District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Page 1 of 61

Incident ID:	nAB1504835072
District RP:	2RP-2814
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party: WPX Energy Permian, LLC.	OGRID: 246289		
Contact Name: Jim Raley	Contact Telephone: 575-689-7597		
Contact email: jim.raley@dvn.com	Incident # (assigned by OCD) nAB1504835072		
Contact mailing address: 5315 Buena Vista Dr., Carlsbad, NM, 88220			

Location of Release Source

Latitude 32.0799323

Longitude <u>-103.956339</u> (*NAD* 83 in decimal degrees to 5 decimal places)

Site Name: North Brushy Draw 35-4H	Site Type: Oil and Gas Well		
Date Release Discovered: 02/12/2015	API# (if applicable): 30-015-42290		

Unit Letter	Section	Township	Range	County
N	35	258	29E	Eddy

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)					
units)					
r					

Cause of Release:

Oil tanks ran over during normal well production activity because oil wasn't hauled. Oil haulers were dispatched to haul oil. Oil was recovered from lined containment with vacuum truck and wash containment.

 $bbl \ estimate = \frac{saturated \ soil \ volume(ft^3)}{4.21(\frac{ft^3}{bbl \ equivalent})} * estimated \ soil \ porosity \ (\%) + recoverd \ fluids \ (bbls)$

Page	2
	-

Oil Conservation Division

Incident ID:	nAB1504835072
District RP:	2RP-2814
Facility ID	
Application ID	

Was this a major release as defined by	If YES, for what reason(s) does the responsible party consider this a major release?			
19.15.29.7(A) NMAC?	The volume of the release was greater than 25 bbls			
🗙 Yes 🗌 No				
If YES, was immediate notice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?				
Immediate notice was by Taylor Jones to NMOCD - Heather Patterson, BLM - Zackary Laird via email, on 02/12/2015.				

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \boxtimes The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Title: Environmental Professional
Date:5/31/2023
Telephone:
Date:

Oil Conservation Division

Incident ID:	nAB1504835072
District RP:	2RP-2814
Facility ID	
Application ID	

Page 3 of 61

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?				
Did this release impact groundwater or surface water?				
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No			
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No			
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No			
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No			
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No			
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No			
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No			
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No			
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No			
Are the lateral extents of the release within a 100-year floodplain?				
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🔀 No			

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 5/31/2023 10:35:05 AM Form C-141 State of New Mex				Page 4 of 61		
		Oil Conservation Division		Incident ID:	nAB1504835072	
Page 4	Oil Conservation Division			District RP:	2RP-2814	
				Facility ID		
				Application ID		
regulations all operators are re- public health or the environme failed to adequately investigat addition, OCD acceptance of a and/or regulations.		fications a DCD does at to grou responsib Title: Date:	and perform co not relieve the indwater, surfac- ility for compl Environmenta 5/31/2023	rrective actions for rele operator of liability sho ce water, human health	ases which may endanger ould their operations have or the environment. In deral, state, or local laws	
OCD Only						
Received by:			Date:			

Received by OCD: 5/31/2023 10:35:05 AM Form C-141 State of New Mexico

Remediation Plan Checklist: Each of the following items must be included in the plan.

Oil Conservation Division

Incident ID:	nAB1504835072
District RP:	2RP-2814
Facility ID	
Application ID	

Page 5 of 61

Remediation Plan

Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Jim Raley Title: <u>Environmental Professional</u> fin Roby Date: 5/31/2023 Signature: email: jim.raley@dvn.com Telephone: 575-689-7597 **OCD Only** OCD 05/31/2023 Received by: Date: Deferral Approved Approved Approved with Attached Conditions of Approval Denied Ashley Maxwell 06/05/2023 Signature: Date:

DEFERRAL REQUEST REPORT

North Brushy Draw 35-4H Eddy County, New Mexico Incident Number nAB1504835072

Prepared for: WPX Energy Permian, LLC.

Carlsbad • Midland • San Antonio • Lubbock • Hobbs • Lafayette

SYNOPSIS

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of WPX Energy Permian, LLC (WPX), presents the following Deferral Request Report (DRR) detailing site assessment and additional soil sampling activities associated with an inadvertent release of crude oil at the North Brushy Draw 35-4H (Site). Based on the laboratory analytical results from recent soil sampling events, approved deferral for a more recent release covering the same area (NRM2019550034), WPX is requesting to defer residual impacted soil beneath a lined tank battery containment until the Site undergoes major reconstruction or plugging and abandonment, whichever comes first.

SITE LOCATION AND BACKGROUND

The Site is located in Unit N, Section 35, Township 25 South, Range 29 East, in Eddy County, New Mexico (32.0799323° N, 103.956339° W) and is associated with oil and gas exploration and production operations on Federal Land managed by the Bureau of Land Management. (**Figure 1** in **Appendix A**). On February 12, 2015, crude oil tanks overflowed and caused a release of approximately 30 barrels (bbls) of crude oil into a lined tank battery containment. Vacuum trucks recovered all free-standing fluids. WPX reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Corrective Action Form C-141 (Form C-141), which was received by the NMOCD on February 12, 2015, and was subsequently assigned Incident Number nAB1504835072. **Figure 2** in **Appendix A** depicts the observed release area, hereafter referred to as the Area of Concern (AOC).

On June 29, 2020, a produced water line failure caused the release of approximately 10 bbls of produced water into the same lined tank battery containment. Vacuum trucks recovered all free-standing fluids and WPX cleaned the tank battery liner in preparation for a liner integrity inspection. On July 15, 2020, the liner was determined to have been compromised. WPX reported the release to the NMOCD on a Form C-141, which was received by the NMOCD on December 15, 2020, and was subsequently assigned Incident Number NRM2019550034. WPX retained a third-party environmental contractor to assess residual soil impacts within and around the lined tank battery containment following the inadvertent release event and to investigate potential soil impacts from nAB1504835072. Upon receipt of laboratory analytical results, a Deferral Request (DR) was prepared and submitted on December 14, 2021, regarding both Incident Numbers NRM2019550034 and nAB1504835072. The NMOCD reviewed the report and approved the deferral of Incident Number NRM2019550034 on April 20, 2021, however, there was no response for Incident Number nAB1504835072. Additional efforts to provide supplemental data for the lateral assessment of the AOC have been conducted at the Site since the approval of Incident Number NRM2019550034 and are described below. Summaries of previous sampling events and laboratory analytical results can be referenced in the original report.

SITE CHARACTERIZATION AND CLOSURE CRITERIA

Etech characterized the Site according to Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC) considering depth to groundwater and the proximity to:

- Any continuously flowing watercourse or any other significant watercourse;
- Any lakebed, sinkhole or playa lake (measured from the ordinary high-water mark);
- An occupied permanent residence, school, hospital, institution or church;
- A spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes;
- Any freshwater well or spring;
- Incorporated municipal boundaries or a defined municipal fresh water well field covered under a municipal ordinance;
- A wetland;
- A subsurface mine;

Remediation Work Plan Incident Number nAB1504835072 North Brushy Draw 35-4H

- An unstable area (i.e. high karst potential); and
- A 100-year floodplain.

Depth to groundwater at the Site is estimated to be greater than 100 feet below ground surface (bgs) based on a soil boring (MW-1) that was drilled by Talon LPE for WPX on December 8, 2020, located approximately 0.27 miles east of the Site on the North Brushy Federal 35 #010 well pad. The soil boring location may be referenced on **Figure 1** in **Appendix A**. Using a truck mounted drill rig equipped with hollow stem auger, the soil boring was advanced to a total depth of 105 feet bgs. No fluids were observed throughout the drilling process nor after a 72-hour observation period. Following the observation period, the boring was plugged and abandoned according to the appropriate regulations. The boring log and plugging records are provided in **Appendix B**.

Based on the initial desktop review, the closest continuously flowing or significant water course to the Site appeared to be an ephemeral stream identified on the United States Fish and Wildlife Service (USFWS) online database, National Wetland Inventory (Wetland Mapper), located to the south within 300 feet of the edge of the AOC. Although the identified feature is denoted as a dashed blue line on a United States Geological Survey (USGS) 7.5-minute quadrangle map, the identified feature did not seem to meet one or more of the remaining qualifications of a significant watercourse as defined in Subsection P of NMAC 19.15.17.7. As per Subsection P of NMAC 19.15.17.7, a significant watercourse requires "[...] a defined bed and bank either named or identified by a dashed blue line on a USGS 7.5-minute quadrangle map or the next lower order tributary with a defined bed and bank of such watercourse. As such, field verification was necessary to determine the applicability of the definition of a significant watercourse for the identified feature.

On July 15, 2022, a third-party environmental contractor was retained to conduct a field investigation to validate the presence or absence of a significant watercourse within the established 300-foot boundary of the release according to the parameters set forth in Subsection P of NMAC 19.15.17.7. A bed and bank were not identified throughout the course of the field survey of the potential watercourse. Only very faint erosional paths or swales aligned with the topographic gradient were observed. Additionally, the features did not appear to connect to a larger watercourse as the feature is intersected by the Site pad, access roads and multiple pipeline Right-of-Ways (ROW) visible on a satellite arial imagery. There was no evidence of fluvial deposition inside the faint erosional features, instead it splayed out onto the desert floor. Aerial imagery and photographic evidence from the field survey are provided in **Figure 2** in **Appendix A** and **Appendix C**, respectively. Following the field investigation, the feature identified by Wetland Mapper did not meet the requirements of a "significant watercourse" according to Subsection P of NMAC 19.15.17.7 and therefore no significant watercourse lies within 300 feet of the Site.

All other potential receptors are not within the established buffers in NMAC 19.15.29.12. Receptor details from the site characterization are included in **Figure 1** in **Appendix A**.

Based on the results from the desktop review, the watercourse survey and estimated regional depth to groundwater at the Site, the following Closure Criteria was applied:

Constituents of Concern (COCs)	Laboratory Analytical Method	Closure Criteria
Chloride	(Environmental Protection Agency) EPA 300.0	20,000 milligram per kilogram (mg/kg)
Total Petroleum Hydrocarbon (TPH)	EPA 8015 M/D	2,500 mg/kg
TPH-gasoline range organics (GRO) and TPH- diesel range organics (DRO)	EPA 8021B	1,000 mg/kg
Benzene	EPA 8021B	10 mg/kg
Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX)	EPA 8021B	50 mg/kg

Remediation Work Plan Incident Number nAB1504835072 North Brushy Draw 35-4H

DELINEATION SOIL SAMPLING ACTIVITIES

On July 14, 2022, delineation activities were continued by third-party environmental contractors to further assess lateral definition of the AOC. Six delineation boreholes (DS01 through DS06) were advanced via mechanical equipment surrounding the tank battery containment. It should be noted that DS01 through DS04 were advanced within 5 feet from the original locations documented in the DR to collect a second depth for complete lateral delineation. Delineation activities were directed by field screening for volatile organic compounds utilizing a calibrated photoionization detector (PID) and chloride using Hach® chloride QuanTab® test strips. Field screening results and observations for delineation soil samples were recorded on soil sampling logs, which is included as **Appendix D**. The location of all delineation soil samples is displayed in **Figure 3** in **Appendix A**. Photographic documentation during delineation activities is included in **Appendix C**.

Delineation soil samples were placed directly into lab provided pre-cleaned glass jars, packaged with minimal void space, labeled, and immediately placed on ice. The soil samples were transported under strict chain-of-custody procedures, to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of COCs.

LABORATORY ANALYTICAL RESULTS

Laboratory analytical results for additional soil samples collected from DS01 through DS06 locations indicated all COC concentrations were below the Site Closure Criteria.

Laboratory analytical results are summarized in **Table 1** included in **Appendix E**. The executed chain-of-custody forms and laboratory analytical reports are provided in **Appendix F**.

DEFERRAL REQUEST

Based on supplemental delineation soil sample analytical results and results from previous sampling events, WPX believes the AOC has been sufficiently vertically and horizontally delineated. Residual impacts appear to solely reside below the lined tank battery containment (**Figure 3** in **Appendix A**), based on the six advanced soil borings covering every cardinal direction surrounding the tank battery containment. As such, WPX respectfully requests deferral of a total of approximately 90 cubic yards of impacted soil for Incident Number NAB1504835072 until the Site undergoes major facility deconstruction or plugging and abandonment, whichever comes first. No Further Action appears warranted at this time and the Site should be respectfully considered for Deferral by the NMOCD.

WPX believes the timely initial response and other completed remedial actions have mitigated impacts at the Site and the requirements set forth in NMAC guidelines and be protective of human health, the environment, and groundwater.

If you have any questions or comments, please do not hesitate to contact Joseph Hernandez at (281) 702-2329 or joseph@etechenv.com or Anna Byers at (575) 200-6754 or anna@etechenv.com. Documentation of communication with NMOCD regarding Incident Number nAB1702454101 is presented as **Attachment G**.

