

#### SITE INFORMATION

Closure Report
Stratocaster 20 Federal Com 004H (04.01.23)
Incident #: NAPP2310143956
Lea County, New Mexico
Unit I Sec 20 T23S R34E
32.2882°, -103.4862°

Crude Oil Release
Point of Release: Flooded Separator

**Release Date: 04.01.23** 

Volume Released: 0.4007 Barrels of Crude Oil Volume Recovered: 0 Barrels of Crude Oil

## CARMONA RESOURCES

Prepared for: COG Operating, LLC 600 W Illinois Ave Midland, Texas 79701

Prepared by: Carmona Resources, LLC 310 West Wall Street Suite 500 Midland, Texas 79701



#### TABLE OF CONTENTS

#### 1.0 SITE INFORMATION AND BACKGROUND

2.0 SITE CHARACTERIZATION AND GROUNDWATER

3.0 NMAC REGULATORY CRITERIA

4.0 SITE ASSESSMENT ACTIVITIES

5.0 REMEDIATION ACTIVITIES

**6.0 CONCLUSIONS** 

#### **FIGURES**

FIGURE 1 OVERVIEW FIGURE 2 TOPOGRAPHIC

FIGURE 3 SAMPLE LOCATION FIGURE 4 EXCAVATION

#### **APPENDICES**

APPENDIX A TABLES

APPENDIX B PHOTOS

APPENDIX C INITIAL C-141 AND FINAL/ NMOCD CORRESPONDENCE

APPENDIX D SITE CHARACTERIZATION AND GROUNDWATER

APPENDIX E LABORATORY REPORTS



August 9, 2023

New Mexico Oil Conservation Division 1220 South St, Francis Drive Santa Fe, NM 87505

**Re:** Closure Report

Stratocaster 20 Federal Com 004H (04.01.23)

Concho Operating, LLC

Site Location: Unit I, S20, T23S, R34E

(Lat 32.2882°, Long -103.4862°)

Lea County, New Mexico

To whom it may concern:

On behalf of Concho Operating, LLC (COG), Carmona Resources, LLC has prepared this letter to document site assessment activities for the Stratocaster 20 Federal Com 004H. The site is located at 32.2882, -103.4862 within Unit I, S20, T23S, R34E, in Lea County, New Mexico (Figures 1 and 2).

#### 1.0 Site Information and Background

Based on the initial C-141 obtained from the New Mexico Oil Conservation Division (NMOCD), the release was discovered on April 1, 2023, due to an equipment malfunction causing a flooded separator. It resulted in approximately point four zero zero seven (0.4007) barrels of crude oil and zero (0) barrels of crude oil recovered. The impacted area occurred on the pad, shown in Figure 3. The initial C-141 form is attached in Appendix C.

On July 18, 2023, the NMOCD approved a 30-day extension till August 17, 2023. The email correspondence can be found in Appendix C.

#### 2.0 Site Characterization and Groundwater

The site is located within a low karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, no known water sources are within a 0.50-mile radius of the location. The closest well is approximately 1.60 miles northeast of the site in S16, T23S, R34E and was drilled in 2018. The well has a reported depth to groundwater of 200 feet below the ground surface (ft bgs). A copy of the associated point of diversion is attached in Appendix D.

#### 3.0 NMAC Regulatory Criteria

Per the NMOCD regulatory criteria established in 19.15.29.12 NMAC, the following criteria were utilized in assessing the site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 100 mg/kg (GRO + DRO + MRO).
- Chloride: 600 mg/kg.

#### 4.0 Site Assessment Activities

#### **Initial Assessment**

On May 23, 2023, Carmona Resources, LLC performed site assessment activities to evaluate soil impacts stemming from the release. A total of five (5) sample points (S-1 through S-5) and six (6) horizontal sample points (H-1 through H-6) were installed to total depths ranging from surface to 0.5' bgs inside the release area. See Figure 3 for the sample locations. For chemical analysis, the soil samples were collected and placed



directly into laboratory-provided sample containers, stored on ice, and transported under the proper chain-of-custody protocol to Eurofins Laboratories in Midland, Texas. The samples were analyzed for total petroleum hydrocarbons (TPH) by EPA method 8015, modified benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B, and chloride by EPA method 300.0. The laboratory reports, including analytical methods, results, and chain-of-custody documents, are attached in Appendix E.

Using a hand auger, a dense layer was encountered on the pad around 0.25' - 0.5' bgs and could not grab deeper samples. See Table 1 for the analytical results.

#### **5.0 Remediation Activities**

Carmona Resources personnel were onsite to supervise the remediation activities, collect confirmation samples, and document backfill activities. Before collecting composite confirmation samples, the NMOCD division office was notified via email on July 26, 2023, per Subsection D of 19.15.29.12 NMAC. See Appendix C. A total of thirteen (13) confirmation floor samples were collected (CS-1 through CS-13), and eight (8) sidewall samples (SW-1 through SW-8) were collected every 200 square feet to ensure the proper removal of the contaminated soils. All collected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 4500. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix E. The excavation depths and confirmation sample locations are shown in Figure 4.

All final confirmation samples were below the regulatory requirements for TPH, BTEX, and chloride. Refer to Table 2.

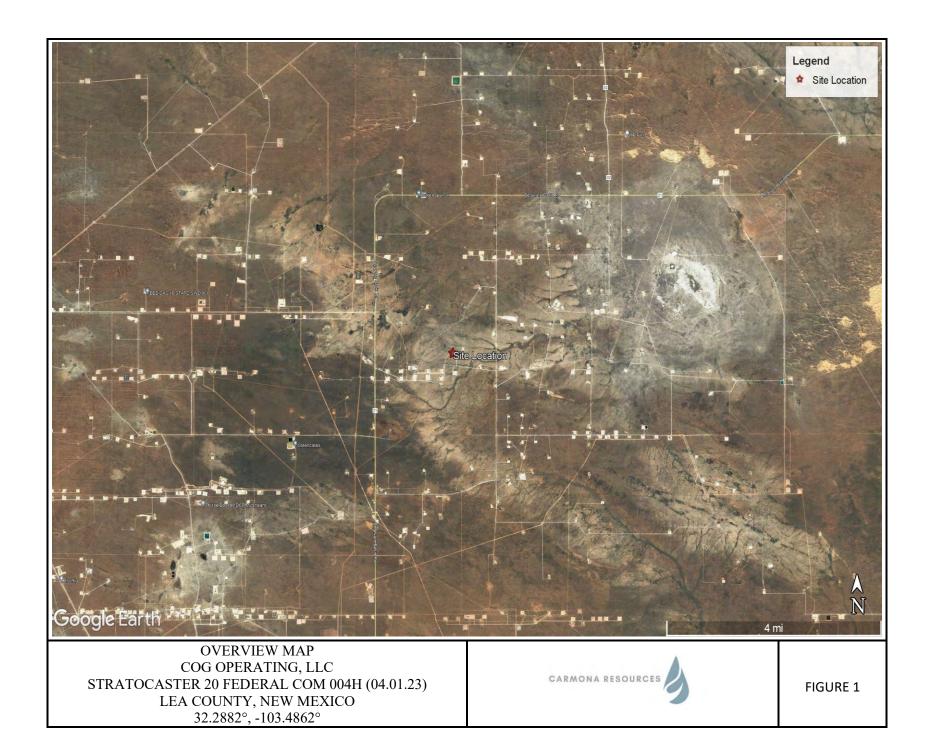
Once the remediation activities were completed, the excavated areas were backfilled with clean material to surface grade. Approximately 175 cubic yards of material were excavated and transported offsite for proper disposal.

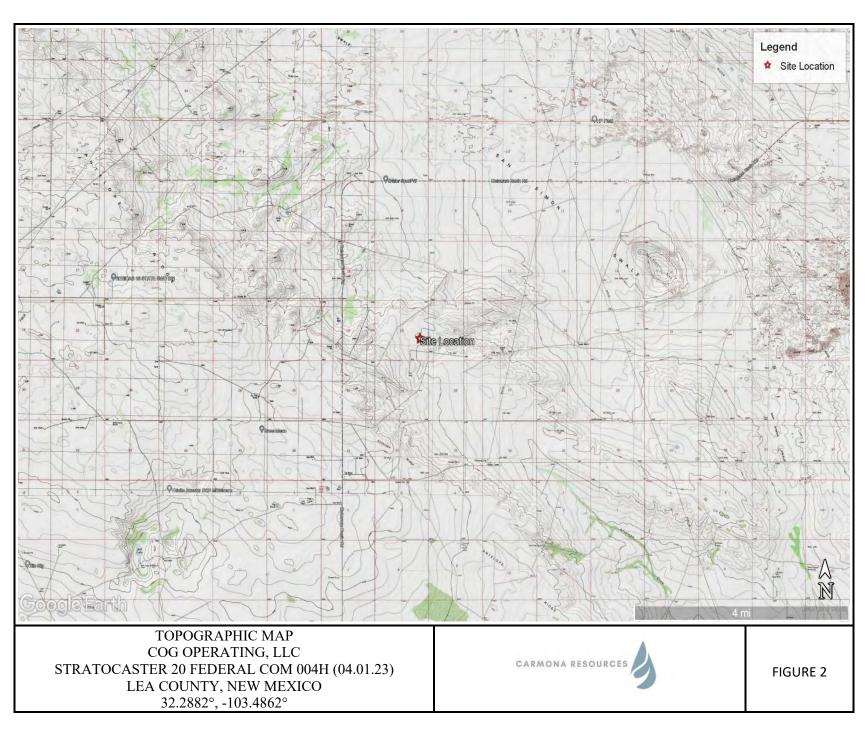
#### **6.0 Conclusions**

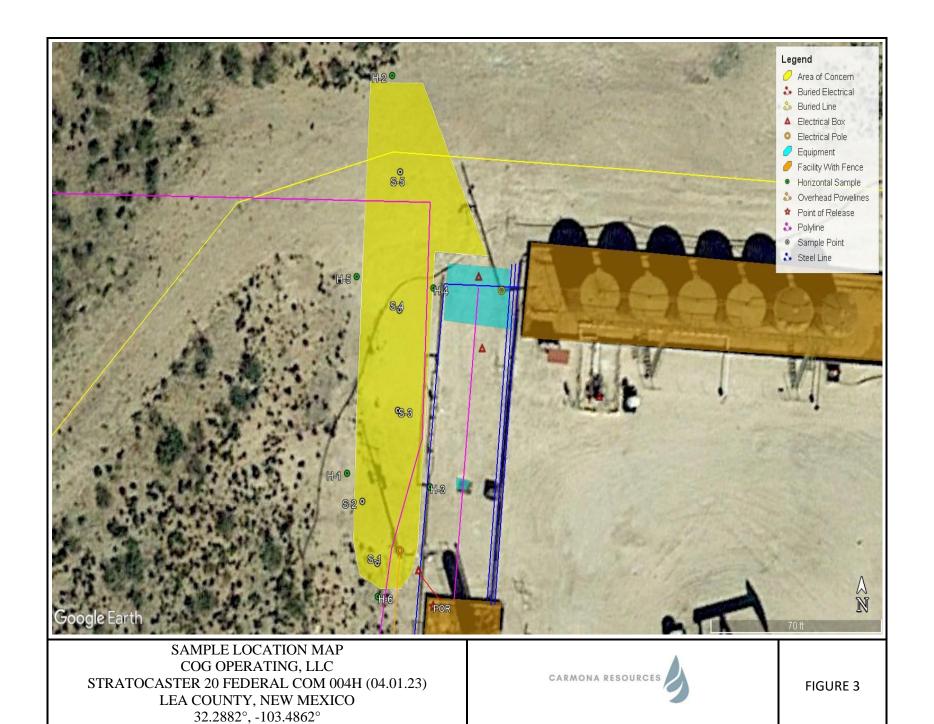
Based on the assessment results and the analytical data, no further actions are required at the site. The final C-141 is attached, and COG formally requests the closure of the spill. If you have any questions regarding this report or need additional information, please get in touch with us at 432-813-1992.

Sincerely,

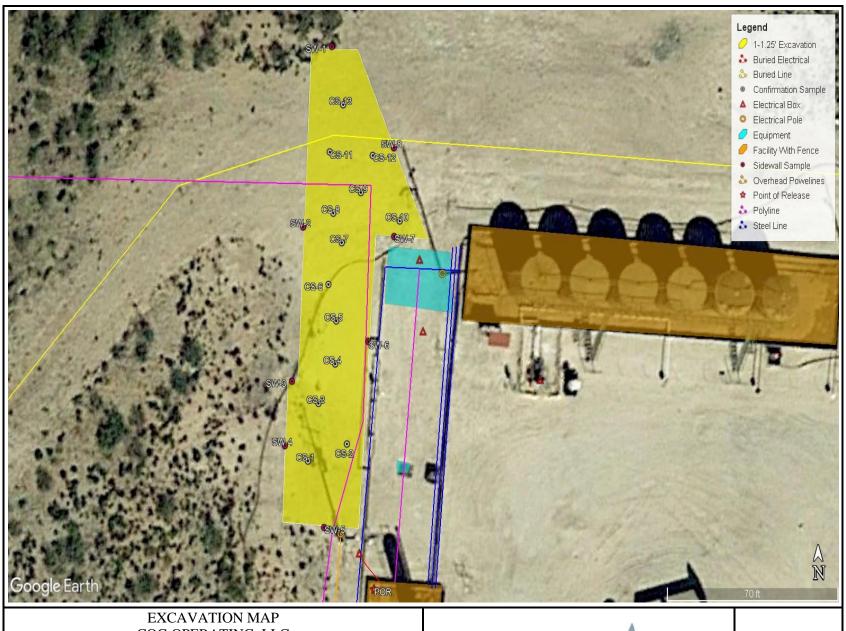
Carmona Resources, LLC


Mike Carmona


**Environmental Manager** 


Conner Moehring Sr. Project Manager

## **FIGURES**


## CARMONA RESOURCES







Released to Imaging: 11/29/2023 3:17:41 PM



COG OPERATING, LLC STRATOCASTER 20 FEDERAL COM 004H (04.01.23) LEA COUNTY, NEW MEXICO 32.2882°, -103.4862°



FIGURE 4

## **APPENDIX A**



Table 1
Conoco Phillips
Stratocaster 20 Federal Com 004H (04.01.23)
Lea County, New Mexico

| Comple ID | Doto          | Donath (ft) |       | TPH   | (mg/kg) |           | Benzene  | Toluene  | Ethlybenzene | Xylene   | Total BTEX | Chloride  |
|-----------|---------------|-------------|-------|-------|---------|-----------|----------|----------|--------------|----------|------------|-----------|
| Sample ID | Date          | Depth (ft)  | GRO   | DRO   | MRO     | Total     | (mg/kg)  | (mg/kg)  | (mg/kg)      | (mg/kg)  | (mg/kg)    | (mg/kg)   |
| S-1       | 5/23/2023     | 0-0.25'     | <50.0 | <50.0 | <50.0   | <50.0     | <0.00200 | <0.00200 | <0.00200     | <0.00400 | <0.00400   | 76.1      |
| S-2       | 5/23/2023     | 0-0.25'     | <49.8 | 174   | <49.8   | 174       | <0.00199 | <0.00199 | <0.00199     | <0.00398 | <0.00398   | 1,550     |
| 02        | "             | 0.5'        | <50.0 | 469   | 84.2    | 553       | <0.00201 | <0.00201 | <0.00201     | <0.00402 | <0.00402   | 655       |
| S-3       | 5/23/2023     | 0-0.25'     | <49.9 | 155   | <49.9   | 155       | <0.00198 | <0.00198 | <0.00198     | <0.00396 | <0.00396   | 15,500    |
| S-4       | 5/23/2023     | 0-0.25'     | <50.0 | <50.0 | <50.0   | <50.0     | <0.00199 | <0.00199 | <0.00199     | <0.00398 | <0.00398   | 1,870     |
| S-5       | 5/23/2023     | 0-0.25'     | <49.8 | 55.5  | <49.8   | 55.5      | <0.00201 | <0.00201 | <0.00201     | <0.00402 | <0.00402   | 2,550     |
| H-1       | 5/23/2023     | 0-0.5       | <49.9 | 300   | 115     | 415       | <0.00199 | <0.00199 | <0.00199     | <0.00398 | <0.00398   | 67.4      |
|           | 8/3/2023      | 0-0.5       | <49.6 | <49.6 | <49.6   | <49.6     | <0.00200 | <0.00200 | <0.00200     | <0.00401 | <0.00401   | 54.5      |
| H-2       | 5/23/2023     | 0-0.5       | <49.8 | 108   | 112     | 220       | <0.00199 | <0.00199 | <0.00199     | <0.00398 | <0.00398   | 54.9      |
| 11.2      | 8/3/2023      | 0-0.5       | <49.5 | 79.3  | <49.5   | 79.3      | <0.00200 | <0.00200 | <0.00200     | <0.00399 | <0.00399   | 28.3      |
| H-3       | 5/23/2023     | 0-0.5       | <49.8 | <49.8 | <49.8   | <49.8     | <0.00201 | <0.00201 | <0.00201     | <0.00402 | <0.00402   | 90.0      |
| H-4       | 5/23/2023     | 0-0.5       | <50.0 | <50.0 | <50.0   | <50.0     | <0.00201 | <0.00201 | <0.00201     | <0.00402 | <0.00402   | 136       |
| H-5       | 5/23/2023     | 0-0.5       | <49.9 | <49.9 | <49.9   | <49.9     | <0.00202 | <0.00202 | <0.00202     | <0.00404 | <0.00404   | 155       |
| H-6       | 5/23/2023     | 0-0.5       | <50.0 | <50.0 | <50.0   | <50.0     | <0.00199 | <0.00199 | <0.00199     | <0.00398 | <0.00398   | 312       |
|           | ry Criteria A |             |       |       |         | 100 mg/kg | 10 mg/kg |          |              |          | 50 mg/kg   | 600 mg/kg |

(-) Not Analyzed

A – Table 1 - 19.15.29 NMAC mg/kg - milligram per kilogram TPH- Total Petroleum Hydrocarbons ft-feet (H) Horizontal Sample (S) Soil Sample

Removed

## Table 2 Conoco Phillips Stratocaster 20 Federal Com 004H (4.01.23) Lea County, New Mexico

| 0 1 10    | 5.4                      | D (1/6)    |       | TPH   | l (mg/kg) |           | Benzene  | Toluene | Ethlybenzene | Xylene  | Total BTEX | Chloride  |
|-----------|--------------------------|------------|-------|-------|-----------|-----------|----------|---------|--------------|---------|------------|-----------|
| Sample ID | Date                     | Depth (ft) | GRO   | DRO   | MRO       | Total     | (mg/kg)  | (mg/kg) | (mg/kg)      | (mg/kg) | (mg/kg)    | (mg/kg)   |
| CS-1      | 7/31/2023                | 1.0        | <10.0 | <10.0 | <10.0     | <10.0     | <0.050   | <0.050  | <0.050       | <0.150  | <0.300     | <16.0     |
| CS-2      | 7/31/2023                | 1.0        | <10.0 | <10.0 | <10.0     | <10.0     | <0.050   | <0.050  | <0.050       | <0.150  | <0.300     | <16.0     |
| CS-3      | 7/31/2023                | 1.0        | <10.0 | <10.0 | <10.0     | <10.0     | <0.050   | <0.050  | <0.050       | <0.150  | <0.300     | <16.0     |
| CS-4      | 7/31/2023                | 1.0        | <10.0 | <10.0 | <10.0     | <10.0     | <0.050   | <0.050  | <0.050       | <0.150  | <0.300     | <16.0     |
| CS-5      | 7/31/2023                | 1.0        | <10.0 | <10.0 | <10.0     | <10.0     | <0.050   | <0.050  | <0.050       | <0.150  | <0.300     | <16.0     |
| CS-6      | 7/31/2023                | 1.0        | <10.0 | 85.3  | 75.6      | 160.9     | <0.050   | <0.050  | <0.050       | <0.150  | <0.300     | 32.0      |
|           | 8/2/2023                 | 1.25       | <10.0 | <10.0 | <10.0     | <10.0     | <0.050   | <0.050  | <0.050       | <0.150  | <0.300     | <16.0     |
| CS-7      | 7/31/2023                | 1.0        | <10.0 | <10.0 | <10.0     | <10.0     | <0.050   | <0.050  | <0.050       | <0.150  | <0.300     | <16.0     |
| CS-8      | 7/31/2023                | 1.0        | <10.0 | <10.0 | <10.0     | <10.0     | <0.050   | <0.050  | <0.050       | <0.150  | <0.300     | <16.0     |
| CS-9      | 7/31/2023                | 1.0        | <10.0 | <10.0 | <10.0     | <10.0     | <0.050   | <0.050  | <0.050       | <0.150  | <0.300     | <16.0     |
| CS-10     | 7/31/2023                | 1.0        | <10.0 | <10.0 | <10.0     | <10.0     | <0.050   | <0.050  | <0.050       | <0.150  | <0.300     | <16.0     |
| CS-11     | 7/31/2023                | 1.0        | <10.0 | <10.0 | <10.0     | <10.0     | <0.050   | <0.050  | <0.050       | <0.150  | <0.300     | <16.0     |
| CS-12     | 7/31/2023                | 1.0        | <10.0 | <10.0 | <10.0     | <10.0     | <0.050   | <0.050  | <0.050       | <0.150  | <0.300     | <16.0     |
| CS-13     | 7/31/2023                | 1.0        | <10.0 | <10.0 | <10.0     | <10.0     | <0.050   | <0.050  | <0.050       | <0.150  | <0.300     | <16.0     |
| SW-1      | 7/31/2023                | 1.0        | <10.0 | <10.0 | <10.0     | <10.0     | <0.050   | <0.050  | <0.050       | <0.150  | <0.300     | <16.0     |
| SW-2      | 7/31/2023                | 1.0        | <10.0 | <10.0 | <10.0     | <10.0     | <0.050   | <0.050  | <0.050       | <0.150  | <0.300     | <16.0     |
| SW-3      | 7/31/2023                | 1.0        | <10.0 | <10.0 | <10.0     | <10.0     | <0.050   | <0.050  | <0.050       | <0.150  | <0.300     | <16.0     |
| SW-4      | 7/31/2023                | 1.0        | <10.0 | <10.0 | <10.0     | <10.0     | <0.050   | <0.050  | <0.050       | <0.150  | <0.300     | <16.0     |
| SW-5      | 7/31/2023                | 1.0        | <10.0 | <10.0 | <10.0     | <10.0     | <0.050   | <0.050  | <0.050       | <0.150  | <0.300     | <16.0     |
| SW-6      | 7/31/2023                | 1.0        | <10.0 | <10.0 | <10.0     | <10.0     | <0.050   | <0.050  | <0.050       | <0.150  | <0.300     | <16.0     |
| SW-7      | 7/31/2023                | 1.0        | <10.0 | <10.0 | <10.0     | <10.0     | <0.050   | <0.050  | <0.050       | <0.150  | <0.300     | 32.0      |
| SW-8      | 7/31/2023                | 1.0        | <10.0 | <10.0 | <10.0     | <10.0     | <0.050   | <0.050  | <0.050       | <0.150  | <0.300     | <16.0     |
|           | ry Criteria <sup>A</sup> |            |       |       |           | 100 mg/kg | 10 mg/kg |         |              |         | 50 mg/kg   | 600 mg/kg |
| (-) Not   | (-) Not Analyzed         |            |       |       |           |           |          |         |              |         |            |           |

(-) Not Analyzed

A — Table 1 - 19.15.29 NMAC
mg/kg - milligram per kilogram
TPH- Total Petroleum Hydrocarbons
ft-feet
(CS) Confirmation Smaple
(SW) Sidewall Sample

Removed

## **APPENDIX B**

# CARMONA RESOURCES

#### PHOTOGRAPHIC LOG

Concho Operating, LLC

#### Photograph No. 1

Facility: Stratocaster 20 Federal Com 004H

(04.01.23)

County: Lea County, New Mexico

**Description:** 

View Southwest, area of CS-1 through CS-4.



#### Photograph No. 2

Facility: Stratocaster 20 Federal Com 004H

(04.01.23)

County: Lea County, New Mexico

**Description:** 

View Southeast, area of CS-5 and CS-6.



#### Photograph No. 3

Facility: Stratocaster 20 Federal Com 004H

(04.01.23)

County: Lea County, New Mexico

Description:

View South, area of CS-7 through CS-12.



#### PHOTOGRAPHIC LOG

**Concho Operating, LLC** 

#### Photograph No. 4

Facility: Stratocaster 20 Federal Com 004H

(04.01.23)

County: Lea County, New Mexico

**Description:** 

View Northeast, area of CS-13.



#### Photograph No. 5

Facility: Stratocaster 20 Federal Com 004H

(04.01.23)

County: Lea County, New Mexico

#### **Description:**

View West, backfilled area of CS-1 through CS-3.



#### Photograph No. 6

Facility: Stratocaster 20 Federal Com 004H

(04.01.23)

County: Lea County, New Mexico

#### Description:

View Northeast, backfilled area of CS-4 through CS-8.



#### PHOTOGRAPHIC LOG

**Concho Operating, LLC** 

Photograph No. 7

Facility: Stratocaster 20 Federal Com 004H

(04.01.23)

County: Lea County, New Mexico

**Description:** 

View South, backfilled area of CS-9 through CS-13.



## **APPENDIX C**

# CARMONA RESOURCES

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

| Incident ID    |  |
|----------------|--|
| District RP    |  |
| Facility ID    |  |
| Application ID |  |

#### **Release Notification**

#### **Responsible Party**

| Responsible Party                                     |             |                         |                            |                                                                 | OGRID                         |                            |  |  |  |
|-------------------------------------------------------|-------------|-------------------------|----------------------------|-----------------------------------------------------------------|-------------------------------|----------------------------|--|--|--|
| Contact Nam                                           | ie          |                         |                            | Contact T                                                       | Contact Telephone             |                            |  |  |  |
| Contact email                                         |             |                         |                            | Incident #                                                      | Incident # (assigned by OCD)  |                            |  |  |  |
| Contact mail                                          | ing address |                         |                            | <b>'</b>                                                        |                               |                            |  |  |  |
|                                                       |             |                         |                            |                                                                 |                               |                            |  |  |  |
|                                                       |             |                         | Location                   | of Release S                                                    | ource                         |                            |  |  |  |
| Latitude                                              |             |                         |                            | Longitude                                                       |                               |                            |  |  |  |
|                                                       |             |                         | (NAD 83 in dec             | cimal degrees to 5 deci                                         | imal places)                  |                            |  |  |  |
| Site Name                                             |             |                         |                            | Site Type                                                       |                               |                            |  |  |  |
| Date Release                                          | Discovered  |                         |                            | API# (if ap                                                     | plicable)                     |                            |  |  |  |
|                                                       |             |                         |                            |                                                                 |                               |                            |  |  |  |
| Unit Letter                                           | Section     | Township                | Range                      | Cou                                                             | nty                           |                            |  |  |  |
|                                                       |             |                         |                            |                                                                 |                               |                            |  |  |  |
| Surface Owner                                         | r: State    | □ Federal □ Tr          | ribal 🔲 Private ( <i>l</i> | Vame:                                                           |                               | ,                          |  |  |  |
| Surface Owner                                         | i State     |                         |                            | ·                                                               |                               | ,                          |  |  |  |
|                                                       |             |                         | Nature and                 | d Volume of                                                     | Release                       |                            |  |  |  |
|                                                       | Materia     | (s) Released (Select al | I that apply and attach    | calculations or specifi                                         | c justification for th        | ne volumes provided below) |  |  |  |
| Crude Oil                                             |             | Volume Release          | d (bbls)                   |                                                                 | Volume Recovered (bbls)       |                            |  |  |  |
| Produced                                              | Water       | Volume Release          | d (bbls)                   |                                                                 | Volume Recovered (bbls)       |                            |  |  |  |
|                                                       |             |                         | ion of dissolved c         | hloride in the                                                  | ☐ Yes ☐ No                    |                            |  |  |  |
| Condensa                                              | te          | produced water          |                            |                                                                 | Volume Recovered (bbls)       |                            |  |  |  |
|                                                       |             |                         |                            | ` ′                                                             |                               |                            |  |  |  |
| Natural Gas Volume Released (Mcf)                     |             |                         |                            | Volume Recovered (Mcf)  Volume/Weight Recovered (provide units) |                               |                            |  |  |  |
| Other (describe) Volume/Weight Released (provide unit |             |                         | e units)                   | volume/wei                                                      | gnt Recovered (provide units) |                            |  |  |  |
| Cause of Release                                      |             |                         |                            |                                                                 |                               |                            |  |  |  |
| Cause of Ren                                          | casc        |                         |                            |                                                                 |                               |                            |  |  |  |
|                                                       |             |                         |                            |                                                                 |                               |                            |  |  |  |
|                                                       |             |                         |                            |                                                                 |                               |                            |  |  |  |
|                                                       |             |                         |                            |                                                                 |                               |                            |  |  |  |
|                                                       |             |                         |                            |                                                                 |                               |                            |  |  |  |
|                                                       |             | ·                       | ·                          |                                                                 | ·                             |                            |  |  |  |

Received by OCD: 8/15/2023 8258:58 AMI
State of New Mexico
Page 2
Oil Conservation Division

|     |    | - |   | - 0 | 0 - | 100   |
|-----|----|---|---|-----|-----|-------|
| · D | an | n | w | 201 | - 4 | 43    |
|     | uz |   |   | U   |     | 77.37 |
|     |    |   |   |     |     |       |

| Incident ID    |  |
|----------------|--|
| District RP    |  |
| Facility ID    |  |
| Application ID |  |

| Was this a major release as defined by                                                                              | If YES, for what reason(s) does the res                                                                                                | ponsible party consider this a major release?                                                                                                                                                                                                                                                                                                                                               |  |  |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 19.15.29.7(A) NMAC?                                                                                                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| ☐ Yes ☐ No                                                                                                          |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                                                                                                     |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| If VES, was immediate no                                                                                            | otice given to the OCD? By whom? To                                                                                                    | whom? When and by what means (phone, email, etc)?                                                                                                                                                                                                                                                                                                                                           |  |  |
| II 1E3, was illillediate lie                                                                                        | once given to the OCD: By whom: To                                                                                                     | whom: when and by what means (phone, eman, etc):                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                                                                                     |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                                                                                                     | Initial                                                                                                                                | Response                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| The responsible p                                                                                                   | party must undertake the following actions immedi                                                                                      | iately unless they could create a safety hazard that would result in injury                                                                                                                                                                                                                                                                                                                 |  |  |
| ☐ The source of the rele                                                                                            | ase has been stopped.                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| ☐ The impacted area has                                                                                             | s been secured to protect human health a                                                                                               | and the environment.                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices. |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                                                                                                     | All free liquids and recoverable materials have been removed and managed appropriately.                                                |                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| If all the actions described                                                                                        | l above have <u>not</u> been undertaken, expla                                                                                         | in why:                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                                     |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                                                                                                     |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                                                                                                     |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                                                                                                     |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| has begun, please attach a                                                                                          | a narrative of actions to date. If remed                                                                                               | the remediation immediately after discovery of a release. If remediation it is a lefforts have been successfully completed or if the release occurred by, please attach all information needed for closure evaluation.                                                                                                                                                                      |  |  |
| regulations all operators are public health or the environm failed to adequately investigations.                    | required to report and/or file certain release ment. The acceptance of a C-141 report by thate and remediate contamination that pose a | the best of my knowledge and understand that pursuant to OCD rules and notifications and perform corrective actions for releases which may endanger not OCD does not relieve the operator of liability should their operations have threat to groundwater, surface water, human health or the environment. In of responsibility for compliance with any other federal, state, or local laws |  |  |
| Printed Name                                                                                                        | _                                                                                                                                      | Title:                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Signature:                                                                                                          | tanetoparge                                                                                                                            | Date:                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                     |                                                                                                                                        | Telephone:                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                                                                                                     |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| OCD Only                                                                                                            |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Received by:Jocelyn                                                                                                 | Harimon                                                                                                                                | Date:04/12/2023                                                                                                                                                                                                                                                                                                                                                                             |  |  |

Received by OCD: 8/15/2023 8:58:58 AM State of New Mexico
Page 3 Oil Conservation Division

|                | Page 20 of 143 |
|----------------|----------------|
| Incident ID    |                |
| District RP    |                |
| Facility ID    |                |
| Application ID |                |

#### **Site Assessment/Characterization**

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

| What is the shallowest depth to groundwater beneath the area affected by the release?                                                                                                                                                                                                                                                                                                                                                                                                 | (ft bgs)   |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|
| Did this release impact groundwater or surface water?                                                                                                                                                                                                                                                                                                                                                                                                                                 | ☐ Yes ☐ No |  |  |  |
| Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?                                                                                                                                                                                                                                                                                                                                                    | ☐ Yes ☐ No |  |  |  |
| Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?                                                                                                                                                                                                                                                                                                                                          | ☐ Yes ☐ No |  |  |  |
| Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?                                                                                                                                                                                                                                                                                                                                                  | ☐ Yes ☐ No |  |  |  |
| Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?                                                                                                                                                                                                                                                                                       | ☐ Yes ☐ No |  |  |  |
| Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?                                                                                                                                                                                                                                                                                                                                                                                      | ☐ Yes ☐ No |  |  |  |
| Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?                                                                                                                                                                                                                                                                                                                                                 | ☐ Yes ☐ No |  |  |  |
| Are the lateral extents of the release within 300 feet of a wetland?                                                                                                                                                                                                                                                                                                                                                                                                                  | ☐ Yes ☐ No |  |  |  |
| Are the lateral extents of the release overlying a subsurface mine?                                                                                                                                                                                                                                                                                                                                                                                                                   | ☐ Yes ☐ No |  |  |  |
| Are the lateral extents of the release overlying an unstable area such as karst geology?                                                                                                                                                                                                                                                                                                                                                                                              | ☐ Yes ☐ No |  |  |  |
| Are the lateral extents of the release within a 100-year floodplain?                                                                                                                                                                                                                                                                                                                                                                                                                  |            |  |  |  |
| Did the release impact areas <b>not</b> on an exploration, development, production, or storage site?                                                                                                                                                                                                                                                                                                                                                                                  | ☐ Yes ☐ No |  |  |  |
| Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.                                                                                                                                                                                                                                    |            |  |  |  |
| Characterization Report Checklist: Each of the following items must be included in the report.                                                                                                                                                                                                                                                                                                                                                                                        |            |  |  |  |
| Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.  Field data  Data table of soil contaminant concentration data  Depth to water determination  Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release  Boring or excavation logs  Photographs including date and GIS information  Topographic/Aerial maps  Laboratory data including chain of custody |            |  |  |  |

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 8/15/2023 8:58:58 AM State of New Mexico
Page 4 Oil Conservation Division

|                | Page 21 of 14 | 43 |
|----------------|---------------|----|
| Incident ID    |               |    |
| District RP    |               |    |
| Facility ID    |               |    |
| Application ID |               |    |

| I hereby certify that the information given above is true and complete to the regulations all operators are required to report and/or file certain release not public health or the environment. The acceptance of a C-141 report by the failed to adequately investigate and remediate contamination that pose a thr addition, OCD acceptance of a C-141 report does not relieve the operator o and/or regulations. | tifications and perform corrective actions for releases which may endanger OCD does not relieve the operator of liability should their operations have reat to groundwater, surface water, human health or the environment. In |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Printed Name:                                                                                                                                                                                                                                                                                                                                                                                                        | Title:                                                                                                                                                                                                                         |
| Signature: Jacob Laird                                                                                                                                                                                                                                                                                                                                                                                               | Date:                                                                                                                                                                                                                          |
| email:                                                                                                                                                                                                                                                                                                                                                                                                               | Telephone:                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |
| OCD Only                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                |
| Received by: Shelly Wells                                                                                                                                                                                                                                                                                                                                                                                            | Date: 8/15/2023                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |

| Received by OCD: 8/15/2023<br>Form C-141 | State of New Mexico       |
|------------------------------------------|---------------------------|
| Page 6                                   | Oil Conservation Division |

|                | Page 22 of 143 |
|----------------|----------------|
| Incident ID    |                |
| District RP    |                |
| Facility ID    |                |
| Application ID |                |

#### Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

| ☐ A scaled site and sampling diagram as described in 19.15.29.11 NMAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| ☐ Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                             |  |  |  |  |  |  |  |
| ☐ Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                             |  |  |  |  |  |  |  |
| ☐ Description of remediation activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                             |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                             |  |  |  |  |  |  |  |
| I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. |                                                                                                                                                                             |  |  |  |  |  |  |  |
| Printed Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                             |  |  |  |  |  |  |  |
| Signature: <u>Jacob Laird</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date:                                                                                                                                                                       |  |  |  |  |  |  |  |
| email:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Telephone:                                                                                                                                                                  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                             |  |  |  |  |  |  |  |
| OCD Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                             |  |  |  |  |  |  |  |
| Received by: Shelly Wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date: 8/15/2023                                                                                                                                                             |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations. |  |  |  |  |  |  |  |
| Closure Approved by: Nelson Velez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date:11/29/2023                                                                                                                                                             |  |  |  |  |  |  |  |
| Printed Name: Nelson Velez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Title:Environmental Specialist - Adv                                                                                                                                        |  |  |  |  |  |  |  |

From: Wells, Shelly, EMNRD

Sent: Wednesday, July 26, 2023 2:17 PM

**To:** Conner Moehring

Cc: Bratcher, Michael, EMNRD; Velez, Nelson, EMNRD

Subject: RE: [EXTERNAL] COG - Stratocaster 20 Fed 004H (04.01.23) - Sampling Notification

Hi Conner,

The OCD has received your notification. Include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thank you,

Shelly

Shelly Wells \* Environmental Specialist-Advanced Administrative Permitting Program EMNRD-Oil Conservation Division 1220 S. St. Francis Drive|Santa Fe, NM 87505 (505)469-7520|Shelly.Wells@emnrd.nm.gov http://www.emnrd.state.nm.us/OCD/

From: Conner Moehring < Cmoehring@carmonaresources.com>

Sent: Wednesday, July 26, 2023 11:54 AM

To: Enviro, OCD, EMNRD < OCD. Enviro@emnrd.nm.gov>

Cc: Laird, Jacob < Jacob.Laird@conocophillips.com>; Mike Carmona

<Mcarmona@carmonaresources.com>; Devin Dominguez <Ddominguez@carmonaresources.com>

Subject: [EXTERNAL] COG - Stratocaster 20 Fed 004H (04.01.23) - Sampling Notification

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Good Afternoon,

On behalf of COG, Carmona Resources will collect confirmation samples for the below site on 07/31/23. Sampling is scheduled to begin as early as 8:00 a.m. (MST) Monday, July 31st, weather and soil conditions permitting. Please let me know if you have any questions.

COG – Stratocaster 20 Fed 004H (04.01.23) NAPP2310143956 Sec 20 T23S R34E Unit I 32.2882, -103.4862 Lea County, New Mexico Conner R. Moehring 310 West Wall Street, Suite 500 Midland Texas, 79701 M: 432-813-6823

Cmoehring@carmonaresources.com



From: Velez, Nelson, EMNRD

Sent: Tuesday, July 18, 2023 4:13 PM

**To:** Conner Moehring

Cc: Mike Carmona; Bratcher, Michael, EMNRD

Subject: COP - Stratocaster 20 Fed 004H (04.01.23) - NAPP2310143956

Good afternoon Conner,

Thank you for the correspondence (below). Your 30-day time extension is approved. Remediation Due date has been updated to 08/17/2023.

Regards,

Nelson Velez • Environmental Specialist - Adv Environmental Bureau | EMNRD - Oil Conservation Division 1000 Rio Brazos Road | Aztec, NM 87410 (505) 469-6146 | nelson.velez@emnrd.nm.gov http://www.emnrd.state.nm.us/OCD/



#### previous email submitted;

From: Conner Moehring < Cmoehring@carmonaresources.com >

**Sent:** Tuesday, July 18, 2023 12:37 PM

**To:** Enviro, OCD, EMNRD < OCD.Enviro@emnrd.nm.gov> **Cc:** Mike Carmona < Mcarmona@carmonaresources.com>

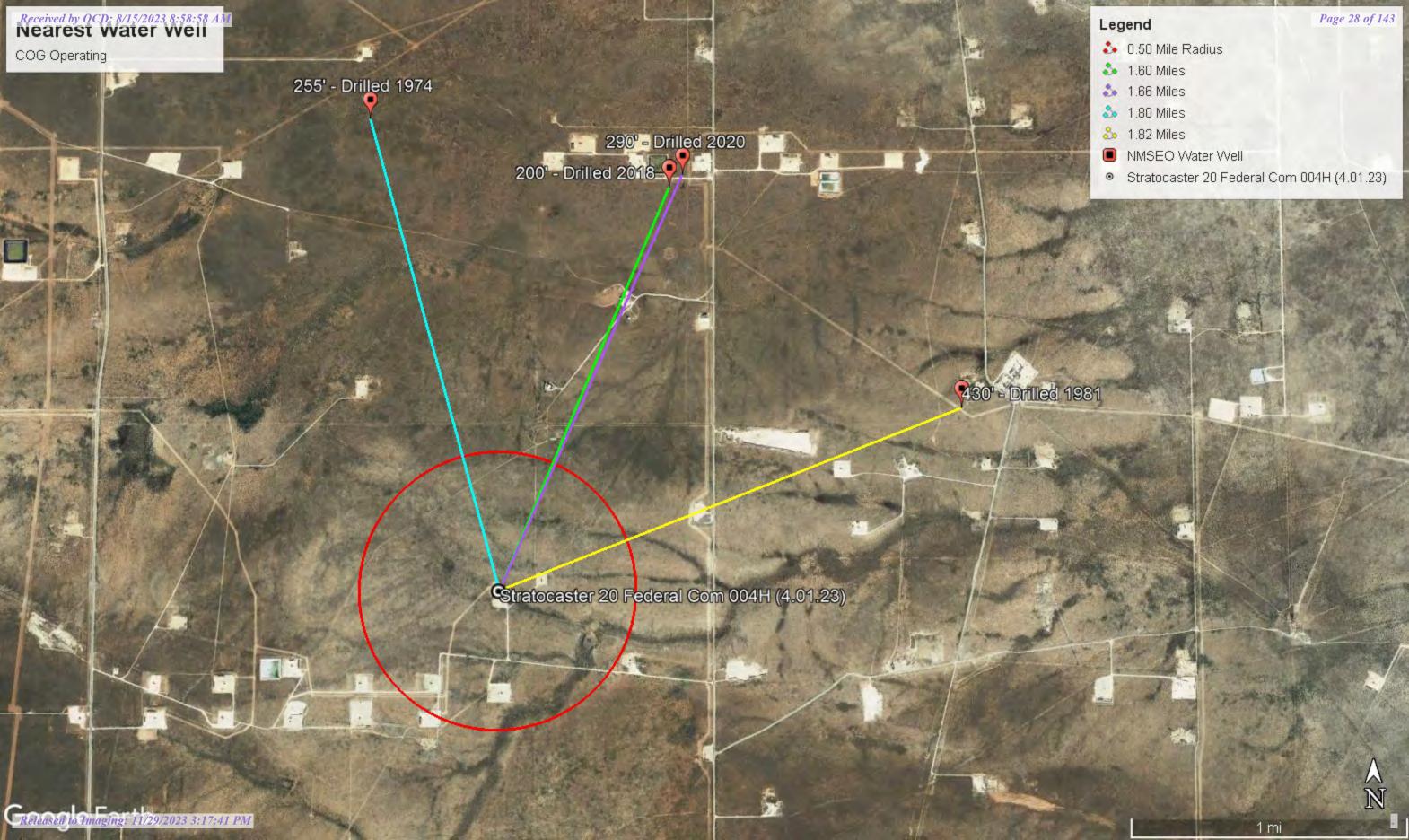
**Subject:** [EXTERNAL] COP - Stratocaster 20 Fed 004H (04.01.23) - NAPP2310143956

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Good Afternoon,

I want to inform the OCD of the status of the above-referenced site. We are currently in the process of repairing a line in the excavation area, and all remediation activities have been stopped to allow the crew to repair the line to safely and COP to clear the line to allow the crew back into the area and work safely. The majority of the excavation has been excavated, but confirmation samples have not been collected. On behalf of COP, we are requesting an additional four weeks to complete the project. Thank you, and let me know if you have any questions.

