

### SITE INFORMATION

Closure Report West Corbin Fed #16 SWD Incident ID: NAPP2302642924 Lea County, New Mexico Unit H Sec 18 T18S R33E 32.748797°, -103.695662°

Crude Oil Release Point of Release: Pin Hole on Poly Flowline Release Date: 01/21/23 Volume Released: 16 Barrels of Crude Oil Volume Recovered: 15 Barrels of Crude Oil

# CARMONA RESOURCES

Prepared for: EOG Resources 5509 Champions Drive Midland, TX 79706

Prepared by: Carmona Resources, LLC 310 West Wall Street Suite 500 Midland, Texas 79701



310 West Wall Street, Suite 500 Midland TX, 79701 432.813.1992



### **TABLE OF CONTENTS**

## **1.0 SITE INFORMATION AND BACKGROUND**

## 2.0 SITE CHARACTERIZATION AND GROUNDWATER

**3.0 NMAC REGULATORY CRITERIA** 

### 4.0 SITE ASSESSMENT ACTIVITIES

## **5.0 REMEDIATION ACTIVITIES**

6.0 CONCLUSIONS

### **FIGURES**

| FIGURE 1   | OVERVIEW             | FIGURE 2     | TOPOGRAPHIC   |
|------------|----------------------|--------------|---------------|
| FIGURE 3   | SAMPLE LOCATION      | FIGURE 4     | EXCAVATION    |
|            | APPEN                | DICES        |               |
| APPENDIX A | TABLES               |              |               |
| APPENDIX B | PHOTOS               |              |               |
| APPENDIX C | INITIAL C-141 AND FI | NAL/NMOCD CO | ORRESPONDENCE |

- APPENDIX D SITE CHARACTERIZATION AND GROUNDWATER
- APPENDIX E LABORATORY REPORTS



April 10, 2023

New Mexico Oil Conservation Division 1220 South St, Francis Drive Santa Fe, NM 87505

Re: Closure Report West Corbin Fed #16 SWD EOG Resources Inc. Site Location: Unit H, S18, T18S, R33E (Lat 32.748797°, Long -103.695662°) Lea County, New Mexico

To whom it may concern:

On behalf of EOG Resources Inc. (EOG), Carmona Resources, LLC has prepared this letter to document the West Corbin Fed #16 SWD site activities. The site is located at 32.748797°, -103.695662° within Unit H, S18, T18S, R33E, in Lea County, New Mexico (Figures 1 and 2).

#### **1.0 Site Information and Background**

Based on the initial C-141 obtained from the New Mexico Oil Conservation Division (NMOCD), the release was discovered on January 21, 2023, due to a pinhole in a poly flowline. It released approximately sixteen (16) barrels of crude oil, and approximately fifteen (15) barrels of crude oil were recovered. The impacted area occurred on the pad and measured approximately 20'x12', shown in Figure 3. The initial C-141 form is attached in Appendix C.

#### 2.0 Site Characterization and Groundwater

The site is located within a low karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, no known water source is within a 0.50-mile radius of the location. The nearest identified well is approximately 1.39 miles Northeast of the site in S08, T18S, R33E and was drilled in 1967. The well has a reported depth to groundwater of 100' feet below the ground surface (ft bgs). A copy of the associated Summary Report is attached in Appendix D.

On August 16, 2019, Scarborough Drilling, Inc was onsite to drill a groundwater determination bore to 60' below ground surface and within a 0.50-mile radius of the location. The bore was left open for 72 hours and tagged with a water level meter. No water was detected at 60' below the surface. The coordinates for the groundwater determination bore are 32.744427 °, -103.695234 °. See Appendix D for the driller's log.

### 3.0 NMAC Regulatory Criteria

Per the NMOCD regulatory criteria established in 19.15.29.12 NMAC, the following criteria were utilized in assessing the site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 1,000 mg/kg (GRO + DRO).
- TPH: 2,500 mg/kg (GRO + DRO + MRO).
- Chloride: 10,000 mg/kg.



#### **4.0 Site Assessment Activities**

#### **Trenching Activities**

On March 1, 2023, Carmona Resources, LLC performed site assessment activities to evaluate soil impacts stemming from the release. A total of one (1) trench (T-1) and four (4) horizontal sample points (H-1 through H-4) were advanced to depths ranging from the surface to 6' bgs inside and surrounding the release area to evaluate the vertical and horizontal extent. For chemical analysis, the soil samples were collected and placed directly into laboratory-provided sample containers, stored on ice, and transported under the proper chain-of-custody protocol to Eurofins Laboratories in Midland, Texas. The samples were analyzed for total petroleum hydrocarbons (TPH) by EPA method 8015, modified benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B, and chloride by EPA method 300. The laboratory reports, including analytical methods, results, and chain-of-custody documents, are attached in Appendix E. The sample locations are shown in Figure 3. Refer to Table 1.

The area of T-1 showed high TPH concentrations ranging from 108 mg/kg to 8,180 mg/kg from surface to 4.0' bgs, then declined with depth. The area of T-1 also showed high total BTEX concentrations ranging from 128 mg/kg to 152 mg/kg from surface to 1.5' bgs. The area of T-1 was below the regulatory requirements for chloride.

Vertical and horizontal delineation was achieved for all sample points collected. Refer to Table 1.

#### **5.0 Remediation Activities**

Before the remediation activities occurred, the polyline was moved to gain access to the area of concern. Carmona Resources personnel were onsite to supervise the remediation activities, collect confirmation samples, and document backfill activities. Before collecting composite confirmation samples, the NMOCD division office was notified via email on March 27, 2023, per Subsection D of 19.15.29.12 NMAC. See Appendix C. A total of two (2) floor confirmation samples were collected (CS-1 and CS-2), and four (4) sidewall samples (SW-1 through SW-4) were collected every 200 square feet to ensure the proper removal of the contaminated soils. All collected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 4500. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix E. The excavation depths and confirmation sample locations are shown in Figure 4.

All final confirmation samples were below the regulatory requirements for TPH, BTEX, and chloride. Refer to Table 2.

Once the remediation activities were completed, the excavated areas were backfilled with clean material to surface grade. Approximately 64 cubic yards of material were excavated and transported offsite for proper disposal.

#### 6.0 Conclusions

Based on the assessment results and the analytical data, no further actions are required at the site. If you have any questions regarding this report or need additional information, please get in touch with us at 432-813-1992.

Sincerely,

Carmona Resources, LLC

Mike Carmona Environmental Manager

Conner Moehring Sr. Project Manager













## **APPENDIX** A



### Table 1 EOG West Corbin Fed #16 SWD Release Lea County, New Mexico

|           |                          |            |       | TPI   | H (mg/kg) |             | Benzene  | Toluene  | Ethlybenzene | Xylene   | Total BTEX |                  |
|-----------|--------------------------|------------|-------|-------|-----------|-------------|----------|----------|--------------|----------|------------|------------------|
| Sample ID | Date                     | Depth (ft) | GRO   | DRO   | ORO       | Total TPH   | (mg/kg)  | (mg/kg)  | (mg/kg)      | (mg/kg)  | (mg/kg)    | Chloride (mg/kg) |
|           |                          | 0-1.0      | 1,400 | 2,070 | <250      | 3,470       | 4.46     | 35.6     | 38.9         | 73.1     | 152        | 127              |
|           |                          | 1.5        | 4,720 | 3,460 | <250      | 8,180       | 8.14     | 2.06     | 55.9         | 86.9     | 128        | 55.1             |
|           |                          | 2.0        | 103   | 361   | <49.9     | 464         | 1.35     | 6.04     | 2.73         | 3.28     | 13.4       | 73.8             |
| T-1       | 3/1/2023                 | 3.0        | <49.9 | 108   | <49.9     | 108         | <0.00199 | <0.00199 | <0.00199     | <0.00398 | <0.00398   | 76.2             |
|           |                          | 4.0        | <49.9 | 168   | <49.9     | 168         | <0.00199 | 0.00699  | 0.00878      | 0.0199   | 0.0357     | 68.4             |
|           | 5.0                      | <50.0      | <50.0 | <50.0 | <50.0     | <0.00199    | <0.00199 | 0.00283  | <0.00398     | 0.00532  | 74.6       |                  |
|           |                          | 6.0        | <49.9 | <49.9 | <49.9     | <49.9       | <0.00199 | <0.00199 | <0.00199     | <0.00398 | <0.00398   | 48.8             |
| H-1       | 3/1/2023                 | 0-0.5      | <49.9 | <49.9 | <49.9     | <49.9       | <0.00200 | <0.00200 | <0.00200     | <0.00399 | <0.00399   | 53.9             |
| H-2       | 3/1/2023                 | 0-0.5      | <50.0 | 56.5  | <50.0     | 56.5        | <0.00199 | 0.0460   | 0.0544       | 0.105    | 0.206      | 236              |
| H-3       | 3/1/2023                 | 0-0.5      | <49.9 | <49.9 | <49.9     | <49.9       | <0.00199 | <0.00199 | <0.00199     | <0.00398 | <0.00398   | 93.9             |
| H-4       | 3/1/2023                 | 0-0.5      | <49.9 | <49.9 | <49.9     | <49.9       | <0.00200 | <0.00200 | <0.00200     | <0.00401 | <0.00401   | 105              |
|           | ry Criteria <sup>A</sup> |            | 1,000 | mg/kg |           | 2,500 mg/kg | 10 mg/kg | -        | -            | -        | 50 mg/kg   | 10,000 mg/kg     |

(-) Not Analyzed

<sup>A</sup> – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram TPH- Total Petroleum Hydrocarbons

ft-feet

(H) Horizontal

(T) Trench

Removed

## Table 2 **EOG Resources** West Corbin Federal SWD #16 Release Lea County, New Mexico

| O a marke ID | Dete Devit (4)           | TPH (mg/kg) |       |       | Benzene | Toluene     | Ethlybenzene | Xylene     | Total BTEX | Chloride |          |              |
|--------------|--------------------------|-------------|-------|-------|---------|-------------|--------------|------------|------------|----------|----------|--------------|
| Sample ID    | Date                     | Depth (ft)  | GRO   | DRO   | MRO     | Total       | (mg/kg)      | g) (mg/kg) | (mg/kg)    | (mg/kg)  | (mg/kg)  | (mg/kg)      |
| CS-1         | 3/29/2023                | 5.0         | <10.0 | <10.0 | <10.0   | <10.0       | <0.050       | <0.050     | <0.050     | <0.150   | <0.300   | 96.0         |
| CS-2         | 3/29/2023                | 5.0         | <10.0 | <10.0 | <10.0   | <10.0       | <0.050       | <0.050     | <0.050     | <0.150   | <0.300   | 64.0         |
| SW-1         | 3/29/2023                | 5.0         | <10.0 | <10.0 | <10.0   | <10.0       | <0.050       | <0.050     | <0.050     | <0.150   | <0.300   | 16.0         |
| SW-2         | 3/29/2023                | 5.0         | <10.0 | <10.0 | <10.0   | <10.0       | <0.050       | <0.050     | <0.050     | <0.150   | <0.300   | 48.0         |
| SW-3         | 3/29/2023                | 5.0         | <10.0 | <10.0 | <10.0   | <10.0       | <0.050       | <0.050     | <0.050     | <0.150   | <0.300   | 32.0         |
| SW-4         | 3/29/2023                | 5.0         | <10.0 | <10.0 | <10.0   | <10.0       | <0.050       | <0.050     | <0.050     | <0.150   | <0.300   | 64.0         |
|              | ry Criteria <sup>A</sup> |             | 1,000 | mg/kg |         | 2,500 mg/kg | 10 mg/kg     | -          | -          | -        | 50 mg/kg | 10,000 mg/kg |

(-) Not Analyzed

<sup>A</sup> – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram

TPH- Total Petroleum Hydrocarbons ft-feet

(CS) Confirmation Smaple

(SW) Sidewall Sample

## **APPENDIX B**



## PHOTOGRAPHIC LOG

### **EOG Resources**



## **APPENDIX C**



District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

| Incident ID    | nAPP2302642924 |
|----------------|----------------|
| District RP    |                |
| Facility ID    |                |
| Application ID |                |

## **Release Notification**

## **Responsible Party**

| Responsible Party EOG Resources                                   | OGRID 7377                                  |
|-------------------------------------------------------------------|---------------------------------------------|
| Contact Name Todd Wells                                           | Contact Telephone (432) 686-3613            |
| Contact email Todd_Wells@eogresources.com                         | Incident # (assigned by OCD) nAPP2302642924 |
| Contact mailing address 5509 Champions Drive Midland, TX<br>79706 |                                             |

## **Location of Release Source**

Latitude 32.748797°

Longitude <u>-103.695662°</u> (NAD 83 in decimal degrees to 5 decimal places)

| Site Name West Corbin Fed #16 SWD | Site Type SWD        |
|-----------------------------------|----------------------|
| Date Release Discovered 1/21/23   | API# (if applicable) |

| Unit Letter | Section | Township | Range | County |
|-------------|---------|----------|-------|--------|
| Н           | 18      | 18S      | 33E   | Lea    |

Surface Owner: State Federal Tribal Private (Name: \_\_\_\_\_)

## Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

| Crude Oil        | Volume Released (bbls) 16                                                                             | Volume Recovered (bbls) 15                          |
|------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Produced Water   | Volume Released (bbls)                                                                                | Volume Recovered (bbls)                             |
|                  | Is the concentration of dissolved chloride in the produced water >10,000 mg/l?                        | Yes No                                              |
| Condensate       | Volume Released (bbls)                                                                                | Volume Recovered (bbls)                             |
| Natural Gas      | Volume Released (Mcf)                                                                                 | Volume Recovered (Mcf)                              |
| Other (describe) | Volume/Weight Released (provide units)                                                                | Volume/Weight Recovered (provide units)             |
|                  | ease operator arrived on site and discovered a pin hole is nlined containment with 15 bbls recovered. | n the poly flowline. This released approximately 16 |

| Page | 2 |
|------|---|
|      | _ |

### Oil Conservation Division

| Incident ID    |  |  |
|----------------|--|--|
| District RP    |  |  |
| Facility ID    |  |  |
| Application ID |  |  |

| Was this a major<br>release as defined by<br>19.15.29.7(A) NMAC? | If YES, for what reason(s) does the responsible party consider this a major release?  |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 🗌 Yes 🖾 No                                                       |                                                                                       |
|                                                                  |                                                                                       |
| If YES, was immediate n                                          | otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? |

## **Initial Response**

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 $\square$  The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

| Printed Name: <u>Todd Wells</u>           | Title: <u>Environmental Specialist</u> |
|-------------------------------------------|----------------------------------------|
| Signature: <u>Todd Wells</u>              | Date: <u>1/26/23</u>                   |
| email: <u>Todd_Wells@eogresources.com</u> | Telephone: <u>(432) 686-3613</u>       |
|                                           |                                        |
| OCD Only                                  |                                        |
| Received by:                              | Date:                                  |

**Received by OCD: 4/19/2023 9:54:02 AM** Form C-141 State of New Mexico

Oil Conservation Division

|                | Page 18 of 81 |
|----------------|---------------|
| Incident ID    |               |
| District RP    |               |
| Facility ID    |               |
| Application ID |               |

## Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

| What is the shallowest depth to groundwater beneath the area affected by the release?                                                                                                           | (ft bgs)   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Did this release impact groundwater or surface water?                                                                                                                                           | 🗌 Yes 🗌 No |
| Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?                                                              | 🗌 Yes 🗌 No |
| Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?                                                    | 🗌 Yes 🗌 No |
| Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?                                                            | 🗌 Yes 🗌 No |
| Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes? | 🗌 Yes 🗌 No |
| Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?                                                                                                | 🗌 Yes 🗌 No |
| Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?                                                           | 🗌 Yes 🗌 No |
| Are the lateral extents of the release within 300 feet of a wetland?                                                                                                                            | 🗌 Yes 🗌 No |
| Are the lateral extents of the release overlying a subsurface mine?                                                                                                                             | 🗌 Yes 🗌 No |
| Are the lateral extents of the release overlying an unstable area such as karst geology?                                                                                                        | 🗌 Yes 🗌 No |
| Are the lateral extents of the release within a 100-year floodplain?                                                                                                                            | 🗌 Yes 🗌 No |
| Did the release impact areas <b>not</b> on an exploration, development, production, or storage site?                                                                                            | 🗌 Yes 🗌 No |

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

#### Characterization Report Checklist: Each of the following items must be included in the report.

| Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. |
|-------------------------------------------------------------------------------------------------------------------------|
| Field data                                                                                                              |
| Data table of soil contaminant concentration data                                                                       |
| Depth to water determination                                                                                            |
| Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release         |
| Boring or excavation logs                                                                                               |
| Photographs including date and GIS information                                                                          |
| Topographic/Aerial maps                                                                                                 |

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

•

| <b>Received by OCD: 4/19/</b><br>Form C-141<br>Page 4                                                                                       | 2023 9:54:02 AM<br>State of New Mexico<br>Oil Conservation Division                                                                                                                                                       | n Incident ID District RP Facility ID Application ID                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| regulations all operators i<br>public health or the envir<br>failed to adequately invest<br>addition, OCD acceptance<br>and/or regulations. | are required to report and/or file certain release no<br>ronment. The acceptance of a C-141 report by the<br>stigate and remediate contamination that pose a the<br>se of a C-141 report does not relieve the operator of | he best of my knowledge and understand that pursuant to OCD rules and<br>notifications and perform corrective actions for releases which may endanger<br>the OCD does not relieve the operator of liability should their operations have<br>hreat to groundwater, surface water, human health or the environment. In<br>of responsibility for compliance with any other federal, state, or local laws |
| Printed Name:                                                                                                                               |                                                                                                                                                                                                                           | Title:                                                                                                                                                                                                                                                                                                                                                                                                |
| Signature: Todd                                                                                                                             | Wells                                                                                                                                                                                                                     | Date:                                                                                                                                                                                                                                                                                                                                                                                                 |
| email:                                                                                                                                      |                                                                                                                                                                                                                           | Telephone:                                                                                                                                                                                                                                                                                                                                                                                            |
| OCD Only                                                                                                                                    |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                       |
| Received by: Jo                                                                                                                             | celyn Harimon                                                                                                                                                                                                             | Date:04/19/2023                                                                                                                                                                                                                                                                                                                                                                                       |

Page 6

Oil Conservation Division

| Incident ID    |  |
|----------------|--|
| District RP    |  |
| Facility ID    |  |
| Application ID |  |

## Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

| <b><u>Closure Report Attachment Checklist</u></b> : Each of the following i                                                                 | tems must be included in the closure report.                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A scaled site and sampling diagram as described in 19.15.29.1                                                                               | 1 NMAC                                                                                                                                                                            |
| Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)                           | of the liner integrity if applicable (Note: appropriate OCD District office                                                                                                       |
| Laboratory analyses of final sampling (Note: appropriate ODC                                                                                | C District office must be notified 2 days prior to final sampling)                                                                                                                |
| Description of remediation activities                                                                                                       |                                                                                                                                                                                   |
|                                                                                                                                             |                                                                                                                                                                                   |
| and regulations all operators are required to report and/or file certai<br>may endanger public health or the environment. The acceptance of | tions. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in                                           |
| Printed Name:                                                                                                                               | _ Title:                                                                                                                                                                          |
| Signature: Todd Wells                                                                                                                       | Date:                                                                                                                                                                             |
| email:                                                                                                                                      | Telephone:                                                                                                                                                                        |
|                                                                                                                                             |                                                                                                                                                                                   |
|                                                                                                                                             |                                                                                                                                                                                   |
| OCD Only Received by: Jocelyn Harimon                                                                                                       | Date:04/19/2023                                                                                                                                                                   |
|                                                                                                                                             | of liability should their operations have failed to adequately investigate and<br>water, human health, or the environment nor does not relieve the responsible<br>or regulations. |
| Closure Approved by:                                                                                                                        | Date: 05/12/2023                                                                                                                                                                  |
| Printed Name: Jennifer Nobui                                                                                                                | Title: Environmental Specialist A                                                                                                                                                 |
|                                                                                                                                             |                                                                                                                                                                                   |

From: Mike Carmona
Sent: Monday, April 3, 2023 3:27 PM
To: Conner Moehring
Subject: Fwd: [EXTERNAL] EOG - West Corbin Fed #16 SWD - Sampling Notification -Incident NonAPP2302642924

Mike J. Carmona 310 West Wall Street, Suite 500 Midland TX, 79701 M: <u>432-813-1992</u> Mcarmona@carmonaresources.com

From: Enviro, OCD, EMNRD <<u>OCD.Enviro@emnrd.nm.gov</u>>
Sent: Monday, March 27, 2023 9:10:23 AM
To: Mike Carmona <<u>Mcarmona@carmonaresources.com</u>>
Cc: Bratcher, Michael, EMNRD <<u>mike.bratcher@emnrd.nm.gov</u>>; Nobui, Jennifer, EMNRD
<<u>Jennifer.Nobui@emnrd.nm.gov</u>>
Subject: RE: [EXTERNAL] EOG - West Corbin Fed #16 SWD - Sampling Notification -Incident NonAPP2302642924

Mike,

Thank you for the notification. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

JH

Jocelyn Harimon • Environmental Specialist Environmental Bureau EMNRD - Oil Conservation Division 1220 South St. Francis Drive | Santa Fe, NM 87505 (505)469-2821 | Jocelyn.Harimon@emnrd.nm.gov http:// www.emnrd.nm.gov



From: Mike Carmona <<u>Mcarmona@carmonaresources.com</u>> Sent: Monday, March 27, 2023 5:13 AM To: Enviro, OCD, EMNRD <<u>OCD.Enviro@emnrd.nm.gov</u>> Cc: Todd Wells <<u>Todd\_Wells@eogresources.com</u>>; Conner Moehring <<u>Cmoehring@carmonaresources.com</u>> Subject: [EXTERNAL] EOG - West Corbin Fed #16 SWD - Sampling Notification -Incident NonAPP2302642924

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Good Morning,

On behalf of EOG, Carmona Resources will collect confirmation samples for the below-referenced site on 03/29/23 around 10:00 a.m. Please let me know if you have any questions.

West Corbin Fed #16 SWD Incident No- nAPP2302642924

Mike J. Carmona 310 West Wall Street, Suite 500 Midland TX, 79701 M: <u>432-813-1992</u> Mcarmona@carmonaresources.com

## **APPENDIX D**



Received by OCD: 4/19/2023 9:54:02 AM Nearest water well EOG RESOURCES

100' - Drilled 1967

West Corbin Fed 16 SWD TB

GWDB - 60' - 08 16.2019 - Dry

Released to Imaging: 5/12/2023 2:13:52 PM



## 44.97' - Drilled 1976

Received by OCD: 4/19/2023 9:54:02 AM

EOG RESOURCES

West Corbin Fed 16 SWD TB

GReleased to Imaging: 5/12/2023 2:13:52 PM



## **Borehole ID:** Borehole 1 (BH-1)

Page 26 of 81

Soil Drilling Log with **Field Testing Results** 

|                |                                  |                            | Borehole 2   | 1 (BH-1)                |                              |                               |  |
|----------------|----------------------------------|----------------------------|--------------|-------------------------|------------------------------|-------------------------------|--|
| Project Name : | EOG Cholla Fed Com #1            |                            |              | Date :                  | Friday, August 1             | 6, 2019                       |  |
|                | 212C-MD-01810                    | -                          |              |                         | Joe Tyler                    | 0,2020                        |  |
|                | Lea County, New Mexico           | -                          |              | Scarborough Drilling    |                              |                               |  |
|                | 32.744427°, -103.695234°         | -                          |              | Air Rotary              |                              |                               |  |
|                |                                  | -                          |              |                         |                              |                               |  |
| Depth (ft.) WL | . Soil Description               | Discoloration<br>/Staining | Odors /Fumes | OVM Field<br>Test (ppm) | Chloride Field<br>Test (ppm) | Field Titration<br>Test (ppm) |  |
| 0              | Brown silty sand                 | Stained                    | Heavy odor   | 1,615                   | -                            | - 1                           |  |
|                |                                  | Stalleu                    | Teavy ouor   | 1,015                   | -                            | -                             |  |
| <b> </b>       |                                  | Stained                    | Heavy odor   | 4,751                   | -                            | -                             |  |
| 5              | Brown silty sand w/ gravel       |                            | Heavy odor   | >15,000                 | -                            | -                             |  |
|                |                                  |                            | Heavy odor   | 1,405                   | -                            | -                             |  |
| -+-            | ↓ ↓                              |                            |              |                         |                              |                               |  |
| 10             | Brown silty sand                 |                            | Heavy odor   | 18.2                    | -                            | -                             |  |
|                |                                  |                            |              |                         |                              |                               |  |
|                | Brown silty sand w/ light gravel |                            | Heavy odor   | 160.1                   |                              |                               |  |
| 15             |                                  |                            | Tieavy ouor  | 100.1                   |                              |                               |  |
|                |                                  |                            |              |                         |                              |                               |  |
| 20             |                                  |                            | Heavy odor   | 135.6                   | 131                          | 160                           |  |
|                |                                  |                            |              |                         |                              |                               |  |
|                |                                  |                            |              |                         |                              |                               |  |
| 25             | Brown sand w/ heavy gravel       |                            | Heavy odor   | 144.1                   | -                            | -                             |  |
|                |                                  |                            |              |                         |                              |                               |  |
| <b></b>        |                                  |                            |              | 200.1                   | 152                          | 200                           |  |
| 30             |                                  |                            | Heavy odor   | 209.1                   | 153                          | 200                           |  |
|                |                                  |                            |              |                         |                              |                               |  |
| 35             |                                  |                            | Heavy odor   | 31.9                    | -                            | -                             |  |
| 33             |                                  |                            |              |                         |                              |                               |  |
|                |                                  |                            |              |                         |                              |                               |  |
| 40             | Brown silty sand w/ light gravel |                            | Heavy odor   | 26.4                    | -                            | -                             |  |
| +              |                                  |                            |              |                         |                              |                               |  |
| 1              |                                  |                            |              |                         |                              |                               |  |
| 45             |                                  |                            | Low odor     | 15.5                    | -                            | -                             |  |
|                |                                  |                            |              |                         |                              |                               |  |
| 50             |                                  |                            |              | 33.0                    | -                            | -                             |  |
| Ĩ I I          |                                  |                            |              |                         |                              |                               |  |
|                |                                  |                            |              |                         |                              |                               |  |
| 55             |                                  |                            |              | 71.2                    | 188                          | 200                           |  |
| 1              |                                  |                            |              |                         |                              |                               |  |
| 二 二 二          | ▼ Total Depth = 60 feet          |                            |              | 24.6                    | 169                          | 160                           |  |
| 60             |                                  | 1                          | <u> </u>     | 24.0                    | 109                          | 100                           |  |
|                |                                  | No Croundura               |              |                         | -                            |                               |  |

Comments:

No Groundwater detected at

60' below surface \* L.O. = Low Odor

\* H.O. = Heavy Odor \* H.S. = Heavy Staining

\* L.S. = Low Staining

\* O.L. = Over Readable Limit



## New Mexico Office of the State Engineer Water Column/Average Depth to Water

| (A CLW##### in the<br>POD suffix indicates the<br>POD has been replaced<br>& no longer serves a<br>water right file.) | (R=POD has<br>been replaced<br>O=orphaned,<br>C=the file is<br>closed) | (      | • |         |   |     |     | 2=NE 3<br>st to lar | B=SW 4=SE<br>gest) (NA | )<br>AD83 UTM in me | eters)      | (1     | In feet)       |                 |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------|---|---------|---|-----|-----|---------------------|------------------------|---------------------|-------------|--------|----------------|-----------------|
| POD Number                                                                                                            | POD<br>Sub-<br>Code basin C                                            | county | - | Q<br>16 | - | Sec | Tws | Rng                 | х                      | Y                   | Distance    | -      | Depth<br>Water | Water<br>Column |
| L 06131                                                                                                               | L                                                                      | LE     |   |         |   |     | 18S |                     | 623241                 | 3626167* 🌍          | 2224        | 194    | 100            | 94              |
| L 03454                                                                                                               | L                                                                      | LE     |   | 2       | 2 | 30  | 18S | 33E                 | 622200                 | 3621422* 🌍          | 2772        | 100    | 35             | 65              |
| CP 00758 POD1                                                                                                         | СР                                                                     | LE     |   |         | 3 | 04  | 18S | 33E                 | 624345                 | 3626886* 🌍          | 3434        | 250    |                |                 |
| CP 00546 POD1                                                                                                         | СР                                                                     | LE     | 2 | 2       | 4 | 09  | 18S | 33E                 | 625464                 | 3625597* 🌍          | 3542        | 90     | 70             | 20              |
|                                                                                                                       |                                                                        |        |   |         |   |     |     |                     |                        | Avera               | ge Depth to | Water: | 68 1           | feet            |
|                                                                                                                       |                                                                        |        |   |         |   |     |     |                     |                        |                     | Minimum     | Depth: | <b>35</b> f    | feet            |
|                                                                                                                       |                                                                        |        |   |         |   |     |     |                     |                        |                     | Maximum     | Depth: | 100 1          | feet            |
| Record Count: 4                                                                                                       |                                                                        |        |   |         |   |     |     |                     |                        |                     |             |        |                |                 |
| UTMNAD83 Radius S                                                                                                     | earch (in mete                                                         | rs):   |   |         |   |     |     |                     |                        |                     |             |        |                |                 |

Easting (X): 622210.75

Northing (Y): 3624194.93

Radius: 4000

\*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.



