District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Page 1 lof 90

Incident ID	NAPP2300554747
District RP	
Facility ID	
Application ID	

I Release Notification

Responsible Party

Remediation Plan Approved with Conditions see Page 5 of C-141.

)

Responsible Party: Hilcorp Energy	OGRID: 372171
Contact Name: Samantha Grabert	Contact Telephone: 713-757-7116
Contact email: Samantha.grabert@hilcorp.com	Incident # (assigned by OCD)
Contact mailing address: 1111 Travis St. Houston, TX 77471	

Location of Release Source

(NAD 83 in decimal degrees to 5 decimal places)

Longitude:

-107.33217

Latitude:	36.60034

Site Name: San Juan 27-5 Unit 111Site Type: Well SiteDate Release Discovered: 12/21/2022API# (if applicable): 30-039-20218

Unit Letter	Section	Township	Range	County
L	02	027N	005W	Rio Arriba

Surface Owner: State Federal Tribal Private (Name:_

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water Volume Released (bbls) 9.0 V		Volume Recovered (bbls) 0
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls) 90.5	Volume Recovered (bbls) 0
🗌 Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

Hilcorp operator discovered release due to corrosion at the bottom of the condensate tank. The tank was emptied and will undergo an integrity inspection and coating before being put back into service.

0

<u> Page 2 26 90</u>

il Conservation I	Div	is	ion
-------------------	-----	----	-----

Incident ID	NAPP2300554747
District RP	
Facility ID	
Application ID	

Was this a major release as defined by	If YES, for what reason(s) does the responsible party consider this a major release?		
19.15.29.7(A) NMAC?	Release volume was greater than 25 bbls.		
🛛 Yes 🗌 No			
If YES, was immediate notice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?			
Immediate notification was made by Samantha Grabert via email at 9:13 AM MST on Thursday, 12/22/2022 to Nelson Velez at NMOCD.			

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Samantha Grabert	Title: Environmental Specialist
Signature: Jamantha Shabut	Date:1/5/2023
email: <u>samantha.grabert@hilcorp.com</u>	Telephone: 713-757-7116
OCD Only Jocelyn Harimon Received by:	01/06/2023 Date:

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	173184
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jharimon	When submitting future reports regarding this release, please submit the calculations used or specific justification for the volumes reported on the initial C- 141	1/6/2023

Page 3.of 90

Action 173184

Page 3

Oil Conservation Division

	Page 4 of 9	90
Incident ID	NAPP2300554747	
District RP		
Facility ID		
Application ID		

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>100</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🔀 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🛛 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- \boxtimes Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- \boxtimes Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

	023 12:00:23 AM State of New Mex	ino			Page 5 of 9
			Incide	nt ID	NAPP2300554747
Page 4	Oil Conservation Div	v1810n	Distrie	ct RP	
			Facilit	y ID	
			Appli	cation ID	
regulations all operators ar public health or the environ failed to adequately investi	ormation given above is true and complete e required to report and/or file certain reliment. The acceptance of a C-141 report gate and remediate contamination that p of a C-141 report does not relieve the op	lease notifications and t by the OCD does not ose a threat to ground	perform corrective a relieve the operator vater, surface water,	ctions for rele of liability sho human health	ases which may endanger ould their operations have or the environment. In
Printed Name: Samar Signature: email:samantha.grabe		Date:	Environmenta 6/20/2023 713-757-7116		

Received by OCD: 6/21/2023 12:00:23 AM Form C-141 State of New Mexico

Oil Conservation Division

Incident ID	NAPP2300554747
District RP	
Facility ID	
Application ID	

Remediation Plan

<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan. Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Title: Environmental Specialist Printed Name: Samantha Grabert amantha Shabut Date: 6/20/2023 Signature: email: <u>samantha.grabert@hilcorp.com</u> Telephone: <u>713-757-7116</u> OCD Only _____ Date: ___ Received by: Approved Approved with Attached Conditions of Approval Denied Deferral Approved see text box below - 06/21/2023 NV Nelson Velez <u>Date:</u> 06/21/2023 Signature:

1. Complete horizontal delineation west of the point of release.

2. Complete Soil Vapor Extraction (SVE) pilot test as written in report within 90-days (09/19/2023) of this approval with conditions.

3. Acquire surface access approval from New Mexico State Land Office prior to any off pad remedial activities.

4. Prepare and submit SVE pilot test report within 60-days (11/20/2023) after field activities have been completed.

Page 5

June 20, 2023

New Mexico Oil Conservation Division New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Site Investigation Report and Remediation Work Plan San Juan 27-5 Unit 111 Rio Arriba County, New Mexico Hilcorp Energy Company NMOCD Incident Number: NAPP2300554747

To Whom it May Concern:

Ensolum, LLC (Ensolum), on behalf of Hilcorp Energy Company (Hilcorp), presents this *Site Investigation Report and Remediation Work Plan* associated with the release discovered at the San Juan 27-5 Unit 111 natural gas production well pad (Site). The Site is located on New Mexico State Trust Land (STL) in Unit L, Section 2, Township 27 North, Range 5 West in Rio Arriba County, New Mexico.

SITE BACKGROUND

On December 21, 2022, Hilcorp discovered a release of 9.0 barrels (bbls) of produced water and 90.5 bbls of condensate due to corrosion at the bottom of the on-Site condensate aboveground storage tank (AST). Fluids stayed within the secondary containment berm but none were recovered. Upon discovery, the tank was immediately emptied. The release volume was determined based on the operator's monthly tank gauging data. Hilcorp reported the release via email to the New Mexico Oil Conservation Division (NMOCD) on December 22, 2022, and subsequently submitted a Form C-141, *Release Notification* to the NMOCD on January 5, 2023. The release was assigned NMOCD Incident Number NAPP2300554747.

SITE CHARACTERIZATION

The Site is located approximately 20 miles southeast of Navajo Dam, New Mexico, on land managed by the New Mexico State Land Office (NMSLO). As part of the Site characterization, local geology/hydrogeology and nearby sensitive receptors were assessed in accordance with Title 19, Chapter 15, Part 17, Sections 12 and 13 of the New Mexico Administrative Code (NMAC). This information is further discussed below.

GEOLOGY AND HYDROGEOLOGY

The Site is located in the Tertiary San Jose Formation. In the report titled "Hydrogeology and Water Resources of San Juan Basin, New Mexico" (Stone, et. al., 1983), the San Jose Formation is characterized by various lithologies including course-grained arkose, mudstones, and lenses of claystone, siltstone, and poorly consolidated sandstone. This formation ranges in thickness

from 200 feet to 2,700 feet. Stone and others state the aquifers in the San Jose Formation are largely untested and display variable hydrologic properties dependent on location. Where sufficient yield is present, the primary use of water from this formation is for domestic and/or livestock supply. The San Jose Formation is underlain by the Nacimiento Formation.

POTENTIAL SENSITIVE RECEPTORS

Potential nearby receptors were assessed through desktop reviews of United States Geological Survey (USGS) topographic maps, Federal Emergency Management Administration (FEMA) Geographic Information System (GIS) maps, New Mexico Office of the State Engineer (NMOSE) database, aerial photographs, and Site-specific observations.

The nearest significant watercourse to the Site is Munoz Canyon wash, located approximately 4,525 feet northwest of the Site. The nearest fresh water well is USGS well 363625107202801, located approximately 3,500 feet northwest of the Site with a recorded depth to water of 456.99 feet below ground surface (bgs). Additionally, a cathodic well advanced on the San Juan 27-5 Unit #99E well pad (Appendix A), located approximately 2,160 feet south of the Site, indicates the shallowest groundwater below the Site is approximately 130 feet bgs.

The Site is greater than 200 feet from any lakebed, sinkhole, or playa lake, and greater than 300 feet from any wetland (Figure 1). No wellhead protection areas, springs, or domestic/stock wells are located within a ½-mile from the Site (Figure 1). The Site is not within a 100-year floodplain, overlying a subsurface mine, or located within an area underlain by unstable geology (area designated as low potential karst by the Bureau of Land Management). Schools, hospitals, institutions, churches, and/or other occupied permanent residence or structures are not located within 300 feet of the Site.

SITE CLOSURE CRITERIA

Based on the information presented above and in accordance with the *Table I, Closure Criteria for Soils Impacted by a Release* (19.15.29.12 NMAC), the following Closure Criteria for constituents of concern (COCs) should be applied to the Site:

- Chloride: 20,000 milligrams per kilogram (mg/kg)
- Total Petroleum Hydrocarbons (TPH) as a combination of gasoline range organics (GRO), diesel range organics (DRO), and motor oil range organics (MRO): 2,500 mg/kg
- TPH-GRO + TPH-DRO: 1,000 mg/kg
- A combination of benzene, toluene, ethylbenzene, and xylenes (BTEX): 50 mg/kg
- Benzene: 10 mg/kg

INITIAL SITE ACTIVITIES

To address heavily impacted soils at the Site, Hilcorp conducted initial sampling activities within the secondary containment in December 2022. Soil was removed from the area indicated on Figure 2 using a track hoe, up to a depth of approximately 14 feet bgs. Four sidewall soil samples and a floor soil sample were collected by Hilcorp personnel from the area and submitted to Hall Environmental Analysis Laboratory (Hall) for analysis of BTEX following United States Environmental Protection Agency (EPA) Method 8021B, TPH-GRO, TPH-DRO, TPH-MRO following EPA Method 8015M/D, and chloride following EPA Method 300.0. Concentrations of benzene, BTEX, and TPH exceeded the NMOCD Table I Closure Criteria in all soil samples collected during these activities. Chloride was not detected above the laboratory reporting limits

Page 3

in any of the analyzed samples. Soil samples results are summarized on Table 1, with complete laboratory analytical reports attached as Appendix B.

Based on the data collected during the initial sampling event, Hilcorp retained Ensolum to perform delineation activities at the Site. On January 12, 2023, initial investigation efforts were conducted using an excavator to advance potholes at the Site shown on Figure 2. Potholes FS-01 and FS-02 were advanced to depths up to 17 feet bgs. During the investigation, an Ensolum geologist logged soil lithology and inspected the soil for petroleum hydrocarbon staining and odors. Soil descriptions were noted in field books/boring logs and generally followed the Unified Soil Classification System (USCS), as specified in American Society for Testing and Materials (ASTM) method D2488.

Soil samples were also field screened for the presence of volatile organic compounds (VOCs) using a calibrated photoionization detector (PID), with results noted in the field books. Several soil samples were collected from the potholes to assess the depths of impacts. Soil samples were collected directly into laboratory-provided jars and immediately placed on ice. Samples were submitted to Hall for analysis of BTEX, TPH, and chloride. Soil samples results are summarized on Table 1, with complete laboratory analytical reports also included in Appendix B.

DRILLING AND ADDITIONAL DELINEATION ACTIVITIES

Based on the initial field screening and sampling results, further delineation activities were warranted using a drill rig. Specifically, soil borings BH01 through BH07 were advanced at the locations indicated on Figure 2, using a hollow-stem auger drill rig in order to delineate the lateral and vertical extent of soil impacts. During delineation activities, a geologist logged soil lithology and field screened for the presence of VOCs using the methods described above. Soil descriptions were noted in the field soil boring logs attached as Appendix C. The NMOCD was notified at least 48 hours in advance of any field activities performed at the Site. Notifications and correspondence with the NMOCD are attached in Appendix D.

SOIL BORING RESULTS AND CONCLUSIONS

In general, very fine-grained to fine-grained sand, silty sand, and sandy silt soils were encountered at the Site from the ground surface up to depths of approximately 26 feet bgs. Unconsolidated soil was underlain in all borings by sandstone or siltstone bedrock. Depth to bedrock varied significantly across the site, ranging from 2 feet bgs at boring BH07 to 26 feet bgs in borings BH01 and BH05. All borings drilled during the delineation activities were advanced until refusal was met within or at the bedrock surface. In general, bedrock is sloping sharply to the west-northwest across the Site. Field indications of petroleum hydrocarbons, including staining, odors, and/or elevated PID readings, were noted in borings BH01, BH05, and BH06. Groundwater was not encountered in any of the borings during drilling activities.

Concentrations of total BTEX, TPH-GRO+TPH-DRO, and Total TPH exceeding the NMOCD Table I Closure Criteria were detected in samples collected from borings BH01, BH05, and BH06. COC concentrations were compliant with the NMOCD Table I Closure Criteria in all other analyzed samples. A summary of analytical results is presented on Table 1 and depicted on Figure 2. Complete laboratory reports are attached in Appendix B. Photographs collected during Site work are included in Appendix E.

Based on the depths at which COC concentrations exceeded the applicable Closure Criteria (near the terminus of each boring and directly above the bedrock units), it appears that the released fluids predominantly migrated vertically below the center of the secondary containment and then travelled along the bedding plane of the bedrock unit to the west and northwest. Although the terminal soil sample, collected from boring BH05 at 22 feet to 24 feet bgs, contained COC concentrations exceeding the Closure Criteria, it is unlikely that soil impacts have migrated into the underlying bedrock. As such, it is assumed that impacts in this area are likely contained above

the bedrock unit and are present to a maximum depth of approximately 26 feet bgs. This assumption is also evidenced by the analytical results and similar lithology present in borings BH01 and BH06.

Based on the activities and analytical results described above, impacted soil resulting from the Site release have not yet been fully delineated in the western portion of the Site. Based on the locations of borings BH05 and BH06, impacted soil is likely present in off-pad locations. To date, petroleum hydrocarbons are present at the Site between the ground surface to a depth of approximately 26 feet bgs; however, the total volume of impacted soil is unknown at this time.

REMEDIATION WORK PLAN

Based on the extent of soil impacts, favorable soil lithology, the proximity of impacted soil to active equipment, and the likelihood of off-pad impacts, Ensolum recommends the use of soil vapor extraction (SVE) techniques to remediate soil at the Site. As described by the EPA, SVE is an insitu technique for the removal of VOCs and some semi-volatile organic compounds (SVOCs) from vadose zone soil through the application of vacuum to the subsurface. When air is removed from the soil, contaminants are volatilized and removed. Depending on contaminant concentrations in the removed air, the SVE system may emit exhaust directly to the atmosphere.

Based on field screening observations during drilling, borings BH01, BH02, BH05, and BH06 were completed as SVE wells to potentially be used for future remediation. Screened casing was installed across the subsurface interval with the highest petroleum hydrocarbon impacts based on PID readings in order to direct the applied vacuum to these depth intervals. Well construction details are included on the boring logs attached as Appendix C. SVE wells were constructed with 2-inch diameter Schedule 40 polyvinyl chloride (PVC) casing and 2-inch Schedule 40 PVC 0.010-inch slotted screen. Wells were completed with 10-20 silica sand pack to 2 feet above the screened interval, then hydrated bentonite seal 2 feet above the sand pack and grouted to the surface with cement grout. SVE well locations are indicated on Figure 3.

SVE PILOT TEST

Ensolum recommends performing a SVE pilot test to evaluate the effectiveness of SVE for the Site and, if applicable, assess the Site-specific flow and vacuum rates required to volatilize and remove contaminants from the impacted subsurface. Data collected during the SVE pilot test will be used to estimate the system's radius-of-influence (ROI) and radius-of-effect (ROE) to determine well spacing and the need for additional SVE wells at the Site.

A vacuum truck will be used to remove air at one SVE well at a time (used as the "extraction" well). Flow and vacuum rates will be measured at the extraction well using an adjustable manifold and vacuum responses will be measured in the other SVE wells at the Site (used as "observation" wells). The pilot-test manifold will be used to control and incrementally increase vacuum being applied to the extraction well to assess the relationship between flow and vacuum. Vacuum measurements collected at the observation wells will be used to assess the ROI and ROE achievable at the Site. The following general procedures will be used to perform the SVE pilot test:

- 1. Collect initial VOC measurements using a PID from all SVE wells.
- 2. Attach a flexible hose from the vacuum truck to the SVE pilot test manifold. Connect the manifold to the first extraction well, start the vacuum truck, and slowly open the valve to increase flow and vacuum at the well.
- 3. During each test, apply a vacuum of approximately 10 inches of water column (IWC) and allow flow/vacuum measurements to stabilize for up to 15 minutes. Collect vacuum measurements and PID readings at each observation well once flow and vacuum have stabilized.

- 4. Increase the extraction well vacuum by 10 to 20 IWC, allow the vacuum/flow to stabilize, and collect observation well measurements as described below. Continue Steps 3 and 4 until 100 IWC is being applied at the extraction well or the vacuum truck capabilities are reached.
- 5. Close the manifold valve, allow the vacuum to dissipate, and collect PID readings from each observation well.
- 6. Collect air samples from the extraction wells in 1-liter Tedlar[®] bags and submit to Hall for analysis of BTEX and total volatile petroleum hydrocarbons (TVPH).

After completion of the SVE pilot test, Ensolum will summarize the results of the test and recommendations for the design and construction of the full-scale SVE system in an *Updated Site Investigation Report and Remediation Work Plan*. The report will include the calculations for ROI and ROE, system specifications required to remediate subsurface impacts, and, if determined feasible, an operation and maintenance (O&M) plan for the system and the proposed remediation schedule and timeline.

ADDITIONAL DELINEATION WORK PLAN

Based on the Site investigation results described above, additional drilling and sampling work is required to fully delineate the extent of impacts at the Site. Due to the location of the proposed borings, Hilcorp will likely need to obtain permission from the New Mexico State Land Office (NMSLO) prior to conducting any off-pad work.

SCHEDULE

Hilcorp and Ensolum will perform the SVE pilot test within 90 days of NMOCD approval of this *Site Characterization Report and Remediation Work Plan.* In order to complete the SVE pilot test and determine appropriate SVE well spacing (if applicable), additional drilling and investigation work will commence after the SVE pilot test has been completed. It is anticipated that drilling activities can begin within 90 days of NMSLO approval of off-pad locations, pending driller availability. An *Updated Site Investigation Report and Remediation Work Plan* will then be prepared summarizing the results of the additional delineation work and SVE pilot test results. within 60 days of completion of drilling activities.

REFERENCES

Stone, W., Lyford, F., Frenzel, P., Mizell, N., & Padgett, E. (1983). Hydrogeology and Water Resources of San Juan Basin, New Mexico. New Mexico Bureau of Mines & Mineral Resources.

We appreciate the opportunity to provide this work plan to the NMOCD. If you should have any questions or comments regarding this document, please contact the undersigned.