Conner R. Moehring 310 West Wall Street, Suite 500 Midland Texas, 79701


M: 432-813-6823

Cmoehring@carmonaresources.com



## **APPENDIX D**

# CARMONA RESOURCES







## New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.) (R=POD has been replaced, O=orphaned, C=the file is

closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters)

(In feet)

| water right me.) | ciosca)      | (0    | 1  |    | ٠   | 0   |     | it to large | (11)   | 1200 C 1 W III III C | ,        | \    |       |        |
|------------------|--------------|-------|----|----|-----|-----|-----|-------------|--------|----------------------|----------|------|-------|--------|
|                  | POD<br>Sub-  |       |    | Q  | -   |     |     |             |        |                      |          | -    | Depth |        |
| POD Number       | Code basin C | ounty | 64 | 16 | 4 8 | Sec | Tws | Rng         | Х      | Υ                    | Distance | Well | Water | Column |
| C 04667 POD1     | CUB          | LE    | 3  | 4  | 3   | 20  | 23S | 34E         | 641770 | 3572915 🌍            | 969      |      |       |        |
| CP 01258 POD3    | CP           | LE    | 1  | 4  | 3   | 22  | 23S | 34E         | 644938 | 3573097 🌍            | 2370     | 25   |       |        |
| CP 01258 POD2    | CP           | LE    | 1  | 4  | 3   | 22  | 23S | 34E         | 644941 | 3572883 🌍            | 2413     | 65   |       |        |
| CP 01258 POD1    | СР           | LE    | 1  | 4  | 3   | 22  | 23S | 34E         | 645015 | 3573221 🎒            | 2432     | 25   |       |        |
| CP 01730 POD1    | СР           | LE    | 2  | 2  | 1   | 16  | 238 | 34E         | 643549 | 3575824 🌍            | 2577     | 594  | 200   | 394    |
| CP 01760 POD1    | СР           | LE    | 3  | 1  | 2   | 16  | 23S | 34E         | 643627 | 3575897 🌍            | 2674     | 767  | 290   | 477    |
| CP 00556 POD1    | СР           | LE    | 4  | 4  | 3   | 80  | 23S | 34E         | 641762 | 3576206 🌕            | 2895     | 497  | 255   | 242    |
| CP 00637         | СР           | LE    | 3  | 3  | 4   | 15  | 23S | 34E         | 645293 | 3574541* 🎒           | 2920     | 430  | 430   | 0      |
| <u>CP 00618</u>  | СР           | LE    | 1  | 2  | 4   | 22  | 23S | 34E         | 645713 | 3573539* 🎒           | 3123     | 428  | 295   | 133    |
| C 04353 POD1     | CUB          | ED    | 4  | 2  | 2   | 24  | 23S | 33E         | 639474 | 3574098 🌕            | 3187     | 603  | 330   | 273    |
| C 03620 POD1     | CUB          | LE    | 1  | 4  | 3   | 32  | 23S | 34E         | 641790 | 3569941 🌕            | 3581     | 480  | 130   | 350    |
| CP 01886 POD1    | СР           | LE    | 4  | 1  | 4   | 07  | 23S | 34E         | 640646 | 3576545 🌑            | 3671     |      |       |        |
| CP 01785 POD1    | СР           | LE    | 4  | 1  | 3   | 14  | 23S | 34E         | 646203 | 3575003 🌍            | 3939     | 488  | 245   | 243    |
| CP 00580         | СР           | LE    | 3  | 4  | 3   | 23  | 23S | 34E         | 646524 | 3572948* 🎒           | 3962     | 220  |       |        |
| C 04282 POD1     | С            | LE    | 1  | 2  | 1   | 05  | 24S | 34E         | 641662 | 3569541 🌍            | 3999     | 574  | 390   | 184    |
| CP 01120 POD1    | СР           | LE    | 2  | 3  | 3   | 14  | 23S | 34E         | 646366 | 3574753 🌑            | 3999     | 397  | 318   | 79     |
|                  |              |       |    |    |     |     |     |             |        |                      |          |      |       |        |

Average Depth to Water:

288 feet

Minimum Depth:

130 feet

Maximum Depth:

430 feet

Record Count: 16

**UTMNAD83 Radius Search (in meters):** 

**Easting (X):** 642591 **Northing (Y):** 3573432 **Radius:** 4000

\*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

5/31/23 1:37 PM Page 1 of 1

WATER COLUMN/ AVERAGE DEPTH TO WATER



### New Mexico Office of the State Engineer

## **Point of Diversion Summary**

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag **POD Number**  Q64 Q16 Q4 Sec Tws Rng

X

NA

CP 01730 POD1

23S 16

3575824 643549

**Driller License:** 1706 **Driller Company:** ELITE DRILLERS CORPORATION

**Driller Name:** WALLACE, BRYCE J.

**Drill Start Date:** 10/31/2018 **Drill Finish Date:** 

11/05/2018

**Plug Date:** 

Log File Date:

**PCW Rcv Date:** 

Source:

Artesian

**Pump Type:** 

12/13/2018

Pipe Discharge Size:

**Estimated Yield:** 

320 GPM

**Casing Size:** 

7.60

Depth Well:

594 feet **Depth Water:**  200 feet

| Water Bearing Stratifications: | Тор | Bottom | Description  |
|--------------------------------|-----|--------|--------------|
|                                | 290 | 320    | Sandstone/Gr |

ravel/Conglomerate 320 Sandstone/Gravel/Conglomerate 350 Sandstone/Gravel/Conglomerate Sandstone/Gravel/Conglomerate 440 490 Sandstone/Gravel/Conglomerate

530 Sandstone/Gravel/Conglomerate 550 570 Sandstone/Gravel/Conglomerate

570 Sandstone/Gravel/Conglomerate

**Casing Perforations:** 

8

Top **Bottom** 

294 594

**Meter Number:** 

20209

Meter Make:

SEAMETRICS

**Meter Serial Number:** 

042018001201

**Meter Multiplier:** 

1.0000

**Number of Dials:** 

**Meter Type:** 

Diversion

**Unit of Measure:** 

Barrels 42 gal.

**Return Flow Percent:** 

**Usage Multiplier:** 

Reading Frequency:

Monthly

**Meter Readings (in Acre-Feet)** 

| Read Date  | Year | Mtr Reading | Flag | Rdr Comment | Mtr Amount Online |
|------------|------|-------------|------|-------------|-------------------|
| 01/07/2021 | 2021 | 144453      | A    | ad          | 0                 |
| 02/05/2021 | 2021 | 144453      | A    | ad          | 0                 |
| 08/02/2021 | 2021 | 144453      | A    | ad          | 0                 |
| 09/01/2021 | 2021 | 144453      | A    | ad          | 0                 |
| 10/05/2021 | 2021 | 144453      | A    | ad          | 0                 |
| 11/04/2021 | 2021 | 144453      | A    | ad          | 0                 |
| 12/13/2021 | 2021 | 144453      | A    | ad          | 0                 |
| 01/01/2022 | 2022 | 144453      | A    | ad          | 0                 |
| 02/08/2022 | 2022 | 144453      | A    | ad          | 0                 |
| 03/02/2022 | 2022 | 144453      | A    | ad          | 0                 |
| 04/01/2022 | 2022 | 144453      | A    | ad          | 0                 |
| 05/06/2022 | 2022 | 144453      | A    | ad          | 0                 |
| 06/07/2022 | 2022 | 144453      | A    | ad          | 0                 |

|            |         |          | 2021   |   | U      |
|------------|---------|----------|--------|---|--------|
|            |         |          | 2021   |   | 0      |
| **YTD Met  | D Meter | Amounts: | Year   |   | Amount |
| 11/10/2022 | /2022 2 | 2022     | 144453 | A | ad     |
| 10/10/2022 | /2022 2 | 2022     | 144453 | A | ad     |
| 09/05/2022 | /2022 2 | 2022     | 144453 | A | ad     |
|            | /2022 2 | 2022     | 144453 | A | ad     |

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

5/31/23 1:37 PM

POINT OF DIVERSION SUMMARY



### New Mexico Office of the State Engineer

## **Point of Diversion Summary**

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag POD Number Q64 Q16 Q4 Sec Tws Rng

X Y

NA CP 01760 POD1 3 1 2 16 23S 34E

643627 3575897

**Driller Name:** WALLACE, BRYCE J.LEE.NER

**Drill Start Date:** 02/01/2020 **Drill Finish Date:** 03/15/2020 **Plug Date:** 

Log File Date:04/09/2020PCW Rcv Date:Source:ArtesianPump Type:Pipe Discharge Size:Estimated Yield:80 GPMCasing Size:8.00Depth Well:767 feetDepth Water:290 feet

| Water Bearing Stratifications: | Top | Bottom | Description                   |
|--------------------------------|-----|--------|-------------------------------|
|                                | 285 | 320    | Sandstone/Gravel/Conglomerate |
|                                | 320 | 350    | Shale/Mudstone/Siltstone      |
|                                | 350 | 445    | Sandstone/Gravel/Conglomerate |
|                                | 445 | 495    | Shale/Mudstone/Siltstone      |
|                                | 495 | 530    | Sandstone/Gravel/Conglomerate |
|                                | 530 | 555    | Sandstone/Gravel/Conglomerate |
|                                | 555 | 570    | Sandstone/Gravel/Conglomerate |
|                                | 570 | 585    | Sandstone/Gravel/Conglomerate |
|                                | 585 | 600    | Shale/Mudstone/Siltstone      |
|                                | 600 | 630    | Shale/Mudstone/Siltstone      |
|                                | 630 | 660    | Sandstone/Gravel/Conglomerate |
|                                | 660 | 710    | Sandstone/Gravel/Conglomerate |
|                                | 710 | 750    | Limestone/Dolomite/Chalk      |
| Casing Perforations:           | Тор | Bottom |                               |
|                                | 567 | 767    |                               |
| x                              |     |        |                               |

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

5/31/23 1:39 PM POINT OF DIVERSION SUMMARY



### New Mexico Office of the State Engineer

## **Point of Diversion Summary**

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag **POD Number**  Q64 Q16 Q4 Sec Tws Rng

X

CP 00556 POD1

23S

641762 3576206

**Driller License: Driller Company:** ABBOTT BROTHERS COMPANY

**Driller Name:** ABBOTT, MURRELL

**Drill Start Date:** 09/27/1974 **Drill Finish Date:** 10/17/1974 **Plug Date:** 

Log File Date: 10/25/1974 **PCW Rcv Date:** Shallow Source: **Pump Type:** Pipe Discharge Size: Estimated Yield: 28 GPM **Casing Size:** 7.00 **Depth Well:** 497 feet **Depth Water:** 255 feet

> Water Bearing Stratifications: **Bottom Description** Top

> > 255 497 Other/Unknown

**Casing Perforations: Bottom** Top

> 397 497

**Meter Number:** 8511 Meter Make: MASTER **Meter Serial Number:** 162038091 **Meter Multiplier:** 1.0000 **Number of Dials: Meter Type:** Diversion

Unit of Measure: Gallons **Return Flow Percent:** 

**Usage Multiplier: Reading Frequency:** Quarterly

#### **Meter Readings (in Acre-Feet)**

| Read Date  | Year | Mtr Reading | Flag | Rdr Comment           | Mtr Amount Online |
|------------|------|-------------|------|-----------------------|-------------------|
| 08/20/2004 | 2004 | 42932       | A    | jw                    | 0                 |
| 12/04/2004 | 2004 | 52692       | A    | jw                    | 2.995             |
| 06/06/2014 | 2014 | 301111      | A    | RPT                   | 0                 |
| 10/01/2014 | 2014 | 42846900    | A    | RPT Changeout 6-6-14  | 0                 |
| 12/31/2014 | 2014 | 52078300    | A    | RPT                   | 28.330            |
| 01/01/2015 | 2015 | 52078300    | A    | RPT                   | 0                 |
| 02/01/2015 | 2015 | 54551900    | A    | RPT                   | 7.591             |
| 03/27/2015 | 2015 | 8539300     | A    | RPT Changeout 3-27-15 | 0                 |
| 03/27/2015 | 2015 | 58752900    | A    | RPT                   | 12.892            |
| 04/30/2015 | 2015 | 11420700    | A    | RPT                   | 8.843             |
| 05/31/2015 | 2015 | 14304800    | A    | RPT                   | 8.851             |
| 07/01/2015 | 2015 | 17059300    | A    | RPT                   | 8.453             |
| 08/01/2015 | 2015 | 19766900    | A    | RPT                   | 8.309             |
| 01/01/2016 | 2016 | 29255500    | A    | RPT                   | 29.119            |
| 02/01/2016 | 2016 | 29935100    | A    | RPT                   | 2.086             |
| 03/02/2016 | 2016 | 29935100    | A    | RPT                   | 0                 |
| 04/01/2016 | 2016 | 29935100    | A    | RPT                   | 0                 |
| 05/01/2016 | 2016 | 29935100    | A    | RPT                   | 0                 |
| 06/01/2016 | 2016 | 30608200    | A    | RPT                   | 2.066             |
| 07/01/2016 | 2016 | 30608200    | A    | RPT                   | 0                 |
|            |      |             |      |                       |                   |

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

5/31/23 1:41 PM

POINT OF DIVERSION SUMMARY



### New Mexico Office of the State Engineer

## **Point of Diversion Summary**

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag **POD Number** 

CP 00637

Q64 Q16 Q4 Sec Tws Rng 15

X

**Driller License:** 

**Driller Company:** 

3574541\*

729

WHELLER, RAY DRILLING CO.

645293

**Driller Name:** 

**Drill Start Date:** 

WHEELER, RONALD R

07/06/1981

**Drill Finish Date:** 

07/09/1981

**Plug Date:** 

Shallow

Log File Date:

07/16/1981

**PCW Rcv Date:** 

Source:

**Pump Type:** 

Pipe Discharge Size:

**Estimated Yield:** 

100 GPM

**Casing Size:** 

7.00

Depth Well:

430 feet

**Bottom Description** 

Depth Water:

430 feet

Water Bearing Stratifications:

Top 400

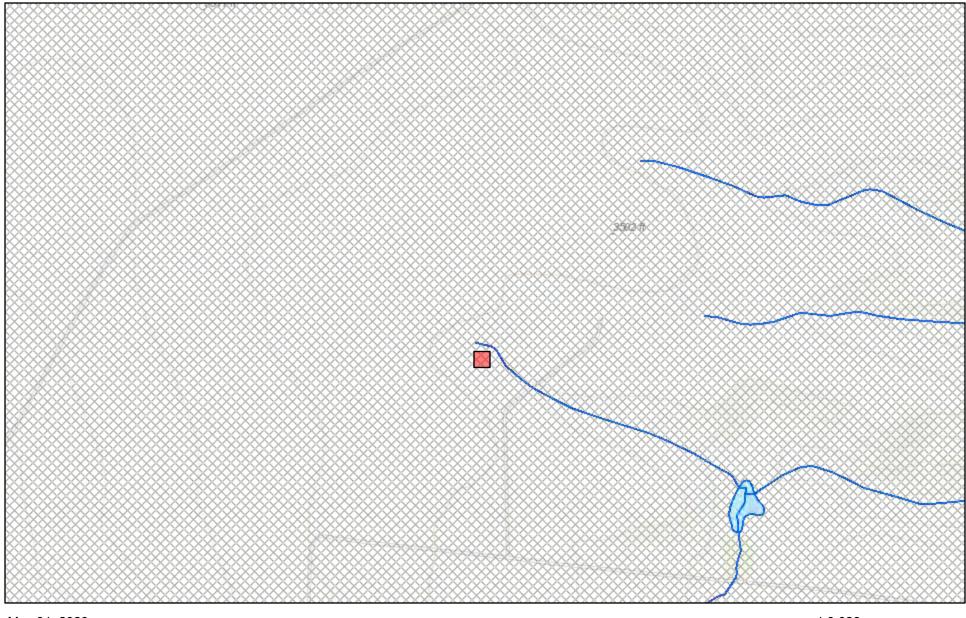
425 Sandstone/Gravel/Conglomerate

**Casing Perforations:** 

Top 400

430

**Bottom** 


The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

5/31/23 1:42 PM

POINT OF DIVERSION SUMMARY

<sup>\*</sup>UTM location was derived from PLSS - see Help

# New Mexico NFHL Data



May 31, 2023

1:9,028 0 0.05 0.1 0.2 mi 0 0.1 0.2 0.4 km

FEMA, Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey,

# **APPENDIX E**

# CARMONA RESOURCES

**Environment Testing** 

# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Mike Carmona Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701

Generated 6/1/2023 1:38:31 PM

# **JOB DESCRIPTION**

Stratocaster 20 Fed 3&4 (4.01.23) SDG NUMBER Lea County, New Mexico

# **JOB NUMBER**

880-28857-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

# **Eurofins Midland**

# **Job Notes**

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

# **Authorization**

Generated 6/1/2023 1:38:31 PM

Authorized for release by Jessica Kramer, Project Manager <u>Jessica.Kramer@et.eurofinsus.com</u> (432)704-5440 1

3

4

5

0

8

11

12

10

Client: Carmona Resources Project/Site: Stratocaster 20 Fed 3&4 (4.01.23) Laboratory Job ID: 880-28857-1 SDG: Lea County, New Mexico

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 11 |
| QC Sample Results      | 12 |
| QC Association Summary | 18 |
| Lab Chronicle          | 21 |
| Certification Summary  | 23 |
| Method Summary         | 24 |
| Sample Summary         | 25 |
| Chain of Custody       | 26 |
| Receipt Chacklists     | 27 |

2

3

4

6

8

10

40

13

#### **Definitions/Glossary**

Job ID: 880-28857-1 Client: Carmona Resources Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

SDG: Lea County, New Mexico

**Qualifiers** 

**GC VOA** Qualifier **Qualifier Description** 

MS and/or MSD recovery exceeds control limits. U Indicates the analyte was analyzed for but not detected.

**GC Semi VOA** 

Qualifier **Qualifier Description** 

F1 MS and/or MSD recovery exceeds control limits. U Indicates the analyte was analyzed for but not detected.

**HPLC/IC** 

Qualifier **Qualifier Description** 

MS and/or MSD recovery exceeds control limits. U Indicates the analyte was analyzed for but not detected.

**Glossary** 

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DFR Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor** 

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

**EDL** Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present PQL Practical Quantitation Limit

**PRES** Presumptive

QC **Quality Control** RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) TEQ

**TNTC** Too Numerous To Count

#### Case Narrative

Client: Carmona Resources

Job ID: 880-28857-1 Project/Site: Stratocaster 20 Fed 3&4 (4.01.23) SDG: Lea County, New Mexico

Job ID: 880-28857-1

**Laboratory: Eurofins Midland** 

Narrative

Job Narrative 880-28857-1

#### Receipt

The samples were received on 5/26/2023 1:04 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.1°C

#### **Receipt Exceptions**

The following samples were received and analyzed from an unpreserved bulk soil jar: S-1 (0-0.25') (880-28857-1), S-2 (0-0.25') (880-28857-2), S-2 (0.5') (880-28857-3), S-3 (0-0.25') (880-28857-4), S-4 (0-0.25') (880-28857-5) and S-5 (0-0.25') (880-28857-6).

#### GC VOA

Method 8021B: The CCV was biased low for ethylbenzene, toluene, o-xylene, and m,p-xylenes. Another CCV was analyzed and acceptable within the method specified 12 hour window; therefore, the data was qualified and reported. (CCV 880-54444/33)

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-54428 and analytical batch 880-54444 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

Method 8015MOD NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-54278 and analytical batch 880-54321 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### HPLC/IC

Method 300 ORGFM 28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-54269 and analytical batch 880-54394 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

# **Client Sample Results**

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

Job ID: 880-28857-1

SDG: Lea County, New Mexico

Lab Sample ID: 880-28857-1 Client Sample ID: S-1 (0-0.25')

Date Collected: 05/23/23 00:00 Matrix: Solid

Date Received: 05/26/23 13:04

| Analyte                                                                                                                                                                                                                                    | Result                                    | Qualifier                                                        | RL                                                                | MDL | Unit                               | D        | Prepared                                                                       | Analyzed                                                                                 | Dil Fac       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|-----|------------------------------------|----------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------|
| Benzene                                                                                                                                                                                                                                    | <0.00200                                  | U                                                                | 0.00200                                                           |     | mg/Kg                              |          | 05/30/23 09:40                                                                 | 05/30/23 18:42                                                                           | 1             |
| Toluene                                                                                                                                                                                                                                    | < 0.00200                                 | U                                                                | 0.00200                                                           |     | mg/Kg                              |          | 05/30/23 09:40                                                                 | 05/30/23 18:42                                                                           | 1             |
| Ethylbenzene                                                                                                                                                                                                                               | <0.00200                                  | U                                                                | 0.00200                                                           |     | mg/Kg                              |          | 05/30/23 09:40                                                                 | 05/30/23 18:42                                                                           | 1             |
| m-Xylene & p-Xylene                                                                                                                                                                                                                        | <0.00400                                  | U                                                                | 0.00400                                                           |     | mg/Kg                              |          | 05/30/23 09:40                                                                 | 05/30/23 18:42                                                                           | 1             |
| o-Xylene                                                                                                                                                                                                                                   | <0.00200                                  | U                                                                | 0.00200                                                           |     | mg/Kg                              |          | 05/30/23 09:40                                                                 | 05/30/23 18:42                                                                           | 1             |
| Xylenes, Total                                                                                                                                                                                                                             | <0.00400                                  | U                                                                | 0.00400                                                           |     | mg/Kg                              |          | 05/30/23 09:40                                                                 | 05/30/23 18:42                                                                           | 1             |
| Surrogate                                                                                                                                                                                                                                  | %Recovery                                 | Qualifier                                                        | Limits                                                            |     |                                    |          | Prepared                                                                       | Analyzed                                                                                 | Dil Fac       |
| 4-Bromofluorobenzene (Surr)                                                                                                                                                                                                                | 89                                        |                                                                  | 70 - 130                                                          |     |                                    |          | 05/30/23 09:40                                                                 | 05/30/23 18:42                                                                           | 1             |
| 1,4-Difluorobenzene (Surr)                                                                                                                                                                                                                 | 91                                        |                                                                  | 70 - 130                                                          |     |                                    |          | 05/30/23 09:40                                                                 | 05/30/23 18:42                                                                           | 1             |
| Method: TAL SOP Total BTEX -                                                                                                                                                                                                               | Total BTEX Cald                           | culation                                                         |                                                                   |     |                                    |          |                                                                                |                                                                                          |               |
| Analyte                                                                                                                                                                                                                                    | Result                                    | Qualifier                                                        | RL                                                                | MDL | Unit                               | D        | Prepared                                                                       | Analyzed                                                                                 | Dil Fac       |
| Total BTEX                                                                                                                                                                                                                                 | <0.00400                                  | U                                                                | 0.00400                                                           |     | mg/Kg                              |          |                                                                                | 05/31/23 09:57                                                                           | 1             |
| Method: SW846 8015 NM - Diese                                                                                                                                                                                                              | el Range Organ                            |                                                                  |                                                                   |     | mg/rtg                             |          |                                                                                | 00,01120 00.07                                                                           |               |
| <del>-</del><br>-                                                                                                                                                                                                                          |                                           |                                                                  |                                                                   | MDL |                                    | D        | Prepared                                                                       | Analyzed                                                                                 | Dil Fac       |
| :<br>Method: SW846 8015 NM - Diese                                                                                                                                                                                                         |                                           | ics (DRO) (                                                      | GC)                                                               | MDL |                                    | <u>D</u> | Prepared                                                                       |                                                                                          | Dil Fac       |
| Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH                                                                                                                                                                                      | Result   <50.0                            | ics (DRO) (C                                                     | RL                                                                | MDL | Unit                               | <u>D</u> | Prepared                                                                       | Analyzed                                                                                 |               |
| Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Die                                                                                                                                                      | Result <50.0                              | ics (DRO) (C                                                     | RL                                                                | MDL | Unit<br>mg/Kg                      | <u>D</u> | Prepared Prepared                                                              | Analyzed 05/30/23 09:23                                                                  | 1             |
| Method: SW846 8015 NM - Diese<br>Analyte Total TPH  Method: SW846 8015B NM - Die<br>Analyte Gasoline Range Organics                                                                                                                        | Result <50.0                              | ics (DRO) ( Qualifier U nics (DRO) Qualifier                     | RL 50.0                                                           |     | Unit<br>mg/Kg                      |          | <u> </u>                                                                       | Analyzed                                                                                 | 1 Dil Fac     |
| Method: SW846 8015 NM - Diese<br>Analyte Total TPH  Method: SW846 8015B NM - Die<br>Analyte Gasoline Range Organics<br>(GRO)-C6-C10                                                                                                        | Result <50.0  Sel Range Orga Result <50.0 | ics (DRO) (( Qualifier U  nics (DRO) Qualifier U F1              | GC)  RL  50.0  (GC)  RL  50.0                                     |     | Unit mg/Kg  Unit mg/Kg             |          | Prepared 05/26/23 17:20                                                        | Analyzed 05/30/23 09:23  Analyzed 05/28/23 11:53                                         | Dil Fac       |
| Method: SW846 8015 NM - Diese Analyte Total TPH  Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over                                                                                     | Result <50.0  sel Range Orga Result       | ics (DRO) (( Qualifier U  nics (DRO) Qualifier U F1              | GC)  RL  50.0                                                     |     | Unit<br>mg/Kg                      |          | Prepared                                                                       | Analyzed 05/30/23 09:23 Analyzed                                                         | Dil Fac       |
| Method: SW846 8015 NM - Diese<br>Analyte Total TPH  Method: SW846 8015B NM - Die<br>Analyte Gasoline Range Organics<br>(GRO)-C6-C10                                                                                                        | Result <50.0  Sel Range Orga Result <50.0 | ics (DRO) (( Qualifier U  nics (DRO) Qualifier U F1              | GC)  RL  50.0  (GC)  RL  50.0                                     |     | Unit mg/Kg  Unit mg/Kg             |          | Prepared 05/26/23 17:20                                                        | Analyzed 05/30/23 09:23  Analyzed 05/28/23 11:53                                         | Dil Fac       |
| Method: SW846 8015 NM - Diese<br>Analyte Total TPH  Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)                                       | Result                                    | ics (DRO) (( Qualifier U  nics (DRO) Qualifier U F1  U           | GC)  RL  50.0  (GC)  RL  50.0  50.0                               |     | Unit mg/Kg  Unit mg/Kg mg/Kg       |          | Prepared 05/26/23 17:20 05/26/23 17:20 05/26/23 17:20                          | Analyzed 05/30/23 09:23  Analyzed 05/28/23 11:53 05/28/23 11:53                          | 1 Dil Fac     |
| Method: SW846 8015 NM - Diese<br>Analyte Total TPH  Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)  Surrogate                            | Result                                    | ics (DRO) (( Qualifier U  nics (DRO) Qualifier U F1  U           | GC) RL 50.0  (GC) RL 50.0  50.0  50.0  Limits                     |     | Unit mg/Kg  Unit mg/Kg mg/Kg       |          | Prepared 05/26/23 17:20 05/26/23 17:20 05/26/23 17:20 Prepared                 | Analyzed 05/30/23 09:23  Analyzed 05/28/23 11:53 05/28/23 11:53 Analyzed                 | Dil Fac       |
| Method: SW846 8015 NM - Diese<br>Analyte Total TPH  Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)                                       | Result                                    | ics (DRO) (( Qualifier U  nics (DRO) Qualifier U F1  U           | GC)  RL  50.0  (GC)  RL  50.0  50.0                               |     | Unit mg/Kg  Unit mg/Kg mg/Kg       |          | Prepared 05/26/23 17:20 05/26/23 17:20 05/26/23 17:20                          | Analyzed 05/30/23 09:23  Analyzed 05/28/23 11:53 05/28/23 11:53                          | Dil Fac       |
| Method: SW846 8015 NM - Diese<br>Analyte Total TPH  Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)  Surrogate 1-Chlorooctane o-Terphenyl | Result                                    | ics (DRO) (( Qualifier U  nics (DRO) Qualifier U F1 U  Qualifier | GC)  RL 50.0  (GC)  RL 50.0  50.0  50.0  Limits 70 - 130 70 - 130 |     | Unit mg/Kg  Unit mg/Kg mg/Kg       |          | Prepared 05/26/23 17:20 05/26/23 17:20 05/26/23 17:20  Prepared 05/26/23 17:20 | Analyzed 05/30/23 09:23  Analyzed 05/28/23 11:53 05/28/23 11:53  Analyzed 05/28/23 11:53 | 1 Dil Fac 1 1 |
| Method: SW846 8015 NM - Dieso<br>Analyte Total TPH  Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36)  Surrogate 1-Chlorooctane             | Result                                    | ics (DRO) (( Qualifier U  nics (DRO) Qualifier U F1 U  Qualifier | GC)  RL 50.0  (GC)  RL 50.0  50.0  50.0  Limits 70 - 130 70 - 130 |     | Unit mg/Kg  Unit mg/Kg mg/Kg mg/Kg |          | Prepared 05/26/23 17:20 05/26/23 17:20 05/26/23 17:20  Prepared 05/26/23 17:20 | Analyzed 05/30/23 09:23  Analyzed 05/28/23 11:53 05/28/23 11:53  Analyzed 05/28/23 11:53 | 1 1 1 Dil Fac |

Client Sample ID: S-2 (0-0.25') Lab Sample ID: 880-28857-2

Date Collected: 05/23/23 00:00 **Matrix: Solid** 

Date Received: 05/26/23 13:04

| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 05/30/23 09:40 | 05/30/23 19:03 | 1       |
| Toluene                     | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 05/30/23 09:40 | 05/30/23 19:03 | 1       |
| Ethylbenzene                | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 05/30/23 09:40 | 05/30/23 19:03 | 1       |
| m-Xylene & p-Xylene         | <0.00398  | U         | 0.00398  |     | mg/Kg |   | 05/30/23 09:40 | 05/30/23 19:03 | 1       |
| o-Xylene                    | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 05/30/23 09:40 | 05/30/23 19:03 | 1       |
| Xylenes, Total              | <0.00398  | U         | 0.00398  |     | mg/Kg |   | 05/30/23 09:40 | 05/30/23 19:03 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 89        |           | 70 - 130 |     |       |   | 05/30/23 09:40 | 05/30/23 19:03 | 1       |
| 1,4-Difluorobenzene (Surr)  | 87        |           | 70 - 130 |     |       |   | 05/30/23 09:40 | 05/30/23 19:03 | 1       |

# **Client Sample Results**

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

Job ID: 880-28857-1

SDG: Lea County, New Mexico

Lab Sample ID: 880-28857-2 **Client Sample ID: S-2 (0-0.25')** 

Matrix: Solid

Date Collected: 05/23/23 00:00 Date Received: 05/26/23 13:04

| Analyte                              | Result        | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|---------------|-------------|----------|-----|-------|---|----------------|----------------|---------|
| Total BTEX                           | <0.00398      | U           | 0.00398  |     | mg/Kg |   |                | 05/31/23 09:57 | 1       |
| -<br>  Method: SW846 8015 NM - Diese | Range Organ   | ics (DRO) ( | GC)      |     |       |   |                |                |         |
| Analyte                              | Result        | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                            | 174           |             | 49.8     |     | mg/Kg |   |                | 05/30/23 09:23 | 1       |
| -<br>Method: SW846 8015B NM - Dies   | el Range Orga | nics (DRO)  | (GC)     |     |       |   |                |                |         |
| Analyte                              |               | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics              | <49.8         | U           | 49.8     |     | mg/Kg |   | 05/26/23 17:20 | 05/28/23 12:59 | 1       |
| (GRO)-C6-C10                         |               |             |          |     |       |   |                |                |         |
| Diesel Range Organics (Over          | 174           |             | 49.8     |     | mg/Kg |   | 05/26/23 17:20 | 05/28/23 12:59 | 1       |
| C10-C28)                             |               |             |          |     |       |   |                |                |         |
| Oll Range Organics (Over C28-C36)    | <49.8         | U           | 49.8     |     | mg/Kg |   | 05/26/23 17:20 | 05/28/23 12:59 | 1       |
| Surrogate                            | %Recovery     | Qualifier   | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                       | 103           |             | 70 - 130 |     |       |   | 05/26/23 17:20 | 05/28/23 12:59 | 1       |
| o-Terphenyl                          | 99            |             | 70 - 130 |     |       |   | 05/26/23 17:20 | 05/28/23 12:59 | 1       |
| Method: EPA 300.0 - Anions, Ion      | Chromatogran  | hv - Solubl | e        |     |       |   |                |                |         |
| Analyte                              | • •           | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                             | 1550          |             | 50.4     |     | mg/Kg |   |                | 05/30/23 10:28 | 10      |

Client Sample ID: S-2 (0.5') Lab Sample ID: 880-28857-3 **Matrix: Solid** 

Date Collected: 05/23/23 00:00

Date Received: 05/26/23 13:04

| Analyte                                                                                                                  | Result                                                                         | Qualifier                                               | RL                                            | MDL | Unit              | D        | Prepared                 | Analyzed                                         | Dil Fac |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|-----|-------------------|----------|--------------------------|--------------------------------------------------|---------|
| Benzene                                                                                                                  | <0.00201                                                                       | U                                                       | 0.00201                                       |     | mg/Kg             |          | 05/30/23 09:40           | 05/30/23 19:23                                   | 1       |
| Toluene                                                                                                                  | <0.00201                                                                       | U                                                       | 0.00201                                       |     | mg/Kg             |          | 05/30/23 09:40           | 05/30/23 19:23                                   | 1       |
| Ethylbenzene                                                                                                             | <0.00201                                                                       | U                                                       | 0.00201                                       |     | mg/Kg             |          | 05/30/23 09:40           | 05/30/23 19:23                                   | 1       |
| m-Xylene & p-Xylene                                                                                                      | <0.00402                                                                       | U                                                       | 0.00402                                       |     | mg/Kg             |          | 05/30/23 09:40           | 05/30/23 19:23                                   | 1       |
| o-Xylene                                                                                                                 | <0.00201                                                                       | U                                                       | 0.00201                                       |     | mg/Kg             |          | 05/30/23 09:40           | 05/30/23 19:23                                   | 1       |
| Xylenes, Total                                                                                                           | <0.00402                                                                       | U                                                       | 0.00402                                       |     | mg/Kg             |          | 05/30/23 09:40           | 05/30/23 19:23                                   | 1       |
| Surrogate                                                                                                                | %Recovery                                                                      | Qualifier                                               | Limits                                        |     |                   |          | Prepared                 | Analyzed                                         | Dil Fac |
| 4-Bromofluorobenzene (Surr)                                                                                              | 89                                                                             |                                                         | 70 - 130                                      |     |                   |          | 05/30/23 09:40           | 05/30/23 19:23                                   | 1       |
|                                                                                                                          |                                                                                |                                                         |                                               |     |                   |          |                          |                                                  |         |
| 1,4-Difluorobenzene (Surr)  Method: TAL SOP Total BTEX Analyte                                                           |                                                                                | culation<br>Qualifier                                   | 70 <sub>-</sub> 130<br>RL                     | MDL | Unit              | D        | 05/30/23 09:40  Prepared | 05/30/23 19:23 Analyzed                          |         |
|                                                                                                                          |                                                                                | culation                                                | 70 - 130                                      |     |                   |          | 05/30/23 09:40           | 05/30/23 19:23                                   | 1       |
| Method: TAL SOP Total BTEX                                                                                               | - Total BTEX Cald                                                              | Qualifier                                               |                                               | MDL | Unit<br>mg/Kg     | <u>D</u> |                          |                                                  | Dil Fac |
| Method: TAL SOP Total BTEX Analyte Total BTEX                                                                            | - Total BTEX Calc<br>Result<br><0.00402                                        | <b>Qualifier</b><br>U                                   | RL<br>0.00402                                 | MDL |                   | <u> </u> |                          | Analyzed                                         | Dil Fac |
| Method: TAL SOP Total BTEX Analyte                                                                                       | - Total BTEX Calc<br>Result<br><0.00402<br>esel Range Organ                    | <b>Qualifier</b><br>U                                   | RL<br>0.00402                                 |     |                   | <u>D</u> |                          | Analyzed                                         | Dil Fac |
| Method: TAL SOP Total BTEX Analyte Total BTEX  Method: SW846 8015 NM - Die                                               | - Total BTEX Calc<br>Result<br><0.00402<br>esel Range Organ                    | Qualifier U                                             | RL 0.00402                                    |     | mg/Kg             |          | Prepared                 | Analyzed 05/31/23 09:57                          | Dil Fac |
| Method: TAL SOP Total BTEX Analyte Total BTEX  Method: SW846 8015 NM - Die Analyte                                       | - Total BTEX Calc Result <0.00402 esel Range Organ Result 553                  | Qualifier U ics (DRO) ( Qualifier                       | RL 0.00402 —————————————————————————————————— |     | mg/Kg             |          | Prepared                 | Analyzed 05/31/23 09:57 Analyzed                 | Dil Fac |
| Method: TAL SOP Total BTEX Analyte Total BTEX  Method: SW846 8015 NM - Die Analyte Total TPH                             | - Total BTEX Calc Result <0.00402 esel Range Organ Result 553 iesel Range Orga | Qualifier U ics (DRO) ( Qualifier                       | RL 0.00402 —————————————————————————————————— | MDL | mg/Kg             |          | Prepared                 | Analyzed 05/31/23 09:57 Analyzed                 | Dil Fac |
| Method: TAL SOP Total BTEX Analyte Total BTEX  Method: SW846 8015 NM - Die Analyte Total TPH  Method: SW846 8015B NM - D | - Total BTEX Calc Result <0.00402 esel Range Organ Result 553 iesel Range Orga | Qualifier U ics (DRO) ( Qualifier  nics (DRO) Qualifier | RL 0.00402  GC)  RL 50.0                      | MDL | mg/Kg  Unit mg/Kg | <u>D</u> | Prepared<br>Prepared     | Analyzed 05/31/23 09:57  Analyzed 05/30/23 09:23 | Dil Fac |

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

Job ID: 880-28857-1

SDG: Lea County, New Mexico

Client Sample ID: S-2 (0.5')

Date Collected: 05/23/23 00:00 Date Received: 05/26/23 13:04

Lab Sample ID: 880-28857-3

Matrix: Solid

| Method: SW846 8015B NM | - Diesel Range Organics (DRO) (G | C) (Continued) |
|------------------------|----------------------------------|----------------|
| A I4 -                 | DII OIIII                        | D.             |

| Analyte                  | Result Quali | lifier RL | MDL Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------|--------------|-----------|----------|---|----------------|----------------|---------|
| Oll Range Organics (Over | 84.2         | 50.0      | mg/Kg    |   | 05/26/23 17:20 | 05/28/23 13:21 | 1       |
| COO COC                  |              |           |          |   |                |                |         |

| Surrogate      | %Recovery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|----------------|---------------------|----------|----------------|----------------|---------|
| 1-Chlorooctane | 118                 | 70 - 130 | 05/26/23 17:20 | 05/28/23 13:21 | 1       |
| o-Terphenvl    | 114                 | 70 - 130 | 05/26/23 17:20 | 05/28/23 13:21 | 1       |

o-Terphenyl 114 70 - 130

| Method: EPA 300.0 - Anions, Ion Chromatography - Soluble |        |           |      |     |       |   |          |                |         |
|----------------------------------------------------------|--------|-----------|------|-----|-------|---|----------|----------------|---------|
| Analyte                                                  | Result | Qualifier | RL   | MDL | Unit  | D | Prepared | Analyzed       | Dil Fac |
| Chloride                                                 | 655    |           | 50.0 |     | mg/Kg |   |          | 05/30/23 10:34 | 10      |

Client Sample ID: S-3 (0-0.25') Lab Sample ID: 880-28857-4

Date Collected: 05/23/23 00:00

Date Received: 05/26/23 13:04

**Matrix: Solid** 

Method: SW846 8021B - Volatile Organic Compounds (GC)

| Analyte             | Result   | Qualifier | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|---------------------|----------|-----------|---------|-----|-------|---|----------------|----------------|---------|
| Benzene             | <0.00198 | U         | 0.00198 |     | mg/Kg |   | 05/30/23 15:51 | 05/31/23 23:24 | 1       |
| Toluene             | <0.00198 | U         | 0.00198 |     | mg/Kg |   | 05/30/23 15:51 | 05/31/23 23:24 | 1       |
| Ethylbenzene        | <0.00198 | U         | 0.00198 |     | mg/Kg |   | 05/30/23 15:51 | 05/31/23 23:24 | 1       |
| m-Xylene & p-Xylene | <0.00396 | U         | 0.00396 |     | mg/Kg |   | 05/30/23 15:51 | 05/31/23 23:24 | 1       |
| o-Xylene            | <0.00198 | U         | 0.00198 |     | mg/Kg |   | 05/30/23 15:51 | 05/31/23 23:24 | 1       |
| Xylenes, Total      | <0.00396 | U         | 0.00396 |     | mg/Kg |   | 05/30/23 15:51 | 05/31/23 23:24 | 1       |
|                     |          |           |         |     |       |   |                |                |         |

| Surrogate                   | %Recovery | Qualifier | Limits   | Prepared     | Analyzed          | Dil Fac |
|-----------------------------|-----------|-----------|----------|--------------|-------------------|---------|
| 4-Bromofluorobenzene (Surr) | 98        |           | 70 - 130 | 05/30/23 15: | 51 05/31/23 23:24 | 1       |
| 1,4-Difluorobenzene (Surr)  | 101       |           | 70 - 130 | 05/30/23 15: | 51 05/31/23 23:24 | 1       |

