13733-A-1-G M Matrix: Solid Analysis Batch: 23775 Analyte Chloride Lab Sample ID: MB 880-23643/1-A Matrix: Solid Analysis Batch: 23776 Analyte Chloride Lab Sample ID: LCS 880-23643/2-A Matrix: Solid Analysis Batch: 23776 Analyte Chloride	78.0 SD Result 78.0	Sample Qualifier MB MB Jesult Qualifier	250 Spike Added 250 Spike Added	RL 5.00	307.1 MSD Result 310.0	MSD Qualifier MDL Unit mg/Ka	Unit mg/Kg	<u>D</u>	L Sa	92 mple ID %Rec 93 Client S repared Sample %Rec	90 - 110 91 Matrix Spi Prep T %Rec Limits 90 - 110 Sample ID: M Prep T Anaiyze 04/19/22 13 9 ID: Lab Con Prep T %Rec Limits	RPD 1 lethod ype: S d 3:20 -	RP Lim 2 I Blan Solub Dil Fa
Chloride Lab Sample ID: 880-13733-A-1-G M Matrix: Solid Analysis Batch: 23775 Analyte Chloride Lab Sample ID: MB 880-23643/1-A Matrix: Solid Analysis Batch: 23776 Analyte Chloride Lab Sample ID: LCS 880-23643/2-A Matrix: Solid Analysis Batch: 23776 Analyte Chloride	78.0 SD Result 78.0	Sample Qualifier MB MB Jesult Qualifier	250 Spike Added 250	RL 5.00	307.1 MSD Result 310.0	MSD Qualifier MDL Unit mg/Kt	Unit mg/Kg	<u>D</u>	 D Pr ient	92 mple ID <u>%Rec</u> 93 Client S repared Sample	90 - 110 91 Matrix Spi Prep T %Rec Limits 90 - 110 Sample ID: M Prep T Analyze 04/19/22 13 91D: Lab Con Prep T %Rec	RPD 1 lethod ype: S d 3:20 -	RP Lim 2 I Blan Solub Dil Fa
Chloride Lab Sample ID: 880-13733-A-1-G M Matrix: Solid Analysis Batch: 23775 Analyte Chloride Lab Sample ID: MB 880-23643/1-A Matrix: Solid Analysis Batch: 23776 Analyte Chloride Lab Sample ID: LCS 880-23643/2-A Matrix: Solid Analysis Batch: 23776 Analyte Chloride Chloride Chloride	78.0 SD Result 78.0	Sample Qualifier MB MB Jesult Qualifier	250 Spike Added 250 Spike Added	RL 5.00	307.1 MSD Result 310.0	MSD Qualifier MDL Unit mg/Kt	g Unit mg/Kg	D Cli	 D ient	92 mple ID %Rec 93 Client S repared Sample %Rec 91	90 - 110 91 Matrix Spi Prep T %Rec Limits 90 - 110 Sample ID: M Prep T Anaiyze 04/19/22 13 9 ID: Lab Con Prep T %Rec Limits	RPD 1 lethod ype: S d 3:20 ntrol S ype: S	RFR Lin 2 I Blar Solub Solub
Chloride Lab Sample ID: 880-13733-A-1-G M Matrix: Solid Analysis Batch: 23775 Analyte Chloride Lab Sample ID: MB 880-23643/1-A Matrix: Solid Analysis Batch: 23776 Analyte Chloride Lab Sample ID: LCS 880-23643/2-A Matrix: Solid Analysis Batch: 23776 Analyte Chloride Lab Sample ID: LCSD 880-23643/3-	78.0 SD Result 78.0	Sample Qualifier MB MB Jesult Qualifier	250 Spike Added 250 Spike Added	RL 5.00	307.1 MSD Result 310.0	MSD Qualifier MDL Unit mg/Kt	g Unit mg/Kg	D Cli	 D ient	92 mple ID %Rec 93 Client S repared Sample %Rec 91	90 - 110 91 Matrix Spi Prep T %Rec Limits 90 - 110 Sample ID: M Prep T Anaiyze 04/19/22 13 91D: Lab Con Prep T %Rec Limits 90 - 110	RPD 1 lethod ype: S d 3:20 htrol S ype: S	RP Lim 2 I Blan Solub Dil Fa Sampl Solub
Chloride Lab Sample ID: 880-13733-A-1-G M Matrix: Solid Analysis Batch: 23775 Analyte Chloride Lab Sample ID: MB 880-23643/1-A Matrix: Solid Analysis Batch: 23776 Analyte Chloride Lab Sample ID: LCS 880-23643/2-A Matrix: Solid Analysis Batch: 23776 Analyte Chloride Lab Sample ID: LCSD 880-23643/3-A	78.0 SD Result 78.0	Sample Qualifier MB MB Jesult Qualifier	250 Spike Added 250 Spike Added	RL 5.00	307.1 MSD Result 310.0	MSD Qualifier MDL Unit mg/Kt	g Unit mg/Kg	D Cli	 D ient	92 mple ID %Rec 93 Client S repared Sample %Rec 91	90 - 110 91 - 110 92 Matrix Spi Prep T %Rec Limits 90 - 110 6 mple ID: M Prep T 4 Malyze 04/19/22 13 9 ID: Lab Con Prep T %Rec Limits 90 - 110 Limits	RPD 1 lethod ype: S d 3:20 htrol S ype: S	RP Lim 2 I Blan Solubl Dil Fa Sampl Solubl
Chloride Lab Sample ID: 880-13733-A-1-G M Matrix: Solid Analysis Batch: 23775 Analyte	78.0 SD Result 78.0	Sample Qualifier MB MB Jesult Qualifier	250 Spike Added 250 Spike Added	RL 5.00	307.1 MSD Result 310.0 LCS Result 228.6	MSD Qualifier MDL Unit mg/Kt	g Unit mg/Kg	D Cli	 D ient	92 mple ID %Rec 93 Client S repared Sample %Rec 91	90 - 110 91 - 110 92 Matrix Spi Prep T %Rec Limits 90 - 110 6 mple ID: M Prep T 4 Malyze 04/19/22 13 9 ID: Lab Con Prep T %Rec Limits 90 - 110 Limits	RPD 1 lethod ype: S d 3:20 htrol S ype: S	RP Lim 2 I Blan Solubl Dil Fa Sampl Solubl

Eurofins Midland

QC Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: Quail Queen Unit #002 Job ID: 880-13745-1 SDG: 15661

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 880-13745-3 MS Matrix: Solid								Client	Sample ID: Prep	Auger Type: S	
Analysis Batch: 23776											
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	1190		1250	2472		mg/Kg		103	90 - 110		
Lab Sample ID: 880-13745-3 MSD								Client	Sample ID:	Auger	Hole 2
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 23776											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	1190		1250	2431		mg/Kg		99	90 - 110	2	20

QC Association Summary

Client: Etech Environmental & Safety Solutions Project/Site: Quail Queen Unit #002

Analysis Batch: 23767

Job ID: 880-13 SDG: 1

745-1 15661	

Client: Etech Environmental & Safety Solutions Project/Site: Quail Queen Unit #002					DID: 880-13745-1 SDG: 15661
GC VOA					
Analysis Batch: 23767	,				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-13745-1	Auger Hole 1	Total/NA	Solid	8021B	23778
880-13745-2	Auger Hole 1	Total/NA	Solid	8021B	23778
880-13745-3	Auger Hole 2	Total/NA	Solid	8021B	23778
880-13745-4	Auger Hole 2	Total/NA	Solid	8021B	23778
MB 880-23778/5-A	Method Blank	Total/NA	Solid	8021B	23778
LCS 880-23778/1-A	Lab Control Sample	Total/NA	Solid	8021B	23778
LCSD 880-23778/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	23778
880-13745-1 MS	Auger Hole 1	Total/NA	Solid	8021B	23778
880-13745-1 MSD	Auger Hole 1	Total/NA	Solid	8021B	23778
Prep Batch: 23778					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-13745-1	Auger Hole 1	Total/NA	Solid	5035	
880-13745-2	Auger Hole 1	Total/NA	Solid	5035	
880-13745-3	Auger Hole 2	Total/NA	Solid	5035	
880-13745-4	Auger Hole 2	Total/NA	Solid	5035	
MB 880-23778/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-23778/1-A	Lab Control Sample	Total/NA	Solid	5035	1
LCSD 880-23778/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-13745-1 MS	Auger Hole 1	Total/NA	Solid	5035	
880-13745-1 MSD	Auger Hole 1	Total/NA	Solid	5035	

Analysis Batch: 23799

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
880-13745-1	Auger Hole 1	Total/NA	Solid	Total BTEX
880-13745-2	Auger Hole 1	Total/NA	Solid	Total BTEX
880-13745-3	Auger Hole 2	Total/NA	Solid	Total BTEX
880-13745-4	Auger Hole 2	Total/NA	Solid	Total BTEX

GC Semi VOA

Prep Batch: 23575

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-13745-1	Auger Hole 1	Total/NA	Solid	8015NM Prep	
880-13745-2	Auger Hole 1	Total/NA	Solid	8015NM Prep	
880-13745-3	Auger Hole 2	Total/NA	Solid	8015NM Prep	
880-13745-4	Auger Hole 2	Total/NA	Solid	8015NM Prep	
MB 880-23575/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-23575/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-23575/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-13746-A-1-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-13746-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 23584

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-13745-1	Auger Hole 1	Total/NA	Solid	8015B NM	23575
880-13745-2	Auger Hole 1	Total/NA	Solid	8015B NM	23575
880-13745-3	Auger Hole 2	Total/NA	Solid	8015B NM	23575
880-13745-4	Auger Hole 2	Total/NA	Solid	8015B NM	23575
MB 880-23575/1-A	Method Blank	Total/NA	Solid	8015B NM	23575
LCS 880-23575/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	23575

Eurofins Midland

Released to Imaging: 5/3/2023 1:44:19 PM

QC Association Summary

Client: Etech Environmental & Safety Solutions Project/Site: Quail Queen Unit #002