## New Mexico Office of the State Engineer Point of Diversion Summary

|                             |       |                    | (1         | s are 1=N |      |       | auport   |               |                         |          |
|-----------------------------|-------|--------------------|------------|-----------|------|-------|----------|---------------|-------------------------|----------|
| W.U T                       | DOD   | <b>``</b>          | rs are sm  |           | 0    | /     |          | TM in meters) |                         |          |
| Well Tag                    | _     | Number             |            | 216 Q4    |      |       | 0        | Х             | Y                       | _        |
|                             | L 00  | 6131               | 3          | 1 2       | 08   | 18S   | 33E      | 623241        | 3626167*                | <b></b>  |
| <sup>x</sup><br>Driller Lic | ense: | 99                 | Driller    | Compa     | ny:  | O.R   | . MUSS   | ELWHITE       | WATER WE                | ELL SE   |
| Driller Na                  | me:   |                    |            |           |      |       |          |               |                         |          |
| Drill Start                 | Date: | 04/27/1967         | Drill Fi   | nish Da   | te:  | 04    | 4/29/196 | 7 Pl          | ug Date:                |          |
| Log File D                  | ate:  | 05/02/1967         | PCW R      | cv Date   | :    |       |          | Sa            | ource:                  | Shallow  |
| Ритр Туре:                  |       |                    | Pipe Dis   | scharge   | Size | :     |          | Es            | <b>Estimated Yield:</b> |          |
| Casing Siz                  | æ:    | 7.00               | Depth V    | Vell:     |      | 19    | 94 feet  | De            | epth Water:             | 100 feet |
| X                           | Wate  | er Bearing Stratif | ications:  | То        | рB   | ottom | Descri   | iption        |                         |          |
|                             |       |                    |            | 13        | 0    | 135   | Sandst   | tone/Grave    | l/Conglomera            | ite      |
|                             |       |                    |            | 18        | 5    | 193   | Sandst   | tone/Grave    | l/Conglomera            | ite      |
| X                           |       | Casing Per         | forations: | To        | рB   | ottom |          |               |                         |          |
|                             |       |                    |            | 15        | 0    | 194   |          |               |                         |          |

#### \*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

7/25/22 8:54 AM

POINT OF DIVERSION SUMMARY

Received by QCD: 4/19/2023 9:54:02 AM



USGS Home Contact USGS Search USGS

**National Water Information System: Web Interface** 

**USGS** Water Resources

| Data Category: |   | Geographic Area: |   |    |
|----------------|---|------------------|---|----|
| Groundwater    | ~ | New Mexico       | ~ | GO |

Click to hideNews Bulletins

- Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

#### Search Results -- 1 sites found

Agency code = usgs

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

#### USGS 324519103383001 18S.33E.10.44211

Lea County, New Mexico Latitude 32°45'29", Longitude 103°38'37" NAD27 Land-surface elevation 3,985.00 feet above NGVD29 The depth of the well is 60 feet below land surface. This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer.

| Output formats     |  |  |  |  |  |  |  |  |
|--------------------|--|--|--|--|--|--|--|--|
| Table of data      |  |  |  |  |  |  |  |  |
| Tab-separated data |  |  |  |  |  |  |  |  |
| Graph of data      |  |  |  |  |  |  |  |  |
| Reselect period    |  |  |  |  |  |  |  |  |

| Date       | Time | ?<br>Water-<br>level<br>date-<br>time<br>accuracy | ?<br>Parameter<br>code | Water<br>level,<br>feet<br>below<br>land<br>surface | Water<br>level,<br>feet<br>above<br>specific<br>vertical<br>datum | Referenced<br>vertical<br>datum | ?<br>Status | ?<br>Method of<br>measurement | ?<br>Measuring<br>agency | ?<br>Source<br>measu |
|------------|------|---------------------------------------------------|------------------------|-----------------------------------------------------|-------------------------------------------------------------------|---------------------------------|-------------|-------------------------------|--------------------------|----------------------|
|            |      |                                                   |                        |                                                     |                                                                   |                                 |             |                               |                          |                      |
| 1971-02-09 |      | D                                                 | 62610                  |                                                     | 3943.37                                                           | NGVD29                          | 1           | Z                             |                          |                      |
| 1971-02-09 |      | D                                                 | 62611                  |                                                     | 3945.00                                                           | NAVD88                          | 1           | Z                             |                          |                      |
| 1971-02-09 |      | D                                                 | 72019                  | 41.63                                               |                                                                   |                                 | 1           | Z                             |                          |                      |
| 1976-02-18 |      | D                                                 | 62610                  |                                                     | 3940.25                                                           | NGVD29                          | 1           | Z                             |                          |                      |
| 1976-02-18 |      | D                                                 | 62611                  |                                                     | 3941.88                                                           | NAVD88                          | 1           | Z                             |                          |                      |
| 1976-02-18 |      | D                                                 | 72019                  | 44.75                                               |                                                                   |                                 | 1           | Z                             |                          |                      |

| Explanation                    |       |                                               |  |  |
|--------------------------------|-------|-----------------------------------------------|--|--|
| Section                        | Code  | Description                                   |  |  |
| Water-level date-time accuracy | D     | Date is accurate to the Day                   |  |  |
| Parameter code                 | 62610 | Groundwater level above NGVD 1929, feet       |  |  |
| Parameter code                 | 62611 | Groundwater level above NAVD 1988, feet       |  |  |
| Parameter code                 | 72019 | Depth to water level, feet below land surface |  |  |

### Received by QCD: 4/19/2023 9:54:02 AM

#### USGS Groundwater for New Mexico: Water Levels -- 1 sites

Page 30 of 81

| Section                     | Code   | Description                                               |
|-----------------------------|--------|-----------------------------------------------------------|
| Referenced vertical datum   | NAVD88 | North American Vertical Datum of 1988                     |
| Referenced vertical datum   | NGVD29 | National Geodetic Vertical Datum of 1929                  |
| Status                      | 1      | Static                                                    |
| Method of measurement       | Z      | Other.                                                    |
| Measuring agency            |        | Not determined                                            |
| Source of measurement       |        | Not determined                                            |
| Water-level approval status | А      | Approved for publication Processing and review completed. |

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2022-07-25 11:00:04 EDT 0.32 0.26 nadww02 USA.gov

.

## New Mexico NFHL Data





0.75

nmflood.org is made possible through a collaboration with NMDHSEM,

3 km

This is a non-regulatory product for informational use only. Please consult your local floodplain administrator for further information.

0

## **APPENDIX E**





**Environment Testing** 

## **ANALYTICAL REPORT**

## PREPARED FOR

Attn: Conner Moehring Carmona Resources 310 W Wall St Ste 415 Midland, Texas 79701 Generated 3/9/2023 1:50:55 PM

## **JOB DESCRIPTION**

West Corbin Federal SWD #16 Release SDG NUMBER Lea County, New Mexico

## **JOB NUMBER**

880-25379-1

Page 33 of 81

Eurofins Midland 1211 W. Florida Ave Midland TX 79701



Received by OCD: 4/19/2023 9:54:02 AM

## **Eurofins Midland**

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

## Authorization

RAMER

Generated 3/9/2023 1:50:55 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

## **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 15 |
| QC Sample Results      | 17 |
| QC Association Summary | 26 |
| Lab Chronicle          | 30 |
| Certification Summary  | 34 |
| Method Summary         | 35 |
| Sample Summary         | 36 |
| Chain of Custody       | 37 |
| Receipt Checklists     | 39 |
|                        |    |

## **Definitions/Glossary**

### Client: Carmona Resources Project/Site: West Corbin Federal SWD #16 Release

Job ID: 880-25379-1 SDG: Lea County, New Mexico

| $\sim$ |     | <br>    |
|--------|-----|---------|
|        | 112 | <br>ore |
| 1      | ua  | <br>ers |
| _      |     |         |

| Qualifiers                                   |                                                                                                                                                                                                         | 3  |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| GC VOA                                       |                                                                                                                                                                                                         |    |
| Qualifier                                    | Qualifier Description                                                                                                                                                                                   |    |
| *+                                           | LCS and/or LCSD is outside acceptance limits, high biased.                                                                                                                                              |    |
| F1                                           | MS and/or MSD recovery exceeds control limits.                                                                                                                                                          | 5  |
| F2                                           | MS/MSD RPD exceeds control limits                                                                                                                                                                       |    |
| S1-                                          | Surrogate recovery exceeds control limits, low biased.                                                                                                                                                  |    |
| S1+                                          | Surrogate recovery exceeds control limits, high biased.                                                                                                                                                 |    |
| U                                            | Indicates the analyte was analyzed for but not detected.                                                                                                                                                |    |
| GC Semi VOA                                  | A                                                                                                                                                                                                       |    |
| Qualifier                                    | Qualifier Description                                                                                                                                                                                   | o  |
| U                                            | Indicates the analyte was analyzed for but not detected.                                                                                                                                                | O  |
|                                              |                                                                                                                                                                                                         | 0  |
| HPLC/IC                                      | Qualifier Description                                                                                                                                                                                   | 3  |
| Qualifier<br>U                               | Qualifier Description                                                                                                                                                                                   |    |
| 0                                            |                                                                                                                                                                                                         |    |
| Glossary                                     |                                                                                                                                                                                                         |    |
| Abbreviation                                 | These commonly used abbreviations may or may not be present in this report.                                                                                                                             |    |
| ¤                                            | Listed under the "D" column to designate that the result is reported on a dry weight basis                                                                                                              | 14 |
| %R                                           | Percent Recovery                                                                                                                                                                                        |    |
| CFL                                          | Contains Free Liquid                                                                                                                                                                                    |    |
| CFU                                          | Colony Forming Unit                                                                                                                                                                                     |    |
| CNF                                          | Contains No Free Liquid                                                                                                                                                                                 |    |
| DER                                          | Duplicate Error Ratio (normalized absolute difference)                                                                                                                                                  |    |
| Dil Fac                                      | Dilution Factor                                                                                                                                                                                         |    |
| DL                                           | Detection Limit (DoD/DOE)                                                                                                                                                                               |    |
| DL, RA, RE, IN                               | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample                                                                                             |    |
| DLC                                          | Decision Level Concentration (Radiochemistry)                                                                                                                                                           |    |
| EDL                                          | Estimated Detection Limit (Dioxin)                                                                                                                                                                      |    |
| LOD                                          | Limit of Detection (DoD/DOE)                                                                                                                                                                            |    |
| LOQ                                          | Limit of Quantitation (DoD/DOE)                                                                                                                                                                         |    |
| MCL                                          | EPA recommended "Maximum Contaminant Level"                                                                                                                                                             |    |
| MDA                                          | Minimum Detectable Activity (Radiochemistry)                                                                                                                                                            |    |
| MDC                                          | Minimum Detectable Concentration (Radiochemistry)                                                                                                                                                       |    |
| MDL                                          | Method Detection Limit                                                                                                                                                                                  |    |
| ML                                           | Minimum Level (Dioxin)                                                                                                                                                                                  |    |
| MPN                                          | Most Probable Number                                                                                                                                                                                    |    |
| MQL                                          | Method Quantitation Limit                                                                                                                                                                               |    |
| NC                                           | Not Calculated                                                                                                                                                                                          |    |
| ND                                           | Not Detected at the reporting limit (or MDL or EDL if shown)                                                                                                                                            |    |
| NEG                                          | Negative / Absent                                                                                                                                                                                       |    |
| POS                                          | Positive / Present                                                                                                                                                                                      |    |
| PQL                                          | Practical Quantitation Limit                                                                                                                                                                            |    |
|                                              |                                                                                                                                                                                                         |    |
| PRES                                         | Presumptive                                                                                                                                                                                             |    |
|                                              | Presumptive<br>Quality Control                                                                                                                                                                          |    |
| QC                                           |                                                                                                                                                                                                         |    |
| QC<br>RER                                    | Quality Control<br>Relative Error Ratio (Radiochemistry)                                                                                                                                                |    |
| QC<br>RER<br>RL                              | Quality Control                                                                                                                                                                                         |    |
| QC<br>RER<br>RL<br>RPD                       | Quality Control<br>Relative Error Ratio (Radiochemistry)<br>Reporting Limit or Requested Limit (Radiochemistry)<br>Relative Percent Difference, a measure of the relative difference between two points |    |
| PRES<br>QC<br>RER<br>RL<br>RPD<br>TEF<br>TEQ | Quality Control<br>Relative Error Ratio (Radiochemistry)<br>Reporting Limit or Requested Limit (Radiochemistry)                                                                                         |    |

Released to Imaging: 5/12/2023 2:13:52 PM
#### Job ID: 880-25379-1

#### Laboratory: Eurofins Midland

#### Narrative

Job Narrative 880-25379-1

#### Receipt

The samples were received on 3/2/2023 2:30 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 7.6°C

#### **Receipt Exceptions**

The following samples were received at the laboratory outside the required temperature criteria: T-1 (0-1') (880-25379-1), T-1 (1.5') (880-25379-2), T-1 (2') (880-25379-3), T-1 (3') (880-25379-4), T-1 (4') (880-25379-5), T-1 (5') (880-25379-6), T-1 (6') (880-25379-7), H-1 (0-0.5') (880-25379-8), H-2 (0-0.5') (880-25379-9), H-3 (0-0.5') (880-25379-10) and H-4 (0-0.5') (880-25379-11). This does not meet regulatory requirements. The client was contacted regarding this issue, and the laboratory was instructed to <CHOOSE\_ONE> proceed with analysis.

#### GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-47743 and analytical batch 880-47854 were outside control limits for one or more analytes, see QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8021B: Surrogate recovery for the following samples were outside control limits: T-1 (0-1') (880-25379-1), T-1 (1.5') (880-25379-2) and (880-25414-A-1-C). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following sample was outside control limits: T-1 (0-1') (880-25379-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following samples were outside control limits: T-1 (1.5') (880-25379-2), H-3 (0-0.5') (880-25379-10), (CCV 880-48085/33), (LCS 880-48014/1-A), (LCSD 880-48014/2-A), (880-25537-A-41-I), (880-25537-A-41-G MS) and (880-25537-A-41-H MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

## **Client Sample Results**

Client: Carmona Resources Project/Site: West Corbin Federal SWD #16 Release

Client Sample ID: T-1 (0-1')

Date Collected: 03/01/23 00:00 Date Received: 03/02/23 14:30

| Method: SW846 8021B - Volatile                | • •            | Qualifier   | ,        |     | Unit  |   | Droporod       | Analyzed       |           |
|-----------------------------------------------|----------------|-------------|----------|-----|-------|---|----------------|----------------|-----------|
| Analyte                                       |                | Quaimer     | RL       | MDL |       | D | Prepared       | Analyzed       | Dil Fac   |
| Benzene                                       | 4.46           |             | 0.0498   |     | mg/Kg |   | 03/03/23 12:51 | 03/06/23 13:34 | 25        |
| Toluene                                       | 35.6           |             | 0.398    |     | mg/Kg |   | 03/08/23 09:05 | 03/08/23 14:14 | 200       |
| Ethylbenzene                                  | 38.9           |             | 0.398    |     | mg/Kg |   | 03/08/23 09:05 | 03/08/23 14:14 | 200       |
| m-Xylene & p-Xylene                           | 49.8           |             | 0.797    |     | mg/Kg |   | 03/08/23 09:05 | 03/08/23 14:14 | 200       |
| o-Xylene                                      | 23.3           |             | 0.398    |     | mg/Kg |   | 03/08/23 09:05 | 03/08/23 14:14 | 200       |
| Xylenes, Total                                | 73.1           |             | 0.797    |     | mg/Kg |   | 03/08/23 09:05 | 03/08/23 14:14 | 200       |
| Surrogate                                     | %Recovery      | Qualifier   | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac   |
| 4-Bromofluorobenzene (Surr)                   | 594            | S1+         | 70 - 130 |     |       |   | 03/03/23 12:51 | 03/06/23 13:34 | 25        |
| 1,4-Difluorobenzene (Surr)                    | 74             |             | 70 - 130 |     |       |   | 03/03/23 12:51 | 03/06/23 13:34 | 25        |
| -<br>Method: TAL SOP Total BTEX - T           | otal BTEX Calo | culation    |          |     |       |   |                |                |           |
| Analyte                                       | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac   |
| Total BTEX                                    | 152            |             | 0.797    |     | mg/Kg |   |                | 03/07/23 13:01 | 1         |
| _<br>Method: SW846 8015 NM - Diese            | l Range Organ  | ics (DRO) ( | GC)      |     |       |   |                |                |           |
| Analyte                                       |                | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac   |
| Total TPH                                     | 3470           |             | 250      |     | mg/Kg |   |                | 03/06/23 12:05 | 1         |
| -                                             |                |             |          |     |       |   |                |                |           |
| Method: SW846 8015B NM - Dies                 |                |             |          |     |       |   |                |                |           |
| Analyte                                       | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac   |
| Gasoline Range Organics                       | 1400           |             | 250      |     | mg/Kg |   | 03/03/23 09:08 | 03/03/23 17:37 | 5         |
| (GRO)-C6-C10                                  |                |             | 050      |     |       |   | 00/00/00 00 00 | 00/00/00 47 07 | -         |
| Diesel Range Organics (Over                   | 2070           |             | 250      |     | mg/Kg |   | 03/03/23 09:08 | 03/03/23 17:37 | 5         |
| C10-C28)<br>Oll Range Organics (Over C28-C36) | <250           | U           | 250      |     | mg/Kg |   | 03/03/23 09:08 | 03/03/23 17:37 | 5         |
| Surrogate                                     | %Recovery      | Qualifier   | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac   |
| 1-Chlorooctane                                |                |             | 70 - 130 |     |       |   | 03/03/23 09:08 | 03/03/23 17:37 | 5         |
| o-Terphenyl                                   | 104            |             | 70 - 130 |     |       |   | 03/03/23 09:08 | 03/03/23 17:37 | 5         |
| _<br>Method: EPA 300.0 - Anions, Ion          | Chromatogram   | hy - Solubl |          |     |       |   |                |                |           |
| Analyte                                       |                | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac   |
| Chloride                                      | 127            |             | 5.05     |     | mg/Kg |   |                | 03/05/23 10:53 | 1         |
| Client Sample ID: T-1 (1.5')                  |                |             |          |     |       |   | Lab Sam        | ple ID: 880-2  | 5379-2    |
| Date Collected: 03/01/23 00:00                |                |             |          |     |       |   |                | -              | ix: Solid |
| Date Received: 03/02/23 14:30                 |                |             |          |     |       |   |                |                |           |
| -<br>Method: SW846 8021B - Volatile           | Organic Comp   | ounds (GC   | )        |     |       |   |                |                |           |
| Analyte                                       |                | Qualifier   | ,<br>    | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac   |
| Benzene                                       | 8.14           |             | 0.398    |     | mg/Kg |   | 03/08/23 09:05 | 03/08/23 14:34 | 200       |
| Toluene                                       | 2.06           |             | 0.0497   |     | mg/Kg |   | 03/03/23 12:51 | 03/06/23 13:54 | 25        |
| Ethylbenzene                                  | 55.9           |             | 0.398    |     | mg/Kg |   | 03/08/23 09:05 | 03/08/23 14:34 | 200       |
| m-Xylene & p-Xylene                           | 61.7           |             | 0.797    |     | mg/Kg |   | 03/08/23 09:05 | 03/08/23 14:34 | 200       |
| o-Xylene                                      | 0.452          |             | 0.0497   |     | mg/Kg |   | 03/03/23 12:51 | 03/06/23 13:54 | 25        |
| · · · · · ·                                   |                |             |          |     | 0.0   |   |                |                |           |

Page 38 of 81

Job ID: 880-25379-1 SDG: Lea County, New Mexico

# Lab Sample ID: 880-25379-1

Matrix: Solid

5

Released to Imaging: 5/12/2023 2:13:52 PM

Project/Site: West Corbin Federal SWD #16 Release

### **Client Sample Results**

Page 39 of 81

Job ID: 880-25379-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-25379-2

# Client Sample ID: T-1 (1.5')

Date Collected: 03/01/23 00:00 Date Received: 03/02/23 14:30

Client: Carmona Resources

| Analyte                           | Result        | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fa |
|-----------------------------------|---------------|-------------|----------|-----|-------|---|----------------|----------------|--------|
| Total BTEX                        | 128           |             | 0.797    |     | mg/Kg |   |                | 03/07/23 13:01 |        |
| Method: SW846 8015 NM - Diesel    | Range Organ   | ics (DRO) ( | GC)      |     |       |   |                |                |        |
| Analyte                           | Result        | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fa |
| Total TPH                         | 8180          |             | 250      |     | mg/Kg |   |                | 03/06/23 12:05 |        |
| Method: SW846 8015B NM - Dies     | el Range Orga | nics (DRO)  | (GC)     |     |       |   |                |                |        |
| Analyte                           | Result        | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fa |
| Gasoline Range Organics           | 4720          |             | 250      |     | mg/Kg |   | 03/03/23 09:08 | 03/03/23 16:11 |        |
| (GRO)-C6-C10                      |               |             |          |     |       |   |                |                |        |
| Diesel Range Organics (Over       | 3460          |             | 250      |     | mg/Kg |   | 03/03/23 09:08 | 03/03/23 16:11 | 4      |
| C10-C28)                          |               |             |          |     |       |   |                |                |        |
| Oll Range Organics (Over C28-C36) | <250          | U           | 250      |     | mg/Kg |   | 03/03/23 09:08 | 03/03/23 16:11 | 1      |
| Surrogate                         | %Recovery     | Qualifier   | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fa |
| 1-Chlorooctane                    | 112           |             | 70 - 130 |     |       |   | 03/03/23 09:08 | 03/03/23 16:11 |        |
| o-Terphenyl                       | 92            |             | 70 - 130 |     |       |   | 03/03/23 09:08 | 03/03/23 16:11 | 4      |
| Method: EPA 300.0 - Anions, Ion   | Chromatograp  | hy - Solubl | e        |     |       |   |                |                |        |
| Analyte                           |               | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fa |
| Chloride                          | 55.1          |             | 5.02     |     | mg/Kg |   |                | 03/05/23 10:59 |        |

#### Client Sample ID: 1-1 (2)

Date Collected: 03/01/23 00:00 Date Received: 03/02/23 14:30

#### Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 0.0499 03/03/23 12:51 03/06/23 14:16 Benzene 1.35 mg/Kg 25 0.0499 03/03/23 12:51 03/06/23 14:16 25 Toluene 6.04 mg/Kg 0.0499 03/03/23 12:51 03/06/23 14:16 25 Ethylbenzene 2.73 mg/Kg 03/03/23 12:51 25 m-Xylene & p-Xylene 2.08 0.0998 mg/Kg 03/06/23 14:16 o-Xylene 1.20 0.0499 mg/Kg 03/03/23 12:51 03/06/23 14:16 25 0.0998 03/03/23 12:51 03/06/23 14:16 25 **Xylenes**, Total mg/Kg 3.28 %Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed 70 - 130 03/03/23 12:51 03/06/23 14:16 25 4-Bromofluorobenzene (Surr) 114 1,4-Difluorobenzene (Surr) 110 70 - 130 03/03/23 12:51 03/06/23 14:16 25

| Analyte                                                                                                            | Result         | Qualifier     | RL          | MDL | Unit          | D        | Prepared                   | Analyzed                   | Dil Fa  |
|--------------------------------------------------------------------------------------------------------------------|----------------|---------------|-------------|-----|---------------|----------|----------------------------|----------------------------|---------|
| Total BTEX                                                                                                         | 13.4           |               | 0.0998      |     | mg/Kg         |          |                            | 03/07/23 13:01             |         |
| Method: SW846 8015 NM - Diese                                                                                      | l Range Organ  | ics (DRO) (G  | C)          |     |               |          |                            |                            |         |
| Analyte                                                                                                            | Result         | Qualifier     | RL          | MDL | Unit          | D        | Prepared                   | Analyzed                   | Dil Fac |
| Total TPH                                                                                                          | 464            |               | 49.9        |     | mg/Kg         |          |                            | 03/06/23 12:05             |         |
|                                                                                                                    |                |               | <b>C</b> () |     |               |          |                            |                            |         |
| Method: SW846 8015B NM - Dies                                                                                      | sel Range Orga | inics (DRO) ( | GC)         |     |               |          |                            |                            |         |
|                                                                                                                    |                | Qualifier     | RL          | MDL | Unit          | D        | Prepared                   | Analyzed                   | Dil Fac |
| Analyte                                                                                                            |                |               |             | MDL | Unit<br>mg/Kg | <u>D</u> | Prepared<br>03/03/23 09:08 | Analyzed<br>03/03/23 16:32 | Dil Fac |
| Analyte<br>Gasoline Range Organics                                                                                 | Result         |               | RL          | MDL |               | <u>D</u> | •                          |                            | Dil Fac |
| Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over | Result         |               | RL          | MDL |               | <u> </u> | •                          |                            | Dil Fa  |

**Eurofins Midland** 

Matrix: Solid

Matrix: Solid

5

# **Client Sample Results**

Client: Carmona Resources Project/Site: West Corbin Federal SWD #16 Release

Client Sample ID: T-1 (2')

Date Collected: 03/01/23 00:00 Date Received: 03/02/23 14:30

| Analyte                                                                                                                                                                                               | Result                    | Qualifier                                          | RL                                                                   | MDL | Unit                                      | D        | Prepared                                                                                                                    | Analyzed                                                                                                          | Dil Fac            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------|----------------------------------------------------------------------|-----|-------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------|
| Oll Range Organics (Over C28-C36)                                                                                                                                                                     | <49.9                     | U                                                  | 49.9                                                                 |     | mg/Kg                                     |          | 03/03/23 09:08                                                                                                              | 03/03/23 16:32                                                                                                    |                    |
| Surrogate                                                                                                                                                                                             | %Recovery                 | Qualifier                                          | Limits                                                               |     |                                           |          | Prepared                                                                                                                    | Analyzed                                                                                                          | Dil Fac            |
| 1-Chlorooctane                                                                                                                                                                                        | 108                       |                                                    | 70 - 130                                                             |     |                                           |          | 03/03/23 09:08                                                                                                              | 03/03/23 16:32                                                                                                    |                    |
| o-Terphenyl                                                                                                                                                                                           | 105                       |                                                    | 70 - 130                                                             |     |                                           |          | 03/03/23 09:08                                                                                                              | 03/03/23 16:32                                                                                                    |                    |
| Method: EPA 300.0 - Anions, Ion                                                                                                                                                                       | Chromatograp              | hy - Solubl                                        | e                                                                    |     |                                           |          |                                                                                                                             |                                                                                                                   |                    |
| Analyte                                                                                                                                                                                               | Result                    | Qualifier                                          | RL                                                                   | MDL | Unit                                      | D        | Prepared                                                                                                                    | Analyzed                                                                                                          | Dil Fa             |
| Chloride                                                                                                                                                                                              | 73.8                      |                                                    | 5.00                                                                 |     | mg/Kg                                     |          |                                                                                                                             | 03/05/23 11:18                                                                                                    | 1                  |
| ate Collected: 03/01/23 00:00                                                                                                                                                                         |                           |                                                    |                                                                      |     |                                           |          | Lab Sam                                                                                                                     | ple ID: 880-2<br>Matri                                                                                            |                    |
| Client Sample ID: T-1 (3')<br>ate Collected: 03/01/23 00:00<br>ate Received: 03/02/23 14:30<br>Method: SW846 8021B - Volatile<br>Analyte                                                              |                           | ounds (GC)<br>Qualifier                            | )<br>RL                                                              | MDL | Unit                                      | D        | Lab Sam                                                                                                                     | -                                                                                                                 | x: Solid           |
| ate Collected: 03/01/23 00:00<br>ate Received: 03/02/23 14:30<br>Method: SW846 8021B - Volatile                                                                                                       |                           |                                                    |                                                                      | MDL | Unit<br>mg/Kg                             | <u>D</u> |                                                                                                                             | Matri                                                                                                             | x: Solid           |
| ate Collected: 03/01/23 00:00<br>ate Received: 03/02/23 14:30<br>Method: SW846 8021B - Volatile<br>Analyte<br>Benzene                                                                                 | Result                    | Qualifier                                          | RL                                                                   | MDL |                                           | <u>D</u> | Prepared                                                                                                                    | Matri                                                                                                             | x: Solic           |
| ate Collected: 03/01/23 00:00<br>ate Received: 03/02/23 14:30<br>Method: SW846 8021B - Volatile<br>Analyte<br>Benzene<br>Toluene                                                                      | Result<br><0.00199        | Qualifier<br>U                                     | <b>RL</b><br>0.00199                                                 | MDL | mg/Kg                                     | <u>D</u> | Prepared<br>03/03/23 11:55                                                                                                  | Matri<br>Analyzed<br>03/06/23 12:31                                                                               | Dil Fac            |
| ate Collected: 03/01/23 00:00<br>ate Received: 03/02/23 14:30<br>Method: SW846 8021B - Volatile<br>Analyte                                                                                            | Result           <0.00199 | Qualifier<br>U<br>U                                | RL<br>0.00199<br>0.00199                                             | MDL | mg/Kg<br>mg/Kg                            | <u>D</u> | Prepared<br>03/03/23 11:55<br>03/03/23 11:55                                                                                | Matri<br>Analyzed<br>03/06/23 12:31<br>03/06/23 12:31                                                             | 5379-4<br>x: Solic |
| ate Collected: 03/01/23 00:00<br>ate Received: 03/02/23 14:30<br>Method: SW846 8021B - Volatile<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene                               | Result           <0.00199 | Qualifier<br>U<br>U<br>U                           | RL<br>0.00199<br>0.00199<br>0.00199                                  | MDL | mg/Kg<br>mg/Kg<br>mg/Kg                   | <u>D</u> | Prepared<br>03/03/23 11:55<br>03/03/23 11:55<br>03/03/23 11:55                                                              | Matri<br>Analyzed<br>03/06/23 12:31<br>03/06/23 12:31<br>03/06/23 12:31                                           | Dil Fac            |
| ate Collected: 03/01/23 00:00<br>ate Received: 03/02/23 14:30<br>Method: SW846 8021B - Volatile<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene<br>o-Xylene                   | Result           <0.00199 | Qualifier<br>U<br>U<br>U<br>U<br>U *+<br>U         | RL<br>0.00199<br>0.00199<br>0.00199<br>0.00199                       | MDL | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg          | <u>D</u> | Prepared<br>03/03/23 11:55<br>03/03/23 11:55<br>03/03/23 11:55<br>03/03/23 11:55                                            | Matri<br>Analyzed<br>03/06/23 12:31<br>03/06/23 12:31<br>03/06/23 12:31<br>03/06/23 12:31                         | Dil Fac            |
| ate Collected: 03/01/23 00:00<br>ate Received: 03/02/23 14:30<br>Method: SW846 8021B - Volatile<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene<br>o-Xylene<br>Xylenes, Total | Result           <0.00199 | Qualifier<br>U<br>U<br>U<br>U *+<br>U<br>U<br>U *+ | RL<br>0.00199<br>0.00199<br>0.00199<br>0.00398<br>0.00199            | MDL | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg | D        | <b>Prepared</b><br>03/03/23 11:55<br>03/03/23 11:55<br>03/03/23 11:55<br>03/03/23 11:55<br>03/03/23 11:55                   | Matri<br>03/06/23 12:31<br>03/06/23 12:31<br>03/06/23 12:31<br>03/06/23 12:31<br>03/06/23 12:31                   | Dil Fac            |
| ate Collected: 03/01/23 00:00<br>ate Received: 03/02/23 14:30<br>Method: SW846 8021B - Volatile<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene                                                      | Result           <0.00199 | Qualifier<br>U<br>U<br>U<br>U *+<br>U<br>U<br>U *+ | RL<br>0.00199<br>0.00199<br>0.00199<br>0.00398<br>0.00199<br>0.00398 | MDL | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg | <u> </u> | <b>Prepared</b><br>03/03/23 11:55<br>03/03/23 11:55<br>03/03/23 11:55<br>03/03/23 11:55<br>03/03/23 11:55<br>03/03/23 11:55 | Matri<br>03/06/23 12:31<br>03/06/23 12:31<br>03/06/23 12:31<br>03/06/23 12:31<br>03/06/23 12:31<br>03/06/23 12:31 | Dil Fac            |

| Analyte    | Result   | Qualifier | RL      | MDL | Unit  | D | Prepared | Analyzed       | Dil Fac |
|------------|----------|-----------|---------|-----|-------|---|----------|----------------|---------|
| Total BTEX | <0.00398 | U         | 0.00398 |     | mg/Kg |   |          | 03/07/23 13:15 | 1       |

| Method: SW846 8015 NM - Diesel I | Range Organics (D | DRO) (GC) |          |   |          |                |         |
|----------------------------------|-------------------|-----------|----------|---|----------|----------------|---------|
| Analyte                          | Result Qualit     | ifier RL  | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
| Total TPH                        | 108               | 49.9      | mg/Kg    |   |          | 03/06/23 12:05 | 1       |

#### Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

| Analyte                           | Result       | Qualifier    | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|--------------|--------------|----------|-----|-------|---|----------------|----------------|---------|
| Gasoline Range Organics           | <49.9        | U            | 49.9     |     | mg/Kg |   | 03/03/23 09:08 | 03/03/23 16:54 | 1       |
| (GRO)-C6-C10                      |              |              |          |     |       |   |                |                |         |
| Diesel Range Organics (Over       | 108          |              | 49.9     |     | mg/Kg |   | 03/03/23 09:08 | 03/03/23 16:54 | 1       |
| C10-C28)                          |              |              |          |     |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <49.9        | U            | 49.9     |     | mg/Kg |   | 03/03/23 09:08 | 03/03/23 16:54 | 1       |
| Surrogate                         | %Recovery    | Qualifier    | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 105          |              | 70 - 130 |     |       |   | 03/03/23 09:08 | 03/03/23 16:54 | 1       |
| o-Terphenyl                       | 103          |              | 70 - 130 |     |       |   | 03/03/23 09:08 | 03/03/23 16:54 | 1       |
| Method: EPA 300.0 - Anions, Ion   | Chromatograp | ohy - Solubl | e        |     |       |   |                |                |         |
| Analyte                           | Result       | Qualifier    | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                          | 76.2         |              | 4.97     |     | mg/Kg |   |                | 03/05/23 11:24 | 1       |