Sincerely, Ensolum, LLC

Stuart Hyde, LG Senior Geologist (970) 903-1607 shyde@ensolum.com

Daniel R. Moir, PG Senior Managing Geologist (303) 887-2946 dmoir@ensolum.com

Attachments:

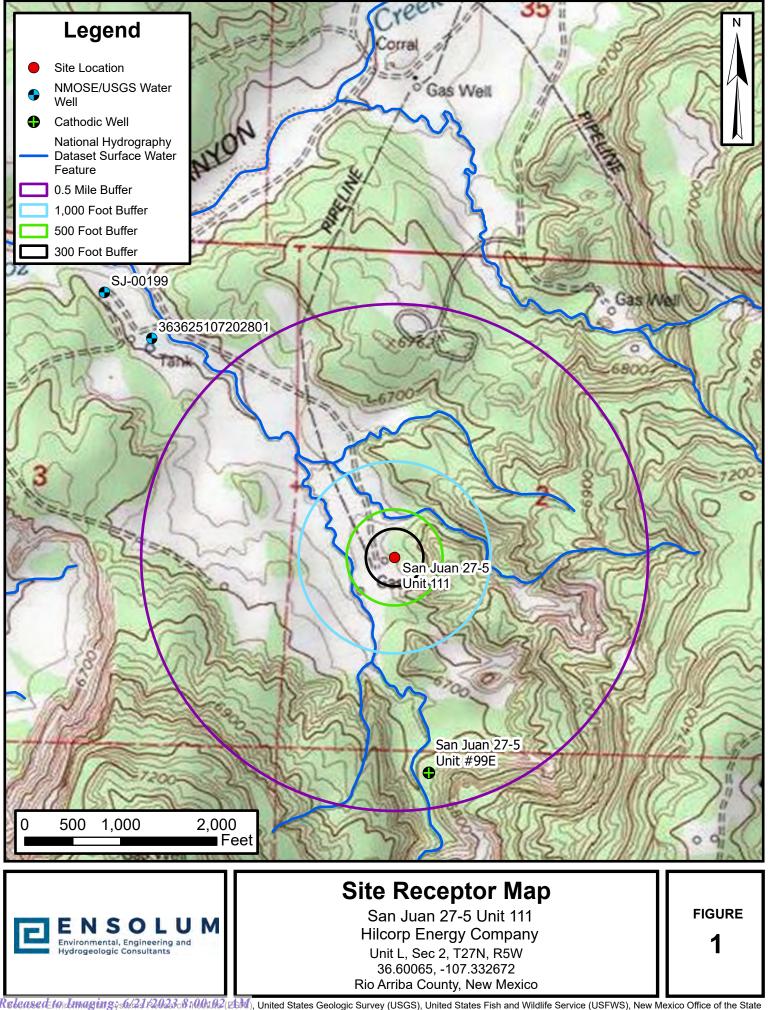
Figure 1: Figure 2: Figure 3: F	Site Receptor Map Delineation Soil Analytical Results SVE Wells Locations
Table 1:	Soil Sample Analytical Results
Appendix A: Appendix B:	Cathodic Well Log Data Sheet Laboratory Analytical Reports

Appendix C: Boring Logs

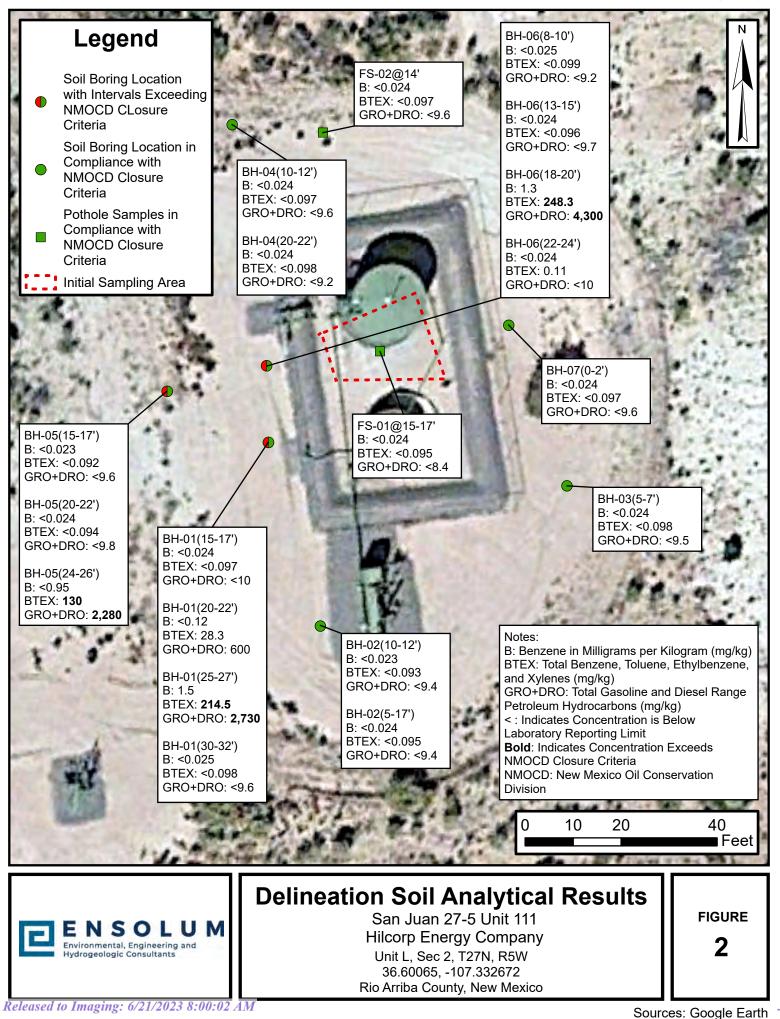
Appendix D: Agency Sampling Notifications

Appendix E: Photographic Log

Page 6



FIGURES


Received by OCD: 6/21/2023 12:00:23 AM

Page 14 of 90

Relansed to Linugian gyst/21/2023-8 (United States Geologic Survey (USGS), United States Fish and Wildlife Service (USFWS), New Mexico Office of the State - Engineer (NMOSE), National Geographic Society, i-cubed

Received by OCD: 6/21/2023 12:00:23 AM

Received by OCD: 6/21/2023 12:00:23 AM

TABLES

E N S O L U M

	TABLE 1													
	SOIL SAMPLE ANALYTICAL RESULTS													
						San Juan 27	-5 Unit 111							
						Hilcorp Energ	y Company							
	Rio Arriba County, New Mexico													
		Depth	Benzene	Toluene	Ethylbenzene	Xylenes	Total BTEX	TPH GRO	TPH DRO	TPH MRO	TPH-	Total TPH	Chloride	
Sample ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	GRO+DRO (mg/kg)	(mg/kg)	(mg/kg)	
NMOCD Closure (Release (Criteria for Soils Groundwater >1		10	NE	NE	NE	50	NE	NE	NE	1,000	2,500	20,000	
				<u>.</u>	<u> </u>	Initial Soil Sar	nple Results							
Bottom 14'	12/22/2022	14	16	320	52	890	1,278	10,000	2,300	<250	12,300	12,300	<60	
North SW 6-7'	12/22/2022	6 - 7	33	490	64	1,100	1,687	12,000	2,400	<450	14,400	14,400	<60	
South SW 6-7'	12/22/2022	6 - 7	26	420	62	1,000	1,508	11,000	2,700	<250	13,700	13,700	<60	
East SW 6-7'	12/22/2022	6 - 7	34	460	65	1,000	1,559	12,000	2,500	<240	14,500	14,500	<60	
West SW 6-7'	12/22/2022	6 - 7	29	380	51	800	1,260	10,000	2,100	<240	12,100	12,100	<60	
					D	elineation Soil	Sample Results							
FS-01	1/12/2023	15 - 17	<0.024	<0.048	<0.048	<0.095	< 0.095	<4.8	<8.4	<42	<8.4	<42	<60	
FS-02	1/12/2023	14	< 0.024	< 0.049	< 0.049	< 0.097	<0.097	<4.9	<9.6	<48	<9.6	<48	<60	
BH-01(15-17')	5/16/2023	15 - 17	<0.024	<0.049	<0.049	<0.097	<0.097	<4.9	<10	<50	<10	<50	<60	
BH-01(20-22')	5/16/2023	20 - 22	<0.12	2.7	1.6	24	28.3	350	250	<50	600	600	<60	
BH-01(25-27')	5/16/2023	25 - 27	1.5	42	11	160	214.5	2,300	430	<47	2,730	2,730	<60	
BH-01(30-32')	5/16/2023	30 - 32	<0.025	<0.049	<0.049	<0.098	<0.098	<4.9	<9.6	<48	<9.6	<48	<60	
BH-02(10-12')	5/16/2023	10 - 12	<0.023	<0.046	<0.046	<0.093	<0.093	<4.6	<9.4	<47	<9.4	<47	<61	
BH-02(15-17')	5/16/2023	15 -17	<0.024	<0.047	<0.047	<0.095	<0.095	<4.7	<9.4	<47	<9.4	<47	70	
BH-03(5-7')	5/16/2023	5 - 7	<0.024	<0.049	<0.049	<0.098	<0.098	<4.9	<9.5	<48	<9.5	<48	<60	
BH-04(10-12')	5/16/2023	10 - 12	<0.024	<0.049	<0.049	< 0.097	<0.097	<4.9	<9.6	<48	<9.6	<48	230	
BH-04(20-22')	5/16/2023	20 - 22	<0.024	<0.049	<0.049	<0.098	<0.098	<4.9	<9.2	<46	<9.2	<46	<59	
BH-05(15-17')	5/16/2023	15 - 17	<0.023	<0.046	<0.046	<0.092	<0.092	<4.6	<9.6	<48	<9.6	<48	<60	
BH-05(20-22')	5/16/2023	20 - 22	<0.024	<0.047	<0.047	<0.094	<0.094	<4.7	<9.8	<49	<9.8	<49	<60	
BH-05(24-26')	5/16/2023	24 - 26	<0.95	26	9.0	95	130	1,400	880	<480	2,280	2,280	<60	
BH-06(8-10')	5/17/2023	8 - 10	<0.025	< 0.050	< 0.050	<0.099	<0.099	<5.0	<9.2	<46	<9.2	<46	<60	
BH-06(13-15')	5/17/2023	13 - 15	<0.024	<0.048	<0.048	<0.096	<0.096	<4.8	<9.7	<48	<9.7	<48	81	
BH-06(18-20')	5/17/2023	18 - 20	1.3	48	19	180	248.3	2,900	1,400	<480	4,300	4,300	<60	
BH-06(22-24')	5/17/2023	22 - 24	< 0.024	<0.048	< 0.048	0.11	0.11	<4.8	<10	<50	<10	<50	<60	
BH-07(0-2')	5/17/2023	0 - 2	<0.024	<0.048	<0.048	<0.097	<0.097	<4.8	<9.6	<48	<9.6	<48	<60	

Notes:

bgs: below ground surface BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes mg/kg: milligrams per kilogram NA: Not Analyzed NE: Not Established NMOCD: New Mexico Oil Conservation Division ' : feet GRO: Gasoline Range Organics

DRO: Diesel Range Organics

MRO: Motor Oil/Lube Oil Range Organics

TPH: Total Petroleum Hydrocarbon

<: indicates result less than the stated laboratory reporting limit (RL)

Concentrations in **bold** and shaded exceed the New Mexico Oil Conservation Division Table I Closure Criteria for Soils Impacted by a Release

.

APPENDIX A

Cathodic Well Log Data Sheet

Received by OCD: 6/21/2023 12:00:23 AM

-

Page 20 of 90

99E- 30-039-22639

DATA SHEET FOR DEEP GROUND BED CATHODIC PROTECTION WELLS NORTHWESTERN NEW MEXICO (Submit 3 copies to OCD Aztec Office)

Operator MERIDIAN OIL Location: Unit NW Sec.11 Twp 27 Rng 5 Name of Well/Wells or Pipeline Serviced SAN JUAN 27-5 UNIT #99E cps 1717w Elevation 6706'Completion Date 9/13/83 Total Depth 340' Land Type* N/A Casing, Sizes, Types & Depths_____N/A If Casing is cemented, show amounts & types used N/A If Cement or Bentonite Plugs have been placed, show depths & amounts used N/A Depths & thickness of water zones with description of water when possible: Fresh, Clear, Salty, Sulphur, Etc. 130' SAMPLE TAKEN Depths gas encountered: N/A Type & amount of coke breeze used: 3200 lbs. Depths anodes placed: 300', 290', 280', 270', 260', 250', 240', 215', 205', 190' Depths vent pipes placed: 320' Vent pipe perforations: 200' Remarks: gb.#1

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

*Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number. FM-07-0238 (Rev. 10-82)

WELL CASING CATHODIC PROTECTION CONSTRUCTION REPORT

Drilling Log (Attach	Hereto)	الله الي المراجع المراجع التي المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع	Completion Da	ne <u>9/13/87</u>
an in the state				
CPS # State	Well Name Line or Plant:	Work Order	Static:	Ins. Union Check
ىرىيەتلىكى ئەرىپى يۇچەر يون ئەكەتتىر بىرىمە				Good Bad
17174	SJ 27=5 99E	59124-21-50-20-64	600 SE: 1.071/	
			·教 二字书 人名马尔	
Location:	And the second	Size E	in the second	
NW 11-27	-5 2 × 60 Dur	104-	6-14	
Depth Drilled	Depth Logged		Lost Circulation Mat'l Used	No. Sacks Mud Used
Anode Depth		3200		
	2 290 + 3 2 90 + 4 2.70 +	5 260 # 6 250	7 240 # 8 215	# 9: 205 "# 10 /90
Anode Output (Amp	98)		Storadis 2 - 1983	
#1-3.53 #	2 3.76 # 3 3.96 # 4 4.42 #	5 4.07 # 6 4.35	7 4.01 + 8 3.41	# 9 3.3 # 10 36
Anode Depth				
#11 #	# 13 # 14 #	15 # 16 #	17	* 19
Anode:Output (Am	os)	ستېلېسې د کې کې سو کې کې د. مديدار د د کې توله		
# 11 #2	# 13 # 14 #	15 #16	17** 18× 18	# 19
Total Circuit Resi		No. 8 C.P. Cable		No. 2 C.P. Cable Used
Volts /2,08	Amps: 16.92 Ohms . 7/			
	the second se			The second

Driller SAIS WATEr 130 Approx 2916. / Min. Drilled 160. WATEr marks: AT STANding in hile Next AM AT 130. Took WATEr SAMple Drilled To 340, Logged 321 TASTALLed 321 of 1 P.U.C. VENT P.J.C. PerferATed 200

Ø

Rectifier Size: 40 V 16 A Addn'l Depth Depth Credit: 17.9 Extra Cable: 220 Ditch & 1 Cable 265 25'Meter Pole: 20' Meter Pole: 10' Stub Pole:

GROUND BED LAYOUT SKETCH

All Construction Completed

16m

2

																								Di Bi	1187 			
		жащая гробн бо г	n an		2244774738 Angra ng 192	hi dinadin.	الکر. قرو ^ر به	, 7, 8 , 7, 8 , 7, 8	ange tier end Skritten over	الله من معدمة من من معدمة	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	12-12-12				in dia amin'ny fan Service a service a s Service a service a s	in the second second Second second second Second second second Second second		می می می می می می می می می می می از می می می									時間
	م. رو به م. رو به 	k	li a ci i	and a street	9-57	2	-1a ² · · ·	7		A. C.	1913	2009 2009 2009		R. S.	Andread Andread Andread Andread				2-m, -1 ,, -1 ,, ,, -1 ,, -1		₹. .							
	C	PS	12	171		-1	<u>`</u>		<u>1 w</u>	12	<u>/=2</u> 7-3	27- #	5.1	1	S	, , , , , , , , , , , , , , , , , , ,	-		<u></u> .		59	/2	<u>4-</u> 2		. Ta	-70	-6	L.
and a start of the			ð	<u> </u>	1			<u>;</u> 31			·	L			1.			1 v	1	1	1		·	R.	er-s	55	A CAL	
	/- /-	<u>ک ک</u>			1 12° 1			12	0 -	-/	<u>7</u>	1			, 2 s 	12.3		512 30		-	SA CH	· · .	1	. 134	SSIN.	1995. 1995.	121.45	
AW gals/mol 16.04 C1 6.4	4000 m 4000 m 100	40	4	. .].					0-		·/-				. 4	• • • • •	1. N	11:	1	1.40	1	1	1 in the	$1 \le F$	1. 1.7 16	41 I.	1.43	
30.07 C2 10 12 44.10 C3 10 42	5	: .		Real Providence	, ,		 	- 2	3	21	-	.,	}			• • •	1.	1.1	1. 1. 11	*	1.	1	Sec	1.1	1.20	S Sile of	140	9¢
58 12 1C4 12.38 58:12 nC4 11 93		50	<u>194</u> /	4 4 2					0-						ه میکند و ه او او د میکنو و		· · · · ·	49 17		1	- 7	ir 25	<u>لي</u> :	A.Suplas	APRO1	A	1.4	1
72.15 105 13.85 72.15 105 13.71		· ′′				- N - N		<u>در</u>		-: d		,	Janan.		1. 1. 1. 1. 1. 1. 1. 1. 1.		<u>⊳</u> ∠ ≷. ⊼	1		10.	1		1		244	3. 3. 20	AM	1.1
86:18: [∞] iC6. · 15 50. 86:18 [∞] C6 15 57. · ·		6.0			<u></u>				U.—	<u> </u>					. -		. J	110	t el	11	1 -	£ .	2.2	. J	P. 16.	Sec. al	13 V.C	1000
00.21 IC7 . 17 2 00.21 C7. 17 46			р. 27 р. 27		-		 			<u> </u>			;		-		14	en En		h 1	ip e	12 S		10.5	2.34	1.80		$\beta \gamma^{(1)}$
14 23 34 C8: 19.39 28.05 C2 9 64		70	time oper	7	1711							<u> · · ·</u>		·~ .	z*	1		00	1.00	<u> </u>	γ <i>ρ</i> ε			10		10	<u>ð</u> :	
42.08 C3 967	r)	8	 							<u>}</u>	 .	; ; ;	'	1						· ·	ې المورسيا مې مور					
n an	· ·	80	·	÷ ç					 	 		1 .	1	·	المتحارث			<u>.</u>	-					11	7.0802 77.57			
·				112		SEC.			†		 	1		1		1 Pay 2	••• •	F			r.	2, 1,	10. Er 11.					104
	150 1	90	(91). (91).	1	37.		(1))			1	54	01	0.5 A.	3.43		1	1			- 		2. 1947 26 1			11.1		1350
	•		-17 162	2	1				.		1000			1. 19 1. 19 1. 19		1. Y.		1			1 s 7/2 1 Sec 11							60
	. 2	a.0	14594 V 1						; .	152				1	N. N.			1	The second									
	1			1	A State		(9)	,		istante	1. 3	15.4			1977	La pressa	1.7.	270	12.2		No.4	a star	Service Register					
		, 0		2					-	1.2				1000		ار میں بر میں سرچار	 				1949 1949			の時代				
				1.7	1997 - 19	-	- @		1. 1.	2, 47. 2, 47. 4 4.				The second	2.7.40 2.7.40 2.7.40 2.7.40 2.7.40 2.7.40 2.7.40 2.7.40 2.7.40 2.7.40 2.7.40 2.7.40 2.7.40 2.7.40 2.7.40 2.7.40 2.7.40 2.7.40 2.7.40 2.7.7.40 2.7.7.40 2.7.7.40 2.7.7.40 2.7.7.40 2.7.7.7.40 2.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	، تورید در در د د ولار ب				9.54 May		in sta The fil						読録
		20	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1.4		1				F= 11		<u>予</u>	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1. Ale	12	0	V,	5	692	A =		7/			
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	THE PA	14	₹ ^{×2} 	·					· · · · · · · · · · · · · · · · · · ·			1.			24.5	1			1							物の
MISC. MW gals/mol		3.0		1.2	14.57 192	- - 2			,	1	\$~3.5 94673					191 187 - 191			2.000 To 9				Sheki Stot					
32.00 O2 3.37 28.01 CO 4.19	1			1.				75.4		- U.U. - 1			4-7		inder grängen "Big			1		300	/index	- 2	11		调明 了。	53		No.
44 01 CO2 6.38	100	40	6-3-554 (* 1977) (* 1977)	1.5	12:1	·	-0	(10 25	2		29.0		-2	18		18	6		
34 08 H2S 5 17 28:01 N2 4 16	1. Su.	80 - 2 2		2.2		W	(i			1.2	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					3		8 (2	19	a de la comercia de l		16		
2.02 H2 3 38		50		2	+		6			· · · • · · ·					3			4	2	70		-2.			4,	440400%		隧
				2.	3	JAA.	ľ		· ~.	177400 1. 1. 1. 1. 1. 1.		際	5		19-5	 	12.25	and the second	-2	60		2.	14	70 (123) - 223	4,	67		
		60		Z		-	6	·	1	P.A. No.								6	- 2	50	小菜	2.	23		4	25		
		100		2.1	2, 1, 1, 1 2, 1, 2, 1 2, 1, 2, 1 2, 1 2,				and -							1		.7	2	40		21	H		4	01		
	1	70		2.2	100.7	7, -3, 1244 	Ŷ						K K					S	- z	15		1.7	کر		2			慶二
				2.0		fars,			1.5	「日本		No.		1.11				9	2	يح ہ	12	<u>];</u>	88		<u>J</u> ,	30		15.25
		80		2.2			Ì			1144 1144 1144 1144 1144 1144 1144 114								10		90	1 gr . 20 9	2.4	2		3	66		國合
					2443),,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		12.10		() () () () () () () () () () () () () (148 144 144 144	100197 100197 100197				濟.		1. 915 1. 5 1. 5	4 p.C 4 p.C						
(\mathbf{y})		90		2.1	1		: (2)						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1.63 y	時代	1. 1. 1.								
				1 2.1	2			*****											融	A THE								
	30	0		2	06		<u> </u>									100			藏							開始		
		たた		Į,	88		Phone H	潮		讀			184	治社														に設め

