Received by OCD: 3/29/2023 8:17:17 PM Form C-141 State of New Mexico

Oil Conservation Division

	Page 1 of 92
Incident ID	NAPP2227234168
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🖌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🔽 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🖌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🔽 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🖌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🖌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🖌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🖌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🖌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🖌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🖌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🖌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- ✓ Field data

Page 3

- Data table of soil contaminant concentration data
- Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- ✓ Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

<i>ived by OCD: 3/2</i> rm C-141	<i>29/2023 8:17:17 PM</i> State of New Me	exico				
ge 4	Oil Conservation D		Incident ID	nAPP2227234168		
5~ 7	Un Conservation L	VIVISION	District RP			
			Facility ID			
			Application ID			
bublic health or the e ailed to adequately i	the information given above is true and comp tors are required to report and/or file certain environment. The acceptance of a C-141 rep investigate and remediate contamination that otance of a C-141 report does not relieve the sa Czarnikow	release notifications and perfor ort by the OCD does not reliev pose a threat to groundwater, operator of responsibility for c	rm corrective actions for re- ve the operator of liability surface water, human heal ompliance with any other	eleases which may endanger should their operations have		
		Title: Product				
Signature: U	a gamilion	Date: 3-2	19-23			
email: rczarniko	w@helmsoil.com	Telephone: (43	2) 688-3727			
OCD Only						
Received by:	Jocelyn Harimon	Date:	03/30/2023			
		Dut				

Form C-141

Page 6

State of New Mexico Oil Conservation Division

Incident ID	nAPP2227234168	1
District RP		
Facility ID		
Application ID		

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name: RISa Czarnikow	Title: Production Tech								
Signature: Kisa Samken	Date: 3-29-23								
email: rczarnikow@helmsoil.com	Telephone: (432) 688-3727								
OCD Only									
Received by: Jocelyn Harimon	Date:03/30/2023								
Closure approval by the OCD does not relieve the respon- remediate contamination that poses a threat to groundwat party of compliance with any other federal, state, or loca	nsible party of liability should their operations have failed to adequately investigate and ter, surface water, human health, or the environment nor does not relieve the responsible all laws and/or regulations.								
Closure Approved by:	Date: 05/04/2023								
Printed Name: Jennifer Nobui	Title: Environmental Specialist A								

Amended Remediation Summary and Soil Closure Request

H.L. Brown Operating, LLC Federal H 002

Roosevelt County, New Mexico Unit Letter A, Section 5, Township 8 South, Range 37 East Latitude 33.655631 North, Longitude 103.169055 West NMOCD Reference No. nAPP2227234168

Prepared By:

Etech Environmental & Safety Solutions, Inc. 2617 W. Marland Hobbs, New Mexico 88240

Zach Conder

Ben J .Arguijo

Environmental & Safety Solutions, Inc.

Midland • San Antonio • Lubbock • Hobbs • Lafayette

TABLE OF CONTENTS

Section

PROJECT INFORMATION	1.0
SITE CHARACTERIZATION.	
CLOSURE CRITERIA FOR SOILS IMPACTED BY A RELEASE	3.0
REMEDIATION ACTIVITIES SUMMARY	
RESTORATION, RECLAMATION, AND RE-VEGETATION PLAN	5.0
SOIL CLOSURE REQUEST.	6.0
LIMITATIONS	
DISTRIBUTION	8.0

FIGURES

Figure 1 - Topographic Map Figure 2 - Aerial Proximity Map Figure 3A - Site and Sample Location Map - Tank Battery Figure 3B - Site and Sample Location Map - Wellhead

TABLES

Table 1 - Concentrations of BTEX, TPH, and Chloride in Soil

APPENDICES

- Appendix A Amended Depth to Groundwater Information
- Appendix B Field Data and Soil Profile Logs
- Appendix C Laboratory Analytical Reports
- Appendix D Photographic Log

1.0 PROJECT INFORMATION

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of H.L. Brown Operating, LLC, has prepared this Amended Remediation Summary and Soil Closure Request for the release site known as the Federal H 002 (henceforth, "Site"). Details of the release are summarized below:

Latitude:	33.655631		Longitude:		-103.1690)55			
		Provided GF	PS are in WGS84 for						
Site Name:	Federal H 002		Site Type:		Well Head	1			
Date Release Discovere	ed: 9/7/2	2022	API # (if appli	cable):	30-041	1-20934			
Unit Letter Se	ction Tow	nship	Range	County	1				
A		8S 37E Roosevelt							
Surface Owner: St	ate Federal	Tribal X	Private (Na	me	KIZER MACK I	LIFE ESTATE			
	Ν	lature and	Volume of 1	Release					
X Crude Oil	Volume Released	l (bbls)	5 bbls	Volume R	Recovered (bbls)	0 bbls			
Produced Water	Volume Released	l (bbls)		Volume R	Volume Recovered (bbls)				
	Is the concentration in the produced w			OS) Ye	es No	N/A			
Condensate	Volume Released	l (bbls)	Volume Recovered (bbls)						
Natural Gas	Volume Released	l (Mcf)	Volume Recovered (Mcf)						
Other (describe)	Volume/Weight R	eleased		Volume/W	/eight Recovered	l			
Cause of Release: Unknown. Historical r	l elease found during	site inspection	l.						
		Initia	al Response						
X The source of the r	elease has been stop	ped.							
X The impacted area	has been secured to	protect human ł	nealth and the er	vironment.					
X Release materials l	nave been contained	via the use of be	erms or dikes, at	osorbent pad, or	r other containme	nt devices			
X All free liquids and									

Previously submitted portions of the NMOCD Form C-141 are available on the NMOCD Imaging System.

2.0 SITE CHARACTERIZATION

A search of groundwater databases maintained by the New Mexico Office of the State Engineer (NMOSE) and United States Geological Survey (USGS) was conducted in an effort to determine the horizontal distance to known water sources within a halfmile radius of the Site. Probable groundwater depth was determined using data generated by numeric models based on available water well data and published information. Depth to groundwater information is provided as Appendix A.

What is the shallowest depth to groundwater beneath the area affected by the release?	180 Feet
Did the release impact groundwater or surface water?	Yes X No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	Yes X No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark?	Yes X No
Are the lateral extents of the release within 300 feet of any occupied permanent residence, school, hospital, institution or church?	Yes X No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	Yes X No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	Yes X No
Are the lateral extents of the release within the incorporated municipal boundaries or within a defined municipal fresh water well field?	Yes X No
Are the lateral extents of the release within 300 feet of a wetland?	Yes X No
Are the lateral extents of the release overlying a subsurface mine?	Yes X No
Are the lateral extents of the release overlying an unstable area such as karst geology?	Yes X No
Are the lateral extents of the release within a 100-year floodplain?	Yes X No
Did the release impact areas not on an exploration, development, production or storage site?	Yes X No

NMOCD Siting Criteria data was gathered from available resources including Bureau of Land Management (BLM) shapefiles; topographic maps; NMOSE and USGS databases; and aerial imagery. The results are depicted on Figures 1, 2, 4, and 5.

3.0 CLOSURE CRITERIA FOR SOILS IMPACTED BY A RELEASE

Based on the volume and nature of the release, inferred depth to groundwater, and NMOCD Siting Criteria, the NMOCD Closure Criteria and NMOCD Reclamation Standard for the Site are as follows:

Probable Depth to Groundwater	Constituent	Constituent Method O			
	Chloride	EPA 300.0 or SM4500 Cl B	20,000 mg/kg	600 mg/kg	
180 Feet	TPH (GRO + DRO + MRO)	EPA SW-846 Method 8015M Ext	2,500 mg/kg	100 mg/kg	
	DRO + GRO	EPA SW-846 Method 8015M	1,000 mg/kg	-	
	BTEX	EPA SW-846 Methods 8021b or 8260b	50 mg/kg	50 mg/kg	
	Benzene	EPA SW-846 Methods 8021b or 8260b	10 mg/kg	10 mg/kg	

* The NMOCD Reclamation Standard applies only to the top 4' of soil in non-production areas.

4.0 **REMEDIATION ACTIVITIES SUMMARY**

On November 7, 2022, remediation activities commenced at the Site. In accordance with NMOCD regulations, impacted soil affected above the NMOCD Closure Criteria was excavated and stockpiled on-site, pending transfer to an NMOCD-approved surface waste facility for disposal. The floor and sidewalls of the excavation were advanced until field observations and test results suggested BTEX, TPH, and chloride concentrations were below the NMOCD Closure Criteria.

Upon excavating impacted soil affected above the NMOCD Closure Criteria, Etech collected eighteen (18) confirmation soil samples. The collected soil samples were submitted to a certified, commercial laboratory for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated BTEX, TPH, and chloride concentrations were below the NMOCD Closure Criteria in all of the submitted soil samples.

In addition, Etech collected eight (8) horizontal delineation soil samples representative of each cardinal direction in an effort to further characterize the horizontal extent of the release. The collected soil samples were submitted to a certified, commercial laboratory for analysis of BTEX, TPH, and chloride. Laboratory analytical results indicated BTEX, TPH, and chloride concentrations were below the NMOCD Closure Criteria and NMOCD Reclamation standard in all of the submitted soil samples.

Site and sample location maps are provided as Figure 3A and Figure 3B. A soil chemistry table is provided as Table 1. Field data and soil profile logs are provided as Appendix B. Laboratory analytical reports are provided as Appendix C.

The final dimensions of the excavated areas ranged from ten (10) to thirty (30) feet in length, four (4) to twenty (20) feet in width and two (2) to four (4) feet in depth. During the course of remediation activities, approximately one hundred and forty (140) cubic yards of impacted soil were transported to an NMOCD-approved surface waste facility for disposal.

5.0 **RESTORATION, RECLAMATION, AND RE-VEGETATION PLAN**

Upon receiving laboratory analytical results from confirmation soil samples, excavated areas were backfilled with locally sourced, non-impacted "like" material placed at or near original relative positions. The affected area was compacted and contoured to achieve erosion control, stability, and preservation of surface water flow, to the extent practicable. Re-vegetation at the site will not be neccessary due to the fact all affected areas were on the production pad.

6.0 SOIL CLOSURE REQUEST

Remediation activities were conducted in accordance with applicable NMOCD Regulations. Impacted soil affected above the NMOCD Closure Criteria and/or NMOCD Reclamation Standard was excavated and transported to an NMOCD-approved disposal facility. Laboratory analytical results from confirmation soil samples indicate concentrations of BTEX, TPH, and chloride are below the NMOCD Closure Criteria and/or NMOCD Reclamation Standard.

Based on laboratory analytical results and field activities conducted to date, Etech recommends H.L. Brown Operating, LLC, provide copies of this Amended Remediation Summary and Soil Closure Request to the appropriate agencies and request closure be granted to the Federal H 002 Site.

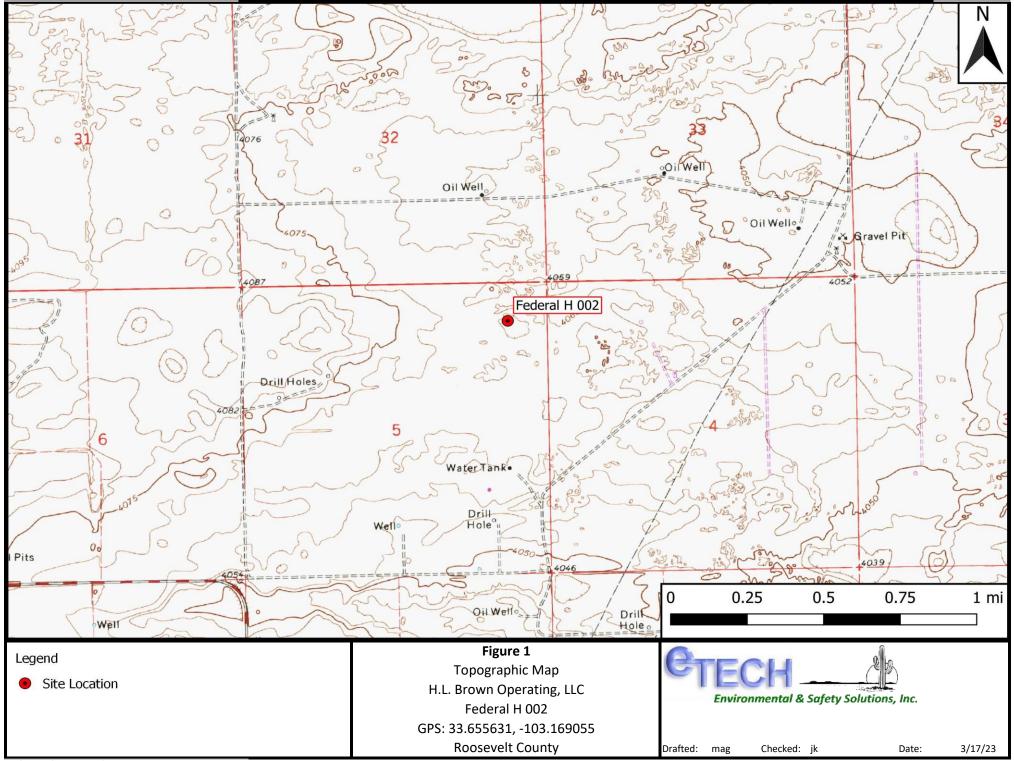
7.0 LIMITATIONS

Etech Environmental & Safety Solutions, Inc., has prepared this Amended Remediation Summary and Soil Closure Request to the best of its ability. No other warranty, expressed or implied, is made or intended. Etech has examined and relied upon documents referenced in the report and on oral statements made by certain individuals. Etech has not conducted an independent examination of the facts contained in referenced materials and statements. Etech has presumed the genuineness of these documents and statements and that the information provided therein is true and accurate. Etech has prepared the report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Etech notes that the facts and conditions referenced in this report may change over time, and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of H.L. Brown Operating, LLC. Use of the information contained in this report is prohibited without the consent of Etech and/or H.L. Brown Operating, LLC.