Sincerely,

Etech Environmental and Safety Solutions, Inc.

anna Byers

Anna Byers Senior Geologist

Remediation Work Plan Incident Number nAB1504835072 North Brushy Draw 35-4H

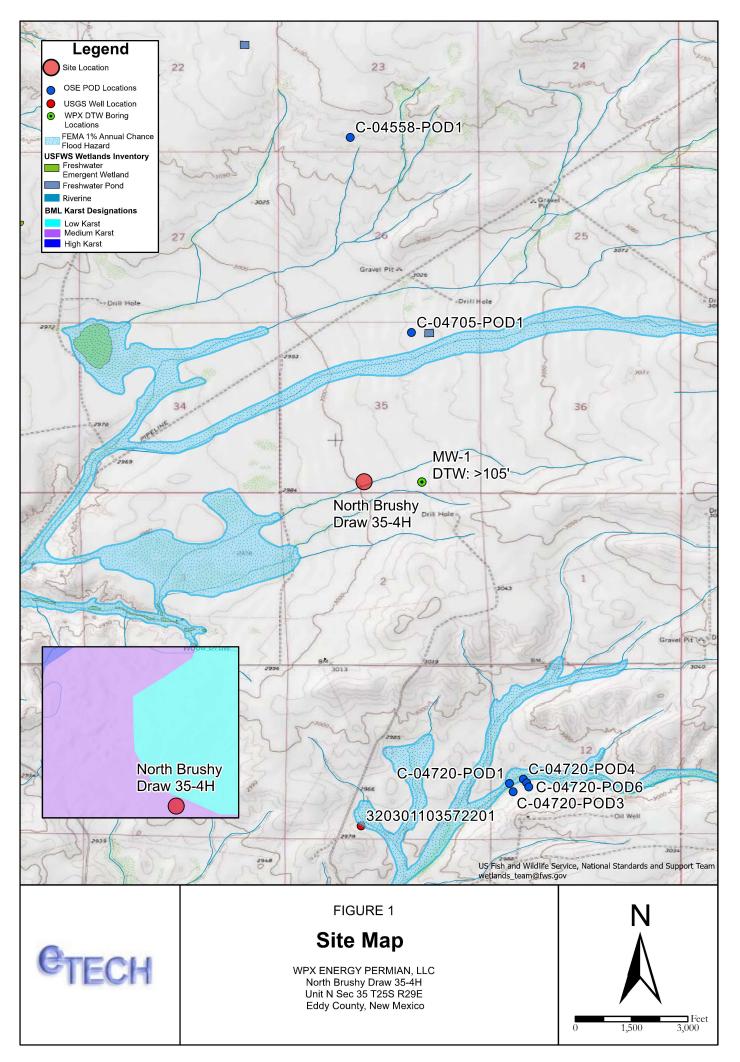
Josep Add

Joseph S. Hernandez Senior Managing Geologist

cc: Jim Raley, WPX New Mexico Oil Conservation Division

Appendices:

Appendix A:	Figure 1: Site Map
	Figure 2: Watercourse Survey
	Figure 3: Delineation Soil Sample Locations
Appendix B:	Referenced Well Records
Appendix C:	Photographic Log
Appendix D:	Soil Sampling Logs
Appendix E:	Tables
Appendix F:	Laboratory Analytical Reports & Chain-of-Custody Documentation
Appendix G:	NMOCD Correspondence


Remediation Work Plan Incident Number nAB1504835072 North Brushy Draw 35-4H

.

APPENDIX A

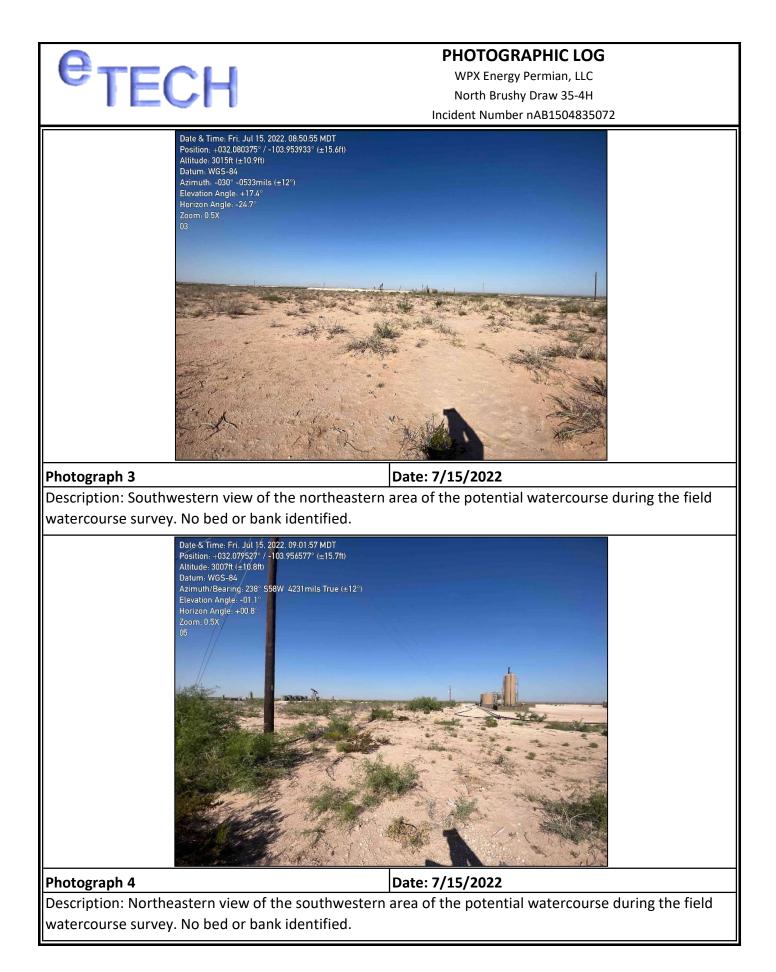
Figures

APPENDIX B

Referenced Well Records

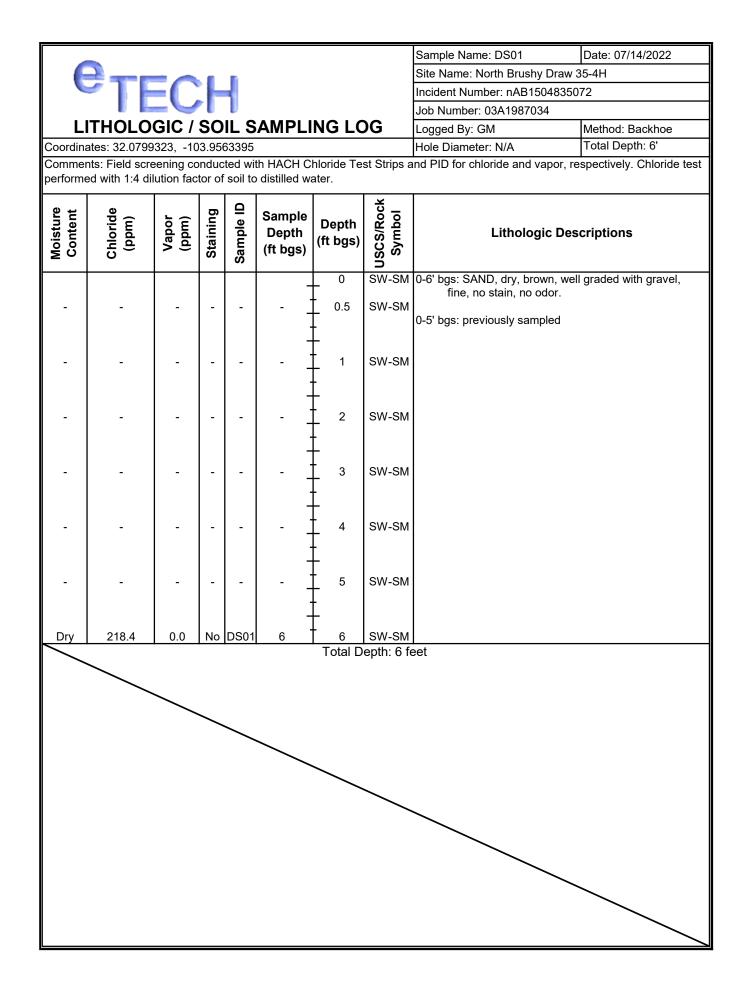
Page 16 of 61	Page	<i>16</i>	of	61
---------------	------	-----------	----	-----------

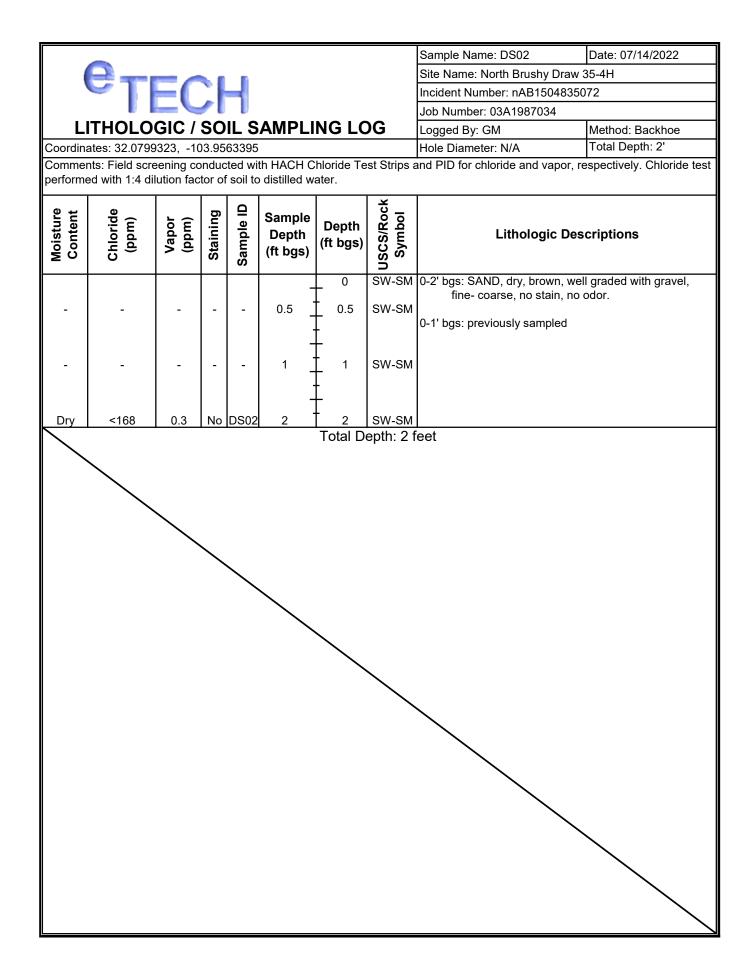
•

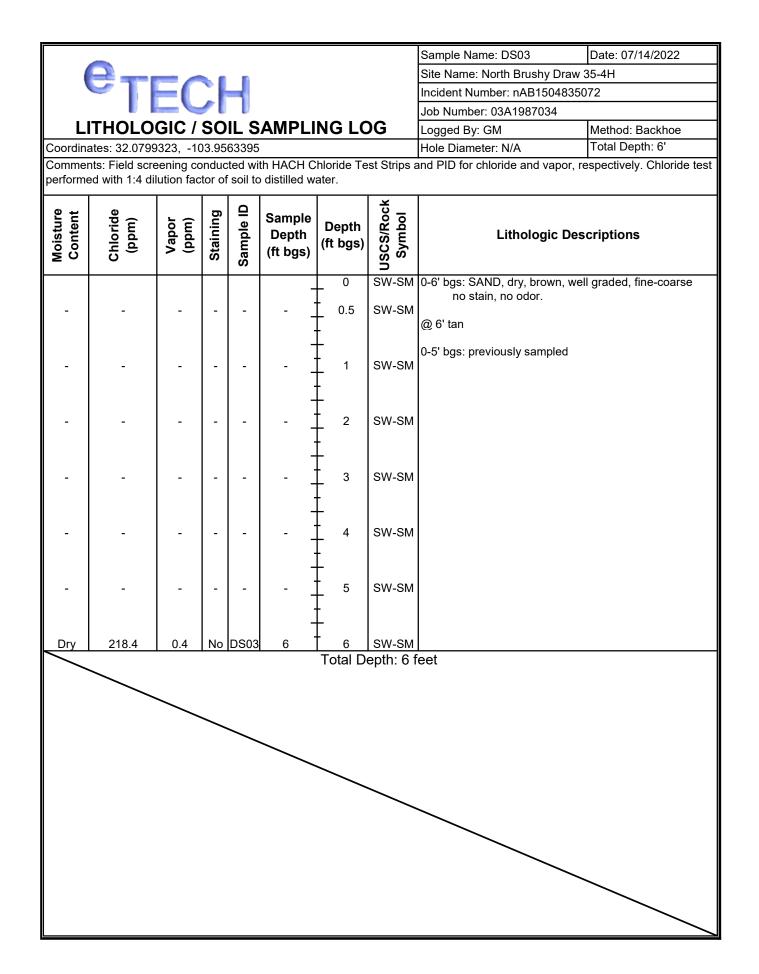

		ЦD					BORI	NG LOG/	MONITORING W	ELL COMPLETION	N DIAGRAM
		HR			0 5		Boring/Wel	l Number:		Location:	
			MPL		L E		Date:	М	W-1	North Brushy Fede	ral 35 # 010H
	11	20	LUT	101	12		Date.	12/8	8/2020	WPX End	ergy
Drilling Me			Sampling N				Logged By:		2.0	Drilled By:	
A Gravel Pacl	ir Rotar	у	Crevel De el	No k Depth Inte			Seal Type:	J. Li	nn, PG Seal Depth Interval:	Talon L	PE
	k Type: 0/20 San	nd	Gravel Pac	1	ags			lone	None	32.0799	09
Casing Typ	e:	Diameter:		Depth Inter			Boring Tota	al Depth (ft. BC		Longitude:	
PVC Screen Typ		2-inch Slot:		0-100 fe Diameter:		Interval:	Well Total	1(Depth (ft. BGS	05	-103.951 Depth to Water (ft. BTOC):	386 DTW Date:
PVC	с.	0.010-in	nch	2-inch	-	105 ft	wen rotar).)5	> 105	12/16/2020
Depth Interval (ft)	Recovery (ft)	Plasticity	Moisture	Odor	Staining	PID (ppm)	USCS	Sample ID	Litholog	Well Completion	
0 5 10 15	NM	L	D	N	N	NM	CE	NS	Buff to pale	e pink caliche	
20 25 30 35 40 45 50	NM	L	D	Ν	Ν	NM	SM	NS	Tan to pale	red silty sand	
55 60	NM	М	М	Ν	Ν	NM	ML	NS	-	ndy silt with minor im sand	
65	NM	Н	М	N	Ν	NM	CL	NS	Tan clay with	h minor gravel	
70 75 80	NM	L	D	N	N	NM	SP	NS		aded fine sand with or silt	
85	NM	Н	D/SLM	Ν	Ν	NM	CL	NS		n clay with minor ninor angular gravel	
90 95 100	NM	M/H	М	N	N	NM	CL	NS	with minor mediu	ge sandy lean clay m sand and angular Boring: 105'	