Released to Imaging: 6/21/2023 8:00:02 AM

used Orthe

de ser j

· · · ·

Car This

EL PASO NATURAL GAS COMPANY SAN JUAN DIVISION SAN JUAN DIVISION FARMINGTON, NEW MEXICO PRODUCTION DEPARTMENT WATER ANALYSIS Carling the second states of the

Analysis	No. 1-10887	Date	October 1
Operator	El Paso Natur	al Gas Wel	L Name San Juan
Location	NW-11-27-5	Com	
Field	Blanco	Por	mation
Sampled	From 120 6		
5.5.5	From 1:30 feet	approximat	ely 2 gallons pe
Date Sam	pled September 13.	<u>1983</u> By	Joe Scotte
ار با مراجع المراجع ال المراجع المراجع المراجع المراجع المراجع			
and an and a second	DDB		Surface
Sodium	273	11.9 Chic	ride 56
Calcium	TRACE	•	
Carcilin			rbonate298
Magnesiu	0	0 Sulf	ate 215
Iron		Carb	onate <u></u>
E-S		Bydr	oxide 0
	. Ullrich	Tota	l Solids Dissol
	. Paulek . McCarthy	pH 8	8-6
J. D	. Evans		
W. B	. Shropshire	Sp. (Gr. 0.9975
J. C.	. Adams		

lved 860 CHART -At 60°E Resistivity 694 ohm-cm at 75°F Dennis P. Bird GC

8

1983

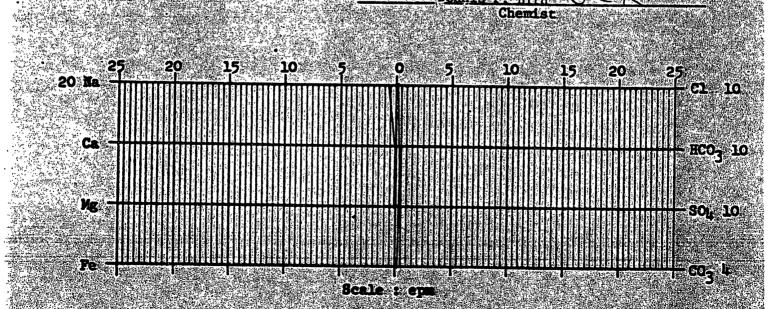
minute

27-5 #99E CPS

State New Mexico

en stat state i na Sant

Csg. Press.


epa: 1.6

4.9

> 4.5 . 1.0

0

0

Pile,

	 	WELL NO.S	<u> </u>	759		CV	<u> </u>	11 in V	RIG NO. 3		RT NO:	DAILY DRILLING	
LEASE			52	13 CON	T	<u> </u>		AYLIGHT				VENING	
	MUR	Total Men In C			Driller J	1111	CIA	Total Men I	Crew	Driller		Total Men	
Driller FROM	то	FORMATION	WT-BIT	R.P.M.			то	FORMATION		FROM	то	FORMATION	WT-BIT
		- 6 (2 100 (p. p. c			0	16	50	SHUdy Shahe	674			· ·	新了款款。 第1
	1				160		40	Shahe				······	
	1	·····			100	<u>_</u>	70	phane	·				
L	1	NO. DCSIZE_	LE	N G		· ·		NO. DCSIZE	LENG			NO. DC SI Z	ZELENG.
BIT_NO.	1	NO. DC SIZE			BIT NO.			NO. DCSIZE		BIT NO.			ZELENG.
S L NO.	4 1 1	STANDS		-	SERIAL NO.			STANDS		SERIAL NO.		STANDS	
SI Z E		SINGLES			SIZE			SINGLES		SIZE	•	SINGLĖS	1计比较
ТҮРЕ		DOWN ON KELLY			TYPE		<u>, , , , , , , , , , , , , , , , , , , </u>	E DOWN ON KELLY		TYPE		DOWN ON KELL	Y
MAKE	1	TOTAL DEPTH			MAKE		-	TOTAL DEPTH	64 ¹⁴ 6	MAKE		TOTAL DEPT	гн ан
, MUD RECOR		MUD, ADDITIVES USED	AND REC	EIVED		RECORD		MUD, ADDITIVES USED			RECORD	MUD, ADDITIVES USE	
Time Wt.	Vis.				Time	Wi.	Vis.	A A A A A A A A A A A A A A A A A A A		Time	Wt. Vis.	ر به م ^ر د مار می مرکز به مار م	
										-		·	
		<u> </u>						······································					
					-		+		······································			·	
FROM TO		TIME BREAKDOW	/N		FROM	то	<u> </u>	TIME BREAKD	DWN	FROM	то	TIME BREAK	DOWN
													í dy
	,						1.						2 }
	:						-	·····					1
	1			····· ·									1
													1
													F.
REMARKS -	1				REMARK	s –				REMARKS			· 1 ·
					Mak i	ve a	wart	der 1307	0 160 SAN	d			
						D	~ ~ ~						
	1							· · · · · · · · · · · · · · · · · · ·			····	· · · · · · · · · · · · · · · · · · ·	
	1							- -					1 《建议》
	1 7											1	
								،۱۰۰۰ ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰				J. Jak A.	<u> </u>
	F					<u></u>		<u> </u>		1		0500	· · · · · · · · · · · · · · · · · · ·
	-				IED: Toolpust	ſ	6.00	Z X	0	Cômpany Superv		Xattar	

.

Released to Imaging: 6/21/2023 8:00:02 AM

APPENDIX B

Laboratory Analytical Reports

December 30, 2022

Samantha Grabert HILCORP ENERGY PO Box 4700 Farmington, NM 87499 TEL: (505) 564-0733 FAX: Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

RE: SJ 27 5 Unit 111

OrderNo.: 2212D42

Dear Samantha Grabert:

Hall Environmental Analysis Laboratory received 5 sample(s) on 12/23/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2212D42

Date Reported: 12/30/2022

CLIENT: HILCORP ENERGY Client Sample ID: Bottom 14' **Project:** SJ 27 5 Unit 111 Collection Date: 12/22/2022 1:00:00 PM Lab ID: 2212D42-001 Matrix: MEOH (SOIL) Received Date: 12/23/2022 8:00:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS					Analyst: SB
Diesel Range Organics (DRO)	2300	74		mg/Kg	5	12/27/2022 4:53:27 PM
Motor Oil Range Organics (MRO)	ND	250	D	mg/Kg	5	12/27/2022 4:53:27 PM
Surr: DNOP	63.8	21-129		%Rec	5	12/27/2022 4:53:27 PM
EPA METHOD 8015D: GASOLINE RANGE						Analyst: NSB
Gasoline Range Organics (GRO)	10000	1700		mg/Kg	500	12/27/2022 9:22:27 AM
Surr: BFB	149	37.7-212		%Rec	500	12/27/2022 9:22:27 AM
EPA METHOD 8021B: VOLATILES						Analyst: NSB
Benzene	16	0.35		mg/Kg	20	12/23/2022 6:46:53 PM
Toluene	320	17		mg/Kg	500	12/27/2022 9:22:27 AM
Ethylbenzene	52	0.70		mg/Kg	20	12/23/2022 6:46:53 PM
Xylenes, Total	890	35		mg/Kg	500	12/27/2022 9:22:27 AM
Surr: 4-Bromofluorobenzene	149	70-130	S	%Rec	20	12/23/2022 6:46:53 PM
EPA METHOD 300.0: ANIONS						Analyst: NAI
Chloride	ND	60		mg/Kg	20	12/27/2022 10:02:08 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

Analyte detected in the associated Method Blank в

Above Quantitation Range/Estimated Value Е

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit Page 1 of 10

Lab ID:

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2212D42

Date Reported: 12/30/2022

CLIENT:	HILCORP ENERGY
Project:	SJ 27 5 Unit 111

2212D42-002

Client Sample ID: North SW 6-7' Collection Date: 12/22/2022 1:15:00 PM

Matrix: MEOH (SOIL) Received Date: 12/23/2022 8:00:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OF	GANICS					Analyst: SB
Diesel Range Organics (DRO)	2400	140		mg/Kg	10	12/27/2022 5:17:04 PM
Motor Oil Range Organics (MRO)	ND	450	D	mg/Kg	10	12/27/2022 5:17:04 PM
Surr: DNOP	0	21-129	S	%Rec	10	12/27/2022 5:17:04 PM
EPA METHOD 8015D: GASOLINE RANGE						Analyst: NSB
Gasoline Range Organics (GRO)	12000	1600		mg/Kg	500	12/27/2022 9:45:58 AM
Surr: BFB	147	37.7-212		%Rec	500	12/27/2022 9:45:58 AM
EPA METHOD 8021B: VOLATILES						Analyst: NSB
Benzene	33	0.32		mg/Kg	20	12/23/2022 7:33:40 PM
Toluene	490	16		mg/Kg	500	12/27/2022 9:45:58 AM
Ethylbenzene	64	0.65		mg/Kg	20	12/23/2022 7:33:40 PM
Xylenes, Total	1100	32		mg/Kg	500	12/27/2022 9:45:58 AM
Surr: 4-Bromofluorobenzene	164	70-130	S	%Rec	20	12/23/2022 7:33:40 PM
EPA METHOD 300.0: ANIONS						Analyst: NAI
Chloride	ND	60		mg/Kg	20	12/27/2022 10:14:29 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- ND PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range Reporting Limit
- RL

Page 2 of 10

*

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2212D42

Date Reported: 12/30/2022

CLIENT:	HILCORP	ENERGY

SJ 27 5 Unit 111

2212D42-003

Project:

Lab ID:

Client Sample ID: South SW 6-7 Collection Date: 12/22/2022 1:30:00 PM

Matrix: MEOH (SOIL) Received Date: 12/23/2022 8:00:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS					Analyst: SB
Diesel Range Organics (DRO)	2700	74		mg/Kg	5	12/27/2022 5:40:50 PM
Motor Oil Range Organics (MRO)	ND	250	D	mg/Kg	5	12/27/2022 5:40:50 PM
Surr: DNOP	62.6	21-129		%Rec	5	12/27/2022 5:40:50 PM
EPA METHOD 8015D: GASOLINE RANGE						Analyst: NSB
Gasoline Range Organics (GRO)	11000	1600		mg/Kg	500	12/27/2022 10:09:40 AM
Surr: BFB	140	37.7-212		%Rec	500	12/27/2022 10:09:40 AM
EPA METHOD 8021B: VOLATILES						Analyst: NSB
Benzene	26	0.16		mg/Kg	10	12/23/2022 8:20:29 PM
Toluene	420	16		mg/Kg	500	12/27/2022 10:09:40 AM
Ethylbenzene	62	16		mg/Kg	500	12/27/2022 10:09:40 AM
Xylenes, Total	1000	32		mg/Kg	500	12/27/2022 10:09:40 AM
Surr: 4-Bromofluorobenzene	218	70-130	S	%Rec	10	12/23/2022 8:20:29 PM
EPA METHOD 300.0: ANIONS						Analyst: NAI
Chloride	ND	60		mg/Kg	20	12/27/2022 10:26:50 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

ND PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

Analyte detected in the associated Method Blank в

- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit Page 3 of 10

*

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2212D42

Date Reported: 12/30/2022

PM AM

CLIENT: HILCORP ENERGY	Client Sample ID: East SW 6-7'
Project: SJ 27 5 Unit 111	Collection Date: 12/22/2022 1:45:00
Lab ID: 2212D42-004	Matrix: MEOH (SOIL) Received Date: 12/23/2022 8:00:00

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS					Analyst: SB
Diesel Range Organics (DRO)	2500	71		mg/Kg	5	12/27/2022 6:04:33 PM
Motor Oil Range Organics (MRO)	ND	240	D	mg/Kg	5	12/27/2022 6:04:33 PM
Surr: DNOP	62.1	21-129		%Rec	5	12/27/2022 6:04:33 PM
EPA METHOD 8015D: GASOLINE RANGE						Analyst: NSB
Gasoline Range Organics (GRO)	12000	1700		mg/Kg	500	12/27/2022 10:33:17 AM
Surr: BFB	146	37.7-212		%Rec	500	12/27/2022 10:33:17 AM
EPA METHOD 8021B: VOLATILES						Analyst: NSB
Benzene	34	8.7		mg/Kg	500	12/27/2022 10:33:17 AM
Toluene	460	17		mg/Kg	500	12/27/2022 10:33:17 AM
Ethylbenzene	65	17		mg/Kg	500	12/27/2022 10:33:17 AM
Xylenes, Total	1000	35		mg/Kg	500	12/27/2022 10:33:17 AM
Surr: 4-Bromofluorobenzene	93.5	70-130		%Rec	500	12/27/2022 10:33:17 AM
EPA METHOD 300.0: ANIONS						Analyst: NAI
Chloride	ND	60		mg/Kg	20	12/27/2022 10:39:11 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

- Analyte detected in the associated Method Blank в
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range RL Reporting Limit

Page 4 of 10

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2212D42

Date Reported: 12/30/2022

CLIENT	HILCORP ENERGY	Client Sample ID: West SW 6-7'
Project:	SJ 27 5 Unit 111	Collection Date: 12/22/2022 2:00:00 PM
Lab ID:	2212D42-005	Matrix: MEOH (SOIL) Received Date: 12/23/2022 8:00:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS					Analyst: SB
Diesel Range Organics (DRO)	2100	71		mg/Kg	5	12/27/2022 6:28:18 PM
Motor Oil Range Organics (MRO)	ND	240	D	mg/Kg	5	12/27/2022 6:28:18 PM
Surr: DNOP	52.9	21-129		%Rec	5	12/27/2022 6:28:18 PM
EPA METHOD 8015D: GASOLINE RANGE						Analyst: NSB
Gasoline Range Organics (GRO)	10000	1500		mg/Kg	500	12/27/2022 10:56:43 AM
Surr: BFB	143	37.7-212		%Rec	500	12/27/2022 10:56:43 AM
EPA METHOD 8021B: VOLATILES						Analyst: NSB
Benzene	29	0.15		mg/Kg	10	12/23/2022 9:53:33 PM
Toluene	380	15		mg/Kg	500	12/27/2022 10:56:43 AM
Ethylbenzene	51	15		mg/Kg	500	12/27/2022 10:56:43 AM
Xylenes, Total	800	31		mg/Kg	500	12/27/2022 10:56:43 AM
Surr: 4-Bromofluorobenzene	196	70-130	S	%Rec	10	12/23/2022 9:53:33 PM
EPA METHOD 300.0: ANIONS						Analyst: NAI
Chloride	ND	60		mg/Kg	20	12/27/2022 10:51:32 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

- Analyte detected in the associated Method Blank в
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range Reporting Limit

RL

Page 5 of 10

Client:	HILCO	RP ENERG	Y								
Project:	SJ 27 5	Unit 111									
Sample ID:	LCS-72329	SampT	ype: Ics		Tes	tCode: EF	PA Method	300.0: Anions	5		
Client ID:	LCSS Batch ID: 72329				F	RunNo: 9 3	3573				
Prep Date:	12/27/2022	Analysis D)ate: 12	/27/2022	S	SeqNo: 3	376237	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	93.3	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 10

2212D42

30-Dec-22

WO#:

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client:HILCORProject:SJ 27 5 U	P ENERG Jnit 111	Y								
Sample ID: MB-72321	SampT	Гуре: МЕ	BLK	Tes	tCode: EF	A Method	8015M/D: Die	sel Range	Organics	
Client ID: PBS	Batcl	h ID: 723	321	F	RunNo: 93	8548				
Prep Date: 12/27/2022	Analysis I	Analysis Date: 12/27/2022 SeqNo: 3375072 Units: mg/Kg								
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	15								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	9.9		10.00		99.3	21	129			
Sample ID: LCS-72321	Samp	Гуре: LC	S	Tes	tCode: EF	A Method	8015M/D: Die	sel Range	Organics	
Client ID: LCSS	Batcl	h ID: 723	321	F	RunNo: 93	8548				
Prep Date: 12/27/2022	Analysis [Date: 12	/27/2022	S	SeqNo: 33	375073	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	44	15	50.00	0	88.2	64.4	127			
Surr: DNOP	4.8		5.000		95.2	21	129			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

2212D42

30-Dec-22

WO#:

Client:

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

HILCORP ENERGY

Project:	SJ 27 5 U	nit 111	1								
Sample ID:	mb	SampT	уре: МЕ	BLK	Tes	tCode: EF	PA Method	8015D: Gasoli	ne Range	1	
Client ID:	PBS	Batch	n ID: R9	3539	F	RunNo: 9 :	3539				
Prep Date:		Analysis D	ate: 12	2/23/2022	\$	SeqNo: 3	374535	Units: %Rec			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: BFB		860		1000		86.2	37.7	212			
Sample ID:	2.5ug gro lcs	SampT	ype: LC	S	Tes	tCode: EF	PA Method	8015D: Gasoli	ne Range		
Client ID:	LCSS	Batch	n ID: R9	3539	F	RunNo: 9 :	3539				
Prep Date:		Analysis D	ate: 12	2/23/2022	:	SeqNo: 3	374536	Units: %Rec			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: BFB		1800		1000		181	37.7	212			
Sample ID:	mb-72270	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8015D: Gasoli	ne Range	!	
Client ID:	PBS	Batch	n ID: 72	270	F	RunNo: 9 :	3539				
Prep Date:	12/22/2022	Analysis D	ate: 12	2/24/2022	Ş	SeqNo: 3	374558	Units: %Rec			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: BFB		820		1000		81.8	37.7	212			
Sample ID:	LCS-72270	SampT	ype: LC	S	Tes	tCode: EF	PA Method	8015D: Gasoli	ne Range	1	
Client ID:	LCSS	Batch	n ID: 72	270	F	RunNo: 9 :	3539				
Prep Date:	12/22/2022	Analysis D	ate: 12	2/24/2022	:	SeqNo: 3	374559	Units: %Rec			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: BFB		1800		1000		175	37.7	212			
Sample ID:	mb	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8015D: Gasoli	ne Range	!	
Client ID:	PBS	Batch	n ID: A9	3549	F	RunNo: 9 :	3549				
Prep Date:		Analysis D	ate: 12	2/27/2022		SeqNo: 3	375195	Units: mg/Kg	9		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Surr: BFB	e Organics (GRO)	ND 910	5.0	1000		91.1	37.7	212			
Sample ID:	2.5ug gro lcs	SampT	ype: LC	S	Tes	tCode: EF	PA Method	8015D: Gasoli	ne Range		
Client ID:	LCSS	Batch	n ID: A9	3549	F	RunNo: 9 :	3549				
Prep Date:		Analysis D	ate: 12	2/27/2022	\$	SeqNo: 3	375196	Units: mg/Kg	9		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
•	e Organics (GRO)	26	5.0	25.00	0	102	72.3	137			
Surr: BFB		1900		1000		189	37.7	212			

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#:	2212D42

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

	RP ENERG Unit 111	Y										
Sample ID: mb	Samp	Гуре: МЕ	BLK	Tes	TestCode: EPA Method 8021B: Volatiles							
Client ID: PBS	Batc	h ID: R9 :	3539	F	RunNo: 9:	3539						
Prep Date:	Analysis [Date: 12	/23/2022	Ş	SeqNo: 3	374633	Units: mg/K	g				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	ND	0.025										
Ethylbenzene	ND	0.050										
Surr: 4-Bromofluorobenzene	0.88		1.000		87.5	70	130					
Sample ID: 100ng btex lcs	Samp	Гуре: LC	s	Tes	tCode: EF	PA Method	8021B: Volati	les				
Client ID: LCSS	Batc	h ID: R9	3539	F	RunNo: 9 :	3539						
Prep Date:	Analysis [Date: 12	/23/2022	S	SeqNo: 3	374634	Units: mg/K	g				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	0.92	0.025	1.000	0	91.6	80	120					
Ethylbenzene	0.93	0.050	1.000	0	93.1	80	120					
Surr: 4-Bromofluorobenzene	0.87		1.000		87.3	70	130					
Sample ID: mb-72270	Samp	Гуре: МЕ	BLK	Tes	tCode: EF	PA Method	8021B: Volati	les				
Client ID: PBS	Batc	h ID: 722	270	RunNo: 93539								
Prep Date: 12/22/2022	Analysis [Date: 12	/24/2022	S	SeqNo: 3	374658	Units: %Rec	;				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Surr: 4-Bromofluorobenzene	0.82		1.000		82.3	70	130					
Sample ID: Ics-72270	Samp	Гуре: LC	s	Tes	tCode: EF	PA Method	8021B: Volati	les				
Client ID: LCSS	Batc	h ID: 722	270	F	RunNo: 9 :	3539						
Prep Date: 12/22/2022	Analysis [Date: 12	/24/2022	\$	SeqNo: 3	374659	Units: %Rec	;				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Surr: 4-Bromofluorobenzene	0.85		1.000		85.3	70	130					
Sample ID: mb	Samp	Гуре: МЕ	BLK	Tes	tCode: EF	PA Method	8021B: Volati	les				
Client ID: PBS	Batc	h ID: C9 :	3549	F	RunNo: 9 :	3549						
Prep Date:	Analysis [Date: 12	/27/2022	S	SeqNo: 3	375238	Units: mg/K	g				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	ND	0.025										
Toluene	ND	0.050										
Ethylbenzene	ND	0.050										
Xylenes, Total	ND	0.10										
Surr: 4-Bromofluorobenzene	0.87		1.000		87.5	70	130					

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

2212D42

WO#:

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client:	HILCORP ENERGY
Project:	SJ 27 5 Unit 111

Sample ID: 100ng btex lcs	SampType: LCS			TestCode: EPA Method 8021B: Volatiles						
Client ID: LCSS	Batch ID: C93549			RunNo: 93549						
Prep Date:	Analysis Date: 12/27/2022			SeqNo: 3375239			Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.84	0.025	1.000	0	84.2	80	120			
Toluene	0.87	0.050	1.000	0	87.4	80	120			
Ethylbenzene	0.87	0.050	1.000	0	87.3	80	120			
Xylenes, Total	2.6	0.10	3.000	0	88.1	80	120			
Surr: 4-Bromofluorobenzene	0.87		1.000		86.9	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit
- ND PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank В
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Limit RL

WO#: 2212D42

HALL ENVIRONMENTAL ANALYSIS LABORATORY	TEL: 505-345	ental Analysis Lab 4901 Hawı Albuquerque, NM 3975 FAX: 505-34 w.hallenvironmen	kins NE 187109 Sar 15-4107	nple Log-In Check List	22 10
Client Name: HILCORP ENERGY	Work Order Nun	nber: 2212D42		RcptNo: 1	_
Received By: Cheyenne Cason	12/23/2022 8:00:0	0 AM	Chent Chent		
Completed By: Cheyenne Cason	12/23/2022 8:27:4	6 AM	Chul		
Reviewed By:	12/23/22				
Chain of Custody					
1. Is Chain of Custody complete?		Yes 🗹	No 🗌	Not Present	
2. How was the sample delivered?		<u>Courier</u>			
Log In 3. Was an attempt made to cool the samples?		Yes 🗹	No 🗌		
4. Were all samples received at a temperature	of >0° C to 6.0°C	Yes 🗹	No 🗌		
5. Sample(s) in proper container(s)?		Yes 🗹	No 🗔		
6. Sufficient sample volume for indicated test(s)	?	Yes 🗹	Νο		
7. Are samples (except VOA and ONG) properly	preserved?	Yes 🗹	No 🗌		
8. Was preservative added to bottles?		Yes 🗋	No 🗹	NA 🗌	
9. Received at least 1 vial with headspace <1/4	' for AQ VOA?	Yes 🗌	No 🗌	NA 🗹	
10. Were any sample containers received broker	n?	Yes 🗌	No 🗹	# of preserved	/
11. Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes 🗹	No 🗌	bottles checked for pH: (<2.or >12 unless note	d)
12. Are matrices correctly identified on Chain of (Custody?	Yes 🗹	No 🗍	Adjusted?	
13. Is it clear what analyses were requested?		Yes 🗹	No 🗌		
14. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🗹	Νο	Checked by: KP(4_12-2	3.72
Special Handling (if applicable)					
15. Was client notified of all discrepancies with t	his order?	Yes 🗌	No 🗌	NA 🗹	
Person Notified:	Date	»: [
By Whom:	Via:	🗌 eMail 🗌	Phone 🗌 Fax	In Person	
Regarding:					
Client Instructions:					
16. Additional remarks:					
17. <u>Cooler Information</u>				8	
Cooler No Temp °C Condition Se 1 0.6 Good Yes	al Intact Seal No	Seal Date	Signed By		

Released to Imaging: 6/21/2023 8:00:02 AM

Page 37 of 90

-
~
00
5
\sim
÷.
<u> </u>
0
- T.
Ci.
-
00
23
\sim
0
0
-
0
5
~
\frown
\odot
-
0
2
-0-
-
5
00
~
- 5
0
5
\approx

Received by OCL	Received by OCD: 6/21/2023 12:00:23 AM		Page 38 of 90
Chain	Chain-of-Custody Record	Turn-Around Time: 13.27.33	
Client: Hilcorp	orp	□ Standard ⊕ Rush <u>12 - 2 6 - 2 7</u> ∾	ANALYSIS LABORATORY
		Project Name:	
Mailing Address:	ŝ	5J 27-5 4nt 111	4901 Hawkins NE - Albuquerque, NM 87109
		Project #:	Tel. 505-345-3975 Fax 505-345-4107
Phone #:		Life applying	Analysis Request
email or Fax#: ¿ <i>Lo</i> v	don. Sinclair ah	Lor p. roject Manager:	*05
QA/QC Package:)		s,8:
Standard	Level 4 (Full Validation)	Samantha Grabert	, OSI 1201 291 291 291 291 291 201 201 201 201 201 201 201 201 201 20
Accreditation:	□ Az Compliance	Sampler: Brondon Sinclair	2808\ ₂ (1.40 728 rc 728 rc 7
		olers: (-VO HO3 Sibility Sibi
		Cooler Temp(Including CF): 6.6-020.6 (°C)	15Do etho 3 Me 3 Me 4 ho 7 0 A 1 2 0 A 1 2 0 A 1 2 0 A 1 2 0 A 1 2 0 A 1 2 0 A 1 2 0 A 1 2 0 A 1 2 0 A 1 2 0 1 2 1 0 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1
		Container Preservative HEAL No.	TEX) PH:80 DB (M PH:80 CRA 5 250 (V 250 (S 0tal Cc 0tal Cc 0tal Cc 0tal Cc
Uate lime	Matrix Sample Name	36	Т 8 8 8 8 8 8 8 8 8
	AL AL CU		
130	South SW	603	
1345	Facto		
0041	West	500	
Date: Time: 化-22 / いつ	-	Wa:	Remarks:
Date: Time:	Relipquished by:	Received by: Via: Date Time	

Released to Imaging: 6/21/2023 8:00:02 AM

January 20, 2023

Devin Hencmann HILCORP ENERGY PO Box 4700 Farmington, NM 87499 TEL: (505) 564-0733 FAX:

RE: SJ 27 5 Unit 111

OrderNo.: 2301550

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Devin Hencmann:

Hall Environmental Analysis Laboratory received 2 sample(s) on 1/14/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report Lab Order 2301550

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 1/20/2023 Client Sample ID: FS-01 Collection Date: 1/12/2023 11:16:00 AM

Project: SJ 27 5 Unit 111		Collec	tion Date:	1/12/2	023 11:16:00 AM			
Lab ID: 2301550-001	Matrix: SOIL	Matrix: SOIL Received Date: 1/14/						
Analyses	Result	RL Qu	al Units	DF	Date Analyzed			
EPA METHOD 8015M/D: DIESE	EL RANGE ORGANICS				Analyst: DGH			
Diesel Range Organics (DRO)	ND	8.4	mg/Kg	1	1/18/2023 3:06:30 PM			
Motor Oil Range Organics (MRO)	ND	42	mg/Kg	1	1/18/2023 3:06:30 PM			
Surr: DNOP	122	69-147	%Rec	1	1/18/2023 3:06:30 PM			
EPA METHOD 8015D: GASOLI	NE RANGE				Analyst: CCM			
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	1/18/2023 4:13:00 PM			
Surr: BFB	89.4	37.7-212	%Rec	1	1/18/2023 4:13:00 PM			
EPA METHOD 8021B: VOLATI	LES				Analyst: CCM			
Benzene	ND	0.024	mg/Kg	1	1/18/2023 4:13:00 PM			
Toluene	ND	0.048	mg/Kg	1	1/18/2023 4:13:00 PM			
Ethylbenzene	ND	0.048	mg/Kg	1	1/18/2023 4:13:00 PM			
Xylenes, Total	ND	0.095	mg/Kg	1	1/18/2023 4:13:00 PM			
Surr: 4-Bromofluorobenzene	91.0	70-130	%Rec	1	1/18/2023 4:13:00 PM			
EPA METHOD 300.0: ANIONS					Analyst: JMT			
Chloride	ND	60	mg/Kg	20	1/17/2023 6:57:47 PM			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

- н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 6

SJ 27 5 Unit 111 2301550-002

Project:

Lab ID:

Analytical Report Lab Order 2301550

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 1/20/2023 Client Sample ID: FS-02

Collection Date: 1/12/2023 2:15:00 PM Received Date: 1/14/2023 9:20:00 AM

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst: DGH
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	1/18/2023 3:49:37 PM
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	1/18/2023 3:49:37 PM
Surr: DNOP	125	69-147	%Rec	1	1/18/2023 3:49:37 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: CCM
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	1/18/2023 4:33:00 PM
Surr: BFB	97.5	37.7-212	%Rec	1	1/18/2023 4:33:00 PM
EPA METHOD 8021B: VOLATILES					Analyst: CCM
Benzene	ND	0.024	mg/Kg	1	1/18/2023 4:33:00 PM
Toluene	ND	0.049	mg/Kg	1	1/18/2023 4:33:00 PM
Ethylbenzene	ND	0.049	mg/Kg	1	1/18/2023 4:33:00 PM
Xylenes, Total	ND	0.097	mg/Kg	1	1/18/2023 4:33:00 PM
Surr: 4-Bromofluorobenzene	91.7	70-130	%Rec	1	1/18/2023 4:33:00 PM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	ND	60	mg/Kg	20	1/17/2023 7:10:08 PM

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 6

Client: Project:		CORP ENERGY 7 5 Unit 111			
Sample ID:	MB-72659	SampType: mblk	TestCode: EPA Method	300.0: Anions	
Client ID:	PBS	Batch ID: 72659	RunNo: 94007		
Prep Date:	1/17/2023	Analysis Date: 1/17/2023	SeqNo: 3393988	Units: mg/Kg	
Analyte		Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Chloride		ND 1.5			
Sample ID:	LCS-72659	SampType: Ics	TestCode: EPA Method	300.0: Anions	
Client ID:	LCSS	Batch ID: 72659	RunNo: 94007		
Prep Date:	1/17/2023	Analysis Date: 1/17/2023	SeqNo: 3393989	Units: mg/Kg	
Analyte		Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Chloride		14 1.5 15.00	0 94.7 90	110	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

2301550

20-Jan-23

Page 43 of 90

WO#:	2301550
	AO T A

20-Jan-23

Client:	HILCORP	ENERG	Y								
Project:	SJ 27 5 Ur	it 111									
Sample ID: LC:	S-72651	SampT	ype: LC	S	Tes	tCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID: LC:	SS	Batch	n ID: 72	651	F	RunNo: 9 4	1027				
Prep Date: 1/	17/2023	Analysis D	Date: 1/	18/2023	S	SeqNo: 3	394468	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organ	nics (DRO)	44	10	50.00	0	88.9	61.9	130			
Surr: DNOP		5.6		5.000		112	69	147			
Sample ID: MB-72651 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Organics											
Client ID: PB	s	Batch	n ID: 72	651	F	RunNo: 9 4	4027				
Prep Date: 1/	17/2023	Analysis D)ate: 1/	18/2023	S	SeqNo: 3	394470	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organ	. ,	ND	10								
Motor Oil Range Org	ganics (MRO)	ND	50								
Surr: DNOP		11		10.00		108	69	147			
Sample ID: 230	01550-001AMS	SampT	ype: MS	3	Tes	tCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID: FS-	-01	Batch	n ID: 72	651	F	RunNo: 9 4	4027				
Prep Date: 1/	17/2023	Analysis D)ate: 1/	18/2023	S	SeqNo: 3	395191	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organ	nics (DRO)	66	9.6	47.85	0	138	54.2	135			S
Surr: DNOP		7.3		4.785		153	69	147			S
Sample ID: 230	01550-001AMSD	SampT	ype: MS	SD	Tes	tCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID: FS-	-01	Batch	n ID: 72	651	F	RunNo: 9 4	4027				
Prep Date: 1/	17/2023	Analysis D)ate: 1/	18/2023	S	SeqNo: 3	395192	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organ	nics (DRO)	69	10	49.95	0	139	54.2	135	5.05	29.2	S
Surr: DNOP		6.6		4.995		131	69	147	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Limit

	RP ENERG Unit 111	Y								
Sample ID: Ics-72649	SampT	ype: LC	S	Tes	tCode: EF	A Method	8015D: Gasol	ine Range		
Client ID: LCSS	Batch	ID: 726	649	F	RunNo: 9 4	1040				
Prep Date: 1/17/2023	Analysis D	ate: 1/	18/2023	S	SeqNo: 33	394797	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	21	5.0	25.00	0	83.7	72.3	137			
Surr: BFB	2000		1000		200	37.7	212			
Sample ID: mb-72649	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8015D: Gasol	ine Range		
Client ID: PBS	Batch	ID: 726	649	F	RunNo: 9 4	1040				
Prep Date: 1/17/2023	Analysis D	ate: 1/	18/2023	5	SeqNo: 33	394799	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	5.0								
Surr: BFB	960		1000		96.0	37.7	212			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 6

2301550

20-Jan-23

	ILCORP ENERC J 27 5 Unit 111	ĞΥ								
Sample ID: Ics-72649	Samp	Type: LC	s	Tes	tCode: EF	PA Method	8021B: Volat	iles		
Client ID: LCSS	Bato	ch ID: 726	649	F	RunNo: 9 4	1040				
Prep Date: 1/17/202	3 Analysis	Date: 1/	18/2023	:	SeqNo: 3	395112	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.96	0.025	1.000	0	96.0	80	120			
Toluene	0.96	0.050	1.000	0	96.1	80	120			
Ethylbenzene	0.95	0.050	1.000	0	94.9	80	120			
Xylenes, Total	2.8	0.10	3.000	0	94.5	80	120			
Surr: 4-Bromofluorobenze	ne 0.95		1.000		94.5	70	130			
Sample ID: mb-72649	Samp	Туре: МЕ	BLK	Tes	stCode: EF	PA Method	8021B: Volat	iles		
Client ID: PBS	Bato	ch ID: 726	649	F	RunNo: 9 4	4040				
Prep Date: 1/17/202	3 Analysis	Date: 1/	18/2023	\$	SeqNo: 3	395113	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenze	ne 0.93		1.000		93.3	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank в
- Е Above Quantitation Range/Estimated Value
- J
- Р Sample pH Not In Range