Job ID: 880-25379-1 SDG: Lea County, New Mexico

# Lab Sample ID: 880-25379-3

Matrix: Solid

3/9/2023

Page 40 of 81

# **Client Sample Results**

Client: Carmona Resources Project/Site: West Corbin Federal SWD #16 Release

Client Sample ID: T-1 (4') Date Collected: 03/01/23 00:00

Date Received: 03/02/23 14:30

| Analyte                           | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
|-----------------------------------|----------------|-------------|----------|-----|-------|---|----------------|----------------|----------|
| Benzene                           | < 0.00199      | U           | 0.00199  |     | mg/Kg |   | 03/03/23 11:55 | 03/06/23 12:52 | 1        |
| <b>Foluene</b>                    | 0.00699        |             | 0.00199  |     | mg/Kg |   | 03/03/23 11:55 | 03/06/23 12:52 | 1        |
| Ethylbenzene                      | 0.00878        |             | 0.00199  |     | mg/Kg |   | 03/03/23 11:55 | 03/06/23 12:52 | 1        |
| n-Xylene & p-Xylene               | 0.0127         | *+          | 0.00398  |     | mg/Kg |   | 03/03/23 11:55 | 03/06/23 12:52 | 1        |
| o-Xylene                          | 0.00718        |             | 0.00199  |     | mg/Kg |   | 03/03/23 11:55 | 03/06/23 12:52 | 1        |
| Kylenes, Total                    | 0.0199         | *+          | 0.00398  |     | mg/Kg |   | 03/03/23 11:55 | 03/06/23 12:52 | 1        |
| Surrogate                         | %Recovery      | Qualifier   | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac  |
| 4-Bromofluorobenzene (Surr)       | 110            |             | 70 - 130 |     |       |   | 03/03/23 11:55 | 03/06/23 12:52 | 1        |
| 1,4-Difluorobenzene (Surr)        | 105            |             | 70 - 130 |     |       |   | 03/03/23 11:55 | 03/06/23 12:52 | 1        |
| Method: TAL SOP Total BTEX - T    | otal BTEX Calo | culation    |          |     |       |   |                |                |          |
| Analyte                           | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
| Total BTEX                        | 0.0357         |             | 0.00398  |     | mg/Kg |   |                | 03/07/23 13:15 | 1        |
| Method: SW846 8015 NM - Diese     | I Range Organ  | ics (DRO) ( | GC)      |     |       |   |                |                |          |
| Analyte                           | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
| Fotal TPH                         | 168            |             | 49.9     |     | mg/Kg |   |                | 03/06/23 12:05 | 1        |
| Method: SW846 8015B NM - Dies     | el Range Orga  | nics (DRO)  | (GC)     |     |       |   |                |                |          |
| Analyte                           |                | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
| Gasoline Range Organics           | <49.9          | -           | 49.9     |     | mg/Kg |   | 03/03/23 09:08 | 03/03/23 17:15 | 1        |
| GRO)-C6-C10                       |                |             |          |     | 0 0   |   |                |                |          |
| Diesel Range Organics (Over       | 168            |             | 49.9     |     | mg/Kg |   | 03/03/23 09:08 | 03/03/23 17:15 |          |
| C10-C28)                          |                |             |          |     |       |   |                |                |          |
| Oll Range Organics (Over C28-C36) | <49.9          | U           | 49.9     |     | mg/Kg |   | 03/03/23 09:08 | 03/03/23 17:15 | 1        |
| Surrogate                         | %Recovery      | Qualifier   | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac  |
| -Chlorooctane                     | 90             |             | 70 - 130 |     |       |   | 03/03/23 09:08 | 03/03/23 17:15 | 1        |
| p-Terphenyl                       | 93             |             | 70 - 130 |     |       |   | 03/03/23 09:08 | 03/03/23 17:15 | 1        |
| Method: EPA 300.0 - Anions, Ion   | Chromatograp   | hy - Solubl | le       |     |       |   |                |                |          |
| Analyte                           | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
| Chloride                          | 68.4           |             | 5.00     |     | mg/Kg |   |                | 03/05/23 11:43 | 1        |
| lient Sample ID: T-1 (5')         |                |             |          |     |       |   | Lab Sam        | ple ID: 880-2  | 5379-6   |
| ate Collected: 03/01/23 00:00     |                |             |          |     |       |   |                | Matri          | x: Solic |
| ate Received: 03/02/23 14:30      |                |             |          |     |       |   |                |                |          |
| Method: SW846 8021B - Volatile    | Organic Comp   | ounds (GC   | )        |     |       |   |                |                |          |
|                                   |                |             |          |     |       |   |                |                |          |
| Analyte                           | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fa   |

| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 03/03/23 11:55 | 03/06/23 13:12 | 1       |
| Toluene                     | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 03/03/23 11:55 | 03/06/23 13:12 | 1       |
| Ethylbenzene                | 0.00283   |           | 0.00199  |     | mg/Kg |   | 03/03/23 11:55 | 03/06/23 13:12 | 1       |
| m-Xylene & p-Xylene         | <0.00398  | U *+      | 0.00398  |     | mg/Kg |   | 03/03/23 11:55 | 03/06/23 13:12 | 1       |
| o-Xylene                    | 0.00249   |           | 0.00199  |     | mg/Kg |   | 03/03/23 11:55 | 03/06/23 13:12 | 1       |
| Xylenes, Total              | <0.00398  | U *+      | 0.00398  |     | mg/Kg |   | 03/03/23 11:55 | 03/06/23 13:12 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 114       |           | 70 - 130 |     |       |   | 03/03/23 11:55 | 03/06/23 13:12 | 1       |
| 1,4-Difluorobenzene (Surr)  | 107       |           | 70 - 130 |     |       |   | 03/03/23 11:55 | 03/06/23 13:12 | 1       |

Eurofins Midland

Job ID: 880-25379-1 SDG: Lea County, New Mexico

# Lab Sample ID: 880-25379-5

Matrix: Solid

5

Released to Imaging: 5/12/2023 2:13:52 PM

Project/Site: West Corbin Federal SWD #16 Release

## **Client Sample Results**

Page 42 of 81

Matrix: Solid

5

Job ID: 880-25379-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-25379-6

# Client Sample ID: T-1 (5')

Client: Carmona Resources

Date Collected: 03/01/23 00:00 Date Received: 03/02/23 14:30

| Analyte                           | Result        | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|---------------|-------------|----------|-----|-------|---|----------------|----------------|---------|
| Total BTEX                        | 0.00532       |             | 0.00398  |     | mg/Kg |   |                | 03/07/23 13:15 | 1       |
| Method: SW846 8015 NM - Diesel    | Range Organ   | ics (DRO) ( | GC)      |     |       |   |                |                |         |
| Analyte                           | Result        | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                         | <50.0         | U           | 50.0     |     | mg/Kg |   |                | 03/06/23 12:05 | 1       |
| Method: SW846 8015B NM - Dies     | el Range Orga | nics (DRO)  | (GC)     |     |       |   |                |                |         |
| Analyte                           | Result        | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics           | <50.0         | U           | 50.0     |     | mg/Kg |   | 03/03/23 09:08 | 03/03/23 19:25 | 1       |
| (GRO)-C6-C10                      |               |             |          |     |       |   |                |                |         |
| Diesel Range Organics (Over       | <50.0         | U           | 50.0     |     | mg/Kg |   | 03/03/23 09:08 | 03/03/23 19:25 | 1       |
| C10-C28)                          |               |             |          |     |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <50.0         | U           | 50.0     |     | mg/Kg |   | 03/03/23 09:08 | 03/03/23 19:25 | 1       |
| Surrogate                         | %Recovery     | Qualifier   | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 96            |             | 70 - 130 |     |       |   | 03/03/23 09:08 | 03/03/23 19:25 | 1       |
| o-Terphenyl                       | 99            |             | 70 - 130 |     |       |   | 03/03/23 09:08 | 03/03/23 19:25 | 1       |
| Method: EPA 300.0 - Anions, Ion   | Chromatograp  | hy - Solubl | e        |     |       |   |                |                |         |
| Analyte                           | Result        | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                          | 74.6          |             | 4.99     |     | mg/Kg |   |                | 03/05/23 11:49 | 1       |
| lient Sample ID: T-1 (6')         |               |             |          |     |       |   |                | ple ID: 880-2  |         |

Date Received: 03/02/23 14:30

# Method: SW846 8021B - Volatile Organic Compounds (GC)

| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                     | < 0.00199 | U         | 0.00199  |     | mg/Kg |   | 03/03/23 11:55 | 03/06/23 13:32 | 1       |
| Toluene                     | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 03/03/23 11:55 | 03/06/23 13:32 | 1       |
| Ethylbenzene                | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 03/03/23 11:55 | 03/06/23 13:32 | 1       |
| m-Xylene & p-Xylene         | <0.00398  | U *+      | 0.00398  |     | mg/Kg |   | 03/03/23 11:55 | 03/06/23 13:32 | 1       |
| o-Xylene                    | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 03/03/23 11:55 | 03/06/23 13:32 | 1       |
| Xylenes, Total              | <0.00398  | U *+      | 0.00398  |     | mg/Kg |   | 03/03/23 11:55 | 03/06/23 13:32 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 115       |           | 70 - 130 |     |       |   | 03/03/23 11:55 | 03/06/23 13:32 | 1       |
| 1,4-Difluorobenzene (Surr)  | 106       |           | 70 - 130 |     |       |   | 03/03/23 11:55 | 03/06/23 13:32 | 1       |

#### Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier MDL Unit RL D Prepared Analyzed Dil Fac Total BTEX <0.00398 U 0.00398 mg/Kg 03/07/23 13:15 1 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Result Qualifier Analyte RL MDL Unit D Analyzed Dil Fac Prepared Total TPH 03/06/23 12:05 <49.9 U 49.9 mg/Kg 1 Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac <49.9 U 49.9 03/03/23 09:08 03/03/23 18:21 Gasoline Range Organics mg/Kg 1 (GRO)-C6-C10 <49.9 U 49.9 03/03/23 09:08 03/03/23 18:21 Diesel Range Organics (Over mg/Kg 1

**Eurofins Midland** 

C10-C28)

# **Client Sample Results**

Client: Carmona Resources Project/Site: West Corbin Federal SWD #16 Release

Date Collected: 03/01/23 00:00 Date Received: 03/02/23 14:30

| Analyte                                                                                         | Result                         | Qualifier                            | RL       | MDL | Unit           | D        | Prepared                         | Analyzed                         | Dil Fac                            |
|-------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------|----------|-----|----------------|----------|----------------------------------|----------------------------------|------------------------------------|
| Oll Range Organics (Over C28-C36)                                                               | <49.9                          | U                                    | 49.9     |     | mg/Kg          |          | 03/03/23 09:08                   | 03/03/23 18:21                   | 1                                  |
| Surrogate                                                                                       | %Recovery                      | Qualifier                            | Limits   |     |                |          | Prepared                         | Analyzed                         | Dil Fac                            |
| 1-Chlorooctane                                                                                  | 107                            |                                      | 70 - 130 |     |                |          | 03/03/23 09:08                   | 03/03/23 18:21                   | 1                                  |
| o-Terphenyl                                                                                     | 108                            |                                      | 70 - 130 |     |                |          | 03/03/23 09:08                   | 03/03/23 18:21                   | 1                                  |
| Method: EPA 300.0 - Anions, Ion                                                                 | Chromatograp                   | hy - Soluble                         | )        |     |                |          |                                  |                                  |                                    |
| Analyte                                                                                         | Result                         | Qualifier                            | RL       | MDL | Unit           | D        | Prepared                         | Analyzed                         | Dil Fac                            |
| Chloride                                                                                        | 48.8                           |                                      | 4.95     |     | mg/Kg          |          |                                  | 03/05/23 11:55                   | 1                                  |
| Client Sample ID: H-1 (0-0.5                                                                    | ')                             |                                      |          |     |                |          | Lab Sam                          | ple ID: 880-2                    | 5379-8                             |
| ate Collected: 03/01/23 00:00                                                                   |                                |                                      |          |     |                |          |                                  | Matri                            | x: Solid                           |
|                                                                                                 |                                |                                      |          |     |                |          |                                  |                                  |                                    |
| Date Received: 03/02/23 14:30                                                                   |                                |                                      |          |     |                |          |                                  |                                  |                                    |
|                                                                                                 | Organic Comp                   | ounds (GC)                           |          |     |                |          |                                  |                                  |                                    |
| ate Received: 03/02/23 14:30<br>Method: SW846 8021B - Volatile                                  |                                | <mark>ounds (GC)</mark><br>Qualifier | RL       | MDL | Unit           | D        | Prepared                         | Analyzed                         | Dil Fac                            |
| ate Received: 03/02/23 14:30<br>Method: SW846 8021B - Volatile<br>Analyte                       |                                |                                      |          | MDL | Unit<br>mg/Kg  | <u>D</u> | Prepared<br>03/03/23 11:55       | Analyzed<br>03/06/23 13:53       | Dil Fac                            |
| ate Received: 03/02/23 14:30<br>Method: SW846 8021B - Volatile<br>Analyte<br>Benzene            | Result                         | Qualifier                            |          | MDL |                | <u>D</u> |                                  |                                  | Dil Fac                            |
| ate Received: 03/02/23 14:30<br>Method: SW846 8021B - Volatile<br>Analyte<br>Benzene<br>Toluene | Result <0.00200                | Qualifier                            | 0.00200  | MDL | mg/Kg          | <u>D</u> | 03/03/23 11:55                   | 03/06/23 13:53                   | <b>Dil Fac</b><br>1<br>1<br>1      |
| Date Received: 03/02/23 14:30                                                                   | Result<br><0.00200<br><0.00200 | Qualifier<br>U<br>U                  | 0.00200  | MDL | mg/Kg<br>mg/Kg | <u> </u> | 03/03/23 11:55<br>03/03/23 11:55 | 03/06/23 13:53<br>03/06/23 13:53 | <b>Dil Fac</b><br>1<br>1<br>1<br>1 |

| o-Xylene                    | <0.00200  | U         | 0.00200  | mg/Kg | 03/03/23 11:55 | 03/06/23 13:53 | 1       |
|-----------------------------|-----------|-----------|----------|-------|----------------|----------------|---------|
| Xylenes, Total              | <0.00399  | U *+      | 0.00399  | mg/Kg | 03/03/23 11:55 | 03/06/23 13:53 | 1       |
|                             |           |           |          |       |                |                |         |
| Surrogate                   | %Recovery | Qualifier | Limits   |       | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 117       |           | 70 - 130 |       | 03/03/23 11:55 | 03/06/23 13:53 | 1       |
| 1,4-Difluorobenzene (Surr)  | 107       |           | 70 - 130 |       | 03/03/23 11:55 | 03/06/23 13:53 | 1       |

|  | Method: TAL SOP | Total BTEX - Total BT | EX Calculation |
|--|-----------------|-----------------------|----------------|
|--|-----------------|-----------------------|----------------|

| Analyte    | Result   | Qualifier | RL      | MDL | Unit  | D | Prepared | Analyzed       | Dil Fac |
|------------|----------|-----------|---------|-----|-------|---|----------|----------------|---------|
| Total BTEX | <0.00399 | U         | 0.00399 |     | mg/Kg |   |          | 03/07/23 13:15 | 1       |

| Method: SW846 8015 NM - Diesel R | ange Organi | ics (DRO) (G | SC)  |     |       |   |          |                |         |
|----------------------------------|-------------|--------------|------|-----|-------|---|----------|----------------|---------|
| Analyte                          | Result      | Qualifier    | RL   | MDL | Unit  | D | Prepared | Analyzed       | Dil Fac |
| Total TPH                        | <49.9       | U            | 49.9 |     | mg/Kg |   |          | 03/06/23 12:05 | 1       |

#### Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

| Analyte                           | Result       | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|--------------|-------------|----------|-----|-------|---|----------------|----------------|---------|
| Gasoline Range Organics           | <49.9        | U           | 49.9     |     | mg/Kg |   | 03/03/23 09:08 | 03/03/23 17:59 | 1       |
| (GRO)-C6-C10                      |              |             |          |     |       |   |                |                |         |
| Diesel Range Organics (Over       | <49.9        | U           | 49.9     |     | mg/Kg |   | 03/03/23 09:08 | 03/03/23 17:59 | 1       |
| C10-C28)                          |              |             |          |     |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <49.9        | U           | 49.9     |     | mg/Kg |   | 03/03/23 09:08 | 03/03/23 17:59 | 1       |
| Surrogate                         | %Recovery    | Qualifier   | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 103          |             | 70 - 130 |     |       |   | 03/03/23 09:08 | 03/03/23 17:59 | 1       |
| o-Terphenyl                       | 100          |             | 70 - 130 |     |       |   | 03/03/23 09:08 | 03/03/23 17:59 | 1       |
| Method: EPA 300.0 - Anions, Ion   | Chromatograp | hy - Solubl | e        |     |       |   |                |                |         |
| Analyte                           | Result       | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                          | 53.9         |             | 4.97     |     | mg/Kg |   |                | 03/05/23 12:01 | 1       |

Job ID: 880-25379-1 SDG: Lea County, New Mexico Lab Sample ID: 880-25379-7 Matrix: Solid 5

## **Client Sample Results**

Client: Carmona Resources Project/Site: West Corbin Federal SWD #16 Release

#### Client Sample ID: H-2 (0-0.5') Date Collected: 03/01/23 00:00

Date Received: 03/02/23 14:30

| Analyte                                                                             | Result        | Qualifier               | RL        | MDL | Unit          | D        | Prepared                   | Analyzed                   | Dil Fac  |
|-------------------------------------------------------------------------------------|---------------|-------------------------|-----------|-----|---------------|----------|----------------------------|----------------------------|----------|
| Benzene                                                                             | <0.00199      | U                       | 0.00199   |     | mg/Kg         |          | 03/03/23 11:55             | 03/06/23 17:30             | 1        |
| Toluene                                                                             | 0.0460        |                         | 0.00199   |     | mg/Kg         |          | 03/03/23 11:55             | 03/06/23 17:30             | 1        |
| Ethylbenzene                                                                        | 0.0544        |                         | 0.00199   |     | mg/Kg         |          | 03/03/23 11:55             | 03/06/23 17:30             | 1        |
| n-Xylene & p-Xylene                                                                 | 0.0594        | *+                      | 0.00398   |     | mg/Kg         |          | 03/03/23 11:55             | 03/06/23 17:30             |          |
| o-Xylene                                                                            | 0.0457        |                         | 0.00199   |     | mg/Kg         |          | 03/03/23 11:55             | 03/06/23 17:30             | 1        |
| Kylenes, Total                                                                      | 0.105         | *+                      | 0.00398   |     | mg/Kg         |          | 03/03/23 11:55             | 03/06/23 17:30             | 1        |
| Surrogate                                                                           | %Recovery     | Qualifier               | Limits    |     |               |          | Prepared                   | Analyzed                   | Dil Fac  |
| 4-Bromofluorobenzene (Surr)                                                         |               |                         | 70 - 130  |     |               |          | 03/03/23 11:55             | 03/06/23 17:30             | 1        |
| 1,4-Difluorobenzene (Surr)                                                          | 103           |                         | 70 - 130  |     |               |          | 03/03/23 11:55             | 03/06/23 17:30             | 1        |
| Method: TAL SOP Total BTEX - T                                                      | otal BTEX Cal | culation                |           |     |               |          |                            |                            |          |
| Analyte                                                                             | Result        | Qualifier               | RL        | MDL | Unit          | D        | Prepared                   | Analyzed                   | Dil Fac  |
| Total BTEX                                                                          | 0.206         |                         | 0.00398   |     | mg/Kg         |          |                            | 03/07/23 13:15             | 1        |
| Method: SW846 8015 NM - Diese                                                       | I Range Organ | ics (DRO) (G            | C)        |     |               |          |                            |                            |          |
| Analyte                                                                             |               | Qualifier               | RL        | MDL | Unit          | D        | Prepared                   | Analyzed                   | Dil Fac  |
| Fotal TPH                                                                           | 56.5          |                         | 50.0      |     | mg/Kg         |          |                            | 03/06/23 12:05             | 1        |
| Gasoline Range Organics                                                             | <50.0         | U                       | 50.0      |     | mg/Kg         |          | 03/03/23 09:08             | 03/03/23 19:04             | 1        |
| Method: SW846 8015B NM - Dies<br>Analyte                                            | • •           | Qualifier               | RL        | MDL | Unit          | D        | Prepared                   | Analyzed                   | Dil Fac  |
| GRO)-C6-C10                                                                         | -00.0         | 0                       | 00.0      |     | mg/ng         |          | 00,00,20 00.00             | 00/00/20 10:01             |          |
| Diesel Range Organics (Over                                                         | 56.5          |                         | 50.0      |     | mg/Kg         |          | 03/03/23 09:08             | 03/03/23 19:04             | 1        |
| C10-C28)                                                                            |               |                         |           |     |               |          |                            |                            |          |
| Oll Range Organics (Over C28-C36)                                                   | <50.0         | U                       | 50.0      |     | mg/Kg         |          | 03/03/23 09:08             | 03/03/23 19:04             | 1        |
| Surrogate                                                                           | %Recovery     | Qualifier               | Limits    |     |               |          | Prepared                   | Analyzed                   | Dil Fac  |
| 1-Chlorooctane                                                                      | 92            |                         | 70 - 130  |     |               |          | 03/03/23 09:08             | 03/03/23 19:04             | 1        |
| p-Terphenyl                                                                         | 93            |                         | 70 - 130  |     |               |          | 03/03/23 09:08             | 03/03/23 19:04             | 1        |
| Method: EPA 300.0 - Anions, Ion                                                     | Chromatograp  | ohy - Soluble           |           |     |               |          |                            |                            |          |
| Analyte                                                                             | Result        | Qualifier               | RL        | MDL | Unit          | D        | Prepared                   | Analyzed                   | Dil Fac  |
| Chloride                                                                            | 236           |                         | 4.98      |     | mg/Kg         |          |                            | 03/05/23 12:07             | 1        |
| lient Sample ID: H-3 (0-0.5                                                         | ')            |                         |           |     |               |          | Lab Samp                   | le ID: 880-25              | 379-10   |
| ate Collected: 03/01/23 00:00                                                       |               |                         |           |     |               |          |                            | Matri                      | x: Solid |
| ale Conecieu. 03/01/23 00.00                                                        |               |                         |           |     |               |          |                            |                            |          |
|                                                                                     |               |                         |           |     |               |          |                            |                            |          |
| ate Received: 03/02/23 14:30                                                        | Organic Comp  | ounds (GC)              |           |     |               |          |                            |                            |          |
| ate Received: 03/02/23 14:30<br>Method: SW846 8021B - Volatile                      |               | ounds (GC)<br>Qualifier | RL        | MDL | Unit          | D        | Prepared                   | Analyzed                   | Dil Fac  |
| ate Received: 03/02/23 14:30<br>Method: SW846 8021B - Volatile<br>Analyte           |               |                         | <b>RL</b> | MDL | Unit<br>mg/Kg | <u>D</u> | Prepared<br>03/03/23 11:55 | Analyzed<br>03/06/23 18:24 | Dil Fac  |
| ate Received: 03/02/23 14:30 Method: SW846 8021B - Volatile Analyte Benzene Toluene | Result        | Qualifier<br>U          |           | MDL |               | <u>D</u> |                            |                            | -        |

Job ID: 880-25379-1 SDG: Lea County, New Mexico

# Lab Sample ID: 880-25379-9

Matrix: Solid

**Eurofins Midland** 

03/06/23 18:24

03/06/23 18:24

03/06/23 18:24

03/06/23 18:24

Analyzed

03/06/23 18:24

03/06/23 18:24

5

Ethylbenzene

Xylenes, Total

o-Xylene

Surrogate

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

0.00199

0.00398

0.00199

0.00398

Limits

70 - 130

70 - 130

mg/Kg

mg/Kg

mg/Kg

mg/Kg

03/03/23 11:55

03/03/23 11:55

03/03/23 11:55

03/03/23 11:55

Prepared

03/03/23 11:55

03/03/23 11:55

<0.00199 U

<0.00199 U

<0.00398 U\*+

<0.00398 U\*+

%Recovery Qualifier

114

108

1

1

1

1

1

1

Dil Fac

Project/Site: West Corbin Federal SWD #16 Release

### **Client Sample Results**

Page 45 of 81

Matrix: Solid

Job ID: 880-25379-1 SDG: Lea County, New Mexico

# Client Sample ID: H-3 (0-0.5')

Date Collected: 03/01/23 00:00 Date Received: 03/02/23 14:30

Client: Carmona Resources

| Analyte                           | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|----------------|-------------|----------|-----|-------|---|----------------|----------------|---------|
| Total BTEX                        | <0.00398       | U           | 0.00398  |     | mg/Kg |   |                | 03/07/23 13:15 | 1       |
| Method: SW846 8015 NM - Diese     | I Range Organ  | ics (DRO) ( | GC)      |     |       |   |                |                |         |
| Analyte                           | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                         | <49.9          | U           | 49.9     |     | mg/Kg |   |                | 03/06/23 12:05 | 1       |
| Method: SW846 8015B NM - Dies     | sel Range Orga | nics (DRO)  | (GC)     |     |       |   |                |                |         |
| Analyte                           | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics           | <49.9          | U           | 49.9     |     | mg/Kg |   | 03/03/23 09:08 | 03/03/23 15:27 | 1       |
| GRO)-C6-C10                       |                |             |          |     |       |   |                |                |         |
| Diesel Range Organics (Over       | <49.9          | U           | 49.9     |     | mg/Kg |   | 03/03/23 09:08 | 03/03/23 15:27 | 1       |
| C10-C28)                          |                |             |          |     |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <49.9          | U           | 49.9     |     | mg/Kg |   | 03/03/23 09:08 | 03/03/23 15:27 | 1       |
| Surrogate                         | %Recovery      | Qualifier   | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 87             |             | 70 - 130 |     |       |   | 03/03/23 09:08 | 03/03/23 15:27 | 1       |
| p-Terphenyl                       | 89             |             | 70 - 130 |     |       |   | 03/03/23 09:08 | 03/03/23 15:27 | 1       |
| Method: EPA 300.0 - Anions, Ion   | Chromatograp   | hy - Solubl | е        |     |       |   |                |                |         |
| Analyte                           | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                          | 93.9           |             | 4.98     |     | mg/Kg |   |                | 03/05/23 12:13 | 1       |

# Date Received: 03/02/23 14:30

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00200 U 03/03/23 11:55 03/06/23 18:45 0.00200 mg/Kg 1 Toluene <0.00200 U 0.00200 03/03/23 11:55 03/06/23 18:45 mg/Kg 1 Ethylbenzene <0.00200 U 0.00200 03/03/23 11:55 03/06/23 18:45 mg/Kg 1 m-Xylene & p-Xylene <0.00401 U\*+ 0.00401 mg/Kg 03/03/23 11:55 03/06/23 18:45 1 o-Xylene <0.00200 U 0.00200 mg/Kg 03/03/23 11:55 03/06/23 18:45 1 Xylenes, Total <0.00401 U\*+ 0.00401 03/03/23 11:55 03/06/23 18:45 mg/Kg 1 %Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed 70 - 130 03/03/23 11:55 03/06/23 18:45 4-Bromofluorobenzene (Surr) 93 1 1,4-Difluorobenzene (Surr) 99 70 - 130 03/03/23 11:55 03/06/23 18:45 1

| Analyte                                 | Result          | Qualifier    | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|-----------------|--------------|---------|-----|-------|---|----------------|----------------|---------|
| Total BTEX                              | <0.00401        | U            | 0.00401 |     | mg/Kg |   |                | 03/07/23 13:15 | 1       |
| Method: SW846 8015 NM - Dies            | sel Range Organ | ics (DRO) (O | SC)     |     |       |   |                |                |         |
| Analyte                                 | Result          | Qualifier    | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                               | <49.9           | U            | 49.9    |     | mg/Kg |   |                | 03/06/23 12:05 | 1       |
| Method: SW846 8015B NM - Di             | esel Range Orga | nics (DRO)   | (GC)    |     |       |   |                |                |         |
| Analyte                                 | Result          | Qualifier    | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|                                         | <49.9           | U            | 49.9    |     | mg/Kg |   | 03/03/23 09:08 | 03/03/23 18:42 | 1       |
| Gasoline Range Organics                 |                 |              |         |     |       |   |                |                |         |
| Gasoline Range Organics<br>(GRO)-C6-C10 |                 |              |         |     |       |   |                |                |         |
| 0 0                                     | <49.9           | U            | 49.9    |     | mg/Kg |   | 03/03/23 09:08 | 03/03/23 18:42 | 1       |

**Eurofins Midland** 

Lab Sample ID: 880-25379-10

5

#### Client Sample ID: H-4 (0-0.5') Date Collected: 03/01/23 00:00

Date Received: 03/02/23 14:30

| SDG: Lea County, New Mexico |
|-----------------------------|
| Lab Sample ID: 880-25379-11 |

Matrix: Solid

Job ID: 880-25379-1

| Method: SW846 8015B NM - Dies     | el Range Orga | nics (DRO)   | (GC) (Continu | ed) |       |   |                |                |         |
|-----------------------------------|---------------|--------------|---------------|-----|-------|---|----------------|----------------|---------|
| Analyte                           | Result        | Qualifier    | RL            | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Oll Range Organics (Over C28-C36) | <49.9         | U            | 49.9          |     | mg/Kg |   | 03/03/23 09:08 | 03/03/23 18:42 | 1       |
| Surrogate                         | %Recovery     | Qualifier    | Limits        |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 82            |              | 70 - 130      |     |       |   | 03/03/23 09:08 | 03/03/23 18:42 | 1       |
| o-Terphenyl                       | 81            |              | 70 - 130      |     |       |   | 03/03/23 09:08 | 03/03/23 18:42 | 1       |
| Method: EPA 300.0 - Anions, Ion   | Chromatograp  | ohy - Solubl | e             |     |       |   |                |                |         |
| Analyte                           | Result        | Qualifier    | RL            | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                          | 105           |              | 5.00          |     | mg/Kg |   |                | 03/05/23 12:19 | 1       |

Page 46 of 81

#### **Surrogate Summary**

Client: Carmona Resources Project/Site: West Corbin Federal SWD #16 Release

#### Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

| _                    |                        |          |          |   | Percent Surrogate | Percent Surrogate Recovery (A | Percent Surrogate Recovery (Acceptance Lim | Percent Surrogate Recovery (Acceptance Limits) |
|----------------------|------------------------|----------|----------|---|-------------------|-------------------------------|--------------------------------------------|------------------------------------------------|
|                      |                        | BFB1     | DFBZ1    |   |                   |                               |                                            |                                                |
| Lab Sample ID        | Client Sample ID       | (70-130) | (70-130) | _ |                   |                               |                                            |                                                |
| 880-25091-A-29-D MS  | Matrix Spike           | 103      | 79       |   |                   |                               |                                            |                                                |
| 880-25091-A-29-E MSD | Matrix Spike Duplicate | 94       | 106      |   |                   |                               |                                            |                                                |
| 880-25379-1          | T-1 (0-1')             | 594 S1+  | 74       |   |                   |                               |                                            |                                                |
| 880-25379-2          | T-1 (1.5')             | 683 S1+  | 64 S1-   |   |                   |                               |                                            |                                                |
| 880-25379-3          | T-1 (2')               | 114      | 110      |   |                   |                               |                                            |                                                |
| 880-25379-4          | T-1 (3')               | 113      | 105      |   |                   |                               |                                            |                                                |
| 880-25379-5          | T-1 (4')               | 110      | 105      |   |                   |                               |                                            |                                                |
| 880-25379-6          | T-1 (5')               | 114      | 107      |   |                   |                               |                                            |                                                |
| 880-25379-7          | T-1 (6')               | 115      | 106      |   |                   |                               |                                            |                                                |
| 880-25379-8          | H-1 (0-0.5')           | 117      | 107      |   |                   |                               |                                            |                                                |
| 880-25379-9          | H-2 (0-0.5')           | 111      | 103      |   |                   |                               |                                            |                                                |
| 880-25379-10         | H-3 (0-0.5')           | 114      | 108      |   |                   |                               |                                            |                                                |
| 880-25379-11         | H-4 (0-0.5')           | 93       | 99       |   |                   |                               |                                            |                                                |
| 880-25400-A-1-E MS   | Matrix Spike           | 119      | 114      |   |                   |                               |                                            |                                                |
| 880-25400-A-1-F MSD  | Matrix Spike Duplicate | 117      | 104      |   |                   |                               |                                            |                                                |
| 880-25414-A-1-A MS   | Matrix Spike           | 112      | 100      |   |                   |                               |                                            |                                                |
| 880-25414-A-1-B MSD  | Matrix Spike Duplicate | 120      | 106      |   |                   |                               |                                            |                                                |
| 880-25537-A-41-G MS  | Matrix Spike           | 144 S1+  | 67 S1-   |   |                   |                               |                                            |                                                |
| 880-25537-A-41-H MSD | Matrix Spike Duplicate | 151 S1+  | 76       |   |                   |                               |                                            |                                                |
| LCS 880-47724/1-A    | Lab Control Sample     | 115      | 109      |   |                   |                               |                                            |                                                |
| LCS 880-47743/1-A    | Lab Control Sample     | 98       | 85       |   |                   |                               |                                            |                                                |
| LCS 880-48014/1-A    | Lab Control Sample     | 153 S1+  | 93       |   |                   |                               |                                            |                                                |
| LCS 880-48088/1-A    | Lab Control Sample     | 99       | 84       |   |                   |                               |                                            |                                                |
| LCSD 880-47724/2-A   | Lab Control Sample Dup | 111      | 109      |   |                   |                               |                                            |                                                |
| LCSD 880-47743/2-A   | Lab Control Sample Dup | 98       | 94       |   |                   |                               |                                            |                                                |
| LCSD 880-48014/2-A   | Lab Control Sample Dup | 130      | 92       |   |                   |                               |                                            |                                                |
| LCSD 880-48088/2-A   | Lab Control Sample Dup | 91       | 112      |   |                   |                               |                                            |                                                |
| MB 880-47724/5-A     | Method Blank           | 107      | 102      |   |                   |                               |                                            |                                                |
| MB 880-47743/5-A     | Method Blank           | 91       | 86       |   |                   |                               |                                            |                                                |
| MB 880-48014/5-A     | Method Blank           | 83       | 72       |   |                   |                               |                                            |                                                |
| MB 880-48088/5-A     | Method Blank           | 101      | 82       |   |                   |                               |                                            |                                                |
| WID 000-40000/J-A    |                        | 101      | 02       |   |                   |                               |                                            |                                                |