8.0 **DISTRIBUTION**

H.L. Brown Operating, LLC


300 West Louisiana Midland, TX 79702-2237

New Mexico Energy, Minerals and Natural Resources Department

Oil Conservation Division, District 2 811 S. First Street Artesia, NM 88210

(Electronic Submission)

Figure 1 Topographic Map

Released to Imaging: 5/4/2023 2:13:50 PM

Figure 2 Aerial Proximity Map

Received by OCD: 3/29/2023 8:17:17 PM

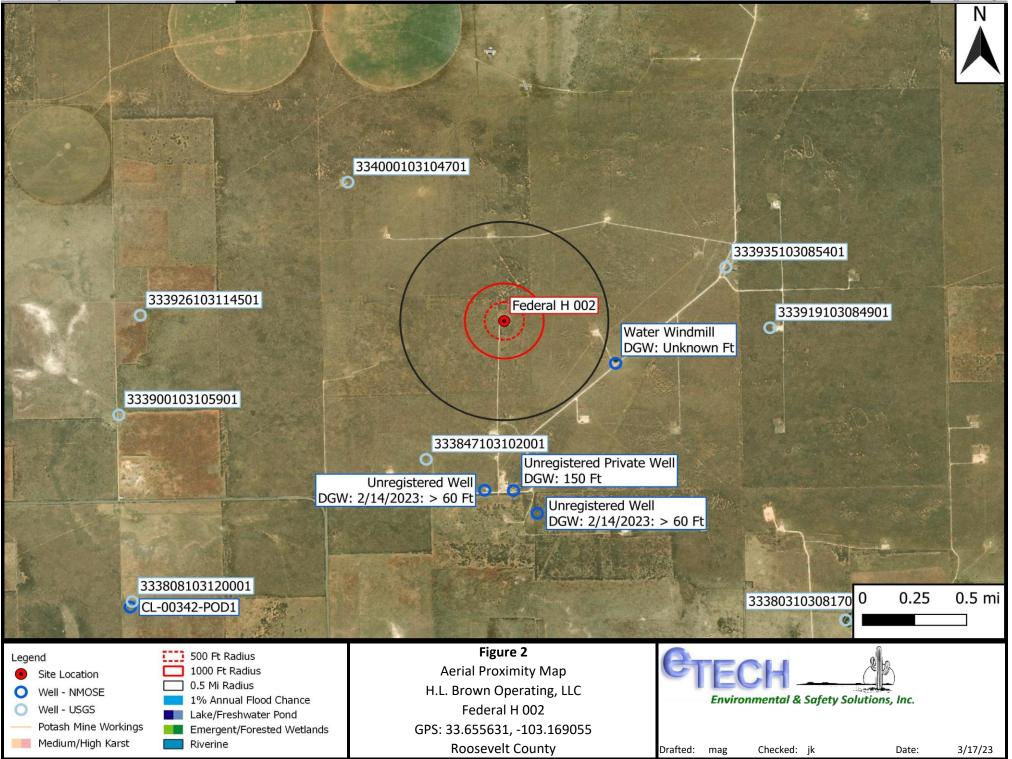


Figure 3A and Figure 3B Site and Sample Location Map

1/17/23

Date:

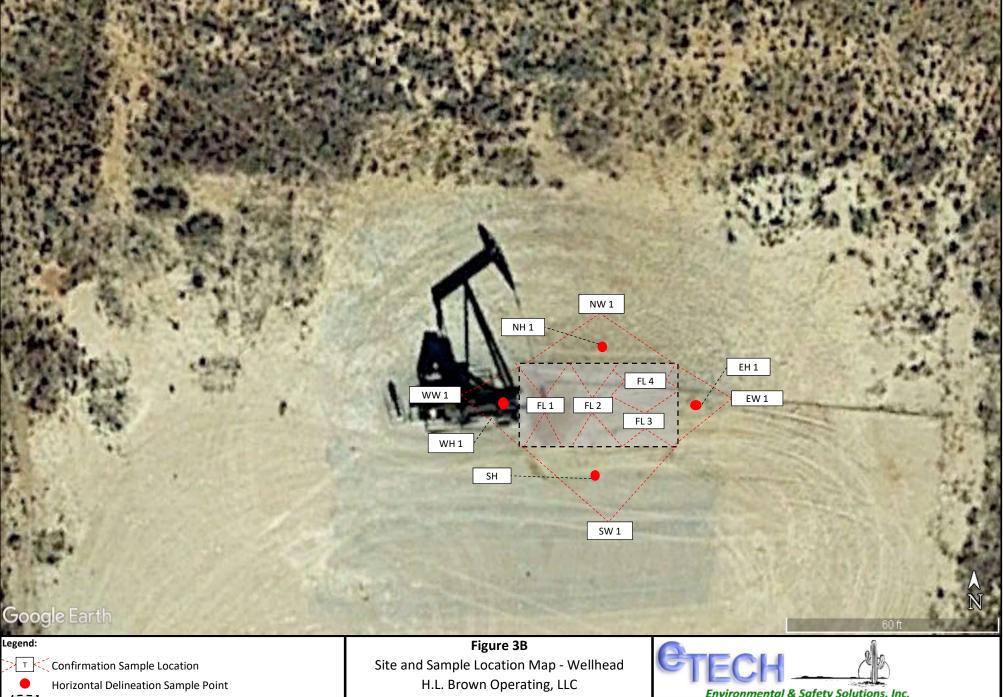
Legend:

Confirmation Sample Location

Horizontal Delineation Sample Point

Excavated Area

Figure 3A Site and Sample Location Map - Tank Battery H.L. Brown Operating, LLC Federal H 002 GPS: 33.647478, -103.170198 Roosevelt County



Checked: jwl

Drafted:

1/17/23

Date:

[]]Excavated Area

Federal H 002 GPS: 33.647478, -103.170198 **Roosevelt County**

Checked: jwl

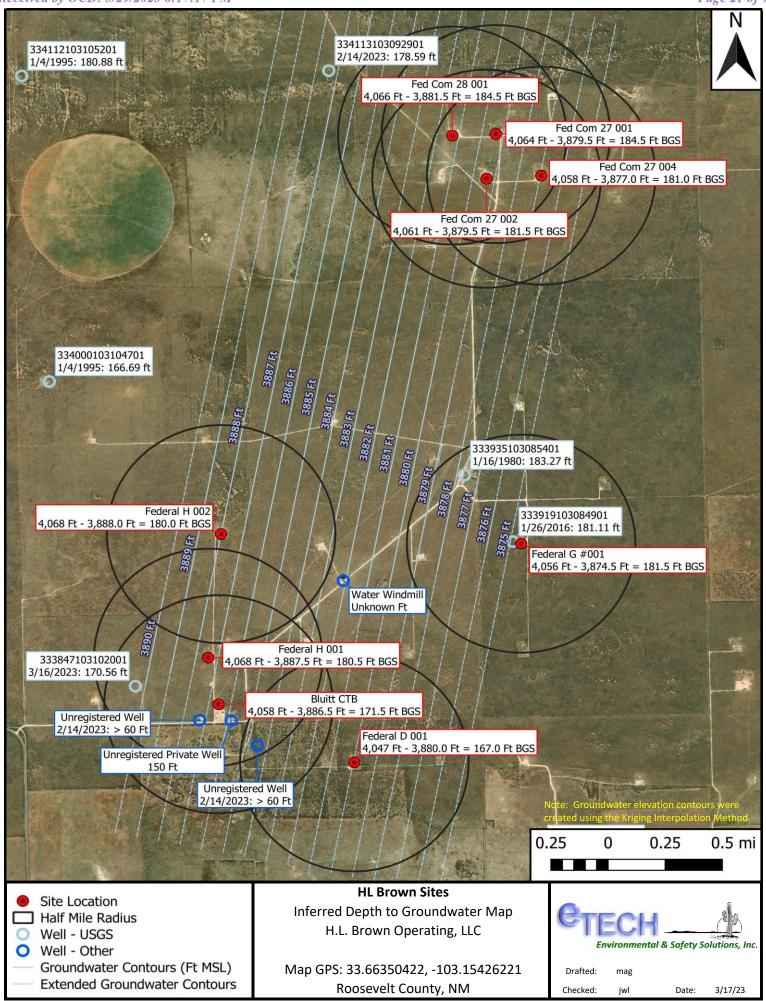

Drafted:

Table 1Concentrations of BTEX, TPH, and Chloride in Soil

Table 1 Concentrations of BTEX, TPH, and Chloride in Soil H.L. Brown Operating, LLC Federal H 002											
				NMOC	D Ref. #: 1		234168				
NMO	CD Closure C	riteria		10	50	-	-	1,000	-	2,500	20,000
NMOCE	Reclamation	Standard		10	50	-	-	-	-	100	600
				SW 846	5 8021B		SW	/ 846 8015M	Ext.	1	4500 Cl
Sample ID	Date	Depth (Feet)	Soil Status	Benzene (mg/kg)	BTEX (mg/kg)	GRO C ₆ -C ₁₀ (mg/kg)	DRO C ₁₀ -C ₂₈ (mg/kg)	GRO + DRO C ₆ -C ₂₈ (mg/kg)	ORO C ₂₈ -C ₃₆ (mg/kg)	TPH C ₆ -C ₃₆ (mg/kg)	Chloride (mg/kg)
EH 1 @ 1'	12/20/2022	1	In-Situ	< 0.025	< 0.150	<10.0	<10.0	<20.0	<10.0	<30.0	32.0
EH 2 @ 1'	12/20/2022	1	In-Situ	< 0.025	< 0.150	<10.0	<10.0	<20.0	<10.0	<30.0	96.0
NH 1 @ 1'	12/20/2022	1	In-Situ	<0.025	< 0.150	<10.0	<10.0	<20.0	<10.0	<30.0	32.0
NH 2 @ 1' SH 1 @ 1'	12/20/2022	1	In-Situ	<0.025	<0.150	<10.0	<10.0	<20.0	<10.0	<30.0	112
SH 1 @ 1 SH 2 @ 1'	12/20/2022 12/20/2022	1	In-Situ In-Situ	<0.025 <0.025	<0.150 <0.150	<10.0 <10.0	<10.0 <10.0	<20.0 <20.0	<10.0 <10.0	<30.0 <30.0	32.0 64.0
WH 1 @ 1'	12/20/2022	1	In-Situ	<0.023	<0.150	<10.0	<10.0	<20.0	<10.0	<30.0	16.0
WH 2 @ 1'	12/20/2022	1	In-Situ	<0.025	<0.150	<10.0	<10.0	<20.0	<10.0	<30.0	48.0
FL 1 @ 2'	11/7/2022	2	Excavated	< 0.050	0.765	36.8	1,210	1,250	94.5	1,340	592
FL 1 @ 4'	11/22/2022	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	-
FL 2 @ 3'	11/7/2022	3	Excavated	< 0.050	1.85	108	3,340	3,450	427	3,880	768
FL 2 @ 4'	11/22/2022	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	-
FL 3 @ 2'	11/7/2022	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	288
FL 4 @ 2'	11/7/2022	2	Excavated	0.205	34.8	614	1,370	1,980	86.6	2,070	64.0
FL 4 @ 4'	11/22/2022	4	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	-
FL 5 @ 2'	11/7/2022	2	In-Situ	< 0.050	8.11	125	728	853	81.3	934	32.0
FL 6 @ 3'	11/22/2022	3	In-Situ	< 0.050	<0.300	<10.0	31.5	31.5	<10.0	31.5	-
EW 1 EW 2	11/7/2022 11/7/2022	0-	In-Situ Excavated	<0.050 0.449	<0.300 46.6	<10.0 1,020	<10.0 15,900	<20.0	<10.0 1,930	<30.0	768 80.0
EW 2 EW 2 B	11/22/2022	0-	In-Situ	<0.050	<0.300	<10.0	<10.0	16,900 <20.0	<10.0	18,900 <30.0	80.0
EW 2 B EW 3	11/22/2022	0-	In-Situ	<0.050	<0.300	<10.0	<10.0	<20.0	<10.0	<30.0	80.0
NW 1	11/7/2022	0-	Excavated	< 0.200	33.0	1,910	7,440	9,350	346	9,700	400
NW 1 B	11/22/2022	0-	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	-
NW 2	11/7/2022	0-	In-Situ	< 0.050	< 0.300	<10.0	201	201	36.7	238	160
NW 3	11/7/2022	0-	In-Situ	< 0.050	< 0.300	<10.0	12.6	12.6	<10.0	12.6	80.0
SW 1	11/7/2022	0-	Excavated	< 0.500	87.6	1,360	6,300	7,660	655	8,320	592
SW 1 B	11/22/2022	0-	Excavated	< 0.200	24.7	1,010	5,270	6,280	481	6,760	-
SW 1 C	12/7/2022	0-	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	-
SW 2	11/7/2022	0-	Excavated	2.55	101	1,650	5,540	7,190	544	7,730	32.0
SW 2 B	11/22/2022	0-	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	-
SW 3	11/7/2022	0-	Excavated	1.17	162	2,370	<u>5,950</u>	8,320	436	8,760	<16.0
SW 3 B	11/22/2022	0-	In-Situ	< 0.050	21.6	61.2	223	284	13.1	297	-
WW 1 WW 1 B	11/7/2022 11/22/2022	0- 0-	Excavated In-Situ	<0.050 <0.050	<0.300 <0.300	<50.0 <10.0	1,330 <10.0	1,330 <20.0	298 <10.0	1,630 <30.0	672
WW 1 B WW 2	11/2/2022	0-	In-Situ In-Situ	<0.050	0.321	<10.0	73.2	73.2	<10.0	73.2	- 112
WW 3	11/7/2022	0-	In-Situ	<0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	64.0

.

Appendix A Depth to Groundwater Information

. .

Ground Water Sampling Log

Well ID: <u>Unvegisterod</u> Well Date: <u>2/14/2023</u>

	escription/Co									
	: HL Br					Personnel:				
Type of	escription/Loca Well: Moni	tion: <u>AND</u>	Nort Dot	blo Irrig	<u> > [· 0+</u>	House Tota	al Depth [®] (ft b	mp): <u>V/A</u>		
Casing	Material: PVC	Steel 0	ther	able III) Diai	meter 2	" 4" 6" Oth	or IA Scre	en (ft hmn):	Share Dias	
	on of Seal: Go									
Gaugin			0							- A.
Static W	Vater Level ^b (ft ents: <u>Opla (</u>	bmp) 70		ime	N	leasure Point	Description	Top of (asing, .7	s Hazz
	urge Data	00 FT,		50 50	cree per	, trai o	r cqu.p	Asent pa	mage_	
		Volume I	Factors					-1		
Dia (in	i.) 2″	3″	4″	5″	6″	vveii vo	ите ((а-р) х	c) =	gai	
Gal/ft	0.163	0.367	0.653	1.020	1.469	Purging	Volume (3 x \	Well Vol) =	gal	
Well Pu	rging Method:	submers	ible peri	staltic ba	iler othe	er	_ Depth pur	np set (ft bmp)	
Water	Quality Indic	ator Parar	neters							
	Cumulative	Water				Specific				
Time	Gallons Purged	Level (ft hmn		mp	pH (SU)	Cond.	TDS	DO	ORP	
Time	Fuigeu	(ft bmp		C)	(SU)	(mS/cm)	(g/l)	(mg/l)	(mV)	
·		R		-		8 ₂ 2	-	2		
						400				
	~						¥			
Recording I	nterval: Traditiona	l volume purg	ge - every ½ w	vell volume; I	ow flow - e	very 3-5 min, drav	wdown should no	ot exceed 0.33ft d	uring purging.	
Total Ga	allons Purged _			4	Annroxima	ate Discharge I	Rate (gnm).			
Sample					pproxim	ate piscilaige i	nuce (gpin)			
	Collection Met	hod: sub	mersible	peristaltic	bailer	other	Sa	ample Time		
Comme						bbr):				
	• pH: ±0.1						Sample to b			
	 SC: ±5%, for SC DO: ±10% or 0. 						(circle yes or n		ITYN	
	 DO: ±10% or 0. Temp: ± 0.2°C (er)			If so	o, length (ft)?		

