REVIEWED

By Mike Buchanan at 2:29 pm, Aug 03, 2023

		Review of Q1 through Q4 2022 Progress
Marc	h 29, 2023	Report: Content Satisfactory
		1. Perform an additional well cleaning
		treatment as prescribed within report on
Nelso	on Velez	MPE wells with NAPL
New	Mexico Oil Conservation Division	2. Proceed to install oil absorbent socks
1000	Rio Brazos Road	within MPE wells to assist in mitigation of
Δ7ter	, New Mexico 87410	residual NAPL.
ALICE	, New Mexico 07410	3. Continue recovery of residual NAPL via
		hydrophobic socks where NAPL thickness is
Re:	Q1 through Q4 2022 Progress Report	sufficient for removal
	Benson-Montin-Greer	4. Semi-annual gauging events for MW-2,
	Highway 537 Llaves Pipeline 2008 Release	MW-7, MW-9R
	Rio Arriba County, New Mexico	5. Conduct sampling for MW-9R (VOCs per
	•	8260, TPH, and 8015, and manganese,
	AP-136 (Formerly 3RP-447)	dissolved iron. Sample MW-7 for TDS.
	Incident #NRMD0929936774	6. Submit progress report for 2023 by April
		1, 2024.

Dear Mr. Velez:

On behalf of Benson-Montin-Greer Drilling Corporation (BMG), Animas Environmental Services, LLC (AES) has prepared this 2022 Progress Report, which details Q1 through Q4 gauging and sampling activities at the BMG Llaves Pipeline 2008 Release location. Site activities were conducted in accordance with a Stage 1 and 2 Abatement Plan dated June 6, 2019, and Plan approval is currently pending.

1.0 Site Information

1.1 Site Location

The 2008 release originated on the Schmitz Ranch, on the south side of Highway 537 and flowed south and southwest through a small unnamed arroyo for a distance of approximately 920 linear feet (ft). This arroyo eventually drains to the Los Ojitos Arroyo, which ultimately drains to Largo Canyon. The release location is legally described as being located within the NW¼ NE¼ Section 18, T25N, R3W in Rio Arriba County, New Mexico. Latitude and longitude were recorded as being N36.40357 and W107.18422, respectively. A topographic site location map, based on an excerpt from the U.S. Geological Survey (USGS) 7.5-minute Schmitz Ranch, Rio Arriba County, New Mexico topographic quadrangle, is included as Figure 1, and a general site plan is presented as Figure 2.

1.2 Release History

December 31, 2007 - A Western Refining truck driver discovered the Llaves pipeline leak and immediately contacted BMG. BMG personnel confirmed the release and shut down the Llaves pipeline pumps and block valve located about one mile upstream. BMG contracted with TNT Excavating to remove the oil that had pooled along the surface of the small arroyo. Approximately 40 barrels (bbls) of oil were recovered and placed in storage tanks at the BMG Hwy 537 Transfer Station. A total of 3,932 cubic yards of contaminated soils were excavated and transported to the TNT Landfarm facility for disposal.

January 9, 2008 - Llaves pipeline was repaired. BMG notified the National Response Center on January 23, 2008, and the release was given identification number 860429.

1.3 Abatement Plan 2019

In accordance with New Mexico Administrative Code (NMAC) 19.15.30.11, a Stage 1 and 2 Abatement Plan was requested from NMOCD in correspondence dated March 18, 2019, and subsequently submitted in June 2019.

The purpose of a Stage 1 Abatement Plan is to design and conduct a site investigation that adequately defines site conditions, and to provide the data necessary to select and design an effective abatement option. The plan proposed that previous site data and associated reports adequately defined site conditions, thereby meeting the requirements of a Stage 1 Abatement Plan.

The proposed activities of the Stage 2 Abatement Plan included replacement monitor well MW-9R installation and sampling (completed September 2019), installation of a solar-powered low vacuum non-aqueous phase liquid (NAPL) recovery system (completed October 2019), ongoing groundwater monitoring and sampling, and compliance soil sampling.

2.0 Quarterly Progress Summaries, Q1 through Q4 2022

2.1 Q1 - March 2022 Groundwater Gauging

Groundwater gauging of site wells and hand bailing of NAPL for well MW-9R was conducted by AES on March 8, 2022. All groundwater measurement and purge volumes were recorded onto a Water Sample Collection Form. Due to the presence of NAPL in MW-9R and low water recharge rate, water quality readings and samples were not collected. The Water Sample Collection Form is included in Appendix A.

Groundwater Elevations and Water Quality Measurements

On March 8, 2022, depth to groundwater at the site ranged from 33.81 ft below ground surface (bgs) at MPE-7 to 41.63 ft bgs at MW-7. NAPL was observed in six wells: MW-9R (0.01 ft), MPE-1 (sheen), MPE-2 (0.01 ft), MPE-3 (0.03 ft), MPE-5 (0.03 ft), and MPE-6 (0.01 ft). NAPL was not observed in wells MW-2, MW-7, MPE-4, and MPE-7.

Groundwater flow is historically to the southwest. Groundwater elevations are presented in Table 1, and groundwater elevation and contours are presented in Figure 3. NAPL contours are presented on Figure 4.

Groundwater Laboratory Analyses

On March 8, 2022, after bailing NAPL to a sheen, groundwater recharge in MW-9R was not sufficient to collect a sample.

2.2 Q2 - June 2022 Groundwater Gauging

Groundwater gauging of site wells and hand bailing of NAPL was conducted by AES on June 9, 2022. All groundwater measurement and purge volumes were recorded onto a Water Sample Collection Form. Due to the presence of NAPL in MW-9R and low water recharge rate, water quality readings and samples were not collected. The Water Sample Collection Form is included in Appendix A.

Groundwater Elevations and Water Quality Measurements

On June 9, 2022, depth to groundwater at the site ranged from 33.92 ft bgs at MPE-7 to 37.39 ft bgs at MPE-1. NAPL was observed in six wells: MW-9R (0.99 ft), MPE-1 (0.01 ft), MPE-3 (0.67 ft), MPE-5 (1.3 ft), and MPE-6 (0.13 ft). NAPL was not observed in wells MW-2, MW-7, MPE-2, MPE-4, and MPE-7.

Groundwater elevations are presented in Table 1, and groundwater elevation and contours are presented in Figure 6. NAPL contours are presented on Figure 7.

2.3 Q3 – September 2022 Groundwater Gauging and Sampling

Groundwater gauging of site wells, hand bailing of non-aqueous phase liquid (NAPL, and sampling of monitor well MW-9R was conducted by AES on September 28, 2022. All groundwater measurement and purge volumes were recorded onto a Water Sample Collection Form. The Water Sample Collection Form is included in Appendix A.

On September 28, 2022, hydrophobic socks were changed in MPE-1, MPE-2, MPE-3, and MPE-5. Additionally, a dilute solution of Simple Green detergent and hot water was injected into and then bailed out of MPE-1, MPE-5, and MW-9R to improve transmissivity of NAPL from the formation and sand pack into the wells.

Groundwater Elevations and Water Quality Measurements

On September 28, 2022, depth to groundwater at the site ranged from 33.88 ft bgs at MPE-7 to 33.78 ft bgs at MPE-1. NAPL was observed in six wells: MW-9R (0.04 ft), MPE-1 (0.01 ft), MPE-2 (0.01 ft), MPE-3 (0.31 ft), MPE-5 (1.3 ft), and MPE-6 (0.08 ft). MW-2 and MW-7 were found to be dry, and an obstruction was noted within MPE-4 (35.27 ft bgs). NAPL was not observed in wells MPE-4 and MPE-7.

Groundwater elevations are presented in Table 1, and groundwater elevation and contours are presented in Figure 8.

Groundwater Laboratory Analyses

After bailing NAPL to a sheen, a groundwater sample was collected from MW-9R and submitted to Hall Environmental Analysis Laboratory (Hall) in Albuquerque, New Mexico, for analysis of the following parameters listed in NMAC 20.6.2.3103(A, B, and C):

- Volatile Organic Compounds (VOCs) per USEPA Method 8260;
- Total Phenolics per SW-846 9067; and
- Dissolved Iron and Manganese per USEPA Method 200.7.

All samples were preserved in laboratory-supplied containers and stored in an insulated cooler containing ice. Samples were shipped by Hall courier in chilled and insulated coolers at less than 6°C to the analytical laboratory.

Groundwater Laboratory Analytical Results

Dissolved benzene, toluene, ethylbenzene, and total xylenes were not detected in MW-9R. However, total phenolics in MW-9R exceeded the WQCC standard of 0.005 micrograms per liter (μ g/L) with a concentration of 0.016 μ g/L. Dissolved iron and manganese concentrations were below their respective WQCC standards. Groundwater analytical results are tabulated in Tables 2 and 3 and are also presented on Figure 5. The laboratory analytical report is included in Appendix B.

2.4 Q4 – December 2022 Groundwater Gauging and Sampling

Groundwater gauging of site wells, hand bailing of NAPL, and sampling of monitor well MW-9R was conducted by AES on December 21, 2022. All groundwater measurement and purge volumes were recorded onto a Water Sample Collection Form. The Water Sample Collection Form is included in Appendix A.

Groundwater Elevations and Water Quality Measurements

On December 21, 2022, depth to groundwater at the site ranged from 33.64 ft bgs at MPE-7 to 41.50 ft bgs at MW-7. NAPL was observed in five wells: MW-9R (0.01 ft), MPE-1 (0.04 ft), MPE-3 (0.05 ft), MPE-5 (1.08 ft), and MPE-6 (0.02 ft). MW-2 was found to be dry, and an obstruction was noted within MPE-4. NAPL was not observed in wells MW-7, MPE-2, MPE-4, and MPE-7.

Groundwater elevations are presented in Table 1, and groundwater elevation and contours are presented in Figure 9. NAPL contours are presented on Figure 10.

Groundwater Laboratory Analyses

After bailing NAPL to a sheen, a groundwater sample was collected from MW-9R and submitted to Hall Environmental Analysis Laboratory (Hall) in Albuquerque, New Mexico, for analysis of the following parameters:

- VOCs per USEPA Method 8260; and,
- Total petroleum hydrocarbons (TPH) gasoline range organics (GRO) per USEPA Method 8015.

All samples were preserved in laboratory-supplied containers and stored in an insulated cooler containing ice. Samples were shipped by Hall courier in chilled and insulated coolers at less than 6°C to the analytical laboratory.

Groundwater Laboratory Analytical Results

Dissolved benzene, toluene, ethylbenzene, and total xylenes were not detected. TPH-GRO was detected at a concentration of 0.24 milligrams per liter (mg/L). Groundwater analytical results are tabulated in Tables 2 and 3 and are also presented on Figure 5. The laboratory analytical report is included in Appendix B.

2.5 NAPL Recovery

On March 8, June 9, September 28, and December 21, 2022, AES hand bailed NAPL from six monitor wells (MW-9R, MPE-1, MPE-2, MPE-3, MPE-5, and MPE-6). Hand bailing was performed by lowering a bailer into each well and retrieving it via a length of string. Bailed NAPL was decanted into the onsite storage barrel. NAPL volumes were approximated and recorded on the attached Depth to Groundwater Measurement forms.

Well ID	Initial Depth to NAPL (ft)	Initial Depth to Water (ft)	Initial NAPL thickness (ft)	Final Depth to NAPL (ft)	Final Depth to Water (ft)	Final NAPL Thickness (ft)	Volume of NAPL Removed (gallon)
MW-9R			0.01				0.75
MPE-1			0.01				<0.25
MPE-2			0.01				<0.50
MPE-3			0.03				0.50
MPE-5			0.03				<0.75
MPE-6			0.01				<1.0

NAPL Recovery Data - March 8, 2022

NAPL thicknesses are estimated and no depths recorded due to interface probe failure in field.

Well ID Initial Initial Initial NAPL Final Depth **Final Depth** Final Volume of Depth to Depth to thickness to NAPL to Water NAPL NAPL NAPL Water (ft) (ft) (ft) Thickness Removed (ft) (ft) (ft) (gallon) MW-9R 36.15 37.14 0.99 40.31 40.32 0.01 1.0 MPE-1 37.29 37.39 42.52 0.10 42.51 0.01 1.0 MPE-3 35.67 36.34 0.67 36.69 36.79 0.10 1.0 MPE-5 38.00 39.03 1.03 39.01 40.11 1.10 1.5 37.14 0.99 40.32 0.01 MPE-6 36.15 40.31 1.0

NAPL Recovery Data - June 9, 2022

NAPL Recovery Data – September 28, 2022

Well ID	Initial Depth to NAPL (ft)	Initial Depth to Water (ft)	Initial NAPL thickness (ft)	Final Depth to NAPL (ft)	Final Depth to Water (ft)	Final NAPL Thickness (ft)	Volume of NAPL Removed (gallon)
MW-9R	36.11	36.15	0.04	40.13	40.13	sheen	1.5
MPE-1	37.77	37.78	0.01	43.02	43.02	sheen	1.0
MPE-2	35.64	35.65	0.01	40.74	40.74	sheen	2.0
MPE-3	35.67	35.98	0.31	36.12	36.17	0.05	2.5
MPE-5	38.00		1.30			sheen	0.75
MPE-6	36.31	36.33	0.02	38.78	38.78	sheen	0.5

NAPL Recovery Data – December 21, 2022

Well ID	Initial Depth to NAPL (ft)	Initial Depth to Water (ft)	Initial NAPL thickness (ft)	Final Depth to NAPL (ft)	Final Depth to Water (ft)	Final NAPL Thickness (ft)	Volume of NAPL Removed (gallon)
MW-9R		35.89	0.01		40.31		1.25
MPE-1	38.68	38.72	0.04				
MPE-3	35.76	35.81	0.05				
MPE-5	38.00	39.08	1.08				0.25
MPE-6	36.31	36.33	0.02				0.01

Petroleum Hydrocarbon Mass Removal through Q4 2022

BMG Hwy 537 2008 Release

Time Period	Mass Petroleum Hydrocarbons Removed (lbs)
Through 2021	41,497
Q1 2022	24
Q2 2022	35
Q3 2022	52
Q4 2022	10
Cumulative Mass Removal (lbs)	41,618

Cumulative depth to groundwater and NAPL measurements are presented in Table 1 and in NAPL recovery forms, which are included as Appendix A.

3.0 Conclusions, Recommendations, and Scheduled Activities

3.1 Conclusions

In March, June, September, and December 2022, AES conducted well gauging, hand bailing of NAPL, and groundwater sampling of MW-9R (September and December 2022). Additionally, hydrophobic socks were changed out within select site wells, and a well cleaning treatment was performed in September 2022.

Groundwater elevations in the site monitor wells continue to decline slowly over time, with MW-2 (the downgradient well) remaining dry, and MW-7 continuing to decrease to a recorded depth of 41.50 ft bgs in December 2022.

Groundwater samples were collected from MW-9R in September and December 2022, and dissolved phase concentrations for volatile organics were either below laboratory detection limits or below their respective WQCC standards. TPH-GRO had a reported concentration of 0.24 mg/L in December 2022; however, there are no WQCC standards for TPH in groundwater. Total phenolics slightly exceeded the WQCC standard, with a concentration of 0.016 μ g/L detected in the sample collected on October 6, 2022. Dissolved iron and manganese were below their respective WQCC standards.

NAPL recovery efforts included hand-bailing and installation of hydrophobic socks, as well as a well cleaning treatment in September 2022.

3.2 Recommendations

Based on site conditions, AES recommends continuing with the scheduled gauging, sampling, and recovery of residual NAPL. AES also recommends:

- Performing another well cleaning treatment on the MPE wells with NAPL to increase NAPL transmissivity to the well and subsequent recovery of residual NAPL; and
- 2. Installation and routine changing of oil absorbent socks within MPE wells to mitigate residual NAPL.

3.3 Scheduled Site Activities

The following site activities are currently scheduled for the remainder of 2023:

- Continue recovery of residual NAPL via hydrophobic socks where NAPL thickness is sufficient for removal; quarterly hand-bailing and sock replacements as necessary.
- Semi-annual gauging events of the remaining monitor wells MW-2, MW-7, and MW-9R;
- In December 2023, conduct sampling of MW-9R for VOCs per USEPA 8260, TPH (GRO, DRO, MRO) per USEPA 8015, and dissolved iron and manganese. Sample MW-7 (upgradient well) for total dissolved solids (TDS).

If you have any questions regarding this report or site conditions, please do not hesitate to contact me or Elizabeth McNally at (505) 564-2281.

Respectfully Submitted,

Lany lupps

Lany Cupps Environmental Coordinator

Angela Jedgerwood

Angela Ledgerwood Senior Project Manager

Elizabeth V Merdly

Elizabeth McNally, P.E.

Tables

- Table 1. Summary of Groundwater Measurement and Water Quality Data
- Table 2. Summary of Groundwater Analytical Results VOCs and TPH
- Table 3. WQCC Dissolved Iron and Manganese, and Phenols

Figures

- 1. Topographic Site Location Map
- 2. General Site Plan

 Groundwater Elevation Contours, Residual NAPL Contours, and Groundwater Contaminant Concentrations, March 2022, June 2022, September 2022, December 2022

Appendices

- A. Water Sample Collection Forms and NAPL Recovery Documentation March, June, September, and December 2022
- B. Laboratory Analytical Reports (Hall Nos. 2209H14, 2210431, 2212C90)
- Cc: Zach Stradling (<u>zstradling@bmqdrilling.com</u>) Benson-Montin-Greer Drilling Corp.
 4900 College Blvd Farmington, NM 87402

Craig Schmitz, Private Landowner (hard copy) #70 County Road 405 Lindrith, NM 87029 Tables

SUMMARY OF GROUNDWATER MEASUREMENT AND WATER QUALITY DATA

BMG HWY 537 LLAVES PIPELINE 2008 OIL RELEASE

Rio Arriba County, New Mexico

Well ID	Date Sampled	Surveyed TOC (ft)	Total Well Depth (ft)	Depth to NAPL (ft)	Depth to Water (ft)	NAPL Thickness (ft)	GW Elev. (ft)	Temp. (°C)	Specific Conduct. (mS)	Dissolved Oxygen (mg/L)	рН	ORP (mV)
MW-1	14-Jan-14	7082.57			33.51		7049.06	NM	NM	NM	NM	NM
MW-1	07-Aug-17	7082.57			•		Plugged a	nd Abanc	oned	-		
MW-2	14-Jan-14	7079.94			31.28		7048.66	NM	NM	NM	NM	NM
MW-2	04-Apr-14	7079.94			31.15		7048.79	NM	NM	NM	NM	NM
MW-2	10-Sep-14	7079.94			Dry		NA		N	M - WELL DF	RY	
MW-2	03-Dec-14	7079.94			Dry		NA	NM - WELL DRY				
MW-2	27-Mar-15	7079.94			Dry		NA	NM - WELL DRY				
MW-2	08-Dec-15	7079.94			Dry		NA	NM - WELL DRY				
MW-2	17-Jun-16	7079.94			Dry		NA		N	M - WELL DF	RY	
MW-2	20-Oct-16	7079.94			Dry		NA		N	M - WELL DF	RY	
MW-2	27-Jan-17	7079.94			Dry		NA		N	M - WELL DF	RΥ	
MW-2	14-Apr-17	7079.94			Dry		NA		N	M - WELL DF	RΥ	
MW-2	25-Sep-19	7079.94			Dry		NA		Ν	M - WELL DF	RΥ	
MW-2	25-Mar-20	7079.94			Dry		NA		Ν	M - WELL DF	RY	
MW-2	23-Jun-20	7079.94			Dry		NA		Ν	M - WELL DF	RY	
MW-2	23-Sep-20	7079.94			Dry		NA		N	M - WELL DF	RY	
MW-2	23-Nov-20	7079.94			Dry		NA		Ν	M - WELL DF	RY	
MW-2	17-Mar-21	7079.94			Dry		NA		Ν	M - WELL DF	RY	
MW-2	17-Jun-21	7097.94			Dry		NA	NM - WELL DRY				
MW-2	29-Sep-21	7097.94			Dry		NA	NM - WELL DRY				
MW-2	30-Nov-21	7097.94			Dry		NA		N	M - WELL DF	RY	
MW-2	08-Mar-22	7097.94			Dry		NA		N	M - WELL DF	RY	
MW-2	09-Jun-22	7097.94			Dry		NA		N	M - WELL DF	RY	
MW-2	28-Sep-22	7097.94			Dry		NA		N	M - WELL DF	RY	

Released to Imaging: 8/3/2023 2:37:59 PM

Page 11 of 87

SUMMARY OF GROUNDWATER MEASUREMENT AND WATER QUALITY DATA

BMG HWY 537 LLAVES PIPELINE 2008 OIL RELEASE

Rio Arriba County, New Mexico

Well ID	Date Sampled	Surveyed TOC (ft)	Total Well Depth (ft)	Depth to NAPL (ft)	Depth to Water (ft)	NAPL Thickness (ft)	GW Elev. (ft)	Temp. (°C)	Specific Conduct. (mS)	Dissolved Oxygen (mg/L)	pН	ORP (mV)
MW-2	21-Dec-22	7097.94			Dry		NA		NI	M - WELL DR	Υ	
MW-3	14-Jan-14	7081.10			31.77		7049.33	NM	NM	NM	NM	NM
MW-3	07-Aug-17	7081.10					Plugged a	nd Aband	oned			
MW-4	14-Jan-14	7084.79			34.85		7049.94	NM	NM	NM	NM	NM
MW-4	07-Aug-17	7084.79			_	-	Plugged a	nd Aband	oned			
MW-5	05-May-08	7087.98			Dry		NA		NI	M - WELL DR	Y	
MW-5	07-Aug-17	7088.98		Plugged and Abandoned								
MW-6	14-Jan-14	7088.43			38.14		7050.29	NM	NM	NM	NM	NM
MW-6	07-Aug-17	7088.43					Plugged a	nd Aband	oned			
MW-7	14-Jan-14	7090.15			39.85		7050.30	NM	NM	NM	NM	NM
MW-7	04-Apr-14	7090.15			39.89		7050.26	NM	NM	NM	NM	NM
MW-7	10-Sep-14	7090.15			40.07		7050.08	NM	NM	NM	NM	NM
MW-7	03-Dec-14	7090.15			40.24		7049.91	NM	NM	NM	NM	NM
MW-7	27-Mar-15	7090.15			39.94		7050.21	NM	NM	NM	NM	NM
MW-7	08-Dec-15	7090.15			40.27		7049.88	NM	NM	NM	NM	NM
MW-7	17-Jun-16	7090.15			40.30		7049.85	NM	NM	NM	NM	NM
MW-7	20-Oct-16	7090.15			40.51		7049.64	NM	NM	NM	NM	NM
MW-7	27-Jan-17	7090.15			40.49		7049.66	NM	NM	NM	NM	NM
MW-7	14-Apr-17	7090.15			40.23		7049.92	NM	NM	NM	NM	NM
MW-7	25-Sep-19	7090.15			40.85		7049.30	NM	NM	NM	NM	NM
MW-7	25-Mar-20	7090.15			40.61		7049.54	12.5	2.00	1.78	7.13	168.9