GC Semi VOA (Continued)

Analysis Batch: 23584 (Continued)

Lab Sample ID LCSD 880-23575/3-A	Client Sample ID Lab Control Sample Dup	Prep Type Total/NA	Matrix Solid	Method 8015B NM	Prep Batch 23575
880-13746-A-1-B MS	Matrix Spike	Total/NA	Solid	8015B NM	23575
880-13746-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	23575
Analysis Batch: 23735					

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-13745-1	Auger Hole 1	Total/NA	Solid	8015 NM	
880-13745-2	Auger Hole 1	Total/NA	Solid	8015 NM	
880-13745-3	Auger Hole 2	Total/NA	Solid	8015 NM	
880-13745-4	Auger Hole 2	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 23640

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
880-13745-1	Auger Hole 1	Soluble	Solid	DI Leach		
880-13745-2	Auger Hole 1	Soluble	Solid	DI Leach		
MB 880-23640/1-A	Method Blank	Soluble	Solid	DI Leach		
LCS 880-23640/2-A	Lab Control Sample	Soluble	Solid	DI Leach		
LCSD 880-23640/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach		
880-13733-A-1-F MS	Matrix Spike	Soluble	Solid	DI Leach		
880-13733-A-1-G MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach		

Leach Batch: 23643

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-13745-3	Auger Hole 2	Soluble	Solid	DI Leach	
880-13745-4	Auger Hole 2	Soluble	Solid	DI Leach	
MB 880-23643/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-23643/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-23643/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-13745-3 MS	Auger Hole 2	Soluble	Solid	DI Leach	
880-13745-3 MSD	Auger Hole 2	Soluble	Solid	DI Leach	

Analysis Batch: 23775

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-13745-1	Auger Hole 1	Soluble	Solid	300.0	23640
880-13745-2	Auger Hole 1	Soluble	Solid	300.0	23640
MB 880-23640/1-A	Method Blank	Soluble	Solid	300.0	23640
LCS 880-23640/2-A	Lab Control Sample	Soluble	Solid	300.0	23640
LCSD 880-23640/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	23640
880-13733-A-1-F MS	Matrix Spike	Soluble	Solid	300.0	23640
880-13733-A-1-G MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	23640

Analysis Batch: 23776

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-13745-3	Auger Hole 2	Soluble	Solid	300.0	23643
880-13745-4	Auger Hole 2	Soluble	Solid	300.0	23643
MB 880-23643/1-A	Method Blank	Soluble	Solid	300.0	23643
LCS 880-23643/2-A	Lab Control Sample	Soluble	Solid	300.0	23643
LCSD 880-23643/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	23643
880-13745-3 MS	Auger Hole 2	Soluble	Solid	300.0	23643

Eurofins Midland

Page 52 of 92

Job ID: 880-13745-1 SDG: 15661

5 6 8

Job ID: 880-13745-1

SDG: 15661

QC Association Summary

Client: Etech Environmental & Safety Solutions Project/Site: Quail Queen Unit #002

HPLC/IC (Continued)

Analysis Batch: 23776 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
880-13745-3 MSD	Auger Hole 2	Soluble	Solid	300.0	23643	

Eurofins Midland

Lab Chronicle

Initial

Amount

4.96 g

10.02 g

5.05 g

Final

Amount

5 mL

10 mL

50 mL

Batch

23778

23767

23799

23735

23575

23584

23640

23775

Number

Dil

1

1

1

1

1

Factor

Run

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Client Sample ID: Auger Hole 1 Date Collected: 04/06/22 12:00 Date Received: 04/14/22 16:29

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Job ID: 880-13745-1 SDG: 15661

Lab Sample ID: 880-13745-1

Analyst

MR

MR

AJ

DM

AJ

SC

СН

Lab Sample ID: 880-13745-2

Lab Sample ID: 880-13745-3

Lab Sample ID: 880-13745-4

Prepared

or Analyzed

04/19/22 09:58

04/19/22 12:32

04/19/22 16:59

04/15/22 08:43

04/16/22 05:14

04/15/22 11:47

04/19/22 12:42

04/18/22 12:12 AJ

Matrix: Solid

Lab

XEN MID

Matrix: Solid

Matrix: Solid

Client Sample ID: Auger Hole 1

Date Collected: 04/06/22 12:02 Date Received: 04/14/22 16:29

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	23778	04/19/22 09:58	MR	XEN MID
Total/NA	Analysis	8021B		1			23767	04/19/22 12:53	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			23799	04/19/22 16:59	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			23735	04/18/22 12:12	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	23575	04/15/22 08:43	DM	XEN MID
Total/NA	Analysis	8015B NM		1			23584	04/16/22 05:35	AJ	XEN MID
Soluble	Leach	DI Leach			5.05 g	50 mL	23640	04/15/22 11:47	SC	XEN MID
Soluble	Analysis	300.0		1			23775	04/19/22 12:48	СН	XEN MID

Client Sample ID: Auger Hole 2 Date Collected: 04/06/22 12:04

Date Received: 04/14/22 16:29

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	23778	04/19/22 09:58	MR	XEN MID
Total/NA	Analysis	8021B		1			23767	04/19/22 13:13	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			23799	04/19/22 16:59	AJ	XEN MID
Total/NA	Analysis	8015 NM		1			23735	04/18/22 12:12	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	23575	04/15/22 08:43	DM	XEN MID
Total/NA	Analysis	8015B NM		1			23584	04/16/22 05:56	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	23643	04/15/22 11:50	SC	XEN MID
Soluble	Analysis	300.0		5			23776	04/19/22 13:39	SC	XEN MID

Client Sample ID: Auger Hole 2 Date Collected: 04/06/22 12:06 Date Received: 04/14/22 16:29

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	23778	04/19/22 09:58	MR	XEN MID
Total/NA	Analysis	8021B		1			23767	04/19/22 13:34	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			23799	04/19/22 16:59	AJ	XEN MID

Eurofins Midland

Matrix: Solid

Client: Etech Environmental & Safety Solutions Project/Site: Quail Queen Unit #002

Client Sample ID: Auger Hole 2 Date Collected: 04/06/22 12:06 Date Received: 04/14/22 16:29

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			23735	04/18/22 12:12	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	23575	04/15/22 08:43	DM	XEN MID
Total/NA	Analysis	8015B NM		1			23584	04/15/22 17:03	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	23643	04/15/22 11:50	SC	XEN MID
Soluble	Analysis	300.0		5			23776	04/19/22 13:58	SC	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Page 55 of 92

Job ID: 880-13745-1 SDG: 15661

Lab Sample ID: 880-13745-4

Matrix: Solid

Eurofins Midland

Released to Imaging: 5/3/2023 1:44:19 PM

Accreditation/Certification Summary

Page 56 of 92

Client: Etech Environme Project/Site: Quail Quee	-	S		Job ID: 880-13745-1 SDG: 15661	
Laboratory: Eurofi	ns Midland				
Unless otherwise noted, all ar	nalytes for this laboratory we	re covered under each acc	reditation/certification below.		
Authority	Pro	ogram	Identification Number	Expiration Date	
Texas	NE	ELAP	T104704400-21-22	06-30-22	5
The following analytes a	are included in this report, bu	It the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for which	5
the agency does not off		•• • •			
Analysis Method 8015 NM	Prep Method	Matrix Solid	Analyte Total TPH		
Total BTEX		Solid	Total BTEX		
_					8
					9
					10
					10
					13
					1 /

Eurofins Midland

Method Summary

Client: Etech Environmental & Safety Solutions Project/Site: Quail Queen Unit #002

Job ID: 880-13745-1 SDG: 15661

ethod	Method Description	Protocol	Laboratory
021B	Volatile Organic Compounds (GC)	SW846	XEN MID
otal BTEX	Total BTEX Calculation	TAL SOP	XEN MID
015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
0.0	Anions, Ion Chromatography	MCAWW	XEN MID
)35	Closed System Purge and Trap	SW846	XEN MID
015NM Prep	Microextraction	SW846	XEN MID
Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Page 57 of 92

Sample Summary

Client: Etech Environmental & Safety Solutions Project/Site: Quail Queen Unit #002 Job ID: 880-13745-1 SDG: 15661

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
80-13745-1	Auger Hole 1	Solid	04/06/22 12:00	04/14/22 16:29	0 - 6"	
80-13745-2	Auger Hole 1	Solid	04/06/22 12:02	04/14/22 16:29	12 - 15"	
80-13745-3	Auger Hole 2	Solid	04/06/22 12:04	04/14/22 16:29	0 - 6"	
80-13745-4	Auger Hole 2	Solid	04/06/22 12:06	04/14/22 16:29	12 - 15"	
						1