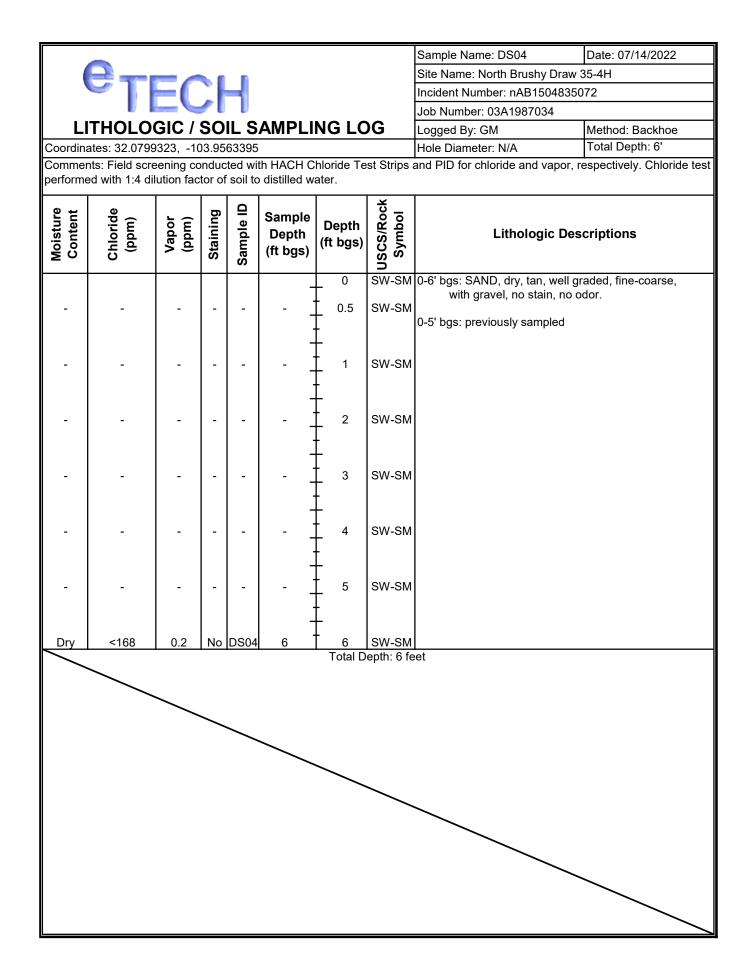
APPENDIX C

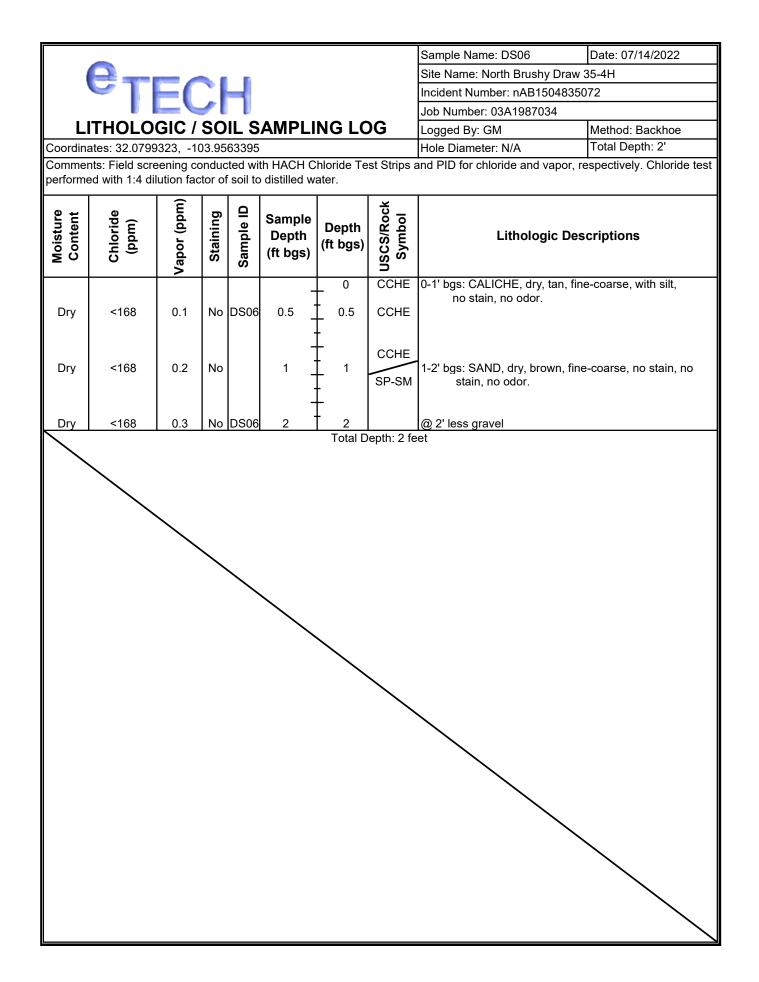
Photographic Log






APPENDIX D


Soil Sampling Logs



•

								Sample Name: DS05	Data: 07/14/2022
								Site Name: North Brushy Draw	Date: 07/14/2022
	₽ TI							Incident Number: nAB150483	
								Job Number: 03A1987034	5072
	THOLO								Mathady Daalyhaa
						NG LC	0	Logged By: GM Hole Diameter: N/A	Method: Backhoe Total Depth: 2'
	tes: 32.0799					bloride Te	et Strine /	and PID for chloride and vapor,	
	d with 1:4 dil								respectively. Onlonde test
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic De	
					_	0	SP-SM	0-1' bgs: SAND, dry, brown, po	
Dry	<168	0.1	No	DS05	0.5	0.5	SP-SM	fine-coarse, no stain, no	odor.
Diy	100	0.1	NO	0000		- 0.0		1-2' bgs: SAND, dry, brown, w no stain, no odor.	ell graded, fine-coarse,
_					-	T .	SP-SM		
Dry	<168	0.0	No		1 _	↓ 1	SW-SM		
						t	011-011		
	252.0	0.4	NL-						
Dry	252.0	0.1	NO	DS05	2	2 Total D	SW-SM epth: 2 fe	l	

APPENDIX E

Tables

•

					Table 1 AMPLE ANALY Permian, LLC - No Eddy County, Ne	TICAL RESULTS	-			e _{TECH}
Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
	MOCD Table I Closure Criteria for Soils Impacted by a 10 50 NE NE NE 1,000 2,500									20,000
					Delineation Soil S	amples				
DS01	07/14/2022	6	<0.000399	<0.000798	<50.0	<50.0	<50.0	<50.0	<50.0	201
DS02	07/14/2022	2	<0.000402	<0.000803	<49.9	<49.9	<49.9	<49.9	<49.9	101
DS03	07/14/2022	6	<0.000399	<0.000798	<50.0	<50.0	<50.0	<50.0	<50.0	223
DS04	07/14/2022	6	<0.000398	<0.000795	<50.0	<50.0	<50.0	<50.0	<50.0	31.2
DS05	07/14/2022	0.5	<0.000398	<0.000797	<49.9	<49.9	<49.9	<49.9	<49.9	<4.98
DS05	07/14/2022	2	<0.000399	<0.000798	<49.9	<49.9	<49.9	<49.9	<49.9	353
DS06	07/14/2022	0.5	<0.000401	<0.000802	<49.9	<49.9	<49.9	<49.9	<49.9	138
DS06	07/14/2022	2	<0.000402	<0.000803	<49.9	<49.9	<49.9	<49.9	<49.9	36.9

Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

GRO: Gasoline Range

DRO: Diesel Range Organics

ORO: Oil Range Organics TPH: Total Petroleum Hydrocarbon

IPH. Total Petroleum Hydrocarbon

NMOCD: New Mexico Oil Conservation Division

NMAC: New Mexico Administrative Code

Concentrations in bold exceed the NMOCD Table I Closure Criteria and/or Reclamation Standard for Soils Impacted by a Release

APPENDIX F

Laboratory Analytical Reports & Chain-of-Custody Documentation

Received by OCD: 5/31/2023 10:35:05 AM

LINKS

Review your project results through

EOL

Have a Question?

www.eurofinsus.com/Env

Released to Imaging: 6/5/2023 9:03:07 AM

Visit us at:

Ask— The Expert

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Tel: (575)988-3199

Laboratory Job ID: 890-2563-1

Laboratory Sample Delivery Group: 03A1987034 Client Project/Site: NORTH BRUSHY DRAW FEDERAL 35 #004H

For:

Ensolum 705 W. Wadley Suite 210 Midland, Texas 79701

Attn: Ben Belill

RAMER

Authorized for release by: 7/21/2022 9:53:47 AM

Jessica Kramer, Project Manager (432)704-5440 Jessica.Kramer@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Project/Site: NORTH BRUSHY DRAW FEDERAL 35 #004H

Client: Ensolum

Laboratory Job ID: 890-2563-1 SDG: 03A1987034

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	18
Lab Chronicle	21
Certification Summary	24
Method Summary	25
Sample Summary	26
Chain of Custody	27
Receipt Checklists	28

Definitions/Glossary

Client: Ensolum Project/Site: NORTH BRUSHY DRAW FEDERAL 35 #004H

Qualifiers	8	3
GC VOA		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	5
GC Semi V	OA	
Qualifier	Qualifier Description	
*+	LCS and/or LCSD is outside acceptance limits, high biased.	
*1	LCS/LCSD RPD exceeds control limits.	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	8
HPLC/IC		
Qualifier	Qualifier Description	9
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	
Glossary	,	
		11

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 890-2563-1

SDG: 03A1987034

Case Narrative

Client: Ensolum Project/Site: NORTH BRUSHY DRAW FEDERAL 35 #004H

Job ID: 890-2563-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-2563-1

Receipt

The samples were received on 7/15/2022 10:06 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.8°C

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-30144 and analytical batch 880-30143 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The laboratory control sample (LCS) associated with preparation batch 880-30000 and analytical batch 880-29927 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: (LCS 880-30000/2-A) and (MB 880-30000/1-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300 ORGFM 28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-29901 and analytical batch 880-29941 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-29907 and analytical batch 880-30069 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Ensolum Project/Site: NORTH BRUSHY DRAW FEDERAL 35 #004H

Client Sample ID: DS01

Date Collected: 07/14/22 14:00 Date Received: 07/15/22 10:06

Sample Depth: 6

Method: 8021B - Volatile Organic Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.000399	U F1	0.000399		mg/Kg		07/20/22 13:38	07/20/22 17:20	
Toluene	<0.000399	U F1	0.000399		mg/Kg		07/20/22 13:38	07/20/22 17:20	
Ethylbenzene	<0.000399	U F1	0.000399		mg/Kg		07/20/22 13:38	07/20/22 17:20	
m-Xylene & p-Xylene	<0.000798	U F1	0.000798		mg/Kg		07/20/22 13:38	07/20/22 17:20	
o-Xylene	<0.000399	U F1	0.000399		mg/Kg		07/20/22 13:38	07/20/22 17:20	
Xylenes, Total	<0.000798		0.000798		mg/Kg		07/20/22 13:38	07/20/22 17:20	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	107		70 - 130				07/20/22 13:38	07/20/22 17:20	
1,4-Difluorobenzene (Surr)	103		70 - 130				07/20/22 13:38	07/20/22 17:20	
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.000798	U	0.000798		mg/Kg			07/21/22 10:10	
Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0		mg/Kg			07/19/22 09:52	
Method: 8015B NM - Diesel Rang									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U *1 *+	50.0		mg/Kg		07/18/22 16:51	07/19/22 01:11	
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		07/18/22 16:51	07/19/22 01:11	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/18/22 16:51	07/19/22 01:11	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	112		70 - 130				07/18/22 16:51	07/19/22 01:11	
o-Terphenyl	124		70 - 130				07/18/22 16:51	07/19/22 01:11	
-									
Method: 300.0 - Anions, Ion Chro	• • •								
	Result	Soluble Qualifier	RL	MDL		D	Prepared	Analyzed	
Analyte Chloride	• • •		RL	MDL	Unit mg/Kg	<u>D</u>		07/20/22 05:30	
Analyte Chloride lient Sample ID: DS02	Result			MDL		<u> </u>		07/20/22 05:30	2563-2
Analyte Chloride Ilient Sample ID: DS02 ate Collected: 07/14/22 11:30	Result			MDL		<u>D</u>		07/20/22 05:30	Dil Fa 2563-2 x: Solic
Analyte Chloride ilient Sample ID: DS02 ate Collected: 07/14/22 11:30 ate Received: 07/15/22 10:06	Result			MDL		<u> </u>		07/20/22 05:30	2563-2
Analyte Chloride lient Sample ID: DS02 ate Collected: 07/14/22 11:30 ate Received: 07/15/22 10:06 ample Depth: 2	Result 201	Qualifier		MDL		<u>D</u>		07/20/22 05:30	2563-2
Analyte Chloride lient Sample ID: DS02 ate Collected: 07/14/22 11:30 ate Received: 07/15/22 10:06 ample Depth: 2 Method: 8021B - Volatile Organic	Compounds (Qualifier (GC)	4.96		mg/Kg		Lab San	07/20/22 05:30 nple ID: 890- Matri	2563-2 x: Solic
Analyte Chloride lient Sample ID: DS02 ate Collected: 07/14/22 11:30 ate Received: 07/15/22 10:06 ample Depth: 2 Method: 8021B - Volatile Organic Analyte	Compounds Result	Qualifier (GC) Qualifier	4.96		mg/Kg	D	Lab San	07/20/22 05:30 nple ID: 890- Matri Analyzed	2563-2
Analyte Chloride lient Sample ID: DS02 ate Collected: 07/14/22 11:30 ate Received: 07/15/22 10:06 ample Depth: 2 Method: 8021B - Volatile Organic Analyte Benzene	Result 201 Compounds Result <0.000402	Qualifier GC) Qualifier U	4.96		Unit mg/Kg		Lab San Prepared 07/20/22 13:38	07/20/22 05:30 nple ID: 890- Matri Analyzed 07/20/22 17:46	2563-2 x: Solic Dil Fa
Analyte Chloride Ilient Sample ID: DS02 ate Collected: 07/14/22 11:30 ate Received: 07/15/22 10:06 ample Depth: 2 Method: 8021B - Volatile Organic Analyte Benzene Toluene	Result 201 Compounds Result <0.000402	Qualifier GC) Qualifier U U	4.96		Unit mg/Kg mg/Kg mg/Kg		Lab San Prepared 07/20/22 13:38 07/20/22 13:38	07/20/22 05:30 nple ID: 890- Matri Analyzed 07/20/22 17:46 07/20/22 17:46	2563-2 x: Solic Dil Fa
Analyte Chloride lient Sample ID: DS02 ate Collected: 07/14/22 11:30 ate Received: 07/15/22 10:06 ample Depth: 2 Method: 8021B - Volatile Organic Analyte Benzene	Result 201 Compounds Result <0.000402	Qualifier GC) Qualifier U U U	4.96		Unit mg/Kg		Lab San Prepared 07/20/22 13:38	07/20/22 05:30 nple ID: 890- Matri Analyzed 07/20/22 17:46	2563-2 x: Solie