Ground Water Sampling Log

Well ID: <u>(Intesistered well</u> Date: <u>2/14/2023</u>

	escription/Co									
	escription/Loca			1. 1. 101		Personnel:				
Casing I	Well: Moni Material: PVC	Steel C	very POL Ither	able Img Diar	meter 2	" A" 6" h+	CONCOL	en (ft hmn):	Share D'an	-
Conditio	on of Seal: G	ood Poor	Needs R	epair Oth	er	+ 0.00		Well Locke	ed? Y N	
Gaugin	g Data									
Comme	/ater Level ^b (ft ents:		Did	ime	deeper	leasure Point	Description _	Pau: Dia	asing 1	.5 4 agg
	urge Data		,	<u>je</u>			<u>, , , , , , , , , , , , , , , , , , , </u>			maje
		Volume	Factors ^c			Well Vo	lume ((a-b) x	c) =	gal	
Dia (in		3″	4″	5″	6"	_				
Gal/ft	0.163	0.367	0.653	1.020	1.469	Purging	Volume (3 x \	Well Vol) =	gal	
Well Pu	rging Method:	submer	sible peri	staltic ba	iler othe	er	_ Depth pur	np set (ft bmp)	
Water	Quality Indic	ator Para	meters							_
	Cumulative		600 mm #			Specific				7
Time	Gallons Purged	Level (ft bmp		mp C)	pH (SU)	Cond. (mS/cm)	TDS (g(l)	DO (mg/l)	ORP	
Time	ruigeu	(it binp			(30)	(ms/cm)	(g/l)	(mg/l)	(mV)	-
					a		S 1.	- 1 *		-
										1
										1
				- 52*						
										_
0.001074										4
										4
										4
						-				4
										-
Recording I	nterval: Traditiona	 al volume pur	ge - every ½ v	vell volume; l	ow flow - e	very 3-5 min, drav	wdown should no	ot exceed 0.33ft d	uring purging.]
	llons Purged _			P	Approxima	ate Discharge	Rate (gpm): _			
Sample		less less l		• • • • •						
	Collection Met					other bbr):				
Comme	ents	Pioje	ct name to	a sample i	abels (II al			cate Collected	Y N	
Stability	a					6				
	 pH: ±0.1 SC: ±5%, for SC 	C≤ 100 μS/cm	; ±3%, for SC	> 100 µS/cm			Sample tub (circle yes or n	ing left in well	? Y N	
	 DO: ±10% or 0. Temp: ± 0.2°C 	.3 mg/L (whic	hever is great					o, length (ft)?		

*Volume factors and stability criteria from USGS-NFM, 2006-Wilde et al., 1998, Driscoll, 1986, and EPA-Puls and Barcelona, 1996. Last form revision: 02.06.14.

Ground Water Sampling Log

Well ID: 333647103102001

Date: 2/14/2016

Site De	escription/Co	nstruction	Detail						
	HL B								
Well De	escription/Loca	tion: Abe	melon	od we	11	Tota	al Depthª (ft b	mp): <u>N</u> A	
Type of	Well: Monit Material: PVC	tor Recov	ery Pota	able Irrig	gation C	ther			
Casing I	Material: PVC	(Steel) Ot	her	Dia	meter: 2"	4" 🕝 Oth	ner Scre	en (ft bmp):	Stove Pipe
Conditio	on of Seal: Go	od Poor	Needs Re	epair Oth	ner			Well Lock	ed?YN
Gaugin Static W	ng Data Vater Level ^b (ft ents: D. d	bmp) 26		ime	M	easure Point	Description _		
		and yo	clerp	1 1		equipme	w olar	mage	
well Pl	urge Data					7			
Dia	.) 2"	Volume F		5″	C "	Well Vo	lume ((a-b) x	c) =	_gal
Dia (in	-/ -	3″	4"		6"	-			
Gal/ft	0.163	0.367	0.653	1.020	1.469	Purging	Volume (3 x V	Well Vol) =	gal
Well Pu	rging Method:	submersi	ble peris	staltic ba	iler othe	r	Depth pun	np set (ft bmp)
Water	Quality Indica	ator Paran	neters						
	Cumulative	Water				Specific			1
	Gallons	Level	Tei	mp	pН	Cond.	TDS	DO	ORP
Time	Purged	(ft bmp)	(°	C)	(SU)	(mS/cm)	(g/l)	(mg/l)	(mV)
- ×					v				1. A. A.
						2		1. I.	
		7.5							
									1
lecording I	nterval: Traditiona	I volume purg	e - every ½ w	vell volume;	Low flow - ev	ery 3-5 min, drav	wdown should no	ot exceed 0.33ft of	l during purging.
Total Ga	allons Purged _			/	Approxima	te Discharge	Rate (gpm): _		
Sample									
Sample	Collection Met	hod: sub	mersible	peristaltio	c bailer	other	Sa	ample Time	
Comme								cate Collecter	
	·								
	• pH: ±0.1	< 100	120/ 550	100				oing left in we	II? Y N
Griteria.	 SC: ±5%, for SC DO: ±10% or 0. 						(circle yes or r	10)	
	 Temp: ± 0.2°C (-	-				IT S	o, length (ft)?	

*Volume factors and stability criteria from USGS-NFM, 2006-Wilde et al., 1998, Driscoll, 1986, and EPA-Puls and Barcelona, 1996. Last form revision: 02.06.14.

Ground	Water	Samp	ling	Log
			···· O	0

	Environme	nuu oc saj	fety Solui	tions, Inc.			Well ID: 3	341131030	92901
							Date: 2	114/2027	ŝ
Site De	escription/Co	nstruction	Detail						
	HL B					_Personnel: _			
	scription/Locat			+d Can	8 a 6	Tota	l Depth ^a (ft b	mp): NIA	
	Well: Monit								
Casing I	Material: PVC	(Steel) Ot	her	Diar	neter: 2"	4" 🙆 Oth	er Scre	een (ft bmp):	•
	on of Seal: Go								
Static W	g Data /ater Level ^ь (ft nts:	bmp) <u>178</u>	<mark>.59</mark> _т	ime	M	easure Point I	Description _	TUP of C	asing
Nell P	urge Data					_			
		Volume F	actorsc			Well Vol	ume ((a-b) x	c) =	gal
Dia (in	.) 2″	3″	4″	5″	6″	The Province in a constant			U
Gal/ft	0.163	0.367	0.653	1.020	1.469	Purging	Volume (3 x	Well Vol) =	ga
	rging Method:			staltic ba	iler othe	r	_ Depth pur	np set (ft bmp)
vater	Quality Indica	ator Paran	neters						
	Cumulative	Water	_			Specific			
Timo	Gallons	Level (ft hmn)		mp	pH (SU)	Cond.	TDS	DO (ma/l)	ORP
Time	Purged	(ft bmp)		C)	(SU)	(mS/cm)	(g/l)	(mg/l)	(mV)
							- 32	e a.,	-
		-						~	
ording I	nterval: Traditiona	I volume purg	e - every ½ v	vell volume;	Low flow - ev	ery 3-5 min, drav	vdown should n	ot exceed 0.33ft o	luring purg
otal Ga ample	allons Purged _ • Data			,	Approxima	te Discharge I	Rate (gpm): _	<u>_</u>	
ample	Collection Met								
Comme	ents	*Projec	t name fo	or sample l	abels (if ab	ıbr):	Dupl	icate Collected	l? Y
tahility	• pH: ±0.1								I? Y
	• SC: ±5%, for SC	1 2 5 m (m H	8 (19) and 1000				Sample tub	oing left in wel	I? Y

*Volume factors and stability criteria from USGS-NFM, 2006-Wilde et al., 1998, Driscoll, 1986, and EPA-Puls and Barcelona, 1996. Last form revision: 02.06.14.

• Temp: ± 0.2°C (USGS for thermistor)

Received by OCD: 3/29/2023 8:17:17 PM

Ground Water Sampling Log

Well ID: 333847103102001

Date: <u>3/16/2023</u>

Project Well De	escription/Co : <u>HL Bri</u> escription/Loca	tion: Ab	andon	od we	(1	_ Personnel: _ Tota	al Depth ^a (ft b	mp): _ V/A		
Type of	Well: Moni	tor Reco	very Pot	able Irri	gation C	ther Aba	redoned 1	Nell, Li	ustock	
Casing	Well: Moni Material: PVC	Stee C	ther	Dia	meter: 2"	4″ 🖉 Otł	ner Scre	en (ft bmp):	Stove Pip)e
Conditi	on of Seal: Go	ood Poor	Needs R	epair Oth	ner	N/A		Well Locke	ed?Y (N)	х а
Static V Comme	ng Data Vater Level ^b (ft ents:	bmp) <mark>_170</mark>	.56 T	ime	M	easure Point	Description _	Top of C	asing ~	2 ++ 593
Well P	urge Data					-				
		Volume				Well Vo	lume ((a-b) x	c) =	gal	
Dia (in		3″	4″	5″	6″	4				
Gal/ft	0.163	0.367	0.653	1.020	1.469	Purging	Volume (3 x V	Well Vol) =	gal	
	rging Method:			staltic ba	iler othe	~ r	_ Depth pun	np set (ft bmp)	
Water	Quality Indic	ator Para	meters			Second and a second				
	Cumulative	Water				Specific				7
	Gallons	Level		mp	рН	Cond.	TDS	DO	ORP	
Time	Purged	(ft bmp		C)	(SU)	(mS/cm)	(g/l)	(mg/l)	(mV)	-
										-
					-					<u> </u>
	-									4
										_
			- 257						1	
]
										1.
										1
										-
										1
Recording I	nterval: Traditiona	al volume pur	ge - every ½ v	vell volume;	Low flow - ev	rery 3-5 min, drav	u wdown should no	ot exceed 0.33ft d	luring purging.	1
Total Ga	allons Purged _				Approxima	te Discharge	Rate (gpm): _			
Sample	Data									
	Collection Met	hod: sub	omersible	peristalti	c bailer	other	Sa	ample Time		
Comme								cate Collected		
Stability Criteria:	 pH: ±0.1 SC: ±5%, for SC 						Sample tub (circle yes or n	ing left in wel	I? Y N	
	 DO: ±10% or 0. Temp: ± 0.2°C 			ter)			If so	o, length (ft)?		

Released to Imaging: 5/4/2023 2:13:50 PM

*Volume factors and stability criteria from USGS-NFM, 2006-Wilde et al., 1998, Driscoll, 1986, and EPA-Puls and Barcelona, 1996. Last form revision: 02.06.14.

5

	V	/ate					00	v		e Engine epth to	eer o Wate i	r
(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD replaced, O=orpha C=the fil closed)	ned, e is	1	(1			V 2=NE : est to lar	3=SW 4=SE gest) (N	E) IAD83 UTM in n	neters)	(In feet)	
		POD Sub-		0 0	0							Water
POD Number	Code	basin	County	64 16	4 Se	e Tws	Rng	Х	Y	DistanceDep	thWellDepthWat	er Column
CL 00342 POD1		CL	RO	1 1	3 07	08S	37E	666880	3723166 😜	3136	101	
									Avera	ge Depth to Wate	r:	
										Minimum Dep	oth:	
										Maximum Dep	th:	
Record Count: 1												
<u>UTMNAD83 Radiu</u>	<u>s Search (ir</u>	meters) <u>:</u>									
Easting (X): 66	9684.3		North	ing (Y)	: 372	4571.7	5		Radius: 3220			
Easting (X): 66 The data is furnished by the accuracy, completeness, relia	NMOSE/ISC		cepted by th	e recipie	nt with	the exp	ressed und			ake no warranties,	expressed or implied, c	concerning t

10/13/22 10:25 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER

New Mexico Office of the State Engineer **Point of Diversion Summary**

			(quarte	rs are 1=N	W 2=1	NE 3=S	W 4=SE)			
			(quart	ers are sm	allest t	o larges	t)	(NAD83 UT	[M in meters)	
Well Tag	POD	Number	Q64 (Q16 Q4	Sec	Tws	Rng	Х	Y	
NA	CL (00342 POD1	1	1 3	07	08S	37E	666880	3723166 🌍	
x Driller Lic	ense:	1145	Driller	Compa	ny:	GII	LCO DR	LILLING CC	MPANY	
Driller Na	me:	GILLIAM, DUB	ALLEN							
Drill Start Date: 09/15/2017 Log File Date: 10/02/2017		Drill Fi	Drill Finish Date: 09/18/2017			l7 Plu	Plug Date:			
		PCW F	PCW Rcv Date:					Source:		
Pump Typ	e:		Pipe Di	Pipe Discharge Size:					Estimated Yield:	
Casing Siz	ze:	5.00 Dep		epth Well: 101 feet			De			
X	Wate	er Bearing Stratif	fications:	Т	op E	Bottom	Descr	iption		
				;	85	96	Sands	tone/Gravel	Conglomerate	
Casing Perfo			forations:	orations: Top		Bottom				
					20	101				