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

#### Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) 1001 OTPH1 (70-130) Lab Sample ID **Client Sample ID** (70-130) 880-25349-A-1-B MS Matrix Spike 93 84 880-25349-A-1-C MSD Matrix Spike Duplicate 88 102 880-25379-1 T-1 (0-1') 96 104 880-25379-2 T-1 (1.5') 112 92 880-25379-3 T-1 (2') 108 105 880-25379-4 T-1 (3') 105 103 880-25379-5 93 T-1 (4') 90 880-25379-6 T-1 (5') 96 99

Eurofins Midland

Job ID: 880-25379-1 SDG: Lea County, New Mexico

Prep Type: Total/NA

Prep Type: Total/NA

## **Surrogate Summary**

#### Client: Carmona Resources Project/Site: West Corbin Federal SWD #16 Release

#### Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued) Matrix: Solid

|                    |                        | 1CO1     | OTPH1    |
|--------------------|------------------------|----------|----------|
| Lab Sample ID      | Client Sample ID       | (70-130) | (70-130) |
| 880-25379-7        | T-1 (6')               | 107      | 108      |
| 880-25379-8        | H-1 (0-0.5')           | 103      | 100      |
| 880-25379-9        | H-2 (0-0.5')           | 92       | 93       |
| 880-25379-10       | H-3 (0-0.5')           | 87       | 89       |
| 880-25379-11       | H-4 (0-0.5')           | 82       | 81       |
| LCS 880-47692/2-A  | Lab Control Sample     | 94       | 100      |
| LCSD 880-47692/3-A | Lab Control Sample Dup | 113      | 99       |
| MB 880-47692/1-A   | Method Blank           | 110      | 112      |

#### Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Page 48 of 81

5

6

Job ID: 880-25379-1

Prep Type: Total/NA

SDG: Lea County, New Mexico

Eurofins Midland

Lab Sample ID: MB 880-47724/5-A

# **QC Sample Results**

Client: Carmona Resources Project/Site: West Corbin Federal SWD #16 Release

Method: 8021B - Volatile Organic Compounds (GC)

| Matrix: Solid               |           |           |          |     |       |   |                | Prep Type: 1   | Fotal/NA        |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|-----------------|
| Analysis Batch: 47864       |           |           |          |     |       |   |                | Prep Batch     | n: <b>47724</b> |
|                             | MB        | MB        |          |     |       |   |                |                |                 |
| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac         |
| Benzene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 03/03/23 11:55 | 03/06/23 11:21 | 1               |
| Toluene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 03/03/23 11:55 | 03/06/23 11:21 | 1               |
| Ethylbenzene                | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 03/03/23 11:55 | 03/06/23 11:21 | 1               |
| m-Xylene & p-Xylene         | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 03/03/23 11:55 | 03/06/23 11:21 | 1               |
| o-Xylene                    | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 03/03/23 11:55 | 03/06/23 11:21 | 1               |
| Xylenes, Total              | <0.00400  | U         | 0.00400  |     | mg/Kg |   | 03/03/23 11:55 | 03/06/23 11:21 | 1               |
|                             | МВ        | МВ        |          |     |       |   |                |                |                 |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac         |
| 4-Bromofluorobenzene (Surr) | 107       |           | 70 - 130 |     |       |   | 03/03/23 11:55 | 03/06/23 11:21 | 1               |
| 1,4-Difluorobenzene (Surr)  | 102       |           | 70 - 130 |     |       |   | 03/03/23 11:55 | 03/06/23 11:21 | 1               |

#### Lab Sample ID: LCS 880-47724/1-A Matrix: Solid

#### Analysis Batch: 47864

|                     | Spike | LCS    | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|--------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.1199 |           | mg/Kg |   | 120  | 70 - 130 |  |
| Toluene             | 0.100 | 0.1170 |           | mg/Kg |   | 117  | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.1237 |           | mg/Kg |   | 124  | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.2670 | *+        | mg/Kg |   | 133  | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.1270 |           | mg/Kg |   | 127  | 70 - 130 |  |

|                             | LCS       | LCS       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 115       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 109       |           | 70 - 130 |

#### Lab Sample ID: LCSD 880-47724/2-A

#### Matrix: Solid

| Analysis Batch: 47864 |       |            |             |   |      | Prep     | Batch: | 47724 |
|-----------------------|-------|------------|-------------|---|------|----------|--------|-------|
|                       | Spike | LCSD LCS   | D           |   |      | %Rec     |        | RPD   |
| Analyte               | Added | Result Qua | lifier Unit | D | %Rec | Limits   | RPD    | Limit |
| Benzene               | 0.100 | 0.1282     | mg/Kg       |   | 128  | 70 - 130 | 7      | 35    |
| Toluene               | 0.100 | 0.1218     | mg/Kg       |   | 122  | 70 - 130 | 4      | 35    |
| Ethylbenzene          | 0.100 | 0.1248     | mg/Kg       |   | 125  | 70 - 130 | 1      | 35    |
| m-Xylene & p-Xylene   | 0.200 | 0.2642 *+  | mg/Kg       |   | 132  | 70 - 130 | 1      | 35    |
| o-Xylene              | 0.100 | 0.1276     | mg/Kg       |   | 128  | 70 - 130 | 0      | 35    |
|                       |       |            |             |   |      |          |        |       |

|                             | LCSD      | LCSD      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) |           |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 109       |           | 70 - 130 |

#### Lab Sample ID: 880-25400-A-1-E MS

#### Matrix: Solid Analysis Potoby 47964

| Analysis Batch: 47864 |          |           |       |        |           |       |   |      | Pre      | o Batch: 47724 |
|-----------------------|----------|-----------|-------|--------|-----------|-------|---|------|----------|----------------|
|                       | Sample   | Sample    | Spike | MS     | MS        |       |   |      | %Rec     |                |
| Analyte               | Result   | Qualifier | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |                |
| Benzene               | <0.00201 | U         | 0.100 | 0.1146 |           | mg/Kg |   | 114  | 70 - 130 |                |
| Toluene               | <0.00201 | U         | 0.100 | 0.1064 |           | mg/Kg |   | 105  | 70 - 130 |                |

**Eurofins Midland** 

Prep Type: Total/NA

#### Job ID: 880-25379-1 SDG: Lea County, New Mexico

# **Client Sample ID: Method Blank**

| Client Sample ID: Lab Control Sample |
|--------------------------------------|
| Prep Type: Total/NA                  |
| Pron Batch: 47724                    |

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

# Prep Batch: 47724

| 70 - 130 |  |
|----------|--|
|          |  |

**Client Sample ID: Matrix Spike** 

Client: Carmona Resources Project/Site: West Corbin Federal SWD #16 Release Job ID: 880-25379-1 SDG: Lea County, New Mexico

#### Method: 8021B - Volatile Organic Compounds (GC) (Continued)

|                                          | -1-E MS     |                      |          |          |         |     |        |       |       | Client         | Sample ID: M  |       |        |
|------------------------------------------|-------------|----------------------|----------|----------|---------|-----|--------|-------|-------|----------------|---------------|-------|--------|
| Matrix: Solid                            |             |                      |          |          |         |     |        |       |       |                | Prep Typ      |       |        |
| Analysis Batch: 47864                    |             |                      |          |          |         |     |        |       |       |                | Prep Ba       | itch: | 4772   |
|                                          | Sample S    | -                    |          | Spike    |         | MS  |        |       |       |                | %Rec          |       |        |
| Analyte                                  | Result C    |                      | er       | Added    | Result  | Qua | lifier | Unit  |       | D %Rec         | Limits        |       |        |
| Ethylbenzene                             | <0.00201 L  | J                    |          | 0.100    | 0.1103  |     |        | mg/Kg |       | 110            | 70 - 130      |       |        |
| n-Xylene & p-Xylene                      | <0.00402 L  | J *+                 |          | 0.200    | 0.2336  |     |        | mg/Kg |       | 117            | 70 - 130      |       |        |
| -Xylene                                  | <0.00201 L  | J                    |          | 0.100    | 0.1140  |     |        | mg/Kg |       | 113            | 70 - 130      |       |        |
|                                          | MS M        |                      |          |          |         |     |        |       |       |                |               |       |        |
| Surrogate                                |             | Qualifie             | er       | Limits   |         |     |        |       |       |                |               |       |        |
| 1-Bromofluorobenzene (Surr)              | 119         |                      |          | 70 - 130 |         |     |        |       |       |                |               |       |        |
| ,4-Difluorobenzene (Surr)                | 114         |                      |          | 70 - 130 |         |     |        |       |       |                |               |       |        |
| _ab Sample ID: 880-25400-A               | -1-F MSD    |                      |          |          |         |     |        | (     | Clien | t Sample ID    | : Matrix Spik | e Dup | olicat |
| Matrix: Solid                            |             |                      |          |          |         |     |        |       |       |                | Prep Typ      | e: To | tal/N  |
| Analysis Batch: 47864                    |             |                      |          |          |         |     |        |       |       |                | Prep Ba       | tch:  | 4772   |
|                                          | Sample S    | Sample               | •        | Spike    | MSD     | MSD | )      |       |       |                | %Rec          |       | RP     |
| Analyte                                  | Result C    | Qualifie             | er       | Added    | Result  | Qua | lifier | Unit  |       | D %Rec         | Limits        | RPD   | Lim    |
| Benzene                                  | <0.00201    | J                    |          | 0.0996   | 0.08869 |     |        | mg/Kg |       | 89             | 70 - 130      | 25    | 3      |
| ōluene                                   | <0.00201 l  | J                    |          | 0.0996   | 0.09256 |     |        | mg/Kg |       | 92             | 70 - 130      | 14    | 3      |
| Ethylbenzene                             | <0.00201 l  | J                    |          | 0.0996   | 0.09299 |     |        | mg/Kg |       | 93             | 70 - 130      | 17    | 3      |
| n-Xylene & p-Xylene                      | <0.00402 l  | J *+                 |          | 0.199    | 0.1977  |     |        | mg/Kg |       | 99             | 70 - 130      | 17    | 3      |
| o-Xylene                                 | <0.00201 l  | J                    |          | 0.0996   | 0.09727 |     |        | mg/Kg |       | 97             | 70 - 130      | 16    | (      |
|                                          | MSD N       | ISD                  |          |          |         |     |        |       |       |                |               |       |        |
| Surrogate                                | %Recovery ( | Qualifie             | er       | Limits   |         |     |        |       |       |                |               |       |        |
| 4-Bromofluorobenzene (Surr)              |             |                      |          | 70 - 130 |         |     |        |       |       |                |               |       |        |
| ,4-Difluorobenzene (Surr)                | 104         |                      |          | 70 - 130 |         |     |        |       |       |                |               |       |        |
| ab Sample ID: MB 880-4774                | 43/5-A      |                      |          |          |         |     |        |       |       | Client S       | ample ID: Me  | thod  | Blan   |
| Matrix: Solid                            |             |                      |          |          |         |     |        |       |       |                | Prep Typ      |       |        |
| Analysis Batch: 47854                    |             |                      |          |          |         |     |        |       |       |                | Prep Ba       |       |        |
| -                                        | 1           | ИВ МІ                | в        |          |         |     |        |       |       |                |               |       |        |
| Analyte                                  | Res         | ult Qu               | ualifier | R        | L       | MDL | Unit   |       | D     | Prepared       | Analyzed      |       | Dil Fa |
| Benzene                                  | <0.002      | 200 U                |          | 0.0020   | 0       |     | mg/Kg  |       | (     | 03/03/23 12:51 | 03/06/23 10:4 | -6    |        |
| Toluene                                  | <0.002      | 200 U                |          | 0.0020   | 0       |     | mg/Kg  |       | (     | 03/03/23 12:51 | 03/06/23 10:4 | -6    |        |
| Ethylbenzene                             | <0.002      | 200 U                |          | 0.0020   | 0       |     | mg/Kg  |       | (     | 03/03/23 12:51 | 03/06/23 10:4 | 6     |        |
| n-Xylene & p-Xylene                      | <0.004      |                      |          | 0.0040   |         |     | mg/Kg  |       |       | 03/03/23 12:51 | 03/06/23 10:4 |       |        |
| p-Xylene                                 | <0.002      |                      |          | 0.0020   |         |     | mg/Kg  |       |       | 03/03/23 12:51 | 03/06/23 10:4 |       |        |
| (ylenes, Total                           | < 0.004     |                      |          | 0.0040   |         |     | mg/Kg  |       |       | 03/03/23 12:51 | 03/06/23 10:4 |       |        |
| ·J·····                                  |             |                      |          |          | -       |     |        |       |       |                |               | -     |        |
|                                          |             | ИВ М                 | D        | Lincita  |         |     |        |       |       | Prepared       | Analyzed      |       | Dil Fa |
| Surrogate                                |             | ery Qu               | ualifier | Limits   |         |     |        |       |       |                |               |       |        |
| Surrogate<br>1-Bromofluorobenzene (Surr) | %Recov      | e <b>ry</b> Qu<br>91 | ualifier |          | _       |     |        |       |       | 03/03/23 12:51 | 03/06/23 10:4 | 16    |        |

#### Prep Type: Total/NA Prep Batch: 47743

Analysis Batch: 47854 Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Benzene 0.100 0.08174 70 - 130 mg/Kg 82 Toluene 0.100 0.08747 mg/Kg 87 70 - 130 Ethylbenzene 0.100 0.08886 mg/Kg 89 70 - 130 m-Xylene & p-Xylene 0.200 0.1809 90 70 - 130 mg/Kg

**Eurofins Midland** 

Released to Imaging: 5/12/2023 2:13:52 PM

Lab Sample ID: LCS 880-47743/1-A

# **QC Sample Results**

Client: Carmona Resources Project/Site: West Corbin Federal SWD #16 Release

Job ID: 880-25379-1 SDG: Lea County, New Mexico

#### Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID. LCS 660-47                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                   |                                                                      |          |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                   |                                                                      |          |                                                                                                                          | Prep T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ype: Tot                                                                            | al/NA                                                                           |
| Analysis Batch: 47854                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                   |                                                                      |          |                                                                                                                          | Prep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Batch:                                                                              | 4774:                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Spike                                                                                                                                                                                                                                                                                                                                                                                                                     | LCS                                                                                                                                                                  | LCS                                                                                                                                                                                                                                                                                                                               |                                                                      |          |                                                                                                                          | %Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                     |                                                                                 |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Added                                                                                                                                                                                                                                                                                                                                                                                                                     | Result                                                                                                                                                               | Qualifier                                                                                                                                                                                                                                                                                                                         | Unit                                                                 | D        | %Rec                                                                                                                     | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |                                                                                 |
| o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.100                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.09106                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                   | mg/Kg                                                                |          | 91                                                                                                                       | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                          | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                   |                                                                      |          |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |                                                                                 |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                | %Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Limits                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                   |                                                                      |          |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |                                                                                 |
| 4-Bromofluorobenzene (Surr)                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | quanner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                   |                                                                      |          |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |                                                                                 |
| 1,4-Difluorobenzene (Surr)                                                                                                                                                                                                                                                                                                                                                                                               | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70 - 130<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                   |                                                                      |          |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 101100                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                   |                                                                      |          |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |                                                                                 |
| Lab Sample ID: LCSD 880-4                                                                                                                                                                                                                                                                                                                                                                                                | 7743/2-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                   | Clier                                                                | nt Sam   | ple ID: I                                                                                                                | _ab Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I Sample                                                                            | e Duj                                                                           |
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                   |                                                                      |          |                                                                                                                          | Prep T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ype: Tot                                                                            | al/N                                                                            |
| Analysis Batch: 47854                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                   |                                                                      |          |                                                                                                                          | Prep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Batch:                                                                              | 4774                                                                            |
| -                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Spike                                                                                                                                                                                                                                                                                                                                                                                                                     | LCSD                                                                                                                                                                 | LCSD                                                                                                                                                                                                                                                                                                                              |                                                                      |          |                                                                                                                          | %Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                     | RP                                                                              |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Added                                                                                                                                                                                                                                                                                                                                                                                                                     | Result                                                                                                                                                               | Qualifier                                                                                                                                                                                                                                                                                                                         | Unit                                                                 | D        | %Rec                                                                                                                     | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RPD                                                                                 | Limi                                                                            |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.100                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.09616                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                   | mg/Kg                                                                |          | 96                                                                                                                       | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16                                                                                  | 3                                                                               |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.100                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.09774                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                   | mg/Kg                                                                |          | 98                                                                                                                       | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                  | 3                                                                               |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.100                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.09750                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                   | mg/Kg                                                                |          | 97                                                                                                                       | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                   | 3                                                                               |
| m-Xylene & p-Xylene                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.200                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1991                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                   | mg/Kg                                                                |          | 100                                                                                                                      | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                  | 3                                                                               |
| o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.100                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.09991                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                   | mg/Kg                                                                |          | 100                                                                                                                      | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                   | 3                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                   | 5 5                                                                  |          |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                          | LCSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LCSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                   |                                                                      |          |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                          | %Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Limits                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                   |                                                                      |          |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |                                                                                 |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                   |                                                                      |          |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |                                                                                 |
| 4-Bromofluorobenzene (Surr)                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                   |                                                                      |          |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |                                                                                 |
| 4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4                                                                                                                                                                                                                                                                                                                                  | 98<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70 - 130<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                   |                                                                      |          | Client                                                                                                                   | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     |                                                                                 |
| 4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)                                                                                                                                                                                                                                                                                                                                                                | 98<br>94<br>A-1-A MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                  | MS                                                                                                                                                                   | MS                                                                                                                                                                                                                                                                                                                                |                                                                      |          | Client                                                                                                                   | Prep T<br>Prep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | : Matrix<br>Type: Tot<br>Batch: 4                                                   | al/N/                                                                           |
| 4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-A<br>Matrix: Solid<br>Analysis Batch: 47854                                                                                                                                                                                                                                                                                        | 98<br>94<br>A-1-A MS<br>Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70 <sub>-</sub> 130<br>Spike                                                                                                                                                                                                                                                                                                                                                                                              | MS<br>Result                                                                                                                                                         | MS                                                                                                                                                                                                                                                                                                                                | Unit                                                                 | П        |                                                                                                                          | Prep T<br>Prep<br>%Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ype: Tot                                                                            | al/NA                                                                           |
| 4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4<br>Matrix: Solid<br>Analysis Batch: 47854<br>Analyte                                                                                                                                                                                                                                                                             | 98<br>94<br>A-1-A MS<br>Sample<br>Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70 - 130<br>Spike<br>Added                                                                                                                                                                                                                                                                                                                                                                                                | Result                                                                                                                                                               | Qualifier                                                                                                                                                                                                                                                                                                                         | – Unit                                                               | <u>D</u> | %Rec                                                                                                                     | Prep T<br>Prep<br>%Rec<br>Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ype: Tot                                                                            | al/NA                                                                           |
| 4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4<br>Matrix: Solid<br>Analysis Batch: 47854<br>Analyte<br>Benzene                                                                                                                                                                                                                                                                  | 98<br>94<br>A-1-A MS<br>Sample<br><u>Result</u><br><0.00201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Qualifier<br>U F1 F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70 - 130<br>Spike<br>Added<br>0.100                                                                                                                                                                                                                                                                                                                                                                                       | <b>Result</b><br>0.01414                                                                                                                                             | Qualifier<br>F1                                                                                                                                                                                                                                                                                                                   | mg/Kg                                                                | D        | %Rec<br>13                                                                                                               | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ype: Tot                                                                            | al/NA                                                                           |
| 4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-A<br>Matrix: Solid<br>Analysis Batch: 47854<br>Analyte<br>Benzene<br>Toluene                                                                                                                                                                                                                                                       | 98<br>94<br>A-1-A MS<br>Sample<br><u>Result</u><br><0.00201<br><0.00201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Qualifier<br>U F1 F2<br>U F1 F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70 - 130<br>Spike<br>Added<br>0.100<br>0.100                                                                                                                                                                                                                                                                                                                                                                              | <b>Result</b><br>0.01414<br>0.01149                                                                                                                                  | Qualifier<br>F1<br>F1                                                                                                                                                                                                                                                                                                             | mg/Kg<br>mg/Kg                                                       | D        | <b>%Rec</b><br>13<br>11                                                                                                  | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ype: Tot                                                                            | al/N/                                                                           |
| 4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4<br>Matrix: Solid<br>Analysis Batch: 47854<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene                                                                                                                                                                                                                                       | 98<br>94<br>A-1-A MS<br>Sample<br>Result<br><0.00201<br><0.00201<br><0.00201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Qualifier</b><br>U F1 F2<br>U F1 F2<br>U F1 F2<br>U F1 F2                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70 - 130<br>Spike<br>Added<br>0.100<br>0.100<br>0.100                                                                                                                                                                                                                                                                                                                                                                     | Result<br>0.01414<br>0.01149<br>0.01093                                                                                                                              | Qualifier<br>F1<br>F1<br>F1                                                                                                                                                                                                                                                                                                       | mg/Kg<br>mg/Kg<br>mg/Kg                                              | <u>D</u> | <b>%Rec</b><br>13<br>11<br>11                                                                                            | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ype: Tot                                                                            | al/NA                                                                           |
| 4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4<br>Matrix: Solid<br>Analysis Batch: 47854<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene                                                                                                                                                                                                                | 98<br>94<br>A-1-A MS<br>Sample<br>Result<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><0.00402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Qualifier<br>U F1 F2<br>U F1 F2<br>U F1 F2<br>U F1 F2<br>U F1 F2                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70 - 130<br>Spike<br>Added<br>0.100<br>0.100<br>0.100<br>0.200                                                                                                                                                                                                                                                                                                                                                            | Result           0.01414           0.01149           0.01093           0.008049                                                                                      | Qualifier<br>F1<br>F1<br>F1<br>F1                                                                                                                                                                                                                                                                                                 | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg                                     | <u> </u> | <mark>%Rec</mark><br>13<br>11<br>11<br>4                                                                                 | Prep T           Prep           %Rec           Limits           70 - 130           70 - 130           70 - 130           70 - 130           70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ype: Tot                                                                            | al/NA                                                                           |
| 4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4<br>Matrix: Solid<br>Analysis Batch: 47854<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene                                                                                                                                                                                                                                       | 98<br>94<br>A-1-A MS<br>Sample<br>Result<br><0.00201<br><0.00201<br><0.00201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Qualifier<br>U F1 F2<br>U F1 F2<br>U F1 F2<br>U F1 F2<br>U F1 F2                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70 - 130<br>Spike<br>Added<br>0.100<br>0.100<br>0.100                                                                                                                                                                                                                                                                                                                                                                     | Result<br>0.01414<br>0.01149<br>0.01093                                                                                                                              | Qualifier<br>F1<br>F1<br>F1<br>F1                                                                                                                                                                                                                                                                                                 | mg/Kg<br>mg/Kg<br>mg/Kg                                              | <u> </u> | <b>%Rec</b><br>13<br>11<br>11                                                                                            | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ype: Tot                                                                            | al/NA                                                                           |
| 4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4<br>Matrix: Solid<br>Analysis Batch: 47854<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene                                                                                                                                                                                                                | 98<br>94<br>A-1-A MS<br>Sample<br>Result<br><0.00201<br><0.00201<br><0.00201<br><0.00402<br><0.00201<br>MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Qualifier<br>U F1 F2<br>U F1 F2<br>U F1 F2<br>U F1 F2<br>U F1<br>MS                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 - 130<br>Spike<br>Added<br>0.100<br>0.100<br>0.100<br>0.200                                                                                                                                                                                                                                                                                                                                                            | Result           0.01414           0.01149           0.01093           0.008049                                                                                      | Qualifier<br>F1<br>F1<br>F1<br>F1                                                                                                                                                                                                                                                                                                 | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg                                     | <u> </u> | <mark>%Rec</mark><br>13<br>11<br>11<br>4                                                                                 | Prep T           Prep           %Rec           Limits           70 - 130           70 - 130           70 - 130           70 - 130           70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ype: Tot                                                                            | al/NA                                                                           |
| 4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4<br>Matrix: Solid<br>Analysis Batch: 47854<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene<br>p-Xylene<br>Surrogate                                                                                                                                                                                       | 98<br>94<br>A-1-A MS<br>Sample<br>Result<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br>MS<br>%Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Qualifier<br>U F1 F2<br>U F1 F2<br>U F1 F2<br>U F1 F2<br>U F1<br>MS                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 - 130<br>Spike<br>Added<br>0.100<br>0.100<br>0.200<br>0.100<br>0.200<br>0.100<br>Limits                                                                                                                                                                                                                                                                                                                                | Result           0.01414           0.01149           0.01093           0.008049                                                                                      | Qualifier<br>F1<br>F1<br>F1<br>F1                                                                                                                                                                                                                                                                                                 | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg                                     | <u> </u> | <mark>%Rec</mark><br>13<br>11<br>11<br>4                                                                                 | Prep T           Prep           %Rec           Limits           70 - 130           70 - 130           70 - 130           70 - 130           70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ype: Tot                                                                            | al/NA                                                                           |
| 4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4<br>Matrix: Solid<br>Analysis Batch: 47854<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene<br>p-Xylene                                                                                                                                                                                                    | 98<br>94<br>A-1-A MS<br>Sample<br>Result<br><0.00201<br><0.00201<br><0.00201<br><0.00402<br><0.00201<br>MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Qualifier<br>U F1 F2<br>U F1 F2<br>U F1 F2<br>U F1 F2<br>U F1<br>MS                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 - 130<br>Spike<br>Added<br>0.100<br>0.100<br>0.200<br>0.100<br>0.200<br>0.100<br><u>Limits</u><br>70 - 130                                                                                                                                                                                                                                                                                                             | Result           0.01414           0.01149           0.01093           0.008049                                                                                      | Qualifier<br>F1<br>F1<br>F1<br>F1                                                                                                                                                                                                                                                                                                 | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg                                     | <u>D</u> | <mark>%Rec</mark><br>13<br>11<br>11<br>4                                                                                 | Prep T           Prep           %Rec           Limits           70 - 130           70 - 130           70 - 130           70 - 130           70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ype: Tot                                                                            | al/NA                                                                           |
| 4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4<br>Matrix: Solid<br>Analysis Batch: 47854<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene<br>p-Xylene<br>Surrogate                                                                                                                                                                                       | 98<br>94<br>A-1-A MS<br>Sample<br>Result<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br>MS<br>%Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Qualifier<br>U F1 F2<br>U F1 F2<br>U F1 F2<br>U F1 F2<br>U F1<br>MS                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 - 130<br>Spike<br>Added<br>0.100<br>0.100<br>0.200<br>0.100<br>0.200<br>0.100<br>Limits                                                                                                                                                                                                                                                                                                                                | Result           0.01414           0.01149           0.01093           0.008049                                                                                      | Qualifier<br>F1<br>F1<br>F1<br>F1                                                                                                                                                                                                                                                                                                 | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg                                     | <u>D</u> | <mark>%Rec</mark><br>13<br>11<br>11<br>4                                                                                 | Prep T           Prep           %Rec           Limits           70 - 130           70 - 130           70 - 130           70 - 130           70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ype: Tot                                                                            | al/NA                                                                           |
| 4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4<br>Matrix: Solid<br>Analysis Batch: 47854<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene<br>p-Xylene<br>Surrogate<br>4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)                                                                                                                          | 98<br>94<br>A-1-A MS<br>Sample<br>Result<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br>MS<br>%Recovery<br>112<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Qualifier<br>U F1 F2<br>U F1 F2<br>U F1 F2<br>U F1 F2<br>U F1<br>MS                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 - 130<br>Spike<br>Added<br>0.100<br>0.100<br>0.200<br>0.100<br>0.200<br>0.100<br><u>Limits</u><br>70 - 130                                                                                                                                                                                                                                                                                                             | Result           0.01414           0.01149           0.01093           0.008049                                                                                      | Qualifier<br>F1<br>F1<br>F1<br>F1                                                                                                                                                                                                                                                                                                 | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg                                     |          | %Rec<br>13<br>11<br>11<br>4<br>28                                                                                        | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ype: Tot<br>Batch: 4                                                                | al/N/                                                                           |
| 4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4<br>Matrix: Solid<br>Analysis Batch: 47854<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene<br>o-Xylene<br>Surrogate<br>4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4                                                                                            | 98<br>94<br>A-1-A MS<br>Sample<br>Result<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br>MS<br>%Recovery<br>112<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Qualifier<br>U F1 F2<br>U F1 F2<br>U F1 F2<br>U F1 F2<br>U F1<br>MS                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 - 130<br>Spike<br>Added<br>0.100<br>0.100<br>0.200<br>0.100<br>0.200<br>0.100<br><u>Limits</u><br>70 - 130                                                                                                                                                                                                                                                                                                             | Result           0.01414           0.01149           0.01093           0.008049                                                                                      | Qualifier<br>F1<br>F1<br>F1<br>F1                                                                                                                                                                                                                                                                                                 | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg                                     |          | %Rec<br>13<br>11<br>11<br>4<br>28                                                                                        | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dike Dup                                                                            | al/NA<br>4774:                                                                  |
| 4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4<br>Matrix: Solid<br>Analysis Batch: 47854<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene<br>o-Xylene<br>Surrogate<br>4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4<br>Matrix: Solid                                                                           | 98<br>94<br>A-1-A MS<br>Sample<br>Result<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br>MS<br>%Recovery<br>112<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Qualifier<br>U F1 F2<br>U F1 F2<br>U F1 F2<br>U F1 F2<br>U F1<br>MS                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 - 130<br>Spike<br>Added<br>0.100<br>0.100<br>0.200<br>0.100<br>0.200<br>0.100<br><u>Limits</u><br>70 - 130                                                                                                                                                                                                                                                                                                             | Result           0.01414           0.01149           0.01093           0.008049                                                                                      | Qualifier<br>F1<br>F1<br>F1<br>F1                                                                                                                                                                                                                                                                                                 | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg                                     |          | %Rec<br>13<br>11<br>11<br>4<br>28                                                                                        | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>9: Matrix Sp<br>Prep T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dike Dup                                                                            | licato                                                                          |
| 4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4<br>Matrix: Solid<br>Analysis Batch: 47854<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene<br>o-Xylene<br>Surrogate<br>4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4                                                                                            | 98<br>94<br>A-1-A MS<br>Sample<br>Result<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><i>Skecovery</i><br>112<br>100<br>A-1-B MSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Qualifier<br>U F1 F2<br>U F1 F2<br>U F1 F2<br>U F1 F2<br>U F1<br>MS<br>Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                          | 70 - 130<br>Spike<br>Added<br>0.100<br>0.100<br>0.200<br>0.100<br>0.200<br>0.100<br><u>Limits</u><br>70 - 130<br>70 - 130                                                                                                                                                                                                                                                                                                 | Result<br>0.01414<br>0.01149<br>0.01093<br>0.008049<br>0.02878                                                                                                       | <b>Qualifier</b><br>F1<br>F1<br>F1<br>F1<br>F1<br>F1                                                                                                                                                                                                                                                                              | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg                                     |          | %Rec<br>13<br>11<br>11<br>4<br>28                                                                                        | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>9: Matrix Sp<br>Prep T<br>Prep T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dike Dup                                                                            | licate<br>al/NA<br>4774:                                                        |
| 4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4<br>Matrix: Solid<br>Analysis Batch: 47854<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene<br>o-Xylene<br>Surrogate<br>4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4<br>Matrix: Solid<br>Analysis Batch: 47854                    | 98<br>94<br>A-1-A MS<br>Sample<br>Result<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><i>Sample</i><br>Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Qualifier<br>U F1 F2<br>U F1 F2<br>U F1 F2<br>U F1<br>MS<br>Qualifier<br>Sample                                                                                                                                                                                                                                                                                                                                                                                                                           | 70 - 130<br>Spike<br>Added<br>0.100<br>0.100<br>0.200<br>0.100<br>0.200<br>0.100<br><i>Limits</i><br>70 - 130<br>70 - 130<br>70 - 130                                                                                                                                                                                                                                                                                     | Result<br>0.01414<br>0.01149<br>0.01093<br>0.008049<br>0.02878<br>MSD                                                                                                | Qualifier<br>F1<br>F1<br>F1<br>F1<br>F1<br>F1                                                                                                                                                                                                                                                                                     | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg                                     | ient Sá  | %Rec<br>13<br>11<br>11<br>4<br>28<br>ample ID                                                                            | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>9: Matrix Sp<br>Prep T<br>Prep T<br>Prep T<br>Prep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dike Dup<br>Type: Tot<br>Batch: 4                                                   | licato<br>al/N/<br>4774:<br>4774:<br>al/N/<br>4774:<br>RPI                      |
| 4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4<br>Matrix: Solid<br>Analysis Batch: 47854<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene<br>p-Xylene<br>Surrogate<br>4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4<br>Matrix: Solid<br>Analysis Batch: 47854<br>Analyte         | 98<br>94<br>A-1-A MS<br>Sample<br>Result<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><i>MS</i><br>%Recovery<br>112<br>100<br>A-1-B MSD<br>Sample<br>Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Qualifier<br>U F1 F2<br>U F1 F2<br>U F1 F2<br>U F1<br>MS<br>Qualifier<br>Sample<br>Qualifier                                                                                                                                                                                                                                                                                                                                                                                                              | 70 - 130<br>Spike<br>Added<br>0.100<br>0.100<br>0.200<br>0.100<br>0.200<br>0.100<br><i>Limits</i><br>70 - 130<br>70 - 130<br>70 - 130                                                                                                                                                                                                                                                                                     | Result           0.01414           0.01093           0.008049           0.02878                                                                                      | Qualifier<br>F1<br>F1<br>F1<br>F1<br>F1<br>MSD<br>Qualifier                                                                                                                                                                                                                                                                       | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>Cli                              |          | %Rec<br>13<br>11<br>11<br>4<br>28<br>mple ID                                                                             | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 190<br>70 - 130<br>70 - 170<br>70 - 1 | Dike Dup<br>Type: Tot<br>Batch: 4<br>Dike Dup<br>Type: Tot<br>Batch: 4<br>RPD       | licato<br>al/N/<br>4774:<br>al/N/<br>4774:<br>RPI<br>Limi                       |
| 4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4<br>Matrix: Solid<br>Analysis Batch: 47854<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene<br>p-Xylene<br>Surrogate<br>4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4<br>Matrix: Solid<br>Analysis Batch: 47854<br>Analyte<br>Benzene                            | 98<br>94<br>A-1-A MS<br>Sample<br>Result<br><0.00201<br><0.00201<br><0.00201<br><0.00402<br><0.00201<br>MS<br>%Recovery<br>112<br>100<br>A-1-B MSD<br>Sample<br>Result<br><0.00201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Qualifier           U F1 F2           U F1 F2           U F1 F2           U F1           MS           Qualifier           U U F1 F2                                                                                                                                                                                                                                                                                                                                                                       | 70 - 130         Spike         Added         0.100         0.100         0.100         0.200         0.100         0.200         0.100         0.200         0.100         0.200         0.100         0.200         0.100         Umits         70 - 130         70 - 130         70 - 130         Spike         Added         0.0990                                                                                    | Result           0.01414           0.01093           0.008049           0.02878   MSD Result 0.02767                                                                 | Qualifier<br>F1<br>F1<br>F1<br>F1<br>F1<br>F1<br>F1<br>F1<br>F1<br>F1<br>F1<br>F1<br>F2                                                                                                                                                                                                                                           | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>Cli                              | ient Sá  | %Rec           13           11           11           4           28                                                     | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>9: Matrix Sp<br>Prep T<br>Prep T<br>Prep T<br>Prep T<br>70 - Rec<br>Limits<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | bike Dup<br>Type: Tot<br>Batch: 4<br>Dike Dup<br>Type: Tot<br>Batch: 4<br>RPD<br>65 | licato<br>al/N/<br>4774:<br>licato<br>al/N/<br>4774:<br>RPI<br>Limi<br>3        |
| 4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4<br>Matrix: Solid<br>Analysis Batch: 47854<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene<br>o-Xylene<br>Surrogate<br>4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4<br>Matrix: Solid<br>Analysis Batch: 47854<br>Analyte<br>Benzene<br>Toluene                 | 98<br>94<br>A-1-A MS<br>Sample<br>Result<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><i>MS</i><br><i>%Recovery</i><br>112<br>100<br>A-1-B MSD<br>Sample<br>Result<br><0.00201<br><0.00201<br><0.00201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Qualifier           U F1 F2           U F1 F2           U F1 F2           U F1           MS           Qualifier           U F1 F2           U F1                                                                                                                                                                                                                                                                                                                                                          | 70 - 130         Spike         Added         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         Limits         70 - 130         70 - 130         Spike         Added         0.0990         0.0990 | Result           0.01414           0.01093           0.008049           0.02878             MSD           Result           0.02767           0.01731                 | Qualifier<br>F1<br>F1<br>F1<br>F1<br>F1<br>F1<br>F1<br>F1<br>F1<br>F1<br>F1<br>F2<br>F1 F2                                                                                                                                                                                                                                        | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg          | ient Sá  | %Rec           13           11           11           4           28   ample ID           %Rec           27           17 | Prep T<br>Prep 7<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dike Dup<br>Type: Tot<br>Dike Dup<br>Type: Tot<br>Batch: 4<br>(RPD<br>65<br>40      | licate<br>al/NA<br>47743<br>licate<br>al/NA<br>47743<br>RPI<br>Limi<br>33<br>33 |
| 4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4<br>Matrix: Solid<br>Analysis Batch: 47854<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene<br>o-Xylene<br>Surrogate<br>4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4<br>Matrix: Solid<br>Analysis Batch: 47854<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene | 98<br>94<br>A-1-A MS<br>A-1-A MS<br>A-1-A MS<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Consta | Qualifier           U F1 F2           U F1 F2           U F1 F2           U F1           MS           Qualifier           U F1 F2           U F1           U F1                                                                                                                                                                                                                                                                                                                                           | 70 - 130         Spike         Added         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         Limits         70 - 130         70 - 130         Spike         Added         0.0990         0.0990         0.0990                                                                                                  | Result           0.01414           0.01093           0.008049           0.02878           MSD           Result           0.02767           0.01731           0.01712 | Qualifier           F1           F2           F1           F2           F1 | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg | ient Sá  | %Rec           13           11           11           4           28   ample ID %Rec 27 17 17 17                         | Prep T<br>Prep 7<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>9: Matrix Sp<br>Prep T<br>Prep 7<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | bike Dup<br>Type: Tot<br>Batch: 4<br>Type: Tot<br>Batch: 4<br>65<br>40<br>44        | licate<br>47743<br>iicate<br>al/NA<br>47743<br>RPE<br>Limi<br>38<br>38<br>38    |
| 4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4<br>Matrix: Solid<br>Analysis Batch: 47854<br>Analyte<br>Benzene<br>Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene<br>o-Xylene<br>Surrogate<br>4-Bromofluorobenzene (Surr)<br>1,4-Difluorobenzene (Surr)<br>Lab Sample ID: 880-25414-4<br>Matrix: Solid<br>Analysis Batch: 47854<br>Analyte<br>Benzene<br>Toluene                 | 98<br>94<br>A-1-A MS<br>Sample<br>Result<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><0.00201<br><i>MS</i><br><i>%Recovery</i><br>112<br>100<br>A-1-B MSD<br>Sample<br>Result<br><0.00201<br><0.00201<br><0.00201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Qualifier           U F1 F2           U F1 F2           U F1 F2           U F1           MS           Qualifier           U F1 F2           U F1           U F1 | 70 - 130         Spike         Added         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         0.100         Limits         70 - 130         70 - 130         Spike         Added         0.0990         0.0990 | Result           0.01414           0.01093           0.008049           0.02878             MSD           Result           0.02767           0.01731                 | Qualifier<br>F1<br>F1<br>F1<br>F1<br>F1<br>F1<br>F1<br>F1<br>F1<br>F1                                                                                                                                                                                                                                                             | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg          | ient Sá  | %Rec           13           11           11           4           28   ample ID           %Rec           27           17 | Prep T<br>Prep 7<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dike Dup<br>Type: Tot<br>Dike Dup<br>Type: Tot<br>Batch: 4<br>(RPD<br>65<br>40      | licate<br>al/NA                                                                 |