07/20/22 17:46

07/20/22 17:46

Analyzed

07/20/22 17:46

Job ID: 890-2563-1 SDG: 03A1987034

Page 34 of 61

5

1

1

1

Dil Fac

Project/Site: NORTH BRUSHY DRAW FEDERAL 35 #004H

Page 35 of 61

Job ID: 890-2563-1 SDG: 03A1987034

Matrix: Solid

5

Lab Sample ID: 890-2563-2

Client Sample ID: DS02

Date Collected: 07/14/22 11:30 Date Received: 07/15/22 10:06

Sample Depth: 2

Client: Ensolum

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	96		70 - 130				07/20/22 13:38	07/20/22 17:46	1
Method: Total BTEX - Total BTE	X Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.000803	U	0.000803		mg/Kg			07/21/22 10:10	1
Method: 8015 NM - Diesel Range	e Organics (DR	0) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			07/19/22 09:52	1
Method: 8015B NM - Diesel Ran	ge Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U *1 *+	49.9		mg/Kg		07/18/22 16:51	07/19/22 02:14	1
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		07/18/22 16:51	07/19/22 02:14	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		07/18/22 16:51	07/19/22 02:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	107		70 - 130				07/18/22 16:51	07/19/22 02:14	1
o-Terphenyl	117		70 - 130				07/18/22 16:51	07/19/22 02:14	1
Method: 300.0 - Anions, Ion Chr	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	101		4.99		mg/Kg			07/20/22 05:39	1
lient Sample ID: DS03							Lab Sar	nple ID: 890-	2563-3
ate Collected: 07/14/22 12:15								Matri	x: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000399	U	0.000399		mg/Kg		07/20/22 13:38	07/20/22 18:12	1
Toluene	<0.000399	U	0.000399		mg/Kg		07/20/22 13:38	07/20/22 18:12	1
Ethylbenzene	<0.000399	U	0.000399		mg/Kg		07/20/22 13:38	07/20/22 18:12	1
m-Xylene & p-Xylene	<0.000798	U	0.000798		mg/Kg		07/20/22 13:38	07/20/22 18:12	1
o-Xylene	<0.000399	U	0.000399		mg/Kg		07/20/22 13:38	07/20/22 18:12	1
Xylenes, Total	<0.000798	U	0.000798		mg/Kg		07/20/22 13:38	07/20/22 18:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130				07/20/22 13:38	07/20/22 18:12	1
1,4-Difluorobenzene (Surr)	92		70 - 130				07/20/22 13:38	07/20/22 18:12	1
Method: Total BTEX - Total B	FEX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.000798	U	0.000798		mg/Kg			07/21/22 10:10	1
Method: 8015 NM - Diesel Rar	nge Organics (DR	0) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Carlsbad

Client Sample Results

Client: Ensolum Project/Site: NORTH BRUSHY DRAW FEDERAL 35 #004H

Client Sample ID: DS03

Date Collected: 07/14/22 12:15 Date Received: 07/15/22 10:06

Sample Depth: 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U *1 *+	50.0		mg/Kg		07/18/22 16:51	07/19/22 02:35	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		07/18/22 16:51	07/19/22 02:35	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/18/22 16:51	07/19/22 02:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	103		70 - 130				07/18/22 16:51	07/19/22 02:35	1
o-Terphenyl	109		70 - 130				07/18/22 16:51	07/19/22 02:35	1
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	223		5.00		mg/Kg			07/20/22 05:48	1
lient Sample ID: DS04							Lab San	nple ID: 890-	2563-4
ate Collected: 07/14/22 13:35								Matri	x: Solid
ate Received: 07/15/22 10:06									
ample Depth: 6									

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000398	U	0.000398		mg/Kg		07/20/22 13:38	07/20/22 18:38	
Toluene	<0.000398	U	0.000398		mg/Kg		07/20/22 13:38	07/20/22 18:38	
Ethylbenzene	<0.000398	U	0.000398		mg/Kg		07/20/22 13:38	07/20/22 18:38	
m-Xylene & p-Xylene	<0.000795	U	0.000795		mg/Kg		07/20/22 13:38	07/20/22 18:38	
o-Xylene	<0.000398	U	0.000398		mg/Kg		07/20/22 13:38	07/20/22 18:38	
Xylenes, Total	<0.000795	U	0.000795		mg/Kg		07/20/22 13:38	07/20/22 18:38	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130				07/20/22 13:38	07/20/22 18:38	1
1,4-Difluorobenzene (Surr)	93		70 - 130				07/20/22 13:38	07/20/22 18:38	1
Method: Total BTEX - Total B	TEX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.000795	U	0.000795		mg/Kg			07/21/22 10:10	1
Method: 8015 NM - Diesel Rar	nge Organics (DR	O) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			07/19/22 09:52	1
Method: 8015B NM - Diesel R	ange Organics (D	RO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U *1 *+	50.0		mg/Kg		07/18/22 16:51	07/19/22 02:56	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		07/18/22 16:51	07/19/22 02:56	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/18/22 16:51	07/19/22 02:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	101		70 - 130				07/18/22 16:51	07/19/22 02:56	1
o-Terphenyl	105		70 - 130				07/18/22 16:51	07/19/22 02:56	1

Eurofins Carlsbad

Job ID: 890-2563-1 SDG: 03A1987034

Page 36 of 61

Client: Ensolum

Client Sample Results

Job ID: 890-2563-1

Client Sample ID: DS04							Lab San	nple ID: 890-	2563-4
Date Collected: 07/14/22 13:35								-	x: Solid
Date Received: 07/15/22 10:06									
Sample Depth: 6									
_ Method: 300.0 - Anions, Ion Chro	omatography	Solublo							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	31.2		5.00		mg/Kg			07/20/22 05:57	1
Client Sample ID: DS05							Lab Sar	nple ID: 890-	2563-5
Date Collected: 07/14/22 11:40							Lub Our		x: Solid
Date Received: 07/15/22 10:06								Math	
Sample Depth: 0.5									
Mathada 0004D Malatila Ornania	- O								
Method: 8021B - Volatile Organic Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000398	U	0.000398		mg/Kg		07/20/22 13:38	07/20/22 19:04	
Toluene	<0.000398	U	0.000398		mg/Kg		07/20/22 13:38	07/20/22 19:04	1
Ethylbenzene	<0.000398	U	0.000398		mg/Kg		07/20/22 13:38	07/20/22 19:04	
m-Xylene & p-Xylene	<0.000797	U	0.000797		mg/Kg		07/20/22 13:38	07/20/22 19:04	
o-Xylene	<0.000398		0.000398		mg/Kg		07/20/22 13:38	07/20/22 19:04	
Xylenes, Total	<0.000797	U	0.000797		mg/Kg		07/20/22 13:38	07/20/22 19:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	102		70 - 130				07/20/22 13:38	07/20/22 19:04	
1,4-Difluorobenzene (Surr)	98		70 - 130				07/20/22 13:38	07/20/22 19:04	Ĩ
- Method: Total BTEX - Total BTEX	Calculation								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.000797	U	0.000797		mg/Kg			07/21/22 10:10	1
- Method: 8015 NM - Diesel Range	Organics (DR	O) (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
							· · ·	07/19/22 09:52	
Total TPH	<49.9	U	49.9		mg/Kg				•
-			49.9		mg/Kg				
_ Method: 8015B NM - Diesel Rang	ge Organics (Dl	RO) (GC)		МП		п	Prepared	Analyzed	
Method: 8015B NM - Diesel Rang Analyte	ge Organics (DI Result	RO) (GC) Qualifier	RL	MDL	Unit	<u>D</u>	Prepared 07/18/22 16:51	Analyzed	
_ Method: 8015B NM - Diesel Rang	ge Organics (DI Result	RO) (GC)		MDL		<u>D</u>	Prepared 07/18/22 16:51	Analyzed 07/19/22 03:17	
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	ge Organics (DI Result	RO) (GC) Qualifier U *1 *+	RL	MDL	Unit	<u>D</u>			Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10	ge Organics (DI Result <49.9	RO) (GC) Qualifier U *1 *+ U	RL 49.9	MDL	Unit mg/Kg	<u> </u>	07/18/22 16:51	07/19/22 03:17	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	ge Organics (Di Result <49.9 <49.9	RO) (GC) Qualifier U *1 *+ U U	RL 49.9 49.9	MDL	Unit mg/Kg mg/Kg	<u>D</u>	07/18/22 16:51 07/18/22 16:51	07/19/22 03:17	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	ge Organics (D 	RO) (GC) Qualifier U *1 *+ U U	RL 49.9 49.9 49.9	MDL	Unit mg/Kg mg/Kg	<u>D</u>	07/18/22 16:51 07/18/22 16:51 07/18/22 16:51	07/19/22 03:17 07/19/22 03:17 07/19/22 03:17	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	ge Organics (D) Result <49.9 <49.9 <49.9 <49.9 %Recovery	RO) (GC) Qualifier U *1 *+ U U	RL 49.9 49.9 49.9 Limits	MDL	Unit mg/Kg mg/Kg	<u>D</u>	07/18/22 16:51 07/18/22 16:51 07/18/22 16:51 Prepared	07/19/22 03:17 07/19/22 03:17 07/19/22 03:17 07/19/22 03:17 Analyzed	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	ge Organics (D) Result <49.9 <49.9 <49.9 <49.9 <49.9 %Recovery 111 121	RO) (GC) Qualifier U *1 *+ U U Qualifier	RL 49.9 49.9 49.9 49.9 20.9 Limits 70 - 130	MDL	Unit mg/Kg mg/Kg	<u>D</u>	07/18/22 16:51 07/18/22 16:51 07/18/22 16:51 Prepared 07/18/22 16:51	07/19/22 03:17 07/19/22 03:17 07/19/22 03:17 07/19/22 03:17 <u>Analyzed</u> 07/19/22 03:17	Dil Fac
Method: 8015B NM - Diesel Rang Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	ge Organics (D) <u>Result</u> <49.9 <49.9 <49.9 <49.9 <i>%Recovery</i> 111 121 omatography -	RO) (GC) Qualifier U *1 *+ U U Qualifier	RL 49.9 49.9 49.9 49.9 20.9 Limits 70 - 130		Unit mg/Kg mg/Kg	<u>D</u>	07/18/22 16:51 07/18/22 16:51 07/18/22 16:51 Prepared 07/18/22 16:51	07/19/22 03:17 07/19/22 03:17 07/19/22 03:17 07/19/22 03:17 <u>Analyzed</u> 07/19/22 03:17	1 Dil Fac 1 1 Dil Fac

Client Sample Results

Client: Ensolum Project/Site: NORTH BRUSHY DRAW FEDERAL 35 #004H

Client Sample ID: DS05

Date Collected: 07/14/22 11:50 Date Received: 07/15/22 10:06

Sample Depth: 2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.000399	U	0.000399		mg/Kg		07/20/22 13:38	07/20/22 19:31	
Toluene	<0.000399	U	0.000399		mg/Kg		07/20/22 13:38	07/20/22 19:31	
Ethylbenzene	<0.000399	U	0.000399		mg/Kg		07/20/22 13:38	07/20/22 19:31	
m-Xylene & p-Xylene	<0.000798	U	0.000798		mg/Kg		07/20/22 13:38	07/20/22 19:31	
o-Xylene	<0.000399	U	0.000399		mg/Kg		07/20/22 13:38	07/20/22 19:31	
Xylenes, Total	<0.000798	U	0.000798		mg/Kg		07/20/22 13:38	07/20/22 19:31	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	105		70 - 130				07/20/22 13:38	07/20/22 19:31	
1,4-Difluorobenzene (Surr)	99		70 - 130				07/20/22 13:38	07/20/22 19:31	
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.000798	U	0.000798		mg/Kg			07/21/22 10:10	
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9		mg/Kg			07/19/22 09:52	
Methods 2015P NM Dissel Para	o Organica (D								
Method: 8015B NM - Diesel Rang Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics		U *1 *+	49.9	MDE	mg/Kg	— -	07/18/22 16:51	07/19/22 03:38	
(GRO)-C6-C10		0 1 .	40.0		ing/itg		01710/22 10:01	01/10/22 00:00	
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		07/18/22 16:51	07/19/22 03:38	
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		07/18/22 16:51	07/19/22 03:38	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	101		70 - 130				07/18/22 16:51	07/19/22 03:38	
o-Terphenyl	108		70 - 130				07/18/22 16:51	07/19/22 03:38	
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	353		4.96		mg/Kg			07/20/22 15:48	
lient Sample ID: DS06							Lab San	nple ID: 890-	2563-
ate Collected: 07/14/22 11:00								Matri	x: Soli
ate Received: 07/15/22 10:06									
ample Depth: 0.5									
Method: 8021B - Volatile Organic	: Compounds (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.000401	U	0.000401		mg/Kg		07/20/22 13:38	07/20/22 19:57	