Released to Imaging: 8/3/2023 2:37:59 PM

Page 12 of 87

SUMMARY OF GROUNDWATER MEASUREMENT AND WATER QUALITY DATA

BMG HWY 537 LLAVES PIPELINE 2008 OIL RELEASE

Rio Arriba County, New Mexico

Well ID	Date Sampled	Surveyed TOC (ft)	Total Well Depth (ft)	Depth to NAPL (ft)	Depth to Water (ft)	NAPL Thickness (ft)	GW Elev. (ft)	Temp. (°C)	Specific Conduct. (mS)	Dissolved Oxygen (mg/L)	рН	ORP (mV)
MW-7	23-Jun-20	7090.15			40.85		7049.30	19.4	1.96	4.38	7.53	167.6
MW-7	23-Sep-20	7090.15			41.14		7049.01	NM	NM	NM	NM	NM
MW-7	23-Nov-20	7090.15			41.16		7048.99	NM	NM	NM	NM	NM
MW-7	17-Mar-21	7090.15			41.23		7048.92	NM	NM	NM	NM	NM
MW-7	17-Jun-21	7090.15			41.36		7048.79	NM	NM	NM	NM	NM
MW-7	29-Sep-21	7090.15			44.54		7045.61	NM	NM	NM	NM	NM
MW-7	30-Nov-21	7090.15			41.67		7048.48	NM	NM	NM	NM	NM
MW-7	08-Mar-22	7090.15			41.63		7048.52	NM	NM	NM	NM	NM
MW-7	09-Jun-22	7090.15			Dry		NA		NI	M - WELL DF	RΥ	
MW-7	28-Sep-22	7090.15			Dry		NA		NI	M - WELL DF	RΥ	
MW-7	21-Dec-22	7090.15			41.50		7048.65	NM	NM	NM	NM	NM
MW-8	14-Jan-14	7085.20			35.87		7049.33	NM	NM	NM	NM	NM
MW-8	07-Aug-17	7085.20					Plugged a	nd Aband	loned			
MW-9	05-May-08	7083.64			31.81		7051.83	15.01	1.955	2.59	7.85	-37.9
MW-9	24-Sep-08	7083.64			32.26		7051.38	14.03	1.515	2.84	7.08	43.3
MW-9	05-Jan-09	7083.64					7083.64		NI	M - WELL DF	RΥ	
MW-9	07-Apr-09	7083.64			32.34		7051.30	12.85	1.876	1.11	6.89	7.0
MW-9	07-Jul-09	7083.64			32.41		7051.23	16.77	1.672	1.14	7.19	-9.7
MW-9	12-Oct-09	7083.64			32.63		7051.01	13.78	1.352	2.10	7.22	72.9
MW-9	12-Jan-10	7083.64		32.43	34.80	2.37	7050.68		NM	- 2.37 feet N	IAPL	
MW-9	13-Oct-10	7083.64		32.63	35.29	2.66	7050.42	NM - 2.66 feet NAPL				
MW-9	20-Jan-11	7083.64		32.71	35.21	2.50	7050.38	NM - 2.50 feet NAPL				
MW-9	09-May-11	7083.64		32.43	34.96	2.53	7050.65	NM - 2.53 feet NAPL				
MW-9	15-Aug-11	7083.64		33.11	35.33	2.22	7050.04		NM	- 2.22 feet N	IAPL	

Released to Imaging: 8/3/2023 2:37:59 PM

Animas Environmental Services, LLC 2022.09.28 MASTER TABLE Labs USE THIS ONE Q1 through Q4 2022 Progress Report March 29, 2023

SUMMARY OF GROUNDWATER MEASUREMENT AND WATER QUALITY DATA

BMG HWY 537 LLAVES PIPELINE 2008 OIL RELEASE

Rio Arriba County, New Mexico

Well ID	Date Sampled	Surveyed TOC (ft)	Total Well Depth (ft)	Depth to NAPL (ft)	Depth to Water (ft)	NAPL Thickness (ft)	GW Elev. (ft)	Temp. (°C)	Specific Conduct. (mS)	Dissolved Oxygen (mg/L)	рН	ORP (mV)
MW-9	07-Oct-11	7083.64		33.14	35.23	2.09	7050.04		NM	- 2.09 feet N	IAPL	
MW-9	21-Nov-11	7083.64		33.25	35.37	2.12	7049.92		NM	- 2.12 feet N	IAPL	
MW-9	21-Feb-12	7083.64		33.14	35.06	1.92	7050.07		NM	- 1.92 feet N	IAPL	
MW-9	24-May-12	7083.64		33.15	35.19	2.04	7050.04			- 2.04 feet N		
MW-9	18-Sep-12	7083.64		33.47	35.26	1.79	7049.77			- 1.79 feet N		
MW-9	04-Dec-12	7083.64		33.68	35.64	1.96	7049.52			- 1.96 feet N		
MW-9	26-Mar-13	7083.64		33.53	35.22	1.69	7049.73			- 1.69 feet N		
MW-9	26-Jun-13	7083.64		33.70	35.27	1.57	7049.59			- 1.57 feet N		
MW-9	25-Sep-13	7083.64		32.96	36.46	3.50	7049.90			- 3.50 feet N		
MW-9	14-Jan-14	7083.64		33.95	34.31	0.36	7049.61			- 0.36 feet N		
MW-9	04-Apr-14	7083.64		33.94	34.01	0.07	7049.68			- 0.07 feet N		
MW-9	10-Sep-14	7083.64		34.15	34.27	0.12	7049.46			- 0.12 feet N		
MW-9	03-Dec-14	7083.64		34.25	34.31	0.06	7049.38			- 0.06 feet N		
MW-9	27-Mar-15	7083.64		33.96	34.03	0.07	7049.66			- 0.07 feet N		
MW-9	08-Dec-15	7083.64		34.30	34.36	0.06	7049.33			- 0.01 feet N		
MW-9	17-Jun-16	7083.64		34.50	34.51	0.01	7049.14			- 0.01 feet N		
MW-9	20-Oct-16	7083.64		34.63	34.90	0.27	7048.95		NM	- 0.27 feet N	IAPL	
MW-9	27-Jan-17	7083.64		34.62	35.12	0.50	7048.91		NM	- 0.50 feet N	IAPL	
MW-9	14-Apr-17	7083.64		34.32	34.87	0.55	7049.20		NM	- 0.55 feet N	IAPL	
MW-9	21-Jun-17	7083.64		34.25	35.81	1.56	7049.04		NM	- 1.56 feet N	IAPL	
MW-9	09-Aug-17	7083.64		34.32	36.68	2.36	7048.80		NM	- 2.36 feet N	IAPL	
MW-9	07-Dec-17	7083.64		34.29	36.68	2.39	7048.82		NM	- 2.39 feet N	IAPL	
MW-9	09-Jan-18	7083.64		34.19	36.59	2.40	7048.92		NM	- 2.40 feet N	IAPL	
MW-9	18-Feb-18	7083.64		34.27	36.65	2.38	7048.84		NM	- 2.38 feet N	IAPL	
MW-9	05-Mar-18	7083.64		34.26	36.52	2.26	7048.88		NM	- 2.26 feet N	IAPL	
MW-9	05-Apr-18	7083.64		34.34	36.27	1.93	7048.87		NM	- 1.93 feet N	IAPL	
MW-9	18-May-18	7083.64		34.26	36.49	2.23	7048.88		NM	- 2.23 feet N	IAPL	

Animas Environmental Services, LLC 2022.09.28 MASTER TABLE Labs USE THIS ONE

SUMMARY OF GROUNDWATER MEASUREMENT AND WATER QUALITY DATA

BMG HWY 537 LLAVES PIPELINE 2008 OIL RELEASE

Rio Arriba County, New Mexico

Well ID	Date Sampled	Surveyed TOC (ft)	Total Well Depth (ft)	Depth to NAPL (ft)	Depth to Water (ft)	NAPL Thickness (ft)	GW Elev. (ft)	Temp. (°C)	Specific Conduct. (mS)	Dissolved Oxygen (mg/L)	рН	ORP (mV)
MW-9	12-Jun-18	7083.64		34.45	36.72	2.27	7048.69		NM	- 2.27 feet N	IAPL	
MW-9	09-Jul-18	7083.64		34.55	36.88	2.33	7048.57		NM	- 2.33 feet N	IAPL	
MW-9	13-Aug-18	7083.64		34.56	36.76	2.20	7048.59	NM - 2.20 feet NAPL				
MW-9	24-Sep-18	7083.64		34.68	36.87	2.19	7048.47	NM - 2.19 feet NAPL				
MW-9	26-Oct-18	7083.64		34.73	36.90	2.17	7048.43	NM - 2.17 feet NAPL				
MW-9	19-Nov-18	7083.64		34.74	37.00	2.26	7048.40					
MW-9	14-Dec-18	7083.64		34.85	37.00	2.15	7048.31	NM - 2.15 feet NAPL				
												-
MW-9R	25-Sep-19	TBS	40		35.32		NA	13.6	1.413	1.41	6.65	24.9
MW-9R	10-Mar-20	TBS	40		35.20		NA		Ν	lot Measure	d	
MW-9R	25-Mar-20	TBS	40	35.07	35.12	0.05	NA		NM	- 0.05 feet N	IAPL	
MW-9R	23-Jun-20	TBS	40	35.30	35.37	0.07	NA		NM	- 0.07 feet N	IAPL	
MW-9R	23-Sep-20	TBS	40	35.57	35.86	0.29	NA		NM	- 0.29 feet N	IAPL	
MW-9R	23-Nov-20	TBS	40	35.55	35.70	0.15	NA		NM ·	- 0.15 feet N	APL	
MW-9R	17-Mar-21	TBS	40	35.66	35.76	0.10	NA		NM	- 0.10 feet N	IAPL	
MW-9R	17-Jun-21	TBS	40	35.77	35.89	0.12	NA		NM	- 0.12 feet N	IAPL	
MW-9R	29-Sep-21	TBS	40	36.01	36.14	0.13	NA		NM	- 0.13 feet N	IAPL	
MW-9R	30-Nov-21	TBS	40	36.05	36.28	0.23	NA		NM	- 0.23 feet N	IAPL	
MW-9R	08-Mar-22	TBS	40			0.01	NA		NM	- 0.01 feet N	IAPL	
MW-9R	09-Jun-22	TBS	40	36.15	37.14	0.99	NA		NM	- 0.99 feet N	IAPL	
MW-9R	28-Sep-22	TBS	40	36.11	36.15	0.04	NA		NM	- 0.04 feet N	IAPL	
MW-9R	21-Dec-22	TBS	40	35.88	35.89	0.01	NA	NM - 0.01 feet NAPL				
MPE-1	14-Jan-14	TBS	40	35.12	37.44	2.32	NA	NM	NM	NM	NM	NM
MPE-1	04-Apr-14	TBS	40	35.10	37.40	2.30	NA	NM	NM	NM	NM	NM
MPE-1	10-Sep-14	TBS	40	35.36	37.70	2.34	NA	NM	NM	NM	NM	NM

Page 5 of 16

Page 15 of 87

SUMMARY OF GROUNDWATER MEASUREMENT AND WATER QUALITY DATA

BMG HWY 537 LLAVES PIPELINE 2008 OIL RELEASE

Rio Arriba County, New Mexico

Well ID	Date Sampled	Surveyed TOC (ft)	Total Well Depth (ft)	Depth to NAPL (ft)	Depth to Water (ft)	NAPL Thickness (ft)	GW Elev. (ft)	Temp. (°C)	Specific Conduct. (mS)	Dissolved Oxygen (mg/L)	рН	ORP (mV)
MPE-1	03-Dec-14	TBS	40	35.44	37.77	2.33	NA	NM	NM	NM	NM	NM
MPE-1	09-Oct-15	TBS	40	35.48	37.37	1.89	NA	NM	NM	NM	NM	NM
MPE-1	27-Mar-15	TBS	40	35.22	37.29	2.07	NA	NM	NM	NM	NM	NM
MPE-1	09-Oct-15	TBS	40	35.48	37.37	1.89	NA	NM	NM	NM	NM	NM
MPE-1	08-Dec-15	TBS	40	35.58	37.60	2.02	NA	NM	NM	NM	NM	NM
MPE-1	17-Jun-16	TBS	40	35.62	37.72	2.10	NA	NM	NM	NM	NM	NM
MPE-1	20-Oct-16	TBS	40	35.84	38.05	2.21	NA	NM	NM	NM	NM	NM
MPE-1	27-Jan-17	TBS	40	35.80	37.88	2.08	NA	NM	NM	NM	NM	NM
MPE-1	14-Apr-17	TBS	40	35.58	37.37	1.79	NA	NM	NM	NM	NM	NM
MPE-1	21-Jun-17	TBS	40	35.74	37.65	1.91	NA	NM	NM	NM	NM	NM
MPE-1	09-Aug-17	TBS	40	35.96	37.50	1.54	NA	NM	NM	NM	NM	NM
MPE-1	07-Dec-17	TBS	40	35.83	37.69	1.86	NA	NM	NM	NM	NM	NM
MPE-1	09-Jan-18	TBS	40	35.79	37.69	1.90	NA	NM	NM	NM	NM	NM
MPE-1	12-Feb-18	TBS	40	35.85	37.19	1.34	NA	NM	NM	NM	NM	NM
MPE-1	05-Mar-18	TBS	40	35.93	37.06	1.13	NA	NM	NM	NM	NM	NM
MPE-1	05-Apr-18	TBS	40	35.95	37.23	1.28	NA	NM	NM	NM	NM	NM
MPE-1	18-May-18	TBS	40	35.92	37.40	1.48	NA	NM	NM	NM	NM	NM
MPE-1	12-Jun-18	TBS	40	36.10	37.35	1.25	NA	NM	NM	NM	NM	NM
MPE-1	09-Jul-18	TBS	40	36.23	37.30	1.07	NA	NM	NM	NM	NM	NM
MPE-1	13-Aug-18	TBS	40	36.33	37.17	0.84	NA	NM	NM	NM	NM	NM
MPE-1	24-Sep-18	TBS	40	36.44	36.98	0.54	NA	NM	NM	NM	NM	NM
MPE-1	26-Oct-18	TBS	40	36.51	36.75	0.24	NA	NM	NM	NM	NM	NM
MPE-1	19-Nov-18	TBS	40	36.54	36.86	0.32	NA	NM	NM	NM	NM	NM
MPE-1	14-Dec-18	TBS	40	36.63	36.78	0.15	NA	NM	NM	NM	NM	NM
MPE-1	25-Sep-19	TBS	40	36.19	38.11	1.92	NA	NM	NM	NM	NM	NM
MPE-1	10-Mar-20	TBS	40	36.93	37.36	0.43	NA	NM	NM	NM	NM	NM

Page 16 of 87

SUMMARY OF GROUNDWATER MEASUREMENT AND WATER QUALITY DATA

BMG HWY 537 LLAVES PIPELINE 2008 OIL RELEASE

Rio Arriba County, New Mexico

Well ID	Date Sampled	Surveyed TOC (ft)	Total Well Depth (ft)	Depth to NAPL (ft)	Depth to Water (ft)	NAPL Thickness (ft)	GW Elev. (ft)	Temp. (°C)	Specific Conduct. (mS)	Dissolved Oxygen (mg/L)	pН	ORP (mV)
MPE-1	25-Mar-20	TBS	40	37.08	37.71	0.63	NA	NM	NM	NM	NM	NM
MPE-1	23-Jun-20	TBS	40	37.60	38.50	0.90	NA	NM	NM	NM	NM	NM
MPE-1	23-Sep-20	TBS	40	37.79	38.69	0.90	NA	NM	NM	NM	NM	NM
MPE-1	23-Nov-20	TBS	40	37.84	38.69	0.85	NA	NM	NM	NM	NM	NM
MPE-1	17-Mar-21	TBS	40	36.75	37.22	0.47	NA	NM	NM	NM	NM	NM
MPE-1	17-Jun-21	TBS	40	36.94	37.13	0.19	NA	NM	NM	NM	NM	NM
MPE-1	29-Sep-21	TBS	40	37.18	37.40	0.22	NA	NM	NM	NM	NM	NM
MPE-1	30-Nov-21	TBS	40	37.22	37.39	0.17	NA	NM	NM	NM	NM	NM
MPE-1	08-Mar-22	TBS	40			0.01	NA	NM	NM	NM	NM	NM
MPE-1	09-Jun-22	TBS	40	37.29	37.39	0.10	NA	NM	NM	NM	NM	NM
MPE-1	28-Sep-22	TBS	40	37.77	37.78	0.01	NA	NM	NM	NM	NM	NM
MPE-1	21-Dec-22	TBS	40	38.68	38.72	0.04	NA	NM	NM	NM	NM	NM
MPE-2	14-Jan-14	TBS	40	33.80	34.13	0.33	NA	NM	NM	NM	NM	NM
MPE-2	04-Apr-14	TBS	40	33.74	34.03	0.29	NA	NM	NM	NM	NM	NM
MPE-2	10-Sep-14	TBS	40	34.03	34.44	0.41	NA	NM	NM	NM	NM	NM
MPE-2	03-Dec-14	TBS	40	34.10	34.55	0.45	NA	NM	NM	NM	NM	NM
MPE-2	09-Oct-15	TBS	40	34.07	34.43	0.36	NA	NM	NM	NM	NM	NM
MPE-2	27-Mar-15	TBS	40	33.85	34.20	0.35	NA	NM	NM	NM	NM	NM
MPE-2	09-Oct-15	TBS	40	34.07	34.43	0.36	NA	NM	NM	NM	NM	NM
MPE-2	08-Dec-15	TBS	40	34.20	34.38	0.18	NA	NM	NM	NM	NM	NM
MPE-2	17-Jun-16	TBS	40	34.31	34.43	0.12	NA	NM	NM	NM	NM	NM
MPE-2	20-Oct-16	TBS	40	34.52	34.77	0.25	NA	NM	NM	NM	NM	NM
MPE-2	27-Jan-17	TBS	40	34.48	34.73	0.25	NA	NM	NM	NM	NM	NM
MPE-2	14-Apr-17	TBS	40	34.22	34.36	0.14	NA	NM	NM	NM	NM	NM
MPE-2	21-Jun-17	TBS	40	34.36	34.62	0.26	NA	NM	NM	NM	NM	NM

Received by OCD: 3/30/2023 9:19:22 AM

Page 7 of 16

SUMMARY OF GROUNDWATER MEASUREMENT AND WATER QUALITY DATA

BMG HWY 537 LLAVES PIPELINE 2008 OIL RELEASE

Rio Arriba County, New Mexico

Well ID	Date Sampled	Surveyed TOC (ft)	Total Well Depth (ft)	Depth to NAPL (ft)	Depth to Water (ft)	NAPL Thickness (ft)	GW Elev. (ft)	Temp. (°C)	Specific Conduct. (mS)	Dissolved Oxygen (mg/L)	pН	ORP (mV)
MPE-2	09-Aug-17	TBS	40	34.57	34.74	0.17	NA	NM	NM	NM	NM	NM
MPE-2	07-Dec-17	TBS	40	34.47	34.62	0.15	NA	NM	NM	NM	NM	NM
MPE-2	09-Jan-18	TBS	40	34.43	34.58	0.15	NA	NM	NM	NM	NM	NM
MPE-2	12-Feb-18	TBS	40	34.41	34.50	0.09	NA	NM	NM	NM	NM	NM
MPE-2	05-Mar-18	TBS	40	34.52	34.54	0.02	NA	NM	NM	NM	NM	NM
MPE-2	05-Apr-18	TBS	40	34.52	34.57	0.05	NA	NM	NM	NM	NM	NM
MPE-2	18-May-18	TBS	40	34.50	34.55	0.05	NA	NM	NM	NM	NM	NM
MPE-2	12-Jun-18	TBS	40	34.67	34.79	0.12	NA	NM	NM	NM	NM	NM
MPE-2	09-Jul-18	TBS	40	34.78	34.83	0.05	NA	NM	NM	NM	NM	NM
MPE-2	13-Aug-18	TBS	40	34.83	34.87	0.04	NA	NM	NM	NM	NM	NM
MPE-2	24-Sep-18	TBS	40	34.90	34.99	0.09	NA	NM	NM	NM	NM	NM
MPE-2	26-Oct-18	TBS	40	34.95	35.00	0.05	NA	NM	NM	NM	NM	NM
MPE-2	19-Nov-18	TBS	40	34.99	35.03	0.04	NA	NM	NM	NM	NM	NM
MPE-2	14-Dec-18	TBS	40	35.03	35.09	0.06	NA	NM	NM	NM	NM	NM
MPE-2	25-Sep-19	TBS	40	34.84	34.88	0.04	NA	NM	NM	NM	NM	NM
MPE-2	10-Mar-20	TBS	40		34.74		NA	NM	NM	NM	NM	NM
MPE-2	25-Mar-20	TBS	40	34.62	34.63	0.01	NA	NM	NM	NM	NM	NM
MPE-2	23-Jun-20	TBS	40	34.85	34.85	0.00	NA	NM	NM	NM	NM	NM
MPE-2	23-Sep-20	TBS	40	35.14	35.15	0.01	NA	NM	NM	NM	NM	NM
MPE-2	23-Nov-20	TBS	40	35.11	35.13	0.02	NA	NM	NM	NM	NM	NM
MPE-2	17-Mar-21	TBS	40		35.21		NA	NM	NM	NM	NM	NM
MPE-2	17-Jun-21	TBS	40	35.32	35.33	0.01	NA	NM	NM	NM	NM	NM
MPE-2	29-Sep-21	TBS	40	35.58	35.59	0.01	NA	NM	NM	NM	NM	NM
MPE-2	30-Nov-21	TBS	40	35.61	35.62	0.01	NA	NM	NM	NM	NM	NM
MPE-2	08-Mar-22	TBS	40			0.01	NA	NM	NM	NM	NM	NM
MPE-2	09-Jun-22	TBS	40		35.68		NA	NM	NM	NM	NM	NM

SUMMARY OF GROUNDWATER MEASUREMENT AND WATER QUALITY DATA

BMG HWY 537 LLAVES PIPELINE 2008 OIL RELEASE

Rio Arriba County, New Mexico

Well ID	Date Sampled	Surveyed TOC (ft)	Total Well Depth (ft)	Depth to NAPL (ft)	Depth to Water (ft)	NAPL Thickness (ft)	GW Elev. (ft)	Temp. (°C)	Specific Conduct. (mS)	Dissolved Oxygen (mg/L)	pН	ORP (mV)
MPE-2	28-Sep-22	TBS	40	35.64	35.65	0.01	NA	NM	NM	NM	NM	NM
MPE-2	21-Dec-22	TBS	40		35.39		NA	NM	NM	NM	NM	NM
MPE-3	14-Jan-14	TBS	38	33.86	34.32	0.46	NA	NM	NM	NM	NM	NM
MPE-3	04-Apr-14	TBS	38	33.83	34.18	0.35	NA	NM	NM	NM	NM	NM
MPE-3	10-Sep-14	TBS	38	34.15	34.55	0.40	NA	NM	NM	NM	NM	NM
MPE-3	03-Dec-14	TBS	38	34.20	34.57	0.37	NA	NM	NM	NM	NM	NM
MPE-3	09-Oct-15	TBS	38	34.10	34.47	0.37	NA	NM	NM	NM	NM	NM
MPE-3	27-Mar-15	TBS	38	33.96	34.20	0.24	NA	NM	NM	NM	NM	NM
MPE-3	09-Oct-15	TBS	38	34.10	34.47	0.37	NA	NM	NM	NM	NM	NM
MPE-3	08-Dec-15	TBS	38	34.28	34.56	0.28	NA	NM	NM	NM	NM	NM
MPE-3	17-Jun-16	TBS	38	34.18	36.01	1.83	NA	NM	NM	NM	NM	NM
MPE-3	20-Oct-16	TBS	38	34.35	36.53	2.18	NA	NM	NM	NM	NM	NM
MPE-3	27-Jan-17	TBS	38	34.29	36.48	2.19	NA	NM	NM	NM	NM	NM
MPE-3	14-Apr-17	TBS	38	34.05	35.85	1.80	NA	NM	NM	NM	NM	NM
MPE-3	21-Jun-17	TBS	38	34.24	35.59	1.35	NA	NM	NM	NM	NM	NM
MPE-3	09-Aug-17	TBS	38	34.39	36.39	2.00	NA	NM	NM	NM	NM	NM
MPE-3	07-Dec-17	TBS	38	34.27	36.39	2.12	NA	NM	NM	NM	NM	NM
MPE-3	09-Jan-18	TBS	38	34.22	36.33	2.11	NA	NM	NM	NM	NM	NM
MPE-3	12-Feb-18	TBS	38	34.25	36.04	1.79	NA	NM	NM	NM	NM	NM
MPE-3	05-Mar-18	TBS	38	34.40	35.81	1.41	NA	NM	NM	NM	NM	NM
MPE-3	05-Apr-18	TBS	38	34.38	36.05	1.67	NA	NM	NM	NM	NM	NM
MPE-3	18-May-18	TBS	38	34.43	36.11	1.68	NA	NM	NM	NM	NM	NM
MPE-3	12-Jun-18	TBS	38	34.53	36.26	1.73	NA	NM	NM	NM	NM	NM
MPE-3	09-Jul-18	TBS	38	34.66	36.19	1.53	NA	NM	NM	NM	NM	NM
MPE-3	13-Aug-18	TBS	38	34.73	36.15	1.42	NA	NM	NM	NM	NM	NM