Eurofins Midland

**Client Sample ID: Lab Control Sample** 

Released to Imaging: 5/12/2023 2:13:52 PM

Lab Sample ID: 880-25414-A-1-B MSD

Lab Sample ID: MB 880-48014/5-A

Matrix: Solid

Matrix: Solid

Analyte Benzene

Toluene

o-Xylene

Surrogate

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)

Surrogate

Analysis Batch: 47854

4-Bromofluorobenzene (Surr)

Analysis Batch: 48085

1,4-Difluorobenzene (Surr)

## **QC Sample Results**

Limits

70 - 130

Client: Carmona Resources Project/Site: West Corbin Federal SWD #16 Release

## Method: 8021B - Volatile Organic Compounds (GC) (Continued)

MSD MSD

72

%Recovery Qualifier

120

Job ID: 880-25379-1 SDG: Lea County, New Mexico

| 106       |           | 70 - 130 |     |       |   |                |                                              |          | 7  |
|-----------|-----------|----------|-----|-------|---|----------------|----------------------------------------------|----------|----|
|           |           |          |     |       |   | Client Sa      | mple ID: Metho<br>Prep Type: 1<br>Prep Batch | Total/NA | 8  |
| МВ        | МВ        |          |     |       |   |                |                                              |          | 9  |
| Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed                                     | Dil Fac  |    |
| <0.00200  | U         | 0.00200  |     | mg/Kg |   | 03/07/23 10:17 | 03/08/23 22:54                               | 1        | 10 |
| <0.00200  | U         | 0.00200  |     | mg/Kg |   | 03/07/23 10:17 | 03/08/23 22:54                               | 1        | 1U |
| <0.00200  | U         | 0.00200  |     | mg/Kg |   | 03/07/23 10:17 | 03/08/23 22:54                               | 1        |    |
| <0.00400  | U         | 0.00400  |     | mg/Kg |   | 03/07/23 10:17 | 03/08/23 22:54                               | 1        | 11 |
| <0.00200  | U         | 0.00200  |     | mg/Kg |   | 03/07/23 10:17 | 03/08/23 22:54                               | 1        |    |
| <0.00400  | U         | 0.00400  |     | mg/Kg |   | 03/07/23 10:17 | 03/08/23 22:54                               | 1        |    |
| МВ        | МВ        |          |     |       |   |                |                                              |          | 13 |
| %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed                                     | Dil Fac  |    |
| 83        |           | 70 - 130 |     |       |   | 03/07/23 10:17 | 03/08/23 22:54                               | 1        |    |

#### Lab Sample ID: LCS 880-48014/1-A Matrix: Solid Analysis Batch: 48085

| Analysis Batch: 48085 |          |        |           |       |   |      |          | tch: 48014 |
|-----------------------|----------|--------|-----------|-------|---|------|----------|------------|
|                       | Spike    | LCS    | LCS       |       |   |      | %Rec     |            |
| Analyte               | Added    | Result | Qualifier | Unit  | D | %Rec | Limits   |            |
| Benzene               | 0.100    | 0.1104 |           | mg/Kg |   | 110  | 70 - 130 |            |
| Toluene               | 0.100    | 0.1004 |           | mg/Kg |   | 100  | 70 - 130 |            |
| Ethylbenzene          | 0.100    | 0.1272 |           | mg/Kg |   | 127  | 70 - 130 |            |
| m-Xylene & p-Xylene   | 0.200    | 0.2872 | *+        | mg/Kg |   | 144  | 70 - 130 |            |
| o-Xylene              | 0.100    | 0.1505 | *+        | mg/Kg |   | 151  | 70 - 130 |            |
|                       | <u> </u> |        |           |       |   |      |          |            |

70 - 130

|                             | LCS       | LCS       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 153       | S1+       | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 93        |           | 70 - 130 |

#### Lab Sample ID: LCSD 880-48014/2-A Matrix: Solid Analysis Batch: 48085

| Client Sample ID: Lab Control Sample Dup |  |
|------------------------------------------|--|
| Prep Type: Total/NA                      |  |
| Pren Batch: 48014                        |  |

03/07/23 10:17

03/08/23 22:54

Prep Type: Total/NA

**Client Sample ID: Lab Control Sample** 

| Analysis Batch: 46065 |             |       |       |         |           |       |   |      | Prep     | Batch: | 40014 |
|-----------------------|-------------|-------|-------|---------|-----------|-------|---|------|----------|--------|-------|
|                       |             |       | Spike | LCSD    | LCSD      |       |   |      | %Rec     |        | RPD   |
| Analyte               |             |       | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |
| Benzene               |             |       | 0.100 | 0.1080  |           | mg/Kg |   | 108  | 70 - 130 | 2      | 35    |
| Toluene               |             |       | 0.100 | 0.09981 |           | mg/Kg |   | 100  | 70 - 130 | 1      | 35    |
| Ethylbenzene          |             |       | 0.100 | 0.1247  |           | mg/Kg |   | 125  | 70 - 130 | 2      | 35    |
| m-Xylene & p-Xylene   |             |       | 0.200 | 0.2786  | *+        | mg/Kg |   | 139  | 70 - 130 | 3      | 35    |
| o-Xylene              |             |       | 0.100 | 0.1426  | *+        | mg/Kg |   | 143  | 70 - 130 | 5      | 35    |
|                       | LCSD        | LCSD  |       |         |           |       |   |      |          |        |       |
|                       | a( <b>B</b> | 0 110 |       |         |           |       |   |      |          |        |       |

| Surrogate                   | %Recovery Qualifier | Limits   |
|-----------------------------|---------------------|----------|
| 4-Bromofluorobenzene (Surr) | 130                 | 70 - 130 |

**Eurofins Midland** 

Client: Carmona Resources Project/Site: West Corbin Federal SWD #16 Release

## Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| 1,4-Difluorobenzene (Surr)         Lab Sample ID: 880-25537-A-41-G M         Matrix: Solid         Analysis Batch: 48085         Analyte         Benzene         Toluene         Ethylbenzene         -Xylene & p-Xylene         o-Xylene         Surrogate         4-Bromofluorobenzene (Surr)         1,4-Difluorobenzene (Surr)         Lab Sample ID: 880-25537-A-41-H M         Matrix: Solid         Analysis Batch: 48085         Analyte         Benzene       <         Coluene       <         Coluene       <         Coluene       <         Matrix: Solid       Analysis Batch: 48085         Analyte          Benzene       <         Toluene       <         Matrix: Solid          Analysis Batch: 48085          Matrix: Solid          Analyte          Benzene       <         Matrix: Solid          Analyse       <         Benzene       <         Matrix: Solid          Benzene       <         Matrix: Solid | Recovery         92           92         1S           Sample         Result           0000202         0000202           0000202         0000002           0000002         0000002           0000002         0000002           0000002         MS           Recovery         144           67         67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sampl<br>Qualifi<br>U F2 F<br>U F2 F<br>U *+ F<br>U *+<br>MS<br>Qualifi                         | fier                         | Limits<br>70 - 130<br>Spike<br>Added<br>0.101<br>0.101<br>0.101<br>0.202<br>0.101<br>Limits<br>70 - 130<br>70 - 130                                                                       | MS<br>Result<br>0.03255<br>0.05145<br>0.08431<br>0.1659<br>0.09348 | F1          | ifier | Unit<br>mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg |          | D        | <b>Client \$</b><br>% <b>Rec</b><br>32<br>51<br>83<br>82<br>93 | Sample ID:<br>Prep T                                                                                                              | Batch:<br>Matrix<br>ype: To<br>Batch: | Spike<br>tal/NA         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------|-------|------------------------------------------|----------|----------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------|
| 1,4-Difluorobenzene (Surr)         Lab Sample ID: 880-25537-A-41-G M         Matrix: Solid         Analysis Batch: 48085         Analyte         Benzene       <         Toluene       <         Ethylbenzene       <         Matrix: Solid       %Re         Surrogate       %Re         4-Bromofluorobenzene (Surr)          1,4-Difluorobenzene (Surr)          Lab Sample ID: 880-25537-A-41-H M       Matrix: Solid         Analysis Batch: 48085          Analyte          Benzene       <         Coluene       <         Matrix: Solid          Analysis Batch: 48085          Matrix: Solid          Analyse          Benzene       <         Toluene       <         Matrix: Solid          Analyse       <         Matrix: Solid          Analyse       <         Matrix: Solid          Analyse       <         Matrix: Solid          Analyse       <         Matrixi Solid                                              | Recovery         92           92         1S           Sample         Result           0000202         0000202           0000202         0000002           0000002         0000002           0000002         0000002           0000002         MS           Recovery         144           67         67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Qualifi<br>Qualifi<br>U F2 F<br>U F2 F<br>U *+ F<br>U *+<br>MS<br>Qualifi<br>S1+                | fier                         | 70 - 130<br>Spike<br>Added<br>0.101<br>0.101<br>0.101<br>0.202<br>0.101<br>Limits<br>70 - 130                                                                                             | Result<br>0.03255<br>0.05145<br>0.08431<br>0.1659                  | Quali<br>F1 | ifier | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg         |          | <u>D</u> | <b>%Rec</b><br>32<br>51<br>83<br>82                            | Prep T           Prep           %Rec           Limits           70 - 130           70 - 130           70 - 130           70 - 130 | ype: To                               | tal/NA                  |
| 1,4-Difluorobenzene (Surr)         Lab Sample ID: 880-25537-A-41-G M         Matrix: Solid         Analysis Batch: 48085         Analyte         Benzene       <         Toluene       <         Ethylbenzene       <         w.Xylene & p-Xylene       <         o-Xylene       <         Surrogate       %Re         4-Bromofluorobenzene (Surr)          1,4-Difluorobenzene (Surr)          Lab Sample ID: 880-25537-A-41-H M       Matrix: Solid         Analysis Batch: 48085          Analyte          Benzene       <         Toluene       <         Matrix: Solid          Analysis Batch: 48085          Matrix: Solid          Analyse          Benzene       <         Toluene       <         Toluene       <         m-Xylene & p-Xylene       <                                                                                                                                                                       | 92<br>92<br>IS<br>Sample<br>Result<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0 | Sampl<br>Qualifi<br>U F2 F<br>U F2 F<br>U<br>U *+ F<br>U *+<br>MS<br>Qualifi<br>S1+             | le<br>fier<br>F1<br>F1<br>F1 | 70 - 130<br>Spike<br>Added<br>0.101<br>0.101<br>0.101<br>0.202<br>0.101<br>Limits<br>70 - 130                                                                                             | Result<br>0.03255<br>0.05145<br>0.08431<br>0.1659                  | Quali<br>F1 | ifier | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg         |          | <u>D</u> | <b>%Rec</b><br>32<br>51<br>83<br>82                            | Prep T           Prep           %Rec           Limits           70 - 130           70 - 130           70 - 130           70 - 130 | ype: To                               | tal/NA                  |
| Lab Sample ID: 880-25537-A-41-G M         Matrix: Solid         Analysis Batch: 48085         Analyte         Benzene       <         Toluene       <         Ethylbenzene       <         o-Xylene & p-Xylene       <         o-Xylene       <         Analysis Batch: 48085       %Re         4-Bromofluorobenzene (Surr)          1,4-Difluorobenzene (Surr)          Lab Sample ID: 880-25537-A-41-H M       Matrix: Solid         Analysis Batch: 48085          Analyte          Benzene       <         Toluene       <         Matrix: Solid          Analysis Batch: 48085          Matrix: Solid          Analyse          Benzene       <         Toluene       <         Chylene & p-Xylene       <                                                                                                                                                                                                                       | Sample<br>Result<br>0.00202<br>0.00202<br>0.00202<br>0.00202<br>0.00404<br>0.00202<br>MS<br>Recovery<br>144<br>67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sampl<br>Qualifi<br>U F2 F<br>U F2 F<br>U<br>U *+ F<br>U *+<br>MS<br>Qualifi<br>S1+             | fier<br>F1<br>F1<br>F1<br>₽  | Spike           Added           0.101           0.101           0.101           0.101           0.101           0.101           0.202           0.101           Limits           70 - 130 | Result<br>0.03255<br>0.05145<br>0.08431<br>0.1659                  | Quali<br>F1 | ifier | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg         |          | <u>D</u> | <b>%Rec</b><br>32<br>51<br>83<br>82                            | Prep T           Prep           %Rec           Limits           70 - 130           70 - 130           70 - 130           70 - 130 | ype: To                               | tal/NA                  |
| Matrix: Solid         Analysis Batch: 48085         Analyte         Benzene       <         Toluene       <         Ethylbenzene       <         m-Xylene & p-Xylene       <         o-Xylene       <         Surrogate       %Ref         4-Bromofluorobenzene (Surr)          1,4-Difluorobenzene (Surr)          Lab Sample ID: 880-25537-A-41-H Mi       Matrix: Solid         Analysis Batch: 48085          Analyte          Benzene       <         Toluene       <         Matrix: Solid          Analyte          Benzene       <         Toluene       <         Matrixe          Benzene       <         Toluene       <         Ethylbenzene       <         m-Xylene & p-Xylene       <                                                                                                                                                                                                                                  | Sample<br>Result<br>0.00202<br>0.00202<br>0.00202<br>0.00404<br>0.00202<br>MS<br>Recovery<br>144<br>67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Qualifi</b><br>U F2 F<br>U F2 F<br>U<br>U *+ F<br>U *+<br><b>MS</b><br><b>Qualifi</b><br>S1+ | fier<br>F1<br>F1<br>F1<br>₽  | Added           0.101           0.101           0.101           0.202           0.101           Limits           70 - 130                                                                 | Result<br>0.03255<br>0.05145<br>0.08431<br>0.1659                  | Quali<br>F1 | ifier | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg         |          | <u>D</u> | <b>%Rec</b><br>32<br>51<br>83<br>82                            | Prep T           Prep           %Rec           Limits           70 - 130           70 - 130           70 - 130           70 - 130 | ype: To                               | tal/NA                  |
| Matrix: Solid         Analysis Batch: 48085         Analyte         Benzene       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample<br>Result<br>0.00202<br>0.00202<br>0.00202<br>0.00404<br>0.00202<br>MS<br>Recovery<br>144<br>67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Qualifi</b><br>U F2 F<br>U F2 F<br>U<br>U *+ F<br>U *+<br><b>MS</b><br><b>Qualifi</b><br>S1+ | fier<br>F1<br>F1<br>F1<br>₽  | Added           0.101           0.101           0.101           0.202           0.101           Limits           70 - 130                                                                 | Result<br>0.03255<br>0.05145<br>0.08431<br>0.1659                  | Quali<br>F1 | ifier | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg         |          | <u>D</u> | <b>%Rec</b><br>32<br>51<br>83<br>82                            | Prep T           Prep           %Rec           Limits           70 - 130           70 - 130           70 - 130           70 - 130 | ype: To                               | tal/NA                  |
| Analyte         Benzene       <()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Result           0.00202           0.00202           0.00202           0.00202           0.00202           0.0044           0.00202           0.00202           0.00202           0.00202           0.00202           0.00202           0.00202           0.00202           0.00202           0.00202           MS           Pecovery           144           67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>Qualifi</b><br>U F2 F<br>U F2 F<br>U<br>U *+ F<br>U *+<br><b>MS</b><br><b>Qualifi</b><br>S1+ | fier<br>F1<br>F1<br>F1<br>₽  | Added           0.101           0.101           0.101           0.202           0.101           Limits           70 - 130                                                                 | Result<br>0.03255<br>0.05145<br>0.08431<br>0.1659                  | Quali<br>F1 | ifier | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg         |          | <u>D</u> | 32<br>51<br>83<br>82                                           | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130                                                            |                                       |                         |
| Analyte         Benzene       <(         Benzene       <(         Toluene       <(         Ethylbenzene       <(         m-Xylene & p-Xylene       <(         o-Xylene       <(         Surrogate       %Red         4-Bromofiluorobenzene (Surr)       1,4-Difluorobenzene (Surr)         1,4-Difluorobenzene (Surr)          Lab Sample ID: 880-25537-A-41-H M       Matrix: Solid         Analysis Batch: 48085          Analysis Batch: 48085          Enzene       <(         Toluene       <(         Ethylbenzene       <(         m-Xylene & p-Xylene       <(                                                                                                                                                                                                                                                                                                                                                                | Result           0.00202           0.00202           0.00202           0.00202           0.00202           0.0044           0.00202           0.00202           0.00202           0.00202           0.00202           0.00202           0.00202           0.00202           0.00202           0.00202           MS           Pecovery           144           67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>Qualifi</b><br>U F2 F<br>U F2 F<br>U<br>U *+ F<br>U *+<br><b>MS</b><br><b>Qualifi</b><br>S1+ | fier<br>F1<br>F1<br>F1<br>₽  | Added           0.101           0.101           0.101           0.202           0.101           Limits           70 - 130                                                                 | Result<br>0.03255<br>0.05145<br>0.08431<br>0.1659                  | Quali<br>F1 | ifier | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg         |          | <u>D</u> | 32<br>51<br>83<br>82                                           | %Rec           Limits           70 - 130           70 - 130           70 - 130           70 - 130           70 - 130              |                                       |                         |
| Benzene       <         Toluene       <         Toluene       <         Ethylbenzene       <         m-Xylene & p-Xylene       <         o-Xylene       <         o-Xylene       <         Surrogate       %Re         4-Bromofluorobenzene (Surr)          1,4-Difluorobenzene (Surr)          Lab Sample ID: 880-25537-A-41-H M          Matrix: Solid          Analysis Batch: 48085          Analyte          Benzene       <         Toluene       <         Ethylbenzene       <         m-Xylene & p-Xylene       <                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00202<br>0.00202<br>0.00202<br>0.00404<br>0.00202<br><b>MS</b><br>Recovery<br>144<br>67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U F2 F<br>U F2 F<br>U<br>U *+ F<br>U *+<br>MS<br>Qualifi<br>S1+                                 | F1<br>F1<br>F2               | 0.101<br>0.101<br>0.202<br>0.101<br><i>Limits</i><br>70 - 130                                                                                                                             | 0.03255<br>0.05145<br>0.08431<br>0.1659                            | F1          | ifier | mg/Kg<br>mg/Kg<br>mg/Kg<br>mg/Kg         |          | <u>D</u> | 32<br>51<br>83<br>82                                           | 70 - 130<br>70 - 130<br>70 - 130<br>70 - 130                                                                                      |                                       |                         |
| Toluene       <0         Ethylbenzene       <0         m-Xylene & p-Xylene       <0         o-Xylene       <0         Surrogate       %Re         4-Bromofluorobenzene (Surr)          1,4-Difluorobenzene (Surr)          Lab Sample ID: 880-25537-A-41-H M          Matrix: Solid          Analysis Batch: 48085          Analyte          Benzene       <0         Toluene       <0         Ethylbenzene       <0         M-Xylene & p-Xylene       <0                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00202<br>0.00202<br>0.00404<br>0.00202<br>MS<br>Recovery<br>144<br>67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U F2 F<br>U<br>U *+ F<br>U *+<br>MS<br>Qualifi<br>S1+                                           | F1<br>F2                     | 0.101<br>0.101<br>0.202<br>0.101<br><i>Limits</i><br>70 - 130                                                                                                                             | 0.05145<br>0.08431<br>0.1659                                       |             |       | mg/Kg<br>mg/Kg<br>mg/Kg                  |          |          | 51<br>83<br>82                                                 | 70 - 130<br>70 - 130<br>70 - 130                                                                                                  |                                       |                         |
| Ethylbenzene       <0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00202<br>0.00404<br>0.00202<br>MS<br>Recovery<br>144<br>67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U<br>U *+ F<br>U *+<br><b>MS</b><br><u>Qualifi</u><br>S1+                                       | -2                           | 0.101<br>0.202<br>0.101<br><i>Limits</i><br>70 - 130                                                                                                                                      | 0.08431<br>0.1659                                                  | F1          |       | mg/Kg<br>mg/Kg                           |          |          | 83<br>82                                                       | 70 - 130<br>70 - 130                                                                                                              |                                       |                         |
| m-Xylene & p-Xylene <       o-Xylene        o-Xylene        Surrogate     %Re       4-Bromofluorobenzene (Surr)        1,4-Difluorobenzene (Surr)        Lab Sample ID: 880-25537-A-41-H M     Matrix: Solid       Analysis Batch: 48085        Analyte        Benzene     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00404<br>0.00202<br>MS<br><u>Recovery</u><br>144<br>67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U *+ F<br>U *+<br>MS<br>Qualifi<br>S1+                                                          |                              | 0.202<br>0.101<br><i>Limits</i><br>70 - 130                                                                                                                                               | 0.1659                                                             |             |       | mg/Kg<br>mg/Kg                           |          |          | 82                                                             | 70 - 130                                                                                                                          |                                       |                         |
| o-Xylene    Surrogate %Re   4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)   1,4-Difluorobenzene (Surr)   Lab Sample ID: 880-25537-A-41-H M   Matrix: Solid   Analysis Batch: 48085   Analyte   Benzene   Toluene   C   thylbenzene   -   m-Xylene & p-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00202<br>MS<br>2ecovery<br>144<br>67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U *+<br>MS<br>Qualifi<br>S1+                                                                    |                              | 0.101<br>Limits<br>70 - 130                                                                                                                                                               |                                                                    |             |       | mg/Kg                                    |          |          |                                                                |                                                                                                                                   |                                       |                         |
| o-Xylene    Surrogate %Re   4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)   1,4-Difluorobenzene (Surr)   Lab Sample ID: 880-25537-A-41-H M   Matrix: Solid   Analysis Batch: 48085   Analyte   Benzene   Toluene   C   thylbenzene   -   m-Xylene & p-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00202<br>MS<br>2ecovery<br>144<br>67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U *+<br>MS<br>Qualifi<br>S1+                                                                    |                              | 0.101<br>Limits<br>70 - 130                                                                                                                                                               |                                                                    |             |       |                                          |          |          |                                                                |                                                                                                                                   |                                       |                         |
| Surrogate       %Ref         4-Bromofluorobenzene (Surr)       1,4-Difluorobenzene (Surr)         1,4-Difluorobenzene (Surr)       1,4-Difluorobenzene (Surr)         Lab Sample ID: 880-25537-A-41-H M       Matrix: Solid         Analysis Batch: 48085       4000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MS<br>Pecovery<br>144<br>67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>MS</b><br>Qualifi<br>S1+                                                                     | fier                         | Limits<br>70 - 130                                                                                                                                                                        |                                                                    |             |       |                                          |          |          |                                                                |                                                                                                                                   |                                       |                         |
| 4-Bromofluorobenzene (Surr)         1,4-Difluorobenzene (Surr)         Lab Sample ID: 880-25537-A-41-H M         Matrix: Solid         Analysis Batch: 48085         Analyte         Benzene       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2ecovery<br>144<br>67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>Qualif</b><br>S1+                                                                            | fier                         | 70 - 130                                                                                                                                                                                  |                                                                    |             |       |                                          |          |          |                                                                |                                                                                                                                   |                                       |                         |
| 4-Bromofluorobenzene (Surr)         1,4-Difluorobenzene (Surr)         Lab Sample ID: 880-25537-A-41-H M         Matrix: Solid         Analysis Batch: 48085         Analyte         Benzene       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 144<br>67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S1+                                                                                             | fier                         | 70 - 130                                                                                                                                                                                  |                                                                    |             |       |                                          |          |          |                                                                |                                                                                                                                   |                                       |                         |
| 1,4-Difluorobenzene (Surr)         Lab Sample ID: 880-25537-A-41-H M         Matrix: Solid         Analysis Batch: 48085         Analyte         Benzene       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                 |                              |                                                                                                                                                                                           |                                                                    |             |       |                                          |          |          |                                                                |                                                                                                                                   |                                       |                         |
| Lab Sample ID: 880-25537-A-41-H M         Matrix: Solid         Analysis Batch: 48085         Analyte         Benzene       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S1-                                                                                             |                              | 70 - 130                                                                                                                                                                                  |                                                                    |             |       |                                          |          |          |                                                                |                                                                                                                                   |                                       |                         |
| Matrix: Solid         Analysis Batch: 48085         Analyte         Benzene       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ISD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                 |                              |                                                                                                                                                                                           |                                                                    |             |       |                                          |          |          |                                                                |                                                                                                                                   |                                       |                         |
| Analyte         Benzene       <0         Toluene       <0         Ethylbenzene       <0         m-Xylene & p-Xylene       <0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                 |                              |                                                                                                                                                                                           |                                                                    |             |       | C                                        | Clie     | nt Sa    | ample ID:                                                      |                                                                                                                                   | ike Dup<br>ype: To<br>Batch:          | tal/NA                  |
| Benzene     <(       Toluene     <(       Ethylbenzene     <(       m-Xylene & p-Xylene     <(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sampl                                                                                           | le                           | Spike                                                                                                                                                                                     | MSD                                                                | MSD         |       |                                          |          |          |                                                                | %Rec                                                                                                                              |                                       | RPD                     |
| Toluene     <0       Ethylbenzene     <0       m-Xylene & p-Xylene     <0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Qualifi                                                                                         | fier                         | Added                                                                                                                                                                                     | Result                                                             | Quali       | ifier | Unit                                     |          | D        | %Rec                                                           | Limits                                                                                                                            | RPD                                   | Limit                   |
| Ethylbenzene <(<br>m-Xylene & p-Xylene <(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U F2 F                                                                                          | F1                           | 0.0994                                                                                                                                                                                    | 0.06294                                                            | F2 F1       | 1     | mg/Kg                                    |          | _        | 63                                                             | 70 - 130                                                                                                                          | 64                                    | 35                      |
| m-Xylene & p-Xylene <(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U F2 F                                                                                          | F1                           | 0.0994                                                                                                                                                                                    | 0.07591                                                            | F2          |       | mg/Kg                                    |          |          | 76                                                             | 70 - 130                                                                                                                          | 38                                    | 35                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                               |                              | 0.0994                                                                                                                                                                                    | 0.1155                                                             |             |       | mg/Kg                                    |          |          | 116                                                            | 70 - 130                                                                                                                          | 31                                    | 35                      |
| o-Xylene <(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U *+ F                                                                                          | 2                            | 0.199                                                                                                                                                                                     | 0.2472                                                             | F2          |       | mg/Kg                                    |          |          | 124                                                            | 70 - 130                                                                                                                          | 39                                    | 35                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U *+                                                                                            |                              | 0.0994                                                                                                                                                                                    | 0.1256                                                             |             |       | mg/Kg                                    |          |          | 126                                                            | 70 - 130                                                                                                                          | 29                                    | 35                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MSD                                                                                             |                              |                                                                                                                                                                                           |                                                                    |             |       |                                          |          |          |                                                                |                                                                                                                                   |                                       |                         |
| Surrogate %Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ecovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                 | fier                         | Limits                                                                                                                                                                                    |                                                                    |             |       |                                          |          |          |                                                                |                                                                                                                                   |                                       |                         |
| 4-Bromofluorobenzene (Surr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S1+                                                                                             |                              | 70 - 130                                                                                                                                                                                  |                                                                    |             |       |                                          |          |          |                                                                |                                                                                                                                   |                                       |                         |
| 1,4-Difluorobenzene (Surr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                               |                              | 70 - 130                                                                                                                                                                                  |                                                                    |             |       |                                          |          |          |                                                                |                                                                                                                                   |                                       |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                 |                              | 101100                                                                                                                                                                                    |                                                                    |             |       |                                          |          |          |                                                                |                                                                                                                                   |                                       |                         |
| Lab Sample ID: MB 880-48088/5-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                 |                              |                                                                                                                                                                                           |                                                                    |             |       |                                          |          |          | Client Sa                                                      | ample ID: I                                                                                                                       | Method                                | Blank                   |
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                 |                              |                                                                                                                                                                                           |                                                                    |             |       |                                          |          |          |                                                                |                                                                                                                                   | ype: To                               |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                 |                              |                                                                                                                                                                                           |                                                                    |             |       |                                          |          |          |                                                                |                                                                                                                                   |                                       |                         |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MB N                                                                                            | мв                           |                                                                                                                                                                                           |                                                                    |             |       |                                          |          |          |                                                                | r.                                                                                                                                |                                       |                         |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | esult C                                                                                         | Qualifier                    |                                                                                                                                                                                           | RL                                                                 | MDL         | Unit  |                                          | D        | P        | repared                                                        | Analyz                                                                                                                            | ed                                    | Dil Fac                 |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0200 L                                                                                          | U                            | 0.00                                                                                                                                                                                      |                                                                    |             | mg/Kg |                                          | _        |          | 8/23 09:05                                                     | 03/08/23                                                                                                                          |                                       | 1                       |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0200 L                                                                                          |                              | 0.00                                                                                                                                                                                      |                                                                    |             | mg/Kg |                                          |          |          | 8/23 09:05                                                     | 03/08/23                                                                                                                          |                                       | 1                       |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 | U                            | 0.00                                                                                                                                                                                      |                                                                    |             | mg/Kg |                                          |          |          | 8/23 09:05                                                     | 03/08/23                                                                                                                          |                                       | 1                       |
| Analysis Batch: 48085 Analyte Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{1}{100000}$                                                                              | Qualifier<br>U               |                                                                                                                                                                                           | 200                                                                |             | mg/Kg |                                          | <u>D</u> | 03/0     | 8/23 09:05                                                     | Analyzo                                                                                                                           | Batch:<br>ed<br>11:09                 | <b>48088</b><br>Dil Fac |