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

10/13/22 9:53 AM

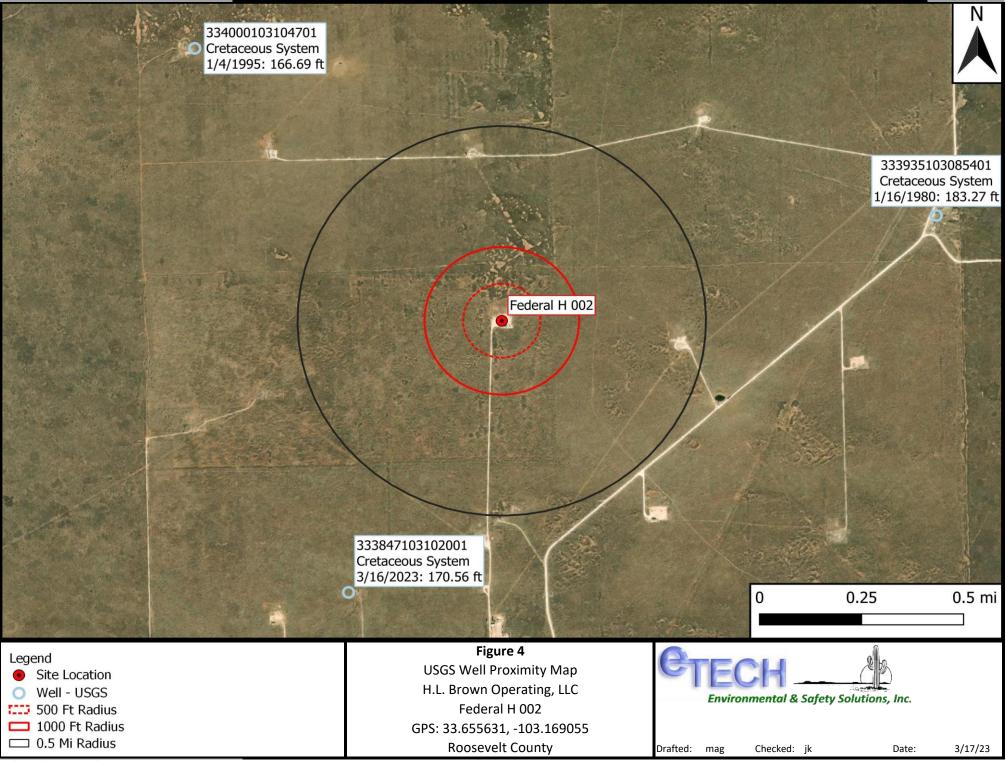
POINT OF DIVERSION SUMMARY

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

CATION	CL WELL OWN	O Ø ER NAME(S)				OSE FILE NUI	0034	2 ~~	<u> </u>
F0			ADDRESS	>n		CITY		STATE	ZIP
ÆLI			Process 14	P J I		m°l	,	ALAA 3 G	a state of the second
n di	4098	<u> </u>	DE	Rd L EGREES MINUTES SECO		111150	a d	NM 5 8	8125
GENERAL AND WELL LOCATION	WELL LOCATIC (FROM GI	N LAT	ITTUDE 3	Rd L EGREES MINUTES SECO 3' 38, 115 3' 12, 04 OSTREET ADDRESS AND COMMON LANDMARK	2	* ACCURACY * DATUM REC	REQUIRED: ONE TEN QUIRED: WGS 84	TH OF A SECOND	
E E	DESCRIPTI	ON RELATIN	G WELL LOCATION TO	STREET ADDRESS AND COMMON LAND	IARKS – PLSS (S	SECTION, TO	WNSHJIP, RANGE) WH	IERE AVAILABOE	<u> </u>
1.	NW	NW	5 11/2	5EC 7 Tow	mothip 8	S	Range 3		4
	LICENSE NU	MBER	NAME OF LICENSED	DRILLER			NAME OF WELL DR		
	DRILLING S	TARTED	Dub G:	DEPTH OF COMPLETED WELL (FT)	BORE HOLE I		Giles D	ST ENCOUNTERED (FT	*
	9-15		9-18-17	(··)		DEFIR(FI)	Unknowe)
	1 13	- 1 2			101		STATIC WATER LEV	VEL IN COMPLETED WI	ELL (FT)
Z	COMPLETE	D WELL IS:	ARTESIAN	DRY HOLE SHALLOW (UNCO	NFINED)		Un Known		
ATIC	DRILLING F.	LUID:	AIR	MUD ADDITIVES - SPE	CIFY:				
RM	DRILLING M	ETHOD:	ROTARY	HAMMER CABLE TOOL	OTHER -	SPECIFY:	_		
NFO	DEPTH	(feet bgl)	BORE HOLE	CASING MATERIAL AND/OR	CASI	NG	CASING	CASING WALL	SLOT
2. DRILLING & CASING INFORMATION	FROM	то	DIAM (inches)	GRADE (include each casing string, and note sections of screen)	CONNEC	CTION	INSIDE DIAM. (inches)	THICKNESS (inches)	SIZE (inches)
& C	0	20		Plastic	Giue	ę	5	160*	
DNI	20	101	8 3/4	Plastic	Glu	e	5	160#	- 635-
DRILI					- n 4.4.4				
5									
				·····					
	DEPTH ((feet bgl)	BORE HOLE	LIST ANNULAR SEAL MA	TERIAL AND] >	AMOUNT	METHO	
EAL	FROM	TO	DIAM. (inches)	GRAVEL PACK SIZE-RANGE			(cubic feet)	PLACEN	
FER	0	20	14	Cement			20	Wheel f	Samuel
ANNULAR MATERIAL	20	101	8 ³ 14	Gravel Pack	oo grave	.1	81	Sharel	
NLA							·		
NN									
3. /				· · · · · · · · · · · · · · · · · · ·			· · · · ·		
FOR	OSE INTERI	VALUSE					WELL RECORD	د LOG (Version 10/2)	2/15)
101	ODE INTERI					¥K-20	WELL RECORD 6	c LOG (version 10/2)	7/13)


FILE NUMBER CL-542	POD NUMBER	TRN NUMBER	als580
LOCATION STR	85.37E.7.	. 311	PAGE 1 OF 2
•			

*

	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10				++	· ·
	DEPTH (1 FROM	eet bgl) TO	THICKNESS (feet)	COLOR AND TYPE OF MATERIAL ENCOUNTERED - INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES	WATER BEARING?	ESTIMATED YIELD FOR WATER- BEARING
				(attach supplemental sheets to fully describe all units)	(YES / NO)	ZONES (gpm)
	D	2	2	Top soil	ү 🕅	
	2	37	35		Y 🕥	
	37	78	41	Caliche, clay + sand (rock ledges) Sand + soft sandstone (sandy clay)	Y 🔊	
	78	83	5	Sand + gravel	Y 🔕	
	83	85	2	Brown clay	Y 🚫	
E	85	96		Sand + sandy clay	N 🕅	1
HYDROGEOLOGIC LOG OF WELL	96	101	2	Brown clay Sand + sandy clay Gellow + light blocklag	y 🕅	
OF					Y N	
FOC					Y N	
GIC					Y N	
DLO					Y N	
GEC					Y N	
DRO					Y N	1. P
KH					Y N 🗧	
4					Y N	
					Y N ⁵	
					Y N	
					Y N	
					Y N	
					Y N	
		:			Y N	e c
			TIMATE YIELD		L ESTIMATED	
	🔽 PUMP	AI	R LIFT	BAILER OTHER - SPECIFY: WELL	L YIELD (gpm):	0.00
SION	WELL TEST	TEST F	RESULTS - ATTA TIME, END TIM	CH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDIN IE, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE	IG DISCHARGE N TESTING PERIO	1ETHOD, D.
	MISCELLAN	IEOUS INF	ORMATION:			
PER						
TEST; RIG SUPERVI						
RIC						
EST,	PRINTNAM	F(S) OF DP	UL DIG SUDER	VISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTRUC	TIONOTUED TH	AN LICENSEE.
5. T				TEOR(3) THAT TROVIDED ONSITE SOLERVISION OF WELL CONSTRUCT	TOWOTHER IN	AN LICENSEE.
	None					
SIGNATURE	CORRECT R	ECORD OF	THE ABOVE D	ES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, THI SCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD DAYS AFTER COMPLETION OF WELL DRILLING:	E FOREGOING IS WITH THE STAT	A TRUE AND TE ENGINEER
NAT	~					
SIG		- H	10.	Dub Gilliam	1-19-17	
6.		SIGNATU	RE OF DRILLER		DATE	<u> </u>
		-		· · · · · · · · · · · · · · · · · · ·		
	OSE INTERN		2110	WR-20 WELL REC		
	ENUMBER	$\frac{C}{2}$	342	POD NUMBER / TRN NUMBER	60558	
LOC	CATION	<u>DTK</u>		85.37E.7.311		PAGE 2 OF 2

Released to Imaging: 5/4/2023 2:13:50 PM

•

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category: Groundwater Geographic Area: United States

GO

Click forNews Bulletins

Groundwater levels for the Nation

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs site_no list = • 333847103102001

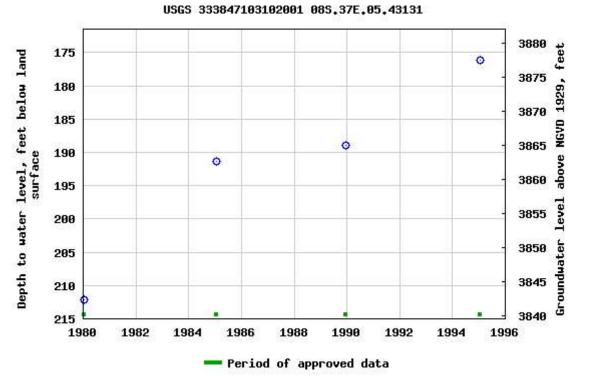
Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 333847103102001 08S.37E.05.43131

Available data for this site Groundwater: Field measurements V GO

Roosevelt County, New Mexico Hydrologic Unit Code 12080001 Latitude 33°38'44", Longitude 103°10'31" NAD27 Land-surface elevation 4,054.00 feet above NGVD29 The depth of the well is 219 feet below land surface. This well is completed in the High Plains aquifer (N100HGHPLN) national aquifer. This well is completed in the Cretaceous System (210CRCS) local aquifer.


Output formats

<u>Table of data</u>

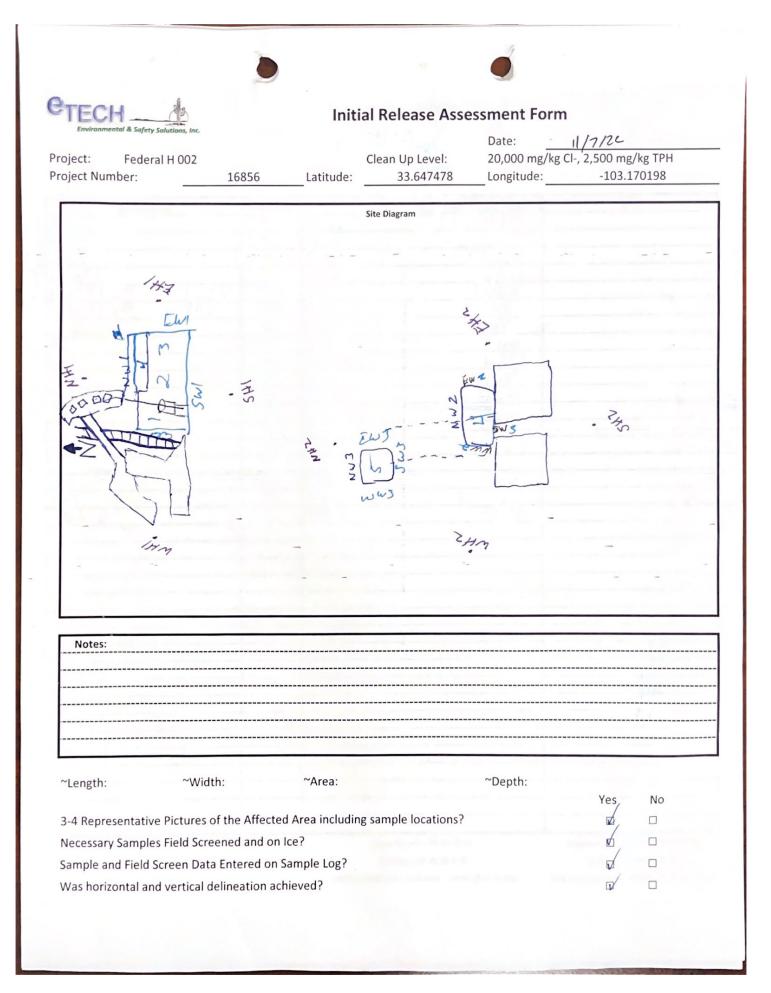
Tab-separated data

Graph of data

Reselect period

Breaks in the plot represent a gap of at least one year between field measurements. <u>Download a presentation-quality graph</u>

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News


Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for USA: Water Levels URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2022-10-13 11:50:56 EDT 0.56 0.51 nadww01

Appendix B Field Data and Soil Profile Logs

TECH A Safety Solutions, Inc.	Wa		Sample	Log Date:	in mark
Project: Federal H 002 Project Number:	16856	Latitude:	33.647478	Longitude:	-103.170198
Sample ID	PID/Odor		Chloride Conc.	Test Result	GPS
NW/	-	4.6		817	
EW	~	4.0		628	
SWI	1	5.2		1,028	
WWI	~	4.0	and the second	628	And the second states in
	28 -	5.2		1,028	/
F2 [4. 4] 3 FT 743	× ~	4.4		748	
=3 @ 2 FT	-	4.2		200	
<u>-4</u>		2.0		628	
ENS NNS	-	3.4	And the Owner Section	468	
SN9	5	3.2	the second	41241	
MMS	-	2.0	1	200	
FLSQ 2'	-	3.2	1	424	A REAL PROPERTY AND A REAL
NW36	-	2.4	i	264	
EW3		2.0		200	
5W3	~	5.0		952	
6W2	-	3.0	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	380	
LUC 2'		3.2	-	-12-4	-
		-			

Floor = FL #1 etc Sidewall = SW #1 etc Refusal = SP #1 @ 4'-R

Stockpile = Stockpile #1

Soil Intended to be Deferred = SP #1 @ 4' In-Situ

GPS Sample Points, Center of Comp Areas

	•				
e _{TECH}			Soil Pro	file	
Environmental & Safety Solutions, Inc.				Date:	11/7/22
Project: Federal H 002 Project Number:	16856	Latitude:	33.647478	Longitude:	
Depth (ft. bgs) 5 ¹¹ 2 3 4 5 6 7 8 9 10 11 12 13		/Pad Material Sand Sand Sand	Des	cription	
14 15 16 17 18 19 20 21 21 22			-		
23 24 25 26 27 28 29 30					
31 32 33 34 35 36 37					
38 39 40					