0-13745-1

Page 58 of 92

Page 59 of 92

Chain of Custody

Houston TX (281) 240-4200 Dallas TX (214) 902-0300 San Antonio TX (210) 509-3334

13

3745 Work Order No: ___

4/20/2022

	The second s	and source.	Hobbs		d TX (432-704-5 -7550) Phoenix										-620-20	00)		www	xenc	0 00	m	Page _		of	-
Project Manager	Brandon Wils	on			Bill to (if differe								·				······				****	mments	3		Ē
Company Name	Etech Enviror	nmental			Company Na	me									Prog	ram: l	JST/PS							perfund	1
Address	13000 W CR	100			Address									State of Project:											
City, State ZIP	Odessa, Texa	as 79765			City, State ZI	P									Repo	rting L	evel II	Lev	vel III	D PS	ST/U	ST ^D TRI	RP -	evel IV	
Phone	432-563-2200)		Email	brandon@e	techer	nv con	n, blał	ke@et	echen	v com				Deliv	erable	s ED[> [□]		ADa	aPT ^C		Other		
Project Name	Quail Queen	Unit #002		Tu	Irn Around						AN	ALYS	SIS R	EQUI	EST							Wor	k Orde	r Notes	
Project Number [.]	15661			Rout	ine											Τ	Τ	1					•••••••	···	
P O Number	15661			Rush	1]		ĺ										ĺ							
Sampler's Name	Blake Estep			Due	Date]																			
SAMPLE RECI	EIPT Te	mp Blank	Yes No	Wet Ice	(es No																				
Temperature (°C)	.3	. 2		hermometer		lers																			
Received Intact.	(Yes			P	er e	Containers																			
Cooler Custody Sea	ANNO 10 11 11 11 11 11 11 11 11 11 11 11 11	NO NA		ction Factor	-	0 C			-													TAT starts	the day	recevied by t	e
Sample Custody Se	als Yes M	NO CNUA	Total	Containers		er of	es	15M	8021B															by 4 30pm	
Sample Ider	ntification	Matrix	Date Sampled	Time Sampled	Depth	Number	Chlorides	TPH 8015M	BTEX 8													Sam	ple Co	mments	
Auger H	lole 1	S	4/6/2022	12 00	0-6"	1	X	X	X					<u> </u>				1							
Auger H	lole 1	s	4/6/2022	12 02	12-15"	1	X	X	X							1									
Auger H	lole 2	S	4/6/2022	12 04	0-6"	1	X	X	X														*****		
Auger H	lole 2	S	4/6/2022	12 06	12-15"	1	X	X	X																
						ļ	ļ		ļ					ļ		4	ļ	l _							
						ļ			<u> </u>	ļ	 					-				 		n i k i k i k i k i kan			
						 			_			[- [_
<u> </u>						ļ										.									
						<u> </u>			<u> </u>					┼──		8	80-137	45 Cha	ain of	Custo	ody				
		1			L	L		<u> </u>		1	<u> </u>					<u> </u>									
Total 200.7 / 6 Circle Method					PM Texas 1													K Se	e Ag						
					L P 6010 8R																1631	/ 245.1	/ 7470	/7471 Hg	
		iquisnment c	or samples cons	titutes a valid j	responsibility for	any los	eas or a	vnonea	e incur	od by th	a aliant	if ough													
it service Xenco will be	e liable only for the	cost of same	each project a	nd a charge of	\$5 for each samp	ne aubii												-							
Notice Signature of this of service Xenco will be of Xenco. A minimum ch Relinquished by	arge of \$75.00 will	cost of same	each project and Received	nd a charge of	\$5 for each samp			/Time		Re	elingui	shed I	by (S	ianat	ure)	1	Rec	eived		Siana	ature	<u>, I</u>	D:	ate/Time	1
of service Xenco will be of Xenco. A minimum ch	arge of \$75.00 will	cost of same	each project ai	nd a charge of	\$5 for each samp	5_		1		2 Re	elinqui	shed I	by (S	ignat	ure)		Rec	eived		Signa	ature)	Da	ate/Time	
of service Xenco will be of Xenco. A minimum ch	arge of \$75.00 will	cost of same	each project ai	nd a charge of	\$5 for each samp	Pul		12-		2 4	əlınquı	shed I	by (S	ignat	ure)		Rec	eived		Signa	ature)	Di	ate/Time	-

Received by OCD: 5/3/2023 7:44:29 AM

Revised Date 051418 Rev 2018 1

14

Job Number: 880-13745-1 SDG Number: 15661

List Source: Eurofins Midland

Login Sample Receipt Checklist

Client: Etech Environmental & Safety Solutions

Login Number: 13745 List Number: 1 Creator: Teel, Brianna

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Blake Estep E Tech Environmental & Safety Solutions, Inc. [1] 13000 West County Road 100 Odessa, TX 79765

> Project: Quail Queen #002 Project Number: 15661 Location: New Mexico

Lab Order Number: 2L02013

Current Certification

Report Date: 12/09/22

E Tech Environmental & Safety Solutions, Inc. [1]	Project: Quail Queen #002
13000 West County Road 100	Project Number: 15661
Odessa TX, 79765	Project Manager: Blake Estep

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Bottom Hole - 1 @ 12"	2L02013-01	Soil	12/01/22 14:00	12-02-2022 12:40
Bottom Hole - 2 @ 12"	2L02013-02	Soil	12/01/22 14:02	12-02-2022 12:40
Bottom Hole - 3 @ 12"	2L02013-03	Soil	12/01/22 14:04	12-02-2022 12:40
North Sidewall @ 6"	2L02013-04	Soil	12/01/22 14:06	12-02-2022 12:40
East Sidewall @ 6"	2L02013-05	Soil	12/01/22 14:08	12-02-2022 12:40
South Sidewall @ 6"	2L02013-06	Soil	12/01/22 14:10	12-02-2022 12:40
West Sidewall @ 6"	2L02013-07	Soil	12/01/22 14:12	12-02-2022 12:40

I	E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Quail Queen #002
1	3000 West County Road 100	Project Number:	15661
	Ddessa TX, 79765	Project Manager:	Blake Estep

Bottom Hole - 1 @ 12"

2L02013-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
3TEX by 8021B									
Benzene	ND	0.00115	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 22:23	EPA 8021B	
Toluene	ND	0.00115	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 22:23	EPA 8021B	
Ethylbenzene	ND	0.00115	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 22:23	EPA 8021B	
Xylene (p/m)	ND	0.00230	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 22:23	EPA 8021B	
Xylene (o)	ND	0.00115	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 22:23	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	80-120		P2L0503	12/05/22 13:09	12/05/22 22:23	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		85.9 %	80-120		P2L0503	12/05/22 13:09	12/05/22 22:23	EPA 8021B	
Fotal Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	28.7	mg/kg dry	1	P2L0601	12/06/22 09:00	12/06/22 21:09	TPH 8015M	
>C12-C28	ND	28.7	mg/kg dry	1	P2L0601	12/06/22 09:00	12/06/22 21:09	TPH 8015M	
>C28-C35	ND	28.7	mg/kg dry	1	P2L0601	12/06/22 09:00	12/06/22 21:09	TPH 8015M	
Surrogate: 1-Chlorooctane		105 %	70-130		P2L0601	12/06/22 09:00	12/06/22 21:09	TPH 8015M	
Surrogate: o-Terphenyl		117 %	70-130		P2L0601	12/06/22 09:00	12/06/22 21:09	TPH 8015M	
Total Petroleum Hydrocarbon	ND	28.7	mg/kg dry	1	[CALC]	12/06/22 09:00	12/06/22 21:09	calc	
C6-C35									
	EPA / Stand	ard Metl	nods						
General Chemistry Parameters by					DOL 0.505	12/05/22 15 51	12/06/22 00:26	EDA 200.0	
<u>General Chemistry Parameters by</u> Chloride	19.2	1.15	mg/kg dry	1	P2L0505	12/05/22 15:51	12/06/22 09:36	EPA 300.0	

E Tech Environmental & Safety Solutions, 13000 West County Road 100 Odessa TX, 79765	Inc. [1]			t Number:	Quail Queen 15661 Blake Estep	#002			
					e - 2 @ 12''	,			
				2L02013-	-02 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00115	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 22:44	EPA 8021B	
Toluene	ND	0.00115	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 22:44	EPA 8021B	
Ethylbenzene	ND	0.00115	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 22:44	EPA 8021B	
Xylene (p/m)	ND	0.00230	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 22:44	EPA 8021B	
Xylene (o)	ND	0.00115	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 22:44	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		109 %	80-120		P2L0503	12/05/22 13:09	12/05/22 22:44	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		86.5 %	80-120		P2L0503	12/05/22 13:09	12/05/22 22:44	EPA 8021B	
Total Petroleum Hydrocarbons C6-C3	5 by EP	A Method	8015M						
C6-C12	ND	144	mg/kg dry	5	P2L0601	12/06/22 09:00	12/06/22 21:32	TPH 8015M	
>C12-C28	597	144	mg/kg dry	5	P2L0601	12/06/22 09:00	12/06/22 21:32	TPH 8015M	
>C28-C35	ND	144	mg/kg dry	5	P2L0601	12/06/22 09:00	12/06/22 21:32	TPH 8015M	
Surrogate: 1-Chlorooctane		106 %	70-130		P2L0601	12/06/22 09:00	12/06/22 21:32	TPH 8015M	
Surrogate: o-Terphenyl		116 %	70-130		P2L0601	12/06/22 09:00	12/06/22 21:32	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	597	144	mg/kg dry	5	[CALC]	12/06/22 09:00	12/06/22 21:32	calc	
General Chemistry Parameters by EPA	A / Stand								
Chloride	2220	11.5	mg/kg dry	10	P2L0505	12/05/22 15:51	12/06/22 09:49	EPA 300.0	
% Moisture	13.0	0.1	%	1	P2L0707	12/07/22 13:14	12/07/22 13:37	ASTM D2216	