| m-Xylene & p-Xylene         | <0.00400  | U         | 0.00400  | mg/Kg | 03/08/23 09:05 | 03/08/23 11:09 | 1       |
|-----------------------------|-----------|-----------|----------|-------|----------------|----------------|---------|
| o-Xylene                    | <0.00200  | U         | 0.00200  | mg/Kg | 03/08/23 09:05 | 03/08/23 11:09 | 1       |
| Xylenes, Total              | <0.00400  | U         | 0.00400  | mg/Kg | 03/08/23 09:05 | 03/08/23 11:09 | 1       |
|                             | МВ        | МВ        |          |       |                |                |         |
| Surrogate                   | %Recovery | Qualifier | Limits   |       | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 101       |           | 70 - 130 |       | 03/08/23 09:05 | 03/08/23 11:09 | 1       |
| 1,4-Difluorobenzene (Surr)  | 82        |           | 70 - 130 |       | 03/08/23 09:05 | 03/08/23 11:09 | 1       |

Eurofins Midland

Job ID: 880-25379-1 SDG: Lea County, New Mexico

3/9/2023

Released to Imaging: 5/12/2023 2:13:52 PM

Client: Carmona Resources Project/Site: West Corbin Federal SWD #16 Release Job ID: 880-25379-1 SDG: Lea County, New Mexico

**Client Sample ID: Matrix Spike** 

**Client Sample ID: Matrix Spike Duplicate** 

Prep Type: Total/NA

#### Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: LCS 880-48      | 088/1-A   |           |          |         |           |       | Client | Sample      | ID: Lab C  | ontrol Samp   |
|--------------------------------|-----------|-----------|----------|---------|-----------|-------|--------|-------------|------------|---------------|
| Matrix: Solid                  |           |           |          |         |           |       |        |             | Prep 1     | Type: Total/I |
| Analysis Batch: 48085          |           |           |          |         |           |       |        |             | Prep       | Batch: 480    |
|                                |           |           | Spike    | LCS     | LCS       |       |        |             | %Rec       |               |
| Analyte                        |           |           | Added    | Result  | Qualifier | Unit  | D      | %Rec        | Limits     |               |
| Benzene                        |           |           | 0.100    | 0.09294 |           | mg/Kg |        | 93          | 70 - 130   |               |
| Toluene                        |           |           | 0.100    | 0.09646 |           | mg/Kg |        | 96          | 70 - 130   |               |
| Ethylbenzene                   |           |           | 0.100    | 0.1056  |           | mg/Kg |        | 106         | 70 - 130   |               |
| m-Xylene & p-Xylene            |           |           | 0.200    | 0.2195  |           | mg/Kg |        | 110         | 70 - 130   |               |
| o-Xylene                       |           |           | 0.100    | 0.1058  |           | mg/Kg |        | 106         | 70 - 130   |               |
|                                | LCS       | LCS       |          |         |           |       |        |             |            |               |
| Surrogate                      | %Recovery | Qualifier | Limits   |         |           |       |        |             |            |               |
| 4-Bromofluorobenzene (Surr)    | 99        |           | 70 _ 130 |         |           |       |        |             |            |               |
| 1,4-Difluorobenzene (Surr)     | 84        |           | 70 - 130 |         |           |       |        |             |            |               |
| _<br>Lab Sample ID: LCSD 880-4 | 8088/2-A  |           |          |         |           | Clie  | nt Sam | ple ID:     | Lab Contro | ol Sample D   |
| Matrix: Solid                  |           |           |          |         |           |       |        |             |            | Type: Total/I |
| Analysis Batch: 48085          |           |           |          |         |           |       |        |             |            | Batch: 480    |
| •                              |           |           | Spike    | LCSD    | LCSD      |       |        |             | %Rec       | R             |
| <b>•</b> • •                   |           |           |          |         | 0         |       | _      | a/ <b>B</b> |            |               |

|                     | Spike | LCSD    | LCSD      |       |   |      | %Rec     |     | RPD   |
|---------------------|-------|---------|-----------|-------|---|------|----------|-----|-------|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |
| Benzene             | 0.100 | 0.1053  |           | mg/Kg |   | 105  | 70 - 130 | 12  | 35    |
| Toluene             | 0.100 | 0.09354 |           | mg/Kg |   | 94   | 70 - 130 | 3   | 35    |
| Ethylbenzene        | 0.100 | 0.09816 |           | mg/Kg |   | 98   | 70 - 130 | 7   | 35    |
| m-Xylene & p-Xylene | 0.200 | 0.2025  |           | mg/Kg |   | 101  | 70 - 130 | 8   | 35    |
| o-Xylene            | 0.100 | 0.09782 |           | mg/Kg |   | 98   | 70 - 130 | 8   | 35    |

|                             | LCSD      | LCSD      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 91        |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 112       |           | 70 - 130 |

#### Lab Sample ID: 880-25091-A-29-D MS Matrix: Solid Analysis Batch: 48085

| Analysis Batch: 48085 |          |           |       |         |           |       |   |      | Prep Ba  | atch: 48088 |
|-----------------------|----------|-----------|-------|---------|-----------|-------|---|------|----------|-------------|
|                       | Sample   | Sample    | Spike | MS      | MS        |       |   |      | %Rec     |             |
| Analyte               | Result   | Qualifier | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |             |
| Benzene               | <0.00198 | U         | 0.100 | 0.07851 |           | mg/Kg |   | 78   | 70 - 130 |             |
| Toluene               | <0.00198 | U         | 0.100 | 0.08157 |           | mg/Kg |   | 81   | 70 - 130 |             |
| Ethylbenzene          | <0.00198 | U         | 0.100 | 0.09199 |           | mg/Kg |   | 92   | 70 - 130 |             |
| m-Xylene & p-Xylene   | <0.00396 | U         | 0.201 | 0.1870  |           | mg/Kg |   | 93   | 70 - 130 |             |
| o-Xylene              | <0.00198 | U         | 0.100 | 0.09017 |           | mg/Kg |   | 90   | 70 - 130 |             |
|                       | MS       | MS        |       |         |           |       |   |      |          |             |

|                             | 1013      | WIS .     |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 103       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 79        |           | 70 - 130 |

#### Lab Sample ID: 880-25091-A-29-E MSD Matrix: Solid

#### Analysis Batch: 48085 Prep Batch: 48088 Spike MSD MSD %Rec RPD Sample Sample Analyte Result Qualifier Added Result Qualifier Limits Limit Unit D %Rec RPD Benzene <0.00198 U 0.0990 0.08169 83 70 - 130 4 35 mg/Kg Toluene <0.00198 U 0.0990 70 - 130 0.08333 mg/Kg 84 2 35 Ethylbenzene <0.00198 U 0.0990 0.09154 mg/Kg 92 70 - 130 0 35

Eurofins Midland

Prep Type: Total/NA

5

7

Released to Imaging: 5/12/2023 2:13:52 PM

Client: Carmona Resources Project/Site: West Corbin Federal SWD #16 Release Job ID: 880-25379-1 SDG: Lea County, New Mexico

03/03/23 08:35

Prep Type: Total/NA

Prep Batch: 47692

**Client Sample ID: Lab Control Sample** 

03/03/23 08:08

#### Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: 880-25091-A<br>Matrix: Solid<br>Analysis Batch: 48085 | A-29-E MSD |           |          |         |           | CI    | ient Sa | ample IC |          | bike Dup<br>Type: To<br>Batch: | tal/NA |
|----------------------------------------------------------------------|------------|-----------|----------|---------|-----------|-------|---------|----------|----------|--------------------------------|--------|
|                                                                      | Sample     | Sample    | Spike    | MSD     | MSD       |       |         |          | %Rec     | 201011                         | RPD    |
| Analyte                                                              | Result     | Qualifier | Added    | Result  | Qualifier | Unit  | D       | %Rec     | Limits   | RPD                            | Limit  |
| m-Xylene & p-Xylene                                                  | <0.00396   | U         | 0.198    | 0.1890  |           | mg/Kg |         | 95       | 70 - 130 | 1                              | 35     |
| o-Xylene                                                             | <0.00198   | U         | 0.0990   | 0.09189 |           | mg/Kg |         | 93       | 70 - 130 | 2                              | 35     |
|                                                                      | MSD        | MSD       |          |         |           |       |         |          |          |                                |        |
| Surrogate                                                            | %Recovery  | Qualifier | Limits   |         |           |       |         |          |          |                                |        |
| 4-Bromofluorobenzene (Surr)                                          | 94         |           | 70 - 130 |         |           |       |         |          |          |                                |        |
| 1,4-Difluorobenzene (Surr)                                           | 106        |           | 70 - 130 |         |           |       |         |          |          |                                |        |

| Lab Sample ID: MB 880-47692/1-<br>Matrix: Solid<br>Analysis Batch: 47685 |           | МВ        |          |     |       |   | Client Sa      | mple ID: Metho<br>Prep Type: ٦<br>Prep Batch | Total/NA |
|--------------------------------------------------------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------------------------------------|----------|
| Analyte                                                                  | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed                                     | Dil Fac  |
| Gasoline Range Organics<br>(GRO)-C6-C10                                  | <50.0     | U         | 50.0     |     | mg/Kg |   | 03/03/23 08:08 | 03/03/23 08:35                               | 1        |
| Diesel Range Organics (Over<br>C10-C28)                                  | <50.0     | U         | 50.0     |     | mg/Kg |   | 03/03/23 08:08 | 03/03/23 08:35                               | 1        |
| Oll Range Organics (Over C28-C36)                                        | <50.0     | U         | 50.0     |     | mg/Kg |   | 03/03/23 08:08 | 03/03/23 08:35                               | 1        |
|                                                                          | МВ        | МВ        |          |     |       |   |                |                                              |          |
| Surrogate                                                                | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed                                     | Dil Fac  |
| 1-Chlorooctane                                                           |           |           | 70 - 130 |     |       |   | 03/03/23 08:08 | 03/03/23 08:35                               | 1        |

| Lab Sample ID: LCS 880-47692/2-A | ١ |
|----------------------------------|---|
| Matrix: Solid                    |   |

#### Analysis Batch: 47685

o-Terphenyl

|                             | Spike | LCS    | LCS            |   |      | %Rec     |      |
|-----------------------------|-------|--------|----------------|---|------|----------|------|
| Analyte                     | Added | Result | Qualifier Unit | D | %Rec | Limits   |      |
| Gasoline Range Organics     | 999   | 946.6  | mg/Kg          |   | 95   | 70 - 130 | <br> |
| (GRO)-C6-C10                |       |        |                |   |      |          |      |
| Diesel Range Organics (Over | 999   | 1029   | mg/Kg          |   | 103  | 70 - 130 |      |
| C10-C28)                    |       |        |                |   |      |          |      |

70 - 130

|                | LCS       | LCS       |          |
|----------------|-----------|-----------|----------|
| Surrogate      | %Recovery | Qualifier | Limits   |
| 1-Chlorooctane | 94        |           | 70 - 130 |
| o-Terphenyl    | 100       |           | 70 - 130 |

112

| Lab Sample ID: LCSD 880-47692/3-A<br>Matrix: Solid<br>Analysis Batch: 47685 |       |        |           | Clier | nt Sam | ple ID: |          | I Sampl<br>Type: To<br>Batch: | tal/NA |
|-----------------------------------------------------------------------------|-------|--------|-----------|-------|--------|---------|----------|-------------------------------|--------|
|                                                                             | Spike | LCSD   | LCSD      |       |        |         | %Rec     |                               | RPD    |
| Analyte                                                                     | Added | Result | Qualifier | Unit  | D      | %Rec    | Limits   | RPD                           | Limit  |
| Gasoline Range Organics<br>(GRO)-C6-C10                                     | 999   | 977.0  |           | mg/Kg |        | 98      | 70 - 130 | 3                             | 20     |
| Diesel Range Organics (Over<br>C10-C28)                                     | 999   | 1017   |           | mg/Kg |        | 102     | 70 - 130 | 1                             | 20     |

Eurofins Midland

5

7

Lab Sample ID: LCSD 880-47692/3-A

Matrix: Solid

Analysis Batch: 47685

# **QC Sample Results**

Client: Carmona Resources Project/Site: West Corbin Federal SWD #16 Release

## Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

#### Job ID: 880-25379-1 SDG: Lea County, New Mexico

Prep Type: Total/NA

Prep Batch: 47692

Client Sample ID: Lab Control Sample Dup

| Surrogate                                                                                                                                                                                            | %Recovery                                                                        | Qualifiar                               | Limits                                                                                              |                |                  |           |         |                    |                                              |                                           |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------|----------------|------------------|-----------|---------|--------------------|----------------------------------------------|-------------------------------------------|----------------------------|
|                                                                                                                                                                                                      |                                                                                  | Quaimer                                 |                                                                                                     |                |                  |           |         |                    |                                              |                                           |                            |
| 1-Chlorooctane                                                                                                                                                                                       | 113                                                                              |                                         | 70 - 130                                                                                            |                |                  |           |         |                    |                                              |                                           |                            |
| o-Terphenyl                                                                                                                                                                                          | 99                                                                               |                                         | 70 - 130                                                                                            |                |                  |           |         |                    |                                              |                                           |                            |
| Lab Sample ID: 880-25349-4                                                                                                                                                                           | A-1-B MS                                                                         |                                         |                                                                                                     |                |                  |           |         | Client             | Sample ID                                    | : Matrix                                  | Spike                      |
| Matrix: Solid                                                                                                                                                                                        |                                                                                  |                                         |                                                                                                     |                |                  |           |         |                    | Prep T                                       | Type: To                                  | tal/N/                     |
| Analysis Batch: 47685                                                                                                                                                                                |                                                                                  |                                         |                                                                                                     |                |                  |           |         |                    |                                              | Batch:                                    |                            |
|                                                                                                                                                                                                      | Sample                                                                           | Sample                                  | Spike                                                                                               | MS             | MS               |           |         |                    | %Rec                                         |                                           |                            |
| Analyte                                                                                                                                                                                              | Result                                                                           | Qualifier                               | Added                                                                                               | Result         | Qualifier        | Unit      | D       | %Rec               | Limits                                       |                                           |                            |
| Gasoline Range Organics<br>(GRO)-C6-C10                                                                                                                                                              | <50.0                                                                            | U                                       | 999                                                                                                 | 888.3          |                  | mg/Kg     |         | 89                 | 70 - 130                                     |                                           |                            |
| Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                              | <50.0                                                                            | U                                       | 999                                                                                                 | 857.5          |                  | mg/Kg     |         | 84                 | 70 - 130                                     |                                           |                            |
|                                                                                                                                                                                                      | MS                                                                               | MS                                      |                                                                                                     |                |                  |           |         |                    |                                              |                                           |                            |
| Surrogate                                                                                                                                                                                            | %Recovery                                                                        | Qualifier                               | Limits                                                                                              |                |                  |           |         |                    |                                              |                                           |                            |
| 1-Chlorooctane                                                                                                                                                                                       | 93                                                                               |                                         | 70 - 130                                                                                            |                |                  |           |         |                    |                                              |                                           |                            |
|                                                                                                                                                                                                      |                                                                                  |                                         |                                                                                                     |                |                  |           |         |                    |                                              |                                           |                            |
| o-Terphenyl                                                                                                                                                                                          | 84                                                                               |                                         | 70 - 130                                                                                            |                |                  |           |         |                    |                                              |                                           |                            |
|                                                                                                                                                                                                      |                                                                                  |                                         | 70 - 130                                                                                            |                |                  | C         | iont Cr | male ID            | Moteix Se                                    | siko Dur                                  | licot                      |
| Lab Sample ID: 880-25349-/                                                                                                                                                                           |                                                                                  |                                         | 70 - 130                                                                                            |                |                  | CI        | ient Sa | ample ID           | : Matrix Sp                                  |                                           |                            |
| Lab Sample ID: 880-25349-A<br>Matrix: Solid                                                                                                                                                          |                                                                                  |                                         | 70 _ 130                                                                                            |                |                  | CI        | ient Sa | ample ID           | Prep T                                       | Type: To                                  | tal/N                      |
| Lab Sample ID: 880-25349-/                                                                                                                                                                           | A-1-C MSD                                                                        | Samula                                  |                                                                                                     | MCD            | MeD              | CI        | ient Sa | ample ID           | Prep T<br>Prep                               |                                           | tal/N<br>4769              |
| Lab Sample ID: 880-25349-4<br>Matrix: Solid<br>Analysis Batch: 47685                                                                                                                                 | A-1-C MSD<br>Sample                                                              | Sample                                  | Spike                                                                                               |                | MSD              |           |         | -                  | Prep T<br>Prep<br>%Rec                       | Type: To<br>Batch:                        | tal/N<br>4769<br>RP        |
| Lab Sample ID: 880-25349-/<br>Matrix: Solid<br>Analysis Batch: 47685<br>Analyte                                                                                                                      | A-1-C MSD<br>Sample<br>Result                                                    | Qualifier                               | Spike<br>Added                                                                                      | Result         | MSD<br>Qualifier | Unit      | ient Sa | %Rec               | Prep T<br>Prep<br>%Rec<br>Limits             | Batch:                                    | tal/N<br>4769<br>RP<br>Lim |
| Lab Sample ID: 880-25349-4<br>Matrix: Solid<br>Analysis Batch: 47685<br>Analyte<br>Gasoline Range Organics                                                                                           | A-1-C MSD<br>Sample                                                              | Qualifier                               | Spike                                                                                               |                |                  |           |         | -                  | Prep T<br>Prep<br>%Rec                       | Type: To<br>Batch:                        | tal/N<br>4769<br>RP<br>Lim |
| Lab Sample ID: 880-25349-4<br>Matrix: Solid<br>Analysis Batch: 47685<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                                                           | A-1-C MSD<br>Sample<br>Result<br><50.0                                           | Qualifier<br>U                          | Spike<br>Added<br>999                                                                               | Result<br>1022 |                  | <br>mg/Kg |         | <b>%Rec</b><br>102 | Prep 7<br>Prep<br>%Rec<br>Limits<br>70 - 130 | Type: Top       Batch:       RPD       14 | tal/N<br>4769<br>RP<br>Lim |
| Lab Sample ID: 880-25349-4<br>Matrix: Solid<br>Analysis Batch: 47685<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                            | A-1-C MSD<br>Sample<br>Result                                                    | Qualifier<br>U                          | Spike<br>Added                                                                                      | Result         |                  | Unit      |         | %Rec               | Prep T<br>Prep<br>%Rec<br>Limits             | Batch:                                    | tal/N<br>4769<br>RP<br>Lim |
| Lab Sample ID: 880-25349-4<br>Matrix: Solid<br>Analysis Batch: 47685<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                            | A-1-C MSD<br>Sample<br>Result<br><50.0<br><50.0                                  | Qualifier<br>U                          | Spike<br>Added<br>999                                                                               | Result<br>1022 |                  | <br>mg/Kg |         | <b>%Rec</b><br>102 | Prep 7<br>Prep<br>%Rec<br>Limits<br>70 - 130 | Type: Top       Batch:       RPD       14 | tal/N<br>4769<br>RP<br>Lim |
| Lab Sample ID: 880-25349-4<br>Matrix: Solid<br>Analysis Batch: 47685<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                | A-1-C MSD<br>Sample<br>Result<br><50.0<br><50.0                                  | Qualifier<br>U<br>U<br>MSD              | Spike<br>Added<br>999                                                                               | Result<br>1022 |                  | <br>mg/Kg |         | <b>%Rec</b><br>102 | Prep 7<br>Prep<br>%Rec<br>Limits<br>70 - 130 | Type: Top       Batch:       RPD       14 | tal/N<br>4769<br>RP<br>Lim |
| Lab Sample ID: 880-25349-4<br>Matrix: Solid<br>Analysis Batch: 47685<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate                   | A-1-C MSD<br>Sample<br>Result<br><50.0<br><50.0                                  | Qualifier<br>U<br>U<br>MSD              | Spike<br>Added<br>999<br>999                                                                        | Result<br>1022 |                  | <br>mg/Kg |         | <b>%Rec</b><br>102 | Prep 7<br>Prep<br>%Rec<br>Limits<br>70 - 130 | Type: Top       Batch:       RPD       14 | tal/N<br>4769<br>RP<br>Lim |
| Lab Sample ID: 880-25349-/<br>Matrix: Solid<br>Analysis Batch: 47685<br>Analyte                                                                                                                      | A-1-C MSD<br>Sample<br>Result<br><50.0<br><50.0<br>%Recovery                     | Qualifier<br>U<br>U<br>MSD              | Spike<br>Added<br>999<br>999<br>Limits                                                              | Result<br>1022 |                  | <br>mg/Kg |         | <b>%Rec</b><br>102 | Prep 7<br>Prep<br>%Rec<br>Limits<br>70 - 130 | Type: Top       Batch:       RPD       14 | tal/N<br>4769<br>RP<br>Lim |
| Lab Sample ID: 880-25349-4<br>Matrix: Solid<br>Analysis Batch: 47685<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane | A-1-C MSD<br>Sample<br>Result<br><50.0<br><50.0<br>MSD<br>%Recovery<br>102<br>88 | Qualifier<br>U<br>U<br>MSD<br>Qualifier | Spike           Added           999           999           999           Limits           70 - 130 | Result<br>1022 |                  | <br>mg/Kg |         | <b>%Rec</b><br>102 | Prep 7<br>Prep<br>%Rec<br>Limits<br>70 - 130 | Type: Top       Batch:       RPD       14 | tal/N                      |

| Matrix: Solid                                                              |        |           |       |      |        |       |       |       |     |     |         | Prep Type:                    | Soluble |
|----------------------------------------------------------------------------|--------|-----------|-------|------|--------|-------|-------|-------|-----|-----|---------|-------------------------------|---------|
| Analysis Batch: 47820                                                      |        |           |       |      |        |       |       |       |     |     |         |                               |         |
|                                                                            | MB     | MB        |       |      |        |       |       |       |     |     |         |                               |         |
| Analyte                                                                    | Result | Qualifier |       | RL   |        | MDL   | Unit  |       | D   | Pr  | repared | Analyzed                      | Dil Fac |
| Chloride                                                                   | <5.00  | U         |       | 5.00 |        |       | mg/Kg |       |     |     |         | 03/05/23 09:15                | 1       |
| Lab Sample ID: LCS 880-47765/2-A<br>Matrix: Solid<br>Analysis Batch: 47820 |        |           |       |      |        |       |       |       | Cli | ent | Sample  | ID: Lab Control<br>Prep Type: |         |
| Analysis Batch. 47020                                                      |        |           | Spike |      | LCS    | LCS   |       |       |     |     |         | %Rec                          |         |
| Analyte                                                                    |        |           | Added |      | Result | Quali | ifier | Unit  |     | D   | %Rec    | Limits                        |         |
| Chloride                                                                   |        |           | 250   |      | 230.6  |       |       | mg/Kg |     |     | 92      | 90 _ 110                      |         |

Eurofins Midland

Client: Carmona Resources Project/Site: West Corbin Federal SWD #16 Release Job ID: 880-25379-1 SDG: Lea County, New Mexico

#### Method: 300.0 - Anions, Ion Chromatography (Continued)

| Lab Sample ID: LCSD 880-47765/3<br>Matrix: Solid<br>Analysis Batch: 47820 | <b>-A</b> |           |       |        |           | Clie  | nt Sam | ple ID: | Lab Contro<br>Prep | ol Sample<br>Type: Se |        |
|---------------------------------------------------------------------------|-----------|-----------|-------|--------|-----------|-------|--------|---------|--------------------|-----------------------|--------|
| Analysis Baton. 47020                                                     |           |           | Spike | LCSD   | LCSD      |       |        |         | %Rec               |                       | RPD    |
| Analyte                                                                   |           |           | Added | Result | Qualifier | Unit  | D      | %Rec    | Limits             | RPD                   | Limit  |
| Chloride                                                                  |           |           | 250   | 231.4  |           | mg/Kg |        | 93      | 90 - 110           | 0                     | 20     |
| <br>Lab Sample ID: 880-25379-2 MS                                         |           |           |       |        |           |       |        | Cli     | ent Sample         | e ID: T-1             | (1.5') |
| Matrix: Solid                                                             |           |           |       |        |           |       |        |         |                    | Type: So              |        |
| Analysis Batch: 47820                                                     |           |           |       |        |           |       |        |         |                    |                       |        |
|                                                                           | Sample    | Sample    | Spike | MS     | MS        |       |        |         | %Rec               |                       |        |
| Analyte                                                                   | Result    | Qualifier | Added | Result | Qualifier | Unit  | D      | %Rec    | Limits             |                       |        |
| Chloride                                                                  | 55.1      |           | 251   | 323.6  |           | mg/Kg |        | 107     | 90 - 110           |                       |        |
| <br>Lab Sample ID: 880-25379-2 MSD                                        |           |           |       |        |           |       |        | Cli     | ent Sample         | e ID: T-1             | (1.5') |
| Matrix: Solid                                                             |           |           |       |        |           |       |        |         | Prep               | Type: So              | oluble |
| Analysis Batch: 47820                                                     |           |           |       |        |           |       |        |         |                    |                       |        |
|                                                                           | Sample    | Sample    | Spike | MSD    | MSD       |       |        |         | %Rec               |                       | RPD    |
| Analyte                                                                   | Result    | Qualifier | Added | Result | Qualifier | Unit  | D      | %Rec    | Limits             | RPD                   | Limit  |
| Chloride                                                                  | 55.1      |           | 251   | 324.3  |           | mg/Kg |        | 107     | 90 - 110           | 0                     | 20     |