Page 6 of 6

2301550

20-Jan-23

- Analyte detected below quantitation limits
- RL Reporting Limit

ENVIRONMENTAL ANALYSIS		11 Hawkins NE nue, NM 87109 505-345-4107	Sample Log	J-In Check List
Client Name: HILCORP ENERGY Wor	k Order Number: 230	1550		RcptNo: 1
	023 9:20:00 AM 023 9:33:42 AM	<	S-lost S-lost	
<u>Chain of Custody</u>1. Is Chain of Custody complete?2. How was the sample delivered?	Yes <u>Cou</u>	_	No 🗹 Not Pres	ent 🗌
Log In 3. Was an attempt made to cool the samples?	Yes		No 🗌 🛛	
4. Were all samples received at a temperature of >0° C	C to 6.0°C Yes		No 🗌 👘	
5. Sample(s) in proper container(s)?	Yes		No 🗌	
6. Sufficient sample volume for indicated test(s)?	Yes		lo 🗌	
7. Are samples (except VOA and ONG) properly preserved	ved? Yes	V N	lo 🗌	
8. Was preservative added to bottles?	Yes	□ N	lo 🗹 🛛 N	A 🗌
9. Received at least 1 vial with headspace <1/4" for AQ	VOA? Yes		10 🗆 N	
10. Were any sample containers received broken?	Yes	_	No 🗹	
11. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes		# of preserv bottles chec lo	ked (<2 or >12 unless noted)
12. Are matrices correctly identified on Chain of Custody	? Yes	✓ N	lo 🗌 🛛 Adjus	red?
13. Is it clear what analyses were requested?	Yes	✓ N	lo 🗆 🛛	1
 Were all holding times able to be met? (If no, notify customer for authorization.) 	Yes	N N		ed by: <u>See 1/14/2</u> 3
Special Handling (if applicable)				
15. Was client notified of all discrepancies with this orde	r? Yes		No 🗌 🛛 I	NA 🗹
Person Notified: By Whom: Regarding: Client Instructions:	Date: Date: Via: Date: D	ail 🗌 Phone	Fax In Person	aging: 6/21/2023 8:00:02 AM
16. Additional remarks:				8:0
17. <u>Cooler Information</u>	Cool No Cool D	to Cir	od Du	1/2023
Cooler No Temp °C Condition Seal Intact 1 1.6 Good Yes	Seal No Seal Da YOGI	ate Signe	ару	6/2
				aging:

Received by OCD: 6/21/2023 12:00:23 AM

Page 46 of 90

and the owner of the owner.
-
7
3
22
· · ·
-
5
0
\sim
-
00
100
\sim
0
~
51
1
1
01
6
0
1
\sim
~
0
_
2
0
Press.
2
0
-5
0
~ ~
0
0
~

Received by OCD: 6/21/2023 12:00:23 AM		Page 47 of 90
Chain-of-Custody Record	Turn-Around Time:	
Client: []: []: []: Client:	X Standard C Rush	ANALYSTS LABORATORY
Ath: Samantha Grabert	Project Name:	www.hallenvironmental.com
Address:	SJ 27-5 Unit 11	4901 Hawkins NE - Albuquerque, NM 87109
		10
Phone #:	0 +1+ 1488061	Anal
email or Fax#: Saman Har, in but Chilory.com	Project Manager: David And Limes	
QA/QC Package:		SV SV
Standard Level 4 (Full Validation)	a heneman o ensolum.com	
		1 DF 1022 1022 1022
D NELAC D Other	⊡r∕es	05 8/26 100 8/26 100 8 20 100 8 4 6 (AC
EDD (Type)	States -	(GF 310 310 310 310 310 310 310 310 310 310
	(including CF): 「・ デ + ひ , [=	031 estic estic 8 y 8 8 Me 8 8 Me 8 7 4 7 7 8 7 9 0 7 9 0 7 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9
ŀ		XET (X) (X) (X) (X) (X) (X) (X) (X) (X) (X)
lime Matrix 38	Type	
1/12/27/11/6 501 FS-01	1, 4 32 6001 001	
1 1415 4 F5-02	7 7 7	
	THE LEVEL	
h3	Reprised by: Via: Date Time	
Date: Time: Relinquished by:	· (/)	(2222) (2222)
amples submitted to Hall Environ	other	anasikiliku.

will be clearly notated on the analytical report. מפוס ממ Ì Released to Imaging: 0/21/2023 8:00:02 AM

June 02, 2023

Stuart Hyde HILCORP ENERGY PO Box 4700 Farmington, NM 87499 TEL: (505) 564-0733 FAX:

RE: San Juan 27 5 111

OrderNo.: 2305B02

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Stuart Hyde:

Hall Environmental Analysis Laboratory received 17 sample(s) on 5/20/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Project: San Juan 27 5 111

Analytical Report Lab Order 2305B02

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/2/2023 Client Sample ID: BH-01(15-17ft) Collection Date: 5/16/2023 9:50:00 AM

Lab ID: 2305B02-001	Matrix: SOIL	Received Date: 5/20/2023 9:30:00 AM				
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: PRD	
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	5/25/2023 3:29:41 PM	
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	5/25/2023 3:29:41 PM	
Surr: DNOP	90.4	69-147	%Rec	1	5/25/2023 3:29:41 PM	
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst: JJP	
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	5/26/2023 11:30:44 AM	
Surr: BFB	67.5	15-244	%Rec	1	5/26/2023 11:30:44 AM	
EPA METHOD 8021B: VOLATILES					Analyst: JJP	
Benzene	ND	0.024	mg/Kg	1	5/26/2023 11:30:44 AM	
Toluene	ND	0.049	mg/Kg	1	5/26/2023 11:30:44 AM	
Ethylbenzene	ND	0.049	mg/Kg	1	5/26/2023 11:30:44 AM	
Xylenes, Total	ND	0.097	mg/Kg	1	5/26/2023 11:30:44 AM	
Surr: 4-Bromofluorobenzene	88.6	39.1-146	%Rec	1	5/26/2023 11:30:44 AM	
EPA METHOD 300.0: ANIONS					Analyst: CAS	
Chloride	ND	60	mg/Kg	20	5/25/2023 7:06:38 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- в Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 24

San Juan 27 5 111

2305B02-002

Project:

Lab ID:

Analytical Report Lab Order 2305B02

Date Reported: 6/2/2023

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH-01(20-22ft) Collection Date: 5/16/2023 9:55:00 AM Received Date: 5/20/2023 9:30:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS					Analyst: PRD
Diesel Range Organics (DRO)	250	9.9		mg/Kg	1	5/25/2023 4:01:55 PM
Motor Oil Range Organics (MRO)	ND	50		mg/Kg	1	5/25/2023 4:01:55 PM
Surr: DNOP	92.4	69-147		%Rec	1	5/25/2023 4:01:55 PM
EPA METHOD 8015D: GASOLINE RANGE						Analyst: JJP
Gasoline Range Organics (GRO)	350	24		mg/Kg	5	5/26/2023 11:54:08 AM
Surr: BFB	1330	15-244	S	%Rec	5	5/26/2023 11:54:08 AM
EPA METHOD 8021B: VOLATILES						Analyst: JJP
Benzene	ND	0.12		mg/Kg	5	5/26/2023 11:54:08 AM
Toluene	2.7	0.24		mg/Kg	5	5/26/2023 11:54:08 AM
Ethylbenzene	1.6	0.24		mg/Kg	5	5/26/2023 11:54:08 AM
Xylenes, Total	24	0.48		mg/Kg	5	5/26/2023 11:54:08 AM
Surr: 4-Bromofluorobenzene	107	39.1-146		%Rec	5	5/26/2023 11:54:08 AM
EPA METHOD 300.0: ANIONS						Analyst: CAS
Chloride	ND	60		mg/Kg	20	5/25/2023 8:08:41 PM

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit S
 - % Recovery outside of standard limits. If undiluted results may be estimated.
- в Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 24

San Juan 27 5 111

Project:

Analytical Report Lab Order 2305B02

Date Reported: 6/2/2023

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH-01(25-27ft) Collection Date: 5/16/2023 10:00:00 AM Received Date: 5/20/2023 9:30:00 AM

Lab ID: 2305B02-003	Matrix: SOIL	Received Date: 5/20/2023 9:30:00 AM					
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS					Analyst: PRD	
Diesel Range Organics (DRO)	430	9.5		mg/Kg	1	5/25/2023 4:14:53 PM	
Motor Oil Range Organics (MRO)	ND	47		mg/Kg	1	5/25/2023 4:14:53 PM	
Surr: DNOP	106	69-147		%Rec	1	5/25/2023 4:14:53 PM	
EPA METHOD 8015D: GASOLINE RANG	θE					Analyst: JJP	
Gasoline Range Organics (GRO)	2300	97		mg/Kg	20	5/26/2023 5:23:29 PM	
Surr: BFB	1540	15-244	S	%Rec	20	5/26/2023 5:23:29 PM	
EPA METHOD 8021B: VOLATILES						Analyst: JJP	
Benzene	1.5	0.48		mg/Kg	20	5/26/2023 5:23:29 PM	
Toluene	42	0.97		mg/Kg	20	5/26/2023 5:23:29 PM	
Ethylbenzene	11	0.97		mg/Kg	20	5/26/2023 5:23:29 PM	
Xylenes, Total	160	1.9		mg/Kg	20	5/26/2023 5:23:29 PM	
Surr: 4-Bromofluorobenzene	111	39.1-146		%Rec	20	5/26/2023 5:23:29 PM	
EPA METHOD 300.0: ANIONS						Analyst: CAS	
Chloride	ND	60		mg/Kg	20	5/25/2023 8:21:05 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit S
 - % Recovery outside of standard limits. If undiluted results may be estimated.
- в Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 3 of 24

San Juan 27 5 111

2305B02-004

Project:

Lab ID:

Analytical Report Lab Order 2305B02

Date Reported: 6/2/2023

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH-01(30-32ft) Collection Date: 5/16/2023 10:05:00 AM Received Date: 5/20/2023 9:30:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORG	GANICS				Analyst: PRD
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	5/25/2023 4:25:34 PM
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	5/25/2023 4:25:34 PM
Surr: DNOP	96.0	69-147	%Rec	1	5/25/2023 4:25:34 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: JJP
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	5/26/2023 5:47:06 PM
Surr: BFB	108	15-244	%Rec	1	5/26/2023 5:47:06 PM
EPA METHOD 8021B: VOLATILES					Analyst: JJP
Benzene	ND	0.025	mg/Kg	1	5/26/2023 5:47:06 PM
Toluene	ND	0.049	mg/Kg	1	5/26/2023 5:47:06 PM
Ethylbenzene	ND	0.049	mg/Kg	1	5/26/2023 5:47:06 PM
Xylenes, Total	ND	0.098	mg/Kg	1	5/26/2023 5:47:06 PM
Surr: 4-Bromofluorobenzene	91.8	39.1-146	%Rec	1	5/26/2023 5:47:06 PM
EPA METHOD 300.0: ANIONS					Analyst: CAS
Chloride	ND	60	mg/Kg	20	5/25/2023 8:33:30 PM

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- в Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 4 of 24

Analytical Report Lab Order 2305B02

Date Reported: 6/2/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: BH-02(15-17ft) **Project:** San Juan 27 5 111 Collection Date: 5/16/2023 11:45:00 AM Lab ID: 2305B02-005 Matrix: SOIL Received Date: 5/20/2023 9:30:00 AM Analyses Result **RL** Qual Units DF **Date Analyzed** EPA METHOD 8015M/D: DIESEL RANGE ORGANICS Analyst: PRD Diesel Range Organics (DRO) ND 5/25/2023 4:36:16 PM 9.4 mg/Kg 1 Motor Oil Range Organics (MRO) ND 47 mg/Kg 1 5/25/2023 4:36:16 PM Surr: DNOP 5/25/2023 4:36:16 PM 94.0 69-147 %Rec 1 **EPA METHOD 8015D: GASOLINE RANGE** Analyst: JJP Gasoline Range Organics (GRO) ND 5/26/2023 1:04:26 PM 4.7 mg/Kg 1 Surr: BFB 89.8 15-244 %Rec 1 5/26/2023 1:04:26 PM **EPA METHOD 8021B: VOLATILES** Analyst: JJP Benzene ND 0.024 5/26/2023 1:04:26 PM mg/Kg 1 Toluene ND 0.047 mg/Kg 1 5/26/2023 1:04:26 PM Ethylbenzene ND 0.047 mg/Kg 1 5/26/2023 1:04:26 PM Xylenes, Total ND 0.095 mg/Kg 1 5/26/2023 1:04:26 PM Surr: 4-Bromofluorobenzene 90.8 39.1-146 %Rec 1 5/26/2023 1:04:26 PM **EPA METHOD 300.0: ANIONS** Analyst: CAS Chloride 5/25/2023 9:10:43 PM 70 60 mg/Kg 20

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
 - % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 24

Released to Imaging: 6/21/2023 8:00:02 AM

S

Project:

San Juan 27 5 111

Analytical Report Lab Order 2305B02

Date Reported: 6/2/2023

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH-02(10-12ft) Collection Date: 5/16/2023 11:50:00 AM Received Date: 5/20/2023 9:30:00 AM

Lab ID: 2305B02-006	Matrix: SOIL	Received Date: 5/20/2023 9:30:00 AM				
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: PRD	
Diesel Range Organics (DRO)	ND	9.4	mg/Kg	1	5/25/2023 4:46:59 PM	
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	5/25/2023 4:46:59 PM	
Surr: DNOP	99.2	69-147	%Rec	1	5/25/2023 4:46:59 PM	
EPA METHOD 8015D: GASOLINE RANGE	E				Analyst: JJP	
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	5/26/2023 1:27:52 PM	
Surr: BFB	99.8	15-244	%Rec	1	5/26/2023 1:27:52 PM	
EPA METHOD 8021B: VOLATILES					Analyst: JJP	
Benzene	ND	0.023	mg/Kg	1	5/26/2023 1:27:52 PM	
Toluene	ND	0.046	mg/Kg	1	5/26/2023 1:27:52 PM	
Ethylbenzene	ND	0.046	mg/Kg	1	5/26/2023 1:27:52 PM	
Xylenes, Total	ND	0.093	mg/Kg	1	5/26/2023 1:27:52 PM	
Surr: 4-Bromofluorobenzene	90.4	39.1-146	%Rec	1	5/26/2023 1:27:52 PM	
EPA METHOD 300.0: ANIONS					Analyst: CAS	
Chloride	ND	61	mg/Kg	20	5/25/2023 9:23:08 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н
- Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit
- ND
- PQL Practical Quanitative Limit S
 - % Recovery outside of standard limits. If undiluted results may be estimated.
- в Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 6 of 24

Project: San Juan 27 5 111

Analytical Report Lab Order 2305B02

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/2/2023 Client Sample ID: BH-03(5-7ft) Collection Date: 5/16/2023 1:00:00 PM

Lab ID: 2305B02-007	Matrix: SOIL	Received Date: 5/20/2023 9:30:00 AM				
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: PRD	
Diesel Range Organics (DRO)	ND	9.5	mg/Kg	1	5/25/2023 4:57:43 PM	
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	5/25/2023 4:57:43 PM	
Surr: DNOP	93.1	69-147	%Rec	1	5/25/2023 4:57:43 PM	
EPA METHOD 8015D: GASOLINE RA	ANGE				Analyst: JJP	
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	5/26/2023 1:51:24 PM	
Surr: BFB	70.0	15-244	%Rec	1	5/26/2023 1:51:24 PM	
EPA METHOD 8021B: VOLATILES					Analyst: JJP	
Benzene	ND	0.024	mg/Kg	1	5/26/2023 1:51:24 PM	
Toluene	ND	0.049	mg/Kg	1	5/26/2023 1:51:24 PM	
Ethylbenzene	ND	0.049	mg/Kg	1	5/26/2023 1:51:24 PM	
Xylenes, Total	ND	0.098	mg/Kg	1	5/26/2023 1:51:24 PM	
Surr: 4-Bromofluorobenzene	88.7	39.1-146	%Rec	1	5/26/2023 1:51:24 PM	
EPA METHOD 300.0: ANIONS					Analyst: CAS	
Chloride	ND	60	mg/Kg	20	5/25/2023 9:35:32 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- в Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 7 of 24

Released to Imaging: 6/21/2023 8:00:02 AM

San Juan 27 5 111

Project:

Analytical Report Lab Order 2305B02

Date Reported: 6/2/2023

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH-04(10-12ft) Collection Date: 5/16/2023 2:00:00 PM Received Date: 5/20/2023 9:30:00 AM

Lab ID: 2305B02-008	Matrix: SOIL	Received Date: 5/20/2023 9:30:00 AM				
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: PRD	
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	5/25/2023 5:08:38 PM	
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	5/25/2023 5:08:38 PM	
Surr: DNOP	73.8	69-147	%Rec	1	5/25/2023 5:08:38 PM	
EPA METHOD 8015D: GASOLINE RANG	E				Analyst: JJP	
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	5/26/2023 2:14:53 PM	
Surr: BFB	82.0	15-244	%Rec	1	5/26/2023 2:14:53 PM	
EPA METHOD 8021B: VOLATILES					Analyst: JJP	
Benzene	ND	0.024	mg/Kg	1	5/26/2023 2:14:53 PM	
Toluene	ND	0.049	mg/Kg	1	5/26/2023 2:14:53 PM	
Ethylbenzene	ND	0.049	mg/Kg	1	5/26/2023 2:14:53 PM	
Xylenes, Total	ND	0.097	mg/Kg	1	5/26/2023 2:14:53 PM	
Surr: 4-Bromofluorobenzene	91.4	39.1-146	%Rec	1	5/26/2023 2:14:53 PM	
EPA METHOD 300.0: ANIONS					Analyst: CAS	
Chloride	230	60	mg/Kg	20	5/25/2023 10:12:46 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit S
 - % Recovery outside of standard limits. If undiluted results may be estimated.
- в Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 8 of 24

San Juan 27 5 111

Project:

Analytical Report Lab Order 2305B02

Date Reported: 6/2/2023

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH-04(20-22ft) Collection Date: 5/16/2023 2:05:00 PM Pageived Date: 5/20/2023 0.30.00 AM

Lab ID: 2305B02-009	Matrix: SOIL	Received Date: 5/20/2023 9:30:00 AM					
Analyses	Result	RL Qu	al Units	DF	Date Analyzed		
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS				Analyst: PRD		
Diesel Range Organics (DRO)	ND	9.2	mg/Kg	1	5/25/2023 5:19:31 PM		
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	5/25/2023 5:19:31 PM		
Surr: DNOP	83.8	69-147	%Rec	1	5/25/2023 5:19:31 PM		
EPA METHOD 8015D: GASOLINE RANG	GE				Analyst: JJP		
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	5/26/2023 4:59:55 PM		
Surr: BFB	82.4	15-244	%Rec	1	5/26/2023 4:59:55 PM		
EPA METHOD 8021B: VOLATILES					Analyst: JJP		
Benzene	ND	0.024	mg/Kg	1	5/26/2023 4:59:55 PM		
Toluene	ND	0.049	mg/Kg	1	5/26/2023 4:59:55 PM		
Ethylbenzene	ND	0.049	mg/Kg	1	5/26/2023 4:59:55 PM		
Xylenes, Total	ND	0.098	mg/Kg	1	5/26/2023 4:59:55 PM		
Surr: 4-Bromofluorobenzene	91.0	39.1-146	%Rec	1	5/26/2023 4:59:55 PM		
EPA METHOD 300.0: ANIONS					Analyst: CAS		
Chloride	ND	59	mg/Kg	20	5/25/2023 10:25:11 PM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S
 - % Recovery outside of standard limits. If undiluted results may be estimated.
- в Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 9 of 24