E Tech Environmental & Safety Solutio 13000 West County Road 100 Odessa TX, 79765	ns, Inc. [1]		5	t Number:	Quail Queen # 15661 Blake Estep	002			
				ttom Hol 2L02013-	e - 3 @ 12'' -03 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Р	ermian B	asin Envi	ronmental La	ıb, L.P.			
BTEX by 8021B									
Benzene	ND	0.00114	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:05	EPA 8021B	
Toluene	ND	0.00114	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:05	EPA 8021B	
Ethylbenzene	ND	0.00114	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:05	EPA 8021B	
Xylene (p/m)	ND	0.00227	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:05	EPA 8021B	
Xylene (o)	ND	0.00114	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:05	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		95.6 %	80-120		P2L0503	12/05/22 13:09	12/05/22 23:05	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		87.5 %	80-120		P2L0503	12/05/22 13:09	12/05/22 23:05	EPA 8021B	
Total Petroleum Hydrocarbons C6-	C35 by EP	A Method	8015M						
C6-C12	ND	284	mg/kg dry	10	P2L0602	12/06/22 09:00	12/06/22 13:24	TPH 8015M	
>C12-C28	3870	284	mg/kg dry	10	P2L0602	12/06/22 09:00	12/06/22 13:24	TPH 8015M	
>C28-C35	1540	284	mg/kg dry	10	P2L0602	12/06/22 09:00	12/06/22 13:24	TPH 8015M	
Surrogate: 1-Chlorooctane		101 %	70-130		P2L0602	12/06/22 09:00	12/06/22 13:24	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-130		P2L0602	12/06/22 09:00	12/06/22 13:24	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	5410	284	mg/kg dry	10	[CALC]	12/06/22 09:00	12/06/22 13:24	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	312	1.14	mg/kg dry	1	P2L0505	12/05/22 15:51	12/06/22 10:02	EPA 300.0	
% Moisture	12.0	0.1	%	1	P2L0707	12/07/22 13:14	12/07/22 13:37	ASTM D2216	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	t Number:	Quail Queen #0 15661 Blake Estep	02			
					ewall @ 6''				
				2L02013	-04 (8011)]
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian B	asin Envi	ronmental La	o, L.P.			
BTEX by 8021B									
Benzene	ND	0.00112	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:26	EPA 8021B	
Toluene	ND	0.00112	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:26	EPA 8021B	
Ethylbenzene	ND	0.00112	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:26	EPA 8021B	
Xylene (p/m)	ND	0.00225	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:26	EPA 8021B	
Xylene (o)	ND	0.00112	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:26	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		87.1 %	80-120		P2L0503	12/05/22 13:09	12/05/22 23:26	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		106 %	80-120		P2L0503	12/05/22 13:09	12/05/22 23:26	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	28.1	mg/kg dry	1	P2L0602	12/06/22 09:00	12/06/22 13:45	TPH 8015M	
>C12-C28	ND	28.1	mg/kg dry	1	P2L0602	12/06/22 09:00	12/06/22 13:45	TPH 8015M	
>C28-C35	ND	28.1	mg/kg dry	1	P2L0602	12/06/22 09:00	12/06/22 13:45	TPH 8015M	
Surrogate: 1-Chlorooctane		106 %	70-130		P2L0602	12/06/22 09:00	12/06/22 13:45	TPH 8015M	
Surrogate: o-Terphenyl		118 %	70-130		P2L0602	12/06/22 09:00	12/06/22 13:45	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	28.1	mg/kg dry	1	[CALC]	12/06/22 09:00	12/06/22 13:45	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	142	1.12	mg/kg dry	1	P2L0505	12/05/22 15:51	12/06/22 10:15	EPA 300.0	
% Moisture	11.0	0.1	%	1	P2L0707	12/07/22 13:14	12/07/22 13:37	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765			2	t Number: Manager:	Blake Estep				
				ast Sidev 2L02013-	wall @ 6'' -05 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Р	ermian B	asin Envi	ronmental La	b, L.P.			
BTEX by 8021B									
Benzene	ND	0.00110	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:47	EPA 8021B	
Toluene	ND	0.00110	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:47	EPA 8021B	
Ethylbenzene	ND	0.00110	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:47	EPA 8021B	
Xylene (p/m)	ND	0.00220	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:47	EPA 8021B	
Xylene (o)	ND	0.00110	mg/kg dry	1	P2L0503	12/05/22 13:09	12/05/22 23:47	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		87.6 %	80-120		P2L0503	12/05/22 13:09	12/05/22 23:47	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	80-120		P2L0503	12/05/22 13:09	12/05/22 23:47	EPA 8021B	
Fotal Petroleum Hydrocarbons C6-	C35 by EPA	A Method	8015M						
C6-C12	ND	27.5	mg/kg dry	1	P2L0602	12/06/22 09:00	12/08/22 11:47	TPH 8015M	
>C12-C28	1160	27.5	mg/kg dry	1	P2L0602	12/06/22 09:00	12/08/22 11:47	TPH 8015M	
>C28-C35	523	27.5	mg/kg dry	1	P2L0602	12/06/22 09:00	12/08/22 11:47	TPH 8015M	
Surrogate: 1-Chlorooctane		102 %	70-130		P2L0602	12/06/22 09:00	12/08/22 11:47	TPH 8015M	
Surrogate: o-Terphenyl		115 %	70-130		P2L0602	12/06/22 09:00	12/08/22 11:47	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	1680	27.5	mg/kg dry	1	[CALC]	12/06/22 09:00	12/08/22 11:47	calc	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	324	1.10	mg/kg dry	1	P2L0505	12/05/22 15:51	12/06/22 10:55	EPA 300.0	
% Moisture	9.0	0.1	%	1	P2L0707	12/07/22 13:14	12/07/22 13:37	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765				t Number: Manager:	Blake Estep				
			So	outh Side 2L02013-	ewall @ 6'' -06 (Soil)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Р	ermian B	asin Envi	ronmental La	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00109	mg/kg dry	1	P2L0503	12/05/22 13:09	12/06/22 00:08	EPA 8021B	
Toluene	ND	0.00109	mg/kg dry	1	P2L0503	12/05/22 13:09	12/06/22 00:08	EPA 8021B	
Ethylbenzene	ND	0.00109	mg/kg dry	1	P2L0503	12/05/22 13:09	12/06/22 00:08	EPA 8021B	
Xylene (p/m)	ND	0.00217	mg/kg dry	1	P2L0503	12/05/22 13:09	12/06/22 00:08	EPA 8021B	
Xylene (o)	ND	0.00109	mg/kg dry	1	P2L0503	12/05/22 13:09	12/06/22 00:08	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		99.4 %	80-120		P2L0503	12/05/22 13:09	12/06/22 00:08	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		87.3 %	80-120		P2L0503	12/05/22 13:09	12/06/22 00:08	EPA 8021B	
Total Petroleum Hydrocarbons C6-	C35 by EP	A Method	8015M						
C6-C12	ND	27.2	mg/kg dry	1	P2L0602	12/06/22 09:00	12/08/22 12:08	TPH 8015M	
>C12-C28	335	27.2	mg/kg dry	1	P2L0602	12/06/22 09:00	12/08/22 12:08	TPH 8015M	
>C28-C35	155	27.2	mg/kg dry	1	P2L0602	12/06/22 09:00	12/08/22 12:08	TPH 8015M	
Surrogate: 1-Chlorooctane		104 %	70-130		P2L0602	12/06/22 09:00	12/08/22 12:08	TPH 8015M	
Surrogate: o-Terphenyl		116 %	70-130		P2L0602	12/06/22 09:00	12/08/22 12:08	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	490	27.2	mg/kg dry	1	[CALC]	12/06/22 09:00	12/08/22 12:08	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	668	1.09	mg/kg dry	1	P2L0505	12/05/22 15:51	12/06/22 11:35	EPA 300.0	
% Moisture	8.0	0.1	%	1	P2L0707	12/07/22 13:14	12/07/22 13:37	ASTM D2216	

13000 West County Road 100 Odessa TX, 79765			5	t Number: Manager:	Blake Estep				
			W	Vest Side 2L02013	wall @ 6'' -07 (Soil)				
		Reporting		21.02013	-07 (301)				
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Р	ermian B	asin Envi	ronmental La	b, L.P.			
BTEX by 8021B									
Benzene	ND	0.00111	mg/kg dry	1	P2L0503	12/05/22 13:09	12/06/22 00:29	EPA 8021B	
Toluene	ND	0.00111	mg/kg dry	1	P2L0503	12/05/22 13:09	12/06/22 00:29	EPA 8021B	
Ethylbenzene	ND	0.00111	mg/kg dry	1	P2L0503	12/05/22 13:09	12/06/22 00:29	EPA 8021B	
Xylene (p/m)	ND	0.00222	mg/kg dry	1	P2L0503	12/05/22 13:09	12/06/22 00:29	EPA 8021B	
Xylene (o)	ND	0.00111	mg/kg dry	1	P2L0503	12/05/22 13:09	12/06/22 00:29	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		86.4 %	80-120		P2L0503	12/05/22 13:09	12/06/22 00:29	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		109 %	80-120		P2L0503	12/05/22 13:09	12/06/22 00:29	EPA 8021B	
Fotal Petroleum Hydrocarbons C6-	C35 by EPA	A Method	8015M						
C6-C12	ND	27.8	mg/kg dry	1	P2L0602	12/06/22 09:00	12/08/22 12:30	TPH 8015M	
>C12-C28	650	27.8	mg/kg dry	1	P2L0602	12/06/22 09:00	12/08/22 12:30	TPH 8015M	
>C28-C35	286	27.8	mg/kg dry	1	P2L0602	12/06/22 09:00	12/08/22 12:30	TPH 8015M	
Surrogate: 1-Chlorooctane		99.8 %	70-130		P2L0602	12/06/22 09:00	12/08/22 12:30	TPH 8015M	
Surrogate: o-Terphenyl		110 %	70-130		P2L0602	12/06/22 09:00	12/08/22 12:30	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	937	27.8	mg/kg dry	1	[CALC]	12/06/22 09:00	12/08/22 12:30	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	26.7	1.11	mg/kg dry	1	P2L0505	12/05/22 15:51	12/06/22 11:48	EPA 300.0	
% Moisture	10.0	0.1	%	1	P2L0707	12/07/22 13:14	12/07/22 13:37	ASTM D2216	

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Quail Queen #002
13000 West County Road 100	Project Number:	15661
Odessa TX, 79765	Project Manager:	Blake Estep