Page 9 of 16

SUMMARY OF GROUNDWATER MEASUREMENT AND WATER QUALITY DATA

BMG HWY 537 LLAVES PIPELINE 2008 OIL RELEASE

Rio Arriba County, New Mexico

Well ID	Date Sampled	Surveyed TOC (ft)	Total Well Depth (ft)	Depth to NAPL (ft)	Depth to Water (ft)	NAPL Thickness (ft)	GW Elev. (ft)	Temp. (°C)	Specific Conduct. (mS)	Dissolved Oxygen (mg/L)	рН	ORP (mV)
MPE-3	24-Sep-18	TBS	38	34.85	35.95	1.10	NA	NM	NM	NM	NM	NM
MPE-3	26-Oct-18	TBS	38	34.90	35.95	1.05	NA	NM	NM	NM	NM	NM
MPE-3	19-Nov-18	TBS	38	34.84	36.43	1.59	NA	NM	NM	NM	NM	NM
MPE-3	14-Dec-18	TBS	38	34.90	36.48	1.58	NA	NM	NM	NM	NM	NM
MPE-3	25-Sep-19	TBS	38	34.66	36.57	1.91	NA	NM	NM	NM	NM	NM
MPE-3	10-Mar-20	TBS	38	34.55	36.39	1.84	NA	NM	NM	NM	NM	NM
MPE-3	25-Mar-20	TBS	38	34.45	36.24	1.79	NA	NM	NM	NM	NM	NM
MPE-3	23-Jun-20	TBS	38	34.87	36.05	1.18	NA	NM	NM	NM	NM	NM
MPE-3	23-Sep-20	TBS	38	35.13	36.66	1.53	NA	NM	NM	NM	NM	NM
MPE-3	23-Nov-20	TBS	38	35.19	35.58	0.39	NA	NM	NM	NM	NM	NM
MPE-3	17-Mar-21	TBS	38	35.18	36.05	0.87	NA	NM	NM	NM	NM	NM
MPE-3	17-Jun-21	TBS	38	35.32	36.07	0.75	NA	NM	NM	NM	NM	NM
MPE-3	29-Sep-21	TBS	38	35.51	36.61	1.10	NA	NM	NM	NM	NM	NM
MPE-3	30-Nov-21	TBS	38	35.54	36.71	1.17	NA	NM	NM	NM	NM	NM
MPE-3	08-Mar-22	TBS	38			0.03	NA	NM	NM	NM	NM	NM
MPE-3	09-Jun-22	TBS	38	35.67	36.34	0.67	NA	NM	NM	NM	NM	NM
MPE-3	28-Sep-22	TBS	38	35.67	35.98	0.31	NA	NM	NM	NM	NM	NM
MPE-3	21-Dec-22	TBS	38	35.76	35.81	0.05	NA	NM	NM	NM	NM	NM
MPE-4	14-Jan-14	TBS	38	34.62	37.00	2.38	NA	NM	NM	NM	NM	NM
MPE-4	04-Apr-14	TBS	38	34.59	36.91	2.32	NA	NM	NM	NM	NM	NM
MPE-4	10-Sep-14	TBS	38	34.89	37.22	2.33	NA	NM	NM	NM	NM	NM
MPE-4	03-Dec-14	TBS	38	34.95	37.30	2.35	NA	NM	NM	NM	NM	NM
MPE-4	09-Oct-15	TBS	38	34.90	36.86	1.96	NA	NM	NM	NM	NM	NM
MPE-4	27-Mar-15	TBS	38	34.73	36.82	2.09	NA	NM	NM	NM	NM	NM
MPE-4	09-Oct-15	TBS	38	34.90	36.86	1.96	NA	NM	NM	NM	NM	NM

SUMMARY OF GROUNDWATER MEASUREMENT AND WATER QUALITY DATA

BMG HWY 537 LLAVES PIPELINE 2008 OIL RELEASE

Rio Arriba County, New Mexico

Well ID	Date Sampled	Surveyed TOC (ft)	Total Well Depth (ft)	Depth to NAPL (ft)	Depth to Water (ft)	NAPL Thickness (ft)	GW Elev. (ft)	Temp. (°C)	Specific Conduct. (mS)	Dissolved Oxygen (mg/L)	рН	ORP (mV)
MPE-4	08-Dec-15	TBS	38	35.09	37.17	2.08	NA	NM	NM	NM	NM	NM
MPE-4	17-Jun-16	TBS	38	35.13	37.51	2.38	NA	NM	NM	NM	NM	NM
MPE-4	20-Oct-16	TBS	38	35.38	37.83	2.45	NA	NM	NM	NM	NM	NM
MPE-4	27-Jan-17	TBS	38	35.31	37.83	2.52	NA	NM	NM	NM	NM	NM
MPE-4	14-Apr-17	TBS	38	35.06	37.16	2.10	NA	NM	NM	NM	NM	NM
MPE-4	21-Jun-17	TBS	38	35.21	37.53	2.32	NA	NM	NM	NM	NM	NM
MPE-4	09-Aug-17	TBS	38	35.42	37.65	2.23	NA	NM	NM	NM	NM	NM
MPE-4	07-Dec-17	TBS	38	35.53	37.53	2.00	NA	NM	NM	NM	NM	NM
MPE-4	09-Jan-18	TBS	38	35.26	37.52	2.26	NA	NM	NM	NM	NM	NM
MPE-4	12-Feb-18	TBS	38	35.31	37.15	1.84	NA	NM	NM	NM	NM	NM
MPE-4	05-Mar-18	TBS	38	35.44	37.04	1.60	NA	NM	NM	NM	NM	NM
MPE-4	05-Apr-18	TBS	38	35.47	37.03	1.56	NA	NM	NM	NM	NM	NM
MPE-4	18-May-18	TBS	38	35.42	37.10	1.68	NA	NM	NM	NM	NM	NM
MPE-4	12-Jun-18	TBS	38	35.73	36.58	0.85	NA	NM	NM	NM	NM	NM
MPE-4	09-Jul-18	TBS	38	35.93	36.14	0.21	NA	NM	NM	NM	NM	NM
MPE-4	13-Aug-18	TBS	38	35.99	36.04	0.05	NA	NM	NM	NM	NM	NM
MPE-4	24-Sep-18	TBS	38	36.05	36.16	0.11	NA	NM	NM	NM	NM	NM
MPE-4	26-Oct-18	TBS	38	36.11	36.17	0.06	NA	NM	NM	NM	NM	NM
MPE-4	19-Nov-18	TBS	38	36.15	36.19	0.04	NA	NM	NM	NM	NM	NM
MPE-4	14-Dec-18	TBS	38	36.21	36.26	0.05	NA	NM	NM	NM	NM	NM
MPE-4	25-Sep-19	TBS	38	35.70	37.86	2.16	NA	NM	NM	NM	NM	NM
MPE-4	25-Mar-20	TBS	38				NA	NM -	Lower and	Upper Porti	ons of W	ell Not
MPE-4	23-Jun-20	TBS	38				NA	Aligne	d Due to Sh	lift at Appro	ximately	35.32 Ft
MPE-4	23-Sep-20	TBS	38				NA	Well Damaged				
MPE-4	23-Nov-20	TBS	38				NA	Well Obstructed at 35.28 Ft				
MPE-4	17-Mar-21	TBS	38				NA		Well Ob	structed at 3	35.28 Ft	

SUMMARY OF GROUNDWATER MEASUREMENT AND WATER QUALITY DATA

BMG HWY 537 LLAVES PIPELINE 2008 OIL RELEASE

Rio Arriba County, New Mexico

Well ID	Date Sampled	Surveyed TOC (ft)	Total Well Depth (ft)	Depth to NAPL (ft)	Depth to Water (ft)	NAPL Thickness (ft)	GW Elev. (ft)	Temp. (°C)	Specific Conduct. (mS)	Dissolved Oxygen (mg/L)	pН	ORP (mV)
MPE-4	17-Jun-21	TBS	38				NA		Well Ob	structed at 3	35.28 Ft	
MPE-4	29-Sep-21	TBS	38				NA		Well Ob	structed at 3	35.25 Ft	
MPE-4	30-Nov-21	TBS	38				NA		Well Ob	structed at 3	35.28 Ft	
MPE-4	08-Mar-22	TBS	38				NA		Well Ob	structed at 3	35.25 Ft	
MPE-4	09-Jun-22	TBS	38				NA		W	ell Obstructe	ed	
MPE-4	28-Sep-22	TBS	38				NA		Well Ob	structed at 3	35.27 Ft	
MPE-4	21-Dec-22	TBS	38				NA		W	ell Obstructe	ed	
MPE-5	14-Jan-14	TBS	40	36.15	38.50	2.35	NA	NM	NM	NM	NM	NM
MPE-5	04-Apr-14	TBS	40	36.15	38.32	2.17	NA	NM	NM	NM	NM	NM
MPE-5	10-Sep-14	TBS	40	36.38	38.86	2.48	NA	NM	NM	NM	NM	NM
MPE-5	03-Dec-14	TBS	40	36.49	38.91	2.42	NA	NM	NM	NM	NM	NM
MPE-5	09-Oct-15	TBS	40	36.45	38.57	2.12	NA	NM	NM	NM	NM	NM
MPE-5	27-Mar-15	TBS	40	36.27	38.28	2.01	NA	NM	NM	NM	NM	NM
MPE-5	09-Oct-15	TBS	40	36.45	38.57	2.12	NA	NM	NM	NM	NM	NM
MPE-5	08-Dec-15	TBS	40	36.58	38.92	2.34	NA	NM	NM	NM	NM	NM
MPE-5	17-Jun-16	TBS	40	36.66	38.90	2.24	NA	NM	NM	NM	NM	NM
MPE-5	20-Oct-16	TBS	40	36.88	39.31	2.43	NA	NM	NM	NM	NM	NM
MPE-5	27-Jan-17	TBS	40	36.84	39.20	2.36	NA	NM	NM	NM	NM	NM
MPE-5	14-Apr-17	TBS	40	36.61	38.55	1.94	NA	NM	NM	NM	NM	NM
MPE-5	21-Jun-17	TBS	40	36.75	38.82	2.07	NA	NM	NM	NM	NM	NM
MPE-5	09-Aug-17	TBS	40	36.91	39.22	2.31	NA	NM	NM	NM	NM	NM
MPE-5	26-Sep-17	TBS	40	37.09	38.65	1.56	NA	NM	NM	NM	NM	NM
MPE-5	07-Dec-17	TBS	40	36.85	38.97	2.12	NA	NM	NM	NM	NM	NM
MPE-5	09-Jan-18	TBS	40	36.79	38.88	2.09	NA	NM	NM	NM	NM	NM
MPE-5	12-Feb-18	TBS	40	36.86	38.49	1.63	NA	NM	NM	NM	NM	NM

Released to Imaging: 8/3/2023 2:37:59 PM

Page 12 of 16

SUMMARY OF GROUNDWATER MEASUREMENT AND WATER QUALITY DATA

BMG HWY 537 LLAVES PIPELINE 2008 OIL RELEASE

Rio Arriba County, New Mexico

Well ID	Date Sampled	Surveyed TOC (ft)	Total Well Depth (ft)	Depth to NAPL (ft)	Depth to Water (ft)	NAPL Thickness (ft)	GW Elev. (ft)	Temp. (°C)	Specific Conduct. (mS)	Dissolved Oxygen (mg/L)	pН	ORP (mV)
MPE-5	05-Mar-18	TBS	40	36.96	38.46	1.50	NA	NM	NM	NM	NM	NM
MPE-5	05-Apr-18	TBS	40	37.01	38.38	1.37	NA	NM	NM	NM	NM	NM
MPE-5	18-May-18	TBS	40	37.03	38.07	1.04	NA	NM	NM	NM	NM	NM
MPE-5	12-Jun-18	TBS	40	37.21	38.18	0.97	NA	NM	NM	NM	NM	NM
MPE-5	09-Jul-18	TBS	40	37.33	38.13	0.80	NA	NM	NM	NM	NM	NM
MPE-5	13-Aug-18	TBS	40	37.36	38.25	0.89	NA	NM	NM	NM	NM	NM
MPE-5	24-Sep-18	TBS	40	37.42	38.37	0.95	NA	NM	NM	NM	NM	NM
MPE-5	26-Oct-18	TBS	40	37.50	38.26	0.76	NA	NM	NM	NM	NM	NM
MPE-5	19-Nov-18	TBS	40	37.52	38.41	0.89	NA	NM	NM	NM	NM	NM
MPE-5	14-Dec-18	TBS	40	37.61	38.21	0.60	NA	NM	NM	NM	NM	NM
MPE-5	25-Sep-19	TBS	40	37.43	37.97	0.54	NA	NM	NM	NM	NM	NM
MPE-5	10-Mar-20	TBS	40	37.22	37.92	0.70	NA	NM	NM	NM	NM	NM
MPE-5	25-Mar-20	TBS	40	37.21	37.83	0.62	NA	NM	NM	NM	NM	NM
MPE-5	23-Jun-20	TBS	40	37.42	38.10	0.68	NA	NM	NM	NM	NM	NM
MPE-5	23-Sep-20	TBS	40	37.72	38.35	0.63	NA	NM	NM	NM	NM	NM
MPE-5	23-Nov-20	TBS	40	37.70	38.29	0.59	NA	NM	NM	NM	NM	NM
MPE-5	17-Mar-21	TBS	40	37.80	38.41	0.61	NA	NM	NM	NM	NM	NM
MPE-5	17-Jun-21	TBS	40	37.95	38.28	0.33	NA	NM	NM	NM	NM	NM
MPE-5	29-Sep-21	TBS	40	37.93			NA		Well Ob	ostructed at	39.3 Ft	
MPE-5	30-Nov-21	TBS	40	39.30		0.20	NA	NM	NM	NM	NM	NM
MPE-5	08-Mar-22	TBS	40			0.03	NA	NM	NM	NM	NM	NM
MPE-5	09-Jun-22	TBS	40	38.00		1.30	NA	NM	NM	NM	NM	NM
MPE-5	28-Sep-22	TBS	40	38.00		1.30	NA	NM	NM	NM	NM	NM
MPE-5	21-Dec-22	TBS	40	38.00	39.08	1.08	NA	NM	NM	NM	NM	NM
MPE-6	14-Jan-14	TBS	36	33.88	36.14	2.26	NA	NM	NM	NM	NM	NM

SUMMARY OF GROUNDWATER MEASUREMENT AND WATER QUALITY DATA

BMG HWY 537 LLAVES PIPELINE 2008 OIL RELEASE

Rio Arriba County, New Mexico

Well ID	Date Sampled	Surveyed TOC (ft)	Total Well Depth (ft)	Depth to NAPL (ft)	Depth to Water (ft)	NAPL Thickness (ft)	GW Elev. (ft)	Temp. (°C)	Specific Conduct. (mS)	Dissolved Oxygen (mg/L)	pН	ORP (mV)
MPE-6	04-Apr-14	TBS	36	33.82	36.10	2.28	NA	NM	NM	NM	NM	NM
MPE-6	10-Sep-14	TBS	36	34.12	36.42	2.30	NA	NM	NM	NM	NM	NM
MPE-6	03-Dec-14	TBS	36	34.20	36.50	2.30	NA	NM	NM	NM	NM	NM
MPE-6	09-Oct-15	TBS	36	34.16	36.21	2.05	NA	NM	NM	NM	NM	NM
MPE-6	27-Mar-15	TBS	36	33.97	35.95	1.98	NA	NM	NM	NM	NM	NM
MPE-6	09-Oct-15	TBS	36	34.16	36.21	2.05	NA	NM	NM	NM	NM	NM
MPE-6	08-Dec-15	TBS	36	34.63	36.68	2.05	NA	NM	NM	NM	NM	NM
MPE-6	17-Jun-16	TBS	36	34.36	36.65	2.29	NA	NM	NM	NM	NM	NM
MPE-6	20-Oct-16	TBS	36	34.62	36.80	2.18	NA	NM	NM	NM	NM	NM
MPE-6	27-Jan-17	TBS	36	34.55	36.76	2.21	NA	NM	NM	NM	NM	NM
MPE-6	14-Apr-17	TBS	36	34.30	36.20	1.90	NA	NM	NM	NM	NM	NM
MPE-6	21-Jun-17	TBS	36	34.45	36.60	2.15	NA	NM	NM	NM	NM	NM
MPE-6	09-Aug-17	TBS	36	34.71	36.44	1.73	NA	NM	NM	NM	NM	NM
MPE-6	07-Dec-17	TBS	36	34.60	36.56	1.96	NA	NM	NM	NM	NM	NM
MPE-6	09-Jan-18	TBS	36	34.51	36.54	2.03	NA	NM	NM	NM	NM	NM
MPE-6	12-Feb-18	TBS	36	34.58	36.08	1.50	NA	NM	NM	NM	NM	NM
MPE-6	05-Mar-18	TBS	36	34.73	35.81	1.08	NA	NM	NM	NM	NM	NM
MPE-6	05-Apr-18	TBS	36	34.73	36.02	1.29	NA	NM	NM	NM	NM	NM
MPE-6	18-May-18	TBS	36	34.68	36.13	1.45	NA	NM	NM	NM	NM	NM
MPE-6	12-Jun-18	TBS	36	34.95	35.76	0.81	NA	NM	NM	NM	NM	NM
MPE-6	09-Jul-18	TBS	36	35.10	35.60	0.50	NA	NM	NM	NM	NM	NM
MPE-6	13-Aug-18	TBS	36	35.17	35.50	0.33	NA	NM	NM	NM	NM	NM
MPE-6	24-Sep-18	TBS	36	35.27	35.48	0.21	NA	NM	NM	NM	NM	NM
MPE-6	26-Oct-18	TBS	36	35.30	35.56	0.26	NA	NM	NM	NM	NM	NM
MPE-6	19-Nov-18	TBS	36	35.06	35.34	0.28	NA	NM	NM	NM	NM	NM
MPE-6	14-Dec-18	TBS	36	35.40	35.60	0.20	NA	NM	NM	NM	NM	NM

Page 24 of 87

SUMMARY OF GROUNDWATER MEASUREMENT AND WATER QUALITY DATA

BMG HWY 537 LLAVES PIPELINE 2008 OIL RELEASE

Rio Arriba County, New Mexico

Well ID	Date Sampled	Surveyed TOC (ft)	Total Well Depth (ft)	Depth to NAPL (ft)	Depth to Water (ft)	NAPL Thickness (ft)	GW Elev. (ft)	Temp. (°C)	Specific Conduct. (mS)	Dissolved Oxygen (mg/L)	pН	ORP (mV)
MPE-6	25-Sep-19	TBS	36	35.13	35.93	0.80	NA	NM	NM	NM	NM	NM
MPE-6	10-Mar-20	TBS	36	35.81	35.86	0.05	NA	NM	NM	NM	NM	NM
MPE-6	25-Mar-20	TBS	36	35.01	35.17	0.16	NA	NM	NM	NM	NM	NM
MPE-6	23-Jun-20	TBS	36	35.12	36.07	0.95	NA	NM	NM	NM	NM	NM
MPE-6	23-Sep-20	TBS	36	35.39	36.34	0.95	NA	NM	NM	NM	NM	NM
MPE-6	23-Nov-20	TBS	36	35.37	36.27	0.60	NA	NM	NM	NM	NM	NM
MPE-6	17-Mar-21	TBS	36	35.48	36.19	0.71	NA	NM	NM	NM	NM	NM
MPE-6	17-Jun-21	TBS	36	35.68	36.00	0.32	NA	NM	NM	NM	NM	NM
MPE-6	29-Sep-21	TBS	36	36.00	36.25	0.25	NA	NM	NM	NM	NM	NM
MPE-6	30-Nov-21	TBS	36	35.94	36.28	0.34	NA	NM	NM	NM	NM	NM
MPE-6	08-Mar-22	TBS	36			0.01	NA	NM	NM	NM	NM	NM
MPE-6	09-Jun-22	TBS	36	36.03	36.16	0.13	NA	NM	NM	NM	NM	NM
MPE-6	28-Sep-22	TBS	36	36.13	36.21	0.08	NA	NM	NM	NM	NM	NM
MPE-6	21-Dec-22	TBS	36	36.31	36.33	0.02	NA	NM	NM	NM	NM	NM
MPE-7	14-Jan-14	TBS	36		NM		NA	NM	NM	NM	NM	NM
MPE-7	04-Apr-14	TBS	36	32.00	32.01	0.01	NA	NM	NM	NM	NM	NM
MPE-7	10-Sep-14	TBS	36		32.34		NA	NM	NM	NM	NM	NM
MPE-7	03-Dec-14	TBS	36		32.41		NA	NM	NM	NM	NM	NM
MPE-7	09-Oct-15	TBS	36		32.29		NA	NM	NM	NM	NM	NM
MPE-7	27-Mar-15	TBS	36		32.14		NA	NM	NM	NM	NM	NM
MPE-7	09-Oct-15	TBS	36		32.29		NA	NM	NM	NM	NM	NM
MPE-7	08-Dec-15	TBS	36		32.47		NA	NM	NM	NM	NM	NM
MPE-7	17-Jun-16	TBS	36		32.56		NA	NM	NM	NM	NM	NM
MPE-7	20-Oct-16	TBS	36		32.79		NA	NM	NM	NM	NM	NM

SUMMARY OF GROUNDWATER MEASUREMENT AND WATER QUALITY DATA

BMG HWY 537 LLAVES PIPELINE 2008 OIL RELEASE

Rio Arriba County, New Mexico

Well ID	Date Sampled	Surveyed TOC (ft)	Total Well Depth (ft)	Depth to NAPL (ft)	Depth to Water (ft)	NAPL Thickness (ft)	GW Elev. (ft)	Temp. (°C)	Specific Conduct. (mS)	Dissolved Oxygen (mg/L)	рН	ORP (mV)
MPE-7	27-Jan-17	TBS	36		32.76		NA	NM	NM	NM	NM	NM
MPE-7	25-Sep-19	TBS	36		33.12		NA	NM	NM	NM	NM	NM
MPE-7	25-Mar-20	TBS	36		32.85		NA	NM	NM	NM	NM	NM
MPE-7	23-Jun-20	TBS	36		33.12		NA	NM	NM	NM	NM	NM
MPE-7	23-Sep-20	TBS	36		33.43		NA	NM	NM	NM	NM	NM
MPE-7	23-Nov-20	TBS	36		33.34		NA	NM	NM	NM	NM	NM
MPE-7	17-Mar-21	TBS	36		33.50		NA	NM	NM	NM	NM	NM
MPE-7	17-Jun-21	TBS	36		33.57		NA	NM	NM	NM	NM	NM
MPE-7	29-Sep-21	TBS	36		33.80		NA	NM	NM	NM	NM	NM
MPE-7	30-Nov-21	TBS	36		33.86		NA	NM	NM	NM	NM	NM
MPE-7	08-Mar-22	TBS	36		33.81		NA	NM	NM	NM	NM	NM
MPE-7	09-Jun-22	TBS	36		33.92		NA	NM	NM	NM	NM	NM
MPE-7	28-Sep-22	TBS	36		33.88		NA	NM	NM	NM	NM	NM
MPE-7	21-Dec-22	TBS	36		33.64		NA	NM	NM	NM	NM	NM

NOTE: **Table includes only data from 2014 through present; comprehensive table available upon request.