**Method: TAL SOP Total BTEX - Total BTEX Calculation** 

| Analyte    | Result    | Qualifier | RL      | MDL | Unit  | D | Prepared | Analyzed       | Dil Fac |
|------------|-----------|-----------|---------|-----|-------|---|----------|----------------|---------|
| Total BTEX | < 0.00396 | U         | 0.00396 |     | mg/Kg |   |          | 06/01/23 09:26 | 1       |

| Mothod: SW946 9045 NM | Diocal Pango   | Organica | (DBO) (  | CC  |
|-----------------------|----------------|----------|----------|-----|
| Method: SW846 8015 NM | - Diesei Kange | Organics | י) (טאט) | GC) |

| Analyte   | Result Qualifier | RL   | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|-----------|------------------|------|----------|---|----------|----------------|---------|
| Total TPH | 155              | 49.9 | ma/Ka    |   |          | 05/30/23 09:23 | 1       |

| Analyte                           | Result | Qualifier | RL   | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|--------|-----------|------|-----|-------|---|----------------|----------------|---------|
| Gasoline Range Organics           | <49.9  | U         | 49.9 |     | mg/Kg |   | 05/26/23 17:20 | 05/28/23 13:42 | 1       |
| (GRO)-C6-C10                      |        |           |      |     |       |   |                |                |         |
| Diesel Range Organics (Over       | 155    |           | 49.9 |     | mg/Kg |   | 05/26/23 17:20 | 05/28/23 13:42 | 1       |
| C10-C28)                          |        |           |      |     |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <49.9  | U         | 49.9 |     | mg/Kg |   | 05/26/23 17:20 | 05/28/23 13:42 | 1       |
|                                   |        |           |      |     |       |   |                |                |         |

| Surrogate      | %Recovery Qu | ualifier Limits | Prepared       | Analyzed       | Dil Fac |
|----------------|--------------|-----------------|----------------|----------------|---------|
| 1-Chlorooctane | 98           | 70 - 130        | 05/26/23 17:20 | 05/28/23 13:42 | 1       |
| o-Terphenyl    | 93           | 70 - 130        | 05/26/23 17:20 | 05/28/23 13:42 | 1       |

| l | Mothod: EPA 300 0 - Anione Ion Chromatography - Solublo  |
|---|----------------------------------------------------------|
| ı | Method: EPA 300.0 - Anions, Ion Chromatography - Soluble |

| Analyte  | Result Qualifier | RL  | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|----------|------------------|-----|----------|---|----------|----------------|---------|
| Chloride | 15500            | 248 | mg/Kg    |   |          | 05/30/23 10:39 | 50      |

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

Job ID: 880-28857-1

SDG: Lea County, New Mexico

**Client Sample ID: S-4 (0-0.25')** 

Date Collected: 05/23/23 00:00 Date Received: 05/26/23 13:04

Lab Sample ID: 880-28857-5

Matrix: Solid

| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RL                                                                | MDL | Unit                               | D        | Prepared                                                                       | Analyzed                                                                                 | Dil Fac                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----|------------------------------------|----------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------|
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.00199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00199                                                           |     | mg/Kg                              |          | 05/30/23 15:51                                                                 | 05/31/23 23:44                                                                           | 1                                           |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.00199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00199                                                           |     | mg/Kg                              |          | 05/30/23 15:51                                                                 | 05/31/23 23:44                                                                           | 1                                           |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.00199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00199                                                           |     | mg/Kg                              |          | 05/30/23 15:51                                                                 | 05/31/23 23:44                                                                           | 1                                           |
| m-Xylene & p-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.00398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00398                                                           |     | mg/Kg                              |          | 05/30/23 15:51                                                                 | 05/31/23 23:44                                                                           | 1                                           |
| o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.00199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00199                                                           |     | mg/Kg                              |          | 05/30/23 15:51                                                                 | 05/31/23 23:44                                                                           | 1                                           |
| Xylenes, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.00398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00398                                                           |     | mg/Kg                              |          | 05/30/23 15:51                                                                 | 05/31/23 23:44                                                                           | 1                                           |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | %Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Limits                                                            |     |                                    |          | Prepared                                                                       | Analyzed                                                                                 | Dil Fac                                     |
| 4-Bromofluorobenzene (Surr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70 - 130                                                          |     |                                    |          | 05/30/23 15:51                                                                 | 05/31/23 23:44                                                                           | 1                                           |
| 1,4-Difluorobenzene (Surr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70 - 130                                                          |     |                                    |          | 05/30/23 15:51                                                                 | 05/31/23 23:44                                                                           | 1                                           |
| -<br>Method: TAL SOP Total BTEX - T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | otal BTEX Cald                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | culation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                   |     |                                    |          |                                                                                |                                                                                          |                                             |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RL                                                                | MDL | Unit                               | D        | Prepared                                                                       | Analyzed                                                                                 | Dil Fac                                     |
| Total BTEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.00398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | П                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00398                                                           |     | mg/Kg                              |          |                                                                                | 06/01/23 09:26                                                                           |                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |     | mg/rtg                             |          |                                                                                | 00/01/20 09.20                                                                           |                                             |
| The state of the s | I Range Organ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   | MDL |                                    | D        | Prepared                                                                       |                                                                                          | Dil Fac                                     |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I Range Organ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ics (DRO) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GC)                                                               | MDL |                                    | <u>D</u> | Prepared                                                                       | Analyzed 05/30/23 09:23                                                                  |                                             |
| Method: SW846 8015 NM - Diese Analyte Total TPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Result <50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ics (DRO) (Gualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GC) RL 50.0                                                       | MDL | Unit                               | <u>D</u> | Prepared                                                                       | Analyzed                                                                                 | Dil Fac                                     |
| Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I Range Organ Result <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ics (DRO) ( Qualifier U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RL 50.0                                                           |     | Unit<br>mg/Kg                      |          |                                                                                | Analyzed 05/30/23 09:23                                                                  | Dil Fac                                     |
| Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies<br>Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I Range Organ Result Result <p< td=""><td>Qualifier Unics (DRO) Qualifier</td><td>GC)  RL  50.0</td><td>MDL</td><td>Unit<br/>mg/Kg<br/>Unit</td><td> <u>D</u></td><td>Prepared</td><td>Analyzed 05/30/23 09:23 Analyzed</td><td>Dil Fac</td></p<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Qualifier Unics (DRO) Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GC)  RL  50.0                                                     | MDL | Unit<br>mg/Kg<br>Unit              | <u>D</u> | Prepared                                                                       | Analyzed 05/30/23 09:23 Analyzed                                                         | Dil Fac                                     |
| Method: SW846 8015 NM - Diese Analyte Total TPH  Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I Range Organ Result <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qualifier Unics (DRO) Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RL 50.0                                                           |     | Unit<br>mg/Kg                      |          |                                                                                | Analyzed 05/30/23 09:23                                                                  | Dil Fac                                     |
| Method: SW846 8015 NM - Diese Analyte Total TPH  Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I Range Organ Result Result <p< td=""><td>Qualifier U nics (DRO) Qualifier U u</td><td>GC)  RL  50.0</td><td></td><td>Unit mg/Kg  Unit mg/Kg</td><td></td><td>Prepared 05/26/23 17:20</td><td>Analyzed 05/30/23 09:23 Analyzed</td><td>Dil Fac</td></p<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Qualifier U nics (DRO) Qualifier U u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GC)  RL  50.0                                                     |     | Unit mg/Kg  Unit mg/Kg             |          | Prepared 05/26/23 17:20                                                        | Analyzed 05/30/23 09:23 Analyzed                                                         | Dil Fac                                     |
| Method: SW846 8015 NM - Diese Analyte Total TPH  Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I Range Organ Result <50.0 sel Range Orga Result <50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qualifier U nics (DRO) Qualifier U u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (GC)  RL  50.0  RL  50.0                                          |     | Unit<br>mg/Kg<br>Unit              |          | Prepared                                                                       | Analyzed 05/30/23 09:23  Analyzed 05/28/23 14:04                                         | Dil Fac  Dil Fac                            |
| Method: SW846 8015 NM - Diese Analyte Total TPH  Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I Range Organ Result <50.0 sel Range Orga Result <50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cos (DRO) (Control of the Control of | (GC)  RL  50.0  RL  50.0                                          |     | Unit mg/Kg  Unit mg/Kg             |          | Prepared 05/26/23 17:20                                                        | Analyzed 05/30/23 09:23  Analyzed 05/28/23 14:04                                         | Dil Fac                                     |
| Method: SW846 8015 NM - Diese Analyte Total TPH  Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I Range Organ Result <50.0 sel Range Orga Result <50.0 <50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cos (DRO) (Control of the Control of | GC)  RL  50.0  (GC)  RL  50.0  50.0                               |     | Unit mg/Kg  Unit mg/Kg mg/Kg       |          | Prepared 05/26/23 17:20 05/26/23 17:20                                         | Analyzed 05/30/23 09:23  Analyzed 05/28/23 14:04 05/28/23 14:04                          | Dil Fac  Dil Fac                            |
| Method: SW846 8015 NM - Diese Analyte Total TPH  Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I Range Organ Result cel Range Orga Result  <50.0 <50.0 <50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Control (Control (Con | GC)  RL  50.0  (GC)  RL  50.0  50.0                               |     | Unit mg/Kg  Unit mg/Kg mg/Kg       |          | Prepared 05/26/23 17:20 05/26/23 17:20 05/26/23 17:20                          | Analyzed 05/30/23 09:23  Analyzed 05/28/23 14:04 05/28/23 14:04                          | Dil Fac  Dil Fac  1  1  1                   |
| Method: SW846 8015 NM - Diese Analyte Total TPH  Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)  Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Result Solution Sel Range Organ Result \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ </td <td>Control (Control (Con</td> <td>GC)  RL 50.0  (GC)  RL 50.0  50.0  Limits</td> <td></td> <td>Unit mg/Kg  Unit mg/Kg mg/Kg</td> <td></td> <td>Prepared 05/26/23 17:20 05/26/23 17:20 05/26/23 17:20 Prepared</td> <td>Analyzed 05/30/23 09:23  Analyzed 05/28/23 14:04 05/28/23 14:04 Analyzed</td> <td>Dil Fac  Dil Fac  1  Dil Fac</td> | Control (Control (Con | GC)  RL 50.0  (GC)  RL 50.0  50.0  Limits                         |     | Unit mg/Kg  Unit mg/Kg mg/Kg       |          | Prepared 05/26/23 17:20 05/26/23 17:20 05/26/23 17:20 Prepared                 | Analyzed 05/30/23 09:23  Analyzed 05/28/23 14:04 05/28/23 14:04 Analyzed                 | Dil Fac  Dil Fac  1  Dil Fac                |
| Method: SW846 8015 NM - Diese Analyte Total TPH  Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GR0)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)  Surrogate 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Result Sel Range Organ Result Sel Range Organ Result <50.0 <50.0 <50.0 <70.0 %Recovery 102 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Company of the compan | GC)  RL 50.0  (GC)  RL 50.0  50.0  50.0  Limits 70 - 130 70 - 130 |     | Unit mg/Kg  Unit mg/Kg mg/Kg       |          | Prepared 05/26/23 17:20 05/26/23 17:20 05/26/23 17:20  Prepared 05/26/23 17:20 | Analyzed 05/30/23 09:23  Analyzed 05/28/23 14:04 05/28/23 14:04  Analyzed 05/28/23 14:04 | Dil Fac  Dil Fac  1  Dil Fac  1  Dil Fac  1 |
| Method: SW846 8015 NM - Diese Analyte Total TPH  Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GR0)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)  Surrogate 1-Chlorooctane o-Terphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I Range Organ Result sel Range Organ Result  <50.0 <50.0 <50.0 <50.0 <8ecovery 102 95 Chromatograp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Company of the compan | GC)  RL 50.0  (GC)  RL 50.0  50.0  50.0  Limits 70 - 130 70 - 130 |     | Unit mg/Kg  Unit mg/Kg mg/Kg mg/Kg |          | Prepared 05/26/23 17:20 05/26/23 17:20 05/26/23 17:20  Prepared 05/26/23 17:20 | Analyzed 05/30/23 09:23  Analyzed 05/28/23 14:04 05/28/23 14:04  Analyzed 05/28/23 14:04 | Dil Fac  Dil Fac  1  Dil Fac  1  Dil Fac  1 |

Client Sample ID: S-5 (0-0.25') Lab Sample ID: 880-28857-6 Date Collected: 05/23/23 00:00 Matrix: Solid

Date Received: 05/26/23 13:04

Method: SW846 8021B - Volatile Organic Compounds (GC) Result Qualifier Analyte MDL Unit D Dil Fac RL Prepared Analyzed Benzene <0.00201 U 0.00201 mg/Kg 05/30/23 15:51 06/01/23 00:05 Toluene <0.00201 U 0.00201 mg/Kg 05/30/23 15:51 06/01/23 00:05 Ethylbenzene <0.00201 U 0.00201 mg/Kg 05/30/23 15:51 06/01/23 00:05 m-Xylene & p-Xylene <0.00402 U 0.00402 mg/Kg 05/30/23 15:51 06/01/23 00:05 o-Xylene <0.00201 U 0.00201 mg/Kg 05/30/23 15:51 06/01/23 00:05 <0.00402 U 0.00402 05/30/23 15:51 06/01/23 00:05 Xylenes, Total mg/Kg %Recovery Qualifier Limits Surrogate Prepared Analyzed Dil Fac 121 70 - 130 05/30/23 15:51 06/01/23 00:05 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 101 70 - 130 05/30/23 15:51 06/01/23 00:05

# **Client Sample Results**

Client: Carmona Resources

Job ID: 880-28857-1 Project/Site: Stratocaster 20 Fed 3&4 (4.01.23) SDG: Lea County, New Mexico

Lab Sample ID: 880-28857-6

**Client Sample ID: S-5 (0-0.25')** 

Matrix: Solid

Date Collected: 05/23/23 00:00 Date Received: 05/26/23 13:04

| Analyte                            | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|------------------------------------|----------------|-------------|----------|-----|-------|---|----------------|----------------|---------|
| Total BTEX                         | <0.00402       | U           | 0.00402  |     | mg/Kg |   |                | 06/01/23 09:26 | 1       |
| -<br>Method: SW846 8015 NM - Diese | l Range Organ  | ics (DRO) ( | GC)      |     |       |   |                |                |         |
| Analyte                            | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                          | 55.5           |             | 49.8     |     | mg/Kg |   |                | 05/30/23 09:23 | 1       |
| -<br>Method: SW846 8015B NM - Dies | sel Range Orga | nics (DRO)  | (GC)     |     |       |   |                |                |         |
| Analyte                            | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics            | <49.8          | U           | 49.8     |     | mg/Kg |   | 05/26/23 17:20 | 05/28/23 14:26 | 1       |
| (GRO)-C6-C10                       |                |             |          |     |       |   |                |                |         |
| Diesel Range Organics (Over        | 55.5           |             | 49.8     |     | mg/Kg |   | 05/26/23 17:20 | 05/28/23 14:26 | 1       |
| C10-C28)                           |                |             |          |     |       |   |                |                |         |
| OII Range Organics (Over C28-C36)  | <49.8          | U           | 49.8     |     | mg/Kg |   | 05/26/23 17:20 | 05/28/23 14:26 | 1       |
| Surrogate                          | %Recovery      | Qualifier   | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                     | 99             |             | 70 - 130 |     |       |   | 05/26/23 17:20 | 05/28/23 14:26 | 1       |
| o-Terphenyl                        | 94             |             | 70 - 130 |     |       |   | 05/26/23 17:20 | 05/28/23 14:26 | 1       |
| Method: EPA 300.0 - Anions, Ion    | Chromatograp   | hy - Solubl | e        |     |       |   |                |                |         |
| Analyte                            |                | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                           | 2550           | F1          | 50.1     |     | mg/Kg |   |                | 05/30/23 10:50 | 10      |

# **Surrogate Summary**

Client: Carmona Resources

Job ID: 880-28857-1 Project/Site: Stratocaster 20 Fed 3&4 (4.01.23) SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

|                     |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |
|---------------------|------------------------|----------|----------|------------------------------------------------|
|                     |                        | BFB1     | DFBZ1    |                                                |
| Lab Sample ID       | Client Sample ID       | (70-130) | (70-130) |                                                |
| 880-28852-A-4-C MS  | Matrix Spike           | 76       | 118      |                                                |
| 880-28852-A-4-D MSD | Matrix Spike Duplicate | 84       | 115      |                                                |
| 880-28857-1         | S-1 (0-0.25')          | 89       | 91       |                                                |
| 380-28857-2         | S-2 (0-0.25')          | 89       | 87       |                                                |
| 380-28857-3         | S-2 (0.5')             | 89       | 85       |                                                |
| 880-28857-4         | S-3 (0-0.25')          | 98       | 101      |                                                |
| 380-28857-5         | S-4 (0-0.25')          | 107      | 99       |                                                |
| 380-28857-6         | S-5 (0-0.25')          | 121      | 101      |                                                |
| 380-28876-A-1-A MS  | Matrix Spike           | 105      | 103      |                                                |
| 880-28876-A-1-B MSD | Matrix Spike Duplicate | 99       | 110      |                                                |
| _CS 880-54365/1-A   | Lab Control Sample     | 106      | 101      |                                                |
| _CS 880-54428/1-A   | Lab Control Sample     | 82       | 115      |                                                |
| _CSD 880-54365/2-A  | Lab Control Sample Dup | 99       | 103      |                                                |
| _CSD 880-54428/2-A  | Lab Control Sample Dup | 105      | 111      |                                                |
| MB 880-54365/5-A    | Method Blank           | 90       | 109      |                                                |
| MB 880-54425/5-A    | Method Blank           | 83       | 102      |                                                |
| MB 880-54428/5-A    | Method Blank           | 79       | 103      |                                                |
| Surrogate Legend    |                        |          |          |                                                |

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

|                    |                        |          |          | Percent Surrogate Re |
|--------------------|------------------------|----------|----------|----------------------|
|                    |                        | 1CO1     | OTPH1    |                      |
| Lab Sample ID      | Client Sample ID       | (70-130) | (70-130) |                      |
| 880-28857-1        | S-1 (0-0.25')          | 97       | 94       |                      |
| 380-28857-1 MS     | S-1 (0-0.25')          | 91       | 81       |                      |
| 880-28857-1 MSD    | S-1 (0-0.25')          | 98       | 85       |                      |
| 380-28857-2        | S-2 (0-0.25')          | 103      | 99       |                      |
| 880-28857-3        | S-2 (0.5')             | 118      | 114      |                      |
| 880-28857-4        | S-3 (0-0.25')          | 98       | 93       |                      |
| 880-28857-5        | S-4 (0-0.25')          | 102      | 95       |                      |
| 880-28857-6        | S-5 (0-0.25')          | 99       | 94       |                      |
| LCS 880-54278/2-A  | Lab Control Sample     | 99       | 91       |                      |
| _CSD 880-54278/3-A | Lab Control Sample Dup | 101      | 95       |                      |
| MB 880-54278/1-A   | Method Blank           | 91       | 90       |                      |

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23) SDG: Lea County, New Mexico

Job ID: 880-28857-1

## Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-54365/5-A

Lab Sample ID: LCS 880-54365/1-A

**Matrix: Solid** 

**Matrix: Solid** 

Analysis Batch: 54337

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 54365

|                     | IVIB     | MR        |         |     |       |   |                |                |         |
|---------------------|----------|-----------|---------|-----|-------|---|----------------|----------------|---------|
| Analyte             | Result   | Qualifier | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene             | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 05/30/23 09:40 | 05/30/23 11:30 | 1       |
| Toluene             | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 05/30/23 09:40 | 05/30/23 11:30 | 1       |
| Ethylbenzene        | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 05/30/23 09:40 | 05/30/23 11:30 | 1       |
| m-Xylene & p-Xylene | <0.00400 | U         | 0.00400 |     | mg/Kg |   | 05/30/23 09:40 | 05/30/23 11:30 | 1       |
| o-Xylene            | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 05/30/23 09:40 | 05/30/23 11:30 | 1       |
| Xylenes, Total      | <0.00400 | U         | 0.00400 |     | mg/Kg |   | 05/30/23 09:40 | 05/30/23 11:30 | 1       |
|                     |          |           |         |     |       |   |                |                |         |

MB MB

MD MD

| Surrogate                   | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|----------------|----------------|---------|
| 4-Bromofluorobenzene (Surr) | 90        |           | 70 - 130 | 05/30/23 09:40 | 05/30/23 11:30 | 1       |
| 1,4-Difluorobenzene (Surr)  | 109       |           | 70 - 130 | 05/30/23 09:40 | 05/30/23 11:30 | 1       |

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

Prep Batch: 54365

Analysis Batch: 54337 Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.09839 mg/Kg 98 70 - 130 Toluene 0.100 0.09022 mg/Kg 90 70 - 130 0.100 0.08827 88 Ethylbenzene mg/Kg 70 - 130 0.200 0.1870 93 70 - 130 m-Xylene & p-Xylene mg/Kg 0.100 0.09537 70 - 130 o-Xylene mg/Kg

LCS LCS

| Surrogate                   | %Recovery | Qualifier | Limits   |
|-----------------------------|-----------|-----------|----------|
| 4-Bromofluorobenzene (Surr) | 106       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 101       |           | 70 - 130 |

**Client Sample ID: Lab Control Sample Dup** 

**Matrix: Solid** 

Analysis Batch: 54337

Lab Sample ID: LCSD 880-54365/2-A

Prep Type: Total/NA Prep Batch: 54365

|                     | Spike | LCSD   | LCSD      |       |   |      | %Rec     |     | RPD   |
|---------------------|-------|--------|-----------|-------|---|------|----------|-----|-------|
| Analyte             | Added | Result | Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |
| Benzene             | 0.100 | 0.1284 |           | mg/Kg |   | 128  | 70 - 130 | 26  | 35    |
| Toluene             | 0.100 | 0.1125 |           | mg/Kg |   | 113  | 70 - 130 | 22  | 35    |
| Ethylbenzene        | 0.100 | 0.1041 |           | mg/Kg |   | 104  | 70 - 130 | 16  | 35    |
| m-Xylene & p-Xylene | 0.200 | 0.2159 |           | mg/Kg |   | 108  | 70 - 130 | 14  | 35    |
| o-Xylene            | 0.100 | 0.1082 |           | mg/Kg |   | 108  | 70 - 130 | 13  | 35    |

LCSD LCSD

| Surrogate                   | %Recovery | Qualifier | Limits   |
|-----------------------------|-----------|-----------|----------|
| 4-Bromofluorobenzene (Surr) | 99        |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 103       |           | 70 - 130 |

Lab Sample ID: 880-28876-A-1-A MS

**Matrix: Solid** 

Analysis Batch: 54337

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 54365

|         | Sample    | Sample    | Spike | MS     | MS        |       |   |      | %Rec     |  |
|---------|-----------|-----------|-------|--------|-----------|-------|---|------|----------|--|
| Analyte | Result    | Qualifier | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene | <0.00201  | U         | 0.101 | 0.1210 |           | mg/Kg |   | 120  | 70 - 130 |  |
| Toluene | < 0.00201 | U         | 0.101 | 0.1065 |           | mg/Kg |   | 106  | 70 - 130 |  |

**Eurofins Midland** 

Page 12 of 27

Client: Carmona Resources

Job ID: 880-28857-1 Project/Site: Stratocaster 20 Fed 3&4 (4.01.23) SDG: Lea County, New Mexico

## Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-28876-A-1-A MS

Lab Sample ID: 880-28876-A-1-B MSD

**Matrix: Solid** 

**Matrix: Solid** 

Analysis Batch: 54337

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 54365

|                     | Sample   | Sample    | <b>Spike</b> | MS     | MS        |       |   |      | %Rec     |
|---------------------|----------|-----------|--------------|--------|-----------|-------|---|------|----------|
| Analyte             | Result   | Qualifier | Added        | Result | Qualifier | Unit  | D | %Rec | Limits   |
| Ethylbenzene        | <0.00201 | U         | 0.101        | 0.1040 |           | mg/Kg |   | 103  | 70 - 130 |
| m-Xylene & p-Xylene | <0.00402 | U         | 0.202        | 0.2162 |           | mg/Kg |   | 107  | 70 - 130 |
| o-Xylene            | <0.00201 | U         | 0.101        | 0.1073 |           | mg/Kg |   | 106  | 70 - 130 |
|                     |          |           |              |        |           |       |   |      |          |

MS MS

| Surrogate                   | %Recovery Qu | alifier Limits |   |
|-----------------------------|--------------|----------------|---|
| 4-Bromofluorobenzene (Surr) | 105          | 70 - 130       | ) |
| 1,4-Difluorobenzene (Surr)  | 103          | 70 - 130       | ) |

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 54365

RPD

**Analysis Batch: 54337** Sample Sample Spike MSD MSD Result Qualifier Added Result Qualifier %Rec Limits RPD Limit Analyte Unit 0.0996 0.1191 2 Benzene <0.00201 U mg/Kg 120 70 - 130 35 Toluene <0.00201 U 0.0996 0.09924 100 70 - 130 35 mg/Kg Ethylbenzene <0.00201 U 0.0996 0.09310 mg/Kg 93 70 - 130 11 35 m-Xylene & p-Xylene <0.00402 U 0.199 0.1915 70 - 130 35 mg/Kg 96 12 0.0996 o-Xylene <0.00201 U 0.09560 96 70 - 130 12 mg/Kg

MSD MSD

| Surrogate                   | %Recovery | Qualifier | Limits   |
|-----------------------------|-----------|-----------|----------|
| 4-Bromofluorobenzene (Surr) | 99        |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 110       |           | 70 - 130 |

Lab Sample ID: MB 880-54425/5-A

**Matrix: Solid** 

Analysis Batch: 54444

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 54425

MB MB

| Analyte             | Result   | Qualifier | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|---------------------|----------|-----------|---------|-----|-------|---|----------------|----------------|---------|
| Benzene             | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 05/30/23 15:42 | 05/31/23 10:53 | 1       |
| Toluene             | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 05/30/23 15:42 | 05/31/23 10:53 | 1       |
| Ethylbenzene        | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 05/30/23 15:42 | 05/31/23 10:53 | 1       |
| m-Xylene & p-Xylene | <0.00400 | U         | 0.00400 |     | mg/Kg |   | 05/30/23 15:42 | 05/31/23 10:53 | 1       |
| o-Xylene            | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 05/30/23 15:42 | 05/31/23 10:53 | 1       |
| Xylenes, Total      | <0.00400 | U         | 0.00400 |     | mg/Kg |   | 05/30/23 15:42 | 05/31/23 10:53 | 1       |
|                     |          |           |         |     |       |   |                |                |         |

MB MB

| Surrogate                   | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|----------------|----------------|---------|
| 4-Bromofluorobenzene (Surr) | 83        |           | 70 - 130 | 05/30/23 15:42 | 05/31/23 10:53 | 1       |
| 1,4-Difluorobenzene (Surr)  | 102       |           | 70 - 130 | 05/30/23 15:42 | 05/31/23 10:53 | 1       |

Lab Sample ID: MB 880-54428/5-A

**Matrix: Solid** 

Analysis Batch: 54444

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 54428

|                     | INID     | IAID      |         |          |   |                |                |         |
|---------------------|----------|-----------|---------|----------|---|----------------|----------------|---------|
| Analyte             | Result   | Qualifier | RL      | MDL Unit | D | Prepared       | Analyzed       | Dil Fac |
| Benzene             | <0.00200 | U         | 0.00200 | mg/Kg    |   | 05/30/23 15:51 | 05/31/23 22:42 | 1       |
| Toluene             | <0.00200 | U         | 0.00200 | mg/Kg    |   | 05/30/23 15:51 | 05/31/23 22:42 | 1       |
| Ethylbenzene        | <0.00200 | U         | 0.00200 | mg/Kg    |   | 05/30/23 15:51 | 05/31/23 22:42 | 1       |
| m-Xylene & p-Xylene | <0.00400 | U         | 0.00400 | mg/Kg    |   | 05/30/23 15:51 | 05/31/23 22:42 | 1       |

Client: Carmona Resources

Job ID: 880-28857-1 SDG: Lea County, New Mexico Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

## Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 880-54428/5-A

**Matrix: Solid** 

Analysis Batch: 54444

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 54428

| Analyte        | Result   | Qualifier | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|----------------|----------|-----------|---------|-----|-------|---|----------------|----------------|---------|
| o-Xylene       | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 05/30/23 15:51 | 05/31/23 22:42 | 1       |
| Xylenes, Total | <0.00400 | U         | 0.00400 |     | mg/Kg |   | 05/30/23 15:51 | 05/31/23 22:42 | 1       |

MR MR

мв мв

| Surrogate                   | %Recovery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|---------------------|----------|----------------|----------------|---------|
| 4-Bromofluorobenzene (Surr) | 79                  | 70 - 130 | 05/30/23 15:51 | 05/31/23 22:42 | 1       |
| 1,4-Difluorobenzene (Surr)  | 103                 | 70 - 130 | 05/30/23 15:51 | 05/31/23 22:42 | 1       |

**Client Sample ID: Lab Control Sample** 

Lab Sample ID: LCS 880-54428/1-A

**Analysis Batch: 54444** 

**Matrix: Solid** Prep Type: Total/NA

Prep Batch: 54428

|                     | эріке | LUS     | LUS       |       |   |      | 70 Rec   |  |
|---------------------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.1294  |           | mg/Kg |   | 129  | 70 - 130 |  |
| Toluene             | 0.100 | 0.09418 |           | mg/Kg |   | 94   | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.08057 |           | mg/Kg |   | 81   | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.1568  |           | mg/Kg |   | 78   | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.07851 |           | mg/Kg |   | 79   | 70 - 130 |  |
|                     |       |         |           |       |   |      |          |  |

LCS LCS

| Surrogate                   | %Recovery Qualifier | Limits   |
|-----------------------------|---------------------|----------|
| 4-Bromofluorobenzene (Surr) | 82                  | 70 - 130 |
| 1.4-Difluorobenzene (Surr)  | 115                 | 70 - 130 |

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 54428

Matrix: Solid Analysis Batch: 54444

Lab Sample ID: LCSD 880-54428/2-A

| The state of the s |                                                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Spike                                                        | LCSD                                                                                                                                                                   | LCSD                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                      | %Rec                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Added                                                        | Result                                                                                                                                                                 | Qualifier                                                                                                                                                                                                                                           | Unit                                                                                                                                                                                                                                                        | D                                                                                                                                                                                                                                                                                                                                          | %Rec                                                                                                                                                                                                                                                                                                                                                 | Limits                                                                                                                                                                                                                                                                                                                                                                                                         | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.100                                                        | 0.1215                                                                                                                                                                 |                                                                                                                                                                                                                                                     | mg/Kg                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                            | 122                                                                                                                                                                                                                                                                                                                                                  | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.100                                                        | 0.09515                                                                                                                                                                |                                                                                                                                                                                                                                                     | mg/Kg                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                            | 95                                                                                                                                                                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.100                                                        | 0.09010                                                                                                                                                                |                                                                                                                                                                                                                                                     | mg/Kg                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                            | 90                                                                                                                                                                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| m-Xylene & p-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.200                                                        | 0.1872                                                                                                                                                                 |                                                                                                                                                                                                                                                     | mg/Kg                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                            | 94                                                                                                                                                                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                       | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.100                                                        | 0.09428                                                                                                                                                                |                                                                                                                                                                                                                                                     | mg/Kg                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                            | 94                                                                                                                                                                                                                                                                                                                                                   | 70 - 130                                                                                                                                                                                                                                                                                                                                                                                                       | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyte  Benzene  Toluene  Ethylbenzene  m-Xylene & p-Xylene | Analyte         Added           Benzene         0.100           Toluene         0.100           Ethylbenzene         0.100           m-Xylene & p-Xylene         0.200 | Analyte         Added         Result           Benzene         0.100         0.1215           Toluene         0.100         0.09515           Ethylbenzene         0.100         0.09010           m-Xylene & p-Xylene         0.200         0.1872 | Analyte         Added Benzene         Result Oualifier         Qualifier           Benzene         0.100         0.1215         0.09515           Toluene         0.100         0.09515         0.09010           Ethylbenzene         0.200         0.1872 | Analyte         Added         Result         Qualifier         Unit           Benzene         0.100         0.1215         mg/Kg           Toluene         0.100         0.09515         mg/Kg           Ethylbenzene         0.100         0.09010         mg/Kg           m-Xylene & p-Xylene         0.200         0.1872         mg/Kg | Analyte         Added         Result         Qualifier         Unit         D           Benzene         0.100         0.1215         mg/Kg           Toluene         0.100         0.09515         mg/Kg           Ethylbenzene         0.100         0.09010         mg/Kg           m-Xylene & p-Xylene         0.200         0.1872         mg/Kg | Analyte         Added         Result         Qualifier         Unit         D         %Rec           Benzene         0.100         0.1215         mg/Kg         122           Toluene         0.100         0.09515         mg/Kg         95           Ethylbenzene         0.100         0.09010         mg/Kg         90           m-Xylene & p-Xylene         0.200         0.1872         mg/Kg         94 | Analyte         Added         Result         Qualifier         Unit         D         %Rec         Limits           Benzene         0.100         0.1215         mg/Kg         122         70 - 130           Toluene         0.100         0.09515         mg/Kg         95         70 - 130           Ethylbenzene         0.100         0.09010         mg/Kg         90         70 - 130           m-Xylene & p-Xylene         0.200         0.1872         mg/Kg         94         70 - 130 | Analyte         Added         Result         Qualifier         Unit         D         %Rec         Limits         RPD           Benzene         0.100         0.1215         mg/Kg         122         70 - 130         6           Toluene         0.100         0.09515         mg/Kg         95         70 - 130         1           Ethylbenzene         0.100         0.09010         mg/Kg         90         70 - 130         11           m-Xylene & p-Xylene         0.200         0.1872         mg/Kg         94         70 - 130         18 |

LCSD LCSD

| Surrogate                   | %Recovery Qualifier | Limits   |
|-----------------------------|---------------------|----------|
| 4-Bromofluorobenzene (Surr) | 105                 | 70 - 130 |
| 1.4-Difluorobenzene (Surr)  | 111                 | 70 - 130 |

Lab Sample ID: 880-28852-A-4-C MS Client Sample ID: Matrix Spike

**Matrix: Solid** 

Analysis Batch: 54444

Prep Type: Total/NA

Prep Batch: 54428

|                     | Sample    | Sample    | Spike | MS      | MS        |       |   |      | %Rec     |  |
|---------------------|-----------|-----------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Result    | Qualifier | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | <0.00199  | U         | 0.101 | 0.1230  |           | mg/Kg |   | 122  | 70 - 130 |  |
| Toluene             | < 0.00199 | U         | 0.101 | 0.08215 |           | mg/Kg |   | 81   | 70 - 130 |  |
| Ethylbenzene        | < 0.00199 | U F1      | 0.101 | 0.06967 | F1        | mg/Kg |   | 69   | 70 - 130 |  |
| m-Xylene & p-Xylene | <0.00398  | U F1      | 0.202 | 0.1305  | F1        | mg/Kg |   | 64   | 70 - 130 |  |
| o-Xylene            | <0.00199  | U F1      | 0.101 | 0.06536 | F1        | mg/Kg |   | 65   | 70 - 130 |  |

Client: Carmona Resources

Job ID: 880-28857-1 Project/Site: Stratocaster 20 Fed 3&4 (4.01.23) SDG: Lea County, New Mexico

# Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-28852-A-4-C MS Client Sample ID: Matrix Spike Prep Type: Total/NA

**Matrix: Solid** 

Analysis Batch: 54444

Prep Batch: 54428 MS MS

| Surrogate                   | %Recovery | Qualifier | Limits   |
|-----------------------------|-----------|-----------|----------|
| 4-Bromofluorobenzene (Surr) | 76        |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 118       |           | 70 - 130 |

Lab Sample ID: 880-28852-A-4-D MSD Client Sample ID: Matrix Spike Duplicate

**Matrix: Solid** 

Analysis Batch: 54444

Prep Type: Total/NA Prep Batch: 54428

| Sample   | Sample                                     | Spike                                        | MSD                        | MSD                                                                      |                                                                                            |                                                                                                         |                                                                                                                   | %Rec                                                                                                                           |                                                                                                                                               | RPD                                                                                                                                                       |
|----------|--------------------------------------------|----------------------------------------------|----------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Result   | Qualifier                                  | Added                                        | Result                     | Qualifier                                                                | Unit                                                                                       | D                                                                                                       | %Rec                                                                                                              | Limits                                                                                                                         | RPD                                                                                                                                           | Limit                                                                                                                                                     |
| <0.00199 | U                                          | 0.100                                        | 0.1182                     |                                                                          | mg/Kg                                                                                      |                                                                                                         | 118                                                                                                               | 70 - 130                                                                                                                       | 4                                                                                                                                             | 35                                                                                                                                                        |
| <0.00199 | U                                          | 0.100                                        | 0.08174                    |                                                                          | mg/Kg                                                                                      |                                                                                                         | 82                                                                                                                | 70 - 130                                                                                                                       | 1                                                                                                                                             | 35                                                                                                                                                        |
| <0.00199 | U F1                                       | 0.100                                        | 0.07111                    |                                                                          | mg/Kg                                                                                      |                                                                                                         | 71                                                                                                                | 70 - 130                                                                                                                       | 2                                                                                                                                             | 35                                                                                                                                                        |
| <0.00398 | U F1                                       | 0.200                                        | 0.1343                     | F1                                                                       | mg/Kg                                                                                      |                                                                                                         | 67                                                                                                                | 70 - 130                                                                                                                       | 3                                                                                                                                             | 35                                                                                                                                                        |
| <0.00199 | U F1                                       | 0.100                                        | 0.06799                    | F1                                                                       | mg/Kg                                                                                      |                                                                                                         | 68                                                                                                                | 70 - 130                                                                                                                       | 4                                                                                                                                             | 35                                                                                                                                                        |
|          | Result <0.00199 <0.00199 <0.00199 <0.00398 | <0.00199 U<br><0.00199 U F1<br><0.00398 U F1 | Result   Qualifier   Added | Result         Qualifier         Added         Result           <0.00199 | Result         Qualifier         Added         Result         Qualifier           <0.00199 | Result         Qualifier         Added         Result         Qualifier         Unit           <0.00199 | Result         Qualifier         Added         Result         Qualifier         Unit         D           <0.00199 | Result         Qualifier         Added         Result         Qualifier         Unit         D         %Rec           <0.00199 | Result         Qualifier         Added         Result         Qualifier         Unit         D         %Rec         Limits           <0.00199 | Result         Qualifier         Added         Result         Qualifier         Unit         D         %Rec         Limits         RPD           <0.00199 |

MSD MSD %Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene (Surr) 84 70 - 130 1,4-Difluorobenzene (Surr) 115 70 - 130

#### Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-54278/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA Prep Batch: 54278

Analysis Batch: 54321

|                                         | MB     | MB        |      |     |       |   |                |                |         |
|-----------------------------------------|--------|-----------|------|-----|-------|---|----------------|----------------|---------|
| Analyte                                 | Result | Qualifier | RL   | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.0  | U         | 50.0 |     | mg/Kg |   | 05/26/23 17:20 | 05/28/23 09:01 | 1       |
| Diesel Range Organics (Over<br>C10-C28) | <50.0  | U         | 50.0 |     | mg/Kg |   | 05/26/23 17:20 | 05/28/23 09:01 | 1       |
| Oll Range Organics (Over C28-C36)       | <50.0  | U         | 50.0 |     | mg/Kg |   | 05/26/23 17:20 | 05/28/23 09:01 | 1       |

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 05/26/23 17:20 1-Chlorooctane 91 70 - 130 05/28/23 09:01 o-Terphenyl 90 70 - 130 05/26/23 17:20 05/28/23 09:01

Lab Sample ID: LCS 880-54278/2-A **Client Sample ID: Lab Control Sample** 

Analysis Batch: 54321

**Matrix: Solid** 

|                                         | Spike | LCS    | LCS       |       |   |      | %Rec     |  |
|-----------------------------------------|-------|--------|-----------|-------|---|------|----------|--|
| Analyte                                 | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |  |
| Gasoline Range Organics (GRO)-C6-C10    | 1000  | 852.0  |           | mg/Kg |   | 85   | 70 - 130 |  |
| Diesel Range Organics (Over<br>C10-C28) | 1000  | 839.9  |           | mg/Kg |   | 84   | 70 - 130 |  |

|                | LCS       | LCS       |          |
|----------------|-----------|-----------|----------|
| Surrogate      | %Recovery | Qualifier | Limits   |
| 1-Chlorooctane | 99        |           | 70 - 130 |
| o-Terphenyl    | 91        |           | 70 - 130 |

**Eurofins Midland** 

Prep Type: Total/NA Prep Batch: 54278

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23) SDG: Lea County, New Mexico

Job ID: 880-28857-1

#### Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-54278/3-A

Analysis Batch: 54321

**Matrix: Solid** 

Client Sample ID: Lab Control Sample Dup

70 - 130

89

Prep Type: Total/NA Prep Batch: 54278

5

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 54278

Spike LCSD LCSD RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit D Gasoline Range Organics 1000 851.4 mg/Kg 85 70 - 130 0 20 (GRO)-C6-C10

887.0

mg/Kg

1000

Diesel Range Organics (Over C10-C28)

LCSD LCSD %Recovery Qualifier Limits Surrogate 1-Chlorooctane 70 - 130 101 o-Terphenyl 95 70 - 130

Lab Sample ID: 880-28857-1 MS Client Sample ID: S-1 (0-0.25')

Matrix: Solid

Analysis Batch: 54321

Spike MS MS %Rec Sample Sample Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits <50.0 U F1 997 Gasoline Range Organics 564.0 F1 mg/Kg 57 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 997 743.0 mg/Kg 71 70 - 130 C10-C28)

MS MS Surrogate %Recovery Qualifier Limits 1-Chlorooctane 91 70 - 130 o-Terphenyl 81 70 - 130

Lab Sample ID: 880-28857-1 MSD Client Sample ID: S-1 (0-0.25')

**Matrix: Solid** 

Analysis Batch: 54321

Prep Batch: 54278 Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit <50.0 U F1 997 603.3 F1 61 20 Gasoline Range Organics 70 - 130 mg/Kg (GRO)-C6-C10 <50.0 U 997 799.1 76 70 - 130 20 Diesel Range Organics (Over mg/Kg

C10-C28)

MSD MSD Qualifier Limits Surrogate %Recovery 1-Chlorooctane 98 70 - 130 85 70 - 130 o-Terphenyl

#### Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-54269/1-A Client Sample ID: Method Blank **Prep Type: Soluble** 

**Matrix: Solid** 

Analysis Batch: 54394

MB MB Analyte Result Qualifier RL MDL Dil Fac Unit D Prepared Analyzed Chloride <5.00 U 5.00 05/30/23 09:19 mg/Kg

20

Client: Carmona Resources

Job ID: 880-28857-1 Project/Site: Stratocaster 20 Fed 3&4 (4.01.23) SDG: Lea County, New Mexico

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 880-54269/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** 

**Prep Type: Soluble** 

Analysis Batch: 54394

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Chloride 250 245.7 mg/Kg 98 90 - 110

Client Sample ID: Lab Control Sample Dup

**Prep Type: Soluble** 

Analysis Batch: 54394

**Matrix: Solid** 

Lab Sample ID: LCSD 880-54269/3-A

Spike LCSD LCSD %Rec RPD Added Result Qualifier RPD Limit Analyte Unit D %Rec Limits Chloride 250 245.9 mg/Kg 98 90 - 110 0