BTEX by 8021B - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2L0503 - *** DEFAULT PREP ***										
Blank (P2L0503-BLK1)				Prepared &	Analyzed:	12/05/22				
Benzene	ND	0.00100	mg/kg							
Toluene	ND	0.00100								
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	0.119		"	0.120		99.2	80-120			
Surrogate: 1,4-Difluorobenzene	0.101		"	0.120		84.6	80-120			
LCS (P2L0503-BS1)				Prepared &	Analyzed:	12/05/22				
Benzene	0.102	0.00100	mg/kg	0.100		102	80-120			
Toluene	0.108	0.00100		0.100		108	80-120			
Ethylbenzene	0.114	0.00100	"	0.100		114	80-120			
Xylene (p/m)	0.195	0.00200		0.200		97.6	80-120			
Xylene (o)	0.110	0.00100		0.100		110	80-120			
Surrogate: 4-Bromofluorobenzene	0.138		"	0.120		115	80-120			
Surrogate: 1,4-Difluorobenzene	0.107		"	0.120		89.4	80-120			
LCS Dup (P2L0503-BSD1)				Prepared &	Analyzed:	12/05/22				
Benzene	0.115	0.00100	mg/kg	0.100		115	80-120	11.9	20	
Toluene	0.119	0.00100	"	0.100		119	80-120	10.2	20	
Ethylbenzene	0.118	0.00100		0.100		118	80-120	4.00	20	
Xylene (p/m)	0.211	0.00200		0.200		105	80-120	7.56	20	
Xylene (o)	0.119	0.00100		0.100		119	80-120	7.83	20	
Surrogate: 1,4-Difluorobenzene	0.108		"	0.120		89.8	80-120			
Surrogate: 4-Bromofluorobenzene	0.137		"	0.120		114	80-120			
Calibration Blank (P2L0503-CCB1)				Prepared &	Analyzed:	12/05/22				
Benzene	0.00		ug/kg							
Toluene	0.00									
Ethylbenzene	0.00									
Xylene (p/m)	0.140									
Xylene (o)	0.00									
Surrogate: 4-Bromofluorobenzene	0.128		"	0.120		107	80-120			
Surrogate: 1,4-Difluorobenzene	0.0980		"	0.120		81.6	80-120			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Quail Queen #002
13000 West County Road 100	Project Number:	15661
Odessa TX, 79765	Project Manager:	Blake Estep

BTEX by 8021B - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2L0503 - *** DEFAULT PREP ***										
Calibration Blank (P2L0503-CCB2)				Prepared &	Analyzed:	12/05/22				
Benzene	0.00		ug/kg							
Toluene	0.00									
Ethylbenzene	0.00									
Xylene (p/m)	0.120									
Xylene (o)	0.00									
Surrogate: 1,4-Difluorobenzene	0.102		"	0.120		84.9	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	80-120			
Calibration Check (P2L0503-CCV1)				Prepared &	Analyzed:	12/05/22				
Benzene	0.0996	0.00100	mg/kg				80-120			
Toluene	0.107	0.00100	"				80-120			
Ethylbenzene	0.117	0.00100	"				80-120			
Xylene (p/m)	0.193	0.00200	"				80-120			
Xylene (o)	0.117	0.00100					80-120			
Surrogate: 1,4-Difluorobenzene	0.102		"	0.120		85.0	75-125			
Surrogate: 4-Bromofluorobenzene	0.129		"	0.120		107	75-125			
Calibration Check (P2L0503-CCV2)				Prepared &	Analyzed:	12/05/22				
Benzene	0.110	0.00100	mg/kg				80-120			
Toluene	0.114	0.00100					80-120			
Ethylbenzene	0.119	0.00100					80-120			
Xylene (p/m)	0.197	0.00200					80-120			
Xylene (o)	0.119	0.00100					80-120			
Surrogate: 1,4-Difluorobenzene	0.107		"	0.120		89.5	75-125			
Surrogate: 4-Bromofluorobenzene	0.131		"	0.120		109	75-125			
Calibration Check (P2L0503-CCV3)				Prepared: 1	2/05/22 A	nalyzed: 12	/06/22			
Benzene	0.112	0.00100	mg/kg				80-120			
Toluene	0.117	0.00100					80-120			
Ethylbenzene	0.119	0.00100					80-120			
Xylene (p/m)	0.199	0.00200					80-120			
Xylene (o)	0.119	0.00100					80-120			
Surrogate: 1,4-Difluorobenzene	0.105		"	0.120		87.6	75-125			
Surrogate: 4-Bromofluorobenzene	0.132		"	0.120		110	75-125			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Quail Queen #002
13000 West County Road 100	Project Number:	15661
Odessa TX, 79765	Project Manager:	Blake Estep

BTEX by 8021B - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P2L0503 - *** DEFAULT PREP ***

Matrix Spike (P2L0503-MS1)	Sour	Source: 2L02002-01			Prepared: 12/05/22 Analyzed: 12/06/22					
Benzene	0.0129	0.00103	mg/kg dry	0.103	ND	12.5	80-120			QM-05
Toluene	0.0115	0.00103	"	0.103	ND	11.1	80-120			QM-05
Ethylbenzene	0.0180	0.00103	"	0.103	ND	17.4	80-120			QM-05
Xylene (p/m)	0.00540	0.00206	"	0.206	ND	2.62	80-120			QM-05
Xylene (o)	0.0302	0.00103		0.103	ND	29.3	80-120			QM-05
Surrogate: 1,4-Difluorobenzene	0.111		"	0.124		89.9	80-120			
Surrogate: 4-Bromofluorobenzene	0.123		"	0.124		99.3	80-120			
Matrix Spike Dup (P2L0503-MSD1)	Sour	rce: 2L02002	-01	Prepared: 1	2/05/22 A	nalyzed: 12	2/06/22			
Benzene	0.00410	0.00103	mg/kg dry	0.103	ND	3.98	80-120	103	20	QM-05
Toluene	0.00374	0.00103	"	0.103	ND	3.63	80-120	102	20	QM-05
Ethylbenzene	0.00368	0.00103	"	0.103	ND	3.57	80-120	132	20	QM-05
Xylene (p/m)	ND	0.00206	"	0.206	ND		80-120		20	QM-05
Xylene (o)	0.000639	0.00103		0.103	ND	0.620	80-120	192	20	QM-05
Surrogate: 4-Bromofluorobenzene	0.131		"	0.124		106	80-120			
Surrogate: 1,4-Difluorobenzene	0.112		"	0.124		90.5	80-120			

Permian Basin Environmental Lab, L.P.
E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Quail Queen #002
13000 West County Road 100	Project Number:	15661
Odessa TX, 79765	Project Manager:	Blake Estep

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2L0601 - TX 1005										
Blank (P2L0601-BLK1)				Prepared &	Analyzed:	12/06/22				
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	109		"	100		109	70-130			
Surrogate: o-Terphenyl	57.7		"	50.0		115	70-130			
LCS (P2L0601-BS1)				Prepared &	Analyzed:	12/06/22				
C6-C12	804	25.0	mg/kg	1000		80.4	75-125			
>C12-C28	820	25.0	"	1000		82.0	75-125			
Surrogate: 1-Chlorooctane	120		"	100		120	70-130			
Surrogate: o-Terphenyl	56.7		"	50.0		113	70-130			
LCS Dup (P2L0601-BSD1)				Prepared &	Analyzed:	12/06/22				
C6-C12	810	25.0	mg/kg	1000		81.0	75-125	0.798	20	
>C12-C28	840	25.0	"	1000		84.0	75-125	2.50	20	
Surrogate: 1-Chlorooctane	124		"	100		124	70-130			
Surrogate: o-Terphenyl	57.8		"	50.0		116	70-130			
Calibration Blank (P2L0601-CCB1)				Prepared &	Analyzed:	12/06/22				
C6-C12	9.88		mg/kg							
>C12-C28	9.19		"							
Surrogate: 1-Chlorooctane	108		"	100		108	70-130			
Surrogate: o-Terphenyl	56.3		"	50.0		113	70-130			
Calibration Blank (P2L0601-CCB2)				Prepared &	Analyzed:	12/06/22				
C6-C12	8.88		mg/kg							
>C12-C28	7.03		"							
Surrogate: 1-Chlorooctane	110		"	100		110	70-130			
Surrogate: o-Terphenyl	59.2		"	50.0		118	70-130			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Quail Queen #002
13000 West County Road 100	Project Number:	15661
Odessa TX, 79765	Project Manager:	Blake Estep

116

62.8

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2L0601 - TX 1005										
Calibration Check (P2L0601-CCV1)				Prepared &	Analyzed:	12/06/22				
C6-C12	471	25.0	mg/kg	500		94.1	85-115			
>C12-C28	472	25.0	"	500		94.4	85-115			
Surrogate: 1-Chlorooctane	115		"	100		115	70-130			
Surrogate: o-Terphenyl	58.2		"	50.0		116	70-130			
Calibration Check (P2L0601-CCV2)				Prepared &	Analyzed:	12/06/22				
C6-C12	475	25.0	mg/kg	500		94.9	85-115			
>C12-C28	507	25.0	"	500		101	85-115			
Surrogate: 1-Chlorooctane	119		"	100		119	70-130			
Surrogate: o-Terphenyl	58.4		"	50.0		117	70-130			
Calibration Check (P2L0601-CCV3)				Prepared &	Analyzed:	12/06/22				
C6-C12	494	25.0	mg/kg	500		98.7	85-115			
>C12-C28	504	25.0	"	500		101	85-115			
Surrogate: 1-Chlorooctane	121		"	100		121	70-130			
Surrogate: o-Terphenyl	63.0		"	50.0		126	70-130			
Duplicate (P2L0601-DUP1)	Sou	rce: 2L02006	-11	Prepared &	Prepared & Analyzed: 12/06/22					
C6-C12	505	281	mg/kg dry		ND			164	20	
>C12-C28	4700	281			462			164	20	
Surrogate: 1-Chlorooctane	132		"	112		118	70-130			
Surrogate: o-Terphenyl	63.1		"	56.2		112	70-130			
Batch P2L0602 - TX 1005										
Blank (P2L0602-BLK1)				Prepared &	Analyzed:	12/06/22				
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0								
>C28-C35	ND	25.0	"							

100

50.0

"

Permian Basin Environmental Lab, L.P.