States and

Appendix C Laboratory Analytical Reports

December 27, 2022

JOEL LOWRY

Etech Environmental & Safety Solutions

2617 W MARLAND

HOBBS, NM 88240

RE: FEDERAL H002

Enclosed are the results of analyses for samples received by the laboratory on 12/22/22 14:15.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	12/22/2022	Sampling Date:	12/20/2022
Reported:	12/27/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	Cool & Intact
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: NH 1 @ 1' (H226052-01)

BTEX 8260B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.025	0.025	12/22/2022	ND	2.25	112	2.00	2.63	
Toluene*	<0.025	0.025	12/22/2022	ND	2.35	118	2.00	4.80	
Ethylbenzene*	<0.025	0.025	12/22/2022	ND	2.39	120	2.00	3.95	
Total Xylenes*	<0.075	0.075	12/22/2022	ND	7.48	125	6.00	3.27	
Total BTEX	<0.150	0.150	12/22/2022	ND					
Surrogate: Dibromofluoromethane	92.5	% 86.7-11	1						
Surrogate: Toluene-d8	97.9	% 89.3-11	0						
Surrogate: 4-Bromofluorobenzene	99.9	% 88.2-10	8						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/22/2022	ND	400	100	400	3.92	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/23/2022	ND	191	95.7	200	0.176	
DRO >C10-C28*	<10.0	10.0	12/23/2022	ND	172	86.1	200	1.89	
EXT DRO >C28-C36	<10.0	10.0	12/23/2022	ND					
Surrogate: 1-Chlorooctane	109 9	45.3-16	1						
Surrogate: 1-Chlorooctadecane	121 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	12/22/2022	Sampling Date:	12/20/2022
Reported:	12/27/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	Cool & Intact
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: NH 2 @ 1' (H226052-02)

BTEX 8260B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.025	0.025	12/22/2022	ND	2.25	112	2.00	2.63	
Toluene*	<0.025	0.025	12/22/2022	ND	2.35	118	2.00	4.80	
Ethylbenzene*	<0.025	0.025	12/22/2022	ND	2.39	120	2.00	3.95	
Total Xylenes*	<0.075	0.075	12/22/2022	ND	7.48	125	6.00	3.27	
Total BTEX	<0.150	0.150	12/22/2022	ND					
Surrogate: Dibromofluoromethane	94.5	% 86.7-11	1						
Surrogate: Toluene-d8	98.7	% 89.3-11	0						
Surrogate: 4-Bromofluorobenzene	100 \$	% 88.2-10	8						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	12/22/2022	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/23/2022	ND	191	95.7	200	0.176	
DRO >C10-C28*	<10.0	10.0	12/23/2022	ND	172	86.1	200	1.89	
EXT DRO >C28-C36	<10.0	10.0	12/23/2022	ND					
Surrogate: 1-Chlorooctane	92.0	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	103	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	12/22/2022	Sampling Date:	12/20/2022
Reported:	12/27/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	Cool & Intact
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: EH 1 @ 1' (H226052-03)

BTEX 8260B	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.025	0.025	12/22/2022	ND	2.25	112	2.00	2.63	
Toluene*	<0.025	0.025	12/22/2022	ND	2.35	118	2.00	4.80	
Ethylbenzene*	<0.025	0.025	12/22/2022	ND	2.39	120	2.00	3.95	
Total Xylenes*	<0.075	0.075	12/22/2022	ND	7.48	125	6.00	3.27	
Total BTEX	<0.150	0.150	12/22/2022	ND					
Surrogate: Dibromofluoromethane	97.3	% 86.7-11	1						
Surrogate: Toluene-d8	101	89.3-11	0						
Surrogate: 4-Bromofluorobenzene	102	88.2-10	8						
Chloride, SM4500Cl-B	mg,	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/22/2022	ND	400	100	400	3.92	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/23/2022	ND	191	95.7	200	0.176	
DRO >C10-C28*	<10.0	10.0	12/23/2022	ND	172	86.1	200	1.89	
EXT DRO >C28-C36	<10.0	10.0	12/23/2022	ND					
Surrogate: 1-Chlorooctane	93.8	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	104 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	12/22/2022	Sampling Date:	12/20/2022
Reported:	12/27/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	Cool & Intact
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: EH 2 @ 1' (H226052-04)

BTEX 8260B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.025	0.025	12/22/2022	ND	2.25	112	2.00	2.63	
Toluene*	<0.025	0.025	12/22/2022	ND	2.35	118	2.00	4.80	
Ethylbenzene*	<0.025	0.025	12/22/2022	ND	2.39	120	2.00	3.95	
Total Xylenes*	<0.075	0.075	12/22/2022	ND	7.48	125	6.00	3.27	
Total BTEX	<0.150	0.150	12/22/2022	ND					
Surrogate: Dibromofluoromethane	91.7	% 86.7-11	1						
Surrogate: Toluene-d8	99.0	% 89.3-11	0						
Surrogate: 4-Bromofluorobenzene	101	% 88.2-10	8						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	12/22/2022	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/23/2022	ND	191	95.7	200	0.176	
DRO >C10-C28*	<10.0	10.0	12/23/2022	ND	172	86.1	200	1.89	
EXT DRO >C28-C36	<10.0	10.0	12/23/2022	ND					
Surrogate: 1-Chlorooctane	117 9	45.3-16	1						
Surrogate: 1-Chlorooctadecane	128	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	12/22/2022	Sampling Date:	12/20/2022
Reported:	12/27/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	Cool & Intact
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: SH 1 @ 1' (H226052-05)

BTEX 8260B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.025	0.025	12/22/2022	ND	2.25	112	2.00	2.63	
Toluene*	<0.025	0.025	12/22/2022	ND	2.35	118	2.00	4.80	
Ethylbenzene*	<0.025	0.025	12/22/2022	ND	2.39	120	2.00	3.95	
Total Xylenes*	<0.075	0.075	12/22/2022	ND	7.48	125	6.00	3.27	
Total BTEX	<0.150	0.150	12/22/2022	ND					
Surrogate: Dibromofluoromethane	94.0	% 86.7-11	1						
Surrogate: Toluene-d8	99.1	% 89.3-11	0						
Surrogate: 4-Bromofluorobenzene	101	% 88.2-10	8						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/22/2022	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/23/2022	ND	191	95.7	200	0.176	
DRO >C10-C28*	<10.0	10.0	12/23/2022	ND	172	86.1	200	1.89	
EXT DRO >C28-C36	<10.0	10.0	12/23/2022	ND					
Surrogate: 1-Chlorooctane	90.4	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	101	% 46.3-17							

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	12/22/2022	Sampling Date:	12/20/2022
Reported:	12/27/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	Cool & Intact
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: SH 2 @ 1' (H226052-06)

BTEX 8260B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.025	0.025	12/22/2022	ND	2.25	112	2.00	2.63	
Toluene*	<0.025	0.025	12/22/2022	ND	2.35	118	2.00	4.80	
Ethylbenzene*	<0.025	0.025	12/22/2022	ND	2.39	120	2.00	3.95	
Total Xylenes*	<0.075	0.075	12/22/2022	ND	7.48	125	6.00	3.27	
Total BTEX	<0.150	0.150	12/22/2022	ND					
Surrogate: Dibromofluoromethane	96.3	% 86.7-11	1						
Surrogate: Toluene-d8	99.6	% 89.3-11	0						
Surrogate: 4-Bromofluorobenzene	101	101 % 88.2-108							
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	12/22/2022	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	Analyzed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/23/2022	ND	191	95.7	200	0.176	
DRO >C10-C28*	<10.0	10.0	12/23/2022	ND	172	86.1	200	1.89	
EXT DRO >C28-C36	<10.0	10.0	12/23/2022	ND					
Surrogate: 1-Chlorooctane	87.1	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	97.0	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	12/22/2022	Sampling Date:	12/20/2022
Reported:	12/27/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	Cool & Intact
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: WH 1 @ 1' (H226052-07)

BTEX 8260B	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.025	0.025	12/22/2022	ND	2.25	112	2.00	2.63	
Toluene*	<0.025	0.025	12/22/2022	ND	2.35	118	2.00	4.80	
Ethylbenzene*	<0.025	0.025	12/22/2022	ND	2.39	120	2.00	3.95	
Total Xylenes*	<0.075	0.075	12/22/2022	ND	7.48	125	6.00	3.27	
Total BTEX	<0.150	0.150	12/22/2022	ND					
Surrogate: Dibromofluoromethane	92.6	% 86.7-11	1						
Surrogate: Toluene-d8	98.2	% 89.3-11	0						
Surrogate: 4-Bromofluorobenzene	100 9	88.2-10	8						
Chloride, SM4500Cl-B	mg,	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/22/2022	ND	400	100	400	3.92	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/23/2022	ND	191	95.7	200	0.176	
DRO >C10-C28*	<10.0	10.0	12/23/2022	ND	172	86.1	200	1.89	
EXT DRO >C28-C36	<10.0	10.0	12/23/2022	ND					
Surrogate: 1-Chlorooctane	120	45.3-16	1						
Surrogate: 1-Chlorooctadecane	133	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	12/22/2022	Sampling Date:	12/20/2022
Reported:	12/27/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	Cool & Intact
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: WH 2 @ 1' (H226052-08)

BTEX 8260B	mg	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.025	0.025	12/22/2022	ND	2.25	112	2.00	2.63	
Toluene*	<0.025	0.025	12/22/2022	ND	2.35	118	2.00	4.80	
Ethylbenzene*	<0.025	0.025	12/22/2022	ND	2.39	120	2.00	3.95	
Total Xylenes*	<0.075	0.075	12/22/2022	ND	7.48	125	6.00	3.27	
Total BTEX	<0.150	0.150	12/22/2022	ND					
Surrogate: Dibromofluoromethane	92.5	% 86.7-11	1						
Surrogate: Toluene-d8	96.4	% 89.3-11	0						
Surrogate: 4-Bromofluorobenzene	100	88.2-10	8						
Chloride, SM4500Cl-B	mg	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	12/22/2022	ND	400	100	400	3.92	
TPH 8015M	mg	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/23/2022	ND	191	95.7	200	0.176	
DRO >C10-C28*	<10.0	10.0	12/23/2022	ND	172	86.1	200	1.89	
EXT DRO >C28-C36	<10.0	10.0	12/23/2022	ND					
Surrogate: 1-Chlorooctane	87.0	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	94.8	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
BS1	Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Received by OCD: 3/29/2023 8:17:17 PM

Date: Time: Date: Date: Time:	PLEASE NOTE: Liability and Damages. Candinal's liability and client's acclusive remedy for any claim arising whether based is contract or tort, shall be limited to the amount paid by the client for the analyses. All claims including those for negligence and any other cause whatsoever shall be demained waited unless made in writing and received by Cardinal within 30 days after competion of the service. In no event shall Cardinal be identified to incontral damages, including without itilination, bashess interruptors, loss of use of profits incorrectly objection of this substatiaries arising out or related to performance of services hereunder by Cardinal, whether such claims is based upon any of the above stated reasons or otherwise.	1 erting	J WH IGI	18145	4 EH2011	42	INHI@1'	Lab I.D. Sample I.D.	FOR LAB USE ONLY	R	Project Location: ZUMA Ros Serve 12 6	Project Name: Frederic 1 4 002	Project #: \6856 Project Owner:	Phone #: (575) 264-9884 Fax #:	City: Hobbs State: NM	Address: 2617 W Marland	Project Manager: Joel Lowry	Company Name: Etech Environmental & Safety Solutions, Inc.	(575) 393-2326 FAX (575) 393-2476
laceived By:	nnedy for any claim arising whether based in contr re: shall be deemed waived unless made in writing es. Including without limitation, busivess interruption eunder to Cardinal, repartiless of whether such da	**					X 19	(G)RAB OR (C)OMP. # CONTAINERS GROUNDWATER WASTEWATER SOIL OIL	MATRIX	VZ	S. , NM		vner: H.L. Brown		Zip: 88240			Solutions, Inc.	3-2476
CHECKED BY:	remedy for any claim arising whether based in contract or tort, shall be limited to the amount paid by the client for the ever shall be deemed waived unless made in writing and resolved by Cardinal with 30 days after competition of the applicable gees, including without limitation, busitess interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, securice by Cardinal, respartiess of whether such claim is based useon any of the above stated reasons or otherwise.	- 4					X 12/20/22	SLUDGE OTHER : ACID/BASE: ICE / COOL OTHER : DATE	PRESERV. SAMPLING	Fax #:	Phone #:	State: Zip:	City:	Address:	Attn:	Company H.L. Brown	P.O. #:	BILL TO	
esult: □ utt: □ ymail resu	or the the applicable aries,	4				-	×			Chi						-			
		4	++-				XX					5M) 21B					_		1
Phone Result: 9 Yes 1 No Add'I Phone #: Fax Result: 9 Yes 1 No Add'I Fax #: REMARKS: 2USh PUL G Sc Please email results and copy of CoC to pm@etechenv.com.																	- 1	ANALYSIS REQUEST	

Page 11 of 11

Page 49 of 92

December 14, 2022

JOEL LOWRY

Etech Environmental & Safety Solutions

2617 W MARLAND

HOBBS, NM 88240

RE: FEDERAL H002

Enclosed are the results of analyses for samples received by the laboratory on 12/07/22 15:35.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	12/07/2022	Sampling Date:	12/07/2022
Reported:	12/14/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	** (See Notes)
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: SW 1 C (H225766-01)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/11/2022	ND	2.14	107	2.00	9.26	
Toluene*	<0.050	0.050	12/11/2022	ND	2.17	108	2.00	8.52	
Ethylbenzene*	<0.050	0.050	12/11/2022	ND	2.16	108	2.00	9.67	
Total Xylenes*	<0.150	0.150	12/11/2022	ND	6.75	112	6.00	11.4	
Total BTEX	<0.300	0.300	12/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	69.9-14	0						
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/09/2022	ND	166	82.8	200	2.86	
DRO >C10-C28*	<10.0	10.0	12/09/2022	ND	165	82.7	200	6.17	
EXT DRO >C28-C36	<10.0	10.0	12/09/2022	ND					
Surrogate: 1-Chlorooctane	92.2	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	95.1	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