Lab Sample ID: 880-28857-6 MS Client Sample ID: S-5 (0-0.25') **Matrix: Solid** 

**Prep Type: Soluble** 

Analysis Batch: 54394

MS MS %Rec Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 2550 F1 2510 4774 F1 90 - 110 mg/Kg

Lab Sample ID: 880-28857-6 MSD Client Sample ID: S-5 (0-0.25') **Prep Type: Soluble** 

**Matrix: Solid** 

Analysis Batch: 54394

MSD MSD Spike RPD Sample Sample %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec RPD Limit Limits 2550 2510 Chloride F1 4781 F1 89 90 - 110 20 mg/Kg

# **QC Association Summary**

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

Job ID: 880-28857-1 SDG: Lea County, New Mexico

#### **GC VOA**

#### Analysis Batch: 54337

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 880-28857-1         | S-1 (0-0.25')          | Total/NA  | Solid  | 8021B  | 54365      |
| 880-28857-2         | S-2 (0-0.25')          | Total/NA  | Solid  | 8021B  | 54365      |
| 880-28857-3         | S-2 (0.5')             | Total/NA  | Solid  | 8021B  | 54365      |
| MB 880-54365/5-A    | Method Blank           | Total/NA  | Solid  | 8021B  | 54365      |
| LCS 880-54365/1-A   | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 54365      |
| LCSD 880-54365/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 54365      |
| 880-28876-A-1-A MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 54365      |
| 880-28876-A-1-B MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 54365      |

#### Prep Batch: 54365

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batcl |
|---------------------|------------------------|-----------|--------|--------|------------|
| 880-28857-1         | S-1 (0-0.25')          | Total/NA  | Solid  | 5035   | <u> </u>   |
| 880-28857-2         | S-2 (0-0.25')          | Total/NA  | Solid  | 5035   |            |
| 880-28857-3         | S-2 (0.5')             | Total/NA  | Solid  | 5035   |            |
| MB 880-54365/5-A    | Method Blank           | Total/NA  | Solid  | 5035   |            |
| LCS 880-54365/1-A   | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |
| LCSD 880-54365/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |
| 880-28876-A-1-A MS  | Matrix Spike           | Total/NA  | Solid  | 5035   |            |
| 880-28876-A-1-B MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 5035   |            |

#### Prep Batch: 54425

| Lab Sample ID    | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|------------------|------------------|-----------|--------|--------|------------|
| MB 880-54425/5-A | Method Blank     | Total/NA  | Solid  | 5035   |            |

#### Prep Batch: 54428

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 880-28857-4         | S-3 (0-0.25')          | Total/NA  | Solid  | 5035   |            |
| 880-28857-5         | S-4 (0-0.25')          | Total/NA  | Solid  | 5035   |            |
| 880-28857-6         | S-5 (0-0.25')          | Total/NA  | Solid  | 5035   |            |
| MB 880-54428/5-A    | Method Blank           | Total/NA  | Solid  | 5035   |            |
| LCS 880-54428/1-A   | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |
| LCSD 880-54428/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |
| 880-28852-A-4-C MS  | Matrix Spike           | Total/NA  | Solid  | 5035   |            |
| 880-28852-A-4-D MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 5035   |            |

#### Analysis Batch: 54444

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 880-28857-4         | S-3 (0-0.25')          | Total/NA  | Solid  | 8021B  | 54428      |
| 880-28857-5         | S-4 (0-0.25')          | Total/NA  | Solid  | 8021B  | 54428      |
| 880-28857-6         | S-5 (0-0.25')          | Total/NA  | Solid  | 8021B  | 54428      |
| MB 880-54425/5-A    | Method Blank           | Total/NA  | Solid  | 8021B  | 54425      |
| MB 880-54428/5-A    | Method Blank           | Total/NA  | Solid  | 8021B  | 54428      |
| LCS 880-54428/1-A   | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 54428      |
| LCSD 880-54428/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 54428      |
| 880-28852-A-4-C MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 54428      |
| 880-28852-A-4-D MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 54428      |

#### Analysis Batch: 54470

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 880-28857-1   | S-1 (0-0.25')    | Total/NA  | Solid  | Total BTEX |            |
| 880-28857-2   | S-2 (0-0.25')    | Total/NA  | Solid  | Total BTEX |            |

**Eurofins Midland** 

Page 18 of 27

Released to Imaging: 11/29/2023 3:17:41 PM

2

3

4

6

8

111

13

# **QC Association Summary**

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

Job ID: 880-28857-1 SDG: Lea County, New Mexico

# GC VOA (Continued)

#### **Analysis Batch: 54470 (Continued)**

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 880-28857-3   | S-2 (0.5')       | Total/NA  | Solid  | Total BTEX |            |
| 880-28857-4   | S-3 (0-0.25')    | Total/NA  | Solid  | Total BTEX |            |
| 880-28857-5   | S-4 (0-0.25')    | Total/NA  | Solid  | Total BTEX |            |
| 880-28857-6   | S-5 (0-0.25')    | Total/NA  | Solid  | Total BTEX |            |

#### **GC Semi VOA**

#### Prep Batch: 54278

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|--------------------|------------------------|-----------|--------|-------------|------------|
| 880-28857-1        | S-1 (0-0.25')          | Total/NA  | Solid  | 8015NM Prep |            |
| 880-28857-2        | S-2 (0-0.25')          | Total/NA  | Solid  | 8015NM Prep |            |
| 880-28857-3        | S-2 (0.5')             | Total/NA  | Solid  | 8015NM Prep |            |
| 880-28857-4        | S-3 (0-0.25')          | Total/NA  | Solid  | 8015NM Prep |            |
| 880-28857-5        | S-4 (0-0.25')          | Total/NA  | Solid  | 8015NM Prep |            |
| 880-28857-6        | S-5 (0-0.25')          | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-54278/1-A   | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-54278/2-A  | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-54278/3-A | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 880-28857-1 MS     | S-1 (0-0.25')          | Total/NA  | Solid  | 8015NM Prep |            |
| 880-28857-1 MSD    | S-1 (0-0.25')          | Total/NA  | Solid  | 8015NM Prep |            |

#### Analysis Batch: 54321

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|--------------------|------------------------|-----------|--------|----------|------------|
| 880-28857-1        | S-1 (0-0.25')          | Total/NA  | Solid  | 8015B NM | 54278      |
| 880-28857-2        | S-2 (0-0.25')          | Total/NA  | Solid  | 8015B NM | 54278      |
| 880-28857-3        | S-2 (0.5')             | Total/NA  | Solid  | 8015B NM | 54278      |
| 880-28857-4        | S-3 (0-0.25')          | Total/NA  | Solid  | 8015B NM | 54278      |
| 880-28857-5        | S-4 (0-0.25')          | Total/NA  | Solid  | 8015B NM | 54278      |
| 880-28857-6        | S-5 (0-0.25')          | Total/NA  | Solid  | 8015B NM | 54278      |
| MB 880-54278/1-A   | Method Blank           | Total/NA  | Solid  | 8015B NM | 54278      |
| LCS 880-54278/2-A  | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 54278      |
| LCSD 880-54278/3-A | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 54278      |
| 880-28857-1 MS     | S-1 (0-0.25')          | Total/NA  | Solid  | 8015B NM | 54278      |
| 880-28857-1 MSD    | S-1 (0-0.25')          | Total/NA  | Solid  | 8015B NM | 54278      |

#### Analysis Batch: 54355

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method  | Prep Batch |
|---------------|------------------|-----------|--------|---------|------------|
| 880-28857-1   | S-1 (0-0.25')    | Total/NA  | Solid  | 8015 NM |            |
| 880-28857-2   | S-2 (0-0.25')    | Total/NA  | Solid  | 8015 NM |            |
| 880-28857-3   | S-2 (0.5')       | Total/NA  | Solid  | 8015 NM |            |
| 880-28857-4   | S-3 (0-0.25')    | Total/NA  | Solid  | 8015 NM |            |
| 880-28857-5   | S-4 (0-0.25')    | Total/NA  | Solid  | 8015 NM |            |
| 880-28857-6   | S-5 (0-0.25')    | Total/NA  | Solid  | 8015 NM |            |

#### HPLC/IC

#### Leach Batch: 54269

| Г             |                  |           |        |          |            |
|---------------|------------------|-----------|--------|----------|------------|
| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method   | Prep Batch |
| 880-28857-1   | S-1 (0-0.25')    | Soluble   | Solid  | DI Leach |            |
| 880-28857-2   | S-2 (0-0.25')    | Soluble   | Solid  | DI Leach |            |
| 880-28857-3   | S-2 (0.5')       | Soluble   | Solid  | DI Leach |            |
| 880-28857-4   | S-3 (0-0.25')    | Soluble   | Solid  | DI Leach |            |

**Eurofins Midland** 

Page 19 of 27

1

2

5

g

10

# **QC Association Summary**

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

Job ID: 880-28857-1

SDG: Lea County, New Mexico

# HPLC/IC (Continued)

#### Leach Batch: 54269 (Continued)

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|--------------------|------------------------|-----------|--------|----------|------------|
| 880-28857-5        | S-4 (0-0.25')          | Soluble   | Solid  | DI Leach |            |
| 880-28857-6        | S-5 (0-0.25')          | Soluble   | Solid  | DI Leach |            |
| MB 880-54269/1-A   | Method Blank           | Soluble   | Solid  | DI Leach |            |
| LCS 880-54269/2-A  | Lab Control Sample     | Soluble   | Solid  | DI Leach |            |
| LCSD 880-54269/3-A | Lab Control Sample Dup | Soluble   | Solid  | DI Leach |            |
| 880-28857-6 MS     | S-5 (0-0.25')          | Soluble   | Solid  | DI Leach |            |
| 880-28857-6 MSD    | S-5 (0-0.25')          | Soluble   | Solid  | DI Leach |            |

#### Analysis Batch: 54394

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 880-28857-1        | S-1 (0-0.25')          | Soluble   | Solid  | 300.0  | 54269      |
| 880-28857-2        | S-2 (0-0.25')          | Soluble   | Solid  | 300.0  | 54269      |
| 880-28857-3        | S-2 (0.5')             | Soluble   | Solid  | 300.0  | 54269      |
| 880-28857-4        | S-3 (0-0.25')          | Soluble   | Solid  | 300.0  | 54269      |
| 880-28857-5        | S-4 (0-0.25')          | Soluble   | Solid  | 300.0  | 54269      |
| 880-28857-6        | S-5 (0-0.25')          | Soluble   | Solid  | 300.0  | 54269      |
| MB 880-54269/1-A   | Method Blank           | Soluble   | Solid  | 300.0  | 54269      |
| LCS 880-54269/2-A  | Lab Control Sample     | Soluble   | Solid  | 300.0  | 54269      |
| LCSD 880-54269/3-A | Lab Control Sample Dup | Soluble   | Solid  | 300.0  | 54269      |
| 880-28857-6 MS     | S-5 (0-0.25')          | Soluble   | Solid  | 300.0  | 54269      |
| 880-28857-6 MSD    | S-5 (0-0.25')          | Soluble   | Solid  | 300.0  | 54269      |

**Eurofins Midland** 

Released to Imaging: 11/29/2023 3:17:41 PM

Lab Sample ID: 880-28857-1

**Client Sample ID: S-1 (0-0.25')** 

Date Collected: 05/23/23 00:00 Date Received: 05/26/23 13:04

Matrix: Solid

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.00 g  | 5 mL   | 54365  | 05/30/23 09:40 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 54337  | 05/30/23 18:42 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 54470  | 05/31/23 09:57 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 54355  | 05/30/23 09:23 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.01 g | 10 mL  | 54278  | 05/26/23 17:20 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 54321  | 05/28/23 11:53 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.95 g  | 50 mL  | 54269  | 05/26/23 16:13 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 54394  | 05/30/23 10:23 | CH      | EET MID |

**Client Sample ID: S-2 (0-0.25')** 

Date Collected: 05/23/23 00:00

Date Received: 05/26/23 13:04

Lab Sample ID: 880-28857-2

Matrix: Solid

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.03 g  | 5 mL   | 54365  | 05/30/23 09:40 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 54337  | 05/30/23 19:03 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 54470  | 05/31/23 09:57 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 54355  | 05/30/23 09:23 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.04 g | 10 mL  | 54278  | 05/26/23 17:20 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 54321  | 05/28/23 12:59 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.96 g  | 50 mL  | 54269  | 05/26/23 16:13 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 10     | 50 mL   | 50 mL  | 54394  | 05/30/23 10:28 | CH      | EET MID |

Client Sample ID: S-2 (0.5') Lab Sample ID: 880-28857-3 Date Collected: 05/23/23 00:00 **Matrix: Solid** 

Date Received: 05/26/23 13:04

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.98 g  | 5 mL   | 54365  | 05/30/23 09:40 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 54337  | 05/30/23 19:23 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 54470  | 05/31/23 09:57 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 54355  | 05/30/23 09:23 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.00 g | 10 mL  | 54278  | 05/26/23 17:20 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 54321  | 05/28/23 13:21 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5 g     | 50 mL  | 54269  | 05/26/23 16:13 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 10     | 50 mL   | 50 mL  | 54394  | 05/30/23 10:34 | CH      | EET MID |

Client Sample ID: S-3 (0-0.25') Lab Sample ID: 880-28857-4

Date Collected: 05/23/23 00:00 Date Received: 05/26/23 13:04

|           | Batch    | Batch      |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method     | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035       |     |        | 5.05 g  | 5 mL   | 54428  | 05/30/23 15:51 | EL      | EET MID |
| Total/NA  | Analysis | 8021B      |     | 1      | 5 mL    | 5 mL   | 54444  | 05/31/23 23:24 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX |     | 1      |         |        | 54470  | 06/01/23 09:26 | SM      | EET MID |

**Eurofins Midland** 

Page 21 of 27

**Matrix: Solid** 

Job ID: 880-28857-1

SDG: Lea County, New Mexico

**Client Sample ID: S-3 (0-0.25')** 

Date Collected: 05/23/23 00:00 Date Received: 05/26/23 13:04 Lab Sample ID: 880-28857-4

Matrix: Solid

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 54355  | 05/30/23 09:23 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.02 g | 10 mL  | 54278  | 05/26/23 17:20 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 54321  | 05/28/23 13:42 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.05 g  | 50 mL  | 54269  | 05/26/23 16:13 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 50     | 50 mL   | 50 mL  | 54394  | 05/30/23 10:39 | CH      | EET MID |

**Client Sample ID: S-4 (0-0.25')** Lab Sample ID: 880-28857-5

Date Collected: 05/23/23 00:00 Date Received: 05/26/23 13:04

**Matrix: Solid** 

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.03 g  | 5 mL   | 54428  | 05/30/23 15:51 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 54444  | 05/31/23 23:44 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 54470  | 06/01/23 09:26 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 54355  | 05/30/23 09:23 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.01 g | 10 mL  | 54278  | 05/26/23 17:20 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 54321  | 05/28/23 14:04 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.96 g  | 50 mL  | 54269  | 05/26/23 16:13 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 5      | 50 mL   | 50 mL  | 54394  | 05/30/23 10:44 | CH      | EET MID |

**Client Sample ID: S-5 (0-0.25')** Lab Sample ID: 880-28857-6

Date Collected: 05/23/23 00:00 Date Received: 05/26/23 13:04

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.97 g  | 5 mL   | 54428  | 05/30/23 15:51 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 54444  | 06/01/23 00:05 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 54470  | 06/01/23 09:26 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 54355  | 05/30/23 09:23 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.04 g | 10 mL  | 54278  | 05/26/23 17:20 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 54321  | 05/28/23 14:26 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.99 g  | 50 mL  | 54269  | 05/26/23 16:13 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 10     | 50 mL   | 50 mL  | 54394  | 05/30/23 10:50 | CH      | EET MID |

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

**Eurofins Midland** 

**Matrix: Solid** 

# **Accreditation/Certification Summary**

Client: Carmona Resources

Job ID: 880-28857-1 Project/Site: Stratocaster 20 Fed 3&4 (4.01.23) SDG: Lea County, New Mexico

#### **Laboratory: Eurofins Midland**

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| Authority                                 | Pr                              | ogram                             | Identification Number                       | <b>Expiration Date</b>     |
|-------------------------------------------|---------------------------------|-----------------------------------|---------------------------------------------|----------------------------|
| Texas                                     | NE                              | ELAP                              | T104704400-22-25                            | 06-30-23                   |
| The following analytes                    | are included in this report, bu | it the laboratory is not certific | ed by the governing authority. This list ma | av include analytes for w  |
| the agency does not of                    | fer certification.              | ,,                                | ou by the generaling duriently.             | ay molado analytoo for w   |
| the agency does not of<br>Analysis Method | fer certification.  Prep Method | Matrix                            | Analyte                                     | ay molade analytee for the |
| 0 ,                                       |                                 | •                                 | , , ,                                       |                            |

#### **Method Summary**

Client: Carmona Resources

Method

8021B

Total BTEX

8015 NM

8015B NM

8015NM Prep

DI Leach

300.0

5035

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

Job ID: 880-28857-1

SDG: Lea County, New Mexico

**EET MID** 

ASTM

| Method Description               | Protocol | Laboratory |
|----------------------------------|----------|------------|
| Volatile Organic Compounds (GC)  | SW846    | EET MID    |
| Total BTEX Calculation           | TAL SOP  | EET MID    |
| Diesel Range Organics (DRO) (GC) | SW846    | EET MID    |
| Diesel Range Organics (DRO) (GC) | SW846    | EET MID    |
| Anions, Ion Chromatography       | EPA      | EET MID    |
| Closed System Purge and Trap     | SW846    | EET MID    |
| Microextraction                  | SW846    | EET MID    |

**Protocol References:** 

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

**Deionized Water Leaching Procedure** 

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

# Sample Summary

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

Job ID: 880-28857-1

SDG: Lea County, New Mexico

3

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 880-28857-1   | S-1 (0-0.25')    | Solid  | 05/23/23 00:00 | 05/26/23 13:04 |
| 880-28857-2   | S-2 (0-0.25')    | Solid  | 05/23/23 00:00 | 05/26/23 13:04 |
| 880-28857-3   | S-2 (0.5')       | Solid  | 05/23/23 00:00 | 05/26/23 13:04 |
| 880-28857-4   | S-3 (0-0.25')    | Solid  | 05/23/23 00:00 | 05/26/23 13:04 |
| 880-28857-5   | S-4 (0-0.25')    | Solid  | 05/23/23 00:00 | 05/26/23 13:04 |
| 880-28857-6   | S-5 (0-0.25')    | Solid  | 05/23/23 00:00 | 05/26/23 13:04 |

4

5

6

Q

10

12

13

|              | 3    |                             |   | Comments Email to                                                                                          |   |          |          |          | S-5 (0-0 25') | S-4 (0-0.25') | S-3 (0-0 25) | S-2 (0 5') | S-2 (0-0 25) | S-1 (0-0 25)  | Sample Identification                 | Lotal Containers        | Salliple Cusiony Seals | Sample Custody Seals                                            | Deceived Hilact.         | Described Intest |                                               | DO#     | Project Location       | Project Number             | Project Name                      |                                    |            | City, State ZIP Mi                    | Address 31            | Company Name Ca                  | Project Manager Co     |    |
|--------------|------|-----------------------------|---|------------------------------------------------------------------------------------------------------------|---|----------|----------|----------|---------------|---------------|--------------|------------|--------------|---------------|---------------------------------------|-------------------------|------------------------|-----------------------------------------------------------------|--------------------------|------------------|-----------------------------------------------|---------|------------------------|----------------------------|-----------------------------------|------------------------------------|------------|---------------------------------------|-----------------------|----------------------------------|------------------------|----|
|              | ,    | R                           |   | Mike Carmor                                                                                                |   |          |          |          |               | 3             | 3            |            | 3            | 3             | cation                                |                         | l es                   |                                                                 | Αd                       |                  | -                                             |         | Lea Co                 |                            | Stratocaste                       | 402-010-0020                       | 0 040 0000 | Midland, TX 79701                     | 310 W Wall St Ste 500 | Carmona Resources                | Conner Moehring        |    |
|              |      | linquished by               |   | ia / Mcarmo                                                                                                |   |          |          |          | 5/23/2023     | 5/23/2023     | 5/23/2023    | 5/23/2023  | 5/23/2023    | 5/23/2023     | Date                                  |                         | No.                    |                                                                 |                          | No.              |                                               | MM      | Lea County, New Mexico | 2035                       | Stratocaster 20 Fed 3&4 (4 01 23) |                                    |            | 으                                     | te 500                | rces                             | 9                      |    |
|              | V    | Relinquished by (Signature) |   | na@carmona                                                                                                 |   |          |          |          |               |               |              |            |              |               | Time                                  | Corrected Temperature   | emperature Reading     | Correction Factor                                               | i neimometer iD          | Yes 16           |                                               |         | exico                  |                            | (4 01 23)                         |                                    |            |                                       |                       |                                  |                        |    |
|              |      |                             |   | resources co                                                                                               |   |          |          |          | ×             | ×             | ×            | ×          | ×            | ×             | Soil                                  | berature                | eading                 | Or.                                                             |                          | Wet ice          |                                               |         | Due Date               | Routine                    | Te le                             | Email                              |            |                                       |                       |                                  |                        |    |
|              |      |                             |   | Email to Mike Carmona / Mcarmona@carmonaresources com and Conner Moehring / Cmoehring@carmonaresources com |   |          |          |          |               |               |              |            |              |               | Water c                               |                         |                        | , 0                                                             | 4                        | 16 N             | ı                                             |         | 72 Hrs                 | √ Rush                     | Turn Around                       | ail  mcarmona@carmonaresources com |            | City State ZIP                        | Address.              | Company Name                     | Bill to (if different) |    |
|              | N.   |                             |   | yr Moehri                                                                                                  |   |          |          |          | G 1           | G 1           | G 1          | G 1        | G 1          | <b>ω</b>      | Grab/ # of<br>Comp   Cont             |                         |                        | <u>Y</u>                                                        | ara                      | met              |                                               |         |                        | Code                       | -                                 | @carmon:                           |            | ס<br>ו                                |                       | me                               | ent)                   |    |
|              | 126  | Date                        |   | ng / Cm                                                                                                    |   |          |          |          | ×             | ×             | ×            | ×          | ×            | ×             | <u> </u>                              | <u> </u>                | E                      |                                                                 |                          | 21B              |                                               |         |                        | 1 1                        | 1                                 | aresourc                           | -          |                                       |                       |                                  | Cam                    |    |
|              |      | Date/Time                   |   | oehmi                                                                                                      |   |          |          |          | ×             | ×             | ×            | ×          | ×            | ×             | TPI                                   | H 80                    | 15M                    | (G                                                              | ₹0                       | + DR             | 0+                                            | MRC     | ))                     |                            |                                   | es com                             |            |                                       |                       |                                  | Carmona Resources      |    |
| $\downarrow$ | X or |                             |   | у@сагп                                                                                                     |   |          |          |          | ×             | ×             | ×            | ×          | ×            | ×             |                                       |                         | С                      | hlori                                                           | de :                     | 300.0            | )                                             |         |                        | igg                        |                                   |                                    |            |                                       |                       |                                  | sources                |    |
|              |      | ᅦ                           | נ | nonares                                                                                                    |   | _        |          | _        |               |               | _            |            |              | -             |                                       |                         |                        |                                                                 |                          |                  | •••••                                         |         |                        | -                          |                                   |                                    |            |                                       |                       |                                  |                        |    |
|              | 4    |                             |   | source                                                                                                     |   | -        | -        | $\dashv$ |               | $\dashv$      | -            |            |              | $\dashv$      | ······                                |                         |                        |                                                                 |                          |                  | ********                                      |         |                        | -                          | ANA                               |                                    |            |                                       |                       |                                  |                        |    |
|              | X    | -                           |   | scom                                                                                                       |   |          |          |          |               |               |              |            |              |               |                                       |                         |                        |                                                                 |                          |                  |                                               |         |                        |                            | LYSIS                             |                                    |            |                                       |                       |                                  |                        |    |
|              |      | Receive                     |   |                                                                                                            |   | _        |          | _        |               |               | _            | _          | _            | 1             |                                       |                         |                        |                                                                 |                          |                  |                                               |         |                        |                            | ANALYSIS REQUEST                  |                                    |            |                                       | S.                    |                                  |                        |    |
|              | l II | d by: (S                    |   |                                                                                                            | 1 | -        | +        | $\dashv$ | 1             | -             | -            | -          | 1            | _             | · · · · · · · · · · · · · · · · · · · |                         |                        |                                                                 |                          |                  |                                               |         | *****                  | $\vdash$                   | TS                                | eliverable                         |            | portina                               | State of Project:     | ogram:                           |                        |    |
|              |      | (Signature)                 | > |                                                                                                            |   |          |          |          |               |               |              |            |              |               |                                       |                         |                        |                                                                 |                          |                  | • • • • • •                                   |         |                        |                            |                                   | Deliverables EDD                   |            | Reporting Level II   Level III        | oject:                | Program: UST/PST PRP Irownfields |                        |    |
|              |      | e)                          |   |                                                                                                            | - |          | _        | 1        |               | -             | _            | _          | _            | _             |                                       |                         |                        |                                                                 |                          |                  |                                               |         |                        | -                          |                                   |                                    | ] [        | level                                 | {                     | PR                               | Wor                    |    |
|              |      |                             |   |                                                                                                            | _ | $\dashv$ | $\dashv$ | $\dashv$ | $\dashv$      | $\dashv$      | 1            | 1          | -            | $\frac{1}{1}$ |                                       |                         | ·                      |                                                                 |                          |                  |                                               |         |                        | $\vdash$                   |                                   | ADa                                |            |                                       | ı                     | Trov                             | ( Order                |    |
|              |      |                             |   |                                                                                                            | 1 | 1        | 1        | 1        |               |               |              | 1          | 1            | 1             | 60                                    | NaOH                    | Zn Ac                  | Na <sub>2</sub> S <sub>2</sub>                                  | NaHS                     | H₃PO₄ HP         | H <sub>2</sub> SO <sub>4</sub> H <sub>2</sub> | HCL HC  | Cool Cool              | None NO                    |                                   | ADaPT L                            | ] 9        | TSI//IST                              |                       | nfields                          | Work Order Comments    | τ. |
| +            |      | -                           |   |                                                                                                            |   |          |          |          |               |               |              |            |              |               | ample                                 | +Ascorbi                | Zn Acetate+NaOH Zn     | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> NaSO <sub>3</sub> | NaHSO <sub>4</sub> NABIS | 퓻                | ¥                                             | ਨ       | Ool                    | Ö                          | reserva                           | Other                              |            | N N N N N N N N N N N N N N N N N N N | Ę                     | 7<br>8                           | ıments                 | ĩ  |
|              |      | Date/Time                   |   |                                                                                                            |   |          |          |          |               |               |              |            |              |               | Sample Comments                       | NaOH+Ascorbic Acid SAPC | OH Zn                  | ္မ                                                              | Ö                        |                  | NaOH Na                                       | HNO3 HN | MeOH Me                | DI Water: H <sub>2</sub> O | Preservative Codes                | ļ.                                 | [[במימו וי |                                       | _                     | Derfund                          |                        |    |

Wc 880-28857 Chain of Custody

6/1/2023

# **Login Sample Receipt Checklist**

Client: Carmona Resources Job Number: 880-28857-1 SDG Number: Lea County, New Mexico

List Source: Eurofins Midland

Login Number: 28857 List Number: 1

Creator: Rodriguez, Leticia

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| The cooler's custody seal, if present, is intact.                                | N/A    |         |
| Sample custody seals, if present, are intact.                                    | N/A    |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the containers received and the COC.          | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified.                                                    | N/A    |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| Containers requiring zero headspace have no headspace or bubble is               | N/A    |         |

<6mm (1/4").

**Environment Testing** 

# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Mike Carmona Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701

Generated 5/31/2023 10:16:12 AM

# **JOB DESCRIPTION**

Stratocaster 20 Fed 3&4 (4.01.23) SDG NUMBER Lea County, New Mexico

# **JOB NUMBER**

880-28854-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

# **Eurofins Midland**

# **Job Notes**

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

# **Authorization**

Generated 5/31/2023 10:16:12 AM

Authorized for release by Jessica Kramer, Project Manager <u>Jessica.Kramer@et.eurofinsus.com</u> (432)704-5440 Client: Carmona Resources Project/Site: Stratocaster 20 Fed 3&4 (4.01.23) Laboratory Job ID: 880-28854-1 SDG: Lea County, New Mexico

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 11 |
| QC Sample Results      | 12 |
| QC Association Summary | 18 |
| Lab Chronicle          | 21 |
| Certification Summary  | 23 |
| Method Summary         | 24 |
| Sample Summary         | 25 |
| Chain of Custody       | 26 |
| Receint Checklists     | 27 |

2

3

4

6

8

10

11

13

**Qualifier Description** 

#### **Definitions/Glossary**

Client: Carmona Resources Job ID: 880-28854-1 Project/Site: Stratocaster 20 Fed 3&4 (4.01.23) SDG: Lea County, New Mexico

#### **Qualifiers**

| GC   | <b>VOA</b> |
|------|------------|
| Qual | ifier      |

| *+  | LCS and/or LCSD is outside acceptance limits, high biased. |
|-----|------------------------------------------------------------|
| F1  | MS and/or MSD recovery exceeds control limits.             |
| F2  | MS/MSD RPD exceeds control limits                          |
| S1- | Surrogate recovery exceeds control limits, low biased.     |

Indicates the analyte was analyzed for but not detected.

#### GC Semi VOA

U

| Qualifier | Qualifier Description                                    |
|-----------|----------------------------------------------------------|
| S1+       | Surrogate recovery exceeds control limits, high biased.  |
| U         | Indicates the analyte was analyzed for but not detected. |

#### HPLC/IC

| Qualifier | Qualifier Description                                   |
|-----------|---------------------------------------------------------|
| F1        | MS and/or MSD recovery exceeds control limits.          |
| U         | Indicates the analyte was analyzed for but not detected |

#### **Glossary**

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid

CFU Colony Forming Unit CNF Contains No Free Liquid DER

Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor** 

DL Detection Limit (DoD/DOE)

DL. RA. RE. IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL Minimum Detectable Activity (Radiochemistry) MDA Minimum Detectable Concentration (Radiochemistry) MDC

MDL Method Detection Limit MI Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present Practical Quantitation Limit **PQL** 

**PRES** Presumptive QC **Quality Control** 

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

**RPD** Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

**TNTC** Too Numerous To Count

#### Case Narrative

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

Job ID: 880-28854-1

SDG: Lea County, New Mexico

Job ID: 880-28854-1

**Laboratory: Eurofins Midland** 

Narrative

Job Narrative 880-28854-1

#### Receipt

The samples were received on 5/26/2023 1:04 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.1°C

#### **Receipt Exceptions**

The following samples were received and analyzed from an unpreserved bulk soil jar: H-1 (0-0.5') (880-28854-1), H-2 (0-0.5') (880-28854-2), H-3 (0-0.5') (880-28854-3), H-4 (0-0.5') (880-28854-4), H-5 (0-0.5') (880-28854-5) and H-6 (0-0.5') (880-28854-6).

#### GC VOA

Method 8021B: Spike compounds were inadvertently omitted during the extraction process for the matrix spike/matrix spike duplicate (MS/MSD); therefore, matrix spike recoveries are unavailable for preparation batch 880-54263 and analytical batch 880-54207. The associated laboratory control sample (LCS) met acceptance criteria.

Method 8021B: LCS biased high for benzene. Since the method only requires an LCS or LCSD to be acceptable, the data was qualified and reported. (LCS 880-54263/1-A)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

Method 8015MOD NM: The surrogate recovery for the blank associated with preparation batch 880-54267 and analytical batch 880-54316 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### HPLC/IC

Method 300\_ORGFM\_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-54268 and analytical batch 880-54393 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

# **Client Sample Results**

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

Job ID: 880-28854-1 SDG: Lea County, New Mexico

L = |- 0 - --- | - | D = 000 00054 4

Lab Sample ID: 880-28854-1

Matrix: Solid

| Client Sample ID: H-1      | (0-0.5') |
|----------------------------|----------|
| Data Callagtade 05/22/22 0 | 0.00     |

Date Received: 05/26/23 13:04

| Analyte                                                                                                                                         | Result                             | Qualifier      | RL                        | MDL | Unit                   | D        | Prepared                                           | Analyzed                                              | Dil Fac           |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------|---------------------------|-----|------------------------|----------|----------------------------------------------------|-------------------------------------------------------|-------------------|
| Benzene                                                                                                                                         | <0.00199                           | U *+           | 0.00199                   |     | mg/Kg                  |          | 05/26/23 15:25                                     | 05/27/23 16:04                                        | 1                 |
| Toluene                                                                                                                                         | <0.00199                           | U              | 0.00199                   |     | mg/Kg                  |          | 05/26/23 15:25                                     | 05/27/23 16:04                                        | 1                 |
| Ethylbenzene                                                                                                                                    | <0.00199                           | U              | 0.00199                   |     | mg/Kg                  |          | 05/26/23 15:25                                     | 05/27/23 16:04                                        | 1                 |
| m-Xylene & p-Xylene                                                                                                                             | <0.00398                           | U              | 0.00398                   |     | mg/Kg                  |          | 05/26/23 15:25                                     | 05/27/23 16:04                                        | 1                 |
| o-Xylene                                                                                                                                        | <0.00199                           | U              | 0.00199                   |     | mg/Kg                  |          | 05/26/23 15:25                                     | 05/27/23 16:04                                        | 1                 |
| Xylenes, Total                                                                                                                                  | <0.00398                           | U              | 0.00398                   |     | mg/Kg                  |          | 05/26/23 15:25                                     | 05/27/23 16:04                                        | 1                 |
| Surrogate                                                                                                                                       | %Recovery                          | Qualifier      | Limits                    |     |                        |          | Prepared                                           | Analyzed                                              | Dil Fac           |
| 4-Bromofluorobenzene (Surr)                                                                                                                     | 100                                |                | 70 - 130                  |     |                        |          | 05/26/23 15:25                                     | 05/27/23 16:04                                        | 1                 |
| 1,4-Difluorobenzene (Surr)                                                                                                                      | 73                                 |                | 70 - 130                  |     |                        |          | 05/26/23 15:25                                     | 05/27/23 16:04                                        | 1                 |
| Method: TAL SOP Total BTEX                                                                                                                      | - Total BTEX Cal                   | culation       |                           |     |                        |          |                                                    |                                                       |                   |
| Analyte                                                                                                                                         | Result                             | Qualifier      | RL                        | MDL | Unit                   | D        | Prepared                                           | Analyzed                                              | Dil Fac           |
| Total BTEX                                                                                                                                      | <0.00398                           | U              | 0.00398                   |     | mg/Kg                  |          |                                                    | 05/30/23 13:01                                        | 1                 |
| Analyte                                                                                                                                         | Result                             | Qualifier      | RL                        | MDL |                        | D        | Prepared                                           | Analyzed                                              | Dil Fac           |
| Total TDU                                                                                                                                       | 44E                                |                |                           |     |                        |          |                                                    |                                                       |                   |
| Total TPH                                                                                                                                       | 415                                |                | 49.9                      |     | mg/Kg                  |          |                                                    | 05/30/23 15:27                                        | 1                 |
| •                                                                                                                                               | esel Range Orga                    |                |                           |     | mg/Kg                  |          |                                                    | 05/30/23 15:27                                        | 1                 |
| Method: SW846 8015B NM - Di<br>Analyte                                                                                                          | esel Range Orga<br>Result          | Qualifier      |                           | MDL | Unit                   | <u>D</u> | Prepared                                           | 05/30/23 15:27  Analyzed                              | ·                 |
| Method: SW846 8015B NM - Di<br>Analyte<br>Gasoline Range Organics                                                                               | esel Range Orga                    | Qualifier      | (GC)                      | MDL |                        | <u>D</u> | Prepared 05/26/23 15:58                            |                                                       | Dil Fac           |
| Method: SW846 8015B NM - Di<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                | esel Range Orga<br>Result          | Qualifier      | (GC)                      | MDL | Unit                   | <u>D</u> | <u>·</u>                                           | Analyzed                                              | Dil Fac           |
| Method: SW846 8015B NM - Di<br>Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over<br>C10-C28)                             | esel Range Orga<br>Result<br><49.9 | Qualifier      | (GC) RL 49.9              | MDL | Unit<br>mg/Kg<br>mg/Kg | <u>D</u> | 05/26/23 15:58<br>05/26/23 15:58                   | Analyzed 05/27/23 15:47 05/27/23 15:47                | Dil Fac           |
| Method: SW846 8015B NM - Di<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                | esel Range Orga<br>Result<br><49.9 | Qualifier      | (GC) RL 49.9              | MDL | Unit<br>mg/Kg          | <u> </u> | 05/26/23 15:58                                     | <b>Analyzed</b> 05/27/23 15:47                        | Dil Fac           |
| Method: SW846 8015B NM - Di Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over          | esel Range Orga<br>Result<br><49.9 | Qualifier<br>U | (GC) RL 49.9              | MDL | Unit<br>mg/Kg<br>mg/Kg | <u>D</u> | 05/26/23 15:58<br>05/26/23 15:58                   | Analyzed 05/27/23 15:47 05/27/23 15:47                | Dil Fac           |
| Method: SW846 8015B NM - Di Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) | Result                             | Qualifier<br>U | (GC)  RL 49.9  49.9  49.9 | MDL | Unit<br>mg/Kg<br>mg/Kg | <u>D</u> | 05/26/23 15:58<br>05/26/23 15:58<br>05/26/23 15:58 | Analyzed 05/27/23 15:47 05/27/23 15:47 05/27/23 15:47 | Dil Fac<br>1<br>1 |

Client Sample ID: H-2 (0-0.5')

Date Collected: 05/23/23 00:00

Lab Sample ID: 880-28854-2

Matrix: Solid

RL

4.98

MDL Unit

mg/Kg

D

Prepared

Analyzed

05/30/23 10:09

Dil Fac

Result Qualifier

67.4

Date Received: 05/26/23 13:04

Analyte

Chloride

| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00199  | U *+      | 0.00199  |     | mg/Kg |   | 05/26/23 15:25 | 05/27/23 16:25 | 1       |
| Toluene                     | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 05/26/23 15:25 | 05/27/23 16:25 | 1       |
| Ethylbenzene                | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 05/26/23 15:25 | 05/27/23 16:25 | 1       |
| m-Xylene & p-Xylene         | <0.00398  | U         | 0.00398  |     | mg/Kg |   | 05/26/23 15:25 | 05/27/23 16:25 | 1       |
| o-Xylene                    | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 05/26/23 15:25 | 05/27/23 16:25 | 1       |
| Xylenes, Total              | <0.00398  | U         | 0.00398  |     | mg/Kg |   | 05/26/23 15:25 | 05/27/23 16:25 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 107       |           | 70 - 130 |     |       |   | 05/26/23 15:25 | 05/27/23 16:25 | 1       |
| 1,4-Difluorobenzene (Surr)  | 95        |           | 70 - 130 |     |       |   | 05/26/23 15:25 | 05/27/23 16:25 | 1       |

**Eurofins Midland** 

3

5

7

0

10

12

13

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

Job ID: 880-28854-1

SDG: Lea County, New Mexico

Lab Sample ID: 880-28854-2

Matrix: Solid

Client Sample ID: H-2 (0-0.5')
Date Collected: 05/23/23 00:00

Date Received: 05/26/23 13:04

| Analyte                        | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------|----------------|-------------|----------|-----|-------|---|----------------|----------------|---------|
| Total BTEX                     | <0.00398       | U           | 0.00398  |     | mg/Kg |   |                | 05/30/23 13:01 | 1       |
| Method: SW846 8015 NM - Dies   | el Range Organ | ics (DRO) ( | GC)      |     |       |   |                |                |         |
| Analyte                        | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                      | 220            |             | 49.8     |     | mg/Kg |   |                | 05/30/23 15:27 | 1       |
| Method: SW846 8015B NM - Die   | sel Range Orga | nics (DRO)  | (GC)     |     |       |   |                |                |         |
| Analyte                        | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics        | <49.8          | U           | 49.8     |     | mg/Kg |   | 05/26/23 15:58 | 05/27/23 16:32 | 1       |
| (GRO)-C6-C10                   |                |             |          |     |       |   |                |                |         |
| Diesel Range Organics (Over    | 108            |             | 49.8     |     | mg/Kg |   | 05/26/23 15:58 | 05/27/23 16:32 | 1       |
| C10-C28)                       |                |             |          |     |       |   |                |                |         |
| Oll Range Organics (Over       | 112            |             | 49.8     |     | mg/Kg |   | 05/26/23 15:58 | 05/27/23 16:32 | 1       |
| C28-C36)                       |                |             |          |     |       |   |                |                |         |
| Surrogate                      | %Recovery      | Qualifier   | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                 | 97             |             | 70 - 130 |     |       |   | 05/26/23 15:58 | 05/27/23 16:32 | 1       |
| o-Terphenyl                    | 102            |             | 70 - 130 |     |       |   | 05/26/23 15:58 | 05/27/23 16:32 | 1       |
| Method: EPA 300.0 - Anions, Io | n Chromatograp | hy - Solubl | e        |     |       |   |                |                |         |
| Analyte                        | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                       | 54.9           |             | 4.99     |     | mg/Kg |   |                | 05/30/23 10:25 |         |

Client Sample ID: H-3 (0-0.5')