San Juan 27 5 111

Project:

Analytical Report Lab Order 2305B02

Date Reported: 6/2/2023

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH-05(24-26ft) Collection Date: 5/16/2023 3:00:00 PM Received Date: 5/20/2023 9:30:00 AM

Lab ID: 2305B02-010	Matrix: SOIL Received Date: 5/20/2023 9:30:00				023 9:30:00 AM	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS					Analyst: PRD
Diesel Range Organics (DRO)	880	96		mg/Kg	10	5/27/2023 12:15:01 PM
Motor Oil Range Organics (MRO)	ND	480	D	mg/Kg	10	5/27/2023 12:15:01 PM
Surr: DNOP	0	69-147	S	%Rec	10	5/27/2023 12:15:01 PM
EPA METHOD 8015D: GASOLINE RANG	E					Analyst: KMN
Gasoline Range Organics (GRO)	1400	240		mg/Kg	50	5/26/2023 10:49:00 AM
Surr: BFB	192	15-244		%Rec	50	5/26/2023 10:49:00 AM
EPA METHOD 8021B: VOLATILES						Analyst: KMN
Benzene	ND	0.95		mg/Kg	50	5/26/2023 10:49:00 AM
Toluene	26	2.4		mg/Kg	50	5/26/2023 10:49:00 AM
Ethylbenzene	9.0	2.4		mg/Kg	50	5/26/2023 10:49:00 AM
Xylenes, Total	95	4.7		mg/Kg	50	5/26/2023 10:49:00 AM
Surr: 4-Bromofluorobenzene	116	39.1-146		%Rec	50	5/26/2023 10:49:00 AM
EPA METHOD 300.0: ANIONS						Analyst: CAS
Chloride	ND	60		mg/Kg	20	5/25/2023 10:37:35 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit S
 - % Recovery outside of standard limits. If undiluted results may be estimated.
- в Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 10 of 24

Project: San Juan 27 5 111

Analytical Report Lab Order 2305B02

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/2/2023 Client Sample ID: BH-05(15-17ft) Collection Date: 5/16/2023 3:10:00 PM

Lab ID: 2305B02-011	Matrix: SOIL	Received Date: 5/20/2023 9:30:00 AM				
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RA	ANGE ORGANICS				Analyst: PRD	
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	5/26/2023 1:17:30 PM	
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	5/26/2023 1:17:30 PM	
Surr: DNOP	90.0	69-147	%Rec	1	5/26/2023 1:17:30 PM	
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst: KMN	
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	5/26/2023 11:11:00 AM	
Surr: BFB	91.5	15-244	%Rec	1	5/26/2023 11:11:00 AM	
EPA METHOD 8021B: VOLATILES					Analyst: KMN	
Benzene	ND	0.023	mg/Kg	1	5/26/2023 11:11:00 AM	
Toluene	ND	0.046	mg/Kg	1	5/26/2023 11:11:00 AM	
Ethylbenzene	ND	0.046	mg/Kg	1	5/26/2023 11:11:00 AM	
Xylenes, Total	ND	0.092	mg/Kg	1	5/26/2023 11:11:00 AM	
Surr: 4-Bromofluorobenzene	87.4	39.1-146	%Rec	1	5/26/2023 11:11:00 AM	
EPA METHOD 300.0: ANIONS					Analyst: JTT	
Chloride	ND	60	mg/Kg	20	5/26/2023 5:28:01 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- в Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range RL Reporting Limit
- Page 11 of 24

Project: San Juan 27 5 111

Analytical Report Lab Order 2305B02

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/2/2023 Client Sample ID: BH-05(20-22ft) Collection Date: 5/16/2023 3:05:00 PM . JD-4-- 5/20/2022 0.20.00 AM -

Lab ID: 2305B02-012	Matrix: SOIL	Reco	eived Date:	5/20/2	023 9:30:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL F	RANGE ORGANICS				Analyst: PRD
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	5/26/2023 1:28:13 PM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	5/26/2023 1:28:13 PM
Surr: DNOP	100	69-147	%Rec	1	5/26/2023 1:28:13 PM
EPA METHOD 8015D: GASOLINE	RANGE				Analyst: KMN
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	5/26/2023 12:16:00 PM
Surr: BFB	86.1	15-244	%Rec	1	5/26/2023 12:16:00 PM
EPA METHOD 8021B: VOLATILES	3				Analyst: KMN
Benzene	ND	0.024	mg/Kg	1	5/26/2023 12:16:00 PM
Toluene	ND	0.047	mg/Kg	1	5/26/2023 12:16:00 PM
Ethylbenzene	ND	0.047	mg/Kg	1	5/26/2023 12:16:00 PM
Xylenes, Total	ND	0.094	mg/Kg	1	5/26/2023 12:16:00 PM
Surr: 4-Bromofluorobenzene	85.3	39.1-146	%Rec	1	5/26/2023 12:16:00 PM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	ND	60	mg/Kg	20	5/26/2023 5:40:25 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- в Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 12 of 24

Released to Imaging: 6/21/2023 8:00:02 AM

Analytical Report Lab Order 2305B02

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/2/2023
Client Sample ID: BH-06(8-10ft)

				I					
Project:	San Juan 27 5 111		Collect	ion Date:	5/17/2	023 9:50:00 AM			
Lab ID:	2305B02-013	Matrix: SOIL	Matrix: SOILReceived Date: 5/20/2023 9:						
Analyses		Result	RL Qual	Units	DF	Date Analyzed			
EPA ME	THOD 8015M/D: DIESEL R	ANGE ORGANICS				Analyst: PRD			
Diesel R	Range Organics (DRO)	ND	9.2	mg/Kg	1	5/26/2023 1:38:56 PM			
Motor O	il Range Organics (MRO)	ND	46	mg/Kg	1	5/26/2023 1:38:56 PM			
Surr:	DNOP	90.9	69-147	%Rec	1	5/26/2023 1:38:56 PM			
EPA ME	THOD 8015D: GASOLINE F	RANGE				Analyst: KMN			
Gasoline	e Range Organics (GRO)	ND	5.0	mg/Kg	1	5/26/2023 1:21:00 PM			
Surr:	BFB	89.6	15-244	%Rec	1	5/26/2023 1:21:00 PM			
EPA ME	THOD 8021B: VOLATILES					Analyst: KMN			
Benzene	e	ND	0.025	mg/Kg	1	5/26/2023 1:21:00 PM			
Toluene	•	ND	0.050	mg/Kg	1	5/26/2023 1:21:00 PM			
Ethylber	nzene	ND	0.050	mg/Kg	1	5/26/2023 1:21:00 PM			
Xylenes	, Total	ND	0.099	mg/Kg	1	5/26/2023 1:21:00 PM			
Surr:	4-Bromofluorobenzene	85.2	39.1-146	%Rec	1	5/26/2023 1:21:00 PM			
EPA ME	THOD 300.0: ANIONS					Analyst: JTT			
Chloride	9	ND	60	mg/Kg	20	5/26/2023 5:52:50 PM			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 24

.

Released to Imaging: 6/21/2023 8:00:02 AM

Project: San Juan 27 5 111

Analytical Report Lab Order 2305B02

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/2/2023 Client Sample ID: BH-06(13-15ft) Collection Date: 5/17/2023 9:55:00 AM

Lab ID: 2305B02-014	Matrix: SOIL	Rece	eived Date:	5/20/2	023 9:30:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANG	GE ORGANICS				Analyst: PRD
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	5/26/2023 2:00:16 PM
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	5/26/2023 2:00:16 PM
Surr: DNOP	94.5	69-147	%Rec	1	5/26/2023 2:00:16 PM
EPA METHOD 8015D: GASOLINE RAM	IGE				Analyst: KMN
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	5/26/2023 1:42:00 PM
Surr: BFB	92.9	15-244	%Rec	1	5/26/2023 1:42:00 PM
EPA METHOD 8021B: VOLATILES					Analyst: KMN
Benzene	ND	0.024	mg/Kg	1	5/26/2023 1:42:00 PM
Toluene	ND	0.048	mg/Kg	1	5/26/2023 1:42:00 PM
Ethylbenzene	ND	0.048	mg/Kg	1	5/26/2023 1:42:00 PM
Xylenes, Total	ND	0.096	mg/Kg	1	5/26/2023 1:42:00 PM
Surr: 4-Bromofluorobenzene	87.5	39.1-146	%Rec	1	5/26/2023 1:42:00 PM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	81	60	mg/Kg	20	5/26/2023 6:05:14 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- в Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range RL
 - Reporting Limit

Page 14 of 24

San Juan 27 5 111

Project:

Analytical Report Lab Order 2305B02

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/2/2023 Client Sample ID: BH-06(18-20ft) Collection Date: 5/17/2023 10:00:00 AM п. oived Dete: 5/20/2023 0.30.00 AM

Lab ID: 2305B02-015	Matrix: SOIL	Re	eceiv	ed Date:	5/20/2	023 9:30:00 AM
Analyses	Result	RL Q)ual	Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAN	GE ORGANICS					Analyst: PRD
Diesel Range Organics (DRO)	1400	97		mg/Kg	10	5/27/2023 12:39:05 PM
Motor Oil Range Organics (MRO)	ND	480	D	mg/Kg	10	5/27/2023 12:39:05 PM
Surr: DNOP	0	69-147	S	%Rec	10	5/27/2023 12:39:05 PM
EPA METHOD 8015D: GASOLINE RAM	IGE					Analyst: KMN
Gasoline Range Organics (GRO)	2900	240		mg/Kg	50	5/26/2023 2:04:00 PM
Surr: BFB	335	15-244	S	%Rec	50	5/26/2023 2:04:00 PM
EPA METHOD 8021B: VOLATILES						Analyst: KMN
Benzene	1.3	1.2		mg/Kg	50	5/26/2023 2:04:00 PM
Toluene	48	2.4		mg/Kg	50	5/26/2023 2:04:00 PM
Ethylbenzene	19	2.4		mg/Kg	50	5/26/2023 2:04:00 PM
Xylenes, Total	180	4.8		mg/Kg	50	5/26/2023 2:04:00 PM
Surr: 4-Bromofluorobenzene	139	39.1-146		%Rec	50	5/26/2023 2:04:00 PM
EPA METHOD 300.0: ANIONS						Analyst: JTT
Chloride	ND	60		mg/Kg	20	5/26/2023 6:17:39 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- в Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits Р
- Sample pH Not In Range RL Reporting Limit

Page 15 of 24

Project: San Juan 27 5 111

Analytical Report Lab Order 2305B02

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/2/2023 Client Sample ID: BH-06(22-24ft) Collection Date: 5/17/2023 10:05:00 AM

Lab ID: 2305B02-016	Matrix: SOIL	Rece	eived Date:	5/20/2	023 9:30:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: PRD
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	5/26/2023 2:21:51 PM
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	5/26/2023 2:21:51 PM
Surr: DNOP	84.4	69-147	%Rec	1	5/26/2023 2:21:51 PM
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: KMN
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	5/26/2023 2:26:00 PM
Surr: BFB	106	15-244	%Rec	1	5/26/2023 2:26:00 PM
EPA METHOD 8021B: VOLATILES					Analyst: KMN
Benzene	ND	0.024	mg/Kg	1	5/26/2023 2:26:00 PM
Toluene	ND	0.048	mg/Kg	1	5/26/2023 2:26:00 PM
Ethylbenzene	ND	0.048	mg/Kg	1	5/26/2023 2:26:00 PM
Xylenes, Total	0.11	0.096	mg/Kg	1	5/26/2023 2:26:00 PM
Surr: 4-Bromofluorobenzene	89.4	39.1-146	%Rec	1	5/26/2023 2:26:00 PM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	ND	60	mg/Kg	20	5/26/2023 6:54:51 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- в Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 16 of 24

Released to Imaging: 6/21/2023 8:00:02 AM

Project: San Juan 27 5 111

Analytical Report Lab Order 2305B02

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/2/2023 Client Sample ID: BH-07(0-2ft) Collection Date: 5/17/2023 11:00:00 AM

Lab ID: 2305B02-017	Matrix: SOIL	Reco	eived Date:	5/20/2	.023 9:30:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RA	ANGE ORGANICS				Analyst: PRD
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	5/26/2023 2:32:38 PM
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	5/26/2023 2:32:38 PM
Surr: DNOP	92.3	69-147	%Rec	1	5/26/2023 2:32:38 PM
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst: KMN
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	5/26/2023 2:47:00 PM
Surr: BFB	93.4	15-244	%Rec	1	5/26/2023 2:47:00 PM
EPA METHOD 8021B: VOLATILES					Analyst: KMN
Benzene	ND	0.024	mg/Kg	1	5/26/2023 2:47:00 PM
Toluene	ND	0.048	mg/Kg	1	5/26/2023 2:47:00 PM
Ethylbenzene	ND	0.048	mg/Kg	1	5/26/2023 2:47:00 PM
Xylenes, Total	ND	0.097	mg/Kg	1	5/26/2023 2:47:00 PM
Surr: 4-Bromofluorobenzene	88.5	39.1-146	%Rec	1	5/26/2023 2:47:00 PM
EPA METHOD 300.0: ANIONS					Analyst: JTT
Chloride	ND	60	mg/Kg	20	5/26/2023 7:07:15 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit S
 - % Recovery outside of standard limits. If undiluted results may be estimated.
- в Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range RL
 - Reporting Limit

Page 17 of 24

Client: Project:	-	CORP ENERGY uan 27 5 111								
-										
Sample ID:	MB-75198	SampType: mb	lk	Tes	tCode: EF	PA Method	300.0: Anions	;		
Client ID:	PBS	Batch ID: 751	98	F	RunNo: 97	7041				
Prep Date:	5/25/2023	Analysis Date: 5/2	25/2023	S	SeqNo: 35	521710	Units: mg/K	g		
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND 1.5								
Sample ID:	LCS-75198	SampType: Ics		Tes	tCode: EF	PA Method	300.0: Anions	;		
Client ID:	LCSS	Batch ID: 751	98	F	RunNo: 97	7041				
Prep Date:	5/25/2023	Analysis Date: 5/2	25/2023	S	SeqNo: 35	521711	Units: mg/K	g		
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14 1.5	15.00	0	94.6	90	110			
Sample ID:	MB-75219	SampType: MB	LK	Tes	tCode: EF	A Method	300.0: Anions	;		
Client ID:	PBS	Batch ID: 752	219	F	RunNo: 97	7066				
Prep Date:	5/26/2023	Analysis Date: 5/2	26/2023	S	SeqNo: 35	522890	Units: mg/K	g		
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND 1.5								
Sample ID:	LCS-75219	SampType: LC	S	Tes	tCode: EF	PA Method	300.0: Anions	;		
Client ID:	LCSS	Batch ID: 752	219	F	RunNo: 97	7066				
Prep Date:	5/26/2023	Analysis Date: 5/2	26/2023	S	SeqNo: 35	522891	Units: mg/K	g		
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14 1.5	15.00	0	91.5	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 18 of 24

.