NA - NOT AVAILABLE NM - NOT MEASURED NS - NOT SAMPLED

Released to Imaging: 8/3/2023 2:37:59 PM

TBS - TO BE SURVEYED

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS -VOLATILE ORGANICS AND PETROLEUM HYDROCARBONS BMG HWY 537 LLAVES PIPELINE 2008 OIL RELEASE

	Date			Ethyl-	Total			
Well ID	Sampled	Benzene	Toluene	benzene	Xylenes	TPH-GRO	TPH-DRO	TPH-MRO
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(mg/L)	(mg/L)
Analytica	l Method	8021/8260	8021/826	8021/8260	8021/8260	8015D	8015M/D	8015M/D
New Mex	ico WQCC	5	1000	700	620	NE	NE	NE
MW-1	05-May-08	<1.0	<1.0	<1.0	<2.0	0.092	<1.0	<5.0
MW-1	24-Sep-08	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-1	02-Jan-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-1	07-Apr-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-1	07-Jul-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-1	12-Oct-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-1	12-Jan-10	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-1	13-Oct-10	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-1	20-Jan-11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-1	10-May-11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-1	07-Aug-17			Plugge	d and Aband	oned		
MW-2	05-May-08	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-2	24-Sep-08	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-2	02-Jan-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-2	07-Apr-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-2	07-Jul-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-2	12-Oct-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-2	12-Jan-10	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-2	13-Oct-10				ll Filled with			
MW-2	20-Jan-11				ll Filled with			
MW-2	10-May-11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
	05.14 00	1.0	1.0			0.050	1.0	5.0
MW-3	05-May-08	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-3	24-Sep-08	<1.0	<1.0	<1.0	<2.0	< 0.050	<1.0	<5.0
MW-3	02-Jan-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-3	07-Apr-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-3	07-Jul-09	-1.0	-1.0		filled with se		-1.0	<f 0<="" th=""></f>
MW-3	12-Oct-09	<1.0	<1.0	<1.0	<2.0	< 0.050	<1.0	<5.0
MW-3	12-Jan-10	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-3	13-Oct-10	<1.0	<1.0	<1.0	<2.0	< 0.050	<1.0	<5.0
MW-3	20-Jan-11	<1.0	<1.0	<1.0	<2.0	< 0.050	<1.0	<5.0
MW-3	10-May-11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-3	07-Aug-17			Plugge	d and Aband	oneu		
MW-4	05-May-08	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
10100-4	05-1viay-06	×1.0	×1.0	×1.0	NZ.U	<u>\0.050</u>	×1.0	<u>∖</u> .∪

Page 1 of 4

Rio Arriba County, New Mexico

Animas Environmental Services, LLC 2022.09.28 MASTER TABLE Labs USE THIS ONE Q1 through Q4 2022 Periodic Progress Report March 29, 2023

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS -VOLATILE ORGANICS AND PETROLEUM HYDROCARBONS BMG HWY 537 LLAVES PIPELINE 2008 OIL RELEASE

	Date			Ethyl-	Total			
Well ID	Sampled	Benzene	Toluene	benzene	Xylenes	TPH-GRO	TPH-DRO	TPH-MRO
weinib	Jampieu	μg/L)	(μg/L)	μg/L)	(μg/L)	(mg/L)	(<i>mg/L</i>)	(mg/L)
Analytica	l Method	8021/8260	8021/826			8015D	8015M/D	8015M/D
	ico WQCC	5	1000	700	620	NE	NE	NE
MW-4	24-Sep-08	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-4	02-Jan-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-4	02-Jan-09 07-Apr-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-4	07-Jul-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-4	12-Oct-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-4	12-0ct-05 12-Jan-10	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-4	12-Jan-10 13-Oct-10	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-4	20-Jan-11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-4	09-May-11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-4	07-Aug-17	×1.0	1.0		d and Aband		1.0	5.0
14144-4	57 / Ug 1/			iugget		uncu		
MW-5	05-May-08			N	S - Well Dry			
MW-5	07-Aug-17				d and Aband	oned		
	077108 17			1105500		onea		
MW-6	05-May-08	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-6	, 24-Sep-08	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-6	02-Jan-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-6	07-Apr-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-6	07-Jul-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-6	12-Oct-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-6	12-Jan-10	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-6	13-Oct-10	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-6	20-Jan-11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-6	09-May-11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-6	07-Aug-17			Plugged	d and Aband	oned		
MW-7	05-May-08	2.8	<1.0	<1.0	<2.0	0.40	<1.0	<5.0
MW-7	24-Sep-08	<1.0	<1.0	<1.0	<2.0	0.069	<1.0	<5.0
MW-7	02-Jan-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-7	07-Apr-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-7	07-Jul-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-7	12-Oct-09	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-7	12-Jan-10	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-7	13-Oct-10	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-7	20-Jan-11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-7	09-May-11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0

Rio Arriba County, New Mexico

Animas Environmental Services, LLC 2022.09.28 MASTER TABLE Labs USE THIS ONE Page 2 of 4 Q1 through Q4 2022 Periodic Progress Report March 29, 2023

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS -VOLATILE ORGANICS AND PETROLEUM HYDROCARBONS BMG HWY 537 LLAVES PIPELINE 2008 OIL RELEASE

Rio Arriba County, I	New Mexico
----------------------	------------

	Date			Ethyl-	Total				
Well ID	Sampled	Benzene	Toluene	benzene	Xylenes	TPH-GRO	TPH-DRO	TPH-MRO	
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(mg/L)	(mg/L)	
Analytical Method		8021/8260	8021/826	8021/8260	8021/8260	8015D	8015M/D	8015M/D	
New Mexico WQCC		5	1000	700	620	NE	NE	NE	
MW-8	05-May-08	26	10	<1.0	<2.0	1.10	<1.0	<5.0	
MW-8	24-Sep-08	65	26	<1.0	<2.0	0.90	<1.0	<5.0	
MW-8	05-Jan-09	45	25	<1.0	2.2	1.0	<1.0	<5.0	
MW-8	07-Apr-09	25	20	<1.0	2.9	0.89	<1.0	<5.0	
MW-8	07-Jul-09	7.5	4.5	<1.0	<2.0	0.21	<1.0	<5.0	
MW-8	12-Oct-09	15	11	<1.0	<2.0	0.52	<1.0	<5.0	
MW-8	12-Jan-10	<1.0	<1.0	<1.0	<2.0	0.088	<1.0	<5.0	
MW-8	13-Oct-10	12	<1.0	1.7	16	0.25	<1.0	<5.0	
MW-8	20-Jan-11	35	<1.0	6.5	6.3	0.16	<1.0	<5.0	
MW-8	10-May-11	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	
MW-8	15-Aug-11	<2.0	<2.0	<2.0	<4.0	<0.10	<1.0	<5.0	
MW-8	21-Nov-11	<2.0	<2.0	<2.0	<4.0	<0.10	2.2	<5.0	
MW-8	21-Feb-12	<2.0	<2.0	<2.0	<4.0	<0.10	<1.0	<5.0	
MW-8	24-May-12	<2.0	<2.0	<2.0	<4.0	<0.10	<1.0	<5.0	
MW-8	21-Sep-12	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	
MW-8	04-Dec-12	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	
MW-8	26-Mar-13	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	
MW-8	26-Jun-13	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0	
MW-8	07-Aug-17		Plugged and Abandoned						
MW-9	05-May-08	6.2	7.5	<1.0	2.3	0.90	<1.0	<5.0	
MW-9	24-Sep-08	17	12	<1.0	<2.0	0.32	<1.0	<5.0	
MW-9	05-Jan-09		NS - Well Dry						
MW-9	07-Apr-09	12	6.2	<1.0	<2.0	0.32	<1.0	<5.0	
MW-9	07-Jul-09	7.0	5.3	<1.0	<2.0	0.28	<1.0	<5.0	
MW-9	12-Oct-09	26	2.0	<1.0	<2.0	0.31	<1.0	<5.0	
MW-9	12-Jan-10	NAPL Present through Current Date							
MW-9R	25-Sep-19	<1.0	<1.0	56	80	0.87	<1.0	<5.0	
MW-9R	25-Mar-20	<2.0	<2.0	50	44	0.66	1.2	<5.0	
MW-9R	23-Jun-20	<1.0	<1.0	11	23	0.86	46	20	
MW-9R	23-Sep-20	<5.0	<5.0	38	100	3.8	550	270	
MW-9R	23-Nov-20	<5.0	<5.0	12	29	1.0	250	120	
MW-9R	17-Mar-21	<1.0	<1.0	<1.0	6.7	2.9	220	98	
MW-9R	29-Sep-21	NS - Insufficient Water							

Page 3 of 4

Animas Environmental Services, LLC 2022.09.28 MASTER TABLE Labs USE THIS ONE Q1 through Q4 2022 Periodic Progress Report March 29, 2023

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS -VOLATILE ORGANICS AND PETROLEUM HYDROCARBONS BMG HWY 537 LLAVES PIPELINE 2008 OIL RELEASE

Rio Arriba	County,	New	Mexico
------------	---------	-----	--------

	Date			Ethyl-	Total			
Well ID	Sampled	Benzene	Toluene	benzene	Xylenes	TPH-GRO	TPH-DRO	TPH-MRO
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(mg/L)	(mg/L)
Analytical Method		8021/8260	8021/826	8021/8260	8021/8260	8015D	8015M/D	8015M/D
New Mex	ico WQCC	5	1000	700	620	NE	NE	NE
MW-9R	30-Nov-21		NS - Insufficient Water					
MW-9R	08-Mar-22		NS - Insufficient Water					
MW-9R	09-Jun-22	NS - Insufficient Water						
MW-9R	28-Sep-22	<2.0	<2.0	<2.0	<3.0	NA	NA	NA
MW-9R	21-Dec-22	<2.0	<2.0	<2.0	<3.0	0.24	NA	NA

NOTE: NS = Not Sampled

NA = Not Analyzed

TPH = Total Petroleum Hydrocarbons

GRO = Gasoline Range Organics

DRO = Diesel Range Organics

MRO = Motor Oil Range Organics

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS - WQCC GROUNDWATER STANDARDS (NMAC 20.6.2.3103) BMG HWY 537 LLAVES PIPELINE 2008 OIL RELEASE

Rio Arriba County, New Mexico

Analytical Method		NM WQCC Standard				
		MW-7	MW-9R	MW-9R	MW-9R	
	S	23-Jun-20	25-Sep-19	25-Mar-20	6-Oct-22	
Antimony		0.006	NA	<0.0010	NA	NA
Arsenic		0.01	NA	0.0016	NA	NA
Copper		1.0	NA	0.0057	NA	NA
Lead	200.8	0.015	NA	0.0015	NA	NA
Selenium		0.05	NA	0.0011	NA	NA
Thallium		0.002	NA	<0.00050	NA	NA
Uranium		0.03	NA	0.0061	NA	NA
Fluoride		1.6	NA	<0.50	NA	NA
Chloride		250	NA	110	NA	NA
Nitrite-N	300.0	1.0	NA	<0.50	NA	NA
Nitrate-N		10.0	NA	<0.50	NA	NA
Sulfate		600	NA	76	NA	NA
Total Dissolved Solids	2540C	1,000	NA	1,040	NA	NA
Aluminum		5.0	NA	3.7	NA	NA
Barium		2.0	NA	0.31	NA	NA
Beryllium		0.004	NA	<0.0020	NA	NA
Boron	200.7/6010 B	0.75	NA	0.078	NA	NA
Cadmium		0.005	NA	<0.0020	NA	NA
Chromium		0.05	NA	<0.0060	NA	NA
Cobalt		0.05	NA	<0.0060	NA	NA
Iron		1.0	0.11	4.2 (T)	1.9	0.0096
Manganese		0.2	0.18	3.3 (T)	2.5	0.0041
Molybdenum		1.0	NA	<0.0080	NA	NA
Nickel		0.2	NA	<0.010	NA	NA
Silver		0.05	NA	<0.0050	NA	NA
Zinc		10.0	NA	0.017	NA	NA
Mercury	245.1	0.002	NA	<0.00020	NA	NA
Phenols	SW-846 9067	0.005	NA	0.0042	NA	0.016
Cyanide	4500CN	0.2	NA	<0.00500	NA	NA
рН	4500-Н+В	6 to 9	NA	7.44	NA	NA
Radium 226/228	903.1 904.0	5.0	NA	3.11	NA	NA

Animas Environmental Services, LLC 2022.09.28 MASTER TABLE Labs USE THIS ONE Page 1 of 1

.

Figures

Received by OCD: 3/30/2023 9:19:22 AM

by OCD: 3/30/2023 9:19:22 AM Sd.

7:59 PM 2:3 8/3/2023 ging:

Appendix
	10.20	TH TO GRO	OUNDWATER	Animas Environmental Services 624 E. Comanche St, Farmington NM 87401 Tel. (505) 564-2281 Fax (505) 324-2022			
1.043.06							
Project:	-	ater Monitorin	ng		Project No.:		
Site:	BMG				Date: 03-08-2022		
Location:		2008 Release			Time: <u>/3</u> :49 Form: 1 of 1		
Tech:	Jo	_					
Well ID	Time	Depth to NAPL (ft)	Depth to Water (ft)	NAPL Thickness (ft)	Notes / Observations		
MW-2	1		DR-4		Bottom @ 31.5'		
MW-7	14:32		41.63				
MW-9R							
MPE-1					2" Well		
MPE-2					2" Well		
MPE-3					2" Well		
MPE-4	14:42			-	2" Well 35.25 obstruction		
MPE-5		0			2" Well		
MPE-6		6			2" Well		
MPE-7	14:53	11	33.81		2" Well mud-No water		
	11.00		0501				
Waste NAPL Drum	15,00	N/A	Empty Draw	NA	Depth to Bottom of Drum = 2.75 Diameter = 1.9 ft		
Source of th	ne NAPL:						
Time period	NAPL has	been collected f	rom here:				
	1.			1			
	1						
		1					
	· · · · ·	1					
	200	1					
	1	1					
				1			
		/					
	1						
	-	1	-				

	NAP	L Recov	ery Forr	n				63	Animas Environmental Servic 24 E. Comanche St., Farmington NM 874 himasenvironmental.com (505) 564-22
	Site:		В	MG		Project No.:			
	Location:		HWY 537 2	008 Release		Date:	03-08-2	022	
	Project:		NAPL F	lecovery		Arrival Time:	13:49		
	Samplin	ng Technician:		大	5	Air Temp:	30" 500	my	
Well ID	Start Time/ End Time	Initial Depth to NAPL (ft.)	Initial Depth to Water (ft.)	Initial NAPL Thickness (ft.)	Final Depth to NAPL (ft.)	Final Depth to Water (ft.)	Final NAPL Thickness (ft.)	Purged Volume (gal.)	Method / Notes / Observations
MW-9R	15:47			.01				12.75	Low Recharge @ 17;00 Loss them . Of gal
Well ID	Start Time/ End Time	Initial Depth to NAPL (ft.)	Initial Depth to Water (ft.)	Initial NAPL Thickness (ft.)	Final Depth to NAPL (ft.)	Final Depth to Water (ft.)	Final NAPL Thickness (ft.)	Purged Volume (gal.)	Method / Notes / Observations
MPE-3	16:04			.03				N.5	est
Well ID	Start Time/ End Time	Initial Depth to NAPL (ft.)	Initial Depth to Water (ft.)	Initial NAPL Thickness (ft.)	Final Depth to NAPL (ft.)	Final Depth to Water (ft.)	Final NAPL Thickness (ft.)	Purged Volume (gal.)	Method / Notes / Observations
mpe-6	16:10			.01				21.0	est
Well ID	Start Time/ End Time	Initial Depth to NAPL (ft.)	Initial Depth to Water (ft.)	Initial NAPL Thickness (ft.)	Final Depth to NAPL (ft.)	Final Depth to Water (ft.)	Final NAPL Thickness (ft.)	Purged Volume (gal.)	Method / Notes / Observations
MPÉ-2	16:24			.61		1	-	2.5	est
Well ID	Start Time/ End Time	Initial Depth to NAPL (ft.)	Initial Depth to Water (ft.)	Initial NAPL Thickness (ft.)	Final Depth to NAPL (ft.)	Final Depth to Water (ft.)	Final NAPL Thickness (ft.)	Purged Volume (gal.)	Method / Notes / Observations
MPE-1	16:29			2.01				4.25	est
Well ID	Start Time/ End Time	Initial Depth to NAPL (ft.)	Initial Depth to Water (ft.)	Initial NAPL Thickness (ft.)	Final Depth to NAPL (ft.)	Final Depth to Water (ft.)	Final NAPL Thickness (ft.)	Purged Volume (gal.)	Method / Notes / Observations
mpe-5	16:44			.03				6.75	est

Purged NAPL and Water Storage, Transport, and Disposal Information:

annate are estimated due to later for frobe failure. Apor time 15:15

Page 38 of 87

WA	TER SAMP	LE COLLECTI	ON FORI	M	Animas Environmental Services				
Moni	tor Well No:	MW	-2		624 E Comanche St., Farmington NM				
			-		1.000		a the second second second	ironmental.com	
Site:	Highway 537	2008 Spill					No.: AES 0801		
		unty, New Mexi	со			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ate: 03-08-20		
		Monitoring and				Arrival Ti	me: 14:10		
	g Technician:					Air Te	mp: 30° Sun	wh.	
	-	00			т.с	D.C. Elev.	mp: <u>30° Sund</u> (ft): 7079	9.94	
Well D	iameter (in):	NO Purge 0.75			Total W	ell Depth	(ft): 30.	98	
Initia	al D.T.W. (ft):						t initial gaugin		
				14:12			rior to purging		
Fina	al D.T.W. (ft):		Time:	14:12		(taken a	fter sample co	llection)	
		D.T.P.:			Thi	ckness:	Tim	e:	
		Water Qualit	ty Paramet	ers - Reco	orded D	uring We	II Purging		
			YSI #	_ Calibra	tion Dat	e:			
Time	Temp	Conductivity	DO	рН	ORP	PURG	ED VOLUME	Notes/Observation	
Time	(deg C)	(µS) (mS)	(mg/L)	pa	(mV)	(see rev	erse for calc.)	Notesy Observation	
		A COMPANY	I de chech						
		001	1 1	10	-1	10	i i		
	1	DE	10	DC		V			
		JE	1				1	1	
			/	1					
	-					-	-		
							-		
			lane (-					
					-				
			1	-			1		
	1/					1	/		
	1		-	-					
				-					
Analytical P	Parameters (ir	nclude analysis	method an	d numbe	r and ty	pe of san	ple container	5)	
				Constanting	19.5.9				
	See Ab	atement plan o	r Chain of C	Custody fo	or Analy	tical Anal	ysis and Contai	ners	
		-			_	_			
		Disposal of Purg		- /					
Col	llected Sampl	es Stored on Ice	in Cooler:	N/A					
	Chain of (Custody Record	Complete:	NIA					
					ronmen	tal Analys	sis Laboratory,	Albuquerque, NM	
Equip	ment Used Di	uring Sampling:					and all the second second	a france and the second second	
Equip	See De		w Disposab		Neek III	cerrace et		adding motor	
Notes/Com	ments: We	It is dry							

WA	TER SAMP	LE COLLECTI	ON FOR	M	Anima	as Environmental S	ervices		
Mon	itor Well No:	MW	-7		624 E Comanche St., Farmington NM				
					Tel. (505) 564-2281 animasenvironmental.com				
Site:	Highway 537	2008 Spill				Project No.: AES 0801	01		
Location:	Rio Arriba Co	unty, New Mexi	со			Date: 03-08-2	022		
Project:	Groundwater	Monitoring and	d Sampling			Arrival Time: 14:32			
Samplin	g Technician:					Air Temp: 30° Su	ing		
Purg	e / No Purge:					D.C. Elev. (ft): 7090	0.15		
	Diameter (in):				Fotal We	ell Depth (ft): 43.			
Initia	al D.T.W. (ft):	41.63		14:3		(taken at initial gaugin			
	n D.T.W. (ft):		Time:	14:34		(taken prior to purging			
	al D.T.W. (ft):		Time:	14:34		_(taken after sample co	Contraction and Contraction and Contraction of Cont		
If N	APL Present:	D.T.P.:	D.T.W.		_ Thi	ckness: Tim	e:		
		Water Quali	ty Paramet	ers - Reco	orded D	uring Well Purging			
	(YSI #	Calibra	tion Dat	:e:			
There	Temp	Conductivity	DO		ORP	PURGED VOLUME	Not Observed		
Time	(deg C)	(µS) (mS)	(mg/L)	pH	(mV)	(see reverse for calc.)	Notes/Observation		
	,								
			5.1		1	KII/	1		
		()	EU		IX	perr			
		1			-				
_	\rightarrow								
	11						1		
Press and							1		
	V					1	V		
-									
			-	-	-				
			1						
Analytical F	Parameters (in	nclude analysis	method an	d numbe	r and ty	pe of sample container	s)		
	See Ab	atement plan o	r Chain of C	Custody fo	or Analy	tical Analysis and Contai	iners		
		Disposal of Purg	ged Water:	NA					
Co	lected Sampl	es Stored on Ice	in Cooler:	lila					
	Chain of (Custody Record	Complete:	NA					
		And the second second	13 TH 18 TH 19 TH 19	-nya	ronmen	tal Analysis Laboratory,	Albuquerque, NM		
Fauin	ment Used Du		20 - C 20 - C 20			terface Level, YSI Water			
Lquip	inchi oseu Di		w Disposab		ACCK III	terrace Level, 151 Waler	Quality Meter		
Viata-10-		The second se			1	11			
Notes/Com	ments: /	well dias	seter, 1	no rea	dings	Taken			
					-				

WA	ATER SAMP	LE COLLECTI	ON FOR	M	Animas Environmental Services					
Mon	itor Well No:	MW-	9R		624 E Comanche St., Farmington NM					
					Tel. (505) 564-2281 animasenvironmental.com					
Site:	Highway 537	2008 Spill				Project No.: AES 0801				
		unty, New Mexi	со			Date: 03-08-	022			
Project:	Groundwater	Monitoring and	Sampling		6	Arrival Time: 15:47				
Samplin	g Technician:	76				Air Temp: 30° Su	nny			
Purg	e / No Purge:	Purge			т.с	Air Temp: <u>30° کی</u> D.C. Elev. (ft): TE	3S			
Well [Diameter (in):	2		-	Total W	ell Depth (ft): appro	ox. 38			
Initia	al D.T.W. (ft):		Time:	15:48	2	(taken at initial gaugin				
Confirm	m D.T.W. (ft):	-	Time:			_(taken prior to purging				
				Ý		_(taken after sample co				
If N	IAPL Present:	D.T.P.:	D.T.W	·i	Thi	ckness: Tim	e:			
		Water Qualit	y Paramet	ters - Rec	orded D	uring Well Purging				
			YSI #	_ Calibra	tion Dat	e:				
Time	Temp	Conductivity	DO	pH	ORP	PURGED VOLUME	Notes/Observations			
	(deg C)	(µS) (mS)	(mg/L)	pri	(mV)	(see reverse for calc.)	Notes Observations			
			1.2.4							
	1									
		-								
	1	-		h						
			-		-					
					-	-				
				1.1			2.5			
				11 11						
	1			1.2.1		·				
-				-			1.0			
				-						
-				-	-					
	(A. N. A. 1710)									
ŀ	Analytical Para	ameters (include	e analysis	method a	and num	ber and type of sample	containers)			
						s with HgCl2 preserve)				
						mL Amber Glass nonpre	served)			
	4	Disposal of Purg	ed Water:	In ons	ite co	lection barrel				
Col	llected Sample	es Stored on Ice	in Cooler:	N/A -L	Nell h	ad very low rechar	ge 4.25 gel			
	Chain of C	ustody Record	Complete:	NA		/	J			
					ironmen	tal Analysis Laboratory,	Albuquerque, NM			
Equip	ment Used Du					terface Level, YSI Water				
			v Disposab				Same motor			
otes/Com	ments: An		nt or	10	1	and a char	+ 0/1			
					a.l	y for sample	alla Li			
12:71	011.	ment	D CHE	ce f	Cabor	tor sample	COLLECTION			

R

Released to Imaging: 8/3/2023 2:37:59 PM

Animas Environmental Services 624 E. Comanche St., Farmington NM 87401 animasenvironmental.com (505) 564-2281 Project No.: Date: 9-25-22

. <u> </u>	Site:		BN	/IG		Project No.:					
	Location:		HWY 537 2	008 Release		Date:	9-28-22	·			
	Project:		NAPL R	ecovery		Arrival Time: /0:20					
	Sampli	ng Technician:	Anna ag	plei		Air Temp: 70°- Sunny					
Well ID	Start Time/ End Time	Initial Depth to NAPL (ft.)	initial Depth to Water (ft.)	Initial NAPL Thickness (ft.)	Final Depth to NAPL (ft.)	Final Depth to Water (ft.)	Final NAPL Thickness (ft.)	Rurged Volume (gal.)	Method / Notes / Observations		
M.W. g.F.	Γ	36.11	36.15	04							
Well ID	Start Time/ End Time	Initial Depth to NAPL (ft.)	initial Depth to Water (ft.)	Initial NAPL Thickness (ft.)	Final Depth to NAPL (ft.)	Final Depth to Water (ft.)	Final NAPL Thickness (ft.)	Purged Volume (gal.)	Method / Notes / Observations		
M62 - 1		37.17	37.18	. ७५							
Well ID	Start Time/ End Time	Initial Depth to NAPL (ft.)	Initial Depth to Water (ft.)	initial NAPL Thickness (ft.)	Final Depth to NAPL (ft.)	Final Depth to Water (ft.)	Final NAPL Thickness (ft.)	Purged Volume (gal.)	Method / Notes / Observations		
MPE-2		35.64	35.65	.01							
Well ID	Start Time/ End Time	Initial Depth to NAPL (ft.)	Initial Depth to Water (ft.)	Initial NAPL Thickness (ft.)	Final Depth to NAPL (ft.)	Final Depth to Water (ft.)	Final NAPL Thickness (ft.)	Purged Volume (gal.)	Method / Notes / Observations		
MPE-3		35.67	35.98	. 31							
Well ID	Start Time/ End Time	initial Depth to NAPL (ft.)	Initial Depth to Water (ft.)	Initial NAPL Thickness (ft.)	Final Depth to NAPL (ft.)	Final Depth to Water (ft.)	Final NAPL Thickness (ft.)	Purged Volume (gal.)	Method / Notes / Observations		
MIC-5		38.00	ø	1.3							
Well ID	Start Time/ End Time	initial Depth to NAPL (ft.)	initial Depth to Water (ft.)	Initial NAPL Thickness (ft.)	Final Depth to NAPL (ft.)	Final Depth to Water (ft.)	Final NAPL Thickness (ft.)	Purged Volume (gal.)	Method / Notes / Observations		
ME -4		3613	36.21	.08							

Purged NAPL and Water Storage, Transport, and Disposal Information:

NAPL Recovery Form

	N	IEASUREM		{ 	Animas Environmental Services 624 E. Comanche St, Farmington NM 87401 Tel. (505) 564-2281 Fax (505) 324-2022
Project:		ater Monitorir	Ig	• • •	Project No.:
Site:	BMG			=	Date: 9-28-22
Location:	Hwy 537	2008 Release			Time: <u>/0: 20</u>
Tech:					Form: 1 of 1
Well ID	Time	Depth to NAPL (ft)	Depth to Water (ft)	NAPL Thickness (ft)	Notes / Observations
MW-2	10:36		DRY		
MW-7	10:31		DRY		
MW-9R	11:20	36.11	36.15	.04	
MPE-1	12:41	37.77	37.78	.01	2" Well
MPE-2	10:52	35.64	35.65	. ol	2" Well
MPE-3	10:55	35.67	35.98	,31	2" Well
MPE-4	15:40				2" Well Blockage in MW. @ 35.27
MPE-5	14:15	38.00	a.	X1.3	2" Well-T08-31.5
MPE-6	11:17	36.13	36.21	.08	2" Well
MPE-7	10:48		33.88		2" Well
Waste NAPL Drum		N/a	N/A	Na	Depth to Bottom of Drum = 2.75 Diameter = 1.9 ft
Source of th Time period		been collected f	rom here:		
inte perior					
			· · · · · · · · · · · · · · · · ·		
					· · · · · · · · · · · · · · · · · · ·
	<u> </u>				· · · · · · · · · · · · · · · · · · ·
	1		-		
<u></u>				+ · ·	
			1		1
			+		
	<u> </u>		-		
	 			<u> </u>	
	<u> </u>				
	_				
					l

Wells measured with KECK water level or KECK interface tape and decontaminated between each well measurement.