Surrogate: 1-Chlorooctane

Surrogate: o-Terphenyl

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

116

126

70-130

70-130

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Quail Queen #002
13000 West County Road 100	Project Number:	15661
Odessa TX, 79765	Project Manager:	Blake Estep

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2L0602 - TX 1005										
LCS (P2L0602-BS1)				Prepared &	Analyzed:	12/06/22				
C6-C12	786	25.0	mg/kg	1000		78.6	75-125			
>C12-C28	871	25.0	"	1000		87.1	75-125			
Surrogate: 1-Chlorooctane	120		"	100		120	70-130			
Surrogate: o-Terphenyl	62.9		"	50.0		126	70-130			
LCS Dup (P2L0602-BSD1)				Prepared &	Analyzed:	12/06/22				
C6-C12	812	25.0	mg/kg	1000		81.2	75-125	3.23	20	
>C12-C28	861	25.0	"	1000		86.1	75-125	1.12	20	
Surrogate: 1-Chlorooctane	116		"	100		116	70-130			
Surrogate: o-Terphenyl	59.6		"	50.0		119	70-130			
Calibration Blank (P2L0602-CCB1)				Prepared &	Analyzed:	12/06/22				
C6-C12	16.8		mg/kg							
>C12-C28	6.25		"							
Surrogate: 1-Chlorooctane	108		"	100		108	70-130			
Surrogate: o-Terphenyl	58.1		"	50.0		116	70-130			
Calibration Blank (P2L0602-CCB2)				Prepared &	Analyzed:	12/06/22				
C6-C12	10.3		mg/kg							
>C12-C28	14.4		"							
Surrogate: 1-Chlorooctane	110		"	100		110	70-130			
Surrogate: o-Terphenyl	58.7		"	50.0		117	70-130			
Calibration Check (P2L0602-CCV1)				Prepared &	Analyzed:	12/06/22				
C6-C12	459	25.0	mg/kg	500		91.7	85-115			
>C12-C28	530	25.0	"	500		106	85-115			
Surrogate: 1-Chlorooctane	130		"	100		130	70-130			
Surrogate: o-Terphenyl	58.3		"	50.0		117	70-130			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Quail Queen #002
13000 West County Road 100	Project Number:	15661
Odessa TX, 79765	Project Manager:	Blake Estep

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2L0602 - TX 1005										
Calibration Check (P2L0602-CCV2)				Prepared &	Analyzed:	12/06/22				
C6-C12	472	25.0	mg/kg	500		94.4	85-115			-
>C12-C28	507	25.0	"	500		101	85-115			
Surrogate: 1-Chlorooctane	109		"	100		109	70-130			
Surrogate: o-Terphenyl	59.8		"	50.0		120	70-130			
Calibration Check (P2L0602-CCV3)				Prepared:	12/06/22 A	nalyzed: 12	/07/22			
C6-C12	472	25.0	mg/kg	500		94.4	85-115			
>C12-C28	523	25.0	"	500		105	85-115			
Surrogate: 1-Chlorooctane	114		"	100		114	70-130			
Surrogate: o-Terphenyl	58.2		"	50.0		116	70-130			
Duplicate (P2L0602-DUP1)	Sou	rce: 2L02013-	-03	Prepared:	12/06/22 A	nalyzed: 12	/07/22			
C6-C12	158	284	mg/kg dry		115			31.5	20	
>C12-C28	3860	284	"		3870			0.268	20	
Surrogate: 1-Chlorooctane	115		"	114		101	70-130			
Surrogate: o-Terphenyl	61.9		"	56.8		109	70-130			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Pr
13000 West County Road 100	Project Nur
Odessa TX, 79765	Project Mar

Project: Quail Queen #002 Project Number: 15661 roject Manager: Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P2L0505 - *** DEFAULT PREP ***										
Blank (P2L0505-BLK1)				Prepared &	Analyzed:	12/05/22				
Chloride	ND	1.00	mg/kg							
LCS (P2L0505-BS1)				Prepared &	Analyzed:	12/05/22				
Chloride	20.3		mg/kg	20.0		102	90-110			
LCS Dup (P2L0505-BSD1)				Prepared &	Analyzed:	12/05/22				
Chloride	20.8		mg/kg	20.0		104	90-110	2.61	10	
Calibration Blank (P2L0505-CCB1)				Prepared &	Analyzed:	12/05/22				
Chloride	0.0570		mg/kg							
Calibration Blank (P2L0505-CCB2)				Prepared:	12/05/22 A	nalyzed: 12	2/06/22			
Chloride	0.158		mg/kg							
Calibration Check (P2L0505-CCV1)				Prepared:	12/05/22 A	nalyzed: 12	2/07/22			
Chloride	18.6		mg/kg	20.0		93.1	90-110			
Calibration Check (P2L0505-CCV2)				Prepared:	12/05/22 A	nalyzed: 12	2/07/22			
Chloride	18.4		mg/kg	20.0		92.0	90-110			
Calibration Check (P2L0505-CCV3)				Prepared:	12/05/22 A	nalyzed: 12	2/06/22			
Chloride	20.6		mg/kg	20.0		103	90-110			
Matrix Spike (P2L0505-MS1)	Sou	rce: 2L02006	-05	Prepared &	Analyzed:	12/05/22				
Chloride	577	1.08	mg/kg dry	269	308	100	80-120			
Matrix Spike (P2L0505-MS2)	Sou	rce: 2L02013	-05	Prepared:	12/05/22 A	nalyzed: 12	2/06/22			
Chloride	527	1.10	mg/kg dry	275	324	73.9	80-120			QM-0

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Quail Queen #002
13000 West County Road 100	Project Number:	15661
Odessa TX, 79765	Project Manager:	Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian	Basin	Environmental	Lab,	L.P	
---------	-------	---------------	------	-----	--

Result		Units	•		%REC		RPD		Notes
					,				
Sour	ce: 2L02006-	05	Prepared &	Analyzed:	12/05/22				
544	1.08	mg/kg dry	269	308	88.1	80-120	5.82	20	
Sour	·ce: 2L02013-	05	Prepared: 1	2/05/22 A	nalyzed: 12	/06/22			
525	1.10	mg/kg dry	275	324	73.3	80-120	0.307	20	QM-05
			Prepared &	Analyzed:	12/07/22				
ND	0.1	%							
			Prepared &	Analyzed:	12/07/22				
ND	0.1	%							
Sour	ce: 2L02013-	04	Prepared &	Analyzed:	12/07/22				
11.0	0.1	%		11.0			0.00	20	
Sour	ce: 2L02014-	07	Prepared &	Analyzed:	12/07/22				
6.0	0.1	%		6.0			0.00	20	
Sour	ce: 2L02016-	13	Prepared &	Analyzed:	12/07/22				
14.0	0.1	%	*	14.0			0.00	20	
Sour	ce: 2L02016-	23	Prepared &	Analyzed:	12/07/22				
12.0	0.1	%	1	12.0			0.00	20	
Sou	re: 21.02016-	38	Prenared &	Analyzed	12/07/22				
5001	CC. 2002010-		r repuied a	/ maryzou.	12/01/22				
	544 544 525 ND ND Sour 11.0 Sour 14.0 Sour 12.0	Source: 2L.02006- 544 1.08 Source: 2L.02013- 525 1.10 ND 0.1 Source: 2L.02013- ND 0.1 Source: 2L.02013- 11.0 0.1 Source: 2L.02013- 11.0 0.1 Source: 2L.02013- 11.0 0.1 Source: 2L.02014- 6.0 0.1 Source: 2L.02016- 14.0 0.1 Source: 2L.02016- 12.0 0.1	Result Limit Units Source: 2L02006-05 544 1.08 mg/kg dry Source: 2L02013-05 mg/kg dry Source: 2L02013-05 1.10 mg/kg dry 525 1.10 mg/kg dry ND 0.1 % Source: 2L02013-05 1.00 % 11.0 0.1 % Source: 2L02013-04 1.00 % 6.0 0.1 % Source: 2L02014-07 6.0 % 14.0 0.1 %	ResultLimitUnitsLevelSource: 2L02006-05Prepared &5441.08mg/kg dry269Source: 2L02013-05Prepared &5251.10mg/kg dry2755251.10mg/kg dry2755251.10mg/kg dry2755251.10mg/kg dry2755261.10mg/kg dry2757Prepared &Prepared &ND0.1%Prepared &11.00.1%Prepared &6.00.1%Prepared &14.00.1%Prepared &12.00.1%Prepared &	ResultLimitUnitsLevelResultSource: 2L02006-05Prepared & Analyzed:5441.08mg/kg dry269308Source: 2L02013-05Prepared: 12/05/22Analyzed:5251.10mg/kg dry2753245251.10mg/kg dry275324MD0.1%Prepared & Analyzed:ND0.1%Prepared & Analyzed:ND0.1%11.0Source: 2L02013-04Prepared & Analyzed:11.00.1%11.0Source: 2L02016-13Prepared & Analyzed:14.00.1%14.012.00.1%12.0	Result Limit Units Level Result %REC Source: 2L02006-05 Prepared & Analyzed: 12/05/22 12/05/22 544 1.08 mg/kg dry 269 308 88.1 Source: 2L02013-05 Prepared: 12/05/22 Analyzed: 12 12/05/22 Analyzed: 12 525 1.10 mg/kg dry 275 324 73.3 Prepared & Analyzed: 12/07/22 ND 0.1 % Prepared & Analyzed: 12/07/22 ND 0.1 % 11.0 12/07/22 11.0 0.1 % 6.0 12/07/22 6.0 0.1 % 6.0 12/07/22 14.0 0.1 % 14.0 12/07/22 12.0 0.1 % 12.0 12/07/22 <	ResultLimitUnitsLevelResult%RECLimitsSource: 2L02006-05Prepared & Analyzed: 12/05/225441.08mg/kg dry26930888.180-120Source: 2L02013-05Prepared: 12/05/22Analyzed: 12/06/225251.10mg/kg dry27532473.380-120Prepared & Analyzed: 12/07/22ND0.1%Prepared & Analyzed: 12/07/22ND0.1%11.011.0Source: 2L02013-04Prepared & Analyzed: 12/07/22ND0.1%11.0Source: 2L02014-07Prepared & Analyzed: 12/07/226.00.1%6.0Source: 2L02016-13Prepared & Analyzed: 12/07/2214.00.1%14.0I 1.0I 1.0Source: 2L02016-23Prepared & Analyzed: 12/07/2212.00.1%I 1.0	Result Limit Units Level Result %REC Limits RPD Source: 2L/02006-05 Prepared & Analyzed: 12/05/22 544 1.08 mg/kg dry 269 308 88.1 80-120 5.82 Source: 2L/02013-05 Prepared: 12/05/22 Analyzed: 12/06/22 525 1.10 mg/kg dry 275 324 73.3 80-120 0.307 Prepared & Analyzed: 12/07/22 ND 0.1 % Prepared & Analyzed: 12/07/22 V ND 0.1 % 11.0 0.00 0.00 Source: 2L/02013-04 Prepared & Analyzed: 12/07/22 ND 0.1 % 11.0 0.00 Source: 2L/02014-07 Prepared & Analyzed: 12/07/22 6.0 0.1 % 6.0 0.00 Source: 2L/02016-13 Prepared & Analyzed: 12/07/22 14.0 0.1 % 14.0 0.00 Source: 2L/02016-23 Prepared & Analyzed: 12/07/22 <td>Result Limit Units Level Result %REC Limits RPD Limit Source: 2L02006-05 Prepared & Analyzed: 12/05/22 520</td>	Result Limit Units Level Result %REC Limits RPD Limit Source: 2L02006-05 Prepared & Analyzed: 12/05/22 520