5 R

Received by OCD: 3/29/2023 8:17:17 PM

hed By: March March 12-7 Time: hed By: Date:	Damages. Cardinal's liability and clier those for majligence and any other or dinal be liable for incidential or conseq out or (related to the performance)	HZZSTIAN / SWIC / SWIC	Project Manager: Joll Lowry Address: 2617 W Marland City: Hobbs State: NM Phone #: (575) 264-9884 Fax #: Project #: 1685 6 Project Owner: Project #: 1685 6 Project Owner: Project Location: Function: 1002 Sampler Name: Michael 4002 Project Location: FOR LAB USE ONLY Michael 4002 Project Location:	ARDINAL LABORA TORIES 101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476 Company Name: Etech Environmental & Safety Solutions, Inc.
72 Received By: 75 Received By: #113 Sample Condition	It's exclusive remody for any claim arising writerine traped in contract ordior, shall be limited to the semount paid by the claim for the users whatsoever shall be deemed walved unless made in writing and received by Caudinal within 30 days after compiletion of the users through the day of the streamptions, less of use, or less of the ordinal within 30 days after compiletion of the day of the	CONTAINERS GROUNDWATER WASTEWATER SOIL OIL SLUDGE	H.L. Brown	is, Inc.
1 CHECKED BY: (Initials)	act orders; shall be limited to the sensure para and recorded by Caudinal within 30 days after shin is based upon any of the above days after in is based upon any of the above days		P.O. #: Company H. L. B. Po- Attn: Address: City: City: State: Zip: Phone #: Fax #: PRESERV SAMPLING	BILL TO
Phone Result: Fax Result: REMARKS: Please email	amount paid by the client for the opplicate to completion of the applicate output facent, its subjectives, we estimate hereines.	TIME	Chloride	CHAIN-OF-CUSTODY
□ Yes □ Yes	Cable	×	TPH (8015M)	F-C
and copy		×	BTEX (8021B)	JSTOD
Phone Result:				Y AND ANALYSIS REQUEST

December 07, 2022

JOEL LOWRY

Etech Environmental & Safety Solutions

2617 W MARLAND

HOBBS, NM 88240

RE: FEDERAL H002

Enclosed are the results of analyses for samples received by the laboratory on 11/30/22 15:25.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Whe Singh

Mike Snyder For Celey D. Keene Lab Director/Quality Manager

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/30/2022	Sampling Date:	11/22/2022
Reported:	12/07/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	Cool & Intact
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: SW 2 B (H225612-01)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/03/2022	ND	2.01	101	2.00	11.2	
Toluene*	<0.050	0.050	12/03/2022	ND	2.10	105	2.00	10.8	
Ethylbenzene*	<0.050	0.050	12/03/2022	ND	2.04	102	2.00	10.9	
Total Xylenes*	<0.150	0.150	12/03/2022	ND	6.25	104	6.00	11.1	
Total BTEX	<0.300	0.300	12/03/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	69.9-14	0						
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/02/2022	ND	202	101	200	3.25	
DRO >C10-C28*	<10.0	10.0	12/02/2022	ND	222	111	200	3.73	
EXT DRO >C28-C36	<10.0	10.0	12/02/2022	ND					
Surrogate: 1-Chlorooctane	92.8	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	93.9	% 46.3-17	0						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/30/2022	Sampling Date:	11/22/2022
Reported:	12/07/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	Cool & Intact
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: NW 1 B (H225612-02)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/03/2022	ND	2.01	101	2.00	11.2	
Toluene*	<0.050	0.050	12/03/2022	ND	2.10	105	2.00	10.8	
Ethylbenzene*	<0.050	0.050	12/03/2022	ND	2.04	102	2.00	10.9	
Total Xylenes*	<0.150	0.150	12/03/2022	ND	6.25	104	6.00	11.1	
Total BTEX	<0.300	0.300	12/03/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 9	69.9-14	0						
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/03/2022	ND	202	101	200	3.25	
DRO >C10-C28*	<10.0	10.0	12/03/2022	ND	222	111	200	3.73	
EXT DRO >C28-C36	<10.0	10.0	12/03/2022	ND					
Surrogate: 1-Chlorooctane	105 9	45.3-16	1						
Surrogate: 1-Chlorooctadecane	107 9	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/30/2022	Sampling Date:	11/22/2022
Reported:	12/07/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	Cool & Intact
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: FL 2 @ 4' (H225612-03)

BTEX 8021B	mg/	kg	Analyze	Analyzed By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/03/2022	ND	2.01	101	2.00	11.2	
Toluene*	<0.050	0.050	12/03/2022	ND	2.10	105	2.00	10.8	
Ethylbenzene*	<0.050	0.050	12/03/2022	ND	2.04	102	2.00	10.9	
Total Xylenes*	<0.150	0.150	12/03/2022	ND	6.25	104	6.00	11.1	
Total BTEX	<0.300	0.300	12/03/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	69.9-14	0						
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/03/2022	ND	202	101	200	3.25	
DRO >C10-C28*	<10.0	10.0	12/03/2022	ND	222	111	200	3.73	
EXT DRO >C28-C36	<10.0	10.0	12/03/2022	ND					
Surrogate: 1-Chlorooctane	113 %	6 45.3-16	1						
Surrogate: 1-Chlorooctadecane	113 %	6 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/30/2022	Sampling Date:	11/22/2022
Reported:	12/07/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	Cool & Intact
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: SW 1 B (H225612-04)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.200	0.200	12/03/2022	ND	2.01	101	2.00	11.2	
Toluene*	0.690	0.200	12/03/2022	ND	2.10	105	2.00	10.8	GC-NC1
Ethylbenzene*	1.90	0.200	12/03/2022	ND	2.04	102	2.00	10.9	
Total Xylenes*	22.1	0.600	12/03/2022	ND	6.25	104	6.00	11.1	
Total BTEX	24.7	1.20	12/03/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	291	% 69.9-14	10						
TPH 8015M	mg/	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	1010	10.0	12/03/2022	ND	202	101	200	3.25	
DRO >C10-C28*	5270	10.0	12/03/2022	ND	222	111	200	3.73	
EXT DRO >C28-C36	481	10.0	12/03/2022	ND					
Surrogate: 1-Chlorooctane	201	% 45.3-16	51						
Surrogate: 1-Chlorooctadecane	204		78						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/30/2022	Sampling Date:	11/22/2022
Reported:	12/07/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	Cool & Intact
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: FL 1 @ 4' (H225612-05)

BTEX 8021B	mg/	kg	Analyze	Analyzed By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/03/2022	ND	2.01	101	2.00	11.2	
Toluene*	<0.050	0.050	12/03/2022	ND	2.10	105	2.00	10.8	
Ethylbenzene*	<0.050	0.050	12/03/2022	ND	2.04	102	2.00	10.9	
Total Xylenes*	<0.150	0.150	12/03/2022	ND	6.25	104	6.00	11.1	
Total BTEX	<0.300	0.300	12/03/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 69.9-14	0						
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/03/2022	ND	202	101	200	3.25	
DRO >C10-C28*	<10.0	10.0	12/03/2022	ND	222	111	200	3.73	
EXT DRO >C28-C36	<10.0	10.0	12/03/2022	ND					
Surrogate: 1-Chlorooctane	102 9	45.3-16	1						
Surrogate: 1-Chlorooctadecane	102 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/30/2022	Sampling Date:	11/22/2022
Reported:	12/07/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	Cool & Intact
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: FL 4 @ 4' (H225612-06)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/03/2022	ND	2.01	101	2.00	11.2	
Toluene*	<0.050	0.050	12/03/2022	ND	2.10	105	2.00	10.8	
Ethylbenzene*	<0.050	0.050	12/03/2022	ND	2.04	102	2.00	10.9	
Total Xylenes*	<0.150	0.150	12/03/2022	ND	6.25	104	6.00	11.1	
Total BTEX	<0.300	0.300	12/03/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	69.9-14	0						
TPH 8015M	mg/	kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/03/2022	ND	202	101	200	3.25	
DRO >C10-C28*	<10.0	10.0	12/03/2022	ND	222	111	200	3.73	
EXT DRO >C28-C36	<10.0	10.0	12/03/2022	ND					
Surrogate: 1-Chlorooctane	108 9	45.3-16	1						
Surrogate: 1-Chlorooctadecane	107 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/30/2022	Sampling Date:	11/22/2022
Reported:	12/07/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	Cool & Intact
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: FL 6 @ 3' (H225612-07)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/03/2022	ND	2.01	101	2.00	11.2	
Toluene*	<0.050	0.050	12/03/2022	ND	2.10	105	2.00	10.8	
Ethylbenzene*	<0.050	0.050	12/03/2022	ND	2.04	102	2.00	10.9	
Total Xylenes*	<0.150	0.150	12/03/2022	ND	6.25	104	6.00	11.1	
Total BTEX	<0.300	0.300	12/03/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	69.9-14	0						
TPH 8015M	mg/	kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/03/2022	ND	202	101	200	3.25	
DRO >C10-C28*	31.5	10.0	12/03/2022	ND	222	111	200	3.73	
EXT DRO >C28-C36	<10.0	10.0	12/03/2022	ND					
Surrogate: 1-Chlorooctane	99.9	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	101 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/30/2022	Sampling Date:	11/22/2022
Reported:	12/07/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	Cool & Intact
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: EW 2 B (H225612-08)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/03/2022	ND	2.01	101	2.00	11.2	
Toluene*	<0.050	0.050	12/03/2022	ND	2.10	105	2.00	10.8	
Ethylbenzene*	<0.050	0.050	12/03/2022	ND	2.04	102	2.00	10.9	
Total Xylenes*	<0.150	0.150	12/03/2022	ND	6.25	104	6.00	11.1	
Total BTEX	<0.300	0.300	12/03/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	69.9-14	0						
TPH 8015M	mg/	kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/03/2022	ND	202	101	200	3.25	
DRO >C10-C28*	<10.0	10.0	12/03/2022	ND	222	111	200	3.73	
EXT DRO >C28-C36	<10.0	10.0	12/03/2022	ND					
Surrogate: 1-Chlorooctane	107 9	45.3-16	1						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/30/2022	Sampling Date:	11/22/2022
Reported:	12/07/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	Cool & Intact
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: SW 3 B (H225612-09)

BTEX 8021B	mg/kg		Analyzed By: JH					S-04		
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
Benzene*	<0.050	0.050	12/03/2022	ND	2.01	101	2.00	11.2		
Toluene*	1.55	0.050	12/03/2022	ND	2.10	105	2.00	10.8	GC-NC1	
Ethylbenzene*	2.37	0.050	12/03/2022	ND	2.04	102	2.00	10.9		
Total Xylenes*	17.6	0.150	12/03/2022	ND	6.25	104	6.00	11.1		
Total BTEX	21.6	0.300	12/03/2022	ND						
Surrogate: 4-Bromofluorobenzene (PID	288 9	69.9-14	0							
TPH 8015M	mg/	'kg	Analyzed By: MS							
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
GRO C6-C10*	61.2	10.0	12/03/2022	ND	202	101	200	3.25		
DRO >C10-C28*	223	10.0	12/03/2022	ND	222	111	200	3.73		
EXT DRO >C28-C36	13.1	10.0	12/03/2022	ND						
Surrogate: 1-Chlorooctane	105 9	45.3-16	1							
Surrogate: 1-Chlorooctadecane	107 9	46.3-17	8							

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/30/2022	Sampling Date:	11/22/2022
Reported:	12/07/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	Cool & Intact
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: WW 1 B (H225612-10)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/03/2022	ND	2.01	101	2.00	11.2	
Toluene*	<0.050	0.050	12/03/2022	ND	2.10	105	2.00	10.8	
Ethylbenzene*	<0.050	0.050	12/03/2022	ND	2.04	102	2.00	10.9	
Total Xylenes*	<0.150	0.150	12/03/2022	ND	6.25	104	6.00	11.1	
Total BTEX	<0.300	0.300	12/03/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 %	69.9-140)						
TPH 8015M	mg/	kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/03/2022	ND	202	101	200	3.25	
DRO >C10-C28*	<10.0	10.0	12/03/2022	ND	222	111	200	3.73	
EXT DRO >C28-C36	<10.0	10.0	12/03/2022	ND					
Surrogate: 1-Chlorooctane	73.5 9	45.3-16	!						
Surrogate: 1-Chlorooctadecane	73.8 9	46.3-178	3						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
GC-NC1	8260 confirmation analysis was performed; initial GC results were not supported by GC/MS analysis and are biased high with interfering compounds.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Mite Sigh

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Received by OCD: 3/29/2023 8:17:17 PM

FORM-006 Revision 1.0 Cool_IntactCool_Intact(Initials) FORM-006 Cool_IntactCool_Intact(Initials) FORM-006 Cool_IntactCool_Intact(Initials) FORM-006 Cool_IntactCool_Intact(Initials) FORM-006 FORM-006 FORM-	y: Circle One)	PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any faim arising whether based in contract or lority and any other cause whatspower shall be deemed waked unless made in writing and roomat or lority and antificience or supposed and of or related to the performance of services in hereunder by Cardinal, business interruptions, loss of usas antificience or supposed and of or related to the performance of services hereunder by Cardinal, tradities of whether such daim is based and the performance of services hereunder by Cardinal, tradities of whether such daim is based at the performance of services hereunder by Cardinal, tradities of whether such daim is based at the performance of services hereunder by Cardinal, tradities of whether such daim is based at the performance of services hereunder by Cardinal, tradities of whether such daim is based at the served of the performance of services hereunder by Cardinal, tradities of whether such daim is based at the served of the performance of services hereunder by Cardinal, tradities of whether such daim is based at the performance of services hereunder by Cardinal, tradities of whether such daim is based at the performance of services hereunder by Cardinal, tradities of whether such daim is based at the performance of services hereunder by Cardinal to the served to the performance of services hereunder by Cardinal to the performance of services hereunder by Cardinal to the performance of services hereunder by Cardinal to the performance of services hereunder by	FLIPH GROUNDWA GROUNDWA GROUNDWA WASTEWATE	State: NM Zip:88240 Fax #: Project Owner: $H, L, Brown$ M H Co. , NN M H Co. , NN	'ess: 2617 W	G 2 D
(Initials)	Please email results of	view whether based in contract or furt, shall be limited to the amount paid by the client for the wide whether based in contract or furt, shall be limited to the amount paid by the client for the attach, business interruptions, loss of use, or loss of profits incurred with a subsidiaries, traffers of whether such claim is based upon any of the above stated reasons or the subsidiaries, Vert		Company L. L. Brow A Attn: Address: City: State: Zip: Phone #: PRESERV. SAMPLING	P.0.#	
ges to 5	t: D Yes	pplicable		Chloride	4	CHAIN-OF-
75-393		4		TPH (8015M)		
-393-2476	N N		++++	BTEX (8021B)		STO
393-2476	Add'l Phone #: Add'l Fax #:				ANALYSIS REQUEST	CUSTODY AND ANALYSIS REQUEST