	ATER SAMP	MW-			Animas Environmental Services					
Моп	itor Well No:		· Z		624 E Comanche St., Farmington NM					
					Tel. (50	5) 564-2281 animasenvi				
	Highway 537		-			Project No.: AES 08010				
		unty, New Mexi				Date: <u>9-28-</u>				
-	g Technician:	Monitoring and	<u> </u>		. '	Arrival Time: 10;36				
-	e /(No Purge:				то	Air Temp: <u>70° S</u> O.C. Elev. (ft): 7079	MANG			
-	Diameter (in):	100 00.0	<u> </u>	-		ell Depth (ft):30.				
		DRY	Time:	_		(taken at initial gaugin				
		Der				(taken prior to purging				
			Time:			(taken after sample co				
				:		kness: Tim				
		Water Qualit	y Paramete	ers - Rec	orded Di	uring Well Purging				
			, YSI #		tion Dat					
	Temp	Conductivity	DO		ORP	PURGED VOLUME				
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations			
	(ueg c)	(µ3) (III3)	(1118/ 5)		(1114)	(see reverse for calc.)				
	ł									
					<u> </u>					
					ļ					
						1				
					<u> </u>		· · · · · · · · · · · · · · · · · · ·			
nalytical	Parameters (in	nclude analysis	method an	d numbe	er and ty	pe of sample container	·s)			
		atomont plan a	r Chain of C	uctodu f	or Apply	tical Analysis and Conta	inorg			
	JEE AL			usiouy						
<u> </u>		Disposal of Pur	ged Water:	NA			······································			
Ca		es Stored on Ico								
		Custody Record		· · · ·						
					ironmen	tal Analysis Laboratory,	Albuquerque NM			
Easte	mont llead D					terface Level, YSI Wate				
cqui	ment usea D		w Disposab							
lotes/Cor	nments:					·····				
ī	······					- •				

Well Volume = (h)(cf)

where:

h = height of water column (feet) cf = gallons/foot based on well diameter shown below

The gallons/foot for common size monitoring wells are as follows:

Well Diameter (inches)	1"	2"	3"	4"	6"
Volume (gallons/foot)	0.0408	0.1632	0.3672	0.6528	1.4688

The well volume is typically tripled to determine the volume to be purged.

Show purge volume calculation below:

h = Total Well Depth - Depth To Water = _____ ~ ____ =

Well Volume = (h)(cf) = ()(0.1632) =

Total Purge Volume = 3(Well Volume) =

Received by	OCD:	3/30/2023	9:19:22	AM

WA	TER SAMP			VI.	Animas Environmental Services						
Moni	itor Well No:	MW-	7		624 E Ca	omanche St., Farmingto	on NM				
						5) 564-2281 animasenv					
Site:	Highway 537	2008 Spill			Project No.: AES 080101						
		unty, New Mexic	:0	-	Date: 9-28-22						
		Monitoring and			Arrival Time: 10:31						
-	g Technician:		, _		-	Air Temp: 70° Su					
Purg	e / No Purge:	2 ablu	ne_		- т.о).C. Elev. (ft): 709	0.15				
Well D)iam eter (1n):	0.75				ell Depth (ft): 43					
Initia	al D.T.W. (ft):	DRY	Time:								
	n D.T.W. (ft)	VRJ	Time:	10:31		(taken prior to purging	y well)				
	al D.T.W. (ft):		Time:			(taken after sample co					
If N	IAPL Present:	D.T.P.:	D.T.W.	:	Thic	:kness: Tim	e:				
		Water Qualit	y Paramet	ers - Rec	orded Du	uring Well Purging					
			YSI #	_ Calibra	tion Dat	T					
Time	Temp	Conductivity	DO	ORP	PURGED VOLUME	Notes/Observations					
11111	(deg C)	(µS) (mS)	(mg/L)	рH	(mV)	(see reverse for calc.)					
·					1		· · · · · · · · · · · · · · · · · · ·				
	l										
					1	· · · · · · · · · · · · · · · · · · ·					
						· · · · · · · · · · · · · · · · · · ·					
					· · · · ·						
							· · · · · · · · · · · · · · · · · · ·				
							L				
Analytical I	Parameters (ii	nclude analysis i	method and	d numbe	er and ty	pe of sample container	rs)				
			Chain of C	·							
	See Ab	latement plan of		ustody f	or Analy	tical Analysis and Conta	iners				
		Disposal of Pure	od Watari		· · ·		··· .				
· · ·		Disposal of Purg		_							
CO		es Stored on Ice									
	Chain of (Custody Record									
						tal Analysis Laboratory,					
Equip	ment Used Du	uring Sampling:	Keck Wate	r Level o	r Keck In	terface Level, YSI Wate	r Quality Meter				
		and Nev	w Disposab	le Bailer							
Notes/Com	ments:				<u>.</u>						
				. <u> </u>							
		·									

Well Volume = (h)(cf)

where:

h = height of water column (feet) cf = gallons/foot based on well diameter shown below

The gallons/foot for common size monitoring wells are as follows:

Well Diameter (inches)	1"	2"	3"	4"	6"
Volume (gallons/foot)	0.0408	0.1632	0.3672	0.6528	1.4688

The well volume is typically tripled to determine the volume to be purged.

Show purge volume calculation below:

h = Total Well Depth - Depth To Water = _____ - ____ =

Well Volume = (h)(cf) = ()(0.1632) =

Total Purge Volume = 3(Well Volume) =

Received by OCD: 3/30/2023 9:19:22 AM

Page 48 of 87

.

WA	WATER SAMPLE COLLECTION FORM					Animas Environmental Services			
Moni	tor Well No:	MW-	9R	_	624 E Comanche St., Farmington NM				
					Tel. (50	5) 564-2281 animasenv	vironmental.com		
Site:	Highway 537	7 2008 Spill				Project No.: AES 0801	.01		
Location:	Rio Arriba Co	ounty, New Mexi	ico		-	Date: 9-28-2	22		
Project:	Groundwate	r Monitoring and	d Sampling		-	Arrival Time: // ·20			
Sampling	g Technician	: 50			-	Air Temp: <u>مَرْ مَنْ مَنْ الْمَنْ الْمَنْ الْمَا</u>			
Purge	e / No Purge	Purse			- т.С		BS		
	iameter (in)			-		· · · · · · · · · · · · · · · · · · ·	ox. 38		
Initia	D.T.W. (ft)	36.15	Time:	11:20		(taken at initial gaugir			
Confir n	n D.T.W. (ft):	36.15	Time:	11:20	ŗ	(taken prior to purging			
	D.T.W. (ft):		Time:			(taken after sample co	•		
lf N	APL Present:	D.T.P.: 36.11	D.T.W.	: 36.15	_ Thi	ckness: 04 Tim			
		Water Qualit	ty Paramet	ers - Rec	orded D	uring Well Purging			
	· · · · ·		YSI # <u>2</u>	_ Calibra	tion Dat	e:			
Time	Temp	Conductivity	DO		ORP	PURGED VOLUME			
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observation:		
	(0)		\6/ -/		((see reverse for calc.)			
14:08						5 1 0.11			
7.08						Sample: Collecte from under N	1,		
		L				from under 1	(AA)		
						0			
		-			_	· · · · · · · · · · · · · · · · · · ·			
	<u>.</u>								
		{							
					i				
			_						
	······						<u></u>		
Ar	nalytical Para	ameters (include	analγsis m	nethod a	nd numt	per and type of sample	containers)		
						with HgCl2 preserve)			
	TPH-GRO/	DRO/MRO per U	SEPA Meth	od 8015	(1-250m	L Amber Glass nonpres	erved)		
	[Disposal of Purge	ed Water:/	Presite	stores	is haved			
Colle	ected Sample	es Stored on Ice	ہم :in Cooler	lass.					
	Chain of C	ustody Record C	omniete:						
Faulam	ant licent n				onmenta	al Analysis Laboratory, A	Albuquerque, NM		
cyupm	ent Used DU	ring sampling: K	eck Water	Level or i	Keck Inte	erface Level, YSI Water	Quality Meter		
			Disposable						
otes/Comm	ents:	tof 1.0 y	Mar p	me.					
		······································							
	0/2/2022 2 2	5 50 D16	·······	<u> </u>					

Released to Imaging: 8/3/2023 2:37:59 PM

Well Volume = (h)(cf)

where:

h = height of water column (feet) cf = gallons/foot based on well diameter shown below

The gallons/foot for common size monitoring wells are as follows:

Well Diameter (inches)	1"	2"	3"	4"	6"
Volume (gallons/foot)	0.0408	0.1632	0.3672	0.6528	1.4688

The well volume is typically tripled to determine the volume to be purged.

Show purge volume calculation below:

h = Total Well Depth - Depth To Water = _____ - ____ = /.85 Well Volume = (h)(cf) = (/, 85)(0.1632) = .30Total Purge Volume = 3(Well Volume) = . 90 1/ gellon purge

Animas Environmental Services 624 E. Comanche St., Farmington NM 87401

animasenvironmental.com (505) 564-2281

	Site:		BN	/IG		Project No.:			
	Location:		HWY 537 2	008 Release		Date:	9-28-22		
	Project:		NAPL R	ecovery		Arrival Time:	10:20		
	Sampli	ng Technician:	James Og	plan		Air Temp:	70°- 5m	<u>wey</u>	
Well ID	Start Time/ End Time	Initial Depth to NAPL (ft.)	Initial Depth to Water (ft.)	Initial NAPL Thickness (ft.)	Final Depth to NAPL (ft.)	Final Depth to Water (ft.)	Final NAPL Thickness (ft.)	Rurged Volume (gal.)	Method / Notes / Observations
NN,9F		36.11	36.15	04					
Well ID	Start Time/ End Time	initial Depth to NAPL (ft.)	initial Depth to Water (ft.)	Initial NAPL Thickness (ft.)	Final Depth to NAPL (ft.)	Final Depth to Water (ft.)	Final NAPL Thickness (ft.)	Purged Volume (gal.)	Method / Notes / Observations
M62 - 1		37.17	37.18	. ७५					
Well ID	Start Time/ End Time	Initial Depth to NAPL (ft.)	Initial Depth to Water (ft.)	Initial NAPL Thickness (ft.)	Final Depth to NAPL (ft.)	Final Depth to Water (ft.)	Final NAPL Thickness (ft.)	Purged Volume (gal.)	Method / Notes / Observations
M96-2		35.04	35.65	.01					
Well ID	Start Time/ End Time	Initial Depth to NAPL (ft.)	Initial Depth to Water (ft.)	Initial NAPL Thickness (ft.)	Final Depth to NAPL (ft.)	Final Depth to Water (ft.)	Final NAPL Thickness (ft.)	Purged Volume (gal.)	Method / Notes / Observations
MPE-3		35.67	35.98	. 31					
Well ID	Start Time/ End Time	tnitial Depth to NAPL (ft.)	Initial Depth to Water (ft.)	Initial NAPL Thickness (ft.)	Final Depth to NAPL (ft.)	Final Depth to Water (ft.)	Final NAPL Thickness (ft.)	Purged Volume (gal.)	Method / Notes / Observations
11e-5		38.00	ø	1.3					
Well ID	Start Time/ End Time	initial Depth to NAPL (ft.)	initial Depth to Water (ft.)	Initial NAPL Thickness (ft.)	Final Depth to NAPL (ft.)	Final Depth to Water (ft.)	Final NAPL Thickness (ft.)	Purged Volume (gal.)	Method / Notes / Observations
WE -4		36.13	36.21	.08					

Purged NAPL and Water Storage, Transport, and Disposal Information:

NAPL Recovery Form

	DEI	PTH TO GRO	UNDWATER	Animas Environmental Services			
				•	624 E. Comanche St, Farmington NM 87401		
	N N	IEASUREM			Tel. (505) 564-2281 Fax (505) 324-2022		
Project:	Groundw	ater Monitorir	ng		Project No.:		
Site:	BMG				Date: 9-28-22		
Location:	Hwy 537	2008 Release			Time: /0: 20		
Tech:					Form: 1 of 1		
Well ID	Time	Depth to NAPL (ft)	Depth to Water (ft)	NAPL Thickness (ft)	Notes / Observations		
MW-2	10:36		DRY				
MW-7	10:31		DRY				
MW-9R	11:20	36.11	36.15	.04			
MPE-1	12:41	37.77	37.78	.01	2" Well		
MPE-2	10:52	35.64	35.65	. ol	2" Well		
MPE-3	10:55	35.67	35.98	,31	2" Well		
MPE-4	15:40				2" Well Blockac in MW @ 35.27		
MPE-5	14:15	38.00	Ø	K1.3	2" Well Blockage in MW. @ 35.27 2" Well TOB-39.5		
MPE-6	11:17	36.13	36.21	.08	2" Well		
MPE-7	10:48		33.88		2" Well		
	1, 21, 12						
Waste	10.10	alla			Depth to Bottom of Drum = 2.75		
NAPL Drum	15:42	M/A	N/A	N/4	Diameter = 1.9 ft		
Source of th	e NAPL ·	· · · ·					
		been collected f	rom here:				
				1			
					······		
					· · · · · · · · · · · · · · · · · · ·		
				· · · ·			
			-				
			-				
		1		+			
			-				
	<u> </u>						
	<u> </u>						
	<u> </u>						
	I		<u> </u>		I		

Wells measured with KECK water level or KECK interface tape and decontaminated between each well measurement.

			_			is Environmental S			
Mon	itor Well No:	MW·	2	_	624 E Comanche St., Farmington NM				
· · · ·					Tel. (50	5) 564-2281 animasenv	and the second		
	Highway 537				-	Project No.: AES 0801			
		unty, New Mexi			-	Date: <u>9-28-</u>	the second s		
-		Monitoring and	Sampling		- '	Arrival Time: <u>/0;3</u> 6			
	g Technician:	20				Air Temp: <u>70° S</u>	MAG		
-	e / No Purge:		je	-		D.C. Elev. (ft): 7079			
	Diameter (in):					ell Depth (ft): 30.			
initia Co-S-	al D. I. W. (π):	DRY	Time:	10:50	<u> </u>	(taken at initial gaugin	ig of all wells)		
Contiri	n D.I.W. (π):	Der	Time:	10:3	7	(taken prior to purging	(Well)		
						(taken after sample co			
	iAPL Present:	D.1.P.:			100	kness: Tim	e:		
		Water Qualit	ty Paramet	ters - Rec	orded D	uring Well Purging			
			YSI #	_ Calibra	tion Dat		r		
Time	Temp	Conductivity	DO	рН	ORP	PURGED VOLUME	Notes/Observations		
	(deg C)	(µS) (mS)	(mg/L)		(mV)	(see reverse for calc.)			
		•							
				+					
						1			
					<u> </u>				
				1	i				
nalytical	Parameters (ii	nclude analysis	method ar	nd numb	er and ty	pe of sample container	·s)		
	See Ab	atement plan o	r Chain of (Custody	or Analy	tical Analysis and Conta	iners		
		Disposal of Pure	and Water				·		
~		Disposal of Purg				<u></u>	·····		
Co		es Stored on Ice				· ····			
	Chain of (Custody Record							
		Analytical L	aboratory	: Háll Env	vironmer	tal Analysis Laboratory	, Albuquerque, NM		
Equip	ment Used D	uring Sampling:	Keck Wate	er Level o	r Keck In	terface Level, YSI Wate	r Quality Meter		
		-	w Disposal						
lotes/Con	nments:								

Well Volume = (h)(cf)

where:

h = height of water column (feet) cf = gallons/foot based on well diameter shown below

The gallons/foot for common size monitoring wells are as follows:

Well Diameter (inches)	1"	2"	3"	4"	6"
Volume (gallons/foot)	0.0408	0.1632	0.3672	0.6528	1.4688

The well volume is typically tripled to determine the volume to be purged.

Show purge volume calculation below:

h = Total Well Depth - Depth To Water = ______ - ____ =

Well Volume = (h)(cf) = ()(0.1632) =

Total Purge Volume = 3(Well Volume) =

Received h	by OCD: 3/30/20	023 9:19:22 AM

WATER SAMPLE COLLECTION FORM						s Environmental Se	ervices	
Mon	itor Well No:	MW-	7		624 E Comanche St., Farmington NM			
					Tel. (50	5) 564-2281 animasenvi	ironmental.com	
Site:	Highway 537	2008 Spill		Project No.: AES 080101				
Location:	Rio Arriba Co	unty, New Mexic	:0		•	Date: 9-28-	22	
Project:	Groundwater	Monitoring and	Sampling		-	Arrival Time: 10:31		
Samplin	g Technician:	10	· · · ·		-	Air Temp: 70° Su	6A4	
Purg	e / No Purge:	2 anly	ml.		- т.о	0.C. Elev. (ft): 7090	0.15	
Well [Diameter (in):	0.75	, . <u> </u>		Total We	ell Depth (ft): 43.	54	
Initi	al D.T.W. (ft):	DRY	Time:	10:31	1	(taken at initial gaugin	g of all wells)	
Confir	m D.T.W. (ft)(RU	Time:	10:31		(taken prior to purging	well)	
	al D.T.W. (ft):		Time:			(taken after sample co	llection)	
If N	APL Present:	D.T.P.:	D.T.W.	·•	Thic	kness: Tim	e:	
		Water Qualit	y Paramet	ers - Rec	orded Du	uring Well Purging		
			YSI #	_ Calibra	tion Dat	e:		
	Temp	Conductivity	DO		ORP	PURGED VOLUME		
Time	(deg C)	(µS) (mS)	(mg/L)	рH	(mV)	(see reverse for calc.)	Notes/Observations	
	_(008.0)	(µ0) ((
				 _	ļ	·	. <u> </u>	
					<u> </u>			
			· · · · · · · · · · · · · · · · · · ·	<u>+</u>				
				<u> </u>			· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·								
·······	· · · ·						· · · · · · · · · · · · · · · · · · ·	
					i	1		
Analytical	Parameters (i	nclude analysis i	method an	d numbe	er and ty	pe of sample container	s)	
	See At	atement plan of	Chain of C	ustody fo	or Analy	tical Analysis and Conta	iners	
		Disposal of Purg	od Water	<u></u>			··· .	
· ·								
C		es Stored on Ice						
	Chain of (Custody Record		<i></i>				
		Analytical L	aboratory:	Hall Env	ironmen	tal Analysis Laboratory,	Albuquerque, NM	
Equip	ment Used D	uring Sampling:	<u>Keck Wat</u> e	r Level o	r Keck In	terface Level, YSI Water	Quality Meter	
·		-	w Disposab					
Notes/Com	nments:							
						· · · · · · · · · · · · · · · · · · ·		
							· · · · · · · · · · · · · · · · · · ·	
		······································		······				

Well Volume = (h)(cf)

where:

h = height of water column (feet) cf = gallons/foot based on well diameter shown below

The gallons/foot for common size monitoring wells are as follows:

Well Diameter (inches)	1"	2"	3"	4"	6"
Volume (gallons/foot)	0.0408	0.1632	0.3672	0.6528	1.4688

The well volume is typically tripled to determine the volume to be purged.

Show purge volume calculation below:

h = Total Well Depth - Depth To Water = _____ - ____ =

Well Volume = (h)(cf) = ()(0.1632) =

Total Purge Volume = 3(Well Volume) =

Received by OCD: 3/30/2023 9:19:22 AM

Page 56 of 87

WATER SAMPLE COLLECTION FORM					Animas Environmental Services			
Moni	tor Well No:	MW-	9R		624 E Comanche St., Farmington NM			
				-	Tel. (50	95) 564-2281 animasenv	vironmental.com	
Site:	Highway 537	2008 Spill			_	Project No.: AES 0801	.01	
Location:	Rio Arriba Co	unty, New Mex	ico		_	Date: 9-28-2	22	
		r Monitoring an	d Sampling		-	Arrival Time: // 20		
	g Technician:				-	Air Temp: <u>۲۵° کم</u>		
Purge	e / No Purge:	Purge		-	т.С	D.C. Elev. (ft):T	BŚ	
	iameter (in):				Fotal W	ell Depth (ft):appro		
Initia	I D.T.W. (ft):	36.15	Time:	11:20		(taken at initial gaugir		
	n D.T.W. (ft):	the second se	Time:	(1:21		_(taken prior to purging		
	1 D.T.W. (ft):		Time:			(taken after sample co	ellection)	
IT N/	APL Present:	D.T.P.: <u>36. [1</u>	U.I.W.	: 36.15	Thi	ckness: <u>0</u> Tim	e:_ <u>//,</u> @	
		Water Quali	ty Paramet	ers - Reco	orded D	uring Well Purging		
			YSI # <u>2</u>	_ Calibra	tion Dat	e:		
Time	Temp	Conductivity	DO	рH	ORP	PURGED VOLUME		
	(deg C)	(µS) (mS)	(mg/L)		(mV)	(see reverse for calc.)	Notes/Observat	
14:08					<u> </u>	SI All +	7	
/ · · · · · · · · · · · · · · · · · · ·			·			Sample: Collecte from under 1	lad	
·					•	from unner p		
			<u> </u>					
					·			
							. <u></u>	
							<u>.</u>	
Ar	nalytical Para	meters (include	e analγsis n	nethod ar	nd numł	per and type of sample	containers)	
	V	OCs per USEPA I	Method 82	60 (5-40n	nL VOAs	with HgCl2 preserve)		
	TPH-GRO/	DRO/MRO per U	ISEPA Meth	od 8015	(1-250m	L Amber Glass nonpres	erved)	
	D	isposal of Purg	ed Water:	Praite	Atom	a have		
Colle	cted Sample	s Stored on Ice	ہ :in Cooler	and a	1			
	Chain of C	ustody Record (Omniete	<u></u>		<u> </u>		
Fauinm	ant Ucod D		ouratory:		onmenta	al Analysis Laboratory, A	Albuquerque, NM	
cquipin	ent Osed Dül	ing sampling: K	eck Water	Level or I	eck Inte	erface Level, YSI Water (Quality Meter	
		and New	Disposable	e Bailer				
otes/Comm	ents:	tif 1.0 g	Mar 1	mac.				
<u></u>	<u> </u>							
	8/3/2023 2:37		······································					

and the second second

Well Volume = (h)(cf)

where:

h = height of water column (feet) cf = gallons/foot based on well diameter shown below

The gallons/foot for common size monitoring wells are as follows:

Well Diameter (inches)	1"	2"	3"	4"	6"
Volume (gallons/foot)	0.0408	0.1632	0.3672	0.6528	1.4688

The well volume is typically tripled to determine the volume to be purged.