2305B02

02-Jun-23

Client: Project:	HILCORF San Juan 2		Y								
Sample ID:	2305B02-001AMS	SampT	уре: МS	6	Tes	tCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID:	BH-01(15-17ft)	Batch	n ID: 75	177	F	RunNo: 97	7035				
Prep Date:	5/25/2023	Analysis D	ate: 5/	25/2023	S	SeqNo: 35	521089	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range (Surr: DNOP	Organics (DRO)	43 4.4	9.4	47.08 4.708	0	91.4 92.5	54.2 69	135 147			
Sample ID:	2305B02-001AMSD	SampT	уре: МS	SD.	Tes	tCode: EF	A Method	8015M/D: Die	sel Range	Organics	
Client ID:	BH-01(15-17ft)	Batch	n ID: 75 ′	177	F	RunNo: 97	7035				
Prep Date:	5/25/2023	Analysis D	ate: 5/2	25/2023	S	SeqNo: 35	521090	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
0	Organics (DRO)	40	8.9	44.56	0	90.4	54.2	135	6.59	29.2	
Surr: DNOP		4.3		4.456		95.6	69	147	0	0	
Sample ID:	LCS-75177	SampT	ype: LC	S	Tes	tCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID:	LCSS	Batch	n ID: 75 ′	177	F	RunNo: 97	7035				
Prep Date:	5/25/2023	Analysis D	ate: 5/2	25/2023	S	SeqNo: 35	521100	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range (Organics (DRO)	46	10	50.00	0	92.0	61.9	130			
	• • •		10		Ŭ						
Surr: DNOP	• • •	40	10	5.000	<u> </u>	87.2	69	147			
Surr: DNOP Sample ID:		4.4	уре: МЕ	5.000		87.2	69		sel Range	Organics	
		4.4 SampT		5.000	Tes	87.2	69 PA Method	147	sel Range	Organics	
Sample ID:	MB-75177	4.4 SampT	ype: ME	5.000 BLK 177	Tes	87.2 tCode: EF	69 PA Method 7035	147	•	Organics	
Sample ID: Client ID: Prep Date: Analyte	MB-75177 PBS 5/25/2023	4.4 SampT Batch	ype: ME	5.000 BLK 177 25/2023	Tes	87.2 tCode: EF RunNo: 97	69 PA Method 7035	147 8015M/D: Die	•	Organics RPDLimit	Qual
Sample ID: Client ID: Prep Date: Analyte Diesel Range (MB-75177 PBS 5/25/2023 Organics (DRO)	4.4 SampT Batch Analysis D Result ND	ype: ME 1D: 75 Pate: 5 / PQL 10	5.000 BLK 177 25/2023	Tes F	87.2 tCode: EF RunNo: 97 SeqNo: 35	69 PA Method 7035 521102	147 8015M/D: Die Units: mg/K	g	-	Qual
Sample ID: Client ID: Prep Date: Analyte Diesel Range (Motor Oil Rang	MB-75177 PBS 5/25/2023 Organics (DRO) ge Organics (MRO)	4.4 SampT Batch Analysis D Result ND ND	ype: ME 1D: 75 Pate: 5 / PQL	5.000 BLK 177 25/2023 SPK value	Tes F	87.2 tCode: EF RunNo: 97 SeqNo: 35 %REC	69 PA Method 7035 521102 LowLimit	147 8015M/D: Die Units: mg/K HighLimit	g	-	Qual
Sample ID: Client ID: Prep Date: Analyte Diesel Range (Motor Oil Rang Surr: DNOP	MB-75177 PBS 5/25/2023 Organics (DRO) ge Organics (MRO)	4.4 SampT Batch Analysis D Result ND ND 9.4	ype: ME ID: 75 ⁴ PQL 10 50	5.000 BLK 177 25/2023 SPK value 10.00	Tes F SPK Ref Val	87.2 tCode: EF RunNo: 97 SeqNo: 35 %REC 94.1	69 PA Method 7035 521102 LowLimit 69	147 8015M/D: Die Units: mg/K HighLimit 147	g %RPD	RPDLimit	Qual
Sample ID: Client ID: Prep Date: Analyte Diesel Range (Motor Oil Rang Surr: DNOP Sample ID:	MB-75177 PBS 5/25/2023 Organics (DRO) ge Organics (MRO) LCS-75186	4.4 SampT Batch Analysis D Result ND 9.4 SampT	ype: ME ID: 75 PQL 10 50	5.000 BLK 177 25/2023 SPK value 10.00 S	Tes F SPK Ref Val	87.2 tCode: EF RunNo: 97 SeqNo: 35 %REC 94.1 tCode: EF	69 PA Method 7035 521102 LowLimit 69 PA Method	147 8015M/D: Die Units: mg/K HighLimit	g %RPD	RPDLimit	Qual
Sample ID: Client ID: Prep Date: Analyte Diesel Range (Motor Oil Rang Surr: DNOP Sample ID: Client ID:	MB-75177 PBS 5/25/2023 Organics (DRO) ge Organics (MRO) LCS-75186 LCSS	4.4 SampT Batch Analysis D Result ND ND 9.4 SampT Batch	ype: ME 1D: 75 ⁻¹ PQL 10 50 ype: LC 1D: 75 ⁻¹	5.000 3LK 177 25/2023 SPK value 10.00 S 186	Tes F SPK Ref Val	87.2 tCode: EF RunNo: 97 SeqNo: 35 %REC 94.1 tCode: EF RunNo: 97	69 PA Method 7035 521102 LowLimit 69 PA Method 7073	147 8015M/D: Die Units: mg/K HighLimit 147 8015M/D: Die	g %RPD sel Range	RPDLimit	Qual
Sample ID: Client ID: Prep Date: Analyte Diesel Range (Motor Oil Rang Surr: DNOP Sample ID:	MB-75177 PBS 5/25/2023 Organics (DRO) ge Organics (MRO) LCS-75186	4.4 SampT Batch Analysis D Result ND 9.4 SampT	ype: ME 1D: 75 ⁻¹ PQL 10 50 ype: LC 1D: 75 ⁻¹	5.000 3LK 177 25/2023 SPK value 10.00 S 186	Tes F SPK Ref Val	87.2 tCode: EF RunNo: 97 SeqNo: 35 %REC 94.1 tCode: EF	69 PA Method 7035 521102 LowLimit 69 PA Method 7073	147 8015M/D: Die Units: mg/K HighLimit 147	g %RPD sel Range	RPDLimit	Qual
Sample ID: Client ID: Prep Date: Analyte Diesel Range (Motor Oil Rang Surr: DNOP Sample ID: Client ID: Prep Date: Analyte	MB-75177 PBS 5/25/2023 Organics (DRO) ge Organics (MRO) LCS-75186 LCSS	4.4 SampT Batch Analysis D Result ND ND 9.4 SampT Batch	ype: ME 1D: 75 ⁻¹ PQL 10 50 ype: LC 1D: 75 ⁻¹	5.000 3LK 177 25/2023 SPK value 10.00 S 186	Tes F SPK Ref Val	87.2 tCode: EF RunNo: 97 SeqNo: 35 %REC 94.1 tCode: EF RunNo: 97	69 PA Method 7035 521102 LowLimit 69 PA Method 7073	147 8015M/D: Die Units: mg/K HighLimit 147 8015M/D: Die	g %RPD sel Range	RPDLimit	Qual

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 19 of 24

2305B02

02-Jun-23

Client:	HILCORF	PENERG	Y								
Project:	San Juan	27 5 111									
Sample ID: LC	S-75197	SampT	ype: LC	s	Tes	tCode: EF	PA Method	8015M/D: Dies	el Range	Organics	
Client ID: LC	SS	Batch	n ID: 75 '	197	F	RunNo: 9 7	7073				
Prep Date: 5/	25/2023	Analysis D	ate: 5/	26/2023	S	SeqNo: 3	523201	Units: %Rec			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP		4.5		5.000		89.5	69	147			
Sample ID: MB	-75186	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8015M/D: Dies	el Range	Organics	
Client ID: PB	S	Batch	n ID: 75	186	F	RunNo: 9 7	7073				
Prep Date: 5/	25/2023	Analysis D	ate: 5/	26/2023	S	SeqNo: 3	523202	Units: mg/Kg	J		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organ	nics (DRO)	ND	10								
Motor Oil Range Or	ganics (MRO)	ND	50								
Surr: DNOP		9.0		10.00		89.5	69	147			
Sample ID: MB	-75197	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8015M/D: Dies	el Range	Organics	
Client ID: PB	s	Batch	n ID: 75	197	F	RunNo: 9 7	7073				
Prep Date: 5/	25/2023	Analysis D	ate: 5/	26/2023	5	SeqNo: 3	523205	Units: %Rec			
A		Desult		SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Analyte		Result	PQL	SPK value	SFK KEI VAI	%REC	LOWLITTIL	TignLinit	/0KFD	REDLIIIII	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 20 of 24

2305B02

02-Jun-23

	RP ENERGY 1 27 5 111								
	2,5111								
Sample ID: Ics-75150	SampType: LC	S	Tes	tCode: EF	PA Method	8015D: Gaso	line Range		
Client ID: LCSS	Batch ID: 75	150	F	RunNo: 97	7018				
Prep Date: 5/24/2023	Analysis Date: 5	25/2023	S	SeqNo: 3	521588	Units: mg/K	g		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	21 5.0	25.00	0	85.6	70	130			_
Surr: BFB	4700	1000		472	15	244			S
Sample ID: mb-75150	SampType: M	BLK	Tes	tCode: EF	PA Method	8015D: Gaso	line Range		
Client ID: PBS	Batch ID: 75	150	F	RunNo: 9 7	7018				
Prep Date: 5/24/2023	Analysis Date: 5/	25/2023	S	SeqNo: 3	521589	Units: mg/K	g		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND 5.0								
Surr: BFB	640	1000		64.4	15	244			
Sample ID: Ics-75154	SampType: LC	s	Tes	tCode: EF	PA Method	8015D: Gaso	line Range		
Client ID: LCSS	Batch ID: 75	154	F	RunNo: 9 7	7050				
Prep Date: 5/24/2023	Analysis Date: 5,	26/2023	S	SeqNo: 3	522418	Units: mg/K	g		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	22 5.0	25.00	0	89.9	70	130			
Surr: BFB	2000	1000		196	15	244			
Sample ID: mb-75154	SampType: MI	BLK	Tes	tCode: EF	PA Method	8015D: Gaso	line Range		
Client ID: PBS	Batch ID: 75	154	F	RunNo: 9 7	7050				
Prep Date: 5/24/2023	Analysis Date: 5/	26/2023	S	SeqNo: 3	522419	Units: mg/K	g		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND 5.0								
Surr: BFB	880	1000		88.1	15	244			
Sample ID: 2305B02-012ams	SampType: M	5	Tes	tCode: EF	PA Method	8015D: Gaso	line Range		
Client ID: BH-05(20-22ft)	Batch ID: 75	154	F	RunNo: 9 7	7050				
Prep Date: 5/24/2023	Analysis Date: 5/	26/2023	S	SeqNo: 3	522451	Units: mg/K	g		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	20 4.7	23.54	0	85.0	70	130			
Surr: BFB	1900	941.6		202	15	244			
Sample ID: 2305B02-012ams	d SampType: M	SD	Tes	tCode: EF	PA Method	8015D: Gaso	line Range		
Client ID: BH-05(20-22ft)	Batch ID: 75	154	F	RunNo: 9 7	7050				
Prep Date: 5/24/2023	Analysis Date: 5,	26/2023	5	SeqNo: 3	522452	Units: mg/K	g		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 21 of 24

2305B02

02-Jun-23

Result

21

1900

PQL

4.7

SPK value

23.39

935.5

$-\mathbf{p}$	age	70	of	6 0 N
	use.	10	U	10
	<u> </u>			

2305B02

Qual

WO#:

RPDLimit

20

0

Hall E	nvironmenta	l Analysis Laboratory	y, Inc.	02-Jun-23
Client: Project:	HILCORI San Juan	P ENERGY 27 5 111		
Sample ID:	2305B02-012amsd	SampType: MSD	TestCode: EPA Method 8015D: Gasoline Range	
Client ID:	BH-05(20-22ft)	Batch ID: 75154	RunNo: 97050	
Prep Date:	5/24/2023	Analysis Date: 5/26/2023	SeqNo: 3522452 Units: mg/Kg	

%REC

88.1

201

LowLimit

70

15

HighLimit

130

244

%RPD

2.86

0

SPK Ref Val

0

Analyte

Surr: BFB

Gasoline Range Organics (GRO)

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 22 of 24

Released to Imaging: 6/21/2023 8:00:02 AM

Client:

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

HILCORP ENERGY

Project:	San Jua	an 27 5 111									
Sample ID:	LCS-75150	SampT	ype: LC	s	TestCode: EPA Method 8021B: Volatiles						
Client ID:	LCSS	Batch ID: 75150			RunNo: 97018						
Prep Date:	5/24/2023	Analysis D	ate: 5/2	25/2023	SeqNo: 3521629		Units: mg/Kg				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.81	0.025	1.000	0	80.6	70	130			
Toluene		0.83	0.050	1.000	0	83.4	70	130			
Ethylbenzene		0.85	0.050	1.000	0	84.7	70	130			
Xylenes, Total		2.5	0.10	3.000	0	84.6	70	130			
Surr: 4-Bromo	ofluorobenzene	0.93		1.000		92.6	39.1	146			
Sample ID:	mb-75150	SampType: MBLK			Tes	stCode: EF	PA Method	8021B: Volati	iles		
Client ID:	PBS	Batch	ID: 751	150	F	RunNo: 9 7	7018				
Prep Date:	5/24/2023	Analysis D	ate: 5/2	25/2023	5	SeqNo: 3	521630	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	0.025								
Toluene		ND	0.050								
Ethylbenzene		ND	0.050								
Xylenes, Total		ND	0.10								
Surr: 4-Bromo	ofluorobenzene	0.88		1.000		88.0	39.1	146			
Sample ID: 1	lcs-75154	SampT	ype: LC	s	Tes	stCode: EF	PA Method	8021B: Volati	iles		
Client ID:	LCSS	Batch	ID: 751	154	RunNo: 97050						
Prep Date:	5/24/2023	Analysis D	ate: 5/2	26/2023	S	SeqNo: 3	522430	Units: mg/Kg			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.84	0.025	1.000	0	84.5	70	130			
Toluene		0.85	0.050	1.000	0	84.7	70	130			
Ethylbenzene		0.83	0.050	1.000	0	83.4	70	130			
Xylenes, Total		2.5	0.10	3.000	0	82.5	70	130			
Surr: 4-Bromo	ofluorobenzene	0.89		1.000		88.7	39.1	146			
Sample ID:	mb-75154 SampType: MBLK			TestCode: EPA Method 8021B: Volatiles							
Client ID:	PBS Batch ID: 75154		RunNo: 97050								
Prep Date:	5/24/2023	Analysis D	ate: 5/2	26/2023	SeqNo: 3522431 Units: mg/Kg						
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	0.025								
Toluene		ND	0.050								
Ethylbenzene		ND	0.050								
Xylenes, Total		ND	0.10								
Curr / Drome	ofluorobenzene	0.87		1.000		86.7	39.1	146			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

NDNot Detected at the Reporting LimitPQLPractical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 23 of 24

WO#: 2305B02

02-Jun-23

WO#:	2305B02
	00 T 00

Client:	HILCORP ENERGY
Project:	San Juan 27 5 111

Sample ID: 2305B02-011ams	SampType: MS			TestCode: EPA Method 8021B: Volatiles						
Client ID: BH-05(15-17ft)	Batc	h ID: 75 1	154	F	RunNo: 97	7050				
Prep Date: 5/24/2023	Analysis Date: 5/26/2023		SeqNo: 3522453			Units: mg/Kg				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.78	0.023	0.9234	0	84.0	70	130			
Toluene	0.78	0.046	0.9234	0	85.0	70	130			
Ethylbenzene	0.78	0.046	0.9234	0	84.3	70	130			
Xylenes, Total	2.3	0.092	2.770	0	83.3	70	130			
Surr: 4-Bromofluorobenzene	0.82		0.9234		89.3	39.1	146			
Surr: 4-Bromofluorobenzene Sample ID: 2305B02-011amsd		Гуре: МS		Tes			146 8021B: Volati	les		
	Samp	Гуре: MS h ID: 75 1	D			PA Method		les		
Sample ID: 2305B02-011amsd	Samp	h ID: 75 1	54	F	tCode: EF	PA Method				
Sample ID: 2305B02-011amsd Client ID: BH-05(15-17ft)	Samp ⁻ Batc	h ID: 75 1	54	F	tCode: EF RunNo: 97	PA Method	8021B: Volati		RPDLimit	Qual
Sample ID: 2305B02-011amsd Client ID: BH-05(15-17ft) Prep Date: 5/24/2023	Samp Batc Analysis [h ID: 75 1 Date: 5/ 2	5D 154 26/2023	F	tCode: EF RunNo: 97 SeqNo: 35	PA Method 8 7050 522454	8021B: Volati Units: mg/K	g	RPDLimit 20	Qual
Sample ID: 2305B02-011amsd Client ID: BH-05(15-17ft) Prep Date: 5/24/2023 Analyte Benzene	Samp ⁻ Batc Analysis [Result	h ID: 75 1 Date: 5/2 PQL	5D 154 26/2023 SPK value	F S SPK Ref Val	tCode: EF RunNo: 97 SeqNo: 35 %REC	PA Method 3 7050 522454 LowLimit	8021B: Volati Units: mg/K HighLimit	g %RPD		Qual
Sample ID: 2305B02-011amsd Client ID: BH-05(15-17ft) Prep Date: 5/24/2023 Analyte Benzene Toluene	Samp Batc Analysis I Result 0.77	h ID: 75 1 Date: 5/2 PQL 0.023	5D 154 26/2023 SPK value 0.9166	F S SPK Ref Val 0	tCode: EF RunNo: 97 SeqNo: 38 %REC 83.9	PA Method 7050 522454 LowLimit 70	8021B: Volati Units: mg/K HighLimit 130	g %RPD 0.838	20	Qual
Sample ID: 2305B02-011amsd Client ID: BH-05(15-17ft) Prep Date: 5/24/2023 Analyte	Samp Batc Analysis I Result 0.77 0.78	h ID: 75 1 Date: 5/2 <u>PQL</u> 0.023 0.046	5D 154 26/2023 SPK value 0.9166 0.9166	F S SPK Ref Val 0 0	tCode: EF RunNo: 97 SeqNo: 35 %REC 83.9 85.1	PA Method 3 7050 522454 LowLimit 70 70	8021B: Volati Units: mg/K HighLimit 130 130	g %RPD 0.838 0.645	20 20	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J
- Р

Page 24 of 24

Analyte detected below quantitation limits

- Sample pH Not In Range
- RL Reporting Limit

ANALY	ONMENTA SIS ATORY	AL.	TE	ll Environmen A L: 505-345-39 Website: www	4901 I Albuquerque 975 FAX: 50	Hawkins NE 2. NM 87109 05-345-4107	Sa	mple Log-In Check List
Client Name:	Hilcorp Ene	rgy	Work	Order Numb	er: 2305B	02		RcptNo: 1
Received By:	Tracy Cas	arrubias	5/20/20	23 9:30:00 A	M			s
Completed By:	Tracy Cas	arrubias	5/20/20	23 1:22:58 F	M			
Reviewed By:	wo	5/22/23						
Chain of Cust	<u>ody</u>							
1. Is Chain of Cus	stody compl	ete?			Yes [No 🗹	Not Present
2. How was the s	ample deliv	ered?			<u>Courie</u>	<u>r</u>		
<u>Log In</u> 3. Was an attemp	ot made to c	ool the sampl	es?		Yes	2	No 🗌	NA 🗌
4. Were all sample	es received	at a temperat	ure of >0° C	to 6.0°C	Yes		No 🗌	
5. Sample(s) in pr	roper contai	ner(s)?			Yes		No 🗌	
6. Sufficient samp	ole volume fo	or indicated te	st(s)?		Yes 🔽		No 🗌	
7. Are samples (e	xcept VOA a	and ONG) pro	perly preserve	ed?	Yes 🔽	1	lo 🗌	
8. Was preservativ	ve added to	bottles?			Yes 🗌	1 [No 🔽	NA 🗌
9. Received at lea	ist 1 vial with	n headspace 🗸	<1/4" for AQ V	OA?	Yes	-	₩ □	NA 🗹
10. Were any sam	ple containe	rs received bi	oken?		Yes 🗆		No 🗹	# of preserved bottles checked
11. Does paperwork (Note discrepan					Yes 🔽	1	No 🗌	for pH: (<2 or >12 unless noted)
12. Are matrices co	prrectly ident	ified on Chair	of Custody?		Yes 🔽	1	lo 🗌	Adjusted?
13. Is it clear what a			?		Yes 🔽		10	Checked by: 505/22/23
14. Were all holding (If no, notify cus	•				Yes 🔽	1	ło 🗆	Checked by: SUST22/23
Special Handlir	ng (if app	licable)						
15. Was client noti	ified of all di	screpancies w	vith this order?)	Yes [No 🗌	NA 🗹
Person N	Notified:			Date:	Γ		and the second of the second o	
By Whon				Via:	🗌 eMail	Phone	Fax	In Person
Regardin Client Ins		Email is misir	T- 202 no p	MC 5/20/23				
16. Additional rem				VIC 5/20/25				
17. Cooler Inform	nation							
Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	e Signo	ed By	
1	2.3	Good	Yes	Yogi				
Page 1 of 1								

Page 73 of 90

-	
1	
1	
00	
 Ni 	
0	
0	
0	
-	
-	
\sim	
- 274	
0	
0	
Press.	
0	
1	
~	
6	
6	
Ä	
i.	
Ä	
i.	
i.	
CD:	
CD:	
i.	
0CD:	
0CD:	
v 0CD: (
v 0CD: (
by OCD:	
I by OCD: (
d by OCD: (
d by OCD:	
ed by OCD:	
ved by OCD: (
ved by OCD:	
ved by OCD: (
ved by OCD:	
eceived by OCD: (
eceived by OCD: (
ved by OCD:	