Page 66 of 92

November 14, 2022

JOEL LOWRY

Etech Environmental & Safety Solutions

2617 W MARLAND

HOBBS, NM 88240

RE: FEDERAL H002

Enclosed are the results of analyses for samples received by the laboratory on 11/07/22 15:42.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/07/2022	Sampling Date:	11/07/2022
Reported:	11/14/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	** (See Notes)
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: FL 1 @ 2' (H225249-01)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/11/2022	ND	1.90	94.9	2.00	4.23	
Toluene*	<0.050	0.050	11/11/2022	ND	2.04	102	2.00	3.77	
Ethylbenzene*	0.120	0.050	11/11/2022	ND	1.99	99.6	2.00	3.73	
Total Xylenes*	0.645	0.150	11/11/2022	ND	6.06	101	6.00	3.65	
Total BTEX	0.765	0.300	11/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	125	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	592	16.0	11/08/2022	ND	384	96.0	400	4.08	
TPH 8015M	mg	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	36.8	10.0	11/08/2022	ND	202	101	200	3.79	
DRO >C10-C28*	1210	10.0	11/08/2022	ND	195	97.5	200	2.83	QM-07
EXT DRO >C28-C36	94.5	10.0	11/08/2022	ND					
Surrogate: 1-Chlorooctane	89.3	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	131	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/07/2022	Sampling Date:	11/07/2022
Reported:	11/14/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	** (See Notes)
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: FL 2 @ 3' (H225249-02)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/11/2022	ND	1.90	94.9	2.00	4.23	
Toluene*	<0.050	0.050	11/11/2022	ND	2.04	102	2.00	3.77	
Ethylbenzene*	0.165	0.050	11/11/2022	ND	1.99	99.6	2.00	3.73	
Total Xylenes*	1.69	0.150	11/11/2022	ND	6.06	101	6.00	3.65	
Total BTEX	1.85	0.300	11/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	137	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	768	16.0	11/08/2022	ND	384	96.0	400	4.08	
TPH 8015M	mg/	/kg	Analyzed By: MS						S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	108	50.0	11/09/2022	ND	202	101	200	3.79	
DRO >C10-C28*	3340	50.0	11/09/2022	ND	195	97.5	200	2.83	
EXT DRO >C28-C36	427	50.0	11/09/2022	ND					
Surrogate: 1-Chlorooctane	119 9	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	212	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/07/2022	Sampling Date:	11/07/2022
Reported:	11/14/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	** (See Notes)
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: FL 3 @ 2' (H225249-03)

BTEX 8021B	mg/	/kg	Analyze	ed By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/11/2022	ND	1.90	94.9	2.00	4.23	
Toluene*	<0.050	0.050	11/11/2022	ND	2.04	102	2.00	3.77	
Ethylbenzene*	<0.050	0.050	11/11/2022	ND	1.99	99.6	2.00	3.73	
Total Xylenes*	<0.150	0.150	11/11/2022	ND	6.06	101	6.00	3.65	
Total BTEX	<0.300	0.300	11/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	87.9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	288	16.0	11/08/2022	ND	384	96.0	400	4.08	
TPH 8015M	mg/	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/08/2022	ND	202	101	200	3.79	
DRO >C10-C28*	<10.0	10.0	11/08/2022	ND	195	97.5	200	2.83	
EXT DRO >C28-C36	<10.0	10.0	11/08/2022	ND					
Surrogate: 1-Chlorooctane	111 9	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	121	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/07/2022	Sampling Date:	11/07/2022
Reported:	11/14/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	** (See Notes)
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: FL 4 @ 2' (H225249-04)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	0.205	0.050	11/11/2022	ND	1.90	94.9	2.00	4.23	
Toluene*	5.17	0.050	11/11/2022	ND	2.04	102	2.00	3.77	
Ethylbenzene*	4.58	0.050	11/11/2022	ND	1.99	99.6	2.00	3.73	
Total Xylenes*	24.9	0.150	11/11/2022	ND	6.06	101	6.00	3.65	
Total BTEX	34.8	0.300	11/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	289	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	11/08/2022	ND	384	96.0	400	4.08	
TPH 8015M	mg/	/kg	Analyzed By: MS						S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	614	10.0	11/08/2022	ND	202	101	200	3.79	
DRO >C10-C28*	1370	10.0	11/08/2022	ND	195	97.5	200	2.83	
EXT DRO >C28-C36	86.6	10.0	11/08/2022	ND					
Surrogate: 1-Chlorooctane	190	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	136	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/07/2022	Sampling Date:	11/07/2022
Reported:	11/14/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	** (See Notes)
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: NW 1 (H225249-05)

BTEX 8021B	mg	/kg	Analyze	d By: JH					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.200	0.200	11/12/2022	ND	1.90	94.9	2.00	4.23	
Toluene*	2.48	0.200	11/12/2022	ND	2.04	102	2.00	3.77	
Ethylbenzene*	<0.200	0.200	11/12/2022	ND	1.99	99.6	2.00	3.73	
Total Xylenes*	30.5	0.600	11/12/2022	ND	6.06	101	6.00	3.65	GC-NC1
Total BTEX	33.0	1.20	11/12/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	272	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	400	16.0	11/08/2022	ND	384	96.0	400	4.08	
TPH 8015M	mg	/kg	Analyzed By: MS						S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	1910	50.0	11/09/2022	ND	202	101	200	3.79	
DRO >C10-C28*	7440	50.0	11/09/2022	ND	195	97.5	200	2.83	
EXT DRO >C28-C36	346	50.0	11/09/2022	ND					
Surrogate: 1-Chlorooctane	371	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	162	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/07/2022	Sampling Date:	11/07/2022
Reported:	11/14/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	** (See Notes)
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: EW 1 (H225249-06)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/11/2022	ND	1.90	94.9	2.00	4.23	
Toluene*	<0.050	0.050	11/11/2022	ND	2.04	102	2.00	3.77	
Ethylbenzene*	<0.050	0.050	11/11/2022	ND	1.99	99.6	2.00	3.73	
Total Xylenes*	0.179	0.150	11/11/2022	ND	6.06	101	6.00	3.65	
Total BTEX	<0.300	0.300	11/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.1	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	768	16.0	11/08/2022	ND	384	96.0	400	4.08	
TPH 8015M	mg,	/kg	Analyze	Analyzed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/08/2022	ND	202	101	200	3.79	
DRO >C10-C28*	<10.0	10.0	11/08/2022	ND	195	97.5	200	2.83	
EXT DRO >C28-C36	<10.0	10.0	11/08/2022	ND					
Surrogate: 1-Chlorooctane	101	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	111 9	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/07/2022	Sampling Date:	11/07/2022
Reported:	11/14/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	** (See Notes)
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: SW 1 (H225249-07)

BTEX 8021B	mg	/kg	Analyze	d By: JH					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.500	0.500	11/12/2022	ND	1.90	94.9	2.00	4.23	
Toluene*	4.30	0.500	11/12/2022	ND	2.04	102	2.00	3.77	
Ethylbenzene*	10.7	0.500	11/12/2022	ND	1.99	99.6	2.00	3.73	
Total Xylenes*	72.6	1.50	11/12/2022	ND	6.06	101	6.00	3.65	
Total BTEX	87.6	3.00	11/12/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	168	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	592	16.0	11/08/2022	ND	384	96.0	400	4.08	
TPH 8015M	mg	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	1360	10.0	11/08/2022	ND	202	101	200	3.79	
DRO >C10-C28*	6300	10.0	11/08/2022	ND	195	97.5	200	2.83	
EXT DRO >C28-C36	655	10.0	11/08/2022	ND					
Surrogate: 1-Chlorooctane	164	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	171	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/07/2022	Sampling Date:	11/07/2022
Reported:	11/14/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	** (See Notes)
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: WW 1 (H225249-08)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/11/2022	ND	1.90	94.9	2.00	4.23	
Toluene*	<0.050	0.050	11/11/2022	ND	2.04	102	2.00	3.77	
Ethylbenzene*	<0.050	0.050	11/11/2022	ND	1.99	99.6	2.00	3.73	
Total Xylenes*	<0.150	0.150	11/11/2022	ND	6.06	101	6.00	3.65	
Total BTEX	<0.300	0.300	11/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.3	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	672	16.0	11/08/2022	ND	384	96.0	400	4.08	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<50.0	50.0	11/09/2022	ND	202	101	200	3.79	
DRO >C10-C28*	1330	50.0	11/09/2022	ND	195	97.5	200	2.83	
EXT DRO >C28-C36	298	50.0	11/09/2022	ND					
Surrogate: 1-Chlorooctane	91.9	% 45.3-16	51						
Surrogate: 1-Chlorooctadecane	142 \$	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/07/2022	Sampling Date:	11/07/2022
Reported:	11/14/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	** (See Notes)
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: FL 5 @ 2' (H225249-09)

BTEX 8021B	mg	/kg	Analyze	d By: JH					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/11/2022	ND	1.90	94.9	2.00	4.23	
Toluene*	0.260	0.050	11/11/2022	ND	2.04	102	2.00	3.77	
Ethylbenzene*	0.667	0.050	11/11/2022	ND	1.99	99.6	2.00	3.73	
Total Xylenes*	7.19	0.150	11/11/2022	ND	6.06	101	6.00	3.65	
Total BTEX	8.11	0.300	11/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	210	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	11/08/2022	ND	384	96.0	400	4.08	
TPH 8015M	mg/	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	125	10.0	11/09/2022	ND	202	101	200	3.79	
DRO >C10-C28*	728	10.0	11/09/2022	ND	195	97.5	200	2.83	
EXT DRO >C28-C36	81.3	10.0	11/09/2022	ND					
Surrogate: 1-Chlorooctane	133	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	133	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/07/2022	Sampling Date:	11/07/2022
Reported:	11/14/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	** (See Notes)
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: NW 2 (H225249-10)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/11/2022	ND	1.90	94.9	2.00	4.23	
Toluene*	<0.050	0.050	11/11/2022	ND	2.04	102	2.00	3.77	
Ethylbenzene*	<0.050	0.050	11/11/2022	ND	1.99	99.6	2.00	3.73	
Total Xylenes*	<0.150	0.150	11/11/2022	ND	6.06	101	6.00	3.65	
Total BTEX	<0.300	0.300	11/11/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.0	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	11/08/2022	ND	384	96.0	400	4.08	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2022	ND	202	101	200	3.79	
DRO >C10-C28*	201	10.0	11/09/2022	ND	195	97.5	200	2.83	
EXT DRO >C28-C36	36.7	10.0	11/09/2022	ND					
Surrogate: 1-Chlorooctane	92.0	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	107 9	46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/07/2022	Sampling Date:	11/07/2022
Reported:	11/14/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	** (See Notes)
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: EW 2 (H225249-11)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	0.449	0.200	11/12/2022	ND	1.90	94.9	2.00	4.23	
Toluene*	6.23	0.200	11/12/2022	ND	2.04	102	2.00	3.77	
Ethylbenzene*	6.01	0.200	11/12/2022	ND	1.99	99.6	2.00	3.73	
Total Xylenes*	33.9	0.600	11/12/2022	ND	6.06	101	6.00	3.65	
Total BTEX	46.6	1.20	11/12/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	182	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	11/08/2022	ND	384	96.0	400	4.08	
TPH 8015M	mg,	/kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	1020	50.0	11/09/2022	ND	202	101	200	3.79	
DRO >C10-C28*	15900	50.0	11/09/2022	ND	195	97.5	200	2.83	
EXT DRO >C28-C36	1930	50.0	11/09/2022	ND					
Surrogate: 1-Chlorooctane	162	% 45.3-16	51						
Surrogate: 1-Chlorooctadecane	358	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/07/2022	Sampling Date:	11/07/2022
Reported:	11/14/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	** (See Notes)
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: SW 2 (H225249-12)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	2.55	0.200	11/12/2022	ND	1.90	94.9	2.00	4.23	
Toluene*	18.2	0.200	11/12/2022	ND	2.04	102	2.00	3.77	
Ethylbenzene*	12.9	0.200	11/12/2022	ND	1.99	99.6	2.00	3.73	
Total Xylenes*	67.5	0.600	11/12/2022	ND	6.06	101	6.00	3.65	
Total BTEX	101	1.20	11/12/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	212	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	11/08/2022	ND	384	96.0	400	4.08	
TPH 8015M	mg	/kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	1650	50.0	11/09/2022	ND	202	101	200	3.79	
DRO >C10-C28*	5540	50.0	11/09/2022	ND	195	97.5	200	2.83	
EXT DRO >C28-C36	544	50.0	11/09/2022	ND					
Surrogate: 1-Chlorooctane	310	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	386	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/07/2022	Sampling Date:	11/07/2022
Reported:	11/14/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	** (See Notes)
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: WW 2 (H225249-13)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/08/2022	ND	1.94	96.9	2.00	5.61	
Toluene*	<0.050	0.050	11/08/2022	ND	2.09	105	2.00	6.43	
Ethylbenzene*	0.059	0.050	11/08/2022	ND	2.05	102	2.00	7.40	
Total Xylenes*	0.263	0.150	11/08/2022	ND	6.23	104	6.00	7.42	
Total BTEX	0.321	0.300	11/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.0	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	11/08/2022	ND	384	96.0	400	4.08	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2022	ND	202	101	200	3.79	
DRO >C10-C28*	73.2	10.0	11/09/2022	ND	195	97.5	200	2.83	
EXT DRO >C28-C36	<10.0	10.0	11/09/2022	ND					
Surrogate: 1-Chlorooctane	83.3	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	90.7	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/07/2022	Sampling Date:	11/07/2022
Reported:	11/14/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	** (See Notes)
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: NW 3 (H225249-14)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/08/2022	ND	1.94	96.9	2.00	5.61	
Toluene*	<0.050	0.050	11/08/2022	ND	2.09	105	2.00	6.43	
Ethylbenzene*	<0.050	0.050	11/08/2022	ND	2.05	102	2.00	7.40	
Total Xylenes*	<0.150	0.150	11/08/2022	ND	6.23	104	6.00	7.42	
Total BTEX	<0.300	0.300	11/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	90.6	% 69.9-14	0						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	11/08/2022	ND	384	96.0	400	4.08	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2022	ND	202	101	200	3.79	
DRO >C10-C28*	12.6	10.0	11/09/2022	ND	195	97.5	200	2.83	
EXT DRO >C28-C36	<10.0	10.0	11/09/2022	ND					
Surrogate: 1-Chlorooctane	84.4	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	92.9	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/07/2022	Sampling Date:	11/07/2022
Reported:	11/14/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	** (See Notes)
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: EW 3 (H225249-15)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/08/2022	ND	1.94	96.9	2.00	5.61	
Toluene*	<0.050	0.050	11/08/2022	ND	2.09	105	2.00	6.43	
Ethylbenzene*	<0.050	0.050	11/08/2022	ND	2.05	102	2.00	7.40	
Total Xylenes*	<0.150	0.150	11/08/2022	ND	6.23	104	6.00	7.42	
Total BTEX	<0.300	0.300	11/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	88.9	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	11/08/2022	ND	384	96.0	400	4.08	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2022	ND	202	101	200	3.79	
DRO >C10-C28*	<10.0	10.0	11/09/2022	ND	195	97.5	200	2.83	
EXT DRO >C28-C36	<10.0	10.0	11/09/2022	ND					
Surrogate: 1-Chlorooctane	95.1	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	106	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/07/2022	Sampling Date:	11/07/2022
Reported:	11/14/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	** (See Notes)
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: SW 3 (H225249-16)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	1.17	0.500	11/08/2022	ND	1.94	96.9	2.00	5.61	
Toluene*	22.0	0.500	11/08/2022	ND	2.09	105	2.00	6.43	
Ethylbenzene*	18.8	0.500	11/08/2022	ND	2.05	102	2.00	7.40	
Total Xylenes*	120	1.50	11/08/2022	ND	6.23	104	6.00	7.42	
Total BTEX	162	3.00	11/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	168	% 69.9-14	0						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/08/2022	ND	416	104	400	3.92	
TPH 8015M	mg	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	2370	10.0	11/09/2022	ND	202	101	200	3.79	
DRO >C10-C28*	5950	10.0	11/09/2022	ND	195	97.5	200	2.83	
EXT DRO >C28-C36	436	10.0	11/09/2022	ND					
Surrogate: 1-Chlorooctane	472	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	331	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions JOEL LOWRY 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received:	11/07/2022	Sampling Date:	11/07/2022
Reported:	11/14/2022	Sampling Type:	Soil
Project Name:	FEDERAL H002	Sampling Condition:	** (See Notes)
Project Number:	16856	Sample Received By:	Tamara Oldaker
Project Location:	HL BROWN - RURAL ROOSEVELT CO., NI		