Show purge volume calculation below:

h = Total Well Depth - Depth To Water = _____ = (.85)Well Volume = (h)(cf) = (/, 85)(0.1632) = .30Total Purge Volume = 3(Well Volume) = <u>90 ½</u> /gellon funge

Released		Γ
6		L
Released to Imaging: 8/3/2023 2:37:59 PM		
8/3/2023		
2:37:59		
PM		Ľ

	NAP	L Recov	ery Forr	n				6	Animas Environmental Services 24 E. Comanche St., Farmington NM 87401 nimasenvironmental.com (505) 564-2281
	Site:		BI	MG		Project No.:			
	Location:		HWY 537 2	008 Release		Date:	12-21-2	Z	
	Project:		NAPL R	lecovery		Arrival Time:	12:41		
	Sampli	ng Technician:	TO			Air Temp:	30° Su	ny	
Well ID	Start Time/ End Time	Initial Depth to NAPL (ft.)	Initial Depth to Water (ft.)	Initial NAPL Thickness (ft.)	Final Depth to NAPL (ft.)	Final Depth to Water (ft.)	Final NAPL Thickness (ft.)	Purged Volume (gal.)	Method / Notes / Observations
MAE-5	13:05	38.00	39.08	1.08					125 gallous remark. Nost - porte offeel
Well ID	Start Time/ End Time	Initial Depth to NAPL (ft.)	Initial Depth to Water (ft.)	Initial NAPL Thickness (ft.)	Final Depth to NAPL (ft.)	Final Depth to Water (ft.)	Final NAPL Thickness (ft.)	Purged Volume (gal.)	Method / Notes / Observations
MPE-4	13:23	36.31	36.33	0.02					Sock add et 20.01 Wast Vouroud
Well ID	Start Time/ End Time	Initial Depth to NAPL (ft.)	Initial Depth to Water (ft.)	Initial NAPL Thickness (ft.)	Final Depth to NAPL (ft.)	Final Depth to Water (ft.)	Final NAPL Thickness (ft.)	Purged Volume (gal.)	Method / Notes / Observations
MPE-1	13:25	38.68	38.72	0.04					Seek added En lifeid Hes Ewepl after Bailing
Well ID	Start Time/ End Time	Initial Depth to NAPL (ft.)	Initial Depth to Water (ft.)	Initial NAPL Thickness (ft.)	Final Depth to NAPL (ft.)	Final Depth to Water (ft.)	Final NAPL Thickness (ft.)	Purged Volume (gal.)	Method / Notes / Observations
MPE-3	13133	35.76	35.81	0.05					Employing H2D-Napl after Bailing work addel
Well ID	Start Time/ End Time	Initial Depth to NAPL (ft.)	Initial Depth to Water (ft.)	Initial NAPL Thickness (ft.)	Final Depth to NAPL (ft.)	Final Depth to Water (ft.)	Final NAPL Thickness (ft.)	Purged Volume (gal.)	Method / Notes / Observations
MW. 9R	13:17	0?	35.89	20.01					Eardsified H 20 & Napl ? Dak Color with odoc Sock add
Well ID	Start Time/ End Time	Initial Depth to NAPL (ft.)	Initial Depth to Water (ft.)	Initial NAPL Thickness (ft.)	Final Depth to NAPL (ft.)	Final Depth to Water (ft.)	Final NAPL Thickness (ft.)	Purged Volume (gal.)	Method / Notes / Observations
	Line Time						_	10-57	

Purged NAPL and Water Storage, Transport, and Disposal Information:

					Animas Environmental Services 624 E. Comanche St, Farmington NM 87401 Tel. (505) 564-2281 Fax (505) 324-2022
Site:	BMG		5		Project No.: Date: <u>/2-21-22</u> Time: <u>/2.4/</u>
Project: Ground Site: BMG Location: Hwy f Tech: D Well Time ID Time MW-2 /2.43 MW-7 /2.44 MW-9R MW-9R MPE-1 /3.12 MPE-2 MPE-3 MPE-3 /3.23 MPE-4 /3.12 MPE-5 /3.20 MPE-6 /3.22 MPE-7 /3.40 Waste NAPL Drum Source of the NAP Source of the NAP		2008 Nelease			Form: 1 of 1
	Time	Depth to NAPL (ft)	Depth to Water (ft)	NAPL Thickness (ft)	Notes / Observations
MW-2	12:50		DRY		
MW-7	12:48		41.50		Condensate ?
MW-9R		0 ?	-	.01	Euroligid product / 14 20
MPE-1	13:25	38.68	38.72	,04	2" Well
		A	35.39		2" Well He odor - No shaen/staining
MPE-3	13:33		35.81	105	2" Well
				in	2" Well
MPE-5	W-2 12.'50 DR4 W-7 12.'48 41.50 W-9R Ø 35.89 PE-1 13.'25 38.68 38.72 PE-2 Ø 35.39 PE-3 13.'33 35.76 35.81 PE-4 13.'34 Blockague im PE-5 13.05 38.00 39.08 PE-6 13.'23 36.31 36.33 IPE-7 13.'07 33.64 /aste Image: Construction of the second of the secon			1.08	2" Well
MPE-6					2" Well
MPE-7			33.64		2" Well
	n				Depth to Bottom of Drum = Diameter = 1.9 ft
Source of th	he NAPL:				
Time period	d NAPL has	been collected fr	om here:		
	Hwy 537 2008 Release Time Depth to Depth to I NAPL (ft) Water (ft) Thick 1/2.'50 DR4 I 1/2.'48 4/1.50 R 1/2.'48 4/1.50 R 1/3.'25 3'8.'68 3'8.'72 1'0 1/3.'25 3'8.'68 3'8.'72 1'0 3/3 3'5.'76 3'5.'81 1'0 4 1'3.'35 8'60 3'9.08 1'0 4 1'3.'35 3'6.'31 3'6.'33 0 5 1'3.'07 '3'3'6.'31 3'6.'33 0 6 1'3.'07 '3'3'6.'4 1'0 9 1'3.'07 '3'3'6.'4 1'0 9 1'3.'07 '3'3'6.'4 1'0 9 1'3.'07 '3'3'6.'4 1'0 9 1'3.'07 '3'3'6.'4 1'0 9 1'3.'07 '3'3'6.'4 1'0 9 1'3.'07 '3'3'6.'4 1'0 9 1'3.'07 '3'3'6.'4 <th'0< th=""> 9</th'0<>				
	MEASUREMENT FORM Groundwater Monitoring BMG BMG Hwy 537 2008 Release Depth to Depth to Do Depth to Depth to N Value Solution Solution Solution Value Solution Solution Solution Solution Value Solution Solution Solution Solution Solution Value Solution Solution <td></td> <td></td>				
	MEASUREMENT FORM Groundwater Monitoring BMG BMG Hwy 537 2008 Release DO Time Depth to NAP 12.'50 DRY A Thickne 12.'50 DRY A A 12.'478 4/1.50 A 3 DF 35.'89 O/ 13.'25 38.'68 39.'72 O/ 13.'25 38.'68 39.'72 O/ 13.'25 38.'68 39.'72 O/ 13.'25 38.'00 39.'08 1.'05 13.'23 36.'31 36.'33 O2 13.'23 36.'31 36.'33 O2 13.'23 36.'31 36.'33 O2 13.'07 '33.'64'				
			-		

VVA	IER SAWP	LE COLLECTI		VI	Auma	s Environmental Se	ervices
Moni	tor Well No:	MW-	9R			omanche St., Farmingto	
					Tel. (50	5) 564-2281 animasenvi	ronmental.com
Site:	Highway 537	2008 Spill				Project No.: AES 08010	01
		unty, New Mexi				Date: /2-2/-:	
		Monitoring and	d Sampling			Arrival Time: 13:17	
	g Technician:					Air Temp: 35° s	Sunny
Purge	e / No Purge:	Purop			т.о	.C. Elev. (ft): TB	s
	iameter (in):				Total We	ell Depth (ft): appro	x.38 40.00
		35.89				(taken at initial gaugin	
		35.89		13:10			
	APL Present:	40.31		14:43		(taken after sample col kness: Time	
11 14	APL Present.	D.1.P				.Kiless 1110	e
		Water Quali	ty Paramet	ers - Rec	orded Du	uring Well Purging	
			YSI #	_ Calibra	tion Dat	e:	
Time	Temp (deg C)	Conductivity (µS) (mS)	DO (mg/L)	рН	ORP (mV)	PURGED VOLUME (see reverse for calc.)	Notes/Observation
13:20		N/A9	NO	VATER		HUTY READING	- 8
5.20		IVIII	110 0	UNICI	F Cells	FOR FOR SIGN	
	S						
14:31				-	-	SAmples Colla	icted -
				1.1.1.2			
	-						
				-			
					-		
1	Analytical Par	ameters (includ	le analysis	method a	and num	ber and type of sample	containers)
_							
						s with HgCl2 preserve)	
					-	mL Amber Glass nonpre	served)
		Disposal of Pur	ged Water:	Ansite	- Stor	age Tark	
Co	lected Sampl	es Stored on Ico	e in Cooler:	INS	0		
	Chain of	Custody Record	Complete	11.			
	S. C. N. C.				ironmen	tal Analysis Laboratory,	
Feule	mont lload D						
Equip	ment Used Di					terface Level, YSI Water	Quality weter
			w Disposat		/		
Notes/Com	ments: Ce	lou lated The	Mgr - 1.	O gali	on	1.25 actual	
_			-	~			

Well Volume = (h)(cf)

where:

h = height of water column (feet) cf = gallons/foot based on well diameter shown below

The gallons/foot for common size monitoring wells are as follows:

Well Diameter (inches)	1"	2"	3"	4"	6"
Volume (gallons/foot)	0.0408	0.1632	0.3672	0.6528	1.4688

The well volume is typically tripled to determine the volume to be purged.

Show purge volume calculation below:

h = Total Well Depth - Depth To Water = 38.00 - 35.81 = 2.11

Well Volume = (h)(cf) = (2.11)(0.1632) = ,344

Total Purge Volume = 3(Well Volume) = 1.03 Calculated longe

October 12, 2022

Elizabeth McNally Animas Environmental Services 624 E. Comanche Farmington, NM 87401 TEL: FAX: Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

RE: BMG Hwy 537 2008 Release

OrderNo.: 2209H14

Dear Elizabeth McNally:

Hall Environmental Analysis Laboratory received 1 sample(s) on 9/30/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report

Hall E	nvironmental Analysis l	Laboratory, Inc.					Analytical Report Lab Order 2209H14 Date Reported: 10/12/2	022
CLIENT Project: Lab ID:	Animas Environmental Services BMG Hwy 537 2008 Release 2209H14-001	Matrix: AQUEOUS		Collect		t e: 9/2	W-9R 28/2022 2:08:00 PM 30/2022 6:55:00 AM	
Analyses	5	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA ME	THOD 8260B: VOLATILES						Analyst	: CCM
Benzene	9	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
Toluene		ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
Ethylber	nzene	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
Methyl te	ert-butyl ether (MTBE)	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
1,2,4-Tr	imethylbenzene	3.2	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
1,3,5-Tr	imethylbenzene	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
1,2-Dich	nloroethane (EDC)	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
1,2-Dibr	omoethane (EDB)	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
Naphtha	alene	ND	4.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
1-Methy	Inaphthalene	15	8.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
2-Methy	Inaphthalene	ND	8.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
Acetone		ND	20	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
Bromob	enzene	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
Bromodi	ichloromethane	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
Bromofo	prm	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
Bromom	nethane	ND	6.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
2-Butan	one	ND	20	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
Carbon	disulfide	ND	20	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
Carbon	Tetrachloride	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
Chlorob	enzene	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
Chloroet	thane	ND	4.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
Chlorofo	prm	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
Chlorom	nethane	ND	6.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
2-Chloro	btoluene	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
4-Chloro	btoluene	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
cis-1,2-[DCE	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
cis-1,3-[Dichloropropene	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
1,2-Dibr	omo-3-chloropropane	ND	4.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
	ochloromethane	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
D'I		NB	~ ~	-		~	40/44/0000 4 00 00 414	D04040

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

ND

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

4.0

D

D

D

D

D

D

D

D

D

D

µg/L

2

2

2

2

2

2

2

2

2

2

10/11/2022 1:38:00 AM

10/11/2022 1:38:00 AM B91649

Qualifiers:

Dibromomethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,1-Dichloroethane

1,1-Dichloroethene

1,2-Dichloropropane

1,3-Dichloropropane

2,2-Dichloropropane

Dichlorodifluoromethane

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix interference S

Analyte detected in the associated Method Blank В

Е Estimated value J

Analyte detected below quantitation limits Р

Sample pH Not In Range Reporting Limit RL

Page 1 of 5

B91649

B91649

B91649

B91649

B91649

B91649

B91649

B91649

B91649

Analytical Report Lab Order 2209H14

Hall E	nvironmental Analysis I	Labora	tory, Inc.					Date Reported: 10/12/2	022
Project:	Animas Environmental Services BMG Hwy 537 2008 Release				Collect		t e: 9/2	28/2022 2:08:00 PM	
Lab ID:	2209H14-001	Matrix:	AQUEOUS		Receiv	ved Dat	t e: 9/3	30/2022 6:55:00 AM	
Analyses	Analyses		esult	RL	Qual	Units	DF	Date Analyzed	Batch
EPA ME	EPA METHOD 8260B: VOLATILES							Analyst	CCM
1,1-Dich	loropropene		ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
Hexachle	probutadiene		ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
2-Hexan	one		ND	20	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
Isopropy	lbenzene		ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
4-Isopro	pyltoluene		3.6	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
4-Methyl	-2-pentanone		ND	20	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
Methyler	Methylene Chloride		ND	6.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
n-Butylb	enzene		ND	6.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
n-Propyl	benzene		ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
sec-Buty	sec-Butylbenzene		ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
•				~ ~	-		~		D 0 1 0 10

n-Butyibenzene	ND	6.0	D	µg/∟	2	10/11/2022 1:38:00 AM	B91649
n-Propylbenzene	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
sec-Butylbenzene	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
Styrene	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
tert-Butylbenzene	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
1,1,1,2-Tetrachloroethane	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
1,1,2,2-Tetrachloroethane	ND	4.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
Tetrachloroethene (PCE)	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
trans-1,2-DCE	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
trans-1,3-Dichloropropene	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
1,2,3-Trichlorobenzene	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
1,2,4-Trichlorobenzene	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
1,1,1-Trichloroethane	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
1,1,2-Trichloroethane	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
Trichloroethene (TCE)	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
Trichlorofluoromethane	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
1,2,3-Trichloropropane	ND	4.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
Vinyl chloride	ND	2.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
Xylenes, Total	ND	3.0	D	µg/L	2	10/11/2022 1:38:00 AM	B91649
Surr: 1,2-Dichloroethane-d4	96.9	70-130	D	%Rec	2	10/11/2022 1:38:00 AM	B91649
Surr: 4-Bromofluorobenzene	96.9	70-130	D	%Rec	2	10/11/2022 1:38:00 AM	B91649
Surr: Dibromofluoromethane	98.0	70-130	D	%Rec	2	10/11/2022 1:38:00 AM	B91649
Surr: Toluene-d8	89.9	70-130	D	%Rec	2	10/11/2022 1:38:00 AM	B91649

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level. **Qualifiers:**

- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit
- ND PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 5

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

	Animas Environm BMG Hwy 537 20											
Sample ID: 100ng lo	cs 2 Samp	Type: LC	S	Tes	stCode: EF	PA Method	8260B: VOLA	TILES				
Client ID: LCSW	Bat	ch ID: B9	1649	F	RunNo: 91	1649						
Prep Date:	Analysis	Date: 10)/10/2022	:	SeqNo: 32	285544	Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	19	1.0	20.00	0	95.0	70	130					
Toluene	20	1.0	20.00	0	99.7	70	130					
Chlorobenzene	21	1.0	20.00	0	104	70	130					
1,1-Dichloroethene	17	1.0	20.00	0	86.1	70	130					
Trichloroethene (TCE)	18	1.0	20.00	0	92.0	70	130					
Surr: 1,2-Dichloroethan	e-d4 9.5		10.00		95.4	70	130					
Surr: 4-Bromofluorober	izene 9.9		10.00		99.3	70	130					
Surr: Dibromofluoromet	hane 9.6		10.00		95.6	70	130					
Surr: Toluene-d8	9.6		10.00		96.0	70	130					
Sample ID: mb 2	Sam	оТуре: МЕ	BLK	Tes	TestCode: EPA Method 8260B: VOLATILES							
Client ID: PBW	Bat	ch ID: B9	1649	F	RunNo: 91	1649						
Prep Date:	Analysis	Date: 10)/11/2022	:	SeqNo: 32	285972	Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	ND	1.0										
Toluene	ND	1.0										
Ethylbenzene	ND	1.0										
Methyl tert-butyl ether (M		1.0										
1,2,4-Trimethylbenzene	ND	1.0										
1,3,5-Trimethylbenzene	ND	1.0										
1,2-Dichloroethane (EDC)		1.0										
1,2-Dibromoethane (EDB)		1.0										
Naphthalene	ND	2.0										
1-Methylnaphthalene	ND	4.0										
2-Methylnaphthalene	ND	4.0										
Acetone	ND	10										
Bromobenzene	ND	1.0										
Bromodichloromethane	ND	1.0										
Bromoform	ND	1.0										
Bromomethane	ND	3.0										
2-Butanone	ND	10										
Carbon disulfide	ND	10										
Carbon Tetrachloride	ND	1.0										
Chlorobenzene	ND	1.0										
Chloroethane	ND	2.0										
Chloroform	ND	1.0										
Chloromethane	ND	3.0										
2-Chlorotoluene	ND	1.0										

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

2209H14

12-Oct-22

WO#:

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Animas E Project: BMG Hw									
Sample ID: mb 2	-	ype: ME		Tes	stCode: E	PA Method	8260B: VOLA	TILES	
Client ID: PBW		D: B9			RunNo: 9				
Prep Date:	Analysis D				SeqNo: 3		Units: µg/L		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit
4-Chlorotoluene	ND	1.0					-		
cis-1,2-DCE	ND	1.0							
cis-1,3-Dichloropropene	ND	1.0							
1,2-Dibromo-3-chloropropane	ND	2.0							
Dibromochloromethane	ND	1.0							
Dibromomethane	ND	1.0							
1,2-Dichlorobenzene	ND	1.0							
1,3-Dichlorobenzene	ND	1.0							
1,4-Dichlorobenzene	ND	1.0							
Dichlorodifluoromethane	ND	1.0							
1,1-Dichloroethane	ND	1.0							
1,1-Dichloroethene	ND	1.0							
1,2-Dichloropropane	ND	1.0							
1,3-Dichloropropane	ND	1.0							
2,2-Dichloropropane	ND	2.0							
1,1-Dichloropropene	ND	1.0							
Hexachlorobutadiene	ND	1.0							
2-Hexanone	ND	10							
Isopropylbenzene	ND	1.0							
4-Isopropyltoluene	ND	1.0							
4-Methyl-2-pentanone	ND	10							
Methylene Chloride	ND	3.0							
n-Butylbenzene	ND	3.0							
n-Propylbenzene	ND	1.0							
sec-Butylbenzene	ND	1.0							
Styrene	ND	1.0							
tert-Butylbenzene	ND	1.0							
1,1,1,2-Tetrachloroethane	ND	1.0							
1,1,2,2-Tetrachloroethane	ND	2.0							
Tetrachloroethene (PCE)	ND	1.0							
trans-1,2-DCE	ND	1.0							
trans-1,3-Dichloropropene	ND	1.0							
1,2,3-Trichlorobenzene	ND	1.0							
1,2,4-Trichlorobenzene	ND	1.0							
1,1,1-Trichloroethane	ND	1.0							
1,1,2-Trichloroethane	ND	1.0							
Trichloroethene (TCE)	ND	1.0							
Trichlorofluoromethane	ND	1.0							
1,2,3-Trichloropropane	ND	2.0							

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#: 2209H14 12-Oct-22

Qual

chin	Animas En BMG Hwy										
Sample ID: mb 2		SampT	уре: МВ	LK	Tes	tCode: EP	A Method	8260B: VOLA	TILES		
Client ID: PBW		Batch	n ID: B9 1	1649	F	649					
Prep Date:		Analysis Date: 10/11/2022			S	SeqNo: 32	85972	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Vinyl chloride		ND	1.0								
Xylenes, Total		ND	1.5								
Surr: 1,2-Dichloroethan	e-d4	9.5		10.00		95.2	70	130			
Surr: 4-Bromofluoroben	zene	9.7		10.00		97.3	70	130			
Surr: Dibromofluoromet	hane	9.6		10.00		96.2	70	130			
Surr: Toluene-d8		9.5		10.00		94.9	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

2209H14

12-Oct-22

WO#:

Page 5 of 5

	ANAL	CONMENT YSIS RATORY	AL	TEL: 5		1901 Hav erque, N. X: 505-3	vkins NE M 87109 45-4107	Sample Log-In Check Li					
Clie	ent Name:	Animas En Services	vironmental	Work Orc	ler Number: 2	209H14			RcptNo: 1				
Rec	eived By:	Juan Roja	IS	9/30/2022	6:55:00 AM		que	may	La la				
Con	npleted By:	Sean Livi	ngston	9/30/2022 9	:13:26 AM		<	5 /	in the				
Rev	viewed By:	9-3	0.72				-		10-				
Cha	ain of Cus	tody											
1. 18	s Chain of C	ustody comp	lete?		Y	es 🗹	N	lo 🗌	Not Present				
2. ⊦	low was the	sample deliv	ered?		<u>C</u>	ourier							
	g In												
3. W	Vas an attem	npt made to c	ool the sample	\$?	Y	es 🗹	N	•					
4. W	Vere all samp	oles received	at a temperatu	re of >0° C to 6	.0°C Y	es 🗹	N	• 🗆					
5. s	ample(s) in (proper contai	ner(s)?		Y	es 🗹	N	• 🗆					
6. Si	ufficient sam	ple volume f	or indicated test	(s)?	Ye	s 🗸	N	• 🗆					
7. Ar	re samples (except VOA	and ONG) prop	erly preserved?	Ye	s 🗸	N						
8. W	las preserva	tive added to	bottles?		Ye	s 🗌	N	•					
9. Re	eceived at le	ast 1 vial wit	n headspace <1	/4" for AQ VOA	? Ye	s 🔽	N	•					
10. W	Vere any san	nple containe	ers received bro	ken?	Y	es 🗆	N	• 🗸		/			
		ork match bot			Ye	s 🔽	N	• 🗆	# of preserved bottles checked for pH:				
			in of custody) tified on Chain o	f Custadu?	N.				(<2 or >12 unless no Adjusted?	ited)			
			are requested?	or Custody?	Ye Ye		No	-		÷.			
14. W	/ere all holdin	ng times able	to be met?			s 🔽			Checked by: KPG 9.	30 1			
			uthorization.)										
		ing (if app											
15.W	Vas client no	tified of all di	screpancies wit	h this order?	Y	es 🗋	N	• 🗆					
	Person	Notified:	1		Date:			-					
	By Who	(*** *** *** *** ****			Via: 🗌 e	Mail [] Phone [Fax	In Person				
	Regardi	ng:											
	Client Ir	structions:	1										
16. A	Additional rem	marks:											
17. <u>c</u>	Cooler Infor	mation											
1	Cooler No	Children of the second	Condition	Seal Intact Se	al No Sea	Date	Signed	d By					
	1	0.5	Good										