Eurofins Midland

Client: Carmona Resources Project/Site: West Corbin Federal SWD #16 Release

Job ID: 880-25379-1 SDG: Lea County, New Mexico

#### GC VOA

#### Prep Batch: 47724

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 880-25379-4         | T-1 (3')               | Total/NA  | Solid  | 5035   |            |
| 880-25379-5         | T-1 (4')               | Total/NA  | Solid  | 5035   |            |
| 880-25379-6         | T-1 (5')               | Total/NA  | Solid  | 5035   |            |
| 880-25379-7         | T-1 (6')               | Total/NA  | Solid  | 5035   |            |
| 880-25379-8         | H-1 (0-0.5')           | Total/NA  | Solid  | 5035   |            |
| 880-25379-9         | H-2 (0-0.5')           | Total/NA  | Solid  | 5035   |            |
| 880-25379-10        | H-3 (0-0.5')           | Total/NA  | Solid  | 5035   |            |
| 880-25379-11        | H-4 (0-0.5')           | Total/NA  | Solid  | 5035   |            |
| MB 880-47724/5-A    | Method Blank           | Total/NA  | Solid  | 5035   |            |
| LCS 880-47724/1-A   | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |
| LCSD 880-47724/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |
| 880-25400-A-1-E MS  | Matrix Spike           | Total/NA  | Solid  | 5035   |            |
| 380-25400-A-1-F MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 5035   |            |

#### Prep Batch: 47743

|                                                             | 11-0 (0-0.0)                                                             | IOtal/INA                                    |                                  |                              |            |          |
|-------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------|----------------------------------|------------------------------|------------|----------|
| 880-25379-11                                                | H-4 (0-0.5')                                                             | Total/NA                                     | Solid                            | 5035                         |            | 8        |
| MB 880-47724/5-A                                            | Method Blank                                                             | Total/NA                                     | Solid                            | 5035                         |            |          |
| LCS 880-47724/1-A                                           | Lab Control Sample                                                       | Total/NA                                     | Solid                            | 5035                         |            | 9        |
| LCSD 880-47724/2-A                                          | Lab Control Sample Dup                                                   | Total/NA                                     | Solid                            | 5035                         |            |          |
| 880-25400-A-1-E MS                                          | Matrix Spike                                                             | Total/NA                                     | Solid                            | 5035                         |            | 10       |
| 880-25400-A-1-F MSD                                         | Matrix Spike Duplicate                                                   | Total/NA                                     | Solid                            | 5035                         |            |          |
| Prep Batch: 47743                                           |                                                                          |                                              |                                  |                              |            | 11       |
| Lab Sample ID                                               | Client Sample ID                                                         | Ргер Туре                                    | Matrix                           | Method                       | Prep Batch | 12       |
| 880-25379-1                                                 | T-1 (0-1')                                                               | Total/NA                                     | Solid                            | 5035                         |            | 12       |
| 880-25379-2                                                 |                                                                          | <b>T</b> ( 1010                              |                                  |                              |            |          |
|                                                             | T-1 (1.5')                                                               | Total/NA                                     | Solid                            | 5035                         |            | 10       |
| 880-25379-3                                                 | T-1 (1.5')<br>T-1 (2')                                                   | Total/NA<br>Total/NA                         | Solid<br>Solid                   | 5035<br>5035                 |            | 13       |
| 880-25379-3<br>MB 880-47743/5-A                             |                                                                          |                                              |                                  |                              |            | 13       |
|                                                             | T-1 (2')                                                                 | Total/NA                                     | Solid                            | 5035                         |            | 13<br>14 |
| MB 880-47743/5-A                                            | T-1 (2')<br>Method Blank                                                 | Total/NA<br>Total/NA                         | Solid<br>Solid                   | 5035<br>5035                 |            | 13<br>14 |
| MB 880-47743/5-A<br>LCS 880-47743/1-A                       | T-1 (2')<br>Method Blank<br>Lab Control Sample                           | Total/NA<br>Total/NA<br>Total/NA             | Solid<br>Solid<br>Solid          | 5035<br>5035<br>5035         |            | 13<br>14 |
| MB 880-47743/5-A<br>LCS 880-47743/1-A<br>LCSD 880-47743/2-A | T-1 (2')<br>Method Blank<br>Lab Control Sample<br>Lab Control Sample Dup | Total/NA<br>Total/NA<br>Total/NA<br>Total/NA | Solid<br>Solid<br>Solid<br>Solid | 5035<br>5035<br>5035<br>5035 |            | 13<br>14 |

#### Analysis Batch: 47854

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 880-25379-1         | T-1 (0-1')             | Total/NA  | Solid  | 8021B  | 47743      |
| 880-25379-2         | T-1 (1.5')             | Total/NA  | Solid  | 8021B  | 47743      |
| 880-25379-3         | T-1 (2')               | Total/NA  | Solid  | 8021B  | 47743      |
| MB 880-47743/5-A    | Method Blank           | Total/NA  | Solid  | 8021B  | 47743      |
| LCS 880-47743/1-A   | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 47743      |
| LCSD 880-47743/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 47743      |
| 880-25414-A-1-A MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 47743      |
| 880-25414-A-1-B MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 47743      |

#### Analysis Batch: 47864

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 880-25379-4         | T-1 (3')               | Total/NA  | Solid  | 8021B  | 47724      |
| 880-25379-5         | T-1 (4')               | Total/NA  | Solid  | 8021B  | 47724      |
| 880-25379-6         | T-1 (5')               | Total/NA  | Solid  | 8021B  | 47724      |
| 880-25379-7         | T-1 (6')               | Total/NA  | Solid  | 8021B  | 47724      |
| 880-25379-8         | H-1 (0-0.5')           | Total/NA  | Solid  | 8021B  | 47724      |
| 880-25379-9         | H-2 (0-0.5')           | Total/NA  | Solid  | 8021B  | 47724      |
| 880-25379-10        | H-3 (0-0.5')           | Total/NA  | Solid  | 8021B  | 47724      |
| 880-25379-11        | H-4 (0-0.5')           | Total/NA  | Solid  | 8021B  | 47724      |
| MB 880-47724/5-A    | Method Blank           | Total/NA  | Solid  | 8021B  | 47724      |
| LCS 880-47724/1-A   | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 47724      |
| LCSD 880-47724/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 47724      |
| 880-25400-A-1-E MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 47724      |
| 880-25400-A-1-F MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 47724      |

Eurofins Midland

5

Client: Carmona Resources Project/Site: West Corbin Federal SWD #16 Release

#### **GC VOA**

#### Prep Batch: 48014

| Lab Sample ID        | Client Sample ID       | Ргер Туре | Matrix | Method | Prep Batch |
|----------------------|------------------------|-----------|--------|--------|------------|
| MB 880-48014/5-A     | Method Blank           | Total/NA  | Solid  | 5035   |            |
| LCS 880-48014/1-A    | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |
| LCSD 880-48014/2-A   | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |
| 880-25537-A-41-G MS  | Matrix Spike           | Total/NA  | Solid  | 5035   |            |
| 880-25537-A-41-H MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 5035   |            |

#### Analysis Batch: 48026

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method     | Prep Batch | 8 |
|---------------|------------------|-----------|--------|------------|------------|---|
| 880-25379-1   | T-1 (0-1')       | Total/NA  | Solid  | Total BTEX |            |   |
| 880-25379-2   | T-1 (1.5')       | Total/NA  | Solid  | Total BTEX |            | 5 |
| 880-25379-3   | T-1 (2')         | Total/NA  | Solid  | Total BTEX |            |   |
| 880-25379-4   | T-1 (3')         | Total/NA  | Solid  | Total BTEX |            |   |
| 880-25379-5   | T-1 (4')         | Total/NA  | Solid  | Total BTEX |            |   |
| 880-25379-6   | T-1 (5')         | Total/NA  | Solid  | Total BTEX |            |   |
| 880-25379-7   | T-1 (6')         | Total/NA  | Solid  | Total BTEX |            |   |
| 880-25379-8   | H-1 (0-0.5')     | Total/NA  | Solid  | Total BTEX |            |   |
| 880-25379-9   | H-2 (0-0.5')     | Total/NA  | Solid  | Total BTEX |            |   |
| 880-25379-10  | H-3 (0-0.5')     | Total/NA  | Solid  | Total BTEX |            | 4 |
| 880-25379-11  | H-4 (0-0.5')     | Total/NA  | Solid  | Total BTEX |            |   |

#### Analysis Batch: 48085

| Lab Sample ID        | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|----------------------|------------------------|-----------|--------|--------|------------|
| 880-25379-1          | T-1 (0-1')             | Total/NA  | Solid  | 8021B  | 48088      |
| 880-25379-2          | T-1 (1.5')             | Total/NA  | Solid  | 8021B  | 48088      |
| MB 880-48014/5-A     | Method Blank           | Total/NA  | Solid  | 8021B  | 48014      |
| MB 880-48088/5-A     | Method Blank           | Total/NA  | Solid  | 8021B  | 48088      |
| LCS 880-48014/1-A    | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 48014      |
| LCS 880-48088/1-A    | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 48088      |
| LCSD 880-48014/2-A   | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 48014      |
| LCSD 880-48088/2-A   | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 48088      |
| 880-25091-A-29-D MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 48088      |
| 880-25091-A-29-E MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 48088      |
| 880-25537-A-41-G MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 48014      |
| 880-25537-A-41-H MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 48014      |

#### Prep Batch: 48088

| Lab Sample ID        | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|----------------------|------------------------|-----------|--------|--------|------------|
| 880-25379-1          | T-1 (0-1')             | Total/NA  | Solid  | 5035   |            |
| 880-25379-2          | T-1 (1.5')             | Total/NA  | Solid  | 5035   |            |
| MB 880-48088/5-A     | Method Blank           | Total/NA  | Solid  | 5035   |            |
| LCS 880-48088/1-A    | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |
| LCSD 880-48088/2-A   | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |
| 880-25091-A-29-D MS  | Matrix Spike           | Total/NA  | Solid  | 5035   |            |
| 880-25091-A-29-E MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 5035   |            |

#### GC Semi VOA

#### Analysis Batch: 47685

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method   | Prep Batch |
|---------------|------------------|-----------|--------|----------|------------|
| 880-25379-1   | T-1 (0-1')       | Total/NA  | Solid  | 8015B NM | 47692      |
| 880-25379-2   | T-1 (1.5')       | Total/NA  | Solid  | 8015B NM | 47692      |

Eurofins Midland

Job ID: 880-25379-1

SDG: Lea County, New Mexico

5

Client: Carmona Resources Project/Site: West Corbin Federal SWD #16 Release

#### GC Semi VOA (Continued)

#### Analysis Batch: 47685 (Continued)

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|---------------------|------------------------|-----------|--------|----------|------------|
| 880-25379-3         | T-1 (2')               | Total/NA  | Solid  | 8015B NM | 47692      |
| 880-25379-4         | T-1 (3')               | Total/NA  | Solid  | 8015B NM | 47692      |
| 880-25379-5         | T-1 (4')               | Total/NA  | Solid  | 8015B NM | 47692      |
| 880-25379-6         | T-1 (5')               | Total/NA  | Solid  | 8015B NM | 47692      |
| 880-25379-7         | T-1 (6')               | Total/NA  | Solid  | 8015B NM | 47692      |
| 880-25379-8         | H-1 (0-0.5')           | Total/NA  | Solid  | 8015B NM | 47692      |
| 880-25379-9         | H-2 (0-0.5')           | Total/NA  | Solid  | 8015B NM | 47692      |
| 880-25379-10        | H-3 (0-0.5')           | Total/NA  | Solid  | 8015B NM | 47692      |
| 880-25379-11        | H-4 (0-0.5')           | Total/NA  | Solid  | 8015B NM | 47692      |
| MB 880-47692/1-A    | Method Blank           | Total/NA  | Solid  | 8015B NM | 47692      |
| LCS 880-47692/2-A   | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 47692      |
| LCSD 880-47692/3-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 47692      |
| 880-25349-A-1-B MS  | Matrix Spike           | Total/NA  | Solid  | 8015B NM | 47692      |
| 880-25349-A-1-C MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM | 47692      |

#### Prep Batch: 47692

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|---------------------|------------------------|-----------|--------|-------------|------------|
| 880-25379-1         | T-1 (0-1')             | Total/NA  | Solid  | 8015NM Prep |            |
| 880-25379-2         | T-1 (1.5')             | Total/NA  | Solid  | 8015NM Prep |            |
| 880-25379-3         | T-1 (2')               | Total/NA  | Solid  | 8015NM Prep |            |
| 880-25379-4         | T-1 (3')               | Total/NA  | Solid  | 8015NM Prep |            |
| 880-25379-5         | T-1 (4')               | Total/NA  | Solid  | 8015NM Prep |            |
| 880-25379-6         | T-1 (5')               | Total/NA  | Solid  | 8015NM Prep |            |
| 880-25379-7         | T-1 (6')               | Total/NA  | Solid  | 8015NM Prep |            |
| 880-25379-8         | H-1 (0-0.5')           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-25379-9         | H-2 (0-0.5')           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-25379-10        | H-3 (0-0.5')           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-25379-11        | H-4 (0-0.5')           | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-47692/1-A    | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-47692/2-A   | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-47692/3-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 880-25349-A-1-B MS  | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-25349-A-1-C MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            |

#### Analysis Batch: 47927

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method  | Prep Batch |
|---------------|------------------|-----------|--------|---------|------------|
| 880-25379-1   | T-1 (0-1')       | Total/NA  | Solid  | 8015 NM |            |
| 880-25379-2   | T-1 (1.5')       | Total/NA  | Solid  | 8015 NM |            |
| 880-25379-3   | T-1 (2')         | Total/NA  | Solid  | 8015 NM |            |
| 880-25379-4   | T-1 (3')         | Total/NA  | Solid  | 8015 NM |            |
| 880-25379-5   | T-1 (4')         | Total/NA  | Solid  | 8015 NM |            |
| 880-25379-6   | T-1 (5')         | Total/NA  | Solid  | 8015 NM |            |
| 880-25379-7   | T-1 (6')         | Total/NA  | Solid  | 8015 NM |            |
| 880-25379-8   | H-1 (0-0.5')     | Total/NA  | Solid  | 8015 NM |            |
| 880-25379-9   | H-2 (0-0.5')     | Total/NA  | Solid  | 8015 NM |            |
| 880-25379-10  | H-3 (0-0.5')     | Total/NA  | Solid  | 8015 NM |            |
| 880-25379-11  | H-4 (0-0.5')     | Total/NA  | Solid  | 8015 NM |            |

Job ID: 880-25379-1

SDG: Lea County, New Mexico

Client: Carmona Resources Project/Site: West Corbin Federal SWD #16 Release

Job ID: 880-25379-1 SDG: Lea County, New Mexico

#### HPLC/IC

#### Leach Batch: 47765

| each Batch: 47765    |                        |           |        |          |            |
|----------------------|------------------------|-----------|--------|----------|------------|
| _                    |                        |           |        |          |            |
| Lab Sample ID        | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
| 880-25379-1          | T-1 (0-1')             | Soluble   | Solid  | DI Leach |            |
| 880-25379-2          | T-1 (1.5')             | Soluble   | Solid  | DI Leach |            |
| 880-25379-3          | T-1 (2')               | Soluble   | Solid  | DI Leach |            |
| 880-25379-4          | T-1 (3')               | Soluble   | Solid  | DI Leach |            |
| 880-25379-5          | T-1 (4')               | Soluble   | Solid  | DI Leach |            |
| 880-25379-6          | T-1 (5')               | Soluble   | Solid  | DI Leach |            |
| 880-25379-7          | T-1 (6')               | Soluble   | Solid  | DI Leach |            |
| 380-25379-8          | H-1 (0-0.5')           | Soluble   | Solid  | DI Leach |            |
| 880-25379-9          | H-2 (0-0.5')           | Soluble   | Solid  | DI Leach |            |
| 880-25379-10         | H-3 (0-0.5')           | Soluble   | Solid  | DI Leach |            |
| 380-25379-11         | H-4 (0-0.5')           | Soluble   | Solid  | DI Leach |            |
| MB 880-47765/1-A     | Method Blank           | Soluble   | Solid  | DI Leach |            |
| _CS 880-47765/2-A    | Lab Control Sample     | Soluble   | Solid  | DI Leach |            |
| LCSD 880-47765/3-A   | Lab Control Sample Dup | Soluble   | Solid  | DI Leach |            |
| 880-25379-2 MS       | T-1 (1.5')             | Soluble   | Solid  | DI Leach |            |
| 880-25379-2 MSD      | T-1 (1.5')             | Soluble   | Solid  | DI Leach |            |
| nalusia Datahu 17020 |                        |           |        |          |            |
| nalysis Batch: 47820 |                        |           |        |          |            |
| Lab Sample ID        | Client Sample ID       | Ргер Туре | Matrix | Method   | Prep Batch |
| 880-25379-1          | T-1 (0-1')             | Soluble   | Solid  | 300.0    | 47765      |
| 880-25379-2          | T-1 (1.5')             | Soluble   | Solid  | 300.0    | 47765      |

#### Analysis Batch: 47820

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 880-25379-1        | T-1 (0-1')             | Soluble   | Solid  | 300.0  | 47765      |
| 880-25379-2        | T-1 (1.5')             | Soluble   | Solid  | 300.0  | 47765      |
| 880-25379-3        | T-1 (2')               | Soluble   | Solid  | 300.0  | 47765      |
| 880-25379-4        | T-1 (3')               | Soluble   | Solid  | 300.0  | 47765      |
| 880-25379-5        | T-1 (4')               | Soluble   | Solid  | 300.0  | 47765      |
| 880-25379-6        | T-1 (5')               | Soluble   | Solid  | 300.0  | 47765      |
| 880-25379-7        | T-1 (6')               | Soluble   | Solid  | 300.0  | 47765      |
| 880-25379-8        | H-1 (0-0.5')           | Soluble   | Solid  | 300.0  | 47765      |
| 880-25379-9        | H-2 (0-0.5')           | Soluble   | Solid  | 300.0  | 47765      |
| 880-25379-10       | H-3 (0-0.5')           | Soluble   | Solid  | 300.0  | 47765      |
| 880-25379-11       | H-4 (0-0.5')           | Soluble   | Solid  | 300.0  | 47765      |
| MB 880-47765/1-A   | Method Blank           | Soluble   | Solid  | 300.0  | 47765      |
| LCS 880-47765/2-A  | Lab Control Sample     | Soluble   | Solid  | 300.0  | 47765      |
| LCSD 880-47765/3-A | Lab Control Sample Dup | Soluble   | Solid  | 300.0  | 47765      |
| 880-25379-2 MS     | T-1 (1.5')             | Soluble   | Solid  | 300.0  | 47765      |
| 880-25379-2 MSD    | T-1 (1.5')             | Soluble   | Solid  | 300.0  | 47765      |

## Lab Chronicle

Initial

Amount

5.02 g

5 mL

5.02 g

5 mL

10.02 g

1 uL

4.95 g

50 mL

Final

Amount

5 mL

5 mL

5 mL

5 mL

10 ml

1 uL

50 mL

50 mL

Batch

47743

47854

48088

48085

48026

47927

47692

47685

47765

47820

Number

Dil

25

200

1

1

5

1

Factor

Run

Client: Carmona Resources Project/Site: West Corbin Federal SWD #16 Release

Batch

Туре

Prep

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

#### Client Sample ID: T-1 (0-1') Date Collected: 03/01/23 00:00 Date Received: 03/02/23 14:30

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Job ID: 880-25379-1 SDG: Lea County, New Mexico

### Lab Sample ID: 880-25379-1 Matrix: Solid

Analyst

MNR

MNR

AJ

AJ

A.I

SM

AJ

SM

СН

СН

Lab Sample ID: 880-25379-2

Lab Sample ID: 880-25379-3

Lab

EET MID

Matrix: Solid

Matrix: Solid

Prepared

or Analyzed

03/03/23 12:51

03/06/23 13:34

03/08/23 09:05

03/08/23 14:14

03/07/23 13:01

03/06/23 12:05

03/03/23 09:08

03/03/23 17:37

03/03/23 15:46

03/05/23 10:53

## Client Sample ID: T-1 (1.5')

Date Collected: 03/01/23 00:00 Date Received: 03/02/23 14:30

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.03 g  | 5 mL   | 47743  | 03/03/23 12:51 | MNR     | EET MIC |
| Total/NA  | Analysis | 8021B       |     | 25     | 5 mL    | 5 mL   | 47854  | 03/06/23 13:54 | AJ      | EET MID |
| Total/NA  | Prep     | 5035        |     |        | 5.02 g  | 5 mL   | 48088  | 03/08/23 09:05 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 200    | 5 mL    | 5 mL   | 48085  | 03/08/23 14:34 | AJ      | EET MI  |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 48026  | 03/07/23 13:01 | AJ      | EET MIC |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 47927  | 03/06/23 12:05 | SM      | EET MIC |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.01 g | 10 mL  | 47692  | 03/03/23 09:08 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 5      | 1 uL    | 1 uL   | 47685  | 03/03/23 16:11 | SM      | EET MI  |
| Soluble   | Leach    | DI Leach    |     |        | 4.98 g  | 50 mL  | 47765  | 03/03/23 15:46 | СН      | EET MI  |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 47820  | 03/05/23 10:59 | СН      | EET MI  |

#### Client Sample ID: T-1 (2') Date Collected: 03/01/23 00:00 Date Received: 03/02/23 14:30

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.01 g  | 5 mL   | 47743  | 03/03/23 12:51 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 25     | 5 mL    | 5 mL   | 47854  | 03/06/23 14:16 | AJ      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 48026  | 03/07/23 13:01 | AJ      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 47927  | 03/06/23 12:05 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.02 g | 10 mL  | 47692  | 03/03/23 09:08 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 47685  | 03/03/23 16:32 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5 g     | 50 mL  | 47765  | 03/03/23 15:46 | СН      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 47820  | 03/05/23 11:18 | СН      | EET MID |

**Eurofins Midland** 

## Lab Chronicle

**Client: Carmona Resources** Project/Site: West Corbin Federal SWD #16 Release

#### Client Sample ID: T-1 (3') Date Collected: 03/01/23 00:00

Date Received: 03/02/23 14:30

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.02 g  | 5 mL   | 47724  | 03/03/23 11:55 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 47864  | 03/06/23 12:31 | AJ      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 48026  | 03/07/23 13:15 | AJ      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 47927  | 03/06/23 12:05 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.03 g | 10 mL  | 47692  | 03/03/23 09:08 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 47685  | 03/03/23 16:54 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.03 g  | 50 mL  | 47765  | 03/03/23 15:46 | СН      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 47820  | 03/05/23 11:24 | СН      | EET MID |

# Lab Sample ID: 880-25379-5

Matrix: Solid

#### Client Sample ID: T-1 (4') Date Collected: 03/01/23 00:00 Date Received: 03/02/23 14:30

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.03 g  | 5 mL   | 47724  | 03/03/23 11:55 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 47864  | 03/06/23 12:52 | AJ      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 48026  | 03/07/23 13:15 | AJ      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 47927  | 03/06/23 12:05 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.03 g | 10 mL  | 47692  | 03/03/23 09:08 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 47685  | 03/03/23 17:15 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5 g     | 50 mL  | 47765  | 03/03/23 15:46 | СН      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 47820  | 03/05/23 11:43 | СН      | EET MID |

#### Client Sample ID: T-1 (5') Date Collected: 03/01/23 00:00

#### Date Received: 03/02/23 14:30

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.02 g  | 5 mL   | 47724  | 03/03/23 11:55 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 47864  | 03/06/23 13:12 | AJ      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 48026  | 03/07/23 13:15 | AJ      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 47927  | 03/06/23 12:05 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.01 g | 10 mL  | 47692  | 03/03/23 09:08 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 47685  | 03/03/23 19:25 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.01 g  | 50 mL  | 47765  | 03/03/23 15:46 | СН      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 47820  | 03/05/23 11:49 | СН      | EET MID |

#### Client Sample ID: T-1 (6') Date Collected: 03/01/23 00:00 Date Received: 03/02/23 14:30

|           | Batch    | Batch      |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method     | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035       |     |        | 5.03 g  | 5 mL   | 47724  | 03/03/23 11:55 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B      |     | 1      | 5 mL    | 5 mL   | 47864  | 03/06/23 13:32 | AJ      | EET MID |
| Total/NA  | Analysis | Total BTEX |     | 1      |         |        | 48026  | 03/07/23 13:15 | AJ      | EET MID |

**Eurofins Midland** 

Matrix: Solid

Job ID: 880-25379-1 SDG: Lea County, New Mexico

#### Lab Sample ID: 880-25379-4 Matrix: Solid

5 9

3/9/2023

#### Lab Sample ID: 880-25379-6 Matrix: Solid

Lab Sample ID: 880-25379-7

**Client: Carmona Resources** Project/Site: West Corbin Federal SWD #16 Release

Job ID: 880-25379-1 SDG: Lea County, New Mexico

#### Client Sample ID: T-1 (6') Date Collected: 03/01/23 00:00

Date Received: 03/02/23 14:30

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 47927  | 03/06/23 12:05 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.03 g | 10 mL  | 47692  | 03/03/23 09:08 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 47685  | 03/03/23 18:21 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.05 g  | 50 mL  | 47765  | 03/03/23 15:46 | СН      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 47820  | 03/05/23 11:55 | СН      | EET MID |

#### Client Sample ID: H-1 (0-0.5') Date Collected: 03/01/23 00:00 Date Received: 03/02/23 14:30

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.01 g  | 5 mL   | 47724  | 03/03/23 11:55 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 47864  | 03/06/23 13:53 | AJ      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 48026  | 03/07/23 13:15 | AJ      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 47927  | 03/06/23 12:05 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.02 g | 10 mL  | 47692  | 03/03/23 09:08 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 47685  | 03/03/23 17:59 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.03 g  | 50 mL  | 47765  | 03/03/23 15:46 | СН      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 47820  | 03/05/23 12:01 | СН      | EET MID |

## Client Sample ID: H-2 (0-0.5')

Date Collected: 03/01/23 00:00 Date Received: 03/02/23 14:30

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.02 g  | 5 mL   | 47724  | 03/03/23 11:55 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 47864  | 03/06/23 17:30 | AJ      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 48026  | 03/07/23 13:15 | AJ      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 47927  | 03/06/23 12:05 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.01 g | 10 mL  | 47692  | 03/03/23 09:08 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 47685  | 03/03/23 19:04 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.02 g  | 50 mL  | 47765  | 03/03/23 15:46 | СН      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 47820  | 03/05/23 12:07 | СН      | EET MID |

#### Client Sample ID: H-3 (0-0.5') Date Collected: 03/01/23 00:00 Date Received: 03/02/23 14:30

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.03 g  | 5 mL   | 47724  | 03/03/23 11:55 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 47864  | 03/06/23 18:24 | AJ      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 48026  | 03/07/23 13:15 | AJ      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 47927  | 03/06/23 12:05 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.02 g | 10 mL  | 47692  | 03/03/23 09:08 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 47685  | 03/03/23 15:27 | SM      | EET MID |

**Eurofins Midland** 

# Lab Sample ID: 880-25379-7 Matrix: Solid

Matrix: Solid

5 9

Lab Sample ID: 880-25379-9

Lab Sample ID: 880-25379-8

Matrix: Solid

# Lab Sample ID: 880-25379-10

Matrix: Solid

Job ID: 880-25379-1 SDG: Lea County, New Mexico

#### Client Sample ID: H-3 (0-0.5') Date Collected: 03/01/23 00:00

Project/Site: West Corbin Federal SWD #16 Release

Date Received: 03/02/23 14:30

Client: Carmona Resources

|           | Batch    | Batch    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|----------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Soluble   | Leach    | DI Leach |     |        | 5.02 g  | 50 mL  | 47765  | 03/03/23 15:46 | СН      | EET MID |
| Soluble   | Analysis | 300.0    |     | 1      | 50 mL   | 50 mL  | 47820  | 03/05/23 12:13 | СН      | EET MID |

#### Client Sample ID: H-4 (0-0.5') Date Collected: 03/01/23 00:00 Date Received: 03/02/23 14:30

| Lab Sample ID: | 880-25379-11  |
|----------------|---------------|
|                | Matrix: Solid |

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.99 g  | 5 mL   | 47724  | 03/03/23 11:55 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 47864  | 03/06/23 18:45 | AJ      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 48026  | 03/07/23 13:15 | AJ      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 47927  | 03/06/23 12:05 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.03 g | 10 mL  | 47692  | 03/03/23 09:08 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 47685  | 03/03/23 18:42 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5 g     | 50 mL  | 47765  | 03/03/23 15:46 | СН      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 47820  | 03/05/23 12:19 | CH      | EET MID |

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Lab Sample ID: 880-25379-10 Matrix: Solid

9

# Accreditation/Certification Summary

Client: Carmona Resources Project/Site: West Corbin Federal SWD #16 Release Job ID: 880-25379-1 SDG: Lea County, New Mexico

#### Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| uthority                                       |             | Program                             | Identification Number                        | Expiration Date              |  |
|------------------------------------------------|-------------|-------------------------------------|----------------------------------------------|------------------------------|--|
| exas                                           |             | NELAP                               | T104704400-22-25                             | 06-30-23                     |  |
| The following analytes the agency does not off |             | i, but the laboratory is not certif | ied by the governing authority. This list ma | y include analytes for which |  |
| Analysis Method                                | Prep Method | Matrix                              | Analyte                                      |                              |  |
| 300.0                                          |             | Solid                               | Chloride                                     |                              |  |
| 8015 NM                                        |             | Solid                               | Total TPH                                    |                              |  |
| 8015B NM                                       | 8015NM Prep | Solid                               | Diesel Range Organics (Over                  | C10-C28)                     |  |
| 8015B NM                                       | 8015NM Prep | Solid                               | Gasoline Range Organics (GR                  | O)-C6-C10                    |  |
| 8015B NM                                       | 8015NM Prep | Solid                               | OII Range Organics (Over C28                 | 3-C36)                       |  |
| 8021B                                          | 5035        | Solid                               | Benzene                                      |                              |  |
| 8021B                                          | 5035        | Solid                               | Ethylbenzene                                 |                              |  |
| 8021B                                          | 5035        | Solid                               | m-Xylene & p-Xylene                          |                              |  |
| 8021B                                          | 5035        | Solid                               | o-Xylene                                     |                              |  |
| 8021B                                          | 5035        | Solid                               | Toluene                                      |                              |  |
| 8021B                                          | 5035        | Solid                               | Xylenes, Total                               |                              |  |
| Total BTEX                                     |             | Solid                               | Total BTEX                                   |                              |  |