Page 74 of 90	NTAL	TORY															10 m										al report.
			www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request	žQS	PO ^{‡, 5} 0SIMS PCB's) HO ⁵ ; 8557 8082	40/ 3° 90 0 90 2 90 3	sticid 831 Mets Mets (AC	3081 Pes 2081 Pes 3260 (VC 3260 (VC 3260 (VC	3					and the second se						4	rks:		if necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
				4				-				108:H91	1								_	_		*	Remarks:		is possibilit
		ィップ コ Rush		Van 27-7			lanager: Stuart Hyde	Shyde ersdum .com	W. Weichert	X Yes D No Uco:	# of Coolers: I Cooler Templineucine cri: 3. 4 - 0.1 - 3 3 (°C)	Preservative HE	None	1001	003	50M	out	COL	004	005	001	010	Cri 1		VI VIAI DAJA TIME TIME	y: Via: counier Date Time 9:30	other accredited laboratories. This serves as notice of thi
V	nrn-Aro	X Standard	Project Name:	UND UNC	Project #:	Ξ	Project Manager		Sampler:	On Ice:	# of Cooler Temp	Container Tyne and #	102 Seal	-									_	P	Received by:	Received by:	ontracted to
_	Chain-of-Custody Record	/ Ensolver		E. Zad AVe	, CO 81301	F091-2010-		Level 4 (Full Validation)	mpliance			Samole Name Name	(++1-1-	84(-01 (20-224)	(H 2-52) 10-HS	BH-01 (30-32-91)	BH-02 (15-174)	(tf Z1-01) ZO-198	BH-03(5-7A)	BH(-04 (10-12A)	BH-04 (20-22-F4)	BH-05 (24-26A)	(++ EI - 51) 50-H8	BH-05 (20-224)	242	hed by:	bmitted to Hall Environmental may-be suboc
- 6/21/202	of-Cu	COVP	Saman the	OLL:	Drando				□ Az Co	□ Other		Matrix		-							_	_		-Þ	Relinquished by:	Relinguished by:	samples sul
(by OCD.	hain	Hilc	15 am	Mailing Address:	R		r Fax#:	QA/QC Package:	itation:		(1 ype)	Timo G	9:50	9:55	0:01	10:05	Shill	(1:50	13.00	14:00	14:05	15:00	1510	15:05	Date: Time: کراه/لی/ (براک	Date: Time:	If necessary
Kecewea	0	Client: 1/:/	4+4n :	Mailing		Phone #:	email or Fax#:	QA/QC	Accreditation:				5-16-23							-	1	_	-	⊅	Date: らくでいた	Date: 5/(9/2)	possel a

Page 74 of 90

AM	
12:00:23	
21/2023	
0CD: 6/	
ved by	
lecei	

	ANALYSTS LABORATORY		(4901 Hawki		Anal	₽0 ⁴	Ю ^{⊈;} 8 ЗIW2 СВ, ² (805		<u>, ТМ</u> , ТМ , 100 , 110 , 110	-\\\O 10° 110° 110° 110° 110° 110° 110° 110°	15D etho 9 Mé 8 Mé 8 Mé 7 Mé 7 Mé	2000 (V 2000 (ne Remarks:	9:30	Freesers, samples submitted to Hall Environmental may be addcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Turn-Around Time:	デー∂ぬ ★ Standard/ □ Rush		5an Juan 27-5 #11	Project #:		Project Manager:	Hyde	reve certian " con	Sampler: On Ice: V Yes D No	blers: 1	Cooler Temp(Including CF): 2.4-0.1:2.9 (Container Preservative HEAL No.		1100		010	A A CONF UIT		WW	5-17		Repéliéed by: Viat Date Time	Received by: Via: Courier Date Time 9:3	acted to other accredited laboratories. This serves as notice
-Custody Record	Client: Hilcorp / Ensolum	atha Carbert	Address: 776 E	DURANOV, (0 81301 Pr	903-16	email or Fax#: Pr	/QC Package:		Compliance				<u>Uate lime Matrix Sample Name</u> S-は-29 5 BH-06 (8-104) H	(13-154)	10:00 BH-06 18-20tt	(++++-22)99-1+8 So:01	(+52-0) ±0-H8 4 00:11 4	>				Date: Time: Relinquished by:	Date: Time: Reinquished by:	f necessary, samples submitted to Hall Environmental may be subcont

Page 75 of 90

APPENDIX C

Boring Logs

Date Sa Drilled 1 Driller:	ogged By: W. Weicherf					HICOUPS Jame: SJ 27-5 # 111 Janager: St Jart Hyde Surface Elevation: asing Elevation: bordinate: ordinate:	BORING BH-6 Project No.: Borchole Dia Casing Diam Well Materia Surface Com Boring Metho	meter: 8 eter: 2' ls: 5(4 4 pletion: 5)	" opvc	
DEPTH (FEET)	SAMPLE INTERVAL	RECOVERY (%)	FID/PID READING (PPM)	POTENTIO- METRIC SURFACE	GEOLOGIC LOG SYMBOL	GEOLOGIC DESCRIPTIC)N	BORING COMPI		
0 1 2 3 4 5			1110		SW	SAND WI GRAV ON Suiface				
6 7 8 9 10		50%	PPm		SP	SAND - Brown, fine to fine Well Subangular, trace a little, Slightly M No Visual Impacts Odor.	Vev-1 Sortad, grave 1, noist, , No			
11 12 13 14 15		90%	23.2 PPM		SP	SAND-As above, brown, thin Clay FeOz Stain, No O	lighter Seam, dar			Seal = 14 ft
16 17 18 19 20	Sample	80°%	43.7 ppm		SP	SAND- As Above, M brown. Fine grained, M Sorted, Clay Stringe trace silt, Slight, Odor.	Well	The second	1111.	, Filler pack = 16.54 TOS = 18.54
21 22 23 24 25	Sample	90%	4224 PPM	4	52	SAND W/ SILT + CL light brown to fine, fine to fine, litle S Clay, moderate to well Firm + Compact, 3 blows, moderate Retro	Usny ilt & 1 Sorted, Bot Spt			

they

-

Date Sam Drilled B Driller: Logged B	ıpled: 57 y:		L U	М	Project Lo Project M: Ground Si	me: SD Z7-5 4f II (cation: mager: Stuart Hyde mface Elevation: sing Elevation: rdinate:	BORING L B+1 = (Project No.: Borehole Diame Casing Diamet Well Materials Surface Compl Boring Method	letion:		
DEPTH (FEET)	SAMPLE INTERVAL	RECOVERY (%)	FID/PID READING (PPM)	POTENTIO- METRIC SURFACE	GEOLOGIC LOG SYMBOL	GEOLOGIC DESCRIPTIC	N	BORING/WELL COMPLETION		
25 26 27 28 29 30	Sample	70°ŀ				SAND WI SILT + (As Abave, *Sha SILTSTONE - Darker brown, little Ovange Staining, betrock?. Dry, Ma to Strong Odor	Sand, Dossible Jerate		BOS = 28.	f+
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50			126.1 PPM			SILTSTONE - AS A TD @ 30 Fl. No Water Enror		Refusal		

Date San Drilled B Driller: Logged E	npled: 5 By: Enu Jua	NSC	DLU Z3 Drill MSON	Μ	Project Na Project Lo Project M Ground S		BH- C Project No.: Borehole Dian Casing Diame	heter: $\mathcal{B}^{(1)}$ ter: $\mathcal{L}^{(1)}$ s: $\mathcal{S} \subset \mathcal{H} \neq \mathcal{O} \mathcal{M} \subset \mathcal{M}$ letion: $\mathcal{S} \setminus \mathcal{S}$	-
DEPTH (FEET)	SAMPLE INTERVAL	RECOVERY (%)	FID/PID READING (PPM)	POTENTIO- METRIC SURFACE	TOGIXXBOT CEOLOGIC	GEOLOGIC DESCRIPTIC	DN	BORING/WELL COMPLETION	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	Sample	60% 80%	5.6 ppm 13.6 4.2		SP L	SAND-Brown, very fine to fine, little silt And Clay well sorted. More clay Vell sorted. More clay 7 ft. No Odor. SILTY SAND - Bra lighter towards bottom some clay. Well sor- Firm to hard in Plac No Odor. * have dvilling @ 13 SAND Y CLAY - Br Firm to hard, No Od SAND STONE - Tan hard, but unconsected to No Odor. * Refusa 1 @ 16ft No Water Fucous	silty,	11111111111111111111111111111111111111	Seal = $5ft$ Filter = $7ft$ TOS = $9ft$ BOS = $14ft$

4

Ł

Drilled By Driller:	pled: 5 V: Envi	S O -16 - 2 Veictur Veictur	i 11	Μ	Project Na Project Lo Project M Ground S	ime: 5.) 27-5 # 111 Broject anager: 54/a-4 +1/de Project urface Elevation: Sing Elevation: rdinate: dinate: Surface Sufface Suffa	BORING LOG NUMBER BH-03 Project No.: Borchole Diameter: 2'' Casing Diameter: 2'' Well Materials: 5CHU0PVC Surface Completion: 5VE Boring Method: 45A		
DEPTH (FEET)	SAMPLE INTERVAL	RECOVERY (%)	FID/PID READING (PPM)	POTENTIO- METRIC SURFACE	GEOLOGIC GEOLOGIC	GEOLOGIC DESCRIPTION		BORING/WELL COMPLETION	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	Sample	70%	4.0			SILTY SAND-Brown, N five to five, Some silt, Wellswilled, Slighty moist, no odor * Sharp contact SANDSTONE - tan, Fin Medium, Wellsorted, ha but friable, (50t spill Moist, No odor, no Visual Impacts. *Refusal @ 8 ft. * No Water,	e to	No Well Install Refusal	

Drilled By Driller:	pled: 5 : En Juan	-16-23 110-0) L U	Μ	Project Lo Project M Ground S	nne:5.1 27-5 #111 ocation: NM anager: Stuart Hude urface Elevation: sing Elevation: ordinate:	BORING LOG NUMBER BH - 04 Project No.: Borehole Diameter: 8" Casing Diameter: 2" Well Materials: 5(H4)0 PVC Surface Completion: 5 VE Boring Method: HLSA		
DEPTH (FEET)	SAMPLE INTERVAL	RECOVERY (%)	FID/PID READING (PPM)	POTENTIO- METRIC SURFACE	GEOLOGIC GEOLOGIC	GEOLOGIC DESCRIPTIO		BORING/WELL COMPLETION	
	- - - - -					SANDY SILT		Borehole left Open Rending Lab Results	
56789		80%	4.9 ppM		ML	SANDY SILT. B. Very fine, Wellson trace Caliche, Unice + loose, no visual no odor. Dry.	ted.		
10		90%	8.0 PPr		ML	SANDY SILT-As becoming Firm-ha Consolidated. Dry	above, rd t		
16 17 18 19 20	X	90%	3.0 PPM		SM	SILTY SAND-Bri Very fine to fine, U Sorted, Firm but friable, Semi-conso homogenous, no Vis Imparts, no odor.	well lidented,		
21 22 23 24 25	X	90%	1.7 pp		4	*Drilling ROP Slow SILTY SAND-As abo increase in Clay f. SANDSTONE Bedro Bottom of SPT. Refusal @ 22 f. No Water Encou	w raction raction rack@		

Drilled B Driller:	E ENSOLUM ate Sampled: 5-16-23 rilled By: Environ Drill riller: Jan ogged By: W. Weichart, ELA TAN ELA ONG () () () () () () () () () ()				Project Na Project Lo Project M Ground S		BORING L BH - Project No.: Borehole Dian Casing Diame Well Materiak Surface Comp Boring Metho	05 neter: 2 ter: 2 s: 5 (1) letion: 5	 -
DEPTH (FEET)	SAMPLE INTERVAL	RECOVERY (%)	FID/PID READING (PPM)	POTENTIO- METRIC SURFACE	CEOLOGIC GEOLOGIC	GEOLOGIC DESCRIPTIO	ON	BORIN COMP	
0 1 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 -		70%	PPM 11.1 PPM 7.2 PPM			SANDY SILT W/ Brown, Very Fine Sorted + homog Hrace gravel, Drgonics/vootle- Unconsolideted + NO ador, Dry SILTY SAND - B Very Fine, Wellson Homogenous, little Caliche, Unconsolid Friable, Dry, No SANDY SILT - Li Drown, Unry fine, homogenous, Uncon friable, Dry, No hard in places, SANDY SILT - As above, slig Petro odor. X hard drilling	-, well penaus, trank frinkle frinkle rown, trd, white dated, odor ight solidetd, odor.		Seal = $12ft$ Filler Pack = $14ft$ TOS = $16ft$

Released to Imaging: 6/21/2023 8:00:02 AM

r	1.25		en e	+	Client: Hil	corp	BORINGL	OG NUMBER	1
e	EN	SO	LU	Μ	Project Na Project Lo	me: 5J 27-5 井 // 1	B+1-0		
		ige annuel obter to be the state and			Project M	anager: Stuart Hyde	Project No.:	- H	
Date Sam Drilled B	ipled: 5. y:	- 16 -	23			urface Elevation: sing Elevation:	Borehole Dian Casing Diame		
Driller:					North Coo		Well Materials		
Logged B		and a constant of the			West Coor	amate:	Surface Comp Boring Metho		
DEPTH (FEET)	PLE RVAL	VERY 6)	PID DING M)	OTENTIO- METRIC SURFACE	OGIC		a.v.	BORING/WELL	
DEI (FE	SAMPLE INTERVAL	RECOVERY (%)	FID/PID READING (PPM)	POTENTIO METRIC SURFACE	GEOLOGIC LOG SYMBOL	GEOLOGIC DESCRIPTI	ON .	COMPLETION	
25						CHEV CAND - L'	1.1 (018:20)		
26	$ $ \ge		1541 PPM		SM	Jan. Herry fine 1.	1011 Surfed.		B05=26-ft
27						SILTY SAND-lic tan. Very fine, h Unconsolidated & Dry, Moderate J	Fiable,		
28						Dry, moderate I	letvo odav		
²⁹ 30						*havd dvilling t Refusal @ Ze No Water Enco	Rig		
31						Refusal 10 70	sft		
32	-					Nh Julie Fre	a should		
33	-					Dr. Marter male	www.		
34									
35	-								
36									
37									
38	•								
³⁹ - 40 ·	-								
40									
42									
43		N.							
44									20
45	-								
46	-								
47									
48									
49								-	
50									

Date Sampled: 5-17-23 Drilled By: Englico-drill Driller: Juan Logged By: W. Wrichurf				м	Client: $f(i \mid COrPS)$ Project Name: SJ 27-5 # 111 Project Location: NM Project Manager: StJast flyde Ground Surface Elevation: Top of Casing Elevation: North Coordinate: West Coordinate:		BORING LOG NUMBER BH - OG Project No.: Borehole Diameter: 2" Casing Diameter: 2" Well Materials: 5(H 40 PV C Surface Completion: 5VE Boring Method: HSA		
DEPTH (FEET)	SAMPLE INTERVAL	RECOVERY (%)	FID/PID READING (PPM)	POTENTIO- METRIC SURFACE	GEOLOGIC	GEOLOGIC DESCRIPTION		BORING/WELL COMPLETION	
0		60%	24.8 PPM		SM	SILTY SAND-F w/ tan, Fine, are Wellsorted, homog Unconsolidated & loo dry, No Viscul II + NO Odor	jilla(eaus, jenaus, se,		
6 - 7 - 8 - 9 - 10 - 11	Samp le	100%	57.0 PPM		sМ	SILTY SAND-, Aboue, No ode			
11 - 12 - 13 - 14 - 15 - 16 - 16	Sum P k	100°%	122.3 PPM		SM	SILTY SAND-1 brown to tan, T W/ Some clay & S Well Sorted & Norm	Fine silt,		
17 18 19 20 21	semple	60°b	3604 PPM		SM	Unconsolidated, E No odor. SILTY SAND-A above, Hydrocard Staining + Strong Odor.	5		
22 23 24 25	Sample	100	1418			SILTSTONE-GIVA Strong Defro oder Refusal @ 24 f No Wark/ Enco	+	Refusal	

1

•

Date Sampled: 5-17-23 Drilled By: Enviro-drill Driller: Juan Logged By: WWe iche ort				Μ	Client: $f((0,1)^{2}$ Project Name: $5J$ 27-5 #11(Project Location: NM Project Manager: $510arf$ $f(de)$ Ground Surface Elevation: Top of Casing Elevation: North Coordinate: West Coordinate:		BORING LOG NUMBER BH - DF Project No.: Borchole Diameter: 8'' Casing Diameter: 2'' Well Materials: 5CH40 PVC Surface Completion: 5UE Boring Method: HSA	
DEPTH (FEET)	SAMPLE INTERVAL	RECOVERY (%)	FID/PID READING (PPAI)	POTENTIO- METRIC SURFACE	LOG SYMBOL GEOLOGIC	GEOLOGIC DESCRIPTIO	N	BORING/WELL COMPLETION
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25		q5%			SM	SILTY Sand-light & Fine, well Souled, loose SAND STONE - Smy F-MI Firm, No O Refusal @ 2 No Water	, no obor brown, dor.	No Well Install

APPENDIX D

Agency Sampling Notifications

From:	Stuart Hyde					
То:	Velez, Nelson, EMNRD					
Cc:	Samantha Grabert; Devin Hencmann; Reece Hanson					
Subject:	napp2300554747 - Hilcorp Energy Company San Juan 27-5 Unit #111 Sampling Notification					
Date:	Sunday, May 7, 2023 9:20:00 PM					
Attachments:	napp2300554747 01 06 2023 08 25 39.pdf image001.png image002.png image003.png image004.png					

On behalf of Hilcorp Energy Company, Ensolum is submitting this delineation sampling notification for the San Juan 27-5 Unit #111 site located in Rio Arriba County at coordinates 36.60034, -107.33217. Drilling will commence at 9 AM on Friday May 12, 2023. Please reach out with any questions. Thanks.

Stuart Hyde, LG Senior Geologist 970-903-1607 Ensolum, LLC in f

APPENDIX E

Photographic Log

	Photographic Log Hilcorp Energy Company San Juan 27-5 Unit 111 Rio Arriba County, New Mexico
Photograph: 1 Date: 12/21/2022 Description: Staining around condensate tank View: East	Photograph: 2 Date: 12/21/2022 Description: Soil staining in release area View: North
Photograph: 3 Date: 1/12/2023 Description: Pothole FS-01 View: East	Photograph: 4 Date: 5/17/2023 Description: SVE wells in borings BH01 and BH06 View: South

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator: 0	OGRID:	
HILCORP ENERGY COMPANY	372171	
1111 Travis Street	Action Number:	
Houston, TX 77002	230590	
7	Action Type:	
	[C-141] Release Corrective Action (C-141)	

CONDITIONS

Created By	Condition	Condition Date
nvelez	 Complete horizontal delineation west of the point of release. Complete Soil Vapor Extraction (SVE) pilot test as written in report within 90-days (09/19/2023) of this approval with conditions. Acquire surface access approval from New Mexico State Land Office prior to any off pad remedial activities. Prepare and submit SVE pilot test report within 60-days (11/20/2023) after field activities have been completed. 	6/21/2023

Page 90 of 90

Action 230590