,			••=			,	
Benzene	<0.000401	U	0.000401	mg/Kg	07/20/22 13:38	07/20/22 19:57	1
Toluene	<0.000401	U	0.000401	mg/Kg	07/20/22 13:38	07/20/22 19:57	1
Ethylbenzene	<0.000401	U	0.000401	mg/Kg	07/20/22 13:38	07/20/22 19:57	1
m-Xylene & p-Xylene	<0.000802	U	0.000802	mg/Kg	07/20/22 13:38	07/20/22 19:57	1
o-Xylene	<0.000401	U	0.000401	mg/Kg	07/20/22 13:38	07/20/22 19:57	1
Xylenes, Total	<0.000802	U	0.000802	mg/Kg	07/20/22 13:38	07/20/22 19:57	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130		07/20/22 13:38	07/20/22 19:57	1

Job ID: 890-2563-1 SDG: 03A1987034

Lab Sample ID: 890-2563-6

Matrix: Solid

Page 39 of 61

Job ID: 890-2563-1 SDG: 03A1987034

Lab Sample ID: 890-2563-7

Lab Sample ID: 890-2563-8

Matrix: Solid

Client Sample ID: DS06

Date Collected: 07/14/22 11:00 Date Received: 07/15/22 10:06

Sample Depth: 0.5

Client: Ensolum

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Project/Site: NORTH BRUSHY DRAW FEDERAL 35 #004H

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,4-Difluorobenzene (Surr)	94		70 - 130				07/20/22 13:38	07/20/22 19:57	
Method: Total BTEX - Total BTEX	Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.000802	U	0.000802		mg/Kg			07/21/22 10:10	
Method: 8015 NM - Diesel Range	Organics (DR	0) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9		mg/Kg			07/19/22 09:52	
Gasoline Range Organics (GRO)-C6-C10	<49.9	U *1 *+	49.9		mg/Kg		07/18/22 16:51	07/19/22 03:59	
Method: 8015B NM - Diesel Rang Analyte		RO) (GC) Qualifier	RL	мпі	Unit	D	Prepared	Analyzed	Dil Fa
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		07/18/22 16:51	07/19/22 03:59	
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		07/18/22 16:51	07/19/22 03:59	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	99		70 - 130				07/18/22 16:51	07/19/22 03:59	
o-Terphenyl	106		70 - 130				07/18/22 16:51	07/19/22 03:59	
Method: 300.0 - Anions, Ion Chro	matography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	138	F4	4.95		mg/Kg			07/20/22 15:56	

Client Sample ID: DS06

Date Collected: 07/14/22 11:15 Date Received: 07/15/22 10:06

Sample Depth: 2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.000402	U	0.000402		mg/Kg		07/20/22 13:38	07/20/22 20:24	1
Toluene	<0.000402	U	0.000402		mg/Kg		07/20/22 13:38	07/20/22 20:24	1
Ethylbenzene	<0.000402	U	0.000402		mg/Kg		07/20/22 13:38	07/20/22 20:24	1
m-Xylene & p-Xylene	<0.000803	U	0.000803		mg/Kg		07/20/22 13:38	07/20/22 20:24	1
o-Xylene	<0.000402	U	0.000402		mg/Kg		07/20/22 13:38	07/20/22 20:24	1
Xylenes, Total	<0.000803	U	0.000803		mg/Kg		07/20/22 13:38	07/20/22 20:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130				07/20/22 13:38	07/20/22 20:24	1
1,4-Difluorobenzene (Surr)	102		70 - 130				07/20/22 13:38	07/20/22 20:24	1
- Method: Total BTEX - Total B	TEX Calculation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.000803	U	0.000803		mg/Kg			07/21/22 10:10	1
- Method: 8015 NM - Diesel Rar	nge Organics (DR	O) (GC)							
Ameliate	Pesult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Quanner			•	-		/	2

Eurofins Carlsbad

Matrix: Solid

5

Released to Imaging: 6/5/2023 9:03:07 AM

Client Sample Results

Client: Ensolum Project/Site: NORTH BRUSHY DRAW FEDERAL 35 #004H

Client Sample ID: DS06

Date Collected: 07/14/22 11:15 Date Received: 07/15/22 10:06

Sample Depth: 2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U *1 *+	49.9		mg/Kg		07/18/22 16:51	07/19/22 04:19	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		07/18/22 16:51	07/19/22 04:19	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		07/18/22 16:51	07/19/22 04:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	107		70 - 130				07/18/22 16:51	07/19/22 04:19	1
o-Terphenyl	113		70 - 130				07/18/22 16:51	07/19/22 04:19	1
Method: 300.0 - Anions, Ion Chro	omatography -	Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Job ID: 890-2563-1 SDG: 03A1987034

Lab Sample ID: 890-2563-8

Matrix: Solid

5

Surrogate Summary

Client: Ensolum Project/Site: NORTH BRUSHY DRAW FEDERAL 35 #004H

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		- 1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
890-2563-1	DS01	107	103		
390-2563-1 MS	DS01	107	102		
390-2563-1 MSD	DS01	98	103		- 1
390-2563-2	DS02	99	96		
390-2563-3	DS03	101	92		- 1
390-2563-4	DS04	102	93		
390-2563-5	DS05	102	98		
390-2563-6	DS05	105	99		
390-2563-7	DS06	97	94		
890-2563-8	DS06	106	102		
CS 880-30144/1-A	Lab Control Sample	102	108		
CSD 880-30144/2-A	Lab Control Sample Dup	102	97		
MB 880-30144/5-A	Method Blank	74	96		
Surrogate Legend					
BFB = 4-Bromofluorobe	nzene (Surr)				
DFBZ = 1,4-Difluoroben	izene (Surr)				

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

_			
		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-2563-1	DS01	112	124
890-2563-1 MS	DS01	84	85
890-2563-1 MSD	DS01	85	87
890-2563-2	DS02	107	117
890-2563-3	DS03	103	109
890-2563-4	DS04	101	105
890-2563-5	DS05	111	121
890-2563-6	DS05	101	108
890-2563-7	DS06	99	106
890-2563-8	DS06	107	113
LCS 880-30000/2-A	Lab Control Sample	122	131 S1+
LCSD 880-30000/3-A	Lab Control Sample Dup	109	118
MB 880-30000/1-A	Method Blank	130	158 S1+

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Carlsbad

Job ID: 890-2563-1 SDG: 03A1987034

Prep Type: Total/NA

Prep Type: Total/NA

Lab Sample ID: MB 880-30144/5-A

QC Sample Results

Client: Ensolum Project/Site: NORTH BRUSHY DRAW FEDERAL 35 #004H

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Analysis Batch: 30143								Prep Type: ⁻ Prep Batcl	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.000400	U	0.000400		mg/Kg		07/20/22 13:38	07/20/22 16:53	1
Toluene	<0.000400	U	0.000400		mg/Kg		07/20/22 13:38	07/20/22 16:53	1
Ethylbenzene	<0.000400	U	0.000400		mg/Kg		07/20/22 13:38	07/20/22 16:53	1
m-Xylene & p-Xylene	<0.000800	U	0.000800		mg/Kg		07/20/22 13:38	07/20/22 16:53	1
o-Xylene	<0.000400	U	0.000400		mg/Kg		07/20/22 13:38	07/20/22 16:53	1
Xylenes, Total	<0.000800	U	0.000800		mg/Kg		07/20/22 13:38	07/20/22 16:53	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	74		70 - 130				07/20/22 13:38	07/20/22 16:53	1
1,4-Difluorobenzene (Surr)	96		70 - 130				07/20/22 13:38	07/20/22 16:53	1
_									

Lab Sample ID: LCS 880-30144/1-A Matrix: Solid

Analysis Batch: 30143

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09565		mg/Kg		96	70 - 130	
Toluene	0.100	0.08912		mg/Kg		89	70 - 130	
Ethylbenzene	0.100	0.09670		mg/Kg		97	70 - 130	
m-Xylene & p-Xylene	0.200	0.1865		mg/Kg		93	70 - 130	
o-Xylene	0.100	0.1011		mg/Kg		101	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		70 - 130
1,4-Difluorobenzene (Surr)	108		70 - 130

Lab Sample ID: LCSD 880-30144/2-A

Matrix: Solid

Analysis Batch: 30143							Prep	Batch:	:h: 30144			
		Spike	LCSD	LCSD				%Rec		RPD		
A	nalyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit		
Be	enzene	0.100	0.08707		mg/Kg		87	70 - 130	9	35		
То	luene	0.100	0.08620		mg/Kg		86	70 - 130	3	35		
Et	hylbenzene	0.100	0.09094		mg/Kg		91	70 - 130	6	35		
m	-Xylene & p-Xylene	0.200	0.1750		mg/Kg		87	70 - 130	6	35		
0-	Xylene	0.100	0.09566		mg/Kg		96	70 - 130	6	35		

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		70 - 130
1,4-Difluorobenzene (Surr)	97		70 - 130

Lab Sample ID: 890-2563-1 MS Matrix: Solid

Analysis Potoby 20142

Analysis Batch: 30143									Prep	Batch: 30144
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.000399	U F1	0.0998	0.01843	F1	mg/Kg		18	70 - 130	
Toluene	<0.000399	U F1	0.0998	0.01803	F1	mg/Kg		18	70 - 130	

Eurofins Carlsbad

Client Sample ID: DS01

Prep Type: Total/NA

Client Sample ID: Method Blank

Job ID: 890-2563-1

SDG: 03A1987034

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Prep Batch: 30144

Lab Sample ID: 890-2563-1 MS

Analysis Batch: 30143

4-Bromofluorobenzene (Surr)

Analysis Batch: 30143

Lab Sample ID: 890-2563-1 MSD

1,4-Difluorobenzene (Surr)

Matrix: Solid

Analyte

o-Xylene

Surrogate

Matrix: Solid

m-Xylene & p-Xylene

Analyte

Benzene

Toluene Ethylbenzene

o-Xylene

Ethylbenzene

m-Xylene & p-Xylene

QC Sample Results

Spike

Added

0.0998

0.200

0.0998

Limits

70 - 130

70 - 130

Spike

Client: Ensolum Project/Site: NORTH BRUSHY DRAW FEDERAL 35 #004H

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

< 0.000399

%Recovery

<0.000798 UF1

<0.000399 UF1

107

102

MS MS

Sample Sample

Sample Sample

Result Qualifier

U F1

Qualifier

Job ID: 890-2563-1 SDG: 03A1987034

Client Sample ID: DS01

%Rec

Limits

70 - 130

70 - 130

70 - 130

%Rec

%Rec

19

18

20

D

Prep Type: Total/NA

Prep Batch: 30144

5	
7	
8	
9	

Client Sample ID: DS01
Prep Type: Total/NA
Dren Detahi 20144

Client Sample ID: DS0
Prep Type: Total/N/
Prep Batch: 30144

p Type: Tot	al/NA
rep Batch:	30144
	RPD
RPD	Limit

35 35

35

35

35

Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Li
<0.000399	U F1	0.101	0.01721	F1	mg/Kg		17	70 - 130	7	
<0.000399	U F1	0.101	0.01673	F1	mg/Kg		17	70 - 130	7	
<0.000399	U F1	0.101	0.01643	F1	mg/Kg		16	70 - 130	14	
<0.000798	U F1	0.202	0.03266	F1	mg/Kg		16	70 - 130	10	
<0.000399	U F1	0.101	0.01828	F1	mg/Kg		18	70 - 130	8	
MSD	MSD									
-	<0.000399 <0.000399 <0.000399 <0.000399 <0.000798 <0.000399	Result Qualifier <0.000399 U F1 <0.000399 U F1	<0.000399 U F1 0.101 <0.000399 U F1 0.101 <0.000399 U F1 0.101 <0.000399 U F1 0.101 <0.000798 U F1 0.202 <0.000399 U F1 0.101	<0.000399 U F1 0.101 0.01721 <0.000399 U F1 0.101 0.01673 <0.000399 U F1 0.101 0.01643 <0.000798 U F1 0.202 0.03266 <0.000399 U F1 0.101 0.01828	<0.000399	<0.000399	<0.000399	<0.000399 U F1 0.101 0.01721 F1 mg/Kg 17 <0.000399 U F1 0.101 0.01673 F1 mg/Kg 17 <0.000399 U F1 0.101 0.01673 F1 mg/Kg 16 <0.000399 U F1 0.202 0.03266 F1 mg/Kg 16 <0.000399 U F1 0.101 0.01828 F1 mg/Kg 18	<0.000399	<0.000399 U F1 0.101 0.01721 F1 mg/Kg 17 70 - 130 7 <0.000399 U F1 0.101 0.01673 F1 mg/Kg 17 70 - 130 7 <0.000399 U F1 0.101 0.01643 F1 mg/Kg 16 70 - 130 14 <0.000798 U F1 0.202 0.03266 F1 mg/Kg 16 70 - 130 10 <0.000399 U F1 0.101 0.01828 F1 mg/Kg 18 70 - 130 8

MSD MSD

MS MS

0.01883 F1

0.03622 F1

0.01974 F1

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	98		70 - 130
1,4-Difluorobenzene (Surr)	103		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-30000/1- Matrix: Solid Analysis Batch: 29927	Α						Client Sa	mple ID: Metho Prep Type: 1 Prep Batch	Total/NA
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		07/18/22 16:51	07/19/22 00:09	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		07/18/22 16:51	07/19/22 00:09	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/18/22 16:51	07/19/22 00:09	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	130		70 - 130				07/18/22 16:51	07/19/22 00:09	1
o-Terphenyl	158	S1+	70 - 130				07/18/22 16:51	07/19/22 00:09	1
Lab Sample ID: LCS 880-30000/2	?-A					C	lient Sample I	D: Lab Control	Sample