Date Collected: 05/23/23 00:00

Lab Sample ID: 880-28854-3

Matrix: Solid

Date Received: 05/26/23 13:04

| Analyte                                                                                      | Result                                                                             | Qualifier                           | RL                                            | MDL | Unit              | D        | Prepared                 | Analyzed                | Dil Fac      |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------|-----|-------------------|----------|--------------------------|-------------------------|--------------|
| Benzene                                                                                      | <0.00201                                                                           | U *+                                | 0.00201                                       |     | mg/Kg             |          | 05/26/23 15:25           | 05/27/23 16:45          | 1            |
| Toluene                                                                                      | <0.00201                                                                           | U                                   | 0.00201                                       |     | mg/Kg             |          | 05/26/23 15:25           | 05/27/23 16:45          | 1            |
| Ethylbenzene                                                                                 | <0.00201                                                                           | U                                   | 0.00201                                       |     | mg/Kg             |          | 05/26/23 15:25           | 05/27/23 16:45          | 1            |
| m-Xylene & p-Xylene                                                                          | <0.00402                                                                           | U                                   | 0.00402                                       |     | mg/Kg             |          | 05/26/23 15:25           | 05/27/23 16:45          | 1            |
| o-Xylene                                                                                     | <0.00201                                                                           | U                                   | 0.00201                                       |     | mg/Kg             |          | 05/26/23 15:25           | 05/27/23 16:45          | 1            |
| Xylenes, Total                                                                               | <0.00402                                                                           | U                                   | 0.00402                                       |     | mg/Kg             |          | 05/26/23 15:25           | 05/27/23 16:45          | 1            |
| Surrogate                                                                                    | %Recovery                                                                          | Qualifier                           | Limits                                        |     |                   |          | Prepared                 | Analyzed                | Dil Fac      |
| 4-Bromofluorobenzene (Surr)                                                                  |                                                                                    |                                     | 70 - 130                                      |     |                   |          | 05/26/23 15:25           | 05/27/23 16:45          | 1            |
|                                                                                              |                                                                                    |                                     |                                               |     |                   |          |                          |                         |              |
| 1,4-Difluorobenzene (Surr)                                                                   | 115                                                                                |                                     | 70 - 130                                      |     |                   |          | 05/26/23 15:25           | 05/27/23 16:45          | 1            |
| 1,4-Difluorobenzene (Surr)  Method: TAL SOP Total BTEX                                       |                                                                                    | culation                            | 70 - 130                                      |     |                   |          | 05/26/23 15:25           | 05/27/23 16:45          | 1            |
| Method: TAL SOP Total BTEX                                                                   | - Total BTEX Cald                                                                  | culation<br>Qualifier               | 70 <sub>-</sub> 130<br>RL                     | MDL | Unit              | D        | 05/26/23 15:25  Prepared | 05/27/23 16:45 Analyzed | 1<br>Dil Fac |
| ·                                                                                            | - Total BTEX Cald                                                                  | Qualifier                           |                                               | MDL | Unit<br>mg/Kg     | <u>D</u> |                          |                         | Dil Fac      |
| Method: TAL SOP Total BTEX Analyte Total BTEX                                                | - Total BTEX Calc Result <0.00402                                                  | <b>Qualifier</b><br>U               | RL                                            | MDL |                   | <u>D</u> |                          | Analyzed                | Dil Fac      |
| Method: TAL SOP Total BTEX Analyte Total BTEX  Method: SW846 8015 NM - Die                   | - Total BTEX Calc<br>Result<br><0.00402<br>esel Range Organ                        | <b>Qualifier</b><br>U               | RL                                            | MDL | mg/Kg             | <u>D</u> |                          | Analyzed                | Dil Fac      |
| Method: TAL SOP Total BTEX Analyte                                                           | - Total BTEX Calc<br>Result<br><0.00402<br>esel Range Organ                        | Qualifier U ics (DRO) (Qualifier    | RL 0.00402                                    |     | mg/Kg             |          | Prepared                 | Analyzed 05/30/23 13:01 | 1            |
| Method: TAL SOP Total BTEX Analyte Total BTEX  Method: SW846 8015 NM - Die Analyte Total TPH | - Total BTEX Calc Result <0.00402 esel Range Organ Result <49.8                    | Qualifier U ics (DRO) ( Qualifier U | RL 0.00402 —————————————————————————————————— |     | mg/Kg             |          | Prepared                 | Analyzed 05/30/23 13:01 | 1            |
| Method: TAL SOP Total BTEX Analyte Total BTEX  Method: SW846 8015 NM - Die Analyte           | - Total BTEX Calc Result <0.00402 esel Range Organ Result <49.8 diesel Range Organ | Qualifier U ics (DRO) ( Qualifier U | RL 0.00402 —————————————————————————————————— |     | mg/Kg  Unit mg/Kg |          | Prepared                 | Analyzed 05/30/23 13:01 | 1            |

**Eurofins Midland** 

(GRO)-C6-C10

3

4

6

9

11

13

# **Client Sample Results**

Client: Carmona Resources

Job ID: 880-28854-1 Project/Site: Stratocaster 20 Fed 3&4 (4.01.23) SDG: Lea County, New Mexico

Lab Sample ID: 880-28854-3

**Client Sample ID: H-3 (0-0.5')** 

Date Collected: 05/23/23 00:00 Date Received: 05/26/23 13:04

**Matrix: Solid** 

| Method: SW846 8015B NM - Diese    | el Range Orga | nics (DRO) | (GC) (Continue | ed) |       |   |                |                |         |
|-----------------------------------|---------------|------------|----------------|-----|-------|---|----------------|----------------|---------|
| Analyte                           | Result        | Qualifier  | RL             | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Diesel Range Organics (Over       | <49.8         | U          | 49.8           |     | mg/Kg |   | 05/26/23 15:58 | 05/27/23 16:55 | 1       |
| C10-C28)                          |               |            |                |     |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <49.8         | U          | 49.8           |     | mg/Kg |   | 05/26/23 15:58 | 05/27/23 16:55 | 1       |
| Surrogate                         | %Recovery     | Qualifier  | Limits         |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 93            |            | 70 - 130       |     |       |   | 05/26/23 15:58 | 05/27/23 16:55 | 1       |
| o-Terphenyl                       | 96            |            | 70 - 130       |     |       |   | 05/26/23 15:58 | 05/27/23 16:55 | 1       |

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Chloride 4.99 05/30/23 10:30 90.0 mg/Kg

Client Sample ID: H-4 (0-0.5')

Date Collected: 05/23/23 00:00

Date Received: 05/26/23 13:04

Lab Sample ID: 880-28854-4

Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 05/27/23 17:06 Benzene <0.00201 U\*+ 0.00201 mg/Kg 05/26/23 15:25 Toluene <0.00201 U 0.00201 05/26/23 15:25 05/27/23 17:06 mg/Kg Ethylbenzene <0.00201 0.00201 mg/Kg 05/26/23 15:25 05/27/23 17:06 m-Xylene & p-Xylene <0.00402 U 0.00402 mg/Kg 05/26/23 15:25 05/27/23 17:06 o-Xylene <0.00201 U 0.00201 mg/Kg 05/26/23 15:25 05/27/23 17:06 Xylenes, Total <0.00402 U 0.00402 mg/Kg 05/26/23 15:25 05/27/23 17:06

| Surrogate                   | %Recovery Qu | ualifier Limits | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|--------------|-----------------|----------------|----------------|---------|
| 4-Bromofluorobenzene (Surr) | 92           | 70 - 130        | 05/26/23 15:25 | 05/27/23 17:06 | 1       |
| 1,4-Difluorobenzene (Surr)  | 78           | 70 - 130        | 05/26/23 15:25 | 05/27/23 17:06 | 1       |
|                             |              |                 |                |                |         |

| Method: TAL SOP Total BTEX - Total BTEX Calculation |            |          |           |         |     |       |   |          |                |         |
|-----------------------------------------------------|------------|----------|-----------|---------|-----|-------|---|----------|----------------|---------|
|                                                     | Analyte    | Result   | Qualifier | RL      | MDL | Unit  | D | Prepared | Analyzed       | Dil Fac |
|                                                     | Total BTEX | <0.00402 | U         | 0.00402 |     | mg/Kg |   |          | 05/30/23 13:01 | 1       |

| Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) |           |        |           |      |     |       |   |          |                |         |
|----------------------------------------------------------|-----------|--------|-----------|------|-----|-------|---|----------|----------------|---------|
|                                                          | Analyte   | Result | Qualifier | RL   | MDL | Unit  | D | Prepared | Analyzed       | Dil Fac |
|                                                          | Total TPH | <50.0  | U         | 50.0 |     | mg/Kg |   |          | 05/30/23 15:27 | 1       |

| _<br>_                                  |                |            |          |     |       |   |                |                |         |
|-----------------------------------------|----------------|------------|----------|-----|-------|---|----------------|----------------|---------|
| Method: SW846 8015B NM - Dies           | sel Range Orga | nics (DRO) | (GC)     |     |       |   |                |                |         |
| Analyte                                 | Result         | Qualifier  | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.0          | U          | 50.0     |     | mg/Kg |   | 05/26/23 15:58 | 05/27/23 17:17 | 1       |
| Diesel Range Organics (Over<br>C10-C28) | <50.0          | U          | 50.0     |     | mg/Kg |   | 05/26/23 15:58 | 05/27/23 17:17 | 1       |
| Oll Range Organics (Over C28-C36)       | <50.0          | U          | 50.0     |     | mg/Kg |   | 05/26/23 15:58 | 05/27/23 17:17 | 1       |
| Surrogate                               | %Recovery      | Qualifier  | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                          | 100            |            | 70 - 130 |     |       |   | 05/26/23 15:58 | 05/27/23 17:17 | 1       |
| o-Terphenyl                             | 101            |            | 70 - 130 |     |       |   | 05/26/23 15:58 | 05/27/23 17:17 | 1       |

| Method: EPA 300.0 - Anions, Ion Cl | nromatography - Soluble |      |          |   |          |                |         |
|------------------------------------|-------------------------|------|----------|---|----------|----------------|---------|
| Analyte                            | Result Qualifier        | RL   | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
| Chloride                           | 136                     | 5.00 | mg/Kg    |   |          | 05/30/23 10:35 | 1       |

**Eurofins Midland** 

5/31/2023

# **Client Sample Results**

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

Job ID: 880-28854-1

SDG: Lea County, New Mexico

Lab Sample ID: 880-28854-5

Matrix: Solid

**Client Sample ID: H-5 (0-0.5')** Date Collected: 05/23/23 00:00

Date Received: 05/26/23 13:04

| Analyte                                                                                                                                                                                                                                   | Result                                                                                             | Qualifier                                                     | RL                                                             | MDL | Unit                               | D        | Prepared                                                                      | Analyzed                                                                        | Dil Fac |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|-----|------------------------------------|----------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------|
| Benzene                                                                                                                                                                                                                                   | <0.00202                                                                                           | U *+                                                          | 0.00202                                                        |     | mg/Kg                              |          | 05/26/23 15:25                                                                | 05/27/23 17:26                                                                  | 1       |
| Toluene                                                                                                                                                                                                                                   | <0.00202                                                                                           | U                                                             | 0.00202                                                        |     | mg/Kg                              |          | 05/26/23 15:25                                                                | 05/27/23 17:26                                                                  | 1       |
| Ethylbenzene                                                                                                                                                                                                                              | <0.00202                                                                                           | U                                                             | 0.00202                                                        |     | mg/Kg                              |          | 05/26/23 15:25                                                                | 05/27/23 17:26                                                                  | 1       |
| m-Xylene & p-Xylene                                                                                                                                                                                                                       | <0.00404                                                                                           | U                                                             | 0.00404                                                        |     | mg/Kg                              |          | 05/26/23 15:25                                                                | 05/27/23 17:26                                                                  | 1       |
| o-Xylene                                                                                                                                                                                                                                  | <0.00202                                                                                           | U                                                             | 0.00202                                                        |     | mg/Kg                              |          | 05/26/23 15:25                                                                | 05/27/23 17:26                                                                  | 1       |
| Xylenes, Total                                                                                                                                                                                                                            | <0.00404                                                                                           | U                                                             | 0.00404                                                        |     | mg/Kg                              |          | 05/26/23 15:25                                                                | 05/27/23 17:26                                                                  | ,       |
| Surrogate                                                                                                                                                                                                                                 | %Recovery                                                                                          | Qualifier                                                     | Limits                                                         |     |                                    |          | Prepared                                                                      | Analyzed                                                                        | Dil Fa  |
| 4-Bromofluorobenzene (Surr)                                                                                                                                                                                                               | 112                                                                                                |                                                               | 70 - 130                                                       |     |                                    |          | 05/26/23 15:25                                                                | 05/27/23 17:26                                                                  |         |
| 1,4-Difluorobenzene (Surr)                                                                                                                                                                                                                | 93                                                                                                 |                                                               | 70 - 130                                                       |     |                                    |          | 05/26/23 15:25                                                                | 05/27/23 17:26                                                                  | 1       |
| Method: TAL SOP Total BTEX - T                                                                                                                                                                                                            | otal BTEX Cald                                                                                     | culation                                                      |                                                                |     |                                    |          |                                                                               |                                                                                 |         |
| Analyte                                                                                                                                                                                                                                   | Result                                                                                             | Qualifier                                                     | RL                                                             | MDL | Unit                               | D        | Prepared                                                                      | Analyzed                                                                        | Dil Fac |
| Total BTEX                                                                                                                                                                                                                                | <0.00404                                                                                           | U                                                             | 0.00404                                                        |     | mg/Kg                              |          |                                                                               | 05/30/23 13:01                                                                  |         |
|                                                                                                                                                                                                                                           |                                                                                                    |                                                               | GC)                                                            |     | 3 3                                |          |                                                                               |                                                                                 |         |
| Method: SW846 8015 NM - Diese<br>Analyte                                                                                                                                                                                                  | I Range Organ<br>Result                                                                            | ics (DRO) (                                                   | RL                                                             | MDL | Unit                               | <u>D</u> | Prepared                                                                      | Analyzed                                                                        |         |
| Method: SW846 8015 NM - Diese<br>Analyte                                                                                                                                                                                                  | l Range Organ                                                                                      | ics (DRO) (                                                   | •                                                              | MDL |                                    | <u>D</u> | Prepared                                                                      | Analyzed 05/30/23 15:27                                                         |         |
| Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH                                                                                                                                                                                     | Result <49.9                                                                                       | ics (DRO) (<br>Qualifier                                      | RL 49.9                                                        | MDL | Unit                               | <u>D</u> | Prepared                                                                      |                                                                                 |         |
| Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies                                                                                                                                                    | I Range Organ Result <a href="#">&lt;49.9</a> sel Range Organ                                      | ics (DRO) (<br>Qualifier                                      | RL 49.9                                                        |     | Unit                               | <u>D</u> | Prepared Prepared                                                             |                                                                                 |         |
| Method: SW846 8015 NM - Diese Analyte Total TPH  Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics                                                                                                                           | I Range Organ Result <a href="#">&lt;49.9</a> sel Range Organ                                      | Qualifier Unics (DRO) Qualifier                               | RL 49.9 (GC)                                                   |     | Unit<br>mg/Kg                      |          | <u> </u>                                                                      | 05/30/23 15:27                                                                  | Dil Fac |
| Method: SW846 8015 NM - Diese Analyte Total TPH  Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over                                                                                  | I Range Organ Result <a href="#">49.9</a> sel Range Orga Result                                    | ics (DRO) ( Qualifier U  nics (DRO) Qualifier U               | RL 49.9 (GC)                                                   |     | Unit<br>mg/Kg                      |          | Prepared                                                                      | 05/30/23 15:27  Analyzed                                                        | Dil Fac |
| Method: SW846 8015 NM - Diese Analyte Total TPH  Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)                                                                         | I Range Organ Result 49.9 sel Range Orga Result  49.9                                              | ics (DRO) ( Qualifier U  nics (DRO) Qualifier U               | RL 49.9  (GC) RL 49.9                                          |     | Unit mg/Kg  Unit mg/Kg             |          | Prepared 05/26/23 15:58                                                       | 05/30/23 15:27  Analyzed  05/27/23 17:40                                        | Dil Fac |
| Method: SW846 8015 NM - Diese Analyte Total TPH  Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)                                       | I Range Organ Result 49.9 sel Range Orga Result  49.9                                              | ics (DRO) ( Qualifier U  nics (DRO) Qualifier U  U            | RL 49.9  (GC) RL 49.9  49.9                                    |     | Unit mg/Kg  Unit mg/Kg mg/Kg       |          | Prepared 05/26/23 15:58 05/26/23 15:58                                        | 05/30/23 15:27  Analyzed  05/27/23 17:40  05/27/23 17:40                        | Dil Fac |
| Method: SW846 8015 NM - Diese Analyte Total TPH  Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)  Surrogate                            | I Range Organ Result 49.9 sel Range Orga Result  49.9 49.9                                         | ics (DRO) ( Qualifier U  nics (DRO) Qualifier U  U            | RL 49.9  (GC) RL 49.9  49.9  49.9                              |     | Unit mg/Kg  Unit mg/Kg mg/Kg       |          | Prepared 05/26/23 15:58 05/26/23 15:58 05/26/23 15:58                         | 05/30/23 15:27  Analyzed 05/27/23 17:40 05/27/23 17:40 05/27/23 17:40           | Dil Fac |
| Method: SW846 8015 NM - Diese Analyte Total TPH  Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)  Surrogate 1-Chlorooctane             | I Range Organ Result <49.9 sel Range Orga Result <49.9 <49.9 <49.9 %Recovery                       | ics (DRO) ( Qualifier U  nics (DRO) Qualifier U  U            | RL 49.9  (GC)  RL 49.9  49.9  49.9  Limits                     |     | Unit mg/Kg  Unit mg/Kg mg/Kg       |          | Prepared 05/26/23 15:58 05/26/23 15:58 05/26/23 15:58 Prepared                | 05/30/23 15:27  Analyzed 05/27/23 17:40 05/27/23 17:40 05/27/23 17:40  Analyzed | Dil Fac |
| Method: SW846 8015 NM - Diese Analyte Total TPH  Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)  Surrogate 1-Chlorooctane o-Terphenyl | I Range Organ Result <49.9 sel Range Orga Result <49.9 <49.9 <49.9  %Recovery 94 98                | ics (DRO) ( Qualifier U  nics (DRO) Qualifier U  U  Qualifier | RL 49.9  (GC)  RL 49.9  49.9  49.9  Limits  70 - 130  70 - 130 |     | Unit mg/Kg  Unit mg/Kg mg/Kg       |          | Prepared 05/26/23 15:58 05/26/23 15:58 05/26/23 15:58 Prepared 05/26/23 15:58 | 05/30/23 15:27  Analyzed 05/27/23 17:40 05/27/23 17:40  Analyzed 05/27/23 17:40 | Dil Fac |
| Method: SW846 8015 NM - Diese Analyte Total TPH  Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)  Surrogate                            | I Range Organ Result <49.9  sel Range Orga Result <49.9 <49.9 <49.9  %Recovery 94 98  Chromatograp | ics (DRO) ( Qualifier U  nics (DRO) Qualifier U  U  Qualifier | RL 49.9  (GC)  RL 49.9  49.9  49.9  Limits  70 - 130  70 - 130 |     | Unit mg/Kg  Unit mg/Kg mg/Kg mg/Kg |          | Prepared 05/26/23 15:58 05/26/23 15:58 05/26/23 15:58 Prepared 05/26/23 15:58 | 05/30/23 15:27  Analyzed 05/27/23 17:40 05/27/23 17:40  Analyzed 05/27/23 17:40 | Dil Fac |

Client Sample ID: H-6 (0-0.5') Lab Sample ID: 880-28854-6 Date Collected: 05/23/23 00:00 **Matrix: Solid** 

Date Received: 05/26/23 13:04

| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00199  | U *+      | 0.00199  |     | mg/Kg |   | 05/26/23 15:25 | 05/27/23 17:47 | 1       |
| Toluene                     | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 05/26/23 15:25 | 05/27/23 17:47 | 1       |
| Ethylbenzene                | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 05/26/23 15:25 | 05/27/23 17:47 | 1       |
| m-Xylene & p-Xylene         | <0.00398  | U         | 0.00398  |     | mg/Kg |   | 05/26/23 15:25 | 05/27/23 17:47 | 1       |
| o-Xylene                    | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 05/26/23 15:25 | 05/27/23 17:47 | 1       |
| Xylenes, Total              | <0.00398  | U         | 0.00398  |     | mg/Kg |   | 05/26/23 15:25 | 05/27/23 17:47 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 94        |           | 70 - 130 |     |       |   | 05/26/23 15:25 | 05/27/23 17:47 | 1       |
| 1.4-Difluorobenzene (Surr)  | 71        |           | 70 - 130 |     |       |   | 05/26/23 15:25 | 05/27/23 17:47 | 1       |

# **Client Sample Results**

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

SDG: Lea County, New Mexico

Job ID: 880-28854-1

Lab Sample ID: 880-28854-6

Matrix: Solid

| Client Sample ID: H-6 (0-0.5') |
|--------------------------------|
| Date Collected: 05/23/23 00:00 |

Date Received: 05/26/23 13:04

| Method: TAL SOP Total BTEX -      | <b>Total BTEX Cald</b> | culation     |         |     |       |   |                |                |         |
|-----------------------------------|------------------------|--------------|---------|-----|-------|---|----------------|----------------|---------|
| Analyte                           | Result                 | Qualifier    | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total BTEX                        | <0.00398               | U            | 0.00398 |     | mg/Kg |   |                | 05/30/23 13:01 | 1       |
| -<br>Method: SW846 8015 NM - Dies | sel Range Organ        | ics (DRO) (0 | GC)     |     |       |   |                |                |         |
| Analyte                           | Result                 | Qualifier    | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                         | <50.0                  | U            | 50.0    |     | mg/Kg |   |                | 05/30/23 15:27 | 1       |
| -<br>Method: SW846 8015B NM - Did | esel Range Orga        | nics (DRO)   | (GC)    |     |       |   |                |                |         |
| Analyte                           | Result                 | Qualifier    | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics           | <50.0                  | U            | 50.0    |     | mg/Kg |   | 05/26/23 15:58 | 05/27/23 18:03 | 1       |
| (GRO)-C6-C10                      |                        |              |         |     |       |   |                |                |         |
| Diesel Range Organics (Over       | <50.0                  | U            | 50.0    |     | mg/Kg |   | 05/26/23 15:58 | 05/27/23 18:03 | 1       |
| C10-C28)                          |                        |              |         |     |       |   |                |                |         |

| OII Range Organics (Over C28-C36) | <50.0     | U         | 50.0     | mg/Kg | 05/26/23 15:58 | 05/27/23 18:03 | 1       |
|-----------------------------------|-----------|-----------|----------|-------|----------------|----------------|---------|
| Surrogate                         | %Recovery | Qualifier | Limits   |       | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 96        |           | 70 - 130 |       | 05/26/23 15:58 | 05/27/23 18:03 | 1       |
| o-Terphenyl                       | 102       |           | 70 - 130 |       | 05/26/23 15:58 | 05/27/23 18:03 | 1       |
|                                   |           |           |          |       |                |                |         |

| Method: EPA 300.0 - Anions, Ion Chromatography - Soluble |          |                  |      |     |       |   |          |                |         |
|----------------------------------------------------------|----------|------------------|------|-----|-------|---|----------|----------------|---------|
|                                                          | Analyte  | Result Qualifier | RL   | MDL | Unit  | D | Prepared | Analyzed       | Dil Fac |
|                                                          | Chloride | 312              | 5.04 |     | mg/Kg |   |          | 05/30/23 10:46 | 1       |

# **Surrogate Summary**

Client: Carmona Resources

Job ID: 880-28854-1 Project/Site: Stratocaster 20 Fed 3&4 (4.01.23) SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

|                     |                        | BFB1     | DFBZ1    | Percent Surrogate Recovery (Acceptance Limits) |
|---------------------|------------------------|----------|----------|------------------------------------------------|
| Lab Sample ID       | Client Sample ID       | (70-130) | (70-130) |                                                |
| 880-28743-A-5-D MS  | Matrix Spike           | 114      | 109      |                                                |
| 880-28743-A-5-E MSD | Matrix Spike Duplicate | 67 S1-   | 97       |                                                |
| 880-28854-1         | H-1 (0-0.5')           | 100      | 73       |                                                |
| 880-28854-2         | H-2 (0-0.5')           | 107      | 95       |                                                |
| 880-28854-3         | H-3 (0-0.5')           | 111      | 115      |                                                |
| 880-28854-4         | H-4 (0-0.5')           | 92       | 78       |                                                |
| 880-28854-5         | H-5 (0-0.5')           | 112      | 93       |                                                |
| 880-28854-6         | H-6 (0-0.5')           | 94       | 71       |                                                |
| 880-28876-A-1-A MS  | Matrix Spike           | 105      | 103      |                                                |
| 880-28876-A-1-B MSD | Matrix Spike Duplicate | 99       | 110      |                                                |
| LCS 880-54263/1-A   | Lab Control Sample     | 87       | 114      |                                                |
| LCS 880-54365/1-A   | Lab Control Sample     | 106      | 101      |                                                |
| LCSD 880-54263/2-A  | Lab Control Sample Dup | 107      | 112      |                                                |
| LCSD 880-54365/2-A  | Lab Control Sample Dup | 99       | 103      |                                                |
| MB 880-54099/5-A    | Method Blank           | 66 S1-   | 74       |                                                |
| MB 880-54263/5-A    | Method Blank           | 66 S1-   | 82       |                                                |
| MB 880-54365/5-A    | Method Blank           | 90       | 109      |                                                |

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

|                     |                        |          |          | Percent Surrogate Recovery (Acceptance Limits |
|---------------------|------------------------|----------|----------|-----------------------------------------------|
|                     |                        | 1CO1     | OTPH1    |                                               |
| ab Sample ID        | Client Sample ID       | (70-130) | (70-130) |                                               |
| 80-28851-A-21-D MS  | Matrix Spike           | 98       | 90       |                                               |
| 80-28851-A-21-E MSD | Matrix Spike Duplicate | 97       | 90       |                                               |
| 80-28854-1          | H-1 (0-0.5')           | 96       | 99       |                                               |
| 80-28854-2          | H-2 (0-0.5')           | 97       | 102      |                                               |
| 80-28854-3          | H-3 (0-0.5')           | 93       | 96       |                                               |
| 80-28854-4          | H-4 (0-0.5')           | 100      | 101      |                                               |
| 80-28854-5          | H-5 (0-0.5')           | 94       | 98       |                                               |
| 80-28854-6          | H-6 (0-0.5')           | 96       | 102      |                                               |
| CS 880-54267/2-A    | Lab Control Sample     | 84       | 91       |                                               |
| CSD 880-54267/3-A   | Lab Control Sample Dup | 100      | 106      |                                               |
| IB 880-54267/1-A    | Method Blank           | 203 S1+  | 223 S1+  |                                               |

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Client: Carmona Resources

Job ID: 880-28854-1 SDG: Lea County, New Mexico Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

# Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-54099/5-A

Analysis Batch: 54207

**Matrix: Solid** 

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 54099

|                     | MB       | MB        |         |     |       |   |                |                |         |
|---------------------|----------|-----------|---------|-----|-------|---|----------------|----------------|---------|
| Analyte             | Result   | Qualifier | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene             | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 05/24/23 15:37 | 05/26/23 21:44 | 1       |
| Toluene             | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 05/24/23 15:37 | 05/26/23 21:44 | 1       |
| Ethylbenzene        | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 05/24/23 15:37 | 05/26/23 21:44 | 1       |
| m-Xylene & p-Xylene | <0.00400 | U         | 0.00400 |     | mg/Kg |   | 05/24/23 15:37 | 05/26/23 21:44 | 1       |
| o-Xylene            | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 05/24/23 15:37 | 05/26/23 21:44 | 1       |
| Xylenes, Total      | <0.00400 | U         | 0.00400 |     | mg/Kg |   | 05/24/23 15:37 | 05/26/23 21:44 | 1       |
|                     | MD       | MD        |         |     |       |   |                |                |         |

MB MB

| Surrogate                   | %Recovery | Qualifier | Limits   | Prep    | ared     | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|---------|----------|----------------|---------|
| 4-Bromofluorobenzene (Surr) | 66        | S1-       | 70 - 130 | 05/24/2 | 23 15:37 | 05/26/23 21:44 | 1       |
| 1,4-Difluorobenzene (Surr)  | 74        |           | 70 - 130 | 05/24/2 | 3 15:37  | 05/26/23 21:44 | 1       |

Lab Sample ID: MB 880-54263/5-A

Matrix: Solid

Analysis Batch: 54207

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 54263

|                     | INID     | MID       |         |     |       |   |                |                |         |
|---------------------|----------|-----------|---------|-----|-------|---|----------------|----------------|---------|
| Analyte             | Result   | Qualifier | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene             | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 05/26/23 15:25 | 05/27/23 08:20 | 1       |
| Toluene             | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 05/26/23 15:25 | 05/27/23 08:20 |         |
| Ethylbenzene        | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 05/26/23 15:25 | 05/27/23 08:20 |         |
| m-Xylene & p-Xylene | <0.00400 | U         | 0.00400 |     | mg/Kg |   | 05/26/23 15:25 | 05/27/23 08:20 | •       |
| o-Xylene            | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 05/26/23 15:25 | 05/27/23 08:20 |         |
| Xylenes, Total      | <0.00400 | U         | 0.00400 |     | mg/Kg |   | 05/26/23 15:25 | 05/27/23 08:20 |         |
|                     |          |           |         |     |       |   |                |                |         |

мв мв

| Surrogate                   | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|----------------|----------------|---------|
| 4-Bromofluorobenzene (Surr) | 66        | S1-       | 70 - 130 | 05/26/23 15:25 | 05/27/23 08:20 | 1       |
| 1,4-Difluorobenzene (Surr)  | 82        |           | 70 - 130 | 05/26/23 15:25 | 05/27/23 08:20 | 1       |

Lab Sample ID: LCS 880-54263/1-A

**Matrix: Solid** 

**Analysis Batch: 54207** 

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

Prep Batch: 54263

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |  |   |
|---------------------|-------|---------|-----------|-------|---|------|----------|--|---|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |   |
| Benzene             | 0.100 | 0.1319  | *+        | mg/Kg |   | 132  | 70 - 130 |  | _ |
| Toluene             | 0.100 | 0.09762 |           | mg/Kg |   | 98   | 70 - 130 |  |   |
| Ethylbenzene        | 0.100 | 0.08723 |           | mg/Kg |   | 87   | 70 - 130 |  |   |
| m-Xylene & p-Xylene | 0.200 | 0.1692  |           | mg/Kg |   | 85   | 70 - 130 |  |   |
| o-Xylene            | 0.100 | 0.08550 |           | mg/Kg |   | 85   | 70 - 130 |  |   |
|                     |       |         |           |       |   |      |          |  |   |

LCS LCS

| Surrogate                   | %Recovery Qualifier | Limits   |
|-----------------------------|---------------------|----------|
| 4-Bromofluorobenzene (Surr) | 87                  | 70 - 130 |
| 1.4-Difluorobenzene (Surr)  | 114                 | 70 - 130 |

Lab Sample ID: LCSD 880-54263/2-A

Matrix: Solid

**Analysis Batch: 54207** 

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 54263

|         | <b>Бріке</b> | LCSD LCSD        |       |   |      | %Rec     |     | RPD   |  |
|---------|--------------|------------------|-------|---|------|----------|-----|-------|--|
| Analyte | Added        | Result Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |  |
| Benzene | 0.100        | 0.1265           | mg/Kg |   | 127  | 70 - 130 | 4   | 35    |  |

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

Job ID: 880-28854-1

SDG: Lea County, New Mexico

# Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-54263/2-A

**Matrix: Solid** Analysis Batch: 54207 Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 54263

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Toluene 0.100 0.1041 104 70 - 130 35 mg/Kg 6 Ethylbenzene 0.100 0.1019 mg/Kg 102 70 - 130 15 0.200 0.2115 70 - 130 m-Xylene & p-Xylene mg/Kg 106 22 35 0.100 o-Xylene 0.1078 mg/Kg 108 70 - 130 23

LCSD LCSD

| Surrogate                   | %Recovery | Qualifier | Limits   |
|-----------------------------|-----------|-----------|----------|
| 4-Bromofluorobenzene (Surr) | 107       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 112       |           | 70 - 130 |

Lab Sample ID: 880-28743-A-5-D MS

**Matrix: Solid** 

**Analysis Batch: 54207** 

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 54263

|                     | Sample   | Sample    | Spike | MS     | MS        |       |   |      | %Rec     |  |
|---------------------|----------|-----------|-------|--------|-----------|-------|---|------|----------|--|
| Analyte             | Result   | Qualifier | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | <0.00202 | U *+ F1   | 0.101 | 0.1260 |           | mg/Kg |   | 125  | 70 - 130 |  |
|                     |          | F2        |       |        |           |       |   |      |          |  |
| Toluene             | <0.00202 | U F1 F2   | 0.101 | 0.1071 |           | mg/Kg |   | 106  | 70 - 130 |  |
| Ethylbenzene        | <0.00202 | U F1      | 0.101 | 0.1081 |           | mg/Kg |   | 107  | 70 - 130 |  |
| m-Xylene & p-Xylene | <0.00403 | U F1      | 0.202 | 0.2268 |           | mg/Kg |   | 112  | 70 - 130 |  |
| o-Xylene            | <0.00202 | U F1      | 0.101 | 0.1153 |           | mg/Kg |   | 114  | 70 - 130 |  |
|                     |          |           |       |        |           |       |   |      |          |  |

MS MS

| Surrogate                   | %Recovery | Qualifier | Limits   |
|-----------------------------|-----------|-----------|----------|
| 4-Bromofluorobenzene (Surr) | 114       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 109       |           | 70 - 130 |

Lab Sample ID: 880-28743-A-5-E MSD

**Matrix: Solid** 

Analysis Batch: 54207

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 54263

|                     | Sample   | Sample    | Spike  | MSD       | MSD       |       |   |      | %Rec     |     | RPD   |
|---------------------|----------|-----------|--------|-----------|-----------|-------|---|------|----------|-----|-------|
| Analyte             | Result   | Qualifier | Added  | Result    | Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |
| Benzene             | <0.00202 | U *+ F1   | 0.0994 | <0.00199  | U F1 F2   | mg/Kg |   | 0.8  | 70 - 130 | 198 | 35    |
|                     |          | F2        |        |           |           |       |   |      |          |     |       |
| Toluene             | <0.00202 | U F1 F2   | 0.0994 | <0.00199  | U F1 F2   | mg/Kg |   | 0.5  | 70 - 130 | 198 | 35    |
| Ethylbenzene        | <0.00202 | U F1      | 0.0994 | < 0.00199 | U F1      | mg/Kg |   | 0    | 70 - 130 | NC  | 35    |
| m-Xylene & p-Xylene | <0.00403 | U F1      | 0.199  | <0.00398  | U F1      | mg/Kg |   | 0    | 70 - 130 | NC  | 35    |
| o-Xylene            | <0.00202 | U F1      | 0.0994 | < 0.00199 | U F1      | mg/Kg |   | 0    | 70 - 130 | NC  | 35    |
|                     |          |           |        |           |           |       |   |      |          |     |       |

MSD MSD

| Surrogate                   | %Recovery | Qualifier | Limits   |  |  |
|-----------------------------|-----------|-----------|----------|--|--|
| 4-Bromofluorobenzene (Surr) | 67        | S1-       | 70 - 130 |  |  |
| 1,4-Difluorobenzene (Surr)  | 97        |           | 70 - 130 |  |  |

Lab Sample ID: MB 880-54365/5-A

**Matrix: Solid** 

**Analysis Batch: 54337** 

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 54365

мв мв

| Analyte | Result   | Qualifier | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|---------|----------|-----------|---------|-----|-------|---|----------------|----------------|---------|
| Benzene | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 05/30/23 09:40 | 05/30/23 11:30 | 1       |
| Toluene | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 05/30/23 09:40 | 05/30/23 11:30 | 1       |

Client: Carmona Resources

Job ID: 880-28854-1 SDG: Lea County, New Mexico Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

# Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 880-54365/5-A

**Matrix: Solid** 

Analysis Batch: 54337

Client Sample ID: Method Blank

**Prep Type: Total/NA** 

Prep Batch: 54365

Prep Batch: 54365

|                     | MD       | IVID      |         |          |   |                |                |         |
|---------------------|----------|-----------|---------|----------|---|----------------|----------------|---------|
| Analyte             | Result   | Qualifier | RL      | MDL Unit | D | Prepared       | Analyzed       | Dil Fac |
| Ethylbenzene        | <0.00200 | U         | 0.00200 | mg/Kg    |   | 05/30/23 09:40 | 05/30/23 11:30 | 1       |
| m-Xylene & p-Xylene | <0.00400 | U         | 0.00400 | mg/Kg    |   | 05/30/23 09:40 | 05/30/23 11:30 | 1       |
| o-Xylene            | <0.00200 | U         | 0.00200 | mg/Kg    |   | 05/30/23 09:40 | 05/30/23 11:30 | 1       |
| Xylenes, Total      | <0.00400 | U         | 0.00400 | mg/Kg    |   | 05/30/23 09:40 | 05/30/23 11:30 | 1       |

MB MB

MR MR

| Surrogate                   | %Recovery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|---------------------|----------|----------------|----------------|---------|
| 4-Bromofluorobenzene (Surr) | 90                  | 70 - 130 | 05/30/23 09:40 | 05/30/23 11:30 | 1       |
| 1,4-Difluorobenzene (Surr)  | 109                 | 70 - 130 | 05/30/23 09:40 | 05/30/23 11:30 | 1       |

Lab Sample ID: LCS 880-54365/1-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 54337

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.09839 |           | mg/Kg |   | 98   | 70 - 130 |  |
| Toluene             | 0.100 | 0.09022 |           | mg/Kg |   | 90   | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.08827 |           | mg/Kg |   | 88   | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.1870  |           | mg/Kg |   | 93   | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.09537 |           | mg/Kg |   | 95   | 70 - 130 |  |

LCS LCS

| Surrogate                   | %Recovery Qualifier | Limits   |
|-----------------------------|---------------------|----------|
| 4-Bromofluorobenzene (Surr) | 106                 | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 101                 | 70 - 130 |

Lab Sample ID: LCSD 880-54365/2-A

Matrix: Solid

Analysis Batch: 54337

|          | _      |       |          |          |         |
|----------|--------|-------|----------|----------|---------|
| Client 9 | Sample | ו יחו | ah Conti | rol Sami | nla Dun |
|          |        |       |          |          |         |

Prep Type: Total/NA

Prep Batch: 54365

|                     | Spike | LCSD LCSD        |       |   |      | %Rec     |     | RPD   |
|---------------------|-------|------------------|-------|---|------|----------|-----|-------|
| Analyte             | Added | Result Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |
| Benzene             | 0.100 | 0.1284           | mg/Kg |   | 128  | 70 - 130 | 26  | 35    |
| Toluene             | 0.100 | 0.1125           | mg/Kg |   | 113  | 70 - 130 | 22  | 35    |
| Ethylbenzene        | 0.100 | 0.1041           | mg/Kg |   | 104  | 70 - 130 | 16  | 35    |
| m-Xylene & p-Xylene | 0.200 | 0.2159           | mg/Kg |   | 108  | 70 - 130 | 14  | 35    |
| o-Xylene            | 0.100 | 0.1082           | mg/Kg |   | 108  | 70 - 130 | 13  | 35    |

LCSD LCSD

| Surrogate                   | %Recovery ( | Qualifier | Limits   |
|-----------------------------|-------------|-----------|----------|
| 4-Bromofluorobenzene (Surr) | 99          |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 103         |           | 70 - 130 |

Lab Sample ID: 880-28876-A-1-A MS

Matrix: Solid

Analysis Batch: 54337

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 54365

|                     | Sample   | Sample    | Spike | MS     | MS        |       |   |      | %Rec     |
|---------------------|----------|-----------|-------|--------|-----------|-------|---|------|----------|
| Analyte             | Result   | Qualifier | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |
| Benzene             | <0.00201 | U         | 0.101 | 0.1210 |           | mg/Kg |   | 120  | 70 - 130 |
| Toluene             | <0.00201 | U         | 0.101 | 0.1065 |           | mg/Kg |   | 106  | 70 - 130 |
| Ethylbenzene        | <0.00201 | U         | 0.101 | 0.1040 |           | mg/Kg |   | 103  | 70 - 130 |
| m-Xylene & p-Xylene | <0.00402 | U         | 0.202 | 0.2162 |           | mg/Kg |   | 107  | 70 - 130 |

**Eurofins Midland** 

Released to Imaging: 11/29/2023 3:17:41 PM

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

Job ID: 880-28854-1

SDG: Lea County, New Mexico

Prep Batch: 54365

Prep Type: Total/NA

12

Prep Type: Total/NA

Prep Batch: 54267

96

mg/Kg

70 - 130

# Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-28876-A-1-A MS Client Sample ID: Matrix Spike Prep Type: Total/NA

**Matrix: Solid** 

Analysis Batch: 54337

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits <0.00201 U 0 101 0.1073 106 70 - 130 o-Xylene mg/Kg

|                             | MS        | MS        |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 105       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 103       |           | 70 - 130 |

Lab Sample ID: 880-28876-A-1-B MSD Client Sample ID: Matrix Spike Duplicate

**Matrix: Solid** 

o-Xylene

**Analysis Batch: 54337** Prep Batch: 54365 Sample Sample Spike MSD MSD RPD RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Limit D Benzene <0.00201 U 0.0996 0.1191 mg/Kg 120 70 - 130 2 35 Toluene <0.00201 U 0.0996 0.09924 mg/Kg 100 70 - 130 35 7 Ethylbenzene <0.00201 U 0.0996 0.09310 mg/Kg 93 70 - 130 11 35 m-Xylene & p-Xylene <0.00402 U 0.199 0.1915 mg/Kg 96 70 - 130 12 35

0.09560

MSD MSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 99 70 - 130 1,4-Difluorobenzene (Surr) 110 70 - 130

<0.00201

U

# Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-54267/1-A Client Sample ID: Method Blank

0.0996

Matrix: Solid

Analysis Batch: 54316

MB MB Result Qualifier RL MDL Unit Dil Fac Analyte D Prepared Analyzed 50.0 Gasoline Range Organics <50.0 U mg/Kg 05/26/23 15:58 05/27/23 09:06 (GRO)-C6-C10 50.0 Diesel Range Organics (Over <50.0 U mg/Kg 05/26/23 15:58 05/27/23 09:06 C10-C28) Oll Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 05/26/23 15:58 05/27/23 09:06

MB MB %Recovery Qualifier Dil Fac Surrogate I imits Prepared Analyzed 1-Chlorooctane 203 S1+ 70 - 130 05/26/23 15:58 05/27/23 09:06 o-Terphenyl 223 S1+ 70 - 130 05/26/23 15:58 05/27/23 09:06

Lab Sample ID: LCS 880-54267/2-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 54316

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Gasoline Range Organics 1000 817 4 mg/Kg 82 70 130 (GRO)-C6-C10 1000 831.8 83 70 - 130 Diesel Range Organics (Over mg/Kg C10-C28)

**Eurofins Midland** 

Prep Batch: 54267

35

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23) SDG: Lea County, New Mexico

Job ID: 880-28854-1

# Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

LCS LCS

Lab Sample ID: LCS 880-54267/2-A

**Matrix: Solid** 

Analysis Batch: 54316

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

Prep Batch: 54267

Surrogate %Recovery Qualifier Limits 1-Chlorooctane 84 70 - 130 o-Terphenyl 91 70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 54267

Lab Sample ID: LCSD 880-54267/3-A **Matrix: Solid** 

Analysis Batch: 54316

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit 1000 839.2 84 70 - 1303 20 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 1005 100 mg/Kg 70 - 13019 20 C10-C28)

LCSD LCSD

Surrogate %Recovery Qualifier Limits 70 - 130 1-Chlorooctane 100 106 70 - 130 o-Terphenyl

Lab Sample ID: 880-28851-A-21-D MS Client Sample ID: Matrix Spike

**Matrix: Solid** 

**Analysis Batch: 54316** 

Prep Type: Total/NA

Prep Batch: 54267

Sample Sample MS MS Spike Added Analyte Result Qualifier Result Qualifier Unit D %Rec Limits Gasoline Range Organics <50.0 U 999 817.9 mg/Kg 80 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 999 893.8 mg/Kg 89 70 - 130

C10-C28)

MS MS %Recovery Qualifier Surrogate Limits 70 - 130 1-Chlorooctane 98 70 - 130 o-Terphenyl 90