С	hain-	of-Cus	stody Re	cord	Turn-Around Tim	e:										
Client:	Animas	Environ	mental Servi	ces	X Standard	□ Rush					LL EI ALYS					
		-			Project Name:							101		JICA	IUK	-
Mailing Ad	ddress:	PO Box	8		BMG I	- 	Release		4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107							
		Farming	gton, NM 874	99-0008	Project #:											
Phone #:	505-564	1-2281						i martin	TCI.	000-04	A Real Property lies	sis Re		-345-41	07	
Email or F	ax#: alec	dgerwood	@animasenvi	ronmental.com	Project Manager:	1										
QA/QC Pad						Angela Ledg	erwood									
X Standa	rd		Level 4 (F	ull Validation)		Elizabeth Mo										
Accreditat	ion:				Sampler:	J. Oyebi				-						
		Other	-		On Ice:	-E Yes	□ No			31						(Z
🗆 EDD (T	ype)		1		Sample Tempera	ture: 0.5-	0205		З	4						Y or
Date	ate Time Matrix Sample Request ID		Request ID	Container Type and #	Preservative Type	HEAL No. ZZOGHIY	VOCs (8260)	Phenols- C	Diss Mn and Fe						Air Bubbles (Y or N)	
7-28-22	14:08	H ₂ O	MV	V-9R	5- 40 mL VOA	5 - HgCl2	100	X	×	X				1		
	19.00		7				001	11.	,					1		
															-	
		H20	Trip-l	Blanks	2-40mL VOA	2- HgCl2	002	x								
			Trio Blan	Ke												
		-	1	1	100 0 00 00					-						-
	-		Not recin	ed	KPG 9.30.22							-				
			12 44		1 ······											
	1															
											-					_
	· · · · · · · ·									1						
													1.			
Date: 9/29/22	Time: 1342	Relinquish	on Sh	r	Received by:	las	Date Time 9/29/22/342	Remark bmg@t	omgdril	ling.com	1	Bensor	n-Monti	n-Greer		
Date:	Time: 140		A Wa	lle	Received by:	ourier of	Date 'Time	Call wit	r any c	luestion	5.					0
101	If necessary, samples submitted to Hall Environmental ma					N	11 20/16 6. 22 es. This serves as notice o	f this possib	ility. Any	sub-contr	acted data	will be cle	arly notat	ed on the :	analytical	enort

October 24, 2022

Beth McNally Animas Environmental Services 624 E. Comanche Farmington, NM 87401 TEL: (505) 564-2281 FAX: (505) 324-2022

RE: BMG Hwy 537 2008 Release

OrderNo.: 2210431

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Beth McNally:

Hall Environmental Analysis Laboratory received 1 sample(s) on 10/8/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

EPA METHOD 200.7: DISSOLVED METALS

TOTAL PHENOLICS BY SW-846 9067

Analyses

Iron

Manganese

Phenolics

Batch

Analyst: JRR

Analyst: JPM

10/17/2022 2:53:58 PM A91889

10/11/2022 2:20:59 PM A91716

10/17/2022 8:21:00 AM 70849

Analytical Report Lab Order 2210431

Date Reported: 10/24/2022

CLIENT:	Animas Environmental Services		Client Sample ID: MW-9R
Project:	BMG Hwy 537 2008 Release		Collection Date: 10/6/2022 4:15:00 PM
Lab ID:	2210431-001	Matrix: AQUEOUS	Received Date: 10/8/2022 8:30:00 AM

0.20

*

0.010

5.0

mg/L

mg/L

µg/L

10

5

1

Matrix: AQUEOUS		Receiv	ved Dat	e: 10/8/2022 8:30:00 A
Result	RL	Qual	Units	DF Date Analyzed

9.6

4.1

16

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Practical Quanitative Limit PQL
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank в
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 3

Prep Date:

OC SUMMADV DEDODT

Analysis Date: 10/11/2022

I

QC SUMINIARY REPORT WO#: Hall Environmental Analysis Laboratory, Inc. WO#:				2210431 24-Oct-22
Client: Project:	Animas Environmental Services BMG Hwy 537 2008 Release			
Sample ID:	IB-A SampType: MBLK	TestCode: EPA Method 200.7: Dissolved Metals		
Client ID: F	Batch ID: A91716	RunNo: 91716		

SeqNo: 3287535

Units: mg/L

Prep Dale.	Analysis Date. 10/11/2022	Sequo. 328/335 Units. mg/L		
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit	Qual	
Manganese	ND 0.0020			
Sample ID: LLLCS-A	SampType: LCSLL	TestCode: EPA Method 200.7: Dissolved Metals		
Client ID: BatchQC	Batch ID: A91716	RunNo: 91716		
Prep Date:	Analysis Date: 10/11/2022	SeqNo: 3287536 Units: mg/L		
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit	Qual	
Manganese	0.0023 0.0020 0.002000	0 114 50 150		
Sample ID: LCS-A	SampType: LCS TestCode: EPA Method 200.7: Dissolved Metals			
Client ID: LCSW	Batch ID: A91716	RunNo: 91716		
Prep Date:	Analysis Date: 10/11/2022	SeqNo: 3287537 Units: mg/L		
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit	Qual	
Manganese	0.53 0.0020 0.5000	0 106 85 115		
Sample ID: MB-A	SampType: MBLK	TestCode: EPA Method 200.7: Dissolved Metals		
Client ID: PBW	Batch ID: A91889	RunNo: 91889		
Prep Date:	Analysis Date: 10/17/2022	SeqNo: 3295487 Units: mg/L		
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit	Qual	
ron	ND 0.020			
Sample ID: LLLCS-A	SampType: LCSLL TestCode: EPA Method 200.7: Dissolved Metals			
Client ID: BatchQC	Batch ID: A91889	RunNo: 91889		
Prep Date:	Analysis Date: 10/17/2022	SeqNo: 3295488 Units: mg/L		
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit	Qual	
ron	0.022 0.020 0.02000	0 109 50 150		
Sample ID: LCS-A	SampType: LCS	TestCode: EPA Method 200.7: Dissolved Metals		
Client ID: LCSW	Batch ID: A91889	RunNo: 91889		
Prep Date:	Analysis Date: 10/17/2022	SeqNo: 3295489 Units: mg/L		
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit	Qual	
7 that yes				

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

.
Client: Project:		as Environme Hwy 537 200										
Sample ID:	MB-70849	SampT	Гуре: МЕ	BLK	Tes	tCode: To	otal Phenol	ics by SW-846	906 7			
Client ID:	PBW	Batcl	h ID: 70 8	849	F	RunNo: 91840						
Prep Date:	10/17/2022	Analysis E	Date: 10)/17/2022	5	SeqNo: 32	293387	Units: µg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Phenolics		ND	2.5									
Sample ID:	LCS-70849	SampT	Гуре: LC	S	Tes	tCode: To	otal Phenol	ics by SW-846	6 9067			
Client ID:	LCSW	Batcl	h ID: 70 8	849 RunNo: 91840								
Prep Date:	10/17/2022	Analysis E	Date: 10)/17/2022	Ś	SeqNo: 32	293388	Units: µg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Phenolics		16	2.5	20.00	0	78.7	58.1	107				
Sample ID:	LCSD-70849	SampT	Гуре: LC	SD	Tes	tCode: To	otal Phenol	ics by SW-846	6 9067			
Client ID:	LCSS02	Batch	h ID: 70	849	F	RunNo: 9	1840					
Prep Date:	10/17/2022	Analysis E	Date: 10)/17/2022	SeqNo: 3293389 Units: µg/L							
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Phenolics		15	2.5	20.00	0	76.7	58.1	107	2.55	20		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

2210431

24-Oct-22

ved		0/2023 9:19 Ronmenta Ysis Ratory		EL: 505-:		4901 Hav verque, N. 1X: 505-3	wkins NE M 87109 845-4107	Sa	mple Log-In Check L	Page 74 _ist	
C	Client Name:	Animas Env Services	vironmental	Wor	k Order	Number: 2	210431			RcptNo: 1	
R	eceived By:	Cheyenne	Cason	10/8/2	022 8:30	0:00 AM		ch	l		
с	completed By:	Cheyenne	Cason	10/8/2	022 9:33	:04 AM		ch	al d		
R	eviewed By:	IO		10/8/2 10/10	2	τŌ					
CI	hain of Cus	tody		10[10	[22	20					
	Is Chain of Co		ete?			Y	es 🔽	N		Not Present	
2.	How was the	sample delive	ered?			<u>C</u>	ourier				
	og In										
Э.	Was an attem	pt made to co	ool the sam	ples?		Ye	es 🔽	N	o 🗆	NA 🗌	
4.	Were all samp	oles received	at a tempera	ature of >0° C	to 6.0°C	Ye	es 🔽	N	o 🗌		
5.	Sample(s) in p	proper contair	ner(s)?			Ye	es 🗹	N	•		
6.	Sufficient sam	ple volume fo	r indicated t	est(s)?		Ye	s 🗸	No	b		
7.	Are samples (e	except VOA a	nd ONG) pr	operly preserv	ed?	Ye	s 🔽	No			
8.	Was preservat	ive added to	bottles?			Ye	s 🗌	No		NA 🗆	
9.	Received at lea	ast 1 vial with	headspace	<1/4" for AQ \	/OA?	Ye	s 🗆	No			
10.	Were any sam	ple container	s received b	proken?		Ye	s 🗆	No		# of preserved	
	Does paperwor (Note discrepa			()		Ye	s 🔽	No		for pH:	noted)
12./	Are matrices co	orrectly identi	fied on Chai	in of Custody?		Ye	5	No		Adjusted? A/O	
	Is it clear what			1?		Ye	s 🗸	No			1 1
14.)	Were all holdin (If no, notify cu	g times able i stomer for au	to be met? thorization.)			Ye	5 🔽	No		Adjusted? 1/0 Checked by: Jn 10	10(2
Spe	cial Handli	ng (if appl	icable)								
15.	Was client not	ified of all dis	crepancies	with this order	,	Ye	s 🗆	No		NA 🔽	
	Person N	Notified:			D	ate:	-	_			
	By Whor				v	ia: 🗌 el	Mail 🗌	Phone	Fax	In Person	
	Regardin										
10		structions:									
	Additional rem										
17.	Cooler Inform Cooler No	Temp °C	Condition	Seal Intact	Seal N	o Seal	Date	Signed	Ву		
	1	3.9 (Good	Yes							

Page 1 of 1

	hain-o	of-Cus	stody Re	ecord	Turn-Around Tim	ie:							21			Recei
Client:	Animas	Environ	mental Servi	ices	X Standard Project Name:	🗆 Rush									ITAL FORY	
Mailing Ac	dress:	PO Box								1						OCD:
					the second se	Hwy 537 2008	Release		4901	Hawk	ins NE	- Albuc	querque	e, NM 8	37109	: 3/
	1	1	gton, NM 874	99-0008	Project #:			1	Tel.	505-34	15-3975	Fa	x 505-	345-41	07	3/30/2
Phone #:	1										Analy	sis Red	quest			023
A CONTRACTOR OF A		Igerwood	@animasenvi	ronmental.com	Project Manager:						_					9:1
QA/QC Pac			Terrer 1			Beth McNall			1	1 1						9:19:22
X Standar	rd		□ Level 4 (F	ull Validation)	An	igela Ledgerv	boov				1					2 AM
Accreditat	-				Sampler:	Jason Oyeb										M
		□ Other			On Ice:	Yes	□ No						1.1			Ĩ
🗆 EDD (T	ype)	r	F		Sample Tempera	ture: 3,9 - 0	- 3.4			Ъ						vor
Date	Time	Matrix	Sample I	Request ID	Container Type and #	Preservative Type	HEAL No. ZZIO431	VOCs (8260)	Phenols	Diss Mn and						Air Bubbles (Y or N)
10-06-22	16:15	H₂O	MV	V-9R	1 x 125-mL poly 1 x 1-L amber glass	HNO ₃ H ₂ SO ₄	001		x	x						
		\$													+	
																_
										1						
10-07-22	1533	Relinquishe	Ala.		Received by:	Ins "	late Time 0//22/533	bmg@b	omgdrill	ing.com		Benson	-Montin	-Greer		1
Date: 19/1/22	1810	Relinquishe	W Voe	2	Received by: CMC Carr e subcontracted to other a	~ iolsia		Call with								Page 75 of

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

January 04, 2023

Angela Ledgerwood Animas Environmental Services 624 E. Comanche Farmington, NM 87401 TEL: (505) 564-2281 FAX:

RE: BMG Hwy 537 2008 Release

OrderNo.: 2212C90

Dear Angela Ledgerwood:

Hall Environmental Analysis Laboratory received 2 sample(s) on 12/22/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report I ab Order 2212C90

Hall Env	ironmental Analysis I	aboratory,	Inc.				Lab Order 2212C90 Date Reported: 1/4/202	3
Project: B	Animas Environmental Services SMG Hwy 537 2008 Release 212C90-001	Matrix: AQUE	(Collect	ample I ion Dat ved Dat	t e: 12		
Analyses		Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METH	OD 8015D: GASOLINE RANGE	E					Analyst	CCM
Gasoline Ra	ange Organics (GRO)	0.24	0.10		mg/L	2	12/28/2022 5:54:00 PM	R93606
Surr: BFE	3	152	70-130	S	%Rec	2	12/28/2022 5:54:00 PM	R93606
EPA METH	OD 8260B: VOLATILES						Analyst	RAA
Benzene		ND	2.0		µg/L	2	12/30/2022 11:32:33 PM	1 R93663
Toluene		ND	2.0		µg/L	2	12/30/2022 11:32:33 PM	1 R93663
Ethylbenzen	ie	ND	2.0		µg/L	2	12/30/2022 11:32:33 PM	1 R93663
Methyl tert-b	outyl ether (MTBE)	ND	2.0		µg/L	2	12/30/2022 11:32:33 PM	1 R93663
1,2,4-Trimet	thylbenzene	ND	2.0		µg/L	2	12/30/2022 11:32:33 PM	1 R93663
1,3,5-Trimet	thylbenzene	ND	2.0		µg/L	2	12/30/2022 11:32:33 PM	1 R93663
1,2-Dichloro	pethane (EDC)	ND	2.0		µg/L	2	12/30/2022 11:32:33 PM	1 R93663
1,2-Dibromo	bethane (EDB)	ND	2.0		µg/L	2	12/30/2022 11:32:33 PM	1 R93663
Naphthalene	e	ND	4.0		µg/L	2	12/30/2022 11:32:33 PM	1 R93663
1-Methylnap	ohthalene	ND	8.0		µg/L	2	12/30/2022 11:32:33 PM	1 R93663
2-Methylnap	ohthalene	ND	8.0		µg/L	2	12/30/2022 11:32:33 PM	1 R93663
Acetone		ND	20		µg/L	2	12/30/2022 11:32:33 PM	1 R93663
Bromobenze	ene	ND	2.0		µg/L	2	12/30/2022 11:32:33 PM	1 R93663
Bromodichlo	promethane	ND	2.0		µg/L	2	12/30/2022 11:32:33 PM	1 R93663
Bromoform		ND	2.0		µg/L	2	12/30/2022 11:32:33 PM	1 R93663
Bromometha	ane	ND	6.0		µg/L	2	12/30/2022 11:32:33 PM	1 R93663
2-Butanone		ND	20		µg/L	2	12/30/2022 11:32:33 PM	1 R93663
Carbon disu	lfide	ND	20		µg/L	2	12/30/2022 11:32:33 PM	
Carbon Tetr	achloride	ND	2.0		µg/L	2	12/30/2022 11:32:33 PM	
Chlorobenze		ND	2.0		µg/L	2	12/30/2022 11:32:33 PM	
Chloroethan	e	ND	4.0		µg/L	2	12/30/2022 11:32:33 PM	1 R93663

ND

2.0

6.0

2.0

2.0

2.0

2.0

4.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

Value exceeds Maximum Contaminant Level. В Analyte detected in the associated Method Blank Sample Diluted Due to Matrix Е

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

µg/L

12/30/2022 11:32:33 PM R93663

Above Quantitation Range/Estimated Value

I Analyte detected below quantitation limits Р

Sample pH Not In Range RL Reporting Limit

Page 1 of 8

Chloroform

Chloromethane

2-Chlorotoluene

4-Chlorotoluene

cis-1,3-Dichloropropene

Dibromochloromethane

Dibromomethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,1-Dichloroethane

1,1-Dichloroethene

Qualifiers:

Dichlorodifluoromethane

*

D

1,2-Dibromo-3-chloropropane

cis-1,2-DCE

Hall Environmental Analysis Laboratory, Inc.

Analytical Report
Lab Order 2212C90

Date Reported: 1/4/2023

Analyses		Result	RL Qual Units DF Date Analyzed	Batch					
Lab ID:	2212C90-001	Matrix: AQUEOUS	Received Date: 12/22/2022 6:45:00 AM						
Project:	BMG Hwy 537 2008 Release		Collection Date: 12/21/2022 2:31:00 PM						
CLIENT:	Animas Environmental Services	Client Sample ID: MW-9R							

1,2-DichloropropaneND2.0µg/L212/30/2022 11:32:31,3-DichloropropaneND2.0µg/L212/30/2022 11:32:32,2-DichloropropaneND4.0µg/L212/30/2022 11:32:31,1-DichloropropeneND2.0µg/L212/30/2022 11:32:3HexachlorobutadieneND2.0µg/L212/30/2022 11:32:32-HexanoneND2.0µg/L212/30/2022 11:32:3IsopropylbenzeneND2.0µg/L212/30/2022 11:32:34-IsopropyltolueneND2.0µg/L212/30/2022 11:32:34-Methyl-2-pentanoneND2.0µg/L212/30/2022 11:32:3Methylene ChlorideND6.0µg/L212/30/2022 11:32:3n-ButylbenzeneND2.0µg/L212/30/2022 11:32:3sec-ButylbenzeneND2.0µg/L212/30/2022 11:32:3sec-ButylbenzeneND2.0µg/L212/30/2022 11:32:3sec-ButylbenzeneND2.0µg/L212/30/2022 11:32:3StyreneND2.0µg/L212/30/2022 11:32:3tert-ButylbenzeneND2.0µg/L212/30/2022 11:32:31,1,1,2-TetrachloroethaneND2.0µg/L212/30/2022 11:32:3	iysi.	RAA
2,2-DichloropropaneND4.0µg/L212/30/2022 11:32:31,1-DichloropropeneND2.0µg/L212/30/2022 11:32:3HexachlorobutadieneND2.0µg/L212/30/2022 11:32:32-HexanoneND2.0µg/L212/30/2022 11:32:3IsopropylbenzeneND2.0µg/L212/30/2022 11:32:34-IsopropyltolueneND2.0µg/L212/30/2022 11:32:34-Methyl-2-pentanoneND2.0µg/L212/30/2022 11:32:3Methylene ChlorideND6.0µg/L212/30/2022 11:32:3n-ButylbenzeneND6.0µg/L212/30/2022 11:32:3n-PropylbenzeneND2.0µg/L212/30/2022 11:32:3sec-ButylbenzeneND2.0µg/L212/30/2022 11:32:3StyreneND2.0µg/L212/30/2022 11:32:3ND2.0µg/L212/30/2022 11:32:3StyreneND2.0µg/L212/30/2022 11:32:3StyreneND2.0µg/L212/30/2022 11:32:3ND2.0µg/L212/30/2022 11:32:3StyreneND2.0µg/L212/30/2022 11:32:3StyreneND2.0µg/L212/30/2022 11:32:3ColorND2.0µg/L212/30/2022 11:32:3StyreneND2.0µg/L212/30/2022 11:32:3<	B PM	R9366
1,1-DichloropropeneND2.0µg/L212/30/2022 11:32:3HexachlorobutadieneND2.0µg/L212/30/2022 11:32:32-HexanoneND20µg/L212/30/2022 11:32:3IsopropylbenzeneND2.0µg/L212/30/2022 11:32:34-IsopropyltolueneND2.0µg/L212/30/2022 11:32:34-Methyl-2-pentanoneND2.0µg/L212/30/2022 11:32:3Methylene ChlorideND6.0µg/L212/30/2022 11:32:3n-ButylbenzeneND6.0µg/L212/30/2022 11:32:3n-PropylbenzeneND2.0µg/L212/30/2022 11:32:3sec-ButylbenzeneND2.0µg/L212/30/2022 11:32:3StyreneND2.0µg/L212/30/2022 11:32:3tert-ButylbenzeneND2.0µg/L212/30/2022 11:32:3StyreneND2.0µg/L212/30/2022 11:32:3tert-ButylbenzeneND2.0µg/L212/30/2022 11:32:3StyreneND2.0µg/L212/30/2022 11:32:3tert-ButylbenzeneND2.0µg/L212/30/2022 11:32:3StyreneND2.0µg/L212/30/2022 11:32:3tert-ButylbenzeneND2.0µg/L212/30/2022 11:32:3	B PM	R9366
HexachlorobutadieneND2.0µg/L212/30/2022 11:32:32-HexanoneND20µg/L212/30/2022 11:32:3IsopropylbenzeneND2.0µg/L212/30/2022 11:32:34-IsopropyltolueneND2.0µg/L212/30/2022 11:32:34-Methyl-2-pentanoneND2.0µg/L212/30/2022 11:32:3Methylene ChlorideND6.0µg/L212/30/2022 11:32:3n-ButylbenzeneND6.0µg/L212/30/2022 11:32:3n-PropylbenzeneND2.0µg/L212/30/2022 11:32:3sec-ButylbenzeneND2.0µg/L212/30/2022 11:32:3StyreneND2.0µg/L212/30/2022 11:32:3tert-ButylbenzeneND2.0µg/L212/30/2022 11:32:3StyreneND2.0µg/L212/30/2022 11:32:3tert-ButylbenzeneND2.0µg/L212/30/2022 11:32:3StyreneND2.0µg/L212/30/2022 11:32:3tert-ButylbenzeneND2.0µg/L212/30/2022 11:32:3	B PM	R9366
2-HexanoneND20µg/L212/30/2022 11:32:3IsopropylbenzeneND2.0µg/L212/30/2022 11:32:34-IsopropyltolueneND2.0µg/L212/30/2022 11:32:34-Methyl-2-pentanoneND20µg/L212/30/2022 11:32:3Methylene ChlorideND6.0µg/L212/30/2022 11:32:3n-ButylbenzeneND6.0µg/L212/30/2022 11:32:3n-PropylbenzeneND2.0µg/L212/30/2022 11:32:3sec-ButylbenzeneND2.0µg/L212/30/2022 11:32:3StyreneND2.0µg/L212/30/2022 11:32:3tert-ButylbenzeneND2.0µg/L212/30/2022 11:32:3StyreneND2.0µg/L212/30/2022 11:32:3tert-ButylbenzeneND2.0µg/L212/30/2022 11:32:3StyreneND2.0µg/L212/30/2022 11:32:3tert-ButylbenzeneND2.0µg/L212/30/2022 11:32:3	3 PM	R9366
IsopropylbenzeneND2.0µg/L212/30/2022 11:32:34-IsopropyltolueneND2.0µg/L212/30/2022 11:32:34-Methyl-2-pentanoneND20µg/L212/30/2022 11:32:3Methylene ChlorideND6.0µg/L212/30/2022 11:32:3n-ButylbenzeneND6.0µg/L212/30/2022 11:32:3n-PropylbenzeneND2.0µg/L212/30/2022 11:32:3sec-ButylbenzeneND2.0µg/L212/30/2022 11:32:3StyreneND2.0µg/L212/30/2022 11:32:3tert-ButylbenzeneND2.0µg/L212/30/2022 11:32:3	B PM	R9366
4-IsopropyltolueneND2.0µg/L212/30/2022 11:32:34-Methyl-2-pentanoneND20µg/L212/30/2022 11:32:3Methylene ChlorideND6.0µg/L212/30/2022 11:32:3n-ButylbenzeneND6.0µg/L212/30/2022 11:32:3n-PropylbenzeneND2.0µg/L212/30/2022 11:32:3sec-ButylbenzeneND2.0µg/L212/30/2022 11:32:3StyreneND2.0µg/L212/30/2022 11:32:3tert-ButylbenzeneND2.0µg/L212/30/2022 11:32:3StyreneND2.0µg/L212/30/2022 11:32:3tert-ButylbenzeneND2.0µg/L212/30/2022 11:32:3	3 PM	R9366
4-Methyl-2-pentanone ND 20 µg/L 2 12/30/2022 11:32:3 Methylene Chloride ND 6.0 µg/L 2 12/30/2022 11:32:3 n-Butylbenzene ND 6.0 µg/L 2 12/30/2022 11:32:3 n-Propylbenzene ND 6.0 µg/L 2 12/30/2022 11:32:3 sec-Butylbenzene ND 2.0 µg/L 2 12/30/2022 11:32:3 Styrene ND 2.0 µg/L 2 12/30/2022 11:32:3 tert-Butylbenzene ND 2.0 µg/L 2 12/30/2022 11:32:3 ND 2.0 µg/L 2 12/30/2022 11:32:3 Styrene ND 2.0 µg/L 2 12/30/2022 11:32:3 tert-Butylbenzene ND 2.0 µg/L 2 12/30/2022 11:32:3	3 PM	R9366
Methylene Chloride ND 6.0 µg/L 2 12/30/2022 11:32:3 n-Butylbenzene ND 6.0 µg/L 2 12/30/2022 11:32:3 n-Propylbenzene ND 6.0 µg/L 2 12/30/2022 11:32:3 sec-Butylbenzene ND 2.0 µg/L 2 12/30/2022 11:32:3 Styrene ND 2.0 µg/L 2 12/30/2022 11:32:3 tert-Butylbenzene ND 2.0 µg/L 2 12/30/2022 11:32:3 ND 2.0 µg/L 2 12/30/2022 11:32:3 12/30/2022 11:32:3	3 PM	R9366
n-Butylbenzene ND 6.0 µg/L 2 12/30/2022 11:32:3 n-Propylbenzene ND 2.0 µg/L 2 12/30/2022 11:32:3 sec-Butylbenzene ND 2.0 µg/L 2 12/30/2022 11:32:3 Styrene ND 2.0 µg/L 2 12/30/2022 11:32:3 tert-Butylbenzene ND 2.0 µg/L 2 12/30/2022 11:32:3 tert-Butylbenzene ND 2.0 µg/L 2 12/30/2022 11:32:3	3 PM	R9366
n-Propylbenzene ND 2.0 µg/L 2 12/30/2022 11:32:3 sec-Butylbenzene ND 2.0 µg/L 2 12/30/2022 11:32:3 Styrene ND 2.0 µg/L 2 12/30/2022 11:32:3 tert-Butylbenzene ND 2.0 µg/L 2 12/30/2022 11:32:3 tert-Butylbenzene ND 2.0 µg/L 2 12/30/2022 11:32:3	3 PM	R9366
sec-Butylbenzene ND 2.0 μg/L 2 12/30/2022 11:32:3 Styrene ND 2.0 μg/L 2 12/30/2022 11:32:3 tert-Butylbenzene ND 2.0 μg/L 2 12/30/2022 11:32:3	3 PM	R9366
Styrene ND 2.0 µg/L 2 12/30/2022 11:32:3 tert-Butylbenzene ND 2.0 µg/L 2 12/30/2022 11:32:3	B PM	R9366
tert-Butylbenzene ND 2.0 µg/L 2 12/30/2022 11:32:3	B PM	R9366
	B PM	R9366
1,1,1,2-Tetrachloroethane ND 2.0 µg/L 2 12/30/2022 11:32:3	B PM	R9366
	B PM	R9366
1,1,2,2-Tetrachloroethane ND 4.0 µg/L 2 12/30/2022 11:32:3	B PM	R9366
Tetrachloroethene (PCE) ND 2.0 µg/L 2 12/30/2022 11:32:3	B PM	R9366
trans-1,2-DCE ND 2.0 µg/L 2 12/30/2022 11:32:3	B PM	R9366
trans-1,3-Dichloropropene ND 2.0 µg/L 2 12/30/2022 11:32:3	B PM	R9366
1,2,3-Trichlorobenzene ND 2.0 µg/L 2 12/30/2022 11:32:3	B PM	R9366
1,2,4-Trichlorobenzene ND 2.0 µg/L 2 12/30/2022 11:32:3	B PM	R9366
1,1,1-Trichloroethane ND 2.0 μg/L 2 12/30/2022 11:32:3	B PM	R9366
1,1,2-Trichloroethane ND 2.0 µg/L 2 12/30/2022 11:32:3	B PM	R9366
Trichloroethene (TCE) ND 2.0 µg/L 2 12/30/2022 11:32:3	B PM	R9366
Trichlorofluoromethane ND 2.0 μg/L 2 12/30/2022 11:32:3	B PM	R9366
1,2,3-Trichloropropane ND 4.0 μg/L 2 12/30/2022 11:32:3	B PM	R9366
Vinyl chloride ND 2.0 µg/L 2 12/30/2022 11:32:3	B PM	R9366
Xylenes, Total ND 3.0 μg/L 2 12/30/2022 11:32:3	B PM	R9366
Surr: 1,2-Dichloroethane-d4 89.5 70-130 %Rec 2 12/30/2022 11:32:3	B PM	R9366
Surr: 4-Bromofluorobenzene 148 70-130 S %Rec 2 12/30/2022 11:32:3	B PM	R9366
Surr: Dibromofluoromethane 92.1 70-130 %Rec 2 12/30/2022 11:32:3	B PM	R9366
Surr: Toluene-d8 83.2 70-130 %Rec 2 12/30/2022 11:32:3		Dece