Prep Type: Total/NA Matrix: Solid Analysis Batch: 29927 Prep Batch: 30000 LCS LCS Spike %Rec Analyte Added Qualifier Result Unit D %Rec Limits 1000 1420 *+ 70 - 130 Gasoline Range Organics 142 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 1078 mg/Kg 108 70 - 130

Eurofins Carlsbad

Released to Imaging: 6/5/2023 9:03:07 AM

C10-C28)

QC Sample Results

Client: Ensolum Project/Site: NORTH BRUSHY DRAW FEDERAL 35 #004H

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-30000/	/ 2-A						Client	Sample	Dron T		
Matrix: Solid										ype: To	
Analysis Batch: 29927									Prep	Batch:	30000
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	122		70 - 130								
o-Terphenyl	131	S1+	70 - 130								
Lab Sample ID: LCSD 880-3000	0/3-A					Clier	nt Sam	ple ID:	Lab Contro	I Sampl	e Dup
Matrix: Solid								-	Prep T	ype: To	tal/NA
Analysis Batch: 29927									Prep	Batch:	30000
-			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10			1000	1108	*1	mg/Kg		111	70 - 130	25	20
Diesel Range Organics (Over C10-C28)			1000	1009		mg/Kg		101	70 - 130	7	20
- · ·/	LCSD	LCSD									
Surrogate	%Recovery		Limits								
1-Chlorooctane	109		70 - 130								
o-Terphenyl	118		70 - 130								
Lab Sample ID: 890-2563-1 MS Matrix: Solid Analysis Batch: 29927									Prep	ype: To Batch:	tal/NA
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics GRO)-C6-C10	<50.0	U *1 *+	1000	930.0		mg/Kg		93	70 - 130		
Diesel Range Organics (Over C10-C28)	<50.0	U	1000	722.1		mg/Kg		72	70 - 130		
,	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	84		70 - 130								
p-Terphenyl	85		70 - 130								
Lab Sample ID: 890-2563-1 MSI	C								Client San	nple ID:	DS01
Matrix: Solid									Prep T	ype: To	tal/NA
Analysis Batch: 29927									Prep	Batch:	30000
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	<50.0	U *1 *+	999	862.0		mg/Kg		86	70 - 130	8	20
0 0											
(GRO)-C6-C10						ma m /1/ m		73	70 - 130	1	20
(GRO)-C6-C10 Diesel Range Organics (Over	<50.0	U	999	730.5		mg/Kg		10	70 - 130	·	
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)		U MSD	999	730.5		ing/Kg		10	70 - 130		
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate		MSD	999 Limits	730.5		ilig/Kg		10	70 - 130	•	
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	MSD	MSD		730.5		ilig/Kg		10	70 - 130	·	

QC Sample Results

Client: Ensolum Project/Site: NORTH BRUSHY DRAW FEDERAL 35 #004H

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-29901/1-A											Client S	ample ID: I		
Matrix: Solid												Prep	Type: S	Soluble
Analysis Batch: 29941														
		NB MB												
Analyte		ult Qualifier		RL		MDL			D	P	repared	Analyz		Dil Fac
Chloride	<5.	00 U		5.00			mg/Kg	1				07/20/22 ()1:21	1
Lab Sample ID: LCS 880-29901/2-/ Matrix: Solid	4								C	lient	Sample	ID: Lab Co	ontrol S Type: S	
Analysis Batch: 29941												пер	Type. c	
· · · · · , · · · · · · · · · · · · · · · · · · ·			Spike		LCS	LCS						%Rec		
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Chloride			250		261.1			mg/Kg		-	104	90 - 110		
_ Lab Sample ID: LCSD 880-29901/3								CI	ont	Sam		Lab Contro	Samn	
Matrix: Solid									ent	Jan	ipie iD. i		Type: S	
Analysis Batch: 29941												гіер	Type. c	olubie
Analysis Datch. 20041			Spike		LCSD	LCS	D					%Rec		RPD
Analyte			Added		Result			Unit		D	%Rec	Limits	RPD	Limit
Chloride			250		267.3			mg/Kg		_	107	90 - 110	2	20
-								0 0						
Lab Sample ID: 890-2562-A-8-I MS Matrix: Solid	i -										Client	Sample ID:	Matrix Type: S	
Analysis Batch: 29941												Fieb	rype. c	olubie
Analysis Batch. 23341	Sample S	amnlo	Spike		MS	MS						%Rec		
Analyte	Result C	-	Added		Result		ifier	Unit		D	%Rec	Limits		
Chloride	9.38 F	·	248		284.5			mg/Kg		_	111	90 - 110		
Lab Sample ID: 890-2562-A-8-J M Matrix: Solid Analysis Batch: 29941	SD							•	Clier	nt Sa	ample IC): Matrix Sp Prep	ike Du Type: S	-
	Sample S	ample	Spike		MSD	MSD						%Rec		RPD
Analyte	Sample S Result C	•	Spike Added		MSD Result			Unit		D	%Rec	%Rec Limits	RPD	
Analyte		Qualifier						Unit mg/Kg		<u>D</u>	%Rec 109		RPD	RPD Limit 20
Chloride Lab Sample ID: MB 880-29907/1-A	9.38 F	Qualifier	Added		Result					_	109	Limits 90 - 110 Sample ID: I	2 Vethod	Limit 20 Blank
Chloride Lab Sample ID: MB 880-29907/1-A Matrix: Solid	9.38 F	Qualifier	Added		Result					_	109	Limits 90 - 110 Sample ID: I	2	Limit 20 Blank
Chloride Lab Sample ID: MB 880-29907/1-A	Result C	Qualifier	Added		Result					_	109	Limits 90 - 110 Sample ID: I	2 Vethod	Limit 20 Blank
Chloride Lab Sample ID: MB 880-29907/1-A Matrix: Solid Analysis Batch: 30069	Result 0 9.38 F	Qualifier1	Added		Result 279.2	Qual	lifier				109 Client S	Limits 90 - 110 Sample ID: I Prep	2 Method Type: S	Limi 20 Blank Soluble
Chloride Lab Sample ID: MB 880-29907/1-A Matrix: Solid Analysis Batch: 30069 Analyte	Result C 9.38 F	Aualifier 1 MB MB ult Qualifier	Added		Result 279.2		Unit	mg/Kg	D		109	Limits 90 - 110 Sample ID: I Prep	2 Method Type: S	Limit 20 Blank Soluble Dil Fac
Chloride Lab Sample ID: MB 880-29907/1-A Matrix: Solid Analysis Batch: 30069	Result C 9.38 F	Qualifier1	Added	RL 5.00	Result 279.2	Qual	lifier	mg/Kg	<u>D</u>		109 Client S	Limits 90 - 110 Sample ID: I Prep	2 Method Type: S	Limit 20 Blank Soluble Dil Fac
Chloride Lab Sample ID: MB 880-29907/1-A Matrix: Solid Analysis Batch: 30069 Analyte	Result C 9.38 F Res <5.	Aualifier 1 MB MB ult Qualifier	Added		Result 279.2	Qual	Unit	mg/Kg		P	109 Client S	Limits 90 - 110 Sample ID: I Prep	2 Method Type: S ed	Limi 20 Blank Soluble Dil Fac
Chloride Lab Sample ID: MB 880-29907/1-A Matrix: Solid Analysis Batch: 30069 Analyte Chloride	Result C 9.38 F Res <5.	Aualifier 1 MB MB ult Qualifier	Added		Result 279.2	Qual	Unit	mg/Kg		P	109 Client S	Limits 90 - 110 Gample ID: I Prep Analyze 07/20/22 (D: Lab Co	2 Method Type: S ed	Limit 20 Blank Soluble Dil Fac
Chloride Lab Sample ID: MB 880-29907/1-A Matrix: Solid Analysis Batch: 30069 Analyte Chloride Lab Sample ID: LCS 880-29907/2-/	Result C 9.38 F Res <5.	Aualifier 1 MB MB ult Qualifier	Added		Result 279.2	Qual	Unit	mg/Kg		P	109 Client S	Limits 90 - 110 Gample ID: I Prep Analyze 07/20/22 (D: Lab Co	2 Method Type: S ed 99:33	Limit 20 Blank Soluble Dil Fac
Chloride Lab Sample ID: MB 880-29907/1-A Matrix: Solid Analysis Batch: 30069 Analyte Chloride Lab Sample ID: LCS 880-29907/2-A Matrix: Solid	Result C 9.38 F Res <5.	Aualifier 1 MB MB ult Qualifier	Added		Result 279.2	Qual	Unit	mg/Kg		P	109 Client S	Limits 90 - 110 Gample ID: I Prep Analyze 07/20/22 (D: Lab Co	2 Method Type: S ed 99:33	Limit 20 Blank Soluble Dil Fac
Chloride Lab Sample ID: MB 880-29907/1-A Matrix: Solid Analysis Batch: 30069 Analyte Chloride Lab Sample ID: LCS 880-29907/2-/ Matrix: Solid	Result C 9.38 F Res <5.	Aualifier 1 MB MB ult Qualifier	Added 248		Result 279.2	Qual MDL LCS	Unit mg/Kg	mg/Kg		P	109 Client S	Limits 90 - 110 Gample ID: I Prep 07/20/22 (PID: Lab Co Prep	2 Method Type: S ed 99:33	Limit 20 Blank Soluble Dil Fac
Chloride Lab Sample ID: MB 880-29907/1-A Matrix: Solid Analysis Batch: 30069 Analyte Chloride Lab Sample ID: LCS 880-29907/2-/ Matrix: Solid Analysis Batch: 30069 Analyte	Result C 9.38 F Res <5.	Aualifier 1 MB MB ult Qualifier	Added 248		Result 279.2	Qual MDL LCS	Unit mg/Kg	mg/Kg		P	109 Client S repared	Limits 90 - 110 Sample ID: I Prep (07/20/22 0 e ID: Lab Co Prep %Rec	2 Method Type: S ed 99:33	Limit 20 Blank Soluble Dil Fac
Chloride Lab Sample ID: MB 880-29907/1-A Matrix: Solid Analysis Batch: 30069 Analyte Chloride Lab Sample ID: LCS 880-29907/2-4 Matrix: Solid Analysis Batch: 30069 Analyte Chloride	Result C 9.38 F	Aualifier 1 MB MB ult Qualifier	Added 248 		Result 279.2 LCS Result	Qual MDL LCS	Unit mg/Kg	Unit mg/Kg	CI	P lient	109 Client S repared : Sample %Rec 110	Limits 90 - 110 Sample ID: I Prep (07/20/22 0 Prep %Rec Limits	2 Method Type: S ed D9:33 Dontrol S Type: S	Limi 20 Blank Soluble Dil Fac
Chloride Lab Sample ID: MB 880-29907/1-A Matrix: Solid Analysis Batch: 30069 Analyte Chloride Lab Sample ID: LCS 880-29907/2-4 Matrix: Solid Analysis Batch: 30069 Analyte Chloride Lab Sample ID: LCSD 880-29907/3	Result C 9.38 F	Aualifier 1 MB MB ult Qualifier	Added 248 		Result 279.2 LCS Result	Qual MDL LCS	Unit mg/Kg	Unit mg/Kg	CI	P lient	109 Client S repared : Sample %Rec 110	Limits 90 - 110 Sample ID: I Prep - Analyze 07/20/22 0 e ID: Lab Co Prep %Rec Limits 90 - 110 Lab Contro	2 Method Type: S ed D9:33 Dontrol S Type: S	Limit 20 Blank Soluble Dil Fac 1 Sample Soluble
Chloride Lab Sample ID: MB 880-29907/1-A Matrix: Solid Analysis Batch: 30069 Analyte Chloride Lab Sample ID: LCS 880-29907/2-4 Matrix: Solid Analysis Batch: 30069 Analyte Chloride	Result C 9.38 F	Aualifier 1 MB MB ult Qualifier	Added 248 		Result 279.2 LCS Result	Qual MDL LCS	Unit mg/Kg	Unit mg/Kg	CI	P lient	109 Client S repared : Sample %Rec 110	Limits 90 - 110 Sample ID: I Prep - Analyze 07/20/22 0 e ID: Lab Co Prep %Rec Limits 90 - 110 Lab Contro	2 Method Type: S ed 09:33 ontrol S Type: S	Limit 20 Blank Soluble 1 Sample Soluble
Chloride Lab Sample ID: MB 880-29907/1-A Matrix: Solid Analysis Batch: 30069 Analyte Chloride Lab Sample ID: LCS 880-29907/2-A Matrix: Solid Analysis Batch: 30069 Analyte Chloride Lab Sample ID: LCSD 880-29907/3 Matrix: Solid	Result C 9.38 F	Aualifier 1 MB MB ult Qualifier	Added 248 		Result 279.2 LCS Result	Qual MDL LCS Qual	Unit mg/Kg	Unit mg/Kg	CI	P lient	109 Client S repared : Sample %Rec 110	Limits 90 - 110 Sample ID: I Prep - Analyze 07/20/22 0 e ID: Lab Co Prep %Rec Limits 90 - 110 Lab Contro	2 Method Type: S ed 09:33 ontrol S Type: S	Limit 20 Blank Soluble 1 Sample Soluble
Chloride Lab Sample ID: MB 880-29907/1-A Matrix: Solid Analysis Batch: 30069 Analyte Chloride Lab Sample ID: LCS 880-29907/2-A Matrix: Solid Analysis Batch: 30069 Analyte Chloride Lab Sample ID: LCSD 880-29907/3 Matrix: Solid	Result C 9.38 F	Aualifier 1 MB MB ult Qualifier	Added 248 Spike Added 250		LCS Result 279.2	Qual MDL LCS Qual	Unit mg/Kg ifier	Unit mg/Kg	CI	P lient	109 Client S repared : Sample %Rec 110	Limits 90 - 110 Sample ID: I Prep 7 Analyz 07/20/22 (PID: Lab Co Prep 7 %Rec Limits 90 - 110 Lab Contro Prep 7	2 Method Type: S ed 09:33 ontrol S Type: S	Limi 20 Blank Soluble Soluble Soluble