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Quail Queen #002
13000 West County Road 100	Project Number:	15661
Odessa TX, 79765	Project Manager:	Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P2L0707 - *** DEFAULT PREP ***										
Duplicate (P2L0707-DUP6)	48	Prepared & Analyzed: 12/07/22								
% Moisture	11.0	0.1	%		11.0			0.00	20	
Duplicate (P2L0707-DUP7)	Source: 2L02016-63 P			Prepared &	Analyzed:	12/07/22				
% Moisture	11.0	0.1	%		11.0			0.00	20	
Duplicate (P2L0707-DUP8)	Sour	ce: 2L05002-1	10	Prepared &	Analyzed:	12/07/22				
% Moisture	9.0	0.1	%		10.0			10.5	20	
Duplicate (P2L0707-DUP9)	Sour	ce: 2L05011-()2	Prepared &	Analyzed:	12/07/22				
% Moisture	12.0	0.1	%		12.0			0.00	20	
Duplicate (P2L0707-DUPA)	Sour	ce: 2L05011-()4	Prepared &	Analyzed:	12/07/22				
% Moisture	9.0	0.1	%		8.0			11.8	20	

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Quail Queen #002
13000 West County Road 100	Project Number:	15661
Odessa TX, 79765	Project Manager:	Blake Estep

Notes and Definitions

ROI Received on Ice

- QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.
- NPBEL C(Chain of Custody was not generated at PBELAB
- BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Report Approved By:

Bur Barron

Date: <u>12/9/2022</u>

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Quail Queen #002
13000 West County Road 100	Project Number:	15661
Odessa TX, 79765	Project Manager:	Blake Estep

Permian Basin Environmental Lab, L.P.

PB	ELAH	Permian Ba	sin Envir	onm	ental Lab,	LP						CHAI	N O	F CUS	ΓOD	Y RE	CORI) AN	D AI	VAL)	√ (YSIS F	Į ∕₩ ≀EQI	ע וesז	-	
100 Rankin Project Manage Company Name Company Addr	er: <u>Blake Es</u> e: <u>Etech Envir</u> ess: P.O. Box 62	ronmental & Safe 2228		ns, Ir		Phone: /	132	-686	5-72	35		<u>P</u> P	roje roje rea	ect Na ect #:,	<u>ime</u> /57	: Q 66	uail	Q	<u>vee</u> ojec P(<u>/ </u> :t Lo D#:	#C c: A 150	87 Ieu 166	L 1 1	Ner;	C 0
City/State/Zip: Sampler Signat	Midland, To	exas 79711	email: _	bla	ke <u>@eteche</u>	env.com							В	II Ete	ch	·					NPDE		-		_
		91.0																	A		ze For	: 			
ib use only)	07012														\vdash		TCL TOTA			님					
<u>xuer #: 21</u>	L02013	성 역		Pre	eservation & # o	f Containers								Matrix	9	T		-+-	+-	╋╌╋		╆╌┦	┝┼┼		72 hrs
(Ann									T				()	0 . <u>.</u>	1 ទួ	$ \sim$	03, HCO3)	CEC Cr Bh Ur So	Crung Je	les	r BTEX 8260				24, 48,
LAB# (lab use only)	FI	ELD CODE	Start Depth	End Depth	Date Sampled	Time Sampled	No. of Containers	lce	HNO3	H ₂ SO ₄	NaOH	Na ₂ S ₂ O ₃ None	Other (Specify	DW=Drinking Water \$L=Sludge GW = Groundwater S=Soli/Solic	TPH: 418. SOTSD 1005	Cations (Ca, Mg, Na, K)	Anions (Cl, SO4, CO3, HCO3)	SAR / ESP / CEC	Volatiles	Semi volatiles	BTEX 2021B 5030 or BTEX 8260 RCI	N.O.R.M.	Chlorides		RUSH TAT(Pre-Schedule)
	Rottom He	ole 1		12"	12-1-22	2:00	Π	ø						5	M						¥ C	旧			
2	er el			12"	1	2:02	1	中						1	币						φĒ		D		ΞŢι
3	1º U			R"		2:04	1	ф							φ						φI		ф,][
Ŷ	Northan S	dewall		6"		2:06	1	中							ф						中口				
5	East	47		6"		2:08	1	Ф							<u> </u>						中□				
6	South	·*		6"		2:10	1	++													фГ				
-1	West	ət		6		2:12	1														ШĽ				
						· · · ·		[]]									┟╼╼╌┠╸		_						
							\square						-						+	++		+-	┢──┢		
			· .							<u> </u>	므								_		믹드		┢╍╌┟╌		
																			<u>]</u>				몓		
										민민	믜						민			민			멛	긔믜	<u> </u>
																							믹	리미	<u> </u>
		. <u></u>																				미			<u> </u>
linquished by:	ions: Wilteti	Date 12-2-22 Date	2:40Pm	Receive	a da anna ann Anna ann an 2012. 'S sharann a' m				1990				Date		Time		abora Sample /OCs F Sustod Sustod Sample Sar by Sar by	Conta ree o / seal / seal Hand Sample	iners f Hea s on (s on (Deliv er/Clie	Intac dspac contai cooler ered	t? xe? ner(s) (s) xp. ?		Fede	Y/ N Y/ N	2 2 2 2 2 2
elinquished by:		Date	Time	Ŋ	iria Ble	droe	ł					t	2/2	21	2.2	10	emper					9 29		<u>'</u> F#	<u>ر</u>

Released to Imaging: 5/3/2023 1:44:19 PM

Page 22 of 22

Received by OCD: 5/3/2023 7:44:29 AM

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Blake Estep E Tech Environmental & Safety Solutions, Inc. [1] 13000 West County Road 100 Odessa, TX 79765

> Project: Quail Queen #002 Project Number: 15661 Location: New Mexico

Lab Order Number: 3A05005

Current Certification

Report Date: 01/10/23

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Quail Queen #002
13000 West County Road 100	Project Number:	15661
Odessa TX, 79765	Project Manager:	Blake Estep

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Bottom Hole - 3H @ 15"	3A05005-01	Soil	01/03/23 11:00	01-05-2023 12:35
East Sidewall 1A @ 6"	3A05005-02	Soil	01/03/23 11:30	01-05-2023 12:35

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Quail Queen #002
13000 West County Road 100	Project Number:	15661
Odessa TX, 79765	Project Manager:	Blake Estep

Bottom Hole - 3H @ 15"

3A05005-01 (Soil)

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
<u> Total Petroleum Hydrocarbons C6-</u>	C35 by EPA	Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P3A0608	01/06/23 13:00	01/09/23 09:34	TPH 8015M	
>C12-C28	846	26.0	mg/kg dry	1	P3A0608	01/06/23 13:00	01/09/23 09:34	TPH 8015M	
>C28-C35	297	26.0	mg/kg dry	1	P3A0608	01/06/23 13:00	01/09/23 09:34	TPH 8015M	
Surrogate: 1-Chlorooctane	9	00.7 %	70-130		P3A0608	01/06/23 13:00	01/09/23 09:34	TPH 8015M	
Surrogate: o-Terphenyl	9	08.5 %	70-130		P3A0608	01/06/23 13:00	01/09/23 09:34	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	1140	26.0	mg/kg dry	1	[CALC]	01/06/23 13:00	01/09/23 09:34	calc	
General Chemistry Parameters by	EPA / Standa	ard Metl	hods						
% Moisture	4.0	0.1	%	1	P3A0904	01/09/23 10:09	01/09/23 10:11	ASTM D2216	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]			t Number:	Quail Queen # 15661 Blake Estep	≇002			
					all 1A @ 6'' -02 (Soil)				
				5A05005	-02 (3011)				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian B	asin Envi	ronmental L	ab, L.P.			
Fotal Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	ND	26.6	mg/kg dry	1	P3A0608	01/06/23 13:00	01/09/23 09:56	TPH 8015M	
>C12-C28	348	26.6	mg/kg dry	1	P3A0608	01/06/23 13:00	01/09/23 09:56	TPH 8015M	
>C28-C35	142	26.6	mg/kg dry	1	P3A0608	01/06/23 13:00	01/09/23 09:56	TPH 8015M	
Surrogate: 1-Chlorooctane		89.4 %	70-130		P3A0608	01/06/23 13:00	01/09/23 09:56	TPH 8015M	
Surrogate: o-Terphenyl		96.0 %	70-130		P3A0608	01/06/23 13:00	01/09/23 09:56	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	490	26.6	mg/kg dry	1	[CALC]	01/06/23 13:00	01/09/23 09:56	calc	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
% Moisture	6.0	0.1	%	1	P3A0904	01/09/23 10:09	01/09/23 10:11	ASTM D2216	