Lab Sample ID: 880-28851-A-21-E MSD Client Sample ID: Matrix Spike Duplicate

**Matrix: Solid** 

Analysis Batch: 54316

Prep Type: Total/NA

Prep Batch: 54267

Sample Sample MSD MSD RPD Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit U 999 81 Gasoline Range Organics <50.0 831.4 mg/Kg 70 - 130 2 20 (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 999 879.5 mg/Kg 88 70 - 130 20

70 - 130

C10-C28)

Surrogate

o-Terphenyl

1-Chlorooctane

MSD MSD %Recovery Qualifier Limits 97 70 - 130

90

Client: Carmona Resources

Job ID: 880-28854-1 Project/Site: Stratocaster 20 Fed 3&4 (4.01.23) SDG: Lea County, New Mexico

Client Sample ID: Matrix Spike Duplicate

**Prep Type: Soluble** 

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-54268/1-A

**Matrix: Solid** 

Analysis Batch: 54393

Client Sample ID: Method Blank **Prep Type: Soluble** 

MB MB

Dil Fac MDL Unit Analyte Result Qualifier RL D Prepared Analyzed Chloride <5.00 U 5.00 mg/Kg 05/30/23 09:05

Lab Sample ID: LCS 880-54268/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble** 

Analysis Batch: 54393

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Chloride 250 257.3 mg/Kg 103 90 - 110

Lab Sample ID: LCSD 880-54268/3-A Client Sample ID: Lab Control Sample Dup **Prep Type: Soluble** 

**Matrix: Solid** 

Analysis Batch: 54393

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 250 256.4 mg/Kg 103 90 - 110

Lab Sample ID: 880-28852-A-1-C MS Client Sample ID: Matrix Spike **Prep Type: Soluble** 

**Matrix: Solid** 

Analysis Batch: 54393

MS MS Sample Sample Spike %Rec Analyte Result Qualifier Added Result Qualifier %Rec Unit Limits Chloride 40.4 F1 248 259.6 F1 90 - 110 mg/Kg

Lab Sample ID: 880-28852-A-1-D MSD

**Matrix: Solid** 

Analysis Batch: 54393

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 40.4 F1 248 259.3 F1 mg/Kg 88 90 - 110 20

# **QC Association Summary**

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

Job ID: 880-28854-1 SDG: Lea County, New Mexico

# **GC VOA**

# Prep Batch: 54099

| Lab Sample ID    | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|------------------|------------------|-----------|--------|--------|------------|
| MB 880-54099/5-A | Method Blank     | Total/NA  | Solid  | 5035   |            |

# Analysis Batch: 54207

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 880-28854-1         | H-1 (0-0.5')           | Total/NA  | Solid  | 8021B  | 54263      |
| 880-28854-2         | H-2 (0-0.5')           | Total/NA  | Solid  | 8021B  | 54263      |
| 880-28854-3         | H-3 (0-0.5')           | Total/NA  | Solid  | 8021B  | 54263      |
| 880-28854-4         | H-4 (0-0.5')           | Total/NA  | Solid  | 8021B  | 54263      |
| 880-28854-5         | H-5 (0-0.5')           | Total/NA  | Solid  | 8021B  | 54263      |
| 880-28854-6         | H-6 (0-0.5')           | Total/NA  | Solid  | 8021B  | 54263      |
| MB 880-54099/5-A    | Method Blank           | Total/NA  | Solid  | 8021B  | 54099      |
| MB 880-54263/5-A    | Method Blank           | Total/NA  | Solid  | 8021B  | 54263      |
| LCS 880-54263/1-A   | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 54263      |
| LCSD 880-54263/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 54263      |
| 880-28743-A-5-D MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 54263      |
| 880-28743-A-5-E MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 54263      |

## Prep Batch: 54263

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 880-28854-1         | H-1 (0-0.5')           | Total/NA  | Solid  | 5035   |            |
| 880-28854-2         | H-2 (0-0.5')           | Total/NA  | Solid  | 5035   |            |
| 880-28854-3         | H-3 (0-0.5')           | Total/NA  | Solid  | 5035   |            |
| 880-28854-4         | H-4 (0-0.5')           | Total/NA  | Solid  | 5035   |            |
| 880-28854-5         | H-5 (0-0.5')           | Total/NA  | Solid  | 5035   |            |
| 880-28854-6         | H-6 (0-0.5')           | Total/NA  | Solid  | 5035   |            |
| MB 880-54263/5-A    | Method Blank           | Total/NA  | Solid  | 5035   |            |
| LCS 880-54263/1-A   | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |
| LCSD 880-54263/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |
| 880-28743-A-5-D MS  | Matrix Spike           | Total/NA  | Solid  | 5035   |            |
| 880-28743-A-5-E MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 5035   |            |

### **Analysis Batch: 54337**

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| MB 880-54365/5-A    | Method Blank           | Total/NA  | Solid  | 8021B  | 54365      |
| LCS 880-54365/1-A   | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 54365      |
| LCSD 880-54365/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 54365      |
| 880-28876-A-1-A MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 54365      |
| 880-28876-A-1-B MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 54365      |

# Prep Batch: 54365

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| MB 880-54365/5-A    | Method Blank           | Total/NA  | Solid  | 5035   |            |
| LCS 880-54365/1-A   | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |
| LCSD 880-54365/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |
| 880-28876-A-1-A MS  | Matrix Spike           | Total/NA  | Solid  | 5035   |            |
| 880-28876-A-1-B MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 5035   |            |

# Analysis Batch: 54406

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 880-28854-1   | H-1 (0-0.5')     | Total/NA  | Solid  | Total BTEX |            |
| 880-28854-2   | H-2 (0-0.5')     | Total/NA  | Solid  | Total BTEX |            |

# **QC Association Summary**

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

Job ID: 880-28854-1 SDG: Lea County, New Mexico

**GC VOA (Continued)** 

# Analysis Batch: 54406 (Continued)

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 880-28854-3   | H-3 (0-0.5')     | Total/NA  | Solid  | Total BTEX |            |
| 880-28854-4   | H-4 (0-0.5')     | Total/NA  | Solid  | Total BTEX |            |
| 880-28854-5   | H-5 (0-0.5')     | Total/NA  | Solid  | Total BTEX |            |
| 880-28854-6   | H-6 (0-0.5')     | Total/NA  | Solid  | Total BTEX |            |

# **GC Semi VOA**

## Prep Batch: 54267

| Lab Sample ID        | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|----------------------|------------------------|-----------|--------|-------------|------------|
| 880-28854-1          | H-1 (0-0.5')           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-28854-2          | H-2 (0-0.5')           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-28854-3          | H-3 (0-0.5')           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-28854-4          | H-4 (0-0.5')           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-28854-5          | H-5 (0-0.5')           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-28854-6          | H-6 (0-0.5')           | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-54267/1-A     | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-54267/2-A    | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-54267/3-A   | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 880-28851-A-21-D MS  | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-28851-A-21-E MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            |

## Analysis Batch: 54316

| Lab Sample ID        | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|----------------------|------------------------|-----------|--------|----------|------------|
| 880-28854-1          | H-1 (0-0.5')           | Total/NA  | Solid  | 8015B NM | 54267      |
| 880-28854-2          | H-2 (0-0.5')           | Total/NA  | Solid  | 8015B NM | 54267      |
| 880-28854-3          | H-3 (0-0.5')           | Total/NA  | Solid  | 8015B NM | 54267      |
| 880-28854-4          | H-4 (0-0.5')           | Total/NA  | Solid  | 8015B NM | 54267      |
| 880-28854-5          | H-5 (0-0.5')           | Total/NA  | Solid  | 8015B NM | 54267      |
| 880-28854-6          | H-6 (0-0.5')           | Total/NA  | Solid  | 8015B NM | 54267      |
| MB 880-54267/1-A     | Method Blank           | Total/NA  | Solid  | 8015B NM | 54267      |
| LCS 880-54267/2-A    | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 54267      |
| LCSD 880-54267/3-A   | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 54267      |
| 880-28851-A-21-D MS  | Matrix Spike           | Total/NA  | Solid  | 8015B NM | 54267      |
| 880-28851-A-21-E MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM | 54267      |

## Analysis Batch: 54424

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method  | Prep Batcl |
|---------------|------------------|-----------|--------|---------|------------|
| 880-28854-1   | H-1 (0-0.5')     | Total/NA  | Solid  | 8015 NM |            |
| 880-28854-2   | H-2 (0-0.5')     | Total/NA  | Solid  | 8015 NM |            |
| 880-28854-3   | H-3 (0-0.5')     | Total/NA  | Solid  | 8015 NM |            |
| 880-28854-4   | H-4 (0-0.5')     | Total/NA  | Solid  | 8015 NM |            |
| 880-28854-5   | H-5 (0-0.5')     | Total/NA  | Solid  | 8015 NM |            |
| 880-28854-6   | H-6 (0-0.5')     | Total/NA  | Solid  | 8015 NM |            |

# HPLC/IC

# Leach Batch: 54268

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method   | Prep Batch |
|---------------|------------------|-----------|--------|----------|------------|
| 880-28854-1   | H-1 (0-0.5')     | Soluble   | Solid  | DI Leach |            |
| 880-28854-2   | H-2 (0-0.5')     | Soluble   | Solid  | DI Leach |            |
| 880-28854-3   | H-3 (0-0.5')     | Soluble   | Solid  | DI Leach |            |
| 880-28854-4   | H-4 (0-0.5')     | Soluble   | Solid  | DI Leach |            |

**Eurofins Midland** 

Page 19 of 27

# **QC Association Summary**

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

Job ID: 880-28854-1

SDG: Lea County, New Mexico

# HPLC/IC (Continued)

# Leach Batch: 54268 (Continued)

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|---------------------|------------------------|-----------|--------|----------|------------|
| 880-28854-5         | H-5 (0-0.5')           | Soluble   | Solid  | DI Leach |            |
| 880-28854-6         | H-6 (0-0.5')           | Soluble   | Solid  | DI Leach |            |
| MB 880-54268/1-A    | Method Blank           | Soluble   | Solid  | DI Leach |            |
| LCS 880-54268/2-A   | Lab Control Sample     | Soluble   | Solid  | DI Leach |            |
| LCSD 880-54268/3-A  | Lab Control Sample Dup | Soluble   | Solid  | DI Leach |            |
| 880-28852-A-1-C MS  | Matrix Spike           | Soluble   | Solid  | DI Leach |            |
| 880-28852-A-1-D MSD | Matrix Spike Duplicate | Soluble   | Solid  | DI Leach |            |

# Analysis Batch: 54393

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 880-28854-1         | H-1 (0-0.5')           | Soluble   | Solid  | 300.0  | 54268      |
| 880-28854-2         | H-2 (0-0.5')           | Soluble   | Solid  | 300.0  | 54268      |
| 880-28854-3         | H-3 (0-0.5')           | Soluble   | Solid  | 300.0  | 54268      |
| 880-28854-4         | H-4 (0-0.5')           | Soluble   | Solid  | 300.0  | 54268      |
| 880-28854-5         | H-5 (0-0.5')           | Soluble   | Solid  | 300.0  | 54268      |
| 880-28854-6         | H-6 (0-0.5')           | Soluble   | Solid  | 300.0  | 54268      |
| MB 880-54268/1-A    | Method Blank           | Soluble   | Solid  | 300.0  | 54268      |
| LCS 880-54268/2-A   | Lab Control Sample     | Soluble   | Solid  | 300.0  | 54268      |
| LCSD 880-54268/3-A  | Lab Control Sample Dup | Soluble   | Solid  | 300.0  | 54268      |
| 880-28852-A-1-C MS  | Matrix Spike           | Soluble   | Solid  | 300.0  | 54268      |
| 880-28852-A-1-D MSD | Matrix Spike Duplicate | Soluble   | Solid  | 300.0  | 54268      |

**Eurofins Midland** 

3

Л

R

9

11

12

4 4

14

## Lab Chronicle

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

Job ID: 880-28854-1 SDG: Lea County, New Mexico

**Client Sample ID: H-1 (0-0.5')** 

Date Collected: 05/23/23 00:00 Date Received: 05/26/23 13:04

Lab Sample ID: 880-28854-1

**Matrix: Solid** 

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.02 g  | 5 mL   | 54263  | 05/26/23 15:25 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 54207  | 05/27/23 16:04 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 54406  | 05/30/23 13:01 | AJ      | EET MIC |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 54424  | 05/30/23 15:27 | SM      | EET MIC |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.03 g | 10 mL  | 54267  | 05/26/23 15:58 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 54316  | 05/27/23 15:47 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.02 g  | 50 mL  | 54268  | 05/26/23 16:01 | KS      | EET MIC |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 54393  | 05/30/23 10:09 | CH      | EET MID |

Client Sample ID: H-2 (0-0.5')

Date Collected: 05/23/23 00:00

Date Received: 05/26/23 13:04

Lab Sample ID: 880-28854-2

**Matrix: Solid** 

Batch Dil Initial Final Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Prep 5035 Total/NA 5.03 g 5 mL 54263 05/26/23 15:25 EL EET MID Total/NA 8021B 5 mL **EET MID** Analysis 1 5 mL 54207 05/27/23 16:25 SM Total/NA Total BTEX 54406 05/30/23 13:01 Analysis A.I **EET MID** 1 Total/NA Analysis 8015 NM 54424 05/30/23 15:27 SM **EET MID** Total/NA 54267 Prep 8015NM Prep 10.05 g 10 mL 05/26/23 15:58 ΑJ EET MID Total/NA Analysis 8015B NM 1 uL 1 uL 54316 05/27/23 16:32 SM **EET MID** Soluble Leach DI Leach 5.01 g 50 mL 54268 05/26/23 16:01 KS **EET MID** Soluble Analysis 300.0 50 mL 50 mL 54393 05/30/23 10:25 СН **EET MID** 

Client Sample ID: H-3 (0-0.5')

Date Collected: 05/23/23 00:00

Date Received: 05/26/23 13:04

Lab Sample ID: 880-28854-3

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.97 g  | 5 mL   | 54263  | 05/26/23 15:25 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 54207  | 05/27/23 16:45 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 54406  | 05/30/23 13:01 | AJ      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 54424  | 05/30/23 15:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.05 g | 10 mL  | 54267  | 05/26/23 15:58 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 54316  | 05/27/23 16:55 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.01 g  | 50 mL  | 54268  | 05/26/23 16:01 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 54393  | 05/30/23 10:30 | CH      | EET MID |

Client Sample ID: H-4 (0-0.5')

Date Collected: 05/23/23 00:00

Date Received: 05/26/23 13:04

| Lab Sample ID: | 880-28854-4   |
|----------------|---------------|
|                | Matrix: Solid |

|           | Batch    | Batch      |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method     | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035       |     |        | 4.98 g  | 5 mL   | 54263  | 05/26/23 15:25 | EL      | EET MID |
| Total/NA  | Analysis | 8021B      |     | 1      | 5 mL    | 5 mL   | 54207  | 05/27/23 17:06 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX |     | 1      |         |        | 54406  | 05/30/23 13:01 | AJ      | EET MID |

**Eurofins Midland** 

**Matrix: Solid** 

## Lab Chronicle

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

Job ID: 880-28854-1

SDG: Lea County, New Mexico

**Client Sample ID: H-4 (0-0.5')** 

Date Collected: 05/23/23 00:00 Date Received: 05/26/23 13:04

Lab Sample ID: 880-28854-4

**Matrix: Solid** 

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 54424  | 05/30/23 15:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.00 g | 10 mL  | 54267  | 05/26/23 15:58 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 54316  | 05/27/23 17:17 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5 g     | 50 mL  | 54268  | 05/26/23 16:01 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 54393  | 05/30/23 10:35 | CH      | EET MID |

Lab Sample ID: 880-28854-5

Lab Sample ID: 880-28854-6

**Matrix: Solid** 

Client Sample ID: H-5 (0-0.5') Date Collected: 05/23/23 00:00 **Matrix: Solid** 

Date Received: 05/26/23 13:04

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Amount Amount Number or Analyzed Type Run Factor Analyst Lab 5035 Total/NA Prep 4.95 g 5 mL 54263 05/26/23 15:25 EL **EET MID** Total/NA Analysis 8021B 5 mL 5 mL 54207 05/27/23 17:26 SM EET MID 1 Total/NA Total BTEX **EET MID** Analysis 1 54406 05/30/23 13:01 ΑJ Total/NA Analysis 8015 NM 54424 05/30/23 15:27 SM EET MID Total/NA Prep 8015NM Prep 10.03 g 10 mL 54267 05/26/23 15:58 AJ **EET MID** Total/NA Analysis 8015B NM 1 uL 1 uL 54316 05/27/23 17:40 SM **EET MID** Soluble Leach DI Leach 4.99 g 50 mL 54268 05/26/23 16:01 KS EET MID Soluble Analysis 300.0 1 50 mL 50 mL 54393 05/30/23 10:41 СН **EET MID** 

Client Sample ID: H-6 (0-0.5')

Date Collected: 05/23/23 00:00

Date Received: 05/26/23 13:04

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.02 g  | 5 mL   | 54263  | 05/26/23 15:25 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 54207  | 05/27/23 17:47 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 54406  | 05/30/23 13:01 | AJ      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 54424  | 05/30/23 15:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.01 g | 10 mL  | 54267  | 05/26/23 15:58 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 54316  | 05/27/23 18:03 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.96 g  | 50 mL  | 54268  | 05/26/23 16:01 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 54393  | 05/30/23 10:46 | CH      | EET MID |

**Laboratory References:** 

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

# **Accreditation/Certification Summary**

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

Job ID: 880-28854-1

SDG: Lea County, New Mexico

# **Laboratory: Eurofins Midland**

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| Authority                                        | Pr          | ogram                            | Identification Number                       | Expiration Date        |  |  |  |
|--------------------------------------------------|-------------|----------------------------------|---------------------------------------------|------------------------|--|--|--|
| Texas                                            | NE          | ELAP                             | T104704400-22-25                            | 06-30-23               |  |  |  |
| The following analytes<br>the agency does not of | · '         | it the laboratory is not certifi | ed by the governing authority. This list ma | ay include analytes fo |  |  |  |
| Analysis Method                                  | D M () 1    | N.A Andre                        |                                             |                        |  |  |  |
| Alialysis Melliou                                | Prep Method | Matrix                           | Analyte                                     |                        |  |  |  |
| 8015 NM                                          | Ргер Метпоа | Solid                            | Analyte Total TPH                           |                        |  |  |  |

# **Method Summary**

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

Job ID: 880-28854-1

SDG: Lea County, New Mexico

| Method     | Method Description                 | Protocol | Laboratory |
|------------|------------------------------------|----------|------------|
| 8021B      | Volatile Organic Compounds (GC)    | SW846    | EET MID    |
| Total BTEX | Total BTEX Calculation             | TAL SOP  | EET MID    |
| 8015 NM    | Diesel Range Organics (DRO) (GC)   | SW846    | EET MID    |
| 3015B NM   | Diesel Range Organics (DRO) (GC)   | SW846    | EET MID    |
| 300.0      | Anions, Ion Chromatography         | EPA      | EET MID    |
| 5035       | Closed System Purge and Trap       | SW846    | EET MID    |
| 015NM Prep | Microextraction                    | SW846    | EET MID    |
| I Leach    | Deionized Water Leaching Procedure | ASTM     | EET MID    |

#### **Protocol References:**

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

# **Sample Summary**

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (4.01.23)

Job ID: 880-28854-1

SDG: Lea County, New Mexico

| Lab Sample ID | Client Sample ID | Client Sample ID Matrix |                |                |  |  |
|---------------|------------------|-------------------------|----------------|----------------|--|--|
| 880-28854-1   | H-1 (0-0.5')     | Solid                   | 05/23/23 00:00 | 05/26/23 13:04 |  |  |
| 880-28854-2   | H-2 (0-0.5')     | Solid                   | 05/23/23 00:00 | 05/26/23 13:04 |  |  |
| 880-28854-3   | H-3 (0-0.5')     | Solid                   | 05/23/23 00:00 | 05/26/23 13:04 |  |  |
| 880-28854-4   | H-4 (0-0.5')     | Solid                   | 05/23/23 00:00 | 05/26/23 13:04 |  |  |
| 880-28854-5   | H-5 (0-0.5')     | Solid                   | 05/23/23 00:00 | 05/26/23 13:04 |  |  |
| 880-28854-6   | H-6 (0-0.5')     | Solid                   | 05/23/23 00:00 | 05/26/23 13:04 |  |  |

4

7

8

10

11

10

14

|   |        | Relinquished by: (Signature) |   |  | Comments Email to Mike Carmona / Mcarmona@carmonaresources com and Conner Moehring / Cmoehring@carmonaresources com |   |          |                            |   | H-6 (0-0 5') 5/23/2023 | H-5 (0-0 5') 5/23/2023 | H-4 (0-0 5') 5/23/2023 | H-3 (0-0 5') 5/23/2023 | H-2 (0-0 5') 5/23/2023 | H-1 (0-0 5') 5/23/2023 | Sample Identification Date Time         | i vai vuitailieis       | Seals res No GUA   | 100 (10)                                                        | 3 3                      | Vac No                                  | SAMPLE RECEIPT Temp Blank Yes (No.) |          |            | Project Location Lea County New Mexico | Project Number 2035 | Project Name Stratocaster 20 Fed 3&4 (4 01 23) | Phone 432-813-6823            | City, State ZIP Midland, TX 79701    | Address 310 W Wall St Ste 500 | Company Name Carmona Resources   | Project Manager Conner Moehring |
|---|--------|------------------------------|---|--|---------------------------------------------------------------------------------------------------------------------|---|----------|----------------------------|---|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-----------------------------------------|-------------------------|--------------------|-----------------------------------------------------------------|--------------------------|-----------------------------------------|-------------------------------------|----------|------------|----------------------------------------|---------------------|------------------------------------------------|-------------------------------|--------------------------------------|-------------------------------|----------------------------------|---------------------------------|
|   |        | )                            |   |  | aresources com                                                                                                      |   |          |                            |   | ×                      | ×                      | ×                      | ×                      | ×                      | ×                      | Soll                                    | mperature               | Reading            | CIO                                                             | 10                       | *************************************** | -                                   |          |            | Due Date                               | Routine             | Turn                                           | Email                         |                                      |                               |                                  |                                 |
|   |        |                              |   |  | n and Conner Mu                                                                                                     |   |          |                            |   | G                      | G                      | G                      | G                      | ဝ                      | ഒ                      | Water Comp                              |                         | 1                  | ノジン                                                             |                          |                                         | <b>S</b> S ≥ 1                      |          |            | 72 Hrs                                 | ✓ Rush              | Turn Around                                    | mcarmona@carmonaresources com | City, State ZIP                      | Address                       | Company Name                     | Bill to (if different)          |
| Ī | 5/26   |                              |   |  | Surue                                                                                                               |   |          |                            |   |                        |                        | -1                     | _                      | _                      |                        | Cont                                    |                         |                    | F                                                               | Para                     | me                                      | ter                                 | s        | 1          |                                        | Code                |                                                | monare                        |                                      |                               |                                  |                                 |
|   | 6 - 1  | Date/Time                    |   |  | / Cmoeh                                                                                                             |   |          |                            |   | ×                      | ×                      | ×                      | ×                      | ×                      | ×                      |                                         |                         |                    |                                                                 | X 80                     |                                         |                                     |          |            |                                        |                     |                                                | sources                       |                                      |                               |                                  | Carmon                          |
|   | 1,00/2 | ъe                           |   |  | ring@ca                                                                                                             |   |          |                            | - | ×                      | ×                      | ×                      | ×                      | ×                      | ×                      |                                         | PH 80                   |                    |                                                                 | ide :                    |                                         |                                     | + M)     | (O)        |                                        |                     |                                                | com                           |                                      |                               |                                  | Carmona Resources               |
|   | 7      |                              | ) |  | irmonar                                                                                                             |   |          |                            |   |                        |                        |                        |                        |                        |                        |                                         |                         |                    |                                                                 |                          |                                         |                                     |          |            |                                        |                     |                                                |                               |                                      |                               |                                  | es                              |
|   | X      |                              |   |  | esource                                                                                                             |   | _        |                            |   |                        |                        |                        | -                      |                        | -                      |                                         | ·                       |                    |                                                                 |                          |                                         |                                     |          |            |                                        |                     | AN/                                            |                               |                                      |                               |                                  |                                 |
|   |        |                              |   |  | Scom                                                                                                                |   |          |                            |   |                        |                        |                        |                        |                        |                        | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                         |                    |                                                                 |                          |                                         |                                     | ·        |            |                                        |                     | YLYSIS I                                       |                               |                                      |                               |                                  |                                 |
|   | Q      | Receive                      |   |  |                                                                                                                     |   |          |                            |   |                        |                        |                        |                        | 1                      |                        |                                         |                         |                    |                                                                 |                          |                                         |                                     |          |            |                                        |                     | ANALYSIS REQUEST                               |                               |                                      | St                            | 무                                |                                 |
|   |        | ed by (Si                    |   |  |                                                                                                                     |   |          | -<br> -                    | Ц |                        | -                      |                        |                        | -                      |                        | · · · · ·                               |                         |                    |                                                                 |                          |                                         |                                     |          |            | 1                                      |                     | \$ <b>7</b>                                    | Deliverables EDD              | porting L                            | State of Project:             | ogram: ر                         |                                 |
|   |        | gnature)                     |   |  |                                                                                                                     |   | _        | 880-28854 Chain of Custody |   |                        |                        |                        | 1                      | _                      |                        |                                         |                         |                    |                                                                 |                          |                                         |                                     |          |            |                                        |                     |                                                | s EDD                         | Reporting Level II Level III LST/UST | oject:                        | Program: UST/PST PRP Irownfields |                                 |
|   |        |                              |   |  |                                                                                                                     |   | <u>_</u> | 4 Chain                    |   |                        |                        |                        |                        | $\dashv$               | -                      |                                         |                         |                    |                                                                 |                          |                                         | -                                   |          |            |                                        |                     |                                                |                               | Level III                            | [                             | PRP                              | Work O                          |
|   |        |                              |   |  |                                                                                                                     |   |          | of Custo                   |   |                        |                        | 1                      |                        | 1                      |                        |                                         | Ιz                      | 2                  | z                                                               | z                        |                                         |                                     | <b>.</b> | Γ <u>ς</u> | ,                                      | z                   | _                                              | ADaPT 🗆                       | □st/us                               | 1                             | rownfie                          | rder Co                         |
|   |        |                              |   |  |                                                                                                                     |   |          | dv                         |   |                        |                        |                        |                        |                        |                        | Sam                                     | NaOH+Ascorbic Acid SAPC | Zn Acetate+NaOH Zn | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> NaSO <sub>3</sub> | NaHSO <sub>4</sub> NABIS | H <sub>3</sub> PO <sub>4</sub> HP       | 112004 F12                          |          | ביס ביס פו |                                        | None NO             | Pres                                           |                               | ST RRP                               |                               | lds RRC                          | Work Order Comments             |
|   |        | Date                         |   |  |                                                                                                                     | 1 |          |                            |   |                        |                        | Tetrangel              |                        |                        |                        | Sample Comments                         | orbic Aci               | +NaOH :            | laSO <sub>3</sub>                                               | IABIS                    |                                         |                                     |          | : 5        | : 5                                    | 2                   | Preservative Codes                             | Other:                        |                                      |                               | റ്                               |                                 |
|   |        | Date/Time                    |   |  |                                                                                                                     | 1 | 1        |                            |   |                        | ,                      |                        |                        |                        |                        | ıment                                   | d SAP                   | Ž                  |                                                                 |                          |                                         | NaOH Na                             | NEON EN  | MECH ME    | or vealer 120                          | Water               | Code                                           |                               | Level IV                             | 1                             | perfund                          |                                 |

Work Order No: 28854

5/31/2023

Released to Imaging: 11/29/2023 3:17:41 PM

2

3

5

7

9

11

13

# **Login Sample Receipt Checklist**

Client: Carmona Resources

Job Number: 880-28854-1

SDG Number: Lea County, New Mexico

....

Login Number: 28854
List Source: Eurofins Midland
List Number: 1

Creator: Rodriguez, Leticia

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| The cooler's custody seal, if present, is intact.                                | N/A    |         |
| Sample custody seals, if present, are intact.                                    | N/A    |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the containers received and the COC.          | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified.                                                    | N/A    |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").  | N/A    |         |

.



August 02, 2023

CONNER MOEHRING
CARMONA RESOURCES
310 W WALL ST SUITE 415
MIDLAND, TX 79701

RE: STRATOCASTER 20 FED 3 & 4 (4.01.23)

Enclosed are the results of analyses for samples received by the laboratory on 08/01/23 11:35.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (\*). For a complete list of accredited analytes and matrices visit the TCEQ website at <a href="https://www.tceq.texas.gov/field/ga/lab\_accred\_certif.html">www.tceq.texas.gov/field/ga/lab\_accred\_certif.html</a>.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keene

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager



### Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/01/2023 Reported: 08/02/2023

08/02/2023 STRATOCASTER 20 FED 3 & 4 (4.01.23)

Project Name: STRA Project Number: 2035

Project Location: LEA COUNTY, NEW MEXICO

Sampling Date: 07/31/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

## Sample ID: CS - 1 (1') (H234041-01)

DTEV 0021D

| BTEX 8021B                           | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 2.00 | 100        | 2.00          | 1.47  |           |
| Toluene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 1.93 | 96.3       | 2.00          | 0.918 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 08/02/2023 | ND           | 1.98 | 99.2       | 2.00          | 0.773 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 08/02/2023 | ND           | 6.03 | 101        | 6.00          | 0.992 |           |
| Total BTEX                           | <0.300 | 0.300           | 08/02/2023 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 105    | % 71.5-13       | 4          |              |      |            |               |       |           |
| Chloride, SM4500CI-B                 | mg,    | /kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | <16.0  | 16.0            | 08/02/2023 | ND           | 432  | 108        | 400           | 0.00  |           |
| TPH 8015M                            | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |       | S-04      |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 08/01/2023 | ND           | 206  | 103        | 200           | 2.11  |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 08/01/2023 | ND           | 222  | 111        | 200           | 3.82  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 08/01/2023 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 139    | % 48.2-13       | 4          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 155    | % 49.1-14       | 8          |              |      |            |               |       |           |

Analyzed By MC

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene



### Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/01/2023 Reported: 08/02/2023

STRATOCASTER 20 FED 3 & 4 (4.01.23)

Project Name: STRA Project Number: 2035

Project Location: LEA COUNTY, NEW MEXICO

ma/ka

Sampling Date: 07/31/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

## Sample ID: CS - 2 (1') (H234041-02)

RTFY 8021R

| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Benzene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 2.00 | 100        | 2.00          | 1.47  |           |
| Toluene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 1.93 | 96.3       | 2.00          | 0.918 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 08/02/2023 | ND           | 1.98 | 99.2       | 2.00          | 0.773 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 08/02/2023 | ND           | 6.03 | 101        | 6.00          | 0.992 |           |
| Total BTEX                           | <0.300 | 0.300           | 08/02/2023 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 103 9  | % 71.5-13       | 4          |              |      |            |               |       |           |
| Chloride, SM4500CI-B                 | mg/    | kg              | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | <16.0  | 16.0            | 08/02/2023 | ND           | 432  | 108        | 400           | 0.00  |           |
| TPH 8015M                            | mg/    | kg              | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 08/01/2023 | ND           | 206  | 103        | 200           | 2.11  |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 08/01/2023 | ND           | 222  | 111        | 200           | 3.82  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 08/01/2023 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 110 9  | 48.2-13         | 4          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 124 9  | % 49.1-14       | 8          |              |      |            |               |       |           |

Applyzod By: MC

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine



### Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701

Fax To:

Received: 08/01/2023 Reported: 08/02/2023 Sampling Date: 07/31/2023 Sampling Type: Soil

Project Name:

RTFY 8021R

STRATOCASTER 20 FED 3 & 4 (4.01.23)

Sampling Condition: Cool & Intact

Project Number: 2035 Sample Received By: Tamara Oldaker

Project Location: LEA COUNTY, NEW MEXICO

ma/ka

### Sample ID: CS - 3 (1') (H234041-03)

| B1EX 8021B                           | mg     | /кд             | Anaiyze    | а ву: м5     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 2.00 | 100        | 2.00          | 1.47  |           |
| Toluene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 1.93 | 96.3       | 2.00          | 0.918 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 08/02/2023 | ND           | 1.98 | 99.2       | 2.00          | 0.773 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 08/02/2023 | ND           | 6.03 | 101        | 6.00          | 0.992 |           |
| Total BTEX                           | <0.300 | 0.300           | 08/02/2023 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 103    | % 71.5-13       | 4          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg,    | /kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 32.0   | 16.0            | 08/02/2023 | ND           | 432  | 108        | 400           | 0.00  |           |
| TPH 8015M                            | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 08/01/2023 | ND           | 206  | 103        | 200           | 2.11  |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 08/01/2023 | ND           | 222  | 111        | 200           | 3.82  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 08/01/2023 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 105    | % 48.2-13       | 4          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 119    | % 49.1-14       | 8          |              |      |            |               |       |           |
|                                      |        |                 |            |              |      |            |               |       |           |

Applyzod By: MC

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene



### Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701

Fax To:

Received: 08/01/2023 Reported: 08/02/2023

STRATOCASTER 20 FED 3 & 4 (4.01.23)

Project Number: 2035

Project Location: LEA COUNTY, NEW MEXICO

ma/ka

Sampling Date: 07/31/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker

## Sample ID: CS - 4 (1') (H234041-04)

Project Name:

RTFY 8021R

| Analyte                              | Result | Reporting Limit |            |              |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
|                                      |        | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 2.00 | 100        | 2.00          | 1.47  |           |
| Toluene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 1.93 | 96.3       | 2.00          | 0.918 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 08/02/2023 | ND           | 1.98 | 99.2       | 2.00          | 0.773 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 08/02/2023 | ND           | 6.03 | 101        | 6.00          | 0.992 |           |
| Total BTEX                           | <0.300 | 0.300           | 08/02/2023 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 101    | % 71.5-13       | 4          |              |      |            |               |       |           |
| Chloride, SM4500CI-B                 | mg,    | /kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | <16.0  | 16.0            | 08/02/2023 | ND           | 432  | 108        | 400           | 0.00  |           |
| TPH 8015M                            | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 08/01/2023 | ND           | 206  | 103        | 200           | 2.11  |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 08/01/2023 | ND           | 222  | 111        | 200           | 3.82  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 08/01/2023 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 105    | % 48.2-13       | 4          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 118    | % 49.1-14       | 8          |              |      |            |               |       |           |

Applyzod By: MC

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene



### Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/01/2023 Reported: 08/02/2023

STRATOCASTER 20 FED 3 & 4 (4.01.23)

Project Name: STRA Project Number: 2035

Project Location: LEA COUNTY, NEW MEXICO

Sampling Date: 07/31/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

## Sample ID: CS - 5 (1') (H234041-05)

| BTEX 8021B                           | mg,    | /kg             | Analyze    | ed By: MS    |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 2.00 | 100        | 2.00          | 1.47  |           |
| Toluene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 1.93 | 96.3       | 2.00          | 0.918 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 08/02/2023 | ND           | 1.98 | 99.2       | 2.00          | 0.773 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 08/02/2023 | ND           | 6.03 | 101        | 6.00          | 0.992 |           |
| Total BTEX                           | <0.300 | 0.300           | 08/02/2023 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 106    | % 71.5-13       | 4          |              |      |            |               |       |           |
| Chloride, SM4500CI-B                 | mg,    | /kg             | Analyze    | ed By: AC    |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | <16.0  | 16.0            | 08/02/2023 | ND           | 432  | 108        | 400           | 0.00  |           |
| TPH 8015M                            | mg,    | /kg             | Analyze    | ed By: MS    |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 08/01/2023 | ND           | 206  | 103        | 200           | 2.11  |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 08/01/2023 | ND           | 222  | 111        | 200           | 3.82  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 08/01/2023 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 105    | % 48.2-13       | 4          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 119    | % 49.1-14       | 8          |              |      |            |               |       |           |
|                                      |        |                 |            |              |      |            |               |       |           |

## Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine



### Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/01/2023 Reported: 08/02/2023

08/02/2023 STRATOCASTER 20 FED 3 & 4 (4.01.23)

Project Name: STRA Project Number: 2035

Project Location: LEA COUNTY, NEW MEXICO

Sampling Date: 07/31/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

## Sample ID: CS - 6 (1') (H234041-06)

| BTEX 8021B                           | mg     | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 2.00 | 100        | 2.00          | 1.47  |           |
| Toluene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 1.93 | 96.3       | 2.00          | 0.918 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 08/02/2023 | ND           | 1.98 | 99.2       | 2.00          | 0.773 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 08/02/2023 | ND           | 6.03 | 101        | 6.00          | 0.992 |           |
| Total BTEX                           | <0.300 | 0.300           | 08/02/2023 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 103    | % 71.5-13       | 4          |              |      |            |               |       |           |
| Chloride, SM4500CI-B                 | mg,    | /kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 32.0   | 16.0            | 08/02/2023 | ND           | 432  | 108        | 400           | 0.00  |           |
| TPH 8015M                            | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 08/01/2023 | ND           | 206  | 103        | 200           | 2.11  |           |
| DRO >C10-C28*                        | 85.3   | 10.0            | 08/01/2023 | ND           | 222  | 111        | 200           | 3.82  |           |
| EXT DRO >C28-C36                     | 75.6   | 10.0            | 08/01/2023 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 99.8   | % 48.2-13       | 4          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 115    | % 49.1-14       | 18         |              |      |            |               |       |           |
|                                      |        |                 |            |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Kreine



### Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/01/2023 Reported: 08/02/2023

STRATOCASTER 20 FED 3 & 4 (4.01.23)

Project Number: 2035

Project Location: LEA COUNTY, NEW MEXICO Sampling Date: 07/31/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker

## Sample ID: CS - 7 (1') (H234041-07)

Project Name:

| BTEX 8021B                           | mg/kg  |                 | Analyzed By: MS |              |      |            |               |       |           |
|--------------------------------------|--------|-----------------|-----------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 08/02/2023      | ND           | 2.00 | 100        | 2.00          | 1.47  |           |
| Toluene*                             | <0.050 | 0.050           | 08/02/2023      | ND           | 1.93 | 96.3       | 2.00          | 0.918 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 08/02/2023      | ND           | 1.98 | 99.2       | 2.00          | 0.773 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 08/02/2023      | ND           | 6.03 | 101        | 6.00          | 0.992 |           |
| Total BTEX                           | <0.300 | 0.300           | 08/02/2023      | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 104 9  | % 71.5-13       | 4               |              |      |            |               |       |           |
| Chloride, SM4500CI-B                 | mg/    | kg              | Analyzed By: AC |              |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | <16.0  | 16.0            | 08/02/2023      | ND           | 432  | 108        | 400           | 0.00  |           |
| TPH 8015M                            | mg/    | kg              | Analyze         | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 08/01/2023      | ND           | 206  | 103        | 200           | 2.11  |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 08/01/2023      | ND           | 222  | 111        | 200           | 3.82  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 08/01/2023      | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 103 9  | % 48.2-13       | 4               |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 118 9  | 6 49.1-14       | 8               |              |      |            |               |       |           |

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene



### Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/01/2023 Reported: 08/02/2023

08/02/2023 STRATOCASTER 20 FED 3 & 4 (4.01.23)

Project Number: 2035

Project Location: LEA COUNTY, NEW MEXICO

ma/ka

Sampling Date: 07/31/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

## Sample ID: CS - 8 (1') (H234041-08)

Project Name:

RTFY 8021R

| BIEX 8021B                           | mg     | /кд             | Anaiyze    | а ву: м5     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 2.00 | 100        | 2.00          | 1.47  |           |
| Toluene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 1.93 | 96.3       | 2.00          | 0.918 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 08/02/2023 | ND           | 1.98 | 99.2       | 2.00          | 0.773 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 08/02/2023 | ND           | 6.03 | 101        | 6.00          | 0.992 |           |
| Total BTEX                           | <0.300 | 0.300           | 08/02/2023 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 102    | % 71.5-13       | 4          |              |      |            |               |       |           |
| Chloride, SM4500CI-B                 | mg,    | /kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | <16.0  | 16.0            | 08/02/2023 | ND           | 432  | 108        | 400           | 0.00  |           |
| TPH 8015M                            | mg     | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 08/01/2023 | ND           | 206  | 103        | 200           | 2.11  |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 08/01/2023 | ND           | 222  | 111        | 200           | 3.82  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 08/01/2023 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 109    | % 48.2-13       | 4          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 126    | % 49.1-14       | 8          |              |      |            |               |       |           |
|                                      |        |                 |            |              |      |            |               |       |           |

Applyzod By: MC

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine



### Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/01/2023 Reported: 08/02/2023

STRATOCASTER 20 FED 3 & 4 (4.01.23)

Project Number: 2035

Project Location: LEA COUNTY, NEW MEXICO Sampling Date: 07/31/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker

### Sample ID: CS - 9 (1') (H234041-09)

Project Name:

| BTEX 8021B                           | mg/kg  |                 | Analyzed By: MS |              |      |            |               |       |           |
|--------------------------------------|--------|-----------------|-----------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 08/02/2023      | ND           | 2.00 | 100        | 2.00          | 1.47  |           |
| Toluene*                             | <0.050 | 0.050           | 08/02/2023      | ND           | 1.93 | 96.3       | 2.00          | 0.918 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 08/02/2023      | ND           | 1.98 | 99.2       | 2.00          | 0.773 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 08/02/2023      | ND           | 6.03 | 101        | 6.00          | 0.992 |           |
| Total BTEX                           | <0.300 | 0.300           | 08/02/2023      | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 106 9  | % 71.5-13       | 4               |              |      |            |               |       |           |
| Chloride, SM4500CI-B                 | mg/    | 'kg             | Analyzed By: AC |              |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | <16.0  | 16.0            | 08/02/2023      | ND           | 432  | 108        | 400           | 0.00  |           |
| TPH 8015M                            | mg/    | /kg             | Analyze         | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 08/01/2023      | ND           | 206  | 103        | 200           | 2.11  |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 08/01/2023      | ND           | 222  | 111        | 200           | 3.82  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 08/01/2023      | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 108 9  | % 48.2-13       | 4               |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 125    | % 49.1-14       | 8               |              |      |            |               |       |           |

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene



### Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/01/2023 Reported: 08/02/2023

08/02/2023 STRATOCASTER 20 FED 3 & 4 (4.01.23)

Project Name: STRA Project Number: 2035

Project Location: LEA COUNTY, NEW MEXICO

Sampling Date: 07/31/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

# Sample ID: CS - 10 (1') (H234041-10)

| BTEX 8021B                           | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 2.00 | 100        | 2.00          | 1.47  |           |
| Toluene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 1.93 | 96.3       | 2.00          | 0.918 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 08/02/2023 | ND           | 1.98 | 99.2       | 2.00          | 0.773 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 08/02/2023 | ND           | 6.03 | 101        | 6.00          | 0.992 |           |
| Total BTEX                           | <0.300 | 0.300           | 08/02/2023 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 102    | % 71.5-13       | 4          |              |      |            |               |       |           |
| Chloride, SM4500CI-B                 | mg,    | /kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | <16.0  | 16.0            | 08/02/2023 | ND           | 432  | 108        | 400           | 0.00  |           |
| TPH 8015M                            | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 08/01/2023 | ND           | 206  | 103        | 200           | 2.11  |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 08/01/2023 | ND           | 222  | 111        | 200           | 3.82  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 08/01/2023 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 104    | % 48.2-13       | 4          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 120    | % 49.1-14       | 8          |              |      |            |               |       |           |