Sample ID: WW 3 (H225249-17)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/08/2022	ND	1.94	96.9	2.00	5.61	
Toluene*	<0.050	0.050	11/08/2022	ND	2.09	105	2.00	6.43	
Ethylbenzene*	<0.050	0.050	11/08/2022	ND	2.05	102	2.00	7.40	
Total Xylenes*	<0.150	0.150	11/08/2022	ND	6.23	104	6.00	7.42	
Total BTEX	<0.300	0.300	11/08/2022	ND					
Surrogate: 4-Bromofluorobenzene (PID	89.4	% 69.9-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	11/08/2022	ND	416	104	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/09/2022	ND	202	101	200	3.79	
DRO >C10-C28*	<10.0	10.0	11/09/2022	ND	195	97.5	200	2.83	
EXT DRO >C28-C36	<10.0	10.0	11/09/2022	ND					
Surrogate: 1-Chlorooctane	103	% 45.3-16	1						
Surrogate: 1-Chlorooctadecane	113 9	% 46.3-17	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.
S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
GC-NC1	8260 confirmation analysis was performed; initial GC results were not supported by GC/MS analysis and are biased high with interfering compounds.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

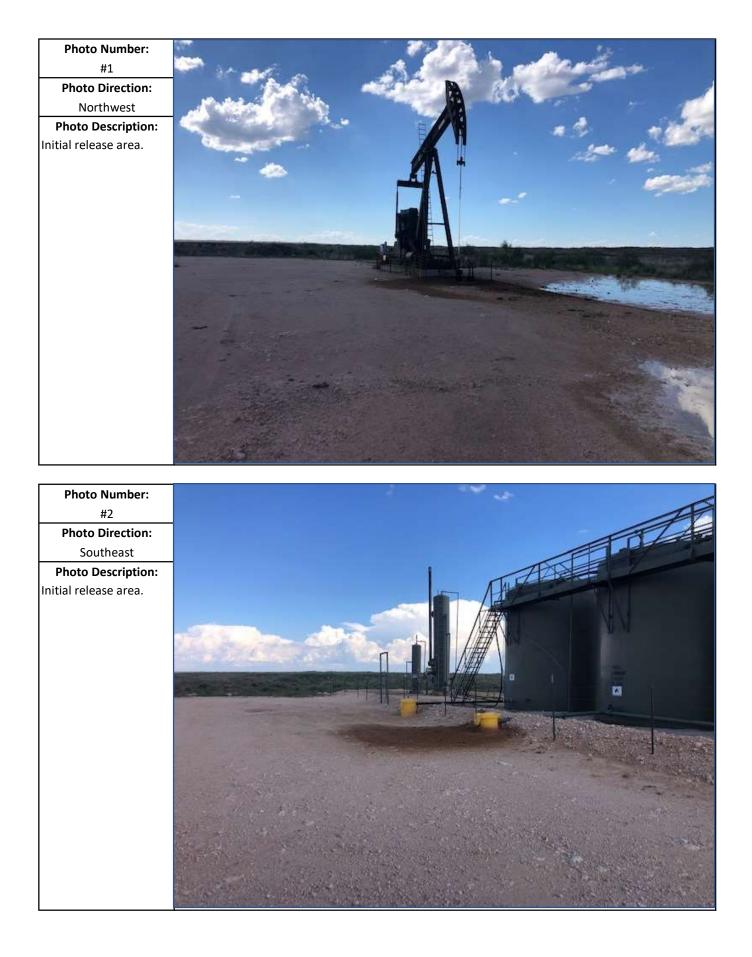
*=Accredited Analyte

Celeg D. Keine

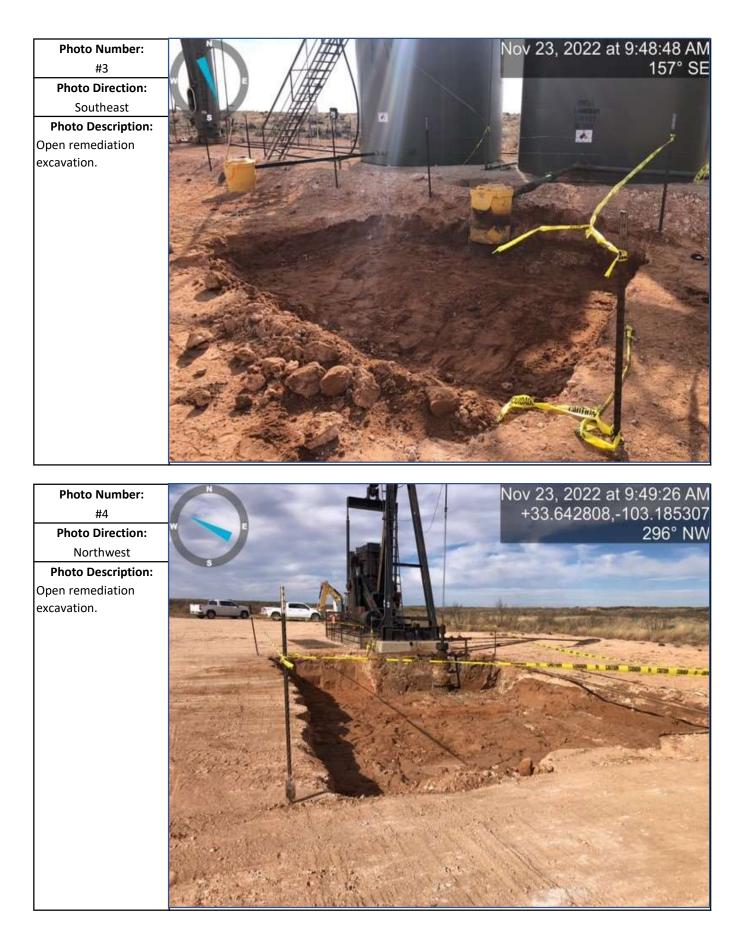
Celey D. Keene, Lab Director/Quality Manager

Received by OCD: 3/29/2023 8:17:17 PM

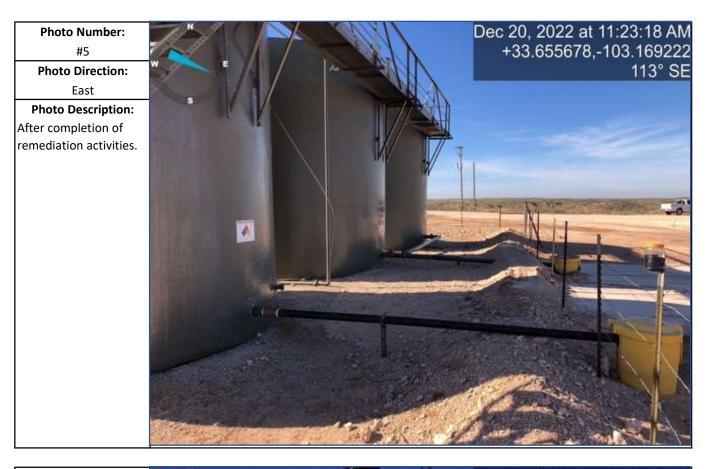
† Cardinal (0 0		Relinquished By: Date:	VI	hed By: Date:	analyses. All claims including those for negligence and any other crusse whatsoever shall be service. In no event shall Cardinal be liable for incidential or consequential damages, including affiliates or successors arising out of or related to the performance of services hereunder but c	PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim	7 FL S@ 21	SWWI	7.5 W1	6 P.W.I	Y FLY @ 21	2	1 PUL 21	3	H225249	Lab I.D. Sample I.D.		FOR LAB USE ONLY	Sampler Name? Levik Cerce	Project Location: Lulal Roosevelt	Project Name: Federal H 002	Project #: 16856 Project Owner:	Phone #: Fax #:	City: Hubbs state: NM	Address: 2617 W. Marland	JOE	company name: Llech Linvilonmental 3 safty	101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476	
Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com	Sample Condition CHECKED BY: Turnaround Time: Cool Intact (Initials) Dyse Yes Correction Factor 40 No No No	0	Received By: REMARKS:	All Results are emailed.	Received By:	waived unless made limitation, business ir regardless of whethe	r any claim arising whether based in contract or tort, shall be limited to the amount naid by the client for the							- *		# CONT, GROUN WASTEN SOIL DIL DIL SLUDGE DTHER ACID/BA CE / CO DTHER	E SE: OL	R	ESERV SAMPLING	Fax #:	CO. NM Phone #:	State: Zip:	ner: 14.6. Blown City:	Address:	Zip: 87240 Attn:	Company: H.L. Brun		3 Safty Solutions BILL TO	88240 -2476	
	ime: Standard A Bacteria (only) Sample Condition Rush Cool Intact Observed Temp. °C) #113 Yes Yes or -0.6°C I Nc No Corrected Temp. °C	MB eterhenv ran		Please prov	t:	plicable										Chl BI TP	Orid EX H											ANALYSIS REQUEST	120	CHAIN-OF-CUSTODY AND ANALYSIS REOLIEST


Page 86 of 92

Received by OCD: 3/29/2023 8:17:17 PM


Dcardinallabsrym.com	Thermometer ID #113 Correction Factor -0.6°C	anges. Please email ch	annot accept verbal chan	Corrected Temp. °C	Sampler - UPS - Bus - Other: FORM-000 R 3.3 07/16/22	Sample
Standard D	Turnaround Time:	tion CHECKED BY: (Initials)	Sample Condition	Observed Temp. °C	Delivered By: (Circle One)	Deliver
PM @ elechenu.com	2			Time:		
	REMARKS:	and when	Received By:	Date:	 7	Relinqu
		11Hall	fallaka	Time: 42	with lown	2
Verbal Result: Ves No Add'I Phone #: Direction of the second sec	Verbal Result:	UNN 1'	Received By:		Relinquished By:	Reling
	y client, its subsidiaries, reasons or otherwise.	loss of use, or loss of profits incurred to the based upon any of the above stated	uental damages, including without limitation, business interruptions, loss of uses, or loss of pofits incurred by viewer, the subsidiarie of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise	onseq	In chains iniciduing unservening any one of inegagence and any one overall shall. Cardinal be liable for incidental or c successors arising out of or related to the perform	affiliates or si
oficable .	paid by the client for the	t or tort, shall be limited to the amount , of received by Cardinal within 30 days a	ive remedy for any claim arising whether based in contract or tort, shall be limited to the amount paid by the client for the become reheal he deemod walked unless made in writing and received by Cardinal within 30 days after completion of the at	ability and client's exclusive remedy for any	PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exc	PLEASE NO
4	•	4	4 4	•	CMM 11	
					16 JWS	
					15 EN3	
					14 NW3	
					BM W B	
	ý A		- (17 CM2	
	-		- # () < s		1 5.10	1100
B	TIME	ACID/ CE/C DTHE	¢ CON		, CHQ	477.
<u>Ге</u> 7 <u>Е</u> 2 <u> </u> Ш	1/	R : BASE	ITAIN INDV EWA	Sample I.D.	Lab I.D. San	Lab
x			ATER			
	SAMPLING	PRESERV. SA	MATRIX		FOR LAB USE ONLY	FOR LAB
					Sampler Name:	Sample
		Phone #:	M	ROOSevelt Co., NW	Project Location: Qural	Project
		State: Zip:		4 602	Project Name: Reduct	Project
		City:	H.L. Brown	Project Owner:	t#: 1685C	Project #:
		Address:		Fax #:	1	Phone #:
		Attn:	zip: 88240	State: NM Zip:	\bigcirc	City:
	Brown	Company: H.L.		land	2617	Address:
		P.O. #:	-			Project
ANALYSIS REQUEST		BILL TO	3 Suff ty Solutions	on mental	Company Name: Etech Er	Compa
2/2			6	101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476	101 East Marlanc (575) 393-2326	
			U	ratories	Labo	-
F-CUSTODY AND ANALYSIS REQUEST	CHAIN-OF				L I J	

Page 87 of 92


Appendix D Photographic Log

Photographic Log

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
H L BROWN OPERATING, LLC	213179
P.O. Box 2237	Action Number:
Midland, TX 79702	202108
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
jnobui	Closure Report Approved. Please implement 19.15.29.13 NMAC when completing P&A.	5/4/2023

CONDITIONS

Page 92 of 92

Action 202108