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Quail Queen #002
13000 West County Road 100	Project Number:	15661
Odessa TX, 79765	Project Manager:	Blake Estep

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes						
Batch P3A0608 - TX 1005																
Blank (P3A0608-BLK1)				Prepared &	Analyzed:	01/06/23										
C6-C12	ND	25.0	mg/kg													
>C12-C28	ND	25.0														
>C28-C35	ND	25.0														
Surrogate: 1-Chlorooctane	85.3		"	100		85.3	70-130									
Surrogate: o-Terphenyl	46.9		"	50.0		9 3 .8	70-130									
LCS (P3A0608-BS1)				Prepared &	Analyzed:	01/06/23										
C6-C12	906	25.0	mg/kg	1000		90.6	75-125									
>C12-C28	893	25.0		1000		89.3	75-125									
Surrogate: 1-Chlorooctane	127		"	100		127	70-130									
Surrogate: o-Terphenyl	55.0		"	50.0		110	70-130									
LCS Dup (P3A0608-BSD1)		Prepared & Analyzed: 01/06/23														
C6-C12	906	25.0	mg/kg	1000		90.6	75-125	0.0585	20							
>C12-C28	881	25.0		1000		88.1	75-125	1.36	20							
Surrogate: 1-Chlorooctane	117		"	100		117	70-130									
Surrogate: o-Terphenyl	53.3		"	50.0		107	70-130									
Calibration Check (P3A0608-CCV1)				Prepared &	Analyzed:	01/06/23										
C6-C12	484	25.0	mg/kg	500		96.8	85-115									
>C12-C28	469	25.0		500		93.8	85-115									
Surrogate: 1-Chlorooctane	104		"	100		104	70-130									
Surrogate: o-Terphenyl	49.0		"	50.0		98.0	70-130									
Calibration Check (P3A0608-CCV2)				Prepared: (01/06/23 Ai	nalyzed: 01	/07/23									
C6-C12	476	25.0	mg/kg	500		95.2	85-115									
>C12-C28	466	25.0		500		93.2	85-115									
Surrogate: 1-Chlorooctane	104		"	100		104	70-130									
Surrogate: o-Terphenyl	52.2		"	50.0		104	70-130									

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Quail Queen #002
13000 West County Road 100	Project Number:	15661
Odessa TX, 79765	Project Manager:	Blake Estep

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD				
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes			
Batch P3A0608 - TX 1005													
Calibration Check (P3A0608-CCV3)	Prepared: 01/06/23 Analyzed: 01/07/23												
C6-C12	484	25.0	mg/kg	500		96.7	85-115						
>C12-C28	462	25.0	"	500		92.4	85-115						
Surrogate: 1-Chlorooctane	104		"	100		104	70-130						
Surrogate: o-Terphenyl	50.4		"	50.0		101	70-130						
Duplicate (P3A0608-DUP1)	Sour	ce: 3A05005	-01	Prepared: (01/06/23 A	nalyzed: 01	/07/23						
C6-C12	ND	260	mg/kg dry		ND				20				
>C12-C28	850	260	"		846			0.472	20				
Surrogate: 1-Chlorooctane	83.3		"	104		80.0	70-130						
Surrogate: o-Terphenyl	45.5		"	52.1		87.4	70-130						

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Quail Queen #002
13000 West County Road 100	Project Number:	15661
Odessa TX, 79765	Project Manager:	Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3A0904 - *** DEFAULT PREP ***										
Blank (P3A0904-BLK1)				Prepared &	Analyzed:	01/09/23				
% Moisture	ND	0.1	%							
Blank (P3A0904-BLK2)				Prepared &	Analyzed:	01/09/23				
% Moisture	ND	0.1	%							
Duplicate (P3A0904-DUP1)	Sour	ce: 3A05011-	02	Prepared &	Analyzed:	01/09/23				
% Moisture	18.0	0.1	%		19.0			5.41	20	
Duplicate (P3A0904-DUP2)	Sour	ce: 3A05012-	05	Prepared &	Analyzed:	01/09/23				
% Moisture	10.0	0.1	%		13.0			26.1	20	R3
Duplicate (P3A0904-DUP3)	Source: 3A05012-20		Prepared 8	Analyzed:	01/09/23					
% Moisture	7.0	0.1	%		7.0			0.00	20	
Duplicate (P3A0904-DUP4)	Source: 3A05012-30 Pr		Prepared 8	Analyzed:	01/09/23					
% Moisture		0.1	%		9.0			0.00	20	

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Quail Queen #002
13000 West County Road 100	Project Number:	15661
Odessa TX, 79765	Project Manager:	Blake Estep

Notes and Definitions

ROI Received on Ice

- R3 The RPD exceeded the acceptance limit due to sample matrix effects.
- NPBEL CC Chain of Custody was not generated at PBELAB
- BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Bun Barron

1/10/2023

Report Approved By:

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Date:

	E DA I	2											СНА	AIN C	DF CL	UST	ODY	RE	COR	M	M.	AN,	ALY	'SIS I	REQ	UES	ST		
1400 Rankin		D Permi Midland T			CFRTTIF	ental Lab,	LP Phone: 4	132-	686	72	35									. 1		~						<u>a</u>	
														Pro	ect	Na	me:	ľ),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ı'l		Q	11	zei	n	ŧ	±0	02	L
Project Manag		step ironmental	& Safety	Solutio	ns Ir		•							Pro	iect	#:)	56	6			Proj∉							_	
Company Nam	ress: <u>P.O. Box 6</u>		& Salety	Jonand	/113 <u>/</u> 11									Are											66	1			
City/State/Zip:		Texas 7971	1																				<u>··</u>		<u>~</u>			_	
	ture: Delfor			mail:	bla	ke <u>@eteche</u>	env.com							Жe	Sill E	itec	h												
	- (-	• -	~											Repo	rt For	mat: \$	STAN	DAR	D: DX	т	RRP:[7		NPDE	ES:□				
														. tope				0/ (1)		_		An	alyze	e For					
(lab use only)	n nor											•							тС			_							
ORDER #: 3	A 05005																		тот	4L :					\bot		\square	;*	rhrs
					Pre	eservation & # o	f Containers I			-		1			Ma	trix	1006		· 🙃		Hg Se			60		ſ			48, 7
(Almo	· · ·			E		eq	eq	ners						ifv)	DW=Drinking Water SL=Sludge	rW = Groundwater S=Soil/Solid NP=Non-PotableSpecify Other	.a	Cations (Ca, Mg, Na, K)	Anions (Cl, SO4, CO3, HCO3)	SAR / ESP / CEC	8	S	Semi volatiles	BTEX 8021B/5030 or BTEX 8260 RCI	5	es			RUSH TAT(Pre-Schedule) 24, 48, 72 hrs
(ab use		FIELD CODE		Start Depth	End Depth	Date Sampled	Time Sampled	No. of Containers	lce		HCI H,SO₄	NaOH	Na ₂ S ₂ O ₃	None Other (Specify)	Vater	ater 5 bleSpei	015M	Ca, N	504,	'ESP	Metals: As Ag Ba Cd Cr	Volatiles	i vola	2030	N.O.R.M.	Chlorides			Pre-S
	•			Start	End	ate S	meS	ofC		Ê	⁺ £	Ž	Na2	her (king V	-Potak) suo	(C, S	SAR /	As Ag	Ž	Sem	218/	z	ð			TAI
LAB#				0,		, Ö.	F F	NS.						đ	=Drin	= Gro	418.	Catio	ions		als: /			X 802				ļ	HSN
	- -														No 1	δ β	Ηď		An		Met			BTE					
	200 500	Bottom H	10 21	4 -	15"	1.3.23	11:00	1			╗╏┍						¥					┱╋				┢			
2	East Sid	Donam H	1A	<u> </u>	6"	1.3.23						+				<u>,</u>	X						_		—		+ +		
<u> </u>	CAST SIU	ewall_	(1)	-	<u>v</u>		11-00	$\left \cdot \right $		_		-	╋╍╍┠╸			2											┢──┟		
					<u> </u>					-													_		-				
					1																	_	_				+ +	_	
		<u> </u>																				_							
					†		<u> </u>															_					╋	-	
																						_							
					1					-			+														┢──┟		
					1					-		-													_				
					<u>+</u>							-		-															
					1			\square					╋╍╍╌┠╸											_		- · ·	┼╍─┼	-	
								+		-			日																
								┝─┤		-													_					-	
Special Instruc	tions:					I	L	.II		-1-		<u>-1-</u>	<u></u>					s v	abor: ample 'OCs I	ator Cor Tee	y Con ntaine of He	mm rsin eads	ents itact	? e?			$\overline{\mathbf{A}}$		1 1 1 1
Relinquished by:	[tp	المتحويات والمتحج والمحمول والمحموص	and the second s	earlier and there are	Receiv	ed by:	and a start of the second second second	- 15 15 ⁻¹ 1	- 1997 - 200	201 A.S.	17			Da	te		Time		ustod Justod								¥₩	N N	N N
12an	-w	· · · · · · · · · · · · · · · · · · ·		2357m Time	~ Receiv	ed by:		.*						Da	te	<u> </u>	Time	S	ample	Har	nd De	liver	ed			1	¥]	Ņ	V
Relinquished by:	a na an	2	Date		Receiv	^				*				∟a	100 1	5 (S-54-22)	. 1966. i a 1 año - 90	S	ar by ar by	Cou	rier?		UPS	D	54	Fec	Ř	N Lone	Star
Relinquished by:			Date	Time	PPAY	ed by:	han	/						IR	3A	1	i ime		empei		- 1 Inc			4	1	1		Ç	Ft

りって

Received by OCD: 5/3/2023 7:44:29 AM

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	213005
	Action Type:
	[C-141] Release Corrective Action (C-141)
CONDITIONS	

Created By		Condition Date
amaxwell	None	5/3/2023

Action 213005