Eurofins Midland

Page 66 of 81

### **Method Summary**

#### Client: Carmona Resources Project/Site: West Corbin Federal SWD #16 Release

Job ID: 880-25379-1 SDG: Lea County, New Mexico

| Nethod      | Method Description                 | Protocol | Laboratory |
|-------------|------------------------------------|----------|------------|
| 3021B       | Volatile Organic Compounds (GC)    | SW846    | EET MID    |
| otal BTEX   | Total BTEX Calculation             | TAL SOP  | EET MID    |
| 3015 NM     | Diesel Range Organics (DRO) (GC)   | SW846    | EET MID    |
| 8015B NM    | Diesel Range Organics (DRO) (GC)   | SW846    | EET MID    |
| 300.0       | Anions, Ion Chromatography         | EPA      | EET MID    |
| 5035        | Closed System Purge and Trap       | SW846    | EET MID    |
| 3015NM Prep | Microextraction                    | SW846    | EET MID    |
| OI Leach    | Deionized Water Leaching Procedure | ASTM     | EET MID    |

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

## **Sample Summary**

#### Client: Carmona Resources Project/Site: West Corbin Federal SWD #16 Release

Job ID: 880-25379-1 SDG: Lea County, New Mexico

| ab Sample ID | Client Sample ID | Matrix | Collected      | Received       |  |
|--------------|------------------|--------|----------------|----------------|--|
| 80-25379-1   | T-1 (0-1')       | Solid  | 03/01/23 00:00 | 03/02/23 14:30 |  |
| 80-25379-2   | T-1 (1.5')       | Solid  | 03/01/23 00:00 | 03/02/23 14:30 |  |
| 80-25379-3   | T-1 (2')         | Solid  | 03/01/23 00:00 | 03/02/23 14:30 |  |
| 80-25379-4   | T-1 (3')         | Solid  | 03/01/23 00:00 | 03/02/23 14:30 |  |
| 80-25379-5   | T-1 (4')         | Solid  | 03/01/23 00:00 | 03/02/23 14:30 |  |
| 80-25379-6   | T-1 (5')         | Solid  | 03/01/23 00:00 | 03/02/23 14:30 |  |
| 80-25379-7   | T-1 (6')         | Solid  | 03/01/23 00:00 | 03/02/23 14:30 |  |
| 80-25379-8   | H-1 (0-0.5')     | Solid  | 03/01/23 00:00 | 03/02/23 14:30 |  |
| 80-25379-9   | H-2 (0-0.5')     | Solid  | 03/01/23 00:00 | 03/02/23 14:30 |  |
| 80-25379-10  | H-3 (0-0.5')     | Solid  | 03/01/23 00:00 | 03/02/23 14:30 |  |
| 80-25379-11  | H-4 (0-0.5')     | Solid  | 03/01/23 00:00 | 03/02/23 14:30 |  |
|              |                  |        |                |                |  |
|              |                  |        |                |                |  |
|              |                  |        |                |                |  |
|              |                  |        |                |                |  |
|              |                  |        |                |                |  |
|              |                  |        |                |                |  |
|              |                  |        |                |                |  |
|              |                  |        |                |                |  |
|              |                  |        |                |                |  |
|              |                  |        |                |                |  |
|              |                  |        |                |                |  |

| Project Manager C<br>Company Name: C | Conner Moehring<br>Carmona Resources                                                          |                       | Bill to (if different)<br>Company Name | Toc          | Todd Wells<br>EOG Resources |                      |
|--------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------|----------------------------------------|--------------|-----------------------------|----------------------|
|                                      | 310 W Wall St Ste 500                                                                         |                       | Address.                               | 1550         | 5509 Champions Dr           | Dr.                  |
| e ZIP                                | Midland, TX 79701                                                                             |                       | City, State ZIP                        | Mid          | Midland, Tx 79706           | 6                    |
|                                      | 432-813-6823                                                                                  |                       | Email Todd Wells@eogresources com      | ogresources  | com                         |                      |
| Project Name                         | West Corbin Federal SWD #16 Release                                                           |                       | 14 L                                   |              |                             | ANALYSIS REOUEST     |
| Project Number                       | 1225                                                                                          | Routine               | ne 🗸 Rush                              | Pres.        |                             |                      |
| Project Location                     | Lea County, New Mexico                                                                        | 0                     | _                                      | Code         |                             |                      |
| Sampler's Name:                      | GPJ                                                                                           |                       |                                        |              | २०)                         |                      |
| PO#                                  |                                                                                               |                       | )                                      | S            | + MF                        |                      |
| SAMPLE RECEIPT                       | T Terrop Blank.                                                                               | Yes No Wet Ine        | na Vad No                              | eter:        | RO ·                        |                      |
| Received Intact:                     | (Yes) No                                                                                      | neter ID              |                                        | am           |                             |                      |
| Cooler Custody Seals                 | o NIA)                                                                                        | Correction Factor     |                                        | -            | GRC                         |                      |
| Sample Custody Seals.                | NO MÁ                                                                                         | Temperature Reading   | e, l                                   | вт           | M ( 9                       |                      |
| Total Containers.                    | $\langle$                                                                                     | Corrected Temperature | 0                                      |              |                             |                      |
| Sample Identification                | ication Date                                                                                  | Time Soll             | ll Water Grab/                         | Cont         | ТРН                         |                      |
| T-1 (0-1')                           | ") 3/1/2023                                                                                   | ×                     |                                        | <br>         | ~<br>×<br>×                 |                      |
| T-1 (1 5)                            | ) 3/1/2023                                                                                    | ×                     |                                        | -<br>×       |                             |                      |
| T-1 (2')                             | 3/1/2023                                                                                      | ×                     |                                        | -1<br>×      | ×                           |                      |
| T-1 (3')                             | 3/1/2023                                                                                      | ×                     | Grab/                                  | -1<br>×      | ×                           |                      |
| T-1 (4')                             | 3/1/2023                                                                                      | ×                     | Grab/                                  | -1<br>×      | ^<br>×<br>×                 |                      |
| T-1 (5')                             | 3/1/2023                                                                                      | ×                     | Grab/                                  | -1<br>×      | ^<br>×<br>×                 |                      |
| T-1 (6')                             | 3/1/2023                                                                                      | ×                     | Grab/                                  | 1<br>×       | ^<br>×<br>×                 |                      |
| H-1 (0-0 5')                         | 5') 3/1/2023                                                                                  | ×                     | Grab/                                  | 1<br>×       | ^<br>×<br>×                 |                      |
| H-2 (0-0 5')                         | 5') 3/1/2023                                                                                  | ×                     | Grab/                                  | -1<br>×      | ^<br>×<br>×                 |                      |
| H-3 (0-0 5')                         | 5') 3/1/2023                                                                                  | ×                     | Grab/                                  | 1<br>×       | ^<br>×<br>×                 |                      |
| Comments Email to                    | Email to Mike Carmona / Mcarmona@carmonaresources com and Conner Moehring / Cmoehring@carmona | ı@carmonaresource:    | s com and Conner Mo                    | oehring / Cr | noehring@c                  | carmonaresources com |
|                                      | Relinquished by (Signature)                                                                   | (Signature)           |                                        | Date         | Date/Time                   | ( ) Received by      |
| MANA                                 | nou llas ~ (                                                                                  |                       |                                        | 3-2-         | - 7023                      |                      |

Work Order No:



Chain of Custody

| Comments Email to Mike Carmona / Mcarmona@carmonaresources com and Conner Moehring / Cmoehring@carmonaresou |              | -     |  |      |          |      | H-4 (0-0 5') | Sample Identification | otal Containers:        | Seals. Yes          |                   | Received Intact: Yes | SAMPLE RECEIPT Temp | 30 #:                                 |           |                            | Project Number | Project Name West Corbin Federal SWD #16 Release | <sup>3</sup> hone 432-813-6823 | Dity, State ZIP Midland, TX 79701 | Address 310 W Wall St Ste 500 | Company Name. Carmona Resources | Project Manager Conner Moehring |            |
|-------------------------------------------------------------------------------------------------------------|--------------|-------|--|------|----------|------|--------------|-----------------------|-------------------------|---------------------|-------------------|----------------------|---------------------|---------------------------------------|-----------|----------------------------|----------------|--------------------------------------------------|--------------------------------|-----------------------------------|-------------------------------|---------------------------------|---------------------------------|------------|
|                                                                                                             | na / Wcarmor | · • • |  |      |          |      | 3/1/2023     | Date                  |                         | NO N/A              | N/A               |                      | Temp Blank.         |                                       | GPJ       | Lea County, New Mexico     | 1225           | -ederal SWD                                      |                                | 701                               | Ste 500                       | Jrces                           | Q                               |            |
|                                                                                                             | na@carmonar  |       |  |      |          |      |              | Time                  | Corrected Temperature   | Temperature Reading | Correction Factor | Thermometer ID       | Yes No              |                                       |           | exico                      |                | #16 Release                                      |                                |                                   |                               |                                 |                                 |            |
|                                                                                                             | esources con |       |  |      |          |      | ×            | Soil                  | erature                 | ading               | 7                 |                      | Wet Ice             |                                       |           | Due Date                   | Routine        | Turr                                             | Email                          |                                   |                               |                                 |                                 |            |
|                                                                                                             | 1 and Conner |       |  |      |          |      | Grab/        | Water Comp            |                         |                     |                   |                      | Yes No              |                                       |           | 79 Hours                   | マ Rush         | Turn Around                                      | Todd Wells@eogresources com    | City, State ZIP                   | Address.                      | Company Name                    | Bill to: (if different)         |            |
|                                                                                                             | Moehring     |       |  |      |          |      | ab/ 1        | np Cont               |                         |                     | Pa                | ram                  | eter                | 5                                     |           | _                          | Pres.          |                                                  | @eogresou                      |                                   |                               | ne                              | nt)                             |            |
| )<br>!                                                                                                      | Cmoehr       |       |  |      |          |      | ×            | TPI                   | 1 801                   |                     |                   | 8021<br>D + E        | B                   | + MR                                  | (0)       |                            |                |                                                  | ces com                        | Midland, Tx 79706                 | 5509 Cha                      | EOG Resources                   | Todd Wells                      |            |
|                                                                                                             | ing@carr     |       |  |      |          |      | ×            |                       |                         |                     |                   | e 30                 |                     |                                       |           |                            |                |                                                  |                                | Fx 79706                          | 5509 Champions Dr             | ources                          | S                               |            |
|                                                                                                             | nonareso     |       |  |      |          |      |              |                       |                         |                     |                   |                      |                     |                                       |           |                            |                |                                                  |                                |                                   |                               |                                 |                                 |            |
|                                                                                                             | urces com    |       |  |      |          |      |              |                       |                         |                     |                   |                      |                     |                                       |           |                            |                | ANALYSI                                          |                                |                                   |                               |                                 |                                 |            |
| Repeived by: (Signature)                                                                                    |              |       |  |      |          |      |              | ••••                  |                         |                     |                   |                      |                     | · · · · · · · · · · · · · · · · · · · |           |                            |                | ANALYSIS REQUEST                                 | De<br>De                       | Re                                | Sta                           | Pro                             |                                 |            |
| hv: (Sinn                                                                                                   |              |       |  |      |          |      |              |                       |                         |                     |                   |                      |                     |                                       |           |                            |                | 4                                                | Deliverables EDD               | Reporting Level II Level III      | State of Project              | Program: UST/PST PRP            |                                 |            |
|                                                                                                             |              |       |  |      |          |      |              |                       |                         |                     |                   |                      |                     |                                       |           |                            |                |                                                  |                                | ∍l II □Lev                        | 유<br>[                        |                                 | ×                               |            |
|                                                                                                             |              |       |  |      |          | <br> |              |                       |                         |                     |                   |                      |                     |                                       |           |                            |                |                                                  | ADal                           |                                   |                               |                                 | ork Order                       |            |
|                                                                                                             |              |       |  |      |          |      |              | Sa                    | NaOH+A                  | Zn Aceta            | Na.S.O. NaSO      |                      |                     | HCL HC                                | Cool Cool | None NO                    |                | D                                                | ADaPT                          | DST/UST [                         |                               | Frownfields                     | Work Order Comments             | Page       |
| Dat                                                                                                         |              |       |  | Ņ    |          |      |              | Sample Comments       | NaOH+Ascorbic Acid SAPC | Zn Acetate+NaOH Zn  | Naco              |                      | ,                   |                                       | ~         |                            | el vau         | vennativa                                        | Other:                         |                                   |                               | Š                               | 1te                             | 2          |
| Date/Time                                                                                                   |              |       |  | 2537 | Loc: 880 |      |              | Iments                | d SAP                   | 'n                  |                   |                      | NaOH Na             | HNO3 HN                               | MeOH Me   | DI Water: H <sub>2</sub> O | e coue         | 2                                                |                                |                                   | Cherinin                      |                                 | 9                               | <u>o</u> , |

2

Work Order No: \_

25379

Page 70 of 81

Chain of Custody

Job Number: 880-25379-1

List Source: Eurofins Midland

SDG Number: Lea County, New Mexico

## Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 25379 List Number: 1

<6mm (1/4").

Creator: Rodriguez, Leticia

| Question                                                                         | Answer | Comment                             |
|----------------------------------------------------------------------------------|--------|-------------------------------------|
| The cooler's custody seal, if present, is intact.                                | N/A    |                                     |
| Sample custody seals, if present, are intact.                                    | N/A    |                                     |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |                                     |
| Samples were received on ice.                                                    | True   |                                     |
| Cooler Temperature is acceptable.                                                | False  | Refer to Job Narrative for details. |
| Cooler Temperature is recorded.                                                  | True   |                                     |
| COC is present.                                                                  | True   |                                     |
| COC is filled out in ink and legible.                                            | True   |                                     |
| COC is filled out with all pertinent information.                                | True   |                                     |
| Is the Field Sampler's name present on COC?                                      | True   |                                     |
| There are no discrepancies between the containers received and the COC.          | True   |                                     |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |                                     |
| Sample containers have legible labels.                                           | True   |                                     |
| Containers are not broken or leaking.                                            | True   |                                     |
| Sample collection date/times are provided.                                       | True   |                                     |
| Appropriate sample containers are used.                                          | True   |                                     |
| Sample bottles are completely filled.                                            | True   |                                     |
| Sample Preservation Verified.                                                    | N/A    |                                     |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |                                     |
| Containers requiring zero headspace have no headspace or bubble is               | N/A    |                                     |



March 30, 2023

CONNER MOEHRING CARMONA RESOURCES 310 W WALL ST SUITE 415 MIDLAND, TX 79701

RE: WEST CORBIN FEDERAL SWD #16 RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 03/29/23 11:17.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (\*). For a complete list of accredited analytes and matrices visit the TCEQ website at <a href="https://www.tceq.texas.gov/field/qa/lab\_accred\_certif.html">www.tceq.texas.gov/field/qa/lab\_accred\_certif.html</a>.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

| Method EPA 552.2 | Haloacetic Acids (HAA-5)     |
|------------------|------------------------------|
| Method EPA 524.2 | Total Trihalomethanes (TTHM) |
| Method EPA 524.4 | Regulated VOCs (V1, V2, V3)  |

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager



CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

| Received:         | 03/29/2023                       | Sampling Date:      | 03/29/2023     |
|-------------------|----------------------------------|---------------------|----------------|
| Reported:         | 03/30/2023                       | Sampling Type:      | Soil           |
| Project Name:     | WEST CORBIN FEDERAL SWD #16 RELE | Sampling Condition: | Cool & Intact  |
| Project Number:   | 1225                             | Sample Received By: | Tamara Oldaker |
| Project Location: | EOG - LEA COUNTY, NEW MEXICO     |                     |                |

#### Sample ID: CS - 1 (5') (H231424-01)

| BTEX 8021B                           | mg/    | ′kg             | Analyze    | d By: JH     |        |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|--------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS     | % Recovery | True Value QC | RPD   | Qualifie  |
| Benzene*                             | <0.050 | 0.050           | 03/29/2023 | ND           | 2.03   | 101        | 2.00          | 1.41  |           |
| Toluene*                             | <0.050 | 0.050           | 03/29/2023 | ND           | 2.06   | 103        | 2.00          | 0.659 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 03/29/2023 | ND           | 2.14   | 107        | 2.00          | 0.574 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 03/29/2023 | ND           | 6.66   | 111        | 6.00          | 0.609 |           |
| Total BTEX                           | <0.300 | 0.300           | 03/29/2023 | ND           |        |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 106    | % 71.5-13       | 4          |              |        |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg,    | ′kg             | Analyze    | d By: AC     |        |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS     | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 96.0   | 16.0            | 03/30/2023 | ND           | 416    | 104        | 400           | 3.77  |           |
| TPH 8015M                            | mg,    | ′kg             | Analyze    | d By: MS     | By: MS |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS     | % Recovery | True Value QC | RPD   | Qualifie  |
| GRO C6-C10*                          | <10.0  | 10.0            | 03/30/2023 | ND           | 215    | 108        | 200           | 6.07  |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 03/30/2023 | ND           | 236    | 118        | 200           | 11.3  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 03/30/2023 | ND           |        |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 96.5   | % 48.2-13       | 4          |              |        |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 101    | % 49.1-14       | 0          |              |        |            |               |       |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

| Received:         | 03/29/2023                       | Sampling Date:      | 03/29/2023     |
|-------------------|----------------------------------|---------------------|----------------|
| Reported:         | 03/30/2023                       | Sampling Type:      | Soil           |
| Project Name:     | WEST CORBIN FEDERAL SWD #16 RELE | Sampling Condition: | Cool & Intact  |
| Project Number:   | 1225                             | Sample Received By: | Tamara Oldaker |
| Project Location: | EOG - LEA COUNTY, NEW MEXICO     |                     |                |

#### Sample ID: CS - 2 (5') (H231424-02)

| BTEX 8021B                           | mg/    | /kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 03/29/2023 | ND           | 2.03 | 101        | 2.00          | 1.41  |           |
| Toluene*                             | <0.050 | 0.050           | 03/29/2023 | ND           | 2.06 | 103        | 2.00          | 0.659 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 03/29/2023 | ND           | 2.14 | 107        | 2.00          | 0.574 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 03/29/2023 | ND           | 6.66 | 111        | 6.00          | 0.609 |           |
| Total BTEX                           | <0.300 | 0.300           | 03/29/2023 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 107 5  | % 71.5-13       | 4          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg,    | /kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 64.0   | 16.0            | 03/30/2023 | ND           | 416  | 104        | 400           | 3.77  |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 03/30/2023 | ND           | 215  | 108        | 200           | 6.07  |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 03/30/2023 | ND           | 236  | 118        | 200           | 11.3  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 03/30/2023 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 101    | % 48.2-13       | 4          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 105    | % 49.1-14       | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

| Received:         | 03/29/2023                       | Sampling Date:      | 03/29/2023     |
|-------------------|----------------------------------|---------------------|----------------|
| Reported:         | 03/30/2023                       | Sampling Type:      | Soil           |
| Project Name:     | WEST CORBIN FEDERAL SWD #16 RELE | Sampling Condition: | Cool & Intact  |
| Project Number:   | 1225                             | Sample Received By: | Tamara Oldaker |
| Project Location: | EOG - LEA COUNTY, NEW MEXICO     |                     |                |

#### Sample ID: SW - 1 (5') (H231424-03)

| BTEX 8021B                           | mg/    | /kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 03/29/2023 | ND           | 2.03 | 101        | 2.00          | 1.41  |           |
| Toluene*                             | <0.050 | 0.050           | 03/29/2023 | ND           | 2.06 | 103        | 2.00          | 0.659 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 03/29/2023 | ND           | 2.14 | 107        | 2.00          | 0.574 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 03/29/2023 | ND           | 6.66 | 111        | 6.00          | 0.609 |           |
| Total BTEX                           | <0.300 | 0.300           | 03/29/2023 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 107 9  | % 71.5-13       | 4          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | /kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 16.0   | 16.0            | 03/30/2023 | ND           | 416  | 104        | 400           | 3.77  |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 03/30/2023 | ND           | 215  | 108        | 200           | 6.07  |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 03/30/2023 | ND           | 236  | 118        | 200           | 11.3  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 03/30/2023 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 104 9  | % 48.2-13       | 4          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 106 9  |                 |            |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

| Received:         | 03/29/2023                       | Sampling Date:      | 03/29/2023     |
|-------------------|----------------------------------|---------------------|----------------|
| Reported:         | 03/30/2023                       | Sampling Type:      | Soil           |
| Project Name:     | WEST CORBIN FEDERAL SWD #16 RELE | Sampling Condition: | Cool & Intact  |
| Project Number:   | 1225                             | Sample Received By: | Tamara Oldaker |
| Project Location: | EOG - LEA COUNTY, NEW MEXICO     |                     |                |

#### Sample ID: SW - 2 (5') (H231424-04)

| BTEX 8021B                           | mg/    | /kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 03/29/2023 | ND           | 2.03 | 101        | 2.00          | 1.41  |           |
| Toluene*                             | <0.050 | 0.050           | 03/29/2023 | ND           | 2.06 | 103        | 2.00          | 0.659 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 03/29/2023 | ND           | 2.14 | 107        | 2.00          | 0.574 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 03/29/2023 | ND           | 6.66 | 111        | 6.00          | 0.609 |           |
| Total BTEX                           | <0.300 | 0.300           | 03/29/2023 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 108 9  | % 71.5-13       | 4          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | /kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 48.0   | 16.0            | 03/30/2023 | ND           | 416  | 104        | 400           | 3.77  |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 03/30/2023 | ND           | 215  | 108        | 200           | 6.07  |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 03/30/2023 | ND           | 236  | 118        | 200           | 11.3  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 03/30/2023 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 109 9  | % 48.2-13       | 4          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 115 9  | % 49.1-14       | 0          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

| Received:         | 03/29/2023                       | Sampling Date:      | 03/29/2023     |
|-------------------|----------------------------------|---------------------|----------------|
| Reported:         | 03/30/2023                       | Sampling Type:      | Soil           |
| Project Name:     | WEST CORBIN FEDERAL SWD #16 RELE | Sampling Condition: | Cool & Intact  |
| Project Number:   | 1225                             | Sample Received By: | Tamara Oldaker |
| Project Location: | EOG - LEA COUNTY, NEW MEXICO     |                     |                |

#### Sample ID: SW - 3 (5') (H231424-05)

| BTEX 8021B                           | mg/    | /kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 03/29/2023 | ND           | 2.03 | 101        | 2.00          | 1.41  |           |
| Toluene*                             | <0.050 | 0.050           | 03/29/2023 | ND           | 2.06 | 103        | 2.00          | 0.659 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 03/29/2023 | ND           | 2.14 | 107        | 2.00          | 0.574 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 03/29/2023 | ND           | 6.66 | 111        | 6.00          | 0.609 |           |
| Total BTEX                           | <0.300 | 0.300           | 03/29/2023 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 106 9  | % 71.5-13       | 4          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | /kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 32.0   | 16.0            | 03/30/2023 | ND           | 416  | 104        | 400           | 3.77  |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 03/30/2023 | ND           | 215  | 108        | 200           | 6.07  |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 03/30/2023 | ND           | 236  | 118        | 200           | 11.3  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 03/30/2023 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 110 9  | % 48.2-13       | 4          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 115 9  | % 49.1-14       | 0          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

| Received:         | 03/29/2023                       | Sampling Date:      | 03/29/2023     |
|-------------------|----------------------------------|---------------------|----------------|
| Reported:         | 03/30/2023                       | Sampling Type:      | Soil           |
| Project Name:     | WEST CORBIN FEDERAL SWD #16 RELE | Sampling Condition: | Cool & Intact  |
| Project Number:   | 1225                             | Sample Received By: | Tamara Oldaker |
| Project Location: | EOG - LEA COUNTY, NEW MEXICO     |                     |                |

#### Sample ID: SW - 4 (5') (H231424-06)

| BTEX 8021B                           | mg/    | /kg             | Analyze    | ed By: JH    |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 03/29/2023 | ND           | 2.03 | 101        | 2.00          | 1.41  |           |
| Toluene*                             | <0.050 | 0.050           | 03/29/2023 | ND           | 2.06 | 103        | 2.00          | 0.659 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 03/29/2023 | ND           | 2.14 | 107        | 2.00          | 0.574 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 03/29/2023 | ND           | 6.66 | 111        | 6.00          | 0.609 |           |
| Total BTEX                           | <0.300 | 0.300           | 03/29/2023 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 106 9  | % 71.5-13       | 4          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | /kg             | Analyze    | ed By: AC    |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 64.0   | 16.0            | 03/30/2023 | ND           | 416  | 104        | 400           | 3.77  |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | ed By: MS    |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 03/30/2023 | ND           | 215  | 108        | 200           | 6.07  |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 03/30/2023 | ND           | 236  | 118        | 200           | 11.3  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 03/30/2023 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 78.8   | % 48.2-13       | 4          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 83.5   | % 49.1-14       |            |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



#### **Notes and Definitions**

| ND  | Analyte NOT DETECTED at or above the reporting limit                        |
|-----|-----------------------------------------------------------------------------|
| RPD | Relative Percent Difference                                                 |
| **  | Samples not received at proper temperature of 6°C or below.                 |
| *** | Insufficient time to reach temperature.                                     |
| -   | Chloride by SM4500Cl-B does not require samples be received at or below 6°C |

Samples reported on an as received basis (wet) unless otherwise noted on report

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

| 0            |
|--------------|
| $\mathbf{C}$ |
| 5            |
| Q            |
| and an       |
| 3            |
| -            |
| 0            |
| madd.        |
| 0            |
| 2            |
| Second       |
|              |
| ഗ            |
| St           |
| sto          |

|                                                                                                         |                       |                                     |                        |               |                         |                         |                 |                   |                   |                  |                              |                                                          | Page             |
|---------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------|------------------------|---------------|-------------------------|-------------------------|-----------------|-------------------|-------------------|------------------|------------------------------|----------------------------------------------------------|------------------|
|                                                                                                         |                       |                                     |                        |               |                         |                         |                 |                   |                   |                  |                              | Page 1 of                                                | <u> </u> ,→      |
| Project Manager:                                                                                        | Conner Moehring       | ng                                  |                        |               | Bill to: (if different) | ent)                    | Todo            | Todd Wells        |                   |                  | Work C                       | Work Order Comments                                      |                  |
|                                                                                                         | Carmona Resources     | ources                              |                        |               | Company Name            | me:                     | EOC             | EOG Resources     | Irces             |                  | Program: UST/PST PRP         | ]prownfields ]RC ]perfund                                |                  |
|                                                                                                         | 310 W Wall St Ste 500 | Ste 500                             |                        |               | Address:                |                         | 5509            | ) Cham            | 5509 Champions Dr |                  | State of Project:            |                                                          |                  |
| te ZIP:                                                                                                 | Midland, TX 79701     | 1701                                |                        |               | City, State ZIP:        | . <u>.</u>              | Midi            | Midland, Tx 79706 | 79706             |                  | Reporting:Level II Level III | ST/UST RRP Level IV                                      |                  |
|                                                                                                         | 432-813-6823          |                                     |                        | Email:        |                         | De                      | ogresources.com | moc               |                   |                  | Deliverables: EDD            | ADaPT Other:                                             |                  |
| Project Name:                                                                                           | West Corbin           | West Corbin Federal SWD #16 Release | #16 Release            | Turn          | Turn Around             |                         |                 |                   |                   | ANALYSIS REQUEST | QUEST                        | Preservative Codes                                       | 0                |
| Project Number:                                                                                         |                       | 1225                                |                        | Routine       | Rush                    | Pres.<br>Code           |                 |                   |                   |                  |                              | None: NO DI Water: H <sub>2</sub> O                      | H <sub>2</sub> O |
| Project Location                                                                                        | Lea                   | Lea County, New Mexico              | <b>Nexico</b>          | Due Date:     | 24 Hours                |                         |                 | )                 |                   |                  |                              | Cool: Cool MeOH: Me                                      | æ                |
| Sampler's Name:                                                                                         |                       | CRM                                 |                        |               |                         |                         |                 | MRO               |                   |                  |                              |                                                          | ~                |
| PO #                                                                                                    | _                     |                                     |                        |               |                         | ers                     |                 | 0+                |                   |                  |                              | H <sub>2</sub> SO <sub>4</sub> : H <sub>2</sub> NaOH: Na | ω.               |
| SAMPLE RECEIPT                                                                                          |                       | Temp Blank:                         | Yes NO                 | Wet Ice:      | Yes No                  |                         | 21B             | DR                | 4500              |                  |                              | H <sub>3</sub> PO <sub>4</sub> : HP                      |                  |
| Received Intact:                                                                                        | Vac A                 | es No                               | Thermometer ID:        |               | 011                     | Para                    | EX 80           | GRO               | oride             |                  |                              | Narson: Nason                                            |                  |
| Sample Custody Seals:                                                                                   | Yes                   | No MA                               | Temperature Readino:   | adino:        | e si                    | 00                      | вт              | 5M (              | Chl               |                  |                              | Zn Acetate+NaOH: Zn                                      | ,                |
| Total Containers:                                                                                       |                       | 1                                   | Corrected Temperature: | verature:     | 2.20                    | 100                     |                 | 801               |                   |                  |                              | NaOH+Ascorbic Acid: SAPC                                 | 0                |
| Sample Identification                                                                                   | tification            | Date                                | Time                   | Soil          | Water Gr                | Grab/ # of<br>Comp Cont | <b>~</b> ···    | TPI               |                   |                  |                              | Sample Comments                                          |                  |
| CS-1 (5')                                                                                               | 5')                   | 3/29/2023                           |                        | ×             |                         |                         | ×               | ×                 | ×                 |                  |                              |                                                          |                  |
| CS-2 (5')                                                                                               | 5')                   | 3/29/2023                           |                        | ×             |                         | C 1                     | ×               | ×                 | ×                 |                  |                              |                                                          |                  |
| 3 SW-1 (5')                                                                                             | (5')                  | 3/29/2023                           |                        | ×             | ~                       | C 1                     | ×               | ×                 | ×                 |                  |                              |                                                          |                  |
| f SW-2 (5')                                                                                             | (5')                  | 3/29/2023                           |                        | ×             |                         | C 1                     | ×               | ×                 | ×                 |                  |                              |                                                          |                  |
| SW-3 (5')                                                                                               | (5')                  | 3/29/2023                           |                        | ×             |                         | C 1                     | ×               | ×                 | ×                 |                  |                              |                                                          |                  |
| SW-4 (5')                                                                                               | (5')                  | 3/29/2023                           |                        | ×             |                         | C 1                     | ×               | ×                 | ×                 |                  |                              |                                                          |                  |
|                                                                                                         |                       | ~                                   |                        |               |                         |                         | -               |                   |                   |                  |                              |                                                          |                  |
|                                                                                                         |                       |                                     |                        | 1             |                         | _                       |                 | ~                 |                   |                  |                              |                                                          |                  |
| 4.0                                                                                                     |                       |                                     |                        |               | -                       |                         |                 |                   |                   |                  |                              |                                                          |                  |
| Comments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmona | to Mike Carmo         | ona / Mcarmo                        | ona@carmona            | resources.con | n and Conne             | r Moehrin               | g / Cm          | oehrin            | g@carm            | onaresources.com |                              |                                                          |                  |
| =                                                                                                       | C T                   | Relinquished by: (Signature)        | y: (Signature)         |               |                         | 5                       | Date            | Date/Time         |                   | A R              | Received by (Signature)      | Date/Time                                                |                  |
| and the                                                                                                 | 4 X                   | 1                                   |                        |               |                         | 44                      | 329-23          | 11                | 17                | DADMUR .         | Alla to All                  |                                                          |                  |
|                                                                                                         |                       |                                     |                        |               |                         |                         |                 |                   |                   |                  |                              |                                                          |                  |
|                                                                                                         |                       |                                     |                        |               |                         |                         |                 |                   |                   |                  |                              |                                                          |                  |

Released to Imaging: 5/12/2023 2:13:52 PM

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

**State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

| Operator:         | OGRID:                                    |
|-------------------|-------------------------------------------|
| EOG RESOURCES INC | 7377                                      |
| P.O. Box 2267     | Action Number:                            |
| Midland, TX 79702 | 208976                                    |
|                   | Action Type:                              |
|                   | [C-141] Release Corrective Action (C-141) |
|                   |                                           |

#### CONDITIONS

| Created<br>By |                          | Condition<br>Date |
|---------------|--------------------------|-------------------|
| jnobui        | Closure Report Approved. | 5/12/2023         |

.

CONDITIONS

Action 208976