Eurofins Carlsbad

Job ID: 890-2563-1

SDG: 03A1987034

Client: Ensolum

Job ID: 890-2563-1 SDG: 03A1987034

Method: 300.0 - Anions, Ion Chromatography

Project/Site: NORTH BRUSHY DRAW FEDERAL 35 #004H

Lab Sample ID: 890-2563-7 MS									Client Sar	nple ID:	: DS06
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 30069											
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	138	F1	248	426.1	F1	mg/Kg		116	90 - 110		
Lab Sample ID: 890-2563-7 MSD									Client Sar	nple ID:	: DSO (
Matrix: Solid									Prep	Type: S	olubl
Analysis Batch: 30069											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPI
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Chloride	138	E 1	248	425.7	F1	mg/Kg		116	90 - 110	0	2

QC Association Summary

Client: Ensolum Project/Site: NORTH BRUSHY DRAW FEDERAL 35 #004H

GC VOA

Analysis Batch: 30143

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2563-1	DS01	Total/NA	Solid	8021B	30144
890-2563-2	DS02	Total/NA	Solid	8021B	30144
890-2563-3	DS03	Total/NA	Solid	8021B	30144
890-2563-4	DS04	Total/NA	Solid	8021B	30144
890-2563-5	DS05	Total/NA	Solid	8021B	30144
890-2563-6	DS05	Total/NA	Solid	8021B	30144
890-2563-7	DS06	Total/NA	Solid	8021B	30144
890-2563-8	DS06	Total/NA	Solid	8021B	30144
MB 880-30144/5-A	Method Blank	Total/NA	Solid	8021B	30144
LCS 880-30144/1-A	Lab Control Sample	Total/NA	Solid	8021B	30144
LCSD 880-30144/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	30144
890-2563-1 MS	DS01	Total/NA	Solid	8021B	30144
890-2563-1 MSD	DS01	Total/NA	Solid	8021B	30144

Prep Batch: 30144

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2563-1	DS01	Total/NA	Solid	5035	
890-2563-2	DS02	Total/NA	Solid	5035	
890-2563-3	DS03	Total/NA	Solid	5035	
890-2563-4	DS04	Total/NA	Solid	5035	
890-2563-5	DS05	Total/NA	Solid	5035	
890-2563-6	DS05	Total/NA	Solid	5035	
890-2563-7	DS06	Total/NA	Solid	5035	
890-2563-8	DS06	Total/NA	Solid	5035	
MB 880-30144/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-30144/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-30144/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-2563-1 MS	DS01	Total/NA	Solid	5035	
890-2563-1 MSD	DS01	Total/NA	Solid	5035	

Analysis Batch: 30218

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2563-1	DS01	Total/NA	Solid	Total BTEX	
890-2563-2	DS02	Total/NA	Solid	Total BTEX	
890-2563-3	DS03	Total/NA	Solid	Total BTEX	
890-2563-4	DS04	Total/NA	Solid	Total BTEX	
890-2563-5	DS05	Total/NA	Solid	Total BTEX	
890-2563-6	DS05	Total/NA	Solid	Total BTEX	
890-2563-7	DS06	Total/NA	Solid	Total BTEX	
890-2563-8	DS06	Total/NA	Solid	Total BTEX	
<u> </u>					

GC Semi VOA

Analysis Batch: 29927

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2563-1	DS01	Total/NA	Solid	8015B NM	30000
890-2563-2	DS02	Total/NA	Solid	8015B NM	30000
890-2563-3	DS03	Total/NA	Solid	8015B NM	30000
890-2563-4	DS04	Total/NA	Solid	8015B NM	30000
890-2563-5	DS05	Total/NA	Solid	8015B NM	30000
890-2563-6	DS05	Total/NA	Solid	8015B NM	30000

Eurofins Carlsbad

Page 47 of 61

5

8 9

QC Association Summary

Client: Ensolum Project/Site: NORTH BRUSHY DRAW FEDERAL 35 #004H

GC Semi VOA (Continued)

Analysis Batch: 29927 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2563-7	DS06	Total/NA	Solid	8015B NM	30000
890-2563-8	DS06	Total/NA	Solid	8015B NM	30000
MB 880-30000/1-A	Method Blank	Total/NA	Solid	8015B NM	30000
LCS 880-30000/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	30000
LCSD 880-30000/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	30000
890-2563-1 MS	DS01	Total/NA	Solid	8015B NM	30000
890-2563-1 MSD	DS01	Total/NA	Solid	8015B NM	30000

Prep Batch: 30000

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2563-1	DS01	Total/NA	Solid	8015NM Prep	
890-2563-2	DS02	Total/NA	Solid	8015NM Prep	
890-2563-3	DS03	Total/NA	Solid	8015NM Prep	
890-2563-4	DS04	Total/NA	Solid	8015NM Prep	
890-2563-5	DS05	Total/NA	Solid	8015NM Prep	
890-2563-6	DS05	Total/NA	Solid	8015NM Prep	
890-2563-7	DS06	Total/NA	Solid	8015NM Prep	
890-2563-8	DS06	Total/NA	Solid	8015NM Prep	
MB 880-30000/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-30000/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-30000/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-2563-1 MS	DS01	Total/NA	Solid	8015NM Prep	
890-2563-1 MSD	DS01	Total/NA	Solid	8015NM Prep	

Analysis Batch: 30042

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2563-1	DS01	Total/NA	Solid	8015 NM	
890-2563-2	DS02	Total/NA	Solid	8015 NM	
890-2563-3	DS03	Total/NA	Solid	8015 NM	
890-2563-4	DS04	Total/NA	Solid	8015 NM	
890-2563-5	DS05	Total/NA	Solid	8015 NM	
890-2563-6	DS05	Total/NA	Solid	8015 NM	
890-2563-7	DS06	Total/NA	Solid	8015 NM	
890-2563-8	DS06	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 29901

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2563-1	DS01	Soluble	Solid	DI Leach	
890-2563-2	DS02	Soluble	Solid	DI Leach	
890-2563-3	DS03	Soluble	Solid	DI Leach	
890-2563-4	DS04	Soluble	Solid	DI Leach	
MB 880-29901/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-29901/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-29901/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-2562-A-8-I MS	Matrix Spike	Soluble	Solid	DI Leach	
890-2562-A-8-J MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Page 48 of 61

5

QC Association Summary

Client: Ensolum Project/Site: NORTH BRUSHY DRAW FEDERAL 35 #004H

HPLC/IC

Leach Batch: 29907

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2563-5	DS05	Soluble	Solid	DI Leach	
890-2563-6	DS05	Soluble	Solid	DI Leach	
890-2563-7	DS06	Soluble	Solid	DI Leach	
890-2563-8	DS06	Soluble	Solid	DI Leach	
MB 880-29907/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-29907/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-29907/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-2563-7 MS	DS06	Soluble	Solid	DI Leach	
890-2563-7 MSD	DS06	Soluble	Solid	DI Leach	

Analysis Batch: 29941

each Batch: 29907					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-2563-5	DS05	Soluble	Solid	DI Leach	
890-2563-6	DS05	Soluble	Solid	DI Leach	
890-2563-7	DS06	Soluble	Solid	DI Leach	
890-2563-8	DS06	Soluble	Solid	DI Leach	
MB 880-29907/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-29907/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-29907/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-2563-7 MS	DS06	Soluble	Solid	DI Leach	
000 2000 T Mie					
890-2563-7 MSD	DS06	Soluble	Solid	DI Leach	
890-2563-7 MSD nalysis Batch: 29941	DS06 Client Sample ID		Solid Matrix	DI Leach Method	Prep Batch
890-2563-7 MSD nalysis Batch: 29941 Lab Sample ID		Soluble Prep Type Soluble			Prep Batch 29901
890-2563-7 MSD nalysis Batch: 29941 Lab Sample ID 890-2563-1	Client Sample ID	Ргер Туре	Matrix	Method	
890-2563-7 MSD nalysis Batch: 29941 Lab Sample ID 890-2563-1 890-2563-2	Client Sample ID DS01	Prep Type Soluble	Matrix Solid	Method 300.0	29901
	Client Sample ID DS01 DS02	Prep Type Soluble Soluble	Matrix Solid Solid	Method 300.0 300.0	29901 29901
890-2563-7 MSD nalysis Batch: 29941 Lab Sample ID 890-2563-1 890-2563-2 890-2563-3	Client Sample ID DS01 DS02 DS03	Prep Type Soluble Soluble Soluble	Matrix Solid Solid Solid	Method 300.0 300.0 300.0	29901 29901 29901
890-2563-7 MSD nalysis Batch: 29941 Lab Sample ID 890-2563-1 890-2563-2 890-2563-3 890-2563-4	Client Sample ID DS01 DS02 DS03 DS04	Prep Type Soluble Soluble Soluble Soluble	Matrix Solid Solid Solid Solid	Method 300.0 300.0 300.0 300.0 300.0 300.0	29901 29901 29901 29901 29901
890-2563-7 MSD nalysis Batch: 29941 Lab Sample ID 890-2563-1 890-2563-2 890-2563-3 890-2563-4 MB 880-29901/1-A LCS 880-29901/2-A	Client Sample ID DS01 DS02 DS03 DS04 Method Blank	Prep Type Soluble Soluble Soluble Soluble Soluble	Matrix Solid Solid Solid Solid Solid Solid	Method 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0	29901 29901 29901 29901 29901 29901
890-2563-7 MSD nalysis Batch: 29941 Lab Sample ID 890-2563-1 890-2563-2 890-2563-3 890-2563-4 MB 880-29901/1-A	Client Sample ID DS01 DS02 DS03 DS04 Method Blank Lab Control Sample	Prep Type Soluble Soluble Soluble Soluble Soluble Soluble Soluble	Matrix Solid Solid Solid Solid Solid Solid Solid	Method 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0	29901 29901 29901 29901 29901 29901

Analysis Batch: 30069

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-2563-5	DS05	Soluble	Solid	300.0	29907
890-2563-6	DS05	Soluble	Solid	300.0	29907
890-2563-7	DS06	Soluble	Solid	300.0	29907
890-2563-8	DS06	Soluble	Solid	300.0	29907
MB 880-29907/1-A	Method Blank	Soluble	Solid	300.0	29907
LCS 880-29907/2-A	Lab Control Sample	Soluble	Solid	300.0	29907
LCSD 880-29907/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	29907
890-2563-7 MS	DS06	Soluble	Solid	300.0	29907
890-2563-7 MSD	DS06	Soluble	Solid	300.0	29907

Lab Chronicle

Client: Ensolum Project/Site: NORTH BRUSHY DRAW FEDERAL 35 #004H

Client Sample ID: DS01 Date Collected: 07/14/22 14:00

Date Received: 07/15/22 10:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	30144	07/20/22 13:38	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	1.0 mL	30143	07/20/22 17:20	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30218	07/21/22 10:10	SM	XEN MID
Total/NA	Analysis	8015 NM		1			30042	07/19/22 09:52	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	30000	07/18/22 16:51	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29927	07/19/22 01:11	AJ	XEN MID
Soluble	Leach	DI Leach			5.04 g	50 mL	29901	07/18/22 08:57	KS	XEN MID
Soluble	Analysis	300.0		1			29941	07/20/22 05:30	СН	XEN MID

Client Sample ID: DS02

Date Collected: 07/14/22 11:30

Date Received: 07/15/22 10:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	30144	07/20/22 13:38	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	1.0 mL	30143	07/20/22 17:46	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30218	07/21/22 10:10	SM	XEN MID
Total/NA	Analysis	8015 NM		1			30042	07/19/22 09:52	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	30000	07/18/22 16:51	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29927	07/19/22 02:14	AJ	XEN MID
Soluble	Leach	DI Leach			5.01 g	50 mL	29901	07/18/22 08:57	KS	XEN MID
Soluble	Analysis	300.0		1			29941	07/20/22 05:39	СН	XEN MID

Client Sample ID: DS03

Date Collected: 07/14/22 12:15

Date Received: 07/15/22 10:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	30144	07/20/22 13:38	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	1.0 mL	30143	07/20/22 18:12	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30218	07/21/22 10:10	SM	XEN MID
Total/NA	Analysis	8015 NM		1			30042	07/19/22 09:52	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	30000	07/18/22 16:51	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29927	07/19/22 02:35	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	29901	07/18/22 08:57	KS	XEN MID
Soluble	Analysis	300.0		1			29941	07/20/22 05:48	СН	XEN MID

Client Sample ID: DS04 Date Collected: 07/14/22 13:35 Date Received: 07/15/22 10:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	30144	07/20/22 13:38	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	1.0 mL	30143	07/20/22 18:38	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30218	07/21/22 10:10	SM	XEN MID

Eurofins Carlsbad

Matrix: Solid

Page 50 of 61

Job ID: 890-2563-1 SDG: 03A1987034

Lab Sample ID: 890-2563-1 Matrix: Solid

Lab Sample ID: 890-2563-2 Matrix: Solid

Lab Sample ID: 890-2563-3

Lab Sample ID: 890-2563-4

Matrix: Solid

rix: Solid

Lab Chronicle

Client: Ensolum Project/Site: NORTH BRUSHY DRAW FEDERAL 35 #004H

Client Sample ID: DS04

Date Collected: 07/14/22 13:35 Date Received: 07/15/22 10:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			30042	07/19/22 09:52	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	30000	07/18/22 16:51	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29927	07/19/22 02:56	AJ	XEN MID
Soluble	Leach	DI Leach			5 g	50 mL	29901	07/18/22 08:57	KS	XEN MID
Soluble	Analysis	300.0		1			29941	07/20/22 05:57	СН	XEN MID