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg & Freene



### Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/01/2023 Reported: 08/02/2023

STRATOCASTER 20 FED 3 & 4 (4.01.23)

Project Number: 2035

Project Name:

Project Location: LEA COUNTY, NEW MEXICO Sampling Date: 07/31/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker

#### Sample ID: CS - 11 (1') (H234041-11)

| BTEX 8021B                           | mg/    | kg              | Analyze    | d By: MS     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 2.00 | 100        | 2.00          | 1.47  |           |
| Toluene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 1.93 | 96.3       | 2.00          | 0.918 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 08/02/2023 | ND           | 1.98 | 99.2       | 2.00          | 0.773 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 08/02/2023 | ND           | 6.03 | 101        | 6.00          | 0.992 |           |
| Total BTEX                           | <0.300 | 0.300           | 08/02/2023 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 106 %  | 71.5-13         | 4          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | kg              | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | <16.0  | 16.0            | 08/02/2023 | ND           | 432  | 108        | 400           | 0.00  |           |
| TPH 8015M                            | mg/    | kg              | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 08/01/2023 | ND           | 206  | 103        | 200           | 2.11  |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 08/01/2023 | ND           | 222  | 111        | 200           | 3.82  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 08/01/2023 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 103 9  | % 48.2-13       | 4          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 120 9  | % 49.1-14       | 8          |              |      |            |               |       |           |

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine



### Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/01/2023 Reported: 08/02/2023

STRATOCASTER 20 FED 3 & 4 (4.01.23)

Project Number: 2035

Project Name:

Project Location: LEA COUNTY, NEW MEXICO

Sampling Date: 07/31/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

# Sample ID: CS - 12 (1') (H234041-12)

| BTEX 8021B                           | mg      | /kg             | Analyze    | ed By: MS    |      |            |               |       |           |
|--------------------------------------|---------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050  | 0.050           | 08/02/2023 | ND           | 2.00 | 100        | 2.00          | 1.47  |           |
| Toluene*                             | <0.050  | 0.050           | 08/02/2023 | ND           | 1.93 | 96.3       | 2.00          | 0.918 |           |
| Ethylbenzene*                        | < 0.050 | 0.050           | 08/02/2023 | ND           | 1.98 | 99.2       | 2.00          | 0.773 |           |
| Total Xylenes*                       | <0.150  | 0.150           | 08/02/2023 | ND           | 6.03 | 101        | 6.00          | 0.992 |           |
| Total BTEX                           | <0.300  | 0.300           | 08/02/2023 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 103     | % 71.5-13       | 4          |              |      |            |               |       |           |
| Chloride, SM4500CI-B                 | mg,     | /kg             | Analyze    | ed By: AC    |      |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | <16.0   | 16.0            | 08/02/2023 | ND           | 432  | 108        | 400           | 0.00  |           |
| TPH 8015M                            | mg,     | /kg             | Analyze    | ed By: MS    |      |            |               |       |           |
| Analyte                              | Result  | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0   | 10.0            | 08/01/2023 | ND           | 206  | 103        | 200           | 2.11  |           |
| DRO >C10-C28*                        | <10.0   | 10.0            | 08/01/2023 | ND           | 222  | 111        | 200           | 3.82  |           |
| EXT DRO >C28-C36                     | <10.0   | 10.0            | 08/01/2023 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 110     | % 48.2-13       | 4          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 127     | % 49.1-14       | 8          |              |      |            |               |       |           |
|                                      |         |                 |            |              |      |            |               |       |           |

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene



### Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/01/2023 Reported: 08/02/2023

08/02/2023 STRATOCASTER 20 FED 3 & 4 (4.01.23)

Project Name: STRA Project Number: 2035

Project Location: LEA COUNTY, NEW MEXICO

Sampling Date: 07/31/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

## Sample ID: CS - 13 (1') (H234041-13)

| BTEX 8021B  Analyte                  | mg/kg  |                 | Analyzed By: MS |              |           |            |               |       |           |
|--------------------------------------|--------|-----------------|-----------------|--------------|-----------|------------|---------------|-------|-----------|
|                                      | Result | Reporting Limit | Analyzed        | Method Blank | BS % Reco | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 08/02/2023      | ND           | 2.00      | 100        | 2.00          | 1.47  |           |
| Toluene*                             | <0.050 | 0.050           | 08/02/2023      | ND           | 1.93      | 96.3       | 2.00          | 0.918 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 08/02/2023      | ND           | 1.98      | 99.2       | 2.00          | 0.773 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 08/02/2023      | ND           | 6.03      | 101        | 6.00          | 0.992 |           |
| Total BTEX                           | <0.300 | 0.300           | 08/02/2023      | ND           |           |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 104    | % 71.5-13       | 4               |              |           |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/kg  |                 | Analyzed By: AC |              |           |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS        | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | <16.0  | 16.0            | 08/02/2023      | ND           | 432       | 108        | 400           | 0.00  |           |
| TPH 8015M                            | mg/kg  |                 | Analyzed By: MS |              |           |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS        | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 08/01/2023      | ND           | 206       | 103        | 200           | 2.11  |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 08/01/2023      | ND           | 222       | 111        | 200           | 3.82  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 08/01/2023      | ND           |           |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 97.7   | % 48.2-13       | 4               |              |           |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 113    | % 49.1-14       | 8               |              |           |            |               |       |           |

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene



### Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/01/2023 Reported: 08/02/2023

STRATOCASTER 20 FED 3 & 4 (4.01.23)

Project Name: STRA Project Number: 2035

Project Location: LEA COUNTY, NEW MEXICO

Sampling Date: 07/31/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

## Sample ID: SW - 1 (1') (H234041-14)

RTFY 8021R

| BIEX 8021B                           | тд/кд  |                 | Analyzed By: MS |              |      |            |               |       |           |
|--------------------------------------|--------|-----------------|-----------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 08/02/2023      | ND           | 2.00 | 100        | 2.00          | 1.47  |           |
| Toluene*                             | <0.050 | 0.050           | 08/02/2023      | ND           | 1.93 | 96.3       | 2.00          | 0.918 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 08/02/2023      | ND           | 1.98 | 99.2       | 2.00          | 0.773 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 08/02/2023      | ND           | 6.03 | 101        | 6.00          | 0.992 |           |
| Total BTEX                           | <0.300 | 0.300           | 08/02/2023      | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 102    | % 71.5-13       | 4               |              |      |            |               |       |           |
| Chloride, SM4500CI-B                 | mg/kg  |                 | Analyzed By: AC |              |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 32.0   | 16.0            | 08/02/2023      | ND           | 432  | 108        | 400           | 0.00  |           |
| TPH 8015M                            | mg/kg  |                 | Analyzed By: MS |              |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 08/01/2023      | ND           | 206  | 103        | 200           | 2.11  |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 08/01/2023      | ND           | 222  | 111        | 200           | 3.82  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 08/01/2023      | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 109    | % 48.2-13       | 4               |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 126    | % 49.1-14       | 8               |              |      |            |               |       |           |
|                                      |        |                 |                 |              |      |            |               |       |           |

Applyzod By: MC

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine



### Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/01/2023 Reported: 08/02/2023

08/02/2023 STRATOCASTER 20 FED 3 & 4 (4.01.23)

Project Name: STRA Project Number: 2035

Project Location: LEA COUNTY, NEW MEXICO

Sampling Date: 07/31/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

# Sample ID: SW - 2 (1') (H234041-15)

| BTEX 8021B                           | mg/kg   |                 | Analyzed By: MS |              |      |            |               |      |           |
|--------------------------------------|---------|-----------------|-----------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result  | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050  | 0.050           | 08/02/2023      | ND           | 2.17 | 108        | 2.00          | 2.83 |           |
| Toluene*                             | <0.050  | 0.050           | 08/02/2023      | ND           | 2.11 | 106        | 2.00          | 3.26 |           |
| Ethylbenzene*                        | < 0.050 | 0.050           | 08/02/2023      | ND           | 2.02 | 101        | 2.00          | 3.11 |           |
| Total Xylenes*                       | <0.150  | 0.150           | 08/02/2023      | ND           | 6.07 | 101        | 6.00          | 3.81 |           |
| Total BTEX                           | <0.300  | 0.300           | 08/02/2023      | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 98.0    | % 71.5-13       | 4               |              |      |            |               |      |           |
| Chloride, SM4500CI-B                 | mg/kg   |                 | Analyzed By: AC |              |      |            |               |      |           |
| Analyte                              | Result  | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | <16.0   | 16.0            | 08/02/2023      | ND           | 432  | 108        | 400           | 0.00 |           |
| TPH 8015M                            | mg/kg   |                 | Analyzed By: MS |              |      |            |               |      |           |
| Analyte                              | Result  | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0   | 10.0            | 08/01/2023      | ND           | 206  | 103        | 200           | 2.11 |           |
| DRO >C10-C28*                        | <10.0   | 10.0            | 08/01/2023      | ND           | 222  | 111        | 200           | 3.82 |           |
| EXT DRO >C28-C36                     | <10.0   | 10.0            | 08/01/2023      | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 96.1    | % 48.2-13       | 4               |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 112     | % 49.1-14       | 8               |              |      |            |               |      |           |
|                                      |         |                 |                 |              |      |            |               |      |           |

## Cardinal Laboratories

\*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine



### Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/01/2023 Reported:

08/02/2023 STRATOCASTER 20 FED 3 & 4 (4.01.23)

Project Name: Project Number: 2035

Project Location: LEA COUNTY, NEW MEXICO Sampling Date: 07/31/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker

## Sample ID: SW - 3 (1') (H234041-16)

| BTEX 8021B                           | mg/    | 'kg             | Analyze    | d By: MS     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 2.17 | 108        | 2.00          | 2.83 |           |
| Toluene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 2.11 | 106        | 2.00          | 3.26 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 08/02/2023 | ND           | 2.02 | 101        | 2.00          | 3.11 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 08/02/2023 | ND           | 6.07 | 101        | 6.00          | 3.81 |           |
| Total BTEX                           | <0.300 | 0.300           | 08/02/2023 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 98.9   | % 71.5-13       | 4          |              |      |            |               |      |           |
| Chloride, SM4500CI-B                 | mg/    | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | <16.0  | 16.0            | 08/02/2023 | ND           | 432  | 108        | 400           | 0.00 |           |
| TPH 8015M                            | mg/    | 'kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 08/01/2023 | ND           | 206  | 103        | 200           | 2.11 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 08/01/2023 | ND           | 222  | 111        | 200           | 3.82 |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 08/01/2023 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 96.8   | % 48.2-13       | 4          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 112 9  | % 49.1-14       | 8          |              |      |            |               |      |           |

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene



### Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/01/2023 Reported: 08/02/2023

STRATOCASTER 20 FED 3 & 4 (4.01.23)

Project Number: 2035

Project Location: LEA COUNTY, NEW MEXICO

Sampling Date: 07/31/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

## Sample ID: SW - 4 (1') (H234041-17)

Project Name:

RTFY 8021R

| B1EX 8021B                           | mg/    | кg              | Апануге    | а ву: мѕ     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 2.17 | 108        | 2.00          | 2.83 |           |
| Toluene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 2.11 | 106        | 2.00          | 3.26 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 08/02/2023 | ND           | 2.02 | 101        | 2.00          | 3.11 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 08/02/2023 | ND           | 6.07 | 101        | 6.00          | 3.81 |           |
| Total BTEX                           | <0.300 | 0.300           | 08/02/2023 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 98.7   | % 71.5-13       | 4          |              |      |            |               |      |           |
| Chloride, SM4500CI-B                 | mg/    | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | <16.0  | 16.0            | 08/02/2023 | ND           | 432  | 108        | 400           | 0.00 |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 08/01/2023 | ND           | 206  | 103        | 200           | 2.11 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 08/01/2023 | ND           | 222  | 111        | 200           | 3.82 |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 08/01/2023 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 106 9  | % 48.2-13       | 4          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 122 9  | % 49.1-14       | 8          |              |      |            |               |      |           |

Applyzod By: MC

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene



### Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/01/2023 Reported: 08/02/2023

STRATOCASTER 20 FED 3 & 4 (4.01.23)

Project Name: STRA Project Number: 2035

Project Location: LEA COUNTY, NEW MEXICO

Sampling Date: 07/31/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

## Sample ID: SW - 5 (1') (H234041-18)

RTFY 8021R

| Result <0.050 <0.050 | Reporting Limit 0.050                                                | Analyzed                                     | Method Blank | BS     | % Recovery | True Value QC | RPD    | Qualifier |
|----------------------|----------------------------------------------------------------------|----------------------------------------------|--------------|--------|------------|---------------|--------|-----------|
|                      | 0.050                                                                | 00/00/10055                                  |              |        | ,          | True value qe | IN D   | Quaiiilei |
| <0.050               |                                                                      | 08/02/2023                                   | ND           | 2.17   | 108        | 2.00          | 2.83   |           |
|                      | 0.050                                                                | 08/02/2023                                   | ND           | 2.11   | 106        | 2.00          | 3.26   |           |
| <0.050               | 0.050                                                                | 08/02/2023                                   | ND           | 2.02   | 101        | 2.00          | 3.11   |           |
| <0.150               | 0.150                                                                | 08/02/2023                                   | ND           | 6.07   | 101        | 6.00          | 3.81   |           |
| <0.300               | 0.300                                                                | 08/02/2023                                   | ND           |        |            |               |        |           |
| 98.9                 | % 71.5-13                                                            | 4                                            |              |        |            |               |        |           |
| mg/                  | /kg                                                                  | Analyze                                      | d By: AC     |        |            |               |        |           |
| Result               | Reporting Limit                                                      | Analyzed                                     | Method Blank | BS     | % Recovery | True Value QC | RPD    | Qualifier |
| <16.0                | 16.0                                                                 | 08/02/2023                                   | ND           | 432    | 108        | 400           | 0.00   |           |
| mg/                  | /kg                                                                  | Analyze                                      | d By: MS     |        |            |               |        |           |
| Result               | Reporting Limit                                                      | Analyzed                                     | Method Blank | BS     | % Recovery | True Value QC | RPD    | Qualifier |
| <10.0                | 10.0                                                                 | 08/01/2023                                   | ND           | 206    | 103        | 200           | 2.11   |           |
| <10.0                | 10.0                                                                 | 08/01/2023                                   | ND           | 222    | 111        | 200           | 3.82   |           |
| <10.0                | 10.0                                                                 | 08/01/2023                                   | ND           |        |            |               |        |           |
| 103 9                | % 48.2-13                                                            | 4                                            |              |        |            |               |        |           |
| 120 9                | % 49.1-14                                                            | 8                                            |              |        |            |               |        |           |
|                      | <0.150 <0.300  98.9  mg/ Result <16.0  mg/  Result <10.0 <10.0 <10.0 | <0.050 0.050 <0.150 0.150 <0.300 0.300  98.9 | <0.050       | <0.050 | <0.050     | <0.050        | <0.050 | <0.050    |

Applyzod By: MC

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine



### Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701

Fax To:

Received: 08/01/2023 Reported: 08/02/2023

STRATOCASTER 20 FED 3 & 4 (4.01.23)

Project Name: Project Number: 2035

Project Location: LEA COUNTY, NEW MEXICO Sampling Date: 07/31/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker

## Sample ID: SW - 6 (1') (H234041-19)

RTFY 8021R

| BIEX 8021B                           | mg     | / <b>kg</b>     | Anaiyze    | ea By: MS    |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 2.17 | 108        | 2.00          | 2.83 |           |
| Toluene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 2.11 | 106        | 2.00          | 3.26 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 08/02/2023 | ND           | 2.02 | 101        | 2.00          | 3.11 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 08/02/2023 | ND           | 6.07 | 101        | 6.00          | 3.81 |           |
| Total BTEX                           | <0.300 | 0.300           | 08/02/2023 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 98.6   | % 71.5-13       | 4          |              |      |            |               |      |           |
| Chloride, SM4500CI-B                 | mg     | /kg             | Analyze    | ed By: AC    |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | <16.0  | 16.0            | 08/02/2023 | ND           | 432  | 108        | 400           | 0.00 |           |
| TPH 8015M                            | mg     | /kg             | Analyze    | ed By: MS    |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 08/01/2023 | ND           | 206  | 103        | 200           | 2.11 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 08/01/2023 | ND           | 222  | 111        | 200           | 3.82 |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 08/01/2023 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 105    | % 48.2-13       | 4          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 122    | % 49.1-14       | 8          |              |      |            |               |      |           |
|                                      |        |                 |            |              |      |            |               |      |           |

Applyzod By: MC

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene



### Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/01/2023 Reported: 08/02/2023

08/02/2023 STRATOCASTER 20 FED 3 & 4 (4.01.23)

Project Name: STRA Project Number: 2035

Project Location: LEA COUNTY, NEW MEXICO

Sampling Date: 07/31/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

# Sample ID: SW - 7 (1') (H234041-20)

RTFY 8021R

| BIEX 8021B                           | mg     | / <b>kg</b>     | Anaiyze    | ea By: MS    |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 2.17 | 108        | 2.00          | 2.83 |           |
| Toluene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 2.11 | 106        | 2.00          | 3.26 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 08/02/2023 | ND           | 2.02 | 101        | 2.00          | 3.11 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 08/02/2023 | ND           | 6.07 | 101        | 6.00          | 3.81 |           |
| Total BTEX                           | <0.300 | 0.300           | 08/02/2023 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 99.5   | % 71.5-13       | 4          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg     | /kg             | Analyze    | ed By: AC    |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 32.0   | 16.0            | 08/02/2023 | ND           | 432  | 108        | 400           | 0.00 |           |
| TPH 8015M                            | mg     | /kg             | Analyze    | ed By: MS    |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 08/01/2023 | ND           | 206  | 103        | 200           | 2.11 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 08/01/2023 | ND           | 222  | 111        | 200           | 3.82 |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 08/01/2023 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 107    | % 48.2-13       | 4          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 123    | % 49.1-14       | 8          |              |      |            |               |      |           |
|                                      |        |                 |            |              |      |            |               |      |           |

Applyzod By: MC

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine



### Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/01/2023 Reported: 08/02/2023

STRATOCASTER 20 FED 3 & 4 (4.01.23)

Project Name: STRA Project Number: 2035

Project Location: LEA COUNTY, NEW MEXICO

Sampling Date: 07/31/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

## Sample ID: SW - 8 (1') (H234041-21)

RTFY 8021R

| Result   Reporting Limit   Analyzed   Method Blank   BS   % Recovery   True Value QC   RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BIEX 8021B                           | mg     | / <b>kg</b>     | Anaiyze    | ea By: MS    |      |            |               |       |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Toluene* < 0.050 0.050 0.8/02/2023 ND 2.11 106 2.00 3.26 Ethylbenzene* < 0.050 0.050 08/02/2023 ND 2.02 101 2.00 3.11 Total Xylenes* < 0.150 0.150 08/02/2023 ND 6.07 101 6.00 3.81 Total BTEX < 0.300 0.300 08/02/2023 ND  Surrogate: 4-Bromofluorobenzene (PID 99.5 % 71.5-134  Chloride, SM4500Cl-B mg/kg Analyzed By: AC  Chloride   Result   Reporting Limit   Analyzed   Method Blank   BS   % Recovery   True Value QC   RPD  Chloride   Chloride   Result   Reporting Limit   Analyzed By: MS  Analyzed By: MS  Analyzed By: MS  Analyzed By: MS  GRO C6-C10*   Chloride   Chloride | Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Ethylbenzene* <0.050 0.050 08/02/2023 ND 2.02 101 2.00 3.11 Total Xylenes* <0.150 0.150 08/02/2023 ND 6.07 101 6.00 3.81 Total BTEX <0.300 0.300 08/02/2023 ND  Surrogate: 4-Bromofluorobenzene (PID 99.5 % 71.5-134  Chloride, SM4500Cl-B mg/kg Analyzed By: AC  Analyte Result Reporting Limit Analyzed Method Blank BS % Recovery True Value QC RPD Chloride <16.0 16.0 08/02/2023 ND 432 108 400 0.00  TPH 8015M mg/kg Analyzed By: MS  Analyte Result Reporting Limit Analyzed Method Blank BS % Recovery True Value QC RPD GRO C6-C10* <10.0 10.0 08/01/2023 ND 182 91.2 200 6.05 DRO >C10-C28* <10.0 10.0 08/01/2023 ND 196 98.2 200 0.356 EXT DRO >C28-C36 <10.0 10.0 08/01/2023 ND  Surrogate: 1-Chlorooctane 115 % 48.2-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benzene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 2.17 | 108        | 2.00          | 2.83  |           |
| Total Xylenes*         <0.150         0.150         08/02/2023         ND         6.07         101         6.00         3.81           Surrogate: 4-Bromofluorobenzene (PID         99.5 %         71.5-134         XIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Toluene*                             | <0.050 | 0.050           | 08/02/2023 | ND           | 2.11 | 106        | 2.00          | 3.26  |           |
| Total BTEX         <0.300         0.300         08/02/2023         ND           Surrogate: 4-Bromofluorobenzene (PIL)         99.5 % 71.5-134           Chloride, SM4500CI-B         mg/kg         Analyzed By: AC           Analyte         Result         Reporting Limit         Analyzed By: AC         Recovery         True Value QC         RPD           Chloride         <16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ethylbenzene*                        | <0.050 | 0.050           | 08/02/2023 | ND           | 2.02 | 101        | 2.00          | 3.11  |           |
| Surrogate: 4-Bromofluorobenzene (PID         99.5 %         71.5-134           Chloride, SM4500Cl-B         mg/kg         Analyzed By: AC           Analyte         Result Reporting Limit Analyzed Method Blank BS % Recovery         True Value QC RPD           Chloride         <16.0 16.0 08/02/2023 ND 432 108 400 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total Xylenes*                       | <0.150 | 0.150           | 08/02/2023 | ND           | 6.07 | 101        | 6.00          | 3.81  |           |
| Chloride, SM4500Cl-B         mg / kg         Analyzed By: AC           Analyte         Result Reporting Limit Analyzed Method Blank BS % Recovery True Value QC RPD           Chloride         <16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total BTEX                           | <0.300 | 0.300           | 08/02/2023 | ND           |      |            |               |       |           |
| Analyte Result Reporting Limit Analyzed Method Blank BS % Recovery True Value QC RPD  Chloride <16.0 16.0 08/02/2023 ND 432 108 400 0.00  TPH 8015M mg/kg Analyzed By: MS  Analyte Result Reporting Limit Analyzed Method Blank BS % Recovery True Value QC RPD  GRO C6-C10* <10.0 10.0 08/01/2023 ND 182 91.2 200 6.05  DRO >C10-C28* <10.0 10.0 08/01/2023 ND 196 98.2 200 0.356  EXT DRO >C28-C36 <10.0 10.0 08/01/2023 ND  Surrogate: 1-Chlorooctane 115 % 48.2-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Surrogate: 4-Bromofluorobenzene (PID | 99.5   | % 71.5-13       | 4          |              |      |            |               |       |           |
| Chloride         <16.0         16.0         08/02/2023         ND         432         108         400         0.00           TPH 8015M         mg/kg         Analyzed By: MS         MS         Recovery         True Value QC         RPD           Analyte         Result         Reporting Limit         Analyzed Method Blank         BS         % Recovery         True Value QC         RPD           GRO C6-C10*         <10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chloride, SM4500CI-B                 | mg,    | /kg             | Analyze    | ed By: AC    |      |            |               |       |           |
| TPH 8015M         mg/kg         Analyzed By: MS           Analyte         Result         Reporting Limit         Analyzed         Method Blank         BS         % Recovery         True Value QC         RPD           GRO C6-C10*         <10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Analyte Result Reporting Limit Analyzed Method Blank BS % Recovery True Value QC RPD  GRO C6-C10* <10.0 10.0 08/01/2023 ND 182 91.2 200 6.05  DRO >C10-C28* <10.0 10.0 08/01/2023 ND 196 98.2 200 0.356  EXT DRO >C28-C36 <10.0 10.0 08/01/2023 ND  Surrogate: 1-Chlorooctane 115 % 48.2-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chloride                             | <16.0  | 16.0            | 08/02/2023 | ND           | 432  | 108        | 400           | 0.00  |           |
| GRO C6-C10* <10.0 10.0 08/01/2023 ND 182 91.2 200 6.05 DRO >C10-C28* <10.0 10.0 08/01/2023 ND 196 98.2 200 0.356 EXT DRO >C28-C36 <10.0 10.0 08/01/2023 ND  Surrogate: 1-Chlorooctane 115 % 48.2-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TPH 8015M                            | mg     | /kg             | Analyze    | ed By: MS    |      |            |               |       |           |
| DRO >C10-C28* < 10.0 10.0 08/01/2023 ND 196 98.2 200 0.356  EXT DRO >C28-C36 <10.0 10.0 08/01/2023 ND  Surrogate: 1-Chlorooctane 115 % 48.2-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| EXT DRO >C28-C36 <10.0 10.0 08/01/2023 ND  Surrogate: 1-Chlorooctane 115 % 48.2-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GRO C6-C10*                          | <10.0  | 10.0            | 08/01/2023 | ND           | 182  | 91.2       | 200           | 6.05  |           |
| Surrogate: 1-Chlorooctane 115 % 48.2-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DRO >C10-C28*                        | <10.0  | 10.0            | 08/01/2023 | ND           | 196  | 98.2       | 200           | 0.356 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EXT DRO >C28-C36                     | <10.0  | 10.0            | 08/01/2023 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane 125 % 49.1-148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Surrogate: 1-Chlorooctane            | 115    | % 48.2-13       | 4          |              |      |            |               |       |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Surrogate: 1-Chlorooctadecane        | 125    | % 49.1-14       | 8          |              |      |            |               |       |           |

Applyzod By: MC

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine



### **Notes and Definitions**

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

\*\* Samples not received at proper temperature of 6°C or below.

\*\*\* Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

| Project Manager: Company Name: Address: Address: City, State ZIP: Phone: Project Name: Project Name: Project Location Sampler's Name: PO #: | onner Mo<br>armona R<br>0 W Wal<br>dland, TX<br>2-813-68<br>Strato                                                  | 13&4 (4.01.23)<br>aw Mexico  | l lai:        | Bill to: (if different Company Nan Address: City, State ZIP mcarmona@ Around @ Rush 24 Hrs | Chain of Custody  Carmona Resources  Carmona Resources  Code  O + MRO) | Carm      | Of Custod  Carmona Resources  O+MRO) | sources | ANA        | Prog<br>State<br>Repo<br>Deliv | Work Order No: Page  Work Order Comments  Program: UST/PST   PRP     rownfields     Reporting:Level III |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------|---------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------|--------------------------------------|---------|------------|--------------------------------|---------------------------------------------------------------------------------------------------------|
| Project Number:                                                                                                                             | 2035                                                                                                                | Movino                       | Routine       | ☑ Rush                                                                                     | Code                                                                   |           |                                      | H       |            |                                |                                                                                                         |
| Project Location Sampler's Name:                                                                                                            | Lea County, Ne                                                                                                      | ew Mexico                    | Due Date:     | 24 Hrs                                                                                     | _                                                                      |           | (0)                                  |         |            |                                |                                                                                                         |
| PO#.                                                                                                                                        |                                                                                                                     |                              |               |                                                                                            | s                                                                      |           | + MRC                                |         |            |                                |                                                                                                         |
| SAMPLE RECEIPT                                                                                                                              | Temp Blank:                                                                                                         | Yes MO                       | Wet ice:      | Yes No                                                                                     | eters                                                                  | В         | ORO +                                | 00      |            |                                |                                                                                                         |
| Received Intact:                                                                                                                            | es N                                                                                                                | Thermometer ID:              | D:            | 140                                                                                        | aran                                                                   | C 8021    | RO + I                               | ide 45  |            |                                |                                                                                                         |
| Sample Custody Seals:                                                                                                                       | Yes No MA                                                                                                           | Temperature Reading:         | leading:      | 141                                                                                        | F                                                                      | вте       | M (G                                 | Chlor   |            |                                |                                                                                                         |
| Total Containers:                                                                                                                           |                                                                                                                     |                              | perature:     | 1                                                                                          | Ш                                                                      |           | 8015                                 |         |            |                                |                                                                                                         |
| Sample Identification                                                                                                                       | ication Date                                                                                                        | Time                         | Soil          | Water Comp                                                                                 | p Cont                                                                 |           | TPH                                  |         |            |                                |                                                                                                         |
| CS-1 (1")                                                                                                                                   |                                                                                                                     | 23                           | ×             | Comp                                                                                       | p 1                                                                    | ×         | ×                                    | ×       |            |                                |                                                                                                         |
| CS-2 (1)                                                                                                                                    |                                                                                                                     | 23                           | ×             | Comp                                                                                       | p 1                                                                    | ×         | ×                                    | ×       |            |                                |                                                                                                         |
| CS-3 (1)                                                                                                                                    |                                                                                                                     | 23                           | ×             | Comp                                                                                       | 7                                                                      | ×         | ×                                    | ×       |            |                                |                                                                                                         |
| CS-4 (1)                                                                                                                                    |                                                                                                                     | 23                           | ×             | Comp                                                                                       | p 1                                                                    | ×         | ×                                    | ×       |            |                                |                                                                                                         |
| CS-5 (1)                                                                                                                                    |                                                                                                                     | 23                           | ×             | Comp                                                                                       |                                                                        | ×         | ×                                    | ×       |            |                                |                                                                                                         |
|                                                                                                                                             | 7/31/2023                                                                                                           | 23                           | ××            | Comp                                                                                       | 1 7                                                                    | ××        | ××                                   | ××      |            | -                              |                                                                                                         |
|                                                                                                                                             |                                                                                                                     | 23                           | ×             | Comp                                                                                       |                                                                        | ×         | ×                                    | ×       | -          |                                |                                                                                                         |
|                                                                                                                                             |                                                                                                                     | 23                           | ×             | Comp                                                                                       | 1                                                                      | ×         | ×                                    | ×       |            | -                              |                                                                                                         |
| CS 10 /4"                                                                                                                                   | ) 7/31/2023                                                                                                         | 23                           | ×             | Comp                                                                                       | -                                                                      | ×         | ×                                    | ×       |            | 1                              |                                                                                                         |
| 00-10(1)                                                                                                                                    | omments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmonaresources.com | mona@carmona                 | resources.com | and Conner N                                                                               | Noehring                                                               | / Cmoe    | hring@                               | Carmona | resources. | moo                            |                                                                                                         |
| omments: Email to                                                                                                                           |                                                                                                                     | Relinquished by: (Signature) |               |                                                                                            |                                                                        |           | me                                   |         |            | Dan                            |                                                                                                         |
| omments: Email to                                                                                                                           | Relinquishe                                                                                                         | +                            |               |                                                                                            | 1                                                                      | Date/Time | 120                                  |         | 1          | Neu                            | Received by (Signature)                                                                                 |

|                                                                                                                                  |                       |                                   |                              |             |                         |          | 1         |             |                      |                  |                          | Page 2 of 3                                              |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------|------------------------------|-------------|-------------------------|----------|-----------|-------------|----------------------|------------------|--------------------------|----------------------------------------------------------|
| Project Manager:                                                                                                                 | Conner Moehring       | DG                                |                              |             | Bill to: (if different) | 3        | Cam       | nona Re     | Peninose             |                  |                          | 2 of                                                     |
|                                                                                                                                  | Carmona Resources     | urces                             |                              |             | Company Nam             | 5        | Can       | III III III | Calificial Nesoulces |                  | Work Ura                 | ents                                                     |
|                                                                                                                                  | 310 W Wall St Ste 500 | Ste 500                           |                              |             | Address:                | ā        | +         |             |                      |                  | State of Project:        | rownfields RC perfund                                    |
| City, State ZIP:                                                                                                                 | Midland, TX 79701     | 701                               |                              |             | City, State ZIP-        |          | 1         |             |                      |                  | Ti evel III              |                                                          |
| Phone:                                                                                                                           | 432-813-6823          |                                   |                              | Email:      |                         | carmonar | esourc    | es.com      |                      |                  |                          | ADaPT Other                                              |
| Project Name:                                                                                                                    | Stratocaste           | Stratocaster 20 Fed 3&4 (4.01.23) | 4 (4.01.23)                  | Turn        | Turn Around             |          |           |             |                      | ANALYSIS DEC     |                          | - 11                                                     |
| Project Number:                                                                                                                  |                       | 2035                              |                              | □ Routine   | ☑ Rush                  | Pres.    |           |             | _                    | NEW CIGO NEW CES | - Constitution           | ervati                                                   |
| Project Location                                                                                                                 | Lea Co                | Lea County, New Mexico            | Mexico                       | Due Date:   | 24 Hrs                  |          |           |             | -                    |                  |                          |                                                          |
| Sampler's Name:                                                                                                                  |                       | FV                                |                              |             |                         |          |           | MRO)        |                      |                  |                          | HCL: HC HNO3: HN                                         |
| SAMPLE RECEIPT                                                                                                                   |                       | Temp Blank:                       | Yes No                       | Wet Ice     | NO NO                   | eters    | 3         | RO+         | 0                    |                  |                          | H <sub>2</sub> S0 <sub>4</sub> : H <sub>2</sub> NaOH: Na |
| Received Intact:                                                                                                                 | Yes                   | No                                | Thermometer ID:              |             | (m)                     | rame     | 021       | ) + D       | 450                  |                  |                          | H <sub>3</sub> PO <sub>4</sub> : HP                      |
| Cooler Custody Seals:                                                                                                            | Yes N                 | No (NIA)                          | Correction Factor:           | л           | 1                       | Pa       | EX 8      | GRO         | oride                |                  |                          | Na S O : Na SO                                           |
| Sample Custody Seals:                                                                                                            | Yes                   | No ONIA                           | Temperature Reading:         | ading:      | -4,6                    |          | B1        | 5M (        | Chi                  |                  |                          | Zn Acetate+NaOH: Zn                                      |
| Total Containers:                                                                                                                | -                     |                                   | Corrected Temperature:       | erature:    | )                       |          |           | H 801       |                      |                  |                          | NaOH+Ascorbic Acid: SAPC                                 |
| Sample Identification                                                                                                            | fication              | Date                              | Time                         | Soil        | Water Comp              | p Cont   |           | TP          |                      |                  |                          | Sample Comments                                          |
|                                                                                                                                  | 3                     | 7/31/2023                         |                              | ×           | Comp                    | p 1      | ×         | ×           | ×                    |                  |                          |                                                          |
| CS-12 (1')                                                                                                                       | 3                     | 7/31/2023                         |                              | ×           | Comp                    | p 1      | ×         | ×           | ×                    |                  |                          |                                                          |
|                                                                                                                                  | 3                     | 7/31/2023                         |                              | ×           | Comp                    | p 1      | ×         | ×           | ×                    |                  |                          |                                                          |
| SW-1 (1')                                                                                                                        | 9                     | 7/31/2023                         |                              | ×           | Comp                    | p 1      | ×         | ×           | ×                    |                  |                          |                                                          |
| SW-2 (1")                                                                                                                        | ٥                     | 7/31/2023                         |                              | ×           | Comp                    | p 1      | ×         | ×           | ×                    |                  |                          |                                                          |
| SW-3 (1')                                                                                                                        | 3                     | 7/31/2023                         |                              | ×           | Comp                    | p 1      | ×         | ×           | ×                    |                  |                          |                                                          |
| SW-4 (1')                                                                                                                        | J                     | 7/31/2023                         |                              | ×           | Comp                    | p 1      | ×         | ×           | ×                    |                  |                          |                                                          |
| SW-5 (1")                                                                                                                        | 3                     | 7/31/2023                         |                              | ×           | Comp                    | p<br>1   | ×         | ×           | ×                    |                  |                          |                                                          |
|                                                                                                                                  | 3                     | 7/31/2023                         |                              | ×           | Comp                    | 1        | ×         | ×           | ×                    |                  |                          |                                                          |
| SW-7 (1")                                                                                                                        | _                     | 7/31/2023                         |                              | ×           | Comp                    | 0 1      | ×         | ×           | ×                    |                  |                          |                                                          |
| omments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmonaresources.com 8/15/2020 9: | Mike Carmon           | a / Mcarmo                        | na@carmonare                 | sources.com | and Conner N            | Noehring | / Cmo     | ehring      | @carmor              | naresources.com  |                          |                                                          |
| 5                                                                                                                                | Re                    | linquished by                     | Relinquished by: (Signature) |             |                         |          | Date/Time | ime         |                      | Rece             | Received by: (Signature) | Date/Time                                                |
| de de                                                                                                                            | Col                   | 4                                 |                              |             |                         | 82       | 123       | 11          | 100                  | MANUAL           |                          |                                                          |
| ein                                                                                                                              |                       |                                   |                              |             |                         |          | -         |             |                      |                  |                          |                                                          |

| Relinquished by: (Signature)  Relinquished by: (Signature)  Relinquished by: (Signature)  Relinquished by: (Signature)  Relinquished by: (Signature) | 8:58:58 AM | SW-8 (1') | Sample Identification | Total Containers:        | Sample Custody Seals: | Cooler Custody Seals: | Received Intact: | SAMPLE RECEIPT | PO#     | Sampler's Name: | Project Location           | Project Number: | Project Name:                     | Phone:                               | City, State ZIP:             | Address:              | Company Name:        | Project Manager:        | Po |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|-----------------------|--------------------------|-----------------------|-----------------------|------------------|----------------|---------|-----------------|----------------------------|-----------------|-----------------------------------|--------------------------------------|------------------------------|-----------------------|----------------------|-------------------------|----|
| to Mike Carm                                                                                                                                         |            | 8 (1')    | entification          |                          | als: Yes              | Yes                   |                  |                |         |                 | Lea                        |                 | Stratocas                         | 432-813-6823                         | Midland, TX 79701            | 310 W Wall St Ste 500 | Carmona Resources    | Conner Moehring         |    |
| ona / Mcarmo                                                                                                                                         |            | 7/31/2023 | Date                  | 11                       | No NIA                | No (NA)               | Yes No           | Temp Blank:    |         | FV              | Lea County, New Mexico     | 2035            | Stratocaster 20 Fed 3&4 (4.01.23) |                                      | 9701                         | St Ste 500            | sources              | nring                   |    |
| na@carmonar                                                                                                                                          |            |           | Time                  | Corrected Temperature    | Temperature Reading:  | Correction Factor.    | Thermometer ID:  | Yes No         |         | Conco           | Mexico                     |                 | 4 (4.01.23)                       |                                      |                              |                       |                      |                         |    |
| esources.com                                                                                                                                         |            | ×         | Soil                  | erature:                 | ading:                | эт.<br>-              | ,,               | Wet Ice:       |         | Due Date.       | Due Date:                  | □ Routine       | Turr                              | Email                                |                              |                       |                      |                         |    |
| and Conne                                                                                                                                            |            | Cc        | Water Co              |                          | -4.6                  | 1                     | 140              | Xes No         |         | SILL 47         | 24 Hre                     | ☑ Rush          | Turn Around                       | Email: mcarmona@carmonaresources.com | City, State ZIP              | Address:              | Company Name:        | Bill to: (if different) |    |
| r Moehring                                                                                                                                           |            |           | Grab/ # of            | 1                        |                       | Pa                    | _                | eter           | 5       | 1               | -                          | Pres.           |                                   | @carmona                             | P                            |                       | me:                  | ent)                    |    |
| Date/Tin                                                                                                                                             |            | ×         |                       |                          | _                     | EX 8                  | _                | _              |         |                 |                            | -               |                                   | resources                            |                              |                       |                      | Carmo                   |    |
| hring@ca                                                                                                                                             |            | ×         | TPI                   | H 801                    |                       | GRO                   |                  |                | MR      | 0)              | +                          | -               |                                   | .com                                 |                              |                       |                      | Carmona Resources       |    |
| rmonare                                                                                                                                              |            |           |                       |                          |                       |                       |                  |                |         |                 |                            |                 |                                   |                                      |                              |                       |                      | ces                     |    |
| Sources.                                                                                                                                             |            | +         |                       |                          |                       |                       |                  |                | _       | _               | +                          | -               | ANA                               |                                      |                              |                       |                      |                         |    |
|                                                                                                                                                      |            |           |                       |                          |                       |                       |                  |                |         |                 | 1                          |                 | ANALYSIS REQUEST                  |                                      |                              |                       |                      |                         |    |
| Received by: (Signature)                                                                                                                             |            |           |                       |                          |                       |                       |                  |                |         |                 |                            | 3000            | TOUEST                            | Deliverables: EDD                    | Reporting:Level II Level III | State of Project:     | Program: UST/PST DRP |                         |    |
|                                                                                                                                                      |            | +         |                       |                          |                       |                       |                  |                |         |                 |                            |                 |                                   |                                      |                              |                       | DRP                  | Work O                  |    |
|                                                                                                                                                      |            |           | Sam                   | NaOH+As                  | Zn Acetate            | Na-S-O- NaSO-         | NaHSO : N        | H DO - HE      | HCL: HC | Cool: Cool      | None: NO                   | Fre             | Pos                               |                                      | □ST/UST □                    |                       | rownfields           | Page                    |    |
| Date/Time                                                                                                                                            |            |           | Sample Comments       | NaOH+Ascorbic Acid: SAPC | Zn Acetate+NaOH: Zn   | NaSO.                 | NADIC            | NaOH: Na       |         | MeOH: Me        | DI Water: H <sub>2</sub> O | servati         |                                   | .7                                   | RRP Level IV                 | The Indian            | 5                    | 3 of                    |    |



August 03, 2023

CONNER MOEHRING
CARMONA RESOURCES
310 W WALL ST SUITE 415
MIDLAND, TX 79701

RE: STRATOCASTER 20 FED 3 & 4 (4.01.23)

Enclosed are the results of analyses for samples received by the laboratory on 08/02/23 12:35.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (\*). For a complete list of accredited analytes and matrices visit the TCEQ website at <a href="https://www.tceq.texas.gov/field/ga/lab\_accred\_certif.html">www.tceq.texas.gov/field/ga/lab\_accred\_certif.html</a>.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keene

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager



### Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 08/02/2023 Reported:

08/03/2023

STRATOCASTER 20 FED 3 & 4 (4.01.23)

Project Number: 2035

Project Name:

Project Location: LEA COUNTY, NEW MEXICO Sampling Date: 08/02/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker

## Sample ID: CS - 6 (1.25') (H234078-01)

| BTEX 8021B                           | mg,    | /kg             | Analyze    | d By: JH/    |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 08/03/2023 | ND           | 1.98 | 99.2       | 2.00          | 0.642 |           |
| Toluene*                             | <0.050 | 0.050           | 08/03/2023 | ND           | 1.90 | 95.2       | 2.00          | 0.971 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 08/03/2023 | ND           | 1.95 | 97.6       | 2.00          | 1.19  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 08/03/2023 | ND           | 5.76 | 95.9       | 6.00          | 0.697 |           |
| Total BTEX                           | <0.300 | 0.300           | 08/03/2023 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 110 9  | % 71.5-13       | 4          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg,    | /kg             | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | <16.0  | 16.0            | 08/03/2023 | ND           | 432  | 108        | 400           | 3.64  |           |
| TPH 8015M                            | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 08/03/2023 | ND           | 189  | 94.4       | 200           | 3.11  |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 08/03/2023 | ND           | 207  | 103        | 200           | 1.29  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 08/03/2023 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 104    | % 48.2-13       | 4          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 115    | % 49.1-14       | 8          |              |      |            |               |       |           |

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene



#### **Notes and Definitions**

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

\*\* Samples not received at proper temperature of 6°C or below.