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix

- D Sample Diluted Due to MatrixH Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range RL Reporting Limit

Page 2 of 8

.

*

CLIENT: Animas Environmental Services

Analytical Report Lab Order 2212C90

Date Reported: 1/4/2023

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: Trip Blank **Collection Date:**

BMG Hwy 537 2008 Release **Project:** Lab ID: 2212C90-002

Received Date: 12/22/2022 6:45:00 AM Matrix: TRIP BLANK

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: GASOLINE RANGE					Analys	t: CCM
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	12/28/2022 6:14:00 PM	R9360
Surr: BFB	107	70-130	%Rec	1	12/28/2022 6:14:00 PM	R9360
EPA METHOD 8260B: VOLATILES					Analys	t: RAA
Benzene	ND	1.0	µg/L	1	12/30/2022 11:59:36 PI	/ R9366
Toluene	ND	1.0	µg/L	1	12/30/2022 11:59:36 PI	A R9366
Ethylbenzene	ND	1.0	µg/L	1	12/30/2022 11:59:36 PM	/ R9366
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	12/30/2022 11:59:36 PM	/ R9366
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	12/30/2022 11:59:36 PM	/ R9366
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	12/30/2022 11:59:36 PM	A R9366
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1	12/30/2022 11:59:36 PM	/ R9366
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	12/30/2022 11:59:36 PM	/ R9366
Naphthalene	ND	2.0	µg/L	1	12/30/2022 11:59:36 PM	/ R9366
1-Methylnaphthalene	ND	4.0	µg/L	1	12/30/2022 11:59:36 PM	A R936
2-Methylnaphthalene	ND	4.0	µg/L	1	12/30/2022 11:59:36 PM	A R936
Acetone	ND	10	µg/L	1	12/30/2022 11:59:36 PM	A R9366
Bromobenzene	ND	1.0	µg/L	1	12/30/2022 11:59:36 PM	/ R936
Bromodichloromethane	ND	1.0	µg/L	1	12/30/2022 11:59:36 PI	/ R936
Bromoform	ND	1.0	µg/L	1	12/30/2022 11:59:36 PI	/ R936
Bromomethane	ND	3.0	µg/L	1	12/30/2022 11:59:36 PM	/ R936
2-Butanone	ND	10	µg/L	1	12/30/2022 11:59:36 PM	/ R936
Carbon disulfide	ND	10	µg/L	1	12/30/2022 11:59:36 PM	A R936
Carbon Tetrachloride	ND	1.0	µg/L	1	12/30/2022 11:59:36 PM	A R936
Chlorobenzene	ND	1.0	µg/L	1	12/30/2022 11:59:36 PM	A R936
Chloroethane	ND	2.0	µg/L	1	12/30/2022 11:59:36 PM	A R9366
Chloroform	ND	1.0	µg/L	1	12/30/2022 11:59:36 PM	A R9366
Chloromethane	ND	3.0	µg/L	1	12/30/2022 11:59:36 PM	A R9366
2-Chlorotoluene	ND	1.0	µg/L	1	12/30/2022 11:59:36 PM	A R9366
4-Chlorotoluene	ND	1.0	µg/L	1	12/30/2022 11:59:36 PM	A R936
cis-1,2-DCE	ND	1.0	µg/L	1	12/30/2022 11:59:36 PM	A R9366
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	12/30/2022 11:59:36 PM	A R936
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	12/30/2022 11:59:36 PM	A R9366
Dibromochloromethane	ND	1.0	µg/L	1	12/30/2022 11:59:36 PM	A R9366
Dibromomethane	ND	1.0	µg/L	1	12/30/2022 11:59:36 PM	A R9366
1,2-Dichlorobenzene	ND	1.0	µg/L	1	12/30/2022 11:59:36 PM	/ R9366
1,3-Dichlorobenzene	ND	1.0	µg/L	1	12/30/2022 11:59:36 PM	/ R9366
1,4-Dichlorobenzene	ND	1.0	µg/L	1	12/30/2022 11:59:36 PI	A R9366
Dichlorodifluoromethane	ND	1.0	µg/L	1	12/30/2022 11:59:36 PM	A R9366
1,1-Dichloroethane	ND	1.0	µg/L	1	12/30/2022 11:59:36 PM	/ R9366
1,1-Dichloroethene	ND	1.0	µg/L	1	12/30/2022 11:59:36 PI	A R9366

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

В Analyte detected in the associated Method Blank

Е Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

Sample Diluted Due to Matrix ND Not Detected at the Reporting Limit

Value exceeds Maximum Contaminant Level.

Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

Sample pH Not In Range

Р RL Reporting Limit

Page 3 of 8

*

D

Н

Analytical Report Lab Order 2212C90

Date Reported: 1/4/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Animas Environmental Services BMG Hwy 537 2008 Release **Project:** 2212C90-002 Lab ID:

Client Sample ID: Trip Blank **Collection Date:**

Matrix: TRIP BLANK Received Date: 12/22/2022 6:45:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Ba	ıtch
EPA METHOD 8260B: VOLATILES					Analy	st: RA	٩A
1,2-Dichloropropane	ND	1.0	µg/L	1	12/30/2022 11:59:36 I	M R9	93663
1,3-Dichloropropane	ND	1.0	µg/L	1	12/30/2022 11:59:36 I	M R9	93663
2,2-Dichloropropane	ND	2.0	µg/L	1	12/30/2022 11:59:36 I	M R9	93663
1,1-Dichloropropene	ND	1.0	µg/L	1	12/30/2022 11:59:36 I	M R9	93663
Hexachlorobutadiene	ND	1.0	µg/L	1	12/30/2022 11:59:36 I	M R9	3663
2-Hexanone	ND	10	µg/L	1	12/30/2022 11:59:36 I	M R9	3663
Isopropylbenzene	ND	1.0	µg/L	1	12/30/2022 11:59:36 I	M R9	93663
4-Isopropyltoluene	ND	1.0	µg/L	1	12/30/2022 11:59:36 I	M R9	93663
4-Methyl-2-pentanone	ND	10	µg/L	1	12/30/2022 11:59:36 I	M R9	93663
Methylene Chloride	ND	3.0	µg/L	1	12/30/2022 11:59:36 I	M R9)3663
n-Butylbenzene	ND	3.0	µg/L	1	12/30/2022 11:59:36 I	M R9	9366
n-Propylbenzene	ND	1.0	µg/L	1	12/30/2022 11:59:36 I	M R9	9366
sec-Butylbenzene	ND	1.0	µg/L	1	12/30/2022 11:59:36 I	M R9)366
Styrene	ND	1.0	µg/L	1	12/30/2022 11:59:36 I	M R9)366
tert-Butylbenzene	ND	1.0	µg/L	1	12/30/2022 11:59:36 I	M R9	9366
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	12/30/2022 11:59:36 I	M R9)366
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	12/30/2022 11:59:36 I	M R9)366
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	12/30/2022 11:59:36 I	M R9	9366
trans-1,2-DCE	ND	1.0	µg/L	1	12/30/2022 11:59:36 I	M R9	9366
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	12/30/2022 11:59:36 I	M R9	9366
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	12/30/2022 11:59:36 I	M R9)366
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	12/30/2022 11:59:36 I	M R9)366
1,1,1-Trichloroethane	ND	1.0	µg/L	1	12/30/2022 11:59:36 I	M R9)366
1,1,2-Trichloroethane	ND	1.0	µg/L	1	12/30/2022 11:59:36 I	M R9)366
Trichloroethene (TCE)	ND	1.0	µg/L	1	12/30/2022 11:59:36 I	M R9)366
Trichlorofluoromethane	ND	1.0	µg/L	1	12/30/2022 11:59:36 I	M R9)366
1,2,3-Trichloropropane	ND	2.0	µg/L	1	12/30/2022 11:59:36 I	M R9)366
Vinyl chloride	ND	1.0	µg/L	1	12/30/2022 11:59:36 I	M R9)366
Xylenes, Total	ND	1.5	µg/L	1	12/30/2022 11:59:36 I	M R9	9366
Surr: 1,2-Dichloroethane-d4	96.8	70-130	%Rec	1	12/30/2022 11:59:36 I	M R9	9366
Surr: 4-Bromofluorobenzene	99.2	70-130	%Rec	1	12/30/2022 11:59:36 I	M R9	9366
Surr: Dibromofluoromethane	94.2	70-130	%Rec	1	12/30/2022 11:59:36 I	M R9	366
Surr: Toluene-d8	94.0	70-130	%Rec	1	12/30/2022 11:59:36 I	M R9	9366

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

- в Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range Reporting Limit

RL

Page 4 of 8

*

	Animas Environmental Services BMG Hwy 537 2008 Release											
Sample ID: 2.5ug gro Ics	Samp	Гуре: LC	S	Tes	TestCode: EPA Method 8015D: Gasoline Range							
Client ID: LCSW	Batc	h ID: R9 3	3606	F	RunNo: 9 3	3606						
Prep Date:	rep Date: Analysis Date: 12/28/2022 SeqNo: 3377664 Units: mg/L											
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Gasoline Range Organics (GRO)	0.54	0.050	0.5000	0	108	80	120					
Surr: BFB	47		20.00		236	70	130			S		
Sample ID: mb	Samp	Гуре: МВ	LK	Tes	tCode: EF	PA Method	8015D: Gasoli	ne Range				
Client ID: PBW	Batc	h ID: R9 :	3606	F	RunNo: 9 3	3606						
Prep Date:	Analysis [Date: 12	/28/2022	S	SeqNo: 3	377665	Units: mg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Gasoline Range Organics (GRO)	ND	0.050										
Surr: BFB	21		20.00		106	70	130					

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 8

2212C90

04-Jan-23

	Environme vy 537 200									
Sample ID: 100ng lcs	SampT	ype: LC	S	Tes	tCode: EF	PA Method	8260B: VOLA	TILES		
Client ID: LCSW	Batch	n ID: R9	3663	F	RunNo: 93	3663				
Prep Date:	Analysis D	ate: 12	2/30/2022	S	SeqNo: 3	380281	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	94.0	70	130			
Toluene	19	1.0	20.00	0	93.4	70	130			
Chlorobenzene	19	1.0	20.00	0	95.8	70	130			
1,1-Dichloroethene	17	1.0	20.00	0	85.0	70	130			
Trichloroethene (TCE)	17	1.0	20.00	0	84.3	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		102	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		99.8	70	130			
Surr: Dibromofluoromethane	9.0		10.00		90.4	70	130			
Surr: Toluene-d8	9.0		10.00		90.0	70	130			
Sample ID: mb	SampT	уре: МЕ	BLK	Tes	tCode: EF	PA Method	8260B: VOLA	TILES		
Client ID: PBW	Batch	n ID: R9	3663	F	RunNo: 93	3663				
Prep Date:	Analysis D	ate: 12	2/30/2022	S	SeqNo: 3	380294	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

2212C90

04-Jan-23

Sample ID: mb	SampT	ype: M	BLK	Tes	tCode: EF	PA Method	8260B: VOLA	TILES	
Client ID: PBW	Batch	n ID: R9	3663	F	RunNo: 9 :	3663			
Prep Date:	Analysis D	Date: 12	2/30/2022	S	SeqNo: 3	380294	Units: µg/L		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit
4-Chlorotoluene	ND	1.0							
cis-1,2-DCE	ND	1.0							
cis-1,3-Dichloropropene	ND	1.0							
1,2-Dibromo-3-chloropropane	ND	2.0							
Dibromochloromethane	ND	1.0							
Dibromomethane	ND	1.0							
1,2-Dichlorobenzene	ND	1.0							
1,3-Dichlorobenzene	ND	1.0							
1,4-Dichlorobenzene	ND	1.0							
Dichlorodifluoromethane	ND	1.0							
1,1-Dichloroethane	ND	1.0							
1,1-Dichloroethene	ND	1.0							
1,2-Dichloropropane	ND	1.0							
1,3-Dichloropropane	ND	1.0							
2,2-Dichloropropane	ND	2.0							
1,1-Dichloropropene	ND	1.0							
Hexachlorobutadiene	ND	1.0							
2-Hexanone	ND	10							
Isopropylbenzene	ND	1.0							
4-Isopropyltoluene	ND	1.0							
4-Methyl-2-pentanone	ND	10							
Methylene Chloride	ND	3.0							
n-Butylbenzene	ND	3.0							
	ND	1.0							
n-Propylbenzene									
sec-Butylbenzene	ND	1.0							
Styrene	ND	1.0							
tert-Butylbenzene	ND	1.0							
1,1,1,2-Tetrachloroethane	ND	1.0							
1,1,2,2-Tetrachloroethane	ND	2.0							
Tetrachloroethene (PCE)	ND	1.0							
trans-1,2-DCE	ND	1.0							
trans-1,3-Dichloropropene	ND	1.0							
1,2,3-Trichlorobenzene	ND	1.0							
1,2,4-Trichlorobenzene	ND	1.0							
1,1,1-Trichloroethane	ND	1.0							
1,1,2-Trichloroethane	ND	1.0							
Trichloroethene (TCE)	ND	1.0							
Trichlorofluoromethane	ND	1.0							
1,2,3-Trichloropropane	ND	2.0							

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

.

WO#: 2212C90 04-Jan-23

Qual

Sample ID: mb SampType: MBLK TestCode: EPA Method 8260B: VOLATILES												
Client ID: PBW	Batc	h ID: R9	3663	F	RunNo: 9 3	3663						
Prep Date:	Analysis I	Date: 12	2/30/2022	5	SeqNo: 3	380294	Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Vinyl chloride	ND	1.0										
Xylenes, Total	ND	1.5										
Surr: 1,2-Dichloroethane-d4	9.9		10.00		98.6	70	130					
Surr: 4-Bromofluorobenzen	e 9.5		10.00		95.2	70	130					
Surr: Dibromofluoromethan	e 9.8		10.00		97.7	70	130					
Surr: Toluene-d8	9.1		10.00		91.2	70	130					

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 8

2212C90

04-Jan-23

HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: Animas Environmental Services	Work Order Nur	nber: 2212C90		RcptNo:	1
Received By: Tracy Casarrubias	12/22/2022 6:45:0	0 AM			
Completed By: Tracy Casarrubias	12/22/2022 8:18:0	3 AM			
Reviewed By: KPU12.2:	2.22				
Chain of Custody					
1. Is Chain of Custody complete?		Yes 🗹	No 🗌	Not Present	
2. How was the sample delivered?		<u>Courier</u>			
Log In 3. Was an attempt made to cool the samples?		Yes 🗹	No 🗌		
. was an altempt made to cool the samples?		res 💌			
 Were all samples received at a temperature 	of >0° C to 6.0°C	Yes 🖌	No 🗌	NA 🗆	
5. Sample(s) in proper container(s)?		Yes 🗹	No 🗌		
Sufficient sample volume for indicated test(s)?	Yes 🗹	No 🗌		
7. Are samples (except VOA and ONG) proper	y preserved?	Yes 🗹	No 🗌		
8. Was preservative added to bottles?		Yes 🗌	No 🗹	NA 🗌	
9. Received at least 1 vial with headspace <1/4	" for AQ VOA?	Yes 🗹	No 🗌		
0. Were any sample containers received broke	n?	Yes	No 🗹	# of preserved	/
1. Does paperwork match bottle labels?		Yes 🗹	No 🗌	bottles checked for pH:	
(Note discrepancies on chain of custody)				-	2 unless noted)
2. Are matrices correctly identified on Chain of	Custody?	Yes 🗹	No 🗌	Adjusted?	
3. Is it clear what analyses were requested?		Yes 🗹	No 🗌		
 Were all holding times able to be met? (If no, notify customer for authorization.) 		Yes 🗹	No 🗌	Checked by: Sc	r is hills
pecial Handling (if applicable)			đ		
5. Was client notified of all discrepancies with	his order?	Yes 🗌	No 🗌	NA 🗹	
Person Notified:	Date	:			
By Whom:	Via:	eMail 🗌 F	hone 🔲 Fax	In Person	
Regarding:					
Client Instructions:					
6. Additional remarks:			. 654118		
7. <u>Cooler Information</u>					
	al Intact Seal No	Seal Date	Signed By		
1 0.4 Good Yes					

Page 86 of 87	 								(۱N	<u>۰</u> ۸) səldduð	∃ iA										eport.
Page 8	AALL ENVIRONMENTAL ANALYSIS LABORATORY		- Albuquerque, NM 87109	5	sis															Remarks: Please bill direct to Benson-Montin-Greer bmo@bmodrilling.com			Defection of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
	NALY	_	4901 Hawkins NE	Tel. 505-345-3975	Anal	_									 				-	bill direct t		stions.	-contracted d
	⊆ ◀		4901 Ha	Tel. 505		-	(gi	.08)	оя	W/C) ЭВС	-980/E		×		×				s: Please	0	Call with any questions.	ility. Any sub
•											((0928) sC		×		×				Remark bmɑ@b		Call with	this possib
			2008 Release				pood	Vally		ON D	- 0.4.	HEAL No.	2712090	001		200				Date Time	UNTILIZION	Date Time し、いく し、し、いく	 This serves as notice of
	□ Rush		G Hwy 537 2008 F				Angela Ledgerwood	Elizabeth McNally	J. Oyebi	W Yes	ture: O. 4 - &	Preservative Type		5 - HgCl2		2- HgCi2					141		accredited laboratorie
Turn-Around Time:	X Standard	Project Name:	BMGH	Project #:		Project Manager:			Sampler:		Tempera	Container Type and #		5- 40 mL VOA		2-40mL VOA				Received by:	- VIIIN ~	Received by: Court	be subcontracted to other a
Received by OCD: 359/2023 9:19:22 AW Chain-oi-Custody Record	Animas Environmental Services			Farmington, NM 87499-0008		Email or Fax#: aledgerwood@animasenvironmental.com		Level 4 (Full Validation)				Sample Request ID		MW-9R		, Trip Blanks					- aller	d by	subruted hall Environmental may t
I-Cus	Environn		PO Box 8	Farmingt	-2281	lerwood@a		E		□ Other		Matrix		H ₂ O		H2O				Relinquished by	2	Relinduished by	seary.sampler
1ain-0	Animas		ldress:		505-564-2281	ax#: aledg	skage:	ġ	ion:		ype)	Time		14:31						Time:	100	Time: \870	Tthece
Received	Client:		Mailing Address:		Phone #:	Email or F	QA/QC Package:	X Standard	Accreditation:		🗆 EDD (Type)	Date		22-12-21						Date:	12/12/1	Date: ' レルカフ	Palaased to

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 202234

CONDITIONS

Operator:	OGRID:
BENSON-MONTIN-GREER DRILLING CORP	2096
4900 College Blvd.	Action Number:
Farmington, NM 87402	202234
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)
CONDITIONS	

Created By	Condition	Condition Date
michael.buchanan	Review of Q1 through Q4 2022 Progress Report: Content Satisfactory 1. Perform an additional well cleaning treatment as prescribed within report on MPE wells with NAPL 2. Proceed to install oil absorbent socks within MPE wells to assist in mitigation of residual NAPL. 3. Continue recovery of residual NAPL via hydrophobic socks where NAPL thickness is sufficient for removal 4. Semi-annual gauging events for MW-2, MW-7, MW-9R 5. Conduct sampling for MW-9R (VOCs per 8260, TPH, and 8015, and manganese, dissolved iron. Sample MW-7 for TDS. 6. Submit progress report for 2023 by April 1, 2024.	8/3/2023