Client Sample ID: DS05

Date Collected: 07/14/22 11:40 Date Received: 07/15/22 10:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	30144	07/20/22 13:38	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	1.0 mL	30143	07/20/22 19:04	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30218	07/21/22 10:10	SM	XEN MID
Total/NA	Analysis	8015 NM		1			30042	07/19/22 09:52	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	30000	07/18/22 16:51	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29927	07/19/22 03:17	AJ	XEN MID
Soluble	Leach	DI Leach			5.02 g	50 mL	29907	07/18/22 09:04	KS	XEN MID
Soluble	Analysis	300.0		1			30069	07/20/22 15:41	СН	XEN MID

Client Sample ID: DS05

Date Collected: 07/14/22 11:50 Date Received: 07/15/22 10:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	30144	07/20/22 13:38	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	1.0 mL	30143	07/20/22 19:31	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30218	07/21/22 10:10	SM	XEN MID
Total/NA	Analysis	8015 NM		1			30042	07/19/22 09:52	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	30000	07/18/22 16:51	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29927	07/19/22 03:38	AJ	XEN MID
Soluble	Leach	DI Leach			5.04 g	50 mL	29907	07/18/22 09:04	KS	XEN MID
Soluble	Analysis	300.0		1			30069	07/20/22 15:48	СН	XEN MID

Client Sample ID: DS06

Date Collected: 07/14/22 11:00 Date Received: 07/15/22 10:06

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	30144	07/20/22 13:38	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	1.0 mL	30143	07/20/22 19:57	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30218	07/21/22 10:10	SM	XEN MID
Total/NA	Analysis	8015 NM		1			30042	07/19/22 09:52	AJ	XEN MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.02 g	10 mL	30000 29927	07/18/22 16:51 07/19/22 03:59	DM AJ	XEN MID XEN MID

Eurofins Carlsbad

Page 51 of 61

Job ID: 890-2563-1 SDG: 03A1987034

Lab Sample ID: 890-2563-4 Matrix: Solid

Lab Sample ID: 890-2563-5

Lab Sample ID: 890-2563-6

Lab Sample ID: 890-2563-7

Matrix: Solid

Matrix: Solid

Matrix: Solid

Lab Chronicle

Client: Ensolum Project/Site: NORTH BRUSHY DRAW FEDERAL 35 #004H

Client Sample ID: DS06

Date Collected: 07/14/22 11:00 Date Received: 07/15/22 10:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.05 g	50 mL	29907	07/18/22 09:04	KS	XEN MID
Soluble	Analysis	300.0		1			30069	07/20/22 15:56	СН	XEN MID

Client Sample ID: DS06 Date Collected: 07/14/22 11:15

Date Received: 07/15/22 10:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	30144	07/20/22 13:38	MR	XEN MID
Total/NA	Analysis	8021B		1	5 mL	1.0 mL	30143	07/20/22 20:24	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			30218	07/21/22 10:10	SM	XEN MID
Total/NA	Analysis	8015 NM		1			30042	07/19/22 09:52	AJ	XEN MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	30000	07/18/22 16:51	DM	XEN MID
Total/NA	Analysis	8015B NM		1			29927	07/19/22 04:19	AJ	XEN MID
Soluble	Leach	DI Leach			4.99 g	50 mL	29907	07/18/22 09:04	KS	XEN MID
Soluble	Analysis	300.0		1			30069	07/20/22 16:20	СН	XEN MID

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 890-2563-1

Matrix: Solid

Page 52 of 61

SDG: 03A1987034

Lab Sample ID: 890-2563-7 Matrix: Solid

Lab Sample ID: 890-2563-8

Accreditation/Certification Summary

Client: Ensolum Project/Site: NORTH BRUSHY DRAW FEDERAL 35 #004H

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

hority	P	rogram	Identification Number	Expiration Date
as	N	IELAP	T104704400-22-24	06-30-23
The following analytes	are included in this report, b	out the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for
the agency does not of Analysis Method		Matrix	Analyte	
Analysis Method	fer certification. Prep Method	Matrix	Analyte	
0,		Matrix Solid	Analyte Total TPH	

h ID: 000 2562 1

Page 53 of 61

Job ID: 890-2563-1 SDG: 03A1987034

Method Summary

Client: Ensolum Project/Site: NORTH BRUSHY DRAW FEDERAL 35 #004H

SDG: 03A1987034

ethod	Method Description	Protocol	Laboratory
021B	Volatile Organic Compounds (GC)	SW846	XEN MID
otal BTEX	Total BTEX Calculation	TAL SOP	XEN MID
015 NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
015B NM	Diesel Range Organics (DRO) (GC)	SW846	XEN MID
0.00	Anions, Ion Chromatography	MCAWW	XEN MID
035	Closed System Purge and Trap	SW846	XEN MID
015NM Prep	Microextraction	SW846	XEN MID
l Leach	Deionized Water Leaching Procedure	ASTM	XEN MID

Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

XEN MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 890-2563-1

Page 54 of 61

Sample Summary

Job ID: 890-2563-1
SDG: 03A1987034

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
90-2563-1	DS01	Solid	07/14/22 14:00	07/15/22 10:06	6
90-2563-2	DS02	Solid	07/14/22 11:30	07/15/22 10:06	2
90-2563-3	DS03	Solid	07/14/22 12:15	07/15/22 10:06	
90-2563-4	DS04	Solid	07/14/22 13:35	07/15/22 10:06	
90-2563-5	DS05	Solid	07/14/22 11:40	07/15/22 10:06	0.5
90-2563-6	DS05	Solid	07/14/22 11:50	07/15/22 10:06	
90-2563-7 90-2563-8	DS06 DS06	Solid Solid	07/14/22 11:00 07/14/22 11:15	07/15/22 10:06 07/15/22 10:06	0.5

.

.J															
🐝 eurotins		fromm	Environment Testing Xenco	sting		Houston Midland, T	1, TX (281 X (432) 7(TX (915)) 240-420 04-5440, 5 585-3443	0, Dallas, an Antoni Lubbock	Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 FI Paso TX (915) 585-3443. Lubbock, TX (806) 784-1296	0300 9-3334 -1296	Ň	Work Order No:	No:	
		2				Hobbs, 1	IM (575) ()92-7550,	Carlsbad,	Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	-3199		www.xenco.com	om Page_	1 of 1
Project Manager: Be	Ben Belill				Bill to: (if c	different)	Lim	Jim Raley					Work Orde	Work Order Comments	
	Ensolum				Company Name:	Name:	WPX	~				Program: UST/PST	r 🗌 PRP 🗌 Br	PRP Brownfields RRC	Sc 🗌 Superfund 🗌
	3122 National Parks HWY	YWH sh			Address:		531	5315 Buena Vista Dr.	/ista Dr.			State of Project:			
City, State ZIP: Ca	Carlsbad, NM 88220	20			City, State ZIP:	e ZIP:	Carl	Carlsbad, NM 88220	88220			Reporting: Level II 🗍 Level III 🗍 PST/UST			TRRP 🗌 Level IV
	989-854-0852			Email:	Email: BBelill@	Ensolun	i.com, ji	Ensolum.com, jim.raley@dvn.com	Ddvn.co	E		Deliverables: EDD		ADaPT	Other:
Project Name: N	North Brushy Draw Federal 35 #004H	-ederal 35	#004H	Turr	Turn Around		-			A	ANALYSIS REQUEST	DUEST		Prese	Preservative Codes
	03A1987034	7034		 Routine 	🗆 Rush		Pres. Code							None: NO	DI Water: H ₂ O
Project Location:	Eddy County, NM	nty, NM		Due Date:	5 Day	TAT		_						Cool: Cool	MeOH: Me
Sampler's Name:	Gilbert Moreno	Aoreno 4701		TAT starts the day received by the lab, if received by 4:30pm	te day recei ceived by 4:		s				_		_	HCL: HC H2S04: H2	HNO3: HN NaOH: Na
SAMPLE RECEIPT	Temp Blank:	tk: Yes	es No	Wet Ice:	Yes	Ŷ	neter (0							H ₃ PO4: HP	
Samples Received Intact:	-		Thermometer ID:	LID: CH	LP	6								NaHSO4: NABIS	ABIS
Cooler Custody Seals:	1>		Correction Factor:	actor:	0,	10			_					Na2S2O3: NaSO3	1SO ₃
Sample Custody Seals:			Temperature Reading:	Reading:	5.0		I3) S		-	68	890-2563 Chain of Custody	of Custody		Zn Acetate+NaOH: Zn	NaOH: Zn
Total Containers:		Col	rrected Te	Corrected Temperature:		va	301	(910	208	1	-	The first state of the state of		NaOH+Asco	NaOH+Ascorbic Acid: SAPC
Sample Identification		Matrix Sa	Date Sampled	Time Sampled	Depth	Grab/ # Comp C	CHFOE Cont Cont)8) H9T) хэта					Samp	Sample Comments
DS01	S		7.14.22	14:00	6'	Comp	1 X	×	×						
DS02	S		7.14.22	11:30	2	Comp	X	×	×		-				
DS03	S		7.14.22	12:15	6'	Comp	1 X	×	×				_	Incid	Incident Numbers
DS04	S		7.14.22	13:35	ē.	Comp	1 ×	×	×					NRN	NRM2019550034
DS05	S		7.14.22	11:40	0.5'	Comp	+ ×	×	×						
C.(-BSOSA	PSOS S		7.14.22	11:50	2	Comp	×	×	×		_	_			
DS06	S		7.14.22	11:00	0.5'	Comp	×	×	×						
Cal Deoor	DSC6 S		7.14.22	11:15	2	Comp	+ ×	×	×						
		d	1572	0			_		-					+	
		H				-			-						
200.7 / 6010	Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed	0: Inalvzed		BRCRA 13	CRA 13PPM Texas 11 AI TCLP / SPLP 6010: 8RCRA	Texas 11 6010: 8RCF	sb /	Ba E Ba		Ca Cr C Cr Co Cu	o Cu Fe Pb Pb Mn Mo	3 Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Cd Cr Co Cu Pb Mn Mo Ni Se Ag Ti U	Se Ag SiO ₂ Na Hg: 1631 / 2	Na Sr TI Sn 11/245.1/7470	U V Zn 0 / 7471
ature of this docu curofins Xenco w (enco. A minimu	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase or of service. Eurofins Xenco will be lable only for the cost of samples and shall not assume any rea of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$85.00 will be applied to each project and a charge of \$85.00 will be applied to each project and a charge of \$85.00 will be applied to each project and a charge of \$85.00 will be applied to each project and a charge of \$85.00 will be applied to each project and a charge of \$85.00 will be applied to each project and a charge of \$85.00 will be applied to each project and a charge of \$85.00 will be applied to each project and a charge of \$85.00 will be applied to each project and a charge of \$85.00 will be applied to each project and a charge of \$85.00 will be applied to each project and a charge of \$85.00 will be applied to each project and a charge of \$85.00 will be applied to each project and a charge of \$85.00 will be applied to each project and a charge of \$85.00 will be applied to each project and a charge of \$85.00 will be applied to ach project and a charge of \$85.00 will be applied to ach project and a charge of \$85.00 will be applied to ach project and a charge of \$85.00 will be applied to ach project and a charge of \$85.00 will be applied to ach project and a charge of \$85.00 will be applied to ach achird be	hment of sa the cost of vili be appl	imples cons samples an	titutes a valid d shail not as project and a	l purchase o sume any re charge of \$5	rder from c. sponsibility for each si	ient comp for any lot mple subr	any to Eurc ises or exp nitted to Eu	fins Xenco enses Incu irofins Xen	its affiliates ar rred by the clie co, but not ana	id subcontractor nt if such losses yzed. These terr	der from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions onsbiblity for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previoualy negotiated.	ns and conditions beyond the contro previously negotia	ted.	
Relinquishgd by: (Signature)	ignature)		Received	Received by: (Signature)	ature)		Dat	Date/Time		Relinquishe	Relinquished by: (Signature)	ure) Recei	Received by: (Signature)	ature)	Date/Time
20ch	X	Þ	00 (Ju	9			15-15-B	12 10010							
)						-			4						

7/21/2022

Page 56 of 61

14

Job Number: 890-2563-1 SDG Number: 03A1987034

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 2563 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	

N/A

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Job Number: 890-2563-1 SDG Number: 03A1987034

List Source: Eurofins Midland

List Creation: 07/18/22 08:47 AM

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 2563 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

APPENDIX G

NMOCD Correspondence

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

From:	Joseph Hernandez
То:	ocd.enviro@state.nm.us; "CFO Spill, BLM NM"
Cc:	Raley, Jim; Ben Belill
Subject:	WPX Site Sampling Activity Update (7/11-7/16/22)
Date:	Friday, July 8, 2022 11:48:59 AM
Attachments:	image001.png
	image002.png
	image003.png
	image004.png

Good morning,

WPX anticipates conducting final confirmation soil sampling activities at the following sites between July 11 through July 16, 2022:

<u>Site: RDU 55</u> API: 30-015-41976 Incident ID: NAB1728549561

<u>Site: RDU 14</u> API: 30-015-25208 Incident ID's: NAB1504757628, NAB1636431146, & NAB1902951984

<u>Site: North Brushy 35-4H</u> API: 30-015-42290 Incident ID: NRM2019550034

<u>Site: RDX Federal 21 #044</u> API: 30-015-41193 Incident Number: nAPP2115533694

<u>Site: EP USA #005</u> API: 30-015-25020 Incident Number: NMAP1826970471

<u>Site: Tucker Draw 9-4-4</u> API: 30-015-44487 Incident Number: nAB1812338789

Joseph Hernandez Senior Geologist 281-702-2329 Ensolum, LLC

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
WPX Energy Permian, LLC	246289
Devon Energy - Regulatory	Action Number:
Oklahoma City, OK 73102	222258
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

CONDITION		
Created By	Condition	Condition Date
amaxwell	The Deferral Request and C-141 will be accepted for record and marked accordingly. The release will remain open in OCD database files and reflect an open environmental issue.	6/5/2023
amaxwell	Remediation is to occur during any future major construction/alteration or final plugging and abandonment, whichever occurs first.	6/5/2023

CONDITIONS

Page 61 of 61

Action 222258