\*\*\* Insufficient time to reach temperature.

Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

| ct Manager: Conner Moehring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | Dill to                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | Page 1 of 1              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | DIII IO. (if different)       |                          | Carmona Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Work Order                           |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | Company Name:                 | 98                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Program: UST/PST   PRP   frownfields | Date                     |
| State ZIP: Midland, TX 79701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | Address:                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | State of Project:                    |                          |
| 432-813-6823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | Email: mcarmona@c             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reporting:Level II Level III DS      | ST/UST RRP Level IV      |
| ct Name: Stratocaster 20 Fed 3&4 (4 01 22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | mearmona@calmonaresources.com | ai ii) ui laresources.co | in the second se | Deliverables: EDD ADal               | ADaPT Other:             |
| ä                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Routing                | urn A                         | Pres                     | ANALYSIS RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SIS REQUEST                          | Procenting               |
| Lea Cour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                      |                               | Code                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | 1000                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Due Dale               | 24 Hrs                        | RO)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | Cool: Cool MeOH: Me      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                          |
| Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mometer ID:            | CX                            |                          | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | H BO H NaOH: Na          |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Correction Factor      | 140                           | X 80                     | ide 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | NaHSO : NABIS            |
| Seals: Yes No (NA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Temperature Reading:   | 00                            | BTE                      | hlori                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | Na-S-O-: NaSO-           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Corrected Temperature: | 15                            | _                        | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | Zn Acetate+NaOH; Zn      |
| ition Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Time Soil              | Water Grab/                   | TPH S                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | NaOH+Ascorbic Acid: SAPC |
| CS-6 (1.25) 8.2.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×                      | 0                             |                          | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | Sample Comments          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                          |
| s: Email to Mike Carmona / Mcarmona@ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                          |
| Conner Moehring / Concerting / Conserting / | armonaresources.c      | om and Conner Mo              | ehring / Cmoehring       | @carmonaresources.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                          |
| Relinquished by: (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nature)                |                               | Date/Time                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                          |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        | 20                            | 6772 1720                | // Monor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | received by Joignature)              | Date/Time                |

**Environment Testing** 

# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Mike Carmona Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701

Generated 8/7/2023 2:45:44 PM

# **JOB DESCRIPTION**

Stratocaster 20 Fed 3&4 (04.01.23) SDG NUMBER Lea County New Mexico

# **JOB NUMBER**

880-31663-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

# **Eurofins Midland**

# **Job Notes**

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

# **Authorization**

Generated 8/7/2023 2:45:44 PM

Authorized for release by Jessica Kramer, Project Manager <u>Jessica.Kramer@et.eurofinsus.com</u> (432)704-5440 1

3

4

**O** 

7

Ŏ

10

11

12

14

Client: Carmona Resources Project/Site: Stratocaster 20 Fed 3&4 (04.01.23) Laboratory Job ID: 880-31663-1 SDG: Lea County New Mexico

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 8  |
| QC Sample Results      | 9  |
| QC Association Summary | 13 |
| Lab Chronicle          | 15 |
| Certification Summary  | 16 |
| Method Summary         | 17 |
| Sample Summary         | 18 |
| Chain of Custody       | 19 |
| Racaint Chacklists     | 20 |

2

3

6

8

9

11

10

14

# **Definitions/Glossary**

Client: Carmona Resources

Job ID: 880-31663-1 Project/Site: Stratocaster 20 Fed 3&4 (04.01.23)

SDG: Lea County New Mexico

**Qualifiers** 

**GC VOA** 

Qualifier **Qualifier Description** 

LCS and/or LCSD is outside acceptance limits, high biased. U Indicates the analyte was analyzed for but not detected.

**GC Semi VOA** 

Qualifier **Qualifier Description** 

S1+ Surrogate recovery exceeds control limits, high biased. U Indicates the analyte was analyzed for but not detected.

**HPLC/IC** 

Qualifier **Qualifier Description** 

MS and/or MSD recovery exceeds control limits. U Indicates the analyte was analyzed for but not detected.

**Glossary** 

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DFR Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor** 

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

**EDL** Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

**PRES** Presumptive QC **Quality Control** 

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) TEQ

**TNTC** Too Numerous To Count

### Case Narrative

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (04.01.23)

Job ID: 880-31663-1

SDG: Lea County New Mexico

Job ID: 880-31663-1

**Laboratory: Eurofins Midland** 

Narrative

Job Narrative 880-31663-1

#### Receipt

The samples were received on 8/3/2023 4:09 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -1.6°C

#### Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: H-1 (0-0.5') (880-31663-1) and H-2 (0-0.5') (880-31663-2).

#### GC VOA

Method 8021B: Surrogate recovery for the following sample was outside control limits: (880-31650-A-1-C). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The laboratory control sample (LCS) associated with preparation batch 880-59298 and analytical batch 880-59294 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

Method 8015MOD NM: The surrogate recovery for the blank associated with preparation batch 880-59354 and analytical batch 880-59405 was outside the upper control limits.

Method 8015MOD NM: Surrogate recovery for the following sample was outside control limits: (CCV 880-59405/47). Evidence of matrix interferences is not obvious.

Method 8015MOD\_NM: Surrogate recovery for the following sample was outside control limits: H-2 (0-0.5') (880-31663-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### HPLC/IC

Method 300 ORGFM 28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-59261 and analytical batch 880-59272 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

**Eurofins Midland** 8/7/2023

Job ID: 880-31663-1

# **Client Sample Results**

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (04.01.23) SDG: Lea County New Mexico

Lab Sample ID: 880-31663-1

**Client Sample ID: H-1 (0-0.5')** Date Collected: 08/03/23 00:00

Matrix: Solid

Date Received: 08/03/23 16:09

| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00200  | U *+      | 0.00200  |     | mg/Kg |   | 08/04/23 08:27 | 08/04/23 14:28 | 1       |
| Toluene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/04/23 08:27 | 08/04/23 14:28 | 1       |
| Ethylbenzene                | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/04/23 08:27 | 08/04/23 14:28 | 1       |
| m-Xylene & p-Xylene         | <0.00401  | U         | 0.00401  |     | mg/Kg |   | 08/04/23 08:27 | 08/04/23 14:28 | 1       |
| o-Xylene                    | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/04/23 08:27 | 08/04/23 14:28 | 1       |
| Xylenes, Total              | <0.00401  | U         | 0.00401  |     | mg/Kg |   | 08/04/23 08:27 | 08/04/23 14:28 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 88        |           | 70 - 130 |     |       |   | 08/04/23 08:27 | 08/04/23 14:28 | 1       |
| 1,4-Difluorobenzene (Surr)  | 82        |           | 70 - 130 |     |       |   | 08/04/23 08:27 | 08/04/23 14:28 | 1       |

| Analyte    | Result   | Qualifier | RL      | MDL | Unit  | D | Prepared | Analyzed       | Dil Fac |
|------------|----------|-----------|---------|-----|-------|---|----------|----------------|---------|
| Total BTEX | <0.00401 | U         | 0.00401 |     | mg/Kg |   |          | 08/04/23 18:19 | 1       |

| Method: SW846 8015 NM - Die | sel Range Organics (DRO) (GC) |
|-----------------------------|-------------------------------|
|                             | D 11 0 110                    |

| Analyte   | Result | Qualifier | RL   | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|-----------|--------|-----------|------|----------|---|----------|----------------|---------|
| Total TPH | <49.6  | U         | 49.6 | mg/Kg    |   |          | 08/07/23 15:23 | 1       |

|                                   |            |           | ( /    |          |   |                |                |         |
|-----------------------------------|------------|-----------|--------|----------|---|----------------|----------------|---------|
| Analyte                           | Result     | Qualifier | RL     | MDL Unit | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics           | <49.6      | U         | 49.6   | mg/Kg    |   | 08/04/23 15:42 | 08/07/23 05:34 | 1       |
| (GRO)-C6-C10                      |            |           |        |          |   |                |                |         |
| Diesel Range Organics (Over       | <49.6      | U         | 49.6   | mg/Kg    |   | 08/04/23 15:42 | 08/07/23 05:34 | 1       |
| C10-C28)                          |            |           |        |          |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <49.6      | U         | 49.6   | mg/Kg    |   | 08/04/23 15:42 | 08/07/23 05:34 | 1       |
|                                   |            |           |        |          |   |                |                |         |
| Currogato                         | % Pocovory | Qualifier | Limite |          |   | Propared       | Analyzod       | Dil Esc |

| Surrogate      | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|----------------|-----------|-----------|----------|----------------|----------------|---------|
| 1-Chlorooctane | 123       |           | 70 - 130 | 08/04/23 15:42 | 08/07/23 05:34 | 1       |
| o-Terphenyl    | 123       |           | 70 - 130 | 08/04/23 15:42 | 08/07/23 05:34 | 1       |

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

| Analyte  | Result Qualifier | RL   | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|----------|------------------|------|----------|---|----------|----------------|---------|
| Chloride | 54.5 F1          | 5.04 | mg/Kg    |   |          | 08/04/23 00:43 | 1       |

Client Sample ID: H-2 (0-0.5')

Lab Sample ID: 880-31663-2 Date Collected: 08/03/23 00:00 **Matrix: Solid** Date Received: 08/03/23 16:09

| Method: SW846 8021B - Volati | ile Organic Comp | ounds (GC | )        |     |       |   |                |                |         |
|------------------------------|------------------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Analyte                      | Result           | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                      | <0.00200         | U *+      | 0.00200  |     | mg/Kg |   | 08/04/23 08:27 | 08/04/23 14:49 | 1       |
| Toluene                      | <0.00200         | U         | 0.00200  |     | mg/Kg |   | 08/04/23 08:27 | 08/04/23 14:49 | 1       |
| Ethylbenzene                 | <0.00200         | U         | 0.00200  |     | mg/Kg |   | 08/04/23 08:27 | 08/04/23 14:49 | 1       |
| m-Xylene & p-Xylene          | <0.00399         | U         | 0.00399  |     | mg/Kg |   | 08/04/23 08:27 | 08/04/23 14:49 | 1       |
| o-Xylene                     | <0.00200         | U         | 0.00200  |     | mg/Kg |   | 08/04/23 08:27 | 08/04/23 14:49 | 1       |
| Xylenes, Total               | <0.00399         | U         | 0.00399  |     | mg/Kg |   | 08/04/23 08:27 | 08/04/23 14:49 | 1       |
| Surrogate                    | %Recovery        | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)  | 86               |           | 70 - 130 |     |       |   | 08/04/23 08:27 | 08/04/23 14:49 | 1       |
| 1,4-Difluorobenzene (Surr)   | 104              |           | 70 - 130 |     |       |   | 08/04/23 08:27 | 08/04/23 14:49 | 1       |

# **Client Sample Results**

Client: Carmona Resources

Job ID: 880-31663-1 Project/Site: Stratocaster 20 Fed 3&4 (04.01.23) SDG: Lea County New Mexico

Lab Sample ID: 880-31663-2

**Client Sample ID: H-2 (0-0.5')** 

Date Collected: 08/03/23 00:00 Matrix: Solid

Date Received: 08/03/23 16:09

| Method: TAL SOP Total BTEX - T<br>Analyte |               | Qualifier   | RL         | MDL   | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-------------------------------------------|---------------|-------------|------------|-------|-------|---|----------------|----------------|---------|
| Total BTEX                                | <0.00399      |             | 0.00399    | WIDE  | mg/Kg | = | Trepareu       | 08/04/23 18:19 | 1       |
| Mothod: SW946 9045 NM Dioce               | l Banga Organ | ica (DBO) ( | 20)        |       |       |   |                |                |         |
| Method: SW846 8015 NM - Diese<br>Analyte  | •             | Qualifier   | RL         | MDL   | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                                 | 79.3          | quamer      | 49.5       | INIDE | mg/Kg |   | Tropulcu       | 08/07/23 15:23 |         |
| Mothod: SW046 9045D NM Dies               | ol Bongo Orgo | nice (DBO)  | (CC)       |       |       |   |                |                |         |
| Method: SW846 8015B NM - Dies Analyte     | •             | Qualifier   | (GC)<br>RL | MDL   | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics                   | <49.5         | U           | 49.5       |       | mg/Kg |   | 08/04/23 15:42 | 08/07/23 05:55 | 1       |
| (GRO)-C6-C10                              |               |             |            |       |       |   |                |                |         |
| Diesel Range Organics (Over               | 79.3          |             | 49.5       |       | mg/Kg |   | 08/04/23 15:42 | 08/07/23 05:55 | ,       |
| C10-C28)                                  |               |             |            |       |       |   |                |                |         |
| Oll Range Organics (Over C28-C36)         | <49.5         | U           | 49.5       |       | mg/Kg |   | 08/04/23 15:42 | 08/07/23 05:55 | 1       |
| Surrogate                                 | %Recovery     | Qualifier   | Limits     |       |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                            | 151           | S1+         | 70 - 130   |       |       |   | 08/04/23 15:42 | 08/07/23 05:55 | 1       |
| o-Terphenyl                               | 151           | S1+         | 70 - 130   |       |       |   | 08/04/23 15:42 | 08/07/23 05:55 | 1       |
| Method: EPA 300.0 - Anions, Ion           | Chromatograp  | hy - Solubl | e          |       |       |   |                |                |         |
| Analyte                                   | • .           | Qualifier   | RL         | MDL   | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                                  | 28.3          |             | 4.95       |       | mg/Kg |   |                | 08/04/23 00:58 |         |

# **Surrogate Summary**

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (04.01.23)

Job ID: 880-31663-1

SDG: Lea County New Mexico

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

|                     |                        | BFB1     | DFBZ1    |
|---------------------|------------------------|----------|----------|
| Lab Sample ID       | Client Sample ID       | (70-130) | (70-130) |
| 880-31650-A-1-A MS  | Matrix Spike           | 112      | 121      |
| 880-31650-A-1-B MSD | Matrix Spike Duplicate | 109      | 120      |
| 880-31663-1         | H-1 (0-0.5')           | 88       | 82       |
| 880-31663-2         | H-2 (0-0.5')           | 86       | 104      |
| LCS 880-59298/1-A   | Lab Control Sample     | 104      | 116      |
| LCSD 880-59298/2-A  | Lab Control Sample Dup | 114      | 113      |
| MB 880-59298/5-A    | Method Blank           | 72       | 95       |

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Prep Type: Total/NA **Matrix: Solid** 

| =                   |                        |          |          |
|---------------------|------------------------|----------|----------|
|                     |                        | 1CO1     | OTPH1    |
| Lab Sample ID       | Client Sample ID       | (70-130) | (70-130) |
| 880-31663-1         | H-1 (0-0.5')           | 123      | 123      |
| 880-31663-2         | H-2 (0-0.5')           | 151 S1+  | 151 S1+  |
| 880-31672-A-1-D MS  | Matrix Spike           | 107      | 104      |
| 880-31672-A-1-E MSD | Matrix Spike Duplicate | 107      | 105      |
| LCS 880-59354/2-A   | Lab Control Sample     | 101      | 115      |
| LCSD 880-59354/3-A  | Lab Control Sample Dup | 104      | 117      |
| MB 880-59354/1-A    | Method Blank           | 121      | 134 S1+  |

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

# **QC Sample Results**

Client: Carmona Resources

Job ID: 880-31663-1 Project/Site: Stratocaster 20 Fed 3&4 (04.01.23) SDG: Lea County New Mexico

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-59298/5-A

Lab Sample ID: LCS 880-59298/1-A

Analysis Batch: 59294

**Matrix: Solid** 

Matrix: Solid

Analysis Batch: 59294

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 59298

|                     | MB        | MB        |         |     |       |   |                |                |         |
|---------------------|-----------|-----------|---------|-----|-------|---|----------------|----------------|---------|
| Analyte             | Result    | Qualifier | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene             | <0.00200  | U         | 0.00200 |     | mg/Kg |   | 08/04/23 08:27 | 08/04/23 12:44 | 1       |
| Toluene             | <0.00200  | U         | 0.00200 |     | mg/Kg |   | 08/04/23 08:27 | 08/04/23 12:44 | 1       |
| Ethylbenzene        | <0.00200  | U         | 0.00200 |     | mg/Kg |   | 08/04/23 08:27 | 08/04/23 12:44 | 1       |
| m-Xylene & p-Xylene | <0.00400  | U         | 0.00400 |     | mg/Kg |   | 08/04/23 08:27 | 08/04/23 12:44 | 1       |
| o-Xylene            | <0.00200  | U         | 0.00200 |     | mg/Kg |   | 08/04/23 08:27 | 08/04/23 12:44 | 1       |
| Xylenes, Total      | < 0.00400 | U         | 0.00400 |     | mg/Kg |   | 08/04/23 08:27 | 08/04/23 12:44 | 1       |

MB MB

| Surrogate                   | %Recovery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|---------------------|----------|----------------|----------------|---------|
| 4-Bromofluorobenzene (Surr) | 72                  | 70 - 130 | 08/04/23 08:27 | 08/04/23 12:44 | 1       |
| 1,4-Difluorobenzene (Surr)  | 95                  | 70 - 130 | 08/04/23 08:27 | 08/04/23 12:44 | 1       |

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 59298

Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.1358 mg/Kg 136 70 - 130 Toluene 0.100 0.1145 mg/Kg 115 70 - 130 0.100 Ethylbenzene 0.1169 mg/Kg 117 70 - 130 0.200 0.2504 125 70 - 130 m-Xylene & p-Xylene mg/Kg 0.100 0.1192 70 - 130 o-Xylene mg/Kg 119

LCS LCS

| Surrogate                   | %Recovery Qualifier | Limits   |
|-----------------------------|---------------------|----------|
| 4-Bromofluorobenzene (Surr) | 104                 | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 116                 | 70 - 130 |

Lab Sample ID: LCSD 880-59298/2-A **Client Sample ID: Lab Control Sample Dup** 

**Matrix: Solid** 

Analysis Batch: 59294

Prep Type: Total/NA Prep Batch: 59298

|                     | Spike | LCSD   | LCSD      |       |   |      | %Rec     |     | RPD   |  |
|---------------------|-------|--------|-----------|-------|---|------|----------|-----|-------|--|
| Analyte             | Added | Result | Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |  |
| Benzene             | 0.100 | 0.1462 | *+        | mg/Kg |   | 146  | 70 - 130 | 7   | 35    |  |
| Toluene             | 0.100 | 0.1242 |           | mg/Kg |   | 124  | 70 - 130 | 8   | 35    |  |
| Ethylbenzene        | 0.100 | 0.1300 |           | mg/Kg |   | 130  | 70 - 130 | 11  | 35    |  |
| m-Xylene & p-Xylene | 0.200 | 0.2605 |           | mg/Kg |   | 130  | 70 - 130 | 4   | 35    |  |
| o-Xylene            | 0.100 | 0.1304 |           | mg/Kg |   | 130  | 70 - 130 | 9   | 35    |  |

LCSD LCSD

| Surrogate                   | %Recovery | Qualifier | Limits   |
|-----------------------------|-----------|-----------|----------|
| 4-Bromofluorobenzene (Surr) | 114       |           | 70 - 130 |
| 1.4-Difluorobenzene (Surr)  | 113       |           | 70 - 130 |

Lab Sample ID: 880-31650-A-1-A MS

**Matrix: Solid** 

Analysis Batch: 59294

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 59298

|         | Sample    | Sample    | Spike | MS      | MS        |       |   |      | %Rec     |  |
|---------|-----------|-----------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte | Result    | Qualifier | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene | <0.00199  | U *+      | 0.101 | 0.1171  |           | mg/Kg |   | 116  | 70 - 130 |  |
| Toluene | < 0.00199 | U         | 0.101 | 0.09609 |           | mg/Kg |   | 95   | 70 - 130 |  |

**Eurofins Midland** 

Page 9 of 20

# **QC Sample Results**

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (04.01.23)

Job ID: 880-31663-1

SDG: Lea County New Mexico

# Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-31650-A-1-A MS

Lab Sample ID: 880-31650-A-1-B MSD

**Matrix: Solid** 

Analysis Batch: 59294

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 59298

|                     | Sample   | Sample    | Spike | MS      | MS        |       |   |      | %Rec     |  |
|---------------------|----------|-----------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Result   | Qualifier | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Ethylbenzene        | <0.00199 | U         | 0.101 | 0.09887 |           | mg/Kg |   | 98   | 70 - 130 |  |
| m-Xylene & p-Xylene | <0.00398 | U         | 0.202 | 0.2048  |           | mg/Kg |   | 102  | 70 - 130 |  |
| o-Xylene            | <0.00199 | U         | 0.101 | 0.09636 |           | mg/Kg |   | 96   | 70 - 130 |  |

MS MS

| Surrogate                   | %Recovery Q | ualifier | Limits   |  |  |
|-----------------------------|-------------|----------|----------|--|--|
| 4-Bromofluorobenzene (Surr) | 112         |          | 70 - 130 |  |  |
| 1,4-Difluorobenzene (Surr)  | 121         |          | 70 - 130 |  |  |

**Client Sample ID: Matrix Spike Duplicate** 

Prep Type: Total/NA

Prep Batch: 59298

**Matrix: Solid Analysis Batch: 59294** 

|                     | Sample   | Sample    | Spike  | MSD    | MSD       |       |   |      | %Rec     |     | RPD   |
|---------------------|----------|-----------|--------|--------|-----------|-------|---|------|----------|-----|-------|
| Analyte             | Result   | Qualifier | Added  | Result | Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |
| Benzene             | <0.00199 | U *+      | 0.0994 | 0.1162 |           | mg/Kg |   | 117  | 70 - 130 | 1   | 35    |
| Toluene             | <0.00199 | U         | 0.0994 | 0.1036 |           | mg/Kg |   | 104  | 70 - 130 | 7   | 35    |
| Ethylbenzene        | <0.00199 | U         | 0.0994 | 0.1012 |           | mg/Kg |   | 102  | 70 - 130 | 2   | 35    |
| m-Xylene & p-Xylene | <0.00398 | U         | 0.199  | 0.2138 |           | mg/Kg |   | 108  | 70 - 130 | 4   | 35    |
| o-Xylene            | <0.00199 | U         | 0.0994 | 0.1017 |           | mg/Kg |   | 102  | 70 - 130 | 5   | 35    |
|                     |          |           |        |        |           |       |   |      |          |     |       |

MSD MSD

| Surrogate                   | %Recovery | Qualifier | Limits   |
|-----------------------------|-----------|-----------|----------|
| 4-Bromofluorobenzene (Surr) | 109       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 120       |           | 70 - 130 |

# Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-59354/1-A

**Matrix: Solid** 

Analysis Batch: 59405

| Client Sample ID: Method Blank |
|--------------------------------|
| Prep Type: Total/NA            |

Prep Batch: 59354

|                                         | MB     | MR        |      |     |       |   |                |                |         |
|-----------------------------------------|--------|-----------|------|-----|-------|---|----------------|----------------|---------|
| Analyte                                 | Result | Qualifier | RL   | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.0  | U         | 50.0 |     | mg/Kg |   | 08/04/23 15:41 | 08/06/23 20:54 | 1       |
| Diesel Range Organics (Over C10-C28)    | <50.0  | U         | 50.0 |     | mg/Kg |   | 08/04/23 15:41 | 08/06/23 20:54 | 1       |
| OII Range Organics (Over C28-C36)       | <50.0  | U         | 50.0 |     | mg/Kg |   | 08/04/23 15:41 | 08/06/23 20:54 | 1       |

MB MB

| Surrogate      | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|----------------|-----------|-----------|----------|----------------|----------------|---------|
| 1-Chlorooctane | 121       |           | 70 - 130 | 08/04/23 15:41 | 08/06/23 20:54 | 1       |
| o-Terphenyl    | 134       | S1+       | 70 - 130 | 08/04/23 15:41 | 08/06/23 20:54 | 1       |

Lab Sample ID: LCS 880-59354/2-A

**Matrix: Solid** 

**Analysis Batch: 59405** 

| Client Sample ID: Lab Control Sample | •  |
|--------------------------------------|----|
| Prep Type: Total/NA                  | ١. |

Prep Batch: 59354

|                             | Spike | LCS    | LCS       |       |   |      | %Rec     |       |
|-----------------------------|-------|--------|-----------|-------|---|------|----------|-------|
| Analyte                     | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |       |
| Gasoline Range Organics     | 1000  | 1152   |           | mg/Kg |   | 115  | 70 - 130 | <br>_ |
| (GRO)-C6-C10                |       |        |           |       |   |      |          |       |
| Diesel Range Organics (Over | 1000  | 926.5  |           | mg/Kg |   | 93   | 70 - 130 |       |
| C10-C28)                    |       |        |           |       |   |      |          |       |

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (04.01.23)

Job ID: 880-31663-1

SDG: Lea County New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-59354/2-A

**Matrix: Solid** 

Analysis Batch: 59405

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 59354

LCS LCS

%Recovery Qualifier Surrogate Limits 1-Chlorooctane 101 70 - 130 o-Terphenyl 115 70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 59354

Lab Sample ID: LCSD 880-59354/3-A **Matrix: Solid** Analysis Batch: 59405

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit 1000 1161 116 70 - 13020 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 938.6 94 mg/Kg 70 - 13020

C10-C28)

**Matrix: Solid** 

**Analysis Batch: 59405** 

LCSD LCSD

| Surrogate      | %Recovery | Qualifier | Limits   |
|----------------|-----------|-----------|----------|
| 1-Chlorooctane | 104       |           | 70 - 130 |
| o-Terphenyl    | 117       |           | 70 - 130 |

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 59354

Sample Sample Spike Analyte Result Qualifier hahhA Result Qualifier Unit D %Rec Limits Gasoline Range Organics <50.1 U 993 879.2 mg/Kg 86 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over <50.1 U 993 1007 mg/Kg 97 70 - 130

70 - 130

MS MS

C10-C28)

o-Terphenyl

MS MS %Recovery Qualifier Limits Surrogate 70 - 130 1-Chlorooctane 107

Lab Sample ID: 880-31672-A-1-E MSD

Lab Sample ID: 880-31672-A-1-D MS

**Matrix: Solid** 

Analysis Batch: 59405

Client Sample ID: Matrix Spike Duplicate

%Rec

Prep Type: Total/NA

Prep Batch: 59354

Sample Sample MSD MSD RPD Spike Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit U 993 864.8 85 Gasoline Range Organics <50.1 mg/Kg 70 - 130 20 (GRO)-C6-C10 Diesel Range Organics (Over <50.1 U 993 1010 mg/Kg 97 70 - 130 20

C10-C28)

MSD MSD

104

| Surrogate      | %Recovery Qualifier | Limits   |
|----------------|---------------------|----------|
| 1-Chlorooctane | 107                 | 70 - 130 |
| o-Terphenyl    | 105                 | 70 - 130 |

# QC Sample Results

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (04.01.23)

Job ID: 880-31663-1 SDG: Lea County New Mexico

Client Sample ID: Method Blank

Client Sample ID: H-1 (0-0.5')

**Prep Type: Soluble** 

**Prep Type: Soluble** 

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-59261/1-A

**Matrix: Solid** 

Analysis Batch: 59272

MB MB

MDL Unit Dil Fac Analyte Result Qualifier RL D Prepared Analyzed Chloride <5.00 U 5.00 mg/Kg 08/03/23 23:19

Lab Sample ID: LCS 880-59261/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble** 

**Analysis Batch: 59272** 

Spike LCS LCS %Rec Added Qualifier %Rec Analyte Result Unit D Limits Chloride 250 237.3 mg/Kg 95 90 - 110

Lab Sample ID: LCSD 880-59261/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble** 

Analysis Batch: 59272

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 250 242.4 mg/Kg 90 - 110

Lab Sample ID: 880-31663-1 MS Client Sample ID: H-1 (0-0.5') **Prep Type: Soluble** 

**Matrix: Solid** 

Analysis Batch: 59272

Spike MS MS Sample Sample %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 54.5 F1 252 277.3 F1 90 - 110 mg/Kg

Lab Sample ID: 880-31663-1 MSD

**Matrix: Solid** 

Analysis Batch: 59272

Sample Sample Spike MSD MSD %Rec RPD Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits RPD Limit Chloride 54.5 F1 252 277.1 F1 88 mg/Kg 90 - 110 20

# **QC Association Summary**

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (04.01.23)

Job ID: 880-31663-1 SDG: Lea County New Mexico

# **GC VOA**

# Analysis Batch: 59294

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 880-31663-1         | H-1 (0-0.5')           | Total/NA  | Solid  | 8021B  | 59298      |
| 880-31663-2         | H-2 (0-0.5')           | Total/NA  | Solid  | 8021B  | 59298      |
| MB 880-59298/5-A    | Method Blank           | Total/NA  | Solid  | 8021B  | 59298      |
| LCS 880-59298/1-A   | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 59298      |
| LCSD 880-59298/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 59298      |
| 880-31650-A-1-A MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 59298      |
| 880-31650-A-1-B MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 59298      |

# Prep Batch: 59298

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 880-31663-1         | H-1 (0-0.5')           | Total/NA  | Solid  | 5035   |            |
| 880-31663-2         | H-2 (0-0.5')           | Total/NA  | Solid  | 5035   |            |
| MB 880-59298/5-A    | Method Blank           | Total/NA  | Solid  | 5035   |            |
| LCS 880-59298/1-A   | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |
| LCSD 880-59298/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |
| 880-31650-A-1-A MS  | Matrix Spike           | Total/NA  | Solid  | 5035   |            |
| 880-31650-A-1-B MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 5035   |            |

# Analysis Batch: 59371

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 880-31663-1   | H-1 (0-0.5')     | Total/NA  | Solid  | Total BTEX |            |
| 880-31663-2   | H-2 (0-0.5')     | Total/NA  | Solid  | Total BTEX |            |

# **GC Semi VOA**

## Prep Batch: 59354

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|---------------------|------------------------|-----------|--------|-------------|------------|
| 880-31663-1         | H-1 (0-0.5')           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31663-2         | H-2 (0-0.5')           | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-59354/1-A    | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-59354/2-A   | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-59354/3-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31672-A-1-D MS  | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31672-A-1-E MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            |

## Analysis Batch: 59405

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|---------------------|------------------------|-----------|--------|----------|------------|
| 880-31663-1         | H-1 (0-0.5')           | Total/NA  | Solid  | 8015B NM | 59354      |
| 880-31663-2         | H-2 (0-0.5')           | Total/NA  | Solid  | 8015B NM | 59354      |
| MB 880-59354/1-A    | Method Blank           | Total/NA  | Solid  | 8015B NM | 59354      |
| LCS 880-59354/2-A   | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 59354      |
| LCSD 880-59354/3-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 59354      |
| 880-31672-A-1-D MS  | Matrix Spike           | Total/NA  | Solid  | 8015B NM | 59354      |
| 880-31672-A-1-E MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM | 59354      |

# Analysis Batch: 59547

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method  | Prep Batch |
|---------------|------------------|-----------|--------|---------|------------|
| 880-31663-1   | H-1 (0-0.5')     | Total/NA  | Solid  | 8015 NM |            |
| 880-31663-2   | H-2 (0-0.5')     | Total/NA  | Solid  | 8015 NM |            |

**Eurofins Midland** 

2

3

4

6

8

10

12

13

14

# **QC Association Summary**

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (04.01.23)

Job ID: 880-31663-1

SDG: Lea County New Mexico

# HPLC/IC

# Leach Batch: 59261

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|--------------------|------------------------|-----------|--------|----------|------------|
| 880-31663-1        | H-1 (0-0.5')           | Soluble   | Solid  | DI Leach |            |
| 880-31663-2        | H-2 (0-0.5')           | Soluble   | Solid  | DI Leach |            |
| MB 880-59261/1-A   | Method Blank           | Soluble   | Solid  | DI Leach |            |
| LCS 880-59261/2-A  | Lab Control Sample     | Soluble   | Solid  | DI Leach |            |
| LCSD 880-59261/3-A | Lab Control Sample Dup | Soluble   | Solid  | DI Leach |            |
| 880-31663-1 MS     | H-1 (0-0.5')           | Soluble   | Solid  | DI Leach |            |
| 880-31663-1 MSD    | H-1 (0-0.5')           | Soluble   | Solid  | DI Leach |            |

# Analysis Batch: 59272

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 880-31663-1        | H-1 (0-0.5')           | Soluble   | Solid  | 300.0  | 59261      |
| 880-31663-2        | H-2 (0-0.5')           | Soluble   | Solid  | 300.0  | 59261      |
| MB 880-59261/1-A   | Method Blank           | Soluble   | Solid  | 300.0  | 59261      |
| LCS 880-59261/2-A  | Lab Control Sample     | Soluble   | Solid  | 300.0  | 59261      |
| LCSD 880-59261/3-A | Lab Control Sample Dup | Soluble   | Solid  | 300.0  | 59261      |
| 880-31663-1 MS     | H-1 (0-0.5')           | Soluble   | Solid  | 300.0  | 59261      |
| 880-31663-1 MSD    | H-1 (0-0.5')           | Soluble   | Solid  | 300.0  | 59261      |

## **Lab Chronicle**

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (04.01.23)

SDG: Lea County New Mexico

**Client Sample ID: H-1 (0-0.5')** 

Date Collected: 08/03/23 00:00 Date Received: 08/03/23 16:09

Lab Sample ID: 880-31663-1

Matrix: Solid

Job ID: 880-31663-1

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.99 g  | 5 mL   | 59298  | 08/04/23 08:27 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 59294  | 08/04/23 14:28 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 59371  | 08/04/23 18:19 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 59547  | 08/07/23 15:23 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.08 g | 10 mL  | 59354  | 08/04/23 15:42 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 59405  | 08/07/23 05:34 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.96 g  | 50 mL  | 59261  | 08/03/23 17:00 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 59272  | 08/04/23 00:43 | CH      | EET MID |

Lab Sample ID: 880-31663-2

**Client Sample ID: H-2 (0-0.5')** 

Date Collected: 08/03/23 00:00 Matrix: Solid Date Received: 08/03/23 16:09

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.01 g  | 5 mL   | 59298  | 08/04/23 08:27 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 59294  | 08/04/23 14:49 | SM      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 59371  | 08/04/23 18:19 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 59547  | 08/07/23 15:23 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.10 g | 10 mL  | 59354  | 08/04/23 15:42 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 59405  | 08/07/23 05:55 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.05 g  | 50 mL  | 59261  | 08/03/23 17:00 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 59272  | 08/04/23 00:58 | CH      | EET MID |

**Laboratory References:** 

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

# **Accreditation/Certification Summary**

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (04.01.23)

Job ID: 880-31663-1 SDG: Lea County New Mexico

# **Laboratory: Eurofins Midland**

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| <u> </u>                                  |                                    | ogram                            | Identification Number                       | Expiration Date 06-30-24 |
|-------------------------------------------|------------------------------------|----------------------------------|---------------------------------------------|--------------------------|
|                                           |                                    | ELAP                             | T104704400-23-26                            |                          |
| 0 ,                                       | are included in this report, bu    | it the laboratory is not certifi | ed by the governing authority. This list ma | ay include analytes f    |
| the agency does not of                    | fer certification.                 |                                  |                                             |                          |
| the agency does not of<br>Analysis Method | fer certification .<br>Prep Method | Matrix                           | Analyte                                     |                          |
| 0 ,                                       |                                    | Matrix Solid                     | Analyte Total TPH                           |                          |

6

8

10

13

14

# **Method Summary**

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (04.01.23)

Job ID: 880-31663-1

SDG: Lea County New Mexico

| Method      | Method Description                 | Protocol | Laboratory |
|-------------|------------------------------------|----------|------------|
| 8021B       | Volatile Organic Compounds (GC)    | SW846    | EET MID    |
| Total BTEX  | Total BTEX Calculation             | TAL SOP  | EET MID    |
| 8015 NM     | Diesel Range Organics (DRO) (GC)   | SW846    | EET MID    |
| 8015B NM    | Diesel Range Organics (DRO) (GC)   | SW846    | EET MID    |
| 300.0       | Anions, Ion Chromatography         | EPA      | EET MID    |
| 5035        | Closed System Purge and Trap       | SW846    | EET MID    |
| 8015NM Prep | Microextraction                    | SW846    | EET MID    |
| DI Leach    | Deionized Water Leaching Procedure | ASTM     | EET MID    |

#### **Protocol References:**

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

# Sample Summary

Client: Carmona Resources

Project/Site: Stratocaster 20 Fed 3&4 (04.01.23)

Job ID: 880-31663-1

SDG: Lea County New Mexico

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 880-31663-1   | H-1 (0-0.5')     | Solid  | 08/03/23 00:00 | 08/03/23 16:09 |
| 880-31663-2   | H-2 (0-0.5')     | Solid  | 08/03/23 00:00 | 08/03/23 16:09 |

|  |  | 9 |  |
|--|--|---|--|
|  |  |   |  |
|  |  |   |  |

| 1 | 3 |
|---|---|
|   |   |

|                                                                                             |                                                                              | _                 |                                         |          |                        |            |                        |                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------|-----------------------------------------|----------|------------------------|------------|------------------------|-----------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                             |                                                                              | 3<br>3<br>1       | 5 216180                                | -  <br>  |                        |            |                        |                                   |                       | The same of the sa |
|                                                                                             |                                                                              |                   |                                         | <u> </u> |                        |            |                        |                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Received by (Signature)                                                                     | 7                                                                            | ime               | Date/Time                               |          |                        |            | / (Signature)          | Relinquished by (Signature)       |                       | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                             | California Control and Control moenting / Citicenting@californatesources.com | ecarillon         |                                         | T NO COL | and Con                | 0 C        |                        |                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                             |                                                                              |                   |                                         |          |                        |            |                        |                                   | to Millo Car          | `ommonte: Emai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                             |                                                                              |                   |                                         |          |                        |            |                        |                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                             |                                                                              |                   |                                         |          |                        |            |                        |                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                             |                                                                              |                   |                                         | _        |                        |            |                        |                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                             |                                                                              |                   |                                         |          |                        |            |                        |                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                             |                                                                              |                   |                                         |          |                        |            |                        |                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                             |                                                                              |                   |                                         |          |                        |            |                        |                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                             |                                                                              | ×                 | ×                                       | ဂ        |                        | ×          |                        | 8/3/2023                          | 0.5')                 | H-2 (0-0.5')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                             |                                                                              | ×                 | 1<br>×                                  | င        |                        | ×          |                        | 8/3/2023                          | 0.5')                 | H-1 (0-0.5')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                             |                                                                              | TPH               | Cont                                    | Grab/ #  | Water                  | Soil       | Time                   | Date                              | ntification           | Sample Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NaOH+Ascorbic Acid SAPC                                                                     |                                                                              | 801               | *************************************** | P        | 1.1                    | ature:     | Corrected Temperature: |                                   |                       | Total Containers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Zn Acetate+NaOH Zn                                                                          |                                                                              |                   | B1                                      |          | 21                     | ding       | Temperature Reading    | 8<br><b>3</b> (                   | -                     | Sample Custody Seals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> |                                                                              |                   |                                         | Ö        | 4%                     |            | Correction Factor      | No MA                             | s. Yes                | Cooler Custody Seals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NaHSO, NARIS                                                                                |                                                                              | O + I<br>e 30     | 8021                                    | d        | 7                      |            | Thermometer ID:        |                                   |                       | Received Intact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                             |                                                                              | -                 |                                         | 8        | <u></u>                | Wet Ice    | Yet No                 | Temp Blank.                       |                       | SAMPLE RECEIPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| H.SO. H.                                                                                    |                                                                              | + M               | 'S                                      | <u></u>  |                        |            | )                      |                                   |                       | PO#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cool Cool                                                                                   |                                                                              | RO)               |                                         | ľ        | 21117                  | Dac Date   |                        | CRM                               |                       | Sampler's Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                             |                                                                              |                   |                                         |          | 3,4 [.                 | ) iia Data |                        | County New M                      | 100                   | roiect I ocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| None: NO                                                                                    |                                                                              |                   | Pres.                                   | פי ס     | ✓ Rush                 | Routine    |                        | 2035                              |                       | Project Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| REQUEST                                                                                     | ANALYSIS REQUEST                                                             |                   |                                         |          | Turn Around            | Turr       | (4.01.23)              | Stratocaster 20 Fed 3&4 (4.01.23) | Stratoca              | Project Name.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Deliverables EDD ADaPT                                                                      |                                                                              | .com              | Email mcarmona@carmonaresources.com     | @carmor  | mcarmona               | Email      |                        | 3                                 | 432-813-6823          | Phone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Reporting Level II Level III ST/UST                                                         |                                                                              |                   |                                         | IP       | City, State ZIP        |            |                        | 79701                             | Midland, TX 79701     | City, State ZIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| State of Project:                                                                           |                                                                              |                   |                                         |          | Address.               |            |                        | St Ste 500                        | 310 W Wall St Ste 500 | Address.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Program: UST/PST PRP   Irownfields RC                                                       |                                                                              |                   |                                         | ame:     | Company Name:          |            |                        | sources                           | Carmona Resources     | Company Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Work Order Comments                                                                         |                                                                              | Carmona Resources | Carmo                                   | ent)     | Bill to (if different) |            |                        | ring                              | Conner Moehring       | Project Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# **Login Sample Receipt Checklist**

Client: Carmona Resources

Job Number: 880-31663-1

SDG Number: Lea County New Mexico

List Source: Eurofins Midland

Login Number: 31663

List Number: 1

Creator: Rodriguez, Leticia

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| The cooler's custody seal, if present, is intact.                                | N/A    |         |
| Sample custody seals, if present, are intact.                                    | N/A    |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the containers received and the COC.          | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified.                                                    | N/A    |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").  | N/A    |         |

Released to Imaging: 11/29/2023 3:17:41 PM

4

6

8

10

12

13

14

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

**State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505** 

CONDITIONS

Action 252100

## **CONDITIONS**

| Operator:          | OGRID:                                    |
|--------------------|-------------------------------------------|
| COG OPERATING LLC  | 229137                                    |
| 600 W Illinois Ave | Action Number:                            |
| Midland, TX 79701  | 252100                                    |
|                    | Action Type:                              |
|                    | [C-141] Release Corrective Action (C-141) |

#### CONDITIONS

| Created<br>By | Condition | Condition Date |
|---------------|-----------|----------------|
| nvelez        | None      | 11/